

RL78/G12

APPLICATION NOTE

Serial Array Unit (CSI Slave Communication)

R01AN1370EJ0100 Rev. 1.00 Mar.01, 2013

Introduction

This application note describes how the serial array unit (SAU) performs communication tasks using the CSI slave communication feature. The SAU is selected by the CS signal sent from the master and performs single transmission/reception, continuous transmission, continuous reception, and continuous transmission/reception operations. To ensure reliable communication, it adopts a simple protocol and a command set plus its compatible format. The SAU also performs handshake processing using the BUSY signal to establish synchronization with the master.

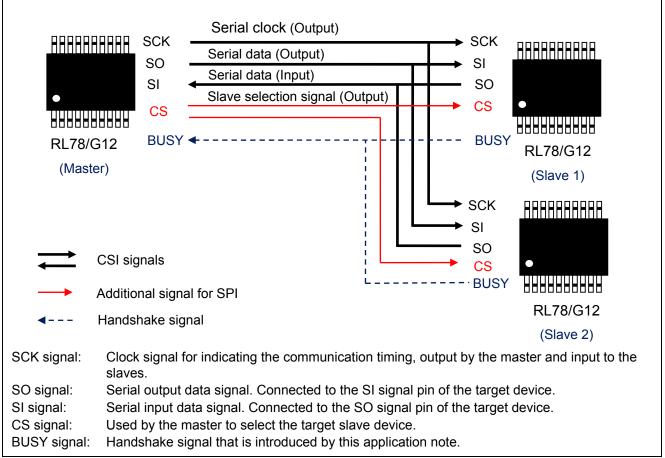
Target Device

RL78/G12

When applying the sample program covered in this application note to another microcomputer, modify the program according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.

Contents

1.	Specifications	3
1.1	Outline of CSI Communication	3
1.2	Outline of Communication	4
1.3	Communication Format	7
1.4	Communication Protocol (Hardware Handshake)	7
2.	Operation Check Conditions	9
3.	Related Application Notes	9
4.	Description of the Hardware	
4.1	Hardware Configuration Example	
4.2	List of Pins to be Used	11
5.	Description of the Software	12
5.1	Operation Outline	12
5.2	List of Constants	14
5.3	List of Variables	16
5.4	List of Functions (Subroutines)	17
5.5	Function (Subroutine) Specifications	18
5.6	Flowcharts	26
6.	Changing the Channel to be Used	74
6.1	Definition File	
6.2	Major Items of the Definition File	
6.3	Changing the Transfer Rate	
6.4	Changing the Microcontroller to be Used	
6.5	Changing the Channel to be Used	
6.6	Reference	
7.	Sample Code	77
8.	Documents for Reference	77
Rev	ision Record	78
Gen	eral Precautions in the Handling of MPU/MCU Products	79



1. Specifications

The serial array unit (SAU) described in this application note performs CSI slave communication using the serial array unit (SAU). Selected by the CS signal from the master, the SAU performs single transmission/reception, continuous transmission, continuous reception, or continuous transmission/reception while performing handshaking using the BUSY signal. (Although CS is a negative logic signal, the bar that should normally appear over the signal name is omitted in this document.)

1.1 Outline of CSI Communication

CSI is a protocol for clock synchronous serial communication using three signal lines, namely, serial clock (SCK), serial input data (SI), and serial output data (SO). SPI (Serial Peripheral Interface) uses an additional signal, CS (Chip Select), which is used to select the slave device. The relationship among these signals is shown in figure 1.1.

Figure 1.1 Outline of CSI Communication

The CSI communication master first selects the slave with which it wants to communicate with the CS signal (this is an SPI operation). The master outputs the SCK signals and place data on the SO signal line and inputs data from the SI signal line in synchronization with the SCK signals. In CSI communication, the slave needs to become ready for communication by the time the master starts communication (sending the SCK signals). In this application note, the BUSY signal is introduced as the signal for indicating the slave is ready for communication. Since the slave cannot catch up with the master in processing speed when it is selected by the CS signal or when the master starts communication, it controls the BUSY signal so that the master checks the signal whenever starting communication.

1.2 Outline of Communication

Communication is done in 1 ms slot units. In each slot, command transmission from the master and communication processing according to the command are processed. Figure 1.2 shows the outline of slot processing and table 1.1 lists the commands that are to be used.

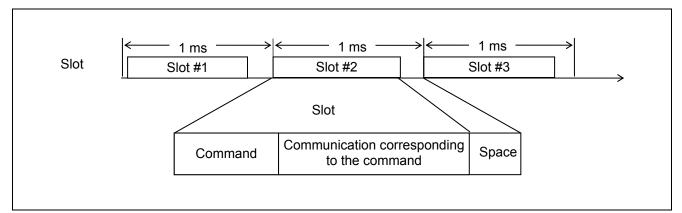


Figure 1.2 Outline of Slots

Command	Operation Outline
Status check	Checks the number of data characters that the slave can transmit or receive.
Receive	Receives data from the slave in continuous mode.
Transmit	Transmits data to the slave in continuous mode.
Transmit/receive	Transmits and receives data to and from the slave in continuous mode.

The SAU as a slave returns the size of the transmit and receive buffers in response to the status check command. When the slave receives data, it takes the complement of the received data as the data to be sent next time.

The basic communication processing consists of subroutines that run based on interrupts. These subroutines are not always fully general-purpose subroutines since there are cases in which subroutines become closely related to slave processing. The CSI channel to be used can be changed easily by editing a header file.

Table 1.2 lists the peripheral functions that are used and their uses. Figures 1.3 to 1.6 show the CSI communication operations. Unless specifically noted, CSIp is represented by CSI00.

Peripheral Function	Use
Serial array unit m	Performs CSI master communication using the SCKp signal (clock output), SIp signal (receive data), and SOp signal (transmit data). p: 00/01/11/20
External interrupt	INTP0: P137 (CS signal input)
Port	P23 (BUSY signal output)

20/24-pin products: m = 0, 30-pin products: m = 0/1

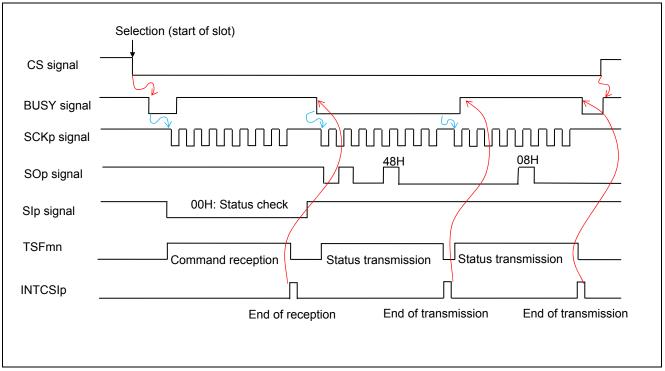
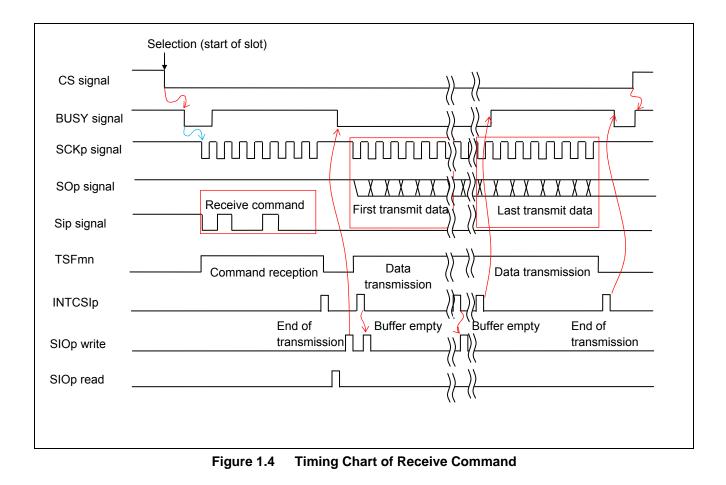



Figure 1.3 Timing Chart of Status Check Command

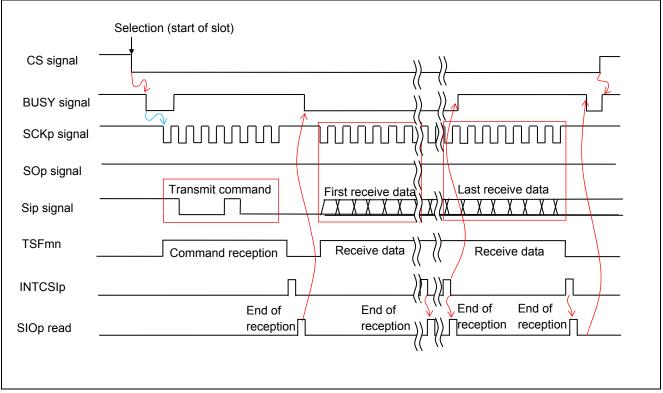


Figure 1.5Timing Chart of Transmit Command

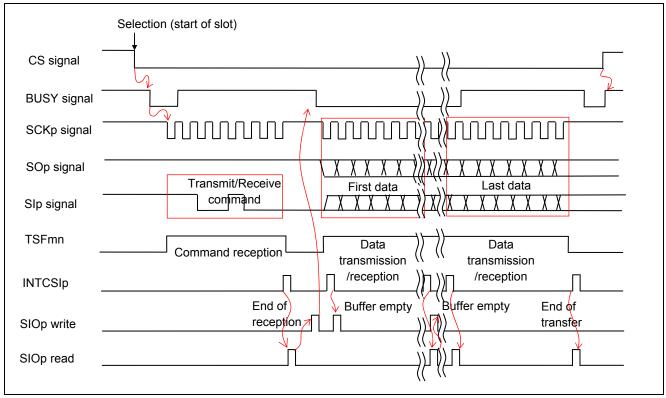


Figure 1.6 Timing Chart of Transmit/Receive Command

1.3 Communication Format

The characteristics of the CSI communication format that is used by the sample code are listed in table 1.3.

Item	Specification	Remarks
Communication speed	1 Mbps	About 200 kbps at minimum
Data bit length	8 bits/character	
Transfer order	MSB first	
Communication type	Type1	
Communication mode Single transfer/continuous transfer		Continuous mode is used for data transfer.
Communication direction	Receive/transmit/transmit and receive	
Maximum number of characters transferred	63 characters/slot	8 characters by default

 Table 1.3
 Communication Format

1.4 Communication Protocol (Hardware Handshake)

(1) Necessity of handshaking in the RL78/G12

The BUSY signal is not available for dedicated SPI slave devices such as EEPROM, A/D, and D/A because of high-speed response being involved when they are selected by the master or communication is started. This is because these devices are made always ready for communication by hardware. When using a general-purpose device such as the RL78/G12 as a slave under program control, on the other hand, the processing time taken by the software is always involved.

In such a circumstance, handshaking using the BUSY signal is adopted to secure a preparatory time for readying the RL78/G12 for communication when it is selected by the master or at the beginning of communication processing. Since it is likely that handshaking using the BUSY signal alone locks the slave in the BUSY state, the master is provided with a timeout mechanism.

(2) Handshaking processing

Figure 1.7 shows an example of handshaking processing for the status check command. To select the slave, the master waits until the BUSY signal goes low while measuring the time so as to detect a timeout condition after the falling edge of the CS signal. When the BUSY signal goes low before a timeout, the master sends the command. Upon completion of the command transmission, the master waits until the BUSY signal goes low again to start status receive processing. In this way, the master performs handshaking to get synchronized with the slave by checking the BUSY signal before initiating a new communication operation.

In this case, the master can dispense with the BUSY signal if it is configured always to start processing after the lapse of a timeout time.

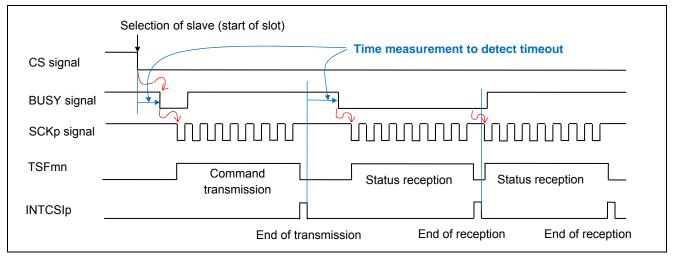


Figure 1.7 Handshaking Example (Processing at Master)

set low.

(3) Response time of the RL78/G12

The RL78/G12 has a long response time. It is divided into the time up to the acceptance of an interrupt and the time that is required to perform subsequent processing. The interrupt acceptance time is subject to whether interrupts are acceptable and to the instruction that is being executed when an interrupt request is generated. Whether interrupts are acceptable is dependent on the program that is processing. In this example, it is assumed that interrupts are always acceptable. Then, 9 to 16 clocks are required to accept a vector interrupt, depending on the currently executing instruction. There are almost no instructions that take as many as 8 clocks to execute. It can be considered that no more than 4 clocks (for conditional branch instructions) are required, provided that attention is paid to instructions that are to be used when waiting for interrupts. Consequently, at most 12 clocks are required.

(a) When selecting a slave using the CS signal, for example, the processing program will look like as shown below and the BUSY signal goes low in 12 clocks. A total of 24 clocks is required, accounting for a response time of 1 μs.

IINTPO:	D.D.1				Entry to INTP0
SEL BT	RB1 P13.7,	SNOTSELECTED	; branch if CS is not active		
SELECTED		SNOISELECIED	; branch if CS is not active	,	Processing block to be executed when the device is selected by the
MOV	!SSmL,	#TRGONn		. /	CS signal. The device is
CLR1	PM_SOp		; set SOp port to output		immediately enabled for CSI
MOV	SIOp,	#0FFH	; set dummy data for start		operation and made ready for
CLR1	BUSYSIG		; fall down BUSY signal	3	receiving commands from the
CLR1	BUSYMODE		; output low BUSY signal		master.
)	Subsequently, the BUSY signal is

(b) The portion of the processing block that takes the longest processing time is the one that receives and analyzes a command and causes a branch to the necessary processing. An excerpt of the relevant processing block is shown below. Since different processing routines process different interrupts, the address of the actual processing routine is stored in the variable RCSISUBADDR in advance, so that a branch is made to that processing routine immediately when an INTCSIp interrupt is accepted. In the case that is shown below, 57 clocks are required in the worst case to cause a branch to the command processing block, entailing a total of 69 clocks. Subsequently, the individual command processing can start. Since the communication mode is reconfigured at the beginning of each command processing, communication can be started in approximately 35 clocks.

Summing up these, it is possible that the device becomes ready for communication in approximately 4 μ s after the reception of the command is completed.

IINTCSIP: SEL MOVW BR	RB1 AX, RCSISUBADDR AX	; select register bank1 ; get actual routine address ; branch to actual routine	Branch processing to actual processing block (branch in 6 clocks)
SITXEND: -			Actual processing block for
MOV	A, SIOp	-	command reception
MOV	RRXDATA, A		(exit in 10 clocks)
MOVW	RCSISUBADDR, #LOWW CSIBF	EMP ; set transfer start address	
CLRB	CSISTS	; receive end	
RETI			
MAIN_LOOP2:- CALL BT BNZ	Main command wait t !SCHKRXEND BUSYMODE, \$MAIN_LOOP \$MAIN_LOOP2	Nock ; CSIp command receive check ; branchi if CS is high ; wait for command	Wait for completion of command reception in this loop. (loop of 19 clocks)
MOV	RCOMBUF, A	; save command in buffer	
AND	RCOMBUF, #00111111B	; get data number	
AND	A, #1100000B	; get command bit	
SHRW	AX, 13	; A7 -> X2,A6 -> X1	Command analysis block.
ADDW	AX, #LOWW CCMDLIST	; get table address	References the table and
MOVW	HL, AX		causes a branch to pertinent
MOVW	AX, ES: [HL]	; get subroutine address	command processing block.
CALL	AX	; go to actual routine	(12 clocks are required.)

2. Operation Check Conditions

The sample code contained in this application note has been checked under the conditions listed in the table below.

Table 2.1 Operation Check Conditions	Table 2.1	Operation Check Conditions
--------------------------------------	-----------	-----------------------------------

Item	Description
Microcontroller used	RL78/G12 (R5F1026A)
Operating frequency	High-speed on-chip oscillator (HOCO) clock: 24 MHz
	CPU/peripheral hardware clock: 24 MHz
Operating voltage	5.0 V (Operation is possible over a voltage range of 2.9 V to 5.5 V.)
	LVD operation (V_{LVI}): Reset mode which uses 2.81 V (2.76 V to 2.87 V)
Integrated development environment	CubeSuite+ V1.02.00 from Renesas Electronics Corp.
Assembler	RA78K0R V1.60 from Renesas Electronics Corp.
Board to be used	RL78/G12 target board (QB-R5F1026A-TB)

3. Related Application Notes

The application notes that are related to this application note are listed below for reference.

RL78/G12 Initialization (R01AN1030E) Application Note RL78/G12 Serial Array Unit (CSI Master Communication) (R01AN1369E) Application Note RL78 Family CubeSuite+ Startup Guide (R01AN1232E) Application Note

4. Description of the Hardware

4.1 Hardware Configuration Example

Figure 4.1 shows an example of hardware configuration that is used for this application note.

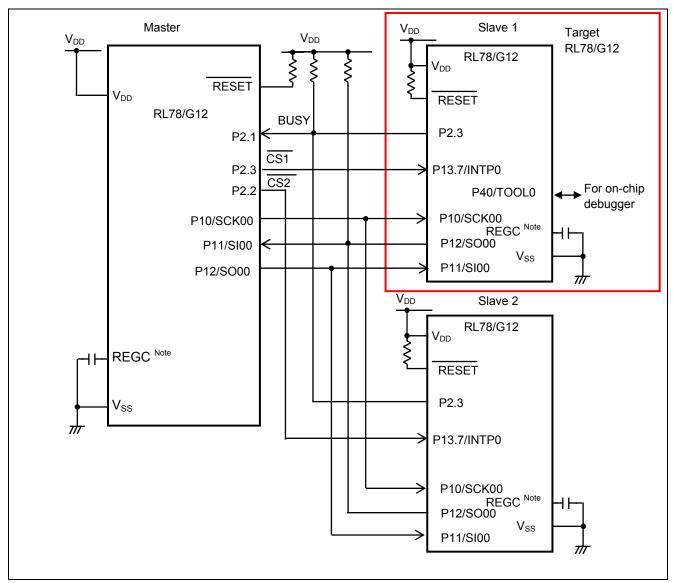


Figure 4.1 Hardware Configuration

Note: Only for 30-pin products.

- Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified accordingly. When designing and implementing an actual circuit, provide proper pin treatment and make sure that the hardware's electrical specifications are met (connect the input-only ports separately to V_{DD} or V_{SS} via a resistor).
 - 2. V_{DD} must be held at not lower than the reset release voltage (V_{LVI}) that is specified as LVD.

4.2 List of Pins to be Used

Table 4.1 lists the pins to be used and their function.

Table 4.1	Pins to be Used and their Functions
-----------	-------------------------------------

Pin Name	I/O	Description
P10/ANI16/PCLBUZ0/SCK00/SCL00 Note	Output	Serial clock output pin
P11/ANI17/SI00/RxD0/TOOLRxD/SDA00 Note	Input	Data receive pin
P12/ANI18/SO00/TxD0/TOOLTxD Note	Output	Data transmit pin
P137/INTP0 (CS)	Input	Select signal
P23/ANI3 (BUSY)	Output	BUSY response signal

Note: The channel to be used must be specified in an include file (DEV&CSI_CH.inc). The default value is CSI00. The pins and interrupt to be used are automatically set according to the channel to be used.

5. Description of the Software

5.1 Operation Outline

This sample code, after completion of initialization, initializes the memory and waits for selection by the master. When selected as a slave, it waits for a command from the master and takes necessary actions according to the command that is received.

(1) Initialize the CSI.

<Conditions for setting the CSI>

- Use SAU0 channel 0 as CSI00 ^{Note}.
- Use SCKp input as the transfer clock.
- Assign the clock input to the P10/SCK00 pin ^{Note}, the data input to the P11/SI00 pin ^{Note}, and the data output to the P12/SO00 pin ^{Note}. In this stage, however, the P12/SO00 pin ^{Note} is not set up for output.
- Set the data length to 8 bits.
- Set the phase between the data and clock to type 1.
- Set the order of data transfer mode to MSB first.
- Turn on the transmission/reception mode and set the interrupt type (INTCSI00)^{Note} to the buffer empty interrupt.
- Set the priority of the interrupt (INTCSI00)^{Note} to the lowest (level 3 (default)).

Note: The channel to be used must be specified in an include file (DEV&CSI_CH.inc). The default value is CSI00. The pins and interrupt to be used are automatically set according to the channel to be used.

(2) When initialization is completed, the sample code initializes the memory and waits for selection by the master with the CS signal.

Transition occurs in combination with the interrupt-triggered processing.

- (3) When the sample code takes the following actions when the falling edge of the CS signal is detected by the INTPO edge detection mode interrupt function:
 - 1) Enables the CSIp for operation, enables the SOp for output, sets the BUSY signal low, and waits for the start of command reception processing.
 - 2) When the reception of the command from the master starts and a buffer empty interrupt occurs, the sample code outputs a BUSY signal (sets it high) and wait for the end of reception processing.
 - 3) Returns to step (2) when the CS signal goes high.

(4) Commands

Each communication operation begins with the reception of a 1-byte command. Table 5.1 lists the command formats.

Command Code		Command Outline
Status check	0000000B	Checks the number of data characters that the slave can transmit or receive. The following responses can be made by the slave: 01xxxxxxB: The number of characters that the slave can transmit is xxxxxB 00xxxxxxB: The number of characters that the slave can receive is xxxxxB
Receive	01xxxxxxB	The master receives xxxxxB bytes of data.
Transmit	10xxxxxB	The master transmits xxxxxxB bytes of data.
Transmit/Receive	11xxxxxB	Transmits and receives xxxxxB bytes of data.

Table 5.1 Command Formats

RL78/G12

- 1) When command reception is completed and the INTCSIp interrupt is accepted, the interrupt processing block stores the received data in the buffer and clears the flag (CSISTS).
- 2) The main processing block waits for CSISTS to be cleared, reads the command from the buffer, stores the lower 6 bits of the received command in the data count buffer (RCOMBUF), reads the processing address associated with the received command with a table reference, and causes a branch to that address (CALL AX). (For details, refer to paragraph (3), RL78/G12 response time, in section 1.4, Communication Protocol (Hardware Handshake).)
- (5) Preparation for receiving the next command
 - 1) Activates the CSIp for reception processing upon receipt of a next command and sets the BUSY signal low.
 - 2) Return to 2) in (3).
- (6) Status check command processing (SREADSTS)
 - 1) Loads the HL register with the pointer to the transmit data (status).
 - 2) Loads the A register with the transmit data count (2).
 - 3) Calls the continuous transmission subroutine (SSEQTXSUB).
 - 4) Waits for end of transmission.
 - 5) Terminates processing when the transmission processing is completed.
- (7) Master receive command processing (SMSTRRX)
 - 1) Loads the HL register with the pointer to the transmit data.
 - 2) Loads the A register with the transmit data count (RCOMBUF).
 - 3) Calls the continuous transmission subroutine (SSEQTXSUB).
 - 4) Waits for end of transmission.
 - 5) Terminates processing when the transmission processing is completed.
- (8) Master transmit command processing (SMSTRTX)
 - 1) Loads the HL register with the pointer to the receive data.
 - 2) Loads the A register with the transmit data count (RCOMBUF).
 - 3) Calls the continuous transmission subroutine (SSEQTXSUB).
 - 4) Waits for end of transmission.
 - 5) Stores the complement of the received data in the transmit buffer and terminates processing.
- (9) Transmit/receive command processing
 - 1) Loads the HL register with the pointer to the transmit data.
 - 2) Loads the DE register with the pointer to the receive data.
 - 3) Loads the A register with the transmit data count (RCOMBUF).
 - 4) Calls the continuous transmission subroutine (SSEQTXSUB).
 - 5) Waits for end of reception.
 - 6) Stores the complement of the received data in the transmit buffer and terminates processing.

(10) List of Option Byte Settings

Table 5.2 summarizes the settings of the option bytes.

Table 5.2	Option Byte Settings
-----------	----------------------

Address	Value	Description
000C0H	01101110B	Disables the watchdog timer.
		(Stops counting after the release from the reset state.)
000C1H	0111111B	LVD reset mode, 2.81 V (2.76 to 2.87 V)
000C2H	11100000B	HS mode, HOCO: 24 MHz
000C3H	10000101B	Enables the on-chip debugger.

5.2 List of Constants

Tables 5.3 and 5.4 list the constants that are used in this sample program.

ConstantDefined inSettingDescriptionCLKFREQDEV&CS1_CH .inc24000RL78/G12 operating clock frequency in kHz (24 MHz)BAUDRATE↑1000Communication speed in kbps (1 Mbps)DIVIDE↑1000Communication speed in kbps (1 Mbps)DIVIDE↑(CLKFREQ/BAUDRATE .peedied communication speedSDRDATA↑(DIVIDE -1)*200H .peedied communication speedNTERVAL↑1Slot interval in ms units (1 ms) (not used)TDRDATA↑(CLKFREQ/128)*INTERVAL -1Value to be set in TDR03H (not used)SAUMEN↑SAUDENSAUDEN NoteSAU clock supply enable bitSPSmL↑SAUDENSAUDEN NoteSAU clock supply enable bitSPSmL↑SROROChannel mode setting registerSRmm↑SRORO NoteChannel mode setting registerSIRom↑SSRONO NoteChannel serial data registerSIRom↑SSRONO NoteChannel stati sregisterSIRom↑SSRONO NoteChannel stati sregisterSIRom↑SSRONO NoteChannel stati registerSIRom↑SSRONO NoteChannel stati registerSIRom↑ <td< th=""><th></th><th></th><th></th><th></th></td<>				
inc MH2 BAUDRATE ↑ 1000 Communication speed in kbps (1 Mbps) DIVIDE ↑ CLKFREQ/BAUDRATE Frequency division ratio necessary for attain the specified communication speed SDRDATA ↑ (DIVIDE -1)*200H Value to be set in SDR to specify the communication speed INTERVAL ↑ 1 Stot interval in ms units (1 ms) (not used) TDRDATA ↑ (CLKFREQ/128) * INTERVAL - 1 Value to be set in TDR03H (not used) SAUMEN ↑ SAUOENNSAUGEN Note SAU prescaler setting register SMRmn ↑ SMR00 Note Channel communication operation setting register SCRnn ↑ SDR00 Note Channel communication operation setting register SDRDN ↑ SDR00 Note Channel status register SDRNN ↑ SIROU Note Channel status register SIRmnL ↑ SIROU Note Channel status register SIRmL ↑ SIROU Note Channel status register SIRmL ↑ SIROU Note Channel status register SIRML ↑	Constant	Defined in	Setting	Description
BAUDRATE 1 1000 Communication speed in kbps (1 Mbps) DIVIDE CLKFREQ/BAUDRATE Frequency division ratio necessary for attain the specified communication speed SDRDATA (DIVIDE -1)*200H Value to be set in SDR to specify the communication speed INTERVAL 1 Slot interval in ms units (1 ms) (not used) SAUDENATA (CLKFREQ/128)* INTERVAL -1 Value to be set in TDR03H (not used) SAUDEN	CLKFREQ		24000	RL78/G12 operating clock frequency in kHz (24
DIVIDE ↑ CLKFREQ/BAUDRATE Frequency division ratio necessary for attain the specified communication speed SDRDATA ↑ (DIVIDE -1)*200H Value to be set in SDR to specify the communication speed INTERVAL ↑ 1 Slot interval in ms units (1 ms) (not used) TDRDATA ↑ (CLKFREQ/128)*INTERVAL -1 Value to be set in TDR03H (not used) SAUmEN ↑ SAUDENSAUDEN ^{Note} SAU clock supply enable bit SPSmL ↑ SPSoL ^{Note} SAU clock supply enable bit SPSmL ↑ SPSoL ^{Note} Channel mode setting register SRmn ↑ SDR00 ^{Note} Channel somunication operation setting register SIOp ↑ SIO00 ^{Note} Channel serial data register SIRmnL ↑ SICOU ^{Note} Channel status register SIRmnL ↑ SICOU ^{Note} Channel status register SIRmL ↑ SICOU ^{Note} Channel status register SIRmL ↑ SICOU ^{Note} Channel status register SomL ↑ SOEU ^{Note} Channel status register		.inc		MHz)
Specified communication speed SDRDATA	BAUDRATE	\uparrow	1000	Communication speed in kbps (1 Mbps)
SDRDATA ↑ (DIVIDE -1)*200H Value to be set in SDR to specify the communication speed INTERVAL ↑ 1 Slot interval in ms units (1 ms) (not used) TDRDATA ↑ (CLKFREQ/128)*INTERVAL -1 Value to be set in TDR03H (not used) SAUMEN ↑ SAU0ENSAU0EN SAU clock supply enable bit SPSmL ↑ SP00L SAU prescaler setting register SMRmn ↑ SMR00 Note Channel mode setting register SCRmn ↑ SDR00 Note Channel communication operation setting register SDRmn ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Channel status register SIRmnL ↑ SSR0L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register STmL ↑ SSR0L Note Channel status register STmL ↑ SSOL Note Channel status register SOENL ↑ SSOL Note Channel status register SOENL ↑ STOL	DIVIDE	\uparrow	CLKFREQ/BAUDRATE	Frequency division ratio necessary for attain the
INTERVAL ↑ 1 Slot interval in ms units (1 ms) (not used) TDRDATA ↑ (CLKFREQ/128) * INTERVAL - 1 Value to be set in TDR03H (not used) SAUMEN ↑ SAU0ENSAU0EN Note SAU clock supply enable bit SPSmL ↑ SPSoL Note SAU prescaler setting register SMRmn ↑ SMR00 Note Channel mode setting register SCRm ↑ SCR00 Note Channel communication operation setting register SDRmn ↑ SDR00 Note Channel communication operation setting register SIOp ↑ SIO00 Note Channel serial data register SIOp ↑ SIC000 Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmnL ↑ SOE0L Note Channel output enable register SOEN ↑ TRGO				specified communication speed
INTERVAL ↑ 1 Slot interval in ms units (1 ms) (not used) TDRDATA ↑ (CLKFREQ/128)*INTERVAL - 1 Value to be set in TDR03H (not used) SAUMEN ↑ SAU0ENSAU0EN Note SAU clock supply enable bit SPSmL ↑ SPS0L Note SAU prescaler setting register SMRmn ↑ SMR00 Note Channel mode setting register SCRmn ↑ SCR00 Note Channel communication operation setting register SDRmn ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Channel serial data register SIOp ↑ SIO00 Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register STML ↑ SOE0L Note Channel status register SOENL ↑ SOE0L Note Channel output	SDRDATA	\uparrow	(DIVIDE -1)*200H	
TDRDATA ↑ (CLKFREQ/128)*INTERVAL - 1 Value to be set in TDR03H (not used) SAUmEN ↑ SAU0ENSAU0EN Note SAU clock supply enable bit SPSmL ↑ SPS0L Note SAU prescaler setting register SMRmn ↑ SMR00 Note Channel mode setting register SCRmn ↑ SCR00 Note Channel communication operation setting register SDRmn ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Channel serial data register SIOp ↑ SIO00 Note Lower 8 bits of channel serial data SSRmnL ↑ SSR00L Note Channel status register SIRmnL ↑ SSR00L Note Channel status register SIRmnL ↑ SSR0L Note Channel status register SSmL ↑ SSOL Note Channel status register SOBON ↑ SOE Note Channel status register SOENL ↑ SOE Note Channel output enable register SOEON ↑ SOEOL Note Channel output enable register SOEON ↑ TRGONn For settin				
SAUMEN ↑ SAUDENSAUDEN Note SAU clock supply enable bit SPSmL ↑ SPS0L SAU prescaler setting register SMRmn ↑ SMR00 Note Channel mode setting register SCRmn ↑ SCR00 Note Channel mode setting register SDRmn ↑ SCR00 Note Channel serial data register SIOp ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Channel serial data register SIOp ↑ SIO00 Note Channel serial data register SIOp ↑ SIO00 Note Channel serial data SIRmnL ↑ SSR00L Note Channel stats register SIRmnL ↑ SIR00L Note Channel stats register SSmL ↑ SIR00L Note Channel stats register SIRmnL ↑ SIR00L Note Channel stats register STmL ↑ STOL Note Channel stats register SOENN ↑ TGONN For setting in	INTERVAL		1	Slot interval in ms units (1 ms) (not used)
SPSmL ↑ SPSoL <note< th=""> SAU prescaler setting register SMRmn ↑ SMR00 Note Channel mode setting register SCRmn ↑ SCR00 Note Channel communication operation setting register SDRmn ↑ SDR00 Note Channel communication operation setting register SIOp ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Lower 8 bits of channel serial data SSRmnL ↑ SSR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmnL ↑ SSR0L Note Channel status register SIRmnL ↑ SSR0L Note Channel status register SIRmnL ↑ SSOL Note Channel status register SIRmL ↑ SOL Note Channel status register SOEMIN ↑<!--</td--><td>TDRDATA</td><td>\uparrow</td><td></td><td>Value to be set in TDR03H (not used)</td></note<>	TDRDATA	\uparrow		Value to be set in TDR03H (not used)
SMRmn ↑ SMR00 Note Channel mode setting register SCRmn ↑ SCR00 Note Channel communication operation setting register SDRmn ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Lower 8 bits of channel serial data SSRmnL ↑ SSR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmL ↑ SIR00L Note Channel status register STmL ↑ SS0L Note Channel status register STmL ↑ SOE0L Note Channel status register SOEmL ↑ SOE0L Note Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register SOEOFF ↑ 11111110B Note For setting in channel output enable register SOM ↑ SO0 Note Channel output re	SAUmEN	\uparrow		SAU clock supply enable bit
SCRmn ↑ SCR00 Note Channel communication operation setting register SDRmn ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Lower 8 bits of channel serial data SSRmnL ↑ SSR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel status register SIRmL ↑ SIR00L Note Channel status register STmL ↑ SS0L Note Channel status register STmL ↑ ST0L Note Channel status register TRGONN ↑ SOE0L Note Channel stop register SOEmL ↑ SOE0L Note Channel output enable register SOEON ↑ TRGONN For setting in channel output enable register SOEOFF ↑ 11111110B Note For setting in channel output enable register SOHIGH ↑	SPSmL	\uparrow	SPS0L Note	SAU prescaler setting register
SDRmn ↑ SDR00 Note Channel serial data register SIOp ↑ SIO00 Note Lower 8 bits of channel serial data SSRmL ↑ SSR00L Note Channel status register SIRmL ↑ SIR00L Note Channel status register SIRmL ↑ SIR00L Note Channel status register SSmL ↑ SSOL Note Channel status register STmL ↑ SSOL Note Channel status register STmL ↑ SSOL Note Channel status register TRGONn ↑ STOL Note Channel status register SOEmL ↑ SOEOL Note Channel status register SOEON ↑ SOEOL Note Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register SOEOFF ↑ 1111110B Note For setting in channel output enable register SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ P	SMRmn	\uparrow	SMR00 Note	Channel mode setting register
SIOp ↑ SIO00 Note Lower 8 bits of channel serial data SSRmnL ↑ SSR00L Channel status register SIRmnL ↑ SIR00L Channel flag clear trigger register SSmL ↑ SSOL Note Channel status register SSmL ↑ SSOL Note Channel start register STmL ↑ STOL Note Channel stop register TRGONn ↑ O0000001B Note Channel stop register TRGONn ↑ SOE0L Note Channel output enable register SOEmL ↑ SOE0L Note Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register SOEOFF ↑ 1111110B Note For setting in channel output enable register SOM ↑ SOO Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1.0 Note Port mode register PM_SIp ↑ PM1.1 Note </td <td>SCRmn</td> <td>\uparrow</td> <td>SCR00 Note</td> <td>Channel communication operation setting register</td>	SCRmn	\uparrow	SCR00 Note	Channel communication operation setting register
SSRmnL ↑ SSR00L Note Channel status register SIRmnL ↑ SIR00L Note Channel flag clear trigger register SSmL ↑ SS0L Note Channel start register STmL ↑ ST0L Note Channel stop register TRGONn ↑ 00000001B Note Value for SSmL and STmL SOEmL ↑ SOE0L Note Channel output enable register SOEML ↑ SOE0L Note Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register (enable) SOEOFF ↑ 1111110B Note For setting in channel output enable register (disable) SOM ↑ SO0 Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1 Note Port mode register PM_SCKp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SDRmn	\uparrow	SDR00 Note	Channel serial data register
SIRmnL ↑ SIR00L Note Channel flag clear trigger register SSmL ↑ SS0L Note Channel start register STmL ↑ ST0L Note Channel stop register TRGONn ↑ 00000001B Note Value for SSmL and STmL SOEmL ↑ SOE0L Note Channel output enable register SOEON ↑ SOE0L Note Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register (enable) SOEOFF ↑ 1111110B Note For setting in channel output enable register (disable) SOm ↑ SO0 Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SIOp	\uparrow	SIO00 Note	Lower 8 bits of channel serial data
SIRmnL ↑ SIR00L Note Channel flag clear trigger register SSmL ↑ SS0L Note Channel start register STmL ↑ ST0L Note Channel stop register TRGONn ↑ 00000001B Note Value for SSmL and STmL SOEmL ↑ SOE0L Note Channel output enable register SOEON ↑ SOE0L Note Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register (enable) SOEOFF ↑ 1111110B Note For setting in channel output enable register (disable) SOm ↑ SO0 Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SSRmnL	\uparrow	SSR00L Note	Channel status register
STmL ↑ ST0L Note Channel stop register TRGONn ↑ 00000001B Value for SSmL and STmL SOEmL ↑ SOEoL Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register (enable) SOEOFF ↑ 1111110B For setting in channel output enable register (disable) SOM ↑ SOO For setting in channel output enable register (disable) SOM ↑ SOO For setting in channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1.0 Note Port mode register PM_SIp ↑ PM1.1 SI signal port mode register	SIRmnL	\uparrow	SIR00L Note	Channel flag clear trigger register
STmL ↑ ST0L Note Channel stop register TRGONn ↑ 00000001B Value for SSmL and STmL SOEmL ↑ SOEoL Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register (enable) SOEOFF ↑ 1111110B For setting in channel output enable register (disable) SOM ↑ SOO For setting in channel output enable register (disable) SOM ↑ SOO For setting in channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1.0 Note Port mode register PM_SIp ↑ PM1.1 SI signal port mode register	SSmL	\uparrow	SS0L Note	Channel start register
SOEmL ↑ SOE0L Note Channel output enable register SOEON ↑ TRGONn For setting in channel output enable register (enable) SOEOFF ↑ 1111110B Note For setting in channel output enable register (disable) SOM ↑ SOO Note Channel output register mode. SOHIGH ↑ TRGONN Used to set value into channel output register. PM_CSIp ↑ PM1 Note Port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	STmL	\uparrow	ST0L Note	Channel stop register
SOEON ↑ TRGONn For setting in channel output enable register (enable) SOEOFF ↑ 1111110B Note For setting in channel output enable register (disable) SOm ↑ SO0 Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1.0 Note POrt mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	TRGONn	\uparrow		Value for SSmL and STmL
SOEOFF ↑ 11111110B Note For setting in channel output enable register (disable) SOM ↑ SOO Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1.0 Note Port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SOEmL	\uparrow	SOE0L Note	Channel output enable register
SOEOFF ↑ 1111110B Note For setting in channel output enable register (disable) SOm ↑ SO0 Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1 Note Port mode register PM_SCKp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SOEON	\uparrow	TRGONn	For setting in channel output enable register
SOm ↑ SO0 Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1 Note Port mode register PM_SCKp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register				(enable)
SOm ↑ SO0 Note Channel output register mode. SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1 Note Port mode register PM_SCKp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SOEOFF	\uparrow	1111110B ^{Note}	For setting in channel output enable register
SOHIGH ↑ TRGONn Used to set value into channel output register. PM_CSIp ↑ PM1 ^{Note} Port mode register PM_SCKp ↑ PM1.0 ^{Note} SCK signal port mode register PM_SIp ↑ PM1.1 ^{Note} SI signal port mode register				(disable)
PM_CSIp ↑ PM1 Note Port mode register PM_SCKp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SOm	\uparrow	SO0 Note	Channel output register mode.
PM_SCKp ↑ PM1.0 Note SCK signal port mode register PM_SIp ↑ PM1.1 Note SI signal port mode register	SOHIGH	\uparrow		Used to set value into channel output register.
PM_SIp ↑ PM1.1 Note SI signal port mode register	PM_CSIp	\uparrow		Port mode register
PM_SIp ↑ PM1.1 Note SI signal port mode register PM_SOp ↑ PM1.2 Note SO signal port mode register	PM_SCKp	\uparrow		SCK signal port mode register
PM_SOp ↑ PM1.2 Note SO signal port mode register	PM_SIp	\uparrow	PM1.1 ^{Note}	SI signal port mode register
	PM_SOp	\uparrow	PM1.2 Note	SO signal port mode register

 Table 5.3
 Constants for the Sample Program (1/2)

Constant	Defined In	Setting	Description
P_CSIp	DEV&CSI_CH .inc	P1	Output latch for the port to be used
P_SCKp	\uparrow	P1.0	SCK signal port
P_SIp	\uparrow	P1.1	SI signal port
P_SOp	\uparrow	P1.2	SO signal port
CSIIFp	\uparrow	CSIIF00	Channel interrupt request flag
CSIMKp	\uparrow	CSIMK00	Channel interrupt master register
CRXMODE	↑	010000000000111B	Value to be loaded in SCR register in receive mode
CTXMODE	↑ (100000000000111B	Value to be loaded in SCR register in transmit mode
CTRXMODE	↑ (110000000000111B	Value to be loaded in SCR register in transmit/ receive mode
CSMRDATA	\uparrow	0000000000100000B	Initial value for SMR register
BUSYSIG	r_main.asm	P2.3	Port for outputting the BUSY signal
BUSYMODE	\uparrow	PM2.3	Port mode register for outputting the BUSY signal
CRXDTNO	\uparrow	8	Size of receive data buffer (in bytes)
CTXDTNO	\uparrow	8	Size of transmit data buffer (in bytes)
CCMDLIST	↑ (SREADSTS	Address of status check command processing block
	T T	SMSTRRX	Address of master reception processing block
	T T	SMSTRTX	Address of master transmission processing block
		SMSTRTXRX	Address of transmission/reception processing block

 Table 5.4
 Constants for the Sample Program (2/2)

5.3 List of Variables

Table 5.5 lists the global variables that are used in this sample program.

Туре	Variable Name	Contents	Function Used
16 bits	RCSISUBADDR	Address of INTCSIp processing block	IINTCSIp, SETCSIMODE, CSIBFEMP, CSITXEND, STXNEXT, STRXNEXT, STX1DTST, STXDATA, SSEQRXSUB, SSEQTXSUB, SSEQTRXSUB
8-bit array	RSNDBUF	Transmit data buffer	main, SMSTXEND, STXNEXT, STRXNEXT, SSEQTXSUB, SSEQTRXSUB,
8-bit array	RRCVBUF	Receive data buffer	main, SRXNEXT, SRXEND, STRXNEXT2
8 bits	RCOMBUF	Command buffer from master	main, SMSTRRX, SMSTRTX, SMSTXEND, SMSTRTXRX
8 bits	RTXDTNO	Counter for number of characters transmitted	main, SREADSTS
8 bits	RRXDTNO	Counter for number of characters received	main, SREADSTS
8 bits	RRXDATA	Receive buffer	main, CSITXEND, SWAITTXEND, SCHKRXEND,
8 bits	CSISTS	Number of remaining characters to be transferred	IINTP0, SETCSIMODE, CSITXEND, SRXNEXT, STXNEXT, STXEND, STRXNEXT2, STRXNEXT, STX1DTST, STXDATA, SWAITTXEND, SCHKRXEND, SSEQRXSUB, SWAITSTREND, SSEQTXSUB, SSEQTRXSUB

5.4 List of Functions (Subroutines)

Table 5.6 summarizes the functions (subroutines) that are used in this sample program.

Function Name	Outline
SINISAU	Initialize CSIp.
SINIINTP0	Initialize INTP0 for CS signal detection.
SREADSTS	Process status check command.
SMSTRRX	Process master receive command.
SMSTRTX	Process master transmit command.
SMSTXEND	End reception. Perform receive data complement processing.
SMSTRTXRX	Process transmit/receive command.
SETCSIMODE	Set up CSIp select release state (halt in transmission/reception mode).
IINTP0	Process CS signal edge detection interrupts.
IINTCSIp	Process INTCSIp interrupt entry.
CSIBFEMP	Process 1-character transfer start interrupts. Start the BUSY signal.
CSITXEND	Process 1-character transmit end interrupts (store receive data in RRXDATA).
SRXNEXT	Process data receive end interrupts in continuous reception mode.
STXNEXT	Process buffer empty interrupts in continuous transmission mode.
SRXEND	Process receive end interrupts for last data in continuous transmission/reception mode.
STXEND	Process transmit end interrupts for last data in continuous transmission mode.
STRXNEXT	Process transmit start interrupts in continuous transmission/reception mode.
STRXNEXT2	Process buffer empty interrupts in continuous transmission/reception mode.
STX1DTST	Turn on transmission/reception mode.
STXDATA	Start 1-character transmission processing (send data from A register).
SRX1DTST	Turn on transmission/reception mode and start 1-character reception processing.
SWAITTXEND	Wait for end of 1-character reception (load receive data in A register).
SCHKRXEND	Check 1-character transfer state. Set Z flag to 1 if end of transfer.
SSEQRXSUB	Start continuous reception processing.
SWAITSTREND	Wait for end of continuous transfer.
SSEQTXSUB	Start continuous transmission processing.
SSEQTRXSUB	Wait for end of continuous transmission/reception.
SSETENDINT	Set up transfer end interrupts.
SSETEMPTYINT	Set up buffer empty interrupts.
SCHNG2TRX	Stop operation temporarily and enable transmission/reception mode (buffer empty interrupts).
SCHNG2TX	Stop operation temporarily and enable transmission mode (buffer empty interrupts).
SCHNG2RX	Stop operation temporarily and enable reception mode (transfer end interrupt).
STARTCSIp	Start CSI.
STOPCSIp	Stop CSI.

5.5 Function (Subroutine) Specifications

This section describes the specifications for the functions that are used in the sample program.

[Function Name] SINISAU

Synopsis	Initialize CSIp.
Explanation	This function sets up the CSIp for type 1, 8 bits, MSB first, and transmission/reception on
	transfer end interrupts. The SOp output pin is not set up for output.
Arguments	None
Return value	None
Remarks	None

[Function Name] SINIINTP0

Synopsis	Initialize INTP0 interrupt.
Explanation	This function sets INTP0 to both edge detection mode.
Arguments	None
Return value	None
Remarks	None

[Function Name] SREADSTS

Synopsis	Process status check command.
Explanation	This function transmits the status with the continuous transmission subroutine.
Arguments	None
Return value	None
Remarks	None

[Function Name] SMSTRRX

Synopsis	Process master receive command.
Explanation	This function sets up pointer and number of communication characters and transmits data with the continuous transmission subroutine.
Arguments	None
Return value	None
Remarks	None

[Function Name] SMSTRTX

Synopsis	Process master transmit command.
Explanation	This function sets up pointer and number of communication characters and transmits data with
	the continuous reception subroutine.
Arguments	None
Return value	None
Remarks	None

Synopsis	Process transmit/receive command.
Explanation	This function sets up pointer and number of communication characters and transmits data with the continuous transmission/reception subroutine.
Arguments	None
Return value	None
Remarks	None

[Function Name] SMSTRTXRX

[Function Name] SETCSIMODE

Synopsis	Process CSIp select release state setup.
Explanation	This function sets the BUSY signal high (subsequently disables output), configures the SOp output pin for input, stops the CSIp, and sets the interrupt timing type to buffer empty interrupt in transmission/reception mode. The function initializes the INTCSIp processing address, clears CSISTS, and prepares for next selection.
Arguments	None
Return value	None
Remarks	None

[Function Name] IINTP0

Synopsis	Process INTP0 edge detection interrupt.
Explanation	If P13.7 is low, this function recognizes the device is selected, starting the CSIp to start command reception processing. If P13.7 is high, the function recognizes the device is not selected, stopping the CSIp.
Arguments	None
Return value	None
Remarks	None

The functions (subroutines) given below are the functions that actually process INTCSIp interrupts.

[Function Name] IINTCSIp

Synopsis	Process INTCSIp interrupt.
Explanation	This function performs the entry processing for an INTCSIp interrupt, switches the register bank to 1, and causes a branch to the address that is stored in the variable RCSISUBADDR.
Arguments	None (The variable RCSISUBADDR contains the address of the actual interrupt processing.)
Return value	None
Remarks	None

[Function Name] CSIBFEMP

Synopsis	Process 1-character transfer start interrupt.
Explanation	This function is invoked when a 1-character transfer begins and a buffer empty interrupt occurs. The function sets the BUSY signal high, changes the INTCSIp timing to end of transfer, and sets the address of the next INTCSIp interrupt processing (RCSISUBADDR) to that of transfer end interrupt processing (CSITXEND).
Arguments	None
Return value	None
Remarks	None

Process 1-character transmission end interrupt.	
This function is invoked by a 1-character of transfer end interrupt. The function stores the receive data in the buffer variable (RRXDATA), changes the INTCSIp timing to buffer empty interrupt, and sets the address of the next INTCSIp interrupt processing (RCSISUBADDR) to that of buffer empty interrupt processing (CSIBFEMP).	
None	
None	
None	

[Function Name] CSITXEND

[Function Name] SRXNEXT

Synopsis	Process data receive end interrupt in continuous reception mode.
Explanation	This function is invoked by a 1-character of receive end interrupt in continuous reception mode and stores the receive data in the required buffer.
	If the data count (CSISTS) is set to 1, the function sets the address of the next INTCSIp interrupt processing (RCSISUBADDR) to that of receive end interrupt processing for last data (SRXEND) and sets the BUSY signal high when the reception of the last data starts.
Arguments	None
Return value	None
Remarks	None

[Function Name] STXNEXT

unction Name of X		
Synopsis	Process continuous transmission mode buffer empty interrupt.	
Explanation	This function is invoked by a buffer empty interrupt in continuous transmission mode. If the data count (CSISTS) is not set to 1, the function decrements the value of CSISTS by 1 and write the data into the SIOp. If the number of communication characters is set to 1, the function sets the BUSY signal high, changes the interrupt timing to end of transfer, and sets the address of the next INTCSIp interrupt processing (RCSISUBADDR) to transmit end interrupt processing for last data (STXEND).	
Arguments	None	
Return value	None	
Remarks	None	

[Function Name] SRXEND

-	
Synopsis	Process continuous transmission/reception mode last data reception completion interrupt.
Explanation	This function is invoked by a last data reception completion interrupt.
	The function stores the receive data in the required buffer and sets the data count (CSISTS) to
	0.
Arguments	None
Return value	None
Remarks	None

Synopsis	Process continuous transmission mode last data transmission completion interrupt.
Explanation	This function is invoked by transmit end interrupt for last data.
	The function sets the number of communication characters (CSISTS) to 0.
Arguments	None
Return value	None
Remarks	None

[Function Name] STXEND

[Function Name] STRXNEXT

Synopsis	Process continuous transmission/reception mode transfer start interrupt.
Explanation	This function is invoked by the first buffer empty interrupt occurring in transmission/reception mode.
	The function writes the next data into the SIOp if the data count (CSISTS) is not set to 1. If the number of communication characters is set to 1, the function sets the BUSY signal high, changes the INTCSIp timing to transfer end interrupt, and sets the address of the next INTCSIp interrupt processing (RCSISUBADDR) to that of receive end interrupt processing for last data (SRXEND).
Arguments	None
Return value	None
Remarks	None

[Function Name] STRXNEXT2

Synopsis	Process continuous transmission mode buffer empty interrupt.
Explanation	This function is invoked by the second and subsequent buffer empty interrupts in continuous transmission/reception mode. The function stores the receive data in the receive data buffer, decrements the number of communication characters by 1, and performs the above STRXNEXT processing.
Arguments	None
Return value	None
Remarks	None

The functions (subroutines) given below are available as general-purpose functions.

[Function Name] STX1DTST

Synopsis	Turn on transmission mode and perform 1-character transmission start processing.		
Explanation	This function pl by STXDATA.	aces the CSIp in transmission mode. The subsequent processing is performed	
Arguments	A register	Transmit data	
Return value	None (Howeve	r, CSISTS is set to 1)	
Remarks	None		

[Function Name] STXDATA

Synopsis	Start 1-character	transmission processing.
Explanation	This function writes data from the A register into the SIOp and starts communication processing. The function loads transfer start processing (CSIBFEMP) into next INTCSIp interrupt processing address (RCSISUBADDR) and sets the number of work-in-progress characters to 1 before returning.	
Arguments	A register	Transmit data
Return value Remarks	· · ·	CSISTS is set to 1) e configured for transmission/reception.

[Function Name] SRX1DTST

Synopsis	Start 1-character reception processing.
Explanation	This function places the CSIp in transmission mode. The function writes dummy data (0FFH) into the SIOp and starts receive processing. It loads transfer start processing (CSIBFEMP) into next INTCSIp interrupt processing address (RCSISUBADDR) and sets the number of work-in-progress characters to 1 before returning.
Arguments	None
Return value	None
Remarks	None

[Function Name] SWAITTXEND

Synopsis	Perform 1-chara	cter transmission(/reception) completion wait processing.
Explanation	the STXDATAS	its for the end (CSISTS = 0) of the transmission processing that is started by Γ function. When the transmission is completed, the function reads the value at buffer (RRXDATA) into the A register.
Arguments	None	
Return value	A register	Receive data
Remarks	The transmit end	d interrupt is processed by CSITXEND (CSISTS is set to 0).

[Function Name] SCHKRXEND

Synopsis	Check 1-chara	cter transfer state.
Explanation	returns with the	hecks CSISTS to examine the transmission or reception state. The function e Z flag set to 0 if the communication is not yet completed and with the Z flag set receive data into the A register if the communication is completed.
Arguments	None	
Return value	Z flag	: [1: Communication complete, 0: Communication in progress]
	A register	: Receive data (contents of RRCVBUF) if communication is completed
Remarks	None	

[Function Name] SSEQRXSUB

Synopsis	Start continuous reception processing.			
Explanation	This function places the CSIp in reception mode, loads the buffer designated by the HL			
	register with the	e number of characters designated by the A register, and starts reception		
	processing. The	processing. The function sets the address of the next INTCSIp interrupt processing		
	(RCSISUBADDR) to the address of SRXNEXT, sets the work-in-progress data count			
	(CSISTS) to the value of the A register, and loads the DE register on the register bank 1 with			
	the buffer pointer before returning. The function returns with a Z flag value of 1 if the receive			
	data count in th	e A register is 0.		
Arguments	HL register	: Address of area for storing receive data		
	A register	: No of receive characters		
Return value	Z flag	: [0: Normal startup, 1: Number of characters is 0.]		
		(CSISTS is set to the number of characters at normal startup time.)		
Remarks	None			

[Function Name] SWAITSTREND

Synopsis	Wait for end of continuous transfer.
Explanation	This function waits until the number of characters (CSISTS) reaches 0 during end of wait processing that is common to continuous reception, transmission, and transmission/reception processing.
Arguments	None
Return value	None
Remarks	None

[Function Name] SSEQTXSUB

Synopsis	Start continuou	s transmission processing.
Explanation	 This function places the CSIp in transmission mode and starts transmission processing to send the number of characters specified in the A register from the buffer designated by the HL register. The function sets the address of the next INTCSIp interrupt processing (RCSISUBADDR) to that of the buffer empty interrupt processing (STXNEXT). It then sets the number of work-in-progress characters (CSISTS) to the value of the A register and loads the HL register on the register bank 1 with the buffer pointer before returning. The function returns with a Z flag value of 1 if the receive data count in the A register is 0. 	
Arguments	HL register	: Address of area for storing the transmit data
C C	A register	: Number of characters to be transmitted
Return value	Z flag	: [0: Normal startup, 1: Number of characters is 0.]
		(CSISTS is set to the number of characters at normal startup time.)
Remarks	None	

[Function Name] SSEQTRXSUB

Synopsis	Start continuous transmission/reception processing.		
Explanation	This function places the CSIp in the transmission/reception mode and activates the function		
	that transmits th	e number of characters designated in the A register from the buffer designated	
		er and stores the received data in the buffer designated by the DE register. It	
	also sets the ad	dress of the next INTCSIp interrupt processing (RCSISUBADDR) to that of	
	buffer empty inte	errupt processing (STRXNEXT).	
	The function pla	ces the value of the A register in the number of work-in-progress characters	
	(CSISTS), loads	the HL register on the register bank 1 with the pointer to the transmit data	
	buffer, and loads the DE register with the pointer to the area for storing the received data.		
	The function ret	urns with a Z flag value of 1 if the value of the receive data count in the A	
	register is 0.		
Arguments	HL register	: Address for storing transmit data	
	DE register	: Address for storing receive data	
	A register	: Number of transfer characters	
Return value	Z flag	: [0: Normal startup, 1: Number of characters is 0.]	
		(CSISTS is set to the number of characters at normal startup time.)	
Remarks	None		

[Function Name] SSETENDINT

Synopsis	Set up transfer end interrupts.
Explanation	This function sets the CSIp interrupt timing to end of transfer.
Arguments	None
Return value	None
Remarks	None

[Function Name] SSETEMPTYINT

Synopsis	Set up buffer empty interrupts.
Explanation	This function sets the CSIp interrupt timing to buffer empty interrupts.
Arguments	None
Return value	None
Remarks	None

[Function Name] SCHNG2TRX

Synopsis	Set CSIp in transmission/reception mode
Explanation	This function stops the CSI temporarily and enables the transmission/reception mode. The
	interrupt timing is set to buffer empty interrupt.
Arguments	None
Return value	None
Remarks	None

Set CSIp in transmission mode.
This function stops the CSI temporarily and enables the transmission mode. The interrupt timing is set to buffer empty interrupt.
None
None
None

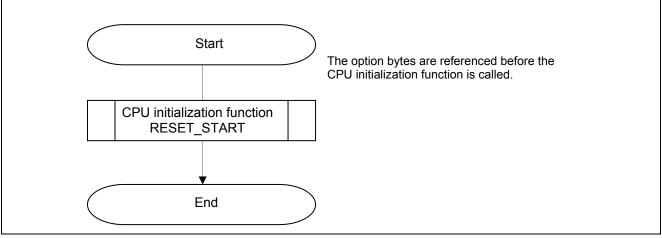
[Function Name] SCHNG2TX

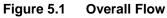
[Function Name] SCHNG2RX

Synopsis	Set CSIp in reception mode.
Explanation	This function stops the CSI temporarily and enables the reception mode. The interrupt timing
	is set to end of transfer.
Arguments	None
Return value	None
Remarks	None

[Function Name] STARTCSIp

Synopsis	Enable CSIp.
Explanation	This function enables the CSIp (SEmn = 1), clears the interrupt request, and unmasks interrupts to enable interrupts.
Arguments	None
Return value	None
Remarks	None


[Function Name] STOPCSIp


Synopsis	Disable CSIp.
Explanation	This function disables (masks) interrupts and disables the CSIp.
Arguments	None
Return value	None
Remarks	None

5.6 Flowcharts

Figure 5.1 shows the overall flow of the sample program described in this application note.

5.6.1 CPU Initialization Function

Figure 5.2 shows the flowchart for the CPU initialization function.

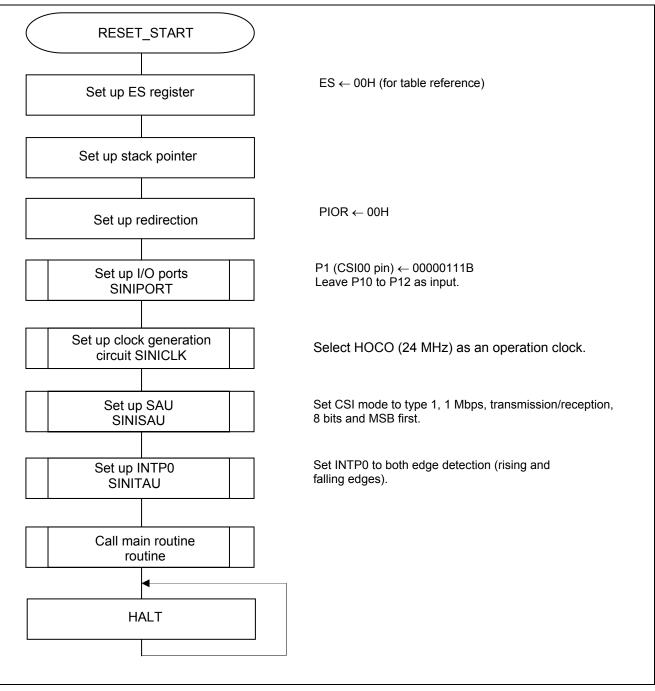


Figure 5.2 CPU Initialization Function

5.6.2 I/O Port Setup

Figure 5.3 shows the flowchart for I/O port setup.

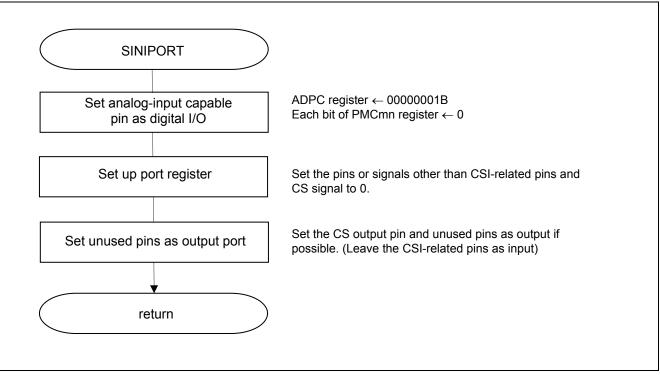


Figure 5.3 I/O Port Setup

- Note: Refer to the section entitled "Flowcharts" in RL78/G12 Initialization Application Note (R01AN1030E) for the configuration of the unused ports.
- Caution: Provide proper treatment for unused pins so that their electrical specifications are observed. Connect each of any unused input-only ports to V_{DD} or V_{SS} via separate resistors.

5.6.3 Setting up the Clock Generator Circuit

Figure 5.4 shows the flowchart for clock generation circuit setup.

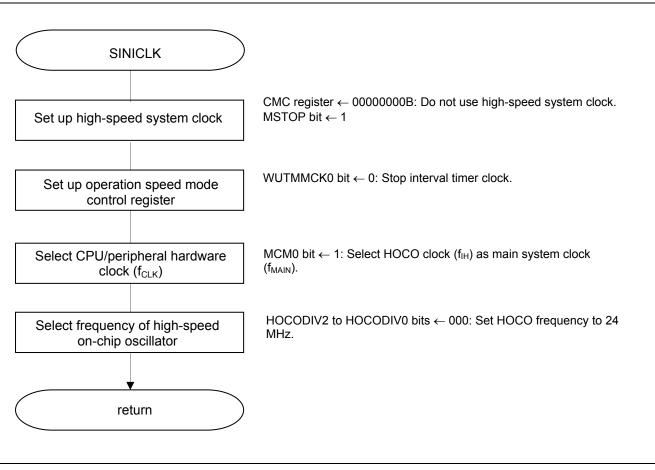


Figure 5.4 Clock Generator Circuit Setup

Caution: For details on the procedure for setting up the clock generation circuit (SINICLK), refer to the section entitled "Flowcharts" in RL78/G12 Initialization Application Note (R01AN1030E).

5.6.4 SAU Setup

Figure 5.5 shows the flowchart for SAU setup.

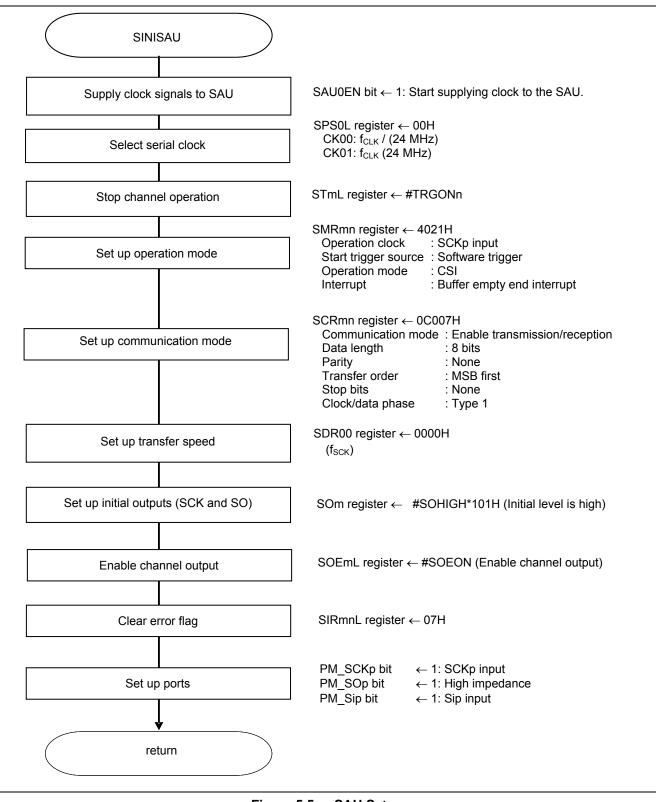


Figure 5.5 SAU Setup

Start supplying clock to the SAU

• Peripheral enable register 0 (PER0) Start supplying clock signals.

Symbol: PER0

7	6	5	4	3	2	1	0
TMKAE	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN
х	0	х	х	0/1	0/1	0	х

Bits 3 and 2

SAUmE N	Control of serial array unit n input clock supply
0	Stops supply of input clock.
1	Enables supply of input clock.

Selecting a serial clock

• Serial clock selection register m (SPSm) Select an operation clock for SAU.

Symbol: SPSm

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0)	0	0	0	0	0	0	0	PRS							
		Ũ	•	•	•	•	•		m13	m12	m11	m10	m03	m02	m01	m00
0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 7 to 0

PRS	PRS	PRS	PRS		Selection	of operation	o clock (CK0	n) (n = 0 to	1)
mn3	mn2	mn1	mn0		f _{CLK} = 2 MHz	f _{cικ} = 5 MHz	f _{ськ} = 10 MHz	f _{cLK} = 20 MHz	f _{CLK} = 24 MHz
0	0	0	0	f _{ськ}	2 MHz	5 MHz	10 MHz	20 MHz	24 MHz
0	0	0	1	f _{CLK} /2	1 MHz	2.5 MHz	5 MHz	10 MHz	12 MHz
0	0	1	0	$f_{\text{CLK}}/2^2$	500 kHz	1.25 MHz	2.5 MHz	5 MHz	6 MHz
0	0	1	1	$f_{\text{CLK}}/2^3$	250 kHz	625 kHz	1.25 MHz	2.5 MHz	3 MHz
0	1	0	0	$f_{\text{CLK}}/2^4$	125 kHz	313 kHz	625 kHz	1.25 MHz	1.5 MHz
0	1	0	1	$f_{\text{CLK}}/2^5$	62.5 kHz	156 kHz	313 KHz	625 kHz	750 kHz
0	1	1	0	$f_{CLK}/2^6$	31.3 kHz	78.1 kHz	156 kHz	313 kHz	375 kHz
0	1	1	1	$f_{\text{CLK}}/2^7$	15.6 kHz	39.1 kHz	78.1 kHz	156 kHz	188 kHz
1	0	0	0	$f_{\text{CLK}}/2^8$	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	93.8 kHz
1	0	0	1	$f_{\text{CLK}}/2^9$	3.91 kHz	9.77 kHz	19.5 kHz	39.1 kHz	46.9 kHz
1	0	1	0	$f_{\text{CLK}}/2^{10}$	1.95 kHz	4.88 kHz	9.77 kHz	19.5 kHz	23.4 kHz
1	0	1	1	$f_{\text{CLK}}/2^{11}$	977 Hz	2.44 kHz	4.88 kHz	9.77 kHz	11.7 kHz
1	1	0	0	$f_{\text{CLK}}/2^{12}$	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz
1	1	0	1	$f_{\text{CLK}}/2^{13}$	244 Hz	610 Hz	1.22 kHz	2.44 kHz	2.93 kHz
1	1	1	0	$f_{\text{CLK}}\!/2^{14}$	122 Hz	305 Hz	610 Hz	1.22 kHz	1.46 kHz
1	1	1	1	$f_{\text{CLK}}\!/2^{15}$	61 Hz	153 Hz	305 Hz	610 Hz	732 Hz

Setting up channel operation mode

• Serial mode register mn (SMRmn) Interrupt source Operation mode Select transfer clock. Select f_{MCK.}

Symbol: SMRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CCS	0	0	0	0	0	STS	0	0	1	0	0	MD	MD	MD
mn	mn	0	0	0	0	0	mn	0	0	Ι	0	U	mn2	mn1	mn0
0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Bit 15

CKSmn	Selection of operation clock (f _{MCK}) of channel n
0	Prescaler output clock CK00 set by the SPSm register
1	Prescaler output clock CK01 set by the SPSm register

Bit 14

CCSmn	Selection of transfer clock (TCLK) of channel n			
0	Divided operation clock f _{MCK} set by the CKSmn bit			
1	Clock input from the SCK pin.			

Bit 8

STSmn	Selection of start trigger source
0	Only software trigger is valid
1	Valid edge of the RxD pin (selected for UART reception)

Bits 2 and 1

MDmn2	MDmn1	Setting of operation mode of channel n
0	0	CSI mode
0	1	UART mode
1	0	Simplified I ² C mode
1	1	Setting prohibited

Bit 0

MDmn0	Selection of interrupt source of channel n
0	Transfer end interrupt
1	Buffer empty interrupt

Setting up channel communication mode

• Serial communication operation register mn (SCRmn) Setup data length, data transfer order, and operation mode.

Symbol: SCRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
mn	mn	mn	mn	0	mn	mn1	mn0	mn	U	mn1	mn0	U	I	mn1	mn0
1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Bits 15 and 14

TXEmn	RXEmn	Setting of operation mode of channel n
0	0	Disable communication.
0	1	Reception only
1	0	Transmission only
1	1	Transmission/reception

Bit 10

EOCmn	Selection of masking of error interrupt signal (INTSREn)							
0	lasks error interrupt INTSRE0.							
1	Enables generation of error interrupt INTSREx.							

Bits 9 and 8

PTCmn	PTCmn	Setting of parity bit in UART mode								
1	0	Transmission	Reception							
0	0	Does not output the parity bit.	Receives without parity.							
0	1	Outputs 0 parity.	No parity judgment							
1	0	Outputs even parity.	Judged as even parity							
1	1	Outputs odd parity.	Judged as odd parity							

Bit 7

DIRmn	Selection of data transfer sequence in CSI and UART modes
0	Inputs/outputs data with MSB first.
1	Inputs/outputs data with LSB first.

Bits 5 and 4

SLCmn	SLCmn	Setting of stop bit in UART mode
0	0	No stop bit
0		Stop bit length = 1 bit
1	0	Stop bit length = 2 bits
1	1	Setting prohibited

Symbol: SCRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
mn	mn	mn	mn	U	mn	mn1	mn0	mn	0	mn1	mn0	0	Ι	mn1	mn0
1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Bits 1 and 0

DLSmn1	DLSmn0	Setting of data length in CSI mode
0	1	9-bit data length
1	0	7-bit data length
1	1	8-bit data length
Other than above		Setting prohibited

Caution: For details on the register setup procedures, refer to RL78/G12 User's Manual: Hardware.

Setting up channel transfer clock

• Serial data register mn (SDRmn) Transfer clock frequency: f_{MCK}/24 (= 1 MHz)

Symbol: SDRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	0	1	1	1	0	х	х	х	х	х	х	х	x

Bit 15 to 9

		SDF	Rmn[1	5:9]			Transfer clock setting by dividing operation clock ($f_{\mbox{\scriptsize MCK}}$)
0	0	0	0	0	0	0	f _{MCK} /2, f_{SCK}
0	0	0	0	0	0	1	f _{MCK} /4
0	0	0	0	0	1	0	f _{MCK} /6
0	0	0	0	0	1	1	f _{MCK} /8
٠	•	٠	•	٠	•	•	٠
٠	٠	٠	٠	٠	٠	•	0
٠	٠	٠	٠	٠	٠	•	0
٠	٠	•	٠	٠	٠	•	0
1	1	1	1	1	1	0	f _{MCK} /254
1	1	1	1	1	1	1	f _{мСК} /256

SOEmL

Setting initial output level

• Serial output register m (SOm) Initial output: 1

Symbol: SOm

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	СКО	СКО	СКО	СКО	0	0	0	0	SO	SO	SO	SO
0	0	0	0	m3	m2	m1	m0	0	0	0	0	m3	m2	m1	m0
0	0	0	0	0/1	0/1	0/1	0/1	0	0	0	0	0/1	0/1	0/1	0/1

Bit n

SOmn	Serial clock output of channel n
0	Serial data output value is "0".
1	Serial data output value is "1".

Enabling target channel data output

• Serial output enable register m (SOEm/SOEmL) Enable output

Symbol: SOEm

•								~							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	SOE m3	SOE m2	SOE m1	SOE m0
0	0	0	0		0				0				0/1		

Bit n

SOEmn	Serial output enable/disable of channel n							
0	visables output by serial communication operation.							
1	Enables output by serial communication operation.							

Clearing the error flags

• Serial flag clear trigger register mn (SIRmn) Clear the error flags

Symbol: SIRmn

1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	FECT	PECT	OVCT
	0	0	U	0	0	U	0	U	0	0	0	U	U	mn	mn	mn
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Bit 2

FECTmn	Clear trigger of framing error of channel n
0	Not cleared
1	Clears the FEFmn bit of the SSRmn registers to 0.

Bit 1

PECTmn	Clear trigger of parity error of channel n
0	Not cleared
1	Clears the PEFmn bit of the SSRmn registers to 0.

Bit 0

OVCTmn	Clear trigger of overrun error of channel n
0	Not cleared
1	Clears the OVFmn bit of the SSRmn registers to 0.

Configuring the interrupt mask

• Interrupt mask flag register 0H (MK0H) Disable interrupt processing.

Symbol: MK0H (20-/24- pin products)

	7	6	5	4	3	2	1	0
	TMMK01	TMMK00	IICAMK0	ТММК 03Н	ТММК 01Н	SREMK0	SRMK0 CSIMK01 IICMK01	STMK0 CSIMK00 IICMK00
ĺ	Х	Х	Х	Х	Х	Х	0/1	0/1

CSIMK01	CSIMK00	Interrupt processing control
0	0	Enables interrupt processing.
1	1	Disables interrupt processing.

Port setting (For CSI00)

• Port register 1 (P1)

• Port mode register 1 (PM1) Port setting for each of serial clock, transmit data and receive data.

Symbol: P1

7	6	5	4	3	2	1	0
P17	P16	P15	P14	P13	P12	P11	P10
х	х	х	х	х	1	1	1

Bit 2

P12 to P10	Output data control (in output mode)
0	0 is output
1	1 is output

Symbol: PM1

7	6	5	4	3	2	1	0
PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10
х	х	х	х	х	1	1	1

Bit 2

PM12	P12 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Bit 1

PM11	P11 pin I/O mode selection				
0	Output mode (output buffer on)				
1	Input mode (output buffer off)				

Bit 0

PM10	P10 pin I/O mode selection					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

5.6.5 INTP0 Setup

Figure 5.6 shows the flowchart for INTP0 setup.

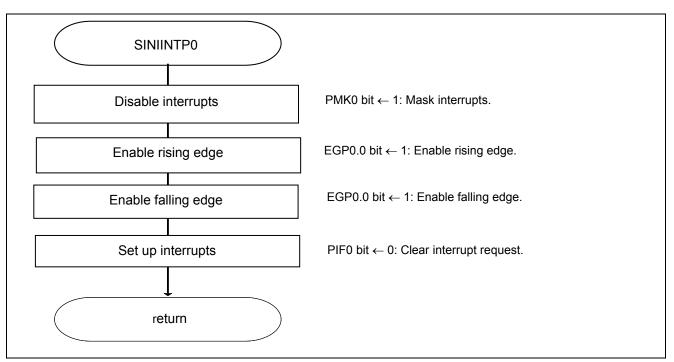


Figure 5.6 INTP0 Setup

5.6.6 Main Processing

Figures 5.7 and 5.8 show the flowcharts for the main processing.

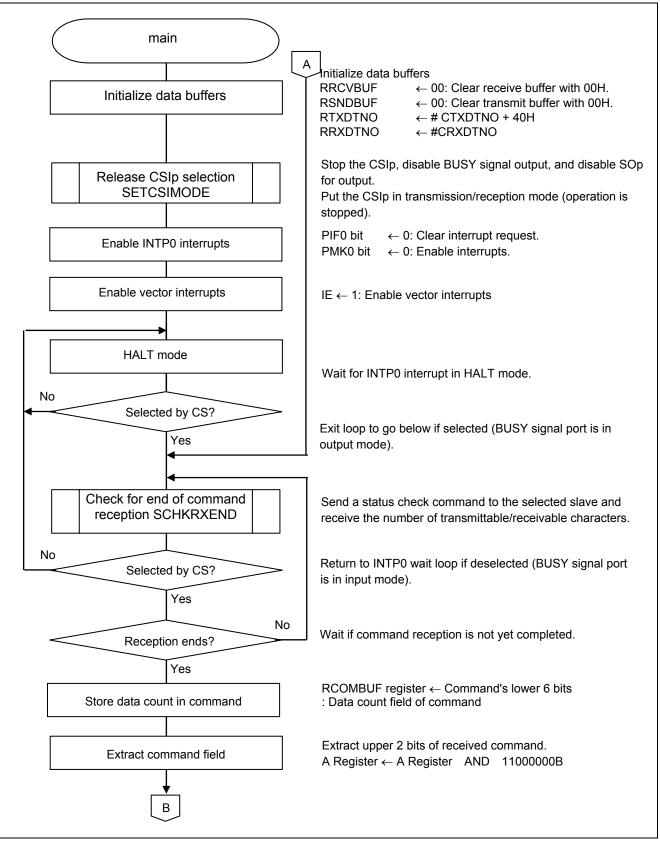


Figure 5.7 Main Processing (1/2)

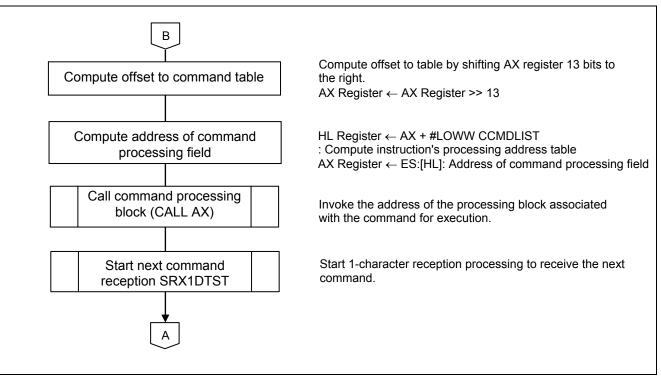


Figure 5.8 Main Processing (2/2)

5.6.7 CSIp Select Release Processing

Figure 5.9 shows the flowchart for the CSIp select release processing function.

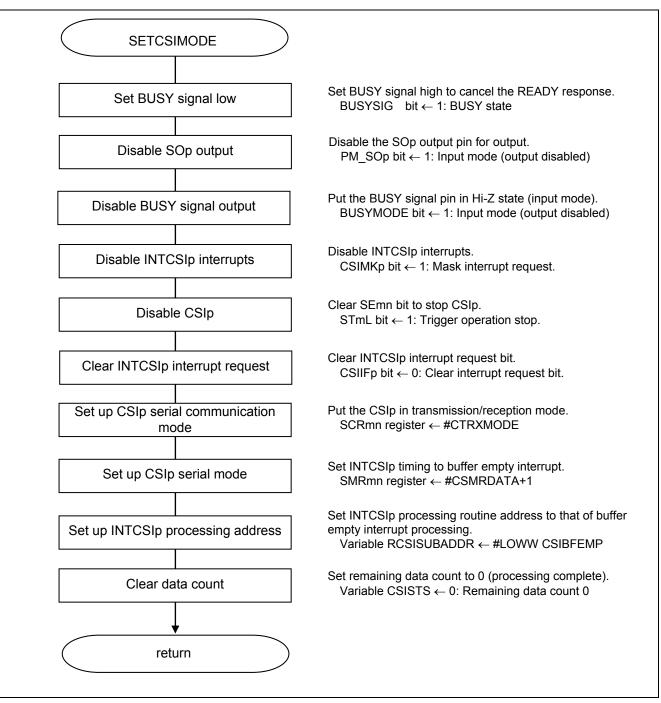


Figure 5.9 CSIp Select Release Processing Function

Port setting (For CSI00)

• Port mode register 1 (PM1) Disable the transmit data port for output.

Symbol: PM1

7	6	5	4	3	2	1	0
PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10
х	х	х	х	х	1	1	1

Bit 2

PM12	P12 I/O mode selection					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

Port setting (P23 for handshaking)

- Port register 2 (P2)
- Port mode register 2 (PM2) Set the BUSY signal port to high level, then disable its output.

Symbol: P2

7	6	5	4	3	2	1	0
P27	P26	P25	P24	P23	P22	P21	P20
х	х	х	х	1	х	х	х

Bit 3

P23	Output data control (in output mode)
0	Output 0 (READY)
1	Output 1 (BUSY)

Symbol: PM2

7	6	5	4	3	2	1	0
PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20
х	х	х	х	1	х	х	х

Bit 3

PM23	P23 (BUSY signal output) I/O mode selection					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

Transiting to channel stop state (for CSI00)

• Serial channel stop register 0 (ST0) Stop communication.

Symbol: ST0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	ST03 Note	ST02 Note	ST01	ST00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Note: 30-pin products only

Bits 0

ST00	Operation stop trigger of channel 00								
0	No trigger operation								
1	Clears the SE00 bit to 0 and stops the communication operation								

Setting up the channel to stop communication processing

• Serial communication operation register mn (SCRmn) Setup data length, data transfer order, and operation mode.

Symbol: SCRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	4	DLS	DLS
mn	mn	mn	mn	0	mn	mn1	mn0	mn	0	mn1	mn0	0	1	mn1	mn0
1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Bits 15 and 14

TXEmn	RXEmn	Setting of operation mode of channel 00
0	0	Disable communication
0	1	Reception only
1	0	Transmission only
1	1	Transmission/reception

Bit 10

EOCmr	Selection of masking of error interrupt signal (INTSREn)							
0	lasks error interrupt INTSRE0.							
1	Enables generation of error interrupt INTSREx.							

Bits 9 and 8

PTCmn	PTCmn	Setting of parity bit in UART mode										
1	0	Transmission	Reception									
0	0	Does not output the parity bit.	Receives without parity.									
0	1	Outputs 0 parity.	No parity judgment									
1	0	Outputs even parity.	Judged as even parity									
1	1	Outputs odd parity.	Judged as odd parity									

Symbol: SCRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
mn	mn	mn	mn	0	mn	mn1	mn0	mn	U	mn1	mn0	0	1	mn1	mn0
1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Bit 7

DIRmn	Selection of data transfer sequence in CSI and UART modes
0	Inputs/outputs data with MSB first.
1	Inputs/outputs data with LSB first.

Bits 5 and 4

SLCmn 1	SLCmn 0	Setting of stop bit in UART mode
0	0	No stop bit
0	1	Stop bit length = 1 bit
1	0	Stop bit length = 2 bits
1	1	Setting prohibited

Bits 1 and 0

DLSmn 1	DLSmn 0	Setting of data length in CSI mode
0	1	9-bit data length
1	0	7-bit data length
1	1	8-bit data length
Other abo		Setting prohibited

Setting up channel operation mode

 Serial mode register mn (SMRmn) Interrupt source Operation mode Select transfer clock. Select f_{MCK.}

Symbol: SMRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CCS	0	0	0	0	0	STS	0	0	1	0	0	MD	MD	MD
mn	mn	0	0	0	0	0	mn	0	0	1	0	0	mn2	mn1	mn0
0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Bit 15

CKSmn	Selection of operation clock (f _{MCK}) of channel n							
0	Prescaler output clock CK00 set by the SPSm register							
1	Prescaler output clock CK01 set by the SPSm register							

Bit 14

CCSmn	Selection of transfer clock (TCLK) of channel n
0	Divided operation clock f _{MCK} set by the CKSmn bit
1	Clock input from the SCK pin.

Bit 8

STSmn	Selection of start trigger source					
0	nly software trigger is valid					
1	Valid edge of the RxD pin (selected for UART reception)					

Bits 2 and 1

MDmn2	MDmn1	Setting of operation mode of channel n
0	0	CSI mode
0	1	UART mode
1	0	Simplified I ² C mode
1	1	Setting prohibited

Bit 0

MDmn0	Selection of interrupt source of channel n
0	Transfer end interrupt
1	Buffer empty interrupt

Interrupt setting (for CSI00)

- Interrupt request flag register (IF0H) Clear the interrupt request flag
- Interrupt mask flag register (MK0H) Set up interrupt mask

Symbol: IF0H (20-/24-pin products)

7	6	5	4	3	2	1	0
						SRIF0	STIF0
TMIF01	TMIF00	IICAIF0	TMIF03H	TMIF01H	SREIF0	CSIIF01	CSIIF00
						IICIF01	IICIF00
Х	Х	Х	Х		Х	Х	0

CSIIF00	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Symbol: MK0H (20-/24-pin products)

7	6	5	4	3	2	1	0
TMMK01	TMMK00	IICAMK0	ТММК03Н	TMMK01H	SREMK0	SRMK0 CSIMK01	STMK0 CSIMK00
						IICIVIKUT	IICMK00
Х	Х	Х	Х	Х	Х	Х	1

CSIMK00	Interrupt processing control
0	Enables interrupt processing.
1	Disables interrupt processing.

5.6.8 INTPO Interrupt Processing Function

Figure 5.10 shows the flowchart for the INTPO interrupt processing function.

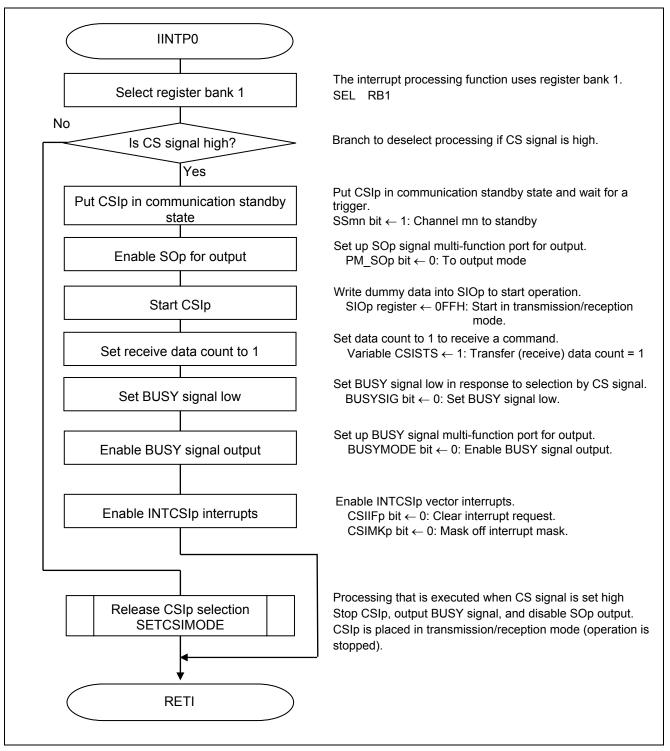


Figure 5.10 INTPO Interrupt Processing Function

Putting channel into communication standby state (For CSI00)

• Serial channel start register 0 (SS0) Put channel in communication standby state.

Symbol: SS0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	SS03 Note	SS02 Note	SS01	SS00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Note: 30-pin products only

Bit 0

ST00	Operation start trigger of channel 00
0	No trigger operation
1	Sets the SE00 bit to 1 and enters the communication wait status.

Port setting (For CSI00)

• Port mode register 1 (PM1) Set the transmit data port for output.

Symbol: PM1

 7	6	5	4	3	2	1	0
PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10
х	х	х	х	х	0	1	1

Bit 2

PM12	P12 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Port setting (P23 for handshaking)

- Port register 2 (P2)
- Port mode register 2 (PM2) Set the BUSY signal port low, then enable it for output.

Symbol: P2

7	6	5	4	3	2	1	0
P27	P26	P25	P24	P23	P22	P21	P20
х	х	х	х	0	х	х	х

Bit 3

P23	Output data control (in output mode)
0	Output 0 (READY)
1	Output 1 (BUSY)

Symbol: PM2

7	6	5	4	3	2	1	0
PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20
х	х	х	х	0	х	х	х

Bit 3

PM23	P23 (BUSY signal output) I/O mode selection							
0	Output mode (output buffer on)							
1	Input mode (output buffer off)							

Interrupt setting (for CSI00)

- Interrupt request flag register (IF0H) Clear the interrupt request flag
- Interrupt mask flag register (MK0H) Cancel interrupt mask

Symbol: IF0H (20-/24-pin products)

7	6	5 4		3	2	1	0
TMIF01	TMIF00	IICAIF00	TMIF03H	TMIF01H	SREIF0	SRIF0 CSIIF01 IICIF01	STIF0 CSIIF00 IICIF00
Х	Х	Х	Х	Х	Х	Х	0

Bit 0

CSIIF00	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Symbol: MK0H (20-/24-pin products)

7	6	5	4 3		2	1	0
TMMK01	TMMK00	IICAMK00	ТММК03Н	TMMK01H	SREMK0	SRMK0 CSIMK01 IICMK01	STMK0 CSIMK00
Х	Х	Х	Х	Х	Х	X	0

Bit 0

CSIMK00	Interrupt processing control
0	Enables interrupt processing.
1	Disables interrupt processing.

5.6.9 INTCSIp Interrupt Entry Processing

Figure 5.11 shows the flowchart for INTCSIp interrupt entry processing.

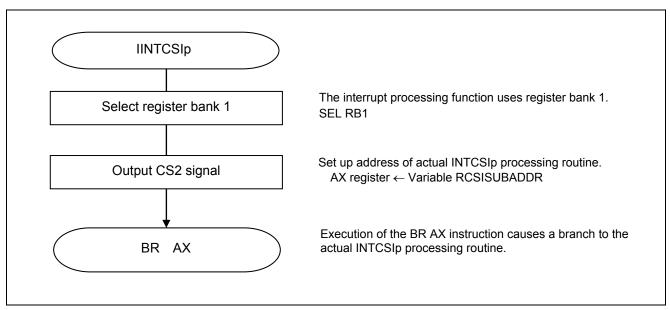


Figure 5.11 INTCSIp Interrupt Entry Processing

5.6.10 1-character Transfer Start Interrupt Processing

Figure 5.12 shows the flowchart for 1-character transfer start interrupt processing.

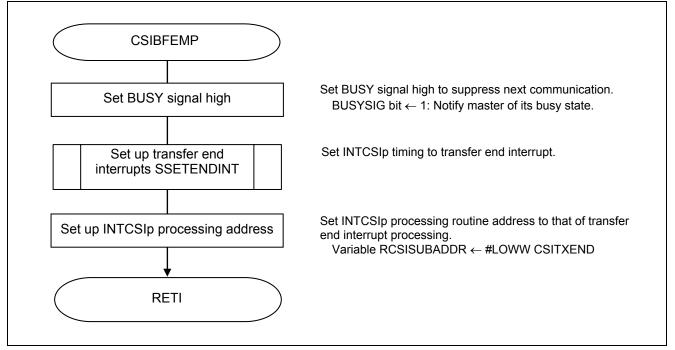


Figure 5.12 1-character Transfer Start Interrupt Processing

5.6.11 1-character Transmit End Interrupt Processing

Figure 5.13 shows the flowchart for 1-character transmit end interrupt processing.

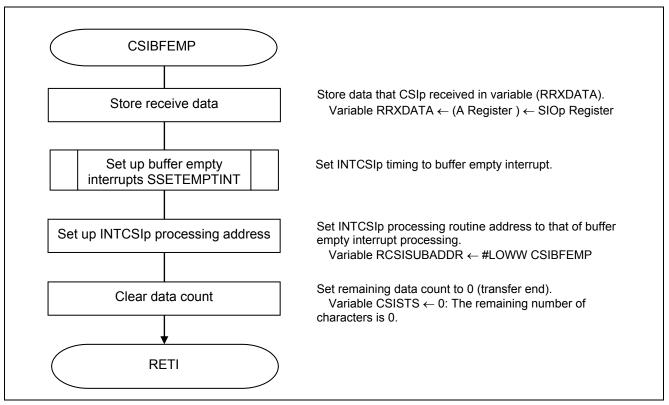


Figure 5.13 1-character Transmit End Interrupt Processing

5.6.12 Data Receive End Interrupt Processing in Continuous Reception Mode

Figure 5.14 shows the flowchart for data receive end interrupt processing in continuous reception mode.

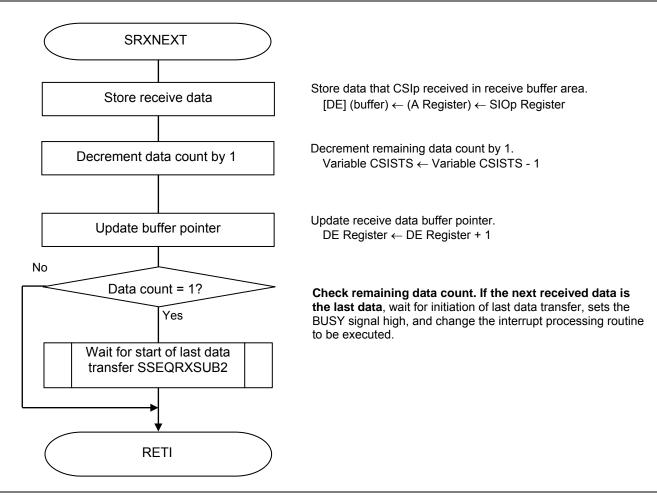


Figure 5.14 Data Receive End Interrupt Processing in Continuous Reception Mode

5.6.13 Data Transmit End Interrupt Processing in Continuous Transmission Mode

Figure 5.15 shows the flowchart for data transmit end interrupt processing in continuous transmission mode.

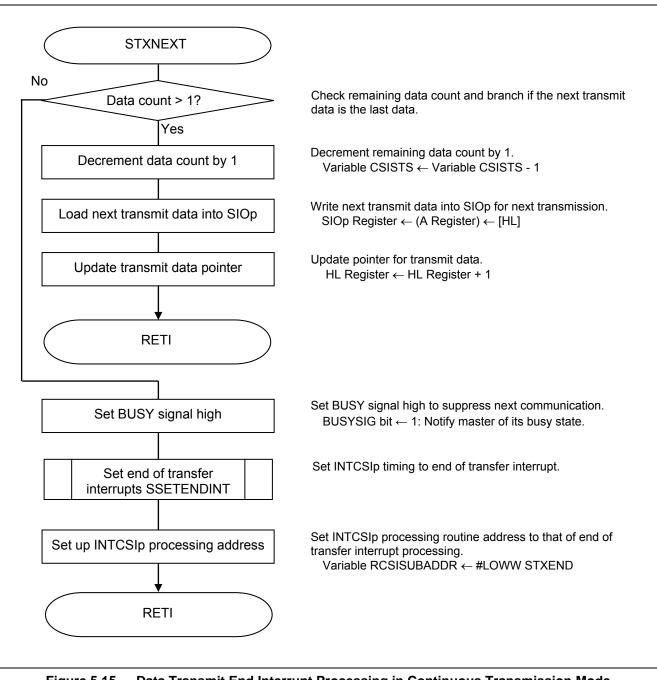


Figure 5.15 Data Transmit End Interrupt Processing in Continuous Transmission Mode

5.6.14 Receive End Interrupt Processing for Last Data in Continuous Transmission/Reception Mode

Figure 5.16 shows the flowchart for receive end interrupt processing for last data in continuous transmission/reception mode.

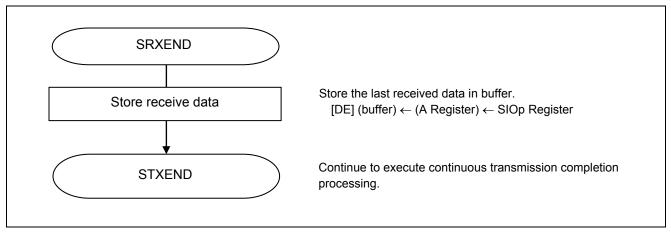


Figure 5.16 Receive End Interrupt Processing for Last Data in Continuous Transmission/Reception Mode

5.6.15 Transmit End Interrupt Processing for Last Data in Continuous Transmission Mode

Figure 5.17 shows the flowchart for transmit end interrupt processing for last data in continuous transmission mode.

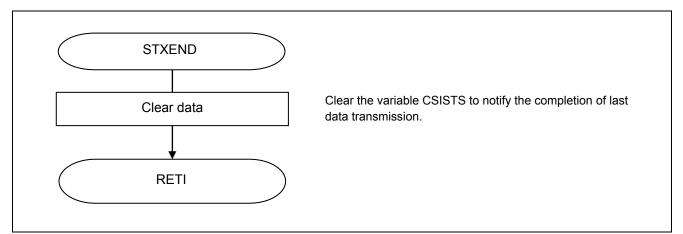


Figure 5.17 Transmit End Interrupt Processing for Last Data in Continuous Transmission Mode

5.6.16 Buffer Empty Interrupt Processing in Continuous Transmission/Reception Mode

Figure 5.18 shows the flowchart for buffer empty interrupt processing in continuous transmission/reception mode.

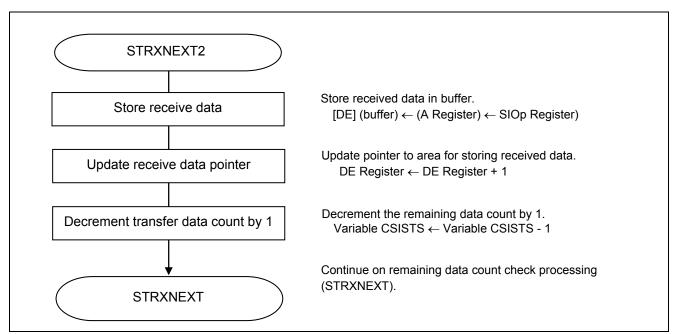
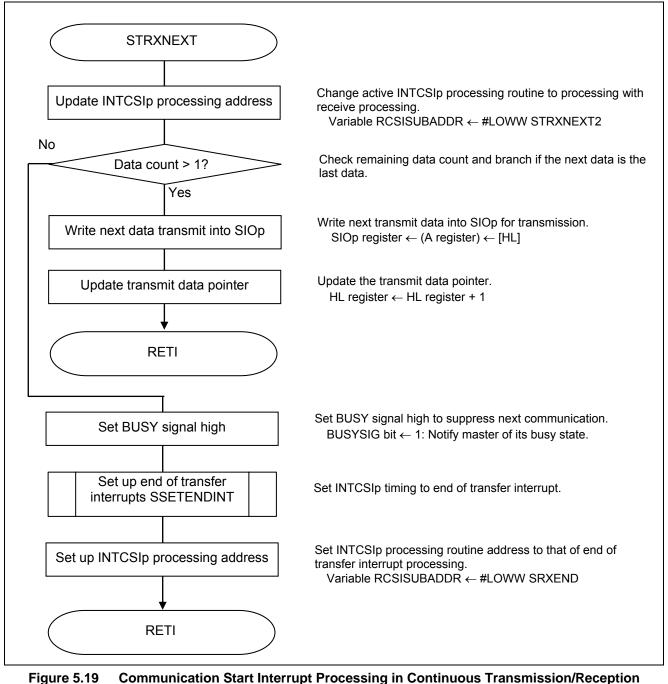
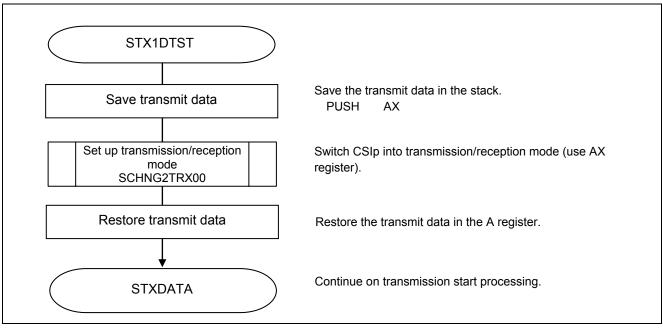
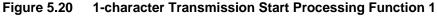



Figure 5.18 Buffer Empty Interrupt Processing in Continuous Transmission/Reception Mode

5.6.17 Communication Start Interrupt Processing in Continuous Transmission/Reception Mode

Figure 5.19 shows the flowchart for communication start interrupt processing in continuous transmission/reception mode.




Mode

5.6.18 1-character Transmission Start Processing Function 1

Figure 5.20 shows the flowchart for 1-character transmission start processing function 1.

5.6.19 1-character Transmission Start Processing Function 2

Figure 5.21 shows the flowchart for 1-character transmission start processing function 2.

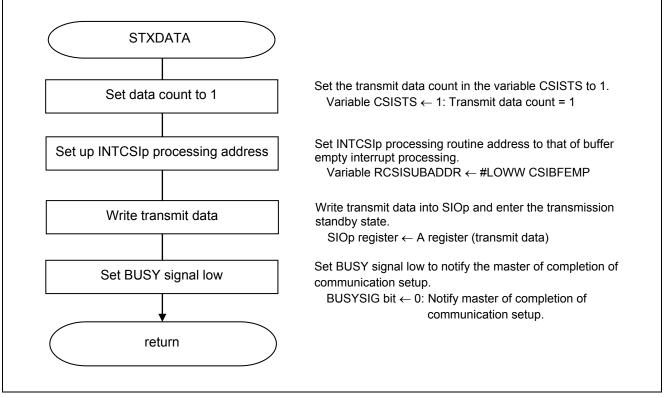


Figure 5.21 1-character Transmission Start Processing Function 2

5.6.20 1-character Reception Start Processing Function

Figure 5.22 shows the flowchart for the 1-character reception start processing function.

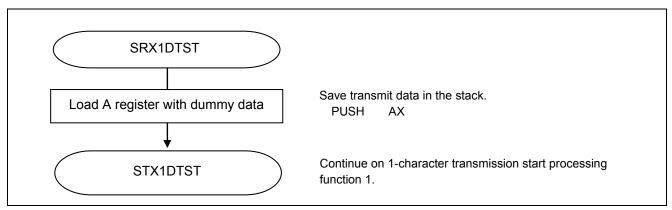


Figure 5.22 1-character Reception Start Processing Function

5.6.21 1-character Transmission/Reception End Wait Processing Function

Figure 5.23 shows the flowchart for the 1-character transmission/reception end wait processing function.

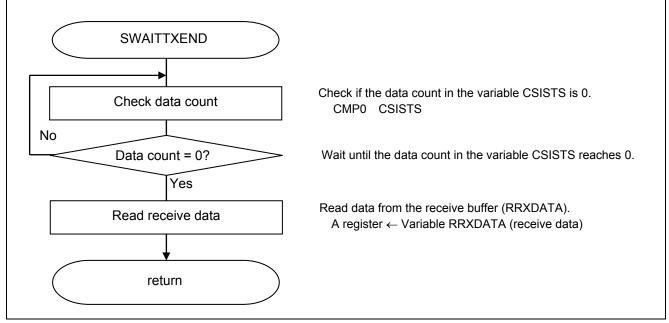
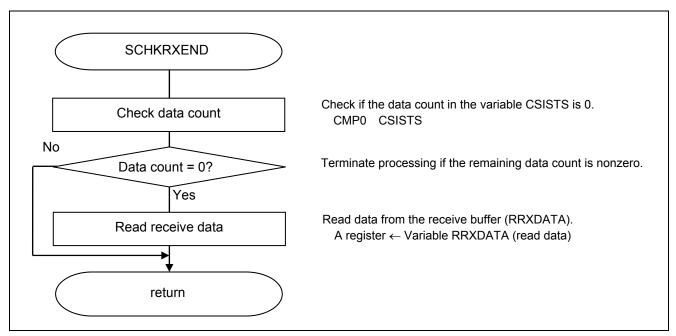



Figure 5.23 1-character Transmission/Reception End Wait Processing Function

5.6.22 1-Character Transfer State Check Function

Figure 5.24 shows the flowchart for the 1-character transfer state check Function.

Given below is a collection of subroutines that are used for basic continuous data communication processing. Two functions, for start and wait processing, are used in pair. Set up the parameters given below when invoking startup processing. The CSIp communication mode is automatically set up.

Continuous transmission processing

HL register = Address of the transmit buffer

A register = Transmit data count (1 to 255)

Continuous reception processing

HL register = Address of the buffer for storing the received data

A register = Receive data count (1 to 255)

Continuous transmission/reception processing

HL register = Address of the transmit buffer

DE register = Address of the buffer for storing the received data

A register = Transmit data count (1 to 255)

5.6.23 Continuous Reception Start Processing

Figure 5.25 shows the flowchart for continuous reception start processing.

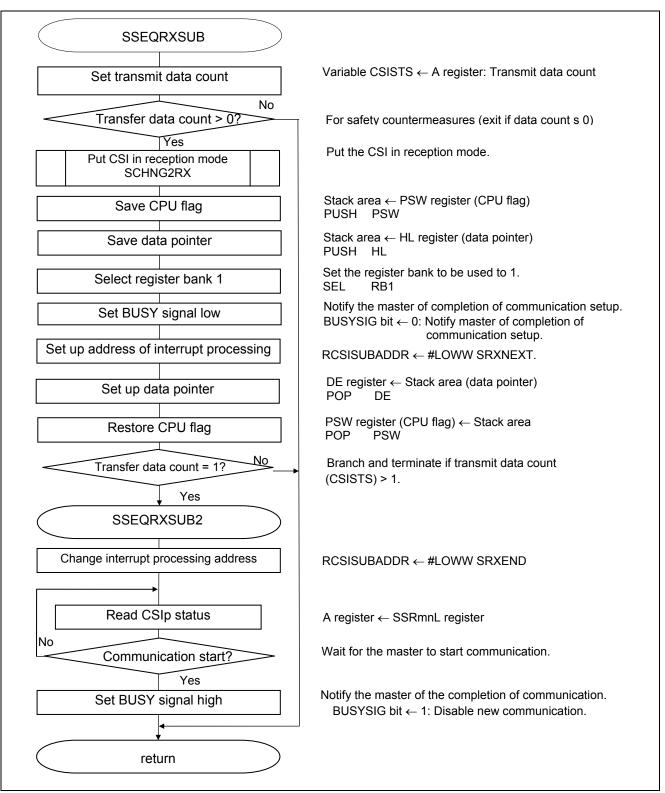


Figure 5.25 Continuous Reception Start Processing

Checking communication status

• Serial status register mn (SSRmn/SSRmnL) Reads CSIp communication status.

Symbol: SSRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	TSF mn	BFF mn	0	0	FEF mn	PEF mn	OVF mn
0	0	0	0	0	0	0	0	0	0/1	х	0	0	х	х	х

Bit 6

TSFmn	Communication status indication flag of channel mn
0	Communication is stopped or suspended.
1	Communication is in progress.

Caution: For details on the register setup procedures, refer to RL78/G12 User's Manual: Hardware.

5.6.24 Continuous Transfer End Wait Processing

Figure 5.26 shows the flowchart for continuous transfer end wait processing.

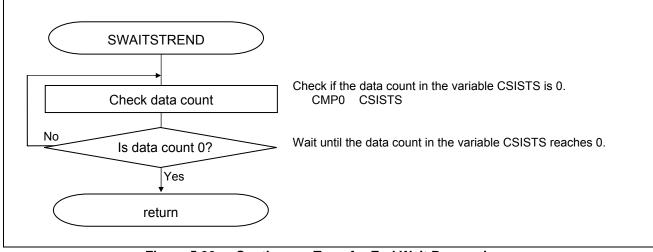


Figure 5.26 Continuous Transfer End Wait Processing

5.6.25 Continuous Transmission Start Processing

Figure 5.27 shows the flowcharts for continuous transmission start processing

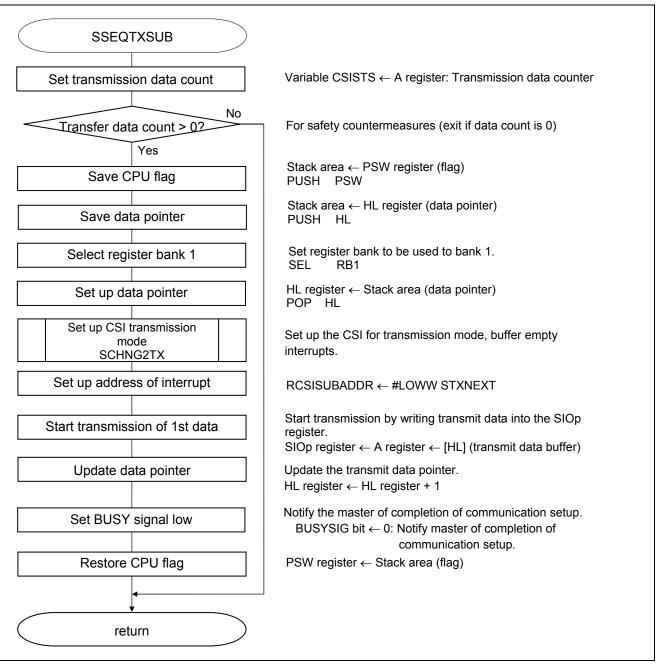
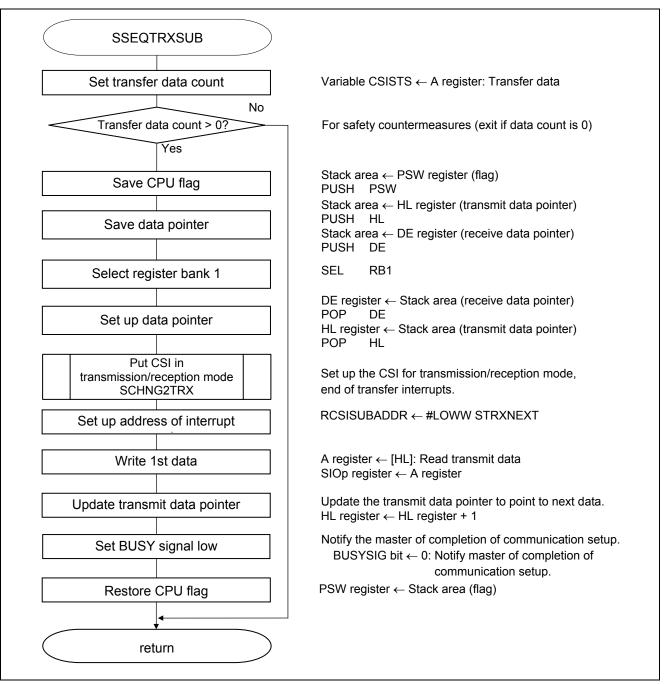
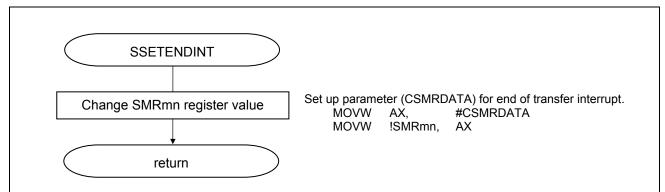
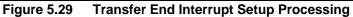


Figure 5.27 Continuous Transmission Start Processing

5.6.26 Continuous Transmission/Reception Start Processing

Figure 5.28 shows the flowchart for continuous transmission/reception start processing.


Figure 5.28 Continuous Transmission/Reception Start Processing

5.6.27 Transfer End Interrupt Setup Processing

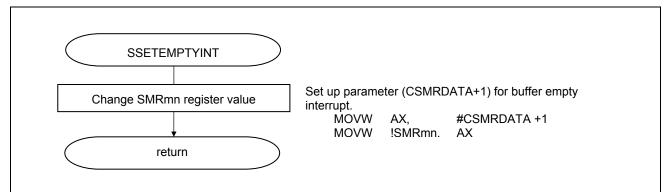
Figure 5.29 shows the flowchart for transfer end interrupt setup processing.

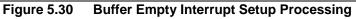
Setting up the channel operating mode

• Serial mode register mn (SMRmn) Interrupt source and end of transfer interrupt

Symbol: SMRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CCS	0	0	0	0	0	STS	0	0	1	0	0	MD	MD	MD
mn	mn	0	0	0	0	0	mn	0	0	I	0	0	mn2	mn1	mn0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0


Bit 0


MDmn0	Selection of interrupt source of channel n
0	Transfer end interrupt
1	Buffer empty interrupt

5.6.28 Buffer Empty Interrupt Setup Processing

Figure 5.30 shows the flowchart for buffer empty interrupt setup processing.

Setting up the channel operating mode

• Serial mode register mn (SMRmn) Interrupt source and buffer empty interrupt

Symbol: SMRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CCS	0	0	0	0	0	STS	0	0	1	0	0	MD	MD	MD
mn	mn	0	0	0	0	0	mn	0	0	1	0	0	mn2	mn1	mn0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Bit 0

MDmn0	Selection of interrupt source of channel n
0	Transfer end interrupt
1	Buffer empty interrupt

5.6.29 Transmission Mode Setup Processing

Figure 5.31 shows the flowchart for transmission mode setup processing.

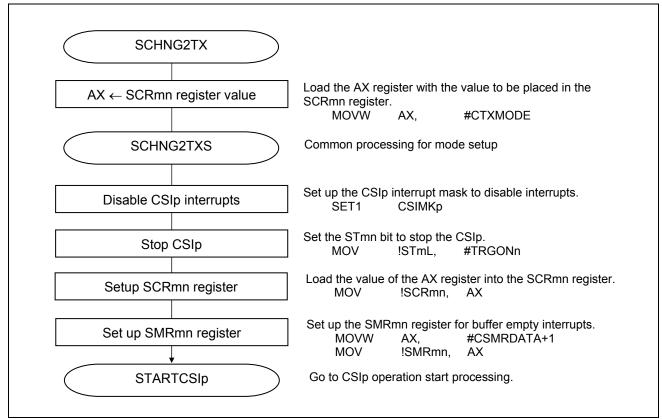


Figure 5.31 Transmission Mode Setup Processing

Interrupt setting (for CSI00)

• Interrupt request flag register (MK0H) Interrupt mask setting

Symbol: MK0H (20-/24-pin products)

7	6	5	4	3	2	1	0
TMMK01	TMMK00	IICAMK0	ТММК 03Н	ТММК 01Н	SREMK0	SRMK0 CSIMK01 IICMK01	STMK0 CSIMK00 IICMK00
Х	Х	Х	Х	Х	Х	Х	0/1

CSIMK00	Interrupt processing control
0	Enables interrupt processing.
1	Disables interrupt processing.

Transiting to communication stopped state

• Serial channel startup register m (STm/STmL) Stop operation.

Sy	Symbol: STm									SSmL								
1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 _{Note}	SSm2 _{Note}	SSm1	SSm0		
	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1		

Note: 30-pin products only

Bit 3 to 0

SS0n	Operation start trigger of channel n
0	No trigger operation
1	Sets the SEmn bit to 0 and enters the communication wait status.

Setting up the channel operating mode

• Serial mode register mn (SMRmn) Interrupt source and end of transfer interrupt

Symbol: SMRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CCS	0	0	0	0	0	STS	0	0	1	0	0	MD	MD	MD
mn	mn	0	0	0	0	0	mn	0	0	I	0	0	mn2	mn1	mn0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Bit 0

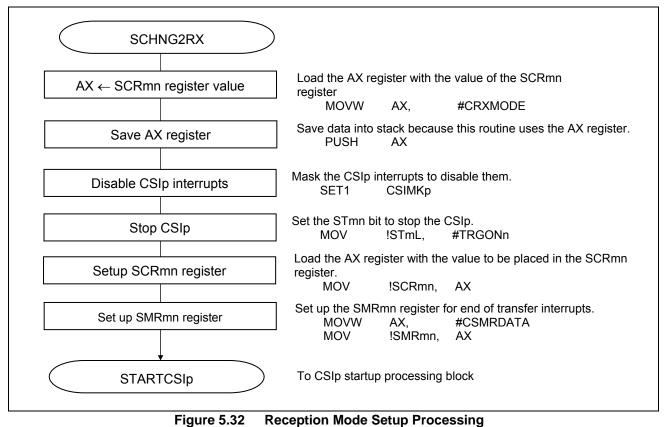
MDmn0	Selection of interrupt source of channel n
0	Transfer end interrupt
1	Buffer empty interrupt

Setting up channel communication mode

• Serial communication operation register mn (SCRmn) Operating mode

Symbol: SCRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
mn	mn	mn	mn	U	mn	mn1	mn0	mn	0	mn1	mn0	U	I	mn1	mn0
0/1	0/1	0	0	0	0	0	0	0	0	0	0	0	1	1	1


Bits 15 and 14

TXEmn	RXEmn	Setting of operation mode of channel n
0	0	Disable communication
0	1	Reception only
1	0	Transmission only
1	1	Transmission/reception

5.6.30 Reception Mode Setup Processing

Figure 5.32 shows the flowchart for reception mode setup processing.

5.6.31 Transmission/Reception Mode Setup Processing

Figure 5.33 shows the flowchart for transmission/reception mode setup processing.

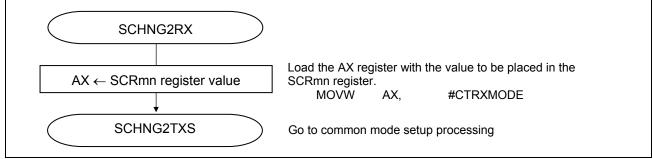


Figure 5.33 Transmission/Reception Mode Setup Processing

5.6.32 CSIp Communication Enable Processing

Figure 5.34 shows the flowchart for CSIp communication enable processing.

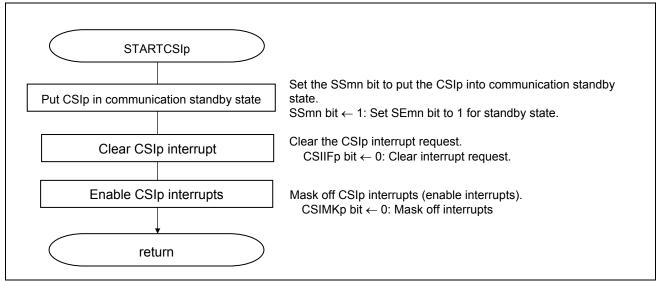


Figure 5.34 CSIp Communication Enable Processing

Transiting to communication standby state

• Serial channel startup register m (SSm/SSmL) Start operation.

Symb	ol: SS1	n						SSmL								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	SSm3 _{Note}	SSm2 _{Note}	SSm1	SSm0	
0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1	

Note: 30-pin products only

Bits 3 to 0

SSmn	Operation start trigger of channel n
0	No trigger operation
1	Sets the SEmn bit to 0 and enters the communication wait status.

Interrupt setting (20-/24-pin products)

- Interrupt request flag register (IF0H) Clear the interrupt request flag
- Interrupt mask flag register (MK0H) Clear the interrupt mask

Symbol: IF0H (20-/24-pin products)

7	6	5	5 4		2	1	0	
						SRIF0	STIF0	
TMIF01	TMIF00	IICAIF0	TMIF03H	TMIF01H	SREIF0	CSIIF01	CSIIF00	
						IICIF01	IICIF00	
Х	Х	Х	Х	Х	0	0	0	

CSIIF00	Interrupt request flag			
0	No interrupt request signal is generated			
1	Interrupt request is generated, interrupt request status			

Symbol: MK0H (20-/24-pin products)

7	6	5	4	3	2	1	0
ТММК01	TMMK00	IICAMK0	ТММК 03Н	ТММК 01Н	SREMK0	SRMK0 CSIMK01 IICMK01	STMK0 CSIMK00 IICMK00
Х	х х		Х	Х	Х	0/1	0/1

CSIMK00	Interrupt processing control
0	Enables interrupt processing.
1	Disables interrupt processing.

5.6.33 CSIp Communication Termination Processing

Figure 5.35 shows the flowchart for CSIp communication termination processing.

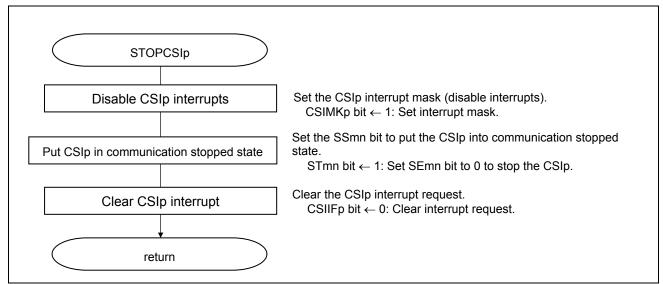


Figure 5.35 CSIp Communication Termination Processing

Transiting to communication stopped

• Serial channel startup register m (STm/STmL) Stop operation.

Symbol: STm						_			5	SmL						
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 _{Note}	SSm2 _{Note}	SSm1	SSm0
	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1

Note: 30-pin products only

Bits 3 to 0

SS0n	Operation start trigger of channel n
0	No trigger operation
1	Sets the SEmn bit to 0 and enters the communication wait status.

Interrupt setting (20-/24-pin products)

- Interrupt request flag register (IF0H) Clear the interrupt request flag
- Interrupt mask flag register (MK0H) Set the interrupt mask

Symbol: IF0H (20-/24-pin products)

7	6 5		4 3		2	1	0
						SRIF0	STIF0
TMIF01	TMIF00	IICAIF0	TMIF03H	TMIF01H	SREIF0	CSIIF01	CSIIF00
						IICIF01	IICIF00
Х	Х	Х	Х	Х	0	0	0

CSIIF00	Interrupt request flag			
0	No interrupt request signal is generated			
1	Interrupt request is generated, interrupt request status			

Symbol: MK0H (20-/24-pin products)

7	6	5	4	3	2	1	0
TMMK01	TMMK00	IICAMK0	ТММК 03Н	ТММК 01Н	SREMK0	SRMK0 CSIMK01 IICMK01	STMK0 CSIMK00 IICMK00
Х	Х	Х	Х	Х	Х	0/1	0/1

CSIMK00	Interrupt processing control
0	Enables interrupt processing.
1	Disables interrupt processing.

Changing the Channel to be Used 6.

Definition File 6.1

The channel to be used for CSI master communication is defined in an include file (DEV&CSI_CH.inc). Note that the available channels vary with the device.

Major Items of the Definition File 6.2

The include file defines the following constants that the user can modify. Never modify the value of the other constants. The CPU clock frequency is defined to refer to the clock frequency of the CPU that is actually used in the user system. The user cannot use this definition to change the clock frequency of the CPU.

- CPU clock frequency (CLKFREQ) in kHz : The initial value is 24000 (24 MHz).
- CSI communication speed (BAUDRATE) in kbps : The initial value is1000 (1 M bps).
 - Microcontroller to be used

: The initial value is R5F1026.

CSI channel to be used

: The initial value is CSI00.

Changing the Transfer Rate 6.3

The transfer rate is defined as shown below. For a CPU clock frequency of 24 MHz, the user can change the transfer rate between 200 kbps and 2000 kbps by changing "1000" to a desired value between 200 and 2000. It is necessary to modify the program to use a transfer rate outside this value range.

Communication definitions ; EQU 24000 ; kHz CLKFREO BAUDRATE EQU 1000 ; kpbs

Changing the Microcontroller to be Used 6.4

When changing the microcontroller to be used, create a new project with CubeSuite+ and specify the desired device in the project. For details, refer to RL78 Family CubeSuite+ Startup Guide (R01AN1232E) Application Note.

The microcontroller to be used is defined as shown below. Only the line that has no leading semicolon (';') is valid. To change the device to be used, append a semicolon to the beginning of the currently valid line and delete the leading semicolon at the beginning of the line defining the desired device.

```
device select
;
 * * * * * * * * * * * * * * *
$SET( R5F1026 )
              ; 20 pins with data flash memory
                                              Defines the microcontroller that is in use.
;$SET( R5F1036 ) ; 20 pins without data flash memory
;$SET( R5F1027 )
              ; 24 pins with data flash memory
              ; 24 pins without data flash memory
;$SET( R5F1037 )
;$SET( R5F102A )
              ; 30 pins with data flash memory
;$SET( R5F103A )
              ; 30 pins without data flash memory
```


6.5 Changing the Channel to be Used

The channel to be used is defined as shown below. Select the desired channel from the channels that are available for the microcontroller to be used and delete the leading semicolon (';') from the line defining the desired channel. At the same time, append a semicolon at the beginning of the line for the channel that had been selected until now. **The program will not run normally if two or more channels area selected.**

;*************************************	
<pre>\$IF(R5F1026 : R5F1027) ;====================================</pre>	Definition for 20-/24-pin products with on-chip data flash ROM
<pre>\$SET(CSI00) ; CSI00 is selected ;\$SET(CSI01) ; CSI01 is not selected now</pre>	
<pre>\$ELSEIF(R5F1036 : R5F1037 : R5F103A) ;====================================</pre>	Definition for products without on-chip data flash ROM
\$SET(CSI00) ; CSI00 is selected	
<pre>\$ELSE ;====================================</pre>	Definition for 30-pin products with on-chip data flash ROM
<pre>\$SET(CSI00) ; CSI00 is selected ;\$SET(CSI11) ; CSI11 is not selected now ;\$SET(CSI20) ; CSI20 is not selected now</pre>	

\$END1F

6.6 Reference

Once the channel to be used is defined, the constants to be used by the program are set to the values that conform to the newly defined channel by the definitions given below, so that the user need not be aware of the channel he or she is to use.

Port initialization is accomplished by directly referencing the microcontroller and channel definitions that are provided separately from these definitions.

\$IF(CS:	IOO)		
SAUmEN	EQU	SAU0EN	; Peripheral enable register
SPSmL	EQU	SPSOL	; Serial clock select register
SMRmn	EQU	SMR00	; Serial mode register
SCRmn	EQU	SCR00	; Serial communication operation setting register
SDRmn	EQU	SDR00	; Serial data register
SIOp	EQU	SIO00	; Serial data register(lower 8 bit)
SSRmnL	EQU	SSROOL	; Serial status register
SIRmnL	EQU	SIROOL	; Serial flag clear trigger register
SSmL	EQU	SSOL	; Serial channel start register
STmL	EQU	STOL	; Serial channel stop register
TRGONn	EQU	0000001B	; for trigger SS00/ST00
SOEmL	EQU	SOE0L	; Serial output enable register
SOEON	EQU	TRGONn	; for turn on SOE00
SOEOFF	EQU	11111110B	; for turn off SOE00
SOm	EQU	SO0	; Serial output register
SOHIGH	EQU	TRGONn	; for set SO bit
PM_CSIp	EQU	PM1	; port mode register for CSI
PM_SCKp	EQU	PM1.0	; port mode register bit for SCK
PM_SIp	EQU	PM1.1	; port mode register bit for SI
PM_SOp	EQU	PM1.2	; port mode register bit for SO
P_CSIp	EQU	P1	; port register for CSI
P_SCKp	EQU	P1.0	; port register for SCK
P_SIp	EQU	P1.1	; port register for SI
P_SOp	EQU	P1.2	; port register for SO
CSIIFp	EQU	CSIIF00	; interrupt request flag
CSIMKp \$ENDIF	EQU	CSIMK00	; interrupt mask register

7. Sample Code

The sample code is available on the Renesas Electronics Website.

8. Documents for Reference

RL78/G12 User's Manual: Hardware (R01UH0200E)

RL78 Family User's Manual: Software (R01US0015E)

RL78 Family CubeSuite+ Startup Guide (R01AN1232E)

RL78/G12 Serial Array Unit (CSI Master Communication) (R01AN1369E)

(The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures

(The latest versions of the documents are available on the Renesas Electronics Website.)

Website and Support

Renesas Electronics Website

• http://www.renesas.com/index.jsp

Inquiries

• http://www.renesas.com/contact/

Revision Record	RL78/G12 Serial Array Unit (CSI Slave Communication)
-----------------	--

Rev.	Date	Description		
		Page	Summary	
1.00	Mar.01, 2013	_	First edition issued	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
- Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on
- The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses
- Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals
- After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products
- Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- *Standard*: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Pax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-598-5441, Fax: +1-905-598-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1028-651-700, Fax: +44-1028-651-804

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Düsseldorf, Germany

 Tel: +49-211-65030, Fax: +49-211-6503-1327

 Renesas Electronics (China) Co., Ltd.

 7th Fibor, Quantum Plaza, No. 27 ZhiChuntu Haidian District, Beijing 100083, P.R.China

 Tel: +861-0-8235-1155, Fax: +86-10-8235-7679

 Renesas Electronics (Changhai) Co., Ltd.

 Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China

 Tel: +86-2-877-1818, Fax: +852-2866-9022/9044

 Renesas Electronics (Chang Co., Ltd.

 Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-2175-9600, Fax: +868 2-8175-9670

 Renesas Electronics Singapore Pte. Ltd.

 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949

 Tel: +652-313-0200, Fax: +656-313-0300<

© 2013 Renesas Electronics Corporation. All rights reserved. Colophon 2.2