
 Application Note

R01AN5402EJ0107 Rev.1.07 Page 1 of 168

Oct.26.2022

RA4W1 Group

BLE sample application

Introduction

This document describes the accompanying sample application which controls the Bluetooth® Low Energy
communication module. In this document, the module which performs Bluetooth® Low Energy
communication is referred to as the BLE module.

Target Device

RA4W1 Group

Related Documents

Bluetooth Core Specification (https://www.bluetooth.com)

RA4W1 Group User’s Manual: Hardware (R01UH0883)

Renesas Flexible Software Package User’s Manual

e2 studio Getting Started Guide (R20UT4204)

Renesas Flash Programmer User’s manual (R01UT5757)

Tuning procedure of Bluetooth dedicated clock frequency (R01AN4887)

RA4W1 Group Bluetooth LE Profile API Document User's Manual (R11UM0154)

Bluetooth Low Energy Profile Developer’s Guide (R01AN5428)

Host Controller Interface Firmware(R01AN5429)

Public BD Address writing tool(R01AN5439)

EK-RA4W1 Quick Start Guide (R20QS0015)

QE for BLE [RA, RE, RX] V1.5.0 Release Note (R20UT5145EJ)

Related Environments
Refer to section 2.1 Operating environment.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 2 of 168

Oct.26.2022

Contents

1. Overview ... 7

1.1 BLE features .. 9

1.2 BLE application software structure .. 11

1.3 BLE protocol stack... 17

2. How to use demo project ... 18

2.1 Operating environment .. 18

2.2 Importing demo project .. 19

2.3 Building and debugging ... 21

2.4 Demo project behavior .. 22

2.4.1 Preparation of demo .. 22

2.4.2 GATT Server projects behavior ... 22

2.4.3 GATT Client demo projects behavior .. 27

3. Demo project implementation .. 30

3.1 BareMetal environment (Server) ... 30

3.1.1 Entry point ... 30

3.1.2 Main loop ... 31

3.1.3 Initialization process .. 32

3.1.4 Register callback function ... 33

3.1.5 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 33

3.1.6 Main loop and scheduler (R_BLE_Execute) ... 34

3.1.7 GAP event (gap_cb function) .. 35

3.1.8 GATTS event (gatts_cb function) .. 37

3.1.9 GATTC event (gattc_cb function) .. 38

3.1.10 VS event (vs_cb function) ... 40

3.1.11 Server-side Profile API event ([service_name]s_cb function) ... 41

3.1.12 L2CAP event ... 43

3.1.13 Event notification and exiting from Software Standby mode ... 44

3.1.14 CLI (Command Line Interface) .. 44

3.2 FreeRTOS environment (Server, EventGroup as Synchronization Type case) 46

3.2.1 Create / delete task ... 47

3.2.2 Task switching between BLE core task and GATT application task ... 49

3.2.3 Main loop of BLE core task ... 50

3.2.4 Main loop of GATT application task .. 51

3.2.5 Initialization process .. 52

3.2.6 Register callback function ... 52

3.2.7 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 52

3.2.8 Main loop and scheduler (R_BLE_Execute) ... 53

3.2.9 GAP event (gap_cb function) .. 54

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 3 of 168

Oct.26.2022

3.2.10 GATTS event (gatts_cb function) .. 54

3.2.11 GATTC event (gattc_cb function) .. 55

3.2.12 VS event (vs_cb function) ... 55

3.2.13 Server-side Profile API event ([service_name]s_cb function) ... 55

3.2.14 L2CAP event ... 56

3.2.15 Event notification ... 56

3.2.16 CLI (Command Line Interface) .. 56

3.3 FreeRTOS environment (Server, Semaphore case) ... 57

3.3.1 Create / delete task ... 58

3.3.2 Task switching between BLE core task and GATT application task ... 60

3.3.3 Main loop of BLE core task ... 60

3.3.4 Main loop of BLE execute task .. 61

3.3.5 Main loop of GATT application task .. 61

3.3.6 Initialization process .. 61

3.3.7 Register callback function ... 61

3.3.8 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 61

3.3.9 Main loop and scheduler (R_BLE_Execute) ... 62

3.3.10 GAP event (gap_cb function) .. 63

3.3.11 GATTS event (gatts_cb function) .. 63

3.3.12 GATTC event (gattc_cb function) .. 63

3.3.13 VS event (vs_cb function) ... 63

3.3.14 Server-side Profile API event ([service_name]s_cb function) ... 63

3.3.15 L2CAP event ... 63

3.3.16 Event notification ... 63

3.3.17 CLI (Command Line Interface) .. 63

3.4 Azure RTOS environment (Server) ... 64

3.4.1 Create / delete task ... 65

3.4.2 Task switching between BLE core task and GATT application task ... 67

3.4.3 Main loop of BLE core task ... 68

3.4.4 Main loop of BLE execute task .. 69

3.4.5 Main loop of GATT application task .. 70

3.4.6 Initialization process .. 70

3.4.7 Register callback function ... 70

3.4.8 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 70

3.4.9 Main loop and scheduler (R_BLE_Execute) ... 70

3.4.10 GAP event (gap_cb function) .. 70

3.4.11 GATTS event (gatts_cb function) .. 71

3.4.12 GATTC event (gattc_cb function) .. 71

3.4.13 VS event (vs_cb function) ... 71

3.4.14 Server-side Profile API event ([service_name]s_cb function) ... 71

3.4.15 L2CAP event ... 71

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 4 of 168

Oct.26.2022

3.4.16 Event notification ... 72

3.4.17 CLI (Command Line Interface) .. 72

3.5 BareMetal environment (Client) ... 73

3.5.1 Entry point ... 73

3.5.2 Main loop ... 73

3.5.3 Initialization process .. 74

3.5.4 Register callback function ... 75

3.5.5 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 75

3.5.6 Main loop and scheduler (R_BLE_Execute) ... 75

3.5.7 GAP event (gap_cb function) .. 75

3.5.8 GATTS event (gatts_cb function) .. 75

3.5.9 GATTC event (gattc_cb function) .. 76

3.5.10 VS event (vs_cb function) ... 76

3.5.11 Client side Profile API event ([service_name]c_cb function) .. 76

3.5.12 L2CAP event ... 77

3.5.13 Exiting from Software Standby mode .. 78

3.5.14 CLI (Command Line Interface) .. 78

3.6 FreeRTOS environment (Client, EventGroup as Synchronization Type case) 79

3.6.1 Create / delete task ... 79

3.6.2 Task switching between BLE core task and GATT application task ... 79

3.6.3 Main loop of BLE core task ... 79

3.6.4 Main loop of GATT application task .. 80

3.6.5 Initialization process .. 80

3.6.6 Register callback function ... 80

3.6.7 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 81

3.6.8 Main loop and scheduler (R_BLE_Execute) ... 81

3.6.9 GAP event (gap_cb function) .. 81

3.6.10 GATTC event (gattc_cb function) .. 81

3.6.11 VS event (vs_cb function) ... 82

3.6.12 Client side Profile API event ([service_name]c_cb function) .. 82

3.6.13 L2CAP event ... 82

3.6.14 CLI (Command Line Interface) .. 82

3.7 FreeRTOS environment (Client, Semaphore as Synchronization Type case)...................................... 83

3.7.1 Create / delete task ... 83

3.7.2 Task switching between BLE core task and GATT application task ... 83

3.7.3 Main loop of BLE core task ... 83

3.7.4 Main loop of BLE execute task .. 83

3.7.5 Main loop of GATT application task .. 83

3.7.6 Initialization process .. 83

3.7.7 Register callback function ... 83

3.7.8 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 83

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 5 of 168

Oct.26.2022

3.7.9 Main loop and scheduler (R_BLE_Execute) ... 83

3.7.10 GAP event (gap_cb function) .. 83

3.7.11 GATTC event (gattc_cb function) .. 83

3.7.12 VS event (vs_cb function) ... 83

3.7.13 Client side Profile API event ([service_name]c_cb function) .. 83

3.7.14 L2CAP event ... 83

3.7.15 CLI (Command Line Interface) .. 84

3.8 Azure RTOS environment (Client) ... 85

3.8.1 Create / delete task ... 85

3.8.2 Task switching between BLE core task and GATT application task ... 85

3.8.3 Main loop of BLE core task ... 85

3.8.4 Main loop of BLE execute task .. 85

3.8.5 Main loop of GATT application task .. 86

3.8.6 Initialization process .. 86

3.8.7 Register callback function ... 86

3.8.8 Registering GATT database (R_BLE_GATTS_SetDbInst) ... 87

3.8.9 Main loop and scheduler (R_BLE_Execute) ... 87

3.8.10 GAP event (gap_cb function) .. 87

3.8.11 GATTC event (gattc_cb function) .. 87

3.8.12 VS event (vs_cb function) ... 88

3.8.13 Client side Profile API event ([service_name]c_cb function) .. 88

3.8.14 L2CAP event ... 88

3.8.15 CLI (Command Line Interface) .. 88

4. Appendix ... 89

4.1 How to make and configure new project ... 89

4.1.1 Create a new project ... 89

4.1.2 Heap and Stack configuration ... 92

4.1.3 Clocks configuration .. 93

4.1.4 Add and configure BLE module... 94

4.1.5 Low Power Mode ... 116

4.1.6 Make profile and BLE application skeleton code .. 116

4.2 Device-specific Data Management .. 117

4.2.1 Specify device-specific data location block ... 117

4.2.2 Device-specific data format ... 119

4.2.3 How to write device-specific data .. 119

4.2.4 BD address adoption flow ... 121

4.3 Security Data Management ... 122

4.3.1 Security data management information .. 123

4.3.2 Local device security data ... 124

4.3.3 Remote device security data ... 126

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 6 of 168

Oct.26.2022

4.4 Data Flash Block ... 128

4.5 Importing CLI (Command Line Interface) to user’s project ... 129

4.5.1 Related source files ... 129

4.5.2 Configurations of SCI .. 129

4.5.3 Designating module name ... 129

4.5.4 Serial data output of UART ... 130

4.6 Command List ... 131

4.6.1 GAP command .. 131

4.6.2 Vendor Specific (VS) command .. 155

4.6.3 SYS command... 160

4.6.4 BLE command ... 161

4.6.5 LSC command ... 162

4.6.6 Command creation procedure ... 163

Revision History .. 167

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products 169

Notice ... 170

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 7 of 168

Oct.26.2022

1. Overview

Demo projects accompanying this document are shown in Table 1. These projects are provided as BLE
sample application using BLE module.

Table 1. Demo Projects

Demo Project Description

ble_baremetal_ek_ra4w1
GATT Server demo project for EK-RA4W1 without
RTOS.

ble_freertos_ek_ra4w1

GATT Server demo project for EK-RA4W1 using
FreeRTOS and event group technique has been used
for task synchronization. This project provides for
backward compatibility with versions prior to FSP3.8.

ble_freertos_ek_ra4w1_semaphore
GATT Server demo project for EK-RA4W1 using
FreeRTOS and semaphore give / take method has
been used for task synchronization.

ble_azurertos_ek_ra4w1
GATT Server demo project for EK-RA4W1 using
Azure RTOS.

ble_bearmetal_ek_ra4w1_client
GATT Client demo project for EK-RA4W1 without
RTOS

ble_freertos_ek_ra4w1_client

GATT Client demo project for EK-RA4W1 using
FreeRTOS and event group technique has been used
for task synchronization. This project provides for
backward compatibility with versions prior to FSP3.8.

ble_freertos_ek_ra4w1_client_semaphore
GATT Client demo project for EK-RA4W1 using
FreeRTOS and semaphore give / take method has
been used for task synchronization.

ble_azurertos_ek_ra4w1_client
GATT Client demo project for EK-RA4W1 using Azure
RTOS

These projects can work on EK-RA4W1 board or user’s custom board. GATT Server demo projects perform
GATT Server role. They can change the blink rate of LED mounted on the board from remote device (e.g.
smart phone) and send notification by pushing switch mounted on the board to remote device via BLE
communication. LED and switch (e.g. push button) connected to RA4W1 GPIOs are necessary on user’s
custom board when this demo project running on user’s custom board.

Figure 1. GATT Server demo project operating environment

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 8 of 168

Oct.26.2022

GATT Client demo projects perform GATT Client role. They have the functionality of CLI (Command Line
Interface) which can be accessed by the terminal emulator like Tera Term on PC connecting with EK-RA4W1
board via USB cable. They can perform various procedures in relation to GATT Client by receiving
commands via CLI.

Figure 2. GATT Client demo project operating environment

EK-RA4W1 board

GATT Server

EK-RA4W1 board

GATT Client

Terminal emulator

USB cable

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 9 of 168

Oct.26.2022

1.1 BLE features

BLE module provides following BLE features which are compliant with Bluetooth version 5.0.

Bluetooth 5.0 Features

 LE 2M PHY

Supports BLE communication with 2Msym/s PHY.

 LE Coded PHY

Supports BLE communication with Coded PHY. Communication over long range than 1M PHY and
2M PHY is possible.

 LE Advertising Extensions

An extension of Advertising. Up to 4 independent advertising can be performed simultaneously.

 LE Channel Selection Algorithm #2

Selects a channel using the algorithm for selecting a hopping channel added in Bluetooth 5.0.

 High Duty Cycle Non-Connectable Advertising

Supports non-connectable advertising with a minimum interval of 20 msec.

Bluetooth 4.2 Features

 LE Secure Connections

Elliptic curve Diffie-Hellman key agreement method (ECDH) supports passive eavesdropping
pairing.

 Link Layer Privacy

Avoids tracking from other BLE devices by changing the BD Address periodically.

 Link Layer Extended Scanner Filter policies

Resolvable private addresses as well as part of the filtering process.

 LE Data Packet Length Extension

Expands the BLE data communication packet size up to 251bytes.

Bluetooth 4.1 Features

 LE L2CAP Connection Oriented Channel Support

Supports communication using the L2CAP credit based flow control channel.

 Low Duty Cycle Directed Advertising

Supports low duty cycle advertising for reconnection with known devices.

 32-bit UUID Support in LE

Supports GATT 32-bit UUID.

 LE Link Layer Topology

Supports both Master and Slave roles and can operate as Master when connected to a remote
device and as Slave when connected to another remote device.

 LE Ping

After connection encryption, this feature checks whether connection is maintained by a packet
transmission request including MIC field.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 10 of 168

Oct.26.2022

GAP Role

GAP Role supports the following.

⎯ Central: A device that sends a connection request to a peripheral device.

⎯ Peripheral: A device that accepts connection requests from Central and establishes a connection.

⎯ Observer: A device that scans Advertising.

⎯ Broadcaster: A device that sends Advertising.

GATT Role

GATT Role supports the following.

⎯ Server: A device that prepares Characteristic provided by service in GATT Database and responds to

requests from Client.

⎯ Client: A device that makes request for services provided by Server.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 11 of 168

Oct.26.2022

1.2 BLE application software structure

Figure 3 shows software structure of BLE application in BareMetal environment.

Figure 3. Software structure (BareMetal)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 12 of 168

Oct.26.2022

Figure 4 shows software structure of BLE application in case of FreeRTOS environment and event group
technique has been used for task synchronization. BLE application is divided it into two or more tasks, BLE
Core Task and GATT application tasks. BLE Core Task performs initialization and BLE related processing
except profile event processing. GATT application task performs profile event processing.

Figure 4. Software structure (FreeRTOS, Event group)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 13 of 168

Oct.26.2022

Figure 5 shows software structure of BLE application in case of FreeRTOS environment and semaphore give
/ take method has been used for task synchronization. BLE application is divided it into three or more tasks,
BLE Core Task, BLE Execute Task and GATT application tasks. BLE Core Task performs initialization. BLE
Execute Task performs BLE related processing except profile event processing. GATT application task
performs profile event processing.

Figure 5. Software structure (FreeRTOS, Semaphore)

Task switching from interrupt context by using event group method should through FreeRTOS daemon task
(Prior FSP3.8 environment). To reduce such overhead, made it possible to select semaphore
synchronization method as Synchronization Type property of BLE_Driver FSP module from FSP4.0 or later.

Figure 6. Synchronization Type

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 14 of 168

Oct.26.2022

Figure 7 shows software structure of BLE application in Azure RTOS environment. BLE application is divided
it into three or more tasks, BLE Core Task, BLE Execute Task and GATT application tasks. BLE Core Task
performs initialization. BLE Execute Task performs BLE related processing except profile event processing.
GATT application task performs profile event processing.

Figure 7. Software structure (Azure RTOS)

The QE for BLE tool generates C source codes of BLE base skeleton program for BLE application and BLE
Profile. Renesas recommends using the QE for BLE tool when developing BLE application.

BLE application uses BLE functions via following APIs.

 GAP API (R_BLE_GAP_XXX, R_BLE_L2CAP_XXX, R_BLE_VS_XXX)

 To use BLE function. Refer to “Renesas Flexible Software Package User’s Manual” for details.

 Discovery API (R_BLE_Disc_XXX)

To perform service discovery. These APIs are generated by QE for BLE. Refer to “Bluetooth Low

Energy Profile Developer’s Guide(R01AN5428)” and “RA4W1 Group Bluetooth LE Profile API

Document User's Manual (R11UM0154)” for the details of the API.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 15 of 168

Oct.26.2022

 GATT Server API (R_BLE_GATTS_XXX)

To use GATT profile server function. These APIs are generated by QE for BLE. Refer to “Bluetooth

Low Energy Profile Developer’s Guide(R01AN5428)” and “RA4W1 Group Bluetooth LE Profile API

Document User's Manual (R11UM0154)” for the details of the API.

 GATT Client API (R_BLE_GATTC_XXX)

To use GATT profile client function. These APIs are generated by QE for BLE. Refer to “Bluetooth

Low Energy Profile Developer’s Guide(R01AN5428)” and “RA4W1 Group Bluetooth LE Profile API

Document User's Manual (R11UM0154)” for the details of the API.

 GATT service API (R_BLE_[GATT service abbreviation + S(Server) or C(Client)]_XXX)

Auxiliary functions available for the BLE Application. These APIs are generated by QE for BLE.

Refer to “Bluetooth Low Energy Profile Developer’s Guide(R01AN5428)” and “RA4W1 Group

Bluetooth LE Profile API Document User's Manual (R11UM0154)” for the details of the API.

 Abstraction API (RM_BLE_ABS_XXX)

Makes it easy to use the frequently used BLE functions. Refer to “Renesas Flexible Software

Package User’s Manual” for details.

APIs that can be called from BLE core task and GATT application task in FreeRTOS and Azure RTOS
environment have the restrictions. Following categories of API can call only from BLE core task.

 GAP API (R_BLE_GAP_XXX, R_BLE_L2CAP_XXX, R_BLE_VS_XXX)

 Discovery API (R_BLE_Disc_XXX)

 GATT Server API (R_BLE_GATTS_XXX)

 GATT Client API (R_BLE_GATTC_XXX)

 Abstraction API (RM_BLE_ABS_XXX)

Following category of API can call from either BLE core task or GATT application task.

 GATT service API (R_BLE_[GATT service abbreviation + S(Server) or C(Client)]_XXX)

When BLE GATT Application task calls GATT service API, GATT communication is processed in BLE core
task or BLE execute task. Figure 8 shows Bluetooth LE communication when two BLE GATT Application
tasks control GATT services and send notification of the GATT service characteristic on FreeRTOS / Azure
RTOS environment.

Figure 8. BLE core task and GATT Application task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 16 of 168

Oct.26.2022

Table 2 shows the directory / file structure of BLE application when using QE for BLE. Items shown in bold
could add / modify according to use case.

Table 2. Directory / File structure

Directory/File structure Description

qe_gen ble discovery Service discovery related APIs

profile_cmn Profile common APIs

app_main.c Main code

C source code where user
describe the BLE application.

gatt_db.c GATT Database

gatt_db.h GATT Database

r_ble_XXX.c Profile API

XXX depends on the included
profile name.

r_ble_XXX.h Profile API

XXX depends on the included
profile name

ra fsp inc api BLE interface file
r_ble_api.h
rm_ble_abs_api.h

instances Abstraction API(GAP)
rm_ble_abs.h

lib r_ble BLE Protocol Stack
See also section 1.3.

src rm_ble_abs Abstraction API(GAP)
rm_ble_abs.c

aws amazon-freertos FeeRTOS kernel
(Only FreeRTOS environment)

microsoft azure-rtos Azure RTOS kernel
(Only Azure RTOS environment)

ra_gen --- --- RA configuration generated.

ra_cfg fsp_cfg r_ble_cfg.h Configuration option file

rm_ble_abs_cfg.h Configuration option file

azure tx/tx_user.h Azure RTOS configuration
(Only Azure RTOS environment)

aws FreeRTOSConfig.h FreeRTOS configuration
(Only FreeRTOS environment)

src --- hal_entry.c User code entry point.
(BareMetal)

XXX_entry.c User task creation.
XXX depends on task name
which defined by user.
(Only RTOS environment)

***.c User created C source codes

***.h User created header files

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 17 of 168

Oct.26.2022

1.3 BLE protocol stack

The Bluetooth protocol stack provides as static library. Customer can select “Extended”, “Balance” and
“Compact” type according to the supported BLE features. Supported BLE features of each type are shown in
Table 3.

Table 3. Features supported by each type of BLE Protocol Stack

BLE Features Library type

Extended Balance Compact

GAP role Central,

Peripheral,

Observer,

Broadcaster

Central,

Peripheral,

Observer,

Broadcaster

Peripheral,

Broadcaster

GATT role Server,

Client

Server,

Client

Server,

Client

LE 2M PHY Yes Yes No

LE Coded PHY Yes Yes No

LE Advertising Extensions Yes No No

LE Channel Selection Algorithm #2 Yes Yes No

High Duty Cycle Non-Connectable Advertising Yes Yes Yes

LE Secure Connections Yes Yes Yes

Link Layer privacy Yes Yes Yes

Link Layer Extended Scanner Filter policies Yes Yes No

LE Data Packet Length Extension Yes Yes Yes

LE L2CAP Connection Oriented Channel Support Yes No No

Low Duty Cycle Directed Advertising Yes Yes Yes

LE Link Layer Topology Yes Yes No

LE Ping Yes Yes Yes

32-bit UUID support in LE Yes Yes Yes

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 18 of 168

Oct.26.2022

2. How to use demo project

This chapter describes how to use demo project with this document.

2.1 Operating environment

Table 4 shows the hardware requirements for building and debugging BLE software.

Table 4. Hardware requirements

Hardware Description

Host PC Windows® 10 PC with USB interface.

MCU Board The MCU used must support BLE functions.

EK-RA4W1 [RTK7EKA4W1S00000BJ]

On-chip debugging

emulators

The EK-RA4W1 has an on-board debugger (J-Link OB), therefore it is not

necessary to prepare an emulator.

E2 lite emulator Needed if user wants to write device-specific data (refer to section 4.2) in

custom board by using Renesas Flash Programmer.

USB cables Used to connect to the MCU board.

EK-RA4W1: 2 USB A-microB cable

Table 5 shows the software requirements for build and debug BLE software.

Table 5. Software requirements

Software Version Description

GCC

environment

e² studio 2022-10 Integrated development environment (IDE) for Renesas

devices.

GCC ARM

Embedded

10.3-2021.10 C/C++ Compiler. (Download from e2 studio installer)

Renesas Flexible

Software Package

(FSP)

V4.1.0 Software package for making applications for the RA

microcontroller series.

QE for BLE[RA] V1.5.0 Generates the source codes (BLE base skeleton program)

as a base for the BLE Application and the BLE Profile.

Install latest QE for BLE and QE utility by referring release

note on following link.

https://www.renesas.com/us/en/software-tool/qe-ble-

development-assistance-tool-bluetooth-low-energy

QE utility [RA] V1.5.0

SEGGER J-Flash V7.80c Tool for programming the on-chip flash memory of

microcontrollers.

Header files All API calls and their supporting interface definitions

located in r_ble_api.h and rm_ble_abs_api.h.

Integer types It uses ANSI C99 “Exact width integer types”. These types

are defined in stdint.h.

Endian Little endian

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 19 of 168

Oct.26.2022

2.2 Importing demo project

Demo project provided with this document may be imported into e2 studio using following steps in this
section.

1. Select File → Import.

Figure 9. File menu

2. Select Existing Projects into Workspace and click Next button.

Figure 10. Select an import wizard

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 20 of 168

Oct.26.2022

3. Select Select archive file, click Browse… button and select the demo project archive files. Click Finish
button and the demo project is imported. Imported project include r01an5402.

Figure 11. Import Project

4. Open FSP configuration by selecting Project→Open FSP configuration.

5. Press Generate Project Content button and then source code of related peripheral driver will
automatically generate.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 21 of 168

Oct.26.2022

As a result of import, following file structure will appear in e2 studio project explorer.

Table 6. File structure about demo project

Directory/File structure Description

qe_gen ble discovery Service discovery related APIs

profile_cmn Profile common APIs

app_main.c Main code

gatt_db.c GATT Database

gatt_db.h GATT Database

r_ble_lss.c Profile API

r_ble_lss.h Profile API

ra fsp Inc api BLE interface file
r_ble_api.h
rm_ble_abs_api.h

instances Abstraction API(GAP)
rm_ble_abs.h

lib r_ble BLE Protocol Stack
(Extended type)

src rm_ble_abs Abstraction API(GAP)
rm_ble_abs.c

aws amazon-freertos FreeRTOS kernel
(Only FreeRTOS environment)

microsoft azure-rtos Azure RTOS kernel
(Only Azure RTOS environment)

ra_gen --- --- RA configuration generated.

ra_cfg fsp_cfg r_ble_cfg.h Configuration option file

rm_ble_abs_cfg.h Configuration option file

azure tx/tx_user.h Azure RTOS configuration
(Only Azure RTOS environment)

aws FreeRTOSConfig.h FreeRTOS configuration
(Only FreeRTOS environment)

src --- hal_entry.c User code entry point.
(BareMetal)

ble_core_task_entry.c BLE task implementation
(Only RTOS environment)

lss_task.c LED switch service task
implementation
(Only RTOS environment)

task_function.h LED switch service task header file
(Only RTOS environment)

app_lib cli CLI functionality provided by this
demo project

cmd Commands of CLI provided by this
project

logger Logger functionality provided by this
demo project

2.3 Building and debugging

Refer to “e2 studio Getting Started Guide (R20UT4204)”.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 22 of 168

Oct.26.2022

2.4 Demo project behavior

2.4.1 Preparation of demo

GATT Server demo projects can work by standalone. In case of making them work by standalone, refer to
“EK-RA4W1 Quick Start Guide (R20QS0015)”. GATT Client demo projects and GATT Server demo projects
with CLI can accept commands received via r_sci_uart. User can handle the communication between PC
and EK-RA4W1 the same as COM ports by the terminal emulator like Tera Term because EK-RA4W1 board
equips the USB-Serial converter IC. Setting of the terminal software for these demo projects is following
table.

Table 7. Setting of the terminal software

New line (Receive) LF

New line (Transmit) CR

Terminal Mode VT100

Baud rate 115200

Data bits 8bits

Parity None

Stop bits 1bit

Flow control None

2.4.2 GATT Server projects behavior

GATT Server demo projects provided with this document will work as mentioned next. Refer to “EK-RA4W1
Quick Start Guide (R20QS0015)” for the details of the EK-RA4W1 and the GATT Browser.

 When powered ON EK-RA4W1 or user’s custom board with the demo project programmed will start
advertising.

 By scanning from remote device (e.g. smart phone with GATT browser), the remote device will detect
EK-RA4W1 or user’s custom board as “TEST_RBLE” or “RBLE”.

Figure 12. Scan result example

 When BLE connection is established between EK-RA4W1 or user’s custom board and the remote
device, EK-RA4W1 or user’s custom board will stop advertising.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 23 of 168

Oct.26.2022

 The services and characteristics will be displayed after performing GATT service discovery from the
remote device. This demo project includes following services.

➢ LED Switch Service (UUID: 58831926-5F05-4267-AB01-B4968E8EFCE0)
➢ Switch State Characteristic (UUID: 58837F57-5F05-4267-AB01-B4968E8EFCE0)
➢ LED Blink Rate Characteristic (UUID: 5883C32F-5F05-4267-AB01-B4968E8EFCE0)

Figure 13. GATT Services

All included services are shown below. (WR : Write, RD : Read, IN : Indication, NT : Notification)

Table 8. GATT services

ATT Handle ATT Type Properties ATT Values Definition

0x0001 0x28,0x00 RD 0x00,0x18 GAP Service Declaration

0x0002 0x28,0x03 RD 0x0A,0x03,0x00,0x00,0x2A Device Name characteristic Declaration

0x0003 0x00,0x2A RD,WR 0x00,0x00,0x00,0x00,0x00,0x00... Device Name characteristic value

0x0004 0x28,0x03 RD 0x02,0x05,0x00,0x01,0x2A Appearance characteristic Declaration

0x0005 0x01,0x2A RD 0x00,0x00 Appearance characteristic value

0x0006 0x28,0x03 RD 0x02,0x07,0x00,0x04,0x2A Peripheral Preferred Connection Parameters characteristic Declaration

0x0007 0x04,0x2A RD 0x00,0x00,0x00,0x00,0x00,0x00... Peripheral Preferred Connection Parameters characteristic value

0x0008 0x28,0x03 RD 0x02,0x09,0x00,0xA6,0x2A Central Address Resolution characteristic Declaration

0x0009 0xA6,0x2A RD 0x00 Central Address Resolution characteristic value

0x000A 0x28,0x03 RD 0x02,0x0B,0x00,0xC9,0x2A Resolvable Private Address Only characteristic Declaration

0x000B 0xC9,0x2A RD 0x00 Resolvable Private Address Only characteristic value

0x000C 0x28,0x00 RD 0x01,0x18 GATT Service Declaration

0x000D 0x28,0x03 RD 0x20,0x0E,0x00,0x05,0x2A Service Changed characteristic Declaration

0x000E 0x05,0x2A IN 0x00,0x00,0x00,0x00 Service Changed characteristic value

0x000F 0x02,0x29 RD,WR 0x00,0x00 Client Characteristic Configuration descriptor

0x0010 0x28,0x00 RD
0xE0, 0xFC, 0x8E, 0x8E, 0x96, 0xB4, 0x01, 0xAB,

0x67, 0x42, 0x05, 0x5F, 0x26, 0x19, 0x83, 0x58
 LED Switch Service(Custom Service) Declaration

0x0011 0x28,0x03 RD
0xE0, 0xFC, 0x8E, 0x8E, 0x96, 0xB4, 0x01, 0xAB,

0x67, 0x42, 0x05, 0x5F, 0x57, 0x7F, 0x83, 0x58
 Switch State characteristic Declaration

0x0012 0xE0,0xFC,0x8E... NT 0x00 Switch State characteristic value

0x0013 0x02,0x29 RD,WR 0x00,0x00 Client Characteristic Configuration descriptor

0x0014 0x28,0x03 RD
0xE0, 0xFC, 0x8E, 0x8E, 0x96, 0xB4, 0x01, 0xAB,

0x67, 0x42, 0x05, 0x5F, 0x2F, 0xC3, 0x83, 0x58
 LED Blink Rate characteristic Declaration

0x0015 0xE0,0xFC,0x8E... RD,WR 0x00 LED Blink Rate characteristic value

GAP Service

GATT Service

LED Switch Service(Custom Service)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 24 of 168

Oct.26.2022

 If the LED Switch Service second parameter in the gs_gatt_service variable in the gatt_db.c is set to
BLE_GATT_DB_SER_SECURITY_UNAUTH, the demo project will request pairing to access to the
characteristic in the LED Switch Service.

static const st_ble_gatts_db_serv_cfg_t gs_gatt_service[] =

{

………

 /* LED Switch Service(Custom Service) */

 {

 /* Num of Services */

 {

 1,

 },

 /* Description */

 BLE_GATT_DB_SER_SECURITY_UNAUTH,

 /* Service Start Handle */

 0x0010,

………

};

Code 1. The security setting of the access to the LED Switch Service. (Necessary pairing case)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 25 of 168

Oct.26.2022

If the LED Switch Service second parameter in the gs_gatt_service variable in the gatt_db.c is set 0 is set,
the demo project will not request pairing.

static const st_ble_gatts_db_serv_cfg_t gs_gatt_service[] =

{

………

 /* LED Switch Service(Custom Service) */

 {

 /* Num of Services */

 {

 1,

 },

 /* Description */

 0,

 /* Service Start Handle */

 0x0010,

………

};

Code 2. The security setting of the access to the LED Switch Service. (Not necessary pairing case)

 After enabling notification in the switch state characteristic, notification packet will send by pushing

switch on EK-RA4W1 or user’s custom board.

 LED on RA4W1 or user’s custom board will blink according to numeric value which is written to the LED
blink rate characteristic from the remote device. Note that the LED will turn off by writing 0x00 to the
characteristic and remain on by writing 0xFF to the characteristic.

 When disconnected between EK-RA4W1 or user’s custom board and the remote device, EK-RA4W1 or
user’s custom board will re-start advertising.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 26 of 168

Oct.26.2022

Figure 14 shows message sequence chart about behavior of demo projects accompanying this document.

Figure 14. Usage example for demo projects

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 27 of 168

Oct.26.2022

2.4.3 GATT Client demo projects behavior

GATT Client can perform various procedures in relation to GATT Client role by receiving commands via the
terminal emulator. Some parts of following procedures can be also applied to GATT Server. Please refer to
section 4.6. for details of each command.

(1) Scanning

GATT Client can start scanning procedure by following command. Then GATT Client can stop scanning
procedure by Ctrl+C key input to terminal emulator.

Figure 15. Scanning command and response

(2) Connection

GATT Client can try to create connection with GATT Server by following command.

Figure 16. Creating connection command and response

$ gap scan start

23:E2:1E:4B:DC:43 rnd ff 0000

D8:22:30:CD:AE:48 rnd ff 0000

23:E2:1E:4B:DC:43 rnd ff 0000

D8:22:30:CD:AE:48 rnd ff 0000

00:42:79:AA:AD:47 pub ff 0000

$ receive BLE_GAP_EVENT_SCAN_OFF result : 0x0000

Start scanning

Scanning results are shown

Stop scanning by Ctrl+C key input

$ gap conn D8:22:30:CD:AE:48 rnd

receive BLE_GAP_EVENT_CONN_IND result : 0x0000

gap: connected conn_hdl:0x0020, addr:D8:22:30:CD:AE:48 rnd

$ gap : BLE_GAP_EVENT_CONN_IND Handle = 0x20

Start Service Discovery

receive BLE_GAP_EVENT_DATA_LEN_CHG result : 0x0000, conn_hdl : 0x0020

tx_octets : 0x00fb

tx_time : 0x0848

rx_octets : 0x00fb

rx_time : 0x0848

receive BLE_GAP_EVENT_CONN_PARAM_UPD_COMP result : 0x0000, conn_hdl : 0x0020

conn_intv : 0x0050

conn_latency : 0x0000

sup_to : 0x0c80

Done Service Discovery conn_hdl = 0x0020

Try to create connection

Succeeded creating connection

Service discovery is started automatically

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 28 of 168

Oct.26.2022

(3) Paring (Option)

GATT Client and GATT Server can start paring procedure with the device which it is connecting with by
following command.

Figure 17. Paring command and response

(4) Disconnection

GATT Client and GATT Server can disconnect connection with the device which it is connecting with by
following command.

Figure 18. Disconnection command and response

(5) Entering Software Standby mode

GATT Client and GATT Server can enter Software Standby mode by receiving following command. Pressing
SW1 on EK-RA4W1 board, when making EK-RA4W1 board exit from Software Standby mode.

Figure 19. Standby command and response

$ gap auth start 0x0020

$ receive BLE_GAP_EVENT_ENC_CHG result : 0x0000

receive BLE_GAP_EVENT_PEER_KEY_INFO

LTK : 3e5e57d29ffe876f1838c10ea47f2989

receive BLE_GAP_EVENT_PAIRING_COMP result : 0x0000

sec : 0x01, mode : 0x02, bond : 0x01, key_size : 0x10

$ gap disconn 0x0020

$ receive BLE_GAP_EVENT_DISCONN_IND result : 0x0000

gap: disconnected conn_hdl:0x0020, addr:D8:22:30:CD:AE:48 rnd, reason:0x16

$ sys stby on

NOTE: This console does not work during Software Standby Mode.

To exit from the Software Standby Mode, please PUSH the SW1 on the board.

$

Start paring

Start disconnection

Enter Software Standby mode

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 29 of 168

Oct.26.2022

(6) LED switch service

GATT Client enables receiving notifications from GATT Server by following command. Notifications can be
sent by pressing SW on EK-RA4W1 board of GATT Server side. And GATT Client can write and read value
LED blink rate of GATT Server by following commands. LED0 on EK-RA4W1 of GATT Server side blinks,
turns on and off according to value written by GATT Client.

Figure 20. LED switch service commands and responses

$ lsc set_switch_state_ntf 0x0020 1

$

$ lsc : Recieve Notification from Server

$ lsc write_led_blink_rate 0x0020 0x01

$

$ lsc read_led_blink_rate 0x0020

$ lsc : LED blink rate = 0x1

Enable notifications from GATT Server

Write value of LED blink rate of GATT Server

Read value of LED blink rate of GATT Server

Received notification from GATT Server

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 30 of 168

Oct.26.2022

3. Demo project implementation

This chapter describes demo project implementation.

3.1 BareMetal environment (Server)

BLE application implemented in app_main.c. The app_main.c includes initialization processing and
implementation of the main loop.

Note: When using QE for BLE, the skeleton code of the app_main.c is automatically generated.

3.1.1 Entry point

Call app_main() in hal_entry.c as following.

void hal_entry(void) {

/* TODO: add your own code here */

 app_main();

}

Code 3. Application entry point

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 31 of 168

Oct.26.2022

3.1.2 Main loop

The app_main() includes initialization and main loop. Main loop of this demo project is following.

Code 4. app_main function

void app_main(void)
{
…………
 /* Initialize Low Power Module */
 g_lpm0.p_api->open(g_lpm0.p_ctrl, g_lpm0.p_cfg);

 /* Initialize BLE and profiles */
 ble_init();

…………
 R_BLE_CMD_SetResetCb((ble_event_cb_t)ble_init);
/* End user code. Do not edit comment generated here */

 /* main loop */
 while (1)
 {
………
 /* Process BLE Event */
 R_BLE_Execute();
…………
/* Hint: Input process that should be done during main loop such as calling processing functions */
/* Start user code for process during main loop. Do not edit comment generated here */
…………
 /* Disable IRQ */
 __disable_irq();

 /* UART reception on-going ? */
 if (false != get_uart_reception())
 {
 set_uart_reception(false);
 __enable_irq();
 }
 else
 {
 /* UART transmission on-going ? Allow enter software standby by sys stby command ? */
 if (true != g_inhibit_software_standby && true != get_uart_transmission() && true != g_led_blink_active)
 {
 /* Check whether there are executable BLE task or not */
 if (0 != R_BLE_IsTaskFree())
 {
 /* There are no executable BLE task */
 /* Terminate Command line */
 R_BLE_CLI_Terminate();

 /* Enter low power mode */
 g_lpm0.p_api->lowPowerModeEnter(g_lpm0.p_ctrl);

 /* Enable interrupt for processing interrupt handler after wake up */
 __enable_irq();

 /* Resume Command line */
 R_BLE_CLI_Init();

 }
 else
 {
 /* There is BLE related task */
 __enable_irq();
 }
 }
 else
 __enable_irq();
 }

…………
 /* Terminate BLE */
 RM_BLE_ABS_Close(&g_ble_abs0_ctrl);
………
}

BLE module initialization.

Main loop (Call R_BLE_Execute, Transition to MCU low power consumption state by lowPowerModeEnter)

MCU low Power driver initialization.

Enter Software Standby mode

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 32 of 168

Oct.26.2022

3.1.3 Initialization process

The ble_init() initializes the BLE module, and register callback function and GATT database. Initialization
process of this demo project is following.

ble_status_t ble_init(void)

{

 ble_status_t status;

 fsp_err_t err;

 /* Initialize BLE */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 if (FSP_SUCCESS != err)

 {

 return err;

 }

 /* Initialize GATT Database */

 status = R_BLE_GATTS_SetDbInst(&g_gatt_db_table);

 if (BLE_SUCCESS != status)

 {

 return BLE_ERR_INVALID_OPERATION;

 }

 /* Initialize GATT server */

 status = R_BLE_SERVS_Init();

 if (BLE_SUCCESS != status)

 {

 return BLE_ERR_INVALID_OPERATION;

 }

 /*Initialize GATT client */

 status = R_BLE_SERVC_Init();

 if (BLE_SUCCESS != status)

 {

 return BLE_ERR_INVALID_OPERATION;

 }

 /* Set Prepare Write Queue */

 R_BLE_GATTS_SetPrepareQueue(gs_queue, BLE_GATTS_QUEUE_NUM);

 /* Initialize LED Switch Service server API */

 status = R_BLE_LSS_Init(lss_cb);

 if (BLE_SUCCESS != status)

 {

 return BLE_ERR_INVALID_OPERATION;

 }

 return status;

}

Code 5. Initialization

Note: When using QE for BLE, the source code of the ble_init() function is automatically generated.

BLE module initialization (RM_ABS_BLE_Open)

GATT database registration (R_BLE_GATTS_SetDbInst)
Note: Code-generated when GATT role is set as whichever
Server and Client by QE for BLE.

GATT Server function initialization (R_BLE_SERVS_Init)
Note: Code-generated when GATT role is set as whichever Server and Client by QE
for BLE.

GATT Client function initialization (R_BLE_SERVC_Init)
Note: Code-generated when GATT role is set as whichever Server and Client by
QE for BLE.

Service initialization

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 33 of 168

Oct.26.2022

3.1.4 Register callback function

Registration of callback function is required to execute processing according to event from each layer of BLE
protocol stack. Table 9 shows the callback registration API for each layer of BLE protocol stack.

Table 9. Callback function registration API

Function block Callback registration API Comment

GAP
RM_BLE_ABS_Open or

R_BLE_GAP_Init

Registered callback function is called when receiving

the result of R_BLE_GAP_XXX such as Advertising,

Scan, Connection establishment and so on.

GATT Server

(Profile common)

RM_BLE_ABS_Open or

R_BLE_GATTS_RegisterCb

Registered callback function is called when accessed

from GATT Client.

GATT Client

(Profile common)

RM_BLE_ABS_Open or

R_BLE_GATTC_RegisterCb

Registered callback function is called when accessed

from GATT Server.

Service Discovery

(Profile common)
R_BLE_DISC_Start

Registered callback function is called when completing

Service Discovery.

Vendor Specific
RM_BLE_ABS_Open or

R_BLE_VS_Init

Registered callback function is called when receiving

the result of R_BLE_VS_XXX.

L2CAP R_BLE_L2CAP_RegisterCfPsm

Registered callback function is called when receiving

the result of R_BLE_L2CAP_XXX such as that the

response of L2CAP Credit-Based Flow Control request

is received.

Note: Not code-generated by QE for BLE.

Server side profile

API

R_BLE_XXXS_Init

(XXX is Service name)

Registered callback function is called when accessed

from Client.

Client side profile

API

R_BLE_XXXC_Init

(XXX is Service name)

Registered callback function is called when accessed

from Server.

Note1: RM_BLE_ABS_Open can register GAP, GATT Server, GATT Client, and VS callback functions for each layer.

Note2: “XXX” included in name of callback registration API is “LSS” in demo project.

Note3: Callback registration API which is not used in demo project is also listed for reference.

3.1.5 Registering GATT database (R_BLE_GATTS_SetDbInst)

When creating a GATT service application, QE for BLE generates a service database code in the following
file.

 gatt_db.c
 gatt_db.h

This GATT database is registered by R_BLE_GATTS_SetDbInst().

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 34 of 168

Oct.26.2022

3.1.6 Main loop and scheduler (R_BLE_Execute)

BLE protocol stack include a scheduler to process R_BLE API called by BLE application. Task to be
performed are loaded to message queue in the scheduler when the API is called in BLE application. Call
R_BLE_Execute() in main loop to start the scheduler and process the task in BLE protocol stack. Events that
occur when a task is processed in BLE protocol stack are notified to callback function registered in section
3.1.4. Figure 21 shows typical sequence chart of BLE application.

Figure 21. Basic sequence chart of BLE Protocol Stack

Relationship between callback function and event from each layer describe from the next section.

R_BLE API Scheduler Host Stack Link Layer(LL) BLE H/WApplication

Call R_BLE API

return R_BLE API

Send Message to

Host Stack

Call R_BLE_Execute()

return R_BLE_Execute()

Execute Task

return

Send Message to LL

Execute Task

return

Access BLE H/W
Send Message to Host Stack

BLE Interrupt

Execute Task

return

return

callback
R_BLE event callback

return

Send Message to LL

Call R_BLE_Execute()

return R_BLE_Execute()

Execute Task

return

Access BLE H/W

Send Message to Host Stack

Execute Task

return

callback

return

R_BLE event callback

return

Function Call

Send Message

return

BLE Interrupt

Access BLE H/W

Software HardwareSource Code Library

BLE Protcol Stack

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 35 of 168

Oct.26.2022

3.1.7 GAP event (gap_cb function)

GAP callback function receives following events.

enum e_ble_gap_evt_t {
 BLE_GAP_EVENT_INVALID = 0x1001,
 BLE_GAP_EVENT_STACK_ON,
 BLE_GAP_EVENT_STACK_OFF,
 BLE_GAP_EVENT_LOC_VER_INFO,
 BLE_GAP_EVENT_HW_ERR,
 BLE_GAP_EVENT_CMD_ERR = 0x1101,
 BLE_GAP_EVENT_ADV_REPT_IND,
 BLE_GAP_EVENT_ADV_PARAM_SET_COMP,
 BLE_GAP_EVENT_ADV_DATA_UPD_COMP,
 BLE_GAP_EVENT_ADV_ON,
 BLE_GAP_EVENT_ADV_OFF,
 BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP,
 BLE_GAP_EVENT_PERD_ADV_ON,
 BLE_GAP_EVENT_PERD_ADV_OFF,
 BLE_GAP_EVENT_ADV_SET_REMOVE_COMP,
 BLE_GAP_EVENT_SCAN_ON,
 BLE_GAP_EVENT_SCAN_OFF,
 BLE_GAP_EVENT_SCAN_TO,
 BLE_GAP_EVENT_CREATE_CONN_COMP,
 BLE_GAP_EVENT_CONN_IND,
 BLE_GAP_EVENT_DISCONN_IND,
 BLE_GAP_EVENT_CONN_CANCEL_COMP,
 BLE_GAP_EVENT_WHITE_LIST_CONF_COMP,
 BLE_GAP_EVENT_RAND_ADDR_SET_COMP,
 BLE_GAP_EVENT_CH_MAP_RD_COMP,
 BLE_GAP_EVENT_CH_MAP_SET_COMP,
 BLE_GAP_EVENT_RSSI_RD_COMP,
 BLE_GAP_EVENT_GET_REM_DEV_INFO,
 BLE_GAP_EVENT_CONN_PARAM_UPD_COMP,
 BLE_GAP_EVENT_CONN_PARAM_UPD_REQ,
 BLE_GAP_EVENT_AUTH_PL_TO_EXPIRED,
 BLE_GAP_EVENT_SET_DATA_LEN_COMP,
 BLE_GAP_EVENT_DATA_LEN_CHG,
 BLE_GAP_EVENT_RSLV_LIST_CONF_COMP,
 BLE_GAP_EVENT_RPA_EN_COMP,
 BLE_GAP_EVENT_SET_RPA_TO_COMP,
 BLE_GAP_EVENT_RD_RPA_COMP,
 BLE_GAP_EVENT_PHY_UPD,
 BLE_GAP_EVENT_PHY_SET_COMP,
 BLE_GAP_EVENT_DEF_PHY_SET_COMP,
 BLE_GAP_EVENT_PHY_RD_COMP,
 BLE_GAP_EVENT_SCAN_REQ_RECV,
 BLE_GAP_EVENT_CREATE_SYNC_COMP,
 BLE_GAP_EVENT_SYNC_EST,
 BLE_GAP_EVENT_SYNC_TERM,
 BLE_GAP_EVENT_SYNC_LOST,
 BLE_GAP_EVENT_SYNC_CREATE_CANCEL_COMP,
 BLE_GAP_EVENT_PERD_LIST_CONF_COMP,
 BLE_GAP_EVENT_PRIV_MODE_SET_COMP,
 BLE_GAP_EVENT_PAIRING_REQ = 0x1401,
 BLE_GAP_EVENT_PASSKEY_ENTRY_REQ,
 BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ,
 BLE_GAP_EVENT_NUM_COMP_REQ,
 BLE_GAP_EVENT_KEY_PRESS_NTF,
 BLE_GAP_EVENT_PAIRING_COMP,
 BLE_GAP_EVENT_ENC_CHG,
 BLE_GAP_EVENT_PEER_KEY_INFO,
 BLE_GAP_EVENT_EX_KEY_REQ,
 BLE_GAP_EVENT_LTK_REQ,
 BLE_GAP_EVENT_LTK_RSP_COMP,
 BLE_GAP_EVENT_SC_OOB_CREATE_COMP
}

Code 6. GAP event

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 36 of 168

Oct.26.2022

Reception condition of the frequently occurring events are shown below.

Table 10. Frequently use event of GAP callback

Event Reception condition

BLE_GAP_EVENT_STACK_ON(0x1001) Complete R_BLE_GAP_Init

BLE_GAP_EVENT_ADV_PARAM_SET_COMP(0x1003) Complete R_BLE_GAP_SetAdvParam

BLE_GAP_EVENT_ADV_DATA_UPD_COMP (0x1004) Complete R_BLE_GAP_SetAdvSresData

BLE_GAP_EVENT_ADV_ON (0x1005) Start Advertising

BLE_GAP_EVENT_ADV_OFF (0x1006) End Advertising

BLE_GAP_EVENT_ADV_REPT_IND (0x1102) Received advertising report

BLE_GAP_EVENT_SCAN_ON (0x1111) Start Scan

BLE_GAP_EVENT_SCAN_OFF (0x1112) End Scan

BLE_GAP_EVENT_CONN_IND (0x1115) Start Connection

BLE_GAP_EVENT_CONN_IND (0x1115) End Connection

BLE_GAP_EVENT_DISCONN_IND (0x1116) End Disconnection

GAP callback function in this demo project is following.

Code 7. GAP callback function

QE for BLE generates skeleton code for GAP callback function. User can add their own code into the
skeleton code.

void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GAP callback function common process. Do not edit comment generated here */

R_BLE_CMD_AbsGapCb(type, result, p_data);

/* End user code. Do not edit comment generated here */

 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_CLI_Printf("gap : BLE_GAP_EVENT_STACK_ON \n");

 /* Get BD address for Advertising */
 R_BLE_VS_GetBdAddr(BLE_VS_ADDR_AREA_REG, BLE_GAP_ADDR_RAND);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
…………
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
…………
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
…………
 } break;

/* Hint: Add cases of GAP event macros defined as BLE_GAP_XXX */
/* Start user code for GAP callback function event process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
 }
}

Connection parameter request come from client

Disconnection has happened

Complete GAP initialization

Connection complete

Get BD address

In this demo project, many parts of processing when
receiving events are also implemented in
R_BLE_CMD_AbsGapCb().

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 37 of 168

Oct.26.2022

3.1.8 GATTS event (gatts_cb function)

GATT server (GATTS) callback function receives following events.

enum e_r_ble_gatts_evt_t {
 BLE_GATTS_EVENT_EX_MTU_REQ = 0x3002,
 BLE_GATTS_EVENT_READ_BY_TYPE_RSP_COMP = 0x3009,
 BLE_GATTS_EVENT_READ_RSP_COMP = 0x300B,
 BLE_GATTS_EVENT_READ_BLOB_RSP_COMP = 0x300D,
 BLE_GATTS_EVENT_READ_MULTI_RSP_COMP = 0x300F,
 BLE_GATTS_EVENT_WRITE_RSP_COMP = 0x3013,
 BLE_GATTS_EVENT_PREPARE_WRITE_RSP_COMP = 0x3017,
 BLE_GATTS_EVENT_EXE_WRITE_RSP_COMP = 0x3019,
 BLE_GATTS_EVENT_HDL_VAL_CNF = 0x301E,
 BLE_GATTS_EVENT_DB_ACCESS_IND = 0x3040,
 BLE_GATTS_EVENT_CONN_IND = 0x3081,
 BLE_GATTS_EVENT_DISCONN_IND = 0x3082,
 BLE_GATTS_EVENT_INVALID = 0x30FF
}

Code 8. GATTS event

Reception condition of frequently occurring events is shown below.

Table 11. Frequently use events of GATTS callback

Event Reception condition

BLE_GATTS_EVENT_CONN_IND(0x3081) Establish Connection

BLE_GATTS_EVENT_EX_MTU_REQ(0x3002)
Changing MTU is requested from GATT Client

after Connection

BLE_GATTS_EVENT_DB_ACCESS_IND(0x3040) Accessed to GATT database

BLE_GATTS_EVENT_READ_BY_TYPE_RSP_COMP(0x3009) Complete sending Read By Type Response

BLE_GATTS_EVENT_WRITE_RSP_COMP(0x3013) Complete sending Write Response

BLE_GATTS_EVENT_HDL_VAL_CNF(0x301E)
Complete receiving Confirmation from GATT

Client

BLE_GATTS_EVENT_DISCONN_IND(0x3082) End Disconnection

GATTS callback function in this demo project is following.

void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t *p_data)

{

/* Hint: Input common process of callback function such as variable definitions */

/* Start user code for GATT Server callback function common process. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

 R_BLE_SERVS_GattsCb(type, result, p_data);

 switch(type)

 {

/* Hint: Add cases of GATT Server event macros defined as BLE_GATTS_XXX */

/* Start user code for GATT Server callback function event process. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

 }

}

Code 9. GATTS callback function

QE for BLE generates skeleton code for GATTS callback function. User can add their own code into the
skeleton code.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 38 of 168

Oct.26.2022

3.1.9 GATTC event (gattc_cb function)

GATT client (GATTC) callback function receives following events.

enum e_r_ble_gattc_evt_t {
 BLE_GATTC_EVENT_ERROR_RSP = 0x4001,
 BLE_GATTC_EVENT_EX_MTU_RSP = 0x4003,
 BLE_GATTC_EVENT_CHAR_READ_BY_UUID_RSP = 0x4009,
 BLE_GATTC_EVENT_CHAR_READ_RSP = 0x400B,
 BLE_GATTC_EVENT_CHAR_PART_READ_RSP = 0x400D,
 BLE_GATTC_EVENT_MULTI_CHAR_READ_RSP = 0x400F,
 BLE_GATTC_EVENT_CHAR_WRITE_RSP = 0x4013,
 BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP = 0x4017,
 BLE_GATTC_EVENT_HDL_VAL_NTF = 0x401B,
 BLE_GATTC_EVENT_HDL_VAL_IND = 0x401D,
 BLE_GATTC_EVENT_CONN_IND = 0x4081,
 BLE_GATTC_EVENT_DISCONN_IND = 0x4082,
 BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND = 0x40E0,
 BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND = 0x40E1,
 BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP = 0x40E2,
 BLE_GATTC_EVENT_PRIM_SERV_DISC_COMP = 0x40E3,
 BLE_GATTC_EVENT_SECOND_SERV_16_DISC_IND = 0x40E4,
 BLE_GATTC_EVENT_SECOND_SERV_128_DISC_IND = 0x40E5,
 BLE_GATTC_EVENT_ALL_SECOND_SERV_DISC_COMP = 0x40E6,
 BLE_GATTC_EVENT_INC_SERV_16_DISC_IND = 0x40E7,
 BLE_GATTC_EVENT_INC_SERV_128_DISC_IND = 0x40E8,
 BLE_GATTC_EVENT_INC_SERV_DISC_COMP = 0x40E9,
 BLE_GATTC_EVENT_CHAR_16_DISC_IND = 0x40EA,
 BLE_GATTC_EVENT_CHAR_128_DISC_IND = 0x40EB,
 BLE_GATTC_EVENT_ALL_CHAR_DISC_COMP = 0x40EC,
 BLE_GATTC_EVENT_CHAR_DISC_COMP = 0x40ED,
 BLE_GATTC_EVENT_CHAR_DESC_16_DISC_IND = 0x40EE,
 BLE_GATTC_EVENT_CHAR_DESC_128_DISC_IND = 0x40EF,
 BLE_GATTC_EVENT_ALL_CHAR_DESC_DISC_COMP = 0x40F0,
 BLE_GATTC_EVENT_LONG_CHAR_READ_COMP = 0x40F1,
 BLE_GATTC_EVENT_LONG_CHAR_WRITE_COMP = 0x40F2,
 BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP = 0x40F3,
 BLE_GATTC_EVENT_RELIABLE_WRITES_COMP = 0x40F4,
 BLE_GATTC_EVENT_INVALID = 0x40FF
}

Code 10. GATTC event

Reception condition of frequently occurring events is shown below.

Table 12. Frequently use events of GATTC callback

Event Reception condition

BLE_GATTC_EVENT_CONN_IND(0x4081) Establish Connection

BLE_GATTC_EVENT_EX_MTU_RSP(0x4003)
Request Changing MTU to GATT Server after Connection and

receive normal response

BLE_GATTC_EVENT_ERROR_RSP(0x4001) Receive error response from GATT Server

BLE_GATTC_EVENT_HDL_VAL_NTF(0x401B) Complete receiving Notification

BLE_GATTC_EVENT_HDL_VAL_IND(0x401D) Complete receiving Indication

BLE_GATTC_EVENT_DISCONN_IND(0x4082) End Disconnection

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 39 of 168

Oct.26.2022

GATTC callback function is following.

void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)

{

/* Hint: Input common process of callback function such as variable definitions */

/* Start user code for GATT Client callback function common process. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)

 {

/* Hint: Add cases of GATT Client event macros defined as BLE_GATTC_XXX */

/* Start user code for GATT Client callback function event process. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

 }

}

Code 11. GATTC callback function

QE for BLE generates skeleton code for GATTC callback function. User can add their own code into the
skeleton code.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 40 of 168

Oct.26.2022

3.1.10 VS event (vs_cb function)

Vender specific (VS) callback function receives following events.

enum e_r_ble_vs_evt_t {
 BLE_VS_EVENT_SET_TX_POWER = 0x8001,
 BLE_VS_EVENT_GET_TX_POWER = 0x8002,
 BLE_VS_EVENT_TX_TEST_START = 0x8003,
 BLE_VS_EVENT_TX_TEST_TERM = 0x8004,
 BLE_VS_EVENT_RX_TEST_START = 0x8005,
 BLE_VS_EVENT_TEST_END = 0x8006,
 BLE_VS_EVENT_SET_CODING_SCHEME_COMP = 0x8007,
 BLE_VS_EVENT_RF_CONTROL_COMP = 0x8008,
 BLE_VS_EVENT_SET_ADDR_COMP = 0x8009,
 BLE_VS_EVENT_GET_ADDR_COMP = 0x800A,
 BLE_VS_EVENT_GET_RAND = 0x800B,
 BLE_VS_EVENT_TX_FLOW_STATE_CHG = 0x800C,
 BLE_VS_EVENT_FAIL_DETECT = 0x800D,
 BLE_VS_EVENT_SET_SCAN_CH_MAP = 0x800E,
 BLE_VS_EVENT_GET_SCAN_CH_MAP = 0x800F,
 BLE_VS_EVENT_INVALID = 0x80FF
}

Code 12. VS event

Reception condition of frequently occurring events are shown below.

Table 13. Frequently use events of VS callback

Event Reception condition

BLE_VS_EVENT_SET_TX_POWER(0x8001) Complete R_BLE_VS_SetTxPower

BLE_VS_EVENT_GET_TX_POWER(0x8002) Complete R_BLE_VS_GetTxPower

BLE_VS_EVENT_SET_ADDR_COMP(0x8009) Complete R_BLE_VS_SetBdAddr

BLE_VS_EVENT_GET_ADDR_COMP(0x800A) Complete R_BLE_VS_GetBdAddr

VS callback function in this demo project is following.

void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for vender specific callback function common process. Do not edit comment generated here */

R_BLE_CMD_VsCb(type, result, p_data);

/* End user code. Do not edit comment generated here */

 R_BLE_SERVS_VsCb(type, result, p_data);
 switch(type)
 {
 case BLE_VS_EVENT_GET_ADDR_COMP:
 {
………
 RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &g_ble_advertising_parameter);
 } break;

/* Hint: Add cases of vender specific event macros defined as BLE_VS_XXX */
/* Start user code for vender specific callback function event process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
 }
}

Code 13. VS callback function

QE for BLE generates skeleton code for VS callback function. User can add their own code into the skeleton
code.

Get BD address event

In this demo project, many parts of processing when
receiving events are also implemented in
R_BLE_CMD_VsCb().

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 41 of 168

Oct.26.2022

3.1.11 Server-side Profile API event ([service_name]s_cb function)

Callback function of the server side Profile API receives following events.

enum e_ble_servs_event_t {
 BLE_SERVS_WRITE_REQ = 0x00,
 BLE_SERVS_WRITE_CMD = 0x01,
 BLE_SERVS_WRITE_COMP = 0x02,
 BLE_SERVS_READ_REQ = 0x03,
 BLE_SERVS_HDL_VAL_CNF = 0x04
}

enum e_ble_[service name]s_event_t {
 BLE_[service name]S_EVENT_[characteristic name]_WRITE_REQ = 0xXX00,
 BLE_[service name]S_EVENT_[characteristic name]_WRITE_CMD= 0xXX01,
 BLE_[service name]S_EVENT_[characteristic name]_WRITE_COMP = 0xXX02,
 BLE_[service name]S_EVENT_[characteristic name]_READ_REQ = 0xXX03,
 BLE_[service name]S_EVENT_[characteristic name]_HDL_VAL_CNF = 0xXX04,
 BLE_[service name]S_EVENT_[characteristic name]_[descriptor name]_WRITE_REQ = 0xYY00,
 BLE_[service name]S_EVENT_[characteristic name]_[descriptor name]_READ_REQ = 0xYY03,
 :
 :
}

Code 14. Server-side Profile API event

Note1: The 10th to 15th bits are serial numbers that distinguish attributes (characteristics and descriptors).
XX and YY are 00, 04, 08, 10, ..., FC.

Note2: [service name] is “LS” in this demo project.

Reception condition of frequently occurring events are shown below.

Table 14. Frequently use events of Profile Server callback

Event Reception condition

XXX_WRITE_REQ (0xXXX0) Complete receiving Write Request

XXX_WRITE_CMD (0xXXX1) Complete receiving Write Without Response

XXX_WRITE_COMP (0xXXX2) Complete sending Write Response

XXX_READ_REQ (0xXXX3) Complete receiving Read Request

XXX_HDL_VAL_CNF (0xXXX4) Complete receiving Confirmation

Note3: ”XXX” is “LSS” in this demo project.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 42 of 168

Oct.26.2022

Callback function of server side profile API in this demo project is following.

static void lss_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{
 switch(type)
 {
………
 case BLE_LSS_EVENT_BLINK_RATE_WRITE_REQ:
 {
 g_current_blinky_interval = *(uint8_t *)p_data->p_param;

 if (g_current_blinky_interval == 0x00)
 {
 /* LED OFF */
 g_ioport.p_api->pinWrite(g_ioport.p_ctrl, BSP_IO_PORT_01_PIN_06, BSP_IO_LEVEL_HIGH);
 g_led_blink_active = false;
 }
 else if (g_current_blinky_interval == 0xFF)
 {
 /* LED ON */
 g_ioport.p_api->pinWrite(g_ioport.p_ctrl, BSP_IO_PORT_01_PIN_06, BSP_IO_LEVEL_LOW);
 g_led_blink_active = false;
 }
 else
 {
 g_led_blink_active = true;
 g_interval_update_flag = true;
 }
 } break;

 default:
 break;
/* End user code. Do not edit comment generated here */ }
}

Code 15. Profile Server callback function

QE for BLE generates skeleton code for Profile Server callback function. User can add their own code into
the skeleton code.

Change LED blink rate

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 43 of 168

Oct.26.2022

3.1.12 L2CAP event

L2CAP callback function receives following events.

enum e_r_ble_l2cap_cf_evt_t {
 BLE_L2CAP_EVENT_CF_CONN_CNF = 0x5001,
 BLE_L2CAP_EVENT_CF_CONN_IND = 0x5002,
 BLE_L2CAP_EVENT_CF_DISCONN_CNF = 0x5003,
 BLE_L2CAP_EVENT_CF_DISCONN_IND = 0x5004,
 BLE_L2CAP_EVENT_CF_RX_DATA_IND = 0x5005,
 BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND = 0x5006,
 BLE_L2CAP_EVENT_CF_TX_CRD_IND = 0x5007,
 BLE_L2CAP_EVENT_CF_TX_DATA_CNF = 0x5008,
 BLE_L2CAP_EVENT_CMD_REJ = 0x5009
}

Code 16. L2CAP event

L2CAP callback function is following.

static void l2cap_cb(uint16_t type, ble_status_t result, st_ble_l2cap_cf_evt_data_t *p_data)
{
 switch (type)
 {
 Note: Add processing when an event is received here.

}
}

Code 17. L2CAP callback function

QE for BLE does not generate skeleton code for L2CAP callback function. Users have to define / implement
L2CAP callback function and register it by using R_BLE_L2CAP_RegisterCfPsm() at app_main() when user
needs to use l2cap function.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 44 of 168

Oct.26.2022

3.1.13 Event notification and exiting from Software Standby mode

Event notification can be added to scheduler in BLE application by using R_BLE_SetEvent() API. If an event
has occurred, the corresponding callback function will execute at the next call of the R_BLE_Execute(). The
R_BLE_Set_Event() API should be used address the following cases.

 To perform time-consuming application processing within an interrupt service routine.

 To control program flow of a function which cannot be executed from an interrupt service routine.

Event notification use case in this document is following.

static void sw_cb(void)
{

uint8_t state = 1;
R_BLE_LSS_NotifySwitchState(g_conn_hdl, &state);
g_inhibit_software_standby = true;

}

void Callback_ble_sw_irq(external_irq_callback_args_t *p_args)
{
 FSP_PARAMETER_NOT_USED(p_args);
 R_BLE_SetEvent(sw_cb);

}

Code 18. Event notification

In above use case, BLE module will send notification to remote device when the user operates tactile switch
which connected with RA4W1 GPIO.

In this demo project, IRQ4 assigned SW1 on EK-RA4W1 is designated as Wakeup Source of Low Power
Module. When SW1 on EK-RA4W1 under Software Standby mode is pressed, Software Standby mode is
exited then Callback_ble_sw_irq() function is executed because it is registered as callback function of IRQ4
interrupt.

3.1.14 CLI (Command Line Interface)

This demo project provides the functionality of CLI (Command Line Interface). CLI can be access with the
terminal emulator like Tera Term on PC connecting EK-RA4W1 board via USB cable. Each command of CLI
is registered to gsp_cmds structure in app_main.c like following. User defined commands can be added to
gsp_cmds structure by the same scheme depending on the necessity. Refer to section 4.6.6 when user
wants to create new command.

Code 19. gsp_cmds

Interrupt callback function for push switch

Register sw_cb function as callback function

Send notification

/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_ble_cmd
};

Clear flag to exit Software Standby mode

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 45 of 168

Oct.26.2022

CLI is initialized by the following procedure in app_main() function in app_main.c.

Code 20. Initialization of CLI

The processing of CLI is executed by R_BLE_CLI_Process() API in main loop in app_main.c.

Code 21. Executing the processing of CLI

The processing of the event occurred as a result of calling R_BLE_CLI_Process() API is described as shown
in the top part of Code 7 (The description of calling R_BLE_CMD_**** API).

void app_main(void)
{
………
 /* Initialize BLE and profiles */
 ble_init();

/* Hint: Input process that should be done before main loop such as calling initial function or

variable definitions */
/* Start user code for process before main loop. Do not edit comment generated here */
………
 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, sizeof(gsp_cmds)/sizeof(gsp_cmds[0]));
 R_BLE_CLI_RegisterEventCb(NULL);
 R_BLE_CMD_SetResetCb((ble_event_cb_t)ble_init);
/* End user code. Do not edit comment generated here */

/* main loop */
 while (1)
 {………

 /* main loop */

 while (1)

 {

 /* Process BLE Event */

 R_BLE_Execute();

………

/* Hint: Input process that should be done during main loop such as calling processing functions */

/* Start user code for process during main loop. Do not edit comment generated here */

 /* Process Command Line */

 R_BLE_CLI_Process();

………
/* End user code. Do not edit comment generated here */

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 46 of 168

Oct.26.2022

3.2 FreeRTOS environment (Server, EventGroup as Synchronization Type case)

In case of selected Event Group as Synchronization Type property of BLE Driver FSP module, BLE
application is divided it into two or more tasks, BLE Core Task and GATT application tasks. BLE Core Task
performs initialization and BLE related processing except GATT related event processing. The BLE Core
task should be highest priority. In this demo project, BLE Core Task implemented in app_main.c and GATT
application task (LED switch service) implemented in lss_task.c. This section describes BLE related task
creation, task switching between BLE related task and implementation each task in following sections.

Figure 22.Software structure (FreeRTOS, EventGroup as Synchronization Type case)

Note1: When using QE for BLE, source code of the app_main function is automatically generated.

Note2: QE for BLE does not generate source code of the lss_task. User needs to define and the functionality
for the lss_task.c. The user may this document and sample code for reference.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 47 of 168

Oct.26.2022

3.2.1 Create / delete task

 Include ble_core_task.h

Add the description of including “ble_core_task.h” as following to app_main.c.

Code 22. app_main.c

 BLE Core task

Initialization and main loop of BLE core task included in app_main(). Call the app_main() in
ble_core_task_entry.c as following.

void ble_core_task_entry(void *pvParameters)
{
 FSP_PARAMETER_NOT_USED (pvParameters);

 /* TODO: add your own code here */
 app_main();

 while (1)
 {
 vTaskDelay (1000 / portTICK_PERIOD_MS);
 }
}

Code 23. app_main entry point

/**
 User file includes
***/
/* Start user code for file includes. Do not edit comment generated here */
#include "ble_core_task.h"
/* End user code. Do not edit comment generated here */

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 48 of 168

Oct.26.2022

 GATT application task

GATT server event processing of GATT application task included in lss_task_entry(). The GATT application
task is created when remote device connects to the RA4W1. And the task is deleted when the remote device
disconnects from the RA4W1. This task creation/deletion is performed by GATT server callback function
(gatts_cb) in app_main.c.

void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GATT Server callback function common process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

 R_BLE_SERVS_GattsCb(type, result, p_data);
 switch(type)
 {
/* Hint: Add cases of GATT Server event macros defined as BLE_GATTS_XXX */
/* Start user code for GATT Server callback function event process. Do not edit comment generated here */

 case BLE_GATTS_EVENT_CONN_IND:
 {
 ………
 /* task create */
 xTaskCreate(lss_task_entry, "lss_task", 128, &g_conn_hdl, 4, &g_lss_task);

 }break;

 case BLE_GATTS_EVENT_DISCONN_IND:
 {

………
 /* Delete Task */
 delete_lss_task_rsrc();
 }break;

 default:
 /* Do Nothing */
 break;
/* End user code. Do not edit comment generated here */
 }
}

Code 24. LED switch service task creation

Create GATT application task.

Delete GATT application task.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 49 of 168

Oct.26.2022

3.2.2 Task switching between BLE core task and GATT application task

If event notified by scheduler, part of the BLE protocol stack, is an event for GATT application task, BLE core
task activates GATT application task and provides a notification of the event by using event group setting
and cleaning technique. In this demo project, event group bit defined in task_functon.h as following.

Table 15. Defined event group bit

Macro name (Value) Usage

LSS_WAIT_EN_CCCD (0x0001) Enable CCCD in LED Switch Service

LSS_WAIT_DIS_CCCD (0x0002) Disable CCCD in LED Switch Service

LSS_WAIT_PUSH_SW (0x0004) Notify push switch

LSS_WAIT_WR_BLINK (0x0008) Change LED blink rate

Function which sets event group bit need to implement by the user. The function in this demo project is as
follows.

void set_lss_event(EventBits_t uxBitsToSet)
{
 R_BLE_LSS_GetSwitchStateCliCnfg(gs_conn_hdl, &cccd);

 switch(uxBitsToSet)
 {
 case LSS_WAIT_EN_CCCD:
 xEventGroupClearBits(xLssEvent, (LSS_WAIT_DIS_CCCD | LSS_WAIT_PUSH_SW));
 xEventGroupSetBits(xLssEvent, uxBitsToSet);
 break;

 case LSS_WAIT_DIS_CCCD:
 uxBitsToSet = LSS_WAIT_DIS_CCCD;
 xEventGroupClearBits(xLssEvent, (LSS_WAIT_EN_CCCD | LSS_WAIT_PUSH_SW));
 xEventGroupSetBits(xLssEvent, uxBitsToSet);
 break;

 case LSS_WAIT_PUSH_SW:
 if(BLE_GATTS_CLI_CNFG_NOTIFICATION == cccd)
 {
 xEventGroupSetBits(xLssEvent, uxBitsToSet);
 }
 break;

 case LSS_WAIT_WR_BLINK:
 xEventGroupSetBits(xLssEvent, uxBitsToSet);
 break;
 }
}

Code 25. Set event group bit

Disable CCCD in LED Switch Service

Enable CCCD in LED Switch Service

Notify push switch

Change LED blink rate

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 50 of 168

Oct.26.2022

3.2.3 Main loop of BLE core task

The app_main() includes initialization and main loop of BLE Core task. The program flow of this demo project
is following.

Code 26. app_main function

void app_main(void)
{
………
 /* Create Event Group */
 g_ble_event_group_handle = (void *)xEventGroupCreate();
 assert(g_ble_event_group_handle);
………

 /* Initialize BLE and profiles */
 ble_init();

/* Hint: Input process that should be done before main loop such as calling initial function or variable
definitions */
/* Start user code for process before main loop. Do not edit comment generated here */
…………
 R_BLE_CMD_SetResetCb((ble_event_cb_t)ble_init);
/* End user code. Do not edit comment generated here */

 /* main loop */
 while (1)
 {
………
 /* Process BLE Event */
 R_BLE_Execute();

 if(0 != R_BLE_IsTaskFree())
 {
 /* If the BLE Task has no operation to be processed, it transits block state until the event from

RF transciever occurs. */
 xEventGroupWaitBits((EventGroupHandle_t)g_ble_event_group_handle,
 (EventBits_t)BLE_EVENT_PATTERN,
 pdTRUE,
 pdFALSE,
 portMAX_DELAY);
 }
………
 }

………
 /* Terminate BLE */
 RM_BLE_ABS_Close(&g_ble_abs0_ctrl);
}

Create event group for transition task status.

BLE module initialization.

Main loop (Call R_BLE_Execute, Transition to Block state by xEventGroupWaitBits)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 51 of 168

Oct.26.2022

3.2.4 Main loop of GATT application task

The lss_task_entry() includes main loop of GATT application task. The program flow of this demo project is
following.

void lss_task_entry(void *pvParameters)

{

 ble_status_t retval;

 uint8_t push_state;

 EventBits_t event;

 gs_conn_hdl = *(uint16_t *)pvParameters;

 xLssEvent = xEventGroupCreate();

 xBlinkTimerHdl = xTimerCreate("Blink" , 1000, pdTRUE , 0, blink_timer_cb);

 R_BLE_LSS_GetSwitchStateCliCnfg(gs_conn_hdl, &cccd);

 if(BLE_GATTS_CLI_CNFG_INDICATION != cccd)

 {

 cccd = BLE_GATTS_CLI_CNFG_DEFAULT;

 }

 wait_event = LSS_WAIT_EN_CCCD | LSS_WAIT_DIS_CCCD | LSS_WAIT_WR_BLINK | LSS_WAIT_PUSH_SW;

 while (1)

 {

 event = xEventGroupWaitBits(

 xLssEvent,

 wait_event,

 pdTRUE,

 pdFALSE,

 portMAX_DELAY);

 if(LSS_WAIT_EN_CCCD & event)

 {

………

 }

 else if(LSS_WAIT_DIS_CCCD & event)

 {

………

 }

 else if((LSS_WAIT_PUSH_SW & event) && (BLE_GATTS_CLI_CNFG_NOTIFICATION == cccd))

 {

………

 }

 else if(LSS_WAIT_WR_BLINK & event)

 {

………

 }

 }

 vTaskDelete(NULL);

 /* End user code. Do not edit comment generated here */

}

Code 27. lss_task_entry function

Store connection handle

Wait for event from BLE core task

Create event group for transition task status.

Wait for enable CCCD event from BLE core task

Wait for disable CCCD event from BLE core task

Wait for push switch event from BLE core task

Wait for LED blink rate change event from BLE core task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 52 of 168

Oct.26.2022

3.2.5 Initialization process

Same as section 3.1.3.

3.2.6 Register callback function

Same as section 3.1.4.

3.2.7 Registering GATT database (R_BLE_GATTS_SetDbInst)

Same as section 3.1.5.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 53 of 168

Oct.26.2022

3.2.8 Main loop and scheduler (R_BLE_Execute)

The operation of the main loop and scheduler is similar to the description in section 3.1.6. The difference
from BareMetal environment is that, if the event notified by scheduler which include BLE protocol stack is an
event for GATT application task, BLE core task activates GATT application task and notify the event by using
event group technique. Figure 23 shows the typical sequence chart of BLE module.

Figure 23. Basic sequence chart of BLE Protocol Stack

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 54 of 168

Oct.26.2022

3.2.9 GAP event (gap_cb function)

Same as section 3.1.7.

3.2.10 GATTS event (gatts_cb function)

Almost the same as section 3.1.8. The difference from BareMetal environment is that,

 GATT application task is created when connection is established with the client.

 GATT application task is deleted when client disconnects.

Implementation of this demo project is following.

void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t *p_data)

{

/* Hint: Input common process of callback function such as variable definitions */

/* Start user code for GATT Server callback function common process. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

 R_BLE_SERVS_GattsCb(type, result, p_data);

 switch(type)

 {

/* Hint: Add cases of GATT Server event macros defined as BLE_GATTS_XXX */

/* Start user code for GATT Server callback function event process. Do not edit comment generated here */

 case BLE_GATTS_EVENT_CONN_IND:

 {

………

 /* task create */

 /* LED Switch */

 xTaskCreate(lss_task_entry, "lss_task", 128, &g_conn_hdl, 4, &g_lss_task);

 }break;

 case BLE_GATTS_EVENT_DISCONN_IND:

 {

 /* Delete GATT Application Task */

 delete_lss_task_rsrc();

 }break;

 default:

 /* Do Nothing */

 break;

/* End user code. Do not edit comment generated here */

 }

}

Code 28. GATTS callback function

Create GATT application task

Delete GATT application task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 55 of 168

Oct.26.2022

3.2.11 GATTC event (gattc_cb function)

Almost the same as section 3.1.9. The difference from BareMetal environment is that,

 GATT Application task is created when connection is established with the server.

 GATT Application task is deleted when upon disconnecting from the server.

3.2.12 VS event (vs_cb function)

Same as section 3.1.10.

3.2.13 Server-side Profile API event ([service_name]s_cb function)

Almost the same as section 3.1.11. The difference from BareMetal environment is that event group bits are
adjusted according to the data received from server-side profile API event. As a result, the GATT Application
task is activated per the function definition provided in Section 3.2.2. Implementation of this demo project is
following.

static void lss_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)

{

/* Hint: Input common process of callback function such as variable definitions */

/* Start user code for LED Switch Service(Custom Service) Server callback function common process. */

/* Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

 uint16_t data;

 switch(type)

 {

/* Hint: Add cases of LED Switch Service(Custom Service) server events defined in e_ble_lss_event_t */

/* Start user code for LED Switch Service(Custom Service) Server callback function event process. Do not edit

comment generated here */

 case BLE_LSS_EVENT_SWITCH_STATE_CLI_CNFG_WRITE_COMP :

 {

 R_BLE_LSS_GetSwitchStateCliCnfg(p_data->conn_hdl, &data);

 if (data)

 set_lss_event(LSS_WAIT_EN_CCCD);

 else

 set_lss_event(LSS_WAIT_DIS_CCCD);

 } break;

 case BLE_LSS_EVENT_BLINK_RATE_WRITE_COMP:

 {

 set_lss_event(LSS_WAIT_WR_BLINK);

 } break;

 default:

 {

 /* Do nothing. */

 } break;

/* End user code. Do not edit comment generated here */

 }

}

Code 29. Profile Server callback function

Change CCCD event.

Change LED blink rate

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 56 of 168

Oct.26.2022

3.2.14 L2CAP event

Same as section 3.1.12.

3.2.15 Event notification

Event notification use case for FreeRTOS is following.

static void sw_cb(void)
{
 set_lss_event(LSS_WAIT_PUSH_SW);
}

void Callback_Sw_1(external_irq_callback_args_t *p_args)
{
 FSP_PARAMETER_NOT_USED(p_args);
 R_BLE_SetEvent(sw_cb);
}

Code 30. Event notification

3.2.16 CLI (Command Line Interface)

Same as section 3.1.14.

Interrupt callback function for push switch

Register sw_cb function as callback function

Send notification

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 57 of 168

Oct.26.2022

3.3 FreeRTOS environment (Server, Semaphore case)

In case of selected Semaphore as Synchronization Type property of BLE Driver FSP module, BLE
application is divided it into three or more tasks, BLE Core Task, Execute task and GATT application tasks.
BLE Core Task performs initialization and BLE related processing except GATT related event processing.
Execute task periodically calls R_BLE_Execute API. The execute task should be highest priority. In this
demo project, BLE Core Task and Execute task implemented in app_main.c. GATT application task (LED
switch service) implemented in lss_task.c. This section describes BLE related task creation, task switching
between BLE related task and implementation each task in following sections.

Figure 24. Software structure (FreeRTOS, Semaphore as Synchronization Type case)

Note1: When using QE for BLE, source code of the app_main function is automatically generated.

Note2: QE for BLE does not generate source code of the lss_task. User needs to define and the functionality
for the lss_task.c. The user may this document and sample code for reference.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 58 of 168

Oct.26.2022

3.3.1 Create / delete task

 Include ble_core_task.h

Add the description of including “ble_core_task.h” as following to app_main.c.

Code 31. app_main.c

 BLE Core task

Initialization and main loop of BLE core task included in app_main(). Call the app_main() in
ble_core_task_entry.c as following.

void ble_core_task_entry(void *pvParameters)
{
 FSP_PARAMETER_NOT_USED (pvParameters);

 /* TODO: add your own code here */
 app_main();

 while (1)
 {
 vTaskDelay (1000 / portTICK_PERIOD_MS);
 }
}

Code 32. app_main entry point

 Execute task

Execute task will be created in app_main() as following. QE for BLE generated skeleton code includes the
task creation and implementation.

void app_main(void)
{
………
 /* Get Current Task handle */
 gs_ble_core_task_ptr = xTaskGetCurrentTaskHandle();

 /* Create Execute Task */
 xTaskCreate(ble_execute_task_func, "execute_task", EXECUTE_STACK_SIZE, NULL, configMAX_PRIORITIES-1,

&gs_ble_execute_task);
………
 While(1)

{
 if(0 != R_BLE_IsTaskFree())
 vTaskSuspend(NULL);
 else
 xSemaphoreGive(gs_ble_exe_smpr);
 }
………
}
………
static void ble_execute_task_func(void *pvParameters)
{
 while(1)
 {
 xSemaphoreTake(gs_ble_exe_smpr, portMAX_DELAY);
 while(0 == R_BLE_IsTaskFree())
 R_BLE_Execute();

 vTaskResume(gs_ble_core_task_ptr);
 }
}

Code 33. Execute task creation and implementation

User file includes
#include "ble_core_task.h"
/* End user code. Do not edit comment generated here */#

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 59 of 168

Oct.26.2022

 GATT application task

Same as section 3.2.1.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 60 of 168

Oct.26.2022

3.3.2 Task switching between BLE core task and GATT application task

Same as section 3.2.2.

3.3.3 Main loop of BLE core task

The app_main() includes initialization and main loop of BLE Core task. The program flow of this demo project
is following.

Code 34. app_main function

void app_main(void)
{
………
 gs_ble_exe_smpr = xSemaphoreCreateBinary();
 assert(gs_ble_exe_smpr);
 g_ble_event_group_handle = (void *)gs_ble_exe_smpr;
………

/* Initialize BLE and profiles */
 ble_init();
………
 /* Get Current Task handle */
 gs_ble_core_task_ptr = xTaskGetCurrentTaskHandle();

 /* Create Execute Task */
 xTaskCreate(ble_execute_task_func, "execute_task", EXECUTE_STACK_SIZE, NULL, configMAX_PRIORITIES-1,

&gs_ble_execute_task);
………
/* Hint: Input process that should be done before main loop such as calling initial function or variable
definitions */
/* Start user code for process before main loop. Do not edit comment generated here */
…………
 R_BLE_CMD_SetResetCb((ble_event_cb_t)ble_init);
/* End user code. Do not edit comment generated here */

 /* main loop */
 while (1)
 {
………
 if(0 != R_BLE_IsTaskFree())
 {
 vTaskSuspend(NULL);
 }
 else
 {
 xSemaphoreGive(gs_ble_exe_smpr);
 }
………
 }

………
 /* Terminate BLE */
 RM_BLE_ABS_Close(&g_ble_abs0_ctrl);
}

Create semaphore for transition task status.

Create execute task.

Main loop (Give semaphore when scheduler queue does not empty)

BLE module initialization.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 61 of 168

Oct.26.2022

3.3.4 Main loop of BLE execute task

Execute tasks by calling R_BLE_Execute API until running out all of them in queue once semaphore has
been given.

Code 35. ble_execute_task_func function

3.3.5 Main loop of GATT application task

Same as section 3.2.4.

3.3.6 Initialization process

Same as section 3.1.3.

3.3.7 Register callback function

Same as section 3.1.4.

3.3.8 Registering GATT database (R_BLE_GATTS_SetDbInst)

Same as section 3.1.5.

static void ble_execute_task_func(void *pvParameters)
{
 while(1)
 {
 xSemaphoreTake(gs_ble_exe_smpr, portMAX_DELAY);
 while(0 == R_BLE_IsTaskFree())
 R_BLE_Execute();

 vTaskResume(gs_ble_core_task_ptr);
 }
}

Waiting for the semaphore forever until
success to get it.

Resume BLE Core Task after completing to
execute all BLE tasks.

Call R_BLE_Execute API once semaphore has been given.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 62 of 168

Oct.26.2022

3.3.9 Main loop and scheduler (R_BLE_Execute)

The operation of the BLE Core task, execute task and GATT application task are shown in Figure 25.

Figure 25. Basic sequence chart of BLE Protocol Stack

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 63 of 168

Oct.26.2022

3.3.10 GAP event (gap_cb function)

Same as section 3.1.7.

3.3.11 GATTS event (gatts_cb function)

Same as section 3.2.10.

3.3.12 GATTC event (gattc_cb function)

Same as section 3.2.11.

3.3.13 VS event (vs_cb function)

Same as section 3.1.10.

3.3.14 Server-side Profile API event ([service_name]s_cb function)

Same as section 3.2.13.

3.3.15 L2CAP event

Same as section 3.1.12.

3.3.16 Event notification

Same as section 3.2.15.

3.3.17 CLI (Command Line Interface)

Same as section 3.1.14.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 64 of 168

Oct.26.2022

3.4 Azure RTOS environment (Server)

BLE application is divided it into three or more tasks, BLE Core Task, Execute task and GATT application
tasks. BLE Core Task performs initialization and BLE related processing except GATT related event
processing. Execute task periodically calls R_BLE_Execute API. The execute task should be highest priority.
In this demo project, BLE Core Task and Execute task implemented in app_main.c. GATT application task
(LED switch service) implemented in lss_task.c. This section describes BLE related task creation, task
switching between BLE related task and implementation each task in following sections.

Figure 26. Software structure (Azure RTOS)

Note1: When using QE for BLE, source code of the app_main function is automatically generated.

Note2: QE for BLE does not generate source code of the lss_task. User needs to define and the functionality
for the lss_task.c. The user may this document and sample code for reference.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 65 of 168

Oct.26.2022

3.4.1 Create / delete task

 Include ble_core_task.h

Add the description of including “ble_core_task.h” as following to app_main.c.

Code 36. app_main.c

 BLE Core task

Initialization and main loop of BLE core task included in app_main(). Call the app_main() in
ble_core_task_entry.c as following.

void ble_core_task_entry(void)
{
 /* TODO: add your own code here */
 app_main();
 while (1)
 {
 tx_thread_sleep (1);
 }
}

Code 37. app_main entry point

 Execute task

Execute task will be created in app_main() as following. QE for BLE generated skeleton code includes the
task creation and implementation.

void app_main(void)
{
………
 /* Create Semaphore */
 tx_semaphore_create(&gs_ble_exe_smpr, "BLE_CORE_TASK_SEMAPHOR", TX_NO_INHERIT);

 /* Get Own thread handle */
 gs_ble_core_task_ptr = tx_thread_identify();

 /* Create BLE Execute Task */
 tx_thread_create(&gs_ble_execute_task, (CHAR*) "BLE_EXECUTE_TASK", ble_execute_task_func, (ULONG) NULL,
 &gs_ble_execute_task_stack, EXECUTE_STACK_SIZE, 1, 1, TX_NO_TIME_SLICE,

TX_AUTO_START);
………
 While(1)

{
 if(0 != R_BLE_IsTaskFree())
 tx_thread_suspend(gs_ble_core_task_ptr);
 else
 tx_semaphore_put(&gs_ble_exe_smpr);
 }
}
………
static void ble_execute_task_func(void *pvParameters)
{
 while(1)
 {
 tx_semaphore_get(&gs_ble_exe_smpr, TX_WAIT_FOREVER);
 while(0 == R_BLE_IsTaskFree())
 R_BLE_Execute();

 tx_thread_resume(gs_ble_core_task_ptr);
 }
}

Code 38. Execute task creation and implementation

User file includes

/* Start user code for file includes. Do not edit comment generated here */
#include "ble_core_task.h"
/* End user code. Do not edit comment generated here */

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 66 of 168

Oct.26.2022

 GATT application task

GATT server event processing of GATT application task included in lss_task_entry(). The task is created
when remote device connects to the RA4W1. And the task is deleted when the remote device disconnects
from the RA4W1. This task creation/deletion is performed by GATT server callback function (gatts_cb) in
app_main.c.

void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GATT Server callback function common process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

 R_BLE_SERVS_GattsCb(type, result, p_data);
 switch(type)
 {
/* Hint: Add cases of GATT Server event macros defined as BLE_GATTS_XXX */
/* Start user code for GATT Server callback function event process. Do not edit comment generated here */
 case BLE_GATTS_EVENT_CONN_IND:
 {
 /* Enable Notification SW */
 g_external_irq_sw1.p_api->enable(g_external_irq_sw1.p_ctrl);

 /* Create LED Switch Service Task */
 tx_thread_create(&ble_lss_task, (CHAR*) "BLE_LSS_TASK", lss_task_entry, g_conn_hdl,
 &ble_lss_task_stack, 512, 4, 4, 4, TX_AUTO_START);
 } break;

 case BLE_GATTS_EVENT_DISCONN_IND:
 {
 delete_lss_task_rsrc();

 /* Disable Notification SW */
 g_external_irq_sw1.p_api->disable(g_external_irq_sw1.p_ctrl);

 /* LED turn OFF */
 g_ioport.p_api->pinWrite(g_ioport.p_ctrl, BSP_IO_PORT_01_PIN_06, BSP_IO_LEVEL_HIGH);

 } break;
/* End user code. Do not edit comment generated here */
 }
}

Code 39. LED switch service task creation

Create GATT application task.

Delete GATT application task.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 67 of 168

Oct.26.2022

3.4.2 Task switching between BLE core task and GATT application task

If event notified by scheduler, part of the BLE protocol stack, is an event for GATT application task, BLE core
task activates GATT application task and provides a notification of the event by using event flags setting and
cleaning technique. In this demo project, event flag bit defined in task_functon.h as following.

Table 16. Defined event group bit

Macro name (Value) Usage

LSS_WAIT_EN_CCCD (0x0001) Enable CCCD in LED Switch Service

LSS_WAIT_DIS_CCCD (0x0002) Disable CCCD in LED Switch Service

LSS_WAIT_PUSH_SW (0x0004) Notify push switch

LSS_WAIT_WR_BLINK (0x0008) Change LED blink rate

Function which sets event flag bit need to be implemented by the user. The function in this demo project is
as following.

void set_lss_event(unsigned long uxBitsToSet)
{
 R_BLE_LSS_GetSwitchStateCliCnfg(gs_conn_hdl, &cccd);

 switch(uxBitsToSet)
 {
 case LSS_WAIT_EN_CCCD:
 tx_event_flags_set(&xLssEvent, uxBitsToSet, TX_OR);
 break;
 case LSS_WAIT_DIS_CCCD:
 uxBitsToSet = LSS_WAIT_DIS_CCCD;
 tx_event_flags_set(&xLssEvent, uxBitsToSet, TX_OR);
 break;
 case LSS_WAIT_PUSH_SW:
 if(BLE_GATTS_CLI_CNFG_NOTIFICATION == cccd)
 {
 tx_event_flags_set(&xLssEvent, uxBitsToSet, TX_OR);
 }
 break;
 case LSS_WAIT_WR_BLINK:
 tx_event_flags_set(&xLssEvent, uxBitsToSet, TX_OR);
 break;

 default:
 break;
 }
}

Code 40. Set event flags

.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 68 of 168

Oct.26.2022

3.4.3 Main loop of BLE core task

The app_main() includes initialization and main loop of BLE Core task. The program flow of this demo project
is following.

Code 41. app_main function

void app_main(void)
{
…………
 /* Initialize BLE and profiles */
 ble_init();

/* When this BLE application works on the Azure RTOS */
#if (BSP_CFG_RTOS == 1)

 /* Create Semaphore */
 tx_semaphore_create(&ble_exe_smpr, "BLE_CORE_TASK_SEMAPHOR", TX_NO_INHERIT);

 /* Get Own thread handle */
 ble_core_task_ptr = tx_thread_identify();

 /* Create BLE Execute Task */
 tx_thread_create(&ble_execute_task, (CHAR*) "BLE_EXECUTE_TASK", ble_execute_task_func, (ULONG) NULL,
 &ble_execute_task_stack, EXECUTE_STACK_SIZE, 1, 1, TX_NO_TIME_SLICE, TX_AUTO_START);
#endif

/* Hint: Input process that should be done before main loop such as calling initial function or variable
definitions */
/* Start user code for process before main loop. Do not edit comment generated here */
…………
 R_BLE_CMD_SetResetCb((ble_event_cb_t)ble_init);

 /* Open external interrupt */
 g_external_irq_sw1.p_api->open(g_external_irq_sw1.p_ctrl, g_external_irq_sw1.p_cfg);
/* End user code. Do not edit comment generated here */

 /* main loop */
 while (1)
 {
…………
#if (BSP_CFG_RTOS == 1)
 if(0 != R_BLE_IsTaskFree())
 {
 tx_thread_suspend(ble_core_task_ptr);
 }
 else
 {
 tx_semaphore_put(&ble_exe_smpr);
 }
…………
#endif

/* Hint: Input process that should be done during main loop such as calling processing functions */
/* Start user code for process during main loop. Do not edit comment generated here */

 /* Process Command Line */
 R_BLE_CLI_Process();

/* End user code. Do not edit comment generated here */
 }

/* Hint: Input process that should be done after main loop such as calling closing functions */
/* Start user code for process after main loop. Do not edit comment generated here */
 g_external_irq_sw1.p_api->close(g_external_irq_sw1.p_ctrl);
/* End user code. Do not edit comment generated here */

 /* Terminate BLE */
 RM_BLE_ABS_Close(&g_ble_abs0_ctrl);
}

Create BLE Execute Task

When there are no BLE Task, suspend BLE Core
Task

When there are BLE Tasks, put semaphore for BLE
Execute Task

Create semaphore for BLE Execute Task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 69 of 168

Oct.26.2022

3.4.4 Main loop of BLE execute task

Execute tasks by calling R_BLE_Execute API until running out all of them in queue once semaphore has
been given.

Code 42. ble_execute_task_func function

static void ble_execute_task_func(unsigned long Parameters)
{
 FSP_PARAMETER_NOT_USED(Parameters);
 while(1)
 {
 tx_semaphore_get(&ble_exe_smpr, TX_WAIT_FOREVER);
 while(0 == R_BLE_IsTaskFree())
 R_BLE_Execute();

 tx_thread_resume(ble_core_task_ptr);
 }
}

Waiting for the semaphore forever until
success to get it.

Resume BLE Core Task after completing to
execute all BLE tasks.

Call R_BLE_Execute API once semaphore has been given.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 70 of 168

Oct.26.2022

3.4.5 Main loop of GATT application task

The lss_task_entry() includes main loop of GATT application task. The program flow of this demo project is
following.

Code 43. lss_task_entry function

3.4.6 Initialization process

Same as section 3.1.3.

3.4.7 Register callback function

Same as section 3.1.4.

3.4.8 Registering GATT database (R_BLE_GATTS_SetDbInst)

Same as section 3.1.5.

3.4.9 Main loop and scheduler (R_BLE_Execute)

Same as section 3.3.9.

3.4.10 GAP event (gap_cb function)

Same as section 3.1.7.

void lss_task_entry(unsigned long Parameters)
{
 uint8_t push_state;
 unsigned long event;

 gs_conn_hdl = (uint16_t)Parameters;
 tx_event_flags_create(&xLssEvent, "LSS_EVENT_FLAG");

 /* Create Timer for LED blink */
 tx_timer_create(&xBlinkTimerHdl, "Blink", blink_timer_cb, NULL, 0x00000001, 0x00000001, TX_NO_ACTIVATE);

 R_BLE_LSS_GetSwitchStateCliCnfg(gs_conn_hdl, &cccd);
 if(BLE_GATTS_CLI_CNFG_INDICATION != cccd)
 {
 cccd = BLE_GATTS_CLI_CNFG_DEFAULT;
 }

 wait_event = LSS_WAIT_EN_CCCD | LSS_WAIT_DIS_CCCD | LSS_WAIT_WR_BLINK | LSS_WAIT_PUSH_SW;

 while (1)
 {
 tx_event_flags_get(&xLssEvent, wait_event, TX_OR_CLEAR, &event, TX_WAIT_FOREVER);

 if(LSS_WAIT_EN_CCCD & event)
 {
……………

 }
 else if(LSS_WAIT_DIS_CCCD & event)
 {
……………
 }
 else if((LSS_WAIT_PUSH_SW & event) && (BLE_GATTS_CLI_CNFG_NOTIFICATION == cccd))
 {
……………
 }
 else if(LSS_WAIT_WR_BLINK & event)
 {
……………
 }
 }
}

Store connection handle

Create event flags for transition task
status.

Wait for event from BLE core task

status.

Wait for enable CCCD event from BLE core task

status.

Wait for disable CCCD event from BLE core task

status.

Wait for push switch event from BLE core task

status.

 Wait for LED blink rate change event from BLE
core task

status.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 71 of 168

Oct.26.2022

3.4.11 GATTS event (gatts_cb function)

Almost the same as section 3.1.8. The difference from BareMetal environment is that,

 GATT application task is created when connection is established with the client.

 GATT application task is deleted when client disconnects.

Implementation of this demo project is following.

Code 44. GATTS callback function

3.4.12 GATTC event (gattc_cb function)

Same as section 3.2.11.

3.4.13 VS event (vs_cb function)

Same as section 3.1.10.

3.4.14 Server-side Profile API event ([service_name]s_cb function)

Same as section 3.2.13.

3.4.15 L2CAP event

Same as section 3.1.12.

void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GATT Server callback function common process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

 R_BLE_SERVS_GattsCb(type, result, p_data);
 switch(type)
 {
/* Hint: Add cases of GATT Server event macros defined as BLE_GATTS_XXX */
/* Start user code for GATT Server callback function event process. Do not edit comment generated here */
 case BLE_GATTS_EVENT_CONN_IND:
 {
 /* Enable Notification SW */
 g_external_irq_sw1.p_api->enable(g_external_irq_sw1.p_ctrl);

 /* Create LED Switch Service Task */
 tx_thread_create(&ble_lss_task, (CHAR*) "BLE_LSS_TASK", lss_task_entry, g_conn_hdl,
 &ble_lss_task_stack, 512, 4, 4, 4, TX_AUTO_START);
 } break;

 case BLE_GATTS_EVENT_DISCONN_IND:
 {
 delete_lss_task_rsrc();

 /* Disable Notification SW */
 g_external_irq_sw1.p_api->disable(g_external_irq_sw1.p_ctrl);

 /* LED turn OFF */
 g_ioport.p_api->pinWrite(g_ioport.p_ctrl, BSP_IO_PORT_01_PIN_06, BSP_IO_LEVEL_HIGH);

 } break;
/* End user code. Do not edit comment generated here */
 }
}

Create GATT application task

Delete GATT application task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 72 of 168

Oct.26.2022

3.4.16 Event notification

Same as section3.2.15..

3.4.17 CLI (Command Line Interface)

Same as section 3.1.14.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 73 of 168

Oct.26.2022

3.5 BareMetal environment (Client)

3.5.1 Entry point

Same as section 3.1.1.

3.5.2 Main loop

The app_main() includes initialization and main loop. Main loop of this demo project is following.

Code 45. app_main function

void app_main(void)
{
…………
 /* Initialize Low Power Module */
 g_lpm0.p_api->open(g_lpm0.p_ctrl, g_lpm0.p_cfg);

 /* Initialize BLE and profiles */
 ble_init();
…………
 R_BLE_CMD_SetResetCb((ble_event_cb_t)ble_init);

 g_ble_sw_irq.p_api->open(g_ble_sw_irq.p_ctrl, g_ble_sw_irq.p_cfg);
 g_ble_sw_irq.p_api->enable(g_ble_sw_irq.p_ctrl);
/* End user code. Do not edit comment generated here */

 /* main loop */
 while (1)
 {
 /* Process BLE Event */
 R_BLE_Execute();
…………
 /* Disable IRQ */
 __disable_irq();

 /* UART reception on-going ? */
 if (false != get_uart_reception())
 {
 set_uart_reception(false);
 __enable_irq();
 }
 else
 {
 /* UART transmission on-going ? Allow enter software standby by sys stby command ? */
 if (true != g_inhibit_software_standby && true != get_uart_transmission())
 {
 /* Check whether there are executable BLE task or not */
 if (0 != R_BLE_IsTaskFree())
 {
 /* There are no executable BLE task */
 /* Terminate Command line */
 R_BLE_CLI_Terminate();

 /* Enter low power mode */
 g_lpm0.p_api->lowPowerModeEnter(g_lpm0.p_ctrl);

 /* Enable interrupt for processing interrupt handler after wake up */
 __enable_irq();

 /* Resume Command line */
 R_BLE_CLI_Init();

 }
 else
 {
 /* There is BLE related task */
 __enable_irq();
 }
 }
 else
 __enable_irq();
 }

…………

Enter Software Standby mode

BLE module initialization.

Main loop (Call R_BLE_Execute, Transition to MCU low power
consumption state by lowPowerModeEnter)

MCU low Power driver initialization.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 74 of 168

Oct.26.2022

3.5.3 Initialization process

The ble_init() initializes the BLE module, and register callback function and GATT database. Initialization
process of this demo project is following.

Code 46. ble_init function

ble_status_t ble_init(void)
{
 ble_status_t status;
 fsp_err_t err;

 /* Initialize BLE */
 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);
 if (FSP_SUCCESS != err)
 {
 return err;
 }

 /* Initialize GATT Database */
 status = R_BLE_GATTS_SetDbInst(&g_gatt_db_table);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Initialize GATT server */
 status = R_BLE_SERVS_Init();
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /*Initialize GATT client */
 status = R_BLE_SERVC_Init();
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Set Prepare Write Queue */
 R_BLE_GATTS_SetPrepareQueue(gs_queue, BLE_GATTS_QUEUE_NUM);
 /* Initialize GATT Discovery Library */
 status = R_BLE_DISC_Init();
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Initialize LED Switch Service client API */
 status = R_BLE_LSC_Init(lsc_cb);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 return status;
}

BLE module initialization (RM_ABS_BLE_Open)

GATT database registration (R_BLE_GATTS_SetDbInst)
Note: Code-generated when GATT role is set as whichever
Server and Client by QE for BLE.

GATT Server function initialization (R_BLE_SERVS_Init)
Note: Code-generated when GATT role is set as whichever Server and Client by QE
for BLE.

GATT Client function initialization (R_BLE_SERVC_Init)
Note: Code-generated when GATT role is set as whichever Server and Client by
QE for BLE.

Service initialization

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 75 of 168

Oct.26.2022

3.5.4 Register callback function

Same as section 3.1.4.

3.5.5 Registering GATT database (R_BLE_GATTS_SetDbInst)

Same as section 3.1.5.

3.5.6 Main loop and scheduler (R_BLE_Execute)

Same as section 3.1.6.

3.5.7 GAP event (gap_cb function)

Refer to section 3.1.7. for details of GAP events which callback function receives. GAP callback function in
this demo project is following.

Code 47. GAP callback function

3.5.8 GATTS event (gatts_cb function)

Same as section 3.1.8.

void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GAP callback function common process. Do not edit comment generated here */
 R_BLE_CMD_AbsGapCb(type, result, p_data);
/* End user code. Do not edit comment generated here */

 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
…………
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
…………
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
…………
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
…………
 } break;

 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
…………
 } break;

 case BLE_GAP_EVENT_SCAN_OFF:
 {
…………
 } break;

/* Hint: Add cases of GAP event macros defined as BLE_GAP_XXX */
/* Start user code for GAP callback function event process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
 }
}

Connection parameter request come from server

Disconnection has happened

Complete GAP initialization

Connection complete

In this demo project, many parts of processing when
receiving events are also implemented in
R_BLE_CMD_AbsGapCb().

Notification of receiving advertising reports from server

Stop scanning

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 76 of 168

Oct.26.2022

3.5.9 GATTC event (gattc_cb function)

Refer to section 3.1.9. for details of GATTC events which callback function receives. GATTC callback
function in this demo project is following.

Code 48. GATTC callback function

3.5.10 VS event (vs_cb function)

Same as section 3.1.10.

3.5.11 Client side Profile API event ([service_name]c_cb function)

Callback function of the client side profile API receives following events.

enum e_ble_servc_event_t {
 BLE_SERVC_WRITE_RSP,
 BLE_SERVC_READ_RSP,
 BLE_SERVC_HDL_VAL_NTF,
 BLE_SERVC_HDL_VAL_IND
}

enum e_ble_[service name]c_event_t {
 BLE_[service name]C_EVENT_[characteristic name]_WRITE_RSP = 0xXX00,
 BLE_[service name]C_EVENT_[characteristic name]_READ_RSP= 0xXX01,
 BLE_[service name]C_EVENT_[characteristic name]_HDL_VAL_NTF = 0xXX02,
 BLE_[service name]C_EVENT_[characteristic name]_HDL_VAL_IND = 0xXX03,
 BLE_[service name]C_EVENT_[characteristic name]_[descriptor name]_WRITE_RSP = 0xYY00,
 BLE_[service name]C_EVENT_[characteristic name]_[descriptor name]_READ_RSP = 0xYY01,
 :
 :
}

Code 49. Client-side Profile API event

Note: The 10th to 15th bits are serial numbers that distinguish attributes (characteristics and descriptors). XX
and YY are 00, 04, 08, 10, ..., FC.

void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GATT Client callback function common process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

 R_BLE_SERVC_GattcCb(type, result, p_data);
 switch(type)
 {
 case BLE_GATTC_EVENT_CONN_IND:
 {
 R_BLE_CLI_Printf("Start Service Discovery\n");
 /* Start discovery operation after connection established */
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries), disc_comp_cb);
 } break;

/* Hint: Add cases of GATT Client event macros defined as BLE_GATTC_XXX */
/* Start user code for GATT Client callback function event process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
 }
}

Complete connection with GATT server

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 77 of 168

Oct.26.2022

Reception condition of the frequently occurring events are shown below.

Table 17. Frequently use events of Profile Client callback

Event Reception condition

XXX_WRITE_RSP (0xXXX0) Complete receiving Write Response

XXX_READ_RSP (0xXXX1) Complete receiving Read Response

XXX_HDL_VAL_NTF (0xXXX2) Complete receiving Notification

XXX_HDL_VAL_IND (0xXXX3) Complete receiving Indication

Callback function of client-side profile API is following. (Example of LED switch service)

static void lsc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for LED Switch Service Client callback function common process. Do not edit comment
generated here */
/* End user code. Do not edit comment generated here */

 switch(type)
 {
/* Hint: Add cases of LED Switch Service client events defined in e_ble_lsc_event_t */
/* Start user code for LED Switch Service Client callback function event process. Do not edit comment
generated here */
 case BLE_LSC_EVENT_SWITCH_STATE_HDL_VAL_NTF:
 {
 if (BLE_SUCCESS == result)
 R_BLE_CLI_Printf("lsc : Recieve Notification from Server \n");
 } break;

 case BLE_LSC_EVENT_BLINK_RATE_READ_RSP:
 {
 if (BLE_SUCCESS == result)
 R_BLE_CLI_Printf("lsc : LED blink rate = 0x%X \n", *(uint8_t *)((st_ble_lsc_evt_data_t
*)(p_data)->p_param));
 } break;

 default:
 break;
/* End user code. Do not edit comment generated here */
 }
}

Code 50. Client side profile API callback function

QE for BLE generates skeleton code for Profile client callback function. User can add their own code into the
skeleton code.

3.5.12 L2CAP event

Same as section 3.1.12.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 78 of 168

Oct.26.2022

3.5.13 Exiting from Software Standby mode

In this demo project, IRQ4 assigned SW1 on EK-RA4W1 is designated as Wakeup Source of Low Power
Module. When SW1 on EK-RA4W1 under Software Standby mode is pressed, Software Standby mode is
exited then Callback_ble_sw_irq() function is executed because it is registered as callback function of IRQ4
interrupt.

Code 51. Callback function of IRQ4 interrupt

3.5.14 CLI (Command Line Interface)

This section is almost same as section 3.1.14. LSC command is registered to gsp_cmds structure in GATT
Client demo projects.

Code 52. gsp_cmds structure

static void sw_cb(void)
{
 g_inhibit_software_standby = true;
}
…………
void Callback_ble_sw_irq(external_irq_callback_args_t *p_args)
{
 FSP_PARAMETER_NOT_USED(p_args);
 R_BLE_SetEvent(sw_cb);
}

Interrupt callback function for push switch

Clear flag to manage state of Software Standby mode

static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_lsc_cmd,
 &g_ble_cmd
};

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 79 of 168

Oct.26.2022

3.6 FreeRTOS environment (Client, EventGroup as Synchronization Type case)

3.6.1 Create / delete task

Same as section 3.2.1.

3.6.2 Task switching between BLE core task and GATT application task

If event notified by scheduler, part of the BLE protocol stack, is an event for GATT application task, BLE core
task activates GATT application task and provides a notification of the event by using event group setting
and cleaning technique. In this demo project, event group bit defined in task_functon.h as following.

Table 18. Defined event group bit

Macro name (Value) Usage

LSC_WAIT_EN_CCCD (0x0001) Enable CCCD in LED Switch Service

LSC_WAIT_DIS_CCCD (0x0002) Disable CCCD in LED Switch Service

LSC_WAIT_RECV_NTF (0x0004) Receive notification from server

LSC_WAIT_WR_BLINK (0x0008) Change LED blink rate

LSC_WAIT_RD_BLINK (0x0010) Read LED blink rate

Function which sets event group bit need to implement by the user. The function in this demo project is as
follows.

Code 53. Set event group bit

3.6.3 Main loop of BLE core task

Same as section 3.2.3.

void set_lsc_event(EventBits_t uxBitsToSet)
{
 switch(uxBitsToSet)
 {
 case LSC_WAIT_EN_CCCD:
 {
 xEventGroupClearBits(xLscEvent, LSC_WAIT_DIS_CCCD);
 } break;
 case LSC_WAIT_DIS_CCCD:
 {
 xEventGroupClearBits(xLscEvent, LSC_WAIT_EN_CCCD);
 } break;
 default:
 /* Do Nothing */
 break;
 }

 xEventGroupSetBits(xLscEvent, uxBitsToSet);
}

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 80 of 168

Oct.26.2022

3.6.4 Main loop of GATT application task

The lsc_task_entry() includes main loop of GATT application task. The program flow of this demo project is
following.

Code 54. lsc_task_entry function

3.6.5 Initialization process

Same as section3.5.3.

3.6.6 Register callback function

Same as section 3.1.4

void lsc_task_entry(void * pvParameters)
{
 FSP_PARAMETER_NOT_USED (pvParameters);

 ble_status_t retval;
 EventBits_t event;

 gs_conn_hdl = *(uint16_t *)pvParameters;
 xLscEvent = xEventGroupCreate();
 wait_event = LSC_WAIT_EN_CCCD | LSC_WAIT_DIS_CCCD | LSC_WAIT_RECV_NTF | LSC_WAIT_WR_BLINK | LSC_WAIT_RD_BLINK;
 while (1)
 {
 event = xEventGroupWaitBits(
 xLscEvent,
 wait_event,
 pdTRUE,
 pdFALSE,
 portMAX_DELAY);

 if (LSC_WAIT_EN_CCCD & event)
 {
 retval = R_BLE_LSC_WriteSwitchStateCliCnfg(gs_conn_hdl, (uint16_t *)&g_lsc_ntf_value);
 if (BLE_SUCCESS == retval)
 {
 wait_event = LSC_WAIT_DIS_CCCD | LSC_WAIT_RECV_NTF | LSC_WAIT_WR_BLINK | LSC_WAIT_RD_BLINK;
 r_ble_wake_up_task((void *)g_ble_event_group_handle);
 }
 }
 else if (LSC_WAIT_DIS_CCCD & event)
 {
 retval = R_BLE_LSC_WriteSwitchStateCliCnfg(gs_conn_hdl, (uint16_t *)&g_lsc_ntf_value);
 if (BLE_SUCCESS == retval)
 {
 wait_event = LSC_WAIT_EN_CCCD | LSC_WAIT_RECV_NTF | LSC_WAIT_WR_BLINK | LSC_WAIT_RD_BLINK;
 r_ble_wake_up_task((void *)g_ble_event_group_handle);
 }
 }
 else if (LSC_WAIT_WR_BLINK & event)
 {
 R_BLE_LSC_WriteBlinkRate(gs_conn_hdl, &g_blink_rate);
 }
 else if (LSC_WAIT_RD_BLINK & event)
 {
 retval = R_BLE_LSC_ReadBlinkRate(gs_conn_hdl);
 if (BLE_SUCCESS == retval){
 r_ble_wake_up_task((void *)g_ble_event_group_handle);
 }
 }
 }

 vTaskDelete(NULL);
}

Store connection handle

Wait for event from BLE core task

Create event group for transition task status.

Wait for enable CCCD event from BLE core task

Wait for disable CCCD event from BLE core task

Wait for write LED blink rate event from BLE core task

Wait for read LED blink rate event from BLE core task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 81 of 168

Oct.26.2022

3.6.7 Registering GATT database (R_BLE_GATTS_SetDbInst)

Same as section 3.1.5.

3.6.8 Main loop and scheduler (R_BLE_Execute)

Same as section 3.2.8.

3.6.9 GAP event (gap_cb function)

Same as section 3.5.7.

3.6.10 GATTC event (gattc_cb function)

Almost the same as section 3.5.9. The difference from BareMetal environment is that,

 GATT application task is created when connection is established with the client.

 GATT application task is deleted when client disconnects.

Implementation of this demo project is following.

Code 55. GATTC callback function

void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GATT Client callback function common process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

 R_BLE_SERVC_GattcCb(type, result, p_data);
 switch(type)
 {
 case BLE_GATTC_EVENT_CONN_IND:
 {
 /* Start discovery operation after connection established */
 R_BLE_CLI_Printf("Start Service Discovery\n");

 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries), disc_comp_cb);

 /* Create GATT application task */
 xTaskCreate(lsc_task_entry, "lsc_task", 128, &g_conn_hdl, 4, &g_lsc_task);

 } break;

 case BLE_GATTC_EVENT_DISCONN_IND:
 {

 /* task delete */
 delete_lsc_task_rsrc();

 } break;

 default:
 /* Do nothing */
 break;

/* Hint: Add cases of GATT Client event macros defined as BLE_GATTC_XXX */
/* Start user code for GATT Client callback function event process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
 }
}

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 82 of 168

Oct.26.2022

3.6.11 VS event (vs_cb function)

Same as section 3.1.10.

3.6.12 Client side Profile API event ([service_name]c_cb function)

Almost the same as section 3.5.11. The difference from BareMetal environment is that event group bits are
adjusted according to the data received from client-side profile API event. As a result, the GATT Application
task is activated per the function definition provided in Section 3.6.2.

static void lsc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)

{

/* Hint: Input common process of callback function such as variable definitions */

/* Start user code for LED Switch Service(Custom Service) Client callback function common process. */

/*Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

 switch(type)

 {

/* Hint: Add cases of LED Switch Service(Custom Service) client events defined in e_ble_lsc_event_t */

/* Start user code for LED Switch Service(Custom Service) Client callback function event process. Do not edit

comment generated here */

 case BLE_LSC_EVENT_SWITCH_STATE_HDL_VAL_NTF:

 {

 Note: Add processing when an event is received here.

 } break;

 case BLE_LSC_EVENT_BLINK_RATE_READ_RSP:

 {

 Note: Add processing when an event is received here.

 } break;

 default:

 break;

/* End user code. Do not edit comment generated here */

 }

}

Code 56. Profile Client callback function

3.6.13 L2CAP event

Same as section 3.1.12.

3.6.14 CLI (Command Line Interface)

Same as section 3.5.14.

Receive notification from server-side

Change LED blink rate

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 83 of 168

Oct.26.2022

3.7 FreeRTOS environment (Client, Semaphore as Synchronization Type case)

3.7.1 Create / delete task

Same as section 3.3.1.

3.7.2 Task switching between BLE core task and GATT application task

Same as section 3.6.2.

3.7.3 Main loop of BLE core task

Same as section 3.3.3.

3.7.4 Main loop of BLE execute task

Same as section 0.

3.7.5 Main loop of GATT application task

Same as section 3.6.4.

3.7.6 Initialization process

Same as section3.5.3.

3.7.7 Register callback function

Same as section 3.1.4.

3.7.8 Registering GATT database (R_BLE_GATTS_SetDbInst)

Same as section 3.1.5.

3.7.9 Main loop and scheduler (R_BLE_Execute)

Same as section 3.3.9..

3.7.10 GAP event (gap_cb function)

Same as section 3.5.7.

3.7.11 GATTC event (gattc_cb function)

Same as section 3.6.12.

3.7.12 VS event (vs_cb function)

Same as section 3.1.10.

3.7.13 Client side Profile API event ([service_name]c_cb function)

Same as section 3.6.12.

3.7.14 L2CAP event

Same as section 3.1.12.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 84 of 168

Oct.26.2022

3.7.15 CLI (Command Line Interface)

Same as section 3.5.14.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 85 of 168

Oct.26.2022

3.8 Azure RTOS environment (Client)

3.8.1 Create / delete task

Same as section 3.4.1.

3.8.2 Task switching between BLE core task and GATT application task

Same as section 3.4.2.

3.8.3 Main loop of BLE core task

Same as section 3.4.3.

3.8.4 Main loop of BLE execute task

Same as section 3.4.4.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 86 of 168

Oct.26.2022

3.8.5 Main loop of GATT application task

The lsc_task_entry() includes main loop of GATT application task. The program flow of this demo project is
following.

Code 57. lsc_task_entry function

3.8.6 Initialization process

Same as section 3.5.3.

3.8.7 Register callback function

Same as section 3.1.4

void lsc_task_entry(unsigned long Parameters)
{

 ble_status_t retval;
 unsigned long event;

 gs_conn_hdl = (uint16_t)Parameters;
 tx_event_flags_create(&xLscEvent, "LSC_EVENT_FLAG");
 wait_event = LSC_WAIT_EN_CCCD | LSC_WAIT_DIS_CCCD | LSC_WAIT_RECV_NTF | LSC_WAIT_WR_BLINK | LSC_WAIT_RD_BLINK;

 while (1)
 {
 tx_event_flags_get(&xLscEvent, wait_event, TX_OR_CLEAR, &event, TX_WAIT_FOREVER);

 if (LSC_WAIT_EN_CCCD & event)
 {
 retval = R_BLE_LSC_WriteSwitchStateCliCnfg(gs_conn_hdl, (uint16_t *)&g_lsc_ntf_value);
 if (BLE_SUCCESS == retval)
 {
 wait_event = LSC_WAIT_DIS_CCCD | LSC_WAIT_RECV_NTF | LSC_WAIT_WR_BLINK | LSC_WAIT_RD_BLINK;
 r_ble_wake_up_task((void *)g_ble_event_group_handle);
 }
 }
 else if (LSC_WAIT_DIS_CCCD & event)
 {
 retval = R_BLE_LSC_WriteSwitchStateCliCnfg(gs_conn_hdl, (uint16_t *)&g_lsc_ntf_value);
 if (BLE_SUCCESS == retval)
 {
 wait_event = LSC_WAIT_EN_CCCD | LSC_WAIT_RECV_NTF | LSC_WAIT_WR_BLINK | LSC_WAIT_RD_BLINK;
 r_ble_wake_up_task((void *)g_ble_event_group_handle);
 }
 }
 else if (LSC_WAIT_WR_BLINK & event)
 {
 retval = R_BLE_LSC_WriteBlinkRate(gs_conn_hdl, &g_blink_rate);
 if (BLE_SUCCESS == retval)
 {
 wait_event = LSC_WAIT_EN_CCCD | LSC_WAIT_RECV_NTF | LSC_WAIT_WR_BLINK | LSC_WAIT_RD_BLINK;
 r_ble_wake_up_task((void *)g_ble_event_group_handle);
 }
 }
 else if (LSC_WAIT_RD_BLINK & event)
 {
 retval = R_BLE_LSC_ReadBlinkRate(gs_conn_hdl);
 if (BLE_SUCCESS == retval){
 r_ble_wake_up_task((void *)g_ble_event_group_handle);
 }
 }
 }
}

Store connection
handle

Wait for event from BLE core task

Create event flags for transition task status.

Wait for enable CCCD event from BLE core task

Wait for disable CCCD event from BLE core task

Wait for write LED blink rate event from BLE core task

Wait for read LED blink rate event from BLE core task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 87 of 168

Oct.26.2022

3.8.8 Registering GATT database (R_BLE_GATTS_SetDbInst)

Same as section 3.1.5.

3.8.9 Main loop and scheduler (R_BLE_Execute)

Same as section 3.3.9.

3.8.10 GAP event (gap_cb function)

Same as section 3.5.7.

3.8.11 GATTC event (gattc_cb function)

Almost the same as section 3.5.9. The difference from BareMetal environment is that,

 GATT application task is created when connection is established with the client.

 GATT application task is deleted when client disconnects.

Implementation of this demo project is following.

Code 58. GATTC callback function

void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
/* Hint: Input common process of callback function such as variable definitions */
/* Start user code for GATT Client callback function common process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

 R_BLE_SERVC_GattcCb(type, result, p_data);
 switch(type)
 {
 case BLE_GATTC_EVENT_CONN_IND:
 {
 R_BLE_CLI_Printf("Start Service Discovery\n");
 /* Start discovery operation after connection established */
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries), disc_comp_cb);

 /* Create LED Switch Service Task */
 tx_thread_create(&ble_lsc_task, (CHAR*) "BLE_LSC_TASK", lsc_task_entry, g_conn_hdl,
 &ble_lsc_task_stack, 512, 4, 4, 4, TX_AUTO_START);
 } break;

/* Hint: Add cases of GATT Client event macros defined as BLE_GATTC_XXX */
/* Start user code for GATT Client callback function event process. Do not edit comment generated here */
 case BLE_GATTC_EVENT_DISCONN_IND:
 {
 /* task delete */
 delete_lsc_task_rsrc();

 } break;
/* End user code. Do not edit comment generated here */
 }

/* Start user code for GATT Client callback function closing process. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
}

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 88 of 168

Oct.26.2022

3.8.12 VS event (vs_cb function)

Same as section 3.1.10.

3.8.13 Client side Profile API event ([service_name]c_cb function)

Same as section 3.6.12.

3.8.14 L2CAP event

Same as section 3.1.12.

3.8.15 CLI (Command Line Interface)

Same as section 3.5.14.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 89 of 168

Oct.26.2022

4. Appendix

4.1 How to make and configure new project

This section describes required configuration to create a project for BLE application.

4.1.1 Create a new project

1. Launch e2 studio and select File→New→C/C++ Project. In New C/C++ Project dialog, select Renesas
RA and Renesas RA C Executable Project and click on the Next button.

Figure 27. Templates for New C/C++ Project

2. Enter project name and click on Next button. The project named SampleAppl in this document.

Figure 28. New Renesas Executable Project

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 90 of 168

Oct.26.2022

3. Select the Custom User Board (Any Device) from Board, R7FA4W1AD2CNG from Device.

Figure 29.Project Configuration (Board and Device)

4. When making BLE application on BareMetal environment, choose No RTOS. When making the

application on FreeRTOS environment, choose FreeRTOS. When making the application on Azure
RTOS environment, choose Azure RTOS ThreadX.

Figure 30. Project Configuration

5. Click Next button.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 91 of 168

Oct.26.2022

6. When making BLE application on BareMetal environment, choose BareMetal -Minimal. When making
the application with FreeRTOS environment, choose FreeRTOS -Minimal- Static Allocation. When
making the application with Azure RTOS environment, choose Azure RTOS ThreadX – Minimal.

Figure 31. Project Configuration (Select Template)

7. Click Finish button. After a while, project will be created

Figure 32. Project Overview

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 92 of 168

Oct.26.2022

4.1.2 Heap and Stack configuration

Set heap and stack configuration as following on FSP configuration BSP tab.

 [RA Common]→[Main stack size (bytes)] : 0x1000

 [RA Common]→[Heap size (bytes)] : 0x1000

Figure 33. BSP configuration

If the Properties tab is not visible, choose Window→Show View→Properties on e2 studio menu bar.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 93 of 168

Oct.26.2022

4.1.3 Clocks configuration

Set clock frequencies as following on FSP configuration Clocks tab.

Figure 34. Clocks configuration

The minimum clock frequency for BLE module is following.

 System clock (ICLK) : 8MHz

 Peripheral module clock A (PCLKA) : 8MHz

However, the BLE module is optimized to operate with ICLK = 32MHz and PCLKA=32MHz.Therefore,
Renesas recommends configuring frequency of ICLK and PCLKA to 32MHz for maximizing BLE
performance.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 94 of 168

Oct.26.2022

4.1.4 Add and configure BLE module

This section describes how to add / configure BLE module into BLE application. Click configuration.xml in
the project and add / configure BLE module on FSP configuration Stacks tab. Procedure about adding BLE
module is different for BareMetal, FreeRTOS and Azure RTOS environment. Section 4.1.4.1 describes the
procedure for BareMetal environment. Section 4.1.4.2 describes the procedure for FreeRTOS environment.
Section 4.1.4.3 describes the procedure for Azure RTOS. And BLE module configuration is common to
BareMetal, FreeRTOS and Azure RTOS environment. The configuration is described in detail in section
4.1.4.4 and 4.1.4.5.

4.1.4.1 Add BLE module in BareMetal environment

1. Click New Stack and add Middleware→BLE Abstraction Driver on rm_ble_abs to HAL/Common.

Figure 35. Add BLE module

2. Click Add BLE Library for Network box and select New→Network Driver on r_ble_XXX.

“Extended”, “Balance”, and “Compact” can be selected for XXX according to the supported BLE
features. Refer to section 1.3 about supported BLE features of each library type.

Figure 36. Select module type

The BLE FSP module has properties which may change according to user scenario. Refer to section 4.1.4.4
about description of the properties. And The driver includes some peripheral driver. Configuration for these
peripherals describes in section 4.1.4.5.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 95 of 168

Oct.26.2022

4.1.4.2 Add BLE module in FreeRTOS environment

1. Click New Thread on Thread area and add New Thread. In this example, the New Thread is named
BLE Core Task. Note that the symbol of the New Thread should be “ble_core_task” in case of using QE
for BLE, because QE for BLE expects so.

Figure 37. Add BLE Core Task

2. Change Stack size as 2048[bytes]. The BLE stack included in this application requires 1.5 [KB] of
memory space to use. And the profile itself included in this application requires 0.4[KB] memory space
to use.

Figure 38. Stack size of BLE Core Task

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 96 of 168

Oct.26.2022

3. BLE_CORE_TASK priority depends on following BLE_Driver FSP module property.

Figure 39. Synchronization Type

In case of choose Event group, priority of BLE Core Task should be highest priority
(configMAX_PRIORITIES-1).

Figure 40. Priority of BLE Core Task (Event Group case)

In case of choose Semaphore, priority of BLE Core Task should NOT be highest priority. In demo
project, priority of the task configured as 2.

Figure 41. Priority of BLE Core Task (Semaphore case)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 97 of 168

Oct.26.2022

4. Change FreeRTOS configurations as following on BLE Core task Properties tab.

Table 19. FreeRTOS configuration

Item Changed Value Default Value

Common > General > Use Mutexes Enabled Disabled

Common > General > Use Recursive Mutexes Enabled Disabled

Common > Memory Allocation > Support Dynamic Allocation Enabled Disabled

Common > Memory Allocation > Total Heap Size 4096 0

Common > Optional Functions >
xTimerPendingFunctoinCall() Function

Enabled Disabled

5. Click New Stack and add Middleware→BLE Abstraction Driver on rm_ble_abs to BLE Core task.

Figure 42. Add BLE module

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 98 of 168

Oct.26.2022

6. Click Add BLE Library for Network box and select New→Network Driver on r_ble_XXX_freertos.

“Extended”, “Balance”, and “Compact” can be selected for XXX according to the supported BLE
features. Number of supported BLE features decreases in the order of “Extended”, “Balance”,
“Compact”. Refer to section 1.3 about supported BLE features of each library type.

Figure 43. Select module type

The driver includes some peripheral driver. Configuration for these peripherals describes in section 4.1.4.5.

6. Add Heap4 module to HAL/Common.

Figure 44. Add Heap4 module

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 99 of 168

Oct.26.2022

4.1.4.3 Add BLE module in Azure RTOS environment

1. Click New Thread on Thread area and add New Thread. In this example, the New Thread is named
BLE Core Task. Note that the symbol of the New Thread should be “ble_core_task” in case of using QE
for BLE, because QE for BLE expects so.

 Figure 45. Add BLE Core Task

2. Change Stack size as 2048[bytes]. The BLE stack included in this application requires 1.5 [KB] of

memory space to use. And the profile itself included in this application requires 0.4[KB] memory space
to use.

Figure 46. Change Stack Size

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 100 of 168

Oct.26.2022

3. Priority of BLE Core Task should NOT be highest priority. In demo project, priority of the task configured
as 3.

Figure 47. Change Priority and Time slicing interval (ticks)

4. Change Azure RTOS configurations as following on BLE Core task Properties tab.

Table 20. AzureRTOS configuration

Item Changed Value Default Value

Common > Timer > Timer Ticks Per Second 1000 100

Common > Timer > Timer Thread Priority 2 0

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 101 of 168

Oct.26.2022

5. Click Add BLE Library for Network box and select New→BLE Driver on r_ble_XXX_threadx.

“Extended”, “Balance”, and “Compact” can be selected for XXX according to the supported BLE
features. Number of supported BLE features decreases in the order of “Extended”, “Balance”,
“Compact”. Refer to section 1.3 about supported BLE features of each library type.

Figure 48. Select module type

The BLE FSP module has properties which may change according to user scenario. Refer to section 4.1.4.4
about description of the properties. And The driver includes some peripheral driver. Configuration for these
peripherals describes in section 4.1.4.5.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 102 of 168

Oct.26.2022

4.1.4.4 BLE module configurations

This section describes BLE module configuration options and related modules. BLE module include following
configuration categories. About each category will describe from following.

 Common

 Module BLE Abstraction Driver on rm_ble_abs

1. Common options

The BLE module can change BD address etc. by modifying common options on FSP configuration. BLE
Abstraction (rm_ble_abs) FSP module and BLE Driver (r_ble_xxxx) module have same properties.
Users need to enter the same values for both modules. The changed options are automatically reflected
to the r_ble_cfg.h when generating code.

Figure 49. Common options

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 103 of 168

Oct.26.2022

Option names and setting values in the configuration are listed following. Items shown in bold may be
modified according to user’s environment.

Table 21. Common options

Configuration options

Debug Public Address

Default: {0xFF,0xFF,0xFF,0x50,0x90,0x74}

Initial Public Address. If the public addresses in Code
Flash and Data Flash are all 0x00 or 0xFF, the demo
project will use this value as public address.

Refer to section 4.2 for details.

Debug Random Address

Default: {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}

Initial Static Address. If the static addresses in the Code
Flash and the Data Flash are all 0x00 or 0xFF, the demo
project will use this value as static address.

Refer to section 4.2 for details.

Maximum number of connections

Default: 7

Maximum number of simultaneous connections.
Range : 1 to 7

Maximum connection data length

Default: 251

Maximum packet data length (bytes).
Range: 27 to 251

Maximum advertising data length

Default: 1650

Maximum advertising data length (bytes).
Range: 31 to 1650

This configuration will be ignored and fix at 31 bytes when
“balance” or “compact” is selected for BLE library.

Maximum advertising set number

Default: 4

Maximum number of the advertising set.
Range: 1 to 4

This configuration will be ignored and fix at 1 when
“balance” or “compact” is selected for BLE library.

Maximum periodic sync set number

Default: 2

Maximum number of simultaneous synchronizations
against periodic advertising.

Range: 1 to 2

This configuration will be ignored and fix at 1 when
“balance” or “compact” is selected for BLE library.

Store Security Data

Default: Disable

Enable or disable the security data management.

Range: Enable or Disable

Bonding information is stored in Data Flash block when
this property set to Enable. And the bonding information
will be stored to Data Flash block which specified by Data
Flash Block for Security Data option.

Refer to section 4.3.1 for details.

Data Flash Block for Security Data

Default: 0

Specify Data Flash block which stores the bonding
information.

Range: 0 to 7

Choose a different block from Device Specific Data
Refer to section 4.3.1 for details.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 104 of 168

Oct.26.2022

Configuration options

Remote Device Bonding Number

Default: 7

Maximum number of the bonding information stored in the
Data Flash.
Range : 1 to 7

This value should be set same as Maximum number of
connections.

Refer to section 4.3.1 for details.

Connection Event Start Notify

Default: Disable notify

Enable or disable start connection event start interrupt
notification.

Range: Disable notify or Enable notify

This notification event occurs after actual RF event
because this notification event is triggered by the interrupt
from BLE(H/W).

Connection Event Close Notify

Default: Disable notify

Enable or disable close connection event interrupt
notification.

Range: Disable notify or Enable notify

This notification event occurs after actual RF event
because this notification event is triggered by the interrupt
from BLE(H/W).

Advertising Event Start Notify

Default: Disable notify

Enable or disable start advertising event interrupt
notification.

Range: Disable notify or Enable notify

The notification event occurs at the following timings.
- Start Primary Advertising channel.
- Start Secondary Advertising Channel
- Start Periodic Advertising. (When Extended Advertising
is enabled.)

This notification event occurs after actual RF event
because this notification event is triggered by the interrupt
from BLE(H/W).

Advertising Event Close Notify

Default: Disable notify

Enable or disable close advertising event interrupt
notification.

Range: Disable notify or Enable notify

The notification occurs at the following timings.
- Complete Primary Advertising channel.
- Complete Secondary Advertising Channel
- Complete Periodic Advertising. (When the Extended
Advertising is enabled.)

This notification event occurs after actual RF event
because this notification event is triggered by the interrupt
from BLE(H/W).

Scanning Event Start Notify

Default: Disable notify

Enable or disable start scan interrupt notification.

Range: Disable notify or Enable notify

This notification event occurs after actual RF event
because this notification event is triggered by the interrupt
from BLE(H/W).

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 105 of 168

Oct.26.2022

Configuration options

Scanning Event Close Notify

Default: Disable notify

Enable or disable close scan interrupt notification.

Range: Disable notify or Enable notify

This notification event occurs after actual RF event
because this notification event is triggered by the interrupt
from BLE(H/W).

Initiating Event Start Notify

Default: Disable notify

Enable or disable notification that scan start interrupt has
occurred in sending a connection request.

Range: Disable notify or enable notify

This notification will not occur when scan interval and
scan window is equal. This notification event occurs after
actual RF event because this notification event is
triggered by the interrupt from BLE(H/W).

Initiating Event Close Notify

Default: Disable notify

Enable or disable notification that scan complete interrupt
has occurred in sending a connection request.

Range: Disable notify or enable notify

This notification will not occur when scan interval and
scan window is equal. This notification event occurs after
actual RF event because this notification event is
triggered by the interrupt from BLE(H/W).

RF Deep Sleep Start Notify

Default: Disable notify

Enable or disable notification event when BLE(H/W) enter
deep sleep.

Range: Disable notify or enable notify

RF Deep Sleep Wakeup Notify

Default: Disable notify

Enable or disable notification event when BLE(H/W) wake
up from deep sleep.

Range: Disable notify or enable notify

Bluetooth dedicated clock

Default: 6

Load capacitance adjustment value for 32MHz BLE
dedicated crystal. Adjust this value so that the crystal
oscillates at the frequency closest to 32MHz.

Range: 0 to 15

Refer to "Tuning procedure of Bluetooth dedicated clock
frequency(R01AN4887)" for details.

DC-DC Converter

Default: Disable DC-DC Converter

Enable or disable the DC-DC on BLE(H/W).

Range: Disable DC-DC Converter or Enable DC-DC
Converter.

Refer to “RA4W1 Group User’s Manual: Hardware
(R01UH0883)" for details.

Slow Clock Source

Default: Use RF_LOCO

Slow clock source for BLE (H/W)

Range: Use RF_LOCO or Use External 32.768kHz.

Do NOT change.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 106 of 168

Oct.26.2022

Configuration options

MCU CLKOUT Port

Default: P109

Port of the MCU CLKOUT.

Range: P109 or P205

This option will be ignored if the Slow Clock Source option
is Use RF_LOCO.

MCU CLKOUT Frequency Output

Default: MCU CLKOUT Frequency 32.768kHz

Output frequency from the MCU CLKOUT Port.

Range : MCU CLKOUT frequency 32.768kHz or MCU
CLKOUT frequency 16.384kHz

This option will be ignored if the Slow Clock Source option
is Use RF_LOCO.

Sleep Clock Accuracy (SCA)

Default: 250

Clock Accuracy (SCA) of Slow clock source for
BLE(H/W).

Range: 0 to 500 ppm

Value of this option is fixed to more than 250ppm when
Slow Clock Source option is Use RF_LOCO.

Transmission Power Maximum Value

Default: max +4dBm

Maximum transmit power configuration.

Range: max +4dBm or max 0dBm.

Transmission Power Default Value

Default: High

Actual BLE air packet transmit power.

Range: High or Mid or Low

This option depends on the Transmission Power
Maximum Value configuration.

If the transmission Power Maximum Value option set to
0dBm, relationship this option and Actual BLE air packet
transmit power is as follows.
 High : 0dBm
 Mid : 0dBm (same as High)
 Low : -18dBm

If the transmission Power Maximum Value option set to
+4dBm, relationship this option and Actual BLE air packet
transmit power is as follows.
 High : +4dBm
 Mid : 0dBm
 Low : -20dBm

CLKOUT_RF Output

Default: No output

Specify CLKOUT_RF(P414) output frequency.

Range:
 No output
 4MHz output
 2MHz output
 1MHz output

RF_DEEP_SLEEP Transition

Default: Enable

Enable or disable BLE(H/W) Deep Sleep.

Range: Disable or Enable

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 107 of 168

Oct.26.2022

Configuration options

MCU Main Clock Frequency

Default: 8000

MCU main clock frequency (kHz).
This option needs to be configured according to System
Clock Source configuration.

If the HOCO is used as System Clock Source, this option
is ignored.

If the Main Clock is used as System Clock Source, set a
value within the range between 1000 and 20000.

If the PLL Circuit is used as System Clock Source, set a
value within the range between 4000 and 12500.

Set clock frequency according to user’s system clock
source configuration.

Code Flash (ROM) Device Data Block

Default: 255

Specify Code Flash (ROM) block which stored the device
specific data (e.g. BD address, etc.)

Range: -1 to 255

If this option is set to -1, Code Flash will not use for this
purpose. Refer to section 4.2 for details.

Device Specific Data Flash Block

Default: -1

Specify Data Flash (RAM) block which stored the device
specific data (e.g. BD address, etc.)

Range: -1 to 7

If this option is set to -1, Data Flash will not use for this
purpose. Specify a different block from Data Flash Block
for Security Data.

Refer to section 4.2 for details.

MTU size configured

Default: 247

MTU size (bytes) for the GATT communication.

Range: 23 to 247

Timer Slot Maximum Number

Default: 10

N/A

Do NOT change.

Synchronization Type

Default : Event groups

This property is available for FreeRTOS only. The
property is specified task synchronization method in
FreeRTOS environment. Also refer to section 1.2.

Range: Event groups or Semaphore

Parameter Checking

Default: Default (BSP)

Enable or disable the validity check of the parameters for
BLE module.

Range: Default (BSP) or Enabled or Disabled

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 108 of 168

Oct.26.2022

When RF_DEEP_SLEEP Transition option is set to enable, when there is no task to be executed by the
BLE protocol stack, and when there is a time of 80ms or more before the start of the next RF event time,
transition to RF sleep mode to reduce the current consumption of the RF part. This time does not mean the
"interval time" of an RF event, but the "RF idle time" between the completion of one RF event and the start of
the next RF event. Therefore, it is necessary to set the RF event interval to 100ms or more in consideration
of the processing time of each layer in order to shift the RF part to sleep mode. The BLE protocol stack
performs RF sleep processing and RF wake-up processing to transition the RF part to sleep mode. Figure
50 shows MCU/RF operation overview with RF sleep.

Figure 50. MCU/RF operation overview with RF sleep

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

R
F W

akeu
p

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval

RF idle time

RF sleep time

R
F W

akeu
p

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE
RF

SLEEP
RF

SLEEP
RF

SLEEP

MCU
IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

MCU
IDLE

MCU
IDLE

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 109 of 168

Oct.26.2022

While the MCU is idle, it is possible to transition the MCU to the low power consumption mode or execute
application processing. However, if the RF wakeup process by R_BLE_Execute is not performed before the
RF event starts, the RF event cannot be executed. Therefore, application processing must be implemented
so as not to interfere with the R_BLE_Execute call.

When RF_DEEP_SLEEP Transition option is set to disable, or when RF_DEEP_SLEEP Transition option
is set to enable but the RF sleep transition condition is not satisfied (e.g. RF event interval < 100 msec), the
BLE protocol stack does not transition RF part to sleep mode. In this case, the current consumption during
RF idle time increases, but the MCU idle time that can be used by the application increases because RF
sleep processing and RF wakeup processing are not performed. Figure 51 shows MCU/RF operation without
RF sleep.

Figure 51. MCU/RF operation overview without RF sleep

Regardless of the RF sleep state, if the application process continuously occupies the MCU and
R_BLE_Execute is not called, the connection may not be maintained. Therefore, it is recommended that the
application processing is active for a short time or Task performing R_BLE_Execute is given an appropriate
priority to allow periodic execution.

R_BLE_Execute
Event callback

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval

RF idle time

RF
Event

(Tx/Rx)
RF

IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
Event callback

MCU
IDLE

BLEIRQ
(RF event)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 110 of 168

Oct.26.2022

2. BLE Abstraction Driver on rm_ble_abs options

The BLE module can change IO capability on local device etc. by modifying Module BLE Abstraction Driver
on rm_ble_abs options on FSP configuration. The changed options are automatically reflected to the
rm_ble_abs_cfg.h when generating code.

Figure 52. BLE Abstraction Driver on rm_ble_abs options

Option names and setting values in the configuration are listed following. Items shown in bold may be
modified according to user’s environment.

Table 22. Module BLE Abstraction Driver on rm_ble_abs options

Configuration options

Interrupts > Callback provided when an ISR occurs

Default: NULL

Do NOT change.

Name

Default: g_ble_abs0

Do NOT change.

Gap callback

Default: gap_cb

Do NOT change.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 111 of 168

Oct.26.2022

Configuration options

Vendor specific callback

Default: vs_cb

Do NOT change.

Pairing parameters

Default: gs_abs_pairing_param

Do NOT change.

GATT server callback parameter

Default: gs_abs_gatts_cb_param

Do NOT change.

GATT server callback number

Default: 2

Do NOT change.

GATT client callback parameter

Default: gs_abs_gattc_cb_param

Do NOT change.

GATT client callback number

Default: 2

Do NOT change.

IO capabilities of local device

Default: BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

IO capabilities.

Range: Select one of the following.

 BLE_GAP_IOCAP_DISPLAY_ONLY

 Output: local device has ability to
 display 6 digits decimal number.
 Input: None.

 BLE_GAP_IOCAP_DISPLAY_YESNO

 Output: local device has ability to
 display 6 digits decimal number.
 Input: local device has ability to
 indicate ‘yes’ or ‘no’.

 BLE_GAP_IOCAP_KEYBOARD_ONLY

 Output: None.
 Input: local device has ability to
 input the number ‘0’ – ‘9’.

 BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

 Output: None.
 Input: None.

 BLE_GAP_IOCAP_KEYBOARD_DISPLAY

 Output: local device has ability to
 display 6 digits decimal number.
 Input: local device has ability to
 input the number ‘0’ – ‘9’.

MITM protection policy

Default: BLE_GAP_SEC_MITM_BEST_EFFORT

MITM protection policy.

Range: Select one of the following.

 BLE_GAP_SEC_MITM_BEST_EFFORT

 MITM Protection not required.

 BLE_GAP_SEC_MITM_STRICT

 MITM Protection required.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 112 of 168

Oct.26.2022

Configuration options

Determine whether to accept only Secure Connections
or not

Default: BLE_GAP_SC_BEST_EFFORT

Determine whether to accept only Secure Connections or
not.

Range: Select one of the following.

 BLE_GAP_SC_BEST_EFFORT

 Accept Legacy pairing and Secure Connections.

 BLE_GAP_SC_STRICT

 Accept only Secure Connections.

Type of keys to be distributed from local device

Default: BLE_GAP_KEY_DIST_ENCKEY

Type of keys to be distributed from local device. This field
is set to a bitwise OR of the following values.

 BLE_GAP_KEY_DIST_ENCKEY

 Distribute LTK.

 BLE_GAP_KEY_DIST_IDKEY

 Distribute IRK and Identity address.

 BLE_GAP_KEY_DIST_SIGNKEY

 Distribute CSRK.

Type of keys which local device requests a remote
device to distribute

Default: BLE_GAP_KEY_DIST_ENCKEY

Type of keys which local device requests a remote device
to distribute. This field is set to a bitwise OR of the
following values.

 BLE_GAP_KEY_DIST_ENCKEY

 Distribute LTK. In case of Secure Connections,

LTK is notified even if this bit is not set.

 BLE_GAP_KEY_DIST_IDKEY

 Distribute IRK and Identity address.

 BLE_GAP_KEY_DIST_SIGNKEY

 Distribute CSRK.

Maximum LTK size

Default: 16

The maximum LTK size(byte) to be requested to a
remote device.

Range: 7 – 16

When the LTK size of a remote device is less than this
configuration size, the pairing fails.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 113 of 168

Oct.26.2022

4.1.4.5 Add and configure related peripherals for BLE module

BLE module used below following peripherals to perform BLE communication.

Table 23. Related peripherals

Item Usage

Flash Driver on r_flash_lp Store Bonding information etc.

External IRQ driver on r_icu Interrupt from BLE(H/W)

GPT Driver Timer for BLE protocol stack

Timer Driver Timer for BLE abstraction API

This section describes how to configure related peripherals (timers, interrupt) for BLE module which added
previous section. Procedure describes in this section is common to BareMetal, FreeRTOS and Azure RTOS
environment.

1. Click Add GPT Driver box and select New→Timer Driver on r_gpt.

Figure 53. Add GPT Driver

2. Set Overflow/Crest Interrupt Priority of g_timer0 Timer Driver on r_gpt as Priority 2 on Properties

tab.

Figure 54. GPT Driver configuration

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 114 of 168

Oct.26.2022

3. Click Add Timer Driver box and select New→Timer Driver on r_agt.

Figure 55. Add AGT Driver

4. Set Underflow Interrupt Priority of g_timer1 Timer Driver on r_agt as Priority 7 on Properties tab.

Figure 56. AGT Driver configuration

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 115 of 168

Oct.26.2022

5. Set Pin Interrupt Priority of g_external_irq0 External IRQ Driver on r_icu as,

 BareMetal environment

Priority 0 on Priority.

Figure 57. ICU Driver configuration (BareMetal Environment)

 FreeRTOS and Azure RTOS environment

Priority 1 on Priority. Because the highest priority used FreeRTOS and Azure RTOS kernel.

Figure 58. ICU Driver configuration (FreeRTOS and Azure RTOS Environment)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 116 of 168

Oct.26.2022

4.1.5 Low Power Mode

Software standby mode, which is one of MCU’s Low Power mode feature, can be used to reduce power
consumption. It is necessary to add Low Power Mode (r_lpm) module to your project and configure BLEIRQ
as Wake Sources.

Figure 59. Add Low Power Mode

Figure 60. Wake Sources

Refer to section 3.1.2 for how to use the low power mode in your application.

4.1.6 Make profile and BLE application skeleton code

QE for BLE can generate profile and BLE application skeleton code. And user can modify these codes
according to use case. Refer to Bluetooth Low Energy Profile Developer's Guide(R01AN5428) about usage
of QE for BLE.

Add Low Power Mode module.

Enable BLEIRQ as Wake Sources.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 117 of 168

Oct.26.2022

4.2 Device-specific Data Management

Bluetooth Device Address (hereinafter referred to as BD address) used by BLE Protocol Stack can be written
to Data Flash area and Code Flash area as device-specific data. This allows user to set different BD address
for multiple devices using the same firmware. Device-specific data is placed in a different area from the
firmware program area. If the device-specific data is not deleted when rewriting the firmware, the same BD
address can be used continuously.

4.2.1 Specify device-specific data location block

1. Data flash area

The block number of data flash area where device-specific data is located can be specified with Data Flash
(RAM) Device Data Block configuration options. Relationship between block number and address is
following.

Figure 61. Data flash memory block configuration

Device-specific data is written at the top of the block specified by Device Specific Data Flash Block option.
Do not write other data to the block where device-specific data is placed.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 118 of 168

Oct.26.2022

2. Code flash area

The block number of code flash where device-specific data is located can be specified with Code Flash
(ROM) Device Data Block configuration options. Relationship between block number and address is
following.

Figure 62. Code flash memory block configuration

When placing device-specific data in code flash area, it is necessary to specify blocks that are not used in
program code. In addition, device-specific data is written at the top of the block specified by Code Flash
(ROM) Device Data Block configuration.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 119 of 168

Oct.26.2022

4.2.2 Device-specific data format

Table 24 shows the device-specific data format.

Table 24. device-specific data format

Offset Size[bytes] Type Description

0 4 uint32_t Data length after magic number (fixed to 0x00000010)

4 4 uint32_t Magic number (fixed 0x12345678)

8 6 uint8_t [6] Public BD address

14 6 uint8_t [6] Random BD address

Each data must be written in little endian. For example, if BD address is “01:02:03:04:05:06”, write to the
flash memory in the order of 0x06,0x05,0x04,0x03,0x02,0x01. Figure 63 shows an example of device-
specific data flash memory layout.

Figure 63. Device-specific data flash memory layout

4.2.3 How to write device-specific data

User can write device specific data by following way. When device-specific data is written to the data flash
area, the written BD address is adopted after reset of MCU.

1. Write to data flash area using R_BLE API

Use R_BLE_VS_SetBdAddr() API to write device-specific data to data flash area. When device-specific data
is written to the data flash area, BD address written by reboot once RA4W1 is adopt. Refer to “Renesas
Flexible Software Package User’s Manual” for details of the API.

2. Write to data area using BD address writing tool

User can write Public BD address to data area by using Public BD address writing tool for the RA4W1 device
with HCI mode firmware. Refer to “Host Controller Interface Firmware(R01AN5429)” and “Public BD Address
writing tool(R01AN5439)”.

Note: The BD address writing tool does not support Random BD address writing.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 120 of 168

Oct.26.2022

3. Write to code flash area

To write device-specific data to code flash area, use Renesas Flash Programmer V3.1.0 (RFP) unique code

Function. The unique code function is functionality to write the device specific data to user area at the same

time as firmware program data. Refer to Renesas Flash Programmer User’s manual (R01UT5757) about

usage of RFP.

Figure 64. writing device-specific data by using RFP

Code 59 shown an example of setting device-specific data for RFP unique code (*.ruc) file.

format hex

address 0x0007F800

size 20

index data

000001 1000000078563412060504030201D6D5D4D3D2D1

Code 59. Setting device-specific data for RFP unique code

This code writes the following configurations at the top of block 255 in code flash area.

 Public address : 0x01:02:03:04:05:06

 Random address : 0xD1:D2:D3:D4:D5:D6

ROM address of the block specified by Code Flash (ROM) Device Data Block

Configuration.

Index Data

Length

(Fixed)

Magic Number

(Fixed) Public

BD Address

(User can define)

Random BD Address

(User can define)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 121 of 168

Oct.26.2022

4.2.4 BD address adoption flow

BLE Protocol Stack adopts initial value of BD address in following priority order in RM_BLE_ABS_Open()
API.

(1) Data flash specified block

(2) Code flash specified block

(3) Firmware initial value (Debug Public Address or Debug Random Address configuration)

For Random BD address, if BD addresses for all areas are not specified, static address is generated from
Unique ID of MCU. Generated static address can be obtained with the R_BLE_VS_GetBdAddr() API.

Even after BD address is adopted, the BD address can be changed again with R_BLE_VS_SetBdAddr() API.

Note: The generated static address is a fixed value that does not change when the MCU power off or reset.

Note: A static address consists of random numbers. The possibility of duplicate values with other devices is
near zero.

Figure 65 shows BD address adoption flow of BLE Protocol Stack.

Figure 65. BD address adoption flow of BLE Protocol Stack

Since BLE Protocol Stack does not check format of BD address written in each area (1)-(3), when setting
static address, set value that matches the format shown in Figure 66.

Figure 66. Static address format

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 122 of 168

Oct.26.2022

4.3 Security Data Management

The security data management function read / write the following data in the data flash area.

• Local device key to distribute during pairing

• Key and information obtained from the remote device during pairing

The local device key and remote device key storage in the data flash is configurable in the BLE Protocol
Stack using the security data management API. The Abstraction API uses the security data management
API to manage security data for local and remote devices. The security data management function is set
using the configuration options shown in Table 25.

Table 25. Security data management configuration options

Configuration Options Description

Store Security Data

Default: Disable

Enable or disable the security data management.

Range: Enable or Disable

Bonding information is stored in Data Flash block when this

configuration set to Enable. And the bonding information will store

Data Flash block which specified by Data Flash Block for Security

Data option.

Data Flash Block for Security Data

Default: 0

Specify Data Flash block which store the bonding information.

Range: 0 to 7

Choose a different block from Device Specific Data Refer to section

4.3.1 for details.

Remote device bonding number

Default: 7

Maximum number of the bonding information stored in the Data Flash.
Range : 1 to 7

This value should be set same as Maximum number of
connections.

Refer to section 4.3.1 for details.

The security data management function manages security data management information, local device
security data, and remote device security data. The memory map in the data flash is as shown in Figure 67.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 123 of 168

Oct.26.2022

Figure 67. Memory map of security data in data flash

Each data information is described in following section.

4.3.1 Security data management information

The structure and structure elements of security data management information are shown in Figure 68 and
Table 26. This data is handled internally by the security data management function and does not need to be
updated by the user application.

Figure 68. Security data management information structure

Table 26. Security management information structure elements

Type Element Name size

[bytes]

Description

uint32_t magic_num 4 Magic number of security data.

Check whether security data is written.

Fixed to 0x12345678. 0xFFFFFFFF when not written.

uint8_t bond_cnt 1 Number of bonding information stored.

uint8_t padding[3] 3 Padding

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 124 of 168

Oct.26.2022

4.3.2 Local device security data

The security data structure and structure elements of the local device are shown in Figure 69 and Table 27.

Figure 69. Local device security data structure

Table 27. Local device security data structure elements

Element Name size

[bytes]

Description

Local Identity Resolving Key (IRK) 16 IRK distributed to remote devices during pairing.

Resolvable Private Address (RPA) is used when

generating by Privacy feature.

Local Connection Signature Resolving

Key (CSRK)

16 CSRK distributed to remote devices during pairing.

Used when sending with signed data.

Local Identity Address 7 The local device identity address that informs the

remote device during pairing.

Padding 1 Padding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Local Identity Address (56bits)

Padding (8bits)

Local IRK (128bits)

Local CSRK (128bits)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 125 of 168

Oct.26.2022

The following describes security data settings for local devices.

• IRK and CSRK generate and set a 16-byte random number.

• To set BLE Protocol Stack, use R_BLE_GAP_SetLocIdInfo() (IRK, Identity Address) and

R_BLE_GAP_SetLocCsrk() (CSRK).

By using API of security data management function, the generated security data can be written to data flash.
It is possible to reconfigure to BLE Protocol Stack after reboot device. Figure 70 shows an example of local
device security data setting processing that is performed when the BLE Protocol Stack is started.

Figure 70. Example of setting local device security data

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 126 of 168

Oct.26.2022

4.3.3 Remote device security data

The structure and structural elements of the remote device security data are shown in Figure 71 and Table
28.

Figure 71. Remote device security data structure

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Padding (24bits)

Remote Identity Address (56bits)

Remote CSRK (128 bits)

Remote EDIV and Rand (80bits)

Remote IRK (128bits)

Bond num (8bits)

Security (8bits)pair_mode (8bits)bonding (8bits)ekey_size (LTK) (8bits)

Remote LTK (128bits)

keys (8bits)ekey_size (8bits)Padding (16bits)

Remote Address (56bits)

Remote key address (32bits)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 127 of 168

Oct.26.2022

Table 28. Remote device security data structure elements

Element Name size

[bytes]

Description

Remote Address 7 BD address used by remote device during pairing.

Bond num 1 Bonding serial number.

security 1 Security level of the pairing performed.

0x01: Perform pairing with Unauthenticated pairing.

0x02: Perform pairing with Authenticated pairing

pair_mode 1 Type of pairing performed.

0x01: Perform pairing with Legacy Pairing.

0x02: Perform pairing with Secure Connections.

bonding 1 Bonding policy of remote device.

0x00: Indicates that remote device does not bonding performed.

0x01 Indicates that remote device is bonding performed.

ekey_size (LTK) 1 Size of LTK.

remote key address 4 Start address of the data flash to store the remote device key

(Remote LTK to Remote CSRK).

keys 1 Type of key distributed by remote device.

ekey_size 1 Negotiated LTK size.

Remote LTK 16 LTK distributed by remote device.

Used for connection encryption.

Remote EDIV and Rand 10 EDIV and Random number distributed by the remote device.

Used for connection encryption.

Remote IRK 16 IRK distributed by remote device.

Used for address resolution when the remote device uses the privacy

feature.

Remote Identity Address 7 Identity address of remote device.

Used for address resolution when remote device uses the privacy

feature.

Remote CSRK 16 CSRK distributed by remote device.

Used when receiving signed data.

The following describes security data settings for remote devices.

• The remote device security data is received during pairing.

• security, pair_mode, bonding, and ekey_size in Table 28 are written to data flash at the

BLE_GAP_EVENT_PAIRING_COMP event. Other data is written to the data flash at the

BLE_GAP_EVENT_PEER_KEY_INFO event.

• Initializing process at the BLE_GAP_EVENT_STACK_ON event reads the remote device security data

from data flash and calls R_BLE_GAP_SetBondInfo() to set remote device security data in the BLE

Protocol Stack.

• If number of data written to data flash exceeds number specified by Remote device bonding number

option, oldest security data entry is overwritten.

By using security data management function, the received remote device security data during pairing can be

written to data flash. It is possible to reconfigure to BLE Protocol Stack after reboot device.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 128 of 168

Oct.26.2022

4.4 Data Flash Block

If your application holds data in Data Flash, use the block except the following.

 Data Flash (RAM) Device Data Block
 Data Flash Block for Security Data

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 129 of 168

Oct.26.2022

4.5 Importing CLI (Command Line Interface) to user’s project

4.5.1 Related source files

Related source files to CLI are installed under app_lib in this demo project. User can add the CLI
functionality by copying / adding path app_lib directory from this demo project to their own project.

4.5.2 Configurations of SCI

Please open FSP configuration of user’s project and select Stacks tab. Add New Stack → Driver →
Connectivity → UART Driver on r_sci_uart to HAL/Common. And modify configuration of the added
r_sci_uart as following.

 [Interrupts]→[Callback] : user_uart_callback_ble_cli

Figure 72. Interrupts of r_sci_uart

4.5.3 Designating module name

Edit value of BLE_UART_INSTANCE macro in app_lib / r_ble_console.c according to the module name of
r_sci_uart which user named.

Code 60. BLE_UART_INSTANCE macro

/**
 Macro definitions
***/

#define BLE_TX_BUFSIZ (80)
#define BLE_UART_INSTANCE (g_uart0)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 130 of 168

Oct.26.2022

4.5.4 Serial data output of UART

Serial data output of UART can be performed by R_BLE_CLI_Printf() function. R_BLE_CLI_Printf() function
can generate formatted character lines by the way like printf() function.

Table 29. Syntax of R_BLE_CLI_Printf()

Function Name R_BLE_CLI_Printf

Format void R_BLE_CLI_Printf(const char *format, …);

Return void -

Arguments const char *format Designate a constant character line including formats

… Variable number of arguments represented by formats can be
designated.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 131 of 168

Oct.26.2022

4.6 Command List

4.6.1 GAP command

(1) Advertising command

adv command

Format :
gap adv [adv_type] [operation]

Start, stop, or remove advertising.

Parameters :

[adv_type]

Select one of the followings as the type of advertising.

legacy : legacy advertising

ext : extended advertising

non-conn : non-connectable advertising

periodic : periodic advertising

[operation]

Start or stop advertising.

start : start advertising

stop : stop advertising.

remove : remove advertising set specified by adv_type.

Example :

gap adv legacy start

Start legacy advertising.

The local device address is a static address.

gap adv ext stop

Stop extended advertising.

Other parameters related to Advertising that cannot be set from this command are set in the Advertising
parameter variables of gs_legacy_adv_param, gs_ext_adv_param, gs_non_conn_adv_param, and
gs_periodic_adv_param in app_lib\cmd\r_ble_cmd_abs.c. Changing these variables will change the setting
of Advertising parameters.

Table 30. legacy advertising parameter: gs_legacy_adv_param

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 132 of 168

Oct.26.2022

Parameter Structure
gs_legacy_adv_param

st_ble_abs_legacy_adv_param_t

Type Field Name Description Default Value

st_ble_dev_a

ddr_t *

p_addr Specify the remote address registered in the Resolving List.

When o_addr_type is BLE_GAP_ADDR_RPA_ID_PUBLIC (0x02) or

BLE_GAP_ADDR_RPA_ID_STATIC (0x03), specify the remote address

registered in the Resolving List in p_addr. If o_addr_type is

BLE_GAP_ADDR_PUBLIC (0x00) or BLE_GAP_ADDR_RAND (0x01),

specify NULL for p_addr.

NULL

uint8_t * p_adv_data Specify Advertising Data.

If NULL is specified, Advertising Data is not set.

gs_adv_data

uint8_t * p_sres_data Specify Scan Response Data.

If NULL is specified, Scan Response Data is not set.

gs_sres_data

uint32_t fast_adv_intv Advertising is performed at the interval specified by fast_adv_intv for the

period specified by the fast_period parameter.

Time (ms) = fast_adv_intv * 0.625.

Ignored if fast_period is 0.

The range is 0x00000020-0x00FFFFFF.

0x00000100

uint32_t slow_adv_intv After the time specified by the fast_period parameter elapses, advertising is

performed at the interval specified by slow_adv_intv for the period specified

by the slow_period parameter.

Time (ms) = adv_intv_max * 0.625

The range is 0x00000020-0x00FFFFFF.

0x00000200

uint16_t fast_period Specify the period for advertising in fast_adv_intv.

Time = duration * 10ms.

When the time specified in duration elapses, the

BLE_GAP_EVENT_ADV_OFF event notifies that Advertising has stopped.

Range : 0x0000-0xFFFF.

If 0x0000 is specified, fast_period is ignored.

0x0100

uint16_t slow_period Specify the period for performing Advertising with slow_adv_intv.

Time = duration * 10ms.

When the time specified in duration elapses, the

BLE_GAP_EVENT_ADV_OFF event notifies that Advertising has stopped.

The range is 0x0000-0xFFFF.

If 0x0000 is specified, slow_period is ignored.

0x0000

uint16_t adv_data_length Specify Advertising Data size (byte).

For Legacy Advertising PDU, the range is 0 to 31.

If 0 is specified, Advertising Data is not set.

sizeof(gs_adv_d

ata)

uint16_t sres_data_length Specify the size (in bytes) of Scan Response Data.

For Legacy Advertising PDU, the range is 0 to 31.

If 0 is specified, Scan Response Data is not set.

sizeof(gs_sres_d

ata)

uint8_t adv_ch_map Specify the channel to be used for advertising packet transmission.

It is possible to specify by the logical sum of the following macros.

BLE_GAP_ADV_CH_37 (0x01) 37 CH is used.

BLE_GAP_ADV_CH_38 (0x02) 38 CH is used.

BLE_GAP_ADV_CH_39 (0x04) 39 CH is used.

BLE_GAP_ADV_CH_ALL (0x07) 37-39 CH is used.

BLE_GAP_ADV

_CH_ALL

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 133 of 168

Oct.26.2022

Parameter Structure
gs_legacy_adv_param

st_ble_abs_legacy_adv_param_t

Type Field Name Description Default Value

uint8_t filter Specify Advertising Filter Policy.

When p_addr parameter is NULL, advertising is performed according to the

filter policy.

This parameter is ignored if the remote device address is specified in the

p_addr parameter.

BLE_ABS_ADV_ALLOW_CONN_ANY (0x00)

Accepts Connection Requests from all devices.

BLE_ABS_ADV_ALLOW_CONN_WLST (0x01)

Only devices registered in the White List will accept Connection Requests.

BLE_ABS_ADV_

ALLOW_CONN_

ANY

uint8_t o_addr_type Specify Own BD Address Type.

BLE_GAP_ADDR_PUBLIC (0x00)

Indicates a public address.

BLE_GAP_ADDR_RAND(0x01)

Indicates a static address.

BLE_GAP_ADDR_RPA_ID_PUBLIC (0x02)

Indicates that RPA is to be used. If there is no IRK on the Resolving List, use

the public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)

Indicates that RPA is to be used. If there is no IRK on the Resolving List, use

the static address.

BLE_GAP_ADD

R_PUBLIC

uint8_t o_addr[6] When o_addr_type is BLE_GAP_ADDR_RAND (0x01) or

BLE_GAP_ADDR_RPA_ID_RANDOM (0x03), specify the Random Address

to be set in the Advertising Set. This parameter is ignored when using the

Balance or Compact library.

Not set because

o_addr_type is

BLE_GAP_ADD

R_PUBLIC.

Table 31. Extended advertising parameter: gs_ext_adv_param

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 134 of 168

Oct.26.2022

Parameter Structure
gs_ext_adv_param

st_ble_abs_ext_adv_param_t

Type Field Name Description Default Value

st_ble_dev_a

ddr_t *

p_addr Specify the remote address registered in the Resolving List.

When o_addr_type is BLE_GAP_ADDR_RPA_ID_PUBLIC (0x02) or

BLE_GAP_ADDR_RPA_ID_STATIC (0x03), specify the remote address

registered in the Resolving List in p_addr. If o_addr_type is

BLE_GAP_ADDR_PUBLIC (0x00) or BLE_GAP_ADDR_RAND (0x01),

specify NULL for p_addr.

NULL

uint8_t * p_adv_data Specify Advertising Data.

If NULL is specified, Advertising Data is not set.

gs_adv_data

uint32_t fast_adv_intv Advertising is performed at the interval specified by fast_adv_intv for the

period specified by the fast_period parameter.

Time (ms) = fast_adv_intv * 0.625.

Ignored if fast_period is 0.

The range is 0x00000020-0x00FFFFFF.

0x00000100

uint32_t slow_adv_intv After the time specified by the fast_period parameter elapses, advertising is

performed at the interval specified by slow_adv_intv for the period specified

by the slow_period parameter.

Time (ms) = adv_intv_max * 0.625

The range is 0x00000020-0x00FFFFFF.

0x00000200

uint16_t fast_period Specify the period for advertising in fast_adv_intv.

Time = duration * 10ms.

When the time specified in duration elapses, the

BLE_GAP_EVENT_ADV_OFF event notifies that Advertising has stopped.

The range is 0x0000-0xFFFF.

If 0x0000 is specified, fast_period is ignored.

0x0300

uint16_t slow_period Specify the period for performing Advertising with slow_adv_intv.

Time = duration * 10ms.

When the time specified in duration elapses, the

BLE_GAP_EVENT_ADV_OFF event notifies that Advertising has stopped.

The range is 0x0000-0xFFFF.

If 0x0000 is specified, slow_period is ignored.

0x0000

uint16_t adv_data_length Specify Advertising Data size (byte).

The range is from 0 to 229.

If 0 is specified, Advertising Data will not be set.

sizeof(gs_adv_d

ata)

uint8_t adv_ch_map Specify the channel to be used for advertising packet transmission.

It is possible to specify by the logical sum of the following macros.

BLE_GAP_ADV_CH_37 (0x01) 37 CH is used.

BLE_GAP_ADV_CH_38 (0x02) 38 CH is used.

BLE_GAP_ADV_CH_39 (0x04) 39 CH is used.

BLE_GAP_ADV_CH_ALL (0x07) 37-39 CH is used.

BLE_GAP_ADV

_CH_ALL

uint8_t filter Specify Advertising Filter Policy.

When p_addr parameter is NULL, advertising is performed according to the

filter policy.

This parameter is ignored if the remote device address is specified in the

p_addr parameter.

BLE_ABS_ADV_ALLOW_CONN_ANY (0x00)

Accepts Connection Requests from all devices.

BLE_ABS_ADV_ALLOW_CONN_WLST (0x01)

Only devices registered in the White List will accept Connection Requests.

BLE_ABS_ADV_

ALLOW_CONN_

ANY

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 135 of 168

Oct.26.2022

Parameter Structure
gs_ext_adv_param

st_ble_abs_ext_adv_param_t

Type Field Name Description Default Value

uint8_t o_addr_type Specify Own BD Address Type.

BLE_GAP_ADDR_PUBLIC (0x00)

Indicates a public address.

BLE_GAP_ADDR_RAND(0x01)

Indicates a static address.

BLE_GAP_ADDR_RPA_ID_PUBLIC (0x02)

Indicates that RPA is to be used. If there is no IRK on the Resolving List, use

the public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)

Indicates that RPA is to be used. If there is no IRK on the Resolving List, use

the static address.

BLE_GAP_ADD

R_PUBLIC

uint8_t adv_phy Specify Primary ADV PHY.

In this parameter, only 1M PHY and Coded PHY can be specified, and 2M

PHY cannot be specified.

BLE_GAP_ADV_PHY_1M (0x01)

1M PHY is used as Primary Advertising PHY.

BLE_GAP_ADV_PHY_CD (0x03)

Use Coded PHY as Primary Advertising PHY.

Coding scheme is the contents set by R_BLE_VS_SetCodingScheme().

BLE_GAP_ADV

_PHY_1M

uint8_t sec_adv_phy Specify Secondary ADV Phy.

BLE_GAP_ADV_PHY_1M (0x01)

1M PHY is used for Secondary Advertising PHY.

BLE_GAP_ADV_PHY_2M (0x02)

2M PHY is used for Secondary Advertising PHY.

BLE_GAP_ADV_PHY_CD (0x03)

Use Coded PHY for Secondary Advertising PHY.

Coding scheme is the contents set by R_BLE_VS_SetCodingScheme().

BLE_GAP_ADV

_PHY_1M

Table 32. Non-Connectable advertising parameter: gs_non_conn_adv_param

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 136 of 168

Oct.26.2022

Parameter Structure

gs_non_conn_adv_param st_ble_abs_non_conn_adv_param

_t

Type Field Name Description Default Value

st_ble_dev_a

ddr_t *

p_addr For the remote address specified by p_addr

Direct non-connectable advertising.

If p_addr is NULL, Undirect Non-Connectable Advertising is performed.

NULL

uint8_t * p_adv_data Specify Advertising Data.

If NULL is specified, Advertising Data is not set.

gs_adv_data

uint32_t adv_intv Advertising is performed at the interval specified by adv_intv for the period

specified by the duration parameter.

Time (ms) = adv_intv * 0.625

When duration is 0x0000, the interval advertisement specified by adv_intv is

continued.

The range is 0x00000020-0x00FFFFFF.

0x000000a0

uint16_t duration Specify the period for performing Advertising in adv_intv.

Time = duration * 10ms.

When the time specified in duration elapses, a

BLE_GAP_EVENT_ADV_OFF event occurs.

The range is 0x0000-0xFFFF.

If 0x0000 is specified, duration is ignored.

0x0000

uint16_t adv_data_length Specify Advertising Data size (byte).

If BLE_ABS_ADV_PHY_LEGACY (0x00) is specified in the adv_phy

parameter, the range is 0-31. Otherwise, it is 0-1650.

If 0 is specified, Advertising Data is not set.

sizeof(gs_adv_d

ata)

uint8_t adv_ch_map Specify the channel to be used for advertising packet transmission.

It is possible to specify by the logical sum of the following macros.

BLE_GAP_ADV_CH_37 (0x01) 37 CH is used.

BLE_GAP_ADV_CH_38 (0x02) 38 CH is used.

BLE_GAP_ADV_CH_39 (0x04) 39 CH is used.

BLE_GAP_ADV_CH_ALL (0x07) 37-39 CH is used.

BLE_GAP_ADV

_CH_ALL

uint8_t o_addr_type Specify Own BD Address Type.

BLE_GAP_ADDR_PUBLIC (0x00)

Indicates a public address.

BLE_GAP_ADDR_RPA_ID_PUBLIC (0x02)

Indicates that RPA is to be used.

If there is no IRK registered in the Resolving List, use Public Address.

BLE_GAP_ADD

R_PUBLIC

uint8_t adv_phy Specify Primary ADV PHY.

In this parameter, only 1M PHY and Coded PHY can be specified, and 2M

PHY cannot be specified.

BLE_GAP_ADV_PHY_1M (0x01)

1M PHY is used as Primary Advertising PHY.

BLE_GAP_ADV_PHY_CD (0x03)

Use Coded PHY as Primary Advertising PHY.

Coding scheme is the contents set by R_BLE_VS_SetCodingScheme().

BLE_GAP_ADV

_PHY_1M

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 137 of 168

Oct.26.2022

Parameter Structure

gs_non_conn_adv_param st_ble_abs_non_conn_adv_param

_t

Type Field Name Description Default Value

uint8_t sec_adv_phy Specify Secondary ADV Phy.

BLE_GAP_ADV_PHY_1M (0x01)

1M PHY is used for Secondary Advertising PHY.

BLE_GAP_ADV_PHY_2M (0x02)

2M PHY is used for Secondary Advertising PHY.

BLE_GAP_ADV_PHY_CD (0x03)

Use Coded PHY for Secondary Advertising PHY.

Coding scheme is the contents set by R_BLE_VS_SetCodingScheme().

BLE_GAP_ADV

_PHY_1M

Table 33. Periodic advertising parameter: gs_periodic_adv_param

Parameter Structure
gs_periodic_adv_param

st_ble_abs_perd_adv_param_t

Type Field Name Description Default Value

st_ble_abs_n

on_conn_adv

_param_t

param Specify the non-connectable advertising parameter. gs_non_conn_a

dv_param (*1)

uint8_t * p_perd_adv_data Specify Periodic Advertising Data.

If NULL is specified, Periodic Advertising Data is not set.

gs_adv_data

uint16_t perd_intv Specify Periodic Advertising Interval.

Time (ms) = perd_intv * 1.25.

The range is 0x0006-0xFFFF.

0x0040

uint16_t perd_adv_data_len

gth

Specify the size (bytes) of Periodic Advertising Data.

The range is 0-1650.

If 0 is specified, Periodic Advertising Data is not set.

sizeof(gs_adv_d

ata)

*1: It is set in exec_abs_adv() of app_lib\cmd\r_ble_cmd_abs.c.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 138 of 168

Oct.26.2022

(2) Scan command

scan command

Format :

gap scan (operation) (filter_ad_type) (filter_data) (addr_type) (-wl)

Start scan.

It is not necessary to specify (operation) when starting scan.

When scan stops, input [ctrl] + [c].

Parameters :

(operation)
Specify operation for scan

stop : stop scan.

(filter_ad_type)

The AD type for filtering.

Refer to Bluetooth SIG Assigned Numbers for generic access profile for

the definition of the AD type.

If the filter is not used, this parameter can be omitted.

(filter_data)

The data for filtering.

Specify the data for the filter_ad_type.

If the filter is not used, this parameter can be omitted.

If the filter_ad_type is not used, this parameter is ignored.

(addr_type)

Specify the address type of scan request.

When this parameter is omitted, static address is selected.

pub : Public Address

rnd : Static Address

(-wl)
Specify this parameter when using white list.

If white list is not used, this parameter is can be omitted.

Example :

gap scan

Start scan.

gap scan 2 0x01,0x29

Search the advertising report which of the AD Type :

Incomplete List of 16-bit Service Class UUIDs(0x02) and the service UUID : 0x2901.

Other parameters related to Scan that cannot be set from this command are set in the scan parameter
variables of gs_phy_param_1m and gs_scan_param in app_lib\cmd\r_ble_cmd_abs.c. Changing these
variables will change the scan parameter settings.

Table 34. Scan parameter: gs_phy_param_1m

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 139 of 168

Oct.26.2022

Parameter Structure
gs_phy_param_1m

st_ble_abs_scan_phy_param_t

Type Field Name Description Default Value

uint16_t fast_intv Specify Fast Scan interval.

Fast Scan interval (ms) = fast_intv * 0.625

The range is 0x0004-0xFFFF.

0x0200

(320ms)

uint16_t slow_intv Specify the Slow Scan interval.

Slow Scan interval (ms) = slow_intv * 0.625

The range is 0x0004-0xFFFF.

0x0800

(1.28s)

uint16_t fast_window Specify Fast Scan window.

Fast Scan window (ms) = fast_window * 0.625

The range is 0x0004-0xFFFF.

0x0100

(160ms)

uint16_t slow_window Specify Slow Scan window.

Slow Scan window (ms) = slow_window * 0.625

The range is 0x0004-0xFFFF.

0x0100

(160ms)

uint8_t scan_type Specify Passive Scan / Active Scan as the scan type.

BLE_GAP_SCAN_PASSIVE (0x00)

Indicates that a passive scan is to be performed.

BLE_GAP_SCAN_ACTIVE (0x01)

Indicates that Active Scan is to be performed.

BLE_GAP_SCA

N_PASSIVE

Table 35. Scan parameter: gs_scan_param

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 140 of 168

Oct.26.2022

Parameter Structure
gs_scan_param

st_ble_abs_scan_param_t

Type Field Name Description Default Value

st_ble_abs_s

can_phy_par

am_t *

p_phy_param_1M Specify the Scan parameter for 1M PHY.

Specify NULL when not scanning with 1M PHY.

Specify scan parameter for either p_phy_param_1M or p_phy_param_coded.

&gs_phy_param

_1M

st_ble_abs_s

can_phy_par

am_t *

p_phy_param_code

d

Specify the Scan parameter for Coded PHY.

Specify NULL when not scanning with Coded PHY.

Specify scan parameter for either p_phy_param_1M or p_phy_param_coded.

NULL

uint8_t * p_filter_data Specify the data to be filtered.

Data included in a single Advertising Data PDU is targeted.

Filtering is not performed for data indicated by multiple Advertising Data

PDUs.

When NULL is specified or when 0 is specified for filter_data_length, filtering

is not performed.

gs_filt_data

uint16_t fast_period Specify the scanning time in Fast scan interval / Fast scan window.

Time (ms) = fast_period * 10.

The range is 0x0000-0xFFFF.

When 0x0000 is specified, scanning by Fast scan interval / Fast scan window

is not performed.

When the time specified in fast_period elapses, a

BLE_GAP_EVENT_SCAN_TO event occurs.

0x0100

uint16_t slow_period Specify the scan time in Slow scan interval / Slow scan window.

Time (ms) = slow_period * 10.

The range is 0x0000-0xFFFF.

When 0x0000 is specified, scanning with Slow scan interval / Slow scan

window continues.

When the time specified by slow_period elapses, a

BLE_GAP_EVENT_SCAN_TO event occurs.

0x0000

uint16_t filter_data_length Specifies the size of the filtering data indicated by the p_filter_data

parameter.

If 0 is specified, or p_filter_data is NULL, no filtering is performed.

Up to 16 bytes can be specified.

0

uint8_t dev_filter Specify the Scan Filter Policy. Set one of the following values.

BLE_GAP_SCAN_ALLOW_ADV_ALL (0x00)

All Advertising PDUs and Scan Response PDUs are accepted.

BLE_GAP_SCAN_ALLOW_ADV_WLST (0x01)

Only Advertising PDUs and Scan Response PDUs of devices registered in

the White List are accepted.

BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED (0x02)

All Advertising PDUs and Scan Response PDUs are accepted, except when

the Directed Advertising PDU destination is not the Scanner identity address.

Directed Advertising PDUs are accepted even if the destination is the RPA of

the local device.

BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST (0x03)

Except for the following cases, all advertising, scan response PDUs are

accepted.

• The address included in the Direct Advertising PDU is

not the Scanner identity address.

• The Advertiser Identity Address is not registered in the

White List.

BLE_GAP_SCA

N_ALLOW_ADV

_ALL

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 141 of 168

Oct.26.2022

Parameter Structure
gs_scan_param

st_ble_abs_scan_param_t

Type Field Name Description Default Value

uint8_t filter_dups Specify the presence or absence of duplicates filter to filter duplicate

advertising packet notifications.

The number of devices that can be filtered is eight.

The duplicate filter is disabled for the ninth and subsequent devices.

BLE_GAP_SCAN_FILT_DUPLIC_DISABLE (0x00)

Disable duplicate filter.

BLE_GAP_SCAN_FILT_DUPLIC_ENABLE (0x01)

Enable duplicate filter.

BLE_GAP_SCA

N_FILT_DUPLIC

_DISABLE

uint8_t filter_ad_type Specify the AD type of the filtering data indicated by the p_filter_data

parameter.

For details on AD type, refer to Assigned Numbers for generic

access profile of Bluetooth SIG.

―

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 142 of 168

Oct.26.2022

(3) Connection command

conn command

Format :

gap conn [addr] [addr_type]

Send a connection request.

In case of stopping connection request, input [ctrl] + [c].

Parameters :

[addr] Remote device address.

[addr_type]

Specify the followings as remote device address type.

pub : Public Address

rnd : Random Address

Example :

gap conn 74:90:50:00:95:a8 pub

Send a connection request to the remote device whose public address is
74:90:50:00:95:a8.

gap conn d8:19:e3:30:92:21 pub

Send a connection request to the remote device whose random address is
d8:19:e3:30:92:21.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 143 of 168

Oct.26.2022

Other parameters related to Connection that cannot be set from this command are set in the connection
parameter variables of gs_conn_phy_1m and gs_conn_param in app_lib\cmd\r_ble_cmd_abs.c. Changing
these variables will change the connection parameter settings.

Table 36. Connection parameter: gs_conn_phy_1m

Parameter Structure
gs_conn_phy_1m

st_ble_abs_conn_phy_param_t

Type Field Name Description Default Value

uint16_t conn_intv Specify the Connection interval.

Time (ms) = conn_intv * 1.25.

The range is 0x0006-0x0C80.

0x00A0 (200ms)

uint16_t conn_latency Specify Slave latency.

The range is 0x0000-0x01F3.

0x0000

uint16_t sup_to Specify Supervision timeout.

Time (ms) = sup_to * 10

The range is 0x000A-0x0C80.

0x03E8 (10s)

Table 37. Connection parameter: gs_conn_param

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 144 of 168

Oct.26.2022

Parameter Structure
gs_conn_param

st_ble_abs_conn_param_t

Type Field Name Description Default Value

uint8_t filter Specify how to select a remote device to establish a connection and the

address type of a local device.

BLE_ABS_CONN_USE_ADDR_PUBLIC

(BLE_GAP_INIT_FILT_USE_ADDR | (BLE_GAP_ADDR_PUBLIC << 4))

Establish a connection with the remote device specified by p_addr.

Local device uses public address.

BLE_ABS_CONN_USE_WLST_PUBLIC
(BLE_GAP_INIT_FILT_USE_WLST | (BLE_GAP_ADDR_PUBLIC << 4))

Establish a connection with a remote device registered in the White List.

Local device uses public address.

BLE_ABS_CONN_USE_ADDR_STATIC
(BLE_GAP_INIT_FILT_USE_ADDR | (BLE_GAP_ADDR_RAND << 4))

Establish a connection with the remote device specified by p_addr

Local device uses static address.

BLE_ABS_CONN_USE_WLST_STATIC
(BLE_GAP_INIT_FILT_USE_WLST | (BLE_GAP_ADDR_RAND << 4))

Establish a connection with a remote device registered in the White List.

Local device uses static address.

BLE_ABS_CONN_USE_ADDR_RPA_PUBLIC
(BLE_GAP_INIT_FILT_USE_ADDR | (BLE_GAP_ADDR_RPA_ID_PUBLI
C << 4))

Establish a connection with the remote device specified by p_addr

Use RPA. If the IRK is not registered in the Resolving List, public address is

used.

BLE_ABS_CONN_USE_WLST_RPA_PUBLIC
(BLE_GAP_INIT_FILT_USE_WLST | (BLE_GAP_ADDR_RPA_ID_PUBLIC
 << 4))

Establish a connection with a remote device registered in the White List.

Use RPA. If the IRK is not registered in the Resolving List, public address is

used.

BLE_ABS_CONN_USE_ADDR_RPA_STATIC
(BLE_GAP_INIT_FILT_USE_ADDR | (BLE_GAP_ADDR_RPA_ID_RANDO
M << 4))

Establish a connection with the remote device specified by p_addr

Use RPA. If the IRK is not registered in the Resolving List, static address is

used.

BLE_ABS_CONN_USE_WLST_RPA_STATIC
(BLE_GAP_INIT_FILT_USE_WLST | (BLE_GAP_ADDR_RPA_ID_RANDO
M << 4))

Establish a connection with a remote device registered in the White List.Use

RPA. If the IRK is not registered in the Resolving List, static address is used.

BLE_ABS_CON

N_USE_ADDR_

PUBLIC

uint8_t conn_to Specify the time (s) from when the connection establishment request is

issued until cancellation.

The range is 0 <= conn_to <= 10.

If 0 is specified, no cancellation is performed.

7(s)

st_ble_abs_c

onn_phy_par

am_t *

p_conn_1M Specify 1M PHY connection parameters.

When NULL is specified, connection with 1M PHY is not performed.

&gs_conn_phy_

1m

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 145 of 168

Oct.26.2022

Parameter Structure
gs_conn_param

st_ble_abs_conn_param_t

Type Field Name Description Default Value

st_ble_abs_c

onn_phy_par

am_t *

p_conn_2M Specify 2M PHY connection parameters.

If NULL is specified, 2M PHY connection is not performed.

NULL

st_ble_abs_c

onn_phy_par

am_t *

p_conn_coded Specify the connection parameters for Coded PHY.

If NULL is specified, connection with Coded PHY is not performed.

NULL

st_ble_dev_a

ddr_t *

p_addr Specify the address of the remote device to be connected.

This parameter is ignored if the filter parameter is

BLE_GAP_INIT_FILT_USE_WLST (0x01).

&gs_conn_bd_a

ddr (*1)

*1: Use the address entered on the command line.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 146 of 168

Oct.26.2022

(4) Disconnection command

disconn command

Format :
gap disconn [conn_hdl]

Disconnect the connection.

Parameters : [conn_hdl]
Connection handle of which the connection is disconnected.

Example :
gap disconn 0x0020

Disconnect the connection with connection handle 0x0020.

(5) Device command

device command

Format :
gap device

Display the addresses of the connected devices.

Parameters : None

Example :
gap device

Display the addresses of the connected devices.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 147 of 168

Oct.26.2022

(6) Privacy command

priv command

Format :

gap priv [operation] (IRK) [priv_mode]

gap priv [operation] [addr] [addr_type]

gap priv [operation]

Operate the local device's privacy.

Parameters :

[operation]

Select one of the followings as the operation of privacy.

set : Register the IRK of the local device in the resolving list and turn on the address

generation function. It is used when the local device uses RPA in the advertising

command and connection command.

remove : Delete the remote device registered in the resolving list.

{params, …}

[operation] : set

(IRK) : The local device's IRK which is registered in the resolving list.

If this parameter is omitted, the IRK is generated with the random generation function.

[priv_mode] : Privacy mode and the address type of local device. Select one of the

followings.

net : network privacy mode.

Static address is used as identity address.

dev : device privacy mode.

Static address is used as identity address.

[operation] : remove

[addr] : Specify the address (6 bytes) of the remote device registered in the Resolving list.

[addr_type] : Specify the address type of the remote device registered in the Resolving list.

Example :

gap priv set 0001020304050600708090a0b0c0d0e0f dev

Register IRK : 0x0f0e0d0c0b0a09080706050403020100 and set the privacy mode to "device privacy mode".

Static address is used as identity address.

gap priv set net

IRK is generated by the random number generation . The privacy mode is set to "network privacy mode". Static

address is used as identity address.

gap priv remove 12:34:56:78:9a:bc pub

Delete the 12:34:56:78:9a:bc (public) remote device registered in the resolving list.

(7) Connection config command

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 148 of 168

Oct.26.2022

conn_cfg command

Format :
gap conn_cfg [operation] {params, ...}

Connection configuration command.

Parameters :

[operation]

Type of connection configuration. Select one of the followings.

update : Connection parameter update.

phy : Set PHY.

def_phy : Set default phy.

data_len : Set data packet length or data transmit time.

{params, ...}

[operation] : update

Parameter1 : Connection handle.

Parameter2 : Connection interval. Time(ms) = Parameter2 x 1.25.

 Valid range is 0x0006-0x0C80.

Parameter3 : Slave latency. Valid range is 0x0000-0x01F3.

Parameter4 : Supervision timeout. Time(ms) = Parameter4 x 10.

 Valid range is 0x000A-0x0C80.

Input Parameter2-4 to meet the following condition.

Parameter4 x 10 >= (1 + Parameter3) x Parameter2 x 1.25

[operation] : phy

Parameter1 : Connection handle

Parameter2 : Transmitter PHY. Parameter2 is set to a bitwise OR of the

following values.

 bit0 : 1M PHY

 bit1 : 2M PHY

 bit2 : Coded PHY

Parameter3 : Receiver PHY. Parameter3 is set to a bitwise OR of the

following values.

 bit0 : 1M PHY

 bit1 : 2M PHY

 bit2 : Coded PHY

Parameter4 : Coding scheme of Coded PHY. Select one of the following.

 0x00 : The controller's preferred value.

 0x01 : S=2 Coding scheme.

 0x02 : S=8 Coding scheme.

[operation] : def_phy

Parameter1 : Transmitter PHY preferences which a remote device may

change.

Parameter1 is set to a bitwise OR of the following values.

 bit0 : 1M PHY

 bit1 : 2M PHY

 bit2 : Coded PHY

Parameter2 : Receiver PHY preferences which a remote device may

change.

Parameter2 is set to a bitwise OR of the following values.

 bit0 : 1M PHY

 bit1 : 2M PHY

 bit2 : Coded PHY

[operation] : data_len

Parameter1 : Connection handle

Parameter2 : Maximum transmit packet data length (in bytes).

Valid range is 0x001B-0x00FB.

Parameter3 : Maximum transmit time (us). Valid range is 0x0148-0x4290.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 149 of 168

Oct.26.2022

Example :

gap conn_cfg update 0x0026 0x0100 0 0x0100

Change the connection parameters of the connection handle : 0x0026 to the following
values.

 connection interval : 0x0100
 slave latency : 0
 supervision timeout : 0x0100

gap conn_cfg phy 0x0026 2 2 0

Change the PHY of the connection (connection handle : 0x0026)
 Transmitter PHY : 2M
 Receiver PHY : 2M

gap conn_cfg def_phy 7 7

Accept the following change request.
 Transmitter PHY : 1M, 2M and Coded PHY.
 Receiver PHY : 1M, 2M and Coded PHY.

gap conn_cfg data_len 0x0026 0x00FB 0x4290

Change the following transmit packet length or transmit time
 Max transmit packet length : 251 bytes
 Max transmit time : 0x4290 us

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 150 of 168

Oct.26.2022

(8) White List command

wl command

Format :
gap wl [operation] {params, ...}

White List operation command.

Parameters :

[operation]

White List operation. Select one of the followings.

reg : Register a device specified with the {params, ...} on the White
List.

del : Delete the device specified with the {params, ...} on the White
List.

clear : Clear the White List.

{params, ...}

[operation] : reg

Parameter1 : Address of a device to be registered on the White List.

Parameter2 : Address type of a device to be registered on the White List.

pub : Public Address

rnd : Random Address

[operation] : del

Parameter1 : Address of a device to be deleted on the White List.

Parameter2 : Address type of a device to be deleted on the White List.

pub : Public Address

rnd : Random Address

[operation] : clear

Not used.

Example :

gap wl reg 74:90:50:00:95:a8 pub

Register the device whose public address is 74:90:50:00:95:a8 on the White List.

gap wl del 74:90:50:00:95:a8 pub

Delete the device whose public address is 74:90:50:00:95:a8 on the White List.

gap wl clear

Clear the White List.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 151 of 168

Oct.26.2022

(9) Authentication command

auth command

Format :
gap auth [operation] {params, ...}

Pairing or encryption command.

Parameters :

[operation]

Security operation.

start : Start pairing or encryption.

passkey : Input 6-digit number(decimal) to be required in passkey
entry pairing.

numcmp : Return the result of a numeric comparison.

del : Delete the pairing keys.

{params,...}

[operation] : start

Parameter1 : Connection handle identifying the connection which local

device starts pairing or encryption.

[operation] : passkey

Parameter1 : 6 digit passkey (decimal)

[operation] : numcmp

Parameter1 : Result of a numeric comparison.("yes" or "no")

 Return "yes" if both devices display same number, otherwise

"no".

[operation] : del

Parameter1 : Type of key to be deleted.

local : keys which local device distributes.

remote : keys distributed from the remote devices.

all : the above two types of keys.

Parameter2: Type of the remote device key deletion.

addr : Delete the keys specified by the Parameter3, 4.

all : Delete all the keys distributed from remote devices.

Parameter3 : Address of the remote device whose keys to be deleted.

Parameter4 : Address type of the remote device whose keys to be

deleted.

pub : Public Address

rnd : Random Address

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 152 of 168

Oct.26.2022

Example :

gap auth start 0x0026

Start pairing or encryption with the connection (connection handle : 0x0026).

gap auth passkey 123456

Input "123456" as a passkey.

gap auth numcmp yes

Return "yes" as a result of numeric comparison.

gap auth del remote all

Delete all the keys distributed from the remote devices.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 153 of 168

Oct.26.2022

(10) Synchronization command

sync command

Format :
gap sync [operation] {params...}

Create or Terminate a periodic sync.

Parameters :

[operation]

Periodic sync operation.

create : Create a periodic sync with the device whose address is
specified by the {params...}. Scanning runs until a periodic sync is
established.

In case of stopping creating periodic sync, input [ctrl] + [c].

term : Terminate the periodic sync whose sync_hdl is specified by the
{params...}.

{params,...}

[operation] : create

Parameter1 : Address of the advertiser.

Parameter2 : Address type of the advertiser.

[operation] : term

Parameter1 : Sync handle identifying the periodic sync to be terminated.

If no parameters are given, all the established periodic syncs are

terminated.

Example :

gap sync create 74:90:50:00:95:a8 pub

Establish a periodic sync with the advertiser whose public address is
74:90:50:00:95:a8.

gap sync term 0x01

Terminate the periodic sync (sync handle : 0x01).

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 154 of 168

Oct.26.2022

(11) Version command

ver command

Format :

gap ver

Get the following BLE Protocol Stack version information.

- Link Layer
- HCI
- Host Stack
- Manufacturer ID

Parameters : None

Example :

gap ver

Get the version information.

Result sample :

Link Layer / HCI Version

HCI version : 0x09 *1

HCI revision : 0x000b

Link Layer version : 0x09 *1

Link Layer subversion : 0x1908

Manufacturer ID : 0x0036

Host stack Version

major version : 0x0d

minor version : 0x19

subminor version : 0x08

*1 : The version number defined by Bluetooth SIG. The version number 0x09 shows Bluetooth 5.0 .

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 155 of 168

Oct.26.2022

4.6.2 Vendor Specific (VS) command

(1) Tx Power command

txp command

Format :
vs txp [operation] [conn_hdl] {params,...}

Set / Get the transmit power.

Parameters :

[operation]

Transmit power operation.

set : Set the transmit power.

get : Get the transmit power.

[conn_hdl]

Connection handle identifying the connection whose transmit power to be

set or retrieved.

Inputting 0xFFFF sets / gets the transmit power in the non-connected

state.

{params,...}

[operation] : set

Parameter1 : Tx power level to be set.

0 : High
1 : Middle
2 : Low

[operation] : get

Not used.

Example :

vs txp set 0xFFFF 0

Set the non-connected state transmit power to the High level.

vs txp get 0x0026

Get the transmit power of the connection (connection handle : 0x0026).

(2) Coded Scheme command

scheme command

Format :
vs scheme [type]

Set the coding scheme of the Coded PHY.

Parameters : [type]

Coding scheme for Primary advertising PHY, Secondary advertising PHY,

request for connection establishment. This parameter is set to a bitwise

OR of the following values.

By default, S=8 coding scheme is enabled.

bit0 : Coding scheme for Primary Advertising PHY(0:S=8/1:S=2).

bit1 : Coding scheme for Secondary Advertising PHY(0:S=8/1:S=2).

bit2 : Coding scheme for Connection(0:S=8/1:S=2).

Example :

vs scheme 7

Set coding scheme for Primacy Advertising, for Secondary Advertising, and for
Connection to S=2.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 156 of 168

Oct.26.2022

(3) Extended Direct Test Mode(DTM) command

test command

Format :
vs test [operation] {params, ...}

DTM test command.

Parameters :

[operation]

DTM test operation. Select one of the followings.

tx : Start DTM transmitter test.

Set "channel", "length", "payload", "phy", "tx_power", "option" and
"number of packet" to {params, ..,}.

rx : Start DTM receiver test.

Set "channel" and "phy" to {params, ...}.

end : Terminate DTM test.

No parameter.

{params, ...}

[operation] : tx

Parameter1 : Channel used in Tx test.

Valid range is 0 to 39.
Frequency range is 2402 MHz to 2480 MHz.

Parameter2 : Length(in bytes) of the packet used in Tx Test.

Valid range is 0 to 255.

Parameter3 : Packet Payload.

Valid range is 0x00-0x07.

If the Parameter6 is set to "non-modulation", this parameter is ignored.

Payload type:

 0x00 : PRBS9 sequence '11111111100000111101..'.

 0x01 : Repeated '11110000'

 0x02 : Repeated '10101010'

 0x03 : PRBS15 sequence

 0x04 : Repeated '11111111'

 0x05 : Repeated '00000000'

 0x06 : Repeated '00001111'

 0x07 : Repeated '01010101'

Parameter4 : Transmitter PHY used in test. Select one of the following.

If the Parameter6 is set to "non-modulation", this parameter is ignored.

If the Parameter6 is configured to "modulation" and "continuous

transmission",

0x03 : Coded PHY (S=8) and 0x04 : Coded PHY (S=2) are not supported.

 0x01 : 1M PHY

 0x02 : 2M PHY

 0x03 : Coded PHY (S=8)

 0x04 : Coded PHY (S=2)

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 157 of 168

Oct.26.2022

Parameters : {params, ...}

Parameter5 : Tx Power Level used in DTM Tx Test.

Select one of the following.

 0x00 : High

 0x01 : Middle

 0x02 : Low

Parameter6 : The test option configuration.

This parameter is set to a bitwise OR of the following bits.

 bit0 : 0:modulation, 1:non-modulation

 bit1 : 0:packet transmission, 1:continuous transmission

Parameter7 : The number of packets to be sent. Valid range is 0x0000-

0xFFFF.

If the Parameter6 is configured to "continuous transmission", this

parameter is ignored. If this parameter is set to 0x0000, the packets are

continuously transmitted until test end command is issued.

[operation] : rx

Parameter1 : Channel used in the test.

Valid range is 0 to 39.

Frequency range is 2402 MHz to 2480 MHz.

Parameter2 : Receiver PHY used in the test. Select one of the following.

 0x01 : 1M PHY

 0x02 : 2M PHY

 0x03 : Coded PHY

The coding scheme (S=8/S=2) doesn't need to be specified in the receiver

test.

[operation] : end

Not used.

Example :

vs test tx 39 251 1 3 1 0 1

Start DTM transmitter test.

 CH : 39ch
 Packet length : 251 bytes
 payload : Repeated '11110000' sequence
 phy : Coded PHY(S=8)
 tx_power : Middle
 option : modulation packet transmission
 num_of_packet : 1

vs test rx 39 2

Start DTM receiver test.

 CH : 39ch

 phy : 2M PHY

vs test end

Terminate DTM test.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 158 of 168

Oct.26.2022

(4) BD Address command

addr command

Format :
vs addr [operation] [area] {params...}

Set/Get the address of the local device.

Parameters :

[operation]

Address operation. Select one of the followings.

set : Set an address to the local device.
Set address type and address to {params...} .
 If [area] is "df", the address is enabled after reset.

get : Get the address of the local device.
Set the address type to {params...}.

[area]

The area where the address is stored.

curr : The temporary area storing the address.

df : The area storing the address in the Data Flash.

{params...}

[operation] : set

Parameter1 : Address type

pub : Public Address

rnd : Random Address

Parameter2 : Address

[operation] : get

Parameter1 : Address type

pub : Public Address

rnd : Random Address

Example :

vs addr set df pub 78:90:50:00:95:a8

Set the public address : 78:90:50:00:95:a8 to the Data Flash.

vs addr get curr pub

Get the current public address.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 159 of 168

Oct.26.2022

(5) Random Number generation command

rand command

Format :
vs rand [rand_size]

Generate a random number.

Parameters : [rand_size]
Specify the size of the random number to be generated.

Range: 4 to 16 [bytes].

Example :
vs rand 16

Generate a 16 bytes random number.

(6) Scan Channel command

scan_ch_map command

Format :
vs scan_ch_map [operation] {params,...}

Set/Get the scan channel map.

Parameter :

[operation]

Scan Channel operation. Select one of the followings.

set : Set the channel map specified by {params,...} as scan channel.

get : Get the current scan channel map.

{params,...}

[operation] : set

Parameter 1 : The channel map to be set.

 It is a bitwise OR of the following values.

bit 0 : 37 ch

bit 1 : 38 ch

bit 2 : 39 ch

other than the above : reserved

[operation] : get

“Get” operation does not use parameter.

Example :

vs scan_ch_map set 7

Set 37, 38, 39ch as scan channel.

vs scan_ch_map get

Get the current scan channel map.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 160 of 168

Oct.26.2022

4.6.3 SYS command

(1) MCU Software Standby command

stby command

Format :
sys stby [operation]

Control the software standby mode.

Parameters : [operation]

Software standby operation. Select one of the followings.

on : Enter the software standby mode.

off : Come back from the software standby mode.

get : Get the current software standby status.

Example :
sys stby on

Enter the software standby mode.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 161 of 168

Oct.26.2022

4.6.4 BLE command

(1) BLE protocol stack Reset command

stby command

Format :
ble reset

Reset the BLE protocol stack.

Parameters : None

Example :
ble reset

(2) BLE protocol stack Close command

stby command

Format :

ble close

Terminate the BLE protocol stack.

To restart the BLE protocol stack, execute “ble reset” command.

Parameters : None

Example :
ble close

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 162 of 168

Oct.26.2022

4.6.5 LSC command

(1) Set switch state notification command

set_switch_state_ntf command

Format :
lsc set_switch_state_ntf [conn_hdl] [enable]

Enable receiving notification from GATT server.

Parameters :

[conn_hdl]
Connection handle identifying the connection whose receive notification

from GATT server.

[enable]

Designate if receiving notification is enable.

0 : Disable

1 : Enable

Example :
lsc set_switch_state_enable 0x0020 1

Enable receiving notification from GATT server of 0x0020

(2) Write led blink rate command

write_led_blink_rate command

Format :
lsc write_led_blink_rate [conn_hdl] [blink rate]

Write value of LED blink rate of GATT server.

Parameters :

[conn_hdl]
Connection handle identifying the connection with GATT server which is

written its LED blink rate.

[blink rate]

Designate LED blink rate

0x00 : LED turns off

0x01 – 0xFE : LED blinks in the frequency based on this value

0xFF : LED turns on

Example :
lsc write_led_blink_rate 0x0020 0xA0

Write 0xA0 as value of LED blink rate of GATT server of 0x0020

(3) Read led blink rate command

read_led_blink_rate command

Format :
lsc read_led_blink_rate [conn_hdl] [blink rate]

Read value of LED blink rate of GATT server written.

Parameters : [conn_hdl]
Connection handle identifying the connection with GATT server which is

read its LED blink rate.

Example :
lsc read_led_blink_rate 0x0020

Read value of LED blink rate of GATT server of 0x0020

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 163 of 168

Oct.26.2022

4.6.6 Command creation procedure

In the command line interface feature, user can create their own commands by defining commands in the
st_ble_cli_cmd_t type variable. This section describes an example of creating a new command to operate
the custom profile LED Switch service Client (hereafter “lsc”) provided in the demo project.

(1) Command definition

Defines command name, subcommand group, number of subcommands, and the message string output by
“help” command. For “lsc” command, define a command structure variables as following.

Code 61. Command definition example

const st_ble_cli_cmd_t g_lsc_cmd =
{
 .p_name = "lsc",
 .p_cmds = lsc_sub_cmds,
 .num_of_cmds = ARRAY_SIZE(lsc_sub_cmds),
 .p_help = "Sub Command: set_switch_state_ntf, write_led_blink_rate, read_led_blink_rate\n"
 "Try 'lsc sub-cmd help' for more information",
};

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 164 of 168

Oct.26.2022

(2) Subcommand definition

Defines subcommand. For “lsc” command, define a subcommand structure variables as following.

If user wants to create a command such as the "Connection command” or "Scan command” that manually
abort the process, user needs to set a abort handler.

During execution of a command for which the abort handler is set, no other command input will be accepted
until the command execution is aborted by pressing Ctrl+C key.

Code 62. Subcommand definition example

static const st_ble_cli_cmd_t lsc_set_switch_state_ntf_cmd =
{
 .p_name = "set_switch_state_ntf",
 .exec = cmd_lsc_set_switch_state_ntf,
 .p_help = "Usage: lsc set_switch_state_ntf conn_hdl value",
};
…………
static const st_ble_cli_cmd_t lsc_read_led_blink_rate_cmd =
{
 .p_name = "read_led_blink_rate",
 .exec = cmd_lsc_read_led_blink_rate,
 .p_help = "Usage: lsc read_led_blink_rate conn_hdl",
};

…………
static const st_ble_cli_cmd_t lsc_write_led_blink_rate_cmd =
{
 .p_name = "write_led_blink_rate",
 .exec = cmd_lsc_write_led_blink_rate,
 .p_help = "Usage: lsc write_led_blink_rate conn_hdl blink_rate",
};
…………
static const st_ble_cli_cmd_t * const lsc_sub_cmds[] =
{
 &lsc_set_switch_state_ntf_cmd,
 &lsc_write_led_blink_rate_cmd,
 &lsc_read_led_blink_rate_cmd,
};

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 165 of 168

Oct.26.2022

(3) Subcommand function definition

Define the function to be processed when the subcommand is executed.

For “lsc” command, define a subcommand function as following.

Code 63. Subcommand function example

/*--
 lsc set_switch_state_ntf command
--*/
static void cmd_lsc_set_switch_state_ntf(int argc, char *argv[])
{
 if (argc != 3)
 {
 pf("lsc %s: unrecognized operands\n", argv[0]);
 return;
 }

 uint16_t conn_hdl;
 conn_hdl = (uint16_t)strtol(argv[1], NULL, 0);

 long value = strtol(argv[2], NULL, 0);

 ble_status_t ret;
 ret = R_BLE_LSC_WriteSwitchStateCliCnfg(conn_hdl, (uint16_t *)&value);
 if (ret != BLE_SUCCESS)
 {
 pf("lsc %s: failed with 0x%04X\n", argv[0], ret);
 return;
 }
}

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 166 of 168

Oct.26.2022

(4) Registering commands

After defining the command and subcommand, register the command using R_BLE_CLI_RegisterCmds()
API as following so that it can be used as an application-specific command.

Code 64. Command register example

static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_lsc_cmd,
 &g_ble_cmd
};

…………
void app_main(void)
{

…………
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, sizeof(gsp_cmds)/sizeof(gsp_cmds[0]));
 R_BLE_CLI_RegisterEventCb(NULL);

…………
}

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 167 of 168

Oct.26.2022

Revision History

Rev. Date Description

Page Summary

1.00 Mar.31.2020 — First edition issued.

1.01 Oct.07.2020 — Add Chapter 4.

Move “3. BLE Module Detail” to “4. Appendix”.

Update attached sample project.

1.02 Mar.03.2021 — In this revision, GATT client demo projects were newly added

and this document was also revised with accompanying it.

Following items were revised or added in this revision.

 Revised “1 Overview”

 Revised “2.1 Operating environment”

 Revised “2.2 Importing demo project”

 Revised “2.4 Demo project behavior”

 Revised “3.1 BareMetal environment (Server)”

 Revised “3.2 FreeRTOS environment (Server,

EventGroup as Synchronization Type case)”

 Added “3.5 BareMetal environment (Client)”

 Added “3.6 FreeRTOS environment (Client, EventGroup

as Synchronization Type case)”

 Added “4.5 Importing CLI (Command Line Interface) to

user’s project”

 Added “4.6 Command List”

Following GATT server demo projects were updated.

 ble_baremetal_ek_ra4w1

 ble_freertos_ek_ra4w1

Following GATT client demo projects were newly added.

 ble_baremetal_ek_ra4w1_client

 ble_freertos_ek_ra4w1_client

1.03 Aug.31.2021 — Add section 1.3

 Add section 2.2 item 4 and 5.

 Add explanation about “extended”, “balance” and

“compact” configuration in section 4.1.4.

 Update attached sample application for FSP3.2.

1.04 Feb.25.2022 — Add section 3.4, section 3.8.

 Add attached sample application for Azure RTOS.

 Update attached sample application for FSP3.6.

1.0.5 Apr.27.2022 --- Update Table 5.

 Add section 4.1.5.

1.0.6 Oct.06.2022 --- Add explanation for task synchronization method for

FreeRTOS in section 1.2.

 Add section 3.3 and 3.7.

 Correction of typo about security data structure in section

4.3.3.

 Update attached sample project for FSP4.0.

RA4W1 Group BLE sample application

R01AN5402EJ0107 Rev.1.07 Page 168 of 168

Oct.26.2022

Rev. Date Description

Page Summary

1.0.7 Oct.26.2022 120 Updated how to write device specific data to code flash

area by using Renesas Flash Programmer.

 Update attached sample project for FSP4.1.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

http://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 BLE features
	1.2 BLE application software structure
	1.3 BLE protocol stack

	2. How to use demo project
	2.1 Operating environment
	2.2 Importing demo project
	2.3 Building and debugging
	2.4 Demo project behavior
	2.4.1 Preparation of demo
	2.4.2 GATT Server projects behavior
	2.4.3 GATT Client demo projects behavior
	(1) Scanning
	(2) Connection
	(3) Paring (Option)
	(4) Disconnection
	(5) Entering Software Standby mode
	(6) LED switch service

	3. Demo project implementation
	3.1 BareMetal environment (Server)
	3.1.1 Entry point
	3.1.2 Main loop
	3.1.3 Initialization process
	3.1.4 Register callback function
	3.1.5 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.1.6 Main loop and scheduler (R_BLE_Execute)
	3.1.7 GAP event (gap_cb function)
	3.1.8 GATTS event (gatts_cb function)
	3.1.9 GATTC event (gattc_cb function)
	3.1.10 VS event (vs_cb function)
	3.1.11 Server-side Profile API event ([service_name]s_cb function)
	3.1.12 L2CAP event
	3.1.13 Event notification and exiting from Software Standby mode
	3.1.14 CLI (Command Line Interface)

	3.2 FreeRTOS environment (Server, EventGroup as Synchronization Type case)
	3.2.1 Create / delete task
	3.2.2 Task switching between BLE core task and GATT application task
	3.2.3 Main loop of BLE core task
	3.2.4 Main loop of GATT application task
	3.2.5 Initialization process
	3.2.6 Register callback function
	3.2.7 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.2.8 Main loop and scheduler (R_BLE_Execute)
	3.2.9 GAP event (gap_cb function)
	3.2.10 GATTS event (gatts_cb function)
	3.2.11 GATTC event (gattc_cb function)
	3.2.12 VS event (vs_cb function)
	3.2.13 Server-side Profile API event ([service_name]s_cb function)
	3.2.14 L2CAP event
	3.2.15 Event notification
	3.2.16 CLI (Command Line Interface)

	3.3 FreeRTOS environment (Server, Semaphore case)
	3.3.1 Create / delete task
	3.3.2 Task switching between BLE core task and GATT application task
	3.3.3 Main loop of BLE core task
	3.3.4 Main loop of BLE execute task
	3.3.5 Main loop of GATT application task
	3.3.6 Initialization process
	3.3.7 Register callback function
	3.3.8 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.3.9 Main loop and scheduler (R_BLE_Execute)
	3.3.10 GAP event (gap_cb function)
	3.3.11 GATTS event (gatts_cb function)
	3.3.12 GATTC event (gattc_cb function)
	3.3.13 VS event (vs_cb function)
	3.3.14 Server-side Profile API event ([service_name]s_cb function)
	3.3.15 L2CAP event
	3.3.16 Event notification
	3.3.17 CLI (Command Line Interface)

	3.4 Azure RTOS environment (Server)
	3.4.1 Create / delete task
	3.4.2 Task switching between BLE core task and GATT application task
	3.4.3 Main loop of BLE core task
	3.4.4 Main loop of BLE execute task
	3.4.5 Main loop of GATT application task
	3.4.6 Initialization process
	3.4.7 Register callback function
	3.4.8 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.4.9 Main loop and scheduler (R_BLE_Execute)
	3.4.10 GAP event (gap_cb function)
	3.4.11 GATTS event (gatts_cb function)
	3.4.12 GATTC event (gattc_cb function)
	3.4.13 VS event (vs_cb function)
	3.4.14 Server-side Profile API event ([service_name]s_cb function)
	3.4.15 L2CAP event
	3.4.16 Event notification
	3.4.17 CLI (Command Line Interface)

	3.5 BareMetal environment (Client)
	3.5.1 Entry point
	3.5.2 Main loop
	3.5.3 Initialization process
	3.5.4 Register callback function
	3.5.5 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.5.6 Main loop and scheduler (R_BLE_Execute)
	3.5.7 GAP event (gap_cb function)
	3.5.8 GATTS event (gatts_cb function)
	3.5.9 GATTC event (gattc_cb function)
	3.5.10 VS event (vs_cb function)
	3.5.11 Client side Profile API event ([service_name]c_cb function)
	3.5.12 L2CAP event
	3.5.13 Exiting from Software Standby mode
	3.5.14 CLI (Command Line Interface)

	3.6 FreeRTOS environment (Client, EventGroup as Synchronization Type case)
	3.6.1 Create / delete task
	3.6.2 Task switching between BLE core task and GATT application task
	3.6.3 Main loop of BLE core task
	3.6.4 Main loop of GATT application task
	3.6.5 Initialization process
	3.6.6 Register callback function
	3.6.7 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.6.8 Main loop and scheduler (R_BLE_Execute)
	3.6.9 GAP event (gap_cb function)
	3.6.10 GATTC event (gattc_cb function)
	3.6.11 VS event (vs_cb function)
	3.6.12 Client side Profile API event ([service_name]c_cb function)
	3.6.13 L2CAP event
	3.6.14 CLI (Command Line Interface)

	3.7 FreeRTOS environment (Client, Semaphore as Synchronization Type case)
	3.7.1 Create / delete task
	3.7.2 Task switching between BLE core task and GATT application task
	3.7.3 Main loop of BLE core task
	3.7.4 Main loop of BLE execute task
	3.7.5 Main loop of GATT application task
	3.7.6 Initialization process
	3.7.7 Register callback function
	3.7.8 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.7.9 Main loop and scheduler (R_BLE_Execute)
	3.7.10 GAP event (gap_cb function)
	3.7.11 GATTC event (gattc_cb function)
	3.7.12 VS event (vs_cb function)
	3.7.13 Client side Profile API event ([service_name]c_cb function)
	3.7.14 L2CAP event
	3.7.15 CLI (Command Line Interface)

	3.8 Azure RTOS environment (Client)
	3.8.1 Create / delete task
	3.8.2 Task switching between BLE core task and GATT application task
	3.8.3 Main loop of BLE core task
	3.8.4 Main loop of BLE execute task
	3.8.5 Main loop of GATT application task
	3.8.6 Initialization process
	3.8.7 Register callback function
	3.8.8 Registering GATT database (R_BLE_GATTS_SetDbInst)
	3.8.9 Main loop and scheduler (R_BLE_Execute)
	3.8.10 GAP event (gap_cb function)
	3.8.11 GATTC event (gattc_cb function)
	3.8.12 VS event (vs_cb function)
	3.8.13 Client side Profile API event ([service_name]c_cb function)
	3.8.14 L2CAP event
	3.8.15 CLI (Command Line Interface)

	4. Appendix
	4.1 How to make and configure new project
	4.1.1 Create a new project
	4.1.2 Heap and Stack configuration
	4.1.3 Clocks configuration
	4.1.4 Add and configure BLE module
	4.1.4.1 Add BLE module in BareMetal environment
	4.1.4.2 Add BLE module in FreeRTOS environment
	4.1.4.3 Add BLE module in Azure RTOS environment
	4.1.4.4 BLE module configurations
	4.1.4.5 Add and configure related peripherals for BLE module

	4.1.5 Low Power Mode
	4.1.6 Make profile and BLE application skeleton code

	4.2 Device-specific Data Management
	4.2.1 Specify device-specific data location block
	4.2.2 Device-specific data format
	4.2.3 How to write device-specific data
	4.2.4 BD address adoption flow

	4.3 Security Data Management
	4.3.1 Security data management information
	4.3.2 Local device security data
	4.3.3 Remote device security data

	4.4 Data Flash Block
	4.5 Importing CLI (Command Line Interface) to user’s project
	4.5.1 Related source files
	4.5.2 Configurations of SCI
	4.5.3 Designating module name
	4.5.4 Serial data output of UART

	4.6 Command List
	4.6.1 GAP command
	(1) Advertising command
	(2) Scan command
	(3) Connection command
	(4) Disconnection command
	(5) Device command
	(6) Privacy command
	(7) Connection config command
	(8) White List command
	(9) Authentication command
	(10) Synchronization command
	(11) Version command

	4.6.2 Vendor Specific (VS) command
	(1) Tx Power command
	(2) Coded Scheme command
	(3) Extended Direct Test Mode(DTM) command
	(4) BD Address command
	(5) Random Number generation command
	(6) Scan Channel command

	4.6.3 SYS command
	(1) MCU Software Standby command

	4.6.4 BLE command
	(1) BLE protocol stack Reset command
	(2) BLE protocol stack Close command

	4.6.5 LSC command
	(1) Set switch state notification command
	(2) Write led blink rate command
	(3) Read led blink rate command

	4.6.6 Command creation procedure
	(1) Command definition
	(2) Subcommand definition
	(3) Subcommand function definition
	(4) Registering commands

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

