R2A20134SP

R03AN0004EJ0200
Rev.2.00
Application Note

1. General Description

R2A20134SP is a control IC for LED lighting. It has two operation modes, Critical Conduction mode (CRM) and fixed switching frequency mode. User can choose one suitable mode for their purpose.
At Critical Conduction mode (CRM), this IC can control LED current precisely and correct power factor and achieve high efficiency by zero-current switching. At Fixed-Frequency mode, user can reduce the external components dramatically. AT Peak Current Control mode applying Fixed Switching Frequency Mode realized the minimum numbers of external components, smallest packaging and low BOM cost. Also this allows the isolated flyback operation. Please refer to the 5.1 The list of Evaluation boards.

2. Block Diagram

2.1 Critical Conduction Mode (Rrt is connected to GND)

When you connects external resistor Rrt between "RT" pin and GND, R2A20134SP works in Critical Conduction mode with Zero Current switching. At this mode, this IC turns the external MOSFET on at the timing when the inductor current becomes zero.

2.2 Fixed Switching Frequency Mode (Rrt is connected to Vref)

When you connect Rrt between "RT" pin and "VREF" pin, RE2A20134 works in Fixed Switching frequency mode. At this mode, this IC turns the external MOSFET on at the timing of internal oscillation signal. You can adjust the oscillation frequency by the value of Rrt.

3. Explanation of Each Circuit Block

3.1 Zero Current Detection

R2A20134SP detects zero current point, checking the terminal voltage of Rrt which is connected in series with inductor. At critical Conduction Mode (CRM), this IC turns the external MOSFET on at this zero current point.
The threshold level of zero current detect is set to 13 mV typ. And delay time from zero current detection to drain voltage lay down of MOSFET is added. This delay time is fixed to $0.8 \mu \mathrm{~s}$.

3.2 Over-Current Protection

Over-current protection circuit turns the MOSFET off, if the terminal voltage of current sensing resistor Rrt is over 0.6 V.

3.3 RAMP Slope

The built-in RAMP slope is defined by external Rrt (between "RT" pin and GND) and built-in Capacitor (10 pF). The charge current to 10 pF is defined as $1 / 10$ of "RT" pin current.
The maximum ON time (ton_max) is limited when output voltage of error amplifier is 4 V .
The RAMP circuit starts to charge RAMP capacitor (10 pF) at the condition that ZCD detection circuit detects "zero current of inductor" and the RAMP voltage is lower than 0.2 V . When RAMP slope is equal to error amplifier output voltage, or over-current protection is detected, RAMP capacitor is discharged. If "COMP" voltage is less than 1 V , On time should be zero second, because of built-in level shifter of 1 V typ.

RAMP Block

3.4 Built-in Oscillator

The oscillation frequency of built-in oscillator is defined by external Rrt (between "RT" pin and GND) and built-in capacitor (10 pF). The charge current to 10 pF is defined as $1 / 10$ of "RT" pin current.
And the maximum ON duty is limited to 50% at switching frequency of 48 kHz . This oscillator starts to discharge the capacitor when the voltage of built-in capacitor is 2 V , and starts to charge when is less than 0.2 V .

The right graph indicates the relation between Irt (flowing-out current from "RT"pin) and the fout (oscillation frequency). Oscillation frequency can be calculated by the following formula.

$$
\text { fout }[\mathrm{kHz}]=\frac{1}{\left(100 \times 10^{-9} \times R r t\right)+\left(450 \times 10^{-6}\right)}
$$

3.5 Error Amplifier

Trans-conduction amplifier is used as error amplifier inside. Its output current is defined by voltage difference between internal reference voltage and the voltage of "FB" pin.

3.6 Output Pin to Drive External MOSFET

Totem pole output circuit is built in at "OUT" pin.
The Maximum drive current is 900 mA (peak).
Basically it cab drive MOSFET directly, but adjustment of suitable driver circuit for each MOSFET is recommended.

Driver circuit example 1

Driver circuit example 2

4. Application Circuit

4.1 Peak Current Control Circuit

The following is block diagram of peak current controlled step down driver circuit.
This circuit keeps peak current (=output current) constant, using over current protection function by detecting inductor current though "CS" pin.

The peak current though inductor is kept constant in the range of Vin > Vout.
If Cin is big enough to keep always Vin > Vout, peak current though inductor is kept constant.
This means ripple on output current is reduced efficiently. And built-in error amplifier is not used in this example, less external components is used.

4.2 Constant ON Time Control (Power factor correction)

The following is the example circuit using error amplifier.
If inductor current is detected though "FB" pin, feed back loop using error amplifier controls the inductor current (=output current) constant.

717

In error amplifier controlled operation, ON time is fixed to constant during nominal operation. If On time is fixed to constant, peak inductor current is changed in proportion to input voltage. This operation corrects power factor.

$$
d i(t)=\frac{v(t)}{L} d t \quad \begin{gathered}
\cdots \text { Peak inductor current is changed in proportion to input voltage } \\
\text { during ON time is constant. }
\end{gathered}
$$

5. Evaluation Boards (R2A20134 EVB-xx)

R2A20134 EVB-xx are the evaluation boards for LED driver IC R2A20134SP. There are six variations for each circuit structure. Customer can choose suitable one for each LED lighting products. Each evaluation board includes all necessary circuit. So, customer needs to prepare only AC power and LED load to evaluate R2A20134SP.

5.1 Summary of Each Evaluation Boards

Type Name		R2A20134 EVB-NN1E	R2A20134 EVB-NN1P	R2A20134 EVB-NN2	R2A20134 EVB-ND	R2A20134 EVB-IN	R2A20134 EVB-ID
Summary	Isolation	Non-isolation				Isolation	
	Mode	CRM		Fixed switching frequency			
	Topology	Step down/High-side SW		Buck boost/Low-side SW		Fly back	
	Control	Average current	Peak current				
	TRIAC dimming			Quasi at 100 V only	\bigcirc		\bigcirc
Original setting	AC input (V)	100	100	100	100	100	100
	Output Vf (V)	65/35	65/35	30	30	30	30
	LED current (mA)	100	100/120	120	240	120	250
Target bulb size		E26	E26	E17	E26	E17	E26
PCB size (mm)		33.5×36 max	$33.5 \times 36 \mathrm{max}$	20×35 max	33.5×36 max	20×35 max	33.5×36 max
Picture							
	Eff.	92\%/87\%	89\%/87\%	84\%	75\%	82\%	
	PF	0.93/0.94	0.6/0.53	0.7	0.91	0.73	
Characteristic		High Eff.\&PF	Less components		TRIAC dimmable	Isolated	Isolated TRIAC dimmable
Note					Built-in valley-fill		Developing

5.2 R2A20134EVB-NN1E

(non-isolation, without dimming function, one-converter PFC)
5.2.1 R2A20134EVB-NN1E Circuit Diagram (error amplifier controlled)

5.2.2 R2A20134EVB-NN1E (error amplifier controlled) BOM List
 $\mathrm{Vin}=\mathrm{AC} 85$ to $132 \mathrm{~V}, \mathrm{Vf}=\mathbf{6 5} \mathrm{V}$, ILED $=100 \mathrm{~mA}$

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
	P.C.B	R2A20134EVB	1				
U1	IC	R2A20134SP	1			Renesas	
M1	MOSFET	RJK5030DPD	1	500 V	1.6Ω	Renesas	
D1	Switching diode	HSU83-E	1	250 V	100 mA	Renesas	
D2	FRD	M1FL40	1	400 V	1.5A	Shindengen	
D3	FRD	RKS160AKU	1	600 V	100 mA	Renesas	
D4	Diode bridge	S1NBB80	1	800 V	1A	Shindengen	
ZD1	Zener diode	RD20FS	1	20 V	1W	Renesas	
L1	Choke coil	\#8RDB-331K	1	$330 \mu \mathrm{H}$	200mA	Toko	
L2	Choke coil	13RHBP A7502HY-152M	1	1.5 mH	400 mA	Toko	
C1	Ceramic capacitor	GRM188B31H473K	1	47 nF	50 V	Murata	
C2	Ceramic capacitor	GRM188B31H104K	1	$0.1 \mu \mathrm{~F}$	50 V	Murata	
C3	open		0				
C4	Ceramic capacitor	GRM32EB31E226KE15B	1	$22 \mu \mathrm{~F}$	25V	Murata	
C5	Film capacitor	ECQE2W224JH	1	$0.22 \mu \mathrm{~F}$	450 V	Panasonic	
C6	Chemical capacitor	EKY-101ELL820MJ20S	1	$82 \mu \mathrm{~F}$	100 V	Chemicon	
F1	Fuse	HTS 500mA	1	250 V	500 mA	Skygate	
R1	Resistor	150Ω	1	150Ω	1/16W		1\%
R2	Resistor	$4.3 \mathrm{k} \Omega$	1	$4.3 \mathrm{k} \Omega$	1/16W		1\%
R3	Resistor	39k Ω	1	39k Ω	1/16W		1\%
R4	Resistor	open					
R5	Resistor	150k Ω	1	$150 \mathrm{k} \Omega$	1/16W		
R6	Resistor	$7.5 \mathrm{k} \Omega$	1	$7.5 \mathrm{k} \Omega$	1/16W		
R7	Resistor	200k Ω	1	$200 \mathrm{k} \Omega$	1/4W		400 V
R8	Resistor	200 Ω	1	200Ω	1/16W		
R9	Resistor	$68 \mathrm{k} \Omega$	1	68k Ω	1/16W		
R10	Resistor	1.0Ω	1	1.0Ω	1/8W		1\%
R11	None						
R12	Resistor	$3.6 \mathrm{k} \Omega$	1	$3.6 \mathrm{k} \Omega$	2W		
R13	Resistor	51k Ω	1	$51 \mathrm{k} \Omega$	1/4W		
TP1							L
TP2							N
TP3							LED(+)
TP4							LED(-)

For reference: changed components for AC220 V input, VF = $\mathbf{3 5}$ V, ILED = 400 mA

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
M1	MOSFET	RJK6002DPD	1	600 V	5.7Ω	Renesas	
D2	FRD	CRF03	1	600 V	1.5 A	Toshiba	
L1	Choke coil	LHL08TB102J		1 mH	800 mA	Taiyo Yuden	
C3	Ceramic capacitor	GRM188R11E473KA01D	1	$0.047 \mu \mathrm{~F}$	50 V	Murata	
C5	Film capacitor	ECQE2W104JH		$0.1 \mu \mathrm{~F}$	450 V	Panasonic	
C6	Chemical capacitor	EKY-500ELL331MJ25S		$330 \mu \mathrm{~F}$	50 V	Chemicon	
R1	Resistor	$3.3 \mathrm{k} \Omega$	1	$3.3 \mathrm{k} \Omega$	$1 / 16 \mathrm{~W}$		1%
R2	Resistor	820Ω	1	820Ω	$1 / 16 \mathrm{~W}$		1%
R7	Resistor	RK73B 2B T TD 434 J		$430 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	KOA	400 V
R10	Resistor	RL1220S-R33-F		0.33Ω	$1 / 4 \mathrm{~W}$	Susumu	1%

5.2.3 R2A20134EVB-NN1E Board Evaluation Data (7W: Vf $=65 \mathrm{~V}, 4 \mathrm{~W}: \mathrm{Vf}=35 \mathrm{~V}$)

5.2.4 R2A20134EVB-NN1E: Basic Operation and Calculation of Major Components

[Preconditions of Design]
Vin $=80 \mathrm{Vac}$ to 120 Vac , lout $=0.1 \mathrm{~A}, \mathrm{Vf}=65 \mathrm{~V}, \mathrm{C} 1=82 \mu \mathrm{~F}, \mathrm{Ri} 2=3.6 \mathrm{k} \Omega$, Ri1 $=200 \mathrm{k} \Omega$

1. Start-up operation and calculation of Cin
(a) Stand-by state

When Vcc is below 12 V , R2A20134SP is in stand-by state, and consumes about $130 \mu \mathrm{~A}$ as stand-by current. At this condition, Cin is charged by (Iss- $130 \mu \mathrm{~A}$).
(b) Active state

When Vcc rises over 12 V of UVL voltage, R2A20134SP is in active state, and it consumes about 2.2 mA . R2A20134SP has the hysteresis range of 2.8 V in UVL operation and it keeps active state over Vcc $=9.2 \mathrm{~V}$. After activated, Vout is almost 0 V and Iss1 $=(\mathrm{Vin}-\mathrm{Vcc}) / \mathrm{Ri} 1=(100 \sqrt{2}-12) / 200 \mathrm{k} \Omega=647 \mu \mathrm{~A}$ is supplied to R2A20134SP. At this time, Vcc is reduced gradually, because Icc(= 2.2 mA$)>\operatorname{Iss} 1(=647 \mu \mathrm{~A})$.
If Vout rises to supply Icc < Iss1 + Iss2 before Vcc sinks less than 9.2 V, R2A20134SP succeeds to start up. So, Cin have to keep over 9.2 V until Vout1 rises to supply enough current of Iss2.

\leq Calculation of Cin at Vcc>

Cin have to keep Vcc > 9.2V, until Vout becomes "Vhysteresis" supplying Iss2 > $2.2 \mathrm{~mA}-\mathrm{Iss} 1=1.55 \mathrm{~mA}$.
To satisfy this, Vout1 is calculated as Vout $=3.6 \mathrm{k} \Omega \times 1.55 \mathrm{~mA}+12 \mathrm{~V}+\mathrm{VF}(1 \mathrm{~V})=$ about 19 V , because Iss1 + Iss2 $=2.2 \mathrm{~mA}$ and $\mathrm{Ri} 2=3.6 \mathrm{k} \Omega$.

If we define the voltage held by Cin as Vhys, the hold time by Cin "th" is calculated as th $=$ Vhys \times Cin/(IccIss1) simply.
But at the same time, Iout is increasing to nominal Iout though LEDs. So it is not easy to be calculated. So, you need to define Cin by doing "Cut and Try" finally.
One simple calculating example is to define Iout $=$ nominal Iout $/ 2$.

Please notice that Iss1becomes lower, AC input voltage is lower. So, please try at the minimum AC input voltage.

* Calculation example of Cin at the minimum AC input voltage Vin $=85 \mathrm{Vac}$

1) Vout to supply enough Iss2 to R2A20134SP

Vout1 $=$ Ri2 $\times(2.2 \mathrm{~mA}-(\mathrm{Vin} / \mathrm{Ri} 1))+\mathrm{UVL}$ _Hi +Vf

$$
=3.6 \mathrm{k} \times(2.2 \mathrm{~mA}-(80 \sqrt{2} / 200 \mathrm{k}))+12+1=18.9 \mathrm{~V}
$$

So, If Vout >18.9 V, Iss1 + Iss2 $>$ Icc ($=2.2 \mathrm{~mA}$)
2) Necessary time to rise upto Vout1
t1 $=\mathrm{C} 1 \times$ Vout $1 /$ Iout 1

$$
=82 \mu \times 18.9 / 0.05=31 \mathrm{~ms}
$$

3) Calculation of Cin

Vhys (voltage reduction of Vcc) have to be less than 2.8 V typ.
So we set it 2.5 V now.
Cin $=\mathrm{t} 1 \times(2.2 \mathrm{~mA}-($ Vin $/$ R7 $)) /$ Vhys
$=31 \mathrm{~ms} \times(2.2 \mathrm{~mA}-(80 \sqrt{2} / 200 \mathrm{k})) / 2.5=20.27 \mu \mathrm{~F}$
4) Adjustment at the minimum AC input voltage

Please check the actual board at minimum AC input voltage of 80 V .
If you find this boards wakes up without any problem, please fix it $22 \mu \mathrm{~F}$.
2. Current detection resistance Rcs and inductor L2

Under the condition mentioned above, the external constants are calculated as follows;
<Rcs>
Buck converter can not operate in the range that input voltage is lower than output voltage, therefore the ratio of the time when the input current is supplied actually results in $1-2 \times \operatorname{Arcsine}(30 \mathrm{~V} / 140 \mathrm{~V} \times 1.414) / \pi=$ about 90%, and average supplied current results in $400 \mathrm{~mA} / 0.9=444 \mathrm{~mA}$.
At this moment, peak current that flows to Rcs is the peak current of triangle waveform in critical conduction mode operation, it is two times of average current, that is 888 mA . Maximum value is about 1.4 times and it results in $888 \mathrm{~mA} \times 1.4=1.24 \mathrm{~A}$, because this is current waveform of power factor correction.
Rcs value needs to be set below $0.6 / 1.24=0.48 \Omega$ because OCP detection voltage of CS terminal is 0.6 V . Here, Rcs is set to 0.33Ω so that OCP detection level is defined below 150% of normal operation.

<Rfb1, Rfb2>

Partial voltage ratio of Rfb1/Rfb2 supplied to FB terminal needs to be set to Vfb $=$ Vref $-\mathrm{Vcs} /(\mathrm{Rfb} 1+\mathrm{Rfb} 2) \times$ $\mathrm{Rfb} 2+\mathrm{Vcs}=0.6 \mathrm{~V}$.
Average voltage of Rcs selected in the preceding clause is Vcs $=0.33 \times 400 \mathrm{~mA}=0.132 \mathrm{~V}$.
$(0.6 \mathrm{~V}-0.132 \mathrm{~V}) /(5.0 \mathrm{~V}-0.132 \mathrm{~V})=\mathrm{Rfb} 2 /(\mathrm{Rfb} 1+\mathrm{Rfb} 2)$
When Rfb 1 is set to $39 \mathrm{k} \Omega$, Rfb 2 results in, $\mathrm{Rfb} 2=4.12 \mathrm{k} \Omega=3.3 \mathrm{k} \Omega+0.82 \mathrm{k} \Omega$ under the condition that $\mathrm{Rfb} 1+$ Rfb2 should be around $50 \mathrm{k} \Omega$.
<L2>
Firstly, it needs to decide minimum oscillation frequency. Here It is set to 50 kHz .
In critical conduction mode operation, the frequency would be minimum when the current is maximum and when the difference between input voltage and output voltage.
On-duty of FET at this moment is $30 \mathrm{~V} /(140 \times 1.414)=0.15$. So, Ton results in Ton $=0.15 / 50 \mathrm{kHz}=3 \mu \mathrm{~s}$. On the other hand, $\Delta \mathrm{I}$ of inductor is equal to the peak current of Rcs mentioned above.
$\mathrm{L}=($ Vin - Vout $) \times \Delta \mathrm{T} / \Delta \mathrm{I}=(197 \mathrm{~V}-30 \mathrm{~V}) \times 3 \mu \mathrm{~s} / 1.24 \mathrm{~A}=404 \mu \mathrm{H}$
Finally the inductance value is set to $390 \mu \mathrm{H}$, considering the available line-ups of the parts.
3. Loop filter of feedback amplifier

Frequency characteristics of R2A20134EVB-NN1E are shown in Figure 5.2.
The control of this IC is Current mode (time-lag of first order), and it can operate stably. But to improve the power factor, it is recommended that the loop gain is 0 dB under $100-200 \mathrm{~Hz}$ which is twice as high as the AC input fLINE ($50-60 \mathrm{~Hz}$)
And the output current can be kept constant in a wide input voltage range by inserting CR filter (Cf1, Rf1) to the terminal FB, and setting pole p0 of the CR filter to be the lowest switching frequency fMIN or less.

Figure 5.1 FB, COMP External Parts

Figure 5.2 Frequency Characteristics of R2A20134EVB-NN1E

Figure 5.3 Frequency Characteristics of CR Filter of FB Terminal

5.3 R2A20134EVB-NN1P

(non-isolation, non-dimming, peak current controlled, step down)

5.3.1 R2A20134EVB-NN1P Circuit Diagram

Note: This evaluation board is made by the change of external components using same PCB as R2A20134EVB-NN1.

5.3.2 R2A20134EVB-NN1P BOM List

Note: This evaluation board is made by the change of external components using same PCB as R2A20134EVB-NN1.

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
	P.C.B	R2A20134EVB	1				NN1E appropriation
U1	IC	R2A20134SP	1			Renesas	
M1	MOSFET	RJK5030DPD	1	500 V	1.6Ω	Renesas	
D1	Switching diode	HSU83-E	1	250 V	100mA	Renesas	
D2	FRD	M1FL40	1	400 V	1.5A	Shindengen	
D3	FRD	RKS160AKU	1	600 V	100mA	Renesas	
D4	Diode bridge	S1NBB80	1	800V	1A	Shindengen	
ZD1	Zener diode	RD20FS	1	20V	1W	Renesas	
L1	Choke coil	\#8RDB-331K	1	$330 \mu \mathrm{H}$	200mA	Toko	
L2	Choke coil	13RHBP A7502HY-152M	1	1.5 mH	400mA	Toko	
C1	Ceramic capacitor	open					
C2	Ceramic capacitor	GRM188B31H104K	1	$0.1 \mu \mathrm{~F}$	50V	Murata	
C3	short		1				
C4	Ceramic capacitor	GRM32EB31E226KE15B	1	$10 \mu \mathrm{~F}$	25V	Murata	
C5	Chemical capacitor	450BXF10M10×16	1	$10 \mu \mathrm{~F}$	450 V	Rubycon	
C6	Chemical capacitor	100YXJ22M6.3×11	1	$22 \mu \mathrm{~F}$	100 V	Rubycon	
F1	Fuse	HTS 500mA	1	250V	500mA	Skygate	
R1	open						
R2	open						
R3	open						
R4	open						
R5	Resistor	$390 \mathrm{k} \Omega$	1	390 k ת	1/16W		
R6	open						
R7	Resistor	$200 \mathrm{k} \Omega$	1	200k Ω	1/4W		400V
R8	Resistor	200Ω	1	200Ω	1/16W		
R9	Resistor	$68 \mathrm{k} \Omega$	1	$68 \mathrm{k} \Omega$	1/16W		
R10	Resistor	3.0Ω	1	3.0Ω	1/8W		1\%
R11	None						
R12	Resistor	$3.6 \mathrm{k} \Omega$	1	$3.6 \mathrm{k} \Omega$	2W		
R13	Resistor	$51 \mathrm{k} \Omega$	1	51 k ת	1/4W		
TP1							L
TP2							N
TP3							LED(+)
TP4							LED(-)

Appendix: Modification for Vin $=$ AC140 to 220 V, Vf $=30$ V, ILED $=400 \mathrm{~mA}$

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
M1	MOSFET	RJK6002DPD	1	600 V	5.7Ω	Renesas	
D2	FRD	CRF03	1	600 V	700 mA	Toshiba	
L1	Choke coil	RFS1317-394L		$680 \mu \mathrm{H}$	800 mA	Coil Craft	
C5	Chemical capacitor	$450 \mathrm{BXC4R7M10} \mathrm{\times 16}$		$4.7 \mu \mathrm{~F}$	450 V	Rubycon	
C6	Chemical capacitor	$050 \mathrm{YXJ4R7M5} \mathrm{\times 11}$		$4.7 \mu \mathrm{~F}$	50 V	Rubycon	
R7	Resistor	RK73B 2B T TD 404 J		$400 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	KOA	400 V
R8	Resistor	MCR01MZPJ220		22Ω	$1 / 16 \mathrm{~W}$	ROHM	
R10	Resistor	RL1220S-R75-F		0.75Ω	$1 / 4 \mathrm{~W}$	Susumu	1%

Note: You have to change D2 M1FL40 into 500V diode in the case of AC240V input

5.3.3 R2A20134EVB-NN1E, NN1P Common Board Pattern

Top Layer: Circuit Pattern

Top Layer: Solder Resist

Top Layer: Silk Screen

Bottom Layer: Circuit Pattern

Bottom Layer: Solder Resist

Bottom Layer: Silk Screen

5.3.4 R2A20134EVB-NN1P Evaluation Data

5.3.5 R2A20134EVB-NN1P: Basic operation and calculation of major components

Note: PCB of this board is the same as R2A20134EVB-NN, and changed the components and wire connection.

[Preconditions of Design]
Vin $=85 \mathrm{Vac}$ to 110 Vac, Vout $=65 \mathrm{Vdc}$, lout $=0.1 \mathrm{~A}$, Minimum switching frequency 50 kHz

1. Calculation of inductor with Constant ON time and Peak current control
<Setting of minimum switching frequency>
Minimum switching frequency is set to 50 kHz to avoid the audio frequency band. In this case, the cycle is $\mathrm{T}=$ Ton + Toff $=20 \mu \mathrm{~s}$.

<Calculation of Inductor>

Amount of current change is $\Delta \mathrm{I}=2 \times$ Iout $=200 \mathrm{~mA}$ at the condition of Vout $=65 \mathrm{~V}$, Iout $=100 \mathrm{~mA}$.
Switching frequency becomes minimum when the difference of the input and the output voltage is least, because of the Constant ON time control operation. The difference between input and output voltage should be set to 20 V in IC operable voltage range, T is calculated with following equations.
Ton $=\mathrm{L} \times \Delta \mathrm{I} /($ Vin - Vout $)$ or Toff $=\mathrm{L} \times \Delta \mathrm{I} /$ Vout and $\mathrm{T}=\mathrm{L} \times \Delta \mathrm{I} \times$ Vin/(Vout $\times($ Vin - Vout $)$)
Therefore, $\mathrm{L}=\mathrm{T} / \Delta \mathrm{I} /$ Vin \times Vout $\times($ Vin - Vout $)=20 \mu \mathrm{~s} / 200 \mathrm{~mA} / 85 \mathrm{~V} \times 65 \mathrm{~V} \times 20 \mathrm{~V}=1.53 \mathrm{mH}$
Selected inductor value is 1.5 mH which has 200 mA current capability and necessary margin considering temperature rise and magnetic saturation.
2. Calculation of Rcs in Constant ON time and Peak current Control

The peak current becomes $\Delta \mathrm{I}=2 \times$ Iout $=200 \mathrm{~mA}$ under Preconditions of Design of Iout $=100 \mathrm{~mA}$.
And the reference voltage of comparator Vcs is 0.6 V .
Therefore, the resistor of the current detection Rcs is calculated as $0.6 \mathrm{~V} / 200 \mathrm{~mA}=3 \Omega$.
3. Calculation of the input capacitor C2
<Estimation of input power>
The period in which rectified input voltage is lower than output voltage Vout can be calculated as $0.182 \times 2 \times 10 \mathrm{~ms}=3.64 \mathrm{~ms}$
Considering $\arcsin (\operatorname{Vout} /(\sqrt{2} \times \operatorname{Vac})) / \pi=\arcsin (65 /(1.414 \times 85)) / 3.14 \approx 0.182$.
Input power is estimated around $6.5 / 0.9=7.33 \mathrm{~W}$ when the output voltage is $65 \mathrm{~V} \times 100 \mathrm{~mA}=6.5 \mathrm{~W}$ and 90% efficiency.

<Calculation of the input capacitor C2>

The average voltage of C 2 is 103 V . It is calculated as the middle point of the peak voltage ($85 \mathrm{Vac} \times \sqrt{2}=$ around 120 V and the minimum voltage ($65 \mathrm{~V}+20 \mathrm{~V}=85 \mathrm{~V}$). So, the charge amount Q2 is calculated as $\mathrm{Q} 2=7.33 \mathrm{~W} / 103 \mathrm{~V} \times 3.64 \mathrm{~ms}=0.26 \mathrm{mC}$.
The C 2 value must be bigger than $0.26 \mathrm{mC} / 35 \mathrm{~V}=7.4 \mu \mathrm{~F}$ calculated as $\mathrm{C}=\mathrm{Q} / \mathrm{V}$ and the voltage drop have to be kept to be less than $120-85=35 \mathrm{~V}$.
As the result, the C 2 is selected $10 \mu \mathrm{~F}$ in consideration of allowable margin.
4. Calculation of the Rrt setting the minimum RAMP switching frequency
<Estimation of MOSFET on time>
In case of "Constant On time and Peak current control" operation,
$\Delta \mathrm{I}=($ Vin - Vout $) / \mathrm{L} \times$ Ton because $\mathrm{V}=\mathrm{L} \bullet \mathrm{di} / \mathrm{dt}$
Ton becomes Ton $=200 \mathrm{~mA} \times 1.5 \mathrm{mH} / 65 \mathrm{~V} \approx 4.6 \mu$ s with $\Delta \mathrm{I}=2 \times$ Iout $=200 \mathrm{~mA}$ in this design condition.
<Calculation of Rrt to set the switching frequency>
To keep longer than 4.6μ s of Ton time, the RAMP charge current is calculated by the following equation.
$\mathrm{V}=\mathrm{Q} / \mathrm{C}=\mathrm{Ton} \times \mathrm{Irt} / \mathrm{C}$, Irt $=\mathrm{V} \times \mathrm{C} /$ Ton
In a case of "Peak current control" operation, the COMP voltage is cramped at 4 V , and the Ramp voltage has 1
V voltage shift. Therefore, the voltage V is 3 V .
In addition, internal capacitor C is 10 pF , and the ratio of the current mirror circuit is $1 / 10$. So, Irt is calculated as Irt $=3 \mathrm{~V} \times 10 \mathrm{pF} /(4.6 \mu \mathrm{~s} \times 10)=$ around $65 \mu \mathrm{~A}$.
So, Rrt value should be bigger than $30.8 \mathrm{k} \Omega=\mathrm{Vrt} / \mathrm{Irt}=2 \mathrm{~V} / 0.65 \mu \mathrm{~A}$.

5.4 R2A20134EVB-NN2

(non-isolation, non-dimming, peak current controlled, buck-boost)
5.4.1 R2A20134EVB-NN2 Circuit Diagram
(Vin = 85-132 Vrms, lout $=0.12 \mathrm{~A}, \mathrm{VF}=30 \mathrm{~V}$)

5.4.2 R2A20134EVB-NN2 BOM List

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
IC1	IC	R2A20134SP	1			Renesas	
Q1	MOSFET	RJK5030DPD	1	500 V	$1.6 \Omega \mathrm{max}$	Renesas	
Q2	MOSFET	HAT2226	1	600 V	52Ω	Renesas	
DB1	Bridge diode	MB6S	1	420 Vrms	0.5 A		
D5	FRD	CRF03	1	600 V	0.8 A	Toshiba	
D6	Diode	HSC119-E	1			Renesas	
ZD3	Zener diode	RKZ20B2KJ	1	20 V		Renesas	
C2	Ceramic capacitor	RDER72J104K8K1C11B	1	630 V	$0.1 \mu \mathrm{~F}$	Murata	
C5	Chemical capacitor	EKY-800ELL270MHB5D	1	100 V	$27 \mu \mathrm{~F}$	Nippon Chemical	$\$ 8 \times 11.5$
C8	Ceramic capacitor	GRM21BR71H105KA12L	1	50 V	$1 \mu \mathrm{~F}$	Murata	2012 size
C9	Ceramic capacitor	GRM155R71C104KA88J	1	16 V	$0.1 \mu \mathrm{~F}$	Murata	1005 size
R1	Resistor	RK73H2ATTD1R5F	1	$1 / 8 \mathrm{~W}$	1.5Ω	KOA	2012 size
R2	Resistor	RK73B3ATTD274J	1	$1 / 4 \mathrm{~W}$	$270 \mathrm{k} \Omega$	KOA	3216 size
R3	Resistor	RK73B3ATTD274J	1	$1 / 4 \mathrm{~W}$	$270 \mathrm{k} \Omega$	KOA	3216 size
R7	Resistor	RK73B1ETTD204J	1	$1 / 16 \mathrm{~W}$	$200 \mathrm{k} \Omega$	KOA	1005 size
R9	Resistor	RK73B1ETTD470	1	$1 / 16 \mathrm{~W}$	47Ω	KOA	1005 size
R10	Resistor	RK73B1ETTD473J	1	$1 / 16 \mathrm{~W}$	$47 \mathrm{k} \Omega$	KOA	1005 size
R11	Resistor	RK73B2ATTD514J	1	$1 / 8 \mathrm{~W}$	$510 \mathrm{k} \Omega$	KOA	2012 size
L1	Coil	Choke coil	RP1315B-102M	1		1 mH	Sumida
L2		A7503CY-102M	or			Toko	

5.4.3 R2A20134EVB-NN2 Board Pattern

Top Layer: Circuit Pattern

Top Layer: Solder Resist

Top Layer: Silk Screen

Bottom Layer: Circuit Pattern

Bottom Layer: Solder Resist

Bottom Layer: Silk Screen

Outside view of the EVB

5.4.4 R2A20134EVB-NN2 Evaluation Data

5.4.5 Basic Operation of R2A20134EVB-ND, and the Procedure to Calculate the External Constants

[Preconditions of Design]
Vin $=85$ Vac to 132 Vac, Vout $=30 \mathrm{Vdc}$, Iout $=0.12 \mathrm{~A}$
In this board, input power is controlled at fixed value by the Fixed-Frequency operation and peak current controlled operation.

Note: At the constant input power control, the current flows though the inductor discontinuously.

1. Calculation of the resistance Rrt for setting the frequency and the inductance L, for the fixed-frequency mode

\leq The choice of Fixed-Frequency $>$

To avoid the listenable frequency range, we choose 50 kHz as an example.

<Calculation of the resistance Rrt for setting the frequency>

By using the calculation formula at chapter 3.4, Rrt is calculated $195.5 \mathrm{k} \Omega$.
If we choose $200 \mathrm{k} \Omega$ nearest to $195.6 \mathrm{k} \Omega$, the frequency is recalculated as Rrt $=200 \mathrm{k} \Omega$.

$$
\text { fout }[\mathrm{kHz}]=\frac{1}{\left(100 \times 10^{-9} \times R r t\right)+\left(450 \times 10^{-6}\right)}
$$

<Calculation of the inductance L for the constant input power operation>

The current have to flow the inductor discontinuously at constant input power operation.
So, you should calculate the critical condition between continuous current mode and discontinuous current mode first.
As the most severe condition, if you define the minimum input voltage as Vin $=80 \mathrm{~V}$, minimum output voltage as Vout $=30 \mathrm{~V}$.
At this condition, the duty ratio is calculated as
Vout $/($ Vin + Vout $)=30 /(80+30)=0.273$
Note: In case of that the calculated duty ratio is over 50%, please re-define the duty ratio $=50 \%$, during the following calculation procedure.
Because the oscillation frequency is 48.9 kHz , Ton can be calculated as Ton $=0.273 / 48.9 \mathrm{kHz}=5.58 \mu \mathrm{~s}$
If we define Vin $=80 \mathrm{~V}$ Pin $=4 \mathrm{~W}$, $\operatorname{Iin}($ ave $)=4 / 80=50 \mathrm{~mA}$
Therefore Iin(peak) $=\operatorname{Iin}($ ave $) \times 2 /$ Duty $=367 \mathrm{~mA}$
So, L=Vin \times Ton/Iin(peak) $=1.2 \mathrm{mH}$ (maximum)
To allow permitted tolerance of inductance, you should choose 1 mH .
<Calculation of the current sensing resistance Rcs $>$
$\operatorname{Iin}($ peak $)=\sqrt{ }(\operatorname{Pin} \times 2 \times T / L)=\sqrt{ }(4 \mathrm{~W} \times 2 / 48.9 \mathrm{kHz} / 1 \mathrm{mH})=404 \mathrm{~mA}$
Because Vcs $=0.6 \mathrm{~V}$, you should choose Rcs $=1.5 \Omega$

5.5 R2A20134EVB-ND

(non-isolation, with dimming function, peak current controlled, buck-boost)
5.5.1 R2A20134EVB-ND Circuit Diagram
$($ Vin $=85-132 \mathrm{Vrms}$, lout $=0.24 \mathrm{~A}, \mathrm{VF}=30 \mathrm{~V}$, breeding current $=11 \mathrm{~mA})$

5.5.2 R2A20134EVB-ND BOM List

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
IC1	IC	R2A20134SP	1			Renesas	
Q1	MOSFET	RJK5030DPD	1	500V	1.6Ω max	Renesas	
Q2	MOSFET	RJK6025DPD	1	600 V		Renesas	
Q4	MOSFET	2SK3107	1	30 V	8Ω	Renesas	
Q5	MOSFET	2SK3107	1	30V	8Ω	Renesas	
DB1	Bridge diode	MB6S	1	420Vrms	0.5A		
D1	Diode	M1F60	1	600V	1A	Shindengen	
D2	Diode	M1F60	1	600 V	1A	Shindengen	
D3	Diode	M1F60	1	600 V	1A	Shindengen	
D4	Diode	M1F60	1	600 V	1A	Shindengen	
D5	FRD	CRF03	1	600 V	0.7A	Toshiba	
D6	Diode	HSC119-E	1	80V	100mA	Renesas	
ZD1	Zener diode	RKZ5.1B2KJ	1	5 V		Renesas	
ZD2	Zener diode	HZU3ALL-E	1			Renesas	
ZD3	Zener diode	RKZ20B2KJ	1	20V		Renesas	
C2	Ceramic capacitor	RDER72J104K8K1C11B	1	630V	$0.1 \mu \mathrm{~F}$	Murata	
C3	Chemical capacitor	UCY2D470MPD	1	200V	$47 \mu \mathrm{~F}$	Nichicon	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 10 \phi \times 20 \end{aligned}$
C4	Chemical capacitor	UCY2D470MPD	1	200V	$47 \mu \mathrm{~F}$	Nichicon	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 10 \phi \times 20 \end{aligned}$
C5	Chemical capacitor	100VYXJ27uF6.3×11	1	100V	$27 \mu \mathrm{~F}$	Rubycon	$\begin{aligned} & 105^{\circ} \mathrm{C} \\ & 6.3 \phi \times 11 \end{aligned}$
C7	Ceramic capacitor	GRM21BR71H105KA12L	1	50V	$1 \mu \mathrm{~F}$	Murata	2012 size
C8	Ceramic capacitor	GRM32EC81E226KE15L	1	25 V	$22 \mu \mathrm{~F}$	Murata	3225 size
C9	Ceramic capacitor	GRM155R71C104KA88J	1	16 V	$0.1 \mu \mathrm{~F}$	Murata	1005 size
C11	Ceramic capacitor	-		-			No mount
R1	Resistor	SR732ATTDR68F	1	1/4W	0.68Ω	KOA	$\begin{aligned} & 2012 \text { size } \\ & 1 \% \end{aligned}$
R2	Resistor	RCR25C224J	1	1/4W	$220 \mathrm{k} \Omega$	KOA	High voltage
R3	Resistor	RCR25C105J	1	1/4W	$1 \mathrm{M} \Omega$	KOA	High voltage
R4	Resistor	RK73B1JTTD104J	1	1/10W	$100 \mathrm{k} \Omega$	KOA	1608 size
R5	Resistor	RK73B3ATTD152J	1	1/4W	1.5k Ω	KOA	3216 size
R6	Resistor	RK73B1JTTD103J	1	1/10W	$10 \mathrm{k} \Omega$	KOA	1608 size
R7	Resistor	RK73B1JTTD204J	1	1/10W	$200 \mathrm{k} \Omega$	KOA	1608 size
R8	Resistor	RK73Z1JTTD	1	1A	0Ω	KOA	1608 size
R9	Resistor	RK73B1JTTD470J	1	1/10W	47Ω	KOA	1608 size
R10	Resistor	RK73B1JTTD473J	1	1/10W	$47 \mathrm{k} \Omega$	KOA	1608 size
R11	Resistor	RK73B2ATTD514J	1	1/8W	$510 \mathrm{k} \Omega$	KOA	2112 size
R12	Resistor	RK73B1JTTD243J	1	1/10W	$24 \mathrm{k} \Omega$	KOA	1608 size
R13	Resistor	jumper chip	1		0Ω	KOA	3216 size
R15	Resistor	RK73B1JTTD513J	1	1/10W	$51 \mathrm{k} \Omega$	KOA	1608 size
R16	Resistor	RK73B1JTTD514J	1	1/10W	$510 \mathrm{k} \Omega$	KOA	1608 size
L1	Coil	RCH875-821K	1		$820 \mu \mathrm{H}$	Sumida	
L2	Choke coil	RCP1317NP-391L	1		$390 \mu \mathrm{H}$	Sumida	
F1	Fuse	HTS1A	1	AC250V	1A	Skygate	

5.5.3 R2A20134EVB-NN2 Board Pattern

Top Layer: Circuit Pattern

Top Layer: Solder Resist

Top Layer: Silk Screen

Bottom Layer: Circuit Pattern

Bottem Layer: Solder Resist

Bottem Layer: Silk Screen

Outside view of the EVB
5.5.4 R2A20134EVB-ND Evaluation Data (breeding current $=11 \mathrm{~mA}$)

5.5.5 R2A20134EVB-ND Evaluation Data

$($ Vin $=85-132 \mathrm{Vrms}$, lout $=0.24 \mathrm{~A}, \mathrm{VF}=30 \mathrm{~V}$, breeding current $=20 \mathrm{~mA})$

15:30:27

5.5.6 Basic Operation of R2A20134EVB-ND, and the Procedure to Calculate the External Constants

[Preconditions of Design]
Vin $=85$ Vac to 132 Vac, Vout $=30 \mathrm{Vdc}$, Iout $=0.24 \mathrm{~A}$

1. Calculation of the resistance Rrt for setting the frequency and the inductance L, for the Fixed-Frequency mode Calculation of the external constants is same as the case of R2A20134EVB-NN2 except for the circuit blocks for the dimming.
So, please refer to 5.4.4.
2. Basic operation of TRIAC dimmable LED lighting driver circuit, and the procedure to calculate the external constants
<The explanation of the Peak-current operation mode by R2A20134SP>
The circuit diagram of the Buck-Boost Discontinuous conduction mode and the timing chart of the inductor current (IL) are shown below.

R2A20134 works at the Fixed-Frequency and in the Peak-current operation mode. So IL flows through the MOSFET to GND, and IL increases from ILzero to ILpeak while the MOSFET is turned on, that is, during Ton. And IL flows through FRD to LED, and IL decreases from ILpeak to ILzero while the MOSFET is turned off, that is, during Toff.
Therefore the average current of LED Iout(ave.) after the smoothing by Cout is;

$$
\text { Iout(ave.) }=0.5 \times \mathrm{Toff} / \mathrm{T} \times \text { ILpeak }
$$

By using the relation,
Toff $=\mathrm{L} \times$ ILpeak/Vled
Iout(ave.) is expressed as follows:
Iout(ave.) $=0.5 \times \mathrm{L} \times \operatorname{ILpeak} \wedge 2 /($ Vled $\times \mathrm{T})$
In the case of the Evaluation Boards, Vled $=70 \mathrm{~V}, \mathrm{~L}=1 \mathrm{mH}$ and $\mathrm{fsw}=47 \mathrm{kHz}(\mathrm{T}=21.3 \mu \mathrm{~s})$.
So finally, Iout(ave.) is shown as follows:
Iout(ave.) = 0.335 ILpeak^2

R2A20134 works to keep ILpeak at a certain level.
<Dimming by controlling the voltage of COMP-pin of R2A20134>
While R2A20134 is working in the Fixed-Frequency Peak-current mode, Vcomp, the voltage of COMP-pin while it is open, is clamped at 4.1 V typ by the internal Zener Diode.
When Vcomp is in the range from 2 V to 4 V , the detected level of the Peak-current would be the same as the level when COMP-pin is open. But when Vcomp is under 2 V , the level decreases. And when Vcomp is under 1 V , finally the level reaches to 0.0 V .

Therefore ILpeak in the relation below,
$\operatorname{Iout}($ ave. $)=0.335 \times$ Ilpeak $\wedge 2$
could be controlled linearly by detecting the phase angle of TRIAC dimming voltage after full-wave rectification and converting it to the voltage Vcomp.
Consequently, LED current, Iout(ave.), would be controlled non-linearly (square-law characteristics).

The circuit block for detecting TRIAC phase and the waveforms for the phase control are shown below.

The bridge rectifier (BD) converts the AC voltage (Vac-(a)) to the full-wave rectification waveform (Vbd-(b)). In case of the AC voltage phase-controlled by TRIAC dimming circuit (Vac-(d)), the full-wave rectification waveform would be shown in Vbd-(e) when the phase is 50%, for example.
Due to the effects of R1, R2, R3 and Q1, the full-wave rectification waveform (Vbd) would be converted to the inverse signal (Vduty N) of the duty signal corresponding to the phase of TRIAC dimming.
By smoothing this signal with the capacitor C connected to COMP-pin, the DC control with COMP-pin would be achieved.

As shown in < Dimming by controlling the voltage of COMP-pin of R2A20134>, the level of the Peak-current would be controlled linearly while the control voltage of COMP-pin is in the range from 1 V to 2 V . ZCD voltage, R4 and R5 should be decided according to this range of COMP-pin control voltage.

- The procedure to set the dimming range and to calculate the duty conversion rate

The duty conversion rate could be calculated by using the dimming range.
The range of dimming duty is assumed here from 20% to 80%.
Because the duty from 20% to 80% would be converted to the control voltage from 1 V to 2 V , the conversion rate is calculated as $60 \% / \mathrm{V}$.
Using this ratio, the Zener Voltage (Vz) could be determined by calculating the voltage at 100\% duty.

$$
V z=(100 \%-80 \%) / 60 \% \times 1 V+2(V)=2.33 V
$$

Note: 1. The Zener diode should be selected not by checking the rated value of the Zener Voltage, but by checking that the Zener Voltage at the currents in the actual situations would be 2.33 V referring to the characteristic data.

In the next step, the voltage at 0% duty, V 0 , would be calculated as follows:

$$
\mathrm{Vo}=1 \mathrm{~V}-20 \% / 60 \% \times 1 \mathrm{~V}=0.67 \mathrm{~V}
$$

R4 and R5 should be determined to get 0.67 V at 0% duty.
R4:R5 $=0.67 *(5-0.67)=6.46: 1$
Note: 2. Because the current, $9.5 \mu \mathrm{~A}$ (typ.) is flowing through COMP-pin, the total resistance of R4 and R5 should be under $50 \mathrm{k} \Omega$.

5.6 R2A20134EVB-IN (isolated, dimming, peak current controlled)

5.6.1 R2A20134EVB-IN Schematic

5.6.2 R2A20134EVB-IN Parts List

$\mathrm{Vin}=\mathrm{AC85}$ to $132 \mathrm{~V}, \mathrm{Vf}=\mathbf{3 5} \mathrm{V}$, ILED $=\mathbf{1 0 0} \mathbf{~ m A}$

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
IC1	IC	R2A20134SP	1			Renesas	
Q1	MOSFET	RJK6002DPD	1	600 V	$1.6 \Omega \mathrm{MAX}$.	Renesas	
DB1	Diode Bridge	MB6S	1	600 V	0.5A		
D1	Diode	RKH0160AKU	1	600 V	200 mA		
D2	Diode	CRH01	1	200 V	1A		
D3	Diode	HSU83-E	1	250 V	100 mA	Renesas	
D4	Diode	HSC119	1	80 V	100 mA	Renesas	
ZD1	Zener Diode	RD20SB2	1	20 V	200 mW	Renesas	
C1	Chemical Capacitor	EKY-500ELL101MHB5D	1	50 V	$100 \mu \mathrm{~F}$		
C2	Capacitor	GRM43DR72J104KW01L	1	630 V	$0.1 \mu \mathrm{~F}$	Murata	4532 size
C3	Capacitor	GRM31CC8YA106KA12L	1	35 V	$10 \mu \mathrm{~F}$	Murata	3216 size
C4	Capacitor	GRM155R71C104KA88J	1	16 V	$0.1 \mu \mathrm{~F}$	Murata	1005 size
C5	Capacitor	open	1				1005 size
C6	Capacitor	GRM155R71C104KA88J	1	16 V	$0.1 \mu \mathrm{~F}$	Murata	1005 size
C7	Capacitor	GRM31B5C2J102JW01L	1	630 V	1000pF	Murata	3216 size
R1	Resistor	100Ω	1	1/16W	100Ω		1005 size
R2	Resistor	$200 \mathrm{k} \Omega$	1	1/8W	$200 \mathrm{k} \Omega$		2012 size
R3	Resistor	1.5Ω	1	1/8W	1.5Ω		2012 size
R4	Resistor	$100 \mathrm{k} \Omega$	1	1/8W	100k Ω		2012 size
R5	Resistor	200k Ω	1	1/16W	200k Ω		1005 size
R6	Resistor	open	1				1005 size
R7	Resistor	$100 \mathrm{k} \Omega$	1	1/8W	100k Ω		2012 size
R8	Resistor	150Ω	1	1/16W	150Ω		1005 size
R9	Resistor	$68 \mathrm{k} \Omega$	1	1/16W	$68 \mathrm{k} \Omega$		1005 size
R10	Resistor	$5.1 \mathrm{k} \Omega$	1	1/16W	$5.1 \mathrm{k} \Omega$		1005 size
R11	Resistor	$120 \mathrm{k} \Omega$	1	1/16W	120k Ω		1005 size
R12	Resistor	$270 \mathrm{k} \Omega$	1	1/4W	270k Ω		3216 size
R13	Resistor	$100 \mathrm{k} \Omega$	1	1/8W	100k Ω		2012 size
L1	Choke Coil	LQH43CN471K03	1		$470 \mu \mathrm{H}$	Murata	
T1	Transformer	Y11009	1			TDK	

5.6.3 R2A20134EVB-IN Board Pattern

5.6.4 R2A20134EVB-IN Evaluation Data

5.7 R2A20134EVB-ID (isolated, dimming, peak current controlled)
5.7.1 R2A20134EVB-ID 100 V Schematic

5.7.2 R2A20134EVB-ID 220 V Schematic

5.7.3 R2A20134EVB-ID 100 V Parts List

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
IC1	IC	R2A20134SP	1			Renesas	
Q1	MOSFET	RJK6002DPD	1	600 V		Renesas	
Q2	MOSFET	RJK6002DPD	1	600 V		Renesas	
Q4	MOSFET	2SK3107	1	30 V	8Ω	Renesas	
Q5	MOSFET	2SK3107	1	30 V	8Ω	Renesas	
DB1	Diode bridge	MB6S	1	600 V	0.5A		
D1	Diode	M1F60	1	600 V	1A	Shindengen	
D2	Diode	RKH0160AKU	1	600 V	200 mA	Renesas	
D3	-						
D4	-						
D5	Diode	CRF03	or	600 V	0.7A	Toshiba	
D6	Diode	HSC119-E	1	80V	100 mA	Renesas	
D7	Diode	open	1				
ZD1	Zener diode	RKZ5.1B2KJ	1	5 V		Renesas	
ZD2	Zener diode	HZU3ALL-E	1	3 V		Renesas	
ZD3	Zener diode	RKZ18B2KJ	1	18 V		Renesas	
C1	Ceramic capacitor	RDER72J104K8K1C11B	1	630 V	$0.1 \mu \mathrm{~F}$	Murata	
C2	Ceramic capacitor	open	1	630 V	$0.1 \mu \mathrm{~F}$	Murata	4532 size
C3	Ceramic capacitor	GRM43DR72J104KW01L	1	630 V	$0.1 \mu \mathrm{~F}$	Murata	4532 size
C4	Ceramic capacitor	GRM31B5C2J102JW01L	1	630 V	1000pF	Murata	3216 size
C5	Chemical capacitor	EKY-500ELL101MHB5D	1	50 V	100 $\mu \mathrm{F}$	Nippon Chemi-Con	$\begin{aligned} & \hline 105^{\circ} \mathrm{C}, \\ & 8 \phi \times 11.5 \end{aligned}$
C6	-						
C7	Ceramic capacitor	GRM21BR71H105KA12L	1	50 V	$1 \mu \mathrm{~F}$	Murata	2012 size
C8	Ceramic capacitor	GRM32EC81E226KE15L	1	25 V	$22 \mu \mathrm{~F}$	Murata	3225 size
		GRM32ER71E226KE18L	or	25 V	$22 \mu \mathrm{~F}$	Murata	3225 size
C9	Ceramic capacitor	GRM155R71C104KA88J	1	16V	$0.1 \mu \mathrm{~F}$	Murata	1005 size
C10	-						
C11	Ceramic capacitor	open		50V			No mount
C12	-						

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
R1	Resistor	RK73H2ATTD1R20F	1	1/8W	1.2Ω	KOA	$\begin{aligned} & 2012 \text { size } \\ & 1 \% \end{aligned}$
R2	Resistor	RCR25C514J	1	1/4W	510k Ω	KOA	high blocking voltage
R3	Resistor	RCR25C105J	1	1/4W	$1 \mathrm{M} \Omega$	KOA	high blocking voltage
R4	Resistor	RK73B1JTTD104J	1	1/10W	$100 \mathrm{k} \Omega$	KOA	1608 size
R5	Resistor	RK73B3ATTD751J	1	1/4W	750Ω	KOA	3216 size
R6	Resistor	RK73B1JTTD103J	1	1/10W	$10 \mathrm{k} \Omega$	KOA	1608 size
R7	Resistor	RK73B1JTTD124J	1	1/10W	$120 \mathrm{k} \Omega$	KOA	1608 size
R8	Resistor	RK73Z1JTTD	1	1A	0Ω	KOA	1608 size
R9	Resistor	RK73B1JTTD470J	1	1/10W	47Ω	KOA	1608 size
R10	Resistor	RK73B1JTTD473J	1	1/10W	$47 \mathrm{k} \Omega$	KOA	1608 size
R11	Resistor	RK73B2ATTD514J	1	1/8W	$510 \mathrm{k} \Omega$	KOA	2012 size
R12	Resistor	RK73B1JTTD163J	1	1/10W	$16 \mathrm{k} \Omega$	KOA	1608 size
R13	-						
R14	Resistor	open	1			KOA	3216 size
R15	Resistor	RK73B1JTTD513J	1	1/10W	51k Ω	KOA	1608 size
R16	Resistor	RK73B2BTTD274J	1	1/4W	270k Ω	KOA	3216 size
R17	Resistor	NM	1	1/10W	$1 \mathrm{M} \Omega$	KOA	$\begin{aligned} & 1608 \text { size } \\ & 1 \% \end{aligned}$
R18	Resistor	0Ω	1	1/10W	120k Ω	KOA	$\begin{aligned} & 1608 \text { size } \\ & 1 \% \end{aligned}$
R19	-						
VR1	Variable resistor	Short with 0 21608	1	0.1W	22k Ω	Murata	PVZ2A
L1	Coil	TSL0709RA102	1		1 mH	TDK	
T1	Transformer	Y10450-2A	1			TDK	
F1	Fuse	HTS 1A	1	AC250V	1A	Skygate	

5.7.4 R2A20134EVB-ID 220 V Parts List

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
IC1	IC	R2A20134SP	1			Renesas	
Q1	MOSFET	2SK1528S	1	900 V	4A	Renesas	LDPAK(S)-(1)
Q2	MOSFET	RJK6002DPD	1	600 V	5A	Renesas	
Q4	MOSFET	2SK3107	1	30 V	8Ω	Renesas	
Q5	MOSFET	2SK3107	1	30 V	8Ω	Renesas	
DB1	Diode bridge	MB6S	1	600 V	0.5A		
D1	Diode	M1F60	1	600 V	1A	Shindengen	
D2	Diode	1N4007	1	1kV	1A	Fairchild	
D3	-						
D4	-						
D5	Diode	CRF03	1	600 V	0.7A	Toshiba	
D6	Diode	HSC119-E	1	80 V	100 mA	Renesas	
D7	Diode	HSC119-E	1	80V	100 mA	Renesas	
D8	Diode	RKR104BKH	1			Renesas	
ZD1	Zener diode	RKZ5.1B2KJ	1	5 V		Renesas	
ZD2	Zener diode	HZU3ALL-E	1	3 V		Renesas	
ZD3	Zener diode	RKZ20B2KJ	1	18 V		Renesas	
C1	Ceramic capacitor	RDER72J104K8K1C11B	1	630 V	$0.1 \mu \mathrm{~F}$	Murata	
C2		(no mount)					
C3	Chemical capacitor	EKMG451ELL4R7MJ20S	1	450 V	$4.7 \mu \mathrm{~F}$	Nippon Chemi-Con	\$10×20
		BXC 450V 4.7 $\mu \mathrm{F}$	or	450 V	$4.7 \mu \mathrm{~F}$	Rubycon	\$10×20
		UVZ2W4R7MPD	or	450 V	$4.7 \mu \mathrm{~F}$		\$10×20
C4	Ceramic capacitor	GRM31B5C2J102JW01L	1	630 V	1000pF	Murata	3216 size
C5	Chemical capacitor	EKY-500ELL101MHB5D	1	50 V	$100 \mu \mathrm{~F}$	Nippon Chemi-Con	$105^{\circ} \mathrm{C}$
C6	-						
C7	Ceramic capacitor	GRM21BR71H105KA12L	1	50 V	$1 \mu \mathrm{~F}$	Murata	2012 size
C8	Ceramic capacitor	GRM32EC81E226KE15L	1	25 V	$22 \mu \mathrm{~F}$	Murata	3225 size
		GRM32ER71E226KE18L	or	25 V	$22 \mu \mathrm{~F}$	Murata	3225 size
C9	Ceramic capacitor	GRM155R71C104KA88J	1	16 V	$0.1 \mu \mathrm{~F}$	Murata	1005 size
C10	-						
C11	Ceramic capacitor	open					No mount
C12	-						

Symbol	Parts Name	Catalog No.	Q	Rating		Manufacture	Note
R1	Resistor	3.3Ω	1	1/8W	3.3Ω		$\begin{aligned} & 2012 \text { size } \\ & 1 \% \end{aligned}$
R2	Resistor	$1 \mathrm{M} \Omega$	1	1/4W	$1 \mathrm{M} \Omega$		high blocking voltage
R3	Resistor	$2.2 \mathrm{M} \Omega$	1	1/4W	2.2M Ω		high blocking voltage
R4	Resistor	100k Ω	1	1/10W	$100 \mathrm{k} \Omega$		1608 size
R5	Resistor		1				3216 size
R6	Resistor	10k Ω	1	1/10W	$10 \mathrm{k} \Omega$		1608 size
R7	Resistor	$120 \mathrm{k} \Omega$	1	1/10W	120k Ω		1608 size
R8	Resistor	0Ω	1	1A	0Ω		1608 size
R9	Resistor	100Ω	1	1/10W	100Ω		1608 size
R10	Resistor	68k Ω	1	1/10W	$68 \mathrm{k} \Omega$		1608 size
R11	Resistor	$510 \mathrm{k} \Omega$	1	1/8W	$510 \mathrm{k} \Omega$		2012 size
R12	Resistor	$16 \mathrm{k} \Omega$	1	1/10W	$16 \mathrm{k} \Omega$		1608 size
R13	-						
R14	Resistor		1				3216 size
R15	Resistor	$51 \mathrm{k} \Omega$	1	1/10W	$51 \mathrm{k} \Omega$		1608 size
R16	Resistor	270k Ω	1	1/4W	270k Ω		3216 size
R17	Resistor	$1 \mathrm{M} \Omega$	1	1/10W	$1 \mathrm{M} \Omega$		$\begin{aligned} & 1608 \text { size } \\ & 1 \% \end{aligned}$
R18	Resistor	120k Ω	1	1/10W	$120 \mathrm{k} \Omega$		$\begin{aligned} & 1608 \text { size } \\ & 1 \% \end{aligned}$
R19	-						
R20	Resistor	RK73B2ATTD101J	1	1/8W	100Ω	KOA	2012 size
R21	Resistor	RK73B1JTTD220J	1	1/10W	22Ω	KOA	1608 size
	Diode	RKR104BKH	1			Renesas	
VR1	Variable resistor	Short with 0 01608	1	0.1W	22k Ω	Murata	PVZ2A
L1	Coil	TSL0709RA102	1		1 mH	TDK	
T1	Transformer	Y10450-4	1			TDK	Primary: 5 mH
F1	Fuse	HTS 1A	1	AC250V	1A	Skygate	

5.7.5 R2A20134EVB-ID Board Pattern

Top Layer: Circuit Pattern

Top Layer: Solder Resist

Top Layer: Silk Screen

Bottom Layer: Circuit Pattern

Bottom Layer: Solder Resist

Bottom Layer: Silk Screen

Outside view of the EVB

5.7.6 R2A20134EVB-ID Board Evaluation Data 100 V

* Efficiency data is without dummy load

5.7.7 R2A20134EVB-ID Board Evaluation Data 220 V

* Efficiency data is without dummy load

5.7.8 The Approach to Calculate Each Constant Value for R2A20134EVB-IN, ID

[Conditions precedent of design]
Vin = 85 Vac to 132 Vac , Vout $=35 \mathrm{Vdc}$, Iout = 0.2 A , at fixed switching frequency $=80 \mathrm{kHz}$

In the case of peak current control type at fixed frequency condition, it's a control method to keep input power as same level.
** The current flowing through a inductor is discontinuous.

- The way to decide Frequency

Firstly frequency value should be set 80 kHz to avoid Audio frequency band.

- The way to decide "Rrt"

Please refer to the expression of section 3.4.
Although Rrt is $120.5 \mathrm{k} \Omega$, this value should be $120 \mathrm{k} \Omega$ by cutting off to the closest whole number.
Then, Frequency value should be changed to 80.3 kHz .

- The way to decide the first-order winding Inductance

Input power can be calculated by following expression.
Input Power=(Output power)/(Efficiency)
If Output Power is 7 W and Efficiency is 80%, Input power should be 8.75 W .
In addition, the case of Minimum input voltage $=80 \mathrm{~V}$, input current should be 109 mA .
Maximum Duty ratio is 50%, then peak current of FET should be $2 \times \operatorname{In} /$ Duty $=438 \mathrm{~mA}$.
On-Term is $6.2 \mu \mathrm{~s}$, then $\mathrm{Lp}=\mathrm{Vin} \times \mathrm{Ton} / \mathrm{Ip}=1.132 \mathrm{mH}$. But Lp should be just 1 mH by allowable tolerance.

- The way to decide the first-order turns
$\mathrm{Np}=$ Vin \times Ton/Ae/BT
The first-order winding Inductance is 1 mH , then Ton can be gotten by following to fulfill Pin=8.75W.
Ton $=\sqrt{ }($ Iave $\times 2 \times T \times L / V i n)=\sqrt{ }(\operatorname{Pin} \times 2 \times T \times L) / V i n=\sqrt{ }(8.75 \mathrm{~W} \times 2 / 80.3 \mathrm{kHz} \times 1 \mathrm{mH}) / 80 \mathrm{~V}=5.8 \mu \mathrm{~s}$
At the condition using EE16-Core $(\mathrm{Ae}=19.8 \mathrm{~mm} 2)$ and setting Saturation magnetic flux density: $\mathrm{BT}=300 \mathrm{mT}$, $\mathrm{Np}=80 \mathrm{~V} \times 5.8 \mu \mathrm{~s} / 19.8 \mathrm{~mm} 2 / 300 \mathrm{mT} \times 1000000000=78.6$
According to making consideration Np>79, Winding width of Transmitter and Gap measurement, Finally Np should be set 86 .
- The way to decide the ratio of winding number : the first order VS the second order

It should be set the critical operation of Duty ratio $=50 \%$ at Minimized Input voltage \& Output Voltage.
In the case of Vin $=80 \mathrm{~V}$, Vout $=20 \mathrm{~V}, \mathrm{Vf}=1.5 \mathrm{~V}$ which is rectifier diode for the second order, the ratio of winding
number is "Np:Ns=Vin:(Vout+Vf)=80:21.5".
Since Np is 86 , Ns becomes 23.11.
If the secondly winding number is not integer number, it should be rounded and sets discontinuous operation.
Thus, Ns should be 24.

- The way to decide auxiliary winding for IC power supply

Auxiliary winding is generated as below.
Winding direction is commeasurable with Output power,
IC power supply: Vcc can keep over UVLO at Minimum Output Voltage.
Ns:Nb=(Vout+Vf):(Vcc+Vf)=21.5:11.4
By above expression; $\mathrm{Ns}=24$ and $\mathrm{Nb}=13$
** It's possible to get higher voltage against to target one. It depends on IC power supply load is lower value. Therefore please try to adjust winding number in actual condition.

- The way to decide Rcs
$\operatorname{Iin}($ peak $)=\sqrt{ }(\operatorname{Pin} \times 2 \times T / L)=\sqrt{ }(8.75 \mathrm{~W} \times 2 / 80.3 \mathrm{kHz} / 1 \mathrm{mH})=467 \mathrm{~mA}$ At $\mathrm{Vcs}=0.6 \mathrm{~V}$ and $\mathrm{Rcs}=1.2 \Omega$
- The way to decide Dimming Circuits

Please refer to the section of "ND". Thanks.

Website and Support

Renesas Electronics Website

http://www.renesas.com/
Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Description	
Rev.	Date	Page	Summary
1.00	Sep 16, 11	-	First edition issued
2.00	Feb 14, 12	-	Second edition issued

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: $+1-408-588-6000$, Fax: $+1-408-588-6130$
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: $+1-905-898-5441$, Fax: $+1-905-898-3220$
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
el. +49-2
Renesas Electronics (China) Co., Ltd.
el
Renesas Electronics (Shanghai) Co Ltd
Unit 204, 205, AZIA Center, No.1233. Lujilazui Ring Rd., Pudong District, Shanghai 200120, China
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., P
Renesas Electronics Hong Kong Limited
Unit $1601-1613,16 /$ F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: $+886-2-8175-9600$, Fax: +886 2-8175-9670
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
el: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906 , Block B, Menara Amcorp Amcorp
nit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Renesas Electronics Korea Co., Ltd.
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

$$
\square
$$

