
 Application Note

R16AN0015EU0101 Rev.1.01 Page 1
Jan 31, 2023 © 2021-2023 Renesas Electronics

This document describes the accompanying sample code that demonstrates the features of the RAA4889206
Battery Front End (BFE) and its interactions with an MCU. It provides examples of routines, sequences, and good
practices to configure, initialize, and interact with the BFE. However, this sample code is not intended to be a
complete system solution for product deployment.

Contents
1. Overview . 4

1.1 Assumptions and Advisory Notes . 4

2. RAA489206 BFE Overview . 5

2.1 Features . 5

2.2 Applications . 5

2.3 Typical Application . 6

3. General Software Structure . 6

4. How to Use the Demo Project . 9

4.1 Operating Environment . 9

4.2 Importing the Demo Project . 10

4.3 Building and Debugging . 12

4.4 Demo Project Functional Description . 12

4.4.1 BFE and EK-RA4W1 Boards . 12

4.5 Terminal Emulator . 12

4.6 Use of Command-Line Interface (CLI) . 13

5. Demo Project Implementation . 14

5.1 FSP Architecture . 14

5.2 BAL Implementation . 16

5.2.1 BAL Interface . 16

5.2.2 BFE API Structure . 17

5.2.3 BFE Interface Instance Structure . 22

5.3 RAA489206 BFE Instance Implementation . 23

5.3.1 Header File r_bfe_raa489206.h . 23

5.3.2 Source File r_bfe_raa489206.c . 31

5.3.3 Reset and Device Registers . 32

5.3.4 Registers Bank . 33

5.3.5 Private (Static) Variables and Functions . 35

5.3.6 Interface API Implementation . 37

6. Sample Battery Management System . 64

6.1 Overview . 64

6.2 Header File r_bms.h . 65

6.3 Source Code r_bms.c . 65

6.4 Declarations . 65

6.5 The bms_main Function . 67

7. State-of-Charge Application . 71

8. CLI Commands List . 72

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End

R16AN0015EU0101 Rev.1.01 Page 2
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.1 BFE command group . 72

8.1.1 Initialize Device . 72

8.1.2 Discharge Overcurrent (DOC) Threshold . 72

8.1.3 Charge Overcurrent (COC) Threshold . 73

8.1.4 Discharge Short-Circuit Current (DSC) Threshold . 73

8.1.5 Internal Over-Temperature Fault (IOTF) Threshold . 73

8.1.6 Internal Over-Temperature Warning (IOTW) Threshold . 73

8.1.7 Maximum Cell Voltage Delta (MAXDELTA) Threshold . 74

8.1.8 Cell Overvoltage (VCELLOV) Threshold . 74

8.1.9 Cell Undervoltage (VCELLUV) Threshold . 74

8.1.10 Pack Overvoltage (VPACKOV) Threshold . 74

8.1.11 Pack Undervoltage (VPACKUV) Threshold . 75

8.1.12 Thresholds . 75

8.1.13 BFE status . 75

8.1.14 Scan . 76

8.1.15 FETs Commands . 77

8.1.16 Mode . 78

8.1.17 Cells Count - Cells Select . 78

8.1.18 Shunt Resistor Value . 78

8.2 Register (REG) Command . 79

8.2.1 Read Register . 79

8.2.2 Write Register . 79

8.3 Measurement (MEAS) Command Group . 79

8.3.1 Vpack . 79

8.3.2 Ipack . 80

8.3.3 Vcells . 80

8.3.4 Vcell N . 80

8.3.5 Total Cell Voltage . 80

8.3.6 Internal Temperature . 81

8.3.7 Regulator Voltage . 81

8.3.8 Regulator Current . 81

8.4 Cell Balancing Command Group . 81

8.4.1 Cell Balancing Enable/Disable . 81

8.4.2 End-of-Charge Voltage . 82

8.4.3 End-of-Charge Current . 82

8.4.4 Automatic Cell Balancing Enable/Disable . 82

8.4.5 Cell Balancing FETs Configuration . 82

8.4.6 Cell Balancing Trigger . 83

8.4.7 Cell Balancing Mask . 83

8.4.8 Cell Balancing End-of-Charge Enable/Disable . 83

8.4.9 Current End-Of-Charge Enable/Disable . 83

8.4.10 Cell Balancing Charge Enable/Disable . 84

8.4.11 Cell Balancing Cell State . 84

8.4.12 Cell Balancing Minimum Delta Threshold . 84

8.4.13 Cell Balancing Maximum Threshold . 84

8.4.14 Cell Balancing Minimum Threshold . 85

8.4.15 Cell Balancing On Timer . 85

8.4.16 Cell Balancing Off Timer . 85

8.5 Sample Battery Management System . 85

R16AN0015EU0101 Rev.1.01 Page 3
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.6 State-of-Charge Application . 86

9. Revision History . 86

R16AN0015EU0101 Rev.1.01 Page 4
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

1. Overview
Figure 1 shows the operating environment of the demo project bfe_raa849206_ek_ra4w described in this
document, which runs on the EK-RA4W1 board. The BFE board and the attached battery cells can be the
RTKA489206DE0000BU evaluation and resistor ladder boards, or any custom board that includes connectivity
between the BFE device and the target MCU. The project implements a command-line interface (CLI), which is
accessed by a terminal emulator, such as Tera Term on a PC connecting with the EF-RA4W1 board using an USB
cable.

The CLI provides commands, which execute the interaction sequences that systems and devices interfacing with
BFEs follow to use BFE features. This sample code also contains a sample BMS application that monitors the
status of the BFE and reports critical fault events over the terminal interface.

1.1 Assumptions and Advisory Notes
1. It is assumed you possess basic understanding of microcontrollers and embedded systems hardware.

2. Renesas recommends reviewing the EK-RA4W1 Quick Start Guide and EK-RA4W1 Manual, in addition to the
RAA489206 Datasheet and Evaluation Kit Manual, to get acquainted with MCU and BFE features before
proceeding further.

3. Flexible Software Package (FSP) and Integrated Development Environment (IDE) such as e2 studio are
required to modify, extend, or develop embedded applications on the target EK-RA4W1 kit.

4. Instructions to download and install software, import example projects, build them and program the EK-RA4W1
board are provided in Renesas e2studio 2021-07 or Higher User’s Manual: Quick Start Guide (R20UT5034EJ).

Note: Do not install the sample code into your product. The operation of sample code is not guaranteed.
Confirming the operation is your own responsibility.

Figure 1. Demo Project Operating Environment

R16AN0015EU0101 Rev.1.01 Page 5
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

2. RAA489206 BFE Overview
The RAA489206 is a 16-cell Battery Front End (BFE) IC, an essential component of BMS that periodically scans
battery status and the operating environment to optimize battery life and prevent catastrophic failures.

To manage the overall state of the battery pack, a differential multiplexer and 16-bit ADC allow for the accurate
monitoring of cell voltage, temperature, and load current.

Low current consumption with an average IDLE mode current of 200μA and a SHIP mode current of less than
18μA maximizes the storage and discharge life of a battery pack.

2.1 Features
▪ High hot plug rating: 62V

▪ VCELL accuracy: ±10mV

▪ IPACK accuracy: ±0.2%

▪ 16-bit VCELL and IPACK measurements

▪ Charge/Load wakeup detection circuitry

▪ 4-pin GPIO port

▪ Integrated 3.3V regulator

▪ Supports I2C, SPI, and SPI w/CRC communications

2.2 Applications
▪ Light electric vehicles such as e-bikes, e-scooters, and e-motorcycles

▪ Cordless power and gardening tools

▪ Home appliances

▪ 24V, 36V, 42V, and 48V portable battery packs

▪ Telecom and server farms

▪ Solar farms

▪ Energy storage systems

R16AN0015EU0101 Rev.1.01 Page 6
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

2.3 Typical Application
Figure 2 shows a typical MCU-BFE application. See the RAA489206 Datasheet for further information on
functionality and communication interfaces.

3. General Software Structure
Figure 3 shows the software structure of the sample code described in this document. The user application code
block consists of two modules: the CLI and the sample BMS. The CLI provides commands to interact with the BFE
and execute tasks such as:

▪ Set and read BFE registers using hexadecimal notation.

▪ Read fault and status indicators, and measurements, such as current, voltage and temperature.

▪ Set protection thresholds, such as overvoltages and undervoltages, maximum voltage difference between cells,
internal over-temperature, and discharge, charge and short-circuit currents.

▪ Clear faults reported by the BFE.

▪ Read and set BFE mode.

▪ Perform continuous scan operation to monitor the battery pack, in addition to single system scans.

▪ Turn ON and OFF power FET drivers for charge and discharge.

Figure 2. MCU-BFE Typical application

RAA489206
Battery Front

End

VBAT1 VBAT2 VCP DFET LDMON

VC16

CB16

VC15

CB15

CSN

CSP

VSS

AUX1/XT1

VTEMP

RSH

EPAD

CFET

PACK+

MISO/SDA

MOSI

SCL

DGND

CMS0

VDD VDD

EMITTER

VDD

VCC

V2P5

BASE

MCU

VC2

CB2

VC0

VC1

CB1

GPIO3

GPIO0

PACK-

AUX0/XT0

ALRT

WAKEUP

RESET

ADDR/CS

RTHERM

RTHERM

R16AN0015EU0101 Rev.1.01 Page 7
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

The sample BMS can be started by the CLI. It is a sample application that uses the continuous scan operation
feature BFE to monitor and protect the battery pack, typical functions of BMSs.

Both CLI and sample BMS applications interact with the BFE through the BFE Abstraction Layer (BAL). The BAL
defines a BFE Interface as a structure consisting of an Application Program Interface (API), a Control Structure,
and a Configuration Structure. The BAL works as a middleware between the user application code and the
hardware. It decouples user applications code from the software that drives the direct interaction with the BFE and
allows usage of BFE features through the API of the BFE interface module. Whereas BFE interface structures
(API, Control, and Configuration) are mainly declarations of BFE features, the RAA489206 Instantiation defines
and implements the interactions that provide those features. The instance uses the Hardware Abstraction Layer
(HAL) of Renesas Flexible Software Package (FSP) to access and use MCU peripherals and modules.

The BFE instance uses the following APIs of HAL to interact with the BFE device:

▪ External Interruption Request (IRQ) Interface to detect the ALERT pin events generated by the BFE.

▪ Serial Peripheral Interface (SPI) Interface to communicate with the BFE.

▪ General Purpose Input/Output (GPIO) to access and configure I/O ports that configure the communication
interface and reset the BFE.

▪ Universal Asynchronous Receiver-Transmitter (UART) to communicate with the terminal emulator.

Low Power Mode (LPM) to control the power consumption of the MCU during the execution of applications.

Table 1 shows the structure of the sample code. The modules shown in bold within the gray cells contain the code
related to the use of BFE functionalities; their code can be modified to extend BFE features or adapt to the
requirements of the intended case.

Figure 3. Software Structure of the Sample Code

R16AN0015EU0101 Rev.1.01 Page 8
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

Table 1. Directory Structure of the Sample Code

Directory Description Module

ra fsp inc api Modules APIs HAL
(Generated by
FSP)instances Definition of modules instances

src r_*.c APIs Implementations

ra_gen --- Instantiation of HAL modules and
main.c that calls the entry point

ra_cfg fsp_cfg r_*_cfg.h Configuration options files

src hal_entry.c --- Entry point that calls the
application main

bfe --- r_bfe_api.h BAL API BAL

r_bfe_raa489206_cfg.h Configuration macros

r_bfe_raa489206.* BFE instance and API
implementation

app_lib cli *.c

*.h

Command-Line Interface
implementation

User
Application

cmd *.c

*.h

CLI commands

user_app r_bms.* BMS sample application

r_cli_main.* CLI application main called by
entry function in hat_entry.c

r_coulomb_counting.* Coulomb Counting functions

r_icr1865026j_02a.* Lookup table values of
released capacity vs. open
circuit voltage of the
ICR18650_26J cell

r_lookup_table.* Function that looks and
interpolates values in a lookup
table

r_soc.* State-of-Charge (SOC)
application

R16AN0015EU0101 Rev.1.01 Page 9
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

4. How to Use the Demo Project
This section describes the procedure to import the demo project that contains the sample code.

4.1 Operating Environment
Table 2 and Table 3 show the hardware and software requirements to build and debug the provided sample
software.

Table 2. Hardware Requirements

Hardware Description

Host PC Windows® 10 PC with USB interface

MCU Board EK-RA4W1 [RTK7EKA4W1S00000BJ]

On-chip debugging emulator The EK-RA4W1 has a J-Link on-board debugger, so no external debugger is
necessary

USB cables Two USB A/USB micro B cables to connect the EK-RA4W1 (Debugger and
serial) to the PC

Table 3. Software Requirements

Software Version Description

GCC environment e2 studio 2022-04 Windows® 10 PC with USB interface

GCC ARM Embedded 10.2.1.20201103 C/C++ compiler (download available from e2 studio
installer)

Renesas Flexible
Software Package
(FSP)

3.3.0 or higher Software package for development of projects with the
Renesas RA series of MCU devices

Segger J-Flash V6.94 Tool to program on-chip flash memories of MCU devices

Header files All API calls and their supporting interface definitions
located in the header files (*.h) contained in the src
directory

Integer types ANSI C99 Exact width integer types declared in stdint.h

R16AN0015EU0101 Rev.1.01 Page 10
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

4.2 Importing the Demo Project
The Demo project provided with this document can be imported into an e2 studio workspace by completing the
following steps:

1. Select File > Import

2. Select Existing Project into Workspace and click Next button.

Figure 4. File Menu to Import the Demo Project

Figure 5. Selection of the Import Option

R16AN0015EU0101 Rev.1.01 Page 11
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

3. Select the Select archive file option, click the Browse… button and then select the demo project file (.zip).
Click the Finish button.

4. The project is now imported into the e2 studio workspace. Figure 7 shows the imported project structure

Figure 6. Import the Sample Project

Figure 7. Structure of the Sample Project

R16AN0015EU0101 Rev.1.01 Page 12
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

4.3 Building and Debugging
Reference the Renesas e2studio 2021-07 or Higher - User’s Manual: Quick Start Guide (R20UT5034EJ0100).

4.4 Demo Project Functional Description

4.4.1 BFE and EK-RA4W1 Boards
The sample project requires the RA489206 BFE device to be properly mounted on a board with the required
circuitry as specified by its datasheet. It is also necessary that the BFE board allows direct connectivity between
the EK-RA4W1 board and the BFE chip. Table 4 shows the pin assignments of the connections required between
the EK-RA4W1 board and the BFE device.

4.5 Terminal Emulator
The CLI of the Demo project enables the interaction of the user with the MCU to command the actions performed
by the BFE. To access the CLI, the user requires serial communication between the PC and EK-RA4W1. Because
the EK-RA4W is equipped with a USB-Serial converter IC, this communication can be handled as a COM port by
a terminal emulator such as Tera Term. Table 5 shows the terminal setup for the project CLI.

Table 4. Pin Assignments

Signal Name BFE Pin MCU Port Evaluation Kit Pin

DGND 35, 36 -- J6 (-)

MISO/SDA 44 P100 27

MOSI 43 P101 26

SCL 42 P102 25

ADD/ /CS 41 P103 24

/ALERT 40 P111 17

/WAKEUP 39 P110 16

/RESET 38 P104 23

CMS0 34 P106 21

Table 5. Settings of the Terminal

Parameter Value

New Line (Receive) LF

New Line (Transmit) CR

Terminal Mode VT100

Baud Rate 115200

Data Bits 8 bits

Parity None

Stop Bits 1 bit

Flow Control None

R16AN0015EU0101 Rev.1.01 Page 13
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

4.6 Use of Command-Line Interface (CLI)
The CLI is a text-based interactive access to command the execution of MCU routines that interact directly with
the BFE. This section provides general guidelines on the use and features of the CLI. Sample Battery
Management System details the set of available commands, parameters, and examples.

When the EK-RAW4W1 is powered on, the terminal emulator program shows the CLI prompt raa489206
indicating readiness to accept commands. Figure 8 shows the initial CLI prompt.

CLI commands have the following syntax:

[command-group] [sub-command] <value> <option> [LF or CR]

Command-group and sub-command are mandatory fields, whereas value and option (single character preceded
by the hyphen minus) are optional parameters. Figure 9 shows some examples of command executions using the
CLI. Note: Successful executions of commands produce the string [OK], whereas wrong or unsuccessful
executions produce the string [ERROR] and its corresponding description.

Figure 8. Initial CLI Prompt when MCU is Powered On

Figure 9. Examples of CLI Commands and their Syntax

command‐group + sub‐command

command‐group + sub‐command (read)

command‐group + sub‐command + value (set)

command‐group + sub‐command + option (read)

command‐group + sub‐command + value + option (set)

Error

R16AN0015EU0101 Rev.1.01 Page 14
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

The CLI includes Command-line completion. This feature enables the CLI to automatically fill partially typed
commands. To use this feature, type the first few characters of a command, then press the Tab key. The CLI either
completes the command or shows the commands that match the beginning of the typed characters. When the Tab
key is pressed before typing any character, the CLI list all available commands or subcommands as a help
feature. All commands include the implicit subcommand help, which displays a short description of the command
use and the action it executes. Figure 10 depicts examples for the use of command completion and help features.

5. Demo Project Implementation
This sample code addresses the implementation of routines and functions that enable an MCU to interact with the
RA489206 BFE. This section focuses on the description of the code that implements the BFE Abstraction Layer
(BAL) and the Sample BMS Application. The CLI is a user interface whose implementation details are out of the
scope of this document.

5.1 FSP Architecture
BAL is a software abstraction layer designed to enable applications to use BFE features without dealing with low-
level implementations. To achieve this, BAL implements the modular architecture of FSP. According to this
architecture, applications are composed of modules that provide and require functionalities. Figure 11 shows the
concept of the module of FSP.

Figure 10. Command-Line Completion and Help Sub-command Features

Figure 11. Module Concept of FSP

available command groups

Sub‐commands

help subcommand

R16AN0015EU0101 Rev.1.01 Page 15
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

The modules interact and collaborate matching the required and provided functionalities. This functionality-based
approach allows matching modules to form a layered structure with top-level modules and their dependencies.
This structure is called Stack. Figure 12 shows an example of three modules (including an application) whose
required and provided functionalities match, so they form a 3-level stack.

The functionality provided by a module can match the functionality required by multiple modules. So having a
layered structure allows sharing the code among several modules simultaneously. Figure 13 illustrates an
application that can send and receive data over three different driver-driven communication interfaces: Serial
Peripheral Interface (SPI), Universal Asynchronous Receiver-Transmitter (UART), and Inter-Integrated Circuit
(I2C). All three drivers require the transfer functionality provided by the Data Transfer Controller (DTC), so they
can share the same module.

Figure 12. Example of Matching Modules that Form a Stack

Figure 13. Example of a Providing Module (DTC) Matching the Requirement of Multiple Modules

R16AN0015EU0101 Rev.1.01 Page 16
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

On the other hand, multiple modules can provide a common functionality. In the scenario previously described,
drivers differ in the implementation of several items such as their specific protocol, data rate, and physical layer;
however, they all provide the common functionality data communication. Therefore, a middleware module (layer)
providing the functionality data communication functionality can be added between the application and the drivers.
Figure 14 shows the stack of the data communication scenario when a middleware layer is added to provide the
common functionality.

The advantage of adding the middleware layer to the stack is that the application does not have to deal directly
with configuration, interruption routines, and other low-level details of each driver. Conversely, the application has
access to a common interface that provides the required functionality and the option to select one of the three
interfaces to transfer/receive data. Since the application is not driver-dependent anymore, it can transfer/receive
data regardless of the communication interface, the peripheral availability, or moreover, the MCU. The BAL in this
sample code follows the modular architecture of FSP to provide a middleware layer for BFEs features and
implements the functionalities of the RAA489206 BFE.

5.2 BAL Implementation
At the architecture level, modules provide their functionalities using interfaces, which can be thought of as
contracts between the module providing a functionality and the module requiring it. FSP specifies that interfaces
are declared in header files with the naming convention *_api.h. The declaration of the BAL interface can be found
in the header file: src/bfe/r_bfe_api.h (see the project directory structure in Table 1). On the other hand, interface
implementations referred to as instances, are c files containing the function definitions and code bodies that
provide the functionalities declared by the interface. This sample code implements the interface for the
RAA489206 BFE, and its code can be found in the file src/bfe/r_bfe_ra489206.c. The following sections describe
the general structure and components of the BFE interface and the details of its implementation for the
RAA489206 BFE.

5.2.1 BAL Interface
FSP interfaces must include at least three data structures: a configuration structure, an API structure, and an
instance structure. In BAL, these structures correspond to BFE configuration, BFE API, and BFE instance.

Figure 14. Redefinition of the Communication Data Scenario Adding a Middleware Layer

R16AN0015EU0101 Rev.1.01 Page 17
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.2.1.1 BFE Configuration Structure

The configuration structure is an input into the module used for setting up the interface. It contains configuration
settings and parameters the module can reference at runtime to determine the functional behavior of the
implementation. BAL defines the BFE configuration structure as the data type typedef struct st_bfe_cfg. The
definition of the configuration struct intends to collect settings common to most of the BFEs. Table 6 describes its
members.

5.2.2 BFE API Structure
The BFE API declares the signature of the functions that modules implementing the interface, namely instances,
MUST implement to provide the intended features of the module. The API allows modules to be swapped in and
out by instances that implement the same interface. Therefore, applications such as BMS can use potentially any
BFE instance that implements the BLA interface because the API ensures the provided functionalities are the
same. In this sample code, the instance of the BFE API structure corresponds to the RAA489206 BFE.
Applications using its instance could swap it with any other BFE instance that implements the structures defined
by the BLA interface.

Table 7 describes the members of the BFE API structure, which declares the functionalities provided by BLA. All
members are pointers to functions, return values defined by the enumeration e_bfe_err_t to indicate error or
success of the execution, and require pointers to variables to return values. Some of the variable types containing
returned values are of type void. The BFE instance must then define its content structure, (for example, structure
fields) according to the BFE features. These generic types are referred to as instance-defined parameters. The
parameter of data type st_bfe_ctrl_t is a control structure. It is common to all API functions and is an
instance-defined parameter that works as a unique identifier of the BFE instance. Details about the control
structure definition and members are given in RAA489206 BFE Instance Implementation.

Table 6. Members of the BFE Configuration Structure

Typedef struct st_bfe_cfg

Member Type Description

shunt_resistor float Value [Ω] of the shunt resistor

max_cells uint8_t Maximum number of supported cells

min_cells uint8 Minimum number of supported cells

cell_select uint32_t Selected or active cells

peripheral_type e_bfe_comm_peripheral_t Type of communication interface

read_after_write bool Enabler of the feature read-after-write
(RAW)

num_read_after_write uint8_t Number of RAW tries before write
operation fails

driver_conf e_bfe_driver_configuration_t Enumeration indicating the position of
high-power drivers: high-side or low-side
configuration

power_conf e_bfe_fet_configuration_t Enumeration indicating the power FET
configuration: Series or parallel

*p_extend void Pointer to BFE-specific configuration
settings

R16AN0015EU0101 Rev.1.01 Page 18
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

Table 7. BFE API Structure and its Fields

Typedef struct st_bfe_cfg

Member Parameters Description

*p_init st_bfe_ctrl_t * p_ctrl

st_bfe_cfg_t const * const p_cfg

Sets the control structure with the
settings given by the configuration
structure and initialize the BFE
device.

*p_reset st_bfe_ctrl_t * ctrl

e_bfe_reset_type_t reset

Resets the BFE performing the reset
type specified by the enumeration
reset

*p_startSystemScan st_bfe_ctrl_t * ctrl Initiates a complete system scan

*p_startContinuousScan st_bfe_ctrl_t * p_ctrl

bfe_cs_configuration_t * const p_sc

Sets the scan options specified by the
instance-defined parameter p_sc and
start continuous scan operation

*p_stopContinuousScan st_bfe_ctrl_t * p_ctrl Stops continuous scan operation

*p_isBusy st_bfe_ctrl_t * p_ctrl

bool * p_busy

Indicates the current availability of the
device by returning *p_busy = true if
the device is currently executing any
task, or *p_busy = false, otherwise.

*p_readStatus st_bfe_ctrl_t * p_ctrl

bfe_status_t * const p_status

Returns the BFE status by storing
status indicators/registers in the
instance-defined variable pointed by
p_status

*p_readMode st_bfe_ctrl_t * p_ctrl

bfe_mode_t * const p_mode

Reads the current BFE mode and
return it in the variable pointed by
p_mode.

*p_clearAllFaults st_bfe_ctrl_t * p_ctrl Clears all current BFE faults

*p_clearFault st_bfe_ctrl_t * p_ctrl

const bfe_status_t * const p_status

Clears the fault indicators specified
by the instance-defined variable
pointed by p_status

*p_readVpack st_bfe_ctrl_t * p_ctrl

float * const p_value

bool trigger

Reads the pack voltage and return its
value in mV in the variable pointed by
p_value. The boolean trigger
indicates whether a measurement
must be executed (trigger = true)
before reading the value.

*p_readVcells st_bfe_ctrl_t * p_ctrl

bfe_vcells_measurements_t * const p_value

bool trigger

Reads cell voltages and returns their
values in mV in the instance-defined
variable pointed by p_value. The
boolean trigger indicates whether
measurements must be executed
(trigger = true) before reading the
value.

*p_readIpack st_bfe_ctrl_t * p_ctrl

float * const p_value

bool trigger

Reads the pack current and returns
its value in mA (calculated from the
shunt resistor) in the variable pointed
by p_value. The boolean trigger
indicates whether a measurement
must be executed (trigger = true)
before reading the value.

R16AN0015EU0101 Rev.1.01 Page 19
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

*p_readOther st_bfe_ctrl_t * p_ctrl

bfe_other_measurements * const p_value

bool trigger

Reads other measurements (for
example, VCC) and returns their
values in the instance-defined
variable pointed by p_value. The
boolean trigger indicates whether
measurements must be executed
(trigger = true) before reading the
value.

*p_readAuxExt st_bfe_ctrl_t * p_ctrl

bfe_auxext_measurements_t * const p_value

bool trigger

Reads the auxiliary/extern
measurements and returns their
values in mV in the instance-defined
variable pointed by p_value. The
trigger parameter indicates whether
measurements must be executed
(trigger = true) before reading the
value.

*p_readTemperature st_bfe_ctrl_t * p_ctrl

bfe_temperature_measurements_t * const p_value

bool trigger

Reads the temperatures measured by
the BFE and returns their values in °C
in the instance-defined variable
pointed by p_value. The trigger
parameter indicates whether
measurements must be executed
(trigger = true) before reading the
value.

*p_turnChargePumpOn st_bfe_ctrl_t * p_ctrl Turns BFE charge pump on

*p_ turnChargePumpOff st_bfe_ctrl_t * p_ctrl Turns BFE charge pump off

*p_turnDfetOn st_bfe_ctrl_t * p_ctrl Turns discharge FET (DFET) on.

*p_turnDfetOff st_bfe_ctrl_t * p_ctrl Turns discharge FET (DFET) off.

*p_turnCfetOn st_bfe_ctrl_t * p_ctrl Turns the charge FET (CFET) on.

*p_turnCfetOff st_bfe_ctrl_t * p_ctrl Turns the charge FET (CFET) off.

*p_turnDfetOnCfetOn st_bfe_ctrl_t * p_ctrl Turns discharge and charges FETs
on.

*p_turnDfetOffCfetOn st_bfe_ctrl_t * p_ctrl Turns DFET off and CFET on.

*p_turnDfetOnCfetOff st_bfe_ctrl_t * p_ctrl Turns DFET on and CFET off.

*p_turnDfetOffCfetOff st_bfe_ctrl_t * p_ctrl Turns discharge and charges FETs
off.

*p_setMode st_bfe_ctrl_t * p_ctrl

e_bfe_mode_t mode

Sets BFE mode to the modes
specifies by the enumeration
e_bfe_mode_t mode

*p_setAlerts st_bfe_ctrl_t * p_ctrl

bfe_alerts_masks_t masks

Sets the BFE events that notify the
MCU by any means, such as
asserting an external pin. This
function unmasks the events
specified by the instance-defined
parameter masks

*p_setDoc st_bfe_ctrl_t * p_ctrl

float current_th_ma

Sets the discharge overcurrent
threshold to the value current_th_ma
in mA

Table 7. BFE API Structure and its Fields (Cont.)

Typedef struct st_bfe_cfg

Member Parameters Description

R16AN0015EU0101 Rev.1.01 Page 20
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

*p_setCoc st_bfe_ctrl_t * p_ctrl

float current_th_ma

Sets the charge overcurrent threshold
to the value current_th_ma in mA

*p_setDsc st_bfe_ctrl_t * p_ctrl

float current_th_ma

Sets the discharge short-circuit
current threshold to the value
current_th_ma in mA

*p_setMaxVCellDelta st_bfe_ctrl_t * p_ctrl

float voltage_th_mv

Sets the maximum delta cell voltage
threshold to the value
voltage_th_mv in mV

*p_setCellUnderVoltage st_bfe_ctrl_t * p_ctrl

float voltage_th_mv

Sets the cell undervoltage threshold
to the value voltage_th_mv in mV

*p_setCellOverVoltage st_bfe_ctrl_t * p_ctrl

float voltage_th_mv

Sets the cell overvoltage threshold to
the value voltage_th_mv in mV

*p_setVpackUnderVoltage st_bfe_ctrl_t * p_ctrl

float voltage_th_mv

Sets the pack undervoltage threshold
to the value voltage_th_mv in mV

*p_setVpackOverVoltage st_bfe_ctrl_t * p_ctrl

float voltage_th_mv

Sets the pack overvoltage threshold
to the value voltage_th_mv in mV

*p_setInternalOvertempWarn st_bfe_ctrl_t * p_ctrl

float temp_th

Sets the internal over-temperature
warning threshold to the value
temp_th in °C

*p_setInternalOvertempFault st_bfe_ctrl_t * p_ctrl

float temp_th

Sets the internal over-temperature
fault threshold to the value temp_th
in °C

* p_setVoltageEndOfCharge st_bfe_ctrl_t * const p_ctrl

float veoc_mv

Sets the end-of-charge voltage to the
value veoc_mv in mV.

* p_setCurrentEndOfCharge st_bfe_ctrl_t * const p_ctrl

float ieoc_ma

Sets the end-of-charge current to the
value ieoc_ma in mA.

*p_readAlerts st_bfe_ctrl_t * p_ctrl

bfe_alerts_masks_t *const p_alerts

Reads and returns indicators of the
violation of the thresholds monitored
by the BFE, storing their values in the
instance-defined variable pointed by
p_alerts

*p_readDoc st_bfe_ctrl_t * p_ctrl

float *p_current_th_ma

Reads the discharge overcurrent
threshold and returns its value in mA
in the variable pointed by
p_current_th_ma

*p_readCoc st_bfe_ctrl_t * p_ctrl

float *p_current_th_ma

Reads the charge overcurrent
threshold and returns its value in mA
in the variable pointed by
p_current_th_ma

*p_readDsc st_bfe_ctrl_t * p_ctrl

float *p_current_th_ma

Reads the discharge short-circuit
current threshold and returns its value
in mA in the variable pointed by
p_current_th_ma

*p_readMaxVCellDelta st_bfe_ctrl_t * p_ctrl

float *p_voltage_th_mv

Reads the maximum cell voltage
delta threshold and returns its value
in mV in the variable pointed by
p_voltage_th_mv

Table 7. BFE API Structure and its Fields (Cont.)

Typedef struct st_bfe_cfg

Member Parameters Description

R16AN0015EU0101 Rev.1.01 Page 21
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

*p_readCellUnderVoltage st_bfe_ctrl_t * p_ctrl

float *p_voltage_th_mv

Reads the cell undervoltage threshold
and returns its in mV value in the
variable pointed by
p_voltage_th_mv

*p_readCellOverVoltage st_bfe_ctrl_t * p_ctrl

float *p_voltage_th_mv

Reads the cell overvoltage threshold
and returns its value in mV in the
variable pointed by
p_voltage_th_mv

*p_readVpackUnderVoltage st_bfe_ctrl_t * p_ctrl

float *p_voltage_th_mv

Reads the pack undervoltage
threshold and returns its value in mV
in the variable pointed by
p_voltage_th_mv

*p_readVpackOverVoltage st_bfe_ctrl_t * p_ctrl

float *p_voltage_th_mv

Reads the pack overvoltage threshold
and returns its value in mV the
variable pointed by
p_voltage_th_mv

*p_readInternalOvertempWarn st_bfe_ctrl_t * p_ctrl

float *p_temp_th

Reads the internal over-temperature
warning threshold and returns its
value in °C in the variable pointed by
p_temp_th

*p_readInternalOvertempFault st_bfe_ctrl_t * p_ctrl

float *p_temp_th

Reads the internal over-temperature
fault threshold and returns its value in
°C in the variable pointed by
p_temp_th

* p_readVoltageEndOfCharge st_bfe_ctrl_t * const p_ctrl

float * p_veoc_th

Reads the end-of-charge voltage and
returns its value in mV in the variable
pointed by p_veoc_th.

* p_readCurrentEndOfCharge st_bfe_ctrl_t * const p_ctrl

float * p_ieoc_th

Reads the end-of-charge current and
returns its value in mA in the variable
pointed by p_ieoc_th.

*p_configLowPowerMode st_bfe_ctrl_t * p_ctrl

bfe_lpm_cfg_t *p_lpm_cfg

Configures BFE Low Power Mode
settings according to the
instance-defined variable p_lpm_cfg

*p_startLowPowerMode st_bfe_ctrl_t * p_ctrl Sets the device to low power mode

*p_getDieInformation st_bfe_ctrl_t * p_ctrl

st_bfe_information_t *p_info

Reads the die information and returns
its value in the structure pointed by
p_info, which contains version,
manufacturing id, device id and
nickname of the BFE

*p_readRegister st_bfe_ctrl_t * p_ctrl

st_bfe_register_t *p_register

Reads the BFE register specified by
the structure pointed by p_register.
The structure contains: address, type
(R/W), current value and reset/default
value.

Table 7. BFE API Structure and its Fields (Cont.)

Typedef struct st_bfe_cfg

Member Parameters Description

R16AN0015EU0101 Rev.1.01 Page 22
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.2.3 BFE Interface Instance Structure
The instance structure encapsulates all the structures necessary to use a module implementation:

▪ Pointer to the instance API structure

▪ Pointer to the configuration structure

▪ Pointer to the control structure

In BLA, the interface instance structure is defined in src/bfe/r_bfe_api.h as:

typedef struct st_bfe_instance
{
 st_bfe_ctrl_t * p_ctrl; ///< Pointer to the control structure
 const st_bfe_cfg_t * p_cfg; ///< Pointer to the configuration structure
 const st_bfe_api_t * p_api; ///< Pointer to the API structure
} st_bfe_instance_t;

*p_writeRegister st_bfe_ctrl_t * p_ctrl

st_bfe_register_t *p_register

Writes the BFE register specified by
the structure pointed by p_register.
The structure contains: address, type
(R/W), current value and reset/default
value.

*p_readAllRegisters st_bfe_ctrl_t * p_ctrl Reads all BFE registers. Renesas
recommends storing read values in
global variables to keep an image of
BFE registers accessible any code.

Table 7. BFE API Structure and its Fields (Cont.)

Typedef struct st_bfe_cfg

Member Parameters Description

R16AN0015EU0101 Rev.1.01 Page 23
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3 RAA489206 BFE Instance Implementation
The BFE instance and its structures define the contract and features common to most of the BFEs, the
RAA489206 BFE instance contains the actual code implementation of BFE functionalities. Figure 15 shows the
main software components, structures, and files of the BFE interface and instance implementations. This section
details these components with focusing on the source file r_bfe_raa489206.c, because it contains the routines,
sequences, and logic that interact with the RAA489206 BFE.

5.3.1 Header File r_bfe_raa489206.h
This BFE header file contains the following relevant declarations:

▪ Interface control: Structure that stores references to system register structure, configuration of pins driven by
API functions and pointers to functions that read and write registers.

typedef struct st_raa489206_instance_ctrl
{
 u_raa489206_cells_select_t cells_select;
 const spi_instance_t * p_spi; ///< spi instance
 const i2c_master_instance_t * p_i2c; ///< i2c instance
 const ioport_instance_t * p_ioport; ///< ioport instance
 bsp_io_port_pin_t reset_pin; ///< reset pin port
 bsp_io_port_pin_t cms0_pin; ///< CMS0 pin port
 bsp_io_port_pin_t ss_pin; ///< Slave Selection
pin if needed (SPI on SCI)
 bsp_io_port_pin_t i2c_add_sel_pin; ///< I2C address
selector pin
 bsp_io_port_pin_t alert_pin; ///< alert pin
 bsp_io_port_pin_t wakeup_pin; ///< Wakeup pin port

Figure 15. Main Software Components of the RAA489206 BFE Instance Implementation

R16AN0015EU0101 Rev.1.01 Page 24
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

 bool init; ///< Indicates
whether the init() API has been successfully called.
 bool use_crc; ///< use crc feature
and commands
 const st_bfe_cfg_t * p_cfg; ///< Pointer to
configuration entity
 st_raa489206_system_registers_t * p_regs; ///< raa489206
system registers
 e_bfe_err_t (* p_writeRegisterValues)(uint8_t address, uint8_t const * p_values,
uint16_t num_values, bool use_crc); ///< Pointer to write function
 e_bfe_err_t (* p_readRegisterValues)(uint8_t address, uint8_t * p_values,
uint16_t num_values, bool use_crc); ///< pointer to read function
 bool read_after_write;
} st_raa489206_instance_ctrl_t;

▪ Extended configuration: Structure containing the configuration settings that are particular of the RAA489206
BFE.

typedef struct st_raa489206_extended_cfg
{
 float reg_resistor; ///< Sense resistor
between emitter and Vdd pins used to measure Ireg
 bool use_crc; ///< Use cyclic
redundacy check
 bool enable_fuse_blow; ///< enable fuse blow
option
 bool enable_chr_pump_init; ///< indicates whether
the charge pump shall be enable during initialization
 const spi_instance_t * p_spi; ///< spi instance
 const i2c_master_instance_t * p_i2c; ///< i2c instance
 const ioport_instance_t * p_ioport; ///< ioport instance
 bsp_io_port_pin_t reset_pin; ///< reset pin port
 bsp_io_port_pin_t cms0_pin; ///< CMS0 pin port
 bsp_io_port_pin_t ss_pin; ///< Slave Selection
pin
 bsp_io_port_pin_t i2c_add_sel_pin; ///< I2C address
selector pin
 bsp_io_port_pin_t alert_pin; ///< alert pin
 bsp_io_port_pin_t wakeup_pin; ///< Wakeup pin port
 uint8_t device_spi_add_no_crc; ///< SPI slave address
to read data
 uint8_t device_spi_add_with_crc; ///< SPI slave address
to read data using crc
 uint8_t device_i2c_add; ///< I2C slave address

} st_raa489206_extended_cfg_t;

R16AN0015EU0101 Rev.1.01 Page 25
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

▪ System registers: Structure that stores all BFE registers referenced by API functions and the control structure.
It represents the bank of registers of the BFE.

typedef struct st_raa489206_system_registers
{
 //Device details
 st_bfe_register_t die_information;
 //Global IC Controls
 st_bfe_register_t global_operation;
 //Vcell and Ipack Controls
 st_bfe_register_t vcell_operation;
 st_bfe_register_t ipack_operation;
 st_bfe_register_t cell_select;

 st_bfe_register_t etaux_faults_mask;
 st_bfe_register_t other_faults_mask;
 st_bfe_register_t cb_status_masks;
 st_bfe_register_t status_masks;
 st_bfe_register_t open_wire_mask;
 //System Operation
 st_bfe_register_t scan_operation;
} st_raa489206_system_registers_t;

R16AN0015EU0101 Rev.1.01 Page 26
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

▪ API functions declarations: group of declarations of the functions implementing the BFE API defined by the
member described in Table 6.

e_bfe_err_t R_RAA489206_Init (st_bfe_ctrl_t * const p_ctrl, const st_bfe_cfg_t *
const p_cfg);

e_bfe_err_t R_RAA489206_Reset (st_bfe_ctrl_t * const p_ctrl, e_bfe_reset_type_t
reset_type);

e_bfe_err_t R_RAA489206_InitSystemScan (st_bfe_ctrl_t * const p_ctrl);

e_bfe_err_t R_RAA489206_InitContinuousScan (st_bfe_ctrl_t * const p_ctrl, const
bfe_cs_configuration_t * const st_cs_config);

e_bfe_err_t R_RAA489206_StopContinuousScan (st_bfe_ctrl_t * const p_ctrl);

e_bfe_err_t R_RAA489206_IsBusy (st_bfe_ctrl_t * const p_ctrl, bool * p_is_busy);

e_bfe_err_t R_RAA489206_ReadStatus (st_bfe_ctrl_t * const p_ctrl, bfe_status_t *
const p_bfe_status);

e_bfe_err_t R_RAA489206_ClearAllFaults (st_bfe_ctrl_t * const p_ctrl);

.

e_bfe_err_t R_RAA489206_ConfigLowPowerMode (st_bfe_ctrl_t * const p_ctrl,
bfe_lpm_cfg_t * const p_lpm_options);

e_bfe_err_t R_RAA489206_StartLowPowerMode (st_bfe_ctrl_t * const p_ctrl);

e_bfe_err_t R_RAA489206_GetDieInformation (st_bfe_ctrl_t * const p_ctrl,
st_bfe_information_t * p_information);

e_bfe_err_t R_RAA489206_ReadRegister (st_bfe_ctrl_t * const p_ctrl,
st_bfe_register_t * const p_bfe_register);

e_bfe_err_t R_RAA489206_ReadAllRegisters (st_bfe_ctrl_t * const p_ctrl);

e_bfe_err_t R_RAA489206_WriteRegister (st_bfe_ctrl_t * const p_ctrl, const
st_bfe_register_t * const bfe_register);

R16AN0015EU0101 Rev.1.01 Page 27
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

▪ Declarations of void structures of the BFE instance: Group of instance-defined structures that are used by
API functions to configure features and return values.

/* BFE events masks*/
typedef struct
{
 u_raa489206_prifault_masks_t priority_masks;
 u_raa489206_etauxfault_masks_t etaux_masks;
 u_raa489206_otherfault_masks_t other_masks;
 u_raa489206_cbstatus_masks_t cb_masks;
 u_raa489206_status_masks_t status_masks;
 u_raa489206_ow_masks_t ow_masks;
 u_raa489206_vcell_fault_delay_t fault_delays;
 raa489206_dsc_delay_register_t dsc_delay;
 u_raa489206_oc_delay_t oc_delay;
 e_raa489206_ld_delay_t ld_delay;
 bool idir_delay;
} st_raa489206_events_masks_t;

/* BFE status: reports the status of the BFE*/
typedef struct
{
 e_raa489206_fault_register_t fault_register_type;
 u_raa489206_prifault_register_t priority_status;
 u_raa489206_etauxfault_reg_t etaux_status;
 u_raa489206_otherfault_reg_t other_status;
 u_raa489206_cbstatus_reg_t cb_status;
 u_raa489206_status_reg_t general_status;
 u_raa489206_owstatus_reg_t ow_status;
}st_raa489206_status_t;

/*RAA489206 continuous scan configuration*/
typedef struct
{
 uint8_t VCELL_EN : 1; /*Vcell measurement*/
 e_raa489206_vcell_avg_t VCELL_AVG : 3; /*Number of samples to average*/
} st_raa489206_cs_cfg_vcell_t;

typedef struct
{
 uint8_t IPACK_EN : 1; /*I pack measurement*/
 e_raa489206_ipack_avg_t IPACK_AVG : 3; /*Number of samples to average*/
} st_raa489206_cs_cfg_ipack_t;

typedef struct
{
 uint8_t OW_EN : 1; /*I pack measurement*/
 e_raa489206_ow_period_t OW_UPDATE : 2; /*How often the open-wire test is
executed*/
} st_raa489206_cs_cfg_open_wire_t;

typedef struct
{
uint8_t VBAT_EN : 1; /*enable vpack measurement*/

R16AN0015EU0101 Rev.1.01 Page 28
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

 uint8_t ITEMP_EN : 1; /*enable internal temperature
measurement*/
 e_raa489206_other_avg_t OTHER_AVG : 3; /*number of samples to
average*/
 e_raa489206_otherupdate_period_t OTHER_UPDATE : 2; /* number of scans required
before ETAUX,
 Vbat,Vcc, Ireg and int. temp
are made*/
} st_raa489206_cs_cfg_other_t;

typedef struct
{
 e_raa489206_etaux_enable_t ETAUX_EN : 2; /*External/auxiliar
measurements*/
 e_raa489206_etaux_avg_t ETAUX_AVG : 3; /*Number of samples
to average*/
} st_raa489206_cs_cfg_etaux_t;

typedef struct
{
 st_raa489206_cs_cfg_vcell_t vcell_cfg;
 st_raa489206_cs_cfg_ipack_t ipack_cfg;
 st_raa489206_cs_cfg_open_wire_t ow_cfg;
 st_raa489206_cs_cfg_other_t other_cfg;
 st_raa489206_cs_cfg_etaux_t etaux_cfg;
 e_raa489206_scan_delay_t scan_delay;
} st_raa489206_cs_config_t;

typedef struct
{
 float veoc_th;
 float ieoc_th;
 u_raa489206_cb_op_register_t cb_operation;
 float min_delta_th;
 float cbmax_th;
 float cbmin_th;
 e_raa489206_cb_timer_unit_t cb_timer_unit;
 uint8_t cbon_time;
 uint8_t cboff_time;
} st_raa489206_cb_config;

typedef union
{
 float vector[3];

 struct
 {
 float vcc;
 float ireg;
 float vtemp;
 } measurements;
} u_raa489206_other_measurements_t;

R16AN0015EU0101 Rev.1.01 Page 29
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

typedef union
{
 float vector[17];

 struct{
 float cell1;
 float cell2;
 float cell3;
 float cell4;
 float cell5;
 float cell6;
 float cell7;
 float cell8;
 float cell9;
 float cell10;
 float cell11;
 float cell12;
 float cell13;
 float cell14;
 float cell15;
 float cell16;
 float vcell_max_delta;
} measurements;
} u_raa489206_vcell_measurements_t;

typedef union
{
 float vector[2];

 struct
 {
 float xt0_aux0;
 float xt1_aux1;
 } measurements;
} u_raa489206_etaux_measurements_t;

typedef float st_raa489206_temperature_measurements_t;

typedef struct
{
 e_raa489206_lpm_timer_t LPM_TIMER : 3; /*Low power mode timer*/
 e_raa489206_lpm_regulator_t REG_TYPE : 1; /*Regulator type*/
 uint8_t COMTO_EN : 1; /*Enable communication time out*/
 e_raa489206_comm_timeout_t COM_TO : 2; /*Communication timeout*/
 uint8_t LDLP : 1; /*Load detect while in low power
mode*/
} st_raa4892206_lpm_cfg_t;

R16AN0015EU0101 Rev.1.01 Page 30
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

▪ Register typedef declarations: These declarations form a complete library of all RAA489206 registers and
their corresponding bits. The library is composed of unions and structures type definitions named according to
the BFE datasheet. Using the type definitions contained in this library allows manipulating whole register
values, specific bits-fields within the register, or individual bits using the names defined in the datasheet. This
library also contains declarations of enumerations to set bits-fields, which aim at ensuring correctness when
setting/reading values and removing uncertainty when you must decide what values to set. The following are
some examples of this library declarations.

/* 0x09 Fault Delay register*/
typedef union
{
 uint8_t value;

 struct
 {
 uint8_t VCELL_FAULT_DELAY : 4; /*0x09.1...0x09.3 enables scans delay
for
 Vcell OV and UV faults */
 uint8_t ETAUX_FAULT : 1; /*0x09.4 enables 3-scan delay for ETAUX
 voltage threshold*/
 uint8_t OTHER_FAULT_DELAY : 1; /*0x09.5 enables 3-scans delay for
 Vcc, Vtmpf, Ireg1, Ireg2, Vbovf, Vbuvf,
IOTF,
 IOTW faults*/
 uint8_t DELTA_VCELL_FAULT_DELAY : 1; /*0x09.6 enables 3-scans delay for
delta
 vcell fault*/
 uint8_t AUX_XTN_PULLUP : 1; /*0x09.7 when set to 1, internal
resistors are connected bwtween AUX0/1 and Vcc*/
 } value_b;
} u_raa489206_vcell_fault_delay_t;
/* 0x03 Ipack operation*/
typedef union
{
 uint8_t value;

 struct
 {
 uint8_t IPACK_TRIGGER : 1; /*0x03.0 initiates an Ipack
measurement*/
 uint8_t IDIR_DELAY : 1; /*0x03.1 number of measurements to
determine charge/discharge: 0=1, 1=3 readings*/
 uint8_t IPACK_AVG : 3; /*0x03.2...0x03.4 number of samples
averaged before writing the result*/
 uint8_t OW_UPDATE : 2; /*0x03.5...0x03.6 Control how often
the
 open-wire test is executed*/
 uint8_t IPACK_EN : 1; /*0x03.7 Set to 1 to enable Ipack
 measurements*/
 } value_b;

} u_raa489206_ipackop_reg_t;
typedef enum e_raa489206_ipack_avg
{

R16AN0015EU0101 Rev.1.01 Page 31
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

 RAA489206_IPACK_AVG_1_SAMPLE = 0x00,
 RAA489206_IPACK_AVG_2_SAMPLES = 0x01,
 RAA489206_IPACK_AVG_4_SAMPLES = 0x02,
 RAA489206_IPACK_AVG_8_SAMPLES = 0x03,
 RAA489206_IPACK_AVG_16_SAMPLES = 0x04,
 RAA489206_IPACK_AVG_32_SAMPLES = 0x05,
 RAA489206_IPACK_AVG_64_SAMPLES = 0x06,
 RAA489206_IPACK_AVG_128_SAMPLES = 0x07,
} e_raa489206_ipack_avg_t;
typedef enum e_raa489206_ow_period
{
 RAA489206_OW_PERIOD_256_SCANS = 0x00,
 RAA489206_OW_PERIOD_512_SCANS = 0x01,
 RAA489206_OW_PERIOD_1024_SCANS = 0x02,
 RAA489206_OW_PERIOD_2048_SCANS = 0x03,
} e_raa489206_ow_period_t;

5.3.2 Source File r_bfe_raa489206.c
The routines, sequences, and logic contained in this source file demonstrate the features that the RAA489206
BFE provides by implementing the BFE interface. This section highlights the most relevant code, and the
recommended practices for interfacing successfully with the BFE. You can follow this documentation while
reviewing the source code as the following sections explain the code in the same top-down order they are in the
source code.

5.3.2.1 Global API Instantiation

After including the necessary headers, the code defines the global constant g_bfe_raa489206_api. This constant
of type st_bfe_api_t is the instantiation of the API structure defined in the BFE interface. It contains pointers to the
functions that implement the bodies and behavior of the functions declared by API structure fields. The functions
naming adopts the convention R_<BFE>_<API_function>, where <BFE> is the BFE device for which the function
is implemented (RAA489206), and <API_function> is the name of the API structure field the function corresponds
to. The following are some examples:

const st_bfe_api_t g_bfe_raa489206_api =
{
 .p_init = R_RAA489206_Init,
 .p_reset = R_RAA489206_Reset,
 .p_initSystemScan = R_RAA489206_StartSystemScan,
 .p_initContinuousScan = R_RAA489206_StartContinuousScan,
 .p_stopContinuousScan = R_RAA489206_StopContinuousScan,
 .p_isBusy = R_RAA489206_IsBusy,
 .p_readStatus = R_RAA489206_ReadStatus,
 .p_clearAllFaults = R_RAA489206_ClearAllFaults,
 .p_clearFault = R_RAA489206_ClearFault,
 .p_readMode = R_RAA489206_ReadMode,
 .p_readVpack = R_RAA489206_ReadVpack,
 .p_readIpack = R_RAA489206_ReadIpack,
 .p_readVcells = R_RAA489206_ReadVcells,
 .p_readOther = R_RAA489206_ReadOther,
 .p_readAuxExt = R_RAA489206_ReadAuxExt,
 .p_readTemperature = R_RAA489206_ReadTemperature,
 .p_turnDfetOn = R_RAA489206_TurnDFetOn,
 .p_turnDfetOff = R_RAA489206_TurnDFetOff,

BFE

R16AN0015EU0101 Rev.1.01 Page 32
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

 .p_turnCfetOn = R_RAA489206_TurnCFetOn,

. . .
 .p_readRegister = R_RAA489206_ReadRegister,
 .p_readAllRegisters = R_RAA489206_ReadAllRegisters,
 .p_writeRegister = R_RAA489206_WriteRegister,
};

5.3.3 Reset and Device Registers
As a mechanism to verify the correct initial state of the BFE, or after performing a reset, it is good practice to verify
the default content of all or a set of the BFE registers. To perform this task, the source code defines static
constants that contain the default values defined in the datasheet:

/*Reset registers values*/
static const u_raa489206_productionid_reg_t g_reset_dieinformation_register =
{.value = 0xF2};
static const raa489206_iotw_th_t g_reset_iotw_th_register = 0x51;
static const raa489206_iotf_th_t g_reset_iotf_th_register = 0x45;
static const u_raa489206_vregop_register_t g_reset_vregop_register = {.value =
0xF0};
static const u_raa489206_otherfault_reg_t g_reset_other_faults = {.value = 0x00};
static const u_raa489206_globalop_reg_t g_reset_globalop_register = {.value = 0x00};
static const u_raa489206_vcellop_reg_t g_reset_vcellop_register = {.value = 0x80};
static const u_raa489206_ipackop_reg_t g_reset_ipackop_register = {.value = 0x80};
static const u_raa489206_cells_select_t g_reset_cells_select_register = {.value =
0xFFFF};
static const u_raa489206_vcell_voltage_t g_reset_vcell_voltage = {.value = 0x0000};
static const u_raa489206_vcell_max_delta_t g_reset_vcell_max_delta = {.value =
0x0000};
static const u_raa489206_ipack_voltage_t g_reset_ipack_voltage = {.value = 0x0000};
static const u_raa489206_ipack_timer_t g_reset_ipack_timer_register = {.value =
0x00000000};
static const raa489206_vcell_ov_th_t g_reset_vcell_ov_th_register = 0xFF;
static const raa489206_vcell_uv_th_t g_reset_vcell_uv_th_register = 0x00;
static const raa489206_vcell_max_delta_th_t g_reset_vcell_max_delta_th = 0xFF;
static const u_raa489206_vcell_fault_delay_t g_reset_fault_delay_register = {.value
= 0x00};
static const raa489206_dsc_threshold_t g_reset_dsc_threshold_register = 0x0F;
static const raa489206_doc_th_register_t g_reset_doc_threshold_register = 0xFF;
static const raa489206_dsc_delay_register_t g_reset_dsc_delay_register = 0x00;
static const u_raa489206_scanop_register_t g_reset_scanop_register = {.value =
0x1B};
static const u_raa489206_pwr_fet_op_t g_reset_pwr_fet_op_register = {.value = 0x5C};
.....
static const u_raa489206_cboff_timer_t g_reset_cboff_timer = {.value = 0x00};
static const raa489206_cb_min_delta_th_t g_reset_cb_min_delta_th = 0x00;
static const raa489206_cb_max_th_t g_reset_cb_max_th = 0xFF;
static const raa489206_cb_min_delta_th_t g_reset_cb_min_th = 0x00;
static const raa489206_veoc_th_t g_reset_veoc_th = 0xFF;
static const raa489206_ieoc_th_t g_reset_ieoc_th = 0x00;

API pointer – Function name correspondence

Register Data Type

R16AN0015EU0101 Rev.1.01 Page 33
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

Each reset constant is defined using the register type definition (declared in the r_raa489206.h header file) to
which the reset value corresponds. This facilitates the comparison of their values or the bits-fields of interest.

Local images of the BFE registers are stored in the MCU as global variables to track and cross-check the state,
configuration, and behavior of the BFE. In addition, functions in the source file and applications implemented in
other source files can access and manipulate their content directly at any time.

/*Device registers which are linked to the registers bank contained in the control
entity*/
u_raa489206_productionid_reg_t g_dieinformation_register;
u_raa489206_globalop_reg_t g_globalop_register;
u_raa489206_vcellop_reg_t g_vcellop_register;
u_raa489206_ipackop_reg_t g_ipackop_register;
u_raa489206_cells_select_t g_cells_select_register;
u_raa489206_vcell_voltage_t g_vcell1_voltage;
u_raa489206_vcell_voltage_t g_vcell2_voltage;
u_raa489206_vcell_voltage_t g_vcell3_voltage;
u_raa489206_vcell_voltage_t g_vcell4_voltage;
u_raa489206_vcell_voltage_t g_vcell5_voltage;
u_raa489206_vcell_voltage_t g_vcell6_voltage;
u_raa489206_vcell_voltage_t g_vcell7_voltage;
u_raa489206_vcell_voltage_t g_vcell8_voltage;
u_raa489206_vcell_voltage_t g_vcell9_voltage;
. . . .
u_raa489206_cboff_timer_t g_cboff_timer;
raa489206_cb_min_delta_th_t g_cb_min_delta_th;
raa489206_cb_max_th_t g_cb_max_th;
raa489206_cb_min_delta_th_t g_cb_min_th;
raa489206_veoc_th_t g_veoc_th;
raa489206_ieoc_th_t g_ieoc_th;

5.3.4 Registers Bank
The register bank collects all BFE registers within the fields of a structure. The reasoning behind its
implementation is to group all BFE registers data types into a generalized type definition. By doing so, functions
that must handle BFE registers values regardless of their bit-fields composition, for instance SPI data
transmission and reception, can deal with a generic data type containing registers information, such as address
and size. The generic structure data type is declared as:

/** Generic BFE register: address= register address, type=R/R_W, p_value pointer to
the value(s), size=number of bytes, p_reset_value= pointer to the default value
(used for self-diagnosis after reset)*/
typedef struct st_bfe_register{

 uint8_t address;
 e_register_type_t type;
 uint8_t * const p_value;
 const uint8_t * const p_reset_value;
 uint8_t size;
} st_bfe_register_t;

R16AN0015EU0101 Rev.1.01 Page 34
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

To avoid data duplication, this structure declares two pointers: p_value and p_reset_value, which point to the
global device register, and to the reset constant value, respectively. The field address contains the register
address in the BFE; the field size specifies the size of the register in bytes; and the type enumeration indicates
whether only read operation or both read and write operations are allowed on the register. The bank register is
defined as:

/*Registers bank*/
st_raa489206_system_registers_t g_raa489206_registers =
{
 .die_information =
 {.address = RAA489206_REGISTER_SYS_INFO, .p_value =
&(g_dieinformation_register.value),
 .p_reset_value = &(g_reset_dieinformation_register.value), .type = READ,
 .size = (sizeof(g_dieinformation_register.value))/(sizeof(uint8_t))},

 .global_operation =
 {.address = RAA489206_REGISTER_GLOBAL_OP,.p_value =
&(g_globalop_register.value),
 .p_reset_value = (&g_reset_globalop_register.value), .type = READ_WRITE,
 .size = (sizeof(g_globalop_register.value))/(sizeof(uint8_t))},

 .vcell_operation =
 {.address= RAA489206_REGISTER_VCELL_OP, .p_value =
&(g_vcellop_register.value),
 .p_reset_value = (&g_reset_vcellop_register.value), .type = READ_WRITE,
 .size = (sizeof(g_vcellop_register.value))/(sizeof(uint8_t))},

 .ipack_operation =
 {.address = RAA489206_REGISTER_IPACK_OP, .p_value =
&(g_ipackop_register.value),
 .p_reset_value = (&g_reset_ipackop_register.value), .type = READ_WRITE,
 .size = (sizeof(g_ipackop_register.value))/(sizeof(uint8_t))},

 .cell_select =
 {.address = RAA489206_REGISTER_CELL_SEL, .p_value =
&(g_cells_select_register.lsb_value),
 .p_reset_value = (&g_reset_cells_select_register.lsb_value), .type =
READ_WRITE,
 .size = (sizeof(g_cells_select_register.value))/(sizeof(uint8_t))},

 .vcell_1 =
 {.address = RAA489206_REGISTER_VCELL_1, .p_value =
&(g_vcell1_voltage.lsb_value),
 .p_reset_value = (&g_reset_vcell_voltage.lsb_value), .type = READ,
 .size = (sizeof(g_vcell1_voltage.value))/(sizeof(uint8_t))},

 .vcell_2 =
 {.address = RAA489206_REGISTER_VCELL_2, .p_value =
&(g_vcell2_voltage.lsb_value),
 .p_reset_value = (&g_reset_vcell_voltage.lsb_value), .type = READ,
 .size = (sizeof(g_vcell2_voltage.value))/(sizeof(uint8_t))},
. . . .

R16AN0015EU0101 Rev.1.01 Page 35
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

 .cb_max_th =
 {.address = RAA489206_REGISTER_CB_MAX_TH, .p_value = &(g_cb_max_th),
 .p_reset_value = (&g_reset_cb_max_th), .type = READ_WRITE,
 .size = (sizeof(g_cb_max_th))/(sizeof(uint8_t))},

 .cb_min_th =
 {.address = RAA489206_REGISTER_CB_MIN_TH, .p_value = &(g_cb_min_th),
 .p_reset_value = (&g_reset_cb_min_th), .type = READ_WRITE,
 .size = (sizeof(g_cb_min_th))/(sizeof(uint8_t))},

 .eoc_voltage_th =
 {.address = RAA489206_REGISTER_VEOC_TH, .p_value = &(g_veoc_th),
 .p_reset_value = (&g_reset_veoc_th), .type = READ_WRITE,
 .size = (sizeof(g_veoc_th))/(sizeof(uint8_t))},

 .eoc_current_th =
 {.address = RAA489206_REGISTER_IEOC_TH, .p_value = &(g_ieoc_th),
 .p_reset_value = (&g_reset_ieoc_th), .type = READ_WRITE,
 .size = (sizeof(g_ieoc_th))/(sizeof(uint8_t))},
};

5.3.5 Private (Static) Variables and Functions
Most of the static definitions correspond to constants used during the conversion of register values into voltage or
temperature, in addition to voltages and temperatures into register values. Other static variables, such as
s_device_busy and s_mode, are defined as static to ensure valid addresses and share data between functions
in the source code.

Table 8 shows the declaration and description of the static functions used by API functions in the source code.
Some of them are detailed in the next sections as part of the description of API functions implementation.

Table 8. Static Functions Defined in the Source Code

Function Description

static e_bfe_err_t write_spi (uint8_t address, uint8_t const *
p_values, uint16_t num_values, bool use_crc)

Use the SPI interface to write num_values bytes of the data
contained in the variable pointed by p_values in the register
with address address. The boolean use_crc indicates whether
CRC is used during the data transaction.

static e_bfe_err_t read_spi (uint8_t address, uint8_t *
p_values, uint16_t num_values, bool use_crc)

Use the SPI interface to read num_values bytes of the register
with address address and store the read value in the variable
pointed by p_values.The boolean use_crc indicates whether
CRC is used during the data transaction.

static e_bfe_err_t read_spi_all_registers_no_crc(uint8_t *
p_values)

Reads all registers using the SPI interface without CRC and
stores the values in the array starting at the position p_values

static e_bfe_err_t read_spi_crc_command(

uint8_t crc_command, uint8_t * p_values, uint16_t
num_values)

Use the SPI interface to read the group of registers determined
by the special CRC read code crc_command. See the Read
Operation section of RAA489206 datasheet.

static e_bfe_err_t write_i2c(uint8_t reg_address, const
uint8_t * const p_values, uint16_t num_values, bool use_crc)

Use the I2C interface to write num_values bytes of the data
contained in the variable pointed by p_values in the register
with address reg_address. The boolean use_crc is unused.

static e_bfe_err_t read_i2c(uint8_t reg_address, uint8_t *
p_values, uint16_t num_values, bool is_cont)

Use the I2C interface to read num_values bytes of the register
with address address and store the read value in the variable
pointed by p_values.The boolean use_crc is unused.

R16AN0015EU0101 Rev.1.01 Page 36
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

static e_bfe_err_t execute_startup_sequence
(st_raa489206_instance_ctrl_t *p_raa489206_ctrl)

Executes the startup sequence recommended for the
RAA489206 BFE

static e_bfe_err_t execute_basic_init
(st_raa489206_instance_ctrl_t *p_raa489206_ctrl)

Initializes the BFE device using a group of configuration settings
to evaluate its basic features

static e_bfe_err_t compare_reset_values
(st_raa489206_system_registers_t *p_regs)

Reads the current values of all BFE registers and compare them
with the reset values. The error
BFE_ERR_REGISTER_RESET_UNMATCHED is returned
when any register does not match its reset value

static uint8_t voltage_to_register (float init, float set, float
offset)

Converts a voltage float value given in mV into its register value
equivalent

static float register_to_voltage (uint16_t reg_val, float set, float
offset)

Converts a register value into its voltage value equivalent in mV

static uint8_t temperature_to_register (float deg_val) Converts a temperature float value given in °C into its register
value equivalent

static float register_to_temperature (uint8_t reg_val) Converts a register value into its temperature value equivalent in
°C

static inline void wait_until_free
(st_raa489206_instance_ctrl_t *p_raa489206_ctrl, bool
*p_is_busy, uint8_t loop_times)

Query the device availability (busy bit state) for at most
loop_times*20ms. This routine returns when the device is
available clearing the boolean pointed by p_is_busy, or setting
it if the device remains busy after loop_times*20ms.

static uint16_t calculate_crc (uint16_t numbytes, const
uint8_t * const input_buf)

Calculates and returns the CRC value for numbytes bytes of
the data starting at the address input_buf, according to the
CRC-CITT16 X25 specification. Refer to Section 8.2.4 of the
RAA489206 Datasheet for details on its implementation.

void spi_callback (spi_callback_args_t *p_args) SPI Interruption Service Routine

void i2c_callback (i2c_master_callback_args_t * p_args) I2C Interruption Service Routine

Table 8. Static Functions Defined in the Source Code (Cont.)

Function Description

R16AN0015EU0101 Rev.1.01 Page 37
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6 Interface API Implementation
The group of functions named in accordance with the convention R_<BFE>_<API_function> implement the
functionalities that can be accessed by applications over the API structure. This section describes their
implementations and interactions with the BFE device.

5.3.6.1 R_RAA489206_Init

e_bfe_err_t R_RAA489206_Init(st_bfe_ctrl_t * p_api_ctrl, const st_bfe_cfg_t * const p_cfg)

Initialize the control structure according to the configuration settings specified by the configuration structure:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl.

2. Set the use of CRC for data transactions between the MCU and the BFE.

3. Set the selected cells.

4. Set the pointer to the register bank.

5. Set the option Read-After-Write to read back written registers to verify their values.

6. Initialize the MCU I/O pins and assign them to the control structure.

7. Initialize the communication interface (SPI or I2C) selected by the field p_cfg->peripheral_type.

Execute the startup sequence to set up the BFE to a functional state by calling execute_startup_sequence:

1. Wait 10ms until voltages stabilize.

2. Execute a hard reset clearing device reset pin for 50ms.

3. Wait 20ms for the whole power-up sequence to finish.

4. Read all registers and compare their values with reset values by calling compare_reset_values. Registers whose pointer-to-reset
value is NULL are not compared.

Execute a basic initialization setting general operational settings by calling execute_basic_init:

1. Set Idle mode by setting and writing SYS-MODE bits to the enumeration RAA489206_SYSTEM_MODE_IDLE.

2. Disable communication timer by clearing the COM_TIMEOUT_EN bit of the VBAT1 operation register.

3. Select the strong regulator for low power mode by setting the LP_REG bit in the VREG operation register.

4. Unmask the busy bit to assert the ALERT pin by clearing the BUSYM in the other faults register.

5. Set the internal temperature warning threshold to 85°C.

6. Set the internal temperature fault threshold to 95°C.

7. Set the selected cells that have specified by the control structure.

8. Enable the charge pump if it the corresponding control structure field has been set.

9. Set Scan select to 1 (single scan mode).

Returned values BFE_SUCCESS BFE successfully initialized

BFE_ERR_FSP_ERROR Error initializing any FSP module (I/O, SPI)

BFE_ERR_COMM_NONSUPPORTED_
INTERFACE

Communication interface not supported

BFE_ERR_REGISTER_RESET_UNMATCHED Register values after reset do not match default values.
This might indicate the device is malfunctioning or is not
connected to the MCU.

Observations This function initializes the control structure, which contains all data and references to the instances needed to
interact with the BFE. Therefore, modules using the RA489206 API implementation must call
R_RAA489206_Init before calling any other API function.

The caller function must ensure the pointer p_api_ctrl points to a structure of type st_raa489206_ctrl to
avoid undetermined behavior.

R16AN0015EU0101 Rev.1.01 Page 38
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.2 R_RAA489206_Reset

5.3.6.3 R_RAA489206_StartSystemScan

e_bfe_err_t R_RAA489206_Reset(st_bfe_ctrl_t * const p_ctrl, e_bfe_reset_type_t reset_type)

Perform the reset type determined by the enumeration e_bfe_reset_type_t reset_type:

▪ BFE_RESET_TYPE_SOFT Soft reset ‒ Set SFT_RST bit to 1 in the global operation register. Reset all register values back to
default values, including data registers. All counters are set to 0, all timers and faults are cleared, and the system mode is set to
IDLE. A low voltage offset calibration is performed, the power and cell balancing FETs are turned off, and the state machines are
reset.

▪ BFE_RESET_TYPE_TOIDLE Reset to Idle ‒ Set the RST2IDLE bit of the global operation register to 1. Stop all state machines
and moves the chip state to IDLE mode. Set all counters to 0 and clears timers and faults. Power and cell balancing FETs are
turned off. The state machines are reset. All other register settings are NOT affected by this command and remain unchanged.

▪ BFE_RESET_TYPE_HARD Hard Reset ‒ Clear the reset pin for 50ms.

Returned values BFE_SUCCESS Reset has been successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_INVALID_ARGUMENT Invalid reset type

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_StartSystemScan(st_bfe_ctrl_t * const p_ctrl)

Start a single system scan sequence:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the global operation register. Reading-Before-Writing (RBW) is a good practice to update the MCU registers bank and avoid
overwriting bit-field in the BFE.

3. Clear the SYS_SCAN_TRIGGER bit of the global operation register to ensure it is 0 before setting it to 1. The transition from 0
to 1 initiates a system scan sequence. Setting this bit to 1 while its value is already 1 does not triggers a system scan sequence,
so the bit is cleared to ensure the scan sequence can be triggered.

4. Store the RAW configuration setting in a temporary variable.

5. Deactivate the RAW feature before writing the global operation register. On completion the SYS_SCAN_TRIGGER bit is set to
0, so deactivating the RAW feature avoids generating a BFE_ERR_COM_READ_AFTER_WRITE_FAILED error.

6. Write the global operation register.

7. Restore the RAW configuration setting to its original value stored in the temporary variable.

Returned values BFE_SUCCESS System scan successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This command does set the device to SCAN mode. Because a scan sequence can only be initiated while the
device is in SCAN mode, the BFE ignores the execution of this function if it is in SHIP, LOW POWER, or IDLE
mode.

R16AN0015EU0101 Rev.1.01 Page 39
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.4 R_RAA489206_StartContinuousScan

e_bfe_err_t R_RAA489206_StartContinuousScan(st_bfe_ctrl_t * const p_ctrl,
const bfe_cs_configuration_t * const st_cs_config)

Start continuous scan operation:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast the pointer st_cs_config to point to an instance-defined structure st_raa489206_cs_config_t which contains the continuous
scan operation settings to be set.

3. Call the function R_RAA489206_StopContinuousScan to ensure the device is not already in continuous scan operation before
configuring scan-related parameters.

4. Read the scan operation register.

5. Clear all current faults and verify the pointer to the continuous scan configuration struct is not NULL.

6. Read the scan operation register (RBW).

7. Set the SCAN_DELAY bit fields of the scan operation register to the enumeration value specified by the scan configuration field
p_cont_scan_cfg->scan_delay.

8. Write the scan operation register in the BFE.

9. Read and set the measurements to be make during system scans according to the settings specified by the fields of the scan
configuration structure:

• VCELL_EN and VCELL_AVG in the VCELL operation register

• IPACK_EN and IPACK_AVG in the IPACK operation register

• OW_EN in the power FET operation register

• OW_UPDATE in the IPACK operation register

• OTHER_AVG, VBAT_ENABLE and ITEMP_ENABLE in the VBAT1 operation register

• OTHER_UPDATE in the VREG operation register

• ETAUX_AVG and ETAUX_ENABLE in the etaux operation register

10.Read the global operation register (RBW).

11.Set the global operation register bits SCAN_SEL and SYS_SCAN_TRIGGER to 0.

12.Write the global operation register to set the device to continuous scan operation.

13.Read the scan operation register (RBW).

14.Set SYS_MODE bits-field of the scan operation register to SCAN mode.

15.Init a complete system scan.

Returned values BFE_SUCCESS Continuous scan successfully started

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The caller function must ensure st_cs_config points to a structure of type st_raa489206_cs_config_t to avoid
undetermined behavior.

R16AN0015EU0101 Rev.1.01 Page 40
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.5 R_RAA489206_StopContinuousScan

5.3.6.6 R_RAA489206_IsBusy

e_bfe_err_t R_RAA489206_StopContinuousScan(st_bfe_ctrl_t * const p_ctrl)

Stop continuous scan operation:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast the void pointer bfe_cs_configuration_t * const st_cs_config to the instance-defined structure that contains continuous
scan settings: st_raa489206_cs_config_t *p_cont_scan_cfg.

3. Read the global operation register and return BFE_SUCCESS if the device is not in continuous scan.

4. Set the global operation bits SCAN_SEL to 1 and SYS_SCAN_TRIGGER to 0.

5. Read the scan operation register to obtain the current scan delay SCAN_DELAY.

6. Wait for at least the SCAN_DELAY time to ensure continuous scan operation has stopped.

7. Clear all faults

Returned values BFE_SUCCESS Function successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations When the continuous scan operation is stopped by setting the SCAN_SEL bit of the global operation register
to 0, the device performs a last system scan after the current SCAN_DELAY times out. Writing scan settings
before this last scan operation is performed may result in undetermined device behavior, so this function
reads the current scan delay and waits for the last scan to be completed.

e_bfe_err_t R_RAA489206_IsBusy(st_bfe_ctrl_t * const p_ctrl, bool * p_is_busy)

Read the busy bit value in the global operation register and return it in the boolean variable pointed by p_is_busy:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the global operation register.

3. Set the value pointed by p_is_busy to the value of the BUSY bit.

Returned values BFE_SUCCESS Function successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 41
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.7 R_RAA489206_InitSystemScan

5.3.6.8 R_RAA489206_ClearAllFaults

e_bfe_err_t R_RAA489206_ReadStatus(st_bfe_ctrl_t * const p_ctrl, bfe_status_t * const p_bfe_status)

Read status and faults registers values and return them in the fields of the structure p_bfe_status points to:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast the input pointer p_bfe_status to point to an instance-defined structure of type st_raa489206_status_t

3. Read the priority faults register value and store it in the priority_status structure field.

4. Read the ETAUX faults register value and store it in the etaux_status structure field.

5. Read the other faults register value and store it in the other_status structure field.

6. Read the cell balancing status register value and store it in the cb_status structure field.

7. Read the general status register value and store it in general_status structure field.

8. Read the open-wire status register value and store it in the ow_status structure field.

Returned values BFE_SUCCESS Read status successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The caller function must ensure p_bfe_status points to a structure of type st_raa489206_status_t to
avoid undetermined behavior.

e_bfe_err_t R_RAA489206_ClearAllFaults(st_bfe_ctrl_t * const p_ctrl)

Clear all faults and status bits in the register range 0x63 – 0x69, except for 0x67.5 – CH_PRESI, along with all counters:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the VCELL operation register (RBW).

3. Set the CLR_FAULTS_STATUS bit to 1

4. Store the RAW setting in a temporary variable.

5. Deactivate the RAW feature before writing the global operation register. On completion the bit CLR_FAULTS_STATUS is set to
0, so deactivating the RAW feature avoids generating a BFE_ERR_COM_READ_AFTER_WRITE_FAILED error.

6. Write the VCELL operation register.

7. Restore the RAW configuration setting to its original value stored in the temporary variable.

8. Wait until the CLR_FAULTS_STATUS and fault registers are cleared to 0, which indicates the clear operation is finished.

Returned values BFE_SUCCESS Clear all faults successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function cannot clear the faults and status registers while the condition that sets them is present.

R16AN0015EU0101 Rev.1.01 Page 42
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.9 R_RAA489206_ClearFault

5.3.6.10 R_RAA489206_ReadMode

e_bfe_err_t R_RAA489206_ClearFault(st_bfe_ctrl_t * const p_ctrl, const bfe_fault_type_t * const p_bfe_fault_type)

Clear the fault(s) and status bit(s) specified by the instance-defined enumeration p_bfe_status points to:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast the input pointer p_bfe_fault_type to point to an e_raa489206_fault_type_t enumeration.

3. Store the RAW setting in a temporary variable.

4. Deactivate the RAW feature before writing the fault/status register. The bits of faults and status registers are only cleared while
the condition that sets them is present, so deactivating RAW feature avoids generating
BFE_ERR_COM_READ_AFTER_WRITE_FAILED error if the condition persists.

5. Clear the bits of the fault or status register indicated by the enumeration.

6. Write the fault or status register.

7. Read back the written register to update its value in the register bank.

8. Restore the RAW configuration setting to its original value stored in the temporary variable.

Returned values BFE_SUCCESS Clear fault successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The caller function must ensure p_bfe_fault_type points to an enumeration of type
e_raa489206_fault_type_t to avoid undetermined behavior.

This function cannot clear the faults and status registers while the condition that sets them is present.

e_bfe_err_t R_RAA489206_ReadMode (st_bfe_ctrl_t * const p_ctrl, e_bfe_mode_t * const p_value)

Read and return the current BFE mode as the value of the variable pointed by p_value:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the scan operation register

3. Map the value of the SYS_MODE bits-field to a value of the e_bfe_mode_t enumeration setting the variable p_value points to.

Returned values BFE_SUCCESS Read mode successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_NONSUPPORTED_MODE The mode specified by the bits-field is not included in
the enumeration.

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 43
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.11 R_RAA489206_ReadVpack

e_bfe_err_t R_RAA489206_ReadVpack(st_bfe_ctrl_t * const p_ctrl, float * const p_value, bool trigger)

Read and return the pack voltage in mV storing its value in the variable pointed by p_value. The boolean parameter trigger
specifies whether a VPACK measurement precedes (trigger = true) the reading operation.

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. If trigger is true, then:

a. Read the global operation register.

b. Check whether the device is in continuous scan operation by reading the values of SCAN_SEL and device mode. If the
device is in continuous operation, stop it before triggering any measurement.

c. Read VBAT1 operation register (RBW) and make sure VBAT_TRIGGER bit is set to 0 to ensure 0-1 transition. Write the
register in the device accordingly if the bit value is 1.

d. Set VBAT_TRIGGER bit to 1.

e. Wait until the device is available by calling wait_for_free.

f. Store the RAW setting in a temporary variable and deactivate the RAW feature to avoid generating
BFE_ERR_COM_READ_AFTER_WRITE_FAILED error when the trigger bit is set back to 0 after completion of the
measurement.

g. Write the VBAT1 operation register to trigger a VPACK measurement.

h. Restore the RAW configuration setting to its original value stored in the temporary variable.

3. Wait until the device is available by calling wait_for_free. This avoids reading measurements while the device is processing any
task, which may result in outdated readings.

4. Read the VBAT1 voltage register and convert its value to mV.

5. Write the value in mV in the value pointed by p_value.

6. Restart continuous scan operation if it has been stopped in previous steps.

7. Evaluate whether the measurement has been read while the device was in busy.

Returned values BFE_SUCCESS Pack voltage reading successfully executed

BFE_WARN_BUSY The returned value has been read while the device was
busy.

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This routine attempts to read the VPACK value while the device is available (this is, the busy bit is 0). However,
the wait_for_free routine does not guarantee the device is free after returning to avoid blocking the program
flow. Therefore, if the device is busy after wait_for_free returns, this routine generates the code
BFE_WARN_BUSY to alert the caller function to a possible outdated reading.

R16AN0015EU0101 Rev.1.01 Page 44
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.12 R_RAA489206_ReadIpack

e_bfe_err_t R_RAA489206_ReadIpack(st_bfe_ctrl_t * const p_ctrl, float * const p_value, bool trigger)

Read and return the pack current in mA storing its value in the variable pointed by p_value. The boolean parameter trigger specifies
whether an IPACK measurement precedes (trigger = true) the reading operation.

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. If trigger is true, then:

a. Read the global operation register.

b. Check whether the device is in continuous scan operation by reading the values of SCAN_SEL and device mode. If the
device is in continuous operation, stop it before triggering any measurement.

c. Read IPACK operation register (RBW) and make sure IPACK_TRIGGER bit is set to 0 to ensure 0-1 transition. Write the
register in the device accordingly if the bit value is 1.

d. Set IPACK_TRIGGER bit to 1.

e. Wait until the device is available by calling wait_for_free.

f. Store the RAW setting in a temporary variable and deactivate the RAW feature to avoid generating
BFE_ERR_COM_READ_AFTER_WRITE_FAILED error when the trigger bit is set back to 0 after completion of the
measurement.

g. Write the IPACK operation register to trigger an IPACK measurement.

h. Restore the RAW configuration setting to its original value stored in the temporary variable.

3. Wait until the device is available by calling wait_for_free. This avoids reading measurements while the device is processing any
task, which may result in outdated readings.

4. Read the IPACK voltage register and convert its value into mV.

5. Convert the voltage value into mA using the shunt resistor value.

6. Write the value in mA in the value pointed by p_value.

7. Restart continuous scan operation if it has been stopped in previous steps.

8. Evaluate whether the measurement has been read while the device was in busy.

Returned values BFE_SUCCESS Pack current reading successfully executed

BFE_WARN_BUSY The returned value has been read while the device was
busy.

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This routine attempts to read the IPACK value while the device is available (this is, the busy bit is 0). However,
the wait_for_free routine does not guarantee the device is free after returning to avoid blocking the program
flow. Therefore, if the device is busy after wait_for_free returns, this routine generates the code
BFE_WARN_BUSY to alert the caller function to a possible outdated reading.

R16AN0015EU0101 Rev.1.01 Page 45
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.13 R_RAA489206_ReadVcells

e_bfe_err_t R_RAA489206_ReadVcells(st_bfe_ctrl_t * const p_ctrl, bfe_vcell_measurements_t * const p_values,
bool trigger)

Read and return the cells voltage in mV storing their values in the instance-defined structure pointed by p_value. The boolean
parameter trigger specifies whether cells voltage measurements precede (trigger = true) the reading operation.

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast pointer p_values to point to a union of type u_raa489206_vcell_measurements_t.

3. If trigger is true, then:

a. Read the global operation register.

b. Check whether the device is in continuous scan operation by reading the values of SCAN_SEL and device mode. If the
device is in continuous operation, stop it before triggering any measurement.

c. Read VCELL operation register (RBW) and make sure VCELL_TRIGGER bit is set to 0 to ensure 0-1 transition. Write the
register in the device accordingly if the bit value is 1.

d. Set VCELL_TRIGGER bit to 1.

e. Wait until the device is available by calling wait_for_free.

f. Store the RAW setting in a temporary variable and deactivate the RAW feature to avoid generating
BFE_ERR_COM_READ_AFTER_WRITE_FAILED error when the trigger bit is set back to 0 after completion of the
measurement.

g. Write the VCELL operation register to trigger measurements of cells voltage.

h. Restore the RAW configuration setting to its original value stored in the temporary variable.

4. Wait until the device is available by calling wait_for_free. This avoids reading measurements while the device is processing any
task, which may result in outdated readings.

5. Read cell voltage registers and convert their values into mV.

6. Write the values in mV in the fields of the structure of type u_raa489206_vcell_measurements_t.

7. Restart continuous scan operation if it has been stopped in previous steps.

8. Evaluate whether measurements have been read while the device was in busy.

Returned values BFE_SUCCESS Cell voltage readings successfully executed

BFE_WARN_BUSY The returned values have been read while the device
was busy.

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This routine attempts to read the cell voltages while the device is available (this is, the busy bit is 0). However,
the wait_for_free routine does not guarantee the device is free after returning to avoid blocking the program
flow. Therefore, if the device is busy after wait_for_free returns, this routine generates the code
BFE_WARN_BUSY to alert the caller function to a possible outdated reading.

The caller function must ensure p_values points to a union of type u_raa489206_vcell_measurements_t to
avoid undetermined behavior.

If the CRC option has been enabled, this function executes the command that retrieves all registers values in
one data transaction (CRC command 0x9C). Otherwise, voltage registers are read one by one in different
data transactions.

R16AN0015EU0101 Rev.1.01 Page 46
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.14 R_RAA489206_ReadOther

e_bfe_err_t R_RAA489206_ReadOther(st_bfe_ctrl_t * const p_ctrl, bfe_other_measurements_t * const p_values,
bool trigger)

Read and return the voltage in mV of other measurements storing their value in the instance-defined structure pointed by p_value.
The boolean parameter trigger specifies whether other voltage measurements precede (trigger=true) the reading operation.

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast pointer p_values to point to a union of type u_raa489206_other_measurements_t.

3. If trigger is true, then:

a. Read the global operation register.

b. Check whether the device is in continuous scan operation by reading the values of SCAN_SEL and device mode. If the
device is in continuous operation, stop it before triggering any measurement.

c. Read VREG operation register (RBW) and make sure VREG_TRIGGER bit is set to 0 to ensure 0-1 transition. Write the
register in the device accordingly if the bit value is 1.

d. Set VREG_TRIGGER bit to 1.

e. Wait until the device is available by calling wait_for_free.

f. Store the RAW setting in a temporary variable and deactivate the RAW feature to avoid generating
BFE_ERR_COM_READ_AFTER_WRITE_FAILED error when the trigger bit is set back to 0 after completion of the
measurement.

g. Write the VREG operation register to trigger measurements of other voltages.

h. Restore the RAW configuration setting to its original value stored in the temporary variable.

4. Wait until the device is available by calling wait_for_free. This avoids reading measurements while the device is processing any
task, which may result in outdated readings.

5. Read Vcc, Ireg, and Vtemp voltage registers and convert their values into mV.

6. Write the values in mV in the fields of the structure of type u_raa489206_other_measurements_t.

7. Restart continuous scan operation if it has been stopped in previous steps.

8. Evaluate whether measurements have been read while the device was in busy.

Returned values BFE_SUCCESS Other voltage readings successfully executed

BFE_WARN_BUSY The returned values have been read while the device
was busy.

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This routine attempts to read the other voltage values while the device is available (this is, the busy bit is 0).
However, the wait_for_free routine does not guarantee the device is free after returning to avoid blocking the
program flow. Therefore, if the device is busy after wait_for_free returns, this routine generates the code
BFE_WARN_BUSY to alert the caller function to a possible outdated reading.

The caller function must ensure p_values points to a union of type u_raa489206_other_measurements_t
to avoid undetermined behavior.

R16AN0015EU0101 Rev.1.01 Page 47
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.15 R_RAA489206_ReadAuxExt

e_bfe_err_t R_RAA489206_ReadAuxExt(st_bfe_ctrl_t * const p_ctrl, bfe_auxext_measurements_t * const p_values,
bool trigger)

Read and return the voltage in mV of auxiliary/external measurements storing their value in the instance-defined structure pointed
by p_value. The boolean parameter trigger specifies whether auxiliary/external voltage measurements precede (trigger = true) the
reading operation.

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast pointer p_values to point to a union of type u_raa489206_etaux_measurements_t.

3. If trigger is true, then:

a. Read the global operation register.

b. Check whether the device is in continuous scan operation by reading the values of SCAN_SEL and device mode. If the
device is in continuous operation, stop it before triggering any measurement.

c. Read Etaux operation register (RBW) and make sure ETAUX_TRIGGER bit is set to 0 to ensure 0-1 transition. Write the
register in the device accordingly if the bit value is 1.

d. Set ETAUX_TRIGGER bit to 1.

e. Wait until the device is available by calling wait_for_free.

f. Store the RAW setting in a temporary variable and deactivate the RAW feature to avoid generating
BFE_ERR_COM_READ_AFTER_WRITE_FAILED error when the trigger bit is set back to 0 after completion of the
measurement.

g. Write the Etaux operation register to trigger measurements of auxiliary/external voltages.

h. Restore the RAW configuration setting to its original value stored in the temporary variable.

4. Wait until the device is available by calling wait_for_free. This avoids reading measurements while the device is processing any
task, which may result in outdated readings.

5. Read etaux0 and etaux1 voltage registers and convert their values into mV.

6. Write the values in mV in the fields of the structure of type u_raa489206_etaux_measurements_t.

7. Restart continuous scan operation if it has been stopped in previous steps.

8. Evaluate whether measurements have been read while the device was in busy.

Returned values BFE_SUCCESS Etaux voltage readings successfully executed

BFE_WARN_BUSY The returned values have been read while the device
was busy.

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This routine attempts to read the auxiliary/external voltage values while the device is available (this is, the
busy bit is 0). However, the wait_for_free routine does not guarantee the device is free after returning to
avoid blocking the program flow. Therefore, if the device is busy after wait_for_free returns, this routine
generates the code BFE_WARN_BUSY to alert the caller function to a possible outdated reading.

The caller function must ensure p_values points to a union of type u_raa489206_etaux_measurements_t
to avoid undetermined behavior.

R16AN0015EU0101 Rev.1.01 Page 48
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.16 R_RAA489206_ReadTemperature

5.3.6.17 R_RAA489206_ReadDOC

e_bfe_err_t R_RAA489206_ReadTemperature(st_bfe_ctrl_t * const p_ctrl, bfe_temperature_measurements_t * const
p_value, bool trigger)

Read and return the device internal temperature in °C storing its value in the instance-defined structure pointed by p_value. The
boolean parameter trigger specifies whether an internal temperature measurement precede (trigger = true) the reading operation.

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast pointer p_value to point to a structure of type st_raa489206_temperature_measurements_t.

3. If trigger is true, then:

a. Read the global operation register.

b. Check whether the device is in continuous scan operation by reading the values of SCAN_SEL and device mode. If the
device is in continuous operation, stop it before triggering any measurement.

c. Read VBAT1 operation register (RBW) and make sure ITEMP_TRIGGER bit is set to 0 to ensure 0-1 transition. Write the
register in the device accordingly if the bit value is 1.

d. Set ITEMP _TRIGGER bit to 1.

e. Wait until the device is available by calling wait_for_free.

f. Store the RAW setting in a temporary variable and deactivate the RAW feature to avoid generating
BFE_ERR_COM_READ_AFTER_WRITE_FAILED error when the trigger bit is set back to 0 after completion of the
measurement.

g. Write the Vba1 operation register to trigger the internal temperature measurement.

h. Restore the RAW configuration setting to its original value stored in the temporary variable.

4. Wait until the device is available by calling wait_for_free. This avoids reading measurements while the device is processing any
task, which may result in outdated readings.

5. Read the internal temperature voltage register and convert its value into °C.

6. Write the value in °C in the structure of type st_raa489206_temperature_measurements_t.

7. Restart continuous scan operation if it has been stopped in previous steps.

8. Evaluate whether measurements have been read while the device was in busy.

Returned values BFE_SUCCESS Temperature reading successfully executed

BFE_WARN_BUSY The returned value has been read while the device was
busy.

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This routine attempts to read the internal temperature while the device is available (this is, the busy bit is 0).
However, the wait_for_free routine does not guarantee the device is free after returning to avoid blocking the
program flow. Therefore, if the device is busy after wait_for_free returns, this routine generates the code
BFE_WARN_BUSY to alert the caller function to a possible outdated reading.

The caller function must ensure p_value points to a structure of type
st_raa489206_temperature_measurements_t to avoid undetermined behavior.

e_bfe_err_t R_RAA489206_ReadDOC(st_bfe_ctrl_t * const p_ctrl, float * p_current_ma)

Read and return the Discharge Overcurrent (DOC) threshold in mA storing its value the variable pointed by p_current_ma:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the DOC threshold register and convert its value into mV.

3. Convert the voltage value into mA using the shunt resistor value.

4. Write the value in mA in the variable pointed by p_current_ma.

Returned values BFE_SUCCESS

BFE_ERR_FSP_ERROR

BFE_ERR_DEVICE_NOT_INITIALIZED

DOC reading successfully executed

FSP module error

R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 49
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.18 R_RAA489206_ReadCOC

5.3.6.19 R_RAA489206_ReadDSC

5.3.6.20 R_RAA489206_ReadMaxVcellDeltaVoltage

e_bfe_err_t R_RAA489206_ReadCOC(st_bfe_ctrl_t * const p_ctrl, float * p_current_ma)

Read and return the Charge Overcurrent (COC) threshold in mA storing its value the variable pointed by p_current_ma:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the COC threshold register and convert its value into mV.

3. Convert the voltage value into mA using the shunt resistor value.

4. Write the value in mA in the variable pointed by p_current_ma.

Returned values BFE_SUCCESS COC reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_ReadDSC(st_bfe_ctrl_t * const p_ctrl, float * p_current_ma)

Read and return the Discharge Short-circuit Current (DSC) threshold in mA storing its value in the variable pointed by
p_current_ma:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the DSC threshold register and convert its value into mV.

3. Convert the voltage value into mA using the shunt resistor value.

4. Write the value in mA in the variable pointed by p_current_ma.

Returned values BFE_SUCCESS DSC reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_ReadMaxVcellDeltaVoltage(st_bfe_ctrl_t * const p_ctrl, float * p_cells_maxd_th_mv)

Read and return the cells voltage maximum delta in mV storing its value in the variable pointed by p_cells_maxd_th_mv:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the maximum cells voltage threshold register and convert its value into mV.

3. Write the value in mV in the variable pointed by p_cells_maxd_th_mv.

Returned values BFE_SUCCESS Maximum delta reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 50
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.21 R_RAA489206_ReadCellUndervoltage

5.3.6.22 R_RAA489206_ReadCellOvervoltage

5.3.6.23 R_RAA489206_ReadVpackUndervoltage

e_bfe_err_t R_RAA489206_ReadCellUndervoltage(st_bfe_ctrl_t * const p_ctrl, float * p_cells_uv_th_mv)

Read and return the cell undervoltage (VCELL UV) threshold in mV storing its value in the variable pointed by p_cells_uv_th_mv:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the cells undervoltage threshold register and convert its value into mV.

3. Write the value in mV in the variable pointed by p_cells_uv_th_ma.

Returned values BFE_SUCCESS VCELL UV threshold reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_ReadCellOvervoltage(st_bfe_ctrl_t * const p_ctrl, float * p_cells_ov_th_mv)

Read and return the cell undervoltage (VCELL OV) threshold in mV storing its value in the variable pointed by p_cells_ov_th_mv:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the cells overvoltage threshold register and convert its value into mV.

3. Write the value in mV in the variable pointed by p_cells_ov_th_ma.

Returned values BFE_SUCCESS VCELL OV threshold reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_ReadVpackUndervoltage(st_bfe_ctrl_t * const p_ctrl, float * p_vpack_uv_th_mv)

Read and return the pack undervoltage (VPACK UV) threshold in mV storing its value in the variable pointed by
p_vpack_uv_th_mv:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the pack undervoltage threshold register and convert its value into mV.

3. Write the value in mV in the variable pointed by p_vpack_uv_th_ma.

Returned values BFE_SUCCESS VCELL UV threshold reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 51
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.24 R_RAA489206_ReadVpackOvervoltage

5.3.6.25 R_RAA489206_ReadInternalOTWarning

5.3.6.26 R_RAA489206_ReadInternalOTFault

e_bfe_err_t R_RAA489206_ReadVpackOvervoltage(st_bfe_ctrl_t * const p_ctrl, float * p_vpack_ov_th_mv)

Read and return the pack overvoltage (VPACK OV) threshold in mV storing its value in the variable pointed by p_vpack_ov_th_mv:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the pack overvoltage threshold register and convert its value into mV.

3. Write the value in mV in the variable pointed by p_vpack_ov_th_ma.

Returned values BFE_SUCCESS VPACK OV threshold reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_ReadInternalOTWarning(st_bfe_ctrl_t * const p_ctrl, float * p_war_temperature)

Read and return the internal over-temperature warning (IOTW) threshold in °C storing its value in the variable pointed by
p_war_temperature:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the internal over-temperature warning threshold register and convert its value into °C.

3. Write the value in °C in the variable pointed by p_war_temperature.

Returned values BFE_SUCCESS IOTW threshold reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_ReadInternalOTFaultst_bfe_ctrl_t * const p_ctrl, float * p_fault_temperature)

Read and return the internal over-temperature fault (IOTF) threshold in °C storing its value in the variable pointed by
p_fault_temperature:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the internal over-temperature warning threshold register and convert its value into °C.

3. Write the value in °C in the variable pointed by p_fault_temperature.

Returned values BFE_SUCCESS IOTF threshold reading successfully executed

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 52
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.27 R_RAA489206_TurnChargePumpOn

5.3.6.28 R_RAA489206_TurnChargePumpOff

5.3.6.29 R_RAA489206_TurnDFetOn

e_bfe_err_t R_RAA489206_TurnChargePumpOn(st_bfe_ctrl_t * const p_ctrl)

Turn the BFE charge pump on:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set the CPMP_EN bit to 1.

4. Write the power FET operation register to turn the pump on.

5. Wait for 10ms to ensure its output rises.

Returned values BFE_SUCCESS Charge pump is on

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_TurnChargePumpOff(st_bfe_ctrl_t * const p_ctrl)

Turn the BFE charge pump off:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set the CPMP_EN bit to 0.

4. Write the power FET operation register to turn the pump off.

Returned values BFE_SUCCESS Charge pump is off

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_TurnDFetOn(st_bfe_ctrl_t * const p_ctrl)

Turn the BFE DFET on:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set the DFET_EN bit to 1.

4. Write the power FET operation register to turn the DFET on.

Returned values BFE_SUCCESS DFET is on

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 53
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.30 R_RAA489206_TurnDFetOff

5.3.6.31 R_RAA489206_TurnCFetOn

5.3.6.32 R_RAA489206_TurnCFetOff

e_bfe_err_t R_RAA489206_TurnDFetOff(st_bfe_ctrl_t * const p_ctrl)

Turn the BFE DFET off:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set the DFET_EN bit to 0.

4. Write the power FET operation register to turn the DFET off.

Returned values BFE_SUCCESS DFET is off

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_TurnCFetOn(st_bfe_ctrl_t * const p_ctrl)

Turn the BFE CFET on:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set the CFET_EN bit to 1.

4. Write the power FET operation register to turn the CFET on.

Returned values BFE_SUCCESS CFET is on

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_TurnCFetOff(st_bfe_ctrl_t * const p_ctrl)

Turn the BFE CFET off:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set the CFET_EN bit to 0.

4. Write the power FET operation register to turn the CFET off.

Returned values BFE_SUCCESS CFET is on

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 54
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.33 R_RAA489206_TurnDFetOnCFetOn

5.3.6.34 R_RAA489206_TurnDFetOffCFetOn

5.3.6.35 R_RAA489206_TurnDFetOnCFetOff

e_bfe_err_t R_RAA489206_TurnDFetOnCFetOn(st_bfe_ctrl_t * const p_ctrl)

Turn both BFE DFET and CFET on:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set both DFET_EN and CFET_EN bits to 1.

4. Write the power FET operation register to turn both FETs on.

Returned values BFE_SUCCESS CFET is on

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_TurnDFetOffCFetOn(st_bfe_ctrl_t * const p_ctrl)

Turn BFE DFET off and CFET on:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set DFET_EN bit to 0 and CFET_EN bit to 1.

4. Write the power FET operation register to turn DFET off and CFET on.

Returned values BFE_SUCCESS DFET is off and CFET is on

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_TurnDFetOnCFetOff(st_bfe_ctrl_t * const p_ctrl)

Turn BFE DFET on and CFET off:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set DFET_EN bit to 1 and CFET_EN bit to 0.

4. Write the power FET operation register to turn DFET on and CFET off.

Returned values BFE_SUCCESS DFET is on and CFET is off

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 55
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.36 R_RAA489206_TurnDFetOffCFetOff

5.3.6.37 R_RAA489206_SetAlerts

e_bfe_err_t R_RAA489206_TurnDFetOffCFetOff(st_bfe_ctrl_t * const p_ctrl)

Turn both BFE DFET and CFET off:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the power FET operation register (RBW).

3. Set both DFET_EN and CFET_EN bits to 0.

4. Write the power FET operation register to turn both FETs off.

Returned values BFE_SUCCESS DFET and CFET are off

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_SetAlerts (st_bfe_ctrl_t * const p_ctrl, const bfe_alerts_masks_t * const p_alert_events)

Set the fault delays and events that assert the ALERT pin. p_alert_events points to a structure containing fault delay settings and
faults to be unmasked:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast the input pointer p_alert_events to point to an instance-defined structure of type st_raa489206_events_masks_t.

3. Set the fault delays values and write their corresponding registers:

• Fault delay register.

• DSC delay register.

• Over-current delay register.

• LD_DELAY bits-group in the VREG operations register (execute RBW).

• IDIR_DELAY bits-group in the IPACK operation register (execute RBW).

4. Unmask the faults allowed to assert the ALERT pin:

• Priority faults mask register.

• Etaux faults mask register.

• Other faults mask register.

• Cell balancing faults register.

• Status masks register.

• Open-wire mask register.

Returned values BFE_SUCCESS Alert events are successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED Alert events have not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The caller function must ensure p_alert_events points to a structure of type st_raa489206_events_masks_t
to avoid undetermined behavior.

The RBW practice only precedes writing operations that update bits-fields: LD_DELAY in the VREG operation
register, and IDIR_DELAY in the IPACK operation register. The other writing operations overwrite the whole
registers values, so RBW is not executed.

The RAW feature verifies the values are successfully set.

R16AN0015EU0101 Rev.1.01 Page 56
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.38 R_RAA489206_SetDOC

5.3.6.39 R_RAA489206_SetCOC

e_bfe_err_t R_RAA489206_SetDOC(st_bfe_ctrl_t * const p_ctrl, float current_ma)

Set the Discharge Overcurrent (DOC) threshold in mA:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the current threshold current_ma in mA into mV using the shunt resistor value.

3. Convert the voltage in mV into its register value.

4. Set and write the discharge overcurrent threshold register.

Returned values BFE_SUCCESS DOC threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED DOC threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a negative value, which indicates that charge is drained from the battery pack.

The DOC threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input thresholds that
result in conversions out of this range are set accordingly to either the maximum (0xFF) or minimum (0x00)
register value. See the datasheet for detailed information about the threshold range and granularity the
register can represent.

The RAW feature verifies the value is successfully set.

e_bfe_err_t R_RAA489206_SetCOC(st_bfe_ctrl_t * const p_ctrl, float current_ma)

Set the Charge Overcurrent (COC) threshold in mA:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the current threshold current_ma in mA into mV using the shunt resistor value.

3. Convert the voltage in mV into its register value.

4. Set and write the charge overcurrent threshold register.

Returned values BFE_SUCCESS COC threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED COC threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a positive value, which indicates charge is being given to the battery pack.

The COC threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input thresholds that
result in conversions out of this range are set accordingly to either the maximum (0xFF) or minimum (0x00)
register value. See the datasheet for detailed information about the threshold range and granularity the
register can represent.

The RAW feature verifies the value is successfully set.

R16AN0015EU0101 Rev.1.01 Page 57
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.40 R_RAA489206_SetDSC

5.3.6.41 R_RAA489206_SetMaxVcellDeltaVoltage

e_bfe_err_t R_RAA489206_SetDSC(st_bfe_ctrl_t * const p_ctrl, float current_ma)

Set the Discharge Short-circuit Current (DSC) threshold in mA:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the current threshold current_ma in mA into mV using the shunt resistor value.

3. Convert the voltage in mV into its register value.

4. Set and write the short-circuit overcurrent threshold register.

Returned values BFE_SUCCESS DSC threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED DSC threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a negative value, which indicates charge is drained from the battery pack.

The DSC threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input thresholds that
result in conversions out of this range are set accordingly to either the maximum (0xFF) or minimum (0x00)
register value. See the datasheet for detailed information about the threshold range and granularity the
register can represent.

The RAW feature verifies the value is successfully set.

e_bfe_err_t R_RAA489206_SetMaxVcellDeltaVoltage(st_bfe_ctrl_t * const p_ctrl, float cells_maxd_th_mv)

Set the maximum cell voltages delta (Max VCELL Delta) threshold in mV:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the voltage threshold cells_maxd_th_mv in mV into its register value.

3. Set and write the VCELL Max Delta threshold register.

Returned values BFE_SUCCESS VCELL Max Delta threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED VCELL Max Delta threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a positive value.

The VCELL Max Delta threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input
thresholds that result in conversions out of this range are set accordingly to either the maximum (0xFF) or
minimum (0x00) register value. See the datasheet for detailed information about the threshold range and
granularity the register can represent.

The RAW feature verifies the value is successfully set.

R16AN0015EU0101 Rev.1.01 Page 58
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.42 R_RAA489206_SetCellUndervoltage

5.3.6.43 R_RAA489206_SetCellOvervoltage

e_bfe_err_t R_RAA489206_SetCellUndevoltage(st_bfe_ctrl_t * const p_ctrl, float cells_uv_th_mv)

Set the Cell Undervoltage (VCELL UV) threshold in mV:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the voltage threshold cells_uv_th_mv in mV into its register value.

3. Set and write the VCELL UV threshold register.

Returned values BFE_SUCCESS VCELL UV threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED VCELL UV threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a positive value.

The VCELL UV threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input thresholds
that result in conversions out of this range are set accordingly to either the maximum (0xFF) or minimum
(0x00) register value. See the datasheet for detailed information about the threshold range and granularity the
register can represent.

The RAW feature verifies the value is successfully set.

e_bfe_err_t R_RAA489206_SetCellOvervoltage(st_bfe_ctrl_t * const p_ctrl, float cells_ov_th_mv)

Set the Cell Overvoltage (VCELL OV) threshold in mV:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the voltage threshold cells_ov_th_mv in mV into its register value.

3. Set and write the VCELL OV threshold register.

Returned values BFE_SUCCESS VCELL OV threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED VCELL OV threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a positive value.

The VCELL OV threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input thresholds
that result in conversions out of this range are set accordingly to either the maximum (0xFF) or minimum
(0x00) register value. See the datasheet for detailed information about the threshold range and granularity the
register can represent.

The RAW feature verifies the value is successfully set.

R16AN0015EU0101 Rev.1.01 Page 59
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.44 R_RAA489206_SetVpackUndervoltage

5.3.6.45 R_RAA489206_SetVpackOvervoltage

e_bfe_err_t R_RAA489206_SetVpackUndevoltage(st_bfe_ctrl_t * const p_ctrl, float vpack_uv_th_mv)

Set the VBAT1 (VPACK) Undervoltage (VPACK UV) threshold in mV:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the voltage threshold vpack_uv_th_mv in mV into its register value.

3. Set and write the VBAT1 UV threshold register.

Returned values BFE_SUCCESS VPACK UV threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED VPACK UV threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a positive value.

The VBAT1 (VPACK) UV threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input
thresholds that result in conversions out of this range are set accordingly to either the maximum (0xFF) or
minimum (0x00) register value. See the datasheet for detailed information about the threshold range and
granularity the register can represent.

The RAW feature verifies the value is successfully set.

e_bfe_err_t R_RAA489206_SetVpackOvervoltage(st_bfe_ctrl_t * const p_ctrl, float vpack_ov_th_mv)

Set the VBAT1 (VPACK) Overvoltage (VPACK OV) threshold in mV:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the voltage threshold vpack_ov_th_mv in mV into its register value.

3. Set and write the VBAT1 OV threshold register.

Returned values BFE_SUCCESS VPACK OV threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED VPACK OV threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This function expects a positive value.

The VBAT1 (VPACK) OV threshold is an 8-bit register with valid range 0x00 ≤ register value ≤ = 0xFF. Input
thresholds that result in conversions out of this range are set accordingly to either the maximum (0xFF) or
minimum (0x00) register value. See the datasheet for detailed information about the threshold range and
granularity the register can represent.

The RAW feature verifies the value is successfully set.

R16AN0015EU0101 Rev.1.01 Page 60
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.46 R_RAA489206_SetInternalOTFault

5.3.6.47 R_RAA489206_SetInternalOTWarning

e_bfe_err_t R_RAA489206_SetInternalOTFault(st_bfe_ctrl_t * const p_ctrl, float fault_temperature)

Set the Internal Over-Temperature Fault (IOTF) threshold in °C:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the voltage threshold fault_temperature in °C into its register value.

3. Set and write the IOTF threshold register.

Returned values BFE_SUCCESS IOTF threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED IOTF threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The IOTF register can represent temperatures between -63.7°C and +151.1 °C. Out-of-range thresholds are
set to the closest range limit.

The RAW feature verifies the value is successfully set.

e_bfe_err_t R_RAA489206_SetInternalOTWarning(st_bfe_ctrl_t * const p_ctrl, float war_temperature)

Set the Internal Over-Temperature Warning (IOTW) threshold in °C:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Convert the voltage threshold war_temperature in °C into its register value.

3. Set and write the IOTW threshold register.

Returned values BFE_SUCCESS IOTW threshold successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED IOTW threshold has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The IOTW register can represent temperatures between -63.7°C and +151.1 °C. Out-of-range thresholds are
set to the closest range limit.

The RAW feature verifies the value is successfully set.

R16AN0015EU0101 Rev.1.01 Page 61
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.48 R_RAA489206_SetMode

5.3.6.49 R_RAA489206_ConfigLowPowerMode

e_bfe_err_t R_RAA489206_SetMode (st_bfe_ctrl_t * const p_ctrl, e_bfe_mode_t e_bfe_mode)

Set the BFE to the mode specified by the enumeration e_bfe_mode:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the scan operation register (RBW).

3. Map the enumeration to the BFE mode value

4. Set the bits-field SYS_MODE of the scan operation register to the mapped value.

5. Write the scan operation register.

Returned values BFE_SUCCESS BFE mode successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED BFE mode has not been set

BFE_ERR_NONSUPPORTED_MODE Specified mode is not supported by the BFE

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_ConfigLowPowerMode(st_bfe_ctrl_t * const p_ctrl, bfe_lpm_cfg_t * const p_lpm_options)

Setup BFE Low Power Mode (LPM) settings according to the instance-defined options p_lpm_options points to:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Cast the pointer p_lpm_options to point to a structure of the instance-defined type st_raa4892206_lpm_cfg_t.

3. Set the Low Power Timer value:

a. Read the scan operation register (RBW).

b. Set the Low Power Timer (LPT) bits-field of the scan operation register.

c. Write the scan operation register.

4. Set the Low Power Regulator option:

a. Read the VREG operation register (RBW).

b. Set the Low Power Regulator (LP_REG) bit of the VREG operation register.

c. Write the VREG operation register.

5. Enable/disable the communication time-out:

a. Read the VBAT1 operation register (RBW)

b. Set the communication time-out enable bit (COMTO_EN) of the VBAT1 operation register.

c. Write the VBAT1 operation register.

6. Set load detection in LPM:

a. Read the load charge operation register.

b. Set the Low detection in Low Power (LDLP) bit of the load charge operation register.

c. Write the load charge operation register.

Returned values BFE_SUCCESS LPM settings successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED LPM settings have not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 62
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.50 R_RAA489206_StartLowPowerMode

5.3.6.51 R_RAA489206_GetDieInfomation

e_bfe_err_t R_RAA489206_StartLowPowerMode(st_bfe_ctrl_t *const p_ctrl)

Set the BFE to Low Power Mode (LPM) operation:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the scan operation register.

3. Set the SYS_MODE bits-field of the scan operation register to the value of the enumeration RAA489206_SYSTEM_MODE_LPM

(0x02).

4. Write the scan operation register.

Returned values BFE_SUCCESS LPM successfully set

BFE_ERR_COM_READ_AFTER_WRITE_FAILED LPM has not been set

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

e_bfe_err_t R_RAA489206_GetDieInformation(st_bfe_ctrl_t * const p_ctrl, st_bfe_information_t * p_information)

Read and return the Die information storing its ID, Revision, manufacturing ID and nickname in the structure p_information points
to:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Read the die information register.

3. Set the fields device_id and die_revision of the structure pointed by p_information to the ID, and REVISION bits-fields of the
read die information register.

4. Set manufacturing_id and nickname fields with the constants values defined for RA489206 BFE: 0x00 and the enumeration
BFE_NICKNAME_RAA206, respectively.

Returned values BFE_SUCCESS Die information successfully retrieved

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations ---

R16AN0015EU0101 Rev.1.01 Page 63
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.52 R_RAA489206_ReadRegister

5.3.6.53 R_RAA489206_ReadAllRegisters

e_bfe_err_t R_RAA489206_ReadRegister(st_bfe_ctrl_t * const p_ctrl, st_bfe_register_t * const p_bfe_register)

Read and return the BFE register the structure p_bfe_register points to:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Call the control structure function p_readRegisterValues using the following parameters:

3. p_bfe_register->address: register address.

4. p_bfe_register->p_value: pointer to the value that stores the read value

5. p_bfe_register->size: register size in Bytes.

Returned values BFE_SUCCESS Register value successfully retrieved

BFE_ERR_INVALID_POINTER p_bfe_register->p_value is a null pointer

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The caller function must ensure the pointer p_bfe_register->p_value points to a valid address. To meet this
requirement, all calls to R_RAA489206_ReadRegister in this sample code, use registers of the register bank,
which point to global definitions of the BFE registers.

e_bfe_err_t R_RAA489206_ReadAllRegisters(st_bfe_ctrl_t * const p_ctrl)

Read all BFE registers and store their values in the global definitions to which the registers bank fields point:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Wait until the device is available by calling wait_for_free. This attempts to avoid reading registers while the device is processing
any task.

3. Read all BFE registers by using either the CRC Read command RAA489206_CRC_COMMAND_ALL_REGISTERS (0x9A) or
iterative calls to the function R_RAA489206_ReadRegister

Returned values BFE_SUCCESS BFE registers successfully retrieved

BFE_WARN_BUSY BFE registers have been retrieved while the device was
busy

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations This routine attempts to read BFE registers while the device is available (this is, the busy bit is 0), so that all
registers contain updated values. However, the wait_for_free routine does not guarantee the device is free
after returning to avoid blocking the program flow. Therefore, if the device is busy after wait_for_free returns,
this routine generates the code BFE_WARN_BUSY to alert the caller function to possible outdated registers
values.

R16AN0015EU0101 Rev.1.01 Page 64
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

5.3.6.54 R_RAA489206_WriteRegister

6. Sample Battery Management System

6.1 Overview
The command bmsdemo starts the execution of the sample BMS application, which demonstrates the use of the
RAA489206 BFE features to

▪ Monitor the status of a battery pack

▪ Measure and report periodically voltage, current and temperature

▪ Protect the battery pack against faults

▪ Reduce power consumption when no load is present

▪ Detect automatically load presence and restart normal operation

The sample BMS application sets up the BFE to monitor a battery pack using continuous scan operation and
assert the ALERT pin to inform the MCU about the occurrence of events of interest.

The BMS application executes the following sequence:

1. Unmask all priority, etaux, other and status faults bits enabling them to assert the ALERT pin.

2. Set fault delays to 0.

3. Enable the MCU pin connected to the BFE ALERT pin to generate IRQ interruptions.

4. Set the BFE to continuous scan operation.

5. Command the BFE to start continuous scan operation.

6. Set the MCU to SLEEP MODE.

7. The MCU (application) exists SLEEP MODE and enters NORMAL MODE (Program execution State) when the
BFE triggers an IRQ interruption in the MCU by asserting the RESET pin.

8. Iterate over call-back routines that verify the status of the battery pack, report measurements via CLI, and
execute actions when necessary.

9. Goes to Step 5.

10. Terminate application execution when CTRL + C received over CLI.

The header file r_bms.h and source code r_bms.c implement the sample BMS application. The following
sections detail these files.

e_bfe_err_t R_RAA489206_WriteRegister(st_bfe_ctrl_t * const p_ctrl, const st_bfe_register_t * const p_bfe_register)

Write the BFE register the structure p_bfe_register points to:

1. Cast pointer p_api_ctrl to point to a structure of type st_raa489206_ctrl and verify the device has been initialized.

2. Call the control structure function p_writeRegisterValues using the following parameters:

3. p_bfe_register->address: register address.

4. p_bfe_register->p_value: pointer to the value to be written in the BFE.

5. p_bfe_register->size: register size in Bytes.

Returned values BFE_SUCCESS Register value successfully retrieved

BFE_ERR_INVALID_POINTER p_bfe_register->p_value is a null pointer

BFE_ERR_FSP_ERROR FSP module error

BFE_ERR_DEVICE_NOT_INITIALIZED R_RAA489206_Init has not been called

Observations The caller function must ensure the pointer p_bfe_register->p_value points to a valid address. To meet this
requirement, all calls to R_RAA489206_WriteRegister in this sample code, use registers of the register bank,
which point to global definitions of the BFE registers.

R16AN0015EU0101 Rev.1.01 Page 65
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

6.2 Header File r_bms.h
This header file includes the external header files imported by the implementation, the signatures of functions
defined in r_bms.c, and the declaration of the type definitions st_monitoring_callbacks_t and
u_monitoring_callbacks_t. The structure type st_monitoring_callbacks_t contains members with pointers to
call-back routines, which monitor the battery in response to events and status indicated by BFE status and fault
registers. The union u_monitoring_callbacks_t allows the application to iterate over the structure call-backs as
an array.

6.3 Source Code r_bms.c

6.4 Declarations
The first block of the source code defines variables and functions used in the application:

Static variables to share events and data between functions:

static bool s_alert_pin_asserted = false;
static bool s_monitor_timer_to = false;
static st_bms_measurements_t s_bms_measurements;
static const uint8_t s_read_allregisters_retries = 5;
static e_bfe_mode_t s_mode;
static st_raa489206_status_t s_device_status;

Declaration of call-back functions, which are the kernel routines that implement the functionalities demonstrated
by this sample BMS application. Call-backs monitor BFE measurements, status and faults registers to determine
the occurrence of an event (or events) of interest, and report battery pack state and properties such as cells/pack
voltages, and pack current.

/*---

 Callbacks to monitor BFE status and faults

----------*/
/*Discharge short-current*/
static bool dsc_callback (const st_bfe_instance_t * p_args);
/*Read all registers*/
static bool read_registers_callback (const st_bfe_instance_t * p_args);
/*Discharge overcurrent*/
static bool doc_callback (const st_bfe_instance_t * p_args);
/*Charge overcurrent*/
static bool coc_callback (const st_bfe_instance_t * p_args);
/*Cells undervoltage*/
static bool vcell_uv_callback (const st_bfe_instance_t * p_args);
/*Pack undervoltage*/
static bool vpack_uv_callback (const st_bfe_instance_t * p_args);
/*Cells overvoltage*/
static bool vcell_ov_callback (const st_bfe_instance_t * p_args);
/*Pack overvoltage*/
static bool vpack_ov_callback (const st_bfe_instance_t * p_args);
/*Maximum cells voltage delta*/
static bool delta_vcell_ov_callback (const st_bfe_instance_t * p_args);
/*Internal over-temperature warning*/
static bool iotw_callback (const st_bfe_instance_t * p_args);
/*Internal over-temperature fault*/

R16AN0015EU0101 Rev.1.01 Page 66
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

static bool iotf_callback (const st_bfe_instance_t * p_args);
/*Read all measurements*/
static bool read_measurements (const st_bfe_instance_t * p_args);
/*Read device status*/
static bool read_status_callback (const st_bfe_instance_t * p_args);

Call-backs structure and array where pointers to call-backs functions are stored. The structure
st_monitoring_callbacks_t callbacks_prio stores call-backs pointers in the fields .p_prioN, where N = 0, 1,
2, ...15 is the callback priority. The union u_monitoring_callbacks_vector_t callbacks_vector allows iterating
over call-back pointers to implement a simple Circular First-Come,First-Served (CFCFS) scheduling scheme for
call-backs prioritization. The details and implications of this scheduling scheme are described in The bms_main
Function. The Boolean return value indicates whether the call-back has detected a critical fault (return bool =
true).

static const st_monitoring_callbacks_t callbacks_prio =
{
 .p_prio0 = dsc_callback,
 .p_prio1 = read_registers_callback,
 .p_prio2 = doc_callback,
 .p_prio3 = coc_callback,
 .p_prio4 = vcell_ov_callback,
 .p_prio5 = vpack_ov_callback,
 .p_prio6 = vcell_uv_callback,
 .p_prio7 = vpack_uv_callback,
 .p_prio8 = read_other_callback,
 .p_prio9 = iotf_callback,
 .p_prio10 = delta_vcell_ov_callback,
 .p_prio11 = iotw_callback,
 .p_prio12 = read_measurements,
 .p_prio13 = read_status_callback,
 .p_prio14 = NULL,
 .p_prio15 = NULL,
};

static const u_monitoring_callbacks_vector_t callbacks_vector =
{
 .callbacks = callbacks_prio,
};

R16AN0015EU0101 Rev.1.01 Page 67
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

6.5 The bms_main Function
The CLI calls the execution of this function when the bmsdemo start command is entered by the user. As it has
been mentioned previously, call-backs routines are the kernel of the sample BMS application. The following code
extract highlights the lines that implement the iterative calls to them (this is, the CFCFS scheduling scheme).

e_bfe_err_t bms_start(void)
{
 /*Variables Initialization*/
 ...

 /*Read all registers to ensure that code that uses register bank mirror gets
updated values*/
 raa489206_error = g_bfe_raa489206.p_api-
>p_readAllRegisters(g_bfe_raa489206.p_ctrl);

 BFE_ERROR_RETURN(raa489206_error == BFE_SUCCESS, raa489206_error);

 /*MCU Settings: LPM and IRQ modules*/
 ...

 /*Start continuous scan operation*/
 raa489206_error = g_bfe_raa489206.p_api-
>p_startContinuousScan(g_bfe_raa489206.p_ctrl, &g_bfe_cs_config);

 BFE_ERROR_RETURN(raa489206_error == BFE_SUCCESS, raa489206_error);

 /*Turn Charge pump on*/
 g_pwr_fet_op_register.value_b.CPMP_EN = 1;
 raa489206_error = R_RAA489206_WriteRegister(g_bfe_raa489206.p_ctrl,
&(g_bfe_raa489206_ctrl.p_regs->power_fet_operation));

 uint8_t num_prio =
sizeof(callbacks_vector.prioCallbacks)/sizeof(callbacks_vector.prioCallbacks[0]);

 while (1)
 {
 /*MCU Sleep Mode*/
if ((g_alert_pin_asserted == false) && (get_uart_transmission() != true) &&
(get_uart_reception() != true))
 {
 fsp_error = g_lpm.p_api->lowPowerModeEnter(g_lpm.p_ctrl);

 BFE_ERROR_RETURN(fsp_error == FSP_SUCCESS, raa489206_error);
 }

/*Wake up: has ALERT pin been asserted?*/
 if (g_alert_pin_asserted)
 {
 g_alert_pin_asserted = false;

 s_fault_detected = false;

 for (uint8_t i = 0; i < num_prio; i++)

R16AN0015EU0101 Rev.1.01 Page 68
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

 {
 if (callbacks_vector.prioCallbacks[i] != NULL)
 {
 if ((*callbacks_vector.prioCallbacks[i])(&g_bfe_raa489206)
== true)
 {
 critical_fault_detected(&g_bfe_raa489206);
 }
 }
 }

/*Stop execution in a safe state if faults has been detected?*/

 if ((s_fault_detected == false) && (p_gtp_ctrl->open == GPT_OPEN))
 {
 g_timer.p_api->stop(g_timer.p_ctrl);
 g_timer.p_api->close(g_timer.p_ctrl);
 g_ioport.p_api->pinWrite(g_ioport.p_ctrl, LED_PIN,
BSP_IO_LEVEL_HIGH);
 }

 if (s_fault_detected == true)
 {
 R_BFE_CLI_Printf("\nFault Detected: Press CTRL + C to exit");
 }
 }

 R_BFE_CLI_Process();

 if (s_exit == true)
 {
 break;
 }
 }

 return BFE_SUCCESS;
}

Because function pointers stored in the callbacks_vector union are called sequentially from the 0th to 15th array
element, the CFCFS scheduling scheme assigns higher priority to lower array positions (this is, lower priority
structure fields .p_prioN). The priority vector adopted by this sample BMS application, its call-backs tasks and
actions, and observations on call-backs implementations are summarized in Table 9.

R16AN0015EU0101 Rev.1.01 Page 69
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

Table 9. Summary of BMS Vector: Task, Actions and Observations

Priority Callback Task Actions Observations

0

(highest)

dsc_callback Monitor Discharge
Short-Circuit
overcurrent event

Turns DFET and
CFET off and returns
true if event is
detected.

DSC is a user-safety-critical
event triggered by an analog
comparator that does not
depend on scan
measurements

1 read_registers_callback Update MCU
registers bank

Waits for BFE to be
available and reads all
registers

It aims to provide call-backs
with updated registers values

2 doc_callback Monitor Discharge
Overcurrent event

Turns DFET off and
returns true if event is
detected.

Clears fault if event is
not detected.

DOC causes overheating of
battery pack leading to cells
deterioration or dangerous
situations.

3 coc_callback Monitor Charge
Overcurrent event

Turns CFET off and
returns true if event is
detected.

Clears fault if event is
not detected.

This prevents from charging
the battery pack with current
above manufacturer
specifications, which may
lead to functional and safety
issues.

4 vcell_ov_callback Monitor cell
overvoltage event

If event is detected:

Turns CFET off during
charge; Turns DFET
on during discharge.

Clears fault if event is
not detected.

Cell OV may result in safety
issues.

Discharge may be allowed to
enable cells to reduce their
voltage

5 vpack_ov_callback Monitor pack
overvoltage

If event is detected:

Turns CFET off during
charge; Turns DFET
off during discharge.

Clears fault if event is
not detected.

Pack OV may result in safety
issues.

Discharge may be allowed to
enable the battery pack to
reduce its voltage

6 vcell_uv_callback Monitor cells
undervoltage

If event is detected:

Turns CFET on during
charge; Turns DFET
off during discharge.

Clears fault if event is
not detected.

Cells undervoltage reduces
their capacity and life.

Charge may be allowed to
enable cells to increase their
voltage

7 vpack_uv_callback Monitor pack
undervoltage

If an event is detected:
Turns CFET on during
charge; Turns DFET
off during discharge.

Clears fault if event is
not detected.

Pack undervoltage reduces
pack capacity and life.

Charge may be allowed to
enable pack to increase its
voltage

8 read_other_callback Monitor other faults:
VCC Fault, Open
Wire, ETAUX, Charge
Pump not ready,
Other Faults bit,
Regulator Current 1
and 2 and VTMP
Fault.

If any fault bit indicates
an other fault has
occurred, DFET and
CFET are turned off.

Indicate whether internal IC
faults occur or wires have
been disconnected.

R16AN0015EU0101 Rev.1.01 Page 70
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

When the conditions described in the Scan Will Not Start section the RAA489206 datasheet are met, the ALERT
pin can remain permanently asserted and the continuous scan operation may not start. Because the sample BMS
application uses the IRQ interruption to exit from the MCU Low Power Mode operation, the permanent assertion
of the ALERT pin avoids setting back the MCU to NORMAL MODE. The BMS application reports this event as a
critical error, so it is necessary to exit the application entering CTRL+C, which clears the fault condition and sets
the BFE into a safe state.

Entering the key sequence CTRL + C calls the function bms_stop:

void bms_stop(void)
{
 g_alert_irq.p_api->disable(g_alert_irq.p_ctrl);
 g_alert_irq.p_api->close(g_alert_irq.p_ctrl);
 gpt_instance_ctrl_t *p_gtp_ctrl = (gpt_instance_ctrl_t *) g_timer.p_ctrl;
 g_ioport.p_api->pinWrite(g_ioport.p_ctrl, LED_PIN, BSP_IO_LEVEL_HIGH);

 if (p_gtp_ctrl->open == GPT_OPEN)
 {
 g_timer.p_api->close(g_timer.p_ctrl);
 }

9 Iotf_callback Monitor internal
over-temperature

If event is detected:

Turns DFET and
CFET off

Clears fault if event is
not detected.

Over-temperature may
indicate battery pack failures,
BFE failures, or extreme
environmental conditions
under which the battery pack
should not operate.

10 delta_vcell_ov_callback Monitor maximum
difference between
cells voltages

This event is reported
as critical fault

Excessive cell voltage
unbalance limits the pack
capacity to weak cells
capacity, and deteriorates life
and capacity of strong cells

11 iotw_callback Monitor the
over-temperature
warning

Reports warning It warns the BMS of possible
excess of BFE internal
temperature

12 read_measurements Report pack voltage,
cells voltages, pack
current and other
measurements

Reads and reports
measurements
registers

13 read_status_callbacks Update registers, and
report BFE
status/faults and
current mode

Reads all registers,
status/fault registers
and BFE mode

Previous call-backs may
have modified registers
and/or BFE operation mode,
so this function updates the
registers bank and verified
whether a fault has set the
device to IDLE mode. If it is,
this callback set it back to
SCAN mode and resume
continuous scan operation.

14 User-defined

15
(Lowest)

User-defined

Table 9. Summary of BMS Vector: Task, Actions and Observations (Cont.)

Priority Callback Task Actions Observations

R16AN0015EU0101 Rev.1.01 Page 71
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

 g_bfe_raa489206.p_api->p_startSystemScan(g_bfe_raa489206.p_ctrl);

 g_bfe_raa489206.p_api->p_turnDfetOffCfetOff(g_bfe_raa489206.p_ctrl);

 g_bfe_raa489206.p_api->p_stopContinuousScan(g_bfe_raa489206.p_ctrl);

 static st_raa489206_status_t device_status;

 g_bfe_raa489206.p_api->p_readStatus(g_bfe_raa489206.p_ctrl, &device_status);

 R_BFE_CLI_Printf("\nAfter stopping scan mode-->prio_status = ");

 for (int8_t i = 7; i >= 0; i--)
 {
 uint8_t bit = (device_status.priority_status.value >> i) & 1U;

 R_BFE_CLI_Printf("%d", bit);
 }

 R_BFE_CLI_Printf(" ; ");

 R_BFE_CLI_Printf(" COCF = %d ; ", device_status.priority_status.value_b.COCF);
 R_BFE_CLI_Printf(" DOCF = %d ; ", device_status.priority_status.value_b.DOCF);
 R_BFE_CLI_Printf(" DSCF = %d ; ", device_status.priority_status.value_b.DSCF);
 R_BFE_CLI_Printf(" IOTF = %d ; ", device_status.priority_status.value_b.IOTF);
 R_BFE_CLI_Printf(" OVF = %d ; ", device_status.priority_status.value_b.OVF);
 R_BFE_CLI_Printf(" OWF = %d ; ", device_status.priority_status.value_b.OWF);
 R_BFE_CLI_Printf(" UVF = %d ; ", device_status.priority_status.value_b.UVF);
 R_BFE_CLI_Printf(" VCCF = %d\n ", device_status.priority_status.value_b.VCCF);
 //g_bfe_raa489206.p_api->p_clearAllFaults(g_bfe_raa489206.p_ctrl);
 s_exit = true;

 g_bfe_raa489206.p_api->p_readAllRegisters(g_bfe_raa489206.p_ctrl);
}

This function finishes the BMS application as follows:

1. Disable and close the IRQ and timer modules of the MCU.

2. Execute a system scan to be able to read updated register value upon termination of the application.

3. Turn off CFET and DFET to set the BFE and the battery to a safe state.

4. Stop continuous scan.

5. Read the status of the BFE.

6. Print out the priority fault bits.

7. State-of-Charge Application
The CLI calls the execution of this function when the soc <soci> command is entered by the user. Refer to
R16AN0029: Coulomb Counting and State-of-Charge Estimation featuring the RAA489206/ISL94216A Battery
Front End for detailed information about the application implementation and how to use it.

https://www.renesas.com/RAA489206#documents
https://www.renesas.com/RAA489206#documents

R16AN0015EU0101 Rev.1.01 Page 72
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8. CLI Commands List
This section lists commands available in the CLI, and describes their format, parameters and action on the BFE
device. As convention, parameters within square brackets ([]) are mandatory, whereas parameters within angle
brackets (< >) are optional.

8.1 BFE command group
The BFE command group allows you to:

▪ Read and set the voltage, current and temperature threshold registers.

▪ Read BFE faults and status flags.

▪ Start a complete system scan.

▪ Start and stop continuous scan operation, as well as set the scan delay.

▪ Manipulate the state of charge and discharge FETs by turning each individually on/off, or setting the state of
both FETs with one command.

8.1.1 Initialize Device

8.1.2 Discharge Overcurrent (DOC) Threshold

init command

Format bfe init

Parameters none ---

Example bfe init ‒ Initializes the control structure of the BFE interface and setup the basic operating configuration
settings of the device. This command must be executed before executing any other command.

doc command

Format bfe doc <threshold>

Parameters <threshold> <none> ‒ Reads BFE DOC threshold

<Float < 0> ‒ Sets BFE DOC threshold in mA.The negative sign
denotes charge is drained from the device.

Examples bfe doc ‒ Reads BFE DOC threshold

bfe doc -300 ‒ Sets DOC threshold to -300mA

R16AN0015EU0101 Rev.1.01 Page 73
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.1.3 Charge Overcurrent (COC) Threshold

8.1.4 Discharge Short-Circuit Current (DSC) Threshold

8.1.5 Internal Over-Temperature Fault (IOTF) Threshold

8.1.6 Internal Over-Temperature Warning (IOTW) Threshold

coc command

Format bfe coc <threshold>

Parameters <threshold> <none> ‒ Reads BFE COC threshold in mA

<Float > 0> ‒ Sets COC threshold in mA. Positive sign denotes
charge is given to the device.

Examples bfe coc ‒ Reads BFE COC threshold

bfe coc 800 ‒ Sets COC threshold to 800mA

dsc command

Format bfe dsc <threshold>

Parameters <threshold> <none> ‒ Reads BFE DSC threshold in mA.

<Float < 0> ‒ Sets DSC threshold in mA. Negative sign denotes
charge is drained from the device.

Examples bfe dsc ‒ Reads BFE DSC threshold

bfe dsc -8000 ‒ Sets DSC threshold to -8000mA

iotf command

Format bfe iotf <threshold>

Parameters <threshold> <none> ‒ Reads IOTF threshold in °C.

<Float> ‒ Set IOTFs threshold in °C.

Examples bfe iotf ‒ Reads BFE IOTF threshold

bfe iotf 95 ‒ Sets IOTF threshold to 95°C

iotw command

Format bfe iotw <threshold>

Parameters <threshold> <none> ‒ Reads BFE IOTW threshold in °C.

<Float> ‒ Sets IOTF threshold in °C.

Examples bfe iotw ‒ Reads BFE IOTW threshold

bfe iotw 85 ‒ Sets IOTW threshold to 85°C

R16AN0015EU0101 Rev.1.01 Page 74
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.1.7 Maximum Cell Voltage Delta (MAXDELTA) Threshold

8.1.8 Cell Overvoltage (VCELLOV) Threshold

8.1.9 Cell Undervoltage (VCELLUV) Threshold

8.1.10 Pack Overvoltage (VPACKOV) Threshold

maxdelta command

Format bfe maxdelta <threshold>

Parameters <threshold> <none> ‒ Reads BFE MAXDELTA threshold in mV.

<Integer > 0> ‒ Sets MAXDELTA threshold in mV.

Examples bfe maxdelta ‒ Reads BFE MAXDELTA threshold

bfe maxdelta 480 ‒ Sets MAXDELTA threshold to 480mV

vcellov command

Format bfe vcellov <threshold>

Parameters <threshold> <none> ‒ Reads BFE VCELLOV threshold in mV.

<Integer > 0> ‒ Sets VCELLOV threshold in mV.

Examples bfe vcellov ‒ Reads BFE VCELLOV threshold

bfe vcellov 3000 ‒ Sets VCELLOV threshold to 3000mV

vcelluv command

Format bfe vcelluv <threshold>

Parameters <threshold> <none> ‒ Reads BFE VCELLUV threshold in mV.

<Integer > 0> ‒ Sets VCELLUV threshold in mV.

Examples bfe vcelluv ‒ Reads BFE VCELLUV threshold

bfe vcelluv 2000 ‒ Sets VCELLUV threshold to 2000mV

vpackov command

Format bfe vpackov <threshold>

Parameters <threshold> <none> ‒ Reads BFE VPACKOV threshold in mV.

<Integer > 0> ‒ Sets VPACKOV threshold in mV.

Examples bfe vpackov ‒ Reads BFE VPACKOV threshold

bfe vpackov 40000 ‒ Sets VPACKOV threshold to 40000mV

R16AN0015EU0101 Rev.1.01 Page 75
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.1.11 Pack Undervoltage (VPACKUV) Threshold

8.1.12 Thresholds

8.1.13 BFE status

vpackuv command

Format bfe vpackuv <threshold>

Parameters <threshold> <none> ‒ Reads BFE VPACKUV threshold in mV.

<Integer > 0> ‒ Sets VPACKUV threshold in mV.

Example bfe vpackuv ‒ Reads BFE VPACKUV threshold

bfe vpackuv 30000 ‒ Sets VPACKUV threshold to 30000mV

thresholds command

Format bfe thresholds

Parameters none ---

Example bfe thresholds ‒ Reads all BFE thresholds

status command

Format bfe status <-t>

bfe status clrfaults

Parameters <-t>

clrfaults

Triggers a system scan before reading BFE status.

Clears all status and faults bits

Example bfe status ‒ Reads priority and general status flags

bfe status -t ‒ Triggers a complete system scan and read, after completion of scan measurements, priority
and general status flags.

bfe status clrfaults ‒ Clears all bits in faults and status registers. All bits in registers 0x63-0x69, except for
0x67.5 - CH PRESI, along with all counters are cleared (set to 0).

R16AN0015EU0101 Rev.1.01 Page 76
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.1.14 Scan

scan command

Format bfe scan <option> <value>

Parameters <option> Select one of the following sub-command options:

<none> ‒ Starts a complete system scan.

start ‒ Starts continuous operation

stop ‒ Stops continuous operation

delay ‒ Sets the scan delay given as parameter <value> in ms.

Note: <none> and delay are allowed to be executed only in single
scan operation. Trying to execute this action in continuous scan
operation generates a command error execution.

<value> scan delay in ms for the continuous scan operation when
<option> = delay. Available delays in ms: 64, 128, 256, 512,
1024, 2048 and 4096. Specifying an unavailable delay or no value
results in execution error.

Note: This option stops continuous scan operation before setting
the delay value! Use the start option of the scan command to
restart continuous scan operation.

Example bfe scan ‒ Starts a complete system scan

bfe scan start ‒ Starts continuous scan

bfe scan stop ‒ Stops continuous scan operation

bfe scan delay ‒ Reads the current scan delay

bfe scan delay 256 ‒ Sets the scan delay to 256

R16AN0015EU0101 Rev.1.01 Page 77
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.1.15 FETs Commands

fets commands

Format bfe cfet <value>

bfe dfet <value>

bfe fets <value>

bfe cfet [value1] dfet [value2]

bfe dfet [value1] cfet [value2]

Parameters [value(1/2)] Select one of the following values:

<1> or <on>: Turns FET on

<0> or <off>: Turns FET off

Example bfe cfet

bfe dfet

Reads CFET/DFET status

bfe cfet 1

bfe cfet on

Turns CFET on

bfe cfet 0

bfe cfet off

Turns CFET off

bfe dfet

Reads DFET status

bfe dfet 1

bfe dfet on

Turns DFET on

bfe dfet 0

bfe dfet off

Turns DFET off

bfe fets 1

bfe fets on

Turns both DFET and CFET on

bfe fets 0

bfe fets off

Turns DFET and CFET off

bfe cfet 1 dfet 1

bfe dfet 1 cfet 1

Turns both DFET and CFET on

bfe cfet 0 dfet

bfe dfet 0 cfet 0

Turns both DFET and CFET off

bfe cfet 1 dfet 0

bfe dfet 0 cfet 1

Turns DFET off and CFET on

bfe cfet 0 dfet 1

bfe dfet 1 cfet 0

Turns DFET on and CFET off

R16AN0015EU0101 Rev.1.01 Page 78
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.1.16 Mode

8.1.17 Cells Count - Cells Select

8.1.18 Shunt Resistor Value

mode command

Format bfe mode <mode>

Parameters <mode> Select one of the following modes:

<none> ‒ Reads BFE mode

scan ‒ Sets the BFE to scan mode

idle ‒ Sets the BFE to idle mode

lpm ‒ Sets the BFE to lpm mode

ship ‒ Sets the BFE to ship mode

Example bfe mode ‒ Reads and returns the current BFE mode

bfe mode scan ‒ Sets the BFE device to SCAN mode

Cells Count Command

Format bfe cellcount <num>

Parameters <num> <none> ‒ Reads the cells existing in the BMS

<0 < Integer < 17> ‒ Sets the number of cells existing in the BMS

Example bfe cellcount 10 ‒ Sets the bits of the Cell Select register (0x04-0x05) that correspond to 10 cells according to
the Figure 131. Cell Count Matrix of the datasheet.

Shunt Resistor Command

Format bfe rshunt <res>

Parameters <res> <none> ‒ Reads the resistance value of the shunt resistor in mΩ.

<Float > 0> ‒ Sets the resistance value in mΩ of the shunt
resistor.

Examples bfe rshunt ‒ Reads the shunt resistance value in mΩ

bfe rshunt 30 ‒ Sets the shunt resistance value to 30mΩ, which is used to calculate current readings and
thresholds in mA.

R16AN0015EU0101 Rev.1.01 Page 79
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.2 Register (REG) Command
The register (REG) command allows the user to read or write BFE registers specifying their hexadecimal address.

8.2.1 Read Register

8.2.2 Write Register

8.3 Measurement (MEAS) Command Group
The Measurement (MEAS) command group allows the user to read and trigger voltage, currents, and internal
temperature measurements.

8.3.1 Vpack

read register command

Format reg [register-address] <-b, all> <-s>

Parameters [register-address] Hexadecimal value 0xXX of the register address

-b Prints register value in hexadecimal and binary 0xXXXXXXXX
formats.

all Prints all registers as a list grouped according to Table 2. System
Registers of the datasheet

-s Prints all resisters sorted from lowest to highest register address.

Example reg 0x01 ‒ Reads the BFE register with address 0x01 (Global Operation Register)

reg 0x01 -b ‒ Reads the BFE register with address 0x01 and prints its value in hexadecimal and binary
formats.

reg all ‒ Reads all registers sorted as in Table 2. System Registers of the datasheet.

reg all -s ‒ Reads all registers sorted from lowest to highest register address.

write register command

Format reg [register-address] [hex-value]

Parameters [register-address]

[hex-value]

Hexadecimal value 0xXX of the register address

Hexadecimal value 0xXX to be written

Example reg 0x01 0x8F ‒ Writes the value 0x8F in the BFE register with address 0x01 (Global Operation Register)

vpack command

Format reg Vpack <-t>

Parameters <-t> Triggers a VBAT1 (Vpack) measurement before reading the BFE
Vpack register

Example reg Vpack ‒ Reads pack voltage register in mV

reg Vpack -t ‒ Triggers a pack voltage measurement and read the measured value in mV after its completion

R16AN0015EU0101 Rev.1.01 Page 80
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.3.2 Ipack

8.3.3 Vcells

8.3.4 Vcell N

8.3.5 Total Cell Voltage

ipack command

Format reg Ipack <-t>

Parameters <-t> Triggers a current measurement before reading the BFE Ipack
register.

Example meas Ipack ‒ Reads BFE Ipack register value in mA

meas Ipack -t ‒ Triggers an Ipack measurement and read the measured value in mA after its completion

vcells command

Format meas vcells <-t>

Parameters <-t> Triggers cells voltage measurements before reading VCELL
registers.

Example meas vcells ‒ Reads cells voltage registers in mV

meas vcells -t ‒ Triggers cell voltage measurements and read values in mV after their completion

Vcell N command

Format meas vcell [cell_number] <-t>

Parameters [cell_number] Number of the cell (1-16)

<-t> Triggers measurement of cells voltages before reading the voltage
register of the specified cell.

Example meas vcell 5 ‒ Reads voltage in mV of cell 5

meas vcell 5 -t ‒ Triggers measurement of cells voltages and read the voltage of cell 5 in mV after
measurements completion.

totvcells command

Format meas totvcells <-t>

Parameters <-t> Triggers measurement of cells voltages before reading and
summing their voltages

Example meas totvcells ‒ Reads the cells voltage register and returns the total sum of their values in mV

meas totvcells -t ‒ Triggers measurement of cells voltages and return the total sum of cells voltages in mV
after measurements completion.

R16AN0015EU0101 Rev.1.01 Page 81
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.3.6 Internal Temperature

8.3.7 Regulator Voltage

8.3.8 Regulator Current

8.4 Cell Balancing Command Group
The cell balancing command group allows you to set the configuration settings of cell balancing functionalities and
trigger cell balancing.

8.4.1 Cell Balancing Enable/Disable

itemp command

Format meas itemp <-t>

Parameters <-t> Triggers a measurement of the internal temperature before
reading BFE internal temperature register.

Example meas itemp -t ‒ Triggers measurement of internal temperature and return the measured value in °C after its
completion.

vreg command

Format meas vreg <-t>

Parameters <-t> Triggers a measurement of the internal temperature before
reading BFE internal temperature register.

Example meas vreg -t ‒ Starts measurements of VCC, VTEMP and IREG, and return the measured value of VREG in mV
after its completion.

ireg command

Format meas ireg <-t>

Parameters <-t> Triggers a measurement of other measurements before reading
BFE regulator register.

Example meas ireg -t ‒ Starts measurements of Vcc, Vtemp and Ireg, and return the measured value of Ireg in mA
after its completion.

cb enable/disable command

Format cb <enable/disable>

Parameters <enable/disable> <none> ‒ Reads the value of the Cell Balancing Enable bit (CB
EN 0x25.7)

<enable> ‒ Enables cell balancing by setting CB EN.

<disable> ‒ Disables cell balancing by clearing CB EN

Examples cb ‒ Reads the value of CB EN

cb enable ‒ Sets CB EN

cb disable ‒ Clears CB EN

R16AN0015EU0101 Rev.1.01 Page 82
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.4.2 End-of-Charge Voltage

8.4.3 End-of-Charge Current

8.4.4 Automatic Cell Balancing Enable/Disable

8.4.5 Cell Balancing FETs Configuration

veoc command

Format cb veoc <value>

Parameters <value> <none> ‒ Reads the end-of-charge voltage in mV

<Float > 0> ‒ Sets the end-of-charge voltage to value in mV.

Examples cb veoc ‒ Reads the end-of-charge voltage in mV

cb veoc 4900 ‒ Sets the end-of-charge voltage to 4900 mV

ieoc command

Format cb ieoc <value>

Parameters <value> <none> ‒ Reads the end-of-charge current in mA

<Float > 0> ‒ Sets the end-of-charge current to value in mA

Examples cb ieoc ‒ Reads the end-of-charge current in mA

cb ieov 20 ‒ Sets the end-of-charge current to 20 mA

cb auto enable/disable command

Format cb auto <enable/disable>

Parameters <enable/disable> <none> ‒ Reads the value of the Automatic Cell Balancing Enable
bit (Auto CB EN 0x25.6)

<enable> ‒ Enables automatic cell balancing by setting Auto CB
EN.

<disable> ‒ Disables automatic cell balancing by clearing Auto
CB EN

<int> ‒ Sets the BFE to use internal FETs to perform cell
balancing by clearing the CB Configuration bit

Examples cb auto ‒ Reads the value of auto CB EN

cb auto enable ‒ Sets auto CB EN

cb auto disable ‒ Clears auto CB EN

cb fets configuration command

Format cb fets <ext/int>

Parameters <ext/int> <none> ‒ Reads the value of the cell balancing enable
configuration bit (CB Configuration 0x25.5)

<ext> ‒ Sets the BFE to use external FETs to perform cell
balancing by setting the CB Configuration bit..

Examples cb fets ‒ Reads the FETs configuration selected to perform cell balancing

cb fets ext ‒ Sets external FETs

cb fets int ‒ Sets internal FETs

R16AN0015EU0101 Rev.1.01 Page 83
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.4.6 Cell Balancing Trigger

8.4.7 Cell Balancing Mask

8.4.8 Cell Balancing End-of-Charge Enable/Disable

8.4.9 Current End-Of-Charge Enable/Disable

cb trigger command

Format: cb trigger

Parameters none ---

Examples cb trigger ‒ Triggers one cell balancing cycle

cb mask command

Format cb mask <enable/disable>

Parameters <enable/disable> <none> ‒ Reads value of the Cell Balancing Mask bit (CB Mask
0x25.2)

<enable> ‒ Enables mask feature, which prevents adjacent cells
from balancing at the same time

<disable> ‒ Disables masking feature

Examples cb mask ‒ Reads the value of the CB Mask bit

cb mask enable ‒ Does not allow adjacent cells to balance at the same time

cb mask enable ‒ Allows adjacent cells to balance at the same time

cb ieoc enable/disable command

Format cb eoc <enable/disable>

Parameters <enable/disable> <none> ‒ Reads the value of the cell balance end-of-charge bit
(CB EOC 0x25.1)

<enable> ‒ Enables cell balancing after one or more cells reach
the VEOC threshold.

<disable> ‒ Disables cell balancing when any cell voltage
reaches the VEOC threshold

Examples cb eoc ‒ Reads the value of auto CB EOC

cb eoc enable ‒ Enables cell balancing after cell voltages reach VEOC threshold

cb eoc disable ‒ Disables cell balancing after any cell voltage reaches VEOC threshold

cb ieoc_en enable/disable command

Format cb ieoc_en <enable/disable>

Parameters <enable/disable> <none> ‒ Read the value of the Current End-Of-Charge Enable
bit (IEOC EN 0x25.3)

<enable> ‒ Charging stops after the VEOC bit is set and the
charge current drops below the IEOC Threshold.

<disable> ‒ Charging ends when any cell voltage is above VEOC

Examples cb ieoc_en ‒ Reads the value of auto IEOC EN

cb ieoc_en enable ‒ Sets IEOC EN

cb ieoc_en disable ‒ Clears IEOC EN

R16AN0015EU0101 Rev.1.01 Page 84
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.4.10 Cell Balancing Charge Enable/Disable

8.4.11 Cell Balancing Cell State

8.4.12 Cell Balancing Minimum Delta Threshold

8.4.13 Cell Balancing Maximum Threshold

cb chrg enable/disable command

Format cb chrg <enable/disable>

Parameters <enable/disable> <none> ‒ Reads the value of the Cell Balancing Charge bit (CB
CHRG 0x25.0)

<enable> ‒ Charging stops after the VEOC bit is set and the
charge current drops below the IEOC Threshold.

<disable> ‒ Charging ends when any cell voltage is above VEOC

Examples cb ieoc_en ‒ Reads the value of CB CHRG

cb ieoc_en enable ‒ Sets CB CHRG

cb ieoc_en disable ‒ Clears CB CHRG

cb cell_state command

Format cb cell_state <hex>

Parameters <hex> <none> ‒ Reads Cell Balancing Cell State register (CB Cell State
0x26-27)

<hex> ‒ 16-bit hexadecimal value.

Examples cb cell_state ‒ Reads CB Cell State

cb cell_state 0xF01F ‒ Sets CB Cell state to 0xF01F

cb mindelta command

Format cb mindelta <value>

Parameters <value> <none> ‒ Reads the Cell Balancing Minimum Delta (CB Min
Delta) Threshold in mV

<Float > 0> ‒ Sets CB Min Delta Threshold in mV to value in mV

Examples cb mindelta ‒ Reads CB Min Delta in mV

cb mindelta 100 ‒ Sets the CB Min Delta to 100mV

cb max_th command

Format cb max_th <value>

Parameters <value> <none> ‒ Reads the Cell Balancing Maximum (CBMAX)
Threshold in mV

<Float > 0> ‒ Sets CBMAX Threshold to value in mV

Examples cb max_th ‒ Reads CBMAX in mV

cb max_th 4900 ‒ Sets CBMAX to 4900 mV

R16AN0015EU0101 Rev.1.01 Page 85
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.4.14 Cell Balancing Minimum Threshold

8.4.15 Cell Balancing On Timer

8.4.16 Cell Balancing Off Timer

8.5 Sample Battery Management System

cb min_th command

Format cb min_th <value>

Parameters <value> <none> ‒ Reads the Cell Balancing Minimum (CBMIN) Threshold
in mV.

<Float > 0> ‒ Sets CBMIN Threshold to value in mV

Examples cb min_th ‒ Reads CBMIN in mV

cb min_th 3000 ‒ Sets CBMIN to 3000 mV

cb on_timer command

Format cb on_timer <value> <ms/s>

Parameters <value>

<ms / s>

<none> ‒ Reads Cell Balancing On Timer (CBON)

<0 < Integer < 1017> ‒ Sets CBON in ms or s

<ms> milliseconds

<s> seconds

Examples cb on_timer ‒ Reads CBON in ms or s

cb on_timer 8 s ‒ Sets CBON to 8 s

cb on_timer 8 ms ‒ Sets CBON to 8 ms

cb off_timer command

Format cb off_timer <value> <ms/s>

Parameters <value>

<ms / s>

<none> ‒ Reads Cell Balancing Off Timer (CBOFF)

<0 < Integer < 1017> ‒ Sets CBOFF in ms or s

<ms> milliseconds

<s> seconds

Examples cb off_timer ‒ Reads CBOFF in ms or s

cb of_timer 8 s ‒ Sets CBOFF to 8 s

cb off_timer 8 ms ‒ Sets CBOFF to 8 ms

bmsdemo command

Format bmsdemo

Parameters --- Starts the sample Battery Management System application

Example bmsdemo ‒ Starts the sample BMS using the current BFE protection settings (such as vpackov, vpackuv, dsc-
threshold).

R16AN0015EU0101 Rev.1.01 Page 86
Jan 31, 2023

MCU Sample Code for Driving the RAA489206 16-Cell Battery Front End Application Note

8.6 State-of-Charge Application
This command starts the State-of-Charge (SOC) Estimation application. Refer to R16AN0029: Coulomb Counting
and State-of-Charge Estimation featuring the RAA489206/ISL94216A Battery Front End for detailed information
about the application implementation and how to use it.

9. Revision History

soc command

Format: soc <soci>

Parameters <soci> <none> ‒ Starts the SOC application by estimating the initial SOC
of the battery pack

<0 ≤ Integer ≤ 100> ‒ Sets the initial SOC of the battery pack to
soci in percent (%)

Examples soc ‒ Starts the SOC application performing first initial SOC estimation

soc 45.5 ‒ Starts the SOC application using 45.5 % as initial SOC

Revision Date Description

1.01 Jan 31, 2022 Updated Tables 1, 3, 7, 8, and 9.

Updated codes in the Header File r_bfe_raa489206.h, Declarations, The bms_main Function
sections.

Added State-of-Charge Application, Cells Count - Cells Select, and Shunt resistor value sections.

Added Cell Balancing Command Group section and subsections.

Updated the following sections:

▪ R_RAA489206_Init

▪ R_RAA489206_StartContinuousScan

▪ R_RAA489206_StopContinuousScan

▪ R_RAA489206_ClearAllFaults

▪ R_RAA489206_ReadVcells

1.00 Aug 18, 2021 Initial release

https://www.renesas.com/RAA489206#documents
https://www.renesas.com/RAA489206#documents

© 202 Renesas Electronics Corporation. All rights reserved.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

	Contents
	1. Overview
	1.1 Assumptions and Advisory Notes

	2. RAA489206 BFE Overview
	2.1 Features
	2.2 Applications
	2.3 Typical Application

	3. General Software Structure
	4. How to Use the Demo Project
	4.1 Operating Environment
	4.2 Importing the Demo Project
	4.3 Building and Debugging
	4.4 Demo Project Functional Description
	4.4.1 BFE and EK-RA4W1 Boards

	4.5 Terminal Emulator
	4.6 Use of Command-Line Interface (CLI)

	5. Demo Project Implementation
	5.1 FSP Architecture
	5.2 BAL Implementation
	5.2.1 BAL Interface
	5.2.1.1 BFE Configuration Structure

	5.2.2 BFE API Structure
	5.2.3 BFE Interface Instance Structure

	5.3 RAA489206 BFE Instance Implementation
	5.3.1 Header File r_bfe_raa489206.h
	5.3.2 Source File r_bfe_raa489206.c
	5.3.2.1 Global API Instantiation

	5.3.3 Reset and Device Registers
	5.3.4 Registers Bank
	5.3.5 Private (Static) Variables and Functions
	5.3.6 Interface API Implementation
	5.3.6.1 R_RAA489206_Init
	5.3.6.2 R_RAA489206_Reset
	5.3.6.3 R_RAA489206_StartSystemScan
	5.3.6.4 R_RAA489206_StartContinuousScan
	5.3.6.5 R_RAA489206_StopContinuousScan
	5.3.6.6 R_RAA489206_IsBusy
	5.3.6.7 R_RAA489206_InitSystemScan
	5.3.6.8 R_RAA489206_ClearAllFaults
	5.3.6.9 R_RAA489206_ClearFault
	5.3.6.10 R_RAA489206_ReadMode
	5.3.6.11 R_RAA489206_ReadVpack
	5.3.6.12 R_RAA489206_ReadIpack
	5.3.6.13 R_RAA489206_ReadVcells
	5.3.6.14 R_RAA489206_ReadOther
	5.3.6.15 R_RAA489206_ReadAuxExt
	5.3.6.16 R_RAA489206_ReadTemperature
	5.3.6.17 R_RAA489206_ReadDOC
	5.3.6.18 R_RAA489206_ReadCOC
	5.3.6.19 R_RAA489206_ReadDSC
	5.3.6.20 R_RAA489206_ReadMaxVcellDeltaVoltage
	5.3.6.21 R_RAA489206_ReadCellUndervoltage
	5.3.6.22 R_RAA489206_ReadCellOvervoltage
	5.3.6.23 R_RAA489206_ReadVpackUndervoltage
	5.3.6.24 R_RAA489206_ReadVpackOvervoltage
	5.3.6.25 R_RAA489206_ReadInternalOTWarning
	5.3.6.26 R_RAA489206_ReadInternalOTFault
	5.3.6.27 R_RAA489206_TurnChargePumpOn
	5.3.6.28 R_RAA489206_TurnChargePumpOff
	5.3.6.29 R_RAA489206_TurnDFetOn
	5.3.6.30 R_RAA489206_TurnDFetOff
	5.3.6.31 R_RAA489206_TurnCFetOn
	5.3.6.32 R_RAA489206_TurnCFetOff
	5.3.6.33 R_RAA489206_TurnDFetOnCFetOn
	5.3.6.34 R_RAA489206_TurnDFetOffCFetOn
	5.3.6.35 R_RAA489206_TurnDFetOnCFetOff
	5.3.6.36 R_RAA489206_TurnDFetOffCFetOff
	5.3.6.37 R_RAA489206_SetAlerts
	5.3.6.38 R_RAA489206_SetDOC
	5.3.6.39 R_RAA489206_SetCOC
	5.3.6.40 R_RAA489206_SetDSC
	5.3.6.41 R_RAA489206_SetMaxVcellDeltaVoltage
	5.3.6.42 R_RAA489206_SetCellUndervoltage
	5.3.6.43 R_RAA489206_SetCellOvervoltage
	5.3.6.44 R_RAA489206_SetVpackUndervoltage
	5.3.6.45 R_RAA489206_SetVpackOvervoltage
	5.3.6.46 R_RAA489206_SetInternalOTFault
	5.3.6.47 R_RAA489206_SetInternalOTWarning
	5.3.6.48 R_RAA489206_SetMode
	5.3.6.49 R_RAA489206_ConfigLowPowerMode
	5.3.6.50 R_RAA489206_StartLowPowerMode
	5.3.6.51 R_RAA489206_GetDieInfomation
	5.3.6.52 R_RAA489206_ReadRegister
	5.3.6.53 R_RAA489206_ReadAllRegisters
	5.3.6.54 R_RAA489206_WriteRegister

	6. Sample Battery Management System
	6.1 Overview
	6.2 Header File r_bms.h
	6.3 Source Code r_bms.c
	6.4 Declarations
	6.5 The bms_main Function

	7. State-of-Charge Application
	8. CLI Commands List
	8.1 BFE command group
	8.1.1 Initialize Device
	8.1.2 Discharge Overcurrent (DOC) Threshold
	8.1.3 Charge Overcurrent (COC) Threshold
	8.1.4 Discharge Short-Circuit Current (DSC) Threshold
	8.1.5 Internal Over-Temperature Fault (IOTF) Threshold
	8.1.6 Internal Over-Temperature Warning (IOTW) Threshold
	8.1.7 Maximum Cell Voltage Delta (MAXDELTA) Threshold
	8.1.8 Cell Overvoltage (VCELLOV) Threshold
	8.1.9 Cell Undervoltage (VCELLUV) Threshold
	8.1.10 Pack Overvoltage (VPACKOV) Threshold
	8.1.11 Pack Undervoltage (VPACKUV) Threshold
	8.1.12 Thresholds
	8.1.13 BFE status
	8.1.14 Scan
	8.1.15 FETs Commands
	8.1.16 Mode
	8.1.17 Cells Count - Cells Select
	8.1.18 Shunt Resistor Value

	8.2 Register (REG) Command
	8.2.1 Read Register
	8.2.2 Write Register

	8.3 Measurement (MEAS) Command Group
	8.3.1 Vpack
	8.3.2 Ipack
	8.3.3 Vcells
	8.3.4 Vcell N
	8.3.5 Total Cell Voltage
	8.3.6 Internal Temperature
	8.3.7 Regulator Voltage
	8.3.8 Regulator Current

	8.4 Cell Balancing Command Group
	8.4.1 Cell Balancing Enable/Disable
	8.4.2 End-of-Charge Voltage
	8.4.3 End-of-Charge Current
	8.4.4 Automatic Cell Balancing Enable/Disable
	8.4.5 Cell Balancing FETs Configuration
	8.4.6 Cell Balancing Trigger
	8.4.7 Cell Balancing Mask
	8.4.8 Cell Balancing End-of-Charge Enable/Disable
	8.4.9 Current End-Of-Charge Enable/Disable
	8.4.10 Cell Balancing Charge Enable/Disable
	8.4.11 Cell Balancing Cell State
	8.4.12 Cell Balancing Minimum Delta Threshold
	8.4.13 Cell Balancing Maximum Threshold
	8.4.14 Cell Balancing Minimum Threshold
	8.4.15 Cell Balancing On Timer
	8.4.16 Cell Balancing Off Timer

	8.5 Sample Battery Management System
	8.6 State-of-Charge Application

	9. Revision History

