

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

September 2005

APPLICATION NOTE

M16C/80 Series
Programming Guidelines <Assembly Language>

REJ05B0087-0101Z/Rev.1.01 Page 1 of 229

Preface

This manual describes the basic knowledge of application program development for the M16C/80
series of Renesas CMOS 16-bit microcomputers. The programming language used in this manual
is the assembly language.
If you are using the M16C/80 series for the first time, refer to Chapter 1, "Overview of M16C/80
Series". If you want to know the CPU architecture and instructions, refer to Chapter 2, "CPU
Programming Model" or if you want to know the directive commands of the assembler, refer to
Chapter 3, "Functions of Assembler". If you want to know practical techniques, refer to Chapter 4,
"Programming Style".
The instruction set of the M16C/80 series is detailed in "M16C/80 Series Software Manual". Refer
to this manual when the knowledge of the instruction set is required.
For information about the hardware of each type of microcomputer in the M16C/80 series, refer to
the user's manual supplied with your microcomputer. For details about the development support
tools, refer to the user's manual of each tool.

Guide to Using This Manual

This manual is an assembly language programming guidelines for the M16C/80 series. This manual
can be used in common for all types of microcomputers built the M16C/80 series CPU core.
This manual is written assuming that the reader has a basic knowledge of electrical circuits, logic
circuits, and microcomputers.
This manual consists of four chapters. The following provides a brief guide to the desired chapters
and sections.

• To see the overview and features of the M16C/80 series
−> Chapter 1 Overview of M16C/80 Series

• To understand the address space, register structure, and addressing and other knowledge
required for programming

−> Chapter 2 CPU Programming Model

• To know the functions of instructions, the method for writing instructions, and the usable
addressing modes

−> Chapter 2 CPU Programming Model, 2.6 Instruction Set

• To know how to use interrupts
−> Chapter 2 CPU Programming Model, 2.7 Outline of Interrupt
−> Chapter 4 Programming Style, 4.3 Setting when using Interrupts

• To check the functions of and the method for writing directive commands
−> Chapter 3 Functions of Assembler, 3.2 Method for Writing Source Program

• To know the M16C/80 series' programming techniques
−> Chapter 4 Programming Style, 4.5 A Little Tips...(Programing technique)

• To know the M16C/80 series' development procedures
−> Appendix Command input form and command parameters in AS308 system

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 2 of 229

Table of contents

Chapter 1 Overview of M16C/80 Series 5

1.1 Features of M16C/80 Series..6

1.2 Outline of M16C/80 Group ..7

Chapter 2 CPU Programming Model 10

2.1 Address Space...11

2.1.1 Operation Modes and Memory Mapping... 11

2.1.2 SFR Area .. 13

2.1.3 Fixed Vector Area .. 18

2.2 Register Set ...19

2.3 Data Types ...25

2.4 Data Arrangement ...27

2.5 Addressing Modes ..28

2.5.1 General Instruction Addressing .. 30

2.5.2 Indirect instruction Addressing ... 38

2.5.3 Special Instruction Addressing ... 41

2.5.4 Bit Instruction Addressing ... 43

2.6 Instruction Set ...48

2.6.1 Instruction Description... 49

2.6.2 Instruction List .. 51

2.6.3 Transfer Instructions .. 71

2.6.4 Arithmetic Instructions ... 75

2.6.5 Branch Instructions .. 83

2.6.6 Bit Instructions.. 88

2.6.7 Sign-extension instruction... 90

2.6.8 Index instruction ... 91

2.6.9 High-level language and OS support instructions .. 93

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 3 of 229

2.7 Outline of Interrupt ..98

2.7.1 Interrupt Sources and Vector addresses .. 98

2.7.2 Variable vector table ... 101

2.7.3 Interrupt generation conditions

 and interrupt control register bit configuration 102

2.7.4 Interrupt acceptance timing and sequence .. 104

2.7.5 Interrupt priority .. 106

Chapter 3 Functions of Assembler 108

3.1 Outline of AS308 System ..109

3.2 Method for Writing Source Program ... 112

3.2.1 Basic Rules.. 112

3.2.2 Address Control .. 120

3.2.3 Directive Commands .. 127

3.2.4 Macro Functions ... 134

3.2.5 Differences with M16C/60... 141

Chapter 4 Programming Style 146

4.1 Hardware Definition ..147

4.1.1 Defining SFR Area... 147

4.1.2 Allocating RAM Data Area .. 150

4.1.3 Allocating ROM Data Area .. 151

4.1.4 Defining a Section... 152

4.1.5 Sample Program List 1 (Initial Setting 1) .. 154

4.2 Initial Setting the CPU ...157

4.2.1 Setting CPU Internal Registers .. 157

4.2.2 Setting Stack Pointer .. 158

4.2.3 Setting Base Registers (SB, FB).. 158

4.2.4 Setting fixed interrupt vector (reset vector) ... 159

4.2.5 Setting internal peripheral functions .. 159

4.2.6 Sample Program List 2 (Initial Setting 2) .. 164

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 4 of 229

4.3 Setting when using Interrupts..167

4.3.1 Setting Interrupt Table Register(INTB) .. 167

4.3.2 Setting Variable/Fixed Vectors... 168

4.3.3 Setting Interrupt Control Register ... 169

4.3.4 Enabling Interrupt Enable Flag(I flag) .. 169

4.3.5 Saving and Restoring Registers in Interrupt Handler Routine 170

4.3.6 Sample Program List 3 (Using interrupts) .. 173

4.3.7 ISP and USP .. 177

4.3.8 Multiple Interrupts... 180

4.3.9 High-speed interrupts... 181

4.4 Dividing Source File ..185

4.4.1 Concept of Sections ... 185

4.4.2 Example of program description in divided files ... 187

4.4.3 Using library files .. 193

4.5 A Little Tips...(Programing technique)...195

4.5.1 Setup Values of SB and FB Registers... 195

4.5.2 Specifying ROM/RAM data alignments ... 199

4.5.3 Setting stack pointer .. 201

4.5.4 Using special pages ... 204

4.5.5 Example for using software interrupt (INTO instruction) 206

4.5.6 Software runway prevention .. 208

4.5.7 Method for using the "-LOC" option ... 212

4.6 Standard processing program ...213

Appendix ... 215

Appendix A Generating Object Files ...216

Appendix A-1 Assembling (as308) ... 217

Appendix A-2 Linking(ln308)... 222

Appendix A-3 Generating Machine Language File (lmc308) 226

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 5 of 229

Chapter 1
Overview of M16C/80 Series

1.1 Features of M16C/80 Series
1.2 Outline of M16C/80 Group

Chapter 1 Overview of M16C/80 Series

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 6 of 229

1.1 Features of M16C/80 Series

The M16C/80 series is a line of single-chip microcomputers that have been developed for use in
built-in equipment. This section describes the features of the M16C/80 series.

Features of the M16C/80 series

The M16C/80 series has its frequently used instructions placed in a 1-byte op-code. For this
reason, it allows you to write a highly memory efficient program.
Furthermore, although the M16C/80 series is a 16-bit microcomputer, it can perform 1, 4, and 8-bit
processing efficiently. Especially, 32-bit processing is handled more efficiently than in the M16C/60
series. The M16C/80 series has many instructions that can be executed in one clock period. For
this reason, it is possible to write a high-speed processing program.
The M16C/80 series provides 1 M bytes of linear addressing space. Therefore, the M16C/80
series is also suitable for applications that require a large program size.
The features of the M16C/80 series can be summarized as follows:
(1) The M16C/80 series allows you to create a memory-efficient program without requiring a large

memory capacity.
(2) The M16C/80 series allows you to create a high- speed processing program.
(3) The M16C/80 series provides 1 M bytes of addressing space, making it suitable for even large-

capacity applications.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 7 of 229

1.2 Outline of M16C/80 Group

This section introduces the M16C/80 group by way of explaining the internal configuration of the
M16C/80 series. The M16C/80 group is a product that comprises the basis of the M16C/80 series.
For details about this product, refer to the data sheets and user's manuals.

Internal Block Diagram

Figure 1.2.1 shows a block diagram of the M16C/80 group.

Figure 1.2.1 Block diagram of the M16C/80 group

AAAA
AAAA
AAAA

R0LR0H
R1H R1L

R2

AAAAAA
AAAAAA
AAAAAA
AAAAAA

I/O ports

8 8 8 8 8 8 8

8
7

8
8

Internal peripheral functions

Timer

Timer TA0 (16 bits)
Timer TA1 (16 bits)
Timer TA2 (16 bits)
Timer TA3 (16 bits)
Timer TA4 (16 bits)
Timer TB0 (16 bits)
Timer TB1 (16 bits)
Timer TB2 (16 bits)
Timer TB3 (16 bits)
Timer TB4 (16 bits)
Timer TB5 (16 bits)

Watchdog timer
(15 bits)

D-A converter
(8 bits X 2 channels)

A-D converter
(10 bits X 8 channels

Expandable up to 10 channels)

UART /clock synchronous SI/O
(8 bits X 5 channels)

X-Y converter
(16 bits X 16 bits)

CRC arithmetic circuit (CCITT)
(Polynomial : X +X +X +1)

System clock generator

XIN - XOUT
XCIN - XCOUT

Memory

DRAM
controller

M16C/80 series 16-bit CPU core
Registers

R0H R0L
R1H R1L

R2
R3
A0
A1
FB
SB

DRAM
controller

Multiplier

Port P0 Port P1 Port P2 Port P3 Port P4 Port P5 Port P6

P
ort P

7
P

ort P
8

P
ort P

8
5

P
ort P

9
P

ort P
10

FLG
INTB
ISP
USP
PC

SVF
SVP
VCT

1216 5

ROM
(Note 1)

RAM
(Note 2)

Note 1: ROM size depends on MCU type.
Note 2: RAM size depends on MCU type.
Note 3: Described is 144 pin version only.

Port P15 Port P14 Port P13 Port P12 Port P11

8 7 8 8 5

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 8 of 229

Outline Specifications of the M16C/80 Group

Table 1.2.1 lists the outline specifications of the M16C/80 group.

Table 1.2.1 Outline Specifications of M16C/80 Group

Note: The above specifications are for the M30800MC. For details the memory size, refer to the data sheet and user's manual.

 Item Performance

Number of basic instructions 106 instructions

Shortest instruction execution time 50ns(f(XIN)=20MHz)

Memory 128K bytes

capacity 10K bytes

I/O port 8 bits x 10, 7 bits x 1 (100-pin version)

8 bits x 10, 7 bits x 1, 5 bits x 1 (144-pin version)

Input port 1 bit x 1

Multifunction 16 bits x 5

timer 16 bits x 6

Serial I/O (UART or clock synchronous) x 5

A-D converter 10 bits x (8 + 2) channels

D-A converter 8 bits x 2

DMAC 4 channels

DRAM controller CAS before RAS refresh, self-refresh, EDO, FP

CRC calculation circuit CRC-CCITT

X-Y converter 16 bits X 16 bits

Watchdog timer 15 bits x 1 (with prescaler)

Interrupt 29 internal and 8 external sources, 4 software

sources, 7 levels

Clock generating circuit 2 built-in clock generation circuits

(built-in feedback resistor, and external ceramic or

quartz oscillator)

Memory expansion Available (up to 16 Mbytes)

ROM

RAM

P0 to P10 (except P85)

P0 to P15 (except P85)

P85

TA0, TA1, TA2, TA3,TA4

TB0, TB1, TB2, TB3, TB4, TB5

UART0, UART1, UART2,

UART3, UART4

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 9 of 229

Register Structure

Table 1.2.2 shows the register structure of the M16C/80 series. Eight registers--R0, R1, R2, R3,
A0, A1, SB, and FB--are available in two sets each. These sets are switched over by a register
bank select flag.

Table 1.2.2 Register Structure of M16C/80 Series

Register structure

Data registers

Address registers

Base registers

Control registers

A
A
A
A
A
A
A
A

(Details of FLG)
b0b15

U I O B S Z CD
IPL

ContentItem

High-speed interrupt
registers AAAASVF

AAAA
AAAA
AAAA

AAAA
AAAAAAAA
AAA
AAA
AAA

AAA
AAAAAAA

AR0

AR1

A
AR2

AR3

b15 b0

A0
A1 AAAAA
AAAAA
AAAAAAAAA
AAAA
AAAA

b23 b0

SB
FB

AAAAA
AAAAA
AAAAA
AAAA
AAAA
AAAA

b23 b0

SVP
VCT AAAAA
AAAAA
AAAAA

b23 b0

AAAA
AAAAFLG

b15 b0

b15 b0

PC
INTB
USP
ISP

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

b23 b0

DMAC related
registers

b7 b0

AAA
AAA
AAA

DMD0
DMD1

b15 b0

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

DCT0
DCT1
DRC0
DRC1

DMA0
DMA1

b23 b0

DSA0
DSA1
DRA0
DRA1

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAAA
AAAAAAR1R3

AAAAAA
AAAAAA
AAAAAAR0R2

AAAAAA
AAAAAAR2R0

R3R1

b31 b0

AA
AAR1H

AAAAA
AAAR1L

AA
R1
AA
AA
AAA
AAAR0L

AA
AAR0

AA
AAR0H

b7 b0b7 b0

 : Reserved area

IPL :Processor interrupt priority level (Levels 0 to 7; larger the
number, higher the priority)

U :Stack pointer select flag (ISP when U = 0, USP when U = 1)
I : Interrupt enable flag (Enabled when I = 1)
O :Overflow flag (0 = 1 when overflow occurs)
B :Register bank select flag (Register bank 0 when B = 0,

register bank 1 when B = 1)
S :Sign flag (S = 1 when operation resulted in negative, S = 0

when positive)
Z :Zero flag (Z = 1 when operation resulted in zero)
D :Debug flag (Program is single-stepped when D = 1)
C :Carry flag (carry or borrow)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 10 of 229

Chapter 2
CPU Programming Model

2.1 Address Space
2.2 Register Sets
2.3 Data Types
2.4 Data Arrangement
2.5 Addressing Modes
2.6 Instruction Set
2.7 Outline of Interrupt

Chapter 2 CPU Programming Model

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 11 of 229

2.1 Address Space

The M16C/80 series has 16 M bytes of address space ranging from address 000000H to address
FFFFFFH. This section explains the address space and memory mapping, the SFR area, and the
fixed vector area of the M16C/80 group.

Address Space

Figure 2.1.1 shows the address space of the M16C/80 group.
Addresses 000000H to 0003FFH are the Special Function Register (SFR) area. The SFR area in
each type of M16C/80 group microcomputer begins with address 0003FFH and expands toward
smaller addresses.
Addresses following 000400H constitute the memory area. The memory area in each type of
M16C/80 group microcomputer consists of a RAM area which begins with address 00400H and
expands toward larger addresses and a ROM area which begins with address FFFFFFH and
expands toward smaller addresses. However, addresses FFFE00H to FFFFFFH are the fixed
vector area.

Figure 2.1.1 Address space

2.1.1 Operation Modes and Memory Mapping

The M16C/80 group chooses one operation mode from three modes available: single-chip, memory
expansion, and microprocessor modes. The M16C/80 group address space and the usable areas and
memory mapping varies with each operation mode.

SFR area

 Internal RAM
area

External
memory area

Internal ROM
area

Direction in which
internal RAM
expands

Direction in which
internal ROM
expands

Fixed vector
area

000000H

0003FFH
000400H

FFFE00H

FFFFFFH

Direction in which
SFR area expands

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 12 of 229

Operation Modes and Memory Mapping

• Single-chip mode
In this mode, only the internal areas (SFR, internal RAM, and internal ROM) can be accessed.

• Memory expansion mode
In this mode, the internal areas (SFR, internal RAM, and internal ROM) and an external memory
area can be accessed.

• Microprocessor mode
In this mode, the SFR and internal RAM areas and an external memory area can be accessed.
(The internal ROM area cannot be accessed.)

Figure 2.1.2 shows the M16C/80 group memory mapping in each operation mode.

Figure 2.1.2 Operation modes and memory mapping

Internal area

External area
 (using external
 memory chips)

Cannot be used.

(ROM: 128 Kbytes; RAM: 10 Kbytes Example)

SFR area

Internal RAM area

Internal ROM area

Memory
expansion mode

Internal RAM area

SFR area

Internal ROM area

Single-chip mode

Cannot
be used

Internal reserved area

Internal reserved area

External memory
area

SFR area

Internal RAM area

Microprocessor mode

External memory
area

Internal reserved area

000000H

000400H

002C00H

FE0000H

FFFFFFH

F00000H

008000H

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 13 of 229

2.1.2 SFR Area

A range of control registers are allocated in this area, including the processor mode register that
determines the operation mode and the peripheral unit control registers for I/O ports, A-D converter,
UART, and timers. For the bit configurations of these control registers, refer to the M16C/80 group data
sheets and user's manuals.
The unused locations in the SFR area are reserved for the system and cannot be used by the user.

SFR Area: Control Register Allocation (100-pin version)

Figures 2.1.3,2.1.4,2.1.5 and 2.1.6 show control register allocations in the SFR area.

Figure 2.1.3 Control register allocation 1

000016

000116

000216

000316

000416

000516

000616

000716

000816

000916

000A16

000B16

000C16

000D16

000E16

000F16

001016

001116

001216

001316

001416

001516

001616

001716

001816

001916

001A16

001B16

001C16

001D16

001E16

001F16

002016

002116

002216

002316

002416

002516

002616

002716

002816

002916

002A16

002B16

002C16

002D16

002E16

002F16

003016

003116

003216

003316

003416

003516

003616

003716

003816

003916

003A16

003B16

003C16

003D16

003E16

003F16

004016

004116

004216

004316

004416

006016

006116

006216

006316

006416

006516

006616

006716

006816

006916

006A16

006B16

006C16

006D16

006E16

006F16

007016

007116

007216

007316

007416

007516

007616

007716

007816

007916

007A16

007B16

007C16

007D16

007E16

007F16

008016

008116

008216

008316

008416

008516

008616

008716

008816

008916

008A16

008B16

008C16

008D16

008E16

008F16

009016

009116

009216

009316

009416

009516

009616

009716

009816

009916

009A16

009B16

009C16

009D16

009E16

009F16

00A016

00A116

00A216

00A316

00A416

Watchdog timer start register (WDTS)
Watchdog timer control register (WDC)

Processor mode register 0 (PM0)

Address match interrupt register 0 (RMAD0)

Address match interrupt register 1 (RMAD1)

Wait control register (WCR)

System clock control register 0 (CM0)
System clock control register 1 (CM1)

Address match interrupt enable register (AIER)
Protect register (PRCR)

Processor mode register 1(PM1)

External data bus widthcontrol register (DS)
Main clock division register (MCD)

Address match interrupt register 2 (RMAD2)

Address match interrupt register 3 (RMAD3)

Emulator interrupt vector table register (EIAD)

Emulator interrupt detect register (EITD)
Emulator protect register (EPRR)

ROM areaset register (ROA)
Debug monitor area set register (DBA)
Expansion area set register 0 (EXA0)
Expansion area set register 1 (EXA1)
Expansion area set register 2 (EXA2)
Expansion area set register 3 (EXA3)

DRAM control register (DRAMCONT)
DRAM reflesh interval set register (REFCNT)

Timer A1 interrupt control register (TA1IC)

UART0 transmit interrupt control register (S0TIC)

Timer A0 interrupt control register (TA0IC)

Timer A2 interrupt control register (TA2IC)

UART0 receive interrupt control register (S0RIC)

UART2 transmit/NACK interrupt control register (S2TIC)

UART1 receive interrupt control register (S1RIC)

DMA2 interrupt control register (DM1IC)

DMA0 interrupt control register (DM0IC)

Key input interrupt control register (KUPIC)

A-D conversion interrupt control register (ADIC)

Bus collision detection(UART3) interrupt control register (BCN3IC)

UART2 receive/ACK interrupt control register (S2RIC)

INT1 interrupt control register (INT1IC)

Timer B0 interrupt control register (TB0IC)

Timer B2 interrupt control register (TB2IC)

Timer A3 interrupt control register (TA3IC)

INT2 interrupt control register (INT2IC)

INT0 interrupt control register (INT0IC)

Timer B1 interrupt control register (TB1IC)

Timer A4 interrupt control register (TA4IC)

INT3 interrupt control register (INT3IC)

Timer B5 interrupt control register (TB5IC)

Timer B4 interrupt control register (TB4IC)

Timer B3 interrupt control register (TB3IC)

INT5 interrupt control register (INT5IC)

INT4 interrupt control register (INT4IC)

UART3 receive/ACK interrupt control register (S3RIC)

UART4 receive/ACK interrupt control register (S4RIC)

UART3 transmit/NACK interrupt control register (S3TIC)

UART4 transmit/NACK interrupt control register (S4TIC)

Exit priority register (RLVL)

UART1 transmit interrupt control register (S1TIC)

DMA1 interrupt control register (DM1IC)

DMA3 interrupt control register (DM3IC)

Bus collision detection(UART2) interrupt control register (BCN2IC)

Bus collision detection(UART4) interrupt control register (BCN4IC)

*

*
*

*
*

*
*
*
*

* As this register is used exclusively for debugger purposes, user cannot use this. Do not access to the register.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 14 of 229

030016

030116

030216

030316

030416

030516

030616

030716

030816

030916

030A16

030B16

030C16

030D16

030E16

030F16

031016

031116

031216

031316

031416

031516

031616

031716

031816

031916

031A16

031B16

031C16

031D16

031E16

031F16

032016

032116

032216

032316

032416

032516

032616

032716

032816

032916

032A16

032B16

032C16

032D16

032E16

032F16

033016

033116

033216

033316

033416

033516

033616

033716

033816

033916

033A16

033B16

033C16

033D16

033E16

033F16

02C016

02C116

02C216

02C316

02C416

02C516

02C616

02C716

02C816

02C916

02CA16

02CB16

02CC16

02CD16

02CE16

02CF16

02D016

02D116

02D216

02D316

02D416

02D516

02D616

02D716

02D816

02D916

02DA16

02DB16

02DC16

02DD16

02DE16

02DF16

02E016

02E116

02E216

02E316

02E416

02E516

02E616

02E716

02E816

02E916

02EA16

02EB16

02EC16

02ED16

02EE16

02EF16

02F016

02F116

02F216

02F316

02F416

02F516

02F616

02F716

02F816

02F916

02FA16

02FB16

02FC16

02FD16

02FE16

02FF16

X0 register (X0R) Y0 register (Y0R)

X1 register (X1R) Y1 register (Y1R)

X2 register (X2R) Y2 register (Y2R)

X3 register (X3R) Y3 register (Y3R)

X4 register (X4R) Y4 register (Y4R)

X5 register (X5R) Y5 register (Y5R)

X6 register (X6R) Y6 register (Y6R)

X7 register (X7R) Y7 register (Y7R)

X8 register (X8R) Y8 register (Y8R)

X9 register (X9R) Y9 register (Y9R)

X10 register (X10R) Y10 register (Y10R)

X11 register (X11R) Y11 register (Y11R)

X12 register (X12R) Y12 register (Y12R)

X13 register (X13R) Y13 register (Y13R)

X14 register (X14R) Y14 register (Y14R)

X15 register (X15R) Y15 register (Y15R)

XY control register (XYC)

UART4 special mode register (U4SMR)

UART4 receive buffer register (U4RB)

UART4 transmit buffer register (U4TB)

UART4 transmit/receive control register 0 (U4C0)

UART4 transmit/receive mode register (U4MR)

UART4 transmit/receive control register 1 (U4C1)

UART4 bit rate generator (U4BRG)

UART4 special mode register 2 (U4SMR2)

Timer A1-1 register (TA11)

Timer A2-1 register (TA21)

Dead time timer(DTT)
Timer B2 interrupt occurrence frequency set counter(ICTB2)

Three-phase PWM control register 0(INVC0)
Three-phase PWM control register 1(INVC1)
Thrree-phase output buffer register 0(IDB0)
Thrree-phase output buffer register 1(IDB1)

Timer B3 register (TB3)

Timer B4 register (TB4)

Timer B5 register (TB5)

Timer B3, 4, 5 count start flag (TBSR)

Timer B3 mode register (TB3MR)
Timer B4 mode register (TB4MR)
Timer B5 mode register (TB5MR)

Interrupt cause select register (IFSR)

UART2 special mode register (U2SMR)

UART2 receive buffer register (U2RB)

UART2 transmit buffer register (U2TB)

UART2 transmit/receive control register 0 (U2C0)

UART2 transmit/receive mode register (U2MR)

UART2 transmit/receive control register 1 (U2C1)

UART2 bit rate generator (U2BRG)

Timer A4-1 register (TA41)

UART2 special mode register 2 (U2SMR2)

UART3 special mode register (U3SMR)

UART3 receive buffer register (U3RB)

UART3 transmit buffer register (U3TB)

UART3 transmit/receive control register 0 (U3C0)

UART3 transmit/receive mode register (U3MR)

UART3 transmit/receive control register 1 (U3C1)

UART3 bit rate generator (U3BRG)

UART3 special mode register 2 (U3SMR2)

UART4 special mode register 3 (U4SMR3) UART2 special mode register 3 (U2SMR3)

UART3 special mode register 3 (U3SMR3)

Figure 2.1.4 Control register allocation 2

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 15 of 229

034016

034116

034216

034316

034416

034516

034616

034716

034816

034916

034A16

034B16

034C16

034D16

034E16

034F16

035016

035116

035216

035316

035416

035516

035616

035716

035816

035916

035A16

035B16

035C16

035D16

035E16

035F16

036016

036116

036216

036316

036416

036516

036616

036716

036816

036916

036A16

036B16

036C16

036D16

036E16

036F16

037016

037116

037216

037316

037416

037516

037616

037716

037816

037916

037A16

037B16

037C16

037D16

037E16

037F16

038016

038116

038216

038316

038416

038516

038616

038716

038816

038916

038A16

038B16

038C16

038D16

038E16

038F16

039016

039116

039216

039316

039416

039516

039616

039716

039816

039916

039A16

039B16

039C16

039D16

039E16

039F16

03A016

03A116

03A216

03A316

03A416

03A516

03A616

03A716

03A816

03A916

03AA16

03AB16

03AC16

03AD16

03AE16

03AF16

03B016

03B116

03B216

03B316

03B416

03B516

03B616

03B716

03B816

03B916

03BA16

03BB16

03BC16

03BD16

03BE16

03BF16

Timer A0 (TA0)

Timer A1 (TA1)

Timer A2 (TA2)

Timer B0 (TB0)

Timer B1 (TB1)

Timer B2 (TB2)

Count start flag (TABSR)

One-shot start flag (ONSF)

Timer A0 mode register (TA0MR)
Timer A1 mode register (TA1MR)
Timer A2 mode register (TA2MR)

Timer B0 mode register (TB0MR)
Timer B1 mode register (TB1MR)
Timer B2 mode register (TB2MR)

Up-down flag (UDF)

Timer A3 (TA3)

Timer A4 (TA4)

Timer A3 mode register (TA3MR)
Timer A4 mode register (TA4MR)

Trigger select register (TRGSR)

Clock prescaler reset flag (CPSRF)

UART0 transmit/receive mode register (U0MR)

UART0 transmit buffer register (U0TB)

UART0 receive buffer register (U0RB)

UART1 transmit/receive mode register (U1MR)

UART1 transmit buffer register (U1TB)

UART1 receive buffer register (U1RB)

UART0 bit rate generator (U0BRG)

UART0 transmit/receive control register 0 (U0C0)
UART0 transmit/receive control register 1 (U0C1)

UART1 bit rate generator (U1BRG)

UART1 transmit/receive control register 0 (U1C0)
UART1 transmit/receive control register 1 (U1C1)

DMA1 request cause select register (DM1SL)
DMA0 request cause select register (DM0SL)

CRC data register (CRCD)

CRC input register (CRCIN)

UART transmit/receive control register 2 (UCON2)

A-D register 7 (AD7)

A-D register 0 (AD0)

A-D register 1 (AD1)

A-D register 2 (AD2)

A-D register 3 (AD3)

A-D register 4 (AD4)

A-D register 5 (AD5)

A-D register 6 (AD6)

Function select register C(PSC)

Function select register A1 (PS1)
Function select register A0 (PS0)

Function select register B0 (PSL0)
Function select register B1 (PSL1)

Function select register A3 (PS3)
Function select register A2 (PS2)

Function select register B2 (PSL2)

A-D control register 0 (ADCON0)
A-D control register 1 (ADCON1)
D-A register 0 (DA0)

D-A register 1 (DA1)

D-A control register (DACON)

A-D control register 2 (ADCON2)

DMA3 request cause select register (DM3SL)
DMA2 request cause select register (DM2SL)

Function select register B3 (PSL3)Flash memory control register 0 (FMR0) (Note)
Flash memory control register 1 (FMR1) (Note)

Note :This register exists in the flash memory version.

Figure 2.1.5 Control register allocation 3

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 16 of 229

03C0H

03C1H

03C2H

03C3H

03C4H

03C5H

03C6H

03C7H

03C8H

03C9H

03CAH

03CBH

03CCH

03CDH

03CEH

03CFH

03D0H

03D1H

03D2H

03D3H

03D4H

03D5H

03D6H

03D7H

03D8H

03D9H

03DAH

03DBH

03DCH

03DDH

03DEH

03DFH

Port P6(P6)

Port P6 direction register (PD6)
Port P7(P7)

Port P7 direction register (PD7)
Port P8(P8)

Port P8 direction register (PD8)
Port P9(P9)

Port P9 direction register (PD9)
Port P10(P10)

Port P10 direction register (PD10)

03E0H

03E1H

03E2H

03E3H

03E4H

03E5H

03E6H

03E7H

03E8H

03E9H

03EAH

03EBH

03ECH

03EDH

03EEH

03EFH

03F0H

03F1H

03F2H

03F3H

03F4H

03F5H

03F6H

03F7H

03F8H

03F9H

03FAH

03FBH

03FCH

03FDH

03FEH

03FFH

Pull-up control register 0(PUR0)
Pull-up control register 1(PUR1)

Pull-up control register 2(PUR2)

Port control register (PCR)

Pull-up control register 3(PUR3)

Port P0(P0)

Port P0 direction register (PD0)
Port P1(P1)

Port P1 direction register (PD1)
Port P2(P2)

Port P2 direction register (PD2)
Port P3(P3)

Port P3 direction register (PD3)
Port P4(P4)

Port P4 direction register (PD4)
Port P5(P5)

Port P5 direction register (PD5)

Note: Address 03C9H, 03CBH to 03D3H area is for future plan.
Must set "FF16" to address 03CBH, 03CEH, 03CFH, 03D2H, 03D3H at initial setting.

Figure 2.1.6 Control register allocation 4

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 17 of 229

Determination of Operation Mode

The operation modes of the M16C/80 group are determined by the CNVSS pin, processor mode
register 0 (address 000004H), and bits 0 and 1.
Figure 2.1.7 shows the configuration of processor mode register 0.

Figure 2.1.7 Processor mode register 0

Processor mode register 0 (Note 1)

Bit symbol

PM00

PM01

PM02

PM03

PM04

PM05

Reserved bit

PM07

b7 b6 b5 b4 b3 b2 b1 b0

Bit name

Processor mode bit

R/W mode select bit(
Note 7)

Software reset bit

Multiplexed bus space
select bit (Note 3)

BCLK output disable bit
(Note 5)

Function

The device is reset when this bit is set to "1".
The value of this bit is "0" when read.

0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Inhibited
1 1 : Microprocessor mode

b1 b0

0 : RD , BHE , WR
1 : RD , WRH , WRL

b4 b5

0 0 : Multiplexed bus is not used
0 1 : Allocated to CS2 space
1 0 : Allocated to CS1 space
1 1 : Allocated to entire space (Note 4)

Must always be set to "0".

0 : BCLK is output (Note 6)
1 : Function set by bit 0,1 of system clock
control register 0

R W

Note 1 : Set bit 1 of protect register (address 000A16) to "1" when writeing new value to this register.
Note 2 : If the Vcc voltage is applied to the CNVss ,the value of this register when reset when reset is 0316 .

(PM00 is set to "1" and PM07 is set to "0".)
Note 3 : Valid in microprocessor and memory expansion modes 1,2 and 3.Do not use multiplex bus when

mode 0 is selected.Do not set to allocated to CS2 space when mode 2 is selected.
Note 4 : After the reset has been released the M16C/80 group MCU operates using the separate bus.As a

result,in microprocessor mode,you cannot select the full CS space multiplex bus.
When you select the full CS space multiplex bus in memory expansion mode,the address bus
operates with 64 K bytes boundance for each chip select.

Mode 0 : Multiplexed bus cannot be used.
Mode 1 : CS0 to CS2 when you select full CS space.
Mode 2 : CS0 to CS1 when you select full CS space.
Mode 3 : CS0 to CS3 when you select full CS space.

Note 5 : No BCLK is output in single chip mode even when "0" is set in PM07.When stopping clock output in
microprocessor or memory expansion mode,make the following settings:PM07="1",bit 0 (CM00)
and bit 1(CM01) of system clock control register 0 = "0"."L" is now output from P53.

Note 6 : See the data sheet for BCLK.
Note 7 : When using 16-bit bus width in DRAM controler,set this bit to "1".

0
Symbol Address When reset
PM0 000416 8016

A
A
A
A
AA
AA
A
A
A
A
AA
AA
AA
A
A
A
A

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 18 of 229

2.1.3 Fixed Vector Area

The M16C/80 group fixed vector area consists of addresses FFFE00H to FFFFFFH.
Addresses FFFE00H to FFFFDBH in this area constitute a special page vector table. This table is used
to store the start addresses of subroutines and jump addresses, so that subroutine call and jump
instructions can be executed using two bytes, helping to reduce the number of program steps.
Addresses FFFFDCH to FFFFFFH in the fixed vector area constitute a fixed interrupt vector table for
reset and NMI. This table is used to store the start addresses of interrupt routines. An interrupt vector
table for timer interrupts, etc. can be set at any desired address by an internal register (INTB). For
details, refer to the section dealing with interrupts in Chapter 4.

Memory Mapping in Fixed Vector Area

Figure 2.1.8 shows memory mapping for the special page vector table and fixed vector area.

Figure 2.1.8 Memory mapping in fixed vector area

Interrupt
vector table

Special page
 vector table

Undifined instruction

BRK instruction

Address match

Watchdog timer

Reset

(Overflow or the divisor is 0)

NMI

Special page number

INTO instruction

FFFE00H

FFFE02H

FFFE04H

FFFFDBH

FFFFDCH

FFFFFFH

255

254

253

.

.

.

.

.

.

.

.

18

FFFDCH

FFFE0H

FFFE4H

FFFE8H

FFFECH

FFFF0H

FFFF4H

FFFF8H

FFFFCH

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 19 of 229

2.2 Register Set

The following explains the general registers, high-speed interrupt registers, and DMAC-related
registers included in the M16C/80 series CPU core.

Register Structure

Figure 2.2.1 shows the register structure of the M16C/80 series CPU core. Eight registers--R0,
R1, R2, R3, A0, A1, FB, and SB--are available in two sets each. The following shows the function
of each register.

General registers
(1) Data registers (R0, R1, R2, and R3)

These registers consist of 16 bits each and are used mainly for data transfer and arithmetic/
logic operations.
Registers R0 and R1 can be used separately for upper bytes (R0H, R1H) and lower bytes
(R0L, R1L) as 8-bit data registers. For some instructions, registers R2 and R0 and registers
R3 and R1 can be combined for use as 32-bit data registers (R2R0, R3R1), respectively.

(2) Address registers (A0 and A1)
These registers consist of 24 bits, and have the functions equivalent to those of the data
registers. In addition, these registers are used in address register indirect addressing and
address register relative addressing.

(3) Frame base register (FB)
This register consists of 24 bits, and is used in FB relative addressing.

(4) Static base register (SB)
This register consists of 24 bits, and is used in SB relative addressing.

(5) Program counter (PC)
This counter consists of 24 bits, indicating the address of an instruction to be executed.

(6) Interrupt table register (INTB)
This register consists of 24 bits, indicating the start address of an interrupt vector table.

(7) Stack pointers (USP or ISP)
There are two stack pointers: a user stack pointer (USP) and an interrupt stack pointer (ISP).
Both of these pointers consist of 24 bits.
The stack pointers used (USP or ISP) are switched over by a stack pointer select flag (U flag).
The U flag is assigned to bit 7 of the flag register (FLG).
Set odd numbers in USP and ISP. Execution efficiency is better when odd numbers are set.

(8) Flag register (FLG)
This register consists of 11 bits, each of which is used as a flag.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 20 of 229

High-speed interrupt registers
(9) Save flag register (SVF)

This register consists of 16 bits and is used to save the flag register when a high-speed
interrupt is generated.

(10) Save PC register (SVP)
This register consists of 24 bits and is used to save the program counter when a high-speed
interrupt is generated.

(11) Vector register (VCT)
This register consists of 24 bits and is used to indicate the jump address when a high-speed
interrupt is generated.

DMAC related registers
(12) DMA mode registers (DMD0 and DMD1)

These registers consist of 8 bits and are used to set the transfer mode,etc.for DMA.

(13) DMA transfer count registers (DCT0 and DCT1)
These registers consist of 16 bits and are used to set the number of DMA transfers
performed.

(14) DMA transfer count reload registers (DRC0 and DRC1)
These registers consist of 16 bits and are used to reload the DMA transfer count registers.

(15) DMA memory address registers (DMA0 and DMA1)
These registers consist of 24 bits and are used to set a memory address at the source or
destination of DMA transfer.

(16) DMA SFR address registers (DSA0 and DSA1)
These registers consist of 24 bits and are used to set a fixed address at the source or
destination of DMA transfer.

(17) DMA memory address reload registers (DRA0 and DRA1)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 21 of 229

Figure 2.2.1 Register structure

AAA
AAA

AAAAAA
AAAAAA

R2

AAAAAA
AAAAAA

R3

Register bank 0

Register bank 1
Data register

Address register

Frame base register

AAAAAAAAAA0

AAAAAAAAAA1

AAAAAA
AAAAAA

R1LR1H
AAAAAA
AAAAAA

R0LR0HR2

R3

Static base register

AAAAAAAAAFB

AAAAAAAAASB

b0b15b31

b0b23

b0b23

b0b23

Program counter
Interrupt table register

User stack pointer

Interrupt stack pointer

Flag register

PC save register

Vector register

Flag save register

PC

USP
ISP

FLG

INTB

VCT
SVP

SVF

DMD1

DMD0

DCT0
DCT1
DRC0
DRC1

DMA0
DMA1
DSA0
DSA1
DRA0
DRA1

DMA mode register

DMA transfer cout register

DMA memory address register

DMA transfer count reload register

DMA SFR address register

DMA memory address reload register

b0

b23

b15

b0b15

b23

b0b7

b15

b23

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 22 of 229

Flag Register (FLG)

Figure 2.2.2 shows the bit configuration of the flag register (FLG). The function of each flag is
described below.

• Bit 0: Carry flag (C flag)
This bit holds a carry or borrow that has occurred in an arithmetic/logic operation or a bit that
has been shifted out.

• Bit 1: Debug flag (D flag)
This flag enables a single-step interrupt.
When this flag is 1, a single-step interrupt is generated after instruction execution. When the
interrupt is accepted, this flag is cleared to 0.

• Bit 2: Zero flag (Z flag)
This flag is set to 1 when the operation resulted in 0; otherwise, the flag is 0.

• Bit 3: Sign flag (S flag)
This flag is set to 1 when the operation resulted in an negative number. The flag is 0 when the
result is positive.

• Bit 4: Register bank specifying flag (B flag)
This flag chooses a register bank. Register bank 0 is selected when the flag is 0. Register bank
1 is selected when the flag is 1.

• Bit 5: Overflow flag (O flag)
This flag is set to 1 when the operation resulted in an overflow.

• Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.
The interrupt is enabled when the flag is 1, and is disabled when the flag is 0. This flag is
cleared to 0 when the interrupt is accepted.

• Bit 7: Stack pointer specifying flag (U flag)
The user stack pointer (USP) is selected when this flag is 1. The interrupt stack pointer (ISP) is
selected when the flag is 0.
This flag is cleared to 0 when a hardware interrupt is accepted or an INT instruction of software
interrupt numbers 0 to 31 is executed.

• Bits 8 to 11: Reserved.

• Bits 12 to 14: Processor interrupt priority level (IPL)
The processor interrupt priority level (IPL) consists of three bits, for specification of up to eight
processor interrupt priority levels from level 0 to level 7.
If the priority level of a requested interrupt is greater than the processor interrupt priority
level(IPL), the interrupt is enabled.

• Bit 15: Reserved.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 23 of 229

Carry flag

Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Flag Register (FLG)CDZSBOIUIPL
b0b15

Figure 2.2.2 Bit configuration of flag register (FLG)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 24 of 229

Register Status after Reset is Cleared

Table 2.2.1 lists the status of each register after a reset is cleared(Note).

Table 2.2.1 Register Status after Reset Cleared

Register name Status after a reset is cleared

Data register(R0/R1/R2/R3) 0000H

Address register(A0/A1) 000000H

Static base register(SB) 000000H
Flame base register(FB) 000000H

Interrupt table register(INTB) 000000H

User stack pointer(USP) 000000H

Interrupt stack pointer(ISP) 000000H
Flag register(FLG) 0000H

DMA mode register(DMD0/DMD1) 00H

DMA transfer count register(DCT0/DCT1) Undefined.

DMA transfer count reload register(DRC0/DRC1) Undefined.

DMA memory address register(DMA0/DMA1) Undefined.

DMA SFR address register(DSA0/DSA1) Undefined.
DMA memory address reload register(DRA0/DRA1) Undefined.

Note: For the control register status in the SFR area after a reset is cleared, refer to the M16C/80 group data sheets and user's manuals.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 25 of 229

2.3 Data Types

There are four data types handled by the M16C/80 series: integer, decimal (BCD), string, and bit.
This section describes these data types.

Integer

An integer may be a signed or an unsigned integer. A negative value of a signed integer is
represented by a 2's complement.

Figure 2.3.1 Integer data

Decimal (BCD)

The BCD code is handled in packed format.
This type of data can be used in four kinds of decimal arithmetic instructions: DADC, DADD,
DSBB, and DSUB.

Figure 2.3.2 Decimal data

Signed byte (8-bit) integer

Unsigned byte (8-bit) integer

Signed word (16-bit) integer

Unsigned word (16-bit) integer

Signed long word (32-bit) integer

Unsigned long word (32-bit) integer
b31 b0

b0b15

b0b7

b31 b0

S

S

b0b15

b0b7

S

S: Sign bit

1-byte packed format
(2 digits)

2-byte packed format
(4 digits)

b0b15

b0b7

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 26 of 229

String

A string is a block of data comprised of a consecutive number of 1-byte or 1-word (16-bit) data.
This type of data can be used in seven kinds of string
instructions:SMOVB,SMOVF,SSTR,SCMPU,SIN and SOUT.

Figure 2.3.3 String data

Bit

Bit can be used in 14 kinds of bit instructions, including BCLR, BSET, BTST, and BNTST. Bits in
each register are specified by a register name and a bit number, 0 to 15. Memory bits are
specified by a different method in a different range depending on the addressing mode used. For
details, refer to Section 2.5.4, "Bit Instruction Addressing".

Figure 2.3.4 Specification of register bits

Figure 2.3.5 Specification of memory bits

• String of byte (8-bit) data

• String of word (16-bit) data

···
8

···

···

···
16

b0b15

R0

b0b15

A0

2,R0 (R0 register, bit 2)

2,A0 (A0 register, bit 2)(Note)

Address

00000H

(n – 1)H
nH

(n +1)H

b0b7

Memory
map

b0b7b0b7 b0b7b0b7

 n + 1 n n – 1 0

Bit map
base

2,nH

(Address nH, bit 2)

Note : A0 and A1 register can be specified by the lower 8 bit.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 27 of 229

2.4 Data Arrangement

The M16C/80 series can handle nibble (4-bit) and byte (8-bit) data efficiently. This section
explains the data arrangements that can be handled by the M16C/80 series.

Data Arrangement in Register

Figure 2.4.1 shows the relationship between the data sizes and the bit numbers of a register.
As shown below, the bit number of the least significant bit (LSB) is 0. The bit number of the most
significant bit (MSB) varies with the data sizes handled.

Figure 2.4.1 Data arrangement in register

Data Arrangement in Memory

Figure 2.4.2 shows the data arrangement in the M16C/80 series memory.
Data is arranged in memory in units of 8 bits as shown below. A word (16 bits) is divided between
the lower byte and the upper byte, with the lower byte, DATA(L), placed in a smaller address
location. Similarly, addresses (24 bits) and long words (32 bits) are located in memory beginning
with the lower byte, DATA(L) or DATA(LL).

Figure 2.4.2 Data arrangement in memory

Nibble (4 bits)

Byte (8 bits)

Word (16 bits)

Long word (32 bits)

LSBMSB

b31 b0

b0b15

b0b7

b0b3

N

N + 1

N + 2

N + 3

DATA DATA(L)

DATA(M)

DATA(H)

DATA(L)

DATA(H)

DATA(LL)

DATA(LH)

DATA(HL)

DATA(HH)

b7 b0

Byte (8 bits)

b7 b0

Word (16 bits)

b7 b0

Address (24 bits)

b7 b0

Long word (32 bits)

N

N + 1

N + 2

N + 3

N

N + 1

N + 2

N + 3

N

N + 1

N + 2

N + 3

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 28 of 229

2.5 Addressing Modes

This section explains the M16C/80 series addressing.
The four types of addressing modes shown below are available.
(1) General instruction addressing

 The entire address space from address 000000H to FFFFFFH is accessed.
(2) Indirect instruction addressing

 The entire address space from address 000000H to FFFFFFH is accessed.
(3) Special instruction addressing

 The entire address space from 000000H to FFFFFFH is accessed and control registers.
(4) Bit instruction addressing

 The entire address space from address 000000H to FFFFFFH is accessed in units of bits.

List of Addressing Modes

All addressing modes are summarized in Table 2.5.1 and Table 2.5.2 below.

Table 2.5.1 Addressing Modes of M16C/80 Series 1

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAContentItem

General instructionAddressing mode

Immediate

Register direct

Absolute

Address register indirect

SB relative
 and FB relative

Program counter relative

imm:8/16/32 bits

abs:16 bits (0 to FFFFH)
 24 bits (0 to FFFFFFH)

[A0] or [A1] dsp : 8/16/24 bits

[A0] or [A1] without disp

FLG direct X

Data register and address registers only

Stack pointer relative

Address register relative

dsp:8[SP]
dsp : 8 bits (-128 to +127) *MOV instruction only

Indirect instruction

Absolute indirect X

X

X

X

[abs : 16/24 bits] (0 to FFFFFFH)

Two-stage
address register indirect X [[A0]] or[[A1]] without disp (0 to FFFFFFH)

Address register
 relative indirect X [dsp:8/16/24[A0]] or [dsp:8/16/24[A1]] (0 to FFFFFFH)

SB relative indirect
and FB relative indirect

[dsp:8/16[SB]] (0 to FFFFFFH)

[dsp:8/16[FB]] (0 to FFFFFFH)

X X

X

X

Control register direct X X

X

X

dsp:8[SB]
dsp:16[SB]
dsp:8/16 bits(0 to 255 / 0 to 65534)

dsp:8[FB]
dsp:16[FB]
dsp:8/16 bits(-128 to +127 / 32768 to +32767)

X

X

X

X

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 29 of 229

Table 2.5.2 Addressing Modes of M16C/80 Series 2

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

ContentItem

Addressing mode Special instruction

X

INTB,ISP,SP,DMD0 etc.control registeronly

X

X

X

X

X

X

X

X

X

X

X

R0L/R0H/R1L/R1H/A0/A1 only

base:19/27 bits (0 to FFFFH / 0 to 0FFFFFFH)

Bit instruction

bit,[A0] or bit,[A1](0H to 0FFFFFFH)
bit:0 to 7

bit,base[A0] or bit,base[A1]
base:11/19/27

U, I, O, B, S, Z, D, C flag *FSET,FCLR instruction only

X

X

X

X

X

X

X

X

Address register indirect

SB relative
 and FB relative

Program counter relative

FLG direct

Stack pointer relative

Address register relative

Two-stage
address register indirect

Address register
 relative indirect

SB relative indirect
and FB relative indirect

Immediate

Register direct

Absolute

Absolute indirect

Control register direct

X

X

label: .S: +0 to +7(JMP instruction only)
.B: -128 to +127(JMP,JSR instruction only)
.W: -32768 to +32767(JMP,JSR instruction only)
.without length: -127 to +128(Jcn instruction only)

X

bit,base:11[SB] (0H to FFH)
bit,base:19[SB] (0H to FFFFH)

bit,base:11[FB] (-128 to +127)
bit,base:19[FB] (-32768 to +32767)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 30 of 229

2.5.1 General Instruction Addressing

This section explains each addressing in the general instruction addressing mode.

Immediate

The immediate indicated by #IMM is the subject on which operation is performed. Add a # before
the immediate.
Symbol: #IMM, #IMM8, #IMM16, #IMM32
Example: #123 (decimal)

#7DH (hexadecimal)
#01111011B (binary)

Absolute

The value indicated by abs16/24 is the effective address on which operation is performed. The
range of effective addresses is 000000H to 000FFFFH at abs16 ,and 000000H to FFFFFFH at
abs24.
Symbol: abs16 or abs 24
Example: MOV.B #12H,DATA

Figure 2.5.1 Absolute addressing

Register direct

A specified register is the subject on which operation is performed.
However, only the data and address registers can be used here.
Symbol: 8 bits R0L, R0H, R1L, R1H

16 bits R0, R1, R2, R3, A0, A1
32 bits R2R0, R3R1

000000H

008000H
(DATA)

00FFFFH
010000H

FFFFFFH

Range of effective
address
(at abs16)

AAAA
AAAA

Range of effective
address
(at abs24)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 31 of 229

Address Register Indirect

The value of an address register is the effective address to be operated on. The range of
effective addresses is 000000H to FFFFFFH.
Symbol: [A0], [A1]
Example: MOV.B #12H, [A0]

Figure 2.5.2 Address register indirect addressing

000000H

001000H

FFFFFFH

b7 b0

12H

1000HA0

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 32 of 229

Address Register Relative

The value of an address register plus a displacement (dsp)(Note) is the effective address to be
operated on. The range of effective addresses is 000000H to FFFFFFH. If the addition result
exceeds FFFFFFH, the most significant bits above and including bit 25 are ignored and the
address returns to 000000H.
Symbol: dsp:8[A0], dsp:16[A0], dsp:24[A0], dsp:8[A1],dsp:16[A1],dsp24[A1]
(1) When dsp is handled as a displacement

Example: MOV.B #34H,5[A0]

Figure 2.5.3 Address register relative addressing 1

(2) When address register (A0) is handled as a displacement
Example: MOV.B #56H,1234H[A0]

Figure 2.5.4 Address register relative addressing 2

(3) When the addition result exceeds 0FFFFH
Example: MOV.B #56H,1234H[A0]

Figure 2.5.5 Address register relative addressing 3

Note: The displacement (dsp) refers to a displacement from the reference address. In this manual, 8-bit dsp is expressed as dsp:8, 16-bit
dsp is expressed as dsp:16, and 24-bit dsp is expressed as dsp:24.

000000H

001000H

001005H

FFFFFFH

Relative address range
dsp:8 0 to FFH
dsp:16 0 to FFFFH
dsp:24 0 to FFFFFFH

A0 001000H + 5H = 001005H

34H

000000H

001234H

001239H

FFFFFFH

56H

001234H + 000005H = 001239H

A0
Relative address range
dsp:8 0 to FFH
dsp:16 0 to FFFFH
dsp:24 0 to FFFFFFH

123456H + F00000H = 1023456H

000000H

023456H

123456H

FFFFFH

56HA0

Ignored

Relative address range
dsp:8 0 to FFH
dsp:16 0 to FFFFH
dsp:24 0 to FFFFFFH

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 33 of 229

SB Relative

The address indicated by the content of static base register(SB) plus the value indicated by
displacement(dsp) -added not including the sign bits- constitutes the effective address to be
operated on. The range of effective addresses is 000000H to FFFFFFH. However, if the addition
resulted in exceeding FFFFFFH ,the bits above bit 25 are ignored, and the address returns to
000000H.
Symbol: dsp:8[SB], dsp:16[SB]
Example: MOV.B #12H,5[SB]

Figure 2.5.6 SB relative addressing

FB Relative

The address indicated by the content of frame base register(FB) plus the value indicated by
displacement(dsp) -added not including the sign bits- constitutes the effective address to be
operated on. The range of effective addresses is 000000H to FFFFFFH. However, if the addition
resulted in exceeding 000000H to FFFFFFH ,the bits above bit 25 are ignored, and the address
returns to 000000H or FFFFFFH.
Symbol: dsp:8[FB]
(1) When dsp is a positive value

Example: MOV.B #12H,5[FB]

Figure 2.5.7 FB relative addressing 1

(2) When dsp is a negative value
Example: MOV.B #12H,-5[FB]

Figure 2.5.8 FB relative addressing 2

000000H

000100H

000105H

FFFFFFH

SB 000100H + 5 = 000105H

12H

Effective address

Relative address range
dsp:8 0 to FFH
dsp:16 0 to FFFFH

000000H

000100H

000105H

FFFFFFH

FB 000100H + 5 = 000105H

12H

Effective address

Relative address range
dsp:8 0 to +127
dsp:16 0 to +32767

000000H

000FFBH

001000H

FFFFFFH

FB 000100H - 5 = 000FFBH

12H

Effective address

Relative address range
dsp:8 -128 to 0
dsp:16 -32768 to 0

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 34 of 229

000000H

FFFFFFHAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA dsp : 8[SB]

AAAA
AAAA
AAAA

dsp :8[FB]

+65535(FFFFH)

24 bits

SB

FB

-32768(8000H)

AAAA
AAAA
AAAA

+32767(7FFFH)

dsp : 16[SB]

dsp :16[FB]

dsp :8[FB]

dsp :16[FB]

+255(FFH)

-128(80H)

+127(7FH)

24 bits

Column Difference between SB Relative and FB Relative

In SB relative addressing, the address indicated by the SB register content and the value
indicated by dsp are added not including the sign and the result of addition is the effective address
to be operated on. The relative range is 0 to +255 (FFH) for dsp: 8[SB], and 0 to +65535 (FFFFH)
for dsp: 16[SB].
In FB relative addressing, dsp is added to or subtracted from the address indicated by the FB
register content and the result of addition or subtraction is the effective address to be operated on.
The relative range is -128 to +127 (80H to 7FH) for dsp: 8[FB], and -32768 to +32767 (8000H to
7FFFH) for dsp: 16[FB]. FB relative allows accessing memory locations in the negative direction.
The dsp used for this addressing can be 8 bits or 16 bits.

Figure 2.5.9 SB relative and FB relative addressing

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 35 of 229

<Accessing local variable area>

SP

AAAFB AAAAA

(Stack area)

Old FB (lower)

Return address (lower)

Local variable area

Return address (middle)

Return address (upper)

Argument

The number of bytes
used is allocated by the
ENTER instruction.

Stack frame
Old FB (upper)

<Dynamic control of SB>

AAASB AAAA

AAAAA
AAAAA
AAAAA

AAAAA
AAAAAAAA

AAA
SB

A
A
A
A

AA

Data table specific to
subroutine 1

Data table specific to
subroutine 2

Column Application Example of SB Relative

SB relative addressing can be applied for the specific data table of each subroutine as shown in
Figure 2.5.10. Although the data necessary to run each subroutine must be switched over when
calling the subroutine, use of SB relative addressing helps to accomplish this switchover by only
rewriting the SB register.

Figure 2.5.10 Application example of SB relative addressing

Column Application Example of FB Relative

FB relative addressing can be used for the stack frame that is created when calling a function, as
shown in Figure 2.5.11. Since the local variable area in the stack frame is located in the negative
direction of addresses, FB relative addressing is needed because it allows for access in both
positive and negative directions from the base.

Figure 2.5.11 Application example of FB relative addressing

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 36 of 229

Stack Pointer Relative (SP Relative)

In SP relative addressing, the address indicated by the SB register content and the value
indicated by dsp are added including the sign and the result of addition is the effective address to
be operated on. SP relative addressing can only be used in the MOV instruction. The range of
effective addresses is 000000H to FFFFFFH. If the result of addition exceeds the range of
000000H to FFFFFFH, any value above 25 bits is ignored and the address wraps around to
000000H or FFFFFFH.
Symbol: dsp:8[SP]
(1) When dsp is a positive value

Example: MOV.B R0L,5[SP]

Figure 2.5.12 SP relative addressing 1

(2) When dsp is a negative value
Example: MOV.B R0L,-5[SP]

Figure 2.5.13 SP relative addressing 2

000000H

001000H

001005H

FFFFFFH

55H

SP 001000H + 5 = 001005H

R0 XXH 55H

Relative address range
(0 to +127)

000000H

000FFBH

001000H

FFFFFFH

55H

SP 001000H – 5 = 000FFBH

R0 XXH 55H

Relative address range
(–128 to 0)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 37 of 229

Addressing mode Descriptive form Relative range

Address register relative

SB relative
and FB relative

Stack pointer relative

dsp:8[An]
dsp:16[An]
dsp:24[An]

dsp:8[SB]
dsp:16[SB]
dsp:8[FB]
dsp:16[FB]

dsp:8[SP]

0 to 255(FFH)
0 to 65535(FFFFH)
0 to 16777215(FFFFFFH)

0 to 255(0FFH)
0 to 65535(0FFFFH)
-128(80H) to +127(7FH)
-32768(8000H) to +32767(7FFFH)

-128(80H) to +127(7FH)

Column Relative Address Ranges of Relative Addressing

The relative address ranges of relative addressing are summarized in Table 2.5.3.

Table 2.5.3 Relative Address Ranges of Relative Addressing

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 38 of 229

2.5.2 Indirect instruction Addressing

The Indirect instruction addressing accesses an area from address 000000H to FFFFFFH. This section
explains each addressing in the indirect instruction addressing mode.

Absolute indirect

The 4-bytes value indicated by absolute addressing constitutes the effective address to be
operated on. The effective address range is 000000H to FFFFFFH.

Symbol: [abs16] or [abs24]
Example: MOV.B [001000H],R0L

Figure 2.5.14 Absolute indirect addressing

Two-stage address register indirect

The 4-bytes value indicated by address register(A0/A1) indirect constitutes the effective address
to be operated on. The effective address range is 000000H to FFFFFFH.

Symbol: [[A0]] or [[A1]]
Example: MOV.B [[A0]],R0L

Figure 2.5.15 Two-stage address register indirect addressing

AAAA
AAAA45H

000000H

000FFFH

FFFFFFH

001000H

AAAA23H

AAAA
AAAA01H

AAAA01H

AAAAAAAA00 01 23 45

AAAA
55H

AAA
xxH 55H
R0H R0LThe upper 8-bit

is ignored.

Effective address

AAAA
AAAA45H

000000H

000FFFH

FFFFFFH

AAA
AAA001000H

AAAA23H

AAAA
AAAA01H

AAAA01H

AAAAAAAA00 01 23 45

AAAA
55H

AAA
xxH 55H
R0H R0LThe upper 8-bit

is ignored.

A0

Effective address

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 39 of 229

Address register relative indirect

The 4-bytes value indicated by address register relative constitutes the effective address to be
operated on. The effective address range is 000000H to FFFFFFH.
Symbol: [dsp:8[A0]],[dsp:8[A1]],[dsp:16[A0]],[dsp:16[A1]],[dsp:24[A0]],or[dsp:24[A1]]
Example: MOV.B [5[A0]],R0L

Figure 2.5.16 Address register relative indirect addressing

SB relative indirect

The 4-byte value indicated by SB relative constitutes the effective address to be operated on. The
effective address range is 000000H to FFFFFFH.
Symbol: [dsp:8[SB]] or [dsp:16[SB]]
Example: MOV.B [2[SB]],R0L

Figure 2.5.17 SB relative indirect addressing

A0 001000H + 5 = 001005H AAAA
AAAA

AAAA
34H

000000H

001000H

FFFFFFH

AAAAAAAA12H
00H
11H

AA
AA
AA
AA

AA
AA
AA
AA00 00 11 34

AAAA
The upper 8-bit
is ignored. AAAxxH 55H

R0H R0L
55H

SB 000380H + 2 = 000382H AAAA
AAAA

AAAA
34H

000000H

000382H

FFFFFFH

AAAA
AAAAAAAA12H

00H
11H

AA
AA
AA
AA

AA
AA
A
A00 00 11 34

AAAAThe upper 8-bit
is ignored. AAAAxxH 55H

R0H R0L
55H

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 40 of 229

FB relative indirect

The 4-byte value indicated by FB relative constitutes the effective address to be operated on. The
effective address range is 000000H to FFFFFFH.
Symbol:[dsp:8[FB]] or [dsp:16[FB]]
Example: MOV.B [2[FB]],R0L

Figure 2.5.18 FB relative indirect addressing 1

Example: MOV.B [-25[FB]],R0L

Figure 2.5.19 FB relative indirect addressing 2

FB 000500H + 2 = 000502H

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
34H

000000H

000500H

FFFFFFH

AAAA
AAAAAAAA12H

00H
11H

AA
AA
AA
AA

AA
AA
A
A00 00 11 34

AAAAThe upper 8-bit
is ignored. AAAAxxH 55H

R0H R0L
55H

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA

FB 000500H - 25 = 0004E7H

F0H

000000H

000500H

FFFFFFH

12H
00H
04H

AAAAAAA00 00 04 F0

AAAA
The upper 8-bit
is ignored. AAAAxxH 55H

R0H R0L
55H

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 41 of 229

2.5.3 Special Instruction Addressing

The Special Instruction addressing accesses an area from address 000000H to FFFFFFH and control
registers. This section explains each addressing in the special instruction addressing mode.

Control register direct

The specified control register is the object to be operated on. This addressing can be used in
LDC, STC, POPC, and PUSHC instructions.
If you specify SP, the stack pointer indicated by the U flag is the object to be operated on.
Symbol: INTB, ISP, SP, SB, FB, FLG, SVP, VCT, SVF, DMD0, DMD1, DCT0, DCT1, DRC0,
 DRC1, DMA0, DMA1, DSA0, DSA1, DRA0, or DRA1
Example:LDC #001000H,ISP

Figure 2.5.20 Control register direct addressing

Program counter relative

When the jump length specifier (.length) is (.S) ... the base address plus the value indicated by
displacement(dsp) -added not including the sign bit- constitutes the effective address.
This addressing can be used in JMP instruction.
(1)When the jump length specifier (.length) is (.S)
Symbol:label (PC+2 label PC+9)

Figure 2.5.21 Program counter relative addressing 1

When the jump length specifier (.length) is (.B) or (.W) ... the base address plus the value
indicated by displacement(dsp) -added including the sign bits- constitutes the effective address.
This addressing can be used in JMP and JSR instructions.

(2)When the jump length specifier (.length) is (.B)
Symbol:label (PC-128 label PC+127)

Figure 2.5.22 Program counter relative addressing 2

#001000H
ISP

Relative range
(+2 to +9)

AAAA
AAAA
AAAA

Instruction

000000H

label

FFFFFFH

Relative range
 (-128 to 0)

AAAA
AAAA
AAAAInstruction

AAAA

000000H

label

FFFFFFH

label

Relative range
 (0 to +127)

<
=

<
=

<
=

<
=

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 42 of 229

(3)When the jump length specifier (.length) is (.W)
Symbol:label (PC-32768 label PC+32767)

Figure 2.5.23 Program counter relative addressing 3

If the jump distance specifier(.length) is omitted ,the assembler chooses the optimum specifier.
And if the addition resulted in exceeding 000000H to FFFFFFH the bits above bit 25 are
ignored,and the address returns to 000000H or FFFFFFH.

Relative range
 (-32768 to 0)

AAAA
AAAA
AAAAInstruction

AAAA

000000H

label

FFFFFFH

label

Relative range
 (0 to +32767)

<
=

<
=

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 43 of 229

2.5.4 Bit Instruction Addressing

The Bit Instruction addressing accesses an area from address 000000H to FFFFFFH .
This addressing can be used in the bit instructions. This section explains each addressing in the bit
instruction addressing mode.

Absolute

The bit that os as much away from bit 0 at the address indicated by base as the number of bits
indicated by bit is the object to be operated on.
The address range that can be specified by bit ,base:19 and bit,base:27 respectively are 000000H
to 00FFFFH and 000000H to FFFFFFH.
Symbol: bit,base:19 or bit,base:27

Figure 2.5.24 Bit instruction absolute addressing 1

Example 1:BCLR 18,base_addr
Example 2:BCLR 4,base_addr2

Figure 2.5.25 Bit instruction absolute addressing 2

AAAA
AAAA
AAAA
AAAA
AAAA

base:19 specifiable address range
 (address 0H to 00FFFFH)

A

b7 b0
000000H

base

00FFFFH

FFFFFFH

base:27 specifiable address range
 (address 0H to FFFFFFH)

base_addr: 000000H
000001H
000002H

b7 b0

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A

0

A
A
AA
AA
A
A
A
A

AA
AA
A
A

AA
AA

AAAAAAAAAAA
A
A
A
A
AA
AA
A
A
A
A

AA
AA
A
A

AA
AA

A
A
A
A
AA
AA
A
A
A
A

AA
AA
A
A

AA
AA

AAAAAAAAAAA
A
A
AA
AA
A
A
A
A
A
A

AA
AA
A
A

AA
AA

1234567

89101112131415

1617181920212223

01234567

This bit is cleared. (Example 1)

This bit is cleared. (Example 2)
AAAAAAAAAA 8A9

001FFDH
001FFEH

base_addr2: 001FFFH
002000H

FFFFFFH

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 44 of 229

Register direct

The specified register bit is the object to be operated on. For the bit position(bit) you can specify 0
to 7. For the address register(A0,A1), you can specify 8 low-order bits.
Symbol: bit,R0L, bit,R0H, bit,R1L, bit,R1H, bit,A0, or bit,A1
Example:BCLR 6,R0L

Figure 2.5.26 Bit instruction register direct addressing

FLG Direct

The specified flag is the object to be operated on. This addressing can be used in FCLR and
FSET instructions. The bit positions that can be specified here are only the 8 low-order bits of the
FLG register.
Symbol: U, I, O, B, S, Z, D, C
Example: FSET U

Figure 2.5.27 Bit instruction FLG direct addressing

A
b0b7b6

R0L

This bit is cleared.

A
b0b15

FLG U I O B S Z D C

The U flag is seted.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 45 of 229

Address Register Indirect

The bit that is as much away from bit 0 at address indicated by address register(A0/A1) as the
number of bits is the object to be operated on.
Bits at addresses 000000H to FFFFFFH can be the object to be operated on. For the bit position
(bit) you can specify 0 to 7.
Symbol: bit,[A0] or bit,[A1]
Example: BCLR 5,[A0]

Figure 2.5.28 Bit instruction address register indirect addressing

Address Register Relative

The bit that is as much away from bit 0 at the address indicated by base -added not including the
sign bits- as the number of bits indicated by address register(A0/A1) is the object to be operated
on. The effective address range is 000000H to FFFFFFH.However, if the address of the bit to be
operated on exceeds FFFFFFH, the bits above bit 25 are ignored and address returns 000000H.
The address range that can be specified by bit,base:11, bit,base:19, and bit,base:27 respectively
are 256 bytes,65536 bytes, and 16777216 bytes from address register(A0/A1) value.
Symbol:bit,base:11[A0], bit,base:11[A1], bit,base:19[A0], bit,base:19[A1], bit,base:27[A0],or
 bit,base:27[A1]
Example: BCLR 5,26H[A0]

Figure 2.5.29 Bit instruction address register relative addressing

specifiable address range(
address 0H to FFFFFFH)

AA

b7 b0

A0 001200H

000000H

FFFFFFH

This bit is cleared.

A0 012000H + 26H = 012026H

AAAA Effective adress range
(address 0H to FFFFFFH)

b0b7

A

000000H

FFFFFFH

Bit 5 is cleared.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 46 of 229

SB Relative

In this mode, the address is referenced to the value indicated by the SB register. The value of the
SB register has base added without a sign. The resulting value indicates the reference address,
so operation is performed on the bit that is away from bit 0 at that address by a number of bits
indicated by bit.
The address range the can be specified by bit,base:11, and bit,base:19 respectively are 256
bytes,and 65536 bytes form the static base register(SB) value. However,if the address of the bit to
be operated on exceeds FFFFFFH,the bits above bit 25 are ignored and the address returns to
000000H.
Symbol:bit,base:11[SB] or bit,base:119[SB]

Note: bit,base:11 [SB] : One bit in an area of up to 256 bytes can be specified.
bit,base:19 [SB] : One bit in an area of up to 64 K bytes can be specified.

Example: BCLR 13,8[SB]

Figure 2.5.30 Bit instruction SB relative addressing

SB address

A
AAAAA

A
A
AA
AA

AAAA Effective address range
(address 0H to FFFFFFH)

b0b7

AAAAAA
AA
AA
A
A
A
A
AA
AA
A
A

6 45 3 012

12 11 10 9 8

7

13

000000H

FFFFFFH

+8

The b13 is cleared.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 47 of 229

FB Relative

In this mode, the address is referenced to the value indicated by the FB register. The value of the
FB register has base added with the sign included. The resulting value indicates the reference
address, so operation is performed on the bit that is away from bit 0 at that address by a number
of bits indicated by bit.

Symbol: bit,base:11[FB] or bit,base:19[FB]
Example: BCLR 5,–8[FB]

Figure 2.5.31 Bit instruction FB relative addressing

FB address

AA
AA

AAAA

b0b7

If the value of base
is negative

A
A7
A
A
AA
AA
A
A
A
A

AA
AA6 5 4 3 2 1 0

000000H

FFFFFFH

-8
the b5 is cleared.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 48 of 229

2.6 Instruction Set

This section explains the instruction set of the M16C/80 series. The instruction set is summarized
by function in list form. In addition, some characteristic instructions among the instruction set are
explained in detail.
The table below shows the symbols used in the list and explains their meanings.

Symbol Meaning

src Operand that does not store processing result.

dest Operand that stores processing result.

label Operand that means an address.

abs16/24 Absolute value.(16 bits or 24 bits)

abs20 20-bit absolute value.

dsp:8/16/24 Displacement.(8 bits, 16 bits, or 24 bits)

dsp:16 16-bit displacement.

#IMM/4/8/16/24/32 Immediate value.(8 bits, 16 bits, 24 bits, or 32 bits)

.size Size specifier.(.B or .W)

.length Jump distance specifier.(.S, .B, .W, or .A)

← Transfers in the direction of arrow.

+ Add.

- Subtract.

* Multiply.

/ Divide.

& Logical AND.

| Logical OR.

^ Exclusive OR.

Negate.

|| Absolute value.

EXT() Extend sign in ().

U,I,O,B,S,Z,D,C Flag name.

R0L,R0H,R1,R1H 8-bit register name.

R0,R1,R2,R3,A0,A1 16-bit register name.

R2R0,R3R1,A1A0 32-bit register name.

SB,FB,SP,PC Register name.

MOVDir,BMCnd,JCnd Dir(direction) and Cnd(condition) mnemonics are shown in italic.

JGEU/C,JEQ/Z
Indecate that JGEU/C is written as JGEU or JC, and that JEQ/Z is
wrriten as JEQ or JZ.

INDEXtype Mnemonics of type(modifier type) are shown in italic.

"O" (Addressing) Can be used.

(Flag change) Flag changes according to execution result.

"-" (Flag change) Flag does not change.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 49 of 229

2.6.1 Instruction Description

This section explains the format in which M16C/80 instructions are written.

Format of instruction description

Figure 2.6.1 Format of instruction description

Mnemonic : Indicates the operation performed by the instruction.
Size specifier : Specifies the data size to be operated on by the mnemonic.
Branch distance specifier : Specifies the distance to the target address of a branch instruction

 or subroutine call instruction. (Normally omitted.)
Format specifier : Specifies the format of the op-code. The code lengths of the op-

 code and operand vary with the op-code format. (Normally
 omitted.)

Specifiers

Figure 2.6.2 Specifiers

 MOV .size (:format) src,dest

Mnemonic Size specifier Instruction format specifier

Operation part Operand part

 JMP (.length) label

Mnemonic Jump distance specifier

Operand part

() be able to omitt.

Example:MOV.W:G R0,R1
 JMP.A LABEL

Operation part

Size specifier Content

.B

.W

.L

Specifies byte size. (8 bits)

Specifies word size. (16 bits)
Specifies long word size (32 bits)

Instruction format specifier(Note) Content
.Z

.S

.Q

Zero format

Short format

Quick format

.G Generic format

Selection priority

Low

High

Note: Some instructions do not have the instruction format specifier.

Branch distance specifier Content

.S

.B

.W

Branch distance: +2 to +9 (3-bit forward relative)
Branch distance: -128 to +127 (8-bit relative)
Branch distance: -32768 to +32767 (16-bit relative)

.A Branch distance: 0 to FFFFFFH (24-bit absolute)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 50 of 229

Instruction format
1.Generic format(:G)
The op-code includes information on the operation to be performed, as well as src and dest
addressing information.

Table 2.6.1 Generic format

2.Quick format(:Q)
The op-code includes information on the operation to be performed and the immediate data, as
well as dest addressing information. However, the immediate data included in the op-code is a
value that can be expressed by -7 to +8 or -8 to +7 (varying with the instruction).

Table 2.6.2 Quick format

3.Short format(:S)
The op-code includes information on the operation to be performed, as well as src and dest
addressing information. However, the usable addressing modes are limited. The S format can be
used in part of addressing modes.

Table 2.6.3 Short format

4.Zero format(:Z)
The op-code includes information on the operation to be performed and the immediate data, as
well as dest addressing information. However, the immediate data is fixed to 0. The Z format can
be used in part of addressing modes.

Table 2.6.4 Zero format

Op-code

2 to 3 bytes

Src code

0 to 4 bytes

Dest code

0 to 3 bytes

Op-code

2 bytes

Dest code

0 to 3 bytes

Op-code

1 byte

Src code

0 to 2 bytes

Dest code

0 to 2 bytes

Op-code

1 byte

Dest code

0 to 2 bytes

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 51 of 229

Mnemonic Explanation

MOV.size(Note) src,dest Transfers src to dest or sets immediate in dest.

MOVA src,dest Transfers address in src to dest.

MOVHH src,dest
MOVHL src,dest
MOVLH src,dest
MOVLL src,dest

Transfers 4 high-order bits in src to 4 high-order bits in dest.
Transfers 4 high-order bits in src to 4 low-order bits in dest.
Transfers 4 low-order bits in src to 4 high-order bits in dest.
Transfers 4 low-order bits in src to 4 low-order bits in dest.

MOVX src,dest Sign-extends 8-bit immediate value to 32 bits before transferring to dest.

POP.size dest Restores value from stack area.
POPC dest Restores value from stack area to dedicated register indicated by dest.

POPM dest Restores multiple registers values collectively from stack area.
PUSH.size src Saves register / memory / immediate to stack area.
PUSHA src Saves address in src to stack area.
PUSHC src Saves dedicated src register to stack area.
PUSHM src Saves multiple registers tp stack area.

SIN.size
Transfers string in address incrementing direction using A0 as fixed
source address of transfer, A1 as destination address of transfer, and
R3 as transfer count.

SMOVB.size
Transfers string in address decrementing direction using A0 as source
address of transfer, A1 as destination address of transfer, and R3 as
transfer count.

SMOVF.size
Transfers string in address incrementing direction using A0 as source
address of transfer, A1 as destination address of transfer, and R3 as
transfer count.

SMOVU.size
Transfers string in address incrementing direction using A0 as source
address of transfer, A1 as destination address of transfer, and R3 as
transfer count until 0 is detected.

2.6.2 Instruction List

In this and following pages, instructions are summarized by function in list form, showing the
content of each mnemonic, addressing, and flag changes.

Transfer

Note:Write .W or .B for .size.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 52 of 229

*a R0L register is selected for src or dest..
*b Can be selected from R0L, R0H, R1L, or R1H.
*c The immediate value is 8 bits in size, whose possible value is -128 < #IMM8 < +127.
*d When SP is specified, the stack pointer indicated by the U flag is the target.
*e It is only when FLG is specified that dest changes.
*f Indirect addressing [src] and [dest] can be used in any register other than R0L/R0/R2R0, R0H/
 R2/-, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C
src*f O O O O O O O O

- - - - O O - -
dest*f O O O O O O O
src O O O O

- - - - - - - -
dest O

src ROL*a

- - - - - - - -
dest O O*b O O O O

src O O*b O O O O
dest ROL*a

src O*c

- - - - O O - -
dest*f O O O O O O
dest*f O O O O O O - - - - - - - -
dest O*d *e *e *e *e *e *e *e *e

dest O - - - - - - - -

src*f O O O O O O O - - - - - - - -
src O O O O - - - - - - - -
src O*d - - - - - - - -
src O O - - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 53 of 229

Mnemonic Explanation

SOUT.size(Note)
Transfers string in address incrementing direction using A0
as source address of transfer, A1 as fixed destination
address of transfer, and R3 as transfer count.

SSTR.size
Transfers string in address incrementing direction using
R0L/R0 as store data, A1 as destination address of
transfer, and R3 as transfer count.

STNZ.size src,dest Transfers src to dest when Z flag = 0.

STZ.size src,dest Transfers src to dest when Z flag = 1.

STZX.size src1,src2,dest
Transfers src1 to dest when Z flag = 1 or src2 to dest when
Z flag = 0.

XCHG.size src,dest Exchanges contents of src and dest with each other.

Note:Write .W or .B for .size.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 54 of 229

*g The immediate value is selected for 8/16 bits in size.
*h Indirect addressing [dest] can be used in any register other than R0L/R0/R2R0, R0H/
 R2/-, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C

- - - - - - - -

- - - - - - - -

src O*g

- - - - - - - -
dest*h O O O O O O

src O*g

- - - - - - - -
dest*h O O O O O O

src O
- - - - - - - -

dest*h O O O O O O

src O
- - - - - - - -

dest*h O O O O O O

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 55 of 229

Bit Manipulation

Mnemonic Explanation

BAND src C flag ←src & C flag ; ANDs bits.

BCLR dest dest ←0 ; Clears bits.

BITINDEX.size src
Operand specified by src becomes the src or dest index value of the
next bit instruction.

BMGEU/C dest If C=1, dest ← 1; otherwise, dest ← 0 ; Conditionally transfers bit.
BMLTU/NC dest If C=0, dest ← 1; otherwise, dest ← 0
BMEQ/Z dest If Z=1, dest ← 1; otherwise, dest ← 0
BMNE/NZ dest If Z=0, dest ← 1; otherwise, dest ← 0
BMGTU dest If C Λ Z=1, dest ← 1; otherwise, dest ← 0
BMLEU dest If C Λ Z=0, dest ← 1; otherwise, dest ← 0

BMPZ dest If S=0, dest ← 1; otherwise, dest ← 0
BMN dest If S=1, dest ← 1; otherwise, dest ← 0
BMGE dest If S ∀ O=0, dest ← 1; otherwise, dest ← 0
BMLE dest If (S ∀ O) V Z=1, dest ← 1; otherwise, dest ← 0
BMGT dest If (S ∀ O) V Z=0, dest ← 1; otherwise, dest ← 0
BMLT dest If S ∀ O=1, dest ← 1; otherwise, dest ← 0
BMO dest If O=1, dest ← 1; otherwise, dest ← 0
BMNO dest If O=0, dest ← 1; otherwise, dest ← 0

BNAND src C flag ← src Λ C flag ; ANDs inverted bits.
BNOR src C flag ← src V C flag ; ORs inverted bits.
BNOT dest Inverts dest and stores in dest. ; Inverts bit.
BNTST src Z flag ← src, C flag ← src ; Tests inverted bit.
BNXOR src C flag ← src ∀ C flag ; Exclusive ORs inverted bits.
BOR src C flag ← src V C flag ;ORs bits.
BSET dest dest ← 1 ;Sets bit.
BTST src Z flag ← src, C flag← src ;Tests bit.
BTSTC dest Z flag ← dest, C flag← dest, dest← 0 ; Tests and clears bit.
BTSTS dest Z flag ← dest, C flag← dest, dest← 1 ; Tests and sets bit.
BXOR src C flag ← src ∀ C flag ; Eclusive ORs bits.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 56 of 229

*f Flag changes when C flag is specified for dest.

Addressing Flag change

Bit instruction

U I O B S Z D C
src O O O O O O - - - - - - - O

dest O O O O O O - - - - - - - -

src O O O O O O - - - - - - - -

dest O O O O O O O - - - - - - - O*i

src O O O O O O - - - - - - - O
src O O O O O O - - - - - - - O

dest O O O O O O - - - - - - - -

src O O O O O O - - - - - O - O
src O O O O O O - - - - - - - O
src O O O O O O - - - - - - - O

dest O O O O O O - - - - - - - -

src O O O O O O - - - - - O - O
dest O O O O O O - - - - - O - O
dest O O O O O O - - - - - O - O
src O O O O O O - - - - - - - O

O
pe

ra
nd

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

FL
G

 d
ire

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 57 of 229

Arithmetic

Mnemonic Explanation

ABS.size(Note) dest dest ← |dest| ;Absolute value of dest.

ADC.size src,dest dest ← src + dest + C flag ;Adds hexadecimal with carry.

ADCF.size dest dest ← dest + C flag ;Adds carry flag.

ADD.size src,dest dest ← src + dest ;Adds hexadecimal without carry.

ADDX src,dest
dest ← dest - 32-bit sign extension (src)

;Hexadecimal addition without sign extension carry.

AND.size src,dest dest ← src / dest ;Logical AND

CLIP.size src1,src2,dest
if src1 > dest then dest ← src1, if src2 > dest then dest ← src2

;Clip instruction

CMP.size src,dest dest - src ;Comparison, with result determined by flag.

CMPX src,dest
dest - 32-bit sign extension (src)

;Comparison, with result determined by flag.

DADC.size src,dest dest ← src + dest + C flag ;Decimal addition with carry.

DADD.size src,dest dest ← src + dest ;Decimal addition without carry.

DEC.size dest dest ← dest - 1 ;Decrement
DIV.size src R0 (Quotient), R2 (Remainder) ← R2R0 ÷ src ;Division with sign included.

DIVU.size src R0 (Quotient), R2 (Remainder) ← R2R0 ÷ src ;Division without sign included.

DIVX.size src R0 (Quotient), R2 (Remainder) ← R2R0 ÷ src ;Division with sign included.

DSBB.size src,dest dest ← dest - src - C flag ; Decimal subtraction with borrow.

Note:Write .W or .B for .size.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 58 of 229

*j Indirect addressing [dest] can be used in any register other than R0L/R0/R2R0, R0H/
 R2/-, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C
dest*j O O O O O O - - O - O O - O
src O O O O O O O

- - O - O O - O
dest O O O O O O

dest*j O O O O O O - - O - O O - O
src*j O O O O O O O

- - O - O O - O
dest*j O O O O O O SP
src*j O O O O O O O

- - O - O O - O
dest*j O O O O O O
src*j O O O O O O O

- - - - O O - -
dest*j O O O O O O

src O
- - - - - - - -

dest O O O O O O
src*j O O O O O O O

- - O - O O - O
dest*j O O O O O O
src O

- - O - O O - O
dest*j O O O O O O

src O O O O O O O
- - - - O O - O

dest O O O O O O

src O O O O O O O
- - - - O O - O

dest O O O O O O

dest*j O O O O O O - - - - O O - -

src*j O O O O O O O - - O - - - - -

src*j O O O O O O O - - O - - - - -

src*j O O O O O O O - - O - - - - -

src O O O O O O O
- - - - O O - O

dest O O O O O O

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 59 of 229

Mnemonic Explanation

DSUB.size(Note) src,dest dest ← dest - src ; Decimal subtraction without borrow.

INC.size dest dest ← dest + 1 ;Increment.

MAX.size src,dest if (src > dest) then dest ← src ;Selects maximum value.

MIN.size src,dest if (src < dest) then dest ← src ;Selects minimum value.

MUL.size src,dest dest ← dest X src ;Multiplication with sign included.

MULEX src
R1R2R0 ← R2R0 X src
 ;Extended multiplication with sign included .

MULU.size src,dest dest ← dest X src ; Multiplication without sign included.

NEG.size dest dest ← 0 - dest ;Two's complement.
NOT.size dest dest ← dest ;Invert all bits.

OR.size src,dest dest ← dest V src ;Logical OR.

RMPA.size
Calculates sum-of-products using A0 as multiplicand address,
A1 as multiplier address, and R3 as count.

ROLC.size dest Rotates dest including C flag left by 1 bit ;Rotate left with carry.
RORC.size dest Rotate dest including C flag right by 1 bit ;Rotate right with carry.

ROT.size src,dest Rotate dest as many bits as indicated by signed src ;Rotate.

SBB.size src,dest dest ← dest - src - C ;Subtraction with borrow.

Note:Write .W or .B for .size.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 60 of 229

*k Indirect addressing [dest] can be used in any register other than R0L/R0/R2R0, R0H/
 R2/-, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.
*l The range of possible values is -8 < #IMM4 < +8.
*m Choose R1H.

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C
src O O O O O O O

- - - - O O - O
dest O O O O O O

dest*k O O O O O O - - - - O O - O

src O O O O O O O
- - - - - - - -

dest O O O O O O
src O O O O O O O

- - - - - - - -
dest O O O O O O
src*k O O O O O O O

- - - - - - - -
dest*k O O O O O O

src*k O O O O O O - - - - - - - -

src*k O O O O O O O
- - - - - - - -

dest*k O O O O O O

dest*k O O O O O O - - O - O O - O

dest*k O O O O O O - - - - O O - O

src*k O O O O O O O
- - - - O O - -

dest*k O O O O O O

- - O - - - - -

dest*k O O O O O O - - - - O O - O

dest*k O O O O O O - - - - O O - O
src*k O*l O*m

- - - - O O - O
dest*k O O O O O O

src O O O O O O O
- - O - O O - O

dest O O O O O O

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 61 of 229

Note:Write .W or .B for .size.

Mnemonic Explanation

SCGEU/C dest If C=1, dest ← 1;otherwise, dest ← 0 ;Set conditions.

SCLTU/NC dest If C=0, dest ← 1;otherwise, dest ← 0
SCEQ/Z dest If Z=1, dest ← 1;otherwise, dest ← 0
SCNE/NZ dest If Z=0, dest ← 1;otherwise, dest ← 0
SCGTU dest If C Λ Z=1, dest ← 1;otherwise, dest ← 0
SCLEU dest If C Λ Z=0, dest ← 1;otherwise, dest ← 0

SCPZ dest If S=0, dest ← 1;otherwise, dest ← 0
SCN dest If S=1, dest ← 1;otherwise, dest ← 0
SCGE dest If S ∀ O=0, dest ← 1;otherwise, dest ← 0
SCLE dest If (S ∀ O) V Z=1, dest ← 1;otherwise, dest ← 0

SCGT dest If (S ∀ O) V Z=0, dest ← 1;otherwise, dest ← 0
SCLT dest If S ∀ O=1, dest ← 1;otherwise, dest ← 0
SCO dest If O=1, dest ← 1;otherwise, dest ← 0

SCNO dest I O=0, dest ← 1;otherwise, dest ← 0

SCMPU.size

Compares strings successively in address incrementing
direction using A0 as source address to compare and A1 as
destination address to compare until comparison results in
unmatch or source address becomes 0.

SHA.size src,dest
Arithmetically shifts dest as many bits as indicated by src. Bit
overflowing from LSB (MSB) is transferred to C flag.

SHL.size src,dest Logically shifts dest as many bits as indicated by src. Bit
overflowing from LSB (MSB) is transferred to C flag.

SUB.size src,dest dest ← dest - src ;Sbtraction without borrow.

SUBX src,dest
dest ← dest - 32-bit sign extension (src)
 ;Extended subtraction without borrow.

TST.size src,dest dest Λ src ;Test

XOR.size(Note) src,dest dest ← dest ∀ src ;Exclusive logical OR.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 62 of 229

Addressing Flag change

General Instruction
Special

instruction

U I O B S Z D C

dest*n O O O O O O - - - - - - - -

src - - O - O O - O

src*n O*o R1H
- - O - O O - O

dest*n O O O O O O
src*n O*o R1H

- - O - O O - O
dest*n O O O O O O
src*n O O O O O O O

- - O - O O - O
dest*n O O O O O O

src*n O O O O O O O
- - O - O O - O

dest*n O O O O O O

src O O O O O O O
- - - - O O - -

dest O O O O O O

src*n O O O O O O O
- - - - O O - -

dest*n O O O O O O

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

*n Indirect addressing [src] and [dest] can be used in any register other than R0L/R0/R2R0, R0H/
 R2/-, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.
*o When (.size) is (.B) or (.W), the range of possible values is -8 < #IMM4 < +8 ((0); when (.L),
 the range of possible values is -16 < #IMM8 < +16 ((0).

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 63 of 229

Note:Write .W or .B for .size.

JUMP

Mnemonic Explanation

ADJNZ.size(Note) src,dest,label
dest dest + src
If result of dest + src is not 0, jump to label.

;Add and conditional branch.

JGEU/C label
If C=1, jump to label ;otherwise, execute next instruction.

;Conditional branch.

JLTU/NC label If C=0, jump to label ;otherwise, execute next instruction.
JEQ/Z label If Z=1, jump to label ;otherwise, execute next instruction.

JNE/NZ label If Z=0, jump to label ;otherwise, execute next instruction.
JGTU label If C Λ Z=1, jump to label ;otherwise, execute next instruction.
JLEU label If C Λ Z=0, jump to label ;otherwise, execute next instruction.
JPZ label If S=0, jump to label ;otherwise, execute next instruction.
JN label If S=1, jump to label ;otherwise, execute next instruction.

JGE label If S ∀ O=0, jump to label ;otherwise, execute next instruction.
JLE label If (S ∀ O) V Z=1, jump to label ;otherwise, execute next instruction.
JGT label If (S ∀ O) V Z=0, jump to label ;otherwise, execute next instruction.
JLT label If S ∀ O=1, jump to label ;otherwise, execute next instruction.
JO label If O=1, jump to label ;otherwise, execute next instruction.
JNO label If O=0, jump to label ;otherwise, execute next instruction.
JMP label Jump to label. ;Unconditional branch.
JMPI src Jump to address indicated by src. ;Indirect branch.
JMPS src Branches using special page vector table.

JSR label Subroutine call.
JSRI src Indirect subroutine call.
JSRS src Calls subroutine using special page vector table.
RTS Return from subroutine.

SBJNZ.size src,dest,label
Branches to label if the result of dest ← dest - src is not 0

;Subtraction & conditional branch.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 64 of 229

*p The range of immediate values is -8 < #IMM4 < +7.
*q The range of label is PC - 126 < label < PC + 129. PC is the start address of the instruction.
*r The range of label is PC - 127 < label < PC + 128. PC is the start address of the instruction.
*s This is a 24-bit absolute address.
*t The range of label is PC - 32767 < label < PC + 32768. PC is the start address of the
 instruction.
*u #IMM8 is a special page address.
*v The range of immediate values is -7 < #IMM4 < +8.

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C
src O*p

- - - - - - - -dest O O O O O O

label label*q

label label*r - - - - - - - -

label O*s label*t - - - - - - - -
src O O O O O O - - - - - - - -
src O O O O O O - - - - - - - -
src O*u - - - - - - - -
src O O O O O O - - - - - - - -

src O*u - - - - - - - -
- - - - - - - -

src Ov

- - - - - - - -dest O O O O O O
label label*q

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 65 of 229

Sign extension

Index

Mnemonic Explanation

EXTS.size(Note) dest dest ← Sign extension (dest) conforming to .size.

EXTS.size src,dest dest ← Sign extension (src) conforming to .size.

EXTZ src,dest dest ← Zero extension(src) of 16 bits.

Mnemonic Explanation

INDEXB.size(Note) src

INDEXBD.size src Modifies next instruction addressing in units of bytes.
INDEXBS.size src
INDEXW.size src

INDEXWD.size src Modifies next instruction addressing in units of words.
INDEXWS.size src
INDEXL.size src
INDEXLD.size src Modifies next instruction addressing in units of long words.
INDEXLS.size src

Note:Write .W or .B for .size.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 66 of 229

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C
dest O O O O O O - - - - O O - -

src O O O O O
- - - - O O - -

dest O O O O O O
src O O O O O

- - - - O O - -
dest O O O O O O

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C

src O O O O O O - - - - - - - -

src O O O O O O - - - - - - - -

src O O O O O O - - - - - - - -

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 67 of 229

High-level language and OS support

Mnemonic Explanation

ENTER src Generates stack frame.
EXITD src Frees stack frame.

LDCTX abs16,abs24 Restores context.

STCTX abs16,abs24 Saves context.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 68 of 229

*w For abs16, set the RAM address in which the task number is stored; for abs24, set the start
 address of table data.

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C
src O - - - - - - - -

src O O O O O O - - - - - - - -
abs16*w

- - - - - - - -
abs24*w

abs16*w

- - - - - - - -
abs24*w

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 69 of 229

Other

Mnemonic Explanation

BRK Generate BRK interrupt.

BRK2
Debugger-only interrupt, whose use in user program is
therefore inhibited.

FCLR dest Clears flags in flag register to 0.

FREIT Returns from interrupt routine after fast interrupt request.
FSET Sets flags in flag register to 1.
INT Generates software interrupt.
INTO Generates overflow interrupt when O (overflow) flag = 1.

LDC src,dest Transfers src to dedicated register indicated by dest.

LDIPL src Transfers src to IPL.
NOP No operation.

REIT Returns from interrupt routine.

STC src,dest Transfers from dedicated register indicated by src to dest.

UND Generates undefined instruction interrup.
WAIT Stops executing program.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 70 of 229

Addressing Flag change

General instruction
Special

instruction

U I O B S Z D C
O O - - - - O -

O O - - - - O -
dest O

dest

src O*x O O - - - - O -

O O - - - - O -
src O O O O O O O

dest O*y

src O*z - - - - - - - -

- - - - - - - -

src O*y

- - - - - - - -
dest O O O O O O

O O - - - - O -

- - - - - - - -

Selected flag is set to 1.

O
pe

ra
nd

Im
m

ed
ia

te

Ab
so

lu
te

R
eg

is
te

r d
ire

ct

A
dd

re
ss

 r
eg

is
te

r
re

la
tiv

e

SB
 r

el
at

iv
e

FB
 r

el
at

iv
e

S
ta

ck

po
in

te
r

re
la

tiv
e

C
on

tro
l r

eg
is

te
r

di
re

ct

P
ro

gr
am

 c
ou

nt
er

re
la

tiv
e

A
dd

re
ss

 r
eg

is
te

r
in

di
re

ct

*x #IMM6 specifies a software interrupt number.
*y Any dedicated register except the PC register can be selected.
*z The range of possible values is 0 < #IMM3 < 7.

Becomes the content of SVF.

Flag changes only when dest is FLG.

Returns to FLG state
before interrupt request was accepted.

Selected flag is cleared to 0.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 71 of 229

2.6.3 Transfer Instructions

Transfers normally are performed in bytes or words. There are 14 transfer instructions available.
Included among these are a 4-bit transfer instruction that transfers only 4 bits, a conditional store
instruction that is combined with conditional branch, and a string instruction that transfers data
collectively.
This section explains these three characteristic instructions of the M16C/80 series among its data
transfer-related instructions.

4 Bit Transfer Instruction

This instruction transfers 4 high-order or low-order bits of an 8-bit register or memory. This
instruction can be used for generating unpacked BCD code or I/O port input/output in 4 bits.
The mnemonic placed in Dir varies depending on whether the instruction is used to transfer high-
order or low-order 4 bits. When using this instruction, be sure to use R0L for src or dest.

Table 2.6.5 4 Bit Transfer Instruction

MOVHH src,dest4 high-order bits: src 4 high-order bits: dest
MOVHL src,dest4 high-order bits: src 4 low-order bits: dest
MOVLH src,dest4 low-order bits: src 4 high-order bits: dest
MOVLL src,dest4 low-order bits: src 4 low-order bits: dest

MOVDir

Note: Either src or dest must always be R0L.

Transfer
AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

Mnemonic Description Format Explanation

 ←
 ←

 ←
 ←

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 72 of 229

Conditional Store Instruction

This is a conditional transfer instruction that uses the Z flag state as the condition of transfer. This
instruction allows the user to perform condition determination and data transfer in one instruction.
There are three types of conditional store instructions: STZ, STNZ, and STZX. Figure 2.6.3
shows an example of how the instruction works.

Table 2.6.6 Conditional Store Instruction

Figure 2.6.3 Typical operations of conditional store instructions

Description Format

STNZ src,dest

STZ src,dest

STZX src1,src2,dest

Mnemonic

STZ

STNZ

STZX

Note: Only #IMM8/16 (8/16-bit immediate) can be used for src, src1, and src2.

Explanation

Transfers src to dest
when Z flag = 1.

Transfers src to dest
when Z flag = 0.

Transfers src1 to dest
when Z flag = 1.
Transfers src2 to dest
when Z flag = 0.

STZ #5,R0L

#5 is stored

YES

NO

STNZ #5,R0L

Z flag = 1?

#5 is stored

NO

YES

STZX #5,#8,R0L

First immediate
Second immediate

#5 is stored #8 is stored

YES

NO
Z flag = 1? Z flag = 1?

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 73 of 229

String Instruction

This instruction transfers data collectively. Use it for transferring blocks and clearing RAM.
Set the source address, destination address, and transfer count in each register before executing
the instruction, as shown in Figure 2.6.4. Data is transferred in bytes or words. Figure 2.6.5
shows an example of how the string instruction works.

Figure 2.6.4 Setting registers for string instructions

Table 2.6.7 String Instruction

Figure 2.6.5 Typical operations of string instructions 1

SIN/SMOVB/SMOVF/SMOVU*a/SOUT

Destination address

Source address

A0

Transfer count

SSTR

Value to be transferred

Destination address

Transfer count

24

A1
24

R3
16

R0
16

8

AAA
AAA

A1
16

R3
16

When size specifier (.size) is (.W).
When size specifier (.size) is (.B).

*a:SMOVU instruction continues transferring string until 0 is detected
 in the source data to be transferred.

Mnemonic Description
Format

Explanation

SIN SIN.B
SIN.W

Transfers string in address incrementing
direction (source of transfer fixed).

SOUT SOUT.B
SOUT.W

Transfers string in address incrementing
direction (destination of transfer fixed).

SMOVB SMOVB.B
SMOVB.W

Transfers string in address decrementing
direction.

SMOVF SMOVF.B
SMOVF.W

Transfers string in address incrementing
direction.

SMOVU SMOVU.B
SMOVU.W

Continues transferring string in address
incrementing direction until 0 is detected.

SSTR SSTR.B
SSTR.W

Stores string in address incrementing direction.

R3

A0

A1

1

1
1
1
1

SIN.B

R3

A0

A1 AAA1,2,3,4

SOUT.B

1
2
3
4

R3

A0

A1

SMOVB.B

4
3
2
1

4
3
2
1

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 74 of 229

Figure 2.6.6 Typical operations of string instructions 2

R3

A0

A1

SMOVF.B

A0

A1

SMOVU.B SSTR.B

AAAAR0L

A1 1
2
3
4

1
2
3
4

1
2
3
4

1
2
3

00H

1
2
3

00H R3

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 75 of 229

2.6.4 Arithmetic Instructions

There are 39 arithmetic instructions available. This section explains the characteristic arithmetic
instructions of the M16C/80 series.

Multiply Instruction

Multiply instructions are classified into signed multiply instructions, extended signed multiply
instructions, and unsigned multiply instructions. The signed multiply instructions and unsigned
multiply instructions allow the size to be specified. When .B is specified, operation is performed in
8 bits, i.e., (8 bits) x (8 bits) = (16 bits). When .W is specified, operation is performed in 16 bits,
i.e., (16 bits) x (16 bits) = (32 bits).
When .B is specified, address registers cannot be used for both src and dest. Note also that the
flag does not change in multiply instructions. An example of how multiply instructions operate is
shown in Figure 2.6.7.

Table 2.6.8 Multiply Instruction

Figure 2.6.7 Typical operations of multiply instructions

Mnemonic Description Format Explanation

MUL
MUL.B src,dest
MUL.W src,dest

Signed multiply instruction
dest ← desc X src

MULEX
MULEX src,dest
MULEX src,dest

Extended signed multiply instruction
R1R2R0 ← R2R0 X src

MULU
MULU.B src,dest
MULU.W src,dest

Unsigned multiply instruction
dest ← dest X src

MUL

MULU

X =
63 X 20 = 1260

1000 X 365 = 365000
X =

8bits 8bits

16bits 32bits

16bits
X

X
±16bits

=

=

±8bits
14 H 04 EC H

±16bits±8bits
3F H

03 E8 H
±16bits

01 6D H
±16bits ±32bits

00 05 91 C8 H

MULEX
±48bits

R1 R2 R0X

±16bits

=R2 R0
±32bits

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 76 of 229

Divide Instruction

There are three types of divide instructions: two signed divide instructions and one unsigned
divide instruction. All these three instructions allow the user to specify the desired size. When .B
is specified, calculation is performed in (16 bits) ÷ (8 bits) = (8 bits)... (Remainder in 8 bits); when
.W is specified, calculation is performed in (32 bits) ÷ (16 bits) = (16 bits)... (Remainder in 16 bits).
In divide instructions, the O flag changes state when the result overflows or a divide by 0 is
attempted. An example of how divide instructions operate is shown in Figure 2.6.8.

Table 2.6.9 Divide Instruction

Figure 2.6.8 Typical operations of divide instructions

Mnemonic Description Format Explanation

DIV
DIV.B src,dest
DIV.W src,dest

Signed divide instruction
Sign of remainder matches that of
dividend.

DIVX
DIVX.B src,dest
DIVX.W src,dest

Signed divide instruction
Sign of remainder matches that of
divisor.

DIVU
DIVU.B src,dest
DIVU.W src,dest

Unsigned divide instruction.

DIV

DIVX

±8bits(R0L)

±8bits(R0L)

±16bits(R0)

±8bits(src)

±16bits(src)

±8bits(src)

±16bits(src)

=

±32bits(R2R0)

±16bits(R0)

±32bits(R2R0)

±16bits(R0)

(Remainder)

±8bits(R0H)

±16bits(R2)

±8bits(R0H)

±16bits(R2)

DIVU
8bits(R0L)

16bits(R0)

8bits(src)

16bits(src)32bits(R2R0)

16bits(R0) 8bits(R0H)

16bits(R2)

04 EF

00 05 91 C9

14

01 6D

3F

03 E8

03

00 01

H

H

H

H

H

H

H

H

365001 ÷ 1000 = 365 ... 1

1263 ÷ 20 = 63 ... 3

(Remainder)

(Remainder)

(Remainder)

(Remainder)

(Remainder)

 ÷

 ÷

 ÷

 ÷

 ÷

 ÷

±16bits(src)

=

=

=

=

=

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 77 of 229

Difference between DIV and DIVX Instructions

Both DIV and DIVX are signed divide instructions. The difference between these two instructions
is the sign of the remainder.
As shown in Table 2.6.10, the sign of the remainder deriving from the DIV instruction is the same
as that of the dividend. With the DIVX instruction, however, the sign is the same as that of the
divisor.

Table 2.6.10 Difference between DIV and DIVX Instructions

DIV

DIVX

The sign of the remainder is
the same as that of the dividend.

The sign of the remainder is
the same as that of the divisor.

33 ÷ 4 = 8 ... 1

33 ÷ (-4) = 8 ... 1

-33 ÷ 4 = 8 ... (-1)

33 ÷ 4 = 8 ... 1

33 ÷ (-4) = 9 ... (-3)

-33 ÷ 4 = -9 ... 3

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 78 of 229

Decimal Add Instruction

There are two types of decimal add instructions: one with a carry and the other without a carry.
The S, Z, and C flags change state when the decimal add instruction is executed. Figure 2.6.9
shows an example of how these instructions operate.

Table 2.6.11 Decimal Add Instruction

Figure 2.6.9 Typical operations of decimal add instructions

Mnemonic Description Format Explanation

DADD
DADD.B src,dest
DADD.W src,dest

Add in decimal not including carry.

DADC
DADC.B src,dest
DADC.W src,dest

Add in decimal including carry.

DADD

DADC

2digits

6 2
5 0

1 2

+

C flag

2digits

6 2
3 0

9 30

1

1

C flag

62 + 50 = 112

62 + 30 +C flag 1 = 93

10's
place

1's
place

4digits

21 3 4
09 0 0

20 3 41

4digits

21 3 4
09 0 0

20 3 51

1

C flag

C flag

1234 + 9000 = 10234

1234 + 9000 + C flag 1 = 10234

1000's
 place

100's
place

10's
place

1's
place

C flag C flag

10's
place

1's
place

1000's
 place

100's
place

10's
place

1's
place

+

+ +

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 79 of 229

Decimal Subtract Instruction

There are two types of decimal subtract instructions: one with a borrow and the other without a
borrow.
The S, Z, and C flags change state when the decimal subtract instruction is executed. Figure
2.6.10 shows an example of how these instructions operate.

Table 2.6.12 Decimal Subtract Instruction

Figure 2.6.10 Typical operations of decimal subtract instructions

Mnemonic Description Format Explanation

DSUB
DSUB.B src,dest
DSUB.W src,dest

Subtract in decimal not including borrow.

DSBB
DSBB.B src,dest
DSBB.W src,dest

Subtract in decimal including borrow.

DSUB

DSBB

7 8
1 1

6 7

-

C flag

11 1 1
21 3 4

89 7 70

7 8
1 1

6 71

0

11 1 1
21 3 4

89 7 60

1

1

C flag

C flag

C flag

78 - 11 = 67 1111 - 1234 = 9877

78 - 11 - C flag 1 = 67 1234 - 1111 - C flag 0 = 0122

Cflag Cflag

2digits

2digits

4digits4digits

4digits

10's
place

1's
place

10's
place

1's
place

1000's
 place

100's
place

10's
place

1's
place

1000's
 place

100's
place

10's
place

1's
place

-

- -

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 80 of 229

Sum of Products Calculate Instruction

This instruction calculates a sum of products and if an overflow occurs during calculation,
generates an overflow interrupt. Set the multiplicand address, multiplier address, and sum of
products calculation count in each register as shown in Figure 2.6.11. Figure 2.6.12 shows an
example of how the sum-of-products calculate instruction works.

Figure 2.6.11 Setting registers for sum-of-products calculation instruction

Table 2.6.13 Sum of Products Calculate Instruction

Note1:If an overflow occurs during calculation, the overflow flag(O flag) is set to 1 before
 terminating the calculation.
Note2:If an interrupt is requested during calculation, the sum of products calculation count is
 subtracted after completing the addition in progress before accepting the interrupt
 request..

Figure 2.6.12 Typical operation of sum-of-products calculation instruction

A1

24

A0

24

R3

16

R0

16 1616

R2R1

Multiplier address

Multiplicand address

Sum of products calculation count

Calculation result

Mnemonic Description Format Explanation

RMPA
RMPA.B
RMPA.W

Calculates a sum of products using A0 as
multiplicand address, A1 as multiplier
address, and R3 as operation count.

RMPA.W

A0

R3

A1

1
2
3
4

1
2
3
4

X +
R1 R2

=
R1 R2

R1 R2

R1 R2

R1 R2
b47

1

2
3

4

(Calculation result of 1)
(Calculation result of 2)
(Calculation result of 3)

(Calculation result of 4)

R0
R0
R0
R0

R0
b0

X
X

X

+
+
+

=
=
=

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 81 of 229

MAX, MIX, and CLIP instructions

The M16C/80 has three instructions that allow the lower-limit and upper-limit values of data to be
set in one instruction. The CLIP instruction is a combination of MAX and MIN instructions.
In these instructions, the flag does not change. An example of how these instructions operate is
shown in Figure 2.6.13.

Table 2.6.14 MAX, MIX, and CLIP instructions

Figure 2.6.13 Typical operation of MAX, MIX, and CLIP instructions

MAX.B #5BH,R0L MIN.B #5BH,R0L

#5BH > R0L
?

#5BH is stored

NO

YES

CLIP.B #80H,#5BH,R0L

src1

src2

#5BH < R0L ?

YES

NO

#5BH is stored

#80H > R0L ?

#80H is stored

YES

NO

#5BH < R0L ?

#5BH is stored

YES

NO

Mnemonic Description Format Explanation

MAX
MAX.B src,dest
MAX.W src,dest

Compares src and dest with sign included and
transfers src to dest when src is greater than
dest.

MIN
MIN.B src,dest
MIN.W src,dest

Compares src and dest with sign included and
transfers src to dest when src is smaller than
dest.

CLIP
CLIP.B src1,src2,dest
CLIP.W src1,src2,dest

Compares src and dest with sign included and
transfers src1 to dest when src1 is greater than
dest; next, transfers src2 to dest when src2 is
smaller than dest. Consequently, nothing is
stored if src1 dest src2.<= <=

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 82 of 229

SCcnd instruction

The M16C/80 has an instruction that stores a 1 or 0 in dest (1 word) depending on the flag content
of the flag register. An example of how this instruction operates is shown in Figure 2.6.14.

Table 2.6.15 SCcnd instruction

Figure 2.6.14 Typical operation of SCcnd instruction

Mnemonic Description Format Explanation

SCcnd dest SCGEU/C dest If C=1, dest ← 1;otherwise, dest ← 0

SCLTU/NC dest if C=0, dest ← 1;otherwise, dest ← 0

SCEQ/Z dest if Z=1, dest ← 1;otherwise, dest ← 0

SCNE/NZ dest if Z=0, dest ← 1;otherwise, dest ← 0

SCGTU dest if C Λ Z=1, dest ← 1;otherwise, dest ← 0

SCLEU dest If C Λ Z=0, dest ← 1;otherwise, dest ← 0

SCPZ dest If S=0, dest ← 1;otherwise, dest ← 0

SCN dest If S=1, dest ← 1;otherwise, dest ← 0

SCGE dest If S ∀ O=0, dest ← 1;otherwise, dest ← 0

SCLE dest If (S ∀ O) V Z=1, dest ← 1;otherwise, dest ← 0

SCGT dest If (S ∀ O) V Z=0, dest ← 1;otherwise, dest ← 0

SCLT dest If S ∀ O=1, dest ← 1;otherwise, dest ← 0

SCO dest If O=1, dest ← 1;otherwise, dest ← 0

SCNO dest If O=0, dest ← 1;otherwise, dest ← 0

SCGEU R0 SCNC [A0] SCNZ 5[A1]

C=1 ?

R0 ← 1

NO

YES

R0 ← 0

C=0 ?

YES

NO

[A0] ← 1 [A0] ← 0

Z=0 ?

5[A1] ← 1

YES

NO

5[A1] ← 0

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 83 of 229

2.6.5 Branch Instructions

There are ten branch instructions available with the M16C/80 series. This section explains some
characteristic branch instructions among these.

Unconditional Branch Instruction

This instruction causes control to jump to label unconditionally.
The jump distance specifier normally is omitted. When this specifier is omitted, the assembler
optimizes the jump distance when assembling the program. Figure 2.6.16 shows an example of
how the unconditional branch instruction works.

Table 2.6.16 Unconditional Branch Instruction

Range of jump:
.S Jump in PC relative addressing from +2 to +9 (operand : 0 byte)
.B Jump in PC relative addressing from -127 to +128 (operand : 1 byte)
.W Jump in PC relative addressing from -32,767 to +32,768 (operand : 2 bytes)
.A Jump in 20 bit absolute addressing (operand : 3 bytes)

Figure 2.6.15 Typical operation of unconditional Branch Instruction

Mnemonic Description Format Explanation

JMP

JMP.S label
JMP.B label
JMP.W label
JMP.A label

Jumps to label.

JMP LABEL1

LABEL1:

*

JMP LABEL1

The asterisk * denotes the start address
of the JMP instruction's operand.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 84 of 229

Indirect Branch Instruction

This instruction indirectly branches to the address indicated by src.
When the branch distance specifier ".W" is specified, the program branches to the address
derived by adding src to the start address of the JMPI instruction, with the sign included. If src is
memory, the necessary memory size is 2 bytes. When the branch distance specifier ".A" is
specified, the program branches to the address indicated by src. If src is memory, the necessary
memory size is 3 bytes. This instruction always requires that a branch distance specifier be
specified. An example of how the indirect branch instruction operates is shown in Figure 2.6.16.

Table 2.6.17 Indirect Branch Instruction

Figure 2.6.16 Typical operation of indirect branch instruction

Mnemonic Description Format Explanation

JMPI
JMPI.W src
JMPI.A src

Jumps indirectly to the address indicated by src.

JMPI.W [A0]

AAA
AAA

001000H

JMPI.W [A0]A0 = 002000H

00H

AAA05H
002000H

AAA
AAA001500H

JMPI.A [A0]

AAA

001000H

JMPI.A [A0]A0 = 002000H

45H

AAA
AAA
AAA

23H
01H

002000H
Jump address

AA
AA012345H

1000H+500H

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 85 of 229

Special Page Branch Instruction

This instruction branches to the address derived by adding FF0000H to the address that has been
set in the relevant special page vector table. The address range in which branch occurs is
FF0000H to FFFFFFH. Because the special page branch instruction is only 2 bytes in size, it helps
to increase ROM efficiency.
Use a special page number or label to specify the target address. Make sure the special page
number is prefixed by "#," and that label is prefixed by "\". When label is used for address
specification, the assembler calculates the special page number. An example of how the special
page branch instruction operates is shown in Figure 2.6.17.

Table 2.6.18 Special Page Branch Instruction

Figure 2.6.17 Typical operation of special page branch instruction

JMPS #251

Special page
vector table

FFFE00H

15H
00H

16H

FFFE08H

Interrupt vector
table

FFFFDCH

FFFFFFH

FFFE0AH

FFFFDBH

Number 255

00H

001000H

JMPS #251

FF1500H

High-order address is fixed to "FFH".

Control jumps to the
address that is set in
special page number 251
plus FF0000H.Number 251

Number 250

Number 18

Mnemonic Description Format

JMPS
JMPS # special page number
JMPS \ special page vector address

18 special page number 255<= <=

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 86 of 229

Conditional Branch Instruction

This instruction examines flag status with respect to the conditions listed below and causes control
to branch if the condition is true or executes the next instruction if the condition is false. Figure
2.6.18 shows an example of how the conditional branch instruction works.

Table 2.6.19 Conditional Branch Instruction

Figure 2.6.18 Typical operation of conditional branch instruction

Mnemonic Description Format Explanation

JCnd JCnd label
Jumps to label if condition is true,
or executes next instruction if condition is false.

Cnd True/false determining conditions (14 conditions)

GEU/C C = 1 Equal or greater/ Carry flag = 1.

GTU C = 1 & Z = 0 Unsigned and greater.

EQ/Z Z = 1 Equal/ Zero flag = 1.

N S = 1 Negative.

LE (z = 1) | (S = 1 & O = 0) | (S = 0 & O = 1) Equal or signed and smaller.

O O = 1 Overflow flag = 1.

GE (S =1 & O = 1) | (S = 0 & O = 0) Equal or signed and greater.

LTU/NC C = 0 Smaller/ Carry flag = 0.

LEU C = 0 | Z = 1 Equal or smaller.

NE/NZ Z = 0 Not equal/ Zero flag = 0.

PZ S = 0 Positive or zero.

GT (S = 1 & O = 1 & Z = 0) | (S = 0 & O = 0 & Z = 0) Signed and greater.

NO O = 0 Overflow flag = 0.

LT (S =1 & O = 0) | (S = 0 & O = 1) Signed and smaller.

Range of jmp : -127 to +128

JEQ LABEL1

LABEL1:

JEQ LABEL1
(Jumps to LABEL1 if Z flag = 1)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 87 of 229

Add (Subtract) & Conditional Branch Instruction

This instruction is convenient for determining whether repeat processing is terminated or not. The
values added or subtracted by this instruction are limited to 4-bit immediate. Specifically, the value
is -8 to +7 for the ADJNZ instruction, and -7 to +8 for the SBJNZ instruction. The range of
addresses to which control can jump is -126 to +129 from the start address of the ADJNZ/SBJNZ
instruction. Figure 2.6.8 shows an example of how the add (subtract) & conditional branch
instruction works.

Table 2.6.20 Add (Subtract) & Conditional Branch Instruction

Note1:#IMM can only be a 4 bit immediate (-8 to +7 for the ADJNZ instruction ; -7 to +8 for the
 SBJNZ instruction).
Note2:The range of addresses to which control can jump in PC relative addressing is -126 to +129

 from the start address of the ADJNZ / SBJNZ instructions.
Figure 2.6.19 Typical operations of add (subtract) & conditional branch instructions

Mnemonic Description Format Explanation

ADJNZ
ADJNZ.B #IMM4,dest,label
ADJNZ.W #IMM4,dest,label

Adds immediate to dest.
Jump to label if result is not 0.

SBJNZ
SBJNZ.B #IMM4,dest,label
SBJNZ.W #IMM4,dest,label

Subtracts immediate from dest.
Jump to label if result is not 0.

ADJNZ.W #2,R0,LOOP

R0 = 0 ?

YES

NO

R0 ← R0 + #2

SBJNZ.W #2,R0,LOOP

R0 = 0 ?

YES

NO

R0 ← R0 - #2

LOOP: LOOP:

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 88 of 229

2.6.6 Bit Instructions

This section explains the bit instructions of the M16C/80 series.

Logical Bit Manipulating Instruction

This instruction ANDs or ORs a specified register or memory bit and the C flag and stores the result
in the C flag. Figure 2.6.12 shows an example of how the logical bit manipulating instruction works.

Table 2.6.21 Logical Bit Manipulating Instruction

Figure 2.6.20 Typical operation of logical bit manipulating instruction

Mnemonic Description Format Explanation

BAND BAND src C flag ← src Λ C flag ;Bitwise AND.

BNAND BNAND src C flag ← src Λ C flag ;Inverted bitwise AND.

BNOR BNOR src C flag ← src V C flag ;Inverted bitwise OR.

BNXOR BNXOR src C flag ← src ∀ C flag ;Inverted bitwise exclusive OR.

BOR BOR src C flag ← src V C flag ;Bitwise OR.

BXOR BXOR src C flag ← src ∀ C flag ;Bitwise exclusive OR.

C flag

ANDs the R1L register's
bit 4 and the C flag.

Logical operation

Operation
result

BAND 4,R1L

R1L

A
R1H

R1

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 89 of 229

Conditional Bit Transfer Instruction

This instruction transfers a bit from depending on whether a condition is met. If the condition is
true, it transfers "1"; if the condition is false, it transfers "0". In all cases, a flag is used to determine
whether the condition is true or false. This instruction must be preceded by an instruction that
causes the flag to change. Figure 2.6.21 shows an example of how the conditional bit transfer
instruction works.

Table 2.6.22 Conditional Bit Transfer Instruction

Figure 2.6.21 Typical operation of conditional bit transfer instruction

Mnemonic
Description

Format
Explanation

BMCnd
BMCnd dest
BMCnd C

Transfers "1" if condition is true or "0" if condition is false.

Cnd True/false determining conditions (14 conditions)

GEU/C C = 1 Equal or greater/ Carry flag = 1.

GTU C = 1 & Z = 0 Unsigned and greater.

EQ/Z Z = 1 Equal/ Zero flag = 1.

N S = 1 Negative.

LE (z = 1) | (S = 1 & O = 0) | (S = 0 & O = 1) Equal or signed and smaller.

O O = 1 Overflow flag = 1.

GE (S =1 & O = 1) | (S = 0 & O = 0) Equal or signed and greater.

LTU/NC C = 0 Smaller/ Carry flag = 0.

LEU C = 0 | Z = 1 Equal or smaller.

NE/NZ Z = 0 Not equal/ Zero flag = 0.

PZ S = 0 Positive or zero.

GT (S = 1 & O = 1 & Z = 0) | (S = 0 & O = 0 & Z = 0) Signed and greater.

NO O = 0 Overflow flag = 0.

LT (S =1 & O = 0) | (S = 0 & O = 1) Signed and smaller.

BMGEU 3,1000H[SB]

SB = 0500H

I3 I2 I1 I0 U I O B S Z D C
100 0 0 0 00 0 00 0 0 0 0 1FLG =

SB 000500H + 1000H = 001500H
b7 b0

10 0 1 1 1 0 1

000000H

FFFFFFH

001500H

(If SB and FLG register status is as follows)

Since C = 1, the condition is true. Therefore,
bit 3 at address 001500H is set to 1.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 90 of 229

2.6.7 Sign-extension instruction

The sign-extension instruction extends bit length by substituting the sign bit for the bits to be extended.
This section explains about the sign-extension instruction.

Sign-extension instruction

The sign-extension instruction comes in two types: a sign-extension instruction that extends bit
length with the MSB (most significant bit), and a zero-extension instruction that extends bit length
by forcibly filling the most significant bit with 0. When the size specifier ".B" is specified, the sign-
extension instruction extends bit length to 16 bits; when the size specifier ".W" is specified, it
extends bit length to 32 bits.
The zero-extension instruction extends bit length to 16 bits. An example of how the sign-extension
instruction operates is shown in Figure 2.6.22.

Table 2.6.23 Sign-extension instruction

Figure 2.6.22 Typical operation of sign-extension instruction

Mnemonic Description Format Explanation

EXTS

EXTS.B dest Sign-extends dest to 16 bits.

EXTS.W dest Sign-extends dest to 32 bits.

EXTS.B src,dest Sign-extends src before transferring it to dest.

EXTZ EXTZ src,dest Zero-extends src to 16 bits before transferring it to dest.

8-bit sign extension by zero-
extension instruction.
 (Zero-extended to 16 bits)

16-bit sign extension by sign-
extension instruction.
 (Sign-extended to 32 bits)

Register/Memory

R2 R0

00 0000 00
b7 b0

The sign bit is substituted for the bits to be extended.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 91 of 229

2.6.8 Index instruction

The M16C/80 has index instructions to allow arrays to be referenced efficiently when programming in C
language. Index instructions make it possible to specify array elements without address calculation.
This section explains about index instructions.

Index instruction

The index instruction modifies addressing of the next instruction.
Index instructions classified by type are listed in Table 2.6.24. An example of how the index
instruction operates is shown in Figure 2.6.23.

Table 2.6.24 Index instruction

*a : Corresponds to arrays arranged in units of words.
*b : Corresponds to arrays arranged in units of long words.

Type Function
B
BD
BS

Modifies addressing of the next instruction in units of bytes.

W
WD
WS

Modifies addressing of the next instruction in units of words.

L
LD
LS

Modifies addressing of the next instruction in units of long words.

Mnemonic Description Format Explanation

INDEXB
INDEXB.B src
INDEXB.W src

The content of src of the INDEXB instruction is added to the
address indicated by src, dest of the next instruction to be
executed, with the sign not included, to find the effective
address.

INDEXBD
INDEXBD.B src
INDEXBD.W src

The content of src of the INDEXB instruction is added to the
address indicated by dest (src in some instructions) of the next
instruction to be executed, with the sign not included, to find the
effective address.

INDEXBS
INDEXBS.B src
INDEXBS.W src

The content of src of the INDEXB instruction is added to the
address indicated by src of the next instruction to be executed,
with the sign not included, to find the effective address.

INDEXW*a INDEXB.B src
INDEXB.W src

Twice the content of src of the INDEXW instruction is added to
the address indicated by src, dest of the next instruction to be
executed, with the sign not included, to find the effective
address.

INDEXWD*a INDEXWD.B src
INDEXWD.W src

Twice the content of src of the INDEXB instruction is added to
the address indicated by dest (src in some instructions) of the
next instruction to be executed, with the sign not included, to find
the effective address.

INDEXWS*a INDEXWS.B src
INDEXWS.W src

Twice the content of src of the INDEXB instruction is added to
the address indicated by src of the next instruction to be
executed, with the sign not included, to find the effective
address.

INDEXL*b INDEXL.B src
INDEXL.W src

Four times the content of src of the INDEXW instruction is added
to the address indicated by src, dest of the next instruction to be
executed, with the sign not included, to find the effective
address.

INDEXLD*b INDEXLD.B src
INDEXLD.W src

Four times the content of src of the INDEXB instruction is added
to the address indicated by dest (src in some instructions) of the
next instruction to be executed, with the sign not included, to find
the effective address.

INDEXLS*b INDEXLS.B src
INDEXLS.W src

Four times the content of src of the INDEXB instruction is added
to the address indicated by src of the next instruction to be
executed, with the sign not included, to find the effective
address.

BITINDEX
BITINDEX.B src
BITINDEX.W src

The bit as many bits apart as indicated by src of the BITINDEX
instruction from bit 0 at the address indicated by src or dest of
the next instruction to be executed, is the target to be operated
on.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 92 of 229

Figure 2.6.23 Typical operation of index instruction

INDEXB.B R1L
MOV.B R0,002000H

001000HR0

R1L #5

001000H + #5 = 001005H

002000H + #5 = 002005H

Transfer

INDEXB.W R1L
MOV.B mem1,mem2

R1L #5

Transfer

Memory

mem1 address

5 X 2=10

mem1 address+10

mem2 address

5 X 2=10

mem2 address+10

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 93 of 229

2.6.9 High-level language and OS support instructions

The high-level language support instruction builds/frees a stack frame. The OS support instruction
saves/restores task context. These instructions allow switching-over of complex processing or task
context in high-level language to be executed by a single instruction.

Building Stack Frame

ENTER is an instruction to build a stack frame. Use #IMM to set bytes of the automatic variable
area. Figure 2.6.24 shows an example of how this instruction works.

Table 2.6.25 Stack Frame Build Instruction

Figure 2.6.24 Typical operation of stack frame build instruction

Mnemonic Description Format Explanation

ENTER ENTER #IMM8 Builds stack frame.

ENTER #3

1) Saves FB register to stack area.
2) Transfers SP to FB.
3) Subtracts specified immediate from SP to modify SP (to allocate automatic variable
 area of called function).

[Before executing ENTER instruction]

Stack area

Return address (HL)

Return address (HH)

Argument2

Argument1

SP

FB

[After executing ENTER instruction]

Stack area

SP

FB

Stack frame

Old FB(LL)

Old FB(LH)

 Automatic
variable of

main

Return address (LH)

Return address (LL)

Return address(HL)

Return address(HH)

Argument2

Argument1

Return address(LH)

Return address(LL)

Old FB(HL)

Old FB(HH)

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Automatic
variable area of
called function

Byte size indicated by src.

 Automatic
variable of

main

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 94 of 229

Deallocate Stack Frame

The EXITD instruction deallocate the stack frame and returns control from the subroutine. It
performs these operations simultaneously. Figure 2.6.25 shows an example of how the stack
frame clean-up instruction works.

Table 2.6.26 Deallocate Stack Frame Instruction

Figure 2.6.25 Typical operation of deallocate stack frame instruction

Mnemonic Description Format Explanation

EXITD EXITD Deallocate stack frame.

EXITD

1) Transfers FB to SP.
2) Restores FB from stack area.
3) Returns from subroutine (function) (operates in the same way as RTS instruction).

[After executing EXITD instruction]

SP

FB

[Before executing EXITD instruction]

Stack area

SP

FB

Stack frame

Old FB(LL)

Old FB(LH)

Return address (HL)

00H(HH)

Argument2

Argument1

 Automatic
variable of

main

Return address (LH)

Return address (LL)

Old FB(HL)

Old FB(HH)

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

Automatic
variable area of
called function

00H(HH)

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

PCHL PCLH PCLL

Automatic
variable area of
called function

Old FB(LL)

Old FB(LH)

Old FB(HL)

Old FB(HH)

Return address (HL)

Return address (LH)

Return address (LL)

Argument2

Argument1

 Automatic
variable of

main

Stack area

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 95 of 229

OS support instruction

The STCTX instruction saves task context. The LDCTX instruction restores task context. A table of
task context is shown in Figure 2.6.26. The register information that is set in the context table
shows the type of register to be saved as context in a stack area. The SP correction value shows
the size in bytes of the register to be transferred. The OS support instruction uses these two pieces
of information to save and restore task context to and from a stack area.

Table 2.6.27 OS Support Instructions

Figure 2.6.26 Context table

Mnemonic Description Format Explanation

STCTX STCTX abs16,abs24 (Note) Saves task context.

LDCTX LDCTX abs16,abs24 Restores task context.

abs24
Register information of

task number 0
SP correction value of

task number 0
Register information of

task number 1
SP correction value of

task number 1

Register information of
task number 'n'

SP correction value of
task number 'n'

Start address of context table

FB SB A1 A0 R3 R2 R1 R0

Bit configuration of register information

1: Transfers register to stack area.
0: Does not transfer register to stack area.

n=0 to 255

Note : abs16 is a memory address which stored task number (8 bits).
abs 24 is a top address of context table.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 96 of 229

Operation for Saving Context (STCTX instruction)

Operation 1
Reads memory content from the address
indicated by abs16 as a task number (8-bit data).

Operation 2
Doubles the value (task number) obtained in operation
1 and adds abs24 (start address of the context table).
(task number) x 2 + abs24

Operation 4
Saves the register specified by the context
information to the stack area.

Operation 5
Reads memory content from the next address (
incremented by 1) of the context information as an SP
correction value (8-bit data).

Operation 6
Subtracts the SP correction value from SP to
correct the SP.

Operation 3
Reads memory content from the address indicated by the
result of operation 2 as context information (8-bit data).

FFFFFFH

abs16 Task number

AAAAA
AAAAA

000000H

Operation 1

R1

Stack area

R2

R3

A0

R0

SP

Operation 4

FFFFFFH

abs24

Context
information

000000H

Operation 3

AAAAA
AAAAA Task number X 2

FFFFFFH

abs24

Context information

000000H

Operation 5

AAAAA
AAAAA
AAAAA

SP correction value

R1

Stack area

R2

R3

A0

R0

SP

Operation 6

SP

SP - SP correction value

Task number X 2

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 97 of 229

Operation for Restoring Context (LDCTX instruction)

FFFFFFH

abs24

Context information

000000H

Operation 3

AAAAA
AAAAA

FFFFFFH

abs24

Context information

000000H

Operation 5

AAAAA
AAAAA
AAAAA

SP correction value

R1

Stack are

R2

R3

A0

R0SP

Operation 4

Restored to each register

R1

Stack area

R2

R3

A0

R0

SP

Operation 6

SP + SP correction value

SP

Operation 1
Reads memory content from the address indicated
by abs16 as a task number (8-bit data).

Operation 2
Doubles the value (task number) obtained in operation 1
and adds abs24 (start address of the context table).
(task number) x 2 + abs24

Operation 3
Reads memory content from the address indicated
by the result of operation 2 as context information
(8-bit data).

Operation 4
Restores the register specified by the context information
from the stack area.
(At this time, the SP register value is not changed yet.)

Operation 5
Reads memory content from the next address (
incremented by 1) of the context information as an SP
correction value (8-bit data).

Operation 6
Subtracts the SP correction value from
SP to correct the SP.

FFFFFFH

abs16 Task numberAAAAA

000000H

Operation 1

Task number X 2

Task number X 2

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 98 of 229

Note: Peripheral functions vary with each type of microcomputer used. For details about peripheral interrupts, refer to the data sheet and
user's manual of your microcomputer.

AAAAAA
AAAAAAHardware interrupt

Peripheral
 I/O

Special

Block transfer

A-D conversion

Serial I/O

Timer

Key input

External pin

DMA0
DMA1
DMA2
DMA3

UART0 transmit, UART0 receive
UART1 transmit, UART1 receive
UART2 transmit/NACK, UART2 receive/ACK
UART3 transmit/NACK, UART3 receive/ACK
UART4 transmit/NACK, UART4 receive/ACK

TimerA0 to A4
TimerB0 to B5

Address match interrupt 0 to 3

BRK instruction,BRK2 instruction
INT instruction
Overflow(INTO instruction)
Undefined instruction(UND instruction)

AAAAAA
AAAAAASoftware interrupt

INT0 to INT5

Bus collision detection/start, stop condition (UART2, UART3, UART4)

Rest
NMI
DBC
Watchdog timer
Single step
Instruction fetch
Address match

2.7 Outline of Interrupt

This section explains the types of interrupt sources available with the M16C/80 group and the
internal processing (interrupt sequence) performed after an interrupt request is accepted until an
interrupt routine is executed. For details on how to use each interrupt and how to set, refer to
Chapter 4.

2.7.1 Interrupt Sources and Vector addresses

The following explains the interrupt sources available with the M16C/80 group.

Interrupt Sources in M16C/80 Group

Figure 2.7.1 shows the interrupt sources available with the M16C/80 group.

Hardware interrupts consist of six types of special interrupts such as reset and NMI and various
peripheral I/O interrupts(Note) that are dependent on built-in peripheral functions such as timers and
external pins. Special interrupts are nonmaskable; peripheral I/O interrupts are maskable.
Maskable interrupts are enabled and disabled by an interrupt enable flag (I flag), an interrupt
priority level select bit, and the processor interrupt priority level (IPL).
Software interrupts generate an interrupt request by executing a software interrupt instruction.
There are five types of software interrupts: INT instruction interrupt, BRK instruction interrupt,
BRK2 instruction interrupt, overflow interrupt, and undefined instruction interrupt. Software
interrupts are nonmaskable.

Figure 2.7.1 Interrupt sources in M16C/80 group

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 99 of 229

Vector addresses

Figure 2.7.2 shows software interrupt and special interrupt vector addresses. Figure 2.7.3 shows
hardware interrupt vector addresses. Before using these interrupts, set the start address of each
relevant interrupt routine at these vector addresses.

Figure 2.7.2 Software interrupt and special interrupt vector addresses

FFFFDCH

FFFFE0H

FFFFE4H

FFFFE8H

FFFFF0H

FFFFF8H

FFFFFCH

Undifined
instruction

Overflow

BRK
 instruction(Note1)

Address match

Watch dog timer

NMI

Reset

FFFFFFH

000020H
(SFR area)

BRK2 instruction(Note2)

Single step(Note2)

FFFFECH

FFFFF4H

Note 1: If the vector contents all are "FFH," the program branches to the address indicated by the
 vector of software interrupt number 0 in the variable vector table.
Note 2: This area is inhibited against use by the user.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 100 of 229

Figure 2.7.3 Hardware interrupt vector addresses

Software interrupt number Interrupt sourceVector table address
Address (L) to address (H)

Remarks

Cannot be masked I flag+0 to +3 (Note 1) BRK instructionSoftware interrupt number 0

+44 to +47 (Note 1) Software interrupt number 11

+48 to +51 (Note 1)Software interrupt number 12

+52 to +55 (Note 1)Software interrupt number 13

+56 to +59 (Note 1)Software interrupt number 14

+68 to +71 (Note 1)Software interrupt number 17

+72 to +75 (Note 1)Software interrupt number 18

+76 to +79 (Note 1)Software interrupt number 19

+80 to +83 (Note 1)Software interrupt number 20

+84 to +87 (Note 1)Software interrupt number 21

+88 to +91 (Note 1)Software interrupt number 22

+92 to +95 (Note 1)Software interrupt number 23

+96 to +99 (Note 1)Software interrupt number 24

+100 to +103 (Note 1)Software interrupt number 25

+104 to +107 (Note 1)Software interrupt number 26

+108 to +111 (Note 1)Software interrupt number 27

+112 to +115 (Note 1)Software interrupt number 28

+116 to +119 (Note 1)Software interrupt number 29

+120 to +123 (Note 1)Software interrupt number 30

+124 to +127 (Note 1)Software interrupt number 31

+128 to +131 (Note 1)Software interrupt number 32

+252 to +255 (Note 1)Software interrupt number 63
to

Note 1: Address relative to address in interrupt table register (INTB).
Note 2: When I C mode is selected, NACK/ACK, start/stop condition detection interrupts are selected. The fault error interrupt is

selected when SS pin is selected.

Cannot be masked I flag

+40 to +43 (Note 1)Software interrupt number 10

+60 to +63 (Note 1)Software interrupt number 15

+64 to +67 (Note 1)Software interrupt number 16

+32 to +35 (Note 1)Software interrupt number 8

+36 to +39 (Note 1)Software interrupt number 9

Timer B3

Timer B4

Timer B5

INT3

to

DMA0

DMA1

Timer A0

Timer A1

Timer A2

Timer A3

Timer A4

Timer B0

Timer B1

Timer B2

INT0

INT1

INT2

Software interrupt

INT4

INT5

Bus collision detection, start/stop
condition detection (UART2) (Note 2)

UART0 transmit

UART0 receive

UART1 transmit

UART1 receive

Key input interrupt

A-D

UART2 transmit/NACK (Note 2)

UART2 receive/ACK (Note 2)

DMA2

DMA3

UART3 transmit/NACK (Note 2)

UART3 receive/ACK (Note 2)

UART4 transmit/NACK (Note 2)

UART4 receive/ACK (Note 2)

Bus collision detection, start/stop
condition detection (UART3) (Note 2)

Bus collision detection, start/stop
condition detection (UART4) (Note 2)

+132 to +135 (Note 1)Software interrupt number 33

+136 to +139 (Note 1)Software interrupt number 34

+140 to +143 (Note 1)Software interrupt number 35

+144 to +147 (Note 1)Software interrupt number 36

+148 to +151 (Note 1)Software interrupt number 37

+152 to +155 (Note 1)Software interrupt number 38

+156 to +159 (Note 1)Software interrupt number 39

+160 to +163 (Note 1)Software interrupt number 40

+164 to +167 (Note 1)Software interrupt number 41

+168 to +171 (Note 1)Software interrupt number 42

+172 to +175 (Note 1)Software interrupt number 43

+176 to +179 (Note 1)Software interrupt number 44

2

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 101 of 229

2.7.2 Variable vector table

The variable vector table is a 256-byte vector table that starts from the address indicated by the interrupt
table register (INTB). (See Figure 2.7.3.) The vector table can be located in any area except the SFR
area and the extended reserved area.

Variable vector table

One vector consists of 4 bytes, with each vector assigned software interrupt numbers 0 to 63.
Using the INT instruction and a software interrupt number, it is possible to execute a peripheral I/O
interrupt routine in a simulated manner. Figure 2.7.4 shows how the variable vector table is
located in memory.

Figure 2.7.4 Example of how the variable vector table is located

INTB address

9

8

0

A

A

10

62

63

Variable vector table

Software interrupt number

Address,low

Address,middle

Address,high

00H

Interrupt table register

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 102 of 229

2.7.3 Interrupt generation conditions and interrupt control register bit configuration

This section describes conditions under which an interrupt is accepted and the bit configuration of the
interrupt control register.

Interrupt generation conditions

When an interrupt is requested, it is accepted when all of the following three conditions are met:

(1)Interrupt enable flag (I flag) = 1 (interrupt enabled)
(2)Processor interrupt level (IPL) < Interrupt priority level of the requested interrupt
(3)Interrupt request bit (interrupt control register bit 3) = 1

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 103 of 229

Bit configuration of the interrupt control register

Figure 2.7.5 shows the interrupt control register provided for each interrupt.

Figure 2.7.5 Bit configuration of the interrupt control register

Symbol Address When reset
INTiIC(i=0 to 5) 009E16, 007E16, 009C16, 007C16, 009A16, 007A16 XX00X0002

Bit name FunctionBit symbol WR

b7 b6 b5 b4 b3 b2 b1 b0

A
A
AA
AA

ILVL0

IR

POL

Nothing is assigned.
When write, set "0". When read, their contents are indeterminate.

Interrupt priority level
select bit

Interrupt request bit

Polarity select bit

Level sense/edge
sense select bit

0: Interrupt not requested
1: Interrupt requested

0 : Selects falling edge or L level
1 : Selects rising edge or H level

ILVL1

ILVL2

Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1).
Note 2: When INT3 to INT5 are used for data bus in microprocessor mode or memory

expansion mode, set the interrupt disabled to INT3IC, INT4IC and INT5IC.
Note 3: When level sense is selected, set related bit of interrupt cause select register (

address 031F16) to one edge.

(Note 1)

Interrupt control register

b7 b6 b5 b4 b3 b2 b1 b0

AAAAAA
Bit name FunctionBit symbol WR

Symbol Address When reset
ADIC 007316 XXXXX0002
BCNiIC(i=2 to 4) 008F16, 007116, 009116 XXXXX0002
DMiIC(i=0 to 3) 006816, 008816, 006A16, 008A16 XXXXX0002
KUPIC 009316 XXXXX0002
TAiIC(i=0 to 4) 006C16, 008C16, 006E16, 008E16, 007016 XXXXX0002
TBiIC(i=0 to 5) 009416, 007616, 009616, 007816, 009816, 006916 XXXXX0002
SiTIC(i=0 to 4) 009016, 009216, 008916, 008B16, 008D16 XXXXX0002
SiRIC(i=0 to 4) 007216, 007416, 006B16, 006D16, 006F16 XXXXX0002

ILVL0

IR

Interrupt priority level
select bit

Interrupt request bit 0 : Interrupt not requested
1 : Interrupt requested

ILVL1

ILVL2

Nothing is assigned.
When write, set "0". When read, their contents are indeterminate.

(Note)

Note: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1).

0 0 0 : Level 0 (interrupt disabled)
0 0 1 : Level 1
0 1 0 : Level 2
0 1 1 : Level 3
1 0 0 : Level 4
1 0 1 : Level 5
1 1 0 : Level 6
1 1 1 : Level 7

b2 b1 b0

0 0 0 : Level 0 (interrupt disabled)
0 0 1 : Level 1
0 1 0 : Level 2
0 1 1 : Level 3
1 0 0 : Level 4
1 0 1 : Level 5
1 1 0 : Level 6
1 1 1 : Level 7

b2 b1 b0

0

AA

A
A
A
A

AA
AA

AA
AA

AA
AA

A
A
A
A

A
A
A
A0 : Edge sense

1 : Level sense
LVS

(Note 2)

(Note 3)

Note 3: The symbols shown here are for the M16C/80 group. They vary with each microcomputer type used.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 104 of 229

2.7.4 Interrupt acceptance timing and sequence

This section describes the interrupt acceptance timing and interrupt sequence.

Interrupt acceptance timing

When an interrupt request occurs while executing an instruction, the priority of the requested
interrupt is resolved after the instruction being executed finishes, and an interrupt sequence begins
in the next cycle. The interrupt acceptance timing in this case is shown in Figure 2.7.6. However, if
an interrupt request occurs when executing an string instruction (SCMPU, SIN, SMOVB, SMOVF,
SMOVU, SSTR, or SOUT) or multiply/accumulate instruction (RMPA), the instruction being
executed is suspended and an interrupt sequence is entered. The interrupt acceptance timing in
this case is shown in Figure 2.7.7.

1. Interrupt under normal condition

Figure 2.7.6 Interrupt acceptance timing 1

2. Interrupt under exceptional condition

If an interrupt request is generated when executing one of the following instructions, the interrupt
sequence occurs in the middle of that instruction execution.
(1) String transfer instruction (SCMPU,SIN,SMOVB,SMOVF,SMOVU,SSTR,SOUT)
(2) Sum-of-product calculating instruction (RMPA)

Figure 2.7.7 Interrupt acceptance timing 2

Instruction

AAAAA
AAAAA Interrupt sequence Instructions in interrupt routine

 Interrupt processing
Interrupt request accepted

Interrupt request generated

No interrupt but a reset is accepted when executing the interrupt sequence.

When 8 bits bus and no wait, 14 to 21 cycles.
When 16bits bus and no wait, 12 to 19 cycles.

AAAAA
AAAAA Re-execution of

suspended instruction
Next
instructionInstruction Interrupt sequence Instructions in interrupt routine

 Interrupt processing
Interrupt request accepted

Interrupt request generated

No interrupt but a reset is accepted when executing the interrupt sequence.

When 8 bits bus and no wait, 14 to 21 cycles.
When 16bits bus and no wait, 12 to 19 cycles.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 105 of 229

Interrupt sequence

The following explains an interrupt sequence from when an interrupt request is accepted to when
an interrupt routine is executed.

(1) The CPU reads address 000000H (or 000002H for fast interrupts) to get interrupt information
(interrupt number, interrupt request level). The relevant interrupt request bit is then reset to 0.

(2) The content of the flag register (FLG) immediately before the interrupt sequence begins is
saved to an internal temporary register(Note) of the CPU.

(3) The interrupt enable flag (I flag), debug flag (D flag), and stack pointer specification flag (U flag)
are reset to 0. (However, the U flag does not change if an INT instruction of software interrupt
numbers 32 to 63 was being executed when the interrupt occurred.) Thus, by the above
operations...
(a)The stack pointer is forcibly made the interrupt stack pointer (ISP). (However, if an INT
 instruction of software interrupt numbers 32 to 63 was being executed when the interrupt
 occurred, the stack pointer (ISP or USP) that was active when the interrupt occurred is
 used.)
(b)Multiple interrupts are disabled.
(c)Single-step interrupt is disabled.

(4) The content of the CPU's internal temporary register(Note) and that of the program counter (PC)
are saved to the stack area. For fast interrupts, they are saved to the save flag register (SVF)
and save PC register (SVP).

(5) The interrupt priority level of the accepted interrupt is set in the processor interrupt priority level
(IPL).

When the interrupt sequence is completed, instructions are executed beginning with the start
address of the interrupt routine.

Note:This register cannot be used by the user.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 106 of 229

2.7.5 Interrupt priority

This section explains about interrupt priority.

Interrupt priority

If two or more interrupt requests simultaneously are sampled active (= asserted), the interrupt with
the highest priority among those interrupts is accepted. Maskable interrupts (peripheral I/O
interrupts) can be assigned any desired priority by using the interrupt priority level select bits.
However, when requested interrupts have the same priority level, the first interrupt requested is
accepted, and the remaining other interrupts are accepted according to the priority(Note) that is set in
hardware.
Nonmaskable interrupts such as a reset (handled as an interrupt of the highest priority) and a
watchdog timer interrupt have their priorities set in hardware. The interrupt priorities set in hardware
are shown in Figure 2.7.8.
Software interrupts are unaffected by interrupt priority. When an instruction is executed, the
program always branches to the relevant interrupt routine.

Note:This priority varies with each type of microcomputer. Be sure to consult data sheets and user's manual.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 107 of 229

Figure 2.7.8 Interrupt priority by determined by hardware

Timer B3

Timer B4

Timer B5

INT3

UART3 transmit / NACK

UART3 receive / ACK

Bus collision detection/ start, stop
condition (UART2)

DMA0

DMA1

Key input inerrupt

A-D converter

UART0 transmit

UART0 receive

UART1 transmit

UART1 receive

Timer A0

Timer A1

Timer A2

Timer A3

Timer A4

Timer B0

Timer B1

Timer B2

INT0

INT1

INT2

UART2 transmit / NACK

UART2 receive / ACK

INT4

INT5

DMA2

DMA3

UART4 transmit / NACK

UART4 receive / ACK

Bus collision detection/start, stop
condition (UART3)

Bus collision detection/start, stop
condition (UART4)

Reset

NMI

Single step

Address match interrupt

Peripheral I/O interrupt

High

Low

High

Low

Priority

Priority

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 108 of 229

Chapter 3
Functions of Assembler

3.1 Outline of AS308 System
3.2 Method for Writing Source Program

Chapter 3 Functions of Assembler

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 109 of 229

3.1 Outline of AS308 System

The AS308 system is a software system that supports development of programs for controlling the
M16C/80 series single-chip microcomputers at the assembly language level. In addition to the
assembler, the AS308 system comes with a linkage editor and a load module converter.
This section explains the outline of AS308.

Functions

• Relocatable assemble function
• Optimized code generating function
• Macro function
• High-level language source level debug function
• Various file generating function
• IEEE-695 format(Note 1) file generating function

Configuration

The AS308 system consists of the following programs:
• Assembler driver (as308)
This is an execution file to start up the macroprocessor and assembler processor. This
assembler driver can process multiple assembly source files.

• Macroprocessor (mac308)
This program processes macro directive commands in the assembly source file and performs
preprocessing for the assembly processor, thereby generating an intermediate file. This
intermediate file is erased after processing by the assembler processor is completed.

• Assembler processor (asp308)
This program converts the intermediate file generated by the macroprocessor into a relocatable
module file.

• Linkage editor (ln308)
This program links the relocatable module files generated by the assembler processor to
generate an absolute module file.

• Load module converter (lmc308)(Note 2)

This program converts the absolute module file generated by the linkage editor into a machine
language file that can be programmed into ROM.

• Librarian (lb308)
By reading in the relocatable module files, this program generates and manages a library file.

• Cross referencer (xrf308)
This program generates a cross reference file that contains definition of various symbols and
labels used in the assembly source file created by the user.

• Absolute lister (abs308)
Based on the address information in the absolute module file, this program generates an
absolute list file that can be output to a printer.

Note 1: IEEE stands for the Institute of Electrical and Electronics Engineers.
Note 2: The load module converter is a program to convert files into the format in which they can be programmed into M16C/80 series ROMs.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 110 of 229

Outline of Processing by AS308 System

Figure 3.1.1 schematically shows the assemble processing performed by the AS308 system.

Figure 3.1.1 Outline of assemble processing performed by AS308

as308

Assembly source
file

lb308

ln308

Relocatable module
file

Assembler list
file

Library file

Absolute module
file

abs308

Absolute list
file

lmc308

Intel HEX format
file

Motorola S format
file

xrf308

Cross reference
file

Input file

Output file

.a30

.lst.r30

.lib .xrf

.x30

.als.hex.mot

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 111 of 229

Input/output Files Handled by AS308

The table below separately lists the input files and the output files handled by the AS308 system.
Any desired file names can be assigned. However, if the extension of a file name is omitted, the
AS308 system automatically adds a default file extension. These default extensions are shown in
parenthesis in the table below.

Table 3.1.1 List of Input/output Files

Program Name Input File Name (Extension) Output File Name (Extension)

Assembler
as308

Source file(.as30)
Include file(.inc)

Relocatable module file(.r30)
Assembler list file(.lst)
Assembler error tag file(.atg)

Linkage editor
ln308

Relocatable module file(.r30)
Library file(.lib)

Absolute module file(.x30)
Map file(.map)
Link error tag file(.ltg)

Load module converter
lmc308

Absolute module file(.x30)
Motorola S format file(.mot)
Extended Intel HEX format
file(.hex)

Librarian
lb308

Relocatable module file(.r30)
Library file(.lib)

Library file(.lib)
Relocatable module file(.r30)
Library list file(.lls)

Cross referencer
xrf308

Assemble source file(.a30)
Assembler list file(.lst)

Cross reference file(.xrf)

Absolute lister
abs308

Absolute module file(.x30)
Assembler list file(.lst)

Absolute list file(.als)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 112 of 229

3.2 Method for Writing Source Program

This section explains the basic rules, address control, and directive commands that need to be
understood before writing the source programs that can be processed by the AS308 system. For
details about the AS308 system itself, refer to AS308 User's Manuals, "Operation Part" and
"Programming Part".

3.2.1 Basic Rules

The following explains the basic rules for writing the source programs to be processed by the AS308
system.

Precautions on Writing Programs

Pay attention to the following precautions when writing the source programs to be processed by
the AS308 system:
• Do not use the AS308 system reserved words for names in the source program.
• Do not use a character string consisting of one of the AS308 system directive commands with the

period removed, because such a character string could affect processing by AS308. They can
be used in names without causing an error.

• Do not use system labels (the character strings that begin with ..) because they may be used for
future extension of the AS308 system. When they are used in the source program created by the
user, the assembler does not output an error.

Character Set

The characters listed below can be used to write the assembly program to be processed by the
AS308 system.

Uppercase English alphabets
A B C D E F G H I J K L M N O P Q R

S T U V W X Y Z
Lowercase English alphabets

a b c d e f g h i j k l m n o p q r s t u

v w x y z
Numerals

0 1 2 3 4 5 6 7 8 9
Special characters

" # % & ' () ∗ + , - . / : ; [¥] ^ _ | ˜
Blank characters

(space) (tab)
New line characters

(return) (line feed)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 113 of 229

Reserved Words

The following lists the reserved words of the AS308 system. The reserved words are not
discriminated between uppercase and lowercase. Therefore, "abs", "ABS", "Abs", "ABs", "AbS",
"abS", "aBs", "aBS" — all are the same as the reserved word "ABS".

Mnemonic
ABS ADC ADCF ADD ADDX ADJNZ AND
BAND BCLR BITINDEX BMC BMEQ BMGE BMGEU
BMGT BMGTU BMLE BMLEU BMLT BMLTU BMN
BMNC BMNE BMNO BMNZ BMO BMPZ BMZ
BNAND BNOR BNOT BNTST BNXOR BOR BRK
BRK2 BSET BTST BTSTC BTSTS BXOR CLIP
CMP CMPX DADC DADD DEC DIV DIVU
DIVX DSBB DSUB ENTER EXITD EXTS EXTZ
FCLR FREIT FSET INC INDEXB INDEXBD INDEXBS
INDEXW INDEXWD INDEXWS INDEXL INDEXLD INDEXLS INT
INTO JC JEQ JGE JGEU JGT JGTU
JLE JLEU JLT JLTU JMP JMPI JMPS
JN JNC JNE JNO JNZ JO JPZ
JSR JSRI JSRS JZ LDC LDCTX LDIPL
MAX MIN MOV MOVA MOVHH MOVHL MOVLH
MOVLL MUL MULEX MULU NEG NOP NOT
OR POP POPC POPM PUSH PUSHA PUSHC
PUSHM REIT RMPA ROLC RORC ROT RTS
SBB SBJNZ SCC SCEQ SCGE SCGEU SCGT
SCGTU SCLE SCLEU SCLT SCLTU SCMPU SCN
SCNC SCNE SCNO SCNZ SCO SCPZ SCZ
SHA SHL SIN SMOVB SMOVF SMOVU SOUT
SSTR STC STCTX STNZ STZ STZX SUB
SUBX TST UND WAIT XCHG XOR

Register/flag
A0 A1 B C D DCT0 DCT1
DMA0 DMA1 DMD0 DMD1 DRA0 DRA1 DRC0
DRC1 DRA0 DSA1 FB FLG I INTB
IPL ISP O PC R0 R0H R0L
R1 R1H R1L R2 R2R0 R3 R3R1
S SB SP SVF SVP U USP
VCT Z

Operators
SIZEOF TOPOF

System Label(all names that begin with Two Periods "..")

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 114 of 229

Description of Names

Any desired names can be used in the source program as defined.
Names can be divided into the following five types. Note that the AS308 system reserved words
cannot be used in names.(Note)

(1)Label
(2)Symbol
(3)Bit symbol
(4)Location symbol
(5)Macro name

Rules for writing names
(1) Names can be written using alphanumeric characters and "_" (underscore). Each name must

be within 255 characters in length.
(2) Names are case-sensitive, so they are discriminated between uppercase and lowercase.
(3) Numerals cannot be used at the beginning of a name.

Note: Program operation cannot be guaranteed if any reserved word is used.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 115 of 229

Types of Names

Table 3.2.1 shows the method for defining names.

Table 3.2.1 Types of Names Defined by User

Bit symbol

Function
 Indicates a specific bit position in specific memory.

Definition method
 Use a directive command that defines a bit symbol.
 Example:

flag1 .BTEQU 1,flags
flag2 .BTEQU 2,flags
flag3 .BTEQU 20, flags

Reference method
 The bit symbol can be written in the operand of a
 single-bit manipulating instruction.
 Example:

BCLR flag1
BCLR flag2
BCLR flag3

Label

Function
 Indicates a specific memory address.

Definition method
 Always add ":" (colon) at the end of each name.
 There are two methods of definition.
 1. Allocate an area with a directive command.
 Example:

flag: .BLKB 1
work: .BLKB 1

 2. Write a name at the beginning of a source line.
 Example:

name1:
_name:
sum_name:

Reference method
 Write the name in the operand of an instruction.
 Example:J

MP sym_name

Symbol

Function
 Indicates a constant value.

Definition method
 Use a directive command that defines a numeral.
 Example:

value1 .EQU 1
value2 .EQU 2

Reference method
 Write a symbol in the operand of an instruction.
 Example:

MOV.W R0,value2+1
value3 .EQU value2+1

Location symbol

Function
 Indicates the current line of the source program.

Definition method
 Unnecessary.

Reference method
 Simply write a dollar mark ($) in the operand to
 indicate the address of the line where it is written.
 Example:

JMP $+5A
A

flags

flag1flag2

7 6 5 4 3 2 1 0

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 116 of 229

Description of Operands

For mnemonics and directive commands, write an operand to indicate the subject to be operated
on by that instruction. Operands are classified into five types by the method of description. Some
instructions do not have an operand. For details about use of operands in instructions and types of
operands, refer to explanation of the method for writing each instruction.

• Numeric value
Numeric values can be written in decimal, hexadecimal, binary, and octal. Table 3.2.2 shows
types of operands, description examples, and how to write the operand.

Table 3.2.2 Description of Operands

Type

Binary

Octal

Decimal

Hexadecimal

Floating-
point number

Name

Expression

Character
string

Description
Example

10010001B
10010001b

60702o
60702O

9423

0A5FH
5FH
0a5fh
5fh

3.4E35
3.4E-35
-.5e20
5e20

loop

256/2
label/3

"string"
'string'

Method of Description

Write 'B' or 'b' at the end of the operand.

Write 'O' or 'o' at the end of the operand.

Do not write anything at the end of the operand.

Use numerals 0 to 9 and alphabets 'a' to 'f' or 'A' to 'F'
to write the operand and add 'H' or 'h' at the end.
However, if the operand value begins with an
alphabet, add '0' at the beginning.

Write an exponent including the sign after 'E' or 'e' in
the exponent part. For 3.4 x 1035, write 3.4E35.

Write a label or symbol name directly as it is.

Use a numeric value, name, and operator in
combination to write an expression.

Enclose a character string with single or double
quotations when writing it.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 117 of 229

• Floating-point number
Numeric values within the range shown below that are represented by floating-point numbers can
be written in the operand of an instruction. The method for writing floating-point numbers and
description examples are shown in Table 3.2.2 in the preceding page. Floating-point numbers
can only be used in the operands of the directive commands ".DOUBLE" and ".FLOAT". Table
3.2.3 lists the range of values that can be written in each of these directive commands.

Table 3.2.3 Description Range of Floating-point Numbers

• Name
Label and symbol names can be written in the operand of an instruction. The method for writing
names and a description example are shown in Table 3.2.2 in the preceding page.

• Expression
An expression consisting of a combination of a numeric value, name, and operator can be written
in the operand of an instruction. A combination of multiple operators can be used in an
expression. When writing an expression as a symbol value, make sure that the value of the
expression will be fixed when the program is assembled. The value that derives from calculation
of an expression is within the range of -2,147,483,648 to 2,147,483,648. Floating-point numbers
can be used in an expression. The method for writing expressions and description examples are
shown in Table 3.2.2 in the preceding page.

• Character string
A character string can be written in the operand of some directive commands. Use 7-bit ASCII
code to write a character string. Enclose a character string with single or double quotations when
writing it. The method for writing character strings and description examples are shown in Table
3.2.2 in the preceding page.

FLOAT (32 bits long)
DOUBLE (64 bits long)

Directive Command Description Range

1.17549435 x 10 -38 to 3.40282347 x 1038

2.2250738585072014 x 10 -308 to 1.7976931348623157 x 10308

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 118 of 229

Operator

Table 3.2.4 lists the operators that can be written in the source programs for AS308.

Table 3.2.4 List of Operators

Calculation Priority

Calculation is performed in order of priorities of operators beginning with the highest priority
operator. Table 3.2.5 lists the priorities of operators. If operators in an expression have the same
priority, calculation is performed in order of positions from left to right. The priority of calculation
can be changed by enclosing the desired term in an expression with ().

Table 3.2.5 Calculation Priority

> Left-side value is greater than right-side value
< Right-side value is greater than left-side value
>= Left-side value is equal to or greater thanright-

side value
<= Right-side value is equal to or greater thanleft-

side value
== Left-side value and right-side value are equal
!= Left-side value and right-side value are not equal

Calculation priority modifying operator

() A term enclosed with () is calculated before any
other term. If multiple terms in an expression are
enclosed with (), the leftmost term has priority.
Parentheses () can be nested.

+ Positive value
– Negative value
˜ NOT
SIZEOF Section size (in bytes)
TOPOF Start address of section

+ Add
– Subtract
* Multiply
/ Divide
% Remainder
>> Shift bits right
<< Shift bits left
& AND
| OR
^ Exclusive OR

Note 1: For operators "SIZEOF" and "TOPOF," be sure to insert a space or tag between the operator and operand.
Note 2: Conditional operators can only be written in the operands of directive commands ".IF" and ".ELIF".

Conditional
operators

Monadic operators

Dyadic operators

1

2

3

4

5

6

7

8

Type of Operator

(,)

+ , –, ˜ , SIZEOF , TOPOF

*, / , %

+ , –

>> , <<

&

| , ^

> , < , >= , <= , == , !=

High

Low

Dyadic operator 1

Dyadic operator 2

Dyadic operator 3

Dyadic operator 4

Dyadic operator 5

Conditional operator

Calculation priority
modifying operator

Monadic operator 1

Priority
Level

Content

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 119 of 229

Description of Lines

AS308 processes the source program one line at a time. Lines are separated by the new line
character. A section from a character immediately after the new line character to the next new line
character is assumed to be one line. The maximum number of characters that can be written in
one line is 255. Lines are classified into five types by the content written in the line. Table 3.2.6
shows the method for writing each type of line.
• Directive command line
• Assembly source line
• Label definition line
• Comment line
• Blank line

Table 3.2.6 Types of Lines

Label Definition Line

Function
 This is the line in which only a label name is
 written.

Description method
 Always be sure to write a colon (:) immediately
 following the label name.

 Example:

start:
label: .BLKB 1
main: nop
loop:

Directive Command Line

Function
 This is the line in which as30 directive command
 is written.

Description method
 Only one directive command can be written in one
 line. A comment can be written in the directive
 command line.
 Precautions
 No directive command can be written along
 with a mnemonic in the same line.

 Example:
 .SECTION program,DATA

.ORG 00H
sym .EQU 0
work: .BLKB 1

.ALIGN

.PAGE ''newpage''

.ALIGN

Assembly Source Line

Function
 This is the line in which a mnemonic is written.

Description method
 A label name (at beginning) and a comment can be
 written in the assembly source line.
 Precautions
 Only one mnemonic can be written in one line.
 No mnemonic can be written along with a
 directive command in the same line.

 Example:
MOV.W #0,R0
RTS

main: MOV.W #0,A0
RTS

Comment Line

Function
This is the line in which only a comment is
written.

Description method
 Always be sure to write a semicolon (;) before
 the comment.

 Example:
; Comment line
 MOV.W #0,A0

Blank Line

Function
 This is the line in which no meaningful character is written.

Description method
 Write only a space, tab, or new line code in this line.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 120 of 229

3.2.2 Address Control

The following explains the AS308 system address control method.
The AS308 system does not take the RAM and ROM sizes into account as it controls memory
addresses. Therefore, consider the actual address range in your application when writing the source
programs and linking them.

Method of Address Control

The AS308 system manages memory addresses in units of sections. The division of each section
is defined as follows. Sections cannot be nested as they are defined.

Division of section
(1) An interval from the line in which directive command ".SECTION" is written to the line in which

the next directive command ".SECTION" is written
(2) An interval from the line in which directive command ".SECTION" is written to the line in which

directive command ".END" is written

Figure 3.2.1 Range of sections in AS308 system

Range of ram section

Range of program section

Range of sub1 sectionAAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

.SECTION ram,DATA
work: .BLKB 10

.SECTION program
JSR sub1

.SECTION sub1
nop
MOV.W #0,work
RTS

.END

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 121 of 229

Types of Sections

A type can be set for sections in which units memory addresses are managed. The instructions
that can be written in a section vary with each type of section.

Table 3.2.7 Types of Sections

Type

CODE
(program area)

DATA
(data area)

Content and Description Example

• This is an area where the program is written.
• All instructions except some directive commands that
 allocate memory can be written in this area.
• CODE-type sections must be specified in the absolute
 module that they be located in the ROM area.
 Example:

.SECTION program,CODE

• This is an area where memory whose contents can be
 changed is located.
• Directive commands that allocate memory can be written in
 this area.
• DATA-type sections must be specified in the absolute
 module that they be located in the RAM area.
 Example:

.SECTION mem,DATA

• This is an area where fixed data other than the program is
 written.
• ROMDATA-type sections must be specified in the absolute
 module that they be located in the ROM area.
 Example:

.SECTION const,ROMDATA

ROMDTA
(fixed data area)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 122 of 229

Section Attribute

A section in which units memory addresses are controlled is assigned its attribute when assembling
the program.

Table 3.2.8 Section Attributes

Specifying an even address for the start address

For relative attribute sections, the start address of the section that is determined when linking can
be set to be always located at an even address. If this adjustment is desired, specify "ALIGN" for
the operand of the directive command ".SECTION."

Example:
.section program,CODE,ALIGN

Attribute

Relative

Content and Description Example

• Addresses in the section become relocatable values when
 the program is assembled.
• The values of labels defined in the relative attribute section
 are relocatable.

• Addresses in the section become absolute values when
 the program is assembled.
• The values of labels defined in the absolute attribute
 section are absolute.
• To make a section assume the absolute attribute, specify
 the address with directive command ".ORG" in the line
 next to one where directive command ".SECTION" is
 written.

Example: .SECTION program,DATA
.ORG 1000H

Absolute

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 123 of 229

Address Control by AS308 System

The following shows how an assembly source program written in multiple files is converted into a
single execution format file.

Address control by as308Address control by as308Address control by as308Address control by as308Address control by as308
(1) For sections that will be assigned the absolute attribute, the assembler determines absolute

addresses sequentially beginning with a specified address.
(2) For sections that will be assigned the relative attribute, the assembler determines addresses

sequentially for each section beginning with 0. The start address of all relative attribute
sections are 0.

Address control by ln308Address control by ln308Address control by ln308Address control by ln308Address control by ln308
(1) Sections of the same name in all files are arranged in order of specified files.
(2) The start address of sections thus rearranged is determined as specified by the command

option (-order) of ln308.
(3) The start address of the first section is determined sequentially beginning with 0 unless

otherwise specified.
(4) Sections with different names are located at contiguous addresses in the order they are loaded

into ln308 unless otherwise specified.
(5) When an attempt is made to locate an absolute attribute section after a relative attribute section

of the same name, an error results.

Figure 3.2.2 Example of address control

Address values determined by as308

FILE1

.SECTION A

.SECTION B

000000H

FILE2

.SECTION A

.SECTION A

Address values determined by ln308

Absolute module file

.SECTION B

.ORG 008000H

.SECTION B

.ORG 008000H

.SECTION B

.SECTION C

Absolute attribute
section

Relative attribute
section

.SECTION A

.SECTION C

000000H

Operand values of .ORG
008000H

000000H

000000H

000400H

Operand values of .ORG
008000H

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 124 of 229

Reading Include File into Source Program

The AS308 system allows the user to read an include file into any desired line of the source
program. This helps to increase the program readability.

Reading include file into source program
Write the file name to be read into the source program in the operand of directive command
".INCLUDE". All contents of the include file are read into the source program at the position of this
line.
Example:

.INCLUDE initial.inc

Figure 3.2.3 Reading include file into source program

.SECTION memory,DATA
work: .BLKB 10
flags: .BLKW 1

.SECTION init

.INCLUDE initial.inc

.SECTION program,CODE
main:

.END

Source file (sample.a308) Include file (initial.inc)

loop:
MOV.W #10,A0
MOV.B #0,work[A0]
INC.W A0
JNZ loop
MOV.W #0,flags

.SECTION memory,DATA
000000 work: .BLKB 10
00000A flags: .BLKW 1

.SECTION init
000000 .INCLUDE initial
000000 loop: MOV.W #10,A0
000002 MOV.B #0,work[A0]
000006 INC.W A0
000007 JNZ loop
000009 MOV.W #0,flags

000000 .SECTION program,CODE
main:

.END

Addresses output by as308

After program is assembled

E
xp

an
si

on
 im

ag
e

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 125 of 229

Global and Local Address Control

The following explains how the values of labels, symbols, and bit symbols are controlled by the
AS308 system.
The AS308 system classifies labels, symbols, and bit symbols between global and local and
between relocatable and absolute as it handles them. These classifications are defined below.

• Global
The labels and symbols specified with directive command ".GLB" are handled as global labels
and global symbols, respectively.
The bit symbols specified with directive command ".BTGLB" are handle as global bit symbols.
If a name defined in the source file is specified as global, it is made referencible from an external
file.
If a name not defined in the source file is specified as global, it is made an external reference
label, symbol, or bit symbol that references a name defined in an external file.

• Local
All names are handled as local unless they are specified with directive command ".GLB" or
".BTGLB".
Local names can be referenced in only the same file where they are defined.
Local names are such that the same label name can be used in other files.

• Relocatable
The values of local labels, symbols, and bit symbols within relative sections are made relocatable.
The values of externally referenced global labels, symbols, and bit symbols are made relocatable.

• Absolute
The values of local labels, symbols, and bit symbols defined in an absolute attribute section are
made absolute.

The labels, symbols, and bit symbols handled as absolute have their values determined by as308.
The values of all other labels, symbols, and bit symbols are determined by ln308(Note) when linking
programs.

Figure 3.2.4 shows the relationship of various types of labels.

Note: A warning is output if linking resulted in any of these values exceeding the assembler-determined range in which branch instructions
or addressing modes can be specified.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 126 of 229

Figure 3.2.4 Relationship of labels

.GLB ver,sub1,port

.SECTION device

.ORG 400H
port: .BLKW 1

.SECTION program

.ORG 8000H
main:

JSR sub1
.SECTION str,ROMDATA

ver: .BYTE "program version 1"
.END

file1.a30

Declaration of label as global (essential)

 Absolute labels in file1
 port :Global; it can be referenced from external file.
 main :Local

 Relocatable labels in file1
 ver :Global; it can be referenced from external file.
 sub1 :Global; it references external file.

.GLB ver,sub1,port

.SECTION program

.ORG 0C000H
sub1:

LDM.W #0,A0
loop_s1:

LDM.B ver[A0],port
INC.W A0
CMP.B ver[A0],0
JNZ loop_s1
RTS
.END

file2.a30

Declaration of label as global (essential)

 Absolute labels in file2
 sub1 :Global; it can be referenced from external file.
 loop_s1 :Local

 Relocatable labels in file2
 ver :Global; it references external file.
 port :Global; it references external file.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 127 of 229

3.2.3 Directive Commands

In addition to the M16C/80 series machine language instructions, the directive commands of the AS308
system can be used in the source program. Following types of directive commands are available. This
section explains how to use each type of directive command.

(1)Address control command
To direct address determination when assembling the program.

(2)Assemble control directive command
To direct execution of AS308.

(3)Link control directive command
To define information for controlling address relocation.

(4)List control directive command
To control the format of list files generated by AS308.

(5)Branch optimization control directive command
To direct selection of the optimum branch instruction to AS308.

(6)Conditional assemble control directive command
To choose a block for which code is generated according to preset conditions when
assembling the program.

(7)Extended function directive command
To exercise other control than those described above.

(8)Directive commands output by cross tools
The directive commands output by the M16C/80-series tool software cannot be written in
source programs by the user. If this precaution is neglected, program operation cannot be
guaranteed.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 128 of 229

Address Control

Command

.ORG

.BLKB

.BLKW

.BLKA

.BLKL

.BLKF

.BLKD

.BYTE

.WORD

.ADDR

.LWORD

.FLOAT

.DOUBLE

.ALIGN

Function

Declares an address.

Allocates a RAM area in units of 1
byte.

Allocates a RAM area in units of 2
bytes.

Allocates a RAM area in units of 3
bytes.

Allocates a RAM area in units of 4
bytes.

Allocates a RAM area for floating-point
numbers in units of 4 bytes.

Allocates a RAM area in units of 8
bytes.

Stores data in the ROM area in length
of 1 byte.

Stores data in the ROM area in length
of 2 bytes.

Stores data in the ROM area in length
of 3 bytes.

Stores data in the ROM area in length
of 4 bytes.

Stores a floating-point number in the
ROM area in length of 4 bytes.

Stores a floating-point number in the
ROM area in length of 8 bytes.

Corrects odd addresses to even
addresses.

Usage and Description Example

Write this command immediately after
directive command ".SECTION". Unless this
command is found immediately after the
section directive command, the section is not
made a relative attribute section. This
command cannot be written in relative
attribute sections.

.ORG 0F0000H

.ORG offset

.ORG 0F0000H + offset

Write the number of areas to be allocated in
the DATA section. When defining a label
name, always be sure to add a colon (:).

Example:
.BLKB 1
.BLKW number
.BLKA number+1

label: .BLKL 1
label: .BLKF number
label: .BLKD number+1

When writing multiple operands, separate
them with a comma (,). When defining a label,
always be sure to add a colon (:).
For .FLOAT and .DOUBLE, write a floating-
point number in the operand.

Example:
 .SECTION value,ROMDATA
 .BYTE 1
 .BYTE 1,2,3,4,5
 .WORD "da","ta"
 .ADDR symbol
 .LWORD symbol+1
 .FLOAT 5E2

constant .DOUBLE 5e2

This command can be written in the relative or
absolute attribute section where address
correction is specified when defining a section.

Example:
.SECTION work,DATA,ALIGN

ram1: .BLKB 1
.ALIGN

ram2: .BLKW 2
.SECTION const,ROMDATA
.ORG 0F000H

data1: .BYTE 12H
.ALIGN

data 2: .WORD symbol
.END

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 129 of 229

Assemble Control

Command

.EQU

.BTEQU

.END

Function

Defines a symbol.

Defines a bit symbol.

Declares the end of the assemble
source.

Assumes an SB register value.

Chooses SB relative addressing.

Chooses bit instruction SB relative
addressing.

Assumes an FB register value.

Chooses FB relative addressing.

Reads a file into a specified position.

Usage and Description Example

Forward referenced symbol names cannot be
written. A symbol or expression can be written
in the operand. Symbols and bit symbols can
be specified as global.

Example:
symbol .EQU 1
symbol1.EQU symbol+symbol
bit0 .BTEQU 0,0
bit1 .BTEQU 1,symbol1

Write at least one instance of this command in
one assembly source file. For lines following
this directive command, as308 does not
perform code generation or any other
processing.

Example:
.END

Always be sure to set each register before
choosing the desired addressing mode.
Since register values are not set in the actual
register, write an instruction to set the register
value immediately before or after this directive
command.

Example:
.SB 400H

 LDC #400H,SB
.SBSYM sym1,sym2

.FB 500H
 LCD #580H,FB

.FBSYM sym3,sym4

Always be sure to write the extension for the
file name in the operand. Directive command
"..FILE" or a character string including "@"
can be written in the operand.

Example:
.INCLUDE initial.a30
.INCLUDE ..FILE@.inc

.SB

.SBSYM

.SBBIT

.FB

.FBSYM

.INCLUDE

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 130 of 229

Link Control

Command

.SECTION

.GLB

.BTGLB

.VER

Function

Defines a section name.

Specifies a global label.

Specifies a global bit symbol.

Outputs a specified character string to
a map file as version information.

Usage and Description Example

When specifying section type and ALIGN
simultaneously, separate them with a comma.
The section type that can be written here is
CODE, ROMDATA, or DATA. If section type
is omitted, CODE is assumed.
Example:

 .SECTION program,CODE
NOP

 .SECTION ram,DATA
 .BLKB 10
 .SECTION dname,ROMDATA
 .BYTE "abcd"
 .END

When writing multiple symbol names in
operand, separate them with a comma (,).
Example:

 .GLB name1,name2,mane3
 .BTGLB flag4
 .SECTION program

MOV.W #0,name1
BCLR flag4

Write operands within one line. This
command can be written only once in one
assembly source file.
Example:

 .VER 'strings'
 .VER "strings"

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 131 of 229

List Control

Branch Instruction Optimization Control

Command

.LIST

.PAGE

.FORM

Function

Controls line data output to a list file.

Breaks page at a specified position in
a list file.

Specifies a number of columns and
number of lines in one page of a list
file.

Usage and Description Example

Write 'OFF' in the operand to stop line output
or 'ON' to start line output. If this specification
is omitted, all lines are output to the list file.
Example:

 .LIST OFF
MOV.B #0,R0L
MOV.B #0,R0L
MOV.B #0,R0L

.LIST ON

Enclose the operand with single (') or double
(") quotations when writing it. The operand
can be omitted.
Example:

.PAGE

.PAGE "strings"

.PAGE 'strings'

This command can be written a number of
times in one assembly source file. Symbols
can be used to specify the number of columns
or lines. Forward referenced symbols cannot
be used, however. If this specification is
omitted, the list file is output with 140 columns
and 66 lines per page.
Example:

.FORM 20,80

.FORM 60

.FORM ,100

.FORM line,culmn

Command

.OPTJ

Function

Controls optimization of branch
instruction and subroutine call.

Usage and Description Example

Various items can be written in the operand here,
such as those for optimum control of a branch
instruction and selection of an unconditional branch
instruction or subroutine call instruction to be
excluded from optimization. These items can be
specified in any order and can be omitted. If
omitted, the initial value or previously specified
content is assumed for the jump distance.
Example:
Following combinations of operands can be written.

.OPTJ OFF

.OPTJ ON

.OPTJ ON,JMPW

.OPTJ ON,JMPW,JSRW

.OPTJ ON,JMPW,JSRA

.OPTJ ON,JMPA

.OPTJ ON,JMPA,JSRW

.OPTJ ON,JMPA,JSRA

.OPTJ ON,JMRW

.OPTJ ON,JMRA

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 132 of 229

Extended Function Directive Commands

Command

.ASSERT

?

..FILE

@

Function

Outputs a specified character string to a
file or standard error output device.

Specifies and references a temporary
label.

Indicates source file name information.

Concatenates character strings before
and after @.

Usage and Description Example

When outputting a character string enclosed
with double quotations to a file, specify the file
name following ">" or ">>". The bracket ">"
creates a new file, so a message is output to it.
If a file of the same name exists, a message is
overwritten in it. The bracket ">>" outputs a
message along with the contents of the file. If
the specified file does not exist, it creates a
new file. Directive command "..FILE" can be
written in the file name.
Example:

 .ASSERT "string" > sample.dat
 .ASSERT "string" >> sample.dat
 .ASSERT "string" > ..FILE

Write "?:" in the line to be defined as a
temporary label. To reference a temporary
label that is defined immediately before, write
"?-" in the instruction operand. To reference a
temporary label that is defined immediately
after, write "?+" in the instruction operand.
Example:

?:
JMP ?+
JMP ?-

?:
JMP ?-

This command can be written in the operand of
directive command ".ASSERT" or ".INCLUDE".
If command option "-F" is specified, "..FILE" is
fixed to the source file name that is specified in
the command line. If the option is omitted, the
indicated source file name is the file name
where "..FILE" is written.
Example:

 .ASSERT "sample" > ..FILE
 .INCLUDE ..FILE@.inc
 .ASSERT "sample" > ..FILE@.mes

This command can be written a number of
times in one line. If the concatenated character
strings are going to be used as a name, do not
enter a space or tab before and after this
command.
Example:

 .ASSERT "sample" > ..FILE@.dat

Following macro definition is also possible:
mov_nibble .MACRO p1,src,p2,dest

MOV@p1@p2 src,dest
.ENDM

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 133 of 229

Conditional Assemble Directive Commands

Command

.IF

.ELIF

.ELSE

.ENDIF

Function

Indicates the beginning of conditional
assemble.

Indicates condition for conditional
assemble.

Indicates the beginning of a block to be
assembled when condition is false.

Indicates the end of conditional
assemble.

Usage and Description Example

Always be sure to write a conditional
expression in the operand.
Example:

.IF TYPE==0
.BYTE "Proto Type Mode"

.ELIF TYPE>0
.BYTE "Mass Production Mode"

.ELSE
.BYTE "Debug Mode"

.ENDIF

Rules for writing conditional expression:
The assembler does not check whether the
operation has resulted in an overflow or
underflow. Symbols cannot be forward
referenced (i.e., symbols defined after this
directive command are not referenced). If a
forward referenced or undefined symbol is
written, the assembler assumes value 0 for the
symbol as it evaluates the expression.
Typical description of conditional expression:

sym < 1
sym < 1
sym+2 < data1
sym+2 < data1+2
'smp1' ==name

Always be sure to write a conditional
expression in the operand. This directive
command can be written a number of times in
one conditional assemble block.
Example:
Same as described above

This directive command can be written more
than once in the conditional assemble block.
This command does not have an operand.
Example:
Same as described above

This directive command must be written at least
once in the conditional assemble block.This
command does not have an operand.Example:
Same as described above

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 134 of 229

3.2.4 Macro Functions

This section explains the macro functions that can be used in AS308. The following shows the
macro functions available with AS308:

• Macro function
A macro function can be used by defining it with macro directive commands ".MACRO" to
".ENDM" and calling the defined macro.

• Repeat macro function
A repeat macro function can be used by writing macro directive commands ".MREPEAT" to
".ENDM".

Figure 3.2.5 shows the relationship between macro definition and macro call.

Macro Definition

To define a macro, use macro directive command ".MACRO" and define a set of instructions
consisting of more than one line in one macro name. Use ".ENDM" to indicate the end of definition.
The lines enclosed between ".MACRO" and ".ENDM" are called the macro body.

All instructions that can be written in the source program but a bit symbol can be used in the macro
body. Macros can be nested in up to 65,535 levels including macro definitions and macro calls.
Macro names and macro arguments are case-sensitive, so they are discriminated between
uppercase and lowercase letters.

Macro Call

The contents of the macro body defined as a macro can be called into a line by writing the macro
name defined with directive command ".MACRO" in that line. Macro names cannot be referenced
externally. When calling the same macro from multiple files, define a macro in an include file and
include that file to call the macro.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 135 of 229

Figure 3.2.5 Example 1 of macro definition and macro call

Macro Local

Macro local labels declared with directive command ".LOCAL" can be used in only the macro
definition. Labels declared to be macro local are such that the same label can be written anywhere
outside the macro. Figure 3.2.6 shows a description example. In this example, m1 is the macro
local label.

Figure 3.2.6 Example 2 of macro definition and macro call

mac .MACRO p1,p2,p3
.IF ..MACPARA == 3

.IF 'p1' == 'byte'
MOV.B #p2,p3

.ELSE
MOV.W #p2,p3

.ENDIF
.ELIF ..MACPARA == 2

.IF 'p1' == 'byte'
MOV.B p2,R0L

.ELSE
MOV.W p2,R0

.ENDIF
.ELSE

MOV.W R0,R1
.ENDIF
.ENDM

.SECTION program
main

:mac word,10,r0

.END

Macro call

Example of source program

.SECTION program
main:

.IF 3 == 3
.ELSE

MOV.W #10,R0
.ENDIF

.ENDIF

.END

After expansion

Macro
definition part

Macro
expansion part

Actual argument

Dummy argument

name .MACRO source,dest,top
.LOCLA m1

m1:
nop
jmp m1

.ENDM

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 136 of 229

Repeat Macro Function

The macro body enclosed with macro directive commands ".MREPEAT" and ".ENDM" is expanded
into a specified line repeatedly as many times as specified. Macro call of a repeat macro is not
available.

Figure 3.2.7 shows the relationship between macro definition and macro call of a repeat macro.

Figure 3.2.7 Example 3 of macro definition and macro call

rep .MACRO num
.MREPEAT num

.IF num > 49

.EXITM

.ENDIF
MOV.B #0,mem + ..MACREP
nop
.ENDR

.ENDM

.SECTION program
main:

rep 3

.END

.SECTION program
main:

MOV.B #0,mem + 1
nop
MOV.B #0,mem + 2
nop
MOV.B #0,mem + 3
nop

.END

Macro call

Example of source program

After expansion

Macro
definition part

Macro
expansion part

Actual argument

Dummy argument

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 137 of 229

Macro Directive Commands

There are following types of macro commands available with AS308:

• Macro directive commands
These commands indicate the beginning, end, or suspension of a macro body and declare a local
label in the macro.

• Macro symbols
These symbols are written as terms of an expression in macro description.

• Character string functions
These functions show information on a character string.

Macro Directive Commands

Command

.MACRO

.ENDM

.LOCAL

.EXITM

.MREPEAT

.ENDR

Function

Defines a macro name and
indicates the beginning of macro
definition.

Indicates the end of macro
definition.

Declares that the label shown in
the operand is a macro local label.

Forcibly terminates expansion of
a macro body.

Indicates the beginning of repeat
macro definition.

Indicates the end of repeat macro
definition.

Usage and Description Example

Always be sure to write a conditional expression
in the operand. Up to 80 dummy arguments can
be written. Do not enclose a dummy argument
with double quotations.
<Description format>
 Macro definition
 (macro name) .MACRO [(dummy argument)
 [,(dummy argument)...]]
 Macro call
 (macro name) [(actual argument)[,(actual
 argument)...]]
<Description example>
 Refer to Figure 3.2.5.

Write this command in relation to ".MACRO".
<Description example>
 Refer to Figure 3.2.5.

Write this command within the macro body.
Multiple labels can be written by separating
operands with a comma. The maximum number
of labels that can be written in this way is 100.
<Description example>
 Refer to Figure 3.2.6.

Write this command within the body of macro
definition.
<Description example>
 Refer to Figure 3.2.7.

The maximum number of repetitions is 65,535.
<Description example>
 Refer to Figure 3.2.7.

Write this command in relation to ".MREPEAT".
<Description example>
 Refer to Figure 3.2.7.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 138 of 229

Macro Symbol

Character String Function

Command

..MACPARA

..MACREP

Function

Indicates the number of actual
arguments given when calling a
macro.

Indicates the number of times a
repeat macro is expanded.

Usage and Description Example

This symbol can be written in the body of
macro definition as a term of an expression. If
written outside the macro body, value 0 is
assumed.
<Description example>
Refer to Figure 3.2.5.

This symbol can be written in the body of
macro definition as a term of an expression. It
can also be written as an operand of
conditional assemble. The value increments
from 1 to 2, 3, and so on each time the macro
is repeated. If written outside the macro body,
value 0 is assumed.
<Description example>
Refer to Figure 3.2.7.

Command

.LEN

.INSTR

.SUBSTR

Function

Indicates the length of a character
string written in operand.

Indicates the start position of a
search character string in
character strings specified in
operand.

Extracts a specified number of
characters from the character
string position specified in
operand.

Usage and Description Example

Always be sure to enclose the operand with
brackets { } and the character string with
quotations. Character strings can be written
using 7-bit ASCII code characters. This
function can be written as a term of an
expression.
<Description format>
 .LEN {"(string)"}
 .LEN {'(string)'}
<Description example>
 Refer to Figure 3.2.8.

Always be sure to enclose the operand with
brackets { } and the character string with
quotations. Character strings can be written
using 7-bit ASCII code characters. If the
search start position = 1, it means the
beginning of a character string.
<Description format>
 .INSTR {"(string)","(search character string)",
 (search start position)}
 .INSTR {'(string)','(search character string)',
 (search start position)}
<Description example>
 Refer to Figure 3.2.9.

Always be sure to enclose the operand with
brackets { } and the character string with
quotations. Character strings can be written
using 7-bit ASCII code characters. If the
extraction start position = 1, it means the
beginning of a character string.
<Description format>
 .SUBSTR {"(string)",(start position),(number
 of characters)}
 .SUBSTR {'(string)',(start position),(number
 of characters)}
<Description example>
 Refer to Figure 3.2.10.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 139 of 229

Example of .LEN Statement

In the example of Figure 3.2.8, the length of a specified character string is "13" for "Printout_data"
and "6" for "Sample".

Figure 3.2.8 Example of .LEN statement

Example of .INSTR Statement

In the example of Figure 3.2.9, the position (7) of character string "se" from the beginning x (top) of
a specified character string (japanese) is extracted.

Figure 3.2.9 Example of .INSTR statement

bufset .MACRO f1,f2
buffer@f1: .BLKB .LEN{'f2'}

.ENDM

Macro expansion

Macro
definition

bufset 1,Printout_data
bufset 2,Sample

buffer1 .BLKB 13
buffer2 .BLKB 6

Macro call

Example of macro description

top .EQU 1
point_set .MACRO source,dest,top
point .EQU .INSTR{'source','dest',top}

.ENDM

point_set japanese,se,1

point .EQU 7

Macro expansion

Macro
definition

Macro call

Example of macro description

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 140 of 229

Example of .SUBSTR Statement

In the example of Figure 3.2.10, the length of a character string given as the macro's actual
argument is given to the operand of ".MREPEAT". Each time the ".BYTE" line is executed,
"..MACREP" is increased from 1 to 2, 3, 4, and so on. Consequently, characters are passed one
character at a time from the character string given as the actual macro argument to the operand of
".BYTE" sequentially beginning with the first character.

Figure 3.2.10 Example of .SUBSTR statement

name .MACRO data
.MREPEAT .LEN{'data'}
.BYTE .SUBSTR{'data',..MACREP,1}
.ENDR
.ENDM

name ABCD

.BYTE "A"

.BYTE "B"

.BYTE "C"

.BYTE "D"

Macro expansion

Macro
definition

Macro call

Example of macro description

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 141 of 229

3.2.5 Differences with M16C/60

AS308 (M16C/80) has new addressing modes, instruction sets, and assemble options that have been
added or changed from AS30 (M16C/60). But there are some addressing modes, instruction sets, and
assemble options that are removed and not included in AS308. This section describes those that have
been removed or changed.

Changed addressing modes

As the memory space in M16C/80 has been expanded from 1M to 16M, the address ranges that
can be accessed in all addressing modes, such as general instruction addressing and bit
instruction addressing, have been expanded. Namely, locations following address 100000H can
now be accessed.
Therefore, some addressing modes have become unusable in M16C/80, as described below.

(1)Following modes of specific instruction addressing have been removed:
(a) 20-bit absolute
(b)Address register relative with 20-bit displacement attached
(c)32-bit register direct
(d)32-bit address register indirect

* In M16C/80, general instruction addressing can be used for all of the above.

(2) Following modes of bit instruction addressing have been removed:
(a)Register direct

 For register bit manipulation in M16C/80, bits 0 to 7 only can be specified.

 Register direct in M16C/60 Register direct in M16C/80
(bits 0 to 15) (bits 0 to 7)
bit, R0 bit, R0L
bit, R1 bit, R0H
bit, R2 bit, R1L
bit, R3 bit, R1H
bit, A0 bit, A0(Only 8 low-order bits can be specified)
bit, A1 bit, A1(Only 8 low-order bits can be specified)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 142 of 229

Removed instruction sets

Following instructions have been removed and are not included in M16C/80:
(1)LDE instruction
(2)STE instruction
(3)LDINTB (LDC macro) instruction

* Because the memory space in M16C/80 has been expanded to 16M and because locations
following address 100000H can also be accessed by general instruction addressing, LDE and
STE instructions have been removed.

Compatibility with M16C/60 instructions (1)

In some instructions of the M16C/80, src and dest that can be selected by each instruction (i.e.,
usable operands) are different from M16C/60.
AS308 supports "-mode60" as a command option necessary to assemble programs developed by
AS30 (M16C/60 series). The following shows how instructions are processed by AS308 when this
option is added.

(1)The format specifier written in MOV, CMP, ADD, SUB, AND, OR, NOT, PUSH, or POP
instruction is ignored.

(2)The addressing mode specifier of JMPI and JSRI instructions are ignored.
(3)When adding to the stack pointer (SP) in ADD instruction, the size specifier ".L" is assumed.
(4)The LDINTB instruction is replaced with the LDC instruction when processing the instruction.

Refer to Table 3.2.9.
(5)The operands of STZ, STNZ, and STZX instructions are processed in byte size.
(6)The LDE and STE instructions are replaced with the MOV instruction when processing the

instruction. Refer to Table 3.2.9.
(7)The 1-bit manipulate instruction is replaced with the corresponding AS308 (M16C/80) instruction

when processing the instruction. Refer to Table 3.2.9
(8)The bit manipulate instructions BCLR, BAND, BOR, BXOR, BNOT, BNAND, BNOR, BNXOR,

BTST, BNTST, BTSTC, BTSTS, and BMcnd also are replaced in the same way as for the
BSET instruction shown in the replacement instruction list.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 143 of 229

List of instructions replaced by the "-mode60" option

Table 3.2.9 Replacement Instruction List

AS30 source description format Results when replaced in AS308

LDINTB #imm20 LDC #imm24,INTB

LDE.B/W dsp:20, dest MOV.B/W abs, dest

LDE.B/W dsp:20[A0], dest MOV.B/W dsp[A0], dest

STE.B/W src, abs:20 MOV.B/W src, abs

STE.B/W src ,dsp:20[A0] MOV.B/W src, desp[A0]

BSET:G bit, R0
BSET bit, R0L
BSET bit, R0H

BSET:G bit, R1
BSET bit, R1L
BSET bit, R1H

BSET:G bit, A0 Can be assembled for bit positions 0 to 7

BSET:G bit, A1 Can be assembled for bit positions 0 to 7

BSET:G bit, [A0]
BITINDEX.B [A0]
BSET 0, 0

BSET:G bit, [A1]
BITINDEX.B [A1]
BSET 0, 0

BSET:G bit, base:8[A0]
BITINDEX.B [A0]
BSET 0, base

BSET:G bit, base:16[A0]
BITINDEX.B [A0]
BSET 0, base

BSET:G bit, base:8[A1]
BITINDEX.B [A1]
BSET 0, base

BSET:G bit, base:16[A1]
BITINDEX.B [A1]
BSET 0, base

BSET:G bit, base:8[SB]
BSET:G bit, base:11[SB]
BSET:G bit, base:16[SB]

BSET bit, base[SB]

BSET:G bit, base:8[FB] BSET bit, base[FB]

BSET:G bit, base:16 BSET bit, base

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 144 of 229

Compatibility with M16C/60 instructions (2)

The following instructions cannot be replaced with M16C/80 equivalents even by using the
command option "-mode60." For these instructions, compatibility can be maintained by changing
the source program directly.

(1)MOVA src, R0
(2)MOVA src, R1
(3)MOVA src, R2
(4)MOVA src,R3

src = dsp[A0],dsp[A1],dsp[SB],dsp[FB],abs16
(5)JMPI.A A1A0
(6)JSRI.A A1A0
(7)PUSHC INTBL
(8)PUSHC INTBH
(9)POPC INTBL
(10)POPC INTBH
(11)MUL.W generic, A0
(12)MULU.W generic, A0

generic = R0, R1, R2, R3, A0, A1, [A0], [A1],
 dsp[SB], dsp[FB], dsp[A0], dsp[A1], abs16

(13)LDC
(14)STC
(15)LDE.B/W [A1A0], generic
(16)STE.B/W generic, [A1A0]

generic = R0L/R0, R0H/R1, R1L/R2, R1H/R3, A0, A1, [A0], [A1],
 dsp[SB], dsp[FB], dsp[A0], dsp[A1], abs16

(17)BSET:G bit, R2
(18)BSET:G bit, R3
(19)Bit manipulate instructions BCLR, BAND, BOR, BXOR, BNOT, BNAND, BNOR, BNXOR,

BTST, BNTST, BTSTC, BTSTS, and BMcnd which are written in the same way as "BSET:G
bit,R2/R3" instruction.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 145 of 229

Removed assemble options

AS308 has had the following options removed.

(1)-M60, -M61, -M62, -M62E (options for identification of M16C groups)
(2)-A (option for operand evaluation in mnemonic)
(3)-P (option for structured description instructions)

Option for structured description

Although AS308 does not support the structured description of instructions, it supports "-mode60p"
as an option necessary to assemble programs developed by AS30 (M16C/60) using structured
description.

(1)-mode60p
After starting the structured description preprocessor (pre30) that accompanies the structured
description of AS30, the command option "-mode60" is processed.(note)

Note: Because AS308 does not support structured description, not all structured sources can be processed by AS308. Therefore,
structured description that expands into nonexistent mnemonics of AS308 or mnemonics that behave differently in AS308 cannot be
handled by adding this option. In such a case, the assembly source must be changed by the user.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 146 of 229

Chapter 4
Programming Style

4.1 Hardware Definition
4.2 Initial Setting of CPU
4.3 Setting when using Interrupts
4.4 Dividing Source File
4.5 A Little Tips...(Programing Technique)
4.6 Standard processing program

Chapter 4 Programming Style

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 147 of 229

4.1 Hardware Definition

This section explains how to define an SFR area and create an include file, how to allocate RAM
data and ROM data areas, and how to define a section.

4.1.1 Defining SFR Area

It should prove convenient to create the SFR area's definition part in an include file. There are two
methods for defining the SFR area as described below.

Definition by .EQU

Figure 4.1.1 shows an example for defining the SFR area by using directive command ".EQU".

Figure 4.1.1 Example of SFR area definition by ".EQU"

;--
; M30800 SFR Definition File
;--
PM0 .EQU 0004H ; Processor mode register 0
PM1 .EQU 0005H ; Processor mode register 1
CM0 .EQU 0006H ; System clock control register 0
CM1 .EQU 0007H ; System clock control register 1
WCR .EQU 0008H ; Wait control register
AIER .EQU 0009H ; Address match interrupt enable register
PRCR .EQU 000AH ; Protect register
DS .EQU 000BH ; External data bus widthcontrol register
MCD .EQU 000CH ; Main clock division register
;
WDTS .EQU 000EH ; Watchdog timer start register
WDC .EQU 000FH ; Watchdog timer control register
RMAD0 .EQU 0010H ; Address match instruction register 0
RMAD1 .EQU 0014H ; Address match instruction register 1
RMAD2 .EQU 0018H ; Address match instruction register 2
RMAD3 .EQU 001CH ; Address match instruction register 3
;
EIAD .EQU 0020H ; Emulator interrupt vector table register
EITD .EQU 0023H ; Emulator interrupt detect register
EPRR .EQU 0024H ; Emulator protect register
ROA .EQU 0030H ; ROM areaset register

Define the address at which processor mode register 0 is placed.
In the following lines, define the addresses of other registers.

Define the start address of a register
that consists of more than 2 bytes.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 148 of 229

Definition by .BLKB

Figure 4.1.2 shows an example for defining the SFR area by using directive command ".BLKB".

Figure 4.1.2 Example of SFR area definition by ".BLKB"

;--
; M30800 SFR Definition File
;--

.SECTION SFR,DATA

.ORG 000004H
;
PM0 .BLKB 1 ; Processor mode register 0
PM1 .BLKB 1 ; Processor mode register 1
CM0 .BLKB 1 ; System clock control register 0
CM1 .BLKB 1 ; System clock control register 1
WCR .BLKB 1 ; Wait control register
AIER .BLKB 1 ; Address match interrupt enable register
PRCR .BLKB 1 ; Protect register
DS .BLKB 1 ; External data bus widthcontrol register
MCD .BLKB 1 ; Main clock division register
;

.ORG 00000EH
WDTS: .BLKB 1 ; Watchdog timer start register
WDC: .BLKB 1 ; Watchdog timer control register
RMAD0: .BLKA 1 ; Address match instruction register 0

.BLKB 1 ;
RMAD1: .BLKA 1 ; Address match instruction register 1

.BLKB 1
RMAD2: .BLKA 1 ; Address match instruction register 2

.BLKB 1
RMAD3: .BLKA 1 ; Address match instruction register 3

.BLKB 1
;

.ORG 000020H
EIAD .BLKA 1 ; Emulator interrupt vector table register
EITD .BLKB 1 ; Emulator interrupt detect register
EPRR .BLKB 1 ; Emulator protect register
;

.ORG 000030H
ROA .BLKB 1 ; ROM area set register
DBA .BLKB 1 ; Debug monitor area set register
EXA .BLKB 1 ; Expansion area set register 0
EXA .BLKB 1 ; Expansion area set register 1

Declare a section name.

Specify an absolute address
according to the address at which
processor mode register 0 is placed.

Allocate an area where processor
mode register 0 is placed.

Note that unless 0000EH is specified
for the absolute address here, the area
for the watchdog timer start register will
be set at 0000BH, a location next to the
protect register.

Allocate areas even for locations
where nothing is placed.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 149 of 229

Creating Include File

When creating the source program in separate files, create an include file for SFR definition and
other parts that are used by multiple files. Normally add an extension ".INC" for the include file.

Precautions on creating include file
(1) When using ".EQU" in include file

Directive command ".EQU" defines values for symbols. It can also be used to define
addresses as in SFR definition. However, since this is not a command to allocate memory
areas, make sure that the addresses defined with it will not overlap. The include file created
using ".EQU" can be used in multiple files by reading it in.

(2) When using ".ORG" in include file
If an include file created using ".ORG" is read into multiple files, a link error will result. This is
because the include file contains the absolute addresses specified by ".ORG". Consequently,
the defined addresses overlap with each other.

(3) When using ".BLKB", ".BLKW", and ".BLKA" in include file
Directive commands ".BLKB", ".BLKW", and ".BLKA" are used to allocate memory areas. If an
include file created using these directive commands is read into multiple files, areas will be
allocated separately in each file. Although no error may occur when using symbols in the
include file locally, care must be taken when using them globally because it could result in
duplicate definitions.
If use of a common area in multiple files is desired, define the area-allocated part in a shared
definition file and link it as one of the source files. Then define the symbol's global specification
part in an include file.

Reading Include File into Source File

Use directive command ".INCLUDE" to read an include file into the source file. Specify the file
name to be read in with a full name.

Example:
When reading an include file "M30800.INC" that contains a definition of the SFR area
.INCLUDE M30800.INC

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 150 of 229

4.1.2 Allocating RAM Data Area

Use the following directive commands to allocate a RAM area:

.BLKB Allocates a 1-byte area (integer)

.BLKW Allocates a 2-byte area (integer)

.BLKA Allocates a 3-byte area (integer)

.BLKL Allocates a 4-byte area (integer)

.BLKF Allocates a 4-byte area (floating-point)

.BLKD..... Allocates a 8-byte area (floating-point)

Example for Setting Up Work Area

Figure 4.1.3 shows an example for setting up a work area.

Figure 4.1.3 Example for setting up a work area

char

short

long

addr

2 bytes

3 bytes

1 byte
nH

4 bytes

n + 1H

n + 3H

n + 6H

char: .BLKB 1

short: .BLKW 1

addr: .BLKA 1

long: .BLKL 1

RAM

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 151 of 229

4.1.3 Allocating ROM Data Area

Use the directive commands listed below to set fixed data in ROM. For a description example, refer to
Section 4.1.5, "Sample Program List 1 (Initial Setting 1)".

.BYTE Sets 1-byte data (integer)

.WORD Sets 2-byte data (integer)

.ADDR Sets 3-byte data (integer)

.LWORD Sets 4-byte data (integer)

.FLOAT Sets 4-byte data (floating-point)

.DOUBLE ... Sets 8-byte data (floating-point)

Retrieving Table Data

Figure 4.1.4 shows an example of a data table. Figure 4.1.5 shows a method for accessing this
table by using address register relative addressing.

Figure 4.1.4 Example for setting a data table

Figure 4.1.5 Example for retrieving data table

12H

34H

1 byteDATA_TABLE:

ROM

56H

78H

1 byte

1 byte

1 byte

MOV.W#1,A0

MOV.B DATA_TABLE[A0],R0L ;Stores the data table's 2nd byte (34H) in R0L.

DATA_TABLE:

.BYTE 12H,34H,56H,78H ;Sets 1-byte data.

·
·
·
·
·
·
·

·
·
·
·

·
·
·
·

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 152 of 229

4.1.4 Defining a Section

Directive command ".SECTION" declares a section in which a program part from the line where this
directive command is written to the next ".SECTION" is allocated.

Description Format of Section Definition

.SECTION section name [,(section type), ALIGN]
Specification in [] can be omitted.

A range of statements from one directive command ".SECTION" to a position before the line where
the next ".SECTION" or directive command ".END" is written is defined as a section. Any desired
section name can be set. Furthermore, one of section types (DATA, CODE, or ROMDATA) can be
set for each section. Note that the instructions which can be written in the section vary with this
section type. For details, refer to AS308 User's Manual.
If ".ALIGN" is specified for a section, the linker (ln308) locates the beginning of the section at an
even address.

Example for Setting Up Sections

Figure 4.1.6 shows an example for setting up each section.

Figure 4.1.6 Example for setting up sections

SECTION WORK,DATA
work: BLKB 1

 ·
 ·

.SECTION PROGRAM
NOP
 ·
 ·

.SECTION PROGRAM,CODE
NOP
 ·
 ·

.SECTION CONST,ROMDATA,ALIGN
.BYTE 12H
.END

WORK
section

PROGRAM
section

CONST
section

Specifies a section name, a section type,
and that the beginning of the section be
located at an even address.

Specifies only a section name.
(The assembler assumes section type CODE as it
processes this line.)

Specifies a section name and a
section type.

Specifies a section name and a section
type.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 153 of 229

Section Attributes

Each section is assigned an attribute when assembling the program. There are two attributes:
relative and absolute.
(1) Relative attribute

• Location of each section can be specified when linking source files. (Relocatable)
• Addresses in the section are made relocatable values when assembling the program.
• The values of labels defined in this type of section become relocatable.

(2) Absolute attribute
• A section is assigned an absolute attribute and handled as such by specifying addresses with

".ORG" immediately after directive command ".SECTION".
• Addresses in the section are made relocatable values when assembling the program.
• The values of labels defined in this type of section become absolute.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 154 of 229

4.1.5 Sample Program List 1 (Initial Setting 1)

;*********************** Include***
;

.INCLUDE M30800.INC
;
;************************ Symbol definition **
;
RAM_TOP .EQU 000400H ;Start address of RAM
RAM_END .EQU 002BFFH ;End address of RAM
ROM_TOP .EQU 0FE0000H ;Start address of ROM
FIXED_VECT_TOP .EQU 0FFFFDCH ;Start address of fixed vector
SB_BASE .EQU 000400H ;Base address of SB relative addressing
FB_BASE .EQU 000580H ;Base address of FB relative addressing
ISTACK_SIZE .EQU 300H ;Interrupt stack area size
;
;*********************** Allocation of work RAM area **************************************
;

.SECTION WORK,DATA

.ORG RAM_TOP
;
WORKRAM_TOP:
char: .BLKB 1 ;Allocates a 1-byte area.
short: .BLKW 1 ;Allocates a 2-byte area.
addr: .BLKA 1 ;Allocates a 3-byte area.
long: .BLKL 1 ;Allocates a 4-byte area.
WORKRAM_END:
;
;*********************** Definition of bit symbo **
;
char_b0 .BTEQU 0,char ; Bit 0 of char
short_b1 .BTEQU 1,short ; Bit 1 of short
addr_b2 .BTEQU 2,addr ; Bit 2 of addr
long_b3 .BTEQU 3,long ; Bit 3 of long
;
;********************** Program area ***
;==============Startup =======================================
;

.SECTION PROGRAM,CODE

.ORG ROM_TOP
START:

LDC #RAM_END+1,ISP ; Sets initial value in stack pointer(ISP).
;

MOV.B #03H,PRCR ; Removes protection.
MOV.W #0183H,PM0 ; Sets processor mode register 0 and 1.
MOV.W #2008H,CM0 ; Sets system clock control register.
MOV.B #12H,MCD ; Sets main clock division register.
MOV.B #0,PRCR ; Protects all registers.

;

Do not add ":" (colon) for a bit symbol.

Add ":" (colon) at the end of a label name.

Reads include file into source file.

Matched to hardware RAM area.

Must be matched to hardware and
the contents selected in programming.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 155 of 229

MOV.W #0,PS0 ; Sets function select register A0 and A1.
MOV.B #0,PS2 ; Sets function select register A2.
MOV.W #0,PSL0 ; Sets function select register B0 and B1.
MOV.B #0,PSL2 ; Sets function select register B2.
MOV.B #0,PSC ; Sets function select register C.
BSET 2,PRCR ; Remote protection.

; (Write function select register A3 enabled)
MOV.B #0,PS3 ; Sets function select register A3.

;
MOV.B #03H,DS ; Sets external data bus width control register.
MOV.B #85H,WCR ; Sets wait control register.

;
LDC #80H,FLG ; Sets initial value in flag register.(Sets U = 1)
LDC #(RAM_END-ISTACK_SIZE)+1,SP ; Sets initial value in stack pointer(USP).

;
MOV.W #0FFF0H,PUR2 ; Connects internal pull-up registers to ports P6 through P10.

;
MOV.B #0FFH,03CBH ; Sets initial value in SFR reserved area.
MOV.W #0FFFFH,03CEH
MOV.W #0FFFFH,03D2H

;
.SB SB_BASE ; Declares SB register value to the assembler.
.FB FB_BASE ; Declares SB register value to the assembler.

LDC #SB_BASE,SB ; Sets initial value in SB register.
LDC #FB_BASE,FB ; Sets initial value in FB register.

;
MOV.W #0,R0
MOV.W #(RAM_END+1 - RAM_TOP)/2,R3 ; Clears WORK_RAM area in zero.

MOV.W #WORKRAM_TOP,A1
SSTR.W

;
;======================= Main program ==================================
;
MAIN:

MOV.B DATA_TABLE[A0],R0L
MOV.W #1234H,R1
BSET char_b0

;
;
' JMP MAIN
;
;===================== Dummy interrupt program ==========================
dummy:

REIT
;

Must be matched to hardware
and the contents selected in
programming.

Declaration to the
assembler.

Values declared to the
assembler are matched.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 156 of 229

Figure 4.1.7 Description example 1 for initial setting

;=================Fixed data area===================================
;
 .SECTION CONSTANT,ROMDATA ; Declares section name and section type.

.ORG XXXXXH ; Declares start address.
;
DATA_TABLE:
 .BYTE 12H,34H,56H,78H ; Sets 1-byte data.
 .WORD 1234H,5678H ; Sets 2-byte data.
 .ADDR 123456H,789ABCH ; Sets 3-byte data.
 .LWORD 12345678H,9ABCDEF0H ; Sets 4-byte data.
DATA_TABLE_END:
;
;*********************** Setting of fixed vector**************************************
;

.SECTION F_VECT,ROMDATA

.ORG FIXED_VECT_TOP

.LWORD dummy ; Undefined instruction interrupt vector

.LWORD dummy ; Overflow (INTO instruction) interrupt vector

.LWORD dummy ; BRK instruction interrupt vector

.LWORD dummy ; Address match interrupt vector

.LWORD dummy ; Not used.

.LWORD dummy ; Watchdog timer interrupt vector

.LWORD dummy ; Not used.

.LWORD dummy ; NMI interrupt vector

.LWORD START ; Sets reset vector.
;

.END

Must be matched to ROM area in hardware.

Set jump addresses sequentially
beginning with the least significant
address of the fixed vector.

Set the program start address for the
reset vector. Immediately after
power-on or after a reset is
deactivated, the program starts from
the address written in this vector.

Set jump addresses for unused interrupts in dummy
processing (REIT instruction only) to prevent the program
from running out of control when an unused interrupt is
requested.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 157 of 229

4.2 Initial Setting the CPU

Each register as well as RAM and other resources must be initial set immediately after power-on or
after a reset. If the CPU internal registers remain un-set or there is unintended data left in memory
before program execution, all this could cause the program to run out of control. Therefore, the
internal resources must be initial set at the beginning of the program. This initial setting includes
the following:

(1)Declaration to the assembler
(2)Initialization of the CPU internal registers, flags, and RAM area
(3)Initialization of work area
(4)Initialization of built-in peripheral functions such as port, timer, and interrupt

4.2.1 Setting CPU Internal Registers

After a reset, it is normally necessary to set up the registers related to the processor's operation mode,
system clock, and port functions.

Setting the processor mode and system clock

The Processor Mode Registers 0/1, System Clock Control Registers 0/1, and Main Clock Divide
Register are protected registers, so remove protection of these registers before you set them and
re-protect the registers after you finished setting them. Figure 4.2.1 shows an example of how to
set the registers.

Figure 4.2.1 Example for setting the processor mode and system clock

;--------------------------------Setting the processor mode and system clock---------------------------------
;

MOV.B #03H,PRCR ; Remove protection.
MOV.W #0183H,PM0 ; Sets processor mode registers 0 and 1.
MOV.W #2008H,CM0 ; Sets system clock control registers 0 and 1.
MOV.B #12H,MCD ; Sets main clock divide register.
MOV.B #0,PRCR ; Protects all registers.

;

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 158 of 229

Setting port functions

If a pin output function in M16C/80 is multiplexed between port output and peripheral function
output or a single pin is assigned multiple peripheral function outputs, it is necessary to select the
desired output function using Function Select Registers. Figure 4.2.2 shows an example of how to
set the Function Select Register.

Figure 4.2.2 Example for setting function select registers

4.2.2 Setting Stack Pointer

When using a subroutine or interrupt, the return address, etc. are saved to the stack. Therefore,
the stack pointer must be set before calling the subroutine or enabling the interrupt. For a setup
example, refer to Section 4.2.7, "Sample Program List 2 (Initial Setting 2)".

4.2.3 Setting Base Registers (SB, FB)

The M16C/80 series has an addressing mode called "base register relative addressing" to allow for
efficient data access. Since a relative address from an address that serves as the base is used for
access in this mode, it is necessary to set the base address before this addressing mode can be
used. For a setup example, refer to Section 4.2.7, "Sample Program List 2 (Initial Setting 2)".

;---------------------------Setting Function Select Registers---------------------------------
;

MOV.W #0,PS0 ; Set Function Select Registers A0 and A1
MOV.B #0,PS2 ; Set Function Select Register A2
MOV.W #0,PSL0 ; Set Function Select Registers B0 and B1
MOV.B #0,PSL2 ; Set Function Select Register A2
MOV.B #0,PSC ; Set Function Select Register C
BSET 2,PRCR ; Remote protection

; (Write to Pin Function Select Register A3 enabled)
MOV.B #0,PS3; Set Pin Function Select Register A3

;

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 159 of 229

4.2.4 Setting fixed interrupt vector (reset vector)

The M16C/80 series has two types of vectors available, a variable and a fixed vector. For details on how
to set the fixed interrupt vectors including a reset vector, refer to Section 4.2.6, "Sample List 2 (Initial
Settings 2)."

4.2.5 Setting internal peripheral functions

The following explains how to set the internal RAM, ports, timers, and DMA controller of the M16C/80
group. For details, refer to the functional description in the user's manual supplied with your
microcomputer.

Initial Setting Work Areas

Normally clear the work areas to 0 by initial setting. If the initial value is not 0, set that initial value
in each work area. Figure 4.2.3 shows an example for initial setting a work area.

Figure 4.2.3 Example for initial setting a work area

;--------------------------Clearing work RAM to 0 by string instruction------------------------------------
RAM_TOP .EQU 0400H
RAM_END .EQU 2BFFH
;

MOV.W #0,R0
MOV.W #(RAM_END + 1 - RAM_TOP) / 2,R3
MOV.W #WORKRAM_TOP,A1
SSTR.W ; Transfer a 0 from WORKRAM_TOP

; two times for (RAM_END + 1 - RAM_TOP).
;
;---------------------------Setting initial values in work RAM---

MOV.B #0FFH,char ; Set one byte of data.
;

MOV.B #0FFFFH,short ; Set one word of data.
;

MOV.W #0FFFFH,addr ; Set three bytes of data.
MOV.B #0FFH,addr + 2

;
MOV.L #0FFFFFFFFH,long ; Set one long word of data.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 160 of 229

Initial Setting Ports

It is when a port direction register is set for output that data is output from a port. To prevent
indeterminate data from being output from ports, set the initial value in each output port before
setting their direction register for output. Figure 4.2.4 shows an example for initial setting ports.

Figure 4.2.4 Example for initial setting ports

Setting Timers

When using the M16C/80 series built-in peripheral functions such as a timer, initial set the related
registers (in SFR area). Figure 4.2.5 shows an example for setting timer A0.

Figure 4.2.5 Example for setting timer

Note 1: Because the Port P9 Direction Register is a protected register, set the Protect Register bit 2 to 1 to remove the protection before
you set a value.

Note 2: The Port P9 Direction Register write enable bit (Protect Register bit 2) is reset to 0 by the next write instruction executed after
being write-enabled. Therefore, to change a port for input or output, be sure to set the Port P9 Direction Register immediately after
the instruction by which its write enable bit is set to 1. Also, make sure no interrupt or DMA transfer will occur during this time.

;--------------------------Initial setting ports----------------------
;

MOV.W#0FFFFH,P6 ; Sets initial value in ports P6 and P7.
MOV.W#0FFFFH,PD6 ; Sets ports P6 and P7 for output.
MOV.B #3CH,P9 ; Sets initial value in ports P9.

;
MOV.B #04H,PRCR ; Removes protect.(Note1)

MOV.W#0FFH,PD9 ; Sets ports P9 for output.(Note2)
;

;-------------------------Setting Timer A0----------------------------------
;
TA0R .BTEQU 3,TA0IC
TA0S .BTEQU 0,TABSR
;

MOV.B #01000000B,TA0MR ; Set Timer A0 Mode Register.
; (Mode: timer mode; divide ratio: 1/8)

MOV.W #2500 - 1,TA0 ; Set Timer A0 count value.
BCLR TA0R ; Clear Timer A0 interrupt request bit.

;
BSET TA0S ; Timer A0 starts counting.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 161 of 229

Setting the DMA controller

When using the DMAC, initial set the registers associated with it (CPU internal registers and SFR
area). The DMAC-related registers are shown in Figure 4.2.6.

Figure 4.2.6 DMAC-related registers

Note1: Before setting DMA2 and DMA3-related registers, always be sure to set Flag Register (FLG)'s register bank specification flag (B) to
1.

Note2: When using DMA2 and DMA3, note that fast interrupts cannot be used. Nor can the registers be saved and restored by register
bank switchover in an interrupt handling routine.

DCT0

DMA0

b15

b23

DMD0

DMD1

DCT1

DRC0

DRC1

DMA1

DSA0

DSA1

DRA0

DRA1

DCT2(R0)

DMA2(A0)

b15 b0

b23

DCT3(R1)

DRC2(R2)

DRC3(R3)

DMA3(A1)

DSA2(SB)

DSA3(FB)

DRA2(SVP)

DRA3(VCT)

b23 SVF

b15 b0

DMAC-related registers

Register bank 1

High -speed interrupt register

---------- When using 3 or more DMAC channels (DMA2, DMA3) ----------

---------- When using 1-2 DMAC channels (DMA0, DMA1) ----------

When using 3 or more DMAC channels, use Register Bank 1 and
Fast Interrupt Register as the registers for DMA2 and DMA3,
respectively.
Also, when setting values in each register, make sure values are
set in the registers enclosed in () .(Note1)(Note2)

b7 b0

DMA mode register 0

DMA mode register 1

DMA0 transfer count register

DMA1 transfer count register

DMA0 transfer count reload register

DMA1 transfer count reload register

DMA0 memory address register

DMA1 memory address register

DMA0SFR address register

DMA1SFR address register

DMA0 memory address reload register

DMA1 memory address reload register

DMA2 transfer count register

DMA3 transfer count register

DMA2 transfer count reload register

DMA3 transfer count reload register

DMA2 memory address register

DMA3 memory address register

DMA2SFR address register

DMA3SFR address register

Flag save register

DMA2 memory address reload register

DMA3 memory address reload register

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 162 of 229

Settings when using DMA controller channels 1 to 2 (DMA0, 1)

When using DMAC channels 1 to 2, the following shows an example of how to set the related
registers (CPU internal registers and SFR area).

Figure 4.2.7 Example 1 for setting the DMA controller

;---------------------------------------Setting DMA0--
;

MOV.B #00000011B,DM0SL ; Set cause of DMA0 request
LDC #32,DRC0 ; Set transfer count

; in DMA0 Transfer Count Reload Register
LDC #32,DCT0 ; Set transfer count in DMA0 Transfer Count Register
LDC #0FF0000H,DRA0 ; Set source address of transfer (memory)

; in DMA0 Memory Address Reload Register
LDC #0FF0000H,DMA0 ; Set destination address of transfer (memory)

; in DMA0 Memory Address Register
LDC #P6,DSA0 ; Set destination address of transfer (SFR)

; in DMA0 SFR Address Register
LDC #00001111B,DMD0 ; Set DMA Mode Register 0 and enable DMA transfer

; Unit of transfer: 16 bits
; Direction of transfer: Forward (memory) -> fixed (SFR)
; Transfer mode: Repeat transfer (DMA0 enabled)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 163 of 229

Settings when using 3 or more DMA controller channels (DMA2, 3)

When using 3 or more DMAC channels, the following shows an example of how to set the DMA2-
related registers (CPU internal registers and SFR area).

Figure 4.2.8 Example 1 for setting the DMA controller

Note: When using two or less DMAC channels, try using DMA0 and DMA1 as much as possible. If DMA2 and DMA3 are used, Register
Bank 1 and fast interrupts become unusable.

;--------------------------Setting DMAC channel 3 and those that follow (DMA2 or DMA3)--
;

FSET B ; Set register bank to 1
;

MOV.B #00001111B,DM2SL ; Set cause of DMA2 request
MOV.W #16,R2 ; Set transfer count

; in DMA2 Transfer Count Reload Register (R2)
MOV.W #16,R0 ; Set transfer count

; in DMA2 Transfer Count Register (R0)
LDC #U0RB,SB ; Set source address of transfer (SFR)

; in DMA2 SFR Address Register (SB)
LDC #0500H,SVP ; Set destination address of transfer (memory)

; in DMA2 Memory Address Reload Register (SVP)
MOV.L #0500H,A0 ; Set destination address of transfer (memory)

; in DMA2 Memory Address Register (A0)
FCLR B ; Return register bank to 0
LDC #00001111B,DMD1 ; Set DMA Mode Register 1 and enable DMA transfer

; Unit of transfer: 16 bits
; Direction of transfer: Fixed (SFR) -> forward direction (memory)
; Transfer mode: Repeat transfer (DMA2 enabled)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 164 of 229

4.2.6 Sample Program List 2 (Initial Setting 2)

;******************* Include **
;

.INCLUDE M3800.INC
;
;******************* Defined symbol ***
;
RAM_TOP .EQU 000400H ;Start address of RAM
RAM_END .EQU 002BFFH ;End address of RAM
ROM_TOP .EQU 0FB0000H ;Start address of ROM
FIXED_VECT_TOP .EQU 0FFFFDCH ;Start address of fixed vector
SB_BASE .EQU 00400H ;Base address of SB relative
FB_BASE .EQU 00580H :Base address of FB relative
ISTACK_SIZE .EQU 300H ;Size of interrupt stack area
;
;******************* Allocated work RAM area **************************************
;

.SECTION WORK,DATA

.ORG RAM_TOP
WORKRAM_TOP:
WORK_1: .BLKB 1
WORK_2: .BLKB 1
WORKRAM_END:
;
;**************************** Program area **
;=================== Start up ================================
;

.SECTION PROGRAM,CODE ;Declares section name and section type.

.ORG ROM_TOP ;Declares start address.
START:

LDC #RAM_END + 1,ISP ;Sets initial value in stack pointer(ISP).
;

MOV.B #03H,PRCR ;Removes protction.
MOV.W #0183H,PM0 ;Sets processor mode register 0 and 1.
MOV.W #2008H,CM0 ;Sets system clock control registers 0 and 1.
MOV.B #12H,MCD ;Sets main clock divide register.
MOV.B #0,PRCR ;Protects all register.

;
MOV.W #0,PS0 ;Sets function select register A0 and A1.
MOV.B #0,PS2 ;Sets function select register A2.
MOV.W #0,PSL0 ;Sets function select register B0 and B1.
MOV.B #0,PSL2 ;Sets function select register B2.
MOV.B #0,PSC ;Sets function select register C.
BSET 2,PRCR ;Removes protection.

;(Writes to pin function select register A3 enable)
MOV.B #0,PS3 ;Sets function select register A3.

To prevent the program from going wild when the NMI
interrupt (nonmaskable) is generated inadvertently
after a reset, set the interrupt stack pointer (ISP) at the
beginning of startup procedure.

For protected registers such as Processor Mode
Register, remove protection before you set them.
Then, when you finished setting the registers,
reprotect them.

Because Pin Output Function Select Register 3 is a protected
register, remove its protection before setting it.
Also, the Pin Output Function Select Register 3 write enable bit (
Protect Register bit 3) is reset to 0 by the next write instruction
executed after being write-enabled. Therefore, when setting initial
values, make sure the value is set in Pin Output Function Select
Register 3 immediately after the instruction by which its write
enable bit is set to 1.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 165 of 229

MOV.B #03H,DS ;Sets external data bus width control register.
MOV.B #85,WCR ;Sets wait control register.

;
LDC #80H,FLG ;Sets initial value flag register(U=1).
LDC #(RAM_END - ISTACK_SIZE) +1 ,SP ;Sets initial value in stack pointer(USP).

;
MOV.W #003FFH,PUR2 ;Connects internal pull-up registers to ports P6 through P10

;
MOV.B #0FFH,03CBH ;Sets initial value in SFR reserved area.
MOV.W #0FFFFH,03CEH
MOV.W #0FFFFH,03D2H

;
.SB SB_BASE ;Declares SB register value to the assembler.
.FB FB_BASE ;Declares FB register value to the assembler.
;

LDC #SB_BASE,SB ;Sets inittial value in SB register.
LDC #FB_BASE,FB ;Sets initial value in FB register.

;
MOV.W #0,R0 ;Clears work RAM area to 0.
MOV.W #(RAM_END + 1 - RAM_TOP) / 2 ,R3
MOV.W #WORKRAM_TOP,A1
SSTR.W

;=================== Main program ===
MAIN:

JSR INIT ;Sets initial value in work RAM.
MAIN_10:

BTST TA0R ;Determines TA0 interrupt request flag.
JNC MAIN_10
BCLR TA0R
JSR SUB_TA0 ;Processes timer A0.

;
;

JMP MAIN_10
;
;=================== INIT routine ===
INIT:
;---------------------------------- Initial setting work RAM and ports ---
;

MOV.B #0FFH,WORK_1
MOV.B #0FFH,WORK_2
MOV.B #0FFH,P6

;
;---------------------------------- Setting timer A0 --
;

MOV.B #01000000B,TA0MR ;Sets timer A0 mode register.
MOV.W #2500 - 1,TA0 ;Sets timer A0 count value.
BCLR TA0R ;Clears timer A0 interrupt request bit.
BSET TA0S ;Timer A0 start counting.

Addresses 03C9H and 03CBH to 03D3H
in the SFR area are reserved for use by
products to be developed in the future.
Always be sure to initialize addresses 03
CBH, 03CEH, 03CFH, 03D2H, and 03D3
H with the value "FFH."

Before RAM access (using SB or FB
relative addressing), set the SB and
FB registers.

Must always be consistent.

After initial setting timer-related
registers, set the count start flag.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 166 of 229

;-- Setting DMA0 --
MOV.B #00000011B,DM0SL ;Sets cause of DMA request.
LDC #32,DRC0 ;Sets transfer count.

;
LDC #32,DCT0 ;Sets transfer count in DMA0 transfer count register.
LDC #0FF0000H,DRA0 ;Sets source address of transfer(memory)

;in DMA0 memory address reload register.
LDC #0FF0000H,DMA0 ;Sets destination address of transfer(memory)

;in DMA0 memory address register.
LDC #P6,DSA0 ;Sets destination address of transfer(SFR)

;in DMA0 SFR address register.
LDC #00001111B,DMD0 ;Sets DMA mode register 0 and enable DMA transfer

;Unit of transfer : 16 bits
;Direction of transfer : Forward(memory)->fixed(SFR)
;Transfer mode : Repeat transfer(DMA0 enable)

INIT_END:
RTS

;============================= SUB_TA0 routine =======================================
SUB_TA0:

MOV.B WORK_1,R0L
INC.B R0L

;
;
SUB_TA0_END:

RTS
;
;============================= Dummy interrupt program =================================
dummy:

REIT
;
;**Setting fixed vectors **

.SECTION F_VECT,ROMDATA

.ORG FIXED_VECT_TOP
;

.LWORD dummy ;Undefined instruction interrupt vector

.LWORD dummy ;Overflow(INTO instruction)interrupt vector

.LWORD dummy ;BRK instruction interrupt vector

.LWORD dummy ;Address match interrupt vector

.LWORD dummy ;Unused

.LWORD dummy ;Watchdog timer interrupt vector

.LWORD dummy ;Unused

.LWORD dummy ;NMI interrupt vector

.LWORD START ;Sets reset vector.

.END

After setting all of DMA-related
registers, enable DMA (set channel
transfer mode select bit)

Figure 4.2.9 Description example 2 for initial setting

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 167 of 229

4.3 Setting when using Interrupts

This section describes the processing and the method of description necessary to execute
interrupt handling routines, as well as how to execute multiple interrupts.
Before an interrupt can be generated in the M16C/80 series, all of the following three conditions
must be met:

(1)Interrupt enable flag (I) = 1 (interrupt enabled)
(2)IPL < Software interrupt priority level of the interrupt generated
(3)Interrupt request bit for the interrupt used = 1 (interrupt requested)

In addition to the above three conditions, following processing are required before an interrupt
handling routine can be executed:

(1) Set Interrupt Table Register (INTB)
(2) Set variable/fixed vectors
(3) Set Interrupt Control Register
(4) Enable interrupt enable flag (I)
(5) Save and restore registers in interrupt handling routine

4.3.1 Setting Interrupt Table Register(INTB)

Since the vector tables for interrupts from internal peripheral functions in the M16C/80 series are
variable, it is necessary to set the start address of the vector using Interrupt Table Register (INTB)
before using interrupts.
The 256 bytes of space from the address specified by the Interrupt Table Register is the variable vector
area, with each vector consisting of 4 bytes. Each vector is assigned a software interrupt number,
together comprising 64 vectors from 0 to 63.
For setup examples, refer to Section 4.3.6, "Sample List 3 (Using Interrupts)."

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 168 of 229

4.3.2 Setting Variable/Fixed Vectors

When an interrupt occurs, the program jumps to the address that has been set for each cause of
interrupt. The part of memory in which this jump address is set is referred to as the "interrupt vector."
To set interrupt vectors, register the start address of each interrupt handler program in the variable/fixed
vector table. For an example of how the vectors actually are registered, refer to Section 4.3.6, "Sample
Program List 3 (Software Interrupt)".

Variable Vector Table

The variable vector table is a 256-byte interrupt vector table that starts from the address specified
by Interrupt Table Register (INTB). The vector table can be located anywhere in memory space
except the SFR area. One vector consists of 4 bytes, with each vector assigned software interrupt
numbers 0 to 63.

Figure 4.3.1 Variable vector table

(Software interrupt number)

AAAAAA
AAAAAA

INTB
 0

 1

 2

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAA

address

Variable vector table
(256 bytes)

AAAAAAAA
AAAAAAAA

AAAAA
AAAAA

AAAAA
AAAAA

AAAAA
AAAAA

Address, low

Address, high

Address, middle

AAAAA
AAAAA

00H

MSB LSB

Vector address + 0

Vector address + 3

Vector address + 2

Vector address + 1

Format in which interrupt vector
address is specified

62

63

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 169 of 229

4.3.3 Setting Interrupt Control Register

Bits 0-2 of each interrupt control register can be used to set the interrupt priority level of each interrupt.
When level = 0, the effect is the same as interrupts being disabled, so make sure the priority levels set
are equal to or greater than 1. The Interrupt Control Register bit 3 serves as an interrupt request flag.
This flag is 0 after a reset, but because this flag for some external pin interrupt may have been set to 1,
be sure to clear it to 0 before enabling the interrupt enable flag (I flag). For setup examples, refer to
Section 4.3.6, "Sample List 3 (Using Interrupts)."
For details about the bit configuration and priority levels of each interrupt control register, consult the
user's manual supplied with your microcomputer.

4.3.4 Enabling Interrupt Enable Flag(I flag)

Immediately after power-on and after a reset, interrupts are in disabled state. Therefore, interrupts must
be enabled in the program. This can be accomplished by setting the Flag Register (FLG)'s I flag to 1.
Because interrupts are enabled at the same time the I flag is set to 1, caution must be used to prevent
the program from going wild. To this end, always be sure to enable the I flag after making initial settings,
and not at the beginning of the program.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 170 of 229

4.3.5 Saving and Restoring Registers in Interrupt Handler Routine

When an interrupt is accepted, the following resources are automatically saved to the stack. For details
on how they are saved and restored to and from the stack, refer to Section 4.5.2, "Stack Area."

(1)Contents of PC (program counter)
(2)Contents of FLG (flag register)

Always be sure to use the REIT instruction to return from the interrupt handler routine. After the
interrupt processing is completed, this instruction restores the registers, return address, etc. from the
stack, thus
Except for automatically saved registers, if there are any registers that are likely to be modified in the
interrupt handling routine (e.g., registers used in interrupt handling), save them to the stack in software.
For an example of how to save and restore registers in an interrupt handling routine, refer to Figures
4.3.2 and 4.3.3.

Methods for Saving and Restoring Registers

If in addition to the automatically saved registers there is any register which is used in the interrupt
handler routine and, therefore, whose previous content needs to be retained, save it to the stack
area in software. There are two methods for saving and restoring this register. The following
shows the processing procedure for each method.

There are following two methods for saving/restoring registers.

(1) Saving and restoring by push/pop instructions
(1a) Saving registers individually

PUSH.B R0L
PUSH.W R1

(1b) Restoring registers individually
POP.B R0L
POP.W R1

(2a) Saving registers collectively
PUSHM R0,R1,R2,R3,A0,A1

(2b) Restoring registers collectively
POPM R0,R1,R2,R3,A0,A1

(2) Saving and restoring by register bank switchover
This method is effective when a reduction in interrupt handling overhead time is desired.
(a) Using register bank 1

FSET B
(b) Using register bank 0

FCLR B

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 171 of 229

Description of Interrupt Handling Program(1)

Figure 4.3.2 shows an example for writing an interrupt handling program.

Figure 4.3.2 Saving and restoring registers in interrupt handling

Note: If both register banks 0 and 1 are used in the main program, the method for saving and restoring registers by register bank switchover
cannot be used.

;******************Saving and restoring registers individually**************************************
INT_A0:

PUSH.B R0L ; Saves R0L.
PUSH.B R1L ; Saves R1L.
PUSH.W R2 ; Saves R2.

•
•

Interrupt handling
•
•

POP.W R2 ; Restores R2.
POP.B R1L ; Restores R1L.
POP.B R0L ; Restores R0L.

;
REIT ; Returns from interrupt.

;****************** Saving and restoring registers collectively**************************************
INT_A1:

PUSHM R0,R1,R2,R3 ; Saves registers R0, R1, R2, and R3
collectively.

•
•

Interrupt handling
•
•

POPM R0,R1,R2,R3 ; Restores registers R0, R1, R2, and R3
collectively.

REIT ; Returns from interrupt.
;

If registers are saved individually, be
sure when restoring them to reverse
the order in which they were saved.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 172 of 229

Description of Interrupt Handling Program(2)

If high-speed interrupt acknowledgment is desired, use the register bank switchover shown
below(Note).
Registers (R0, R1, R2, R3, A0, A1, SB, and FB) can be saved/restored by one instruction, "FSET
B" or "FCLR B" (number of execution cycles: 1).

Figure 4.3.3 Saving and restoring registers by register bank switchover

Note: If register banks 0 and 1 both are being used in the main program, registers cannot be saved/restored by register bank switchover.

AAAAA
AAAAA
AAAAA

AAAAAAA
AAAAAAA

AAAAA
AAAAA

AAAAA
AAAAA

AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA

AAAAAAA
AAAAAAA

R0

A0

R3

R2

R1

FB

SB

A1

Bank 1

AAAAAA
AAAAAA

AAAAAA
AAAAAA

AAAAAAAA
AAAAAAAA

AAAAAA
AAAAAA

AAAAAA
AAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

R0

A0

R3

R2

R1

FB

SB

A1

Bank 0

;*******************Saving and restoring registers by register bank switchover*******************
INT_A2:

FSET B ;Register bank is switched from 0 to 1.
.
.

Interrupt handling
.
.

;
REIT ;Return from interrupt

As the FLG content that has
been saved by REIT instruction
is restored, so the register bank
is restored from 1 to 0.

Registers in register bank 1
(R0, R1, R2, R3, A0, A1, SB,
and FB) are used in the
interrupt handler.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 173 of 229

4.3.6 Sample Program List 3 (Using interrupts)

;*********************** Include***
;

.INCLUDE M30800.INC
;
;************************ Define symbol **
;
RAM_TOP .EQU 000400H ; Start address of RAM
RAM_END .EQU 002BFFH ; End address of RAM
ROM_TOP .EQU 0FE0000H ; Start address of ROM
FIXED_VECT_TOP .EQU 0FFFFDCH ; Start address of fixed vector
SB_BASE .EQU 00400H ; Base address for SB relative
FB_BASE .EQU 00580H ; Base address for FB relative
ISTACK_SIZE .EQU 300H ; Size of interrupt stack area
;
;*********************** Allocated work RAM area **************************************
;

.SECTION WORK,DATA

.ORG RAM_TOP
WORKRAM_TOP:
WORK_1: .BLKW 1
ANS_L: .BLKW 1
ANS_H: .BLKW 1
WORKRAM_END:
;
;**********************Program area ***
;================== Startup======================================
;

.SECTION PROGRAM,CODE ; Declares section name and section type.

.ORG ROM_TOP ; Declares start address.
START:

LDC #RAM_END+1,ISP ; Sets initial value in stack pointer (ISP).
;

MOV.B #03H,PRCR ; Removes protection.
MOV.W #0183H,PM0 ; Sets processor mode register 0 and 1.
MOV.W #2008H,CM0 ; Sets system clock control registers 0 and 1.
MOV.B #12H,MCD ; Sets main clock divide register.
MOV.B #0,PRCR ; protects all registers.

;
MOV.W #0,PS0 ; Sets function select register A0 and A1.
MOV.B #0,PS2 ; Sets function select register A2.
MOV.W #0,PSL0 ; Sets function select register B0 and B1.
MOV.B #0,PSL2 ; Sets function select register B2.
MOV.B #0,PSC ; Sets function select register C.
BSET 2,PRCR ; Removes protection.

; (Write to pin function select register A3 enabled.)
MOV.B #0,PS3 ; Sets function select register A3.

;

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 174 of 229

MOV.B #03H,DS ; Sets External data bus width control register.
MOV.B #85H,WCR ; Sets wait control register.

;
LDC #80H,FLG ; Sets initial value in flag register(U = 1).
LDC #(RAM_END-ISTACK_SIZE)+1,SP ; Sets initial value in stack pointer(USP).
LDC #VECT_TOP,INTB ; Sets initial interrupt table register.

;
MOV.W #003FFH,PUR2 ; Connects internal pull-up registers to ports P6 through P10

;
MOV.B #0FFH,03CBH ; Sets initial value in SFR reserved area.
MOV.W #0FFFFH,03CEH
MOV.W #0FFFFH,03D2H

;
.SB SB_BASE ; Declares SB register value to the assembler.
.FB FB_BASE ; Declares FB register value to the assembler.

LDC #SB_BASE,SB ; Sets initial value in SB register.
LDC #FB_BASE,FB ; Sets initial value in FB register.

;
MOV.W #0,R0 ; Clears work RAM area to 0.
MOV.W #(RAM_END+1 - RAM_TOP)/2,R3
MOV.W #WORKRAM_TOP,A1
SSTR.W

;=================Main program =====================================
MAIN:

JSR INIT ; Sets initial value in work RAM.
FSET I ; Enable interrupts.

MAIN_10:
MOV.W #5,WORK_1
MULU.W WORK_1,ANS_L

; .
; .
; .

JMP MAIN_10
;
;================= INIT routine ==
INIT:

MOV.W #0,WORK_1
MOV.W #0,ANS_L
MOV.W #0,ANS_H

;
MOV.B #01000000B,TA0MR ; Sets timer A0 mode register.
MOV.W #2500-1,TA0 ; Sets timer A0 count value.
MOV.B #00000111B,TA0IC ; Sets interrupt priority level for timer A0

; (level : 7) and clears interrupt request bit.
BCLR TA0R ; Clears timer A0 interrupt request bit.
BSET TA0S ; Timer A0 starts counting.

INIT_END:
RTS

Interrupts are enabled
after making initial
settings.

For interrupts to be
generated, the priority
level must be set to any
value equal to or greater
than 1.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 175 of 229

;
;================= TA0 interrupt handling routine ===================================
INT_TA0:

PUSHM R0,R1,R2,R3,A0,A1 ;Saves registers.

; .
; .
; Program

; .
; .

POPM R0,R1,R2,R3,A0,A1 ;Restores registers.
INT_TA0_END:
;=============== Dummy interrupt program ===============================
dummy:

REIT
;
;*********************** Setting variable vector table ***
;

.SECTION VECT,ROMDATA

.ORG VECT_TOP
;

.LWORD dummy ; BRK instruction interrupt vector
;

.ORG VECT_TOP + (8 * 4)

.LWORD dummy ; DMA0 interrupt vector.

.LWORD dummy ; DMA1 interrupt vector.

.LWORD dummy ; DMA2 interrupt vector.

.LWORD dummy ; DMA3 interrupt vector.

.LWORD INT_TA0 ; Sets start address of interrupt handler for
; Timer A0 interrupt vector.

.LWORD dummy ; Timer A1 interrupt vector.

.LWORD dummy ; Timer A2 interrupt vector.

.LWORD dummy ; Timer A3 interrupt vector.

.LWORD dummy ; Timer A4 interrupt vector.

.LWORD dummy ; UART 0 transfer interrupt vector.

.LWORD dummy ; UART 0 receive interrupt vector.

.LWORD dummy ; UART 1 transfer interrupt vector.

.LWORD dummy ; UART 1 receive interrupt vector.

.LWORD dummy ; Timer B0 interrupt vector.

.LWORD dummy ; Timer B1 interrupt vector.

.LWORD dummy ; Timer B2 interrupt vector.

.LWORD dummy ; Timer B3 interrupt vector.

.LWORD dummy ; Timer B4 interrupt vector.

.LWORD dummy ; INT5 interrupt vector.

.LWORD dummy ; INT4 interrupt vector.

.LWORD dummy ; INT3 interrupt vector.

.LWORD dummy ; INT2 interrupt vector.

.LWORD dummy ; INT1 interrupt vector.

.LWORD dummy ; INT0 interrupt vector.

Because vector numbers 1 to 7 are assigned
internal peripheral function interrupts, this
statement sets an address 32 bytes (4 bytes x
8) forward from the start address of the variable
interrupt vector, that is, the address of vector
number 8.

For unused interrupts, set their jump addresses in
dummy processing (REIT instruction only) to
prevent the program from going wild when an
unused interrupt occurs.

To return from interrupt, use REIT
instruction, and not RTS instruction.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 176 of 229

Figure 4.3.4 Sample program 3(Using interrupt)

.LWORD dummy ; Timer B5 interrupt vector.

.LWORD dummy ; UART2 transfer / NACK interrupt vector.

.LWORD dummy ; UART2 receive / ACK interrupt vector.

.LWORD dummy ; UART3 transfer / NACK interrupt vector.

.LWORD dummy ; UART3 receive / ACK interrupt vector.

.LWORD dummy ; UART4 transfer / NACK interrupt vector.

.LWORD dummy ; UART4 receive / ACK interrupt vector.

.LWORD dummy ; Bus collision detection / start,stop
; Condition(UART 2) interrupt vector.

.LWORD dummy ; Bus collision detection / start,stop
; Condition(UART 3) interrupt vector.

.LWORD dummy ; Bus collision detection / start,stop
; Condition(UART 4) interrupt vector.

.LWORD dummy ; A-D interrupt vector.

.LWORD dummy ; Key- input interrupt vector.
;
;*********************** Setting fixed vectors ***************************************
;

.SECTION F_VECT,ROMDATA

.ORG FIXED_VECT_TOP
;

.LWORD dummy ;Undefined instruction interrupt vector

.LWORD dummy ;Overflow (INTO instruction) interrupt vector.

.LWORD dummy ;BRK instruction interrupt vector.

.LWORD dummy ;Address match interrupt vector

.LWORD dummy ;Unused

.LWORD dummy ;Watchdog timer interrupt vector

.LWORD dummy ;Unused

.LWORD dummy ;NMI interrupt vector

.LWORD START ;Sets Reset vector
;

.END

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 177 of 229

4.3.7 ISP and USP

The M16C/80 series has two stack pointers: an interrupt stack pointer (ISP) and a user stack pointer
(USP). Use of these stack pointers is selected by the U flag.

(1) ISP is used when U = 0
Registers are saved and restored to and from the address indicated by ISP.

(2) USP is used when U = 1
Registers are saved and restored to and from the address indicated by USP.

Use the ISP when programming in assembly language (not using high-level languages or OS). Although
the USP may be used, caution is required when using peripheral I/O interrupts. For details, refer to
"Relationship between software interrupt numbers and stack pointers" in the next page.

Regarding assignments of software interrupt numbers

The M16C/80 series has software interrupt numbers from 0 to 63. Numbers 8 through 43 are
reserved for peripheral I/O interrupts(note 1). Therefore, remaining numbers 0 through 7 and 44
through 63 can be assigned software interrupts (INT instructions(note 2)).
However, for the purpose of application, software interrupt numbers 32 through 63 are assigned to
software interrupts used by the OS, etc. (numbers 48 through 63 used by M16C/80 real-time
monitor (MR308), for example). When using an OS in your system, use software interrupt
numbers 0 through 7 only.

Figure 4.3.5 Interrupt number assignments

Note 1: This varies with the type of microcomputer used. Please consult the user's manual supplied with your microcomputer.
Note 2: The program branches to the address that is stored in the interrupt number specified by the INT instruction operand.

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

Vector area reserved for peripheral I/O interrupts(Note 1)

AAAAA

Vector area for INT instruction interrupts used by user
 (Interrupt vector area that does not require context switching)

0

Vector area for INT instruction interrupts used by OS, etc. (
Interrupt vector area that requires context switching)

7

8

43

32

63

31

. .
. .

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 178 of 229

Relationship between software interrupt numbers and stack pointers

(1) When a peripheral I/O interrupt or an INT instruction interrupt using software interrupt
numbers 0 through 31 occurs
(a) The CPU reads address 000000H to get interrupt information (interrupt number, interrupt
 request level) and then clears the interrupt request bit for the accepted interrupt to 0.
(b) The FLG register content is saved to the CPU's internal temporary register.
(c) Flags U, I, and D of the FLG register are cleared.

Thus, by operation in (c)...
(i)The stack pointer is forcibly made the interrupt stack pointer (ISP).
(ii)Multiple interrupts are disabled.
(iii) Debug mode is cleared (not single-stepped).

(d) The CPU's internal temporary register (to which FLG has been saved) and PC register
 contents are saved to the stack area.
(e) The interrupt priority level of the accepted interrupt is set in the processor Interrupt Priority
 Level (IPL).
(f) The address written in the interrupt vector is transferred to the PC register.

Figure 4.3.6 When a peripheral I/O interrupt or an INT instruction interrupt using software
interrupt numbers 0 through 31 occurs

AAAAA
AAAAA

PC, middle

<FLG status after accepting interrupt request>

b15 b0
 IPL U I O B S Z D C

PC, high

FLG, low

FLG, high

AA
AA
AA
AA

AA
AA

A
A
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA

AA
AA

AA
AA

I S P

<Stack status after accepting interrupt request>

Priority level of the accepted
interrupt is stored here.

-:No change

 0 0 - - - - 0 -

PC, low

00H

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 179 of 229

(2) When an INT instruction interrupt using software interrupt numbers 32 through 63
occurs
(a) The CPU reads address 000000H to get interrupt information (interrupt number, interrupt
 request level) and then clears the interrupt request bit for the accepted interrupt to 0.
(b) The FLG register content is saved to the CPU's internal temporary register.
(c) Flags I and D of the FLG register are cleared.

Thus, by operation in (c)...
(i)The stack pointer used here is one that was active when the interrupt occurred.
(ii)Multiple interrupts are disabled.
(iii)Debug mode is cleared (not single-stepped).

(d) The CPU's internal temporary register (to which FLG has been saved) and PC register
 contents are saved to the stack area.
(e) The interrupt priority level of the accepted interrupt is set in the processor Interrupt Priority
 Level (IPL).
(f) The address written in the interrupt vector is transferred to the PC register.

Figure 4.3.7 When an INT instruction interrupt using software interrupt numbers 32 through
63 occurs

Note: When not using the OS, software interrupts can be assigned numbers 32 through 63. In this case, stack pointer setup requires
caution.

AAAAA
AAAAA

PC, middle

b15 b0
 IPL U I O B S Z D C

PC, high

FLG, low

FLG, high

AA
AA

AA
AA

AA
AA

A
A
AA
AA

AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

ISP/USP

- 0 - - - - 0 -

PC, low

00H

<FLG status after accepting interrupt request>

<Stack status after accepting interrupt request>

Priority level of the accepted
interrupt is stored here.

-: No change

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 180 of 229

4.3.8 Multiple Interrupts

In the M16C/80 series, once an interrupt request is accepted, the interrupt enable flag (I) is
automatically cleared to 0 (interrupts disabled), so that no other interrupts are accepted until processing
of the accepted interrupt is completed. Therefore, if another interrupt needs to be generated while an
interrupt is being serviced, this can be accomplished by setting the interrupt enable flag (I) to 1
(interrupts enabled) in the interrupt handling routine.

Example of Multiple Interrupt Execution

As an execution example for multiple interrupts, or interrupts generated while an interrupt being
serviced, an execution flow is shown in Figure 4.3.8 where multiple interrupts (1), (2), and (3)
occur.

(1) Interrupt 1 occurs when executing the main routine
(2) Interrupt 2 occurs when executing interrupt 1
(3) Interrupt 3 occurs when executing interrupt 2

Figure 4.3.8 Execution example of multiple interrupts

I = 1

IPL = 3

I = 0

IPL= 1

 : Set in hardware

REIT instruction executed

Interrupt priority level = 1

AAAAAAA
AAAAAAA
AAAAAAA

Interrupt priority level = 1

Interrupt 3 is not accepted because
its priority level is lower than that of
interrupt 1, so it is kept waiting for
execution until after processing of
interrupt 1 is completed.

REIT instruction executed

AA
AA

AA
AA
AA
AA
AA
AAMain routine

AA AAA
AA
AA
AA

Interrupt 3

AA
AA

A
A
AA
AA

AA
AA

Interrupt 3

Interrupt 1 occurs

I = 1

IPL = 1

No instructions in the main
routine are executed here.

 : Set in software

Interrupt 3 occurs

I ← 1

I = 0

IPL = 0

I ← 0"FSET I" instruction

Interrupt priority level = 3
AA A
AA
AA
AA
AAInterrupt 1

Interrupt 2 occurs

I = 0

IPL = 3

I ← 1"FSET I" instruction

I = 0

IPL = 5

Interrupt priority level = 5

REIT instruction executed

AA AAA
AA

A
A
A

Interrupt 2

I ← 1 "FSET I" instruction

"FSET I" instruction

I = 0

IPL = 0

I ← 0"FSET I" instruction

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 181 of 229

4.3.9 High-speed interrupts

High-speed interrupts refer to an interrupt for which the interrupt acknowledgment (interrupt handling
sequence) can be executed in 5 cycles and return from which can be executed in 3 cycles.
High-speed interrupts are handled in such a way that when an interrupt is accepted, the flag register
(FLG) and program counter (PC) respectively are saved to the CPU's internal registers, Save Flag
Register (SVF) and Save PC Register (SVP), and the program is executed from the address indicated
by the Vector Register (VCT).
High-speed interrupts become usable by setting the fast interrupt specification bit(Note 1) to 1, and the
interrupt(Note 2) for which the software interrupt priority level has been set to 7 is handled as a fast
interrupt. The diagram below shows how a fast interrupt operates.

High-speed interrupt acknowledgment/return operations

Because high-speed interrupts are one whose interrupt sequence is shortened, use "bank
switchover" to save/restore registers, and in the high-speed interrupt handler routine, use "register
bank 1" as a dedicated register, as much as possible(Note 3).

Figure 4.3.9 Operation of a high-speed interrupt

Note 1: This bit is assigned to bit 3 of the Return Priority Register.
Note 2: Because only one interrupt at a time can be set as a fast interrupt, make sure there is only one interrupt whose interrupt priority

level = 7.
Note 3: In this case, register bank 1 cannot be used in the main routine.
Note 4: Execute the FREIT instruction to return from the fast interrupt routine.

Main

Return from interrupt
3 cycles

Interrupt handling
sequence
5 cycles

FLG

PC

VCT

SVF

SVP

PC

Flag save register

PC save register

Vector register

b15 b0

b23 b0

The start address of the interrupt used as a high-speed interrupt is
set in Vector Register (VCT), and not in the variable vector table.

FLG

PC

SVF

SVP

Flag save register

PC save register

FREIT instruction(Note 4)

Interrupt
handling

b23 b0

b15 b0

b23 b0

b23 b0

b15 b0 b15 b0

b23 b0 b23 b0

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 182 of 229

Program description example when using high-speed interrupts

;******************Include***
.INCLUDE M3800.INC

;******************Program area**
;

.SECTION PROGRAM,CODE ; Declares section name and section type.

.ORG ROM_TOP ; Declares start address.
START:

; .
; .
; Initial setting CPU

; .
; .
;===================Main program=======================================
MAIN:

JSR INIT ; Sets initial value for work RAM.
FSET I ; Enables interrupts.

MAIN_10:
MOV.W WORK_1,R0

; .
; .

JMP MAIN_10
;
;===================INIT routine==
INIT:

MOV.W #0,WORK_1
MOV.W #0,WORK_2

;
MOV.B #00000111B,INT0IC ; Sets priority level of INT0 pin interrupt

; (level: 7), active edge (falling edge), and clear
; interrupt request bit

;
LDC #INT_INT0,VCT ; Sets vector register.
BSET 3,RLVL ; Sets return priority register.

INIT_END:
RTS

;
;===================INT0 interrupt handling routine==========================
INT_INT0:

FSET B ; Saves registers by register bank swichover.

; .
; Program

; .
INT_INT0_END:

FREIT ; Returns from high-speed interrupt.
;

When using fast interrupts, note
that there is only one interrupt
whose interrupt priority level can be
set to 7.

Set the fast interrupt specification bit to 1, so
the interrupt whose interrupt priority level = 7
is used as a high-speed interrupt.

By using register bank switchover to
save registers, the interrupt
acknowledgement time can further be
reduced.

Use the FREIT
instruction to return
from a fast interrupt.

Set the start address
of the interrupt
handler routine in the
vector register (fast
interrupt-only
interrupt vector).

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 183 of 229

;=============== Dummy interrupt program ===============================
dummy:

REIT
;
;*********************** Setting variable vector table ***
;

.SECTION VECT,ROMDATA

.ORG VECT_TOP
;

.LWORD dummy ; BRK instruction interrupt vector
;

.ORG VECT_TOP + (8 * 4)

.LWORD dummy ; DMA0 interrupt vector.

.LWORD dummy ; DMA1 interrupt vector.

.LWORD dummy ; DMA2 interrupt vector.

.LWORD dummy ; DMA3 interrupt vector.

.LWORD dummy ; Timer A0 interrupt vector.

.LWORD dummy ; Timer A1 interrupt vector.

.LWORD dummy ; Timer A2 interrupt vector.

.LWORD dummy ; Timer A3 interrupt vector.

.LWORD dummy ; Timer A4 interrupt vector.

.LWORD dummy ; UART 0 transfer interrupt vector.

.LWORD dummy ; UART 0 receive interrupt vector.

.LWORD dummy ; UART 1 transfer interrupt vector.

.LWORD dummy ; UART 1 receive interrupt vector.

.LWORD dummy ; Timer B0 interrupt vector.

.LWORD dummy ; Timer B1 interrupt vector.

.LWORD dummy ; Timer B2 interrupt vector.

.LWORD dummy ; Timer B3 interrupt vector.

.LWORD dummy ; Timer B4 interrupt vector.

.LWORD dummy ; INT5 interrupt vector.

.LWORD dummy ; INT4 interrupt vector.

.LWORD dummy ; INT3 interrupt vector.

.LWORD dummy ; INT2 interrupt vector.

.LWORD dummy ; INT1 interrupt vector.

.LWORD dummy ; INT0 interrupt vector.

.LWORD dummy ; Timer B5 interrupt vector.

.LWORD dummy ; UART2 transfer / NACK interrupt vector.

.LWORD dummy ; UART2 receive / ACK interrupt vector.

.LWORD dummy ; UART3 transfer / NACK interrupt vector.

.LWORD dummy ; UART3 receive / ACK interrupt vector.

.LWORD dummy ; UART4 transfer / NACK interrupt vector.

.LWORD dummy ; UART4 receive / ACK interrupt vector.

.LWORD dummy ; Bus collision detection / start,stop
; Condition(UART 2) interrupt vector.

.LWORD dummy ; Bus collision detection / start,stop
; Condition(UART 3) interrupt vector.

.LWORD dummy ; Bus collision detection / start,stop
; Condition(UART 4) interrupt vector.

.LWORD dummy ; A-D interrupt vector.

.LWORD dummy ; Key- input interrupt vector.

For the interrupt which has been
set as a high-speed interrupt, do
not set the start address of the
interrupt handler routine in the
variable interrupt vector.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 184 of 229

Figure 4.3.10 Program example when using a high-speed interrupt

;
;*********************** Setting fixed vectors ***************************************
;

.SECTION F_VECT,ROMDATA

.ORG FIXED_VECT_TOP
;

.LWORD dummy ;Undefined instruction interrupt vector

.LWORD dummy ;Overflow (INTO instruction) interrupt vector.

.LWORD dummy ;BRK instruction interrupt vector.

.LWORD dummy ;Address match interrupt vector

.LWORD dummy ;Unused

.LWORD dummy ;Watchdog timer interrupt vector

.LWORD dummy ;Unused

.LWORD dummy ;NMI interrupt vector

.LWORD START ;Sets Reset vector
;

.END

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 185 of 229

4.4 Dividing Source File

Write the program separately in several source files. This helps to make your program put in order
and easily readable. Furthermore, since the program can be assembled separately one file at a
time, it is possible to reduce the assemble time when correcting the program. This section
explains how to divide the source file.

4.4.1 Concept of Sections

A program written in the assembly language generally consists of a work area, program area, and
constant data area. When the source file (***.AS30) is assembled by the assembler (as308),
relocatable module files (***.R30) are generated. The relocatable module files contain one or more of
these areas. A section is the name that is assigned to each of these areas. Consequently, a section
can be considered to be the name that is assigned to each constituent element of the program.
Note that the assembler (as308) requires that even in the case of the absolute file, there must always be
at least one section specified in one file.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 186 of 229

Functions of Sections

When linking the source files, the areas of the same section name are located at contiguous
addresses sequentially in order of specified files. Furthermore, the start address of each section
can be specified when linking. This means that each section can be relocated any number of
times without having to change the source program. Figure 4.4.1 shows an example of how
sections actually are located in memory.

Figure 4.4.1 Example of sections located in memory

File2File1

Work area
Section name: WORK

Program area
Section name:

PROGRAM

Vector area
 (constant data)

Section name: VECT

File3

Program area
Section name:

PROGRAM

 Interrupt program
area

Section name:
INTRRUPT

Constant data area
Section name:

CONST

Work area
Section name: WORK

Program area
Section name:

PROGRAM

 Interrupt program
area

Section name:
INTRRUPT

Section name: WORK
WORK of File1
WORK of File2

Free area

Section name:
INTRRUPT

INTRRUPT of File1
INTRRUPT of File2

Section name:
PROGRAM

PROGRAM of File1
PROGRAM of File2
PROGRAM of File3

Section name: VECT
VECT of File3

Section name: CONST
CONST of File3

Free area

Address
000400H

FE0000H

ln308 File1 FIle2 File3 –ORDER WORK = 400,PROGRAM = FE0000

* The address of VECT is already
 specified to be FFFE00H by
 ".ORG" in the source file.

* Sections whose addresses are
 not specified are located after
 the sections which have had
 their addresses specified
 without leaving spaces.

* Addresses are specified
 when linking.

Linked

FFFE00H
* Sections whose addresses
 are fixed as in the case of
 interrupt vectors can have
 their addresses fixed by
 ".ORG".

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 187 of 229

4.4.2 Example of program description in divided files

The as308 used in this manual is a relocatable assembler. When using a relocatable assembler, it is
normally desirable to write the program source separately in several files. The following lists the
advantages that can be obtained by dividing the source file:

(1) Shared program and data
Data exchanges between development projects are facilitated, making it possible to reuse
only a necessary part from existing software.

(2) Reduced assemble time
When modifying or correcting the program, only the modified or corrected file needs to be
reasssembled. This helps to reduce the assemble time.

The following explains how to write the source program in cases when the file is divided into three
(definition, main program, and subroutine processing).

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 188 of 229

Division Example 1: Definition (WORK.A30)

Write definitions of the work RAM area and data table in file 1.

Figure 4.4.2 Divided file 1 (WORK.A30)

;**
; File 1 (WORK.A30)
;**
;=================== Allocation of work RAM area================================
;

.SECTION WORK,DATA

.ORG RAM_TOP

.GLB WORK_1,WORK_2,WORK_3,WORK_4 ; Processed as global label.

.GLB DATA_TABLE ; Processed as global label.

.BTGLBW1_b0,W2_b1 ; Processed as global bit symbol.
;
GLOBAL_WORK_TOP:
WORK_1: .BLKB 1 ; Allocates work RAM area.
WORK_2: .BLKB 1 ;
WORK_3: .BLKB 1 ;
WORK_4: .BLKB 1 ;
GLOBAL_WORK_END:
W1_b0 .BTEQU 0,WORK_1 ; Defines bit symbols.
W2_b1 .BTEQU 1,WORK_2 ;
;
;
;===================Fixed data area=====================================
;

.SECTION CONSTANT,ROMDATA

.ORG CONST_TOP
;
DATA_TABLE:

.BYTE 12H ; Sets 1-byte data.

.BYTE 34H

.BYTE 56H

.BYTE 78H
DATA_TABLE_END:
;

.END

In order for work RAM and labels to
be referenced from another file,
declare global labels using .GLB.

In order for bit symbol defined by .
BTEQU to be referenced from
another file, declare global symbols
using .BTGLB.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 189 of 229

Division Example 2: Main Program (MAIN.A30)

Write the main program("PROGRAM" section) in file 2.

Figure 4.4.3 Divided file 2 (MAIN.A30)

;**
; File 2 (MAIN.A30)
;**
;===================Declaration to assembler===============================
;
.SECTION PROGRAM,CODE
.GLB WORK_1,WORK_2,WORK_3,WORK_4 ; Processed as external reference label.
.GLB SUB_1 ; Processed as external reference label.
.BTGLB W1_b0,W2_b1 ; Processed as external reference bit symbol.
.SB 00380H ; Sets SB register value for assembler.
.FB 00480H ; Sets FB register value for assembler.
.SBSYM WORK_1,WORK_2 ; Encodes specified labels in SB relative

 ; addressing mode.
.FBSYM WORK_3,WORK_4 ; Encodes specified labels in FB relative
 ; addressing mode.

.SBBIT W1_b0,W2_b1

.OPTJ JSRW ; Generates subroutine call instructions that are
; not included in optimization by using "JSR.W".

;
;=================== Program area======================================
MAIN:

LDC #380H,SB ; Sets initial value in SB register.
LDC #480H,FB ; Sets initial value in FB register.

MOV.B WORK_1,WORK_2 ; Externally references each work RAM.
MOV.B WORK_3,WORK_4

;
BSET W1_b0 ; Externally references each bit symbol.

BCLR W2_b1
;

JSR SUB_1 ; Calls SUB1 in file 3.

; •
; •
; •

.END

Because this label is defined in
another file, it is specified for external
reference by ".GLB."

Because this symbol is defined in
another file, it is specified for external
reference by ".BTGLB."

When using externally referenced labels or each
section is of the relative attribute, the labels used
in the program do not have their addresses
determined yet when assembled, the final
addresses being determined when linked. In this
case, because code generation is not optimized for
SB relative addressing, labels that need to be
accessed via base register relative can be
encoded forcibly in base register addressing by
specifying ".SBSYM" or ".FBSYM."

In cases where bit symbols also are externally
referenced, the addresses that are the base of bits
are not determined yet when assembled, the final
addresses being determined when linked. In this
case, too, because code generation is not
optimized for bit access in SB relative addressing,
the bits that need to be accessed via SB relative
can be encoded forcibly in SB relative addressing
mode by specifying ".SBBIT."

When calling (jumping to) a subroutine (label) in
another file, because the addresses are not
determined yet, all JSR instructions normally are
encoded by JSR.A (because JSR instructions
cannot be optimized by jump address calculation).
Therefore, ".OPTJ" is specified to have all JSR
instructions encoded by JSR.W.

Accessed in SB relative
addressing.

Accessed in FB relative
addressing.

Encoded in JSR.W
and branches
in 16-bit relative addressing.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 190 of 229

Division Example 3: Subroutine Processing (SUB_1.A30)

Write subroutine processing("PROGRAM" section) and allocated work RAM area("WORK"
section) in file 3.

Figure 4.4.4 Divided file 3 (SUB_1.A30)

;**
; File 3 (SUB_1.A30)
;**
;*********************** Allocation of work RAM area**************************************
;

.SECTION WORK,DATA
;
LOCAL_WORK_TOP:
LOCAL_1: .BLKB 1 ; Allocates area for local data.
LOCAL_2: .BLKB 1
LOCAL_WORK_END:
;
;*********************** Declaration to assembler***********************************
;

.SECTION PROGRAM,CODE

.GLB SUB_1 ; Processed as global label.

.GLB DATA_TABLE ; Processed as external reference label.
;

.SB 00380H ; Sets SB register value for assembler.

.FB 00480H ; Sets FB register value for assembler.

.SBSYM LOCAL_1,LOCAL_2 ; Encodes specified label in SB relative addressing mode.
;=================== Program area ======================================
SUB_1:

LDC #380H,SB ; Sets initial value in SB register.
LDC #480H,FB ; Sets initial value in FB register.

;
MOV.B #05H,LOCAL_1 ; Accesses local data (LOCAL_1) in SB relative addressing.

;
MOV.W #0,A0
MOV.B DATA_TABLE[A0],LOCAL_2 ; Retrieves fixed data table by external reference.
ADD.B LOCAL_1,LOCAL_2 ; Adds local data (LOCAL_1, LOCAL_2).

; •
; •
; •

RTS ; Returns from subroutine.

.END

Unless declared as global, labels are handled
as local labels in file 3 (SUB_1.A30).

Since subroutine (SUB_1) is called from file 2
(MAIN.A30), specify SUB_1 to be a global label
using .GLB before call. (Because the label exists
in the file, this becomes a global declaration.)

Because a label present in another file (file 1) is
used in the program, it is specified to be externally
referenced.

Because of a relative attribute section, the label
address remains pending until linked and code
generation is not optimized for SB relative
addressing mode. Therefore, it is forcibly encoded
in SB register relative addressing by ".SBSYM."

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 191 of 229

Making Use of Include File

Normally, write part of external reference specification of symbols and bit symbols (those defined
with .EQU, .BTEQU) and/or labels (those having address information) in one include file. In this
way, without having to specify external reference in each source file, it is possible to externally
reference symbols and labels by reading include files into the source file.

Figure 4.4.5 Example of include file

(1) Example for referencing symbols

(2) Example for referencing global labels

"File a"

"File b"

.INCLUDE SYMBOL.INC
•
•

.SECTION WORK,DATA
•
•

.INCLUDE GLOBAL.INC
•
•

.SECTION WORK,DATA
•
•

"SYMBOL..INC"

ON .EQU 1
OFF .EQU 0
RAMTOP .EQU 0004000H
RAMEND .EQU 002BFFH

•
•

"GLOBAL..INC"

.GLB WORK_1

.GLB WORK_2

.GLB WORK_3

.GLB WORK_4

.GLB DATA_TABLE
•
•

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 192 of 229

Making Use of Directive Command .LIST

By writing directive commands ".LIST ON" and ".LIST OFF" at the beginning and end of an
include file, it is possible to inhibit the include file from being output to an assembler list file.
Figure 4.4.6 shows examples of assembler list files, one not using these directive commands
(expansion 1) and one using them (expansion 2).

Figure 4.4.6 Utilization of directive command .LIST

.INCLUDE SYMBOL.INC

ON .EQU 1
OFF .EQU 0
RAMTOP .EQU 00400H
RAMEND .EQU 02BFFH

.

.
.SECTION WORK,DATA

.

.

.LIST OFF

ON .EQU 1
OFF .EQU 0
RAMTOP .EQU 00400H
RAMEND .EQU 02BFFH

.

.
.LIST ON

When not using directive command .LIST When using directive command .LIST

Expansion 1

Source file "SYMBOL.INC"

Expansion 2

.INCLUDE SYMBOL.INC

.SECTION WORK,DATA

.

.

.INCLUDE SYMBOL.INC

.LIST OFF

.LIST ON

.SECTION WORK,DATA

.

.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 193 of 229

4.4.3 Using library files

A library file refers to a collection of several relocatable module files. If there are frequently used
modules, collect them in a single library file using the librarian (lib308) that is included with the AS308
system. When linking source files, specify this library file (***.LIB). By so doing, only the necessary
modules (those specified in the file as externally referenced) can be extracted when linking. This makes
it possible to reduce the assemble time and reuse the program. The following shows an example of
how a library file is created and how it is linked.

Creating Library File

Figure 4.4.7 shows an example of how a library file is created.

Figure 4.4.7 Creating a library file

Module 2

SUB2. R30

Module 3

SUB3. R30

SUB1. R30

SUB2. R30

SUB3. R30

Edited into a single library file.

Library file

LIB1.LIB

Librarian

lib308

 Module 1
 (Relocatable module file)

SUB1. R30

·
·
·
·
·
·

·
·
·
·
·
·

·
·
·
·
·
·

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 194 of 229

FILE1.A30

JSR SUB1
·
·

JSR SUB3
·
·

JSR SUB5

FILE1

SUB1

SUB2

SUB3

* Relocatable modules required in FILE1 are
 retrieved from specified library files to link only
 the necessary modules.

FILE1.X30

FILE1.R30

·
·
·
·
·
·

Load module convert

(lmc308)

LIB1.LIB

SUB1.R30
SUB2.R30

LIB2.LIB

SUB3.R30
SUB4.R30

LIB3.LIB

SUB5.R30
SUB6.R30

FILE1.MOT / FILE1.HEX

·
·
·
·
·
·

Assemble

(as308)

Link

(ln308)

Example for Linking Library Files

Figure 4.4.8 shows an example of how library files are linked.

Figure 4.4.8 Example for linking library files and relocatable module file

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 195 of 229

4.5 A Little Tips...(Programing technique)

This section provides some information, knowledge of which should prove helpful when using the
M16C/80 series. This information is provided for several important topics, so refer to the items in
interest.

4.5.1 Setup Values of SB and FB Registers

The following explains the setup values of the SB and FB registers.

Basic method for using SB and FB registers

Use the SB and FB registers to set the start address of an area that contains frequently accessed
data. Specifically, using these registers to set the frequently used SFR area and work RAM area
may prove effective.
Figure 4.5.1 shows an example for setting the SB and FB registers when using them as having
fixed values.

Figure 4.5.1 Example for setting SB and FB registers as having fixed values

SB relative effective range
(256 bytes)

000000H
00009FH

002BFFH
002C00H

FFFFFFH

Internal RAM
area

By locating the effective ranges of SB and FB
register relative addressing at contiguous
addresses, the data in a total of 512 bytes of
area can be efficiently accessed.

Note: Memory map of the M16C/80 group (M30800MC) is used here.

SFR area

:Register group with low access frequency

:Register group with high access frequency

SB register set value

FB relative effective range
(256 bytes)FB register set value

Internal RAM

area

Internal RAM
area

000340H
0003FFH
000400H

00043FH
000440H

0004C0H

00053FH

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 196 of 229

Application for using SB and FB registers differently

When using the SB and FB registers after setting them to have fixed values in the program, the
address range in which efficient access can be expected is limited to a maximum of 256 bytes
each, for a total of 512 bytes.
If use of SB/FB relative addressing over a greater range is desired in order to increase the
efficiency of accessing work data or ROM efficiency, the objective may be accomplished by
changing the values set in the SB and FB registers "for each subroutine called", in other words by
using the registers dynamically.
For an example of how to use, refer to Figure 4.5.3, "Program example for using SB and FB
registers dynamically."

Figure 4.5.2 When using SB and FB registers dynamically

000400H

001000H

Data area used by subroutine 1

By changing the SB register value in
each subroutine, the data areas used by
subroutines 1 and 2 can be accessed
efficiently by SB relative addressing.

AAASB

AAA
AAA

SB

Memory

Data area used by subroutine 2

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 197 of 229

Programming example when using SB and FB registers dynamically

The following shows a program example in which the SB and FB registers are used dynamically.

;**********************Program area ***
;================== Start up ======================================
;

.SECTION PROGRAM,CODE ; Declares secyion name and section type.

.ORG ROM_TOP ; Declares start address.
START:

LDC #RAM_END+1,ISP ; Sets initial value of stack pointer (SP).

; .
; .
; .

.SB 340H ; Declares SB register value to the assembler.

.FB 4C0H ; Declares FB register value to the assembler.
LDC #340H,SB ; Sets initial value for SB register.
LDC #4C0H,FB ; Sets initial value for SB register.

; .
; .
;
;=================Main program =====================================
MAIN:

JSR INIT ; Initialization routine
FSET I ; Enable interrupts

MAIN_10:
JSR SUB_1 ;Calls subroutine "SUB_1"

; .
; .

JSR SUB_2 ; Calls subroutine "SUB_2"

; .
JMP MAIN_10

;
;================= INIT routine ==
INIT:

MOV.B #0FFH,WORK_1
MOV.B #0FFH,WORK_2

;
MOV.B #01000000B,TA0MR ; Sets timer A0 mode register.
MOV.W#2500-1,TA0 ; Sets timer A0 count value.
MOV.B #00000111B,TA0IC ; Sets timer A0 interrupt priority level.
BSET TA0S ; Timer A0 starts counting.

INIT_END:
RTS

;

Always be sure to set the same
values in the assembler as
those set in SB and FB
registers.

Set initial values for the SB and FB registers. In the sample
program, SB relative addressing can be used in the range of
340H to 43FH, and FB relative addressing in the range of 44
0H to 53FH, by the main and the INIT routine.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 198 of 229

Figure 4.5.3 Program example for using SB and FB registers dynamically

;================= SUB_1 routine ======================================
SUB_1:

.SB 400H ; Declares SB register value to be changed the assembler.

.FB 580H ; Declares SB register value to be changed the assembler.
LDC #400H,SB ; Changes SB register value.
LDC #580H,FB ; Changes FB register value.

;
MOV.B WORK_1,R0L
INC.B R0L

; .
; .
SUB_1_END:

RTS
;
;================= SUB_2 routine ======================================
SUB_2:

.SB 600H ; Declares SB register value to be changed the assembler.

.FB 780H ; Declares FB register value to be changed the assembler.
LDC #600H,SB ; Changes SB register value.
LDC #780H,FB ; Changes FB register value.

;
MOV.B WORK_2,R1L
DEC.B R1L

; .
; .
SUB_2_END:

RTS
;
;================= Interrupt handling routine =================================
INT_TA0:

.SB 1000H ; Declares SB register value to be changed the assembler.
;

FSET B ; Saves registers(includeing SB and FB registers)
LDC #1000H,SB ; Changes SB register value.

;
MOV.B #0, COUNT
DADD.B #2, DATA

; .
; .
INT_TA0_END:

REIT

; .
; .

.END

Always be sure to specify the values to be
changed with ".SB" and ".FB" in the
assembler too.

Set the SB and FB register values according to the range
of SB and FB relative addressing to be used in the
subroutine "SUB_1."
Note: Always be sure to set the SB and FB register
values before accessing the work RAM, etc. (Normally
set at the beginning of each routine.)

Set the SB and FB register values according to the
range of SB and FB relative addressing to be used in
the subroutine "SUB_2."
Note: Always be sure to set the SB and FB register
values before accessing the work RAM, etc. (Normally
set at the beginning of each routine.)Because interrupts come in

asynchronously, always be sure to
save the SB and FB register
values used by the main routine
before setting values back again.

Set the SB and FB register values according to
the range of SB and FB relative addressing to be
used in the interrupt handler "INT_TA0."

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 199 of 229

4.5.2 Specifying ROM/RAM data alignments

This section explains how to specify data alignments.

About data alignments

This refers to address adjustment so that when the directive command ".ALIGN" is written, the
code in the immediately following line is stored in an even address. For section types "CODE" or
"ROMDATA," NOT instructions are written in locations that have been left blank as a result of
address adjustment. For section type "DATA," addresses are only adjusted, leaving blank locations
intact. If the location where this directive command is written happens to be an even address, no
address adjustment is performed.
This directive command can be written in a section that falls under the following conditions:

(1) Relative attribute section for which address adjustment is specified in section definition

.SECTION WORK, DATA, ALIGN

(2) Absolute attribute section (no specific limitations)

.SECTION WORK, DATA

.ORG 400H

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 200 of 229

Advantages of Alignment Specification (Correction to Even Address)

If data of different sizes such as a data table are located at contiguous addresses, the data next to
an odd size of data is located at an odd address. In the M16C/80 series, word data (2-byte data)
beginning with an even address is read/written in one access, those beginning with an odd address
requires two accesses for read/write. Consequently, for data in size of 2 bytes or more such as
words and long words, access efficiency and instruction execution speed can be increased by
locating data at even addresses. In this case, however, ROM (or RAM) efficiency decreases.
Figure 4.5.4 shows an example of a program description that contains alignment specification.

Figure 4.5.4 Example of alignment specification

.SECTION WORK, DATA, ALIGN
WORK_1 .BLKW 1 00000H
WORK_2 .BLKW 1 00002H
WORK_3 .BLKB 1 00004H

.ALIGN 00005H Address is incremented by 1.
;

•
•
.SECTION CONST, ROMDATA, ALIGN

.BYTE 12H 00000H 12H
.ALIGN 00001H 04H NOP code is inserted.

.WORD 3456H 00002H 5634H
•
•

(1) For relative attribute sections

.SECTION WORK, DATA

.ORG 400H
WORK_1 .BLKB 1 00400H
 .ALIGN 00401H Address is incremented by 1.
WORK_2 .BLKW 1 00402H
WORK_3 .BLKA 1 00404H
 .ALIGN 00407H Address is incremented by 1.
WORK_4 .BLKL 1 00408H
;

.SECTION PROGRAM,CODE

.ORG 0F0000H
 MOV.W #0,R0 F0000H D900H

•
•

(2) For absolute attribute sections

CodeAddress

Set data tables and similar other sections
at even addresses as much as possible.

CodeAddress

Set data tables and similar other sections
at even addresses as much as possible.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 201 of 229

4.5.3 Setting stack pointer

The following explains how to set up stack pointers and how to save and restore to and from the stack
area when using an interrupt and a subroutine.

Setting Up Stack Pointers (ISP or USP)

(1) Choosing the stack pointer (ISP or USP) to use
When developing a program in only assembly language, normally use the ISP.
When using both ISP and USP, set the initial value of the U flag to 1 (the USP used). As a
result, the stack area identified by "USP" is used on the main routine side, while the stack
area identified by "ISP" is used by the peripheral I/O interrupt handler routine(note 1).
This allows the amounts of stack used to be estimated separately for main processing and
interrupt handling. This should prove effective when jointly developing a program by
separating it into files between two or more people. For details, refer to Section 4.3.7, "ISP
and USP."

(2) Set the initial value in the selected stack pointer register.
Because the stack in the M16C/80 group is FILO type(Note 2), it is recommended that the stack
pointer initial value be set at the last address of the RAM area.
Also, when registers are saved and restored to and from the stack, the stack pointer changes
by 2 at a time when either increased or decreased Therefore, make sure the initial value is
always set at an even address. For details, refer to "Saving and restoring to and from the
stack" in the next page.

Set up example:
When setting "2C00H" for the interrupt stack pointer (SIP) and "2900H" for the user stack
pointer (USP)(Note 3)

;------------------------Initializing stack pointers------------------------------
;

LDC #002C00H,ISP ; Sets "2C00H" for ISP.
FSET U
LDC #002900H,SP ; Sets "2900H" for USP.
FCLR U ; Uses USP on the main side,

; and uses ISP on the interrupt handler routine side.
;

Note 1: When using both ISP and USP, be careful not to locate one stack area overlapping the other when allocating memory for the stack.
Also, be sure to set values for both stack pointers.

Note 2: FILO (First In, Last Out): When saving registers, they are stacked one on top of another in order of addresses, from large address
toward smaller addresses. When restoring registers, they are removed from the stack in the direction toward larger addresses
beginning with the last register saved.

Note 3: Because ISP, USP, and FLG are dedicated registers, use the LDC and FSET/FCLR instructions to set these registers.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 202 of 229

Saving and restoring to and from the stack

Registers, etc. are saved and restored to and from the stack in the following cases:

(1) When an interrupt is accepted
When an interrupt is accepted, the registers shown below are saved to the stack area:

Program Counter (PC) -> 4 bytes (The most significant byte is fixed to 00H.)
Flag Register (FLG) -> 2 bytes ... 6 bytes in total

However, if the accepted interrupt is a fast interrupt, the Flag Register (FLG) and Program
Counter (PC) respectively are saved to the Save Flag Register (SVF) and Save PC Register
(SVP), with nothing placed in the stack.

After interrupt handling is finished, the above saved registers are restored from the stack area
by the REIT instruction.

Figure 4.5.5 Stack operation and status when an interrupt is accepted

Note: Even when one byte of data are saved/restored using push and pop instructions (e.g., PUSH, POP, PUSHM, and POPM), the stack
pointer always changes by 2 at a time.

Program counter,high(PCH)m-4

Stack area

00H

Flag register,low(FLGL)

Flag register,high(FLGH)

Stack pointer value
before interrupt occurs.

m-3

m-2

m-1

m

Program counter,low(PCL)m-6

Program counter,middle(PCM)m-5

Previous stack content

-2

-2

-2

Stacked
third

Stacke
second

Stacked
first

The stack pointer always changes by 2 at a time as register
values are saved/restored in units of words.

SP
(Stack pointer value after
interrupt is accepted.)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 203 of 229

(2) When calling a subroutine (when executing JSR, JSRI, or JSRS instruction)
When the JSR, JSRI, or JSRS instruction is executed, the register shown below is saved to
the stack area:

Program Counter (PC) -> 4 bytes (The most significant byte is fixed to 00H.)

When the subroutine is completed, the above saved register is restored from the stack area
by the RTS instruction.

Figure 4.5.6 Stack operation and status when a subroutine is called

Stack pointer value
before subroutine is
called.

Program counter high(PCH)

m-4

Stack area

00H

m-3

m-2

m-1

m

Program counter,low(PCL)

Program counter,middle(PCM

Previous stack content

-2

Stacked
second

Stacked
first

-2

The stack pointer always changes by 2 at a time as register
values are saved/restored in units of words.

SP
(Stack pointer value
after subroutine is
called.)

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 204 of 229

4.5.4 Using special pages

The M16C/80 series has a reserved area in the fixed vectors that is called the "special page vector
table," with each vector assigned a special page number. (Refer to Section 2.1.3, "Fixed Vector Area.")
This vector table can be used to store subroutine or jump addresses, and by specifying a special page
number in the special page subroutine call instruction (JSRS) or special page jump instruction (JMPS), it
is possible to branch off in fewer bytes than possible with the ordinary subroutine call instruction (JSR)
or jump instruction (JMP)(Note).
As a result, the number of program steps and the ROM size can be reduced.

Example for using a special page

Shown below is a program example for subroutine call using a special page.

Note: If the branch distance specifier ".S" or ".B" is used, code size is smaller for ordinary jump instructions than for special page jump.

;**********************Program area ***
;================== Startup ======================================
;

.SECTION PROGRAM,CODE ; Program section

.ORG 0FF0000H ; Specifys program location address.
START:

LDC #RAM_END+1,ISP ; Sets initial for stack pointer(ISP).

; .
; .
;
;=================Main program =====================================
MAIN:

JSR INIT ; Initialization routine
MAIN_10:

JSRS #255 ; Calls subroutine "SUB_1" using special page subroutine call.

; .
JSRS #251 ; Calls subroutine "SUB_1" using special page subroutine call.
JMP MAIN_10

;
;================= INIT routine ==
INIT:

MOV.B #0FFH,WORK_1
MOV.B #0FFH,WORK_2

; .
; .
INIT_END:

RTS
;

Because the most significant byte of the jump
address in special page subroutine call is fixed
to "FFH," the program (subroutine) must be
located at addresses FF0000H to FFFFFFH.

Called by ordinary
subroutine call instruction

Called by specifying the special page vector
number (No. 255) that contains the start
address of subroutine "SBU_1."

Called by specifying the special page vector
number (No. 251) that contains the start
address of subroutine "SBU_2."

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 205 of 229

Figure 4.5.7 Example for using special page subroutine call

;================= SUB_1 routine ======================================
SUB_1:

MOV.B WORK_1,R0L
INC.B R0L

; .
; .
SUB_1_END:

RTS
;
;================= SUB_2 routine ======================================
SUB_2:

MOV.B WORK_2,R1L
DEC.B R1L

; .
; .
SUB_2_END:

RTS
;
;********** Setting fixed vector (Special page vector and fixed interrupt vector) **************
;

.SECTION F_VECT,ROMDATA

.ORG 0FFFE00H ; Specifys address of special page vector No.255
; (start address of fixed vector area).

.WORD SUB_1 & 00FFFFH ; Sets start address of subroutine "SUB_1".
;

.ORG 0FFFE08H ; Specifys address of special page vector No.251.
;

.WORD SUB_2 & 00FFFFH ; Sets start address of subroutine "SUB_1".
;

.ORG 0FFFFDCH ; Start address of fixed interrupt vector

.LWORD dummy ; Undefined instruction interrupt vector

.LWORD dummy ; Overflow(INT O instruction) interrupt vector

.LWORD dummy ; BRK instruction interrupt vector

.LWORD dummy ; Address match interrupt vector

.LWORD dummy ; Unused

.LWORD dummy ; Watchdog timer interrupt vector

.LWORD dummy ; Unused

.LWORD dummy ; NMI interrupt vector

.LWORD START ; Sets reset vector
;

.END

When called by a special page, because the most
significant byte (bits 16 to 23) of the jump address
is fixed to "FFH," the subroutine must be located
within addresses FF0000H to FFFFFFH.

Because labels are expanded into 3-byte quantities
by the assembler, mask the most significant byte of
address with the assembler operator "&" (logical
AND) and set the 2 low-order bytes of address in the
special page vector.

Because special page vectors are comprised of 2
bytes each, special page vector No. 251 is at
address FFFE08H.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 206 of 229

4.5.5 Example for using software interrupt (INTO instruction)

The INTO instruction (overflow interrupt) is a software interrupt instruction that generates an interrupt
when it is executed while the Flag Register (FLG)'s overflow flag (O) is set to 1.
Therefore, the INTO instruction can be used to call an overflow handling routine when the operation of a
divide instruction (e.g., DIV, DIVU) or multiply/accumulate instruction (RMPA) resulted in an overflow.
Figure 4.5.8 shows an example of how to use the INTO instruction.

Example for using the INTO instruction

;**********************Program area ***
;=================Main program =====================================
MAIN:

JSR INIT ; Initialization routine
MAIN_10:

MOV.L DATA1, R2R0
DIV.W #5 ; Signed divide
INTO ; Overflow interrupt
MOV.W R0, ANS_DAT1

; .
; .

MOV.L #0, R2R0
MOV.W #0, R1

;
MOV.L #10000H, A0 ; Sets address in which to sore multiplicand.
MOV.L #20000H, A1 ; Sets address in which to store multiplier.
MOV.W #0FFH, R3 ; Sets number of times products are summed.
RMPA.W ; Perform multiply / accumulate operation
INTO ; Overflow interrupt

;
MOV.L R2R0, ANS_DAT2
MOV.W R1, ANS_DAT2+4

; .
; .

JMP MAIN_10
;
;================= INIT routine ==
INIT:

MOV.W #0FFFFH, DATA1
MOV.W #0, ANS_DAT1

; .
; .
INIT_END:

RTS
;

Only when the operation resulted in an overflow
(O flag = 1), an interrupt is generated by the
INTO instruction; otherwise, no interrupt is
generated and the next instruction is executed.

When an overflow occurs during the multiply/
accumulate operation (O flag = 1), the
instruction being executed is suspended and
the next instruction (INTO instruction) is
executed, so that an interrupt is generated by
the INTO instruction.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 207 of 229

Figure 4.5.8 Example for using INTO (software interrupt) instruction

Notice that the vector for the overflow
interrupt (INTO instruction) is a fixed vector.

INT_OVER_FLOW:
FSET B

; .
; Processing performed when the operation resulted in an overflow
; .
INT_OVER_FLOW_END:

REIT
;
;
;================= Dummy interrupt program ===============================
dummy:

REIT
;
;
;*********** Setting fixed vector **************
;

.SECTION F_VECT,ROMDATA

.ORG 0FFFFDCH ; Start address of fixed interrupt vector

.LWORD dummy ; Undefined instruction interrupt vector

.LWORD INT_OVER_FLOW ; Sets start address of interrupt handler
; for Overflow(INT O instruction) interrupt vector

.LWORD dummy ; BRK instruction interrupt vector

.LWORD dummy ; Address match interrupt vector

.LWORD dummy ; Unused

.LWORD dummy ; Watchdog timer interrupt vector

.LWORD dummy ; Unused

.LWORD dummy ; NMI interrupt vector

.LWORD START ; Sets reset vector
;

.END

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 208 of 229

4.5.6 Software runway prevention

This section explains how to prevent the program from going wild by means of software, for example,
using a watchdog timer or software interrupt instruction.

Using a watchdog timer

The watchdog timer is a 15-bit timer, which is used to detect occurrence of program runaway.
When the program goes wild, the watchdog timer under-flows, generating an interrupt. The
program can be restarted in this watchdog timer interrupt handling by, for example, a software
reset.
The watchdog timer interrupt is non-maskable. After a reset, the watchdog timer remains idle, and
is made to start counting by a write to the watchdog timer start register. Note that the watchdog
timer is initialized when the CPU is reset, when data is written to the watchdog timer start register,
and when a watchdog timer interrupt request is generated.

Method for Detecting Program Runaway

The chart below shows an operation flow when the program is found out of control and the
method of runaway detection.

(1) Operation flow

Figure 4.5.9 Operation flow when program runaway is detected

• • • Write to the watchdog timer start register before the watchdog
timer underflows.

When normal

Runaway detected

Program restarted

• • • An interrupt is generated unless some processing is executed
to write to the watchdog timer start register before the
watchdog timer underflows due to program runaway.

• • • When a watchdog timer interrupt occurs, the program is
restarted by a software reset in the interrupt handler routine.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 209 of 229

(2) Method of runaway detection
Program a procedure so that a write to the watchdog timer start register is performed before
the watchdog timer under-flows. By writing to the watchdog timer start register, the initial
count "7FFFH" is set in the watchdog timer. (This is fixed, and not other value can be set.)
If this write operation is inserted in a number of locations, it can happen that a write to the
watchdog timer start register is performed at a place to which the program has been brought
by runaway. Thus, no where in the program can it be detected to have run out of control.
Therefore, be careful that this write operation is inserted in only one location such as the main
routine that is always executed. However, consider the length of the main routine and that of
the interrupt handler routine to ensure that a write to the watchdog timer start register will be
performed before a watchdog timer interrupt occurs.

(3) Restarting the program after having gone wild
Write your program so that Processor Mode Register 0 bit 3 (software reset bit) is set by
writing a 1 in an interrupt handler routine. This generates a software reset, so the program
restarts from its reset state. (The internal RAM contents retained at this time are those that
were being held immediately before the reset.)
Make sure the start address of this interrupt handler routine is set in the interrupt vector for
the watchdog timer interrupt beforehand.
When restarting the program from its reset state, always be sure to use the software reset bit
to reset it. Note that if the address value that has been set in the interrupt vector for the
watchdog timer interrupt is the same as that of the reset vector, the IPL (processor interrupt
priority level) remains 7 without being cleared. Therefore, when the program restarts, a
problem is encountered that all other interrupts are disabled.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 210 of 229

Examples of Runaway Detection Programs

Figures 4.5.10 and 4.5.11 show sample programs in which the watchdog timer is used to detect
program runaway.

Example 1: Operation (subroutine) for writing to the watchdog timer start register is executed
periodically at predetermined intervals

Figure 4.5.10 Example of runaway detection program 1

Example 2: Interrupt handling program to restart the system is executed when a watchdog timer
interrupt occurs

Figure 4.5.11 Example of runaway detection program 2

Note 1: If the program runs out of control, the contents of the base registers (SB, FB) are not guaranteed. Therefore, they must be set
correctly again before writing values to the SFR.

Note 2: The system enters a reset sequence immediately after the software reset bit is set to 1. Therefore, no instructions following it are
executed.

WDT_SET:
MOV.B R0L,WDTS ; Writes to watchdog timer start register.
RTS

Define address with ".EQU" in advance.

Because no arbitrary value can be written to the
watchdog timer start register, the value of R0L
can be indeterminate.

WDT_INT:

LDC #00380H,SB (Note 1) ; Sets SB and FB registers back again.
LDC #00500H,FB

;
BSET 1, PRCR ; Enable to write to the processor made register 0, 1

; (Removes protect.)
BSET 3, PM0 ; Software reset

;
REIT (Note 2)

•
•
•

.SECTION VECT,ROMDATA

.ORG 0FFFF0H

.LWORD WDT_INT ; Sets start address of interrupt handler routine to
; watchdog timer interrupt vector in advance.

•
•

Define address with ".EQU" in advance.

Remove protect before setting the software
reset bit to 1 to reset the system in
software.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 211 of 229

Using software interrupts (UND/BRK instructions)

Both BRK and UND instructions are software interrupt instructions that generate an interrupt when
the instruction is executed. These instructions can also be used to detect occurrence of program
runaway. The following shows how to detect.

The method of detecting runaway

Program runaway detection can be accomplished by embedding the BRK or UND instruction in an
area of ROM other than one being used as the program area beforehand. When the program goes
wild and accesses an unused area of ROM, it fetches the UND or BRK instruction stored in the
area, at which time an interrupt is generated, providing a means of detecting runaway.
Also, by storing the start address of a dummy interrupt handler in an unused interrupt vector
beforehand, it is possible to prevent the program from going wild in the event an unused interrupt
occurs. For description examples, refer to Section 4.3.6, "Sample List 3 (Using Interrupts)."
To restart the program that has gone wild and handle the generated interrupt, follow the same
procedure as when using the watchdog timer that is described earlier.

Figure 4.5.12 Runaway detection using software interrupt instructionsAAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAAUND instruction (FFH) /

BRK instruction (00H)
Written in () are instructions in
machine language.

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

Program area

000000H

FE0000H

FFFE00H

FFFFFFH

AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAA

AAAAAAAA
AAAAAAAAdummyAAAAAAAA
AAAAAAAA

dummy

Unused area in ROM

Variable and fixed interrupt vector areas

""dummy" denotes the start
address of a dummy interrupt
handler.

UND instruction (FFH) /
BRK instruction (00H)

UND instruction (FFH) /
BRK instruction (00H)

.

.

.

.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 212 of 229

4.5.7 Method for using the "-LOC" option

This section explains how to use the linker (LN308) option "-LOC" (specify section data location) that is
included in the M16C/80 series assembler system.

About the "-LOC" option

The "-LOC" option specifies the address at which to store the internal data of a specified section,
and is used when modules need to be stored in other areas than the run-time storage area(note).
Therefore, the internal label values (address values) of a specified section are generated with
respect to the address specified by ".ORG" in the source file or the address specified by the linker
option "-ORDER" when linking.

Usage example

Shown below is an example where the section name "PROGRAM" that is stored at address
EF0000H is transferred to address 1000H before program execution, then the program is
executed from address 1000H.

Figure 4.5.13 Example for specifying section data location with -LOC option

Note: This method may be used for the flash ROM version of the M16C/80 series where when writing a program to the internal flash ROM
in CPU rewrite mode, the program used to write to the flash ROM is run in RAM.

Address .SECTION PROGRAM, CODE
FE0000H MOV.B #01H, R0L

JMP.A LABEL

; .
; .
FE0200H LABEL:

MOV.W TABLE_DATA , ANS

; .
; .
; .
FE0500H TABLE_DATA:

.WORD 1234H, 5678H,

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA

000000H

001000H

FE0000H

FFFFFFH

Internal RAM area

Internal ROM area

Note: The example memory map shown here is that of the M30800 in
the M16C/80 group.

Program
transferred to

RAM

AAAAAA
AAAAAASFR area

000400H

002BFFH

.SECTION
PROGRAM

.SECTION
PROGRAM

Similarly, the generated address
is "001500H", and not "FE0500H."

The above program to be executed from RAM address "1000H" is located
at address "FE0000H."

AAAAAA
AAAAAA.SECTION

BOOT_PRO
FFE000H

Executed after
being transferred
to RAM.

Because code is generated with
respect to the address specified
by the option -ORDER, the
resulting address is "001200H",
and not "FE0200H."

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 213 of 229

4.6 Standard processing program

This section shows examples of commonly used processing in programming of the M16C/80
series. For more information, refer to Application Notes, "M16C/80 Series Sample Programs
Collection".

Conditional Branching Based on Specified Bit Status

Figure 4.6.1 Sample program for conditional branching based on specified bit status

Retrieving Data Table

Figure 4.6.2 Sample program for table retrieval

BTST 0,WORK_1
JC LABEL1 ; Branches to LABEL1 if specified bit = 1.
 •
 •

LABEL1:
BTST 1,WORK_1
JNC LABEL2 ; Branches to LABEL2 if specified bit = 0.
 •
 •

LABEL2:
;

Conditional branched by two instructions.

MOV.W #1,A0
MOV.B DATA_TABLE[A0],R0L ; Stores 2nd byte (34H) of data table in R0L.

•
•
•
•

DATA_TABLE:
.BYTE 12H,34H,56H,78H ; Sets 1-byte data.

;

Performed by address register relative addressing. Table
data is retrieved by using the start address of the table as
the base address and by placing a relative address from
that location in the address registers (A0, A1).

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 214 of 229

Subroutine call by table jump

Figure 4.6.3 Example for subroutine call by table jump

PARAMETER .EQU 1

MOV.WPARAMETER,A0 ; Sets A0 for argument.
SHL.W #2,A0 ; Calculates offset value of jump table.

;
JSRI.A JUMP_TABLE[A0] ; Jump table (indirect subroutine call)

•
•

;
;=========== ROUTINE1 ===
SUB1:

•
Program
•

SUB1_END:
RTS

;
;=========== ROUTINE2 ===
SUB2:

•
Program
•

SUB2_END:
RTS

;
;=========== ROUTINE3 ===
SUB3:

•
Program
•

SUB3_END:
RTS

;
;=========== ROUTINE4 ===
SUB4:

•
Program
•

SUB4_END:
RTS

;
;=========== JUMP TABLE ===
JUMP_TABLE:

.LWORD SUB1 ; Set start address of routine 1 in 4 bytes

.LWORD SUB2 ; Set start address of routine 2 in 4 bytes

.LWORD SUB3 ; Set start address of routine 3 in 4 bytes

.LWORD SUB4 ; Set start address of routine 4 in 4 bytes

Because the jump address is set to be 4 bytes by ".
LWORD," the relative address value is quadrupled by
shifting the value of A0 2 bits to the left.

The program jumps to the location stored at
the address that is indicated by a relative
value (parameter) from the base address, i.
e., the start address of the table in which
jump addresses are set.

If the parameter value is "1," this
program calls routine 2 (SUB2).

The start address of each
subroutine must be set in
this table beforehand.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 215 of 229

Appendix
Command input form and
command parameters

in AS308 system

Appendix A. Generating Object Files
A-1 Assembling (as308)
A-2 Link (ln308)
A-3 Generating

Machine Language File

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 216 of 229

Appendix A Generating Object Files

The AS308 system is a program development support tool consisting of an assembler (as308),
linkage editor (ln308), load module converter (lmc308), and other tools (lb308, abs308, and
xrf308). This section explains how to generate object files using the AS308 system.

Figure A.1 Outline of processing by AS308

Note: In this manual, the AS308 system is referred to by "AS308 system" (uppercase) when it means the entire system or by "as308"
(lowercase) when it means only the assembler (as308).

as308

Assembly source
file

lb308

ln308

Relocatable module
file

Assembler list
file

Library file

Absolute module
file

abs308

Absolute list
file

lmc308

Intel HEX format
file

Motorola S format
file

xrf308

Cross reference
file

Input file

Output file

.a30

.lst.r30

.lib .xrf

.x30

.als.hex.mot

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 217 of 229

Appendix A-1 Assembling (as308)

The following explains the files generated by the relocatable assembler (as308) and how to start
up the assembler.

Files Generated by as308

(1) Relocatable module file (***.R30) ... Generated as necessary
This file is based on IEEE-695. It contains machine language data and its relocation
information.

(2) Assembler list file (***.LST) ... Generated when option '-L' is specified
This file contains list lines, location information, object code, and line information. It is used to
output these pieces of information to a printer.

(3) Assembler error tag file (***.TAG) ... Generated when option '-T' is specified
This file contains error messages for errors that occurred when assembling the source file.
This file is not generated when no occur was encountered. This file allows errors to be
corrected easily when it is used an editor that has the tag jump function.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 218 of 229

Method for Starting Up as308

>as308 file name.extension [file name.extension...] [option]
Be sure to write at least one file name. The extension (.A30) can be omitted.

Table A.1 Command Options of as308

Command option Function

-. Inhibits assemble processing messages from being output.

-A Evaluates mnemonic operand.

-abs16
Specifys 16-bit absolute addressing mode.
*Allways input this option in small letters.

-C
Displays command options when as308 has started up
mac308 and asp308.

-D symbol name=constant Sets symbol constant.

-F expansion file name Fixes expansion file of directive command ..FILE.

-H Header information is not output to an assembler list file.

-I
The include fille specified by ".INCLUDE" that is written in the
source file is seaeched from a specified directory.

-L

-L The software generates an assembler list file.
-LC Line concatenation is output directory as is to a list

file.
-LD Information before .DEFINE is replaced is output to a

list file.
-LI Even program sections in which condition assembler

resulted in false conditions are output to the
assembler list file.

-LM Even macro description expansion sections are
output to the assembler list file.

-LS Even structured description for AS30 expansion
sections are output to the assembler list file.

-mod60
AS308 replaces some of the commands in the program
written for AS30.
*Always input this option in small letters.

-mod60p
Processes structured commands for AS30.
*Always input this option in small letters.

-N
Inhibits line information of macro description from being
output to relocatable module file.

-O directory path name
Specifies directory for file generated by assembler. Do not
insert space between the letter O and directory name.
(Default is current directory.)

-S Outputs local symbol information to relocatable module file.

-T Generates tag file.

-V Displays version of assembler system each program.

-X program name Generates error tag file and invokes command.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 219 of 229

Example for Using as308 Commands

Assembler List File

Figure A.2 shows an example of the assembler list file.

Figure A.2 Example of assembler list file

Example:
>as308 -L -Oc:\work SAMPLE

This command generates SAMPLE.LST and SAMPLE.R30 from
SAMPLE.A30 and outputs them to the \work directory.

>as30 -s -t sample

This command outputs the system label and local symbol
information of SAMPLE.A30 to the relocatable module file
SAMPLE.R30.

Separate each option with a space.

If extension is omitted, ".A30" is assumed.

Command options can be written in
uppercase or lowercase as desired.

Line number of list
Location address

Object code
Assemble processing information of as308

 Assembly source line

Indicates the nested level of include file.

* M16C/80 SERIES ASSEMBLER * SOURCE LIST Wed Mar 24 16:04:39 1999 PAGE 001

 SEQ. LOC. OBJ. 0XMSDA .*....*....SOURCE STATEMENT....8....*....9....*....0....*....1....*....2....*....3....*....4
 1 ;""Sample List""
 2 ;***********************Include***
 3 ;
 4 .INCLUDE M30800.INC
 5 1 ;--
 6 1 ; M30800 SFR defined file
 7 1 ;--
 8 1 .LIST OFF
 9 1 .LIST ON
 10 ;
 11 ;***********************Defined symbol **
 12 ;
 13 00000400h RAM_TOP .EQU 000400H ; Start address of RAM area
 14 00002BFFh RAM_END .EQU 002BFFH ; End address of RAM area
 15 00FE0000h ROM_TOP .EQU 0fE0000H ; Start address of ROM area
 16 00FFFFDCh FIXED_VECT_TOP .EQU 0FFFFDCH ; Start address of fixed vector
 17 00000400h SB_BASE .EQU 000400H ; Base address for SB relative
 18 00000580h FB_BASE .EQU 000580H ; Base address for FB relative
 19 00000300h ISP_SIZE .EQU 300H ; Size of interrupt satck area
 20 ;
 21 ;*********************** Allocated work RAM area **************************************
 22 ;
 23 .SECTION WORK,DATA
 24 000400 .ORG RAM_TOP
 25 ;
 26 000400 WORKRAM_TOP:
 27 000400(000001H) char: .BLKB 1 ; Allocates a 1-byte area.
 28 000401(000002H) short: .BLKW 1 ; Allocates a 2-byte area.
 29 000403(000003H) addr: .BLKA 1 ; Allocates a 3-byte area.
 30 000406(000004H) long: .BLKL 1 ; Allocates a 4-byte area.
 31 00040A WORKRAM_END:
 32 ;

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 220 of 229

33 ;*********************** Defined bit symbol **
34 ;
35 0,00000400h char_b0 .BTEQU 0,char ; Bit 0 of char
36 1,00000401h short_b1 .BTEQU 1,short ; Bit 1 of short
37 2,00000403h addr_b2 .BTEQU 2,addr ; Bit 2 of addr
38 3,00000406h long_b3 .BTEQU 3,long ; Bit 3 of long
39 ;
 * M16C/80 SERIES ASSEMBLER * SOURCE LIST Wed Mar 24 16:04:39 1999 PAGE 002
SEQ. LOC. OBJ. 0XMSDA .*....*....SOURCE STATEMENT....8....*....9....*....0....*....1....*....2....*....3....*....4
 40 .PAGE
 41 ;**********************Program area***
 42 ;================== Startup ===============================
 43 ;
 44 .SECTION PROGRAM,CODE
 45 FE0000 .ORG ROM_TOP
 46 FE0000 START:
 47 FE0000 D52F002C00 LDC #RAM_END+1,ISP ; Sets initial value for stack pointer(ISP)
 48 ;
 49 FE0005 F6E30A00 Q MOV.B #03H,PRCR ; Removes protection.
 50 FE0009 1504008301 S MOV.W #0183H,PM0 ; Sets processor mode register 0 and 1.
 51 FE000E 1506000820 S MOV.W #2008H,CM0 ; Sets system clock control registers 0 and 1.
 52 FE0013 140B0012 S MOV.B #12H,MCD ; Sets main clock divide register.
 53 FE0017 120A00 Z MOV.B #0,PRCR ; Protects all registers.
 54 ;
 * M16C/80 SERIES ASSEMBLER * SOURCE LIST Wed Mar 24 16:04:39 1999 PAGE 003
SEQ. LOC. OBJ. 0XMSDA .*....*....SOURCE STATEMENT....8....*....9....*....0....*....1....*....2....*....3....*....4
 85 .PAGE
 86 ;======================= Main program ====================================
 87 FE0066 MAIN:
 88 FE0066 B88B00E0FF MOV.B DATA_TABLE[A0],R0L
 89 FE006B 99EF3412 MOV.W #1234H,R1
 90 FE006F D2B800 * BSET char_b0

 91 ; .
 92 ; .
 93 ; .
 94 FE0072 B8AB00E0FF MOV.B DATA_TABLE,R0L
 95 FE0077 BBEE B JMP MAIN
 96 ;
 101 ;======================= Constamt data area ===============================
 102 ;
 103 .SECTION CONSTANT,ROMDATA
 104 FFE000 .ORG 0FFE000H
 105 ;
 106 FFE000 DATA_TABLE:
 107 FFE000 12345678 .BYTE 12H,34H,56H,78H ; Sets 1 byte data.
 108 FFE004 34127856 .WORD 1234H,5678H ; Sets 2 bytes data.
 109 FFE008 563412BC9A78 .ADDR 123456H,789ABCH ; Sets 3 bytes data.
 110 FFE00E 78563412 .LWORD 12345678H,9ABCDEF0H ; Sets 4 bytes data.

 F0DEBC9A
 111 FFE016 DATA_TABLE_END:
 112 ;
 126 ;
 127 .END

Information List
TOTAL ERROR(S) 00000
TOTAL WARNING(S) 00000
TOTAL LINE(S) 00127 LINES

Section List
Attr Size Name
DATA 00000010(00000AH) WORK
CODE 00000122(00007AH) PROGRAM
ROMDATA 00000022(000016H) CONSTANT
ROMDATA 00000036(000024H) F_VECT

Z: Indicates that zero format has been selected for instruction format.
S: Indicates that short format has been selected for instruction format.
Q: Indicates that quick format has been selected for instruction format.
* : Indicates that 8-bit displacement SB relative addressing mode been
 selected for instruction format.

S: Indicates that 3-bit relative jump (jump distance specifier 'S') has been selected.
B: Indicates that 8-bit relative jump (jump distance specifier 'B') has been selected.
W: Indicates that 16-bit relative jump (jump distance specifier 'W') has been selected.
A: Indicates that absolute jump (jump distance specifier 'A') has been selected.

Outputs total number of errors derived from
assembling, as well as total number of warnings
and total number of list lines.

Outputs section type, section size,
and section name.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 221 of 229

Assemble Error Tag File

Figure A.3 shows an example of an assembler error tag file.

Figure A.3 Example of assembler error tag file

sample.atg 21 Error (asp308): Operand value is not defined
sample.atg 72 Error (asp308): Undefined symbol exist "work2"

Assemble source file name

Error messageError line number

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 222 of 229

Appendix A-2 Linking(ln308)

The following explains the files generated by the linkage editor ln308 and how to start up the
linkage editor.

Files Generated by ln308

(1) Absolute module file (***.X30) ... Generated as necessary
This file is based on IEEE-695. It consists of the relocatable module files output by as308
that have been edited into a single file.

(2) Map file (***.MAP) ... Generated when option '-M' or '-MS' is specified
This file contains link information, section's last located address information, and symbol
information. Symbol information is output to this map file only when an option '-MS' is
specified.

(3) Link error tag file (***.TAG) ... Generated when option '-T' is specified
This file contains error messages for errors that have occurred when linking the relocatable
module files. This file is not generated when no error was encountered. This file allows
errors to be corrected easily when it is used an editor that has the tag jump function.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 223 of 229

Method for Starting Up ln308

>ln308 relocatable file name [relocatable file name...] [option]

Be sure to write at least one file name. The extension (.R30) can be omitted.

Table A.2 Command Options of ln308

Command option Function

-. Inhibits link processing messages from being output.

-E address value

Sets start address of absolute module file. Always be sure to
insert space between option symbol and address value and
use label name or hexadecimal number to write address
value.

-G Outputs source debug information to absolute module file.

-L library file Specifies library file to be referenced when linking.

-LD path name Specifies directory of library file.

-LOC
Allocates the data of a specified section from a specified
address.

-M
Generates map file. This file is named after absolute module
file by changing its extension to ".map".

-MS Generates map file that includes symbol information.

-MSL
The fullname of symbol more than 16 characters are output
to map file.

-NOSTOP
Outputs all encountered link errors to the screen. if this
operation is not specified, outputs up to 20 errors to the sc
reen.

-O absolute file name
Specifies absolute module file name. File extension can be
omitted. If omitted, extension ".x30" is assumed.

-ORDER

Specifies section arrangement and sequence in which order
they are located. If start address is not specified, sections
are
located beginning with address 0.

-T Outputs error tag file.

-V
Displays version on screen. Linker is terminated without
performing anything else.

@Command file name

Starts up ln30 using specified file as command parameter.
Do not insert space between @ and command file name.
This option cannot be used with any other option
simultaneously.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 224 of 229

Example for Using ln308 Commands

Link Error Tag File

Figure A.4 shows an example of a link error tag file.

Figure A.4 Example of link error tag file

Note: Absolute module files are output in the format based on IEEE-695. Since this format is binary, the files cannot be output to the
screen or printer; nor can they be edited.

Example:
>ln308 SAMPLE1 SAMPLE2 -O ABSSMP

This command generates ABSSMP.X30.

>ln308 @cmdfile
This command starts up ln30 using the content of cmdfile as a command parameter.

#Typical description of cmdfile
SAMPLE1 SAMPLE2 #Relocatable file name
SAMPLE3 #Relocatable file name
-ORDER RAM=400 #Specifies 400H for start address of RAM section.
-ORDER PROG=0FE0000,SUB,DATA #Specifies sequence in which order sections are located.
-M #Command option to generate map file

Extension ".R30" can be omitted.

Command option can be written in
uppercase or lowercase as desired.

Use hexadecimal number to write address. If address begins with alphabet,
add '0' at the beginning. Do not add 'H' to denote hexadecimal.

Section names are discriminated
between uppercase and lowercase.

Add '#' at the beginning of a comment.

sample1.a30 87 Warning (ln308): sample1.r30: Section type mismatch 'PRO'
sample1.a30 92 Warning (ln308): sample1.r30: Absolute-section is written after the absolute-section 'PRO'
sample1.a30 92 ERROR (ln308): sample1.r30: Address is overlapped in 'CODE' section 'PRO'

Assemble source file name

Error / warning line number Error message

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 225 of 229

Map File

Figure A.5 shows an example of a map file.

Figure A.5 Example of map file

##
(1) LINK INFORMATION
##
C:\MTOOL\BIN\LN308.EXE -MS SMP
LINK FILE INFORMATION
SMP (SMP.r30)

Mar 24 16:04:39 1999

##
(2) SECTION INFORMATION
##
SECTION ATR TYPE START LENGTH ALIGN MODULENAME
WORK ABS DATA 000400 00000A SMP
PROGRAM ABS CODE FE0000 00007A SMP
CONSTANT ABS ROMDATA FFE000 000016 SMP
F_VECT ABS ROMDAT FFFFDC 000024 SMP
Total--

DATA 000000A(00000010)Byte(s)
ROMDATA 000003A(00000058)Byte(s)
CODE 000007A(00000122)Byte(s)

##
(3) GLOBAL LABEL INFORMATION
##
WORK 000000

##
(4) GLOBAL EQU SYMBOL INFORMATION
##
sym2 000000

##
(5) GLOBAL EQU BIT-SYMBOL INFORMATION
##
sym1 1 000001

##
(6) LOCAL LABEL INFORMATION
##
@ SMP (SMP.r30)
DATA_TABLE ffe000 DATA_TABLE_END ffe016 MAIN fe0066
START fe0000 WORKRAM_END 00040a WORKRAM_TOP 000400
addr 000403 char 000400 dummy fe0079
long 000406 short 000401
##
(7) LOCAL EQU SYMBOL INFORMATION
##
@ SMP (SMP.r30)
AD0 00000380 AD1 00000382 AD2 00000384
AD3 00000386 AD4 00000388 AD5 0000038a
TA2IC 0000006e TA2MR 00000358 TA3 0000034c
TA3IC 0000008e TA3MR 00000359 TA4 0000034e
U0MR 00000360 U0RB 00000366 U0TB 00000362
##
(8) LOCAL EQU BIT-SYMBOL INFORMATION
##
@ SMP (SMP.r30)
addr_b2 2 000403 char_b0 0 000400 long_b3 3 000406
short_b1 1 000401

Link information

Section information

Global label information
This information is output only when command option
'- MS' is specified.

Global symbol information
This information is output only when command option
'- MS' is specified.

Global bit symbol information
This information is output only when command option
'- MS' is specified.

Local label information
This information is output only when command option
'- MS' is specified.

Local bit symbol information
This information is output only when command option
'- MS' is specified.

Local symbol information
This information is output only when command option
'- MS' is specified.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 226 of 229

Appendix A-3 Generating Machine Language File (lmc308)

The following explains the files generated by the load module converter lmc308 and how to start up
the converter.

Files Generated by lmc308

(1) Motorola S format file (***.MOT) ... Generated normally
This is a machine language file normally generated by the converter.

(2) Intel HEX format file (***.HEX) ... Generated when option '-H' is specified
This is a machine language file generated by the converter when an option '-H' is specified.

Method for Starting Up lmc308

>lmc308 [option] absolute module file name

Table A.3 Command Options of lmc308

Command option Function

-.
Inhibits all messages but error messages and warning
messages from being output to the file.

-E start address

Sets program's start address and generates machine
language file in
Motorola S format. This option cannot be specified
simultaneously with
option '-H'.

-H
Generates machine language file in extended Intel HEX
format. This
option cannot be specified simultaneously with option '-E'.

-ID
Sets ID code of ID code check function .
An ID file(extension .id) is created to display ID codes set
with this option.

-L
Sets data length that can be handled in S2 records to 32
bytes. Sets
Intel HEX format's data length to 32 bytes.

-O

Specifies file name of machine language file generated by
lmc30. This file is generated in current directory. Always be
sure to insert space between option and machine language
file name. Extension of machine language file can be
omitted. (Motorola S format .mot; Intel HEX format .hex)

-V
Displays version of lmc30 on screen. Converter is terminated
without performing anything else.

-PROTECT1 Sets level 1 of ROM code protect function .

-PROTECT2 Sets level 2 of ROM code protect function .

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 227 of 229

Example for Using lmc30 Commands

Example
>lmc308 -E 0fe0000 -. DEBUG
This command generates a machine language file "DEBUG.MOT" from the absolute module file
"DEBUG.X30" using 0fe0000 as the start address.

>lmc308 -O TEST DEBUG
This command generates machine language file "TEST.MOT" from the absolute module file
"DEBUG.X30".

Options are not discriminated between
uppercase and lowercase.

Write the option before specifying
the absolute module file.

Extension ".X30" can be omitted.

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 228 of 229

Programming Guidelines <Assembly Language>

Application Note

Rev. Date Description

Page Summary

REVISION HISTORY

1.00 Oct 20, 2003 - First edition issued

 1.01 Sep 5, 2005 All page Assembler Language --> Assembly Language

M16C/80 Series
Programming Guidelines <Assembly Language>

September 2005REJ05B0087-0101Z/Rev.1.01 Page 229 of 229

Keep safety first in your circuit designs!

Notes regarding these materials

• Renesas Technology Corporation puts the maximum effort into making semiconductor prod-
ucts better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

• These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corporation product best suited to the customer's application; they do
not convey any license under any intellectual property rights, or any other rights, belonging
to Renesas Technology Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringe-
ment of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice
due to product improvements or other reasons. It is therefore recommended that custom-
ers contact Renesas Technology Corporation or an authorized Renesas Technology Cor-
poration product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or
other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corporation assumes no responsibility for any dam-
age, liability or other loss resulting from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for
use in a device or system that is used under circumstances in which human life is poten-
tially at stake. Please contact Renesas Technology Corporation or an authorized Renesas
Technology Corporation product distributor when considering the use of a product con-
tained herein for any specific purposes, such as apparatus or systems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or
the products contained therein.

	Table of contents
	Chapter 1
Overview of M16C/80 Series
	1.1 Features of M16C/80 Series
	1.2 Outline of M16C/80 Group

	Chapter 2
CPU Programming Model
	2.1 Address Space
	2.1.1 Operation Modes and Memory Mapping
	2.1.2 SFR Area
	2.1.3 Fixed Vector Area

	2.2 Register Set
	2.3 Data Types
	2.4 Data Arrangement
	2.5 Addressing Modes
	2.5.1 General Instruction Addressing
	2.5.2 Indirect instruction Addressing
	2.5.3 Special Instruction Addressing
	2.5.4 Bit Instruction Addressing

	2.6 Instruction Set
	2.6.1 Instruction Description
	2.6.2 Instruction List
	2.6.3 Transfer Instructions
	2.6.4 Arithmetic Instructions
	2.6.5 Branch Instructions
	2.6.6 Bit Instructions
	2.6.7 Sign-extension instruction
	2.6.8 Index instruction
	2.6.9 High-level language and OS support instructions

	2.7 Outline of Interrupt
	2.7.1 Interrupt Sources and Vector addresses
	2.7.2 Variable vector table
	2.7.3 Interrupt generation conditions and interrupt control register bit configuration
	2.7.4 Interrupt acceptance timing and sequence
	2.7.5 Interrupt priority

	Chapter 3
Functions of Assembler
	3.1 Outline of AS308 System
	3.2 Method for Writing Source Program
	3.2.1 Basic Rules
	3.2.2 Address Control
	3.2.3 Directive Commands
	3.2.4 Macro Functions
	3.2.5 Differences with M16C/60

	Chapter 4
Programming Style
	4.1 Hardware Definition
	4.1.1 Defining SFR Area
	4.1.2 Allocating RAM Data Area
	4.1.3 Allocating ROM Data Area
	4.1.4 Defining a Section
	4.1.5 Sample Program List 1 (Initial Setting 1)

	4.2 Initial Setting the CPU
	4.2.1 Setting CPU Internal Registers
	4.2.2 Setting Stack Pointer
	4.2.3 Setting Base Registers (SB, FB)
	4.2.4 Setting fixed interrupt vector (reset vector)
	4.2.5 Setting internal peripheral functions
	4.2.6 Sample Program List 2 (Initial Setting 2)

	4.3 Setting when using Interrupts
	4.3.1 Setting Interrupt Table Register(INTB)
	4.3.2 Setting Variable/Fixed Vectors
	4.3.3 Setting Interrupt Control Register
	4.3.4 Enabling Interrupt Enable Flag(I flag)
	4.3.5 Saving and Restoring Registers in Interrupt Handler Routine
	4.3.6 Sample Program List 3 (Using interrupts)
	4.3.7 ISP and USP
	4.3.8 Multiple Interrupts
	4.3.9 High-speed interrupts

	4.4 Dividing Source File
	4.4.1 Concept of Sections
	4.4.2 Example of program description in divided files
	4.4.3 Using library files

	4.5 A Little Tips...(Programing technique)
	4.5.1 Setup Values of SB and FB Registers
	4.5.2 Specifying ROM/RAM data alignments
	4.5.3 Setting stack pointer
	4.5.4 Using special pages
	4.5.5 Example for using software interrupt (INTO instruction)
	4.5.6 Software runway prevention
	4.5.7 Method for using the "-LOC" option

	4.6 Standard processing program

	Appendix
	Appendix A Generating Object Files
	Appendix A-1 Assembling (as308)
	Appendix A-2 Linking(ln308)
	Appendix A-3 Generating Machine Language File (lmc308)

