Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8SX Family

Producing a Pulse Output

Introduction

The 16-bit timer pulse unit (TPU) is used to produce a pulse signal with a period of 25.6 µs and a 50% duty cycle.

Target Device

H8SX/1582F

Contents

1.	Specifications	2
2.	Conditions for Application	2
3.	Description of Modules Used	3
4.	Description of Operation	5
5.	Description of Software	6
6.	Flowchart	9

1. Specifications

- An example of the output pulse is shown in figure 1.
- Pulses with a period of 25.6 μ s and a 50% duty cycle are output.

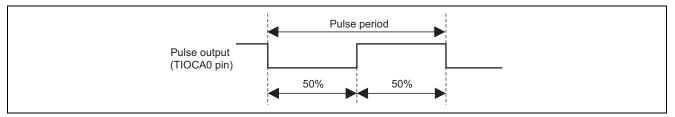


Figure 1 Example of Output Pulse

2. Conditions for Application

Table 1 Conditions for Application

Item	Contents				
Operating frequency	Input clock:	5 MHz			
	System clock (I	40 MHz			
	Peripheral module clock (P	20 MHz			
	External bus clock (Bø):	20 MHz			
Operating mode Mode 3 (MD1 = 1, MD0 = 1)					
Development tool High-performance Embedded Workshop Version 4.00.02					
C/C++ compiler H8S, H8/300 Series C/C++ Compiler Version 6.01.00					
(from Renesas Technology Corp.)					
Compile option-cpu = h8sxa:24:md, -code = machinecode, -optimize = 1, -regparam = 3, -speed = (register, shift, struct, expression)					

Table 2 Section Setting

Address	Section Name	Description
H'001000	Р	Program area

3. Description of Modules Used

In this sample task, the 16-bit timer pulse unit (TPU) is used to output pulses with a period of 25.6 µs and a 50% duty cycle. Figure 2 shows a block diagram of channel 0 of the TPU (TPU_0). This sample task uses the following features of the TPU.

- Automatic generation of pulses by hardware, without software intervention (output compare)
- Counter clearing on compare match
- Output toggling on compare match

The TPU registers are described below.

• Timer start register (TSTR)

TSTR starts or stops the TCNT counters on channels 0 to 5 individually. TCNT must be stopped before setting the operating mode in the TMDR register or setting the clock source for TCNT in the TCR register.

- Timer control register_0 (TCR_0) TCR controls TCNT on each channel. The TPU has one TCR for each channel; i.e., a total of six TCR registers. TCR must be set while the corresponding TCNT is stopped.
- Timer I/O control register H_0 (TIORH_0)

TIOR controls the TGR registers. The TPU has two TIOR registers each for channels 0 and 3, and one each for channels 1, 2, 4, and 5, for a total of eight TIOR registers. Note that TIOR is affected by the setting of TMDR. The initial output specified by TIOR takes effect while the counter is stopped (the corresponding CST bit in TSTR is clear). In PWM mode 2, TIOR specifies the output at the point when the counter is cleared to 0. However, if TGRC or TGRD is specified for buffer operation, this setting has no effect and TGRC or TGRD operates as a buffer register.

• Timer counter_0 (TCNT_0)

TCNT is a 16-bit readable/writable counter. One TCNT is provided for each channel, which makes a total of six TCNT counters. TCNT is initialized to H'0000 when the chip is reset or enters hardware standby mode. Access to TCNT in 8-bit units is not allowed; always access in 16-bit units.

• Timer general register A_0 (TGRA_0)

TGR is a 16-bit readable/writable register that can be used as either an output compare or input capture register. The TPU has four TGR registers each for channels 0 and 3 and two each for channels 1, 2, 4, and 5, for a total of 16 TGR registers. Access to TGR in 8-bit units is not allowed; always access in 16-bit units. TGRC and TGRD of channels 0 and 3 can be configured as buffer registers for buffer operation, in which TGRC

and TGRD act as the buffer register for TGRA and TGRB, respectively.

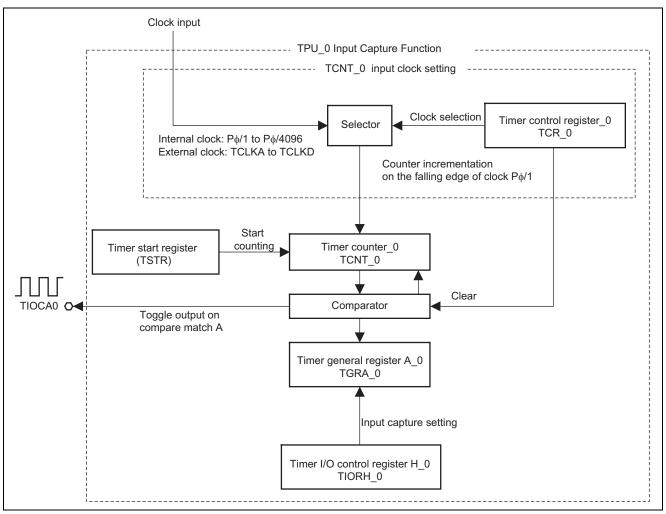


Figure 2 Block Diagram of TPU Channel 0 (TPU_0)

4. Description of Operation

Figure 3 illustrates the principles of operation for the pulse output. The hardware processing and software processing of figure 3 are explained in table 3.

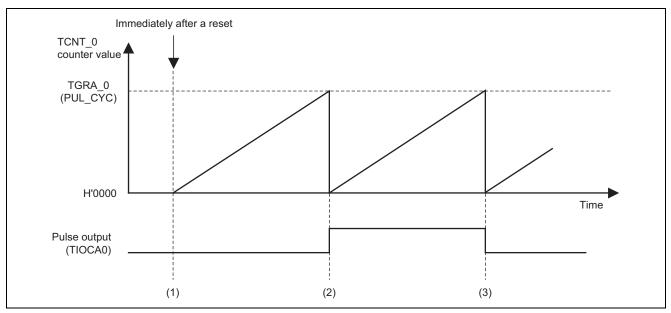


Figure 3 Operation Principles of Pulse Output

Table 3	Hardware and Software Processing	
---------	----------------------------------	--

	Hardware Processing	Software Processing
(1)	No processing	Initial settings
		(a) Select $P\phi/1$ as the input clock for TCNT_0.
		(b) Select clearing of TCNT_0 by compare match A.
		(c) Set so that the output is toggled by compare match A of TPU_0.
		(d) Set half the pulse period (PUL_CYC) in TGRA_0.
		(e) Start the counter.
(2)	(a) Generate compare match A in TPU_0.	No processing
	(b) Clear the counter.	
	(c) Output a high level from TIOCA_0.	
(3)	(a) Generate compare match A in TPU_0.	No processing
	(b) Clear the counter.	
	(c) Output a low level from TIOCA_0.	

5. Description of Software

5.1 List of Functions

Table 4 List of Functions

Function Name	Functions
main	Main routine
	 Makes settings for toggle output upon compare match A
	Produces pulse output

5.2 Vector Table

Table 5 Exception Handling Vector Table

Exception Handling Source	Vector Number	Vector Table Address	Exception Handling Routine
Reset	0	H'000000	main

5.3 Constants

Table 6Description of Constant

Label	Setting	Description	Used In
PUL_CYC	H'00FF	Counter value for half the pulse period	main

5.4 RAM Usage

This sample task does not use RAM.

5.5 Formula for Pulse Period Calculation

The following formula is used to calculate the period of the pulse.

Pulse period = (value set in TGRA_0 + 1) \times 2 \times period of P ϕ

Since TGRA_0 = PUL_CYC in this sample task, the period is $25.6 \ \mu s$ as calculated below.

Pulse period = (H'FF + 1) \times 2 \times 1/20 MHz = 256 \times 2 \times 0.05 μ s = 25.6 μ s

RENESAS

5.6 Internal Registers

The internal registers used in this sample task are described below. The setting values shown in these tables are the values used in the sample task and differ from their initial values.

• System Clock Control Register (SCKCR)

Address: H'FFFDC8

Bit	Bit Name	Setting	R/W	Function
10	ICK2	0	R/W	System clock (I
9	ICK1	0	R/W	These bits select the system clock frequency. The CPU, DMAC,
8	ICK0	0	R/W	and DTC modules are driven by the system clock.
				000: Input clock × 8
6	PCK2	0	R/W	Peripheral clock (P
5	PCK1	0	R/W	These bits select the frequency of the peripheral module clock.
4	PCK0	1	R/W	001: Input clock × 4
2	BCK2	0	R/W	External bus clock (B) select
1	BCK1	0	R/W	These bits select the frequency of the external bus clock.
0	BCK0	1	R/W	001: Input clock × 4

- MSTPCRA, MSTPCRB, and MSTPCRC are the registers that control module stop mode. Setting the bits in these registers places the corresponding modules in module stop mode, and clearing the bits cancels module stop mode.
- Module Stop Control Register A (MSTPCRA)

Bit R/W Function Bit Name Setting 15 ACSE 0 R/W All-module-clock-stop mode enable Enables or disables transition to all-module-clock-stop mode. If this bit is set to 1, all-module-clock-stop mode is entered when the SLEEP instruction is executed by the CPU while all the modules under control of the MSTPCR registers are placed in module stop mode. In all-module-clock-stop mode, even the bus controller and I/O ports are stopped to reduce the supply current. 0: Disables transition to all-module-clock-stop mode. 1: Enables transition to all-module-clock-stop mode. 13 MSTPA13 1 R/W DMA controller (DMAC) 12 MSTPA12 R/W Data transfer controller (DTC) 1 4 MSTPA4 1 R/W A/D converter (unit 1) 3 1 MSTPA3 R/W A/D converter (unit 0) 1 MSTPA1 R/W 16-bit timer pulse unit (TPU channels 11 to 6) 1 0 MSTPA0 1 R/W 16-bit timer pulse unit (TPU channels 5 to 0)

• Module Stop Control Register B (MSTPCRB)

Address: H'FFFDCA

Bit	Bit Name	Setting	R/W	Function
15	MSTPB15	1	R/W	Programmable pulse generator (PPG)
12	MSTPB12	1	R/W	Serial communication interface_4 (SCI_4)
11	MSTPB11	1	R/W	Serial communication interface_3 (SCI_3)

RENESAS

• Module Stop Control Register C (MSTPCRC)

Bit	Bit Name	Setting	R/W	Function
10	MSTPC10	1	R/W	Synchronous serial communication unit 2 (SSU_2)
9	MSTPC9	1	R/W	Synchronous serial communication unit 1 (SSU_1)
8	MSTPC8	1	R/W	Synchronous serial communication unit 0 (SSU_0)
1	MSTPC1	0	R/W	On-chip RAM (H'FFF9000 to H'FFFBFFF)
0	MSTPC0	0		The values written to MSTPC1 and MSTPC0 should always be the same.

• Timer Start Register (TSTR)

Address: H'FFFFBC

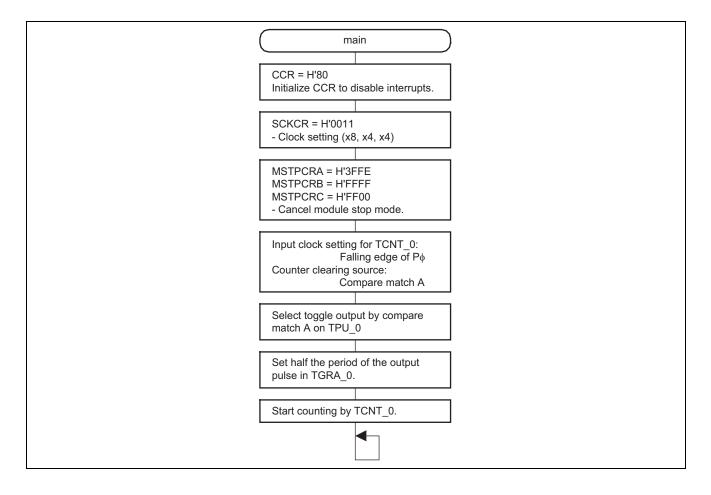
Address: H'FFFDCC

Bit	Bit Name	Setting	R/W	Function
5	CST5	0	R/W	Counter start 5 to 0
4	CST4	0	R/W	Each of these bits starts or stops operation of the corresponding
3	CST3	0	R/W	TCNT counter of the TPU.
2	CST2	0	R/W	0: Stops counting by TCNT_5 to TCNT_0.
1	CST1	0	R/W	1: Starts counting by TCNT_5 to TCNT_0.
0	CST0	1	R/W	

• Timer Control Register_0 (TCR_0)

Address: H'FFFFC0

Bit	Bit Name	Setting	R/W	Function
7	CCLR2	0	R/W	Counter clear 2 to 0
6	CCLR1	0	R/W	These bits select the counter clearing source
5	CCLR0	1	R/W	001: Clear TCNT_0 upon compare match or input capture by TGRA.
4	CKEG1	0	R/W	Clock edge 1, 0
3	CKEG0	0	R/W	These bits select the edge of the input clock.
				00: TCNT_0 counts falling edges.
2	TPSC2	0	R/W	Timer prescaler 2 to 0
1	TPSC1	0	R/W	These bits select the counter clock source.
0	TPSC0	0	R/W	000: TCNT_0 is driven by P ₀ /1.


• Timer I/O Control Register H_0 (TIORH_0)

Address: H'FFFFC2

Bit	Bit Name	Setting	R/W	Function
3	IOA3	0	R/W	I/O control A3 to A0
2	IOA2	0	R/W	These bits set the function of TGRA_0.
1	IOA1	1	R/W	0011: TGRA_0 operates as an output compare register. TIOCA0
0	IOA0	1	R/W	pin output is toggled upon compare match with TGRA_0; the initial output is 0.

6. Flowchart

Revision Record

Rev.	Date	Description			
		Page	Summary		
1.00	Mar.10.06	—	First edition issued		

Keep safety first in your circuit designs!

(ENESAS

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.