

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0076-0100/Rev.1.00 June 2009 Page 1 of 35

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for Microcontrollers

Introduction
This document explains the usage of the TFS FileSystem software library along with a sample program.

Target Devices
Tiny microcomputers (R8C Family, H8/300H Tiny Series and M16C/Tiny Series)

Contents

1. Library specifications... 3

2. Library type definitions .. 3

3. Explanation of terms.. 3
3.1 Logic sector / Logic Sector Number... 3
3.2 Drive / Drive number .. 3

4. Library structures... 4
4.1 tfs_volume – Volume structure .. 4
4.2 tfs_file – File structure .. 4
4.3 tfs_buff – Buffer structure... 5
4.4 tfs_config – File system configuration.. 5
4.5 tfs_format_param – FAT16 parameters... 5
4.6 tfs_format_param1 – File system format parameters .. 6
4.7 tfs_stat – File status ... 7
4.8 tfs_statfs – File system status.. 7

5. Library error codes .. 8

6. Library functions .. 9
6.1 tfs_init ... 9
6.2 tfs_exit .. 10
6.3 tfs_format1 ... 11
6.4 tfs_attach.. 12
6.5 tfs_detach... 13
6.6 tfs_alloci ... 14
6.7 tfs_openi... 15
6.8 tfs_close ... 16
6.9 tfs_write .. 17
6.10 tfs_read .. 18
6.11 tfs_lseek ... 19
6.12 tfs_removei... 20
6.13 tfs_stati ... 21
6.14 tfs_statfs ... 22
6.15 tfs_get_errno .. 23
6.16 tfs_get_date ... 24
6.17 tfs_get_time.. 25

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 2 of 35

7. Memory driver interface .. 26
7.1 Functions.. 26

7.1.1 tfs_write_lsec...26
7.1.2 tfs_read_lsec ...27

8. Sample Program ... 28
8.1 Outline.. 28
8.2 Flow.. 29
8.3 Function list .. 30
8.4 Function chart .. 30
8.5 Folder composition in workspace... 31

9. Sample software usage... 32
9.1 Sample software execution.. 32
9.2 Real Time Clock... 32
9.3 Sample Data for File Read / Write ... 32

10. Library Characteristics .. 33
10.1 Occupied memory size... 33
10.2 Occupied stack size ... 33
10.3 Memory occupied by filesystem data structures.. 33

Website and Support... 34

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 3 of 35

1. Library specifications
Following are the main specifications of the Tiny Filesystem library:

Specification Value
Compatible media sizes 32 MB, 64 MB, 128 MB, 256 MB, 512 MB, 1 GB
FAT Wrapping FAT Type FAT16
Multiple drive support Yes (work area required to be set during initialization)
Directory Root directory only

No. of directory entries 65,534 blocks maximum (set and save directory area
size during formatting)

Directory entry size 128 byte fixed length
File designation File number (file names cannot be used)
Number of files that can be
opened simultaneously

Multiple (work area required to be set during
initialization)

File size Variable (allocated in blocks)
No. of blocks that can be
allocated per file 4

Block size Select block size from 8 KB, 16 KB, 32 KB, 64 KB, 128
KB or 256 KB while formatting

Block limit 65,534 blocks maximum
I/O buffer size 64 byte fixed length (logic sector)
Number of I/O buffers At least 1

2. Library type definitions
This section gives details about the type definitions used in the library.

Datatype Typedef
unsigned char TFS_UCHAR
unsigned short TFS_USHORT
unsigned long TFS_ULONG

3. Explanation of terms
This section explains some of the terms related to the TFS library.

3.1 Logic sector / Logic Sector Number
The TFS reads/writes to the drive which is assumed to be divided into 64-byte fixed length blocks. This
64-byte fixed length block is called the logic sector. Each logic sector is identified with a logic sector number
in ascending order starting from zero.

3.2 Drive / Drive number
The TFS is identified as a drive in which the FAT volume (similar to a DOS partition) is stored in the file
system. If the TFS has more than one drive, the additional drives should be identified with numbers starting
from 0. The drive number is this drive identification number.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 4 of 35

4. Library structures
This section gives details of the structures used in the library.

4.1 tfs_volume – Volume structure
Explanation

This structure is used to hold the drive information. The number of structures required will be equal to the
number of drives to be use. For instance, if the number of drives is 1, only one structure variable will be
required; if the number of drives is 2, two structures will be required and so on.

The members of this structure should not be accessed directly from the user program. The user program
should only declare a structure variable array with array size equal to the number of drives to be used.

Structure

Datatype Structure
element Explanation

TFS_UCHAR is_mounted
TFS_UCHAR drv
TFS_USHORT rootents
TFS_USHORT blocks
TFS_USHORT bsize
TFS_ULONG start
TFS_ULONG vsize
TFS_ULONG rsize
TFS_ULONG hsize
TFS_ULONG dsize

For TFS internal usage

4.2 tfs_file – File structure
Explanation

This structure is used to hold the file information. The number of structures required will be equal to the
number of files to be opened simultaneously. For instance, if the number of files to be used at a time is only 1,
only one structure variable will be required; if the number of files to be used at a time is 2, two structures will
be required and so on.

The members of this structure should not be accessed directly from the user program. The user program
should only declare a structure variable array with array size equal to the number of files to be used
simultaneously.

Structure

Datatype Structure
element Explanation

TFS_UCHAR is_open
TFS_UCHAR id
TFS_UCHAR drv
TFS_UCHAR flags
TFS_USHORT ent
TFS_ULONG size
TFS_ULONG ptr

For TFS internal usage

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 5 of 35

4.3 tfs_buff – Buffer structure
Explanation

This structure is used to hold the logic sector buffer information.

The members of this structure should not be accessed directly from the user program. The user program
should declare a buffer structure variable array with only one element. The number of array elements required
is only one irrespective of the number of drives or files to be used.

Structure

Datatype Structure element Explanation
TFS_UCHAR cnt
TFS_UCHAR drv
TFS_ULONG lsec
TFS_UCHAR buf[]

For TFS internal usage

4.4 tfs_config – File system configuration
Explanation

This structure is used to set the file system configuration as per the user’s requirements. The user should
initialize this structure with the desired values and then call the tfs_init function to set these values.

Structure

Datatype Structure element Explanation
TFS_USHORT drives Number of drives to be used (≥1)

TFS_USHORT files Number of file descriptors to be used i.e. no.
of files to be opened simultaneously. (≥1)

TFS_USHORT buffs Number of logic sector buffers to be used
(≥1)

struct tfs_volume* volume
Start address of volume structure array.
The number of array elements should be
equal to the number of drives to be used.

struct tfs_file* file
Start address for file structure array.
The number of array elements should be
equal to the number of files to be used.

struct tfs_buff* buff
Start address for buffer structure array.
It is sufficient to have only one element in
this array.

4.5 tfs_format_param – FAT16 parameters
Explanation

This structure is a member of the tfs_format_param1 structure. It holds the FAT16 parameters used while
formatting the drive.

Structure

Datatype Structure element Explanation
TFS_ULONG TotSec Total number of sectors in the volume
TFS_USHORT SecPerTrk Number of sectors per track
TFS_USHORT NumHeads Total number of heads
const char* VolLab Volume label

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 6 of 35

4.6 tfs_format_param1 – File system format parameters
Explanation

This structure holds the formatting parameters for the memory drive.

Structure

Datatype Structure
element Explanation

struct tfs_format_param fat FAT16 parameters (as explained in 4.5)
TFS_USHORT rootents Number of root directory entries
TFS_USHORT bsize Block size in KB

Members

fat.TotSec
Set the total number of sectors in the volume (512 bytes/sector).

fat.SecPerTrk

Set the number of sectors per track on the drive. (BIOS Parameter)

fat.NumHeads
Set the number of heads on the drive.

fat.VolLab

Set the FAT Volume label. Setting NULL will use the label “NO NAME ” track on the drive.

rootents
Set the number of entries in the root directory. Set value which is an integral multiple of 4.

bsize

Set the data block size in kilobytes (KB). Valid values are 8, 16, 32, 64, 128 and 256.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 7 of 35

4.7 tfs_stat – File status
Explanation

This structure holds the file information returned by the tfs_stati function.

Structure

Datatype Structure element Explanation
TFS_ULONG st_size File size
TFS_USHORT st_mdate Date when the file was last modified
TFS_USHORT st_mtime Time when the file was last modified
TFS_USHORT st_mode File mode

Members

st_size
Stores the size of file in bytes.

st_mdate

Stores the date when the file was modified.
bit15:9 - Year from 1980 (Value in the range of 0 to 127)
bit8:5 - Month (Value in the range 1 to 12)
bit4:0 - Day (Value in the range 1 to 31)

st_mtime

Stores the time when the file was modified or the directory was created.
bit15:9 - Hour (Value in the range 0 to 23)
bit8:5 - Minutes (Value in the range 0 to 59)
bit4:0 – Seconds are displayed in two second intervals. (Value in the range 0 to 29 and displayed as
0-58)

st_mode

File mode is used to indicate whether the file is a normal file or a directory.

4.8 tfs_statfs – File system status
Explanation

This structure holds the file system information returned by the tfs_statfs function.

Structure

Datatype Structure element Explanation
TFS_USHORT f_bsize Block size (in KB)
TFS_USHORT f_blocks Total number of blocks
TFS_USHORT f_bfree Number of free blocks available
TFS_USHORT f_files Total number of root directory entries
TFS_USHORT f_ffree Number of free directory entries

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 8 of 35

5. Library error codes
This section gives the significance of the macros corresponding to the error codes returned by the library functions.

Macro Value Significance
TFS_EPERM 1 Operation not permitted
TFS_ENOENT 2 No such file or directory
TFS_ESRCH 3 No such process
TFS_EINTR 4 Interrupted system call
TFS_EIO 5 I/O error
TFS_ENXIO 6 No such device or address
TFS_E2BIG 7 Argument list too long
TFS_EBADF 9 Bad file number
TFS_EAGAIN 11 Try again
TFS_ENOMEM 12 Out of memory
TFS_EACCES 13 Permission denied
TFS_EFAULT 14 Bad address
TFS_EBUSY 16 Device or resource busy
TFS_EEXIST 17 File exists
TFS_EXDEV 18 Cross-device link
TFS_ENODEV 19 No such device
TFS_ENOTDIR 20 Not a directory
TFS_EISDIR 21 Is a directory
TFS_EINVAL 22 Invalid argument
TFS_ENFILE 23 File table overflow
TFS_EMFILE 24 Too many open files
TFS_EFBIG 27 File too large
TFS_ENOSPC 28 No space left on device
TFS_EROFS 30 Read-only file system
TFS_ERANGE 34 Math result not representable
TFS_EDEADLK 35 Resource deadlock occurred
TFS_ENAMETOOLONG 36 File name too long
TFS_ENOLCK 37 No record locks available
TFS_ENOTEMPTY 39 Directory not empty
TFS_ETIMEDOUT 100 Operation timed out

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 9 of 35

6. Library functions
6.1 tfs_init

Prototype
int tfs_init (const struct tfs_config *config)

Explanation
This function initializes the TFS library with the configuration given by the structure tfs_config. This function
must be called before calling any other library function.

Arguments

Argument Type Explanation

config const struct tfs_config* Initialize this structure with the desired values as
explained in section 4.4

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
struct tfs_volume volume[1];

struct tfs_file file[1];

struct tfs_buff buff[1];

struct tfs_config conf = {

 1, //No. of drives

 1, //No. of file descriptors

 1, //No. of buffers

 volume, //Start address of volume array

 file, //Start address of file descriptor array

 buff //Start address of buffer array

};

int ret_val;

ret_val = tfs_init(&conf);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 10 of 35

6.2 tfs_exit
Prototype

int tfs_exit (unsigned short force)

Explanation
This function is the end processing of the library. However, this function can be called only when the drive is
unmounted. If this function is called when the drive is mounted, it will result in an error.

Normally, value 0 is set to the argument force. If a value other than zero is set, the function will perform a force
end. After this function is called, no other function can be called without initializing the library again (by calling
the tfs_init function).

Arguments

Argument Type Explanation

Force unsigned short Set 0 to perform a normal end.
Set any other value to perform a force end.

Return value

Type Explanation

Int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int ret_val;

// Other code before end processing

ret_val = tfs_exit(0);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 11 of 35

6.3 tfs_format1
Prototype

int tfs_format1 (unsigned short drv, const struct tfs_format_param1 *param)

Explanation
This function formats the drive drv with the parameters set in the structure param.

The drive can be formatted only when the drive is unmounted. If this function is called when the drive is
mounted, it will result in an error. Also during formatting, all the open files must be closed.

The formatting takes place in the following order:

 The entire volume is first formatted as a FAT16 file system.

 Next, the TFS area is saved as a single file in the FAT16 file system that was just created.

 Last, the internal TFS area is formatted and initialized.

Arguments

Argument Type Explanation

drv unsigned short Number of the drive to be formatted.

param const struct
tfs_format_param1*

Initialize this structure with the desired
values as explained in section 4.5 and 4.6

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
const struct tfs_format_param1 test = {

{

(unsigned long)64*1024*2, /* Total no. of sectors (512B/sector) */

63, /* Sectors per track */

255, /* Number of heads */

"TINYFS " /* Volume label */

},

64, /* No. of root directory entries */

128 /* Size of data block (KB) */

};

int ret_val;

// Library initialization

ret_val = tfs_format1(0, &test);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 12 of 35

6.4 tfs_attach
Prototype

int tfs_attach(unsigned short drv)

Explanation
This function mounts the TFS volume on the drive number drv passed as argument.

Arguments

Argument Type Explanation

drv unsigned short Drive number on which the TFS volume is to be
mounted

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
int ret_val;

// Library initialization

ret_val = tfs_attach(0);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 13 of 35

6.5 tfs_detach
Prototype

int tfs_detach(unsigned short drv, unsigned short force)

Explanation
This function unmounts the drive drv passed as argument. The drive cannot be unmounted if the drive is in use.
The function returns an error if the drive is in use.

Normally, value 0 is set to the argument force. If a value other than zero is set, the function will perform a force
unmount.

Arguments

Argument Type Explanation

drv unsigned short Drive number from which the TFS volume is to be
unmounted

force unsigned short Set 0 to perform a normal end.
Set any other value to perform a force end.

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
int ret_val;

// Initialization

tfs_attach(0);

// Processing

ret_val = tfs_detach(0,0);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 14 of 35

6.6 tfs_alloci
Prototype

int tfs_alloci(unsigned short drv, unsigned short did, unsigned short fid)

Explanation
This function returns the first available file number greater than fid on the drive drv passed as argument. When
file number is to be retrieved from the top of the directory, set the fid value to 0. Value 0 (root directory) must be
set to the directory number did.

Arguments

Argument Type Explanation

Drv unsigned short Drive number on which file is to be created

Did unsigned short Must be set to value 0 (root directory)

Fid unsigned short File number beyond which first available file number is to be
searched for.

Return value

Type Explanation

Int Returns the available file number if function execution is successful.
Return value TFS_NONUM if an error occurs.

Sample Usage
unsigned short file_no;

// Initialization and other processing

file_no = tfs_alloci(0,0,0);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 15 of 35

6.7 tfs_openi
Prototype

int tfs_openi(unsigned short drv, unsigned short did, unsigned short fid,
int flags)

Explanation
This function opens the file fid on the drive drv. Value 0 (root directory) must be set to the directory number did.
The file can be opened in different modes using logical OR combination of the flags.

Arguments

Argument Type Explanation

drv unsigned short Drive number on which file is to be opened

did unsigned short Must be set to value 0 (root directory)

fid unsigned short File number retrieved from tfs_alloci funtion

flags int

The following values can be appointed to the flags:
TFS_O_RDONLY – Open as read-only
TFS_O_WRONLY – Open as write-only
TFS_O_RDWR – Open as read / write
TFS_O_CREAT – Create a new file if it is non-existent.

Return value

Type Explanation

int Returns the file descriptor if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
int fd;

unsigned short file_no;

// Initialization

file_no = tfs_alloci(0,0,0);

fd = tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 16 of 35

6.8 tfs_close
Prototype

int tfs_close (int fd)

Explanation
This function closes the file associated with the file descriptor fd.

Arguments

Argument Type Explanation

fd int File descriptor associated with the file to be closed.

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
int ret_val, fd;

unsigned short file_no;

// Initialization

file_no = tfs_alloci(0,0,0);

fd = tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

ret_val = tfs_close(fd);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 17 of 35

6.9 tfs_write
Prototype

int tfs_write (int fd, const void *buf, unsigned long count)

Explanation
This function writes count bytes from the buffer buf to the file associated with the file descriptor fd.

Arguments

Argument Type Explanation

fd int File descriptor associated with the file in which data
is to be written

buf const void* Pointer to the buffer containing the data to be
written.

count unsigned long Number of bytes of data that is to be written.

Return value

Type Explanation

int
Returns the actual number of bytes written if function execution is
successful.
Return value is -1 if function ends with an error.

Sample Usage
int ret_val, fd;

unsigned short file_no;

// Initialization

fd = tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

ret_val = tfs_write(fd,"123456789",9);

tfs_close(fd);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 18 of 35

6.10 tfs_read
Prototype

int tfs_read (int fd, void *buf, unsigned long count)

Explanation
This function reads count bytes of data from the file associated with the file descriptor fd into the buffer buf.

Arguments

Argument Type Explanation

fd int File descriptor associated with the file from which
data is to be read.

buf void* Pointer to the buffer in which the read data is to
be stored.

count unsigned long Number of bytes of data that is to be read.

Return value

Type Explanation

int
Returns the actual number of bytes read if function execution is
successful.
Return value is -1 if function ends with an error.

Sample Usage
int ret_val, fd;

unsigned short file_no;

// Initialization and other processing

fd = tfs_openi(0, 0, file_no, TFS_O_RDWR);

ret_val = tfs_read(fd,rw_buff,9);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 19 of 35

6.11 tfs_lseek
Prototype

int tfs_lseek (int fd, long offset, int whence)

Explanation
This function moves the file pointer associated with the file descriptor fd by offset number of bytes from the
position given by whence. The argument whence can take the following values:

Whence value File pointer position
TFS_SEEK_SET Start of the file
TFS_SEEK_CUR Current file pointer position
TFS_SEEK_END End of the file

Arguments

Argument Type Explanation

fd int File descriptor associated with the file.

offset long Number of bytes by which the file pointer is to be
moved.

whence int Position from where file pointer is to be moved.

Return value

Type Explanation

int Returns the file pointer position if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
int fd;

unsigned short file_no;

long fp;

// Initialization and other processing

fd = tfs_openi(0, 0, file_no, TFS_O_RDWR|TFS_O_CREAT);

fp = tfs_lseek(fd, 5,TFS_SEEK_SET);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 20 of 35

6.12 tfs_removei
Prototype

int tfs_removei (unsigned short drv, unsigned short did, unsigned short fid)

Explanation
This function removes/deletes the file fid from the drive drv. Value 0 (root directory) must be set to the directory
number did.

Arguments

Argument Type Explanation

drv unsigned short Drive number from which the file is to be
deleted

did unsigned short Must be set to the value 0 (root directory)

fid unsigned short File number of the file to be deleted.

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage

int ret_val;

unsigned short file_no;

// Initialization and other processing

ret_val = tfs_removei(0,0,file_no);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 21 of 35

6.13 tfs_stati
Prototype

int tfs_stati(unsigned short drv, unsigned short did, unsigned short fid,
struct tfs_stat *buf)

Explanation
This function retrieves the file information of file fid and stores it in the tfs_stat structure buf.

Arguments

Argument Type Explanation

drv unsigned short Drive number of the file.

did unsigned short Must be set to the value 0 (root directory).

fid unsigned short File whose information is to be retrieved.

buf struct tfs_stat* Return value received from the function
consisting of the file information.

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
unsigned short file_no;

struct tfs_stat stat;

int ret_val;

// Initialization and other processing

ret_val = tfs_stati(0,0,file_no,&stat);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 22 of 35

6.14 tfs_statfs
Prototype

int tfs_statfs (unsigned short drv, struct tfs_statfs *buf)

Explanation
This function retrieves the space availability information on the mounted volume.

Arguments

Argument Type Explanation

drv unsigned short Drive on which the volume is mounted

buf struct tfs_statfs* Return value received from the function
consisting of the volume information.

Return value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

Sample Usage
int ret_val;

struct tfs_statfs statfs;

// Initialization and other processing

ret_val = tfs_statfs(0,&statfs);

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 23 of 35

6.15 tfs_get_errno
Prototype

int tfs_get_errno (void)

Explanation
This function returns the error number corresponding to the immediately preceding library function. 0 is returned
if the preceding library function execution was successful.

Arguments
None

Return value

Type Explanation
int TFS Library error number (as explained in Sec. 5)

Sample Usage
int err_code, fd;

// Initialization and other processing

tfs_write(fd,"123456789123456789123456789",27);

err_code = tfs_get_errno(); //Returns error code corresponding to tfs_write

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 24 of 35

6.16 tfs_get_date
Prototype

unsigned short tfs_get_date (void)

Explanation
This is a user-defined function. The library does not include the definition for this function. The user needs to
implement this function based on the working environment. The implementation should be such that the function
returns the current date in the format as explained in the Sec. 4.7.

Arguments
None

Return value

Type Explanation
unsigned short Current date in the format as given in Sec. 4.7

Sample Usage
Please refer to the sample software for a sample implementation of the tfs_get_date function.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 25 of 35

6.17 tfs_get_time
Prototype

unsigned short tfs_get_time (void)

Explanation
This is a user-defined function. The library does not include the definition for this function. The user needs to
implement this function based on the working environment. The implementation should be such that the function
returns the current time in the format as explained in the Sec. 4.7.

Arguments
None

Return value

Type Explanation
unsigned short Current time in the format as given in Sec. 4.7

Sample Usage

Please refer to the sample software for a sample implementation of the tfs_get_time function.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 26 of 35

7. Memory driver interface
This section explains the details of the memory driver interface functions. The prototype of these functions along with
the processing necessary in the implementation of each function has been explained. The implementation of these
functions should be written by the user such that they can be used in conjunction with the memory driver available with
the user.

7.1 Functions
Drives used by TFS are single volume (DOS partition) compatible. Partition table information is concealed from
the TFS, so if the partition table needs to be used, the driver must process it. The TFS library uses the drive as a
64-byte fixed length logic sector array, and requests I/O with in these logic sectors.

7.1.1 tfs_write_lsec
Prototype

int tfs_write_lsec (unsigned short drv, unsigned long lsec, const void *buf)

Explanation
This function should consist of the code to write data to the disk drive. The details about the data to be written
are given by the arguments. This function writes data from the buffer buf to the volume (DOS partition suitable)
logic sector given by lsec in the drive drv.

Arguments

Argument Type Explanation

drv unsigned short Drive on which the volume is mounted

lsec unsigned long Specifies the logic sector number.

buf const void* Pointer to the data to be written.

Return Value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 27 of 35

7.1.2 tfs_read_lsec
Prototype

int tfs_read_lsec (unsigned short drv, unsigned long lsec, void *buf)

Explanation
This function should consist of the code to read data from the disk drive. The details about the data to be read are
given by the arguments. This function reads data from the volume (DOS partition suitable) logic sector given by
lsec in the drive drv into the buffer buf

Arguments

Argument Type Explanation

drv unsigned short Drive on which the volume is mounted

lsec unsigned long Specifies the logic sector number.

buf void* Pointer to the buffer to store the read data

Return Value

Type Explanation

int Return value is 0 if function execution is successful.
Return value is -1 if function ends with an error.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 28 of 35

8. Sample Program
This section explains the sample program for Tiny FS library usage. The sample program is in the form of a HEW
(High-Performance Embedded Workshop) workspace. Change the initialization of the microcomputer and its
peripherals according to the system in use.

8.1 Outline
The sample program creates a text file, writes data to the file and then confirms the data that is actually written to the
file.

When the program is run, a Tiny Filesystem volume is mounted on the external memory card. The memory card is
connected to the RSK(*) by means of an external add-on board (**). A file is created on the memory card and text data
of 2 KB is written to the file. The file is then closed. For confirmation of the data that is written, the file is opened again
in the read mode. The entire contents of the file are read and they are compared with the write buffer data in the
program. Whether the contents of the data are matching or not is indicated on the LEDs on board the RSK.

The data is defined in the header file data_file.h.

(*)RSK refers to

Renesas Starter Kit for R8C/25

Renesas Starter Kit for M16C Tiny/26A

Renesas Starter Kit for H8/36079

(**) The external add-on board has a slot for inserting the memory medium. The pins of the memory medium are
connected to the appropriate pins of the RSK. This circuit board will not be included with the Renesas Solutions Kits
that the user intends to buy and is not available from Renesas.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 29 of 35

8.2 Flow

main() Timer* interrupt

Initialize configuration
parameters for TFS

Open file in write mode

Write data to the file

Close the file

Open file in read mode

Read data from the file

Close the file

Indicate completion on LEDs

Increment real time clock
every 1 second

while(1)

Initialize clock, timer and other
peripherals

Compare read data & write data

*Timer refers to:
TimerRA for R8C
TimerB1 for M16C
Timer B1 for H8Format TFS volume

Attach TFS volume

Get next available file number

Figure 1: Flow of sample program

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

8.3 Function list
This following table gives a list of functions present in the sample program.

No. Function name Outline
1.0 main Writes data to a file; reads and confirms the written data.

1.1 init_clock The clock of the microcomputer and other clock related registers are
initialized.

1.2 init_portpins Initializes the port pins for peripherals
1.3 init_1sTimer The timer is set up for Real Time Clock implementation.
1.4 error Error handling function
1.5 mmc_drv_init Memory driver initialization
1.6 tfs_init Initializes the library configuration – Library function
1.7 tfs_format1 Formats the memory card – Library function
1.8 tfs_attach Mounts the drive on TFS volume – Library function
1.9 tfs_alloci Retrieves the next available file number – Library function
1.10 tfs_openi Opens a file – Library function
1.11 tfs_write Writes data to a file – Library function
1.12 tfs_read Reads data from a file – Library function
1.13 tfs_close Closes a file – Library function
1.14 tfs_detach Unmounts the drive – Library function
1.15 tfs_exit End processing for the library – Library function
2.0 timerRA_isr* Increments the Real Time Clock every second.

* Function name for the sample software for R8C Family.
"INT_TimerB1" in the sample program of H8/Tiny. "timerB1_isr " in the sample program of M16C/Tiny.

8.4 Function chart

1.0

main

REJ06J0076-0100/Rev.1.00 June 2009 Page 30 of 35

Figure 2: Function chart

(*) Function name for the sample software for R8C Family.
"INT_TimerB1" in the sample program of H8/Tiny. "timerB1_isr" in the sample program of M16C/Tiny.

1.151.14 1.13 1.121.111.101.91.81.7

1.1 1.5

1.6

2.0

timerRA_isr*

tfs_openitfs_init tfs_format1 tfs_attach tfs_alloci tfs_write tfs_read tfs_close tfs_detach tfs_exit

mmc_drv_init

1.41.3 1.2

errorinit_1sTimerinit_portpins init_clock

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

8.5 Folder composition in workspace

 |-- hew_files HEW auto-generated files storage directory.

 |

tfs_sample_*** Workspace directory (*** is microcomputer name)

|

|

|-- R5F21256(*) Project directory

 |

 |-- Debug Configuration directory

 |

 |-- Debug_***_E8_SYSTEM Configuration directory (*** is microcomputer name)

 |

 |-- Debug_***_E8a_SYSTEM Configuration directory (*** is microcomputer name)

 |

 |-- lib TFS FileSystem library storage directory

 |

 |-- Release Configuration directory

 |

 |-- src Sample source storage directory.

(*) Project directory name for R8C. Following are the Project directory names for the other MCUs.

R5F21258 – R8CE

36077GF – H8N

36079GF – H8A

M30260F8AGP – M16C

REJ06J0076-0100/Rev.1.00 June 2009 Page 31 of 35

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 32 of 35

9. Sample software usage
This section explains details related to sample software execution.

9.1 Sample software execution
 Build the sample software workspace and download the x30 file to the RSK.

 After the “Reset Go” button is clicked, the program starts running.

 First the file write operation takes place. A new text file is created on the memory card and 2 KB text data is
written in it. The file is then closed.

 The same file is opened again in the read mode. The contents of the file are read and compared with the data that
was passed while writing the file. This is done to confirm whether the data written to the file through the write
function was actually written to the file as expected.

 The current state of the program is indicated by the LEDs on board the RSK.

 The following table gives the LED indications corresponding to program execution.

LED0 LED1 Significance
ON OFF Program running
ON ON Execution successful
OFF ON Error occurred

9.2 Real Time Clock
The sample software includes a real time clock implementation with the help of a timer. The timer is configured to
generate an interrupt every second. In the corresponding Interrupt Service Routine, the current time and date are
incremented. This time and date is used for some of the file manipulation operations. For details related to time and
data storage, please refer to section 4.7

9.3 Sample Data for File Read / Write
The sample data for file read / write is stored in the header file data_file.h. The data is stored in an array of 2048
elements giving a total size of 2 KB (2048 Bytes). The data array consists of the text string “Renesas” written
repeatedly. If required, the user can modify this array and the corresponding macro FILESIZE.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 33 of 35

10. Library Characteristics
This section gives details about the memory consumption of the library.

10.1 Occupied memory size

Microcomputer Mode/Option ROM RAM

R8C 8893 311 R8C Family
R8CE 9418 321
Normal 6729 354 H8/Tiny

Advanced 7561 432
M16C/Tiny - 9418 321

Unit: Byte

10.2 Occupied stack size

Function R8C R8CE H8
Normal

H8
Advanced M16C

tfs_init 19 25 14 38 25
tfs_exit 16 24 12 34 24
tfs_format1 141 149 184 248 149
tfs_attach 61 61 90 108 61
tfs_detach 22 22 24 52 22
tfs_alloci 65 65 66 98 65
tfs_openi 86 88 74 118 88
tfs_close 50 52 50 80 52
tfs_write 106 110 102 178 110
tfs_read 106 108 104 186 108
tfs_lseek 7 7 24 28 7
tfs_removei 80 82 94 128 82
tfs_stati 52 52 50 84 52
tfs_statfs 64 64 50 80 64
tfs_get_errno 3 3 2 4 3

Unit:Byte

10.3 Memory occupied by filesystem data structures
Memory for one structure variable Structure

R8C R8CE H8N H8A M16C
tfs_volume 28 28 28 28 28
tfs_file 14 14 14 14 14
tfs_buff 70 70 70 70 70
tfs_config 12 12 12 18 12
tfs_format_param1 14 16 14 16 16
tfs_stat 10 10 10 10 10
tfs_statfs 10 10 10 10 10

Unit:Byte

The table given above can be used to calculate the memory required for the different TFS library structure variables
in the user’s application. Memory required for one structure variable multiplied by the number of variables will give
the memory required for all variables of that particular structure.

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 34 of 35

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Jun.30.09 — First edition (M3S-TFS-Tiny Ver.1.01 Release00)

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

R8C Family, H8/300H Tiny Series and M16C/Tiny Series
M3S-TFS-Tiny: Original File System Software for MCUs

REJ06J0076-0100/Rev.1.00 June 2009 Page 35 of 35

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2009. Renesas Technology Corp., All rights reserved.

	1. Library specifications
	2. Library type definitions
	3. Explanation of terms
	3.1 Logic sector / Logic Sector Number
	3.2 Drive / Drive number

	4. Library structures
	4.1 tfs_volume – Volume structure
	4.2 tfs_file – File structure
	4.3 tfs_buff – Buffer structure
	4.4 tfs_config – File system configuration
	4.5 tfs_format_param – FAT16 parameters
	4.6 tfs_format_param1 – File system format parameters
	4.7 tfs_stat – File status
	4.8 tfs_statfs – File system status

	5. Library error codes
	6. Library functions
	6.1 tfs_init
	6.2 tfs_exit
	6.3 tfs_format1
	6.4 tfs_attach
	6.5 tfs_detach
	6.6 tfs_alloci
	6.7 tfs_openi
	6.8 tfs_close
	6.9 tfs_write
	6.10 tfs_read
	6.11 tfs_lseek
	6.12 tfs_removei
	6.13 tfs_stati
	6.14 tfs_statfs
	6.15 tfs_get_errno
	6.16 tfs_get_date
	6.17 tfs_get_time

	7. Memory driver interface
	7.1 Functions
	7.1.1 tfs_write_lsec
	7.1.2 tfs_read_lsec

	8. Sample Program
	8.1 Outline
	8.2 Flow
	8.3 Function list
	Function chart
	8.5 Folder composition in workspace

	9. Sample software usage
	9.1 Sample software execution
	9.2 Real Time Clock
	9.3 Sample Data for File Read / Write

	10. Library Characteristics
	10.1 Occupied memory size
	10.2 Occupied stack size
	10.3 Memory occupied by filesystem data structures
	Website and Support

