LENESANS Application Note

Renesas RA Family
Getting Started with CoreMark Benchmarking

Introduction

As processors in embedded systems become more complex, more sophisticated benchmarks are needed for
a better understanding of performance and analysis.

CoreMark is a modern and sophisticated benchmark that is recommended by ARM® and allows you to
accurately measure the performance of a processor. Rather than using arbitrary and synthetic code,
CoreMark uses basic data structures and algorithms that are common in any embedded application.

Using CoreMark is encouraged due to its ANSI C compliance and the fact that it is designed to ensure that
compilers cannot pre-compute numbers to influence the results and also so that it does not make any library
calls during the benchmarked portion of the code.

Running CoreMark produces a single-number score allowing users to make quick comparisons between
processors. Results can be uploaded to the CoreMark website for certification as CoreMark has a standard
format for reporting results.

This document aims to present and explain the results and the process of benchmarking Renesas RA MCUs
using CoreMark.

This application note walks you through all the steps necessary to benchmark using CoreMark.
Required Resources
Development tools and software

e e?studio v2023-01

e Renesas Flexible Software Package (FSP) v4.3.0
e Arm Compiler 6.15

¢ |AR Embedded Workbench v9.32.1

Hardware
e Renesas RA kit: EK-RA6M5
Reference Manuals

¢ RA Flexible Software Package Documentation Release v4.3.0
e User's Manual: Renesas RA6M5 Group User’'s Manual Rev.1.10
e Schematics: EK-RA6M5-v1.0

R11AN6876EU0100 Rev1.00 Page 1 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

Contents

1. COrEMAIK PrOJECE.....coeiiiiiiieeeeeeeee s 3
2. Run CoreMark on Renesas RA MCU ... 3
2.1 Integrating Toolchains With €2 STUdIOeiiiiiiiiiii e e e e e 3
2.1.1 1AR Embedded WOrkbDenCh PIUGIN...........ue ittt e e e e e e e e 3
2.1.2 Integrate With Arm COMPIIETeiiee it e e e e e e e e s st e e e e e e e s snntaeeereeeesesnstneneeeeesaannnes 5
2.2 Create CoreMark e2 studio Project Used for Benchmarking using IAR Compiler..........cccooccvvvvvereeeinnns 7
2.3 Add CoreMark t0 €2 StUIO PrOJECTceeiieiiiie et e e s e r e e e e e st e e e e e e s anre e eeeeeesennnes 11
2.4 Add Timer for BENChMArKING........ooiii it e e e e e e e e e e e e e e anes 11
A I U oo b= (1Y =T) = Lo ST TR UOPUPPPPPTR 13
2.6 POrt COreMArK COOE......ooi ittt e e e e e s et e et e e e e e e s ab bt e ee e e e e e e snbbebeeaaaeeaannes 14
2.7 Create CoreMark e2 studio Project Used for Benchmarking using Arm Compilercccccvvvveeeennns 20
P S T = {0 [@0 =11V = 15 S = (0] = o PR 23
pZ S R = T = o = 11] o PR 23
2.8.2 Add Run Commands to Print Out Benchmarking RESUIL.ccooiiiiiiiiiii e 24
2.8.3 RUN T €2 StUAIO PIOJECL......uueiiiiiieiiiiei ittt ettt e e e e e s ib bt et e e e e e e e snbbseeeeaaeeaannes 24
3. Verify RA Benchmarking RESUILSuuiiiiiiiii e a e e e aaaees 27
4. General Guidelines for CoreMark Benchmarking..............coooiiiiiiiiiiiiiiec e, 27
LT U= =T =] Vo= 27
YAV] To] T 1151 (o] Y2 29
R11AN6876EU0100 Rev1.00 Page 2 of 29

Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

1. CoreMark Project

The official CoreMark source is available at EEMBC GitHub. As we plan to use CoreMark on a bare-metal
target, the source files we are going to use consist of the following C source and header files:

coremark.h
core_main.c
core_list_join.c
core_matrix.c
core_state.c
core_util.c
core_portme.c
core_portme.h
cvt.c
ee_printf.c

The three key algorithms used are related to linked lists, matrix multiplication, and state machines.

At EEMBC GitHub you will also find more information on the rules for building and running the CoreMark
code.

The procedure to create a CoreMark project for Renesas RA MCUs is as follows.

Create a Bare-Metal Minimal Project using e2 studio and Flexible Software Package (FSP)
Copy CoreMark source code to the “src” folder

Add a 32-bit general-purpose timer (GPT) to the project

Change the main stack size setting to 0x4000 to accommodate CoreMark benchmarking
Exclude the main.c generated by FSP from the build

Update project optimization with the maximum speed option

Port core_portme.h, core_portme.c to add necessary code for the GPT

Port ee_printf.c to print benchmarking result.

This document explains the procedure for EK-RA6M5 but the same can be applied to other RA MCUs.

2. Run CoreMark on Renesas RA MCUs

Apart from the official CoreMark source, in order to be able to replicate exactly the process used in
benchmarking the RA MCUs, you will need the e2 studio IDE together with FSP. You can download and

install setup_fsp_v4_3_0_e2s_v2023-01.exe from https://github.com/renesas/fsp/releases

Moreover, you will need the IAR Arm compiler available at https://www.iar.com/products/architectures/arm/
and the Arm compiler available at https://developer.arm.com/documentation/ka005198/latest. You can use
Arm compiler in Keil MDK installation for CoreMark benchmarking.

2.1 Integrating Toolchains with e2 studio

2.1.1 IAR Embedded Workbench Plugin
Download and install IAR Embedded workbench before you integrate IAR compiler with e2 studio.

Start e2 studio, then select “Help -> IAR Embedded Workbench plugin manager”

R11AN6876EU0100 Rev1.00 Page 3 of 29
Mar.20.23 RENESAS

https://github.com/eembc/coremark
https://github.com/eembc/coremark
https://github.com/renesas/fsp/releases
https://www.iar.com/products/architectures/arm/
https://developer.arm.com/documentation/ka005198/latest

Renesas RA Family Getting Started with CoreMark Benchmarking

Help
.-,g_;. Welcome
(7) Help Contents

4" Search
Show Context Help

Show Active Keybindings... Ctrl+Shift+L
Cheat Sheets...

Renesas Help ¥
CMSIS Packs Management ¥
Add Renesas Toolchains

Eclipse User Storage ¥
Perform Setup Tasks...

Check for Updates
Install Mew Software...

&EFSE G0N

Eclipse Marketplace...
Install New Device Family Support
|&R Embedded Workbench plugin manager... I

=
@ About € studio

Figure 1. Select IAR Embedded Workbench Plugin Manager

You choose the desired toolchain and press install.

Manage IAR Embedded Workbench Eclipse plugins
Select your target in the left pane, then select a plugin to install in the right pane.

Supported targets Available IAR Embedded Workbench installations
Target Installed plugin ~ Version Status |AR Embedded Workbench Installation path
430 (6.50) -- not installed -- [] 9.20.4 2 Plugin available C:\Program Files\IAR Systems\Embedded Workbe
TEK (== 4.71) -- not installed -- 9.32.1 2 Plugin available C:\Program Files\IAR Systerns\Embedded Workb
ARM (6.50.x) -- not installed --
ARM (8.10-8.22) -- not installed --
ARM (8.30-8.50) -- not installed --
ARM (7.20to 7.80) -- not installed --
ARM (9.10-9.32) -- not installed --
R32C (>= 1.30) -- not installed --
RHE30 (1.10 to 1.40) -- not installed --
RH830 (»= 2.10) -- not installed --
RL78 (== 2.10, <= 3.... -- notinstalled --
RL78 (1.x) -- not installed --
RI7A (4.x) -- not installed -- & g v

Add |AR Embedded Werkbench installation...

5
'i?/' Install Cancel

Figure 2. Select IAR Plugin

The bottom right corner of e2 studio IDE will show configuration progress.

Configuring 1AR plugins: (3435)

Figure 3. 1AR Configuration Progress

R11AN6876EU0100 Rev1.00 Page 4 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

Press “Next”, then “Next”. Accept the terms of the license agreements then click “Finish”.

Install
Check the items that you wish to install. ,)‘:-
Name Version Id
[{f- 1AR C-5PY Debug Support for Arm (9:x) 9.0.0.202302241222 com.iar.cdt.arm.debugger.feature featur...
[1AR Common Components 4.0.0.202302241222 com.iar.common.featurefeature.group
[{f AR Common Debugger Components 2.1.0.202302241222 com.iar.common.debugger featurefeatu...
L{EHAR Toelchain for Arm (9.x) 9.0.0.202302241222 com.iar.cdt.arm.sdk.feature.feature.group
Select All Deselect All
Details
I:?D' < Back Finish Cancel

Figure 4. Install IAR Embedded Workbench Plugin
The bottom right corner of e2 studio IDE will show the installation progress.

Installing Software: (48%)

Figure 5. IAR Plugin Installation Process

Wait for the plugin to be installed and click “Restart Now” to complete the installation process.

&

Restart €° studio to apply the software update?

-

Figure 6. Restart e2 studio

2.1.2 Integrate with Arm Compiler
Download and install Arm compiler or Keil MDK before you integrate Arm compiler with e2 studio.

Start e2 studio, then select “Window -> Preferences” to add toolchains to e2 studio.

R11AN6876EU0100 Rev1.00 Page 5 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

Window Help

Mew Window

Editor *
Appearance ¥
Show View »
Show C-5PY View »
Perspective *
Mavigation *
Preferences

Figure 7. e2 studio Preferences

Select the desired Arm Compiler toolchain, then click “Apply and Close” to add the Arm compiler to e2
studio.

|E’P"=fi|’fEFtE¥t Toolchains =l v 8

General A
C/C++

Help Mame Add...
IAR Embedded Workben [ARM Compiler 6.15]
Install/Update
lava

Add/Remove toolchains

Remove

Language Servers
Library Hower

Oormph

Remote Development
Renesas

Run/Debug

Scripting

Terminal Marmne: ARM Compiler 6.15

TextMate Path: C:\Keil_v5_32\ARM\ARMCLAMNG bin
Toolchains

< s Apply

@ s b © [y macioms] | Cancel

Figure 8. Add Arm Compiler to e2 studio

If Arm compiler is not present in the Toolchains windows, click “Add”, then browse to the toolchain folder,
e.g., C:\Keil_v5\ ARM\\ARMCLANG\bin

R11AN6876EU0100 Rev1.00 Page 6 of 29
Mar.20.23 RENESAS

Renesas RA Family

Getting Started with CoreMark Benchmarking

ﬁ Preferences

| type filter text

| Toolchains =l v

General
C/C++
Help

IAR Embed
Install/Upd
Java
Language §
Library Hoy
Ooemph
Remote De
Renesas
Run/Debug
Scripting
Terminal
TextMate
Toolchains
Tracing
Validation
Version Col
AML

& ~dd a new Toolchain O X

Add...

Select Toolchain Path

Please enter the path to the toolchain's binaries directory. Remove

Path to toclchain binaries: Browse...

Download toolchains from ds.arm.com

@ < Back MNext » Finish Cancel

E\pply

® IQ. IL. @ Apply and Close Cancel

Figure 9. Add Toolchain’s Path

2.2 Create CoreMark e2 studio Project Used for Benchmarking using IAR Compiler
Ensure you integrated IAR compiler with e2 studio before creating a CoreMark project.

On e2 studio, select “File -> New-> C/C++ Project, then click “Next”.

Templates

for Renesas RA Project

All Renesas RA C/C++ Project
C/C++ IR Create an executable or static library C/C++
project for Renesas RA.
.i?-\ .
< Back Finish Cancel

Figure 10. Select C/C++ Template

R11AN6876EU0100 Rev1.00

Mar.20.23

RENESAS

Page 7 of 29

Renesas RA Family Getting Started with CoreMark Benchmarking

Name your project an appropriate name, e.g., RA6M5_CoreMark_IAR for EK-RAB6M5 kit using IAR compiler.

Renesas RA C/C++ Project —
Project Name and Locatien |
Project name
| RABM5_CoreMark_IAR
Use default location
C:\Users\b3202733\e2_studic\workspace_coremark_ra\RAEMS5_CoreM| | Browse...
default
You can download more Renesas packs here
@ < Back | Mext > | Finish Cancel

Figure 11. Name Your Project
Select the Board, Device, and Toolchain you want to use for benchmarking.

Renesas RA C/C++ Project

Device and Toels Selection

Device Selection

ARM Compiler 6,15
IAR Toolchain for Arm - (9.x) |

®

< Back

Finish

FSP Version: |4.3.0 Board Description
Evaluation kit for RAEMS MCU Group
Board: EK-RAGMS Visit https://www.renesas.com/ra/ek-raém3 to get kit user's
- manual, quick start gquide, errata, design package, example
Device: R7FABMSBH3ICFC prajects, ete.
Core: CM33
language: @ C (O C++
Device Details
TrustZone Yes
Pins 176
Processor Cortex-M33
Teelchains Debugger
GNU ARM Embedded J-Link ARM

Cancel

Figure 12. RA Project Options

R11AN6876EU0100 Rev1.00
Mar.20.23

RENESAS

Page 8 of 29

Renesas RA Family

Getting Started with CoreMark Benchmarking

Select Flat (Non-TrustZone) Project.

Dermecracr B i [o
MRENEEAE RA LS+ + Froject

Renesas RA C/C++ Project
Project Type Selection

Project Type Selection

| @ Flat (Non-TrustZone) Project

* Renesas RA device project without
TrustZone separation

* All code, data and peripheral settings will
be configured in this project

* Renesas RA device will rernain in secure
mode

¢ EDMAC RAM buffers will automatically
be placed in nen-secure RAM

() TrustZone Secure Project
* Renesas RA device project for TrustZone
secure execution
* All code, data and peripherals placed in
this project will be initialized as secure
* Secure project settings such as Trustfone

partitions, linker maps and a list of secure

peripherals will be passed to a selected
non-secure project

* After initialization, a call to the non-
secure startup handler will be made

() TrustZone Non-secure Project

Figure 13. Flat Project Selection

After this step, select Executable project type with No RTOS.

R11AN6876EU0100 Rev1.00

Page 9 of 29

Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

Renesas RA C/C++ Project —
Build Artifact and FTOS Selection

Build Artifact Selection RTOS Selection
(® Executable Mo KTOS w
& Project builds to an executable file

() Static Library
& Project builds to a static library file

() Executable Using an RA Static Library
* Project builds to an executable file
* Project uses an existing RA static library
project

@' < Back Finish Cancel

Figure 14. Select No RTOS Project

Select Bare Metal — Minimal Project Template. Click “Finish” to generate the project.

Renesas RA C/C++ Project
Project Template Selection

—

Project Ternplate Selection

O ' Bare Metal - Blinky
o,

Bare metal F5P project that includes BSP and will blink LEDs if available. This
project will initialize clocks, pins, stacks, and the C runtime environment.

[Renesas.RA.4.3.0.pack]

® (} Bare Metal - Minimal

Bare metal F5P project that includes BSP. This project will initialize clocks, pins,
stacks, and the C runtime environment.

[Renesas.RA.4.3.0.pack]

Code Generation Settings
Uze Renesas Code Formatter

@' < Back Mext = Cancel

Figure 15. Bare Metal Minimal Option

R11AN6876EU0100 Rev1.00 Page 10 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

2.3 Add CoreMark to e2 studio Project

Copy CoreMark source code to the “src” folder in your newly created project. The project structure should
look as follows.

v [—= RA6M5_CoreMark_IAR [Debug]

i Includes

2 ra

= ra_gen

v 2 src

€] core_list_join.c
[€] core_main.c
[core_matrix.c
[core_portme.c
core_portme.h
@ core_state.c
[core_util.c
coremark.h
[g] evtc

[ee printf.c
[hal_entry.c

Figure 16. CoreMark Project

You now need to add a periodic timer and modify the core_portme.c source file in order to use the modified
barebones_clock(), portable_init(core_portable *p, int *argc, char *argv[]) and portable_fini(core_portable *p)
functions.

To add a new periodic timer, open the configuration.xml file and go to Stacks. You should see something
similar to the picture below.

Stacks Configuration

Generate Project Content

Threads = HAL/Common Stacks 4| Mew Stack >
v &+ HAL/Common -
42 g_ioport I/0 Port (r_ioport) & 9—'_met 1/0 Port
(r_ioport)
@
Objects

Summary |BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

Figure 17. Stack Configuration

2.4 Add Timer for Benchmarking
The next step is to add a New Stack, then select Timers and, finally Timer, General PWM(r_gpt).

R11AN6876EU0100 Rev1.00 Page 11 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

()]

Generate Project Content

% | New Stack >

Analog >
Artificial Intelligence ¥
Audio »
Bootloader >
CapTouch >
Connectivity ¥
DsP »
Input »
Monitoring >
Motor ¥
Metworking ¥
Power >
Security >
Sensor ¥
Storage ¥
System »

& Port Output Enable for GPT (r_poeg) Timers ¥

4+ Realtime Clock (r_rtc) Transfer >

4+ Three-Phase PWM (r_gpt_three_phase) {;."' Search...

|4 Timer, General PWM (r_gpt) |
& Timer, Low-Power (r_agt)

Figure 18. Add GPT Timer

After adding the GPT timer, you need to edit the settings. Clicking on the block representing the newly added
GPT timer, then go to Properties Window. You use this Properties window to change the timer’'s name to
g_timer_periodic, the period to 50, and the period unit to Seconds. You also need to expand the Interrupts
block, add the Callback as timer_callback and set the Priority to 2. The following image captures the changes
needed.

R11AN6876EU0100 Rev1.00 Page 12 of 29
Mar.20.23 RENESAS

Renesas RA Family

Getting Started with CoreMark Benchmarking

S Properties [:_ Problems Q‘ Smart Browser

g_timer_periodic Timer, General PWM (r_gpt)

Settings Property
APl Info w Common

Parameter Checking
Pin Output Support
Write Protect Enable

Clock Source

w Maodule g;timerf-eriodic'ﬁmer, General PWM (r_gpt)

Value

Default (BSP)
Disabled
Disabled
PCLED

Assert Failures
Errer Log

Clock Registers not Reset Values during Startup

Main Oscillator Populated
PF5 Protect

C Runtime Initialization

Early BSP Initialization

Main Oscillator Clock Source
Subclock Populated

Subclock Drive (Drive capacitance availability varies by MCL)
Subclock Stabilization Time (ms)

w (General
Mame g_timer_pericdic
Channel 1]
Mode Periodic
Period 50
Period Unit Seconds
Output
Input
v Interrupts
Callback timer_callback
Cherflow/ Crest Interrupt Priority Priority 2
Capture A Interrupt Priority Disabled
Capture B Interrupt Priority Disabled
Underflow/Trough Interrupt Pricrity Disabled
Extra Features
Pins
Figure 19. GPT Configuration
2.5 Update Main Stack
Change the Main Stacks Size in BSP properties to 0x4000.
Summary | BSP | @locks | Pins| Interrupts | Event Links | Stacks | Components
|.._ Problems | & Console;- Smart Browser | L} Smart Manual
EK-RAG6M5
Settings Property Value
RTFABMSBH3CFC
RAGMS
RABMS Family
+~ RA Common _
I Main stack size (bytes) Ox4000 |
Heap size (bytes) 0
MCU Ve (mV) 3300
Parameter checking Disabled

Return FSP_ERR_ASSERTION
Ma Error Log

Disabled

Populated

Enabled

Enabled

Disabled

Crystal or Resonator
Populated
Standard/Normal mode
1000

Figure 20. Change Main Stack Size

R11AN6876EU0100 Rev1.00
Mar.20.23

RENESAS

Page 13 of 29

Renesas RA Family

Getting Started with CoreMark Benchmarking

Click “Generate Project Content”, then the next step is to modify the source files.

Right click on the ra_gen\main.c and exclude it from the Build, so there is no conflict with the main from

core_main.c.

[t} Includes

(& ra

+ == RAG6MS_CoreMark_IAR [Debug]

[n] bsp_clock_cfg.h
[common_data.c
[common_data.h

[hal_data.c
[n] hal_data.h
pin_da
[£ vector,
@ wvector_
2 sre
= Debug
4 Renesas R -,
= ra_cfg
[-= script

fi'% configura 3§

[x] RAGBMS_C
{7} Developer

G E

E

LFand JI-IFFUI!. rﬂhhﬂu: LRl

Device Selection

FSP version: | 4.3.0

Board: EK-RAGMS
Device: R7FABMSBHICFC
Mew S
Core: CM33
Open
Show In Alt+Shift+w > | RTOS: dezl b
Cpen With »
Copy Crl+C Hmar}f BSP | Clocks | Pins | Interrupts
Paste Ctl=V problems El Console | Propertie
Delete Delete |
A6M5_CoreMark_lAR/ra_gel
Source ¥
Move... source Property
Rename... 2| v Info
derived
e editable
Export... last modified
linked
Build Project Ctrl+B | .
ocation
Refresh] name
Index > p.ath
Resource Configurations > Exclude from Build...

2.6 Port CoreMark Code

You modify the core_portme.h and the core_portme.c in the “src” folder.

Figure 21. Exclude main.c from Build

In core_portme.h, add “#include <stddef.h>" before the code “typedef size_t ee_size t;”, as shown below.

R11AN6876EU0100 Rev1.00
Mar.20.23

RENESAS

Page 14 of 29

Renesas RA Family Getting Started with CoreMark Benchmarking

-|/* Data Tvpes
To avoid compiler issues, define the data types that need ot be used for
8k, léb and 32b in <core_portme.h>-.

YImprtant®
£&_ptr_int needs to be the data type used to hold pointers, otherwise
coremark may fail!!!
_J.II."
typedef signed short ee_sl6a;
typedef unsigned short ee_ulé;
typedef signed int ee_s534;
typedef doubkle ee_f£32;
typedef unsigned char ee_ud;
typedef unsigned int ee_u3d;

typedefl ee u3d £ ptr int;
I#includa <atddef.h> |
typedef size_t ee_size t;

#define NULL ((woid *)0)

Figure 22. Add “#include <stddef.h>"

Also, in core_portme.h, modify the “#define COMPILER_FLAGS” depending on the toolchain used. If you
use IAR Compiler version 9.32.1, change it to #define COMPILER_FLAGS "High Speed; No size
constraints".

The code should look as follows.

/* Definitions : COMPILER VERSION, COMPILER FLAGS, MEM _LOCATION
Initialize these strings per platform

£

#ifndef COMPILER_VERSION

#ifdef _ GNUC__

#define COMPILER_VERSION "GCC"_ VERSION

#else

#define COMPILER VERSION "IAR Compiler w9.32.1"

#endif

#endif

#ifndef COMPILER_FLAGS

#tdefine COMPILER_FLAGS "High Speed; No size constraints”

#endif

#ifndef MEM_LOCATION

#define MEM_LOCATION "STACK"

#endif

Figure 23. Modify core_portme.h

In core_portme.c, before the barebones_clock() function, add below code.

wolatile ee 532 seed4 _volatile = ITERATIONS:
wolatile ee s32 seedS_vwvolatile = 0;

timer info t g timer info;
uint32_t g_capture_overflows = (07;

Figure 24. Modify core_portme.c

You can check and correct the CLOCKS_PER_SEC setting by getting the correct value from the
clock_frequency, shown in the figure below when running the project for the first time.

R11AN6876EU0100 Rev1.00 Page 15 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

err = R_GPT_Start(&g_timer_periodic_ctrl);
if (FSP_SUCCESS != err)

{

ee_printf("ERROR: R_GPT_Start!\n");

}
err = R_GPT_InfoGet(&g timer periodic_ctrl, Eg_‘timer‘_:i.nfolj

if (FSP_SUCCESS != err)

{ Expression Type Value Address
ee_printf("ERROR: R_GPT_InfoGet!\n"); v (= g_timer_info timer_info_t) Dhe 20004250

! . . \ . . ()= count direction timer direction t TIMER._DIRECTION_UP (e 20004250

Ef(ﬂzaﬁﬁgjtl}“)'=s““ﬁ@‘ﬁ8 2 [0 clock_frequency _uint32.t 50000000] 20004254
ee_printf(()= period_counts uint32_t 2500000000 (20004258

"pointer!\n"); Name : g_timer_info -
} P ' ? Details:{count_direction = TIMER_DIRECTION UP, clock_fregquency = 56866080, peri
if (sizeof(ee u32) !- 4) Default:{...}
- Decimal:{...}
¢ ee_printf("ERROR! Please define ee_u32 to Hex:{...}
P ' - Binarv:{...} v
£ >

p-rportable_id = 1;

"ERROR! Please define ee_ptr_int to a

Figure 25. Check CLOCK_PER_SEC Setting

Change the barebones_clock() functions as follows.

lI."J.

Porting : Timing functions

How to capture time and conwvert to seconds muast be ported to whatever is
supported by the platform. e.g. Bead walue from on board RTC, read walue from
cpu clock cycles performance counter etc. Sample implementation for standard
time.h and windows.h definitions included.

Ky
CORETIMETYPE
barebones_clock()
{
fsp err_t err = F5F_S5UCCESS;
timer status_t Status;
err = B_GPT_StatusGet (&g_timer periodic ctrl, &status):;
if (F5P_SUCCESS != err)
{
ee_printf ("ERROE: B_GFT_StatusGet!\n"):
1
/* The pericd is set to 503 we shouldn't owverflow but just in case
report an error if we do. If we set the a shorter period we need to do:
info.period_counts * g_capture overflows xS
if (g_capture_overflows > [}
{
ee_printf ("ERROR: Timer overflow!\n"):
1
return status.counter;
1

Figure 26. bareborns_clock() Function

Then change the portable_fini(core_portable *p), portable_init(core_portable *p, int *argc, char *argv[]) to
add the GPT timer that is needed for benchmarking.

R11AN6876EU0100 Rev1.00 Page 16 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

f% Function : portable init
Target specific initialization code
Teat for some common mistakes.

kr
wold
portakle_init(core_portable *p, int *argc, char *argv([])
{
fsp err t err = F3P_SUCCESS:
/% Flush C cache */
uint32 t * c_cache = (uint32_t *)0x40007004;
*c_cache = 1;
/% Enable T cache */
c_cache = (uint32_t *)0x40007000;
*c_cache = 1;

S/% Flush 5 cache %/

uint32 t * 3 _cache = (uint32_t *)0x40007044;
*3 cache = 1;

/% Flush 5 cache */

8 _cache = (uint32_t *)0x40007040;

*3 cache = 1;

S¥ Initialize GPT Timer */

err = B_GFT_Open(&g_timer periodic ctrl, &g_timer periodic cifg):

if (F3P_SUCCESS !'= err)
{

ee_printf ("ERRCR: BE_GFT_Open!\n");
1
err = B_GFT_Start(&g_timer pericdic_ctrl):
if (FS5P_SUCCESS != err)
{

1
err = B GFT_InfoGet (&g timer pericdic ctrl, &g timer info)
if (FS5P_SUCCESS != err)

{
ee_printf("ERRCR: B_GFI_InfoGzet!wn™):
}
if (sizeof (ee_ptr_int) !'= sizeof (ee_uf *))
{
ee_printf(
"ERRCR! Flease define 2e_ptr int to a type that holds
"po rin") ;
}
if (sizeof (se_u3l) 1= 4)
{
ee_printf ("ERRCOR! Please define ee_u3l to a 32k unsignec
}

p->portable id = 1:

1 type!\n™):;

Figure 27. portable_init Function

R11AN6876EU0100 Rev1.00
Mar.20.23 RENESAS

Page 17 of 29

Renesas RA Family Getting Started with CoreMark Benchmarking

/% Function : portable fini
Target specific final code
L
void
portable fini (core_portable *p)

{
fsp err_t err = F3F_3UCCESS:

err = B_GFT_Stop(&g_timer periodic ctrl):
if (F5P_SUCCESS != err)
{

}
p->portable id = 0;
BSF_CFG_HANDLE UNEECOVERABLE ERROR (C):

Figure 28. portable_fini Function

At the end of the file, add the callback method function of the GPT timer.

i

/% Example callback called when timer expires. ¥/
vold timer callback (timer callback args t * p_args)
I
if (TIMER EVENT CYCLE END == p_ args->&vent)
It
g_capture overflows++;

}

Figure 29. Add timer_callback to core_portme.c

In ee_printf.c, change the uart_send_char(char c) and add the below code for printing benchmarking results.

#define MAXBUFFER leea
volatile char uart_buffer[MAXBUFFER + 1];
volatile wnsigned int uart _buffer_cnt = @;

void
uart_send_char(char c)
1
if{uart_buffer_cnt < MAXBUFFER)
1
uart_buffer[uart_buffer_cnt++] = c;
uart_buffer[uart_buffer_cnt] = "\@&';
1
else
1
uart_buffer[uart_buffer_cnt] = "\8";
1

Figure 30. Add uart_send_char Function

R11AN6876EU0100 Rev1.00
Mar.20.23 RENESAS

Page 18 of 29

Renesas RA Family

Getting Started with CoreMark Benchmarking

In the project properties setting, add “ITERATIONS=8000" to IAR C/C++ Compiler for ARM->Preprocessor.

type filter text

Resource
Builders
~ C/C++ Build
Build Variables
Environment
Logging
Teol Chain Editor
C/C++ General
C-5PY
C-STAT Static Analysis
Project Matures
Project References
Renesas QF
Run/Debug Settings

Settings
Configuration:

Debug [Active]

& Tool Settings A Build Steps

O

~ | | Manage Configurations...

Build Artifact Binary Parsers @ Error Parsers

(2 Target

(2 32-bit

(2 B4-bit

(% Library Configuration

(Z2 Library Options 1

@ Library Options 2

(2 Multi-file Compilation
(# C-RUN Runtime Checking

[Jignore standard include directories

Additional include directories

"S{workspace_loc:/${PrajMame}/ra/fsp/inc/api}"

"S{waorkspace_loci/${ProjName}/ra/fsp/inc/instances}"
"Slworkspace_loc/${PrajNamel/ra/arm/CMSI5_5/CMSIS/ Core/lr
"S{workspace_loc:/${ProjName}/ra_gen}"

X

Task Tags
Validation

~ 8 AR C/C++ Compiler for ARM
@ Language
(% Code
(2 Optimizations
(2 Output < i

"S{workspace_loc:/${ProjNamel/ra_cfg/fsp_cfg/bsp}”
"S{workspace_loc:/${ProjName}/ra_cfg/fsp_cfg}”

Preinclude file: @

@ Encodings

(8 Extra Options
v BBy |AR Assembler for ARM

(3 Language

@ Output

(3 List

(2 Preprocessor

(2 Diagnostics

(2 Extra Options
w 53 1AR Linker for ARM
(2 Configuration
@ Library
(3 Input
@ Optimizations
(% Advanced
A Ontant

Defined Symbols:

_RA_CORE=CM33

® Apply and Close

Cancel

Figure 31. Preprocessor Setting

In the project properties setting, change IAR C/C++ Compiler for ARM->Optimization to “High, Speed” with
“No size constraints”.

R11AN6876EU0100 Rev1.00

Page 19 of 29
Mar.20.23

RENESAS

Renesas RA Family

Getting Started with CoreMark Benchmarking

e

| type filter text

Rezource
Builders
wv CfC++ Build
Build Variables
Environment
Logging
Settings
Teol Chain Editor
C/C++ General
C-5PY
C-5TAT Static Analysis
Project Matures
Project References
Renesas QF
Run/Debug Settings
Task Tags
Validation

Settings

Configuration: | Debug [Active]

i Tool Settings - Build Steps

~ | | Manage Configurations...

Build Artifact Binary Parsers @3 Error Parsers

(2 Target

(2 32-bit

@ £4-bit

(# Library Configuration

(# Library Options 1

(2 Library Options 2

(# Multi-file Compilation
(# C-RUN Runtime Checking

w B3 |AR C/C++ Compiler for ARM

(22 Language
Code

Output
(25 List
(22 Preprocessor

Optimization level: || High, Speed v

[[]Disable common subexpression elimination
[[] Dizable loop unrolling

[[] Dizable function inlining

[] Disable code motion

[[] Dizable type-based alias analysis

[] Disable static clustering

[[] Dizable instruction scheduling

| Mo size constraintsl

I Apply and Close | Cancel

Figure 32. Optimization Setting

Now you can build the project without errors.

2.7 Create CoreMark e2 studio Project Used for Benchmarking using Arm Compiler

Ensure you integrated the Arm compiler with e2 studio before creating a CoreMark project. Select the Board,
Device, and Toolchain you want to use for benchmarking and process to create an Arm compiler-based
project similar to the IAR compiler. Follows sections 2.3, 2.4, 2.5, and 2.6 to add the GPT module, configure
your project, and port the CoreMark. Note that you need a commercial license to use “--Ito” option in Arm

Compiler.

R11AN6876EU0100 Rev1.00

Mar.20.23

Page 20 of 29

RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

ﬁ-‘-:“-::-.‘-:-"-.i C++ Project . :

Renesas RA C/C++ Project —_—

Device and Tools Selection |

Device Selection

Board Description

FSP Version: |4.3.0 w
Evaluation kit for RABMS MCU Group
Board: EK-RAGMS ~l| visit https//www.renesas.comy/rafek-rabm3 to get kit user's
_ rmanual, quick start guide, errata, design package, example
Device: R7FABMSBH3ICFC e
Core: CM33
language: @ C () C++
Device Details
TrustZone Yes
Pins 176
Processor Cortex-M33
Toolchains Debugger
GMNU ARM Embedded J-Link ARM v

ARM Compiler 615 |
|AR. Toolchain for Arm - (9.0)

@ < Back Finish Cancel

Figure 33. Create An Arm Compiler - Based Project Options

Also, in core_portme.h, modify the “#define COMPILER_FLAGS” depending on the toolchain used. In the
case of Arm Compiler, change it to "-Omax".

The code should look as follows.

|f* Definitions : COMPFILER VERSICN, COMPILER FLAGS, MEM LOCATION
Initialize these strings per platform

.J.II."

|#ifndef COMPILER VERSION

|gifdef _ GNUC__

$define COMFILEE VERSION _ VERSION

$=lse

$define COMPFILEE VERSION "Flease put compiler version here (e.g. gocc 4.1)7

#endif

#endif

$ifndef COMPILER FLAGS

$¢define COMPILER FLAGS "-Omax"

#endif

|#ifndef MEM LOCATION

$define MEM LOCATION "S5TACE"

#endif

Figure 34. Modify "#define COMPILER_FLAGS"

R11AN6876EU0100 Rev1.00 Page 21 of 29
Mar.20.23 RENESAS

Renesas RA Family

Getting Started with CoreMark Benchmarking

In the project’s Properties-> ARM C Compiler 6.15->Miscellaneous->Other flags, add “-Omax”.

settings -
Resource)
Builders
~ C/C+ Build Configuration: |Debug [Active] o | @i man
Build Variables
Environment
Logging & Tool Settings & Build Steps Build Artifact Binary Parsers € Error Parsers
Tool Chain Editor ~ & ARM C Compiler 615 Other flags | -mfloat-abi=hard -Wfloat-equal -Waggregate-return -Wshadow -Wpainter-arith -Weanversion -Wh ~Wetraf Omax |
C/C++ General B Target
MCU £ Preprocessor
Project Natures £ Includes
Project References 5 Source Language
Renesas QF 5 Optimizations
Run/Debug Settings 5 Debugging
Task Tags (# Warnings and Erors
Valdetion
v) ARM Assembler 6.15
2 Target
5 Preprocessor
% Includes
¥ Debugging
¥ Wamnings and Errors
< > A Micralianenic ©
3\
@

Apply and Close Cancel

-mfloat-abi=hard -Wfloat-equal -Waggregate-return -Wshadow -Wpointer-arith -Wconversion -Wmissing-declarations -Wuninitialized -Wunused -Wno-license-management -Wextral-Omaxl

Figure 35. Add “-Omax” Option to Project Settings
In the project’s Properties-> ARM Linker 6.15->Miscellaneous->Other flags, add “--Ito”.

Resource
Builders
~ C/C++ Build

Environment

Logg

C/C++ General
MCU
Project Natures

Build Variables

Tool Chain Editor

Project References

Renesas QF
Run/Debug Settings
Task Tags
Validation
< >
5
@

Settings

Configuration: | Debug [Active]

) Tool Settings & Build Steps

Build Artifact Binary Parsers @ Eror Parsers

(22 Target

(22 Target

(22 Target

@ Libraries

w [ARM C Compiler 6.15

(2 Source Language
(# Optimizations
(# Debugging
(& Wamings and Errors
(B Miscellaneous

~ i ARM Assembler 6.15

@ Preprocessor
@ Includes
@ Debugging
@ Warnings and Errors
(# Miscellaneous
~ 8 ARM Linker 6.13

(# Image Layout

(# Optimizations
(# Additional Information

‘Warnings and Errors
(22 Miscellaneous

Manage Configurations...

Other flags | --library_type=microlib --no_startup --via:"S{work;pace,lDc:fS{ProjName}fscript}facﬁffsp,keep.\.ria"l--ltoI ‘

(2 Preprocessor Other object files
(2 Includes

£

I Apply and Close | Cancel

--library_type=micrelib --no_startup --via="%workspace_loc /¥ ProjMNamel/script)/act/fsp_keep.via"

--Ito |

Figure 36. Add “--Ito” Option to Project Settings.

R11AN6876EU0100 Rev1.00

Mar.20.23

RENESAS

Page 22 of 29

Renesas RA Family Getting Started with CoreMark Benchmarking

2.8 Run CoreMark Project

2.8.1 Board Setup

The EK-RABMS5 kit has a few switch settings which must be configured before running the projects
associated with this application note. In addition to these switch settings, the boards also contain a USB
debug port and connectors to access the J-Link® programming interface.

Table 1. Switch settings for EK-RA6M5

Switch Setting
J8 Jumper on pins 1-2
J9 Open

Figure 37. J8 and J9 on EK-RA6M5
The figure below shows the picture of the EK-RA6M5 Kkit.

Figure 38. EK-RAG6M5
Connect the board to your PC using the USB cable into the port labeled “Debugl”.

R11AN6876EU0100 Rev1.00 Page 23 of 29
Mar.20.23 RENESAS

Renesas RA Family

Getting Started with CoreMark Benchmarking

2.8.2 Add Run Commands to Print Out Benchmarking Result.
In Debug Configuration, add the below command.

dprintf portable_fini,"%s",uart_buffer

8 Debug Confic

Create, manage, and run configurations

FEeEX BY- Name: | RABMS_CoreMark_IAR Debug_Flat

Main | %5 Debugglr | = Startup| B} Source | [] Common

Initialization Commands

| type filter text |
[£] C/C++ Application
[€] €/C++ Remote Application
= EASE Script

[[]Reset and Delay (seconds): | 3

[Halt

[£] GDB Hardware Debugging

[£7 GDE Sirnulator Debugging (RH350)
© 4R C-SPY Application

& Launch Group

~ [c7] Renesas GDB Hardware Debugging

[c7| RAGMS_CoreMark_|AR Debug_Flat Load image and symbols

Renesas Simulator Debugging (RX, RL7E
= gaing Filename Load type Offset (hex) On connect Add
Program Binary [RAEM... Image and Symbols Yes
Edit...
Remaove
Mawve up
Move down
Runtime Optiens
[] Set program counter at (hex):
Set breakpoint at:
[Resume
Run Commands
dprintf portable_fini," %s", uart_buffer I
£ >
i i Revert Apply
Filter matched 10 of 12 items =

Figure 39. Add dprint Command

2.8.3 Run The e2 studio Project

After successfully building the project, it can be debugged using Renesas GDB Hardware Debugging. Right
click on the project -> Debug AS -> Renesas GDB Hardware debugging or “Debug Configurations...” and

choose the desired one.

R11AN6876EU0100 Rev1.00

Mar.20.23 RENESAS

Page 24 of 29

Renesas RA Family Getting Started with CoreMark Benchmarking

File Edit Source Refactor WNawvigate Search Project RenesasViews Run Window Help

R || % || ® || % Debug [E5] RABMS_CoreMark_IAR Debug_Flat g | B~/ ~ @ e m
£ Project Explorer = <‘=-'=|> l? g = 0 L‘J:} [RABMS5_CoreMark_LAR] FSP Configuration [main.c [g] startup.c < [core_main.c [€]
v [% RA6M5_CoreMark_IAR [Del Mew y F’ION(BSP_SECTION_HEAP) E
ﬁ-? Binaries Go Into
[Includes [.) - o I _
0 in New Wind fions in the vector table are weak references t
5 ra (b) iR ISRl they should define their own fu
2 ra_gen Show In Alt+Shift+W >
v [f8 src) L)
[core_list_join.c B Cony Ctrl+C TRIBUTE
i Paste Ctrl+V
[core_main.c ult_Handler = Default_H
[core_matrix.c H Delete Delete age_Handler = Default_H
[core_portme.c Source 5 lt_Handler = Default_H
m core_portme.h) ault_Handler = Default_H
[8 core_state.c Move.. F:;lt_Handler‘ = ge:aui:_:
- Rename... F2 |ndler = Default_|
(g core_util.c lon_Handler = Default H
6] coremarkch Ex Import.. | Handler = Default_H
g ovte 2 Export k_Handler = Default_H
@ ee_printf.c — port..)
[£ hal_entry.c 5, Send project settings to Reality Al Tools®
(= Debug Renesas FSP Export , |TRIBUTE _ attribute_ ((weak, alias("Default
4 Mone Build Provect
(= ra_cfg Ut mJ.E d)s /f NMI has many sources and
= script Clean Project er(void) WEAK_REF_ATTRIBUTE;
e;.;} configuration.xml 5 Refresh F5 er(void) WEAK_REF_ATTRIBUTE;
S JLinkLog.lo :) r(void) WEAK REF_ATTRIBUTE;
= g-log _ Close Project ler(void) WEAK REF_ATTRIBUTE;
= RIFABM3BHICFC.pincfg Close Unrelated Project dler(void) WEAK_REF_ATTRIBUTE;
= ra_cfg.xt d) WEAK REF ATTRIBUTE:
= RAEMS_CoreMark_IAR De Build Targets I |
X] RAGMS'CWEMMI(JAR De Index > | Smart Browser |) Smart Manual | 35 Debug
(?) Developer Assistance i) . k- =
Build Configurations * lenesas GDB Hardware Debugging] Renesas GDB server (Host
@ FRunAs >
ﬁ Debug As > [£7 1GDBE OpenQCD Hardware Debugging (DSF)
Team > [& 2 GDB Simulator Debugging (RHA50)
Compare With > e 3 1AR C-5PY Application
Restore from Local History... [c] 4Local C/C++ Application
MISRA-C > [t 5Renesas GDB Hardware Debugging
% C/C++ Project Settings Ctrl+Alt+P £ 6 Renesas Simulator Debugging (RX, RL78)
Renesas C/C++ Project Settings H e

E

Select Device...

Figure 40. Debug the Project

The program should stop in the Reset_handler.

R11AN6876EU0100 Rev1.00 Page 25 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
& |4 || ® ||%F Debug [RAGMS_CoreMark_IAR Debug_Flat mifld [®-KR-Bia|m @22 0|6 SR Q-
45 Debug X | IE % | 4% 8 = O |[[2 startup.c X | [g core_main.c | [€] core_portmec | [B core_portme.h [€ hal_entry.c | [€] _iar_progra... =, =g
~ [£7] RABMS_CoreMark AR Debug_Flat [Renesas GDB 48 ® * Exported global variables (to be accessed by other files)[] ~
v [RAGMS_CoreMark_IAR.out [1] [cores: 0] 50 o Lobal vardobl 4 functions]]
- 3 . . 52 ® * Private global variables an unctions]
v u{:lhread 11 (single core) [core: 0] (Suspend S void Reset Handler(void);
f Reset_Handler() at startup.c:62 Dxddcd 55 void Default_Handler(void);
= Oxffffftfe 56 int32_t main(void);
s| arm-nene-eabi-gdb (7.8.2) 57
] Renesas GDB server (Host) 59 ® * MCU starts executing here out of reset. Main stack pointer is set up already.[]

=void Reset_Handler (void)

/* Initialize system using BSP. */
SystemInit();

/* Call user application. */

main();
= while (1)
/* Infinite Loop. */
}
¥
® * Default exception handler.[]
=void Default_Handler (void)
1
® /** A error has occurred. The user will need to investigate the cause. Common problems are stach
BSP_CFG_HANDLE_UNRECOVERABLE_ERROR(8): ©
< >

Figure 41. Debug the Project (cont’d)

Click the Resume button. The program will stop in main from core_main.c, click the Resume button again to
run the project.

After a while, the program will stop in portable_fini, and the CoreMark scores will be available in the
Debugger Console window, as shown below.

CoreMark 1.8 : 783.148283 / IAR Compiler v9.32.1 High Speed; No size constraints / STACK
2K performance run parameters for coremark.

CoreMark Size ! BBB

Total ticks : 518759889

Total time (secs): 18.215138
Iterations/Sec 1 783.148283
Iterations : Seee

Compiler versicn : IAR Compiler w3.32.1
Compiler flags : High Speed; No size constraints
Memory location @ STACK

seedcrc : Bxedfs

[@]crclist : Bxe7l4

[@]crcmatrix : Bx1fd?

[@]crcstate : BxBe3a

[@]crcfinal 1 Bx5275

Correct operation validated. See README.md for run and reporting rules.
CoreMark 1.8 : 783.148283 / IAR Compiler v9.32.1 High Speed; No size constraints / STACK

Figure 42. CoreMark Score with IAR Compiler

2K performance run parameters for coremark.

CoreMark Size : 666

Total ticks : 585829888
Total time (secs): 18.116598
Iterations/Sec 1 798.779686
Iterations : Beea

Compiler version : GCCClang 12.8.8 (ssh://ds-gerrit/armcompiler/llvm-project e64d644232aba72841b813571dc92edd3Tb7bde2)
Compiler flags 1 -Omax
Memory location @ STACK

seedcrc 1 @xedfs
[@]crclist 1 @xe7l4
[@]crematrix 1 @x1fd7
[@]crcstate 1 @xBe3a
[@]crcfinal 1 @x5275

Correct operation walidated. See README.md for run and reporting rules.
CoreMark 1.8 : 79@.779686 / GCCClang 12.8.@ (ssh://ds-gerrit/armcompiler/llvm-project e64d644232aba72@41b813571dc92e@d3fb7b4e2) -Omax / STACK

Figure 43. CoreMark Score with Arm Compiler

R11AN6876EU0100 Rev1.00 Page 26 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

3. Verify RA Benchmarking Results

You can verify your results by referring to RA CoreMark results published on the EEMBC website, as shown
below.

Clear CoreMark /
Sel. Vendor Processor Cert. Compiler Execution Memory MHz Cores CoreMark MHz Threads Date|
O Reneszas Electronics RASTZ J ARM Clang Compile... internal flash, intern... 240 1 94245 401 1 2022-03-17
O] Reneszas Electronics RASTZ J IAR C/C++ Compiler... internal flash, intern... 240 1 @50.68 396 1 2022-03-17
O Renesas Electronics RAZE2 < |AR C/C++ Compiler... internal flash, intern... 48 1 229 1 2021-12-14
O Renesas Electronics RA4E1 o IAR C/C++ Compiler... internal flash, intern... 100 1 386 1 2021-09-23
O Renesas Electronics RA4E1 o ARM Clang Compile... internal flash, intern... 100 1 398 1 2021-09-23
O Renesas Electronics RASEL V' |AR C/C++ Compiler... internal flash, intern... 200 1 FI0TFS 3483 1 2021-09-23
O Renesas Electronics RASEL N ARM Clang Compile... internal flash, intern... 200 1 7027 395 1 2021-09-23
[} Reneszas Electronics RAGMS V |AR C/C++ Compiler... internal flash, intern... 200 1 T70.82 383 1 2021-04-26
O Renesas Electronics RAGM3I W ARMClang Compile . internal flash, intern. 200 1 TROTE 395 1 2021-04-26
O Renesas Electronics RAANMZ W ARMClang Compile . internal flash, intern. 100 1 395 1 2021-04-26
O Renesas Electronics RAAMZ v |AR C/C++ Compiler... internal flash, intern... 100 1 356 1 2021-04-26
I:' Renesas Electronics RAZE1 o IAR C/C++ Compiler_. internal flash, intern. 45 1 11173 232 1 2021-04-26
O Renesas Electronics RAGT1 v |AR C/C++ Compiler... internal flash, intern... 120 1 405.90 3.35 1 2021-03-10
O Renesas Electronics RAGM4 v ARM Clang Compile... internal flash, intern... 200 1 TR073 393 1 2021-03-10
I:' Renesas Electronics RAGMA o IAR C/C++ Compiler_. internal flash, intern. 200 1 77052 3835 1 2021-03-10
O Renesas Electronics RAAM3 v ARM Clang Compile... internal flash, intern... 100 1 397 1 2021-03-10
O Renesas Electronics RAAM3 v |AR C/C++ Compiler... internal flash, intern... 100 1 356 1 2021-03-10
O Renesas Electronics RAZL1 v |AR C/C++ Compiler... internal flash, intern... 48 1 11173 232 1 2021-03-10
|:| Broadcom Corporation Broadcom BCM283... GCC7.21 LPDDRZ 900MHz 1200 4 15363.93 12580 4 2018-01-06

Figure 44. RA Coremark scores published on EEMBC website

4. General Guidelines for CoreMark Benchmarking

Since target devices that contain Arm processors may have a wide variety of memories and memory
hierarchies, your CoreMark project should be compiled using memory correctly and efficiently. Depending on
the compiler, you can achieve this by correctly editing your linker script or scatter files.

Since CoreMark is a small benchmark, it should be run multiple times to obtain reproducible numbers.

Arm recommends performing two validation runs followed by at least ten profile runs. The results can be
calculated by the average for the profile runs. These steps are necessary to minimize the variation caused by
inconsistent processor states.

5. References
EEMBC's CoreMark® https://www.eembc.org/coremark/

R11AN6876EU0100 Rev1.00 Page 27 of 29
Mar.20.23 RENESAS

Renesas RA Family Getting Started with CoreMark Benchmarking

Website and Support

Visit the following vanity URLSs to learn about key elements of the RA family, download components and
related documentation, and get support.

RA Product Information www.renesas.com/ra

RA Product Support Forum www.renesas.com/ra/forum

RA Flexible Software Package www.renesas.com/FSP

Renesas Support Www.renesas.com/support

R11AN6876EU0100 Rev1.00 Page 28 of 29

Mar.20.23 RENESAS

http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

Getting Started with CoreMark Benchmarking

Revision History

Description
Rev. Date Page Summary
1.0 March.20.23 - Initial version
R11AN6876EU0100 Rev1.00 Page 29 of 29
Mar.20.23 RENESAS

Notice

1.

10.

11.

12.

13.
14.

(Notel)

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date

Koto-ku, Tokyo 135-0061, Japan
WWW.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

version of a document, or your nearest sales office, please visit:
Www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. CoreMark Project
	2. Run CoreMark on Renesas RA MCUs
	2.1 Integrating Toolchains with e2 studio
	2.1.1 IAR Embedded Workbench Plugin
	2.1.2 Integrate with Arm Compiler

	2.2 Create CoreMark e2 studio Project Used for Benchmarking using IAR Compiler
	2.3 Add CoreMark to e2 studio Project
	2.4 Add Timer for Benchmarking
	2.5 Update Main Stack
	2.6 Port CoreMark Code
	2.7 Create CoreMark e2 studio Project Used for Benchmarking using Arm Compiler
	2.8 Run CoreMark Project
	2.8.1 Board Setup
	2.8.2 Add Run Commands to Print Out Benchmarking Result.
	2.8.3 Run The e2 studio Project

	3. Verify RA Benchmarking Results
	4. General Guidelines for CoreMark Benchmarking
	5. References
	Revision History

