
 Application Note

R11AN0110EU0102 Rev.1.02 Page 1 of 28
Jun.03.19

Renesas Synergy™ Platform

Console Framework Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this
guide, you will be able to add this module to your own design, configure it correctly for the target application
and write code, using the included application project code as a reference and efficient starting point.
References to more detailed API descriptions and suggestions of other application projects that illustrate
more advanced uses of the module are available in the Renesas Synergy Knowledge Base (as described in
the References section at the end of this document) and should be valuable resources for creating more
complex designs.

The Console Framework is a complete API implementation for a menu-driven console command line
interface (CLI) using the ThreadX® RTOS. The Console Framework module uses a lower-level
communications interface which connects to a hardware option for either UART, USB, or Ethernet Telnet
connectivity. The Console Framework module has a user-defined menu of commands and various APIs to
present a prompt, identify and issue a callback for menu commands, and read, write and parse input strings.

Contents

1. Console Framework Module Features ... 3

2. Console Framework Module APIs Overview .. 3

3. Console Framework Module Operational Overview ... 5
3.1 Console Framework Module Initialization ... 5
3.2 Console Framework Module Input Processing ... 5
3.3 Creating Console Framework Module Required Structures – The Menu ... 5
3.4 Console Framework Module Important Operational Notes and Limitations.. 6
3.4.1 Console Framework Module Operational Notes ... 6
3.4.2 Console Framework Module Limitations ... 6

4. Including the Console Framework Module in an Application .. 7

5. Configuring the Console Framework Module ... 9
5.1 Configuration Settings for the Console Framework Stack Modules .. 10
5.1.1 Configuration Settings for the Telnet Stack Modules .. 10
5.1.2 Configuration Settings for the USB Stack Modules... 12
5.1.3 Configuration Settings for the UART Stack Modules .. 15
5.1.4 Configuration Settings for the USB Stack Modules (Deprecated) .. 19

6. Using the Console Framework Module in an Application ... 20

7. Console Framework Module Application Project .. 21

8. Customizing the Console Framework Module for a Target Application 24
8.1 Menu Structures .. 24
8.2 Thread Entry Name ... 24
8.3 Instance Name .. 24

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 2 of 28
Jun.03.19

8.4 Communications Framework Module Selection and Configuration .. 24

9. Running the Console Framework Module Application Example ... 25

10. Console Framework Module Conclusion .. 25

11. Console Framework Module Next Steps .. 25

12. Console Framework Module Reference Information .. 26

Revision History .. 28

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 3 of 28
Jun.03.19

1. Console Framework Module Features
The console framework supports the following features:

• Creation of a menu-based command-line interface
• Submenus and navigation through multiple menus in a single call
• Menu navigation to go up to the parent menu or back to the root
• A help menu for each menu
• Writing NULL terminated strings and reading until return character is received
• An API to help parse arguments to the command line
• Case-insensitive inputs

The Console Framework module organization, as depicted in the thread stack window in the SSP
Configurator, is shown in the following figure. Each implementation choice, Ethernet, UART, and USB has its
own lower-level modules that are added automatically based on your implementation choice. In most cases,
all the needed configuration information is automatically added to the modules leaving you with just a few
important configuration settings that need to be selected.

Figure 1. Console Framework Module Block Diagram

2. Console Framework Module APIs Overview
The Console Framework defines APIs for opening, closing, reading, writing, and issuing an input prompt. It
also provides some additional functions, such as parse and augumentFind, to assist in processing more
complex commands. A complete list of the available APIs, an example API call, a short description of each
can be found in the following tables. A table of status return values follows the API summary table.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 4 of 28
Jun.03.19

Table 1. Console Framework Module API Summary

Function Name Example API Call and Definition
.open g_sf_console0.p_api->open(g_sf_console0.p_ctrl,

g_sf_console0.p_cfg)

The open API configures the console. This function must be called before any other
console functions.

Note: This call is made automatically during system initialization, prior to entering the

user thread. Unless the user closes the console, open will not need to be
called.

.close g_sf_console0.p_api->close(g_sf_console0.p_ctrl);

The close API handles the clean-up of internal driver data.

.prompt g_sf_console0.p_api->prompt(g_sf_console0.p_ctrl, NULL,
TX_WAIT_FOREVER);

The Console Framework Module API prints the prompt string from the menu,
waits for input, parses the input based on the menu, and calls the appropriate
callback function if a command is identified.

.parse g_sf_console0.p_api->parse(g_sf_console0.p_ctrl, commands,
input, s_length);

The parse API looks for an input string in the command menu and, if one is found,
calls the appropriate callback function.

.read g_sf_console0.p_api->read(g_sf_console0.p_ctrl, ch, 1,
TX_WAIT_FOREVER);

The read API puts data into the destination, byte-by-byte and echoes the input to the
console. Backspace, delete, and left/right arrow keys are supported. Read completes
when a line ending with CR, CR+LF, or CR+NULL is received, or when the input
exceeds the number of bytes allowed. If the buffer overflows
SF_CONSOLE_MAX_INPUT_LENGTH, the read will return an error code.

.write g_sf_console0.p_api->write(g_sf_console0.p_ctrl,
(uint8_t*)data_string, TX_WAIT_FOREVER);

The write API gets the buffer mutex object and handles data transmission at the
HAL layer. It obtains the event flag to synchronize the completion of a data transfer.

.argumentFind g_sf_console0.p_api->argumentFind(”LED”, p_args-
>p_remaining_string, NULL, &led_num);

The argumentFind API locates a command line argument in an input string and
returns the index of the character immediately following the argument. Any string
numbers are converted to integers.

.versionGet g_sf_console0.p_api->versionGet(&version);

Retrieve the API version with the version pointer.

Note: For more complete descriptions of operation and definitions for the function data structures, typedefs,
defines, API data, API structures, and function variables, review the SSP User’s Manual API
References for the associated module.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 5 of 28
Jun.03.19

Table 2. Status Return Values

Name Description
SSP_SUCCESS API call successful.
SSP_ERR_ASSERTION p_ctrl is NULL.
SSP_ERR_UNSUPPORTED Command not found in the current menu.

Note: Lower-level drivers may return common error codes. Refer to the SSP User’s Manual, API References
for the associated module for a definition of all relevant status return values.

3. Console Framework Module Operational Overview
The Console Framework module is a ThreadX®-aware Command Line Interface (CLI). The module uses
ThreadX objects like mutex for blocking and synchronization techniques like event flags for the completion of
a transaction. The key operational elements of the Console Framework are initialization and input
processing, each of which are described in the following sections.

3.1 Console Framework Module Initialization
The open call is automatically generated by the ISDE and is in the
src/synergy_gen/toggle_thread.c file where the module was added. The open call requires the
application to define a root menu with a variable name that matches the one in the configurator
(g_sf_console_root_menu) by default. By the time execution reaches src/
toggle_thread_entry.c, the module is ready to use, provided the necessary hardware connection is
established.

3.2 Console Framework Module Input Processing
The Console Framework module requires a set of menus, command structures, and callbacks. The Console
Framework module typically operates from the prompt, often located within a while loop in the entry thread.
The framework prompt API will print the current menu as a prompt, then read input and echo it back to the
console (unless echo is disabled in the properties).

The following operations are performed against your input:

While the console is accepting input,
• Backspace will remove characters before the cursor.
• Delete will remove characters after the cursor.
• The left and right arrow keys move the cursor.
• The up-arrow key will fill in the last command only when nothing else has been entered.

Note: There is no history beyond the last command; if the up-arrow key is pressed twice, the console does

not know what command was entered prior to the last command and it will continue to display the last
command.

When the console sees a return character on the read input, it parses the input string and calls the
associated callback or switches to the next menu if SF_CONSOLE_CALLBACK_NEXT_FUNCTION is used in
place of the callback for the command. The console will continue parsing until a callback function is called. If
the prompt API is called again, it will prompt using the menu that contains the callback function. To navigate
up to the parent menu, enter ‘^’. To navigate to the root menu from any submenu, enter ‘~’.

3.3 Creating Console Framework Module Required Structures – The Menu
The Console Framework requires a menu and it is up to you to create the structure that is used by the
Console Framework to implement the menu. The Console Menu structure (depicted in the following figure)
includes a pointer to the previous menu, (for creating multi-level menus) a name for the menu, the number of
commands in the menu, and a pointer to an array of command structures. As seen in the following figure,
each entry in the array of commands includes pointers to the command name string, the help command
description string, the associated command callback function, and a context parameter provided to the
callback.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 6 of 28
Jun.03.19

Figure 2. Console Framework Module Menu Structures
The application project example illustrates a Console Framework with a single menu; it controls the toggle of
an LED from the CLI. The console command array (g_sf_console_commands, seen on the right in the
following figure) stores the array of commands (in this case, just a single command.) The command structure
defines the command as LED TOGGLE, the help description as Toggle an LED, the callback as
led_toggle_callback, and the context as NULL, since it is unused for this example.

The root menu, seen on the left side of the following figure, is identified by the g_sf_console_root_menu
structure. The structure defines the menu_prev entry as NULL, since there is only the single menu, the
menu_name as Root, the num_commands as the size of the array divided by the size of an entry (to
determine the total number of entries) as 1, and the command_list starting address as address, the
location of the first entry in the command array.

Figure 3. Menu Structure Example Diagram

3.4 Console Framework Module Important Operational Notes and Limitations
3.4.1 Console Framework Module Operational Notes
To use the Console Framework module prompt API, first set up the menu, command structures, and callbacks.

3.4.2 Console Framework Module Limitations
There are no known limitations for using this module.

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 7 of 28
Jun.03.19

4. Including the Console Framework Module in an Application
This section describes how to include the Console Framework module in an application using the SSP
Configurator.

Note: This section assumes you are familiar with creating a project, adding threads, adding a stack to a
thread and configuring a block within the stack. If you are unfamiliar with any of these items, refer to
the first few chapters of the SSP User’s Manual to learn how to manage each of these important
steps in creating SSP-based applications.

To add the Console Framework module to your application, simply add it to a project thread using the stacks
selection sequence provided in the following table. (The default name for the console framework module is
g_sf_console0. This name can be changed in the associated Properties window.)

Table 3. Console Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence
g_sf_console0 Console
Framework on sf_console

Threads New Stack > Framework > Services > Console
Framework on sf_console

When the console framework on sf_console is added to the thread stack as shown in the following figure,
the configurator reports (via the Add Communications Framework block) that at least one Communications
Framework is required to complete the Console Framework. The Communications Framework determines
the type of communications interface (and the underlying hardware implementation) the Console Framework
will use. Any low-level modules that need additional configuration information will have box text highlighted
in red. Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common and need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended (this is
indicated in the block with the inclusion of this text.) If the addition of lower-level modules is required, the
module description will include Add in the text. Clicking on any Pink banded modules will bring up the New
icon and then display the possible choices.

Figure 4. Console Framework Module Stack
Currently there are three possible Communications Frameworks available that the Console Framework can
select: UART, USB, or Telnet. Configurations for each are shown in the following thread stack illustrations
and they can be easily imported by right clicking the Add Communications Framework block and selecting
the desired Communications Framework. (Note that the Telnet option uses a deprecated implementation.)
This will function correctly, but is indicated as deprecated since it will be replaced in a future release.
Designs using the deprecated module will need to be updated to the new implementation after that release.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 8 of 28
Jun.03.19

 Ethernet UART

USB

Figure 5. Communications Framework Module Options
Note: Other communications frameworks may be offered in future SSP releases. Refer to the current SSP

User Manual for details.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 9 of 28
Jun.03.19

5. Configuring the Console Framework Module
The Console Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required configuration
selections, such as interrupts or operating modes, which must be configured for-lower level modules for
successful operation. Furthermore, only those properties that can be changed without causing conflicts are
available for modification. Other properties are locked and are not available for changes, and are identified
with a lock icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties are
given in the Properties tab within the SSP Configurator and are shown in the following tables for easy
reference.

One of the properties most often identified as requiring a change is the interrupt priority; this configuration
setting is available within the Properties window of the associated module. Select the indicated module and
then view the Properties window; the interrupt settings are often toward the bottom of the properties list, so
scroll down until they become available. Also, note that the interrupt priorities listed in the Properties window
in the ISDE will include an indication as to the validity of the setting based on the targeted MCU (CM4 or
CM0+). This level of detail is not included in the following configuration properties tables, but is easily visible
with the ISDE when configuring interrupt-priority levels.

Note: You may want to open your ISDE, create the module and explore the property settings in parallel with
looking over the configuration table settings in the following table. This will help orient you and can be
a useful hands-on approach to learning the ins and outs of developing with SSP.

Table 4. Configuration Settings for the Console Framework Module on sf_console

Parameter Value Description
Parameter Checking BSP, Enable, Disable

Default: BSP
Selects if code for parameter checking is to be
included in the build.

Maximum Input String
Length

128 Input string length.

Maximum Write String
Length

128 Output string length.

Name g_sf_console0 Console Framework module name.
Name of Initial Menu
(Application Defined)

g_sf_console_root_menu Name of starting menu.

Echo True, False
Default: True

Enable or disable echo to terminal from the
prompt.

Autostart True, False
Default: False

If True, the prompt will occur using the top-level
menu after initialization. If False, the prompt
needs to be called in the application.

Name of the sf_console
Initialization Function

sf_console_init0 Name of the sf_console initialization function
selection.

Auto sf_console
Initialization

Enable, Disable
Default: Enable

Auto sf_console initialization selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU. Other MCUs may
have different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For example, the IP
address for the Telnet connection or the baud rate of the UART might need to be modified. The configurable
properties for the lower-level stack modules are displayed for completeness and as a reference.

Note: Most of the property settings for modules are intuitive and usually can be determined by inspection of

the associated properties window from the SSP configurator.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 10 of 28
Jun.03.19

5.1 Configuration Settings for the Console Framework Stack Modules
Typically, only a small number of settings must be modified from the default for lower-level modules as
indicated via the red text in the thread stack block. Notice that some of the configuration properties must be
set to a certain value for proper framework operation and will be locked to prevent user modification. The
following tables identify all the settings within the properties section for the module.

5.1.1 Configuration Settings for the Telnet Stack Modules
When the Telnet option is selected for the low-level implementation, the following modules are automatically
added to the stack. The following tables show the detailed configuration settings available, many of which
are populated with default settings that can be used in most common applications.

Table 5. Configuration Settings for the Telnet Option (sf_el_nx_comms)

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the parameter checking.

Name g_sf_comms0 Module name.
Channel 0 Underlying channel used by Ethernet driver.
IP Address Byte 1 192 IP Address Byte 1 selection
IP Address Byte 2 168 IP Address Byte 2 selection
IP Address Byte 3 0 IP Address Byte 3 selection
IP Address Byte 4 0 IP Address Byte 4 selection
Subnet Mask Byte 1 255 Subnet Mask Byte 1 selection
Subnet Mask Byte 2 255 Subnet Mask Byte 2 selection
Subnet Mask Byte 3 255 Subnet Mask Byte 3 selection
Subnet Mask Byte 4 0 Subnet Mask Byte 4 selection

Note: Information and a description of valid and common settings for IP Addresses and the associated

masks are available in the IP Address Limitations Synergy Platform Knowledge Base article available
as described at the end of this document. The example values and defaults are for a project using the
S7G2 Synergy MCU Group. Other MCUs may have different default values and available
configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it might be
useful to have a different IP address. The configurable properties for the lower-level stack modules are given
in the following sections for completeness and as a reference.

Note: The following deprecated configurations of the NetX Telnet server module and the NetX module are
required when using the Communications Framework module on sf_el_nx_comms. The
Communications Framework module on sf_el_nx_comms will be updated in a future release to
avoid using deprecated configurations.

Table 6. Configuration Settings for the NetX Telnet Server Module (nx_telnet_server)

ISDE Property Value Description
Name g_nx_telnet_server0 Module name
Show deprecation warning Enabled, Disabled

Default: Enabled
Show deprecation warning selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 11 of 28
Jun.03.19

Table 7. Configuration Settings for the NetX Module (nx)

ISDE Property Value Description
Name Default: g_nx0 NetX module name.
Show deprecation warning Enabled, Disabled

Default: Enabled
Show deprecation warning selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 8. Configuration Settings for NetX Port ETHER (sf_el_nx)

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the parameter checking

Channel 0 Phy Reset Pin IOPORT_PORT_09_PIN_03 Channel 0 Phy reset pin selection
Channel 0 MAC Address
High Bits

0x00002E09 Channel 0 MAC address high bits selection

Channel 0 MAC Address
Low Bits

0x0A0076C7 Channel 0 MAC address low bits selection

Channel 1 Phy Reset Pin IOPORT_PORT_07_PIN_06 Channel 1 Phy reset pin selection
Channel 1 MAC Address
High Bits

0x00002E09 Channel 1 MAC address high bits selection

Channel 1 MAC Address
Low Bits

0x0A0076C8 Channel 1 MAC address low bits selection

Number of Receive Buffer
Descriptors

8 Number of receive buffer descriptors
selection

Number of Transmit Buffer
Descriptors

32 Number of transmit buffer descriptors
selection

Ethernet Interrupt Priority Priority 0 (highest), Priority
1:2, Priority 3 (CM4: valid,
CM0+: lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX,
CM0+: invalid)
Default: Disabled

Ethernet interrupt priority selection

Name g_sf_el_nx Module name
Channel 0 Channel selection
Callback NULL Callback selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 12 of 28
Jun.03.19

5.1.2 Configuration Settings for the USB Stack Modules
When the USB option is selected for low-level implementation, the following modules are automatically
added to the stack. The following tables show the detailed configuration settings available, many of which
are populated with default settings that can be used in most common applications.

Table 9. Configuration Settings for USB Communications Framework Module (sf_el_ux_comms)

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enables or disables the parameter
checking.

Read Input Buffer Size
(Bytes)

128 Maximum number of bytes that can be
received at a time in the read API.

Timeout in ticks 1000 Timeout value to suspend a USBX CDC
instance creation in the open API.

Name g_sf_comms0 Module name.
Name of the sf_comms
initialization function

sf_comms_init0 Name of helper function to initialize
Communications Framework. The function
will be presented in the auto-generated
code in the <xxx_thread>.c, where
<xxx_thread> is the name of your thread
symbol given to the Thread property. The
function is to be called in the auto-
generated code if Auto sf_comms
Initialization property is Enabled. If
Disabled, the function can be called in the
user application.

Auto sf-comms Initialization Enable, Disable
Default: Enable

Auto Initialization support of
Communications Framework. The helper
function above will be called in the auto-
generated code if this configuration is
enabled. Else, the function will not be called
automatically and user can call it sometime
later.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 10. Configuration for the USBX Device Class CDC ACM Module (g_ux_device_class_cdc_acm0)

ISDE Property Value Description
Name g_ux_device_class_cdc_acm0 Module name
USBX CDC-ACM
instance_activate Function
Callback

ux_cdc_device0_instance_activate USBX CDC-ACM
instance_activate Function
Callback selection

USBX CDC-ACM
instance_deactivate
Function Callback

ux-cdc_device0_instance_deactivate USBX CDC-ACM
instance_deactivate Function
Callback selection

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Table 11. Configuration Settings for the USBX Device Configuration

ISDE Property Value Description
Vendor ID 0x045B Vendor ID selection
Product ID 0x0000 Product ID selection
Device Release Number 0x0000 Device Release Number selection
Index of Manufacturing
String Descriptor

0x00 Index of Manufacturing String
Descriptor selection

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 13 of 28
Jun.03.19

ISDE Property Value Description
Index of Product String
Descriptor

0x00 Index of Product String Descriptor
selection

Index of Serial Number
String Descriptor

0x00 Index of Serial Number String
Descriptor selection

Class Code Device, Communications(CDC), HID,
Mass Storage, Miscellaneous, Vendor
Specific
Default: Communications

Class Code selection

Index of String Descriptor
describing this
configuration

0x00 Index of String Descriptor
describing this configuration
selection

Size of USB Descriptor in
bytes for this configuration
(Modify this value only for
Vendor-specific Class,
otherwise set zero)

0x00 Size of USB Descriptor in bytes for
this configuration (Modify this
value only for Vendor-specific
Class, otherwise set zero)
selection

Number of Interfaces
(Modify this value only for
Vendor-specific Class,
otherwise set zero)

0x00 Number of Interfaces (Modify this
value only for Vendor-specific
Class, otherwise set zero)
selection

Self-Powered Enable, Disable
Default: Enable

Self-Powered selection

Remote Wakeup Enable, Disable
Default: Disable

Remote Wakeup selection

Maximum Power
Consumption (in 2mA units)

50 Maximum Power Consumption (in
2mA units) selection

Supported Language Code 0x0409 Supported Language Code
selection

Name of USBX String
Framework

NULL Name of USBX String Framework
selection

Total index number of USB
String Descriptors in USB
String Framework

0 Total index number of USB String
Descriptors in USB String
Framework selection

Name of USBX Language
Framework

NULL Name of USBX Language
Framework selection

Number of Languages to
support (US English is
applied if zero is set)

0 Number of Languages to support
(US English is applied if zero is
set) selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 14 of 28
Jun.03.19

Table 12. Configuration Settings for the USBX Interface Configuration

ISDE Property Value Description
Name g_usb_interface_desc_cdcacm_0 Module name
Interface Number of
Communications Class
interface

0x00 Interface Number of
Communications Class interface
selection

Interrupt Transfer endpoint to
use for Communications Class

Endpoint 1-9
Default: Endpoint 3

Interrupt Transfer endpoint to use
for Communications Class selection

Polling period for Interrupt
Endpoint (in mS/125 us units
for FS/HS)

0x0F Polling period for Interrupt Endpoint
(in mS/125us units for FS/HS)
selection

Interface Number of Data
Class interface

0x01 Interface Number of Data Class
interface selection

Bulk In Transfer endpoint to
use for Data Class

Endpoint 1-9
Default: Endpoint 1

Bulk In Transfer endpoint to use for
Data Class selection

Bulk Out Transfer endpoint to
use for Data Class

Endpoint 1-9
Default: Endpoint 2

Bulk Out Transfer endpoint to use
for Data Class selection

Index of String Descriptor
Describing Communications
Class interface (Interface
Descriptor: Interface)

0x00 Index of String Descriptor
Describing Communications Class
interface (Interface Descriptor:
Interface) selection

Index of String Descriptor
Describing Data Class
interface (Interface Descriptor:
Interface)

0x00 Index of String Descriptor
Describing Data Class interface
(Interface Descriptor: Interface)
selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 13. Configuration Settings for the USBX Port DCD on sf_el_ux for USBFS

ISDE Property Value Description
Full Speed Interrupt Priority Priority 0 (highest), Priority 1:2,

Priority 3 (CM4: valid, CM0+:
lowest- not valid if using
ThreadX), Priority 4:14 (CM4:
valid, CM0+: invalid), Priority 15
(CM4 lowest - not valid if using
ThreadX, CM0+: invalid)
Default: Disabled

Full speed interrupt priority
selection.

Name g_sf_el_ux_dcd_fs_0 Module name.
USB Controller Selection USBFS USB controller selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 15 of 28
Jun.03.19

Table 14. Configuration Settings for the USBX Port DCD on sf_el_ux for USBHS

ISDE Property Value Description
High Speed Interrupt Priority Priority 0 (highest), Priority 1:2,

Priority 3 (CM4: valid, CM0+:
lowest- not valid if using ThreadX),
Priority 4:14 (CM4: valid, CM0+:
invalid), Priority 15 (CM4 lowest -
not valid if using ThreadX, CM0+:
invalid)
Default: Disabled

High speed interrupt priority
selection.

Name g_sf_el_ux_dcd_hs_0 Module name.
USB Controller Selection USBHS USB controller selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 15. Configuration Settings for the USBX on ux

ISDE Property Value Description
USBX Pool Memory Name g_ux_pool_memory USBX pool memory name selection.
USBX Pool Memory Size 18432 USBX pool memory size selection.
User Callback for Host Event
Notification (Only valid for
USB Host)

NULL User callback for host event
notification (only valid for USB host)

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

5.1.3 Configuration Settings for the UART Stack Modules
When the UART option is selected for low-level implementation, the following modules are automatically
added to the stack. The following tables show the detailed configuration settings available, many are
populated with default settings that can be used in most common applications.

Table 16. Configuration Settings for the UART Communications Framework Module (sf_uart_comms)

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Selects if parameter checking is
included.

Read Input Queue Size (4-Byte
Words)

15 Buffer size for data reception queue.
sf_uart_comms utilizes the ThreadX
Queue for the queue management.

Name g_sf_comms0 Name of UART communications
framework module.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 17. Configuration Settings for the UART Driver Module (r_sci_uart)

ISDE Property Value Description
External RTS Operation Enable, Disable

Default: Disable
Enable an IOPORT pin to be used as
RTS signal. For RTS functionality set
this configuration parameter to
"Enable" and specify the configuration
"Name of UART callback function for
the RTS external pin control".

Reception Enable, Disable
Default: Enable

Enable or disable UART reception for
all UART channels on SCI. Setting this
configuration parameter to "Disable"
reduces code size because the portion
of code for UART reception is not

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 16 of 28
Jun.03.19

ISDE Property Value Description
compiled. You cannot set this
parameter for individual UART
channels.

Transmission Enable, Disable
Default: Enable

Enable or disable UART transmission
for all UART channels on SCI. Setting
"Disable" to this configuration allows to
get smaller code size due to the
portion of code for UART transmission
is compiled out, however, you can only
set "Disable" to this configuration if any
other SCI channels which work as
UART ports do not perform the
transmission.

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter error
checking.

Name g_uart0 The name to be used for UART on SCI
module control block instance. This
name is also used as the prefix of the
other variable instances.

Channel 0 SCI channel number.
Baud Rate 9600 Baud rate selection.
Data Bits 7 bits, 8, bits, 9 bits

Default: 8 bits
UART data bits.

Parity None, Odd, Even
Default: None

UART parity bits.

Stop Bits 1 bit, 2 bits
Default: 1 bit

UART stop bits.

CTS/RTS Selection CTS (Note that RTS is
available when enabling
External RTS Operation
mode which uses 1 GPIO
pin), RTS (CTS is disabled)
Default: RTS (CTS is
disabled)

Select CTS or RTS for the CTSn/RTSn
pin of SCI channel n. The SCI
hardware supports either the CTS or
the RTS control signal on this pin but
not both. For an application that uses
both CTS and RTS, select "CTS" for
this configuration parameter and
enable the configuration "External RTS
Operation" specifying the configuration
"Name of UART callback function for
the RTS external pin control".

Name of UART callback
function to be defined by user

NULL Name must be a valid C symbol.

Name of UART callback
function for the RTS external
pin control to be defined by
user

NULL Name must be a valid C symbol.

Clock Source Internal Clock, External Clock
8x baudrate, External Clock
16x baudrate
Default: Internal Clock

Selection of the clock source to be
used in the baud-rate clock generator
block.

Baudrate Clock Output from
SCK pin

Enable, Disable
Default: Disable

Optional setting to output the baud-rate
clock on the SCKn pin for the selected
channel n.

Start bit detection Falling Edge, Low Level
Default: Falling Edge

Start bit detection mode in the
reception, usually set “Falling Edge” to
this configuration.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 17 of 28
Jun.03.19

ISDE Property Value Description
Noise Cancel Enable, Disable

Default: Disable
Enable the digital noise cancellation on
RXDn pin. The digital noise filter block
in SCI consists of two-stage flip-flop
circuits. For detail, refer to the Noise
cancellation section in the Renesas
Synergy hardware manual.

Bit Rate Modulation Enable Enable, Disable
Default: Enable

Bit rate modulation enable selection.

Receive FIFO Trigger Level One or Max
Default: Max

Trigger level for FIFO

Receive Interrupt Priority Priority 0 (highest), Priority
1:2, Priority 3 (CM4: valid,
CM0+: lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Receive interrupt priority selection.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:2, Priority 3 (CM4: valid,
CM0+: lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Transmit interrupt priority selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority
1:2, Priority 3 (CM4: valid,
CM0+: lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority
1:2, Priority 3 (CM4: valid,
CM0+: lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Error interrupt priority selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 18. Transfer Driver Module on r_dtc Event SCI0 TXI

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

(Default: BSP)
Selects if code for parameter checking
is to be included in the build

Software Start Enabled, Disabled
Default: Disabled

Software start selection

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 18 of 28
Jun.03.19

ISDE Property Value Description
Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC vector
table selection

Name g_transfer0 Module name
Mode Normal Mode selection
Transfer Size 1 Byte Transfer size selection
Destination Address Mode Fixed Destination address mode selection
Source Address Mode Incremented Source address mode selection
Repeat Area (Unused in
Normal Mode

Source Repeat area selection

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection

Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks (Valid only
in Block Mode)

0 Number of blocks selection

Activation Source (Must
enable IRQ)

Event SCI0 TXI Activation source selection

Auto Enable FALSE Auto enable selection
Callback (Only valid with
Software start)

NULL Callback selection

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using
ThreadX), Priority 4:14 (CM4:
valid, CM0+: invalid), Priority
15 (CM4 lowest - not valid if
using ThreadX, CM0+: invalid)
Default: Disabled

ELC Software Event interrupt priority
selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 19. Transfer Driver Module on r_dtc Event SCI0 RXI

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Selects if code for parameter checking
is to be included in the build

Name g_transfer1 Module name
Mode Normal Mode selection
Transfer Size 1 Byte Transfer size selection
Destination Address Mode Incremented Destination address mode selection
Source Address Mode Fixed Source address mode selection
Repeat Area (Unused in
Normal Mode

Destination Repeat area selection

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection

Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks (Valid only
in Block Mode)

0 Number of blocks selection

Activation Source (Must
enable IRQ)

Event SPI0 RXI Activation source selection

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 19 of 28
Jun.03.19

ISDE Property Value Description
Auto Enable FALSE Auto enable selection
Callback (Only valid with
Software start)

NULL Callback selection

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using
ThreadX), Priority 4:14 (CM4:
valid, CM0+: invalid), Priority
15 (CM4 lowest - not valid if
using ThreadX, CM0+: invalid)
Default: Disabled

ELC Software Event interrupt priority
selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

5.1.4 Configuration Settings for the USB Stack Modules (Deprecated)
When the USB option is selected for low-level implementation, the following modules are automatically
added to the stack. The following tables show the detailed configuration settings available, many of which
are populated with default settings that can be used in most common applications.

Table 20. Configuration Settings for USB Communications Framework Module (sf_el_ux_comms)

ISDE Property Value Description
Parameter Checking BSP, Enable, Disable

Default: BSP
Selects if code for parameter checking
is to be included in the build.

Memory Size (Bytes) 65536 Memory size selection.
Timeout in ticks 1000 Timeout value to suspend a USBX CDC

instance creation in the open() API.
Read Input Buffer Size (Bytes) 128 This is the maximum number of bytes

that can be received at a time in the
read() API.

Name g_sf_comms0 Name for USB communications
framework module.

Name of the sf_comms
Initialization Function

sf_comms_init0 Name of the sf_comms initialization
function selection.

Auto sf_comms Initialization Enable, Disable
Default: Enable

Auto sf_comms initialization selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 21. Configuration for the USBX Device Class CDC ACM Module (g_ux_device_class_cdc_acm0)

ISDE Property Value Description
Name Default:

g_ux_device_class_cdc_acm0
USBX device class cdc-acm module
name.

Show Deprecation
Warning

Enabled, Disabled
Default: Enabled

Show deprecation warning selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 20 of 28
Jun.03.19

Table 22. Configuration Settings for the USXB on ux

ISDE Property Value Description
Name Default: g_ux0 USBX on ux module name.
Show Deprecation
Warning

Enabled, Disabled
Default: Enabled

Show deprecation warning selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 23. Configuration Settings for the USBX Ports HS and FS on sf_el_ux

ISDE Property Value Description
VBUSEN Pin Signal Logic Active Low, Active High

Default: Active High
VBUSEN pin signal logic selection.

High Speed Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using ThreadX),
Priority 4:14 (CM4: valid, CM0+:
invalid), Priority 15 (CM4 lowest -
not valid if using ThreadX, CM0+:
invalid)
Default: Disabled

High speed interrupt priority selection.

Full Speed Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using ThreadX),
Priority 4:14 (CM4: valid, CM0+:
invalid), Priority 15 (CM4 lowest -
not valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Full speed interrupt priority selection.

Name Default: g_sf_el_ux Name for the USBX Ports HS and FS.
Show deprecation warning Enabled, Disabled

Default: Enabled
Show deprecation warning selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

6. Using the Console Framework Module in an Application
The key elements in constructing a simple Console Framework are selecting and configuring the stack,
defining the menu structure, writing the code for the menu command callbacks, and using the API calls to
implement the desired CLI functions within the target application. The typical steps in using the Console
Framework module in an application are:

1. Create menu and command structures.
2. Implement needed callbacks.
3. Initialize the SF_CONSOLE using the open API.
4. Use the prompt API to generate the prompt and process commands.
5. Use other APIs (read, write, parse or argumentFind) as needed to process commands.
6. Use the close API to close the module if desired.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 21 of 28
Jun.03.19

These common steps are illustrated in a typical operational flow diagram in the following figure.

Figure 6. Typical Console Framework Module Application

7. Console Framework Module Application Project
The application project associated with this module guide demonstrates the aforementioned steps in an
example application. You may want to import and open the application project within the ISDE and view the
configuration settings for the Console Framework module. You can also read over the code (in
console_framework_callback.h and console_framework_mg_api.h) which is used to illustrate the
Console Framework module APIs in a complete design.

The application project demonstrates the typical use of the Console Framework module. (The application
project Console Framework stack is illustrated in the following figure.) The Console Framework stack has
been added to a thread called g_sf_console0 and the USB implementation has been selected for the
lower-level driver. The SK-S7G2 kit is being used as the BSP so all the various interconnect resources are
already configured; you only need to enable the USB interrupt as directed by the ISDE prompt and change
Device Class to Miscellaneous if on Windows 10. The following table shows the required configuration
setting:

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 22 of 28
Jun.03.19

Figure 7. Application Project Console Framework Stack: USB Communications Option Selected

Table 24. Adding the USBX Port DCD HS or FS on sf_el_ux Configuration Settings for the Application

Project

Resource ISDE Tab Property / Configuration Setting
g_sf_el_ux_dcd_fs0 USBX
Port DCD on sf_el_ux
orUSBFS

Threads Stack/ Properties Full Speed Interrupt Priority / Priority 4

A simple use of the Console Framework to toggle an LED on and off fits on a single page of code. In this
simple design, when the TOGGLE command is detected by the prompt API, it calls a callback associated
with the TOGGLE command and toggles an LED on the target kit. The following table identifies the target
versions for the associated software and hardware used by the application project and a simple block
diagram of the LED toggle console framework implementation is displayed in the figure which follows the
following table:

Table 25. Software and Hardware Resources Used by the Application Project

Resource Revision Description
e2 studio 5.3.1 or later Integrated Solution Development Environment
SSP 1.2.0 or later Synergy Software Platform
IAR EW for Synergy 7.71.2 or later IAR Embedded Workbench® for Renesas Synergy™
SSC 5.3.1 or later Synergy Standalone Configurator
SK-S7G2 v3.0 to v3.1 Starter Kit

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 23 of 28
Jun.03.19

Figure 8. Console Framework Toggle Command Implementation Block Diagram

The toggle_thread_entry.c file is in the project once it has been imported into the ISDE. You can open
this file within the ISDE and follow along with the following description to help identify key uses of APIs. The
toggle command Console Framework-based implementation begins with system initialization where the
open command and other housekeeping functions are executed. The toggle-thread routine implements the
remainder of the toggle Console Framework functions, and these elements will appear in any Console
Framework implementation. In the example project, the menu structures (to define the commands and the
menu) are implemented at the beginning of the toggle_thread.c file. These are followed by the
command-related callback. In the example, there is a single toggle command-related callback that toggles
the output signal that drives the on-board LED. Finally, the thread_entry routine is created. In this
example, a single call to the prompt API is all that is needed.

The first section of the code in toggle_thread_entry.c has the header file and the call to the prompt
API. The callback functions, menu, and commands are defined in the console_framework_callback.h
file. For this simple example, the command structure has only a single entry that includes the TOGGLE
command, the help description text, the callback function definition, and a NULL context entry. More menu
items could simply be appended to the structure in more complex systems.

The next section of code in the console_framework_callback.h has the root menu structure. It has a
NULL entry for the previous menu, since the example has only a single menu, with no sub menus. The menu
name is Command, and the number of menu entries is simply the size of the entire command array divided
by the size of a single array element. The menu structure has a pointer to the first element of the command
structure array. The menu is now fully defined for this simple example.

Note: A more complex menu structure is used in the application projects, and is available as described in

the references section at the end of this document. Once you are familiar with the simple example
basic menu structures, review the menus used in the developer example code to see the
implementation of multi-level menus, uses of command arguments, uses of distributed command
structures throughout a project, and the use of read and write APIs.

The next section of code defines the callback function that implements the associated toggle command. All
Console Framework commands are implemented as callback functions. The toggle command gets a list of
LEDs via the LedsGet BSP call; it then reads the value of the first LEDs driver pin and writes out the
inverted version to the same pin, toggling the LED.

The last section of code is the thread entry and implements the entire simple Console Framework in a single
line of code. The prompt API is called with the instance control structure (g_sf_console0.p_ctrl) as the
main argument. The instance structure is created by the open API, automatically called during thread
initialization, and does not appear in this code sub-section. The other arguments are a pointer to the valid
menu commands for the prompt, in this example it isn’t required and is NULL since you have just the single
command. For more complex, context-sensitive menus, this pointer would identify the valid subset of
possible commands and a wait time. (The wait time is FOREVER in this example since there is no timeout
on a prompt reply. Automated test systems, for example, might use a known maximum delay time, between
commands, as an error checking mechanism.)

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 24 of 28
Jun.03.19

8. Customizing the Console Framework Module for a Target Application
The Console Framework can be customized for different menus, different thread entry names, different
instance names, and different configuration settings for the Communications Framework stack modules (or
even a completely different Communications Framework entirely.)

8.1 Menu Structures
The Console Framework is primarily customized using the menu and command structures, and it is easy to
modify these as required by a different application. The only other changes possibly needed to the example
code to get it working in a different system are to possibly modify the header file name, the instance name
and, if a different Communications Framework is used, to configure the lower-level modules.

8.2 Thread Entry Name
Make sure the thread entry name is consistent with the header file. In this simple example, the thread name
defined in the associated properties entry is toggle_thread and the required include file definition is:

#include toggle_thread.h.

8.3 Instance Name
The instance name used for API calls needs to match the name given during configuration. In this example,
the instance name was defined as g_sf_console0 and the API call uses g_sf_console0 for the API
definition and the instance definition for p_ctrl:

 g_sf_console0.p_api->prompt(g_sf_console0.p_ctrl, NULL,TX_WAIT_FOREVER);

8.4 Communications Framework Module Selection and Configuration
Since the Console Framework uses a standard interface to the Communications Framework, a custom
application can select different options (Telnet, USB or UART) when adding a Communications Framework,
as illustrated in the Console Framework stack shown in the following figure. If the Communications
Framework is changed, none of the toggle command Console Framework code needs to be edited and any
configuration differences required by the new Communications Framework will be filled in using the
configurator.

Figure 9. Adding Communications Framework Options Under the Console Framework
View the application frameworks video, available as described in the References section of this document, to
see how easy it is to swap the console physical connection from USB to Telnet. The complete console swap
is done entirely within the configuration window and takes only a couple of minutes.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 25 of 28
Jun.03.19

9. Running the Console Framework Module Application Example
To run the console framework module application project and to see it executed on a target kit, you can
simply import it into your ISDE, compile, and run debug. Refer to the SSP Import Guide (11an0023eu0116-
synergy-ssp-import-guide.pdf, included in this package) for instructions on importing the project into
e2 studio or IAR embedded workbench and building/running the application.

To implement the Console Framework module application in a new project, follow the steps for defining,
configuring, auto-generating files, adding code, compiling, and debugging on the target kit. Following these
steps is a hands-on approach that can help make the development process with SSP more practical.

To establish the connection through the CDC, the CDC driver must be installed first. The link to the driver-
installation process is available as described in the References section in this document.

Note: The following steps are described in sufficient detail for someone experienced with the basic flow

through the Synergy development process. If these steps are not familiar, refer to the first few
chapters of the SSP User’s Manual for a description on how to accomplish these steps.

1. Refer to the Renesas Synergy™ Project Import Guide (11an0023eu0121-synergy-ssp-import-

guide.pdf, included in this package) for instructions on importing the project into e2 studio or IAR EW
for Synergy and building/running the application.

2. Connect to the host PC via a micro USB cable to J19 on SK-S7G2 board and connect another micro USB
cable form host to J5 connector of the SK-S7G2 board.

3. Start to debug the application.
4. Open Terra Term application and connect to serial port for serial communication with USB CDC.
5. Write ? and press enter to see available commands.
6. Write TOGGLE to toggle an LED on the board.
7. As output, LED will toggle when user enters command on serial console.

Figure 10. Example Output from Console Framework Application Project

10. Console Framework Module Conclusion
This module guide has provided all the background information needed to select, add, configure, and use the
component in an example project. Many of these steps were time consuming and error prone activities in
previous generations of embedded systems. The Renesas Synergy™ Platform makes these steps much less
time consuming and removes the common errors, like conflicting configuration settings or incorrect selection
of lower-level drivers. The use of high level APIs as demonstrated in the application project illustrate
additional development time savings by allowing work to begin at a high level, avoiding the time required in
older development environments to use or, in some cases, create, lower-level drivers.

11. Console Framework Module Next Steps
After you have mastered a simple Console Framework example you may want to review a more complex
example. The developer examples project provides a more complex example that demonstrates several of
the more complex features of the Console Framework. Refer to the Getting Started Guide for the Developer
Examples, available as described in the References section at the end of this document.

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 26 of 28
Jun.03.19

12. Console Framework Module Reference Information
SSP User Manual: Available in html format in the SSP distribution package and as a pdf from the Renesas
Synergy™ Gallery.

Links to all the most up-to-date sf_console module reference materials and resources are available on the
Synergy Knowledge Base: https://en-support.renesas.com/knowledgeBase/16977533 or https://en-
support.renesas.com/search/sf_console%20Module%20Guide%20Resources

Links to application projects which uses advanced console framework for reference are as follows:

https://www.renesas.com/us/en/search/keyword-search.html#q=r11an0337eu
https://www.renesas.com/us/en/search/keyword-search.html#q=r11an0336eu
https://www.renesas.com/us/en/search/keyword-search.html#q=r11an0335eu

https://en-support.renesas.com/knowledgeBase/16977533
https://en-support.renesas.com/search/sf_console%20Module%20Guide%20Resources
https://en-support.renesas.com/search/sf_console%20Module%20Guide%20Resources
https://www.renesas.com/us/en/search/keyword-search.html#q=r11an0337eu
https://www.renesas.com/us/en/search/keyword-search.html#q=r11an0336eu
https://www.renesas.com/us/en/search/keyword-search.html#q=r11an0335eu

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 27 of 28
Jun.03.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Console Framework Module Guide

R11AN0110EU0102 Rev.1.02 Page 28 of 28
Jun.03.19

Revision History

Rev. Date
Description
Page Summary

1.00 May.15.17 - Initial document release
1.01 Aug.31.17 - Update to the Hardware and Software Resources table
1.02 Jun.03.19 - Update to the reference links to use the latest

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Console Framework Module Features
	2. Console Framework Module APIs Overview
	3. Console Framework Module Operational Overview
	3.1 Console Framework Module Initialization
	3.2 Console Framework Module Input Processing
	3.3 Creating Console Framework Module Required Structures – The Menu
	3.4 Console Framework Module Important Operational Notes and Limitations
	3.4.1 Console Framework Module Operational Notes
	3.4.2 Console Framework Module Limitations

	4. Including the Console Framework Module in an Application
	5. Configuring the Console Framework Module
	5.1 Configuration Settings for the Console Framework Stack Modules
	5.1.1 Configuration Settings for the Telnet Stack Modules
	5.1.2 Configuration Settings for the USB Stack Modules
	5.1.3 Configuration Settings for the UART Stack Modules
	5.1.4 Configuration Settings for the USB Stack Modules (Deprecated)

	6. Using the Console Framework Module in an Application
	7. Console Framework Module Application Project
	8. Customizing the Console Framework Module for a Target Application
	8.1 Menu Structures
	8.2 Thread Entry Name
	8.3 Instance Name
	8.4 Communications Framework Module Selection and Configuration

	9. Running the Console Framework Module Application Example
	10. Console Framework Module Conclusion
	11. Console Framework Module Next Steps
	12. Console Framework Module Reference Information
	Revision History

