
©1999 Integrated Device Technology, Inc.

 6.011
2694/4

MARCH 1999

by Jim Handy, Barry Seidner and Jon Bradley

and the primary bus’ RAM would be used to store code which would be
debugged using this board. Both of these SRAMs are zero wait-state (25ns
access times at 33MHz) to allow real-time debugging and benchmarks to
be performed. Since the TMS320’s expansion bus only supports address-
ing of up to 8K locations, a bank select signal is used to switch between the
upper and lower halves of this port’s 16K x 32 memory. This signal is
software-controlled from the processor’s expansion bus.

One design goal for this system was to move data into and out of the
DSP’s dedicated memory without taking an inordinate amount of time or
hardware. If standard memory were to be shared between the host and
the DSP chip, multiplexing logic would need to be inserted between each
processor and the RAM’s address, data, and control lines. This logic would
find itself right in the critical timing path of the memories on the primary and
expansion buses, and would make zero wait-state operation nearly
unachievable. An additional headache would have been finding room on
the board for the large amount of multiplexing logic required. Should the
design have used a simpler method of passing data back and forth between
processors either via a UART or a single byte-wide I/O buffer, the
developer would have had to endured long delays during download and
other communication functions as the software on either side of the port
performed massive amounts of handshaking to pass even the smallest of
data sets.

It became obvious early in the design cycle that the simplest method
of performing fast host to DSP communication would be to use a large high-
speed true dual-port static RAM to perform interprocessor communica-
tions. A dual-port RAM would allow both the host and the DSP chip to
transfer data in packets, rather than as individual bits or bytes, thus
accelerating downloading. The selected dual-port device would have to
be one which provided some means of signalling that data packets were
ready to be handed back and forth between processors.

An IDT71342 was chosen because of its speed, its depth (4K bytes),
the simplicity of its interface, and its ability to perform interprocessor
communications through its eight internal semaphore flags (see Appendix:
“Dual-Port Semaphores”). By using an IDT71342, the designers could
use a single chip to implement 4K byte high speed block transfers between
the host and the TMS320, and to signal the completion of a transfer without
additional hardware. Although the 45ns access time dual-port used in this
system does not support zero-wait data transfers at maximum CPU
speeds, data transfers are not in the critical path of the sort of software this
system is used to debug. A true zero wait-state system could have been

This application note describes a “no hassles” interface between the
IBM PC-style backplane and a TMS320C30 DSP chip via an IDT dual-
port static RAM. The interface provides an extremely simple means of
downloading cross-compiled DSP code as well as sample data sets for
debugging a high speed TMS320 based system in real time.

This example also shows how easily interprocessor communications
hardware can be implemented via the simple insertion of a dual-port SRAM
between a DSP chip and a general purpose processor in a standard DSP
system. A system like this one would typically use a standard CPU for data
input/output and ordering, and would pass complete data sets to the DSP
chip for intense calculation. Similar architectures are often used in graphics
and image processing, where an entire image is manipulated as a single
data set, in transform calculations (i.e. FFTs) for sonar and radar
processing. Certain systems even use this scheme several times with
numerous DSP chips in order to get processing speeds proportional to the
number of DSP chips in the system.

System Objective
The design presented here is the TMS320C30 Software Development

Board. This board is one portion of a system which helps the TMS320C30
programmer to download and debug code from an IBM PC or similar
computer. In order to support the special hardware needs of the
TMS320C30 programmer, an expansion connector allows memory to be
added to the DSP chip’s primary bus, while a target connector provides
a fully buffered version of the chip’s expansion bus to allow its connection
to special purpose hardware. Most of the TMS320C30’s status signals are
also routed to the expansion bus to make them available to the hardware
being debugged.

The majority of the control software is PC-resident, and is provided on
magnetic media. This includes such tools as the assembler, compilers, and
download and debug routines. A 2K x 32 EPROM array on the primary
bus of the TMS320 provides the host processor with a set of commands
to allow it to load the software development board’s RAMs, to set and clear
breakpoints, to examine and preset internal status, and to load or store
values in individual memory locations. All of these are controlled by the
host’s sending a command to the TMS320, which interprets that command
and takes appropriate action.

A high speed 16K x 32 static RAM is attached to each of the DSP chip’s
two buses: the expansion bus, and the primary bus. The expansion bus’
SRAM would typically be used to store a data set to be operated upon,

DUAL-PORT SRAM
SIMPLIFIES
PC-TO-TMS320 INTERFACE

APPLICATION
NOTE
AN-68

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

2

TMS320C30

IOD

IOA

D

A

IDT71342

P
C

B
U

S

D

A

E
X

P
A

N
S

IO
N

B
U

S

16K X 32
SRAM

D

A

TARGET CONNECTOR

16K X 32
SRAM

2K X 32
EPROM

PALS,
CONTROL,

AND
STATUS
LOGIC

XD0-7

XA0-19

SD0-7

SA0-19

CIOD0-31

BIOA0-11

CIOA0-12

T
IO

D
0-31

T
IO

A
0-12

CD0-31

CA0-31

DD0-31

B
A

0-31

L
E

F
T

S
ID

E

R
IG

H
T

S
ID

E

P
R

IM
A

R
Y

B
U

S

E
X

P
A

N
S

IO
N

B
U

S

2694 drw 01

Figure 1. TMS320C30 Software Development Board Block Diagram

realized had the designers used a 25ns dual-port.
Figure 1 shows a block diagram of the complete system. The full

schematic of the system is shown in Figure 6.

Interfacing to the Dual-Port SRAM
The IDT71342 dual-port RAM uses an interface which is similar to any

standard single-port byte wide static RAM. Each of the two ports (left and
right) uses a separate set of control, address, and I/O pins. Address inputs
are not multiplexed with data I/O. The control interface consists of three pins
on either side: read/write (R/W), output enable (OE), and chip enable
(CE). The R/W and OE pins also operate in conjunction with the
semaphore select pin (SEM), which imitates the functionality of the chip
enable pin, but rather than allowing reads and writes of the memory array,
this pin routes the read and write control to the eight on-chip semaphore
flags.

Write cycles are controlled by the simultaneous application of a logic
LOW on both the CE and R/W inputs for one side of the SRAM, and either
signal can be used to control the timing of a write cycle. If the CE signal is
held low and the timing is set by a LOW pulse on the R/W pin, it is called
a “R/W controlled write cycle” (figure 2). Write cycles where R/W stays
low while CE is pulsed low are called “CE controlled write cycles”
(figure 3). By offering both methods of communication, IDT’s dual-port
SRAMs can be easily connected between systems with greatly differing
bus interface specifications. An interesting point about this design is
 that while the PC or host side of the dual-port uses a R/W controlled write
cycle, the DSP writes to its side of the dual-port by using a CE controlled
write cycle.

The PC Bus Interface
In this design, the PC bus control signals are routed nearly directly from

the backplane to the IDT71342’s R/W and OE pins. The signal functions
and timing of the backplane are an ideal match with those of the dual-port
RAM. However, a decision was made to map the memory array into a 4K
space in the PC’s memory space, while the semaphores were to be
mapped into the PC’s I/O space, which forced the IOW and MEMW signals
to be ORed before driving them into the IDT71342’s R/W input. Likewise
IOR and MEMR signals are ORed before driving them into the IDT71342’s
OE input.

The dual-port’s chip enable (CE) pin is driven indirectly by an address
decoder consisting of an eight bit comparator 74ALS521 which compares
the output of a 74LS377 register with addresses A12-A19. The 74LS377
is an I/O mapped register that allows the dual-port SRAM to be mapped
into any 4K-byte region in the PC’s main memory space. A PAL resident
control register bit on the board allows the dual-port memory to be disabled,
which is its state at power-up or reset.

The semaphore enable pin (SEM) is driven by a 20L8 PAL which
decodes addresses from the PC Bus. This decoder determines whether
the host is accessing memory or I/O space via the MEMR, MEMW, IOR,
and IOW signals, and enables the semaphores during an I/O access if the
proper address (A0-A9) is applied to the inputs of the PAL. The PAL also
uses the IOW and MEMW signals to generate a R/W controlled write cycle,
while using decoded addresses to drive the CE and SEM inputs.

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

3

CE or SEM

2694 drw 02

tAW

tAS

tWR

tDW

DATAIN

ADDRESS

tWC

R/W

tWP

tDH

DATAOUT

tWZ

(4) (4)

OE

tHZ
tLZ

tHZ

(9)

(6)

(7)

(2)

(3)

(7)

(7)

tOW

Figure 2. Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8).

NOTES:
1. R/W or CE must be HIGH during all address transitions.
2. A write occurs during the overlap (tEW or tWP) of either CE or SEM = VIL and R/W = VIL.
3. tWR is measured from the earlier of CE or R/W going HIGH to the end-of-write cycle.
4. During this period, the I/O pins are in the output state, and input signals must not be applied.
5. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
6. Timing depends on which enable signal (CE or R/W) is asserted last.
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured +500mV from steady state with the Output Test Load

(Figure 2).
8. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off data to be placed

on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the
specified tWP.

9. To access SRAM, CE =VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.

Symbol Parameter

WRITE CYCLE

tWC Write Cycle Time

tEW Chip Enable to End-of-Write

tAW Address Valid to End-of-Write

tAS Address Set-up Time

tWP Write Pulse Width

tWR Write Recovery Time

tDW Data Valid to End-of-Write

tHZ Output High-Z Time

tDH Data Hold Time

tWZ Write Enable to Output in High-Z

tOW Output Active from End-of-Write

2694 tbl 01

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

4

Figure 3. Timing Waveform of Write Cycle No. 2, CE Controlled timing(1,4).
NOTES:
1. R/W or CE must be HIGH during all address transitions.
2. A write occurs during the overlap (tEW or tWP) of either CE or SEM = VIL and R/W = VIL.
3. tWR is measured from the earlier of CE or R/W going HIGH to the end-of-write cycle.
4. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
5. Timing depends on which enable signal (CE or R/W) is asserted last.
6. To access SRAM, CE =VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.

2694 drw 03

R/W

tWC

ADDRESS

DATAIN

CE or SEM

tDW

tWR

tDH

tEWtAS

tAW

(6)

(5) (2) (3)

All data and address pins of the IDT71342 are isolated from the
backplane with TTL buffers. A detail of the PC to dual-port interface is
shown in Figure 4.

The reader should note that several considerations increased the
complexity of this interface. If this design had involved a dedicated host
processor rather than a general purpose PC, the need for buffering would
probably have been drastically reduced. Had both the 4K byte SRAM and
the semaphores been mapped into the memory space of the host, no ORing

would have been required on the MEMW, MEMR, IOW, and IOR signals.
Finally, a very complex address decoder was imple-mented in this system
to allow the IDT71342’s RAM to be mapped anywhere within the PC’s
memory space. By using a more straightforward fixed-address scheme,
logic complexity could be significantly reduced. It is conceivable that the
entire interface including address decoding could have been handled with
a single IC.

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

5

Figure 4. PC Bus to IDT71342 Dual-Port Interface (Left-Hand Side of Dual-Port).

10 1

A3L

IDT71342S45
74ALS623

74ALS541

74ALS541

1 19
PAL20L8-15

O1

I/O1

IB
M

P
C

-S
T

Y
LE

B
A

C
K

P
LA

N
E

74AS08

1
2

3

4
5

6

3

1
1

2
3
4
5
6
7
8
9

10
11

13
14
23

I1
I2
I3

I4
I5
I6
I7
I8
I9
I10

I11

I12

I13

I14

I/O5

I/O6

I/O4

O2

I/O3

I/O2

22
21
20

19
18
17
16
15

A0L

A2L

24
23
22
21

20
19
18
17

4
5

16
15
14
13
12
11

10
9
8
7

2

6

18
17
16
15
14
13
12

11

2
3

4
5
6
7
8

9

18
17
16
15
14
13
12

11

18
17

16
15
14
13
12

11

2
3

4
5
6
7
8

9

2
3
4
5
6
7
8

9

IOR

A3

A2

A1

A0

IOW

MEMR

MEMW

A4

A11

A10

A8

A5

A6

A7

A9

D0

D7

D6

D4

D1

D2

D3

D5

1/07L

1/06L

1/05L

1/04L

1/03L

1/02L

1/01L

1/00L

A11L

A10L

A9L

A8L

A7L

A6L

A5L

A4L

A1L

R/WL

OEL

CEL

SEML

2694 drw 04

.

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

6

Figure 5. TMS320C30 to IDT71342 Dual-Port Interface (Right-Hand Side of Dual-Port).

11

IDT71342S35

74AS244

74AS244

1 19

1 19

49

51

33 Ω

33Ω

33Ω

33Ω

PAL20L8-15

74ALS74

D

Q

S
Q

R

Vcc

Vcc

TIORDY
(from target
connector)

74AS32 74AS11

3
4
5

6
3

1
2

12
13

1

2

3

4

5

6

8

6

74AS32

74AS04
5 6

IO7-R

OE-R

R/W-L

SEM-R

CE-R

34
33
32
31
30
29
28

27

IO6R

IO5-R
IO4-R
IO3-R
IO2-R
IO1-R
IO0-R

A0R

A1R

A2R

A3R

A4R

A5R

A6R

A7R

42

45
44
43

41
40
39
38

8

4
6

2
8

4
6

2

7

3
5

1
7

3
5

1

1

5
3

7

A8R

A9R

A10R

A11R

2

6
4

8

37
36
47
48

8

4
6

2

7

3
5

1 46

50

2
4
6
8

11
13

15
17

2

4
6
8

11

17

4
5

10
9

O1

I/O1

I/O2

I/O3

I/O4

I/O6
O2

IO7R

IO6R

IO5R

IO4R

IO3R

IO1R

IO0R

IO2R

N7
Q6
M7
P6
Q5
N6
P5
Q4

18
16
14
12

9
7
5

3

1

2

3
4
5
6
7
8
9

10

11
13
14

23
17

I1
I2
I3
I4

I5
I6
I7
I8
I9

I10

I11

I12

I13

I14

I/O5

22
21
20
19

18

16

15

B3
E3
D2

H1

MSTRB

XRDY

F4

D1

C15
D14
E13

D13

E12

XR/W

IOSTRB

XA10

XA11

XA12

XA9

XA8

A13
A14
D11

C12
B13
A15

B15
C14

XA0

XA1

XA2

XA3

XA4

XA5

XA6

XA7

XD7

XD6

XD5

XD4

XD3

XD2

XD1

XD0

OER

R/WR

SEMR

CER

2694 drw 05

.

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

7

The TMS320C30 Interface
The TMS320 interfaces to the dual-port SRAM through the I/O strobe

on the expansion bus. The same bus is used to interface to a 16K x 32
static RAM via its memory strobe signal. These two strobes signify two
different ranges on the DSP chip’s internal address map. A detailed
diagram of the TMS320 to IDT71342 interface is shown in Figure 5.

As in the PC bus interface, the address lines are buffered between the
processor and the dual-port SRAM, however the light loading on the data
bus removes the need for data buffering on this side. The only devices
connected to the data pins are: the dual-port SRAM, the DSP chip, a static
RAM, a status latch, and a transceiver. The address bus needed buffering
since all eight 16K x 4 RAM chips, as well as the dual-port, a PAL, and
an address buffer are attached to these pins.

The TMS320’s expansion bus uses a strobe to activate an I/O cycle,
and a level to distinguish read cycles from write cycles. In this design, the
expansion read/write (XR/W) output of the TMS320 is connected directly
to the IDT71342 dual-port to drive the read/write (R/W) input, and is simply
inverted to drive the output enable (OE) input. This inverter is not truly
necessary, since the dual-port places its data outputs into a high-
impedence state automatically upon the application of a write (LOW) level
on the R/W input. The OE pin on this side could have been permanently
tied active (grounded).

A 20L8 PAL is used to control the chip enable (CE) input for this side
of the dual-port SRAM. This signal is a decoding of the DSP’s expansion
bus address bits XA0-XA12. The PAL used in this interface had too few
product terms to allow the combination of the I/O strobe with the decoded
address, so the buffered I/O strobe (BIOSTRB) has been externally
ANDed with the decoded address output from the PAL before being fed
into the dual-port. The semaphore select is handled the same way, but a
different address decoding is used from the same PAL, and the I/O strobe
is ANDed through a different gate into the semaphore (SEM) input of the
dual-port. Both of these signals can be disabled by writing to the control
register.

The TMS320C30 writes to the dual-port SRAM by implementing a CE
controlled write cycle. The CE and SEM inputs are driven by two-input
OR gates. One of the inputs of each of these gates represents a decoded
address output from a 20L8 PAL, while the second input is driven by a
buffered version of the I/O strobe. The only other qualifying input is the
read/write (R/W) input, which is directly driven by the expansion read/

write (XR/W) signal on the TMS320. When the DSP chip writes to the dual-
port, the address and read/write signals are output first, followed by the
I/O strobe. Since IOSTRB is used to gate the CE or SEM signal, the timing
meets the criteria for a CE controlled write cycle.

The expansion ready (XRDY) input to the TMS320, which tells it that
the expansion bus cycle is complete, is a combination of the decoded
address range from the PAL and a clock delay from the TMS320’s H1
(clock/2) output. This signal is required for systems using slower dual-port
RAMs, but is not necessary in systems where faster dual-ports are used.
If the system designer choses a 25ns or faster part for use in a 33MHz
TMS320C30 system, the XRDY input can be generated immediately upon
accessing the dual-port RAM.

The gating used here generates a single wait-state on any I/O strobe
within the address range of the IDT71342. This logic could be removed
if a faster IDT71342 were used. On an IOSTRB output from the TMS320,
if the PAL decodes a dual-ported address, the strobe and decoded
address are combined in the second of the two AND gates in Fig. 5. This
AND gate’s output is fed into the XRDY OR gate to extend
the expansion bus cycle. On the next rising edge of H1, the IOSTRB is
clocked into the flip flop. This flip flop’s output is connected to the first AND
gate and disables the IOSTRB from reaching the second AND gate. This
in turn allows the XRDY input to the TMS320 to go active, and allows the
cycle to end. A single wait-state more than compensates for the 45ns
address access time of the dual-port used in this application. Other signals
called target I/O ready (TIORDY) from the target connector, and the
MSTRB signal from the DSP chip itself can also signal an expansion bus
ready state. Since the MSTRB signal is used only to control accesses to
the expansion bus’ 16K x 32 zero wait-state RAM, it is ORed directly back
to the XRDY input through the 74AS11 gate as shown.

Conclusion
The TMS320C30 Software Development Board shows the simplicity

of designing an interface between a TMS320 DSP chip and the IBM PC
bus using an IDT71342 dual-port RAM. The dual-port RAM serves to
reduce component count, increase interprocessor communications
throughput, and simplify design. Designers should be able to follow the
example given here to profitably use dual-port SRAMs to handle
communications in any similar dual processor system.

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

8

Appendix

Dual-Port Semaphores
Eight extra address locations in the IDT71342 4K x 8 dual-port RAM

are dedicated to binary semaphore flags. These flags allow either the
TMS320 or the host processor to claim a privilege over the other processor
for functions defined by the programmer’s software. As an example, the
semaphore can be used by the PC to inhibit the TMS320C30 from
accessing a portion of the dual-port SRAM, or some other shared
resource.

The dual-port SRAM features a fast access time, and both ports are
completely independent of each other. This means that the activity on the
left port in no way slows the access time of the right port. Both ports are
identical in function to standard static RAMs and can be read from, or written
to, at the same time with the only possible conflict arising from the
simultaneous writing of, or a simultaneous READ/WRITE of, a non-
semaphore location. Semaphores are protected against such ambiguous
situations and may be used by the system program to avoid any conflicts
in the non-semaphore portion of the dual-port SRAM.

Multiple processor sytems like the TMS320C30 Software Develop-
ment Board can benefit from a performance increase by using these
semaphores, which provide a lockout mechanism without requiring
complex programming.

Software handshaking between processors offers the maximum in
system flexibility by permitting shared resources to be allocated in varying
configurations. The IDT71342 does not use its semaphore flags to control
any resources through hardware, thus allowing the programmer to
determine each flag’s meaning.

How the Semaphore Flags Work
The semaphore logic is a set of eight latches which are independent

of the dual-port SRAM. These latches can be used to pass a flag, or token,
from one processor to the other to indicate that a shared resource is in use.
The semaphores provide a hardware assist for a use assignment called
“Token Passing Allocation.” In this method, the state of a semaphore latch
is used as a token indicating that a shared resource is in use. If the TMS320
wants to use this resource, it requests the token by writing a zero into the
latch. The TMS320 then verifies its success in writing the latch by reading
it. If it was successful, it proceeds to assume control over the shared
resource. If it was not successful in writing a zero into the latch, it determines
that the PC had set the latch first, is in posession of the token, and is using

the shared resource. The TMS320 can then either repeatedly inquire the
status of the semaphore it requested, or it can remove its request for that
semaphore by writing a one into its location. The TMS320 can then perform
another task and occasionally attempt to gain control of the token via the
set and test sequence. Once the PC has relinquished the token, the
TMS320 can succeed in gaining control of the shared resource.

The semaphore flags are active low. A token is requested by writing
a zero into a semaphore location, and is released when the same
processor writes a one into that location.

The eight semaphore flags reside within the IDT71342 in a seperate
memory space from the dual-port RAM. This address space is accessed
by placing a low input on the SEM pin (which is used as a chip select for
the semaphore flags), and using the other control pins (Address, OE, and
R/W) as they would be used in accessing a standard static SRAM. Each
of the flags has a unique address which can be accessed by either side
through address pins A0 - A2. When accessing the semaphores, none of
the other address pins has any effect.

When writing to a semaphore, only data pin D0 is used. If a low level
is written into an unused semaphore location, that flag will be set to a zero
on that side and a one on the other (see Table I). That location can now
only be modified by the side showing the zero. When a one is written into
the same location from the same side, the flag will be set to a one for both
sides (unless a semaphore request from the other side is pending) and
then can be written to by both sides. The fact that the side which is able to
write a zero into a semaphore subsequently locks out writes from the other
side is what makes semaphore flags useful in interprocessor communica-
tions. A zero written into the same location from the other side will be stored
in the semaphore request latch for that side until the semaphore is freed
by the first side.

When a semaphore flag is read, its value is spread into all data bits, so
that a “set” flag reads as a one in all data bits and a flag containing a zero
reads as all zeros. The read value is latched into one side’s output register
when that side’s semaphore select (SEM) and output enable (OE) signals
go active. This serves to disallow the semaphore from changing state in
the middle of a read cycle due to a write cycle from the other side. Because
of this latch, a repeated read of a semaphore in a test loop must cause either
signal (SEM or OE) to go inactive, or the output will never change. This
is not a concern in the TMS320C30 Software Development Board, since
either bus’ accesses to other memory locations between semaphore
accesses inactivate both of these signals for a relatively long period no
matter how tight of a loop is used to interrogate the device.

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

9

Table 1. Example Semaphore Procurement Sequence

A sequence of WRITE/READ must be used to acquire a semaphore
in order to guarantee that no system level contention will occur. A processor
requests access to shared resources by attempting to write a zero into a
semaphore location. If the semaphore is already in use, the semaphore
request latch will contain a zero, yet the semaphore flag will appear as a
one, a fact which the processor will verify by the subsequent read (see
Table I). As an example, assume the PC writes a zero to the left port at a
free semaphore location. On a subsequent read, the PC will verify that
it has written successfully to that location and will assume control over the
resource in question. Meanwhile, if the TMS320 attempts to write a zero
to the same semaphore flag, it will fail, as will be verified by the fact that it
will read a one from that semaphore during a subsequent read cycle. Had
a sequence of READ/WRITE been used instead, contention problems
could have occurred during the gap between the read and write cycles.

It is important to note that a failed semaphore request must be followed
either by repeated reads, or by writing a one into the same location to
remove the semaphore request. The reason for this is easily understood
by looking at the simple logic diagram of a semaphore flag shown in Figure
6. Two semaphore request latches feed into a semaphore flag. Whichever
latch is the first to present a zero to the semaphore flag will force its side of
the semaphore flag low, and the other side high. This condition will continue
until a one is written into the same semaphore request latch. Should the
other side’s semaphore request latch have been written to a zero in the
meantime, the semaphore flag will flip over to the other side as soon as a
one is written into the first side’s request latch. The second side’s flag will

now stay low until its semaphore request latch is written with a one. From
this it is easy to understand that, if a semaphore is requested and the
processor which requested it no longer needs the resource, the entire
system could hang up until a one is written into that semaphore request
latch.

The critical case of semaphore timing is when both sides request a
single token by attempting to write a zero into it at the same time. The
semaphore logic is specially designed to resolve this problem. If simulta-
neous requests are made, the logic guarantees that only one side receives
the token. If one side is earlier than the other in making the request, the first
side to make the request will receive the token. If both requests happen
at the same time, the assignment will be arbitrarily made to one side or the
other.

One caution that should be noted when using semaphores is that
semaphores alone do not guarantee that access to a resource is secure.
As with any powerful programming technique, if semaphores are misused
or misinterpreted a software error can easily happen. Code integrity is of
the utmost importance when semaphores are used instead of hardware
handshaking.

Initialization of the semaphores is not automatic and must be handled
via the initialization program at power-up. Since any semaphore which is
written to a zero must be reset to a one, both the TMS320 and the PC must
write a one into all semaphore locations at initialization to assure that the
semaphores will be free when needed.

FUNCTION
PC BUS

D0-D7 LEFT
TM320

D0-D7 RIGHT STATUS

No action 1 1 Semaphore free

PC writes “0” to semaphore 0 1 PC has semaphore token

TMS320 writes “0” to semaphore 0 1 No change. TMS320 has no write access to
semaphore

PC writes “1” to semaphore 1 0 TMS320 obtains semaphore token

PC writes “0” to semaphore 1 0 No change. PC has no write access
to semaphore.

TMS320 writes “1” to semaphore 0 1 PC obtains semaphore token

PC writes “1” to semaphore 1 1 Semaphore free

TMS320 writes “0” to semaphore 1 0 TMS320 has semaphore token

TMS320 writes “1” to semaphore 1 1 Semaphore free

PC writes “0” to semaphore 0 1 PC has semaphore token

PC writes “1” to semaphore 1 1 Semaphore free

2694 tbl 02

 6.01

Application Note AN-68Dual-Port RAM Simplifies PC-to-TMS320 Interface

10

Using Semaphores - Some Examples
Perhaps the simplest application of semaphores is their application as

resource markers for the IDT71342’s dual-port SRAM. Say the 4K x 8
SRAM was to be divided into two 2K x 8 blocks, which were to be dedicated
at any one time to servicing either the PC or the TMS320. Semaphore
0 could be used to indicate the side which would control
the lower section of memory, and Semaphore 1 could be defined as the
indicator for the upper section of memory.

To take a resource, in this example the lower 2K of dual-port RAM, the
PC could write then read a zero into Semaphore 0. If this task was
successfully completed (a zero was read back, rather than a one), the PC
would assume control of the lower 2K. Meanwhile, the TMS320 might
attempt to perform the same function. Since the TMS320 was attempting
to gain control of the resource after the PC, it would read back a one in
response to the zero it had attempted to write into Semaphore 0. At this point,
the TMS320’s software could choose to try and gain control of the second
2K section by writing, then reading a zero into Semaphore 1. If it succeeded
in gaining control, it would lock out the PC.

Once the PC was finished with its task, it would write a one to Semaphore
0, then may try to gain access to Semaphore 1. If Semaphore 1 was still
occupied by the TMS320, the PC could remove its semaphore request
and perform other tasks until it was able to write, then read
a zero into Semaphore 1. If the TMS320 performs a similar task with
Semaphore 0, this protocol would allow the two processors to swap 2K
blocks of dual-port RAM with each other.

The blocks do not have to be any particular size and could even be

of variable length, depending upon the complexity of the software using
the semaphore flags. All eight semaphores could be used to divide the dual-
port RAM or other shared resources into eight parts.

Semaphores are a useful form of arbitration in real-time DSP applica-
tions, when the PC must be locked out of a section of memory during a
transfer, and the TMS320 cannot tolerate any wait states. With the use of
semaphores, once the two processors had determined which memory
area was “off limits” to the PC, both the PC and the TMS320 could access
their assigned portions of memory continuously without any wait states.
Both processors can access their assigned RAM segments at full speed.

Another application of semaphores is in the area of complex data
structures. In this case, block arbitration is very important to the main-
tenence of data integrity. For this application one processor may be
responsible for building and updating a data structure, which the other
processor then reads and interprets. If the interpreting processor reads
an incomplete data structure, a major error condition may exist. Therefore,
some sort of arbitration must be used between the TMS320 and the PC.
Software semaphores are a perfect fit. The building processor uses the
semaphore to arbitrate for the block and to lock it once that processor is
able to acquire the semaphore flag. This processor then is able to go in
and update the data structure. When the update is completed, the
semaphore and the corresponding data structure block are released. The
interpreting processor then acquires the semaphore which allows it to
come back and read the complete data structure, thereby guaranteeing
consistency.

Figure 6. IDT71342 Semaphore Logic

D Q

E

DQ

E

Semaphore Latch

D0

Write

D0

Write

L Port R Port

Semaphore
Read

Semaphore
Read

Semaphore
RequestLatch

Semaphore
RequestLatch

2694 drw 06

.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

