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INTRODUCTION
The use of First-In-First-Out (FIFO) buffers to pass information between

digital circuits with differing data rates has been a standard practice in interface
design.  The IDT synchronous FIFO is a new architecture designed to support
high-speed systems.

THE EVOLUTION OF FIFO
ARCHITECTURES

The IDT SyncFIFO can be viewed as the third generation architecture in
FIFO design.  The initial FIFO architecture (illustrated in Figure 1) used an
architecture based on a register array indexed by special control logic which
sequenced a pointer within the array.  Prior to the introduction of register-based
FIFOs, designers used shift registers to buffer data between systems.  More
general than the shift register approach, the register-based FIFO architecture

is also limited in depth, due to the number of transistors needed to build each
flip-flop storage element.

The second-generation FIFO introduced very large buffers based on a
static memory array.  The RAM-Based FIFO is shown in Figure 2.  The internal
RAM array is actually a dual-ported memory addressed by the use of internal
pointers.  These internal pointers determine which address of the RAM will
provide the data during a FIFO READ or store data during a FIFO WRITE.

With the availability of large FIFOs with buffer memory as large as 4Kbytes,
the need for memory management accentuated the need for external flags.
These flags allow the user to monitor the amount of data in the FIFO.  Most
second- generation FIFOs have been enhanced to provide flags indicating a
variety of FIFO conditions.  Newer FIFOs, including the SyncFIFO, allow flags
to be programmed to a selectable depth.  Figure 3 is a block diagram of the
Enhanced Asynchronous FIFOs.
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Figure 1. Register-Based FIFO Architecture-First Generation
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Figure 3. Enhanced Asynchronous FIFO
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Figure 2. RAM-Based FIFO Architecture-Second Generation
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Figure 4. Increasing Clock Frequency Necessitates Synchronous Designs

THE SyncFIFO ARCHITECTURE:
THE ARCHITECTURE OF THE FUTURE

The SyncFIFO improves on the RAM-based FIFO architecture by adding
input and output registers in the data path.  These registers are controlled by
independent external clocks, allowing data operations to be synchronized with
the clock edges.  Many system designers are designing high-speed systems
using a synchronous approach, since the complexity of the control circuitry
increases with speed in an asynchronous system.  In a synchronous system,
the amount of control logic is minimal and does not change as the system clock
frequency is increased.  As system clock rates approach 25MHz, it becomes
more economical to use a synchronous design. (See Figure 4.)

ADVANTAGES OVER THE
ASYNCHRONOUS FIFO

The concept of the synchronous FIFO is not new.  Many synchronous
designs requiring that data transfers occur on a clock edge use external registers
with an asynchronous FIFO.  The READ and WRITE control signals for the
FIFO must be generated by special control logic, but the device accessing the
FIFO through the registers sees the FIFO as a synchronous device.  Figure 5
shows the asynchronous FIFO used in a synchronous application.  The primary
limitation of this approach is the performance degradation due to the long data
set-up time needed by the FIFO.  The performance loss is evident in operations
requiring consecutive accesses, since the data set-up time must be taken into
account when determining the maximum cycle time.

Using an asynchronous FIFO in a high-speed system can also require
special design techniques for generating the FIFO control signals.  As the cycle
time is decreased in higher speed systems, the width of the READ or WRITE

pulse becomes very small.  The minimum pulse width for asynchronous FIFOs
has been reduced to less than 20ns on faster devices.  Generating accurately
timed control pulses can require additional circuitry of greater complexity.  Very
narrow control pulses must be generated by using pulse shaping logic based
on a system clock.  It is sometimes difficult to generate properly timed narrow
control pulses, since the timing margins become so small.

Figure 6 illustrates the simplicity of the IDT SyncFIFO interface.  Passing
data through the IDT SyncFIFO is based on a clock edge with a data set-up
time of only 5ns and a data hold time of 1ns.  A FIFO of this type allows clock
rates of 50MHz. No external pulse shaping logic is required; the only control
pulses required are the free-running system clock and a simple enable signal.

In systems using pipelining, the SyncFIFO can be used as a pipeline stage
without external registers, as the registers that would normally be added
externally for pipelining are included in the SyncFIFO.  The use of pipelining
can lead to even faster aggregate data rates.

REDUCED SENSITIVITY TO GLITCHES
Another problem faced by the designer of high-speed systems using fast

asynchronous FIFOs is the sensitivity to glitches.  A FIFO capable of responding
to fast READ or WRITE pulses may recognize noise-induced glitches as valid
control pulses.  The minimum pulse widths are specified as worst-case values,
and a designer must be careful to consider all operating conditions.  A glitch which
doesn’t affect system operation during lab tests may become a problem at cold
temperatures or higher supply voltages.  Careful board design techniques or
additional circuitry may be required in fast systems to reduce glitches on the
READ and WRITE lines.  By comparison, the SyncFIFO only recognizes READ
and WRITE accesses during the transition of the clock signals, insuring
increased noise immunity in the system.

COMPLEXITY
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Figure 5. Typical Asynchronous Design Figure 6. Typical Synchronous Design

Figure 7. Block Diagram of the IDT SyncFIFO
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FEATURES AND OPERATION OF THE
SyncFIFO

Many of the features of IDT’s SyncFIFOs are similar to the features of IDT’s
asynchronous FIFOs.  Numerous Technical Notes and Application Notes have
been published by IDT to assist the designer using asynchronous FIFOs;
therefore, only the new features of the SyncFIFO will be covered in depth in
this document.

The functional block diagram of the IDT SyncFIFO in stand-alone mode is
shown in Figure 7.  The first devices from IDT are the IDT72215 with a 512 x 18
memory array and the IDT72225 with a 1024 x 18 memory array.  These
devices allow for very fast throughput with read or write cycle times as fast as
20ns.

Many other sizes and word widths will be provided in subsequent devices.
The speed of the IDT SyncFIFO is specified by the maximum clock rate.  Both
SyncFIFOs operate up to 50MHz.  The synchronous nature of the architecture
will allow the clock rate to increase in later products.

WIDTH EXPANSION
As in previous FIFOs, width and depth expansion are easily accomplished.

Expanding the width of the FIFO is very straightforward.  Basically, data passes
in parallel through multiple devices.  The input control signals are connected on
all devices, and the status flags may be read from any device.  Any word width
may be attained which is a multiple of the device word size.  Figure 8 shows how
a 36-bit word is implemented using two 72215s or 72225s.

DEPTH EXPANSION
To expand in depth, a daisy-chain technique is used.  The first FIFO in the

chain is the master (designated by tying FL to ground).  The remaining FIFOs
in the chain are slave components (designated by tying FL to VCC).

The master device is the device which controls all the flags and must always
be the first device.  The flags are ignored from the other devices.  In the depth
expansion mode, the Half-Full Flag (HF) is not available, since this pin is shared
with the Write Expansion Out (WXO) signal.

To control how data is passed from one device to the other, Expansion In
(XI) and Expansion Out (XO) signals are provided to control the transfer of data.
In single device mode the XI lines are tied to ground.  For multiple devices, the
XI and XO lines are tied together between each device.  Figure 9 is an example
of the SyncFIFO used in depth expansion mode.

This example shows how three devices can be chained together to provide
a deeper FIFO interface.  Using three 72215s, the total depth is 1536 words
of 18-bit data.  This daisy-chain technique can be used to achieve depths up
to 32,768 words by adding more devices.

The total depth of the configuration is programmed into the master device
using the depth register.  The total number of FIFOs in the configuration is loaded
into the 5-bit register on the third Write Clock (WCLK) while the Load (LD) pin
and the Write Enable (WEN) are held Low. Figure 10 shows all the possible
values for the depth register of the 72215 and the 72225.
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Figure 8. Width Expansion of the IDT SyncFIFO
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Figure 9. Depth Expansion of the IDT SyncFIFO
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Figure 10. Depth Register Programming

INDEPENDENT READ AND WRITE
CLOCKS

Although the SyncFIFO handles data synchronously, the clocks are
independent on each side of the FIFO.  These clocks could even be free-running
system clocks with different frequencies.  The IDT SyncFIFO handles the
transfer of data between the two systems, simplifying the timing issues normally
associated with a system of this type.  It is, however, possible to use the same
clock for both sides of the FIFO.

USING FLAGS FROM THE IDT
SyncFIFO

The flags available on the IDT72215 and IDT72225 are the Empty Flag
(EF), the Full Flag (FF), the Half-full Flag (HF) and two programmable flags.
The Programmable Almost Empty (PAE) and the Programmable Almost Full
(PAF) flags can be set to any location by the user.

These flags differ from the flags available on the latest asynchronous FIFOs
in that they are updated on clock transitions.  The EF is tied to RCLK and the
FF is tied to WCLK.  The three other flags are updated by either clock, depending
on their current state (see data sheet).  The impact of this difference will be
discussed in the next section.

As with the asynchronous FIFOs, the flags operate based on the value of
the internal pointers.  Two separate pointers are maintained, a read pointer and
a write pointer.  When the last word is read from the FIFO, the read pointer equals
the write pointer, and EF is asserted.  When the write pointer reaches the last

location in the FIFO and data is written, then FF is asserted.  Likewise, the half-
full flag is asserted whenever the difference between the Read pointer and Write
pointer is ≥half the size of the FIFO RAM array.

The programmable flags use offset values which are programmed into
internal registers.  For the PAE flag, the signal will be asserted when the Read
pointer is n locations less than the Write pointer.  As an example, suppose the
FIFO is being used as a 175-word frame buffer.  It is necessary to notify the
processor when a frame has been received, but data may continue to arrive
in the buffer.  The Empty Offset Register would be programmed with the value
175. Using this value, the PAE flag would go High after 175 writes to the FIFO.
The processor could receive this signal as an interrupt to read out the 175-word
data block.

The PAF flag can be used to signal the processor after (FULL - m) writes
to the FIFO.  For instance, a certain system might take some time to respond to
a signal from the FIFO and begin clocking out data.  To notify the processor
6 write clocks in advance of the FIFO becoming full, a value of 6 is written into
the Full Offset Register.  This allows the user to optimize his system for the depth
of the FIFO.

To write a value into one of the offset registers, WEN and LD are set Low.
The data on the input data bus is written into the Empty Offset Register on the
first Low-to-High transition of WCLK.  On the second Low-to-High transition of
WCLK, the Full Offset Register is written with the data inputs.  The third clock
transition programs the depth register.  Figure 11 shows the manner in which
the internal registers are programmed.

Figure 10. Depth Register Programming
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Figure 12. Read Cycle Timing

DESIGN CONSIDERATIONS
The simplicity of the interface to the SyncFIFO makes it anideal candidate

for new designs, especially when higher throughput is required.  If the design
is made synchronous at the outset, later speed improvements to a system do not
require a redesign of the FIFO control logic.

One of the design considerations for the SyncFIFO concerns the manner
in which the input and output registers interact with the internal RAM array.  It
is important to note that the data goes into the input register on the Low-to-High
transition of the WCLK.  During the first write to the FIFO, data is also stored into
the internal RAM array on the same Low-to-High transition that loads the input
register.  This avoids the presence of a write latency cycle on the first Write.

To determine when data can be clocked out of the FIFO, the amount of skew
between the WCLK and the following RCLK will determine if sufficient time has
been allowed for the new data to be stored in the RAM.  Once data has been
clocked in using WCLK, the data will be available in the internal RAM for access
by the read port after tSKEW1 ns (see Figures 12 and 13 for read and write cycle
waveforms, and Figure 14 for the skew specifications).  If this skew timing is not
met, an extra cycle of latency will be required for clocking data from the FIFO.

The output register of the SyncFIFO adds a full cycle of read latency before
data is available on the output pins.  This latency is a result of the need to allow
time for the flags to be updated.  External circuitry may need extra time to respond
to the flag signals.  This is especially true for the EF.  If a single word is written
into an empty FIFO, the EF will become deasserted tREF ns after the following
RCLK. This assumes that the RCLK occurs more than tSKEW ns after the WCLK.
If the skew time is not met, an additional RCLK cycle will be required before the
EF can be asserted.  The data will be available on the output pins tA ns after
the next RCLK.

To help clarify the timing issues, consider an example of a system which
uses coincident clocks by tying the RCLK and the WCLK lines together.  The
WEN and REN lines are used to control the transfer of data.  If a single word
is written into the FIFO on the WCLK, it will take two additional RCLKs before
data will appear on the output pins.  The coincident RCLK obviously does not
meet the skew timing requirement.  The first RCLK after the coincident WCLK/
RCLK will update the flags and the second RCLK will affect the data transfer to
the output pins.

NOTES:
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge for EF to change during the current clock cycle. If the time

between the rising edge of WCLK and the rising edge of RCLK is less than tSKEW1,  then EF may not change state until the next RCLK edge.
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NOTE:
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge for FF to change during the current clock cycle. If the time
between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1,  then FF may not change state until the next WCLK edge.

Figure 13. Write Cycle Timing

Figure 14. Skew Specifications
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EXAMPLES OF SyncFIFO DESIGNS
The application areas of the SyncFIFO are not different from applications

of asynchronous FIFOs.  Figure 15 shows an application of the SyncFIFO in
a graphics system.  An asynchronous FIFO could have been used for this
application, but the speeds typically required by graphics systems would have
made the implementation difficult.  The data sent to the graphics rasterizer usually
occurs as blocks of data, and repetitive writes to the FIFO require very fast cycle
times.

Figure 16 shows how two SyncFIFOs can be used as a high-speed
bidirectional interface between two 16-bit microprocessors.  As in the previous
example, an asynchronous FIFO might be sufficient for slow systems.  The
steady advance in processor speeds has led to the need for the SyncFIFO and
its ability to handle the fast data rates.

In a microprocessor system the speed of the processor is very important,
but of equal concern is the amount of bus bandwidth available for communicating
with external devices.  It is important that bus operations be accomplished as
efficiently as possible.  In the multiprocessing example, processor A usually
needs to pass a block of data to processor B.  The sooner the block of data is
written into or read from the FIFO, the sooner the processor can return to its own
processing tasks.  The SyncFIFO is able to accommodate a block transfer rate
of 50MHz or 100Mbytes/sec, including parity.  Width expansion would allow for
400Mbytes/sec transfer rate in a 64-bit system.  The SyncFIFO architecture will
allow for the bandwidth requirements of even faster systems in the future.

USE IN ASYNCHRONOUS SYSTEMS
A SyncFIFO can be used in an asynchronous system; however, care must

be taken in observing the timing considerations.  Of primary concern is the
minimum setup time for the REN or WEN signals.  This is the time before the data
can be clocked in or out of the FIFO registers.  For instance, if the MemWR pulse
in an asynchronous system is to be used to generate the WCLK pulse, care must
be taken to insure that WEN occurs at least 8ns before the rising edge of WCLK
(for a 20ns device).  One method of generating the proper timing is to use a
system clock to synchronize the control signal, thus insuring proper setup times.

In a simple asynchronous interface, the WEN pulse can be generated by
the chip select pulse.  The chip select pulse is generated by the FIFO address
decoder.  The MemWR signal can be used to drive the WCLK line.  The data
lines must be stable at least 5ns before the rising edge of the MemWR pulse.

To clock data asynchronously from the FIFO, the chip select line can be
used to drive the REN line.  The MemRD pulse can be inverted to provide a
properly timed RCLK.  The REN signal must meet the 8ns setup requirements
(for a 20ns device).  The extra latency cycle for reading data may be taken into
account by the device reading the FIFO.  The EF will go Low when the last word
is stored in the output register.

It is possible to use the MemRD signal directly, but data won’t be available
until 12ns after the end of the MemRD pulse (worst case).  The access time for
the FIFO would have to include the width of the MemRD pulse.  If the MemRD
is inverted using a 7.5ns PAL, the asynchronous read is accomplished in about
20ns

Figure 15. A Graphics System Using the SyncFIFO
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Figure 16. A Multiprocessing System Using the SyncFIFO

Figure 17. Using a SyncFIFO in an Asynchronous System
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Figure 17 shows an example of the SyncFIFO used in a standard
asynchronous system.  A system of this type can be cycled much faster than
previous solutions using asynchronous FIFOs.  This system could also be
enhanced to accommodate burst-mode data transfers available on newer
processors.  A simple counter could provide the burst pulse train needed to clock
the data block.  Also, note that the flags are synchronized with the clocks (see
the next section).

HOW CLOCKS AFFECT FLAGS
Care must be taken in observing the flags in a SyncFIFO.  For instance,

upon reading the FIFO, the transfer of the last word from the memory array to
the output register causes the assertion of the empty flag (EF)—not the transfer
of the last word of data out of the output register.  The flags also differ from previous
FIFOs in that the flags change synchronously. The flags are all updated on a
clock transition.

One important consideration is that since the flags are updated synchro-
nously, they are not updated until clocked.  For instance, consider a system
where the inputs are synchronous and the outputs are asynchronous.  A word

of data is written to the FIFO.  The EF does not deassert until a clock transition
on RCLK.  So you could fill the FIFO without EF changing if no RCLKs are
provided.  One solution would be to tie any available fast clocks to RCLK.
Another option would be to tie RCLK and WCLK together.  (NOTE: HF, PAE
and PAF are asynchronous to the clocks on the 72215 and 72225.  See data
sheet for exact timing diagrams).  So, by using the PAE instead of the EF in this
case, you can signal the asynchronous side of the status of the FIFO, since this
flag is updated by both clocks.

CONCLUSION
Using the SyncFIFO greatly eases the design efforts in a high-speed

system.  The SyncFIFO incorporates all of the enhanced features of the newest
asynchronous FIFOs.  These features include programmable flags, the ability
to store large amounts of data, and the ability to directly drive a 3-state data bus.
It is the addition of the input and output registers that makes the SyncFIFO unique.
The ability to handle very fast data rates allows the IDT SyncFIFO to keep pace
with the high-speed systems being designed today and the faster systems still
to come.  The IDT SyncFIFO truly represents the architecture of the future.


