APPLICATION NOTE

AN-60
ENESAS Designing With The IDT SyncFIFO™:
The Architecture of The Future
By J. Scott Gardner
INTRODUCTION isalso limited in depth, due to the number of transistors needed to build each

The use of First-In-First-Out (FIFO) buffers to pass information between
digital circuits with differing datarates has been astandard practice ininterface
design. The IDT synchronous FIFOisanewarchitecture designedto support
high-speed systems.

THE EVOLUTION OF FIFO
ARCHITECTURES

The IDT SyncFIFO can be viewed as the third generation architecture in
FIFO design. The initial FIFO architecture (illustrated in Figure 1) used an
architecture based on aregister array indexed by special control logic which
sequencedapointerwithinthe array. Priortotheintroduction of register-based
FIFOs, designers used shift registers to buffer data between systems. More
generalthanthe shiftregister approach, the register-based FIFO architecture

flip-flop storage element.

The second-generation FIFO introduced very large buffers based on a
staticmemory array. The RAM-Based FIFOis showninFigure 2. Theinternal
RAM arrayis actually adual-ported memory addressed by the use of internal
pointers. These internal pointers determine which address of the RAM will
provide the data during a FIFO READ or store data during a FIFO WRITE.

Withthe availability of large FIFOs with buffermemory aslarge as 4Kbytes,
the need for memory management accentuated the need for external flags.
These flags allow the user to monitor the amount of data in the FIFO. Most
second- generation FIFOs have been enhanced to provide flagsindicating a
variety of FIFO conditions. Newer FIFOs, including the SyncFIFO, allow flags
to be programmed to a selectable depth. Figure 3 is a block diagram of the
Enhanced Asynchronous FIFOs.

INPUT SHIFT DATA IN
READY IN *
* * FIFO INPUT
INPUT STAGE
CONTROL
LOGIC *
REGISTER 6d x4
REGISTERS
CONTROL feeli>
LOGIC
OUTPUT FIFO OUTPUT
CONTROL STAGE
LOGIC
* * 3020 drw01
DATA OUT
OUTPUT SHIFT
READY ouT

Figure 1. Register-Based FIFO Architecture-First Generation

IDT andthe IDT logo are trademarks of Integrated Device Technology, Inc

FEBRUARY 1990

© 2019 Renesas Electronics Corporation

DSC-3020/1

IDT Application Note AN-60

EF ~—
— READ
FF <@ FLAG LOGIC CONTROL READ
l
DATA
DATA
INPUT OUTPUT
WRITE
WRITE CONTROL
LOGIC 3020 drw02
Figure 2. RAM-Based FIFO Architecture-Second Generation
EF,FF ~fffffannanar
N o READ
o FLAG LOGIC CONTROL B READ

DATA

INPUT DATA

OUTPUT

E:-:-:-:-:-:-:-:-:-:-:-:-:-:-: OUTPUT

ENABLE
WRITE EXPANSION Miassstiis- OUTPUT
WRITE: me{ CONTROL | LOGIC

LOGIC

(82-pins only)

INPUT

3020 drw03

Figure 3. Enhanced Asynchronous FIFO

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

THE SyncFIFO ARCHITECTURE:

THE ARCHITECTURE OF THE FUTURE

The SyncFIFOimproves onthe RAM-based FIFO architecture by adding
inputand outputregistersin the data path. These registers are controlled by
independentexternal clocks, allowing data operations to be synchronized with
the clock edges. Many system designers are designing high-speed systems
using a synchronous approach, since the complexity of the control circuitry
increases with speed inanasynchronous system. Inasynchronous system,
the amount of control logicis minimal and does not change as the system clock
frequencyisincreased. As system clock rates approach 25MHz, itbecomes
more economical to use a synchronous design. (See Figure 4.)

ADVANTAGES OVERTHE
ASYNCHRONOUSFIFO

The concept of the synchronous FIFO is not new. Many synchronous
designsrequiringthatdatatransfers occuronaclock edge use external registers
with an asynchronous FIFO. The READ and WRITE control signals for the
FIFO mustbe generated by special control logic, but the device accessing the
FIFOthroughthe registers seesthe FIFO as asynchronous device. Figure 5
showsthe asynchronous FIFO usedinasynchronous application. The primary
limitation of this approachis the performance degradation due tothe long data
set-uptime needed by the FIFO. The performance lossis evidentin operations
requiring consecutive accesses, since the data set-up time mustbe takeninto
accountwhen determining the maximum cycle time.

Using an asynchronous FIFO in a high-speed system can also require
special design techniques for generating the FIFO control signals. Asthe cycle
time is decreased in higher speed systems, the width of the READ or WRITE

COMPLEXITY

(Number of Logic

pulse becomes very small. The minimum pulse width for asynchronous FIFOs
hasbeenreducedtolessthan 20ns onfaster devices. Generatingaccurately
timed control pulses can require additional circuitry of greater complexity. Very
narrow control pulses must be generated by using pulse shaping logic based
onasystemclock. Itis sometimes difficultto generate properly timed narrow
control pulses, since the timing margins become so small.

Figure 6illustrates the simplicity of the IDT SyncFIFO interface. Passing
data through the IDT SyncFIFO is based on a clock edge with a data set-up
time of only 5ns and a data hold time of 1ns. A FIFO of this type allows clock
rates of 50MHz. No external pulse shaping logic is required; the only control
pulsesrequired are the free-running system clock and a simple enable signal.

Insystems using pipelining, the SyncFIFO can be used as a pipeline stage
without external registers, as the registers that would normally be added
externally for pipelining are included in the SyncFIFO. The use of pipelining
canleadto even faster aggregate datarates.

REDUCED SENSITIVITY TOGLITCHES

Another problem faced by the designer of high-speed systems using fast
asynchronous FIFOsisthe sensitivity toglitches. AFIFO capable of responding
tofastREAD or WRITE pulses may recognize noise-induced glitches as valid
control pulses. The minimum pulse widths are specified asworst-case values,
andadesignermustbe carefulto consider all operating conditions. Aglitchwhich
doesn'taffect system operation during lab tests may become a problemat cold
temperatures or higher supply voltages. Carefulboard designtechniques or
additional circuitry may be required in fast systems to reduce glitches on the
READ and WRITE lines. By comparison, the SyncFIFO only recognizes READ
and WRITE accesses during the transition of the clock signals, insuring
increased noise immunity inthe system.

ASYNCHRONOUS

SYNCHRONOUS

Elements Needed to
Implement Design)

25 - 50 MHz

Clock Frequency

3020 drw03

Figure 4. Increasing Clock Frequency Necessitates Synchronous Designs

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

DATA SET-UP

TIME - 15ns \
|

DATA HOLD
[TIME - Ons

INPU
REGISTER

I

DATA IN

SYSTEM

ASYNCH
CLOCK HIFG

OUTPUT
REGISTER

Figure 5. Typical Asynchronous Design

WEN WCLK

WRITE CONTROL

LOGIC

WRITE POINTER [

3020 drw05

Do-D17

DATA SET-UP DATA HOLD
TIME - 4ns TIME - 1ns
DATA IN

SYSTEM
CLOCK

SyncFIFO

J

CONTROL
LOGIC

DATA OUT

3020 drw06

Figure 6. Typical Synchronous Design

D

INPUT REGISTER

RAM ARRAY
512x 18
1024 x 18

X|] —® EXPANSION

xo<-—— LOGIC

RESET LOGIC

RS —

e |
e |

OFFSET REGISTER I

IOm| o|m
HAZ

T
T

READ POINTER

READ CONTROL
LOGIC
A

OUTPUT REGISTER L

RCLK REN
3020 drw07

Figure 7. Block Diagram of the IDT SyncFIFO

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

FEATURES AND OPERATION OF THE
SyncFIFO

Many of the features of IDT's SyncFIFOs are similartothe features of IDT's
asynchronous FIFOs. Numerous Technical Notes and Application Notes have
been published by IDT to assist the designer using asynchronous FIFOs;
therefore, only the new features of the SyncFIFO will be covered in depthiin
thisdocument.

The functional block diagram ofthe IDT SyncFIFO in stand-alone mode is
showninFigure 7. Thefirstdevices from IDT arethe IDT72215witha512x 18
memory array and the IDT72225 with a 1024 x 18 memory array. These
devices allowforvery fastthroughput with read or write cycle times as fastas
20ns.

Many other sizes and word widths will be provided in subsequent devices.
The speed ofthe IDT SyncFIFO s specified by the maximum clock rate. Both
SyncFIFOs operate upto 50MHz. The synchronous nature ofthe architecture
willallowthe clock rate toincrease in later products.

WIDTH EXPANSION

Asinprevious FIFOs, width and depth expansion are easily accomplished.
Expanding the width ofthe FIFOis very straightforward. Basically, data passes
inparallelthrough multiple devices. Theinputcontrol signals are connected on
alldevices, andthe status flags may be read fromany device. Anywordwidth
may be attained whichis amultiple of the device word size. Figure 8 shows how
a 36-bitword isimplemented using two 72215s or 72225s.

DEPTH EXPANSION

Toexpandin depth, adaisy-chaintechniqueisused. ThefirstFIFOinthe
chainis the master (designated by tying FL to ground). The remaining FIFOs
in the chain are slave components (designated by tying FL to VCC).

The master device isthe device which controls allthe flags and mustalways
bethefirstdevice. Theflagsareignored fromthe other devices. Inthe depth

expansion mode, the Half-Full Flag (HF) isnotavailable, since this pinis shared

with the Write Expansion Out (WXO) signal.
To controlhow datais passed from one device to the other, ExpansionIn

(XI)and Expansion Out (XO) signals are provided to control the transfer of data.
Insingle device mode the Xl lines are tied to ground. For multiple devices, the
Xland XOlines aretied together between each device. Figure 9isanexample
of the SyncFIFO used in depth expansion mode.

Thisexample shows howthree devices can be chained togetherto provide
adeeper FIFO interface. Using three 72215s, the total depth is 1536 words
of 18-bit data. This daisy-chain technique can be usedto achieve depths up
to 32,768 words by adding more devices.

Thetotal depth of the configuration is programmed into the master device
usingthe depthregister. Thetotal number of FIFOsinthe configurationisloaded

intothe 5-bit register on the third Write Clock (WCLK) while the Load (LD) pin

and the Write Enable (WEN) are held Low. Figure 10 shows all the possible
values for the depth register of the 72215 and the 72225.

RESET (RS) RESET (RS)
DATAIN(D) (6 | (18) > DT (18) o7
72215/ 72215/
72225 72225 < FEAD CLOCK (RCLK)
WRITE CLOCK (WCLK) >] ‘ »] READ ENABLE (REN)
WRITE ENABLE (WEN) - ------ - <
$r-------- —» OUTPUT ENABLE (OE)
LOAD (LD) - ------- < —
— P ———® EMPTY FLAG (EF) >
< FULL FLAG (FF) FIRST LOAD —
= — PROGRAMMABLE (PAF)
< PROGRAMMABLE (PAE) | >
HE 18) 18 36
< HALF FULL FLAG (HF) (18) (18) DATA OUT (Q) (36) >
WXI RXI WXI RXI
EXPANSION IN EXPANSION IN

3020 drw08

Figure 8. Width Expansion of the IDT SyncFIFO

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

RXO WXO EXPANSION OUT
> <
> <<
> <
IDT
’ 72215/
72225
Vcc
FIRST LOAD (FL) >
EXPANSIONIN RXI T TWXI
RXO WXO EXPANSION OUT
¢ o 4 ®
¢ > < Py
® o ¢ ©
DATA IN (D) IDT DATA OUT (Q)
72215/ ﬁ
72225
Vcc
| FIRSTLOAD (FL)
EXPANSIONIN RXI T WX
RXO WXO EXPANSION OUT
d WRITE CLOCK (WCLK) | ¢ READ CLOCK (RCLK) L
WRITE ENABLE (WEN) | READ ENABLE (REN))\
. RESET (®S) | QUTPUT ENABLE (OF)
» IDT
72215/
FIRST LOAD (FL) > 72225
—
- LOAD (LD) >
< FULL FLAG (FF) EMPTY FLAG (EF) >
< PROGRAMMABLE (PAE) PROGRAMMABLE (PAF) >
EXPANSIONIN RXi T WXI

3020 drw09

Figure 9. Depth Expansion of the IDT SyncFIFO

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

IDT72215 IDT72225
TOTAL DEPTH IN TOTAL DEPTH IN
DePTHREGISTER | | EXPANSON | Dby ciqren | EXPANSION
0 (DEFAULT) 512 0 (DEFAULT) 1024
1 512 1 1024
2 1024 2 2048
3 1536 3 3072
4 2048 4 4096
5 2560 5 5120
6 3072 6 6144
. . . .
3020 drw10

Figure 10. Depth Register Programming

INDEPENDENT READ AND WRITE
CLOCKS

Although the SyncFIFO handles data synchronously, the clocks are
independentoneach side ofthe FIFO. These clocks could even be free-running
system clocks with different frequencies. The IDT SyncFIFO handles the
transfer of data betweenthe two systems, simplifying the timing issues normally
associated with a system ofthis type. Itis, however, possible to use the same
clock for both sides of the FIFO.

USING FLAGS FROM THE IDT

SyncFIFO
The flags available on the IDT72215 and IDT72225 are the Empty Flag

(EF), the Full Flag (FF), the Half-full Flag (HF) and two programmable flags.
The Programmable Almost Empty (PAE) and the Programmable Aimost Full
(PAF) flags can be set to any location by the user.

Theseflags differfromthe flags available onthe latestasynchronous FIFOs
inthat they are updated on clock transitions. The EF is tied to RCLK and the
FFistiedto WCLK. Thethree otherflags are updated by either clock, depending
on their current state (see data sheet). The impact of this difference will be
discussedinthe nextsection.

Aswiththe asynchronous FIFOs, the flags operate based on the value of
theinternal pointers. Two separate pointers are maintained, aread pointerand
awrite pointer. Whenthe lastwordis read fromthe FIFO, the read pointer equals
the write pointer, and EF is asserted. Whenthe write pointer reaches the last

D | WEN WCLK SELECTION
0 0 5 EMPTY OFFSET
FULL OFFSET
DEPTH REGISTER
0 1 5 NO OPERATION
1 0 5 WRITE INTO FIFO
1 1 5 NO OPERATION
3020 drw11

Figure 10. Depth Register Programming

locationinthe FIFO and datais written, then FF is asserted. Likewise, the half-
fullflagis asserted wheneverthe difference between the Read pointer and Write
pointer is >half the size of the FIFO RAM array.

The programmable flags use offset values which are programmed into
internalregisters. Forthe PAE flag, the signal will be asserted whenthe Read
pointerisnlocations less thanthe Write pointer. Asanexample, suppose the
FIFOis being used as a 175-word frame buffer. Itis necessary to notify the
processor when a frame has been received, but data may continue to arrive
inthe buffer. The Empty Offset Registerwould be programmed with the value
175. Using this value, the PAE flag would go High after 175 writes to the FIFO.
The processor couldreceive this signalas aninterrupttoread outthe 175-word
datablock.

The PAF flag can be used to signal the processor after (FULL - m) writes
tothe FIFO. Forinstance, a certain system might take some timetorespondto
asignal from the FIFO and begin clocking out data. To notify the processor
6 write clocks in advance of the FIFO becoming full, a value of 6 is written into
the Full Offset Register. Thisallowsthe userto optimize his systemfor the depth
ofthe FIFO.

Towrite avalueinto one of the offsetregisters, WEN and LD are set Low.
The dataonthe input data bus is written into the Empty Offset Register onthe
first Low-to-Hightransition of WCLK. Onthe second Low-to-Hightransition of
WCLK; the Full Offset Register is written with the data inputs. The third clock
transition programs the depth register. Figure 11 shows the mannerinwhich
theinternal registers are programmed.

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

DESIGN CONSIDERATIONS

The simplicity of the interface to the SyncFIFO makes it anideal candidate
for new designs, especially when higher throughputis required. Ifthe design
ismade synchronous atthe outset, later speed improvementsto a system donot
require a redesign of the FIFO control logic.

One ofthe design considerations for the SyncFIFO concerns the manner
inwhichthe inputand outputregisters interact with the internal RAM array. It
isimportantto note thatthe datagoes into the inputregister on the Low-to-High
transition ofthe WCLK. During thefirstwrite tothe FIFO, datais also stored into
theinternal RAM array on the same Low-to-Hightransition thatloads the input
register. This avoids the presence of awrite latency cycle on the first Write.

Todetermine when data canbe clocked out ofthe FIFO, the amount of skew
between the WCLK and the following RCLK will determine if sufficienttime has
been allowed for the new data to be stored inthe RAM. Once data has been
clockedinusing WCLK, the data will be available inthe internal RAM for access
bytheread portaftertskew1ns (see Figures 12 and 13 forread and write cycle
waveforms, and Figure 14 for the skew specifications). Ifthis skewtimingis not
met, an extra cycle of latency will be required for clocking data from the FIFO.

‘ teL
<tk —P

tENH

The outputregister ofthe SyncFIFO adds afull cycle of read latency before
dataisavailable onthe output pins. Thislatencyisaresultofthe needtoallow
timeforthe flagsto be updated. External circuitry may need extratime torespond
totheflagsignals. Thisis especially true for the EF. Ifasingle word s written
intoan empty FIFO, the EF will become deasserted tRer ns after the following
RCLK. Thisassumesthatthe RCLK occurs more thantskew ns after the WCLK.
Ifthe skewtimeis not met, an additional RCLK cycle will be required before the
EF can be asserted. The data will be available on the output pins ta ns after
the next RCLK.

To help clarify the timing issues, consider an example of a system which
uses coincident clocks by tying the RCLK and the WCLK lines together. The
WEN and REN lines are used to control the transfer of data. Ifa single word
iswritteninto the FIFO onthe WCLK, it will take two additional RCLKs before
datawillappearonthe output pins. The coincident RCLK obviously does not
meetthe skewtiming requirement. The first RCLK afterthe coincident WCLK/
RCLK willupdate the flags and the second RCLK will affect the data transferto
the outputpins.

v

EF RN

- (STRK
I

NO OPERATION \
< tREF —p> — tREF
- ty —P
VALID DATA
toLz
tonz —®

OE

ﬁtﬁtOE_’

M

%_\
WCLK

N

NOTES:

3020 drwi2

1. tskewz is the minimum time between a rising WCLK edge and a rising RCLK edge for ?t_ochange during the current clock cycle. If the time
between the rising edge of WCLK and the rising edge of RCLK is less than tskewz, then EF may not change state until the next RCLK edge.

Figure 12. Read Cycle Timing

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

[————— tCLK —_—
— DH
D0 XXXXXXKY S RXXOCRKRRIIIX A <R
VALID DATA
ety = T tENH
WEN \\ & NO OPERATION \\
— twpp — ~— twrr
FF ;/
— tokewr
RCLK

EN / 3020 drw13

NOTE:
1. tskewz is the minimum time between a rising RCLK edge and a rising WCLK edge for F__F to change during the current clock cycle. If the time
between the rising edge of RCLK and the rising edge of WCLK is less than tskewz, then FF may not change state until the next WCLK edge.

Figure 13. Write Cycle Timing

comL COM'L & MIL. MIL. COM'L & MIL.
72215 L20 72215 L25 72215 L30 72215 L50
SYMBOL PARAMETER 72225 L20 72225 L25 72225 L30 72225 L50 UNIT
MIN. MAX.| MIN. MAX. | MIN. MAX. | MIN. MAX.
teews Skew time between Read Clock & 14 - 16 - 18 - 20 - ns
Write Clock for Empty Flag & Full
Flag
3020 drw14

Figure 14. Skew Specifications

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

EXAMPLES OF SyncFIFO DESIGNS

Theapplicationareas of the SyncFIFO are not differentfrom applications
ofasynchronous FIFOs. Figure 15 shows an application of the SyncFIFOin
a graphics system. An asynchronous FIFO could have been used for this
application, butthe speedstypically required by graphics systems would have
madetheimplementationdifficult. The datasenttothe graphicsrasterizerusually
occursashblocks of data, and repetitive writes to the FIFO require very fast cycle
times.

Figure 16 shows how two SyncFIFOs can be used as a high-speed
bidirectionalinterface between two 16-bit microprocessors. Asinthe previous
example, an asynchronous FIFO might be sufficient for slow systems. The
steady advancein processor speeds hasledto the needforthe SyncFIFO and
its ability tohandle the fast data rates.

Inamicroprocessor systemthe speed ofthe processor is very important,
butofequal concernisthe amountofbus bandwidth available forcommunicating
with external devices. Itisimportantthat bus operations be accomplished as
efficiently as possible. Inthe multiprocessing example, processor A usually
needs to pass a block of data to processor B. The sooner the block of data is
writteninto orread fromthe FIFO, the sooner the processor canreturntoits own
processing tasks. The SyncFIFOis abletoaccommodate a block transfer rate
of 50MHz or 100Mbytes/sec, including parity. Width expansionwould allow for
400Mbytes/sectransferrateina 64-bit system. The SyncFIFO architecture will
allow for the bandwidth requirements of even faster systemsinthe future.

USEINASYNCHRONOUS SYSTEMS

A SyncFIFO canbe usedinanasynchronous system; however, care must
be taken in observing the timing considerations. Of primary concern is the
minimum setup time forthe REN or WEN signals. Thisisthe time before the data
canbeclockedinoroutofthe FIFOregisters. Forinstance, iftthe MemWR pulse
inanasynchronous systemistobe usedtogenerate the WCLK pulse, care must
be takentoinsure that WEN occurs atleast8ns before therising edge of WCLK
(fora 20ns device). One method of generating the proper timing is to use a
system clockto synchronize the control signal, thusinsuring proper setuptimes.

Inasimple asynchronousinterface, the WEN pulse can be generated by
the chip selectpulse. The chip select pulseis generated by the FIFO address
decoder. The MemWR signal can be used to drive the WCLK line. The data
lines must be stable atleast 5ns before the rising edge of the MemWR pulse.

To clock data asynchronously fromthe FIFO, the chip selectline can be
used to drive the REN line. The MemRD pulse can be inverted to provide a
properly timed RCLK. The REN signal mustmeet the 8ns setup requirements
(fora20nsdevice). The extralatency cycle forreading datamay be takeninto
accountby the device reading the FIFO. The EF will go Lowwhenthe lastword
isstored inthe outputregister.

Itis possible to use the MemRD signal directly, but datawon'tbe available
until 12ns afterthe end ofthe MemRD pulse (worst case). The accesstime for
the FIFOwould have to include the width of the MemRD pulse. Ifthe MemRD
isinverted usinga 7.5ns PAL, the asynchronous read is accomplished inabout
20ns

MICROPROCESSOR

CLK

VECTOR PROCESSOR
BOARD

Raster Video
Processor
Board

DATA

WCLK

ADDRESS, I/0 WEN

VECTOR BOARD
CLOCK

SyncFIFO

DATAIN DATA OUT

DATA

RCLK
REN

COMPUTER
BACKLANE

3020 drw15

Figure 15. A Graphics System Using the SyncFIFO

© 2019 Renesas Electronics Corporation

IDT Application Note AN-60

MICROPRECESSOR

CLK

DATA

ADDRESS, I/0

LOGIC i

CONTROL

SyncFIFO

DATA IN

WEN

SYSYTEM
CLOCKA

SyncFIFO

DATA OUT
RCLK
REN

CONTROL
LOGIC

SYSYTEM
CLOCK B

Figure 16. A Multiprocessing System Using the SyncFIFO

-

MICROPRé)CESSOR
CLK

r DATA

ADDRESS, I/0

RAM B

3020 drw16

OUTPUT
DATA

MemRD
MemWR
WCLK
N N/
DATA IN
(Must meet FIFO RAM
INPUT ARRAY OUTPUT
WCLK REGISTER REGISTER
setup time)
WEN REN OE
FROM WR cs
ADDRESS RD cs
DECODER RD oe

Figure 17. Using a SyncFIFO in an Asynchronous System

3020 drw17

© 2019 Renesas Electronics Corporation

Figure 17 shows an example of the SyncFIFO used in a standard
asynchronous system. A system of this type can be cycled much faster than
previous solutions using asynchronous FIFOs. This system could also be
enhanced to accommodate burst-mode data transfers available on newer
processors. Asimple counter could provide the burst pulse trainneededto clock
the datablock. Also, note thatthe flags are synchronized with the clocks (see
the nextsection).

HOW CLOCKS AFFECT FLAGS

Care must be taken in observing the flags in a SyncFIFO. Forinstance,
uponreading the FIFO, the transfer of the last word from the memory array to
the outputregister causes the assertion ofthe empty flag (EF)—notthe transfer
ofthe lastword of data outofthe outputregister. The flags alsodiffer from previous
FIFOsinthatthe flags change synchronously. The flags are all updated on a
clocktransition.

Oneimportant considerationis that since the flags are updated synchro-
nously, they are not updated until clocked. For instance, consider a system

where the inputs are synchronous and the outputs are asynchronous. Aword

of datais writtento the FIFO. The EF does notdeassertuntil aclock transition
on RCLK. So you could fill the FIFO without EF changing if no RCLKs are
provided. One solution would be to tie any available fast clocks to RCLK.
Another option would be to tie RCLK and WCLK together. (NOTE: HF, PAE
and PAF are asynchronous to the clocks on the 72215 and 72225. See data
sheetfor exacttiming diagrams). So, by using the PAE instead of the EF in this
case, you cansignalthe asynchronous side of the status of the FIFO, since this
flagis updated by both clocks.

CONCLUSION

Using the SyncFIFO greatly eases the design efforts in a high-speed
system. The SyncFIFOincorporates all of the enhanced features of the newest
asynchronous FIFOs. These featuresinclude programmable flags, the ability
tostore large amounts of data, and the ability to directly drive a 3-state databus.
Itisthe addition oftheinputand outputregisters thatmakesthe SyncFIFO unique.
The abilityto handle very fastdata rates allows the IDT SyncFIFO tokeep pace
with the high-speed systems being designedtoday and the faster systems still
tocome. The IDT SyncFIFO truly represents the architecture of the future.

