
 APPLICATION NOTE

R01AN1665EJ0204 Rev.2.04 Page 1 of 49
Mar.1,23

RL78 Family
RL78 Digital Signal Controller Library - Filter
Introduction
This document presents the specifications for a Digital Signal Controller(DSC) Library function library for the Renesas
RL78 which includes generic specifications, detailed specifications for filter algorithm kernels and guidelines for the
DSC Library API. In this document, the word kernel refers to a common DSCL function such as FIR filter. In the DSC
library, several different C-language function calls may be associated with a single DSP kernel. To avoid confusion, the
word kernel refers to the DSP algorithm, including the collection of functions that implement the DSP algorithm in the
DSC Library. Specific DSC Library function names are used to refer to individual functions.

Target Device
RL78/G14, RL78/G23, RL78/G15, RL78/G24

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 2 of 49
Mar.1,23

Contents

1. DSC Library Kernels.. 4
1.1 List of Abbreviations and Acronyms .. 4
1.2 DSC Library Build information ... 4
1.2.1 Tool Chain Information ... 4

2. DSC Library API .. 5
2.1 Terminology ... 5
2.2 Data structures .. 5
2.2.1 Vectors ... 5
2.2.2 Algorithm kernel handles ... 6

2.3 Function arguments... 7
2.4 Error handling .. 7
2.5 Rounding Support ... 8

3. Filter Function API ... 9
3.1 FIR Data Structure Definition .. 9
3.2 FIR Initialize API .. 10
3.3 FIR Filter API ... 11
3.4 IIR Biquad Data Structure Definition ... 15
3.5 IIR Biquad State Size API ... 16
3.6 IIR Biquad Initialize API ... 17
3.7 IIR Biquad Filter API .. 18
3.8 Single Pole IIR Data Structure Definition .. 22
3.9 Single-Pole IIR Filter API .. 23

4. Sample Workspace on CS+, e2studio ... 27
4.1 DSC Library ... 27
4.2 Resource Requirements ... 31
4.2.1 Code Size and Stack Size ... 31
4.2.2 Cycles and Accuracy ... 32

5. Sample Workspace on IAR Embedded Workbench ... 33
5.1 DSC Library ... 33
5.2 Resource Requirements ... 36
5.2.1 Code Size and Stack Size ... 36
5.2.2 Cycles and Accuracy ... 37

6. Sample Workspace When the LLVM Compiler Is Used in e2studio.. 38
6.1 DSC Library ... 38
6.2 Resource Requirements ... 41
6.2.1 Code Size and Stack Size ... 41
6.2.2 Cycles and Accuracy ... 42

7. DSC Library for RL78/G24 FAA .. 43
7.1 DSC Library ... 43
7.2 Resource Requirements ... 48
7.2.1 Code Size and Stack Size ... 48
7.2.2 Cycles and Accuracy ... 48

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 3 of 49
Mar.1,23

Revision Record .. 49

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 4 of 49
Mar.1,23

1. DSC Library Kernels
Filter kernels defined in this document include:

1. Generic FIR
2. IIR Biquad
3. Single-pole IIR

1.1 List of Abbreviations and Acronyms
Table 1. List of Abbreviations and Acronyms

Abbreviation Full Form
DSC Digital Signal Controller
DSP Digital Signal Processor
FIR Finite Impulse Response
GPIO General Purpose I/O
I/O Input/Output
LSB Least Significant Bit
MSB Most Significant Bit

1.2 DSC Library Build information
1.2.1 Tool Chain Information
The DSC Library was built and tested using the following:

Table 2. DSC library for RL78/G14 and RL78/G23

C Compiler Version Integrated Development Environment
CC-RL V1.10.00 CS+ for CC V8.06.00

e2studio Version: 2021-07 (21.7.0)
IAR C/C++ Compiler for Renesas RL78
version 4.21.1.2409 (4.21.1.2409)

IAR Embedded Workbench for Renesas RL78
version 4.21.1

LLVM V10.0.0.202203 e2studio Version: 2022-04 (22.4.0)

Table 3. DSC library for RL78/G15

C Compiler Version Integrated Development Environment
CC-RL V1.11.00 CS+ for CC V8.08.00

e2studio Version: 2022-10 (22.10.0)
IAR C/C++ Compiler for Renesas RL78
version 4.21.1.2409 (4.21.1.2409)

IAR Embedded Workbench for Renesas RL78
version 4.21.1

LLVM V10.0.0.202207 e2studio Version: 2022-10 (22.10.0)

Table 4. DSC library for RL78/G24 for FAA

C Compiler Version Integrated Development Environment
CC-RL V1.12.00 CS+ for CC V8.09.00

e2studio Version: 2023-01 (23.01.0)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 5 of 49
Mar.1,23

2. DSC Library API
In this document we outline aspects of the Renesas DSC Library API design that are common to all functions within the
DSC Library.

2.1 Terminology
In this document we use the word “kernel” to refer to a DSP algorithm (or a variant of a DSP algorithm) implemented in
the DSC Library. We use the word “function” to refer to a single, specific function call in the DSC Library API. Note
that a kernel’s implementation may require multiple functions. For example, a filter kernel typically requires one or more
functions for initialization and/or other housekeeping tasks, and a main function for the filter processing.

2.2 Data structures
The library will define the following categories of data structures:

• Vectors
• Algorithm kernel handles

2.2.1 Vectors
Vector data structures contain vector dimensions, and a pointer to the actual array of data:

 typedef struct
 {
 uint32_t n;
 void *data;
 } vector_t;

Note: the user is responsible for allocating buffer memory for the vector data. In addition, because the “data” member
of the vector structure is declared as (void *), there is no need for separate vector structures for the different data types
supported by the library.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 6 of 49
Mar.1,23

2.2.2 Algorithm kernel handles
For kernel functions that require state information, constant data, and/or various run-time parameters, all such data is
aggregated in a “handle” data structure specific to the kernel function (or class of functions, e.g. transforms). For example,
an FIR filter handle may be defined as follows:

typdef struct
{
 uint16_t taps; // number of filter taps
 void *coefs; // pointer to filter coefficients
 void *state; // pointer to filter state data, including
 // the filter’s delay line and any other
 // implementation-dependent state
 uint16_t options; // option flags that may specify rounding,
 // saturation, or other behaviors
} r_dscl_firfilter_t;

Note: the handle data structure contains only members that need to be visible to the user. Some kernels may need to
maintain additional implementation-specific states.

All members of kernel “handle” data structures must be initialized by the user. This includes pointers to coefficient and/or
state memory. Coefficient and/or state memory must be allocated by the user. Some DSP kernels have implementation-
dependent memory requirements for the state and/or coefficients. In such cases, API functions are provided that return
the amount of memory to be allocated, given the desired parameters for the kernel.

Also note that many functions will have to perform run-time checks on handle structure members such as ‘options,’ in
order to branch to the appropriate implementation of the kernel for the given parameters. To ensure that the most common
implementation selections accrue the smallest overhead from these run-time checks, a default value of NULL is defined
wherever possible. The default value provides the most common desired behavior (often the fastest possible
implementation of the kernel).

Kernel parameters supplied in a handle structure must not be changed by the user without re-initializing the kernel. For
example, changing the rounding mode or number of taps of an FIR filter “on the fly” is prohibited. When changing
such kernel parameters, users must ensure that sufficient memory is allocated for the kernel’s internal state, given the
new parameters, and must re-initialize the kernel. Note that this restriction does not apply to changes to filter
coefficient values. Filter coefficients can be always changed “on the fly.”

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 7 of 49
Mar.1,23

2.3 Function arguments
All functions accept arguments in the following order:

<handle>: a pointer to a kernel handle data structure containing kernel-specific state, coefficients, parameters,
and options.

<input1>…<inputN>: one or more input arguments passed as pointers for most data types, except scalar data.
Scalar data values may be passed directly.

<output1>…<outputN>: one or more output pointers

<additional options>: any kernel parameters or options that are not included in the kernel handle data structure.

Note: a function call may not include all of the above elements. For example a FIR filter initialization function does not
have inputs or outputs.

Most functions return a 16-bit integer result. The integer result may contain an error code or other information required
for application housekeeping tasks. For example, the return value may indicate the amount of memory that the user
must allocate for a kernel’s internal state, or may indicate the occurrence of kernel-specific special conditions.
Exceptions to this rule occur where functions compute a single real-valued scalar result, and no error conditions can
occur. In such cases, the result may be returned by the function instead of a status code.

Functions whose return value indicates the amount of memory that the user must allocate for some task may also return
a negative value to indicate an error condition (see section 2.4 Error handling). Since C99, the malloc() function expects
size_t, which is an unsigned data type. The actual bit-width of size_t is platform dependent. Therefore, care must be
taken to ensure that a valid (non-error) result has been returned by the DSC Library function before passing the result to
malloc().

In summary, most function calls have the following format:

int16_t <status/size> = function(<handle>, <input1>,…, <inputN>, <output1>,…,
<outputN>, <additional options>);

Where most functions will include only a subset of the above argument classes.

2.4 Error handling
All functions perform checks on input arguments and kernel parameters to the greatest extent possible. Most functions
return a 16-bit integer status code. Functions that return the size of a kernel’s internal state (for memory allocation
purposes) are a noteworthy exception. For example, the R_DSCL_FIR_stateSize_i16i16 functions fall in this latter
category.

All functions return a negative integer value to indicate an error condition. Specific error conditions are assigned unique
negative integer values specified on a per-function basis. Functions may return zero for success, or may return a positive
integer value to indicate non-error result or special condition. For example, the R_DSCL_FIR_stateSize_i16i16 functions
return the memory size requirement for the FIR filter’s state. Other functions may return positive integer values indicating
special non-error conditions such as the occurrence of overflow.

Functions that return a memory size result for memory allocation purposes may return zero if no memory is required for
the given kernel parameters.

Note the distinction between error and status conditions: error conditions (declared with R_DSCL_ERR_<description>)
always have a negative integer value and indicate conditions that prevent operation of a kernel, e.g. a NULL input pointer.
In contrast, status conditions (declared with R_DSCL_STATUS_<description>) have positive integer values (or zero for
R_DSCL_STATUS_OK) and indicate conditions that may impact the kernel’s output, but do not prevent the arithmetic
operations of the kernel from proceeding. For example, arithmetic overflow is indicated with a status condition. Thus,
status conditions can be ignored in some applications, while error conditions always require attention. The assignment
of negative values to error codes and positive (or zero) values to status codes allows the user’s code to easily distinguish
between these two types of conditions.

Error and status codes will be defined by an enum declaration in the header file r_dscl_types.h.

The following common formats will be used for error codes of all functions:

R_DSCL_STATUS_OK: No issues encountered. This code has a value of zero.

R_DSCL_ERR_<pointer>_NULL: A null pointer was encountered by the function. <pointer> names the offending
pointer, e.g. R_DSCL_ERR_INPUT_NULL means that the pointer to an input argument is null. If input is a vector
or matrix, this code would also be used if the data pointer within the vector/matrix struct is null.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 8 of 49
Mar.1,23

R_DSCL_ERR_INVALID_<x>: an option or parameter passed to the function (via a handle or directly) is not
supported by the implementation. <x> identifies the offending function argument, kernel parameter, or struct
member. For example, if a filter’s handle structure has an ‘options’ member that specified rounding modes, and
this member has an unsupported value, then the R_DSCL_ERR_INVALID_OPTIONS code would be used.

In addition, some function-specific error and status codes are defined. The error and status codes defined in Phase 1 of
the DSC Library specification include:

R_DSCL_STATUS_OK = Status Ok, no issues encountered.

R_DSCL_ERR_HANDLE_NULL = If the pointer to the handle is NULL.

R_DSCL_ERR_INPUT_NULL = If the pointer to the input vector or the data therein is NULL.

R_DSCL_ERR_OUTPUT_NULL = If the pointer to the output vector or the data therein is NULL.

R_DSCL_ERR_STATE_NULL = If the pointer to the FIR or IIR filter internal state is NULL.

R_DSCL_ERR_COEFF_NULL = If the pointer to the coefficient array is NULL.

R_DSCL_ERR_INVALID_TAPS = The number of filter taps is zero or is not supported by the implementation.

R_DSCL_ERR_INVALID_STAGES = The number of filter stages is zero or is not supported by the
implementation.

R_DSCL_ERR_INVALID_OPTIONS = options value in handle specified a mode not currently supported.

2.5 Rounding Support
Some kernels in the DSC Library provide support for multiple rounding mode. These modes apply to the fixed-
point data types.

Rounding modes are supported via an options element in the kernel’s handle structure. The following bit-fields
in options are reserved for rounding and saturation modes:

• Bits 0-2: rounding mode

• R_DSCL_ROUNDING_DEFAULT = 0

• R_DSCL_ROUNDING_TRUNC = 1

• R_DSCL_ROUNDING_NEAREST = 2

• reserved = 3-7

• Note: R_DSCL_ROUNDING_DEFAULT is the default behaviors of the kernals. For all the filter types in the
library, the default behavior is the truncation.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 9 of 49
Mar.1,23

3. Filter Function API
This section covers the filter functions implemented in the RL78 DSC Library.

3.1 FIR Data Structure Definition
The FIR kernel uses a handle to the filter of type r_dscl_firfilter_t. This handle is passed as part of the call to the filter.
The data structure for the handle type is as follows:

typedef struct
{
 uint16_t taps; // number of filter taps
 void * coefs; // pointer to filter coefficients
 void * state; // pointer to filter state data, including the filter’s
delay line
 // and any other implementation-dependent state
 uint16_t options;// options that specify rounding, saturation, or other
behaviors
} r_dscl_firfilter_t;

Each member of the data structure is explained below:

taps = Number of filter taps

coefs = Pointer to the coefficient vector (must be the same data type as the input vector). The content of this array
is maintained by the user.

state = Pointer to the internal state of the filter, including the delay line and any other implementation-dependent
state. The memory for the internal state is allocated by the user and the content of the internal state is maintained by
the kernel.

options = A bit-mapped parameter controlling options. See “Rounding Support” in software overview section, for
the definition of available modes.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 10 of 49
Mar.1,23

3.2 FIR Initialize API
This is a function used to initialize the filter state (including zeroing the delay line and other parameters), given the
options specified in the handle. It must be called once prior to invoking the run-time calling function.

Format
int16_t R_DSCL_FIR_Init_i16i16 (r_dscl_firfilter_t * handle)

Parameters
handle Pointer to an instance of the r_dscl_firfilter_t data structure.

handle →state Pointer to the starting address of delay line, which shall be on the same array as the input data.

Return Values
R_DSCL_STATUS_OK = Status OK, no issues encountered.

R_DSCL_ERR_HANDLE_NULL = Pointers to the handle is NULL.

R_DSCL_ERR_STATE_NULL = Pointer to delay-line, is NULL.

R_DSCL_ERR_INVALID_TAPS = Number of taps is 0.

R_DSCL_ERR_INVALID_OPTIONS = options value in handle specified a mode not currently supported.

Others = Reserved.

NOTE: This function initializes only the contents of the FIR state pointed to by the state element of the handle
structure. It does not initialize the filter coefficients or any other contents of the handle structure, which must be
initialized separately.

Example
Since this function is not used by itself, see FIR filter example for the use of this in Context.

Restrictions
Handle must have already been instantiated. See FIR example for more details.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 11 of 49
Mar.1,23

3.3 FIR Filter API
The block finite impulse response (FIR) filter kernel operates on a user selectable number of input samples and
produces the same number of output samples each time it is invoked.

Format

int16_t R_DSCL_FIR_i16i16 (const r_dscl_firfilter_t * handle, const vector_t *
input, vector_t * output)

Parameters
handle Pointer to an instance of the r_dscl_firfilter_t data structure.

input Pointer to an instance of vector_t data structure for the input data. Neither the instance nor the actual
input data will be altered by the function.

input→n Number of input samples to be processed by the function. This value must be set before the function
call.

input→data Pointer to starting address of the input data. This pointer must be set before the function call.

output Pointer to an instance of vector_t data structure for the output data. Both the instance and the actual
output data will be altered by the function.

output→n Number of output samples produced by the function. This value will be filled by the function.

output→data Pointer to the output data buffer. This pointer must be set before the function call. The output data
buffer will be filled by the function.

Return Values
R_DSCL_STATUS_OK = Status OK, no issues encountered.

R_DSCL_ERR_HANDLE_NULL = If the pointer to the handle is NULL.

R_DSCL_ERR_INPUT_NULL = If the pointer to the input vector or the data therein is NULL.

R_DSCL_ERR_OUTPUT_NULL = If the pointer to the output vector or the data therein is NULL.

R_DSCL_ERR_STATE_NULL = If the pointer to the filter internal state is NULL.

R_DSCL_ERR_COEFF_NULL = If the pointer to the coefficient array is NULL.

R_DSCL_ERR_INVALID_TAPS = The number of filter taps is zero.

R_DSCL_ERR_INVALID_OPTIONS = options value in handle specified a mode not currently supported.

Others = Reserved.

Description
The Block FIR filter kernels implement a finite impulse response filter on each input sample. The following equation
shows the general structure of a T-tap FIR filter where h represents the coefficients, x represents the input data, and y
represents the output data.

𝑦𝑦(𝑛𝑛) = �ℎ(𝑖𝑖) ∗ 𝑥𝑥(𝑛𝑛 − 𝑖𝑖)
𝑇𝑇−1

𝑖𝑖=0

Each output sample is the result of performing FIR filter of n taps. This is shown graphically in Figure 1.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 12 of 49
Mar.1,23

Figure 1: FIR Filter

Fixed-point Behavior
Since the function is implemented by fixed point, the behavior of fixed point must be taken care. Following issues must
be considered:

 Scaling
 Overflow

Scaling: The scaling factor “FIR_SCALE_A” for the output data is defined in “r_dscl_filter_asm.inc”. Results are right-
shifted by scale prior to writing the output to memory.

The scale must be equal to the number of fraction bits of coefficient. For example:

If the filter coefficients are in Q4.12 format and the filter’s input is in Q2.14 format, then the accumulated result for
each output sample is in Q6.26 format. The scale value of 12 should be set, such that it will perform the required
conversion by discarding 12 LSBs of the accumulated result, leaving 14 fractional bits in the final output word.

The default value of this scaling factor is 15. If the value is changed, the library needs to be compiled again.

Overflow: The function is optimized for speed at the cost of precision and overflow protection. It’s implemented by
using a sequence of multiply-accumulate operations. The accumulator is just 32 bit, overflows may happen. After
accumulations, the final result is converted to 16 bit, precision is also lost. To avoid overflows completely, the input
data must be scaled down by log2(taps) bits (Maximum is 15 bits).

X[n]
Z-1

h0

+

h1

Z-1

+

h2

Z-1

+

h3

Z-1

+

hT-1

X[n-(T-1)]

X[n-1] X[n-2]

X[n] - input filter samples, h[n] - filter coefficients

Y[n]

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 13 of 49
Mar.1,23

Example
The following is an example showing initialization and run-time usage for the FIR Filter.

#define NUM_TAPS (64)
#define NUM_SAMPLES (200)

r_dscl_firfilter_t myFilterHandle; // instantiate a handle for this filter
vector_t myInput; // See introduction section describing
the API document
vector_t myOutput; // for a definition of the “vector_t”
data type.

// Coefficients should be stored in time-reversed order
int16_t myCoeffs[NUM_TAPS] = {…};

// The input data buffer should contain previous (T-1) input samples (i.e.
delay line)
// contiguous with the present (N) input samples
int16_t inputData[NUM_TAPS - 1 + NUM_SAMPLES];
int16_t outputData[NUM_SAMPLES];
int16_t myFIRFlags;

/*-------------- Set up the FIR filter ------------*/
myFilterHandle.taps = NUM_TAPS;
myFilterHandle.options = 0; // default

/* No need to call StateSize API for FIR */
myFilterHandle.state = (void *)&inputData[0]; // starting address of
delayline

/*----- Initialize the coefficients and internal state ------*/
myFilterHandle.coefs = (void *)myCoeffs;
myFIRFlags = R_DSCL_FIR_Init_i16i16(&myFilterHandle);

/*---------------- Set up the input/output ----------------*/
myInput.n = NUM_SAMPLES;
myInput.data = (void *)&inputData[NUM_TAPS - 1]; // starting address of
current input block
myOutput.data = (void *)outputData;
/*------------------ Wait for input data ------------------*/
/*--------------- Main library function call --------------*/
myFIRFlags = R_DSCL_FIR_i16i16 (&myFilterHandle, &myInput, &myOutput);

/*--------------- Output data are now ready ---------------
* Note: At this point myOutput.n holds the number of output samples generated
by
* the library, where the data are written to the array pointed to by
myOutput.data.
--/

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 14 of 49
Mar.1,23

Processing Flow
The example above just gives an example to do all the filter sample once, in this case, the input buffer and output buffer
should sufficient to hold all the data, if not, we need to filter the input sample into several times. The processing flow is
shown in Figure 2, including the setting of scaling factor.

Figure 2: Processing flow

Restrictions
The number of taps in the coefficient vector must match that specified in the filter handle.

Set “FIR_SCALE_A”

Compile Library

Initialization and call
R_DSCL_FIR_Init_i16i16 ()

Assign sample number to
be processed,
input pointer,
output pointer

Call R_DSCL_FIR_i16i16 ()

Check sample finished?

End

No

Yes

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 15 of 49
Mar.1,23

3.4 IIR Biquad Data Structure Definition
The following is the definition of the filter handle r_dscl_iirbiquad_t.
typedef struct
{
 uint16_t stages; // number of biquad stages
 void * coefs; // pointer to filter coefficients
 void * state; // pointer to filter’s internal state (delay line)
 uint16_t options; // options that specify rounding, saturation, or other behaviors
} r_dscl_iirbiquad_t;

Each member of the data structure is explained below:

stages = Number of biquad stages

coefs = Pointer to the coefficient vector (must be the same data type as the input vector). The content of this array
is maintained by the user.

state = Pointer to the internal state of the filter, including the delay line and any other implementation-dependent
state. The memory for the internal state is allocated by the user and the content of the internal state is maintained by
the kernel.

options = A bit-mapped parameter controlling options. See “Rounding Support” section, for the definition of
available modes.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 16 of 49
Mar.1,23

3.5 IIR Biquad State Size API
This is a “maintenance” function for the IIR filters. This function returns the size (in bytes) that must be allocated by
the user to maintain the internal state (including the delay line) of the filter.

Format
int16_t R_DSCL_IIRBiquad_StateSize_i16i16 (const r_dscl_iirbiquad_t * handle)

Parameters
handle Pointer to an instance of the r_dscl_iirbiquad_t data structure.

Return Values
Buffer Size in Bytes (type int16_t) required by the filter.

Note: The size returned should allow the implementer to use this buffer to maintain any private information associated
with the filter including items such as pointers, a record of input and output data types, etc. Also the size returned by
this function does not include the filter handle, nor does it include the coefficient array.

Description
The function can be used as part of the filter initialization to decide the buffer size a user must allocate. Alternatively,
the user can use this function to determine the required memory size during development, and allocate a static array of
that size for the internal state (for example, in the faster on-chip RAM).

Note: Since C99, the malloc() function expects size_t, which is an unsigned data type. The actual bit-width of size_t is
platform dependent. If malloc(R_DSCL_IIRBiquad_StateSize_i16i16()) is used to allocate the memory for the internal
state, and R_DSCL_IIRBiquad_StateSize_i16i16() returns a negative value, unexpected behavior could happen.

Example
Since this function is not used by itself, see IIR filter example for the use of this in Context.

Restrictions
IIRHandle must have already been instantiated. See IIR example for more details.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 17 of 49
Mar.1,23

3.6 IIR Biquad Initialize API
This is a function used to initialize the filter state (including zeroing the delay line and other parameters), given the
options specified in the handle. It must be called once prior to invoking the run-time calling function.

Format
int16_t R_DSCL_IIRBiquad_Init_i16i16 (r_dscl_iirbiquad_t * handle)

Parameters
handle Pointer to an instance of the r_dscl_iirbiquad_t data structure.

Return Values
R_DSCL_STATUS_OK = Status OK, no issues encountered.

R_DSCL_ERR_HANDLE_NULL = Pointers to the handle is NULL.

R_DSCL_ERR_STATE_NULL = Pointer to delay-line, is NULL.

R_DSCL_ERR_INVALID_STAGES= Number of biquad stages is 0.

R_DSCL_ERR_INVALID_OPTIONS = options value in handle specified a mode not currently supported.

Others = Reserved.

NOTE: This function initializes only the contents of the IIR state pointed to by the state element of the handle structure.
It does not initialize the filter coefficients or any other contents of the handle structure, which must be initialized
separately.

Description
This is a function used to initialize the filter state (including zeroing the delay line and possibly other implementation-
dependent parameters). It must be called once prior to invoking the run-time calling function.

Example
Since this function is not used by itself, see IIR filter example for the use of this in Context.

Restrictions
IIRHandle must have already been instantiated. See IIR example for more details.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 18 of 49
Mar.1,23

3.7 IIR Biquad Filter API
This kernel implements the IIR (Infinite Impulse Response) filter in the form of cascaded biquads. A biquad is a section
of the 2nd-order IIR filter. For higher order IIR filters, cascaded biquads often generate smaller numerical errors than a
direct-form implementation.

A biquad can have many forms, such as direct-forms I and II, transposed direct-forms I and II. Each has its advantages
and disadvantages. The IIR biquad API is designed by using direct-forms I.

This kernel operates on a user selectable number of input samples and produces the same number of output samples
each time it is invoked. The number of cascaded biquads is also selectable by the user.

FORMAT
int16_t R_DSCL_IIRBiquad_i16i16 (const r_dscl_iirbiquad_t * handle, const
vector_t * input, vector_t * output)

Parameters
handle Pointer to an instance of the r_dscl_iirbiquad_t data structure.

input Pointer to an instance of vector_t data structure for the input data. Neither the instance nor the actual
input data will be altered by the function.

input→n Number of input samples to be processed by the function. This value must be set before the function
call.

input→data Pointer to the input data buffer. This pointer must be set before the function call.

output Pointer to an instance of vector_t data structure for the output data. Both the instance and the actual
output data will be altered by the function.

output→n Number of output samples produced by the function. This value will be filled by the function.

output→data Pointer to the output data buffer. This pointer must be set before the function call. The output data
buffer will be filled by the function.

Return Values
R_DSCL_STATUS_OK = Status OK, no issues encountered.

R_DSCL_ERR_HANDLE_NULL = If the pointer to the handle is NULL.

R_DSCL_ERR_INPUT_NULL = If the pointer to the input vector or the data therein is NULL.

R_DSCL_ERR_OUTPUT_NULL = If the pointer to the output vector or the data therein is NULL.

R_DSCL_ERR_STATE_NULL = If the pointer to the filter internal state is NULL.

R_DSCL_ERR_COEFF_NULL = If the pointer to the coefficient array is NULL.

R_DSCL_ERR_INVALID_STAGES= Number of biquad stages is 0.

R_DSCL_ERR_INVALID_OPTIONS = options value in handle specified a mode not currently supported.

Others = Reserved.

Description
The IIR biquad filter is in the form of cascaded biquads. Each biquad is a section of the 2nd-order IIR filter with the
following equation between its input and output:

𝑦𝑦(𝑛𝑛) = 𝑏𝑏0 ∗ 𝑥𝑥(𝑛𝑛) + 𝑏𝑏1 ∗ 𝑥𝑥(𝑛𝑛 − 1) + 𝑏𝑏2 ∗ 𝑥𝑥(𝑛𝑛 − 2) − 𝑎𝑎1 ∗ 𝑦𝑦(𝑛𝑛 − 1) − 𝑎𝑎2 ∗ 𝑦𝑦(𝑛𝑛 − 2)

where y(n) is the output sample, x(n) is the input sample, y(n-1) and x(n-1) are output and input samples delayed by one
sampling period, respectively, y(n-2) and x(n-2) are output and input samples delayed by two sampling periods,
respectively, b0, b1, and b2 are feed forward coefficients, and a1 and a2 are feedback coefficients.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 19 of 49
Mar.1,23

The overall transfer function is as below:

𝐻𝐻(𝑧𝑧) = �
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + 𝑏𝑏2𝑧𝑧−2

1 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2

𝑁𝑁−1

0

where N is the number of cascaded biquad stages. Note that each stage has a different set of coefficients b0, b1, b2, a1,
and a2.

Figure 3 shows the diagram of IIR biquad Direct Form I.

Figure 3: IIR Bi-Quad, Direct Form I

Fixed-point Behavior
Since the function is implemented by fixed point, the behavior of fixed point must be taken care. Following issues must
be considered:

 Scaling
 Overflow

Scaling: The scaling factor “IIR_BQ_SCALE_A” for the output data is defined in “r_dscl_filter_asm.inc”. Results are
right-shifted by scale prior to writing the output to memory.

The scale must be equal to the number of fraction bits of coefficient. For example:

If the filter coefficients are in Q4.12 format and the filter’s input is in Q2.14 format, then the accumulated result for
each output sample is in Q6.26 format. The scale value of 12 should be set, such that it will perform the required
conversion by discarding 12 LSBs of the accumulated result, leaving 14 fractional bits in the final output word.

The default value of this scaling factor is 14. This means the coefficients can represent the value in the range of [-2, 2).
If all the coefficients values are in the range of [-1, 1), the scaling factor can be changed to 15. To do this, the library
needs to be compiled again.

Overflow: The function is optimized for speed at the cost of precision and overflow protection. It’s implemented by
using a sequence of multiply-accumulate operations. The accumulator is just 32 bit, overflows may happen. After
accumulations, the final result is converted to 16 bit, precision is also lost. To avoid overflows completely, the input
data must be scaled down by 3 bits (Maximum is 15 bits).

Z-1Z-1

+

X[n]
bk

0 +

+

Yk
[n]

Z-1

-ak
2

Z-1

-ak
1

Xk[n] – Input Samples, Yk[n] Output Samples, bk[n]/ak[n] Filter Coefficients, Z-1 – Delay Line

bk
2

bk
1

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 20 of 49
Mar.1,23

Example
The following is an example showing how to use IIR biquad function.
#define NUM_TAPS_PER_BIQUAD (5)
#define NUM_BIQUAD_STAGES (3)
r_dscl_iirbiquad_t myFilterHandle; // instantiate a handle for my use
vector_t myInput; // See introduction section API section
vector_t myOutput; // for a definition of the “vector_t”
data type
int16_t myCoeffs[NUM_TAPS_PER_BIQUAD * NUM_BIQUAD_STAGES]
 = {b0, b1, b2, a1, a2,…};
int16_t myDLine[NUM_TAPS_PER_BIQUAD * NUM_BIQUAD_STAGES];
int16_t inputData[NUM_SAMPLES];
int16_t outputData[NUM_SAMPLES];
int16_t myIIRFlags;
int16_t dynMemSize, staMemSize;

/*-------------- Set up the IIR filter biquads ------------*/
myFilterHandle.stages = NUM_BIQUAD_STAGES;

/* Setup data format and options */
myFilterHandle.options = 0; // default

/* !!! It is important to setup the stages and the form before */
/* !!! calling function R_DSCL_IIRBiquad_StateSize_i16i16 () */
staMemSize = NUM_TAPS_PER_BIQUAD * NUM_BIQUAD_STAGES * sizeof(int16_t);
dynMemSize = R_DSCL_IIRBiquad_StateSize_i16i16(&myFilterHandle);
if (staMemSize >= dynMemSize)
{
 myFilterHandle.state = (void *)myDLine; // probably more common
}
else
{
 myFilterHandle.state = malloc((size_t) dynMemSize); //malloc expects size_t
}
/* Initialize the coefficients and internal state */
myFilterHandle.coefs = (void *)myCoeffs;
myIIRFlags = R_DSCL_IIRBiquad_Init_i16i16(&myFilterHandle);
/*---------------- Set up the input/output ----------------*/
myInput.n = NUM_SAMPLES;
myInput.data = (void *)inputData;
myOutput.data = (void *)outputData;
/*------------------ Wait for input data ------------------*/
/*--------------- Main library function call --------------*/
myIIRFlags = R_DSCL_IIRBiquad_i16i16(&myFilterHandle, &myInput, &myOutput);
/*--------------- Output data are now ready ---------------*/
/* Note: At this point myOutput.n holds the number of output samples generated
by
* the library, where the data are written to the array pointed to by
myOutput.data.
--/

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 21 of 49
Mar.1,23

Processing Flow

The example above just gives an example to do all the filter sample once, in this case, the input buffer and output buffer
should sufficient to hold all the data, if not, we need to filter the input sample into several times. The processing flow is
shown in Figure 4, including the setting of scaling factor.

Figure 4: Processing flow

Restrictions
The length of the delay line depends on the number of cascaded stages. Therefore this parameter must be set before the
function call to R_DSCL_IIRBiquad_StateSize_i16i16 ().

Set “IIR_BQ _SCALE_A”

Compile Library

Call
R_DSCL_ IIRBiquad _Init_i16i16 ()

Assign sample number to
be processed,
input pointer,
output pointer

Call R_DSCL_ IIRBiquad _i16i16

Check sample finished?

End

No

Yes

Call
R_DSCL_IIRBiquad_statesize_i16i16 ()

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 22 of 49
Mar.1,23

3.8 Single Pole IIR Data Structure Definition
The following is the definition of the filter handle r_dscl_iirsinglepole_t, which is used for all variants of the single-pole
filter kernel.

typdef struct
{
 void * coefs; // pointer to filter coefficient
 void * state; // pointer to filter’s internal state (delay
line)
 uin16_t options; // options that specify rounding,
saturation, or other behaviors
} r_dscl_iirsinglepole_t;

Each member of the data structure is explained below:

coefs = Pointer to the coefficient of the feedback tap (must be the same data type as the input). The coefficient is
maintained by the user.

state = Pointer to the state of the feedback tap. The state is maintained by the kernel.

options = A bit-mapped parameter controlling options. See “Rounding Support” section, for the definition of
available modes.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 23 of 49
Mar.1,23

3.9 Single-Pole IIR Filter API
This kernel implements the single-pole filter, which is an IIR (Infinite Impulse Response) filter with one feedback tap.
The maximum gain is unity.

Format
int16_t R_DSCL_IIRSinglePole_i16i16 (const r_dscl_iirsinglepole_t * handle,
const vector_t * input, vector_t * output)

Parameters
handle Pointer to an instance of the r_dscl_iirsinglepole_t data structure.

input Pointer to an instance of vector_t data structure for the input data. Neither the instance nor the actual
input data will be altered by the function.

input→n Number of input samples to be processed by the function. This value must be set before the function
call.

input→data Pointer to the input data buffer. This pointer must be set before the function call.

output Pointer to an instance of vector_t data structure for the output data. Both the instance and the actual
output data will be altered by the function.

output→n Number of output samples produced by the function. This value will be filled by the function.

output→data Pointer to the output data buffer. This pointer must be set before the function call. The output data
buffer will be filled by the function.

Return Values
R_DSCL_STATUS_OK = Status OK, no issues encountered.

R_DSCL_ERR_HANDLE_NULL = If the pointer to the handle is NULL.

R_DSCL_ERR_INPUT_NULL = If the pointer to the input vector or the data therein is NULL.

R_DSCL_ERR_OUTPUT_NULL = If the pointer to the output vector or the data therein is NULL.

R_DSCL_ERR_INVALID_OPTIONS = options value in handle specified a mode not currently supported.

Others = Reserved.

Note: this kernel does not provide an init function. It is the user’s responsibility to initialize the internal state to 0.

Description
The single-pole IIR filter is shown graphically in Figure 5 and Figure 6, low-pass and high pass respectively.

X[n] α + Y[n]

Z-1-α+1

0 < α < 1, α is positive, Low-pass filter

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 24 of 49
Mar.1,23

Figure 5: Low-pass Single Pole IIR

Figure 6: High-Pass Single Pole IIR

The single-pole low-pass IIR filter has the following transfer function:

𝐻𝐻(𝑧𝑧) = 𝑎𝑎
1−(1−𝑎𝑎)𝑧𝑧−1

where the coefficient 𝛼𝛼 is always positive and determines the filter characteristic. When 𝛼𝛼 is 1.0, the filter passes the
input signal unchanged. As 𝛼𝛼 decreases toward zero, greater attenuation of high frequencies results. The output of the
single-pole low-pass filter can be computed as follows:

𝑦𝑦𝑛𝑛= 𝑦𝑦𝑛𝑛−1(1 − 𝑎𝑎) + 𝑥𝑥𝑛𝑛𝑎𝑎

or

𝑦𝑦𝑛𝑛= 𝑦𝑦𝑛𝑛−1 + (𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛−1)𝑎𝑎

where xn is the input signal and yn is the filter output.

A single-pole high-pass filter can be implemented with the transfer function:

𝐻𝐻(𝑧𝑧) = 𝑎𝑎
1+(𝑎𝑎+1)𝑧𝑧−1

However, this high-pass filter tends to oscillate at the Nyquist frequency as 𝛼𝛼 approaches zero. Because this property of
the filter is undesirable in many applications, a single-pole high-pass filter is often implemented by subtracting the
output of a single-pole low-pass filter from the input signal. Thus the high-pass output is the simple difference:

𝑦𝑦′𝑛𝑛= 𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛

where xn is the input signal, yn is the low-pass filter output computed as describe above, and y’n is the high-pass filter
output.

Fixed-point Behavior
Since the function is implemented by fixed point, the behavior of fixed point must be taken. Following issues must be
considered:

 Scaling
 Overflow

Scaling: The scaling factor “IIR_SP_SCALE_A” for the output data is defined in “r_dscl_filter_asm.inc”. Results are
right-shifted by scale prior to writing the output to memory.

The scale must be equal to the number of fraction bits of coefficient. For example:

If the filter coefficients are in Q4.12 format and the filter’s input is in Q2.14 format, then the accumulated result for
each output sample is in Q6.26 format. The scale value of 12 should be set, such that it will perform the required
conversion by discarding 12 LSBs of the accumulated result, leaving 14 fractional bits in the final output word.

The default value of this scaling factor is 15. If the value is changed, the library needs to be compiled again.

X[n] α + Y[n]

Z-1-α-1

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 25 of 49
Mar.1,23

Overflow: The function is optimized for speed at the cost of precision and overflow protection. It’s implemented by
using multiply-accumulate operations. The accumulator is just 32 bit, overflows may happen. After accumulations, the
final result is converted to 16 bit, precision is also lost. To avoid overflows completely, the input data must be scaled
down by 1 bit (Maximum is 15 bits).

Example
The following is an example showing how to use the single-pole IIR function with real 16-bit fixed-point input and
output data.

r_dscl_iirsinglepole_t myFilterHandle;
vector_t myInput; // See introduction section describing the API document
vector_t myOutput; // for a definition of the “vector_t” data type.
int16_t inputData[NUM_SAMPLES];
int16_t outputData[NUM_SAMPLES];
int16_t myIIRFlags;
int16_t mystate;
int16_t mycoeff;

/*-------------- Set up the single-pole IIR filter ------------*/
mystate = 0; // initialize state
mycoeff = (int16_t) (-0.15 * 0x7FFF);
myFilterHandle.coefs = &mycoeff;
myFilterHandle.state = &mystate;
myFilterHandle.options = R_DSCL_ROUNDING_TRUNC;

/*---------------- Set up the input/output ----------------*/
myInput.n = NUM_SAMPLES;
myInput.data = (void *)inputData;
myOutput.data = (void *)outputData;

/*------------------ Wait for input data ------------------*/

/*--------------- Main library function call --------------*/
myIIRFlags = R_DSCL_IIRSinglePole_i16i16(&myFilterHandle, &myInput,
&myOutput);

/*--------------- Output data are now ready ---------------*/
/* Note: At this point myOutput.n holds the number of output samples generated
by
* the library, where the data are written to the array pointed to by
myOutput.data.
--/

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 26 of 49
Mar.1,23

Processing Flow
The example above just gives an example to do all the filter sample once, in this case, the input buffer and output buffer
should sufficient to hold all the data, if not, we need to filter the input sample into several times. The processing flow is
shown in Figure 7, including the setting of scaling factor.

Figure 7: Processing flow

Restrictions
• The magnitude of the coefficient must be less than 1.0.

Set “IIR_SP_SCALE_A”

Compile Library

Initialization

Assign sample number to
be processed,
input pointer,
output pointer

Call R_DSCL_ IIRSinglePole _i16i16 ()

Check sample finished?

End

No

Yes

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 27 of 49
Mar.1,23

4. Sample Workspace on CS+, e2studio
4.1 DSC Library
The following include file and library files are provided.

When using this library alone, include the file indicated in table 5, and link the library file (corresponding to the
compiler option) indicated in table 6.

Table 5. Include File for the DSC Library

Library Function Include File Name
DSC Library Implements digital filters "r_dscl_filters.h"

Table 6. DSC Library

Library name Compiler Option
Cpu

R_dscl_filter_rl78.lib RL78/G14, RL78/G23
R_dscl_filter_rl78_S2_NOMDA.lib RL78/G15

Before using, copy these files into your local include or library directories.

Example of Usage
The following example shows a program using IIR Single Pole and how to specify the library under CS+, e2studio.

[Source Program]
#include <stdlib.h>
#include "sample_dscl_iirsinglepole.h"

/**
Macro definitions
**/
#define INPUT_N (10)

/**
Typedef definitions
**/
static int16_t sp_buff_out16[INPUT_N];

/**
Exported global variables (to be accessed by other files)
**/

/**
Private global variables and functions
**/
static const int16_t sp_buff_in[INPUT_N] =
{(int16_t)(1.0000000000000000 *0x7FFF)
,(int16_t)(0.0710197609601031 *0x7FFF)
,(int16_t)(0.5590169943749470 *0x7FFF)
,(int16_t)(0.4484011233337100 *0x7FFF)
,(int16_t)((-0.2500000000000000)*0x7FFF)
,(int16_t)(0.5000000000000000 *0x7FFF)
,(int16_t)((-0.5590169943749470)*0x7FFF)
,(int16_t)((-0.1393841289587630)*0x7FFF)
,(int16_t)((-0.2500000000000000)*0x7FFF)
,(int16_t)((-0.8800367553350520)*0x7FFF)
};

include directory r_dscl_filters.h, r_dscl_types.h, r_stdint.h

library R_dscl_filter_rl78.lib (RL78/G14, RL78/G23)
 R dscl filter rl78 S2 NOMDA.lib (RL78/G15)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 28 of 49
Mar.1,23

/**
* Function Name: sample_dscl_iirsinglepole
* Description : Sample code to demonstrate single-pole IIR filter
* Arguments : none
* Return Value : r_dsp_status_t Function status code
**/

int16_t sample_dscl_iirsinglepole (void)
{

 int16_t result;
 vector_t input;
 vector_t * input_ptr;
 vector_t output;
 vector_t * output_ptr;

 int16_t state;
 int16_t coeff;

 /*---------------------------*/
 /* Single-pole IIR filter */
 /*---------------------------*/
 r_dscl_iirsinglepole_t sp_handle;
 r_dscl_iirsinglepole_t * sp_handle_ptr;

 /*---------------------------*/
 /* Single-pole IIR filter */
 /*---------------------------*/
 state = 0;
 coeff = (int16_t) ((-0.15) * 0x7FFF);
 sp_handle.options = R_DSCL_ROUNDING_TRUNC;
 sp_handle.coefs = &coeff;
 sp_handle.state = &state;
 sp_handle_ptr = &sp_handle;

 input.n = INPUT_N;
 input.data = (void*)(&sp_buff_in[0]);
 input_ptr = &input;

 output_ptr = &output;
 output.data = (void *)sp_buff_out16;
 result = R_DSCL_IIRSinglePole_i16i16 (sp_handle_ptr,input_ptr,output_ptr);

 return (result);

}

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 29 of 49
Mar.1,23

[How to specify the library under CS+]

Select [Property] of [CC-RL] in project tree menu. In the dialog box [Property], select tab [Frequently Used Options
(for Link)], and specify the library in "Using libraries" and the library path in “Additional library paths”.

Figure 8. Specifying library(CS+)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 30 of 49
Mar.1,23

[How to specify the library under e2studio]

Select [Property] from the [Project] menu. Opens the properties window. In the Properties window, select C/C++
Build> Settings. Select [Linker] → [Input] on the [Tool Settings] tab, and specify the library path in "Linkable
Relocatable File, Object File, and Library File (-input / -library / -binary)".

Figure 9. Specifying library(e2studio)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 31 of 49
Mar.1,23

4.2 Resource Requirements

4.2.1 Code Size and Stack Size
Table 7. DSC library for RL78/G14 and RL78/G23
No. Kernel

Category
Kernel Type In/Out

Format
Function Options Code size

(DEC)
Total code
size (DEC)

Stack size
(DEC)

Overall stack
size (DEC)

R_DSCL_FIR_StateSize_i16i16 - 13 13 4 4
R_DSCL_FIR_Init_i16i16 - 111 111 8 8
R_DSCL_FIR_i16i16 c interface 189 4
R_DSCL_FIR_i16i16 nr 137 20
R_DSCL_FIR_i16i16 r 151 22
R_DSCL_IIRBiquad_StateSize_i16i16 - 8 8 2 4
R_DSCL_IIRBiquad_Init_i16i16 - 109 109 12 4
R_DSCL_IIRBiquad_i16i16 c interface 174 4
R_DSCL_IIRBiquad_i16i16 nr 222 28
R_DSCL_IIRBiquad_i16i16 r 239 30
R_DSCL_IIRSinglePole_i16i16 c interface 173 6
R_DSCL_IIRSinglePole_i16i16 nr 143 22
R_DSCL_IIRSinglePole_i16i16 r 172 26

488 32

635 34

477 26

i16i16

Filter Generic FIR1 i16i16

IIR-Biquad

Single-pole-IIR i16i16

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

Table 8. DSC library for RL78/G15
No. Kernel

Category
Kernel Type In/Out

Format
Function Options Code size

(DEC)
Total code
size (DEC)

Stack size
(DEC)

Overall stack
size (DEC)

R_DSCL_FIR_StateSize_i16i16 - 2 2 4 4
R_DSCL_FIR_Init_i16i16 - 34 34 6 6
R_DSCL_FIR_i16i16 c interface 27 4
R_DSCL_FIR_i16i16 nr 154 42
R_DSCL_FIR_i16i16 r 170 44
R_DSCL_IIRBiquad_StateSize_i16i16 - 5 5 4 4
R_DSCL_IIRBiquad_Init_i16i16 - 65 65 10 10
R_DSCL_IIRBiquad_i16i16 c interface 46 8
R_DSCL_IIRBiquad_i16i16 nr 293 50
R_DSCL_IIRBiquad_i16i16 r 325 54
R_DSCL_IIRSinglePole_i16i16 c interface 110 10
R_DSCL_IIRSinglePole_i16i16 nr 153 40
R_DSCL_IIRSinglePole_i16i16 r 182 44

i16i16

Filter Generic FIR1 i16i16

IIR-Biquad

Single-pole-IIR i16i16 445 54

664 62

351 48

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 32 of 49
Mar.1,23

4.2.2 Cycles and Accuracy
Table 9. DSC library for RL78/G14 and RL78/G23

No. Samples Taps Options Cycles Max Err Ave Err
1 200 64 nr 354,215 3.03E-05 1.58E-05
2 200 64 r 354,503 1.53E-05 8.43E-06
3 200 1 nr 8,191 3.02E-04 2.20E-04
4 200 1 r 9,915 4.44E-05 1.99E-05
5 200 1 nr 8,482 4.20E-05 1.86E-05
6 200 1 r 9,789 4.24E-05 1.48E-05
7 200 4 nr 81,235 5.32E-04 4.00E-04
8 200 4 r 82,131 1.66E-04 4.82E-05

IIR Biquad

low pass

high pass

Filter

Generic FIR

IIR Single pole

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

Table 10. DSC library for RL78/G15
No. Samples Taps Options Cycles Max Err Ave Err

1 168 64 nr 18,808,000 3.03E-05 1.58E-05
2 168 64 r 18,812,000 1.53E-05 8.43E-06
3 192 1 nr 547,200 3.02E-04 2.20E-04
4 192 1 r 572,800 4.44E-05 1.99E-05
5 192 1 nr 558,400 4.20E-05 1.86E-05
6 192 1 r 585,600 4.24E-05 1.48E-05
7 132 4 nr 1,025,600 5.32E-04 4.00E-04
8 132 4 r 1,049,600 1.66E-04 4.82E-05

IIR Biquad

low pass

high pass

Filter

Generic FIR

IIR Single pole

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 33 of 49
Mar.1,23

5. Sample Workspace on IAR Embedded Workbench
5.1 DSC Library
The following include files and library files are provided.

If you want to use this library alone, include the files shown in Table 11 and link the library files (corresponding to the
compiler options) in Table 12.

Table 11. Include File for the DSC Library

Library Function Include File Name
DSC Library Implements digital filters r_dscl_filters.h

 Table 12. DSC Library

Library name Compiler option
Cpu

R_dscl_filter_rl78.a RL78/G14, RL78/G23
R_dscl_filter_rl78_S2_NOMDA.a RL78/G15

Before using these files, copy them to your local include or library directory.

Example of use
An example program using an IIR unipolar filter shows how to specify a library in IAR Embedded Workbench.

[Source Program]

#include <stdlib.h>
#include "sample_dscl_iirsinglepole.h"

/**
Macro definitions
**/
#define INPUT_N (10)

/**
Typedef definitions
**/
static int16_t sp_buff_out16[INPUT_N];

/**
Exported global variables (to be accessed by other files)
**/

/**
Private global variables and functions
**/
static const int16_t sp_buff_in[INPUT_N] =
{(int16_t)(1.0000000000000000 *0x7FFF)
,(int16_t)(0.0710197609601031 *0x7FFF)
,(int16_t)(0.5590169943749470 *0x7FFF)
,(int16_t)(0.4484011233337100 *0x7FFF)
,(int16_t)((-0.2500000000000000)*0x7FFF)
,(int16_t)(0.5000000000000000 *0x7FFF)
,(int16_t)((-0.5590169943749470)*0x7FFF)
,(int16_t)((-0.1393841289587630)*0x7FFF)
,(int16_t)((-0.2500000000000000)*0x7FFF)
,(int16_t)((-0.8800367553350520)*0x7FFF)
};

include directory r_dscl_filters.h, r_dscl_types.h, r_stdint.h

library R_dscl_filter_rl78.lib (RL78/G14, RL78/G23)
 R_dscl_filter_rl78_S2_NOMDA.lib (RL78/G15)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 34 of 49
Mar.1,23

/**
* Function Name: sample_dscl_iirsinglepole
* Description : Sample code to demonstrate single-pole IIR filter
* Arguments : none
* Return Value : r_dsp_status_t Function status code
**/

int16_t sample_dscl_iirsinglepole (void)
{

 int16_t result;
 vector_t input;
 vector_t * input_ptr;
 vector_t output;
 vector_t * output_ptr;

 int16_t state;
 int16_t coeff;

 /*---------------------------*/
 /* Single-pole IIR filter */
 /*---------------------------*/
 r_dscl_iirsinglepole_t sp_handle;
 r_dscl_iirsinglepole_t * sp_handle_ptr;

 /*---------------------------*/
 /* Single-pole IIR filter */
 /*---------------------------*/
 state = 0;
 coeff = (int16_t) ((-0.15) * 0x7FFF);
 sp_handle.options = R_DSCL_ROUNDING_TRUNC;
 sp_handle.coefs = &coeff;
 sp_handle.state = &state;
 sp_handle_ptr = &sp_handle;

 input.n = INPUT_N;
 input.data = (void*)(&sp_buff_in[0]);
 input_ptr = &input;

 output_ptr = &output;
 output.data = (void *)sp_buff_out16;
 result = R_DSCL_IIRSinglePole_i16i16 (sp_handle_ptr,input_ptr,output_ptr);

 return (result);
}

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 35 of 49
Mar.1,23

[How to specify the library under IAR Embedded Workbench]

Select a project option in Workspace to open the Options for Node "Project Name" window. In the Options for Node
"Project Name" window, select Static Analysis> Linker and select the Library tab. Specify the library in [Additional
Library].

Figure 10. Specifying library(IAR Embedded Workbench)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 36 of 49
Mar.1,23

5.2 Resource Requirements

5.2.1 Code Size and Stack Size
Table 13. DSC library for RL78/G14 and RL78/G23
No. Kernel

Category
Kernel Type In/Out

Format
Function Options Code size

(DEC)
Total code
size (DEC)

Stack size
(DEC)

Overall stack
size (DEC)

R_DSCL_FIR_StateSize_i16i16 - 2 2 4 4
R_DSCL_FIR_Init_i16i16 - 92 92 16 16
R_DSCL_FIR_i16i16 c interface 159 8
R_DSCL_FIR_i16i16 nr 138 26
R_DSCL_FIR_i16i16 r 152 28
R_DSCL_IIRBiquad_StateSize_i16i16 - 5 5 4 4
R_DSCL_IIRBiquad_Init_i16i16 - 126 126 12 12
R_DSCL_IIRBiquad_i16i16 c interface 155 8
R_DSCL_IIRBiquad_i16i16 nr 223 34
R_DSCL_IIRBiquad_i16i16 r 240 38
R_DSCL_IIRSinglePole_i16i16 c interface 143 8
R_DSCL_IIRSinglePole_i16i16 nr 147 28
R_DSCL_IIRSinglePole_i16i16 r 176 32

i16i16

Filter Generic FIR1 i16i16

IIR-Biquad

Single-pole-IIR i16i16 466 40

618 46

449 36

Notes:

nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

Table 14. DSC library for RL78/G15
No. Kernel

Category
Kernel Type In/Out

Format
Function Options Code size

(DEC)
Total code
size (DEC)

Stack size
(DEC)

Overall stack
size (DEC)

R_DSCL_FIR_StateSize_i16i16 - 2 2 2 2
R_DSCL_FIR_Init_i16i16 - 45 45 8 8
R_DSCL_FIR_i16i16 c interface 44 4
R_DSCL_FIR_i16i16 nr 154 42
R_DSCL_FIR_i16i16 r 169 44
R_DSCL_IIRBiquad_StateSize_i16i16 - 5 5 4 4
R_DSCL_IIRBiquad_Init_i16i16 - 126 126 12 12
R_DSCL_IIRBiquad_i16i16 c interface 64 4
R_DSCL_IIRBiquad_i16i16 nr 288 50
R_DSCL_IIRBiquad_i16i16 r 320 54
R_DSCL_IIRSinglePole_i16i16 c interface 143 4
R_DSCL_IIRSinglePole_i16i16 nr 151 40
R_DSCL_IIRSinglePole_i16i16 r 180 44

i16i16

Filter Generic FIR1 i16i16

IIR-Biquad

Single-pole-IIR i16i16 474 48

672 58

367 48

Notes:

nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 37 of 49
Mar.1,23

5.2.2 Cycles and Accuracy
Table 15. DSC library for RL78/G14 and RL78/G23

No. Samples Taps Options Cycles Max Err Ave Err
1 200 64 nr 315,941 3.03E-05 1.58E-05
2 200 64 r 316,253 1.53E-05 8.43E-06
3 200 1 nr 7,945 3.02E-04 2.20E-04
4 200 1 r 9,259 4.44E-05 1.99E-05
5 200 1 nr 7,947 4.20E-05 1.86E-05
6 200 1 r 9,261 4.24E-05 1.48E-05
7 200 4 nr 370,532 5.32E-04 4.00E-04
8 200 4 r 374,952 1.66E-04 4.82E-05

IIR Biquad

low pass

high pass

Filter

Generic FIR

IIR Single pole

Notes:

nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

Table 16. DSC library for RL78/G15

No. Samples Taps Options Cycles Max Err Ave Err
1 131 64 nr 1,458,811 3.03E-05 1.58E-05
2 131 64 r 1,460,198 1.53E-05 8.43E-06
3 128 1 nr 43,818 3.02E-04 2.20E-04
4 128 1 r 45,277 4.44E-05 1.99E-05
5 128 1 nr 64,035 4.20E-05 1.86E-05
6 128 1 r 65,445 4.24E-05 1.48E-05
7 84 4 nr 289,736 5.32E-04 4.00E-04
8 84 4 r 296,654 1.66E-04 4.82E-05

IIR Biquad

low pass

high pass

Filter

Generic FIR

IIR Single pole

Notes:

nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 38 of 49
Mar.1,23

6. Sample Workspace When the LLVM Compiler Is Used in e2studio
6.1 DSC Library
The following include file and library file are provided.

If you want to use this library alone, include the file shown in Table 17 and link the library file in Table 18
(corresponding to the compiler option).

Table 17. Include File for the DSC Library

Library Function Include File Name
DSC Library Implements digital filters r_dscl_filters.h

 Table 18. DSC Library

Library name Compiler option
Cpu

libR_dscl_filter_rl78.a RL78/G23
libR_dscl_filter_rl78_S2_NOMDA.a RL78/G15

Before using these files, copy them to your local include or library directory.

Example of use
The following shows an example of a program that uses an IIR single-pole filter. This example shows how to specify a
library in e2studio.

[Source Program]

#include <stdlib.h>
#include "sample_dscl_iirsinglepole.h"

/**
Macro definitions
**/
#define INPUT_N (10)

/**
Typedef definitions
**/
static int16_t sp_buff_out16[INPUT_N];

/**
Exported global variables (to be accessed by other files)
**/

/**
Private global variables and functions
**/
static const int16_t sp_buff_in[INPUT_N] =
{(int16_t)(1.0000000000000000 *0x7FFF)
,(int16_t)(0.0710197609601031 *0x7FFF)
,(int16_t)(0.5590169943749470 *0x7FFF)
,(int16_t)(0.4484011233337100 *0x7FFF)
,(int16_t)((-0.2500000000000000)*0x7FFF)
,(int16_t)(0.5000000000000000 *0x7FFF)
,(int16_t)((-0.5590169943749470)*0x7FFF)
,(int16_t)((-0.1393841289587630)*0x7FFF)
,(int16_t)((-0.2500000000000000)*0x7FFF)
,(int16_t)((-0.8800367553350520)*0x7FFF)

include directory r_dscl_filters.h, r_dscl_types.h, r_stdint.h

library libR_dscl_filter_rl78.a (RL78/G23)
 libR_dscl_filter_rl78_S2_NOMDA.a (RL78/G15)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 39 of 49
Mar.1,23

};

/**
* Function Name: sample_dscl_iirsinglepole
* Description : Sample code to demonstrate single-pole IIR filter
* Arguments : none
* Return Value : r_dsp_status_t Function status code
**/

int16_t sample_dscl_iirsinglepole (void)
{

 int16_t result;
 vector_t input;
 vector_t * input_ptr;
 vector_t output;
 vector_t * output_ptr;

 int16_t state;
 int16_t coeff;

 /*---------------------------*/
 /* Single-pole IIR filter */
 /*---------------------------*/
 r_dscl_iirsinglepole_t sp_handle;
 r_dscl_iirsinglepole_t * sp_handle_ptr;

 /*---------------------------*/
 /* Single-pole IIR filter */
 /*---------------------------*/
 state = 0;
 coeff = (int16_t) ((-0.15) * 0x7FFF);
 sp_handle.options = R_DSCL_ROUNDING_TRUNC;
 sp_handle.coefs = &coeff;
 sp_handle.state = &state;
 sp_handle_ptr = &sp_handle;

 input.n = INPUT_N;
 input.data = (void*)(&sp_buff_in[0]);
 input_ptr = &input;

 output_ptr = &output;
 output.data = (void *)sp_buff_out16;
 result = R_DSCL_IIRSinglePole_i16i16 (sp_handle_ptr,input_ptr,output_ptr);

 return (result);

}

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 40 of 49
Mar.1,23

[To specify a library in e2studio]

From the [Project] menu, select [Properties] to open the "Properties" window. In the tree view of the "Properties"
window, under the [C/C++ Build] node, select [Settings]. Open the [Tool Settings] tab, and then, under the [Linker]
node, expand the [Archives] node. Select "R_dscl_filter_rl78" in [Archive (library) file (-I)] and specify the library path
in [Archive search directories (-L)].

Figure 11. Specifying a library (e2studio)

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 41 of 49
Mar.1,23

6.2 Resource Requirements

6.2.1 Code Size and Stack Size
Table 19. DSC library for RL78/G23
No. Kernel

Category
Kernel Type In/Out

Format
Function Options Code size

(DEC)
Total code
size (DEC)

Stack size
(DEC)

Overall stack
size (DEC)

R_DCSL_FIR_StateSize_i16i16 - 12 12 4 4
R_DCSL_FIR_Init_i16i16 - 89 89 16 16
R_DCSL_FIR_i16i16 c interface 100 20
R_DCSL_FIR_i16i16 nr 137 20
R_DCSL_FIR_i16i16 r 151 22
R_DCSL_IIRBiquad_StateSize_i16i16 - 12 12 2 2
R_DCSL_IIRBiquad_Init_i16i16 - 303 303 60 60
R_DCSL_IIRBiquad_i16i16 c interface 109 22
R_DCSL_IIRBiquad_i16i16 nr 222 28
R_DCSL_IIRBiquad_i16i16 r 239 30
R_DCSL_IIRSinglePole_i16i16 c interface 222 22
R_DCSL_IIRSinglePole_i16i16 nr 143 22
R_DCSL_IIRSinglePole_i16i16 r 172 26

537 48

570 52

388 42

i16i16

Filter Generic FIR1 i16i16

Biquad IIR

Single-pole IIR i16i16

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

Table 20. DSC library for RL78/G15
No. Kernel

Category
Kernel Type In/Out

Format
Function Options Code size

(DEC)
Total code
size (DEC)

Stack size
(DEC)

Overall stack
size (DEC)

R_DCSL_FIR_StateSize_i16i16 - 12 12 4 4
R_DCSL_FIR_Init_i16i16 - 100 100 20 20
R_DCSL_FIR_i16i16 c interface 100 20
R_DCSL_FIR_i16i16 nr 153 42
R_DCSL_FIR_i16i16 r 169 44
R_DCSL_IIRBiquad_StateSize_i16i16 - 12 12 2 2
R_DCSL_IIRBiquad_Init_i16i16 - 278 278 58 58
R_DCSL_IIRBiquad_i16i16 c interface 109 22
R_DCSL_IIRBiquad_i16i16 nr 288 50
R_DCSL_IIRBiquad_i16i16 r 320 54
R_DCSL_IIRSinglePole_i16i16 c interface 222 22
R_DCSL_IIRSinglePole_i16i16 nr 151 40
R_DCSL_IIRSinglePole_i16i16 r 180 44

553 66

717 76

422 64

i16i16

Filter Generic FIR1 i16i16

Biquad IIR

Single-pole IIR i16i16

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 42 of 49
Mar.1,23

6.2.2 Cycles and Accuracy
Table 21. DSC library for RL78/G23

No. Samples Taps Options Cycles Max. Error Avg. Error

1 200 64 nr 354,215 3.03E-05 1.58E-05
2 200 64 r 354,503 1.53E-05 8.43E-06
3 200 1 nr 8,191 3.02E-04 2.20E-04
4 200 1 r 9,915 4.44E-05 1.99E-05
5 200 1 nr 8,482 4.20E-05 1.86E-05
6 200 1 r 9,789 4.24E-05 1.48E-05
7 200 4 nr 81,235 5.32E-04 4.00E-04
8 200 4 r 82,131 1.66E-04 4.82E-05

Biquad IIR

Low-pass

High-pass

Filter

Generic FIR

Single-pole IIR

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

Table 22. DSC library for RL78/G15

No. Samples Taps Options Cycles Max. Error Avg. Error
1 155 64 nr 17,352,000 3.03E-05 1.58E-05
2 155 64 r 17,356,000 1.53E-05 8.43E-06
3 176 1 nr 500,800 3.02E-04 2.20E-04
4 176 1 r 524,800 4.44E-05 1.99E-05
5 176 1 nr 512,000 4.20E-05 1.86E-05
6 176 1 r 536,000 4.24E-05 1.48E-05
7 100 4 nr 780,800 5.32E-04 4.00E-04
8 100 4 r 789,400 1.66E-04 4.82E-05

Biquad IIR

Low-pass

High-pass

Filter

Generic FIR

Single-pole IIR

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 43 of 49
Mar.1,23

7. DSC Library for RL78/G24 FAA
7.1 DSC Library
The DSC Library for FAA is generated by using smart configurator.
For details of FAA, refer to the document RL78/G24 User's Manual: hardware (R01UH0961E) Section4.
If you want to use an IIR Single Pole Filter, use the library R_dscl_filter_rl78.lib (RL78/G14, RL78/G23) as described
in 4.Sample Workspace on CS+, e2studio

If you want to use this library, include the file shown in Table 23.

Table 23. Include File for the DSC Library

Library Function Include File Name
DSC Library Implements digital filters r_dscl_filters.h

Before using these files, copy them to your local include or library directory.

Example of use
The following shows an example of a program that uses a FIR filter. This example shows how to generate the DSC
library for FAA. If you want to use the DSC library for FAA, generate it by using smart configurator, and need to be
compiled and linked, according to [How to generate the DSC library for FAA] described later,

[Source Program]

#include "sample_dscl_fir.h"

/**
Macro definitions
**/
#define NUM_SAMPLES (10)
#define NUM_TAPS (10)
//#define FRACTION_BITS (15)
//#define CONVERSION_CONST ((1<<FRACTION_BITS)-1)

/**
Typedef definitions
**/

/**
Exported global variables (to be accessed by other files)
**/

/**
Private global variables and functions
**/
/* coeffients stored in time-reversed order */
static int16_t myCoeffs[NUM_TAPS] = {
 95, // h(9) = (int16_t)(0.0029024*CONVERSION_CONST)
 330, // h(8) = (int16_t)(0.0100975*CONVERSION_CONST)
 323, // h(7) = (int16_t)(0.0098667*CONVERSION_CONST)
 33, // h(6) = (int16_t)(0.0010075*CONVERSION_CONST)
 (-488), // h(5) = (int16_t)((-0.0149086)*CONVERSION_CONST)
 (-1101), // h(4) = (int16_t)((-0.0336059)*CONVERSION_CONST)
 (-1605), // h(3) = (int16_t)((-0.0490032)*CONVERSION_CONST)
 (-1794), // h(2) = (int16_t)((-0.0547532)*CONVERSION_CONST)
 (-1508), // h(1) = (int16_t)((-0.0460262)*CONVERSION_CONST)
 (-689), // h(0) = (int16_t)((-0.0210426)*CONVERSION_CONST)
};

/* state & two blocks of input,
 stored in time-sequential order */
static int16_t inputData[(NUM_TAPS - 1) + (NUM_SAMPLES*2)] = {

include directory r_dscl_filters.h, r_dscl_types.h

library R_dscl_filter_rl78.lib（RL78/G14, RL78/G23）

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 44 of 49
Mar.1,23

 0, // x(-9), start of delayline
 0, // x(-8)
 0, // x(-7)
 0, // x(-6)
 0, // x(-5)
 0, // x(-4)
 0, // x(-3)
 0, // x(-2)
 0, // x(-1)
 32767, // x(0) = (int16_t)(1.0000*CONVERSION_CONST) ,start of 1st block input
 1736, // x(1) = (int16_t)(0.0530*CONVERSION_CONST)
 25810, // x(2) = (int16_t)(0.7877*CONVERSION_CONST)
 13368, // x(3) = (int16_t)(0.4080*CONVERSION_CONST)
 10518, // x(4) = (int16_t)(0.3210*CONVERSION_CONST)
 26721, // x(5) = (int16_t)(0.8155*CONVERSION_CONST)
 (-983), // x(6) = (int16_t)((-0.0300)*CONVERSION_CONST)
 30521, // x(7) = (int16_t)(0.9202*CONVERSION_CONST)
 0, // x(8) = (int16_t)(0.0000*CONVERSION_CONST)
 19896, // x(9) = (int16_t)(0.6072*CONVERSION_CONST)
 11586, // x(10) = (int16_t)(0.3536*CONVERSION_CONST) ,start of 2nd block input
 3201, // x(11) = (int16_t)(0.0977*CONVERSION_CONST)
 22884, // x(12) = (int16_t)(0.6984*CONVERSION_CONST)
 (-7621), // x(13) = (int16_t)(0.7025*CONVERSION_CONST)
 23018, // x(14) = (int16_t)(0.7025*CONVERSION_CONST)
 (-5314), // x(15) = (int16_t)((-0.1622)*CONVERSION_CONST)
 10125, // x(16) = (int16_t)(0.3090*CONVERSION_CONST)
 6386, // x(17) = (int16_t)(0.1949*CONVERSION_CONST)
 (-7067), // x(18) = (int16_t)((-0.2157)*CONVERSION_CONST)
 15882 // x(19) = (int16_t)(0.4847*CONVERSION_CONST)
};

/* To store two blocks of output */
static int16_t outputData[NUM_SAMPLES*2];

/**
* Function Name: sample_dscl_fir
* Description : Sample code to demonstrate generic FIR filter
* Arguments : none
* Return Value : r_dsp_status_t Function status code
**/
int16_t sample_dscl_fir (void)
{

 r_dscl_firfilter_t myFilterHandle;
 vector_t myInput;
 vector_t myOutput;
 int16_t myFIRFlags = R_DSCL_STATUS_OK;

 /*-------------- Set up the FIR filter ------------*/
 myFilterHandle.taps = NUM_TAPS;
 myFilterHandle.options = R_DSCL_ROUNDING_NEAREST;

 /* No need to call StateSize API for FIR, as it always return 0. */
 /* The delayline & input share the same buffer.*/
 myFilterHandle.state = (void *)&inputData[0]; // start of delay line

 /*----- Initialize the coefficients and internal state ------*/
 myFilterHandle.coefs = (void *)myCoeffs;

 /*initialize delay line*/
 myFIRFlags = R_DSCL_FIR_Init_i16i16(&myFilterHandle);

 if(R_DSCL_STATUS_OK != myFIRFlags)
 {
 return myFIRFlags;
 }

 /*---------------- Set up the input/output ----------------*/
 myInput.n = NUM_SAMPLES;
 myInput.data = (void *)&inputData[NUM_TAPS - 1]; //start of 1st block input
 myOutput.data = (void *)outputData;

 /*------------------ Wait for input data ------------------*/

 /*--------------- Main library function call --------------*/
 /* process 1st input block */
 myFIRFlags = R_DSCL_FIR_i16i16 (&myFilterHandle, &myInput, &myOutput);

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 45 of 49
Mar.1,23

 if(R_DSCL_STATUS_OK != myFIRFlags)
 {
 return myFIRFlags;
 }

 /* process 2nd input block */
 /* start of delay line for 2nd block */
 myFilterHandle.state = (void *)&inputData[NUM_SAMPLES];

 /* start of 2nd block input */
 myInput.data = (void *)&inputData[(NUM_TAPS - 1) + NUM_SAMPLES];

 /* start of 2nd block output */
 myOutput.data = (void *)&outputData[NUM_SAMPLES];

 myFIRFlags = R_DSCL_FIR_i16i16 (&myFilterHandle, &myInput, &myOutput);
 if(R_DSCL_STATUS_OK != myFIRFlags)
 {
 return myFIRFlags;
 }

 /*--------------- Output data are now ready ---------------
 * Note: At this point myOutput.n holds the number of output samples
 * generated bythe library,
 * where the data are written to the array pointed to by myOutput.data.
 --/
 return myFIRFlags;

}

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 46 of 49
Mar.1,23

[How to generate the DSC library for FAA]
The code of the DSC library for FAA is generated by smart configurator.
In this section, the data memory containing the data necessary for the FAA to execute the program is called Data area.

Figure 12. Smart Configurator View

1. Select digital filters to be used in the Functions of smart configurator.
Note: You can select more than one, but select only one requierd Data area size per digital filter.

2. After selecting a function, set its property.
3. The code is generated in ¥src¥smc_gen¥Config_FAA

Selectable Functions is shown in Table 24.

Table 24 Selectable Functions

Function Description
FIR data256 FIR Filter：Data area size 256 bytes
FIR data512 FIR Filter：Data area size 512 bytes
FIR data1024 FIR Filter：Data area size 1024 bytes
IIR Biquad data256 IIR Biquad Filter：Data area size 256 bytes
IIR Biquad data512 IIR Biquad Filter：Data area size 512 bytes
IIR Biquad data1024 IIR Biquad Filter：Data area size 1024 bytes

Functions

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 47 of 49
Mar.1,23

Property Setting is shown in Table 25.

Table 25 Property Setting

Property Description
FAA operation status checking ・Enabled : The operating state of FAA is checked when calling the

API, and return an error code if the FAA is in operation by another
function.
（R_DSCL_ERR_FAA_ALREADY_RUNNING）
・Disabled : The operating state of FAA is not checked.

How to calculate the Data area size to be used
If you want to use the DSC library for FAA, in order to determine the Data area size of digital filter to be used, it is
necessary to calculate user data size from each filter function API parameter. Since the FAA accesses data in 32 bits,
the data size (1 data, 32-bit long word) that can be used for each specified size is below.
・When 256 / 512 / 1024 bytes are specified : 64 / 128 / 256 data can be used in the Data area.
Add the library usage data size to the user data size, since part of this data area is used as library local variables and
stacks.

Table 26 shows how to calculate data size required in order to determine the Data area size of digital filter to be used.

Table 26 How to calculate data size required

Filter Parameter Data size required for
parameter

Library usage
data size

How to calculate data
size required

FIR coefs taps 9 + 2(stack size) coefs + state + output +
Library usage data size state input→n

output input→n
IIR Biquad coefs stages * 5 12 + 3(stack size) coefs + state + input +

output +
Library usage data size

state stages * 4
input input→n
output input→n

Note: For details of parameter, refer to each filter function API parameter item.

Error codes added in the DSC library for FAA
The DSC library for FAA adds the error codes shown in Table 27.

Table 27 Error codes added

Error code Description
R_DSCL_ERR_NO_MEMORY_AVAILABLE Data area size is lacking.

Output when the input data size is larger than the Data
area size allocated by the FAA.

R_DSCL_ERR_FAA_ALREADY_RUNNING FAA is operating.

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 48 of 49
Mar.1,23

7.2 Resource Requirements

7.2.1 Code Size and Stack Size
Table 28. DSC library for RL78/G24 for FAA
No. Kernel

Category
Kernel Type In/Out

Format
Function Options Code size

(DEC)
Total code
size (DEC)

Stack size
(DEC)

Overall stack
size (DEC)

R_DSCL_FIR_StateSize_i16i16 - 2 2 4 4
R_DSCL_FIR_Init_i16i16 - 65 65 6 6
R_DSCL_FIR_i16i16 c interface 119 8
R_DSCL_FIR_i16i16 nr 39 10
R_DSCL_FIR_i16i16 r 39 10
R_Config_FAA_DSCL_FIR_Start - 316 28
R_Config_FAA_DSCL_FIR_Get - 167 14
P_DSCL_FIR FAA 216 216 8 8
R_DSCL_IIRBiquad_StateSize_i16i16 - 5 5 4 4
R_DSCL_IIRBiquad_Init_i16i16 - 65 65 10 10
R_DSCL_IIRBiquad_i16i16 c interface 112 8
R_DSCL_IIRBiquad_i16i16 nr 39 10
R_DSCL_IIRBiquad_i16i16 r 39 10
R_Config_FAA_DSCL_IIRBiquad_Start - 525 30
R_Config_FAA_DSCL_IIRBiquad_Get - 238 14
R_DSCL_IIRBiquad FAA 336 336 12 12

46

48

i16i16

Filter1

Biquad IIR

i16i16Generic FIR

680

953

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

7.2.2 Cycles and Accuracy
Table 29. DSC library for RL78/G24 FAA

No. Samples Taps Options Cycles Max. Error Avg. Error

1 50 64 nr 48,564 3.03E-05 1.58E-05
2 50 64 r 48,567 1.53E-05 8.43E-06
3 50 4 nr 15,398 5.32E-04 4.00E-04
4 50 4 r 15,598 1.66E-04 4.82E-05

Biquad IIR

Filter

Generic FIR

Notes:
nr = R_DSCL_ROUNDING_TRUNC (or no option)
r = R_DSCL_ROUNDING_NEAREST

RL78 Family RL78 Digital Signal Controller Library - Filter

R01AN1665EJ0204 Rev.2.04 Page 49 of 49
Mar.1,23

Revision Record

Rev. Date
Description
Page Summary

1.00 May 7, 2012 - First Edition
1.01 March 6, 2015 - Second Edition
2.00 Apr.13,21 3, 26, 28 Changed Tool from “CubeSuite+, CA78K0R” to “CS+, CC-RL”
 26 Changed the include file to match the changes in the sample

code.
2.01 Sep.30,21 3, 26, 29 Added "e2studio" and "IAR Embedded Workbench" to the tools.
 32 Added chapter "5. Sample workspace on IAR Embedded

Workbench"
2.02 June 27, 2022 3 Added the "LLVM" compiler and the "e2studio" tool.
 37 Added chapter "6. Sample Workspace When the LLVM

Compiler Is Used in e2studio".
2.03 Sep.26,22 - Added device RL78/G15
2.04 Mar.1,23 - Added device RL78/G24 FAA

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by
this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to

stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a

humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and

transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be

grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for

printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings

and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not

guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip

power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power

supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for

input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-

impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-

through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait

until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the

reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an

external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH

(Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in

the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the

correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The

characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal

memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and

application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or
system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software,
or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other
intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including
but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture,

sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability

for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas

Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic

appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial

terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics
document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury
(artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power
control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses
incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual
or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or
software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any
unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT
WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS
PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR
OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY
ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW,
RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY
RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and
Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect
to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any
malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics,
such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh
environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design.
You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in
the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software
alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product.
You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics
disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under
any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by
the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the
product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. DSC Library Kernels
	1.1 List of Abbreviations and Acronyms
	1.2 DSC Library Build information
	1.2.1 Tool Chain Information

	2. DSC Library API
	2.1 Terminology
	2.2 Data structures
	2.2.1 Vectors
	2.2.2 Algorithm kernel handles

	2.3 Function arguments
	2.4 Error handling
	2.5 Rounding Support

	3. Filter Function API
	3.1 FIR Data Structure Definition
	3.2 FIR Initialize API
	3.3 FIR Filter API
	3.4 IIR Biquad Data Structure Definition
	3.5 IIR Biquad State Size API
	3.6 IIR Biquad Initialize API
	3.7 IIR Biquad Filter API
	3.8 Single Pole IIR Data Structure Definition
	3.9 Single-Pole IIR Filter API

	4. Sample Workspace on CS+, e2studio
	4.1 DSC Library
	4.2 Resource Requirements
	4.2.1 Code Size and Stack Size
	4.2.2 Cycles and Accuracy

	5. Sample Workspace on IAR Embedded Workbench
	5.1 DSC Library
	5.2 Resource Requirements
	5.2.1 Code Size and Stack Size
	5.2.2 Cycles and Accuracy

	6. Sample Workspace When the LLVM Compiler Is Used in e2studio
	6.1 DSC Library
	6.2 Resource Requirements
	6.2.1 Code Size and Stack Size
	6.2.2 Cycles and Accuracy

	7. DSC Library for RL78/G24 FAA
	7.1 DSC Library
	7.2 Resource Requirements
	7.2.1 Code Size and Stack Size
	7.2.2 Cycles and Accuracy

	Revision Record
	Contact information
	Corporate Headquarters
	Trademarks

