
Tool News

RENESAS TOOL NEWS on June 1, 2011: 110601/tn7

Notes on Using the C/C++ Compiler Package for the
M16C Series

and the R8C Family (M3T-NC30WA) V.6.00 Release 00

When you use the C/C++ compiler package for the M16C series and the R8C family (M3T-
NC30WA) V.6.00 Release 00, take note of the following problems:

With passing a floating constant to a function as an argument
With defining a function with the static specifier as an interrupt function

These problems are also described in Chapter 3, "Precautions", of the release note included with
the compiler package.

1. Problem with Passing a Floating Constant to a Function as an Argument

1.1 Description
 If an expression converting a negative floating constant to an unsigned
 integer is passed to a function as an argument, the following warning
 message appears, and the value after conversion goes to 0.

 sample.c(6) : C1841 (W) underflow in floating value
 converting to integer
 ===> int j = func((unsigned int)-1.0);

1.2 Conditions
 This problem arises if the following conditions are all satisfied:
 (1) An argument to a function is a negative floating constant.
 Here, the constant can be a variable or expression that is
 replaced with a constant by optimization.
 (2) The constant in (1) is cast to any of the following types:
 char
 unsigned char
 unsigned short
 unsigned int
 unsigned long

 unsigned long long

 Example:

 #include <stdio.h>
 int func(int x) { return x; }
 void main(void)
 {
 int i = (unsigned int)-1.0;
 int j = func((unsigned int)-1.0); /* Conditions (1) and (2) */
 if (i != j) {
 printf("NG (i, j) = (%d, %d)\n", i, j);
 /* Constants i and j go to -1 and 0 respectively */
 } else {
 printf("OK\n", i, j);
 }
 }

1.3 Workaround
 Before calling the function involved in Condition (1), assign the
 constant that is cast in Condition (2) to a temporary variable, and
 then pass the temporary variable to the function as an argument.

 Example:

 #include <stdio.h>
 int func(int x) { return x; }
 void main(void)
 {
 int i = (unsigned int)-1.0;
 unsigned int tmp = (unsigned int)-1.0; /* temp defined */
 int j = func(tmp);
 if (i != j) {
 printf("NG (i, j) =1(%d, %d)\n", i, j);
 } else {
 printf("OK\n", i, j);
 }
 }

1.4 Schedule of Fixing the Problem
 We plan to fix this problem in the next version of the product.

2. Problem with Defining a Function with the Static Specifier

 as an Interrupt Function

2.1 Description
 If an interrupt function is defined by using the #pragma interrupt
 preprocessing directive including a number of the interrupt vector,
 no code may be generated for the function, and the address of the
 function be not set in the variable interrupt vector table.
 As a result, this function cannot be called if interrupts are generated.

2.2 Conditions
 This problem arises if the following conditions are all satisfied:
 (1) Compile option -OS_MAX (-OSM) is used.
 Or, -Oforward_function_to_inline (-OFFTI) is used together with
 any of the following options:
 -O, -O1 through -O5, -OR_MAX (-ORM), -OR, and -OS
 (2) A function is defined by using the storage class specifier static.
 (3) The function in (2) is defined by using #pragma interrupt including
 a number of the interrupt vector.
 (4) No call is made to the function in (2) or no reference is made to
 its address.

 Example:

 #pragma interrupt func(vect=31) /* Condition (3) */
 static void func(void) /* Condition (2) */
 {
 }

 In this example, no code can be generated for the function, and the
 address of the function cannot be set in the variable interrupt vector
 table because the static function, which is not referenced, is
 removed by optimization.
 So this function cannot be called if interrupts are generated.

2.3 Workaround
 Do not use -OS_MAX (-OSM) or -Oforward_function_to_inline (-OFFTI).

2.4 Schedule of Fixing the Problem
 We plan to fix this problem in the next version of the product.

[Disclaimer]

The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

