
Tool News

RENESAS TOOL NEWS on March 16, 2007: 070316/tn5

A Note on Using the C Compiler Packages
--M3T-NC308WA and M3T-NC30WA--

for the M16C MCU Family

Please take note of the problem described below in using the C compiler packages--M3T-
NC308WA and M3T-NC30WA--for the M16C MCU family.

1. Products and Versions Concerned
 (1) The C compiler package--M3T-NC308WA--for the M32C series*1
 V.5.40 Release 00 through V.5.41 Release 01
 (2) The C compiler package--M3T-NC30WA--for the M16C series**
 V.5.40 Release 00 through V.5.43 Release 00

 *Generic name of the M32C/80, and M16C/80 series.
 **Generic name of the M16C/60, /30, /20, /10, /Tiny and R8C/Tiny series.

2. Problem
 When arguments are passed to functions via the stack, they may
 incorrectly be referenced, or the programs containing such functions
 may run away.

3. Conditions
 This problem occurs if the following conditions are all satisfied:
 (1) Compile option -OR or -OR_MAX (-ORM) is selected.
 (2) Compile option -Ono_asmopt (-ONA) is not selected.
 (3) In a file, a function to which its argument is passed via the stack
 (function A) is called from other two or more functions (for example,
 functions B and C below).
 (4) At least either function B or C satisfies any of the following
 conditions (under any of these conditions, the "exitd" instruction
 is generated, which terminates the function):
 - The function takes an argument passed via the stack.

 - The function is using an auto variable (corresponding
 the temporary area generated by the compiler).
 - The -genter option is used at compilation.
 (5) After the program has returned from function A, no code for
 adjusting the stack exists in it until an exitd instruction
 is executed.
 (6) After the argument of function A has been saved, the same code
 exists in functions B and C until function A is called by a jsr
 instruction.
 (7) Function A takes an argument passed via the stack.

 Example:
 --
 void func1(void) // Function B
 {

 comm_func (int i, int *p, int *q); // Function A called

 }
 void func2 (void) // Function C
 {

 comm_func (int i, int *p, int *q); // Function A called

 }
 --

 Explanations:
 In the above example, the code shown below is generated at the places
 where function A is called from functions B and C.

 --

 push.w _q
 push.w _p
 mov.w _i,R1 // D
 jsr $comm_func // E
 exitd

 --

 Since compile option -OR or -OR_MAX is selected under Condition (1),
 it converts the lines D and E above to the common function _aopt_xxx

 as shown below.

 As a result, the arguments in the lines F and G below that are saved on
 the stack will be stored at an address to which the addresses consumed
 by the stack to call _aopt_xxx are accumulated.
 On the other hand, because the code generated from $comm_func remains
 the same as before the lines D and E are converted to _aopt_xxx, the code
 will reference an address different from the one where the arguments of
 function A has been saved.

 --

 push.w _q // F
 push.w _p // G
 jsr _aopt_xxx
 exitd

 _aopt_xxx:
 mov.w _i,R1
 jsr $comm_func
 exitd
 --

4. Workarounds
 This problem can be avoided in any of the following ways:
 (1) If function A is called indirectly, select the -ONA compile
 option.
 (2) If function A is a special page function, select the -ONA option
 or place a dummy asm function immediately after a call to
 function A, which is shown in Example below.
 (3) If function A does not meet the assumptions in (1) and (2) above,
 select the -ONA or -OSA option, or place a dummy asm function
 the same manner as described in (2)
 Example:
 --
 void func1(void)
 {

 comm_func (int i, int *p, int *q);
 asm(); // asm function placed

 }

 --

5. Schedule of Fixing the Problem
 We plan to fix this problem in the next release of the products.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

