

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

date: 2003/08/11

1/1

RENESAS TECHNICAL UPDATE
Classification
of Production Development Environment No TN-CSX-052A/E Rev 1

THEME
SuperH RISC engine C/C++ compiler
package Ver.7.1.03 Updates

Classification of
Information

1. Spec change
2. Supplement of Documents
3. Limitation of Use
4. Change of Mask
5. Change of Production Line

Lot No. term of validity

PRODUCT
NAME

P0700CAS7-MWR
P0700CAS7-SLR
P0700CAS7-H7R All

Reference
Documents

SuperH RISC engine C/C++ Compiler
Assembler Optimizing Linkage Editor
User's Manual
ADE-702-372A
Rev.2.0

Eternity

SuperH RISC engine C/C++ compiler package is updated in Ver.7.1.03.

Refer to the attached document, P0700CAS7-030801E, for details.

Inform the customers who have the package version in the table below.

Package version Compiler version
7.0B 7.0B

7.0.01 7.0.03
7.0.02 7.0.04
7.0.03 7.0.06
7.1.00 7.1.00

P0700CAS7-MWR

7.1.01
7.1.02

7.1.01

7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00

P0700CAS7-SLR

7.1.01
7.1.02

7.1.01

7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00

P0700CAS7-H7R

7.1.01
7.1.02

7.1.01

Attached: P0700CAS7-030801E

 SuperH RISC engine C/C++ Compiler Package

 Ver.7.1.03 Updates

P0700CAS7-030801E

SuperH RISC engine C/C++ Compiler Package
Ver. 7.1.03 Updates

 The contents of updates in this package are shown below.
 The item 1 and item 2 holds true only for PC version.

1. High-performance Embedded Workshop (PC version)

1.1 Navigation feature improvement
C++ navigation feature is available.

1.2 Supporting smart editor
When you enter ".", "->" or "::", smart editor shows the member variable and function list.
You can also select member in the list. When you enter "(" after function name, parameter list
will be shown.

1.3 Supporting Network database
When you use HEW via network, you can specify the access right.

1.4 Makefile import feature
When you create a new project workspace, Hew can import the source files path from makefile.
But toolchain's options are not supported.

1.5 Synchronized debugging feature
Hew can connect two or more targets at the same time and you can debug them as synchronized.

1.6 Workspace improvement
One workspace can have different toolchains project.
You can choose the version if HEW has different version toolchains.

1.7 Introducing Manual Navigator
Manual Navigator can show the list of manuals.

1.8 Supporting file comparison feature
File comparison view is available. It can shows difference between two files.

1.9 Supporting TCL and TK window
Script file which is written by TCL/TK script language can be executed.

1.10 Typelibrary improvement
Workspace operations, project operations and debugger operations interfaces are available.

1.11 Typelibrary improvement
Workspace operations, project operations and debugger operations interfaces are available.

1.12 Adding and Modifying the Data Generated by the Project Generator
Project generation of the following CPU has been newly added:

SH7294, SH7616
The I/O definition file (iodefine.h) of the following CPU has been modified:

SH7011, SH7014, SH7016, SH7017, SH7046, SH7047, SH7049,
SH7050, SH7050F, SH7051, SH7051F, SH7052F, SH7053F, SH7054F,
SH7065, SH7148, SH7615, SH7622

P0700CAS7-030801E

2. SuperH RISC engine simulator/debugger (PC version)

2.1 Improvement of Memory window Look&Feel
Redesigning the memory window and Look&Feel is improved.

2.2 Improving the command line window
When you enter some part of command, it shows list of command which depends upon your input.
And more, command parameter hint is available.

2.3 Coverage enhancement
It shows coverage statistics and measures file basis coverage.

2.4 Image and Wave Window improvement
Image and Waveform window can be updated interval during user program executing.

2.5 Trigger enhancement
You can set up to 256 triggers.

2.6 Register window customization
You can choose which registers are visible on register window.

2.7 Watch window improvement
Watch window has four panes.

2.8 Supporting downloading with specific access size
When HEW downloads the load module to memory with access size which you can specify.

2.9 Supporting Timer
SH-1,SH-2,SH-3,SH-4,SH2-DSP and SH3-DSP have 1ch internal timer module.

2.10 Introducing Event window
Event window is replaced Break points window.

2.11 Improve memory map setting
Memory map and Memory resource are merged one dialog.

3. Compiler

3.1 Illegal deletion of EXTU instruction
[Description]

The following problem is fixed.
When an unsigned variable is used more than once in a loop , the EXTU instruction may
be deleted illegally.

[Example]
 [C source program]
 extern unsigned char X;
 int sub(int a, int b, int n) {
 int i, sum=0;
 for (i = 0; i < n; i++) {
 if (X == (unsigned char)0xff) { // X is used.
 sum += a;
 }
 if (X == (unsigned char)0xf0) { // X is used.
 sum += b;
 }
 X = X + 1; // X is defined.

P0700CAS7-030801E

 }
 return (sum);
 }

 [Assembly source program]
 _sub:
 MOV.L R12,@-R15
 MOV.L R13,@-R15
 MOV.L R14,@-R15
 MOV R5,R13
 MOV #0,R5
 MOV.L L19,R1 ; _X
 MOV R6,R7
 MOV R4,R12
 MOV R5,R6
 MOV #-1,R4
 MOV.B @R1,R2
 ; <- delete EXTU.B R2,R2
 MOV #-16,R14
 EXTU.B R4,R4
 BRA L11
 EXTU.B R14,R14
 L12:
 CMP/EQ R4,R2 ; A result of comparison may be illegal. (X > 127)
 BF L14
 ADD R12,R5
 L14:
 CMP/EQ R14,R2 ; A result of comparison may be illegal. (X > 127)
 BF L16
 ADD R13,R5
 L16:
 ADD #1,R2
 EXTU.B R2,R2
 ADD #1,R6
 L11:
 CMP/GE R7,R6
 BF L12
 MOV.B R2,@R1
 MOV R5,R0
 MOV.L @R15+,R14
 MOV.L @R15+,R13
 RTS
 MOV.L @R15+,R12

[Conditions]
 This problem may occur when all of the following conditions (1) to (4) or (5) to (8)
 are satisfied.
 (1) The optimize=1 option is specified.
 (2) An unsigned char/unsigned short variable is used.
 (3) This variable is used more than once in a loop, and defined after using.
 (4) This variable is loaded from the memory at first.
 (5) The optimize=1 option is specified.
 (6) An unsigned char/unsigned short local variable is used.
 (7) This variable is used as a source variable of right shift operation in a loop.
 (8) The shift count is more than one and SHLR2, SHLR8 or SHLR16 is used.

3.2 Illegal deletion of floating-point constant load

P0700CAS7-030801E

[Description]
The following problem is fixed.

When the same floating-point constants are used more than once in a loop and out of loop,
the load instruction of the constants may be deleted illegally.

[Conditions]
 This problem may occur when all of the following conditions are satisfied.
 (1) The optimize=1 option is specified.
 (2) The same floating-point constants are used more than once in a loop.
 (3) This value is used outside the loop.

3.3 Illegal array access
[Description]

The following problem is fixed.
 When an array index is C-exp, where C is a constant value and exp is unsigned char/short
 type expression , the element of the array is accessed illegally.

[Example]
 [C source program]
 unsigned char dd[2];
 void func(unsigned char a, unsigned char b) {
 dd[15-a]=b1;
 }

 [Assembly source program]
 _func:
 MOV.L L11,R2 ; _dd
 NEG R4,R6 ; R6 <- -a
 EXTU.B R6,R0 ; -a is zero-extended
 ADD #15,R2
 RTS
 MOV.B R5,@(R0,R2) ; Illegal address is accessed

[Conditions]
 This problem may occur when all of the following conditions are satisfied.
 (1) The optimize = 1 option is specified.
 (2) This array element is accessed by "constant value - expression"
 (dd[15-a] in the example).

3.4 Illegal copy by memmove
[Description]

The following problem is fixed.
When memmove of the standard library copies some characters from an address to the
greater address, more characters than specified may be copied.

[Conditions]
This problem occurs when all of the following conditions are satisfied.
 (1) The move size is more than 30-byte.
 (2) The destination address is greater than the source address.
 (3) (The source address + the movement size) is inside the destination area.
 (4) The source address or the destination address is not a power of 4.

3.5 Illegal array access
[Description]
 The following problem is fixed.
 When all of the following conditions are satisfied, the unconditional branch may be deleted illegally.
 - The last of a function is conditional statement.

P0700CAS7-030801E

 - Conditions are nested in the statement.
 - The last condition finishes with a function call and a return statement,
 and the previous condition finishes with a function call.

[Example]
 [C source program]
 void sub(int parm) {
 if (parm == 0) {
 ;
 } else if (parm == 1) {
 ;
 } else if (parm == 2) {
 ;
 } else if (parm == 3) {
 ;
 } else if (parm == 4) {
 ;
 } else if (parm == 5) {
 func1(); /* <A> */
 } else {
 func2(); /* */
 return; /* */
 }
 return;
 }

 [Assembly source program]
 _sub:
 STS.L PR,@-R15
 TST R4,R4
 BT L11
 MOV R4,R0
 CMP/EQ #1,R0
 BT L11
 CMP/EQ #2,R0
 BT L11
 CMP/EQ #3,R0
 BT L11
 CMP/EQ #4,R0
 BT L11
 CMP/EQ #5,R0
 BF L18
 MOV.L L20+2,R2 ; _func1
 JSR @R2
 NOP
L11:
 ; A branch to L19 is deleted
L18:
 MOV.L L20+6,R2 ; _func2
 JMP @R2 ; This function is always called
 LDS.L @R15+,PR
L19:
 LDS.L @R15+,PR
 RTS
 NOP

[Conditions]

P0700CAS7-030801E

 This problem may occur when all of the following conditions are satisfied.
 (1) The optimize=1 option is specified.
 (2) The last of a function is conditional statement and the conditions are nested.
 (3) The last condition finishes with a function call and a return statement
 (in the example).
 (4) The condition previous to (3) finishes with a function call (<A> in the example).

3.6 Illegal cast from unsigned integer to float
[Description]
 The following problem is fixed.
 When the unsigned integer type variable is cast to the float type, the cast may be deleted illegally.

[Example]
 [C source program]
 unsigned short us1;
 volatile unsigned short us0;
 volatile float f0;
 float *p;
 void func() {
 f0 = *p = ((float)us0, (float)us1);
 }

 [Assembly source program]
 _func:
 MOV.L L29+50,R2 ; _us0
 MOV.L L29+54,R5 ; _p
 MOV.W @R2,R6
 MOV.L L29+58,R6 ; _us1
 MOV.W @R6,R2
 EXTU.W R2,R6
 MOV.L @R5,R2
 MOV.L R6,@R2 ; store to *p without cast to float type
 MOV.L @R5,R2
 MOV.L @R2,R6
 MOV.L L29+10,R2 ; _f0
 RTS
 MOV.L R6,@R2 ; store to f0 without cast to float type

[Conditions]
 This problem may occur when all of the following conditions are satisfied.
 (1) The unsigned integer variable is cast to float type.
 (2) The unsigned integer variable is cast to double type and either double=float or
 fpu=double option is specified, or is cast to long double type and fpu=single
 option is specified.

3.7 Illegal movement of stack pointer with ld_ext() or st_ext()
[Description]
 The following problem is fixed.
 When an ld_ext() or st_ext() intrinsic function is used and a local array is specified as a parameter,

 the stack pointer may be moved illegally.

[Example]
 [C source program]
 #include <machine.h>

 void main() {
 float table[4][4], data1[4][4], data2[4][4];

P0700CAS7-030801E

 :
 ld_ext(table) ;
 mtrx4mul(data1,data2) ;
 :
 }

 [Assembly source program]
 :
 FRCHG
 FMOV.S @R15+,FR0 ; R15 is moved. When an interrupt occurs, upper area of
 ; stack is destroyed
 FMOV.S @R15+,FR1 ; |
 FMOV.S @R15+,FR2 ; |
 FMOV.S @R15+,FR3 ; |
 FMOV.S @R15+,FR4 ; |
 FMOV.S @R15+,FR5 ; |
 FMOV.S @R15+,FR6 ; |
 FMOV.S @R15+,FR7 ; |
 FMOV.S @R15+,FR8 ; |
 FMOV.S @R15+,FR9 ; |
 FMOV.S @R15+,FR10 ; |
 FMOV.S @R15+,FR11 ; |
 FMOV.S @R15+,FR12 ; |
 FMOV.S @R15+,FR13 ; |
 FMOV.S @R15+,FR14 ; |
 FMOV.S @R15+,FR15 ; |
 FRCHG ; |
 ADD #-64,R15 ; V

[Conditions]
 This problem may occur when all of the following conditions are satisfied.
 (1) The cpu=sh4 option is specified and the ld_ext() or st_ext() intrinsic function is used.
 (2) A local array is specified as the parameter..

3.8 Illegal output of data
[Description]
 The following problem is fixed.

When there are many variables with initial value of "symbol address + offset" in the source program,
the internal error may occur or an illegal object may be generated.

[Conditions]
 This problem may occur when all of the following conditions are satisfied.
 (1) The code=asmcode option is specified. (This option is valid by default.)
 (2) The listfile option is not specified, or both the listfile option and the show=noobject
 option are specified.
 (3) A variable with an initial value exists.
 (4) The initial value is described in the form of "symbol address + offset" or
 an address of a struct member which is not allocated at the top of the struct.
 (5) In all of such variables, the variables and offsets of initial value satisfy with
 the following condition:
 (number of such variables + sum of number of decimal-digits in offset) >= 33,000
 <Example>
 extern char g;
 #define DATA1A (&g+2147483647)
 #define DATA10A DATA1A, DATA1A, DATA1A, DATA1A, DATA1A,Y
 DATA1A, DATA1A, DATA1A, DATA1A, DATA1A
 #define DATA100A DATA10A, DATA10A, DATA10A, DATA10A, DATA10A,Y

P0700CAS7-030801E

 DATA10A, DATA10A, DATA10A, DATA10A, DATA10A
 /* In this case, */
 /* number of variables + the sum of decimal-digit number of offset */
 /* = (3001+10*3001) = 33011 > 33000 */
 char *a1[1000] = {
 DATA100A, DATA100A, DATA100A, DATA100A, DATA100A,
 DATA100A, DATA100A, DATA100A, DATA100A, DATA100A
 };
 char *a2[1000] = {
 DATA100A, DATA100A, DATA100A, DATA100A, DATA100A,
 DATA100A, DATA100A, DATA100A, DATA100A, DATA100A
 };
 char *a3[1000] = {
 DATA100A, DATA100A, DATA100A, DATA100A, DATA100A,
 DATA100A, DATA100A, DATA100A, DATA100A, DATA100A
 };
 char *a = DATA1A;

