RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A0100B/E	Rev.	2.00
Title	Correction for Incorrect Description Notice RL78/G23 Descriptions in the User's Manual: Hardware Rev. 1.00 Changed		Information Category	Technical Notification		
		Lot No.				
Applicable Product	RL78/G23 Group	All lots	Reference Document	RL78/G23 User's Man Rev. 1.00 R01UH0896EJ0100 (/	ual: Hard Apr. 2021)	ware)

This document describes misstatements found in the RL78/G23 User's Manual: Hardware Rev. 1.00 (R01UH0896EJ0100).

Corrections (1/3)

Applicable Item	Applicable Page	Contents
1.1 Features, Middle-speed on-chip oscillator	Page 17	Incorrect descriptions revised
1.6 Outline of Functions, Capacitive sensing unit	Page 18, Page 19	Incorrect descriptions revised
2.2.2 Description of pin functions, TS00-TS15, TS20-TS35, TSCAP	Page 20	Incorrect descriptions revised
Table 2 - 3 Connections of Unused Pins, P123, P124	Page 21	Caution added
Figure 2 - 25 Pin Block Diagram for Pin Type 8-31-1	Page 22	Incorrect descriptions revised
Figure 2 - 33 Pin Block Diagram for Pin Type 12-38-3	Page 23	Caution changed
Table 3 - 8 List of Extended Special Function Registers (2nd SFRs) (2/15), PFCMD register	Page 24	Incorrect descriptions revised
Table 3 - 8 List of Extended Special Function Registers (2nd SFRs) (7/15), MIOTRM register	Page 25	Incorrect descriptions revised
4.3.7 Port mode control A registers (PMCAxx)	Page 26	Caution added
4.5.4 Examples of register settings for port and alternate functions	Page 27	Caution added
Table 4 - 7 Examples of Register and Output Latch Settings for Alternate Functions (30-Pin to 64-Pin Products with 96- Kbyte or 128-Kbyte Flash Memory) (4/17)	Page 28	Incorrect descriptions revised
Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768- Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (1/21)	Page 29	Incorrect descriptions revised
Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768- Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (4/21)	Page 30	Incorrect descriptions revised
Figure 6 - 9 Format of Subsystem Clock Supply Mode Control Register (OSMC)	Page 31	Incorrect descriptions revised
9.2.11 Interval timer status register (ITLS0)	Page 32	Caution added
Table 12 - 3 A/D Conversion Time Selection (3/8)	Page 33	Incorrect descriptions revised
12.3.6 12-bit/10-bit A/D conversion result register (ADCRn)	Page 34	Caution added
Figure 12 - 12 Format of Analog Input Channel Specification Register (ADS)	Page 35, Page 36	Caution added and incorrect descriptions revised
12.6.2 Software trigger no-wait mode (select mode, one-shot conversion mode)	Page 37	Incorrect descriptions revised

Correction	<u>s (2/3)</u>		
	Applicable Item	Applicable Page	Contents
	12.6.4 Software trigger no-wait mode (scan mode, one-shot conversion mode)	Page 38	Incorrect descriptions revised
	12.6.6 Software trigger wait mode (select mode, one-shot conversion mode)	Page 39	Incorrect descriptions revised
	12.6.8 Software trigger wait mode (scan mode, one-shot conversion mode)	Page 40	Incorrect descriptions revised
	12.6.9 Hardware trigger no-wait mode (select mode, sequential conversion mode)	Page 41	Incorrect descriptions revised
	12.6.10 Hardware trigger no-wait mode (select mode, one- shot conversion mode)	Page 42	Incorrect descriptions revised
	12.6.11 Hardware trigger no-wait mode (scan mode, sequential conversion mode)	Page 43	Incorrect descriptions revised
	12.6.12 Hardware trigger no-wait mode (scan mode, one- shot conversion mode)	Page 44	Incorrect descriptions revised
	12.6.14 Hardware trigger wait mode (select mode, one-shot conversion mode)	Page 45	Caution added and incorrect descriptions revised
	12.6.16 Hardware trigger wait mode (scan mode, one-shot conversion mode)	Page 46	Incorrect descriptions revised
	Figure 15 - 35 Example of Contents of Registers for Master Reception of 3-Wire Serial SPI (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21, CSI30, CSI31)	Page 47	Incorrect descriptions revised
	Table 15 - 3 Baud Rate Setting for UART Reception in SNOOZE Mode	Page 48	Description changed
	17.3.2 UART Mode, (5) Continuous transmission	Page 49	Description added
	Figure 23 - 4 Procedure for Settings to Switch from Shutdown Mode to Normal Mode	Page 50	Caution added
	Table 23 - 1 Operating Statuses in HALT Mode (1) (2/2)	Page 51	Description added
	Table 23 - 2 Operating Statuses in HALT Mode (2) (2/2)	Page 52	Description added
	Table 23 - 3 Operating Statuses in STOP Mode (2/2)	Page 53	Description added
	Table 23 - 4 Operating Statuses in SNOOZE Mode (2/2)	Page 53	Description added
	Source Condition is Satisfied until an LVD0 or LVD1 Reset has been Generated and Deasserted	Page 54	Incorrect descriptions revised
	Figure 28 - 3 Procedure for Using the True Random Number Generator to Generate a Random Number Seed	Page 55	Description added
	28.2.2 Setting of flash read protection	Page 56	Caution changed
	CHAPTER 30 CAPACITIVE SENSING UNIT (CTSU2L), Number of the CTSU2L output channels	Page 57	Incorrect descriptions revised
	Table 30 - 1 CTSU Functions, Transmission power switching of mutual capacitance method	Page 58	Incorrect descriptions revised
	Table 30 - 2 External Pins Used in CTSU	Page 59	Incorrect descriptions revised
	Figure 30 - 7 Format of CTSU Control Registers AL and AH (CTSUCRAL, CTSUCRAH)	Page 60, Page 61	Description changed
	Figure 30 - 15 Format of CTSU Calibration Registers L and H (CTSUDBGR0, CTSUDBGR1)	Page 62	Incorrect descriptions revised
	CHAPTER 30 CAPACITIVE SENSING UNIT (CTSU2L), Cautions when using capacitive sensing unit	Page 63	Description added
	31.1 Overview	Page 64	Description added
	Figure 32 - 5 Format of User Option Byte (000C2H or 040C2H)	Page 65	Incorrect descriptions revised
	Figure 33 - 8 Flow of Self-Programming (Rewriting Flash Memory)	Page 66	Description changed
	33.6.2.1 Flash address pointer registers H and L (FLAPH, FLAPL)	Page 67	Caution changed
	33.6.2.2 Flash end address pointer registers H and L (FLSEDH, FLSEDL)	Page 68	Caution changed
	33.6.2.3 Flash write buffer registers H and L (FLWH, FLWL)	Page 69, Page 70	Caution changed
	33.6.2.6 Flash programming mode control register (FLPMC)	Page 71	Caution added
	33.6.2.8 Flash memory sequencer initial setting register	Page 72,	Caution added and
	(FSSET)	Page 73	description changed

<u>s (3/3)</u>		
Applicable Item	Applicable Page	Contents
33.6.2.9 Flash memory sequencer control register (FSSQ)	Page 74 to Page 76	Caution added and description changed
33.6.2.10 Flash extra sequencer control register (FSSE)	Page 77, Page 78	Caution added and description changed
33.6.2.11 Flash registers initialization register (FLRST)	Page 79	Caution changed
33.6.2.12 Flash memory sequencer status registers H and L (FSASTH, FSASTL)	Page 80	Incorrect descriptions revised
33.6.2.13 Flash security flag monitoring register (FLSEC)	Page 81	Description added and incorrect descriptions revised
33.6.2.14 Flash FSW monitoring register E (FLFSWE)	Page 82	Caution changed and description changed
33.6.2.16 Data flash control register (DFLCTL)	Page 83	Description changed
33.6.3 Setting the flash memory control mode	Page 84	Description changed
33.6.3.1 Procedure for executing the specific sequence	Page 85	Description changed
33.6.6.4 Operations for rewriting the code flash memory area	Page 86, Page 87	Caution added and description changed
33.6.6.5 Operations for rewriting the data flash memory area	Page 88,	Caution added and
	Page 89	description changed
33.6.6.7 Operations for rewriting the extra area	Page 90, Page 91	Description changed
33.6.6.8 Data to be set for the commands for use with the	Page 92 to	Caution changed and
extra area sequencer	Page 96	description changed
33.6.8 Flash shield window function	Page 97,	Caution changed and
	Page 98	description changed
33.6.10.3 Example of executing the commands to rewrite the extra area	Page 99	Description changed
33.6.11 Notes on self-programming	Page 100	Caution changed and caution added
33.7 Security Settings	Page 101 to Page 104	Caution added and description changed
34.2 Connection between the External Device that Incorporates UART and RL78/G23	Page 105	Caution changed
37.1 Absolute Maximum Ratings	Page 106	Incorrect descriptions revised
37.2.1 Characteristics of the X1 and XT1 oscillators	Page 107	Incorrect descriptions revised
37.3.1 Pin characteristics	Page 108 to Page 111	Incorrect descriptions revised
37.3.2 Supply current characteristics	Page 112 to Page 122	Specifications changed and Specifications added
37.5.2 Serial interface UARTA	Page 123	Specifications changed
37.6.1 A/D converter characteristics, (1) Normal modes 1 and 2	Page 124	Description changed
37.6.1 A/D converter characteristics, (2) Low-voltage modes 1 and 2	Page 125	Description changed
37.6.4 Comparator characteristics	Page 126	Specifications changed
37.8 Flash Memory Programming Characteristics	Page 127	Incorrect descriptions revised
38.4 40-Pin Products	Page 128	Specifications added
38.6 48-Pin Products	Page 129	Specifications added

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware (1/3)

	Corrections and Applicable Items Pages in this				
No.	Document No. English	R0111H0896E10100	document for		
			corrections		
1	Pin Configuration, 44-pin products	Page 13	Page 7		
2	Outline of Functions, 44-pin products	Page 25	Page 8		
3	Functions of Port Pins, 44-pin products	Page 41	Page 9		
4	Functions for each product, 44-pin products	Page 62	Page 10		
5	Table 4 - 1 Port Configuration (1/2)	Page 169	Page 11		
6	Port Configuration, Port5	Page 173	Page 12		
7	Figure 4 - 12 Format of Output Current Control Enable Register	Page 197	Page 13		
	Table 4 - 7 Examples of Register and Output Latch Settings for		Page 14		
8	Alternate Functions (30-Pin to 64-Pin Products with 96-	Page 220	5		
	Kbyte or 128-Kbyte Flash Memory) (9/17)	0			
	Table 4 - 8 Examples of Register and Output Latch Settings for		Page 15		
0	Alternate Functions (Products with 192-Kbyte to 768-	Dogo 226			
9	Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-	Fage 230			
	Kbyte Flash Memory) (9/21)				
10	Figure 32 - 4 Format of User Option Byte (000C1H or 040C1H) (3/3)	Page 1278	Page 16		
11	1.1 Features, Middle-speed on-chip oscillator	Page 1	Page 17		
12	1.6 Outline of Functions, 30- to 48-pin products, Capacitive sensing	Page 26	Page 18		
	unit	. 490 20			
13	1.6 Outline of Functions, 52- to 128-pin products, Capacitive	Page 29	Page 19		
	sensing unit	- ugo 20			
14	2.2.2 Description of pin functions, TS00-TS15, TS20-TS35, TSCAP	Page 68	Page 20		
15	Table 2 - 3 Connections of Unused Pins, P123, P124	Page 70	Page 21		
16	Figure 2 - 25 Pin Block Diagram for Pin Type 8-31-1	Page 96	Page 22		
1/	Figure 2 - 33 Pin Block Diagram for Pin Type 12-38-3	Page 107	Page 23		
18	Table 3 - 8 List of Extended Special Function Registers (2nd SFRs) (2/15), PFCMD register	Page 139	Page 24		
19	Table 3 - 8 List of Extended Special Function Registers (2nd SFRs) (7/15) MIOTRM register	Page 144	Page 25		
20	4.3.7 Port mode control A registers (PMCAxx)	Page 191	Page 26		
21	4.5.4 Examples of register settings for port and alternate functions	Page 211	Page 27		
	Table 4 - 7 Examples of Register and Output Latch Settings for		Page 28		
22	Alternate Functions (30-Pin to 64-Pin Products with 96-	Page 215	5		
	Kbyte or 128-Kbyte Flash Memory) (4/17)	Ū			
	Table 4 - 8 Examples of Register and Output Latch Settings for		Page 29		
22	Alternate Functions (Products with 192-Kbyte to 768-	Page 228			
23	Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-	Faye 220			
	Kbyte Flash Memory) (1/21)				
	Table 4 - 8 Examples of Register and Output Latch Settings for		Page 30		
24	Alternate Functions (Products with 192-Kbyte to 768-	Page 231			
	Koyte Flash Memory and 80-Pin and 100-Pin Products with 128-				
	NUVIE FIASTI Memory (4/21)		Daga 21		
25	Register (OSMC)	Page 282	raye SI		
26	9.2.11 Interval timer status register (ITI S0)	Page 483	Page 32		
27	Table 12 - 3 A/D Conversion Time Selection (3/8)	Page 527	Page 33		
28	12.3.6 12-bit/10-bit A/D conversion result register (ADCRn)	Page 543	Page 34		
	Figure 12 - 12 Format of Analog Input Channel Specification	D 540	Page 35.		
29	Register (ADS)	Page 546	Page 36		
20	12.6.2 Software trigger no-wait mode (select mode, one-shot	Pago 555	Page 37		
30	conversion mode)	Fage 000	-		
31	12.6.4 Software trigger no-wait mode (scan mode, one-shot	Page 557	Page 38		
	conversion mode)				
32	12.6.6 Software trigger wait mode (select mode, one-shot	Page 559	Page 39		
	12.6.8 Software trigger wait mode (scan mode, one shot conversion	-	Page 40		
33	mode)	Page 561	i aye +0		
	mouoj	1			

Corrections in the User's Manual: Hardware (2/3)

	Corrections and Applicable Items Pages in this				
No.	Document No. English	R01UH0896EJ0100	document for		
34	12.6.9 Hardware trigger no-wait mode (select mode, sequential	Page 562	Page 41		
35	12.6.10 Hardware trigger no-wait mode (select mode, one-shot	Page 563	Page 42		
36	12.6.11 Hardware trigger no-wait mode (scan mode, sequential conversion mode)	Page 564	Page 43		
37	12.6.12 Hardware trigger no-wait mode (scan mode, one-shot conversion mode)	Page 566	Page 44		
38	12.6.14 Hardware trigger wait mode (select mode, one-shot conversion mode)	Page 568	Page 45		
39	12.6.16 Hardware trigger wait mode (scan mode, one-shot conversion mode)	Page 570	Page 46		
40	Figure 15 - 35 Example of Contents of Registers for Master Reception of 3-Wire Serial SPI (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21, CSI30, CSI31)	Page 676	Page 47		
41	Table 15 - 3 Baud Rate Setting for UART Reception in SNOOZE Mode	Page 752	Page 48		
42	17.3.2 UART Mode, (5) Continuous transmission	Page 911	Page 49		
43	Figure 23 - 4 Procedure for Settings to Switch from Shutdown Mode	de Page 1108	Page 50		
44	Table 23 - 1 Operating Statuses in HALT Mode (1) (2/2)	Page 1110	Page 51		
45	Table 23 - 2 Operating Statuses in HALT Mode (2) (2/2)	Page 1112	Page 52		
46	Table 23 - 3 Operating Statuses in STOP Mode (2/2)	Page 1117	Page 53		
47	Table 23 - 4 Operating Statuses in SNOOZE Mode (2/2)	Page 1124	Page 53		
	Figure 26 - 11 Delays from the Time an LVD0 or LVD1 Reset		Page 54		
48	Source Condition is Satisfied until an LVD0 or LVD1 Reset has be Generated and Deasserted	en Page 1155			
49	Figure 28 - 3 Procedure for Using the True Random Number Generator to Generate a Random Number Seed	Page 1188	Page 55		
50	28.2.2 Setting of flash read protection	Page 1190	Page 56		
51	CHAPTER 30 CAPACITIVE SENSING UNIT (CTSU2L), Number the CTSU2L output channels	of Page 1236	Page 57		
52	Table 30 - 1 CTSU Functions, Transmission power switching of mutual capacitance method	Page 1238	Page 58		
53	Table 30 - 2 External Pins Used in CTSU	Page 1239	Page 59		
54	Figure 30 - 7 Format of CTSU Control Registers AL and AH (CTSUCRAL, CTSUCRAH)	Page 1245, Page 1246, Page 1247	Page 60, Page 61		
55	Figure 30 - 15 Format of CTSU Calibration Registers L and H (CTSUDBGR0, CTSUDBGR1)	Page 1264, Page 1266	Page 62		
56	CHAPTER 30 CAPACITIVE SENSING UNIT (CTSU2L), Cautions when using capacitive sensing unit	Page 1271	Page 63		
57	31.1 Overview	Page 1272	Page 64		
58	Figure 32 - 5 Format of User Option Byte (000C2H or 040C2H)	Page 1279	Page 65		
59	Figure 33 - 8 Flow of Self-Programming (Rewriting Flash Memory)) Page 1297	Page 66		
60	33.6.2.1 Flash address pointer registers H and L (FLAPH, FLAPL)) Page 1300	Page 67		
61	33.6.2.2 Flash end address pointer registers H and L (FLSEDH, FLSEDL)	Page 1301	Page 68		
62	33.6.2.3 Flash write buffer registers H and L (FLWH, FLWL)	Page 1303	Page 69, Page 70		
63	33.6.2.6 Flash programming mode control register (FLPMC)	Page 1306	Page 71		
64	33.6.2.8 Flash memory sequencer initial setting register (FSSET)	Page 1308	Page 72, Page 73		
65	33.6.2.9 Flash memory sequencer control register (FSSQ)	Page 1310, Page 1311	Page 74 to Page 76		
66	33.6.2.10 Flash extra sequencer control register (FSSE)	Page 1312	Page 77, Page 78		
67	33.6.2.11 Flash registers initialization register (FLRST)	Page 1313	Page 79		
68	33.6.2.12 Flash memory sequencer status registers H and L (FSASTH, FSASTL)	Page 1314	Page 80		
69	33.6.2.13 Flash security flag monitoring register (FLSEC)	Page 1316	Page 81		
70	33.6.2.14 Flash FSW monitoring register E (FLFSWE)	Page 1317	Page 82		
71	33.6.2.16 Data flash control register (DFLCTL)	Page 1319	Page 83		

Corrections in the User's Manual: Hardware (3/3)

	Corrections and Applicable Items				Pages in this
No.		Document No.	English	R01UH0896EJ0100	document for corrections
72	33.6.3	Setting the flash mem	ory control mode	Page 1322	Page 84
73	33.6.3.1	1 Procedure for execu	ting the specific sequence	Page 1322	Page 85
74	33.6.6.4	Operations for rewrite	ing the code flash memory area	Page 1326	Page 86, Page 87
75	33.6.6.5	5 Operations for rewri	ing the data flash memory area	Page 1327	Page 88, Page 89
76	33.6.6.7	7 Operations for rewrit	ing the extra area	Page 1328	Page 90, Page 91
77	33.6.6.8 sequen	3 Data to be set for the cer	e commands for use with the extra area	Page 1329 to Page 1331	Page 92 to Page 96
78	33.6.8 F	Flash shield window fu	unction	Page 1335	Page 97, Page 98
79	33.6.10 area	.3 Example of execut	ng the commands to rewrite the extra	Page 1340	Page 99
80	33.6.11	Notes on self-program	nming	Page 1341	Page 100
81	33.7 Se	curity Settings		Page 1342,	Page 101 to
01				Page 1343	Page 104
82	34.2 Co UART a	onnection between the and RL78/G23	External Device that Incorporates	Page 1347	Page 105
83	37.1 Ab	solute Maximum Rati	ngs	Page 1375	Page 106
84	37.2.1 (Characteristics of the	X1 and XT1 oscillators	Page 1376	Page 107
85	37.3.1	Pin characteristics		Page 1378 to Page 1381	Page 108 to Page 111
86	37.3.2 \$	Supply current charac	teristics	Page 1387 to Page 1394	Page 112 to Page 122
87	37.5.2 \$	Serial interface UART	Ą	Page 1430	Page 123
88	37.6.1	A/D converter charact	eristics, (1) Normal modes 1 and 2	Page 1434	Page 124
89	37.6.1	A/D converter charact	eristics, (2) Low-voltage modes 1 and 2	Page 1435	Page 125
90	37.6.4 (Comparator character	istics	Page 1438	Page 126
91	37.8 Fla	ash Memory Program	ming Characteristics	Page 1444	Page 127
92	38.4 40	-Pin Products		Page 1450	Page 128
93	38.6 48	-Pin Products		Page 1453	Page 129

Incorrect: Bold with underline: Correct: Gray hatched

Revision History

RL78/G23 Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A0100A/E	Jun. 29, 2021	First edition issued
		Corrections No.1 to No.10 revised (this document)
TN-RL*-A0100B/E	Nov. 24, 2021	Corrections No.11 to No.93 revised

1. Pin Configuration, 44-pin products (Page 13)

Incorrect:

• 44-pin plastic LQFP (10 × 10 mm, 0.80-mm pitch)

Date: Nov. 24, 2021

Correct:

• 44-pin plastic LQFP (10 × 10 mm, 0.80-mm pitch)

2. Outline of Functions, 44-pin products (Page 25)

Incorrect:

[30-, 32-, 36-, 40-, 44-, and 48-pin products]

[30-, 32-, 4	50-, 40-, 44-, and 40-pin	producisj	-	_	·	-	
Item		30-pin				44-pin	48-
		R7F100GAx				R7F100GFx	R7F
I/O port	Total number of pins	26				40	44
	CMOS I/O	23 (N-ch open drain I/O [VDD withstand voltage]: 10)				33 (N-ch open drain I/O [VDD withstand voltage]: 12)	36 (N-c drai [VDI with volt
	CMOS input	1				3	3
	CMOS output	-				-	1
	N-ch open drain I/O (withstand voltage: 6 V)	2				4	4
	Output current control port	6				<u>8</u>	8

44-pin	48-pin
R7F100GFx	R7F100GGx
40	44
33 (N-ch open drain I/O [VDD withstand voltage]: 12)	36 (N-ch open drain I/O [VDD withstand voltage]: 13)
3	3
-	1
4	4
<u>8</u>	8

Date: Nov. 24, 2021

Correct:

[30-, 32-, 36-, 40-, 44-, and 48-pin products]

Item		30-pin	
		R7F100GAx	
I/O port	Total number of pins	26	
	CMOS I/O	23 (N-ch open drain I/O [VDD withstand voltage]: 10)	
	CMOS input	1	
	CMOS output	-	
	N-ch open drain I/O (withstand voltage: 6 V)	2	
	Output current control port	6	

-		
	44-pin	48-pin
	R7F100GFx	R7F100GGx
	40	44
	33 (N-ch open drain I/O [VDD withstand voltage]: 12)	36 (N-ch open drain I/O [VDD withstand voltage]: 13)
	3	3
	-	1
	4	4
	7	8

3. Functions of Port Pins, 44-pin products (Page 41)

Incorrect:

2.1.5 44-pin products

Function Name	Pin Type	I/O	After Reset Release	Alternate Function	Function

P50	7-39-1	I/O	Input port	TS00/EI50/EO50/ <u>CCD03/</u> INTP1/SI11/SDA11	Port 5. 2-bit I/O port. Output of P50 can be set to
P51	7-38-1			EI51/EO51/CCD02/INTP2/ SO11	(VDD tolerance). Input or output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. <u>P50 and P51</u> can be set as output current control port pins.

Date: Nov. 24, 2021

Correct:

2.1.5 44-pin products

Function Name	Pin Type	I/O	After Reset Release	Alternate Function	Function

P50	7-39-1	I/O	Input port	TS00/EI50/EO50/	Port 5. 2-bit I/O port. Output of P50 can be set to
P51	7-38-1			EI51/EO51/CCD02/INTP2/ SO11	(VDD tolerance). Input or output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. P51 can be set as output current control port pins.

4. Functions for each product, 44-pin products (Page 62)

Incorrect:

2.2.1 Functions for each product

Function	128-	100-	80-	64-	52-	48-	44-	40-	36-	32-	30-
Name	pin	pin	pin	pin	pin	pin	pin	pin	pin	pin	pin

CCD00	1	1	1	1	1	1	1	1	1	1	1
CCD01	1	1	1	1	1	1	1	1	1	1	1
CCD02	1	1	1	1	1	1	1	1	1	1	1
CCD03	1	1	1	1	1	1	<u>✓</u>	1	1	1	1

Correct:

2.2.1 Functions for each product

Function	128-	100-	80-	64-	52-	48-	44-	40-	36-	32-	30-
Name	pin	pin	pin	pin	pin	pin	pin	pin	pin	pin	pin

CCD00	1	1	1	1	1	1	1	1	1	1	1
CCD01	1	1	1	1	1	1	1	1	1	1	1
CCD02	1	1	1	1	1	1	1	1	1	1	1
CCD03	1	1	1	1	1	1		1	1	1	1

5. <u>Table 4 - 1 Port Configuration (1/2) (Page 169)</u>

Incorrect:

Table 4 - 1 Port Configuration (1/2)

ltem	Configuration
Item Port	 Configuration 30-pin products Total: 26 (CMOS I/O: 23 (N-ch open drain I/O [VDD tolerance]: 10, output current control port: 6), CMOS input: 1, N-ch open drain I/O [6-V tolerance]: 2) 32-pin products Total: 28 (CMOS I/O: 24 (N-ch open drain I/O [VDD tolerance]: 10, output current control port: 7), CMOS input: 1, N-ch open drain I/O [6-V tolerance]: 3) 36-pin products Total: 32 (CMOS I/O: 28 (N-ch open drain I/O [VDD tolerance]: 12, output current control port: 7), CMOS input: 1, N-ch open drain I/O [6-V tolerance]: 3) 40-pin products Total: 36 (CMOS I/O: 30 (N-ch open drain I/O [VDD tolerance]: 12, output current control port: 7), CMOS input: 3, N-ch open drain I/O [6-V tolerance]: 3)
	input: 3, N-ch open drain I/O [6-V tolerance]: 3) • 44-pin products
	input: 3, N-ch open drain I/O [6-V tolerance]: 3) • 44-pin products Total: 40 (CMOS I/O: 33 (N-ch open drain I/O IVpp tolerance]: 12 output current
	control port: <u>8</u>), CMOSinput: 3, N-ch open drain I/O [6-V tolerance]: 4)

Date: Nov. 24, 2021

Correct:

Table 4 - 1 Port Configuration (1/2)

14	Configuration
Item	Configuration
Port	 30-pin products Total: 26 (CMOS I/O: 23 (N-ch open drain I/O [VDD tolerance]: 10, output current control port: 6), CMOS
	input: 1, N-ch open drain I/O [6-V tolerance]: 2)
	Total: 28 (CMOS I/O: 24 (N-ch open drain I/O [VDD tolerance]: 10, output current control port: 7), CMOS
	input: 1, N-ch open drain I/O [6-V tolerance]: 3)
	Total: 32 (CMOS I/O: 28 (N-ch open drain I/O [VDD tolerance]: 12, output current control port: 7), CMOS
	input: 1, N-ch open drain I/O [6-V tolerance]: 3) • 40-pin products
	Total: 36 (CMOS I/O: 30 (N-ch open drain I/O [VDD tolerance]: 12, output current control port: 7), CMOS
	input: 3, N-ch open drain I/O [6-V tolerance]: 3)
	Total: 40 (CMOS I/O: 33 (N-ch open drain I/O [VDD tolerance]: 12, output current control port: 7), CMOSinput: 3, N-ch open drain I/O [6-V tolerance]: 4)

6. Port Configuration, Port5 (Page 173)

Incorrect:

4.2.6 Port 5

Port 5 is an I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units by port mode register 5 (PM5). When the P50 to P57 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 5 (PU5).

Input to the P53 to P55 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units by port input mode register 5 (PIM5).

Output from the <u>P50</u> and P52 to P55 pins can be specified as N-ch open-drain output (VDD tolerance ^{Note 1}/EVDD tolerance ^{Note 2}) in 1-bit units by port output mode register 5 (POM5). Output from the P50 and P51 pins can be specified as output current control port pins in 1-bit units by the output current control enable register (CCDE).

This port can also be used for external interrupt request input, serial interface data I/O and clock I/O, capacitance measurement, and logic and event link controller I/O. Use the

registers shown in 4.3 Registers to Control the Port

Function to specify the states of each of the pins. For the correspondence between register settings and pin state, see **Table 4 - 6**.

Port 5 is set to input mode following a reset.

Note 1. For 30- to 52-pin products

Note 2. For 64- to 128-pin products

Correct:

4.2.6 Port 5

Port 5 is an I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units by port mode register 5 (PM5). When the P50 to P57 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 5 (PU5).

Input to the P53 to P55 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units by port input mode register 5 (PIM5).

Output from the P50 Note 3 and P52 to P55 pins can be specified as N-ch open-drain output (VDD tolerance Note 1/EVDD tolerance Note 2) in 1-bit units by port output mode register 5 (POM5).

Output from the P50 and P51 pins can be specified as output current control port pins in 1bit units by the output current control enable register (CCDE).

This port can also be used for external interrupt request input, serial interface data I/O and clock I/O, capacitance measurement, and logic and event link controller I/O. Use the

registers shown in 4.3 Registers to Control the Port

Function to specify the states of each of the pins. For the correspondence between register settings and pin state, see **Table 4 - 6**.

Port 5 is set to input mode following a reset. **Note 1.** For 30- to 52-pin products

Note 2. For 64- to 128-pin products

Note 3. Excluding 44-pin products

7. Figure 4 - 12 Format of Output Current Control Enable Register (CCDE) (Page 197)

Incorrect:

-igure 4 - 12 Format of Output Current Control Enable Register (CCDE)					
CCDE03	Selection of digital I/O or output current control function for CCD03 (<u>P50</u>) pin				
0	Digital I/O (alternate function other than current control function)				
1	Current control function				

- Caution 1. When a port pin is to be used with output current control, make the setting for the output current control function and then set the corresponding bit in the PMxx register for output mode.
- Caution 2. The state of a pin takes 10 µs to become stable after 1 having been written to the corresponding bit of the CCDE register.

Correct:

Figure 4 - 12 Format of Output Current Control Enable Register (CCDE)

CCDE03	Selection of digital I/O or output current control function for CCD03 (P50 ^{Note}) pin
0	Digital I/O (alternate function other than current control function)
1	Current control function

Caution 1. When a port pin is to be used with output current control, make the setting for the output current control function and then set the corresponding bit in the PMxx register for output mode.

Caution 2. The state of a pin takes 10 µs to become stable after 1 having been written to the corresponding bit of the CCDE register.

Note. Excluding 44-pin products

Correct:

8. <u>Table 4 - 7 Examples of Register and Output Latch Settings for</u> <u>Alternate Functions (30-Pin to 64-Pin Products with 96-Kbyte or</u> <u>128-Kbyte Flash Memory) (9/17) (Page 220)</u>

Incorrect:

Table 4 - 7 Examples of Register and Output Latch Settings for Alternate Functions (30-Pin to 64-Pin Products with 96-Kbyte or 128-Kbyte Flash Memory) (9/17)

	Funct	tion Used	Alternate Function C		nction Output															
Pin Name	Function Name	I/O	NOIA	Mod	PMCTxx	PMCEX	CCDE	CCSX	xxwd	Pxx	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30- pin	32- pin	36- pin	40- pin	44- pin	48- pin	52- pin	64- pin
P50	P50	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	—	1	1	1	1	1	1	٧	1
		Output	_	0	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1	SDA11 = 1	_	I							
		N-ch open drain output	-	1	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1										
	TS00	I/O	_	×	1	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	1	1	1	1	1	1	٧	1
	EI50	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	_	1	1	٧	1	1	V	1	1
	EO50	Output	-	0/1	0	1	CCDE03 = 0	CCS0x = xxx	0	×	×	_	1	V	٧	1	1	V	٧	1
	CCD03	Output	-	0/1	0	0	CCDE03 = 1	CCS0x = 001 to 011	0	0	×	-	٧	٧	٧	٧	1	٧	۷	۷
	INTP1	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	_	1	V	V	1	1	V	V	1
	SI11	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	_	1	1	1	1	1	V	V	1
	SDA11	I/O	_	1	0	0	CCDE03 = 0	CCS0x = xxx	0	1	×	_	1	V	V	1	1	V	٧	1

Table 4 - 7 Examples of Register and Output Latch Settings for Alternate Functions (30-Pin to 64-Pin Products with 96-Kbyte or 128-Kbyte Flash Memory) (9/17)

	Func	tion Used									Alternate Function Outp	nction Output								
Pin Name	Function Name	Vo	PIOR	POMix	PMCTxx	PMCEX	CCDE	CCSX	xxwd	Pxx	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30- pin	32- pin	36- pin	40- pin	44- pin	48- pin	52- pin	64- pin
P50	P50	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	1	1	1	1	1	٧	V	V
		Output	_	0	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1	SDA11 = 1	-								
		N-ch open drain output	-	1	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1										
	TS00	I/O	_	×	1	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	1	1	1	1	1	1	1	V
	EI50	Input	-	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	1	1	1	1	1	V	V	V
	EO50	Output	-	0/1	0	1	CCDE03 = 0	CCS0x = xxx	0	×	×	_	٧	٧	1	1	1	V	V	٧
	CCD03	Output	_	0/1	0	0	CCDE03 = 1	CCS0x = 001 to 011	0	0	×	-	٧	٧	٧	1	-	٧	٧	٧
	INTP1	Input	-	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	_	1	1	1	1	1	V	٧	V
	SI11	Input	-	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	V	V	1	1	1	V	V	V
	SDA11	I/O	_	1	0	0	CCDE03 = 0	CCS0x = xxx	0	1	×	_	V	1	1	1	1	V	V	1

9. <u>Table 4 - 8 Examples of Register and Output Latch Settings for</u> <u>Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash</u> <u>Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash</u> <u>Memory) (9/21) (Page 236)</u>

Incorrect:

Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (9/21)

	Func	tion Used									Alternate	Function											
Pin Name	Function Name	VO	PIOR	POMxx	PMCTxx	PMCEX	CCDE	CCSX	PMxx	Pxx	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin	128-pin
P50	P50	Input	-	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	1
		Output	-	0	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1	SDA11 = 1 Note 1	_											
		N-ch open drain output	-	1	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1													
	TS00	I/O	-	×	1	0	CCDE03 = 0	CCS0x = xxx	1	×	×	_	٧	٧	٧	۷	٧	٧	٧	٧	٧	٧	٧
	E150	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	_	1	٧	1	٧	۷	٧	٧	٧	1	٧	1
	EO50	Output	-	0/1	0	1	CCDE03 = 0	CCS0x = xxx	0	×	×	-	٧	٧	٧	۷	۷	٧	٧	٧	٧	٧	1
	CCD03	Output	_	0/1	0	0	CCDE03 = 1	CCS0x = 001 to 011	0	0	×	_	٧	٧	٧	*	N	1	٨	٧	*	1	*
	INTP1	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	_	٧	٧	٧	۷	٧	٧	٧	٧	1	_	-
	SI11	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	٧	٧	٧	۷	٧	٧	٧	٧	1	٧	-
	SDA11	I/O	-	1	0	0	CCDE03 = 0	CCS0x = xxx	0	1	×	-	٧	۷	٧	۷	۷	٧	٧	٧	٧	٧	-

Correct:

Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (9/21)

	Funct	tion Used									Alternate Ou	Function											
Pin Name	Function Name	I/O	PIOR	POMXX	PMCTxx	PMCEX	CCDE	CCSX	PMxx	Pxx	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin	128-pin
P50	P50	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	٧	٨	٧	٧	٨	٧	٧	٨	٧	٧	٧
		Output	_	0	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1	SDA11 = 1 Note 1	_											
		N-ch open drain output	_	1	0	0	CCDE03 = 0	CCS0x = xxx	0	0/1													
	TS00	I/O	_	×	1	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	۷	٧	٧	٧	٧	٧	٧	٧	٧	٧	۷
	E150	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	۷	٧	٧	۷	٧	۷	٧	٧	٧	٧	۷
	EO50	Output	_	0/1	0	1	CCDE03 = 0	CCS0x = xxx	0	×	×	-	۷	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
	CCD03	Output	_	0/1	0	0	CCDE03 = 1	CCS0x = 001 to 011	0	0	×	_	٧	٧	٧	٧	-	٧	*	٧	٧	٧	٧
	INTP1	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×		۷	٧	٧	۷	۷	۷	۷	٧	٧	-	-
	SI11	Input	_	×	0	0	CCDE03 = 0	CCS0x = xxx	1	×	×	-	٧	٧	٧	۷	٧	٧	٧	٧	٧	٧	-
	SDA11	I/O	_	1	0	0	CCDE03 = 0	CCS0x = xxx	0	1	×	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	-

10. Figure 32 - 4 Format of User Option Byte (000C1H or 040C1H) (3/3) (Page 1278)

Incorrect:

· LVD0 off setting (external reset input from the $\overline{\text{RESET}}$ pin is used)

Dete Vol	ection tage		O	ption Byte Sett Value	ing				
VL	VD0		Mode setting						
Rising edge	Falling edge	LVDOLIN	LVD0SEL	LVDOVZ	LVDOVI	LVDOVO			
_	_	0	х	<u>x</u>	<u>x</u>	<u>x</u>			
	_	Settings other than the above are prohibited.							

Date: Nov. 24, 2021

Correct:

• LVD0 off setting (external reset input from the RESET pin is used)

Dete Vol	ection tage		O	ption Byte Setti Value	ng			
VL	VD0		Mode setting					
Rising edge	Falling edge	LVDOLIN	LVD0SEL	LVDOVZ	LVDOVI	LVD0V0		
_	_	0	х	0	1	0		
-	_	Settings other than the above are prohibited.						

11. 1.1 Features, Middle-speed on-chip oscillator (Page 1)

Incorrect:

High-speed on-chip oscillator

- Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, or 1 MHz $\,$

• High accuracy: ±1.0% (VDD = 1.8 to 5.5 V, TA = -20 to +85°C)

Middle-speed on-chip oscillator

• Select from 4 MHz, <u>3 MHz</u>, 2 MHz, or 1 MHz (with adjustability)

Low-speed on-chip oscillator

• 32.768 kHz (typ.) (with adjustability)

Date: Nov. 24, 2021

Correct:

High-speed on-chip oscillator

• Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, or 1 MHz

• High accuracy: ±1.0% (VDD = 1.8 to 5.5 V, TA = -20 to +85°C)

Middle-speed on-chip oscillator

• Select from 4 MHz, 2 MHz, or 1 MHz (with adjustability)

Low-speed on-chip oscillator

• 32.768 kHz (typ.) (with adjustability)

12. <u>1.6 Outline of Functions, 30- to 48-pin products, Capacitive</u> sensing unit (Page 26)

Incorrect:

ltem		30-pin	32-pin	36-pin	40-pin	44-pin	48-pin			
	ilem	R7F100GAx	R7F100GBx	R7F100GCx	R7F100GEx	R7F100GFx	R7F100GGx			
Timers	16-bit timer	8 channels								
	Watchdog timer	1 channel								
	Realtime clock (RTC)	1 channel								
	32-bit interval timer (TML32)	1 channel in 32 2 channels in 1 4 channels in 8	2-bit mode, 16-bit mode, 3-bit mode							
	Timer output	4 channels (PV 8 channels (PV	VM outputs: 3Note VM outputs: 7Note	3), 3)Note 4		5 channels (PWM outputs: 4 8 channels (PWM outputs: 7	(Note 3 _{).} 7Note 3 ₎ Note 4			
	RTC output	1 channel								
Clock output/	buzzer output	2								
		 3.91 kHz, 7.8 (at the 32-MH 256 Hz, 512 (at the 32.76) 	1 kHz, 15.63 kH Iz operation with Hz, 1.024 kHz, 2 8-kHz operation	tz, 2 MHz, 4 MH n the main system 2.048 kHz, 4.096 with the low-spe	z, 8 MHz, 16 MH m dock (fmain)) i kHz, 8.192 kHz ied peripheral di	łz ; 16.384 kHz, 32 ock (fsx¤))	2.768 kHz			
8-/10-/12-bit	resolution A/D converter	8 channels	8 channels	8 channels	9 channels	10 channels	10 channels			
D/A converte	D/A converter		2 channels	2 channels	2 channels	2 channels	2 channels			
Comparator		2 channels	2 channels	2 channels	2 channels	2 channels	2 channels			
Serial interfa	oe	[30- and 32-pir SPI (CSI): 1 SPI (CSI): 1 SPI (CSI): 1 SPI (CSI): 1 SPI (CSI): 1 SPI (CSI): 1 SPI (CSI): 2 [48-pin product SPI (CSI): 2 SPI (CSI):	n products] channel/simplifie channel/simplifie thannel/simplifie channel/simplifie channel/simplifie channels/simplifie channels/simplifie channels/simplifie	ed IPC: 1 channe ed IPC: 1 channel/ IIPC: 1 channel/ ed IPC: 1 channel/ ed IPC: 1 channe ed IPC: 2 channel ed IPC: 2 channel ed IPC: 2 channel ed IPC: 2 channel	I/UART: 1 chann I/UART: 1 chann I/UART (UART sup I/UART: 1 chann I/UART: 1 chann I/UART (UART s I/UART: 1 chann I/UART: 1 chann I/UART: 1 chann	el porting LIN-bus): el upporting LIN-bu: nnel el upporting LIN-bu:	1 channel s): 1 channel s): 1 channel			
	UARTA	-		1 channel	1 channel	2 channels	2 channels			
	I ² C bus	1 channel	1 channel	1 channel	1 channel	2 channels	2 channels			
Remote contr	rol signal receiver	-	1 channel	1 channel	1 channel	1 channel	1 channel			
Data transfer	controller (DTC)	30 sources	30 sources	32 sources	33 sources	35 sources	36 sources			
Logic and ev	Logic and event link controller (ELCL)		L) 1							
SNOOZE mo	SNOOZE mode sequencer (SMS)		1							
Capacitive se	ensing unit	6	7	11	13	14	16			
Vectored	Internal	31	32	35	35	39	39			
sources	External	6	6	6	7	10				

Correct:

	Item	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin			
	nem	R7F100GAx	R7F100GBx	R7F100GCx	R7F100GEx	R7F100GFx	R7F100GGX			
Timers	16-bit timer	8 channels								
	Watchdog timer	1 channel								
	Realtime clock (RTC)	1 channel								
	32-bit Interval timer (TML32)	1 channel in 32 2 channels in 1 4 channels in 8	-bit mode, 6-bit mode, -bit mode							
	Timer output	4 channels (PW 8 channels (PW	/M outputs: 3Note /M outputs: 7Note	3), 3)Note 4		5 channels (PWM outputs: 4 8 channels (PWM outputs: 7	(Note 3 _{),} 7Note 3)Note 4			
	RTC output	1 channel								
Clock output/	buzzer output	2								
		 3.91 kHz, 7.8 (at the 32-MH 256 Hz, 512 H (at the 32.768) 	1 kHz, 15.63 kH iz operation with Hz, 1.024 kHz, 2 3-kHz operation	z, 2 MHz, 4 MHz the main system .048 kHz, 4.096 with the low-spe	z, 8 MHz, 16 MH n clock (fMAN)) kHz, 8.192 kHz ed peripheral clo	iz , 16.384 kHz, 32 ock (fsxp))	.768 KHz			
8-/10-/12-bit r	esolution A/D converter	8 channels	8 channels	8 channels	9 channels	10 channels	10 channels			
D/A converter	r	2 channels	2 channels	2 channels	2 channels	2 channels	2 channels			
Comparator		2 channels	2 channels	2 channels						
Serial Interfac	Nê	[30- and 32-pin • SPI (CSI): 1 o • SPI (CSI): 2 o • SPI (CSI): 2 o • SPI (CSI): 2 o	products] thannel/simplifie hannel/simplifie hannel/simplifie thannel/simplifie thannel/simplifie s] thannels/simplifie hannels/simplifie hannels/simplifie	d I ² C: 1 channel d I ² C: 1 channel/U I ² C: 1 channel/U d I ² C: 1 channel/U d I ² C: 1 channel d I ² C: 2 channels ed I ² C: 2 channel d I ² C: 1 channel d I ² C: 2 channel	/UART: 1 chann /UART: 1 chann /UART (UART sup /UART: 1 chann /UART: 1 chann /UART (UART si /UART: 1 chann /UART: 1 chann /UART (UART si	el el el el upporting LIN-bus nnel el upporting LIN-bus	1 channel s): 1 channel s): 1 channel			
	UARTA	-		1 channel	1 channel	2 channels	2 channels			
	I ² C bus	1 channel	1 channel	1 channel	1 channel	2 channels	2 channels			
Remote contr	ol signal receiver	_	1 channel	1 channel	1 channel	1 channel	1 channel			
Data transfer	controller (DTC)	30 sources	30 sources	32 sources	33 sources	35 sources	36 sources			
Logic and eve	ent link controller (ELCL)	1								
SNOOZE mo	NOOZE mode sequencer (SMS)									
Capacitive	ROM size 96 to 128KB	2	3	5	6	6	8			
sensing uni	ROM size 192 to 768KB	6	7	11	13	14	16			
Vectored	Internal	31	32	35	35	39	39			
sources	External	6	6	6	7	7	10			

© 2021 Renesas Electronics Corporation. All rights reserved.

13. <u>1.6 Outline of Functions, 52- to 128-pin products, Capacitive</u> sensing unit (Page 29)

Incorrect:

	Item	52-pin	64-pin	80-pin	100-pin	128-pin			
L		R7F100GJx	R7F100GLx	R7F100GMx	R7F100GPx	R7F100GSx			
Timers	16-bit timer	8 channels	•	12 channels		16 channels			
	Watchdog timer	1 channel				•			
	Realtime clock (RTC)	1 channel							
	32-bit interval timer (TML32)	1 channel in 32-b 2 channels in 16- 4 channels in 8-b	it mode, bit mode, it mode						
	Timer output	5 channels (PWM outputs: 4 ^{Note 3}), 8 channels (PWM outputs: 7Note 3)Note 4	8 channels (PWMoutputs: 7 ^{Note 3})	12 channels (PWM outputs: 1	(Note 3)	16 channels (PWM outputs: 14 ^{Note 3})			
	RTC output	1 channel	•	•		•			
Clock output	t/buzzer output	2	2	2	2	2			
		 3.91 kHz, 7.81 (at the 32-MHz 256 Hz, 512 Hz (at the 32.768-) 	kHz, 15.63 kHz, 2 operation with the , 1.024 kHz, 2.048 Hz operation with	MHz, 4 MHz, 8 MH main system clock kHz, 4.096 kHz, 8 the low-speed peri	iz, 16 MHz (fmain)) 192 kHz, 16.384 k pheral clock (fsxp)	dHz, 32.768 kHz)			
8-/10-/12-bit	t resolution A/D converter	12 channels	12 channels	17 channels	20 channels	26 channels			
D/A converte	er	2 channels	2 channels	2 channels	2 channels	2 channels			
Comparator		2 channels	2 channels	2 channels	2 channels	2 channels			
Serial interfa	ace	[52-pin products] • SPI (CSI): 2 ch: • SPI (annels/simplified I2 annel/simplified I2C annels/simplified I2C annels/simplified I2 annels/simplified I2 28-pin products] annels/simplified I2 annels/simplified I2 annels/simplified I2	C: 2 channels/UAR C: 1 channels/UAR C: 2 channels/UAR	RT: 1 channel (UART supporting L (UART supporting L RT: 1 channel (UART supporting L RT: 1 channel RT: 1 channel (UART supporting L (UART supporting L RT: 1 channel	JN-bus): 1 channel JN-bus): 1 channel JN-bus): 1 channel			
	UARTA	2 channels	2 channels	2 channels	2 channels	2 channels			
	I ² C bus	2 channels	2 channels	2 channels	2 channels	2 channels			
Remote con	trol signal receiver	1 channel	1 channel	1 channel	1 channel	1 channel			
Data transfe	Data transfer controller (DTC)		36 sources 37 sources 39 sources						
Logic and e	ogic and event link controller (ELCL)								
SNOOZE m	SNOOZE mode sequencer (SMS)		1						
Capacitive s	ensing unit	20	22	30	32	32			

Correct:

	Item	52-pin	64-pin	80-pin	100-pin	128-pin
	nem	R7F100GJx	R7F100GLx	R7F100GMx	R7F100GPx	R7F100GSx
Timers	16-bit timer	8 channels		12 channels		16 channels
	Watchdog timer	1 channel				
	Realtime clock (RTC)	1 channel				
	32-bit interval timer (TML32)	1 channel in 32-bl 2 channels in 16-l 4 channels in 8-bl	t mode, bit mode, t mode			
	Timer output	5 channels (PWM outputs: 4Note 3), 8 channels (PWM outputs: 7Note 3)Note 4	8 channels (PWMoutputs: 7 ^{Note 3})	12 channels (PWM outputs: 10	Note 3)	16 channels (PWM outputs: 14 ^{Note 3})
	RTC output	1 channel				
Clock output/	buzzer output	2	2	2	2	2
		 3.91 kHz, 7.81 k (at the 32-MHz (256 Hz, 512 Hz, (at the 32.768-k) 	Hz, 15.63 kHz, 2 M operation with the 1.024 kHz, 2.048 Hz operation with t	MHz, 4 MHz, 8 MHz main system clock kHz, 4.096 kHz, 8. the low-speed perip	z, 16 MHz (1MAIN)) 192 kHz, 16.384 ki pheral clock (18xP))	Hz, 32.768 kHz
8-/10-/12-bit (resolution A/D converter	12 channels	12 channels	17 channels	20 channels	26 channels
D/A converte	r	2 channels	2 channels	2 channels	2 channels	2 channels
Comparator		2 channels	2 channels	2 channels	2 channels	2 channels
Serial interfac	26	[52-pin products] • SPI (CSI): 2 cha • SPI (CSI): 2 cha	nnels/simplified [2] nnels/simplified [2] nnels/simplified [2] nnels/simplified [2] 8-pin products] nnels/simplified [2] nnels/simplified [2] nnels/simplified [2]	C: 2 channels/UAR : 1 channels/UART (C: 2 channels/UART (T: 1 channel 1 channel UART supporting LI T: 1 channel UART supporting LI T: 1 channel T: 1 channel UART supporting LI T: 1 channel	IN-bus): 1 channel IN-bus): 1 channel IN-bus): 1 channel
	UARTA	2 channels	2 channels	2 channels	2 channels	2 channels
	I ² C bus	2 channels	2 channels	2 channels	2 channels	2 channels
Remote cont	Remote control signal receiver		1 channel	1 channel	1 channel	1 channel
Data transfer controller (DTC)		36 sources	37 sources	39 sources		
Logic and ev	ent link controller (ELCL)	1		-		
SNOOZE mode sequencer (SMS)		1				
Capacitive	ROM size 96 to 128KB	10	12	30	32	32
sensing unit	ROM size 192 to 768KB	20	22	30	32	32

14. <u>2.2.2 Description of pin functions, TS00-TS15, TS20-TS35, TSCAP</u> (Page 68)

Incorrect:

Function Name	I/O	Function
ANID to ANI14, ANI16 to ANI26	Input	Analog voltage inputs of the A/D converter (see Figure 12 - 52 Connections of Voo, AVREFP, and Analog Input Pins)
ANO0, ANO1	Output	D/A converter outputs
IVCMP0, IVCMP1	Input	Analog voltage inputs of the comparator
IVREF0, IVREF1	Input	Reference voltage inputs of the comparator
VCOUTD, VCOUT1	Output	Comparator outputs
TS00 to TS15, TS20 to TS35	Output	Electrostatic capacitance measurement pins (touch sensor)
TSCAP	Output	Pin for connecting a power supply stabilization capacitor for the touch sensor interface. Connect this pin to Vss via a capacitor (10 nF). Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.
CCD00 to CCD07	Output	Output current control port

Correct:

	•	
Function Name	1/0	Function
ANID to ANI14, ANI16 to ANI26	Input	Analog voltage inputs of the A/D converter (see Figure 12 - 52 Connections of Voo, AVREFP, and Analog input Pins)
ANOD, ANO1	Output	D/A converter outputs
IVCMP0, IVCMP1	Input	Analog voltage inputs of the comparator
IVREF0, IVREF1	Input	Reference voltage inputs of the comparator
VCOUTD, VCOUT1	Output	Comparator outputs
TS00 to TS15, TS20 to TS35	I/O	Electrostatic capacitance measurement plns (touch sensor)
TSCAP	I/O	Pin for connecting a power supply stabilization capacitor for the touch sensor interface. Connect this pin to Vss via a capacitor (10 nF). Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.
CCD00 to CCD07	Output	Output current control port

15. Table 2 - 3 Connections of Unused Pins, P123, P124 (Page 70)

Incorrect:

Pin Name	I/O	Recommended Connection of Unused Pins
P00 to P07	I/O	Input: Independently connect to EVooo, EVoo1 or EVsso, EVss1 via a resistor.
P10 to P17	1	Output: Leave open.
P20 to P27]	Input: Independently connect to Vbb or Vss via a resistor. Output: Leave open.
P30 to P37		Input: Independently connect to EVboo, EVbo1 or EVsso, EVss1 via a resistor. Output: Leave open.
P40/TOOL0]	Input: Independently connect to EVoco, EVoci or leave open. Output: Leave open.
P41 to P47	1	Input: Independently connect to EVooo, EVoo1 or EVsso, EVss1 via a resistor.
P50 to P57	7	Output: Leave open.
P60 to P63		Input: Independently connect to EVpoo, EVpo1 or EVps0, EVps1 via a resistor. Output: Set the port's output latch to 0 and leave the pins open, or set the port's output latch to 1 and independently connect the pins to EVpoo and EVpp1 or EVps0 and EVps1 via a resistor.
P64 to P67	7	Input: Independently connect to EVDD0, EVDD1 or EVSS0, EVSS1 via a resistor.
P70 to P77	7	Output: Leave open.
P80 to P87]	
P90 to P97		
P100 to P106		
P110 to P117		
P120		
P121, P122		Input: Independently connect to Vbb or Vss via a resistor. Output: Leave open.
P123, P124	Input	Set the EXCLKS bit in the clock operation mode control register (CMC) to 0, set the XTSTOP bit in the clock operation status control register (CSC) to 1, and leave the pin open-circuit. Alternatively, provide the pin with an independent connection to Voo or Vss via a resistor.
P125 to P127	I/O	Input: Independently connect to EVD00, EVD01 or EVss0, EVss1 via a resistor. Output: Leave open.

Correct:

Table 2 - 3 Connections of Unused Pins

Pin Name	I/O	Recommended Connection of Unused Pins
P00 to P07	I/O	Input: Independently connect to EVDD0, EVDD1 or EVSS0, EVSS1 via a resistor.
P10 to P17	1	Output: Leave open.
P20 to P27]	Input: Independently connect to Vop or Vss via a resistor. Output: Leave open.
P30 to P37]	Input: Independently connect to EVDD0, EVDD1 or EVSS0, EVSS1 via a resistor. Output: Leave open.
P40/TOOL0]	Input: Independently connect to EVDD0, EVDD1 or leave open. Output: Leave open.
P41 to P47	1	Input: Independently connect to EVDD0, EVDD1 or EVSS0, EVSS1 via a resistor.
P50 to P57	1	Output: Leave open.
P60 to P63		Input: Independently connect to EVDD0, EVDD1 or EVBS0, EVBS1 via a resistor. Output: Set the port's output latch to 0 and leave the pins open, or set the port's output latch to 1 and Independently connect the pins to EVDD0 and EVDD1 or EVBS0 and EvBS1 via a resistor.
P64 to P67	1	Input: Independently connect to EVDD0, EVDD1 or EVSS0, EVSS1 via a resistor.
P70 to P77]	Output: Leave open.
P80 to P87]	
P90 to P97]	
P100 to P106]	
P110 to P117]	
P120		
P121, P122		Input: Independently connect to VDD or Vss via a resistor. Output: Leave open.
P123, P124	Input	Set the EXCLKS bit in the clock operation mode control register (CMC) to 0, set the XTSTOP bit in the clock operation status control register (CSC) to 1, and leave the pin open-circuit Note, Alternatively, provide the pin with an independent connection to Vpo or Vss via a resistor.
P125 to P127	١/O	Input: Independently connect to EVDD0, EVDD1 or EVSS0, EVSS1 via a resistor. Output: Leave open.

Note When the low-speed on-chip oscillator clock (fiL) is selected for the CPU/peripheral

hardware clock frequency (fCLK), the current may increase approximately by 1 µA.

16. Figure 2 - 25 Pin Block Diagram for Pin Type 8-31-1 (Page 96)

Incorrect:

Figure 2 - 25 Pin Block Diagram for Pin Type 8-31-1

Date: Nov. 24, 2021

Correct:

Figure 2 - 25 Pin Block Diagram for Pin Type 8-31-1

17. Figure 2 - 33 Pin Block Diagram for Pin Type 12-38-3 (Page 107)

Incorrect:

Figure 2 - 33 Pin Block Diagram for Pin Type 12-38-3

Note 1. This excludes the clock output from UARTA.

Note 2. This includes the clock output from UARTA.

Caution The input buffer is enabled even if the type 12-38-3 pin is operating as an output.

This may lead to a through current flowing through the type 12-38-3 pin when the voltage level on this pin is intermediate.

© 2021 Renesas Electronics Corporation. All rights reserved.

Date: Nov. 24, 2021

Correct:

Figure 2 - 33 Pin Block Diagram for Pin Type 12-38-3

Note 1. This excludes the clock output from UARTA.

Note 2. This includes the clock output from UARTA.

Caution The input buffer is enabled when using the IICA with the IICAjEN bit in the PER0

register being set to 1. This may lead to a through current flowing through the type 12-38-3 pin when the voltage level on this pin is intermediate.

18. <u>Table 3 - 8 List of Extended Special Function Registers (2nd SFRs)</u> (2/15), PFCMD register (Page 139)

Incorrect:

Table 3 - 8 List of Extended Special Function Registers (2nd SFRs) (2/15)

Address	Special Function Register (SER) Name	Symbol	RM	Manip	ulable Bit	Range	After Reset
Address	Special Function Register (SFR) Name	Symbol	1911	1-bit	8-bit	16-bit	Aller Neser
F0063H	Port mode control A register 3	PMCA3	R/W	1	1	-	FFH
F006AH	Port mode control A register 10	PMCA10	R/W	*	1	-	FFH
F006BH	Port mode control A register 11	PMCA11	R/W	1	1	-	FFH
F006CH	Port mode control A register 12	PMCA12	R/W	1	1	-	FFH
F006EH	Port mode control A register 14	PMCA14	R/W	*	1	-	FFH
F006FH	Port mode control A register 15	PMCA15	R/W	1	1	_	FFH
F0070H	Noise filter enable register 0	NFEND	R/W	*	1	-	00H
F0071H	Noise filter enable register 1	NFEN1	R/W	1	1	-	00H
F0072H	Noise filter enable register 2	NFEN2	R/W	1	1	-	00H
F0073H	Input switch control register	ISC	R/W	1	1	-	00H
F0074H	Timer input select register 0	TISO	R/W	-	1	-	00H
F0075H	Timer input select register 1	TIS1	R/W	-	1	-	00H
F0077H	Peripheral I/O redirection register	PIOR	R/W	-	1	-	00H
F0078H	Invalid memory access detection control register	IAWCTL	R/W	-	4	-	00H
F0079H	UART loop back select register	ULBS	R/W	1	1	-	00H
F007BH	Port mode select register	PMS	R/W	1	1	-	00H
F007DH	Global digital input disable register	GDIDIS	R/W	1	1	-	00H
F0090H	Data flash control register	DFLCTL	R/W	1	1	-	00H
FOOADH	High-speed on-chip oscillator trimming register	HIOTRM	R/W	-	1	-	Undefined Note 1
F00A8H	High-speed on-chip oscillator frequency select register	HOCODIV	R/W	-	1	-	Undefined Note 2
FOOAAH	Flash operating mode select register	FLMODE	R/W	1	4	-	40H/80H/C0H Note 3
FOOABH	Flash operating mode protect register	FLMWRP	R/W	*	1	-	00H
F00B0H	Flash security flag monitor register	FLSEC	R	-	-	1	Undefined
F00B2H	Flash FSW monitor register S	FLFSWS	R	-	-	1	Undefined
F00B4H	Flash FSW monitor register E	FLFSWE	R	-	-	1	Undefined
F00B6H	Flash memory sequencer initial setting register	FSSET	R/W	_	1	-	00H
F00B7H	Flash extra sequencer control register	FSSE	R/W	1	1	-	00H
F00C0H	Flash protect command register	PFCMD	R/W	-	1	-	_
F00C1H	Flash status register	PFS	R	*	1	-	00H

Correct:

Table 3 - 6 List of Extended Special Function Registers (2nd SFRs) (2/15)

Address	Special Function Register (SER) Name	Symbol	RAW	Manip	ulable Bit	Range	After Reset
71001000	opcourr anotor register (or ry raine	- Cjinbor		1-bit	8-bit	16-bit	7 deci recocr
F0063H	Port mode control A register 3	PMCA3	RW	4	1	-	FFH
F006AH	Port mode control A register 10	PMCA10	R/W	1	1	-	FFH
F006BH	Port mode control A register 11	PMCA11	R/W	4	1	-	FFH
F006CH	Port mode control A register 12	PMCA12	R/W	4	1	-	FFH
F006EH	Port mode control A register 14	PMCA14	R/W	4	1	-	FFH
F006FH	Port mode control A register 15	PMCA15	R/W	4	1	-	FFH
F0070H	Noise filter enable register 0	NFENO	R/W	4	1	-	00H
F0071H	Noise fliter enable register 1	NFEN1	R/W	4	1	-	00H
F0072H	Noise filter enable register 2	NFEN2	R/W	1	1	-	00H
F0073H	Input switch control register	ISC	R/W	1	1	-	00H
F0074H	Timer Input select register 0	TISO	R/W	-	1	-	00H
F0075H	Timer input select register 1	TIS1	R/W	-	1	-	00H
F0077H	Peripheral I/O redirection register	PIOR	R/W	_	1	-	00H
F0078H	Invalid memory access detection control register	IAWCTL	R/W	-	1	-	00H
F0079H	UART loop back select register	ULBS	R/W	4	1	-	00H
F007BH	Port mode select register	PMS	R/W	4	1	-	00H
F007DH	Global digital input disable register	GDIDIS	R/W	4	1	-	00H
F0090H	Data flash control register	DFLCTL	R/W	1	1	-	00H
FODAOH	High-speed on-chip oscillator trimming register	HIOTRM	R/W	-	4	-	Undefined Note 1
F00A8H	High-speed on-chip oscillator frequency select register	HOCODIV	R/W	-	1	-	Undefined Note 2
FODAAH	Flash operating mode select register	FLMODE	R/W	4	4	-	40H/80H/C0H Note 3
FODABH	Flash operating mode protect register	FLMWRP	R/W	1	1	-	00H
FOOBOH	Flash security flag monitor register	FLSEC	R	-	-	1	Undefined
F00B2H	Flash FSW monitor register S	FLFSWS	R	_	-	1	Undefined
F00B4H	Flash FSW monitor register E	FLFSWE	R	-	-	1	Undefined
F00B6H	Flash memory sequencer initial setting register	FSSET	R/W	-	1	-	00H
F0087H	Flash extra are sequencer control register	FSSE	R/W	1	1	-	00H
FOOCOH	Flash protect command register	PFCMD	W	-	1	-	Undefined
F00C1H	Flash status register	PFS	R	1	1	-	00H

19. <u>Table 3 - 8 List of Extended Special Function Registers (2nd SFRs)</u> (7/15), MIOTRM register (Page 144)

Incorrect:

Table 3 - 8 List of Extended Special Function Registers (2nd SFRs) (7/15)

Address	Special Eurotion Register (SER) Name	Sum	hol	DAM	Manip	After Peret		
Address	Special Function Register (SFR) Name	Syn	bo	LANK .	1-bit	8-bit	16-bit	Alter Reset
F01E6H	Timer status register 13	TSR13L	TSR13	R	-	1	1	0000H
F01E7H]	-	7	1	_	_		
F01E8H	Timer status register 14	TSR14L	TSR14	R	_	1	1	0000H
F01E9H	1	_	1	1	-	-		
F01EAH	Timer status register 15	TSR15L	TSR15	R	_	1	1	0000H
F01EBH	1	-	1	1	-	-		
F01ECH	Timer status register 16	TSR16L	TSR16	R	_	1	1	0000H
F01EDH	1	-	1	1	-	-		
F01EEH	Timer status register 17	TSR17L	TSR17	R	-	1	1	0000H
F01EFH	1	-	1	1	-	-		
F01F0H	Timer channel enable status register 1	TE1L	TE1	R	1	1	~	0000H
F01F1H	1	-	1	1	_	_		
F01F2H	Timer channel start register 1	TS1L	TS1	R/W	1	1	~	0000H
F01F3H	1	-	1	1	_	-		
F01F4H	Timer channel stop register 1	TT1L	TT1	R/W	1	1	1	0000H
F01F5H	1	-	1	1	_	-		
F01F6H	Timer dock select register 1	TPS1	-	R/W	-	-	~	0000H
F01F7H	1			1	_	_		
F01F8H	Timer output register 1	TO1L	TO1	R/W	_	1	1	0000H
F01F9H	1	-	-	1	_	-		
F01FAH	Timer output enable register 1	TOE1L	TOE1	R/W	1	1	1	0000H
F01FBH	1	_	-	1	_	_		
F01FCH	Timer output level register 1	TOL1L	TOL1	R/W	_	1	1	0000H
F01FDH	1	_	-	1 1	_	_		
F01FEH	Timer output mode register 1	TOM1L	TOM1	R/W	_	1	~	0000H
F01FFH	1	_	-	1 1	_	_		
F0212H	Middle-speed on-chip oscillator trimming register	MIOTRM	-!	R/W	-	4	-	<u>80H</u>
F0213H	Low-speed on-chip oscillator trimming register	LIOTRM		R/W	_	~	_	80H

Correct:

Table 3 - 6 List of Extended Special Function Registers (2nd SFRs) (7/15)

Address	Casalal Eurofice Register (CED) Mana	0	abel	Date	Manip	After Dent		
Address	Special Function Register (SFR) Name	Syr	ndor	RVW .	1-blt	8-bit	16-bit	Aller Reset
F01E6H	Timer status register 13	TSR13L	TSR13	R	-	1	1	0000H
F01E7H		_			_	-	Ī	
F01E8H	Timer status register 14	TSR14L	TSR14	R	-	1	1	0000H
F01E9H	1	-	7		-	-	t	
F01EAH	Timer status register 15	TSR15L	TSR15	R	_	1	1	0000H
F01EBH		_			-	-	Ī	
F01ECH	Timer status register 16	TSR16L	TSR16	R	-	1	1	0000H
F01EDH		-	7		-	-	t i	
F01EEH	Timer status register 17	TSR17L	TSR17	R	-	1	1	0000H
F01EFH		_	7		_	-	t i	
F01F0H	Timer channel enable status register 1	TE1L	TE1	R	1	1	1	0000H
F01F1H		-			-	-	t	
F01F2H	Timer channel start register 1	TS1L	TS1	R/W	1	1	1	0000H
F01F3H		-			_	-	t	
F01F4H	Timer channel stop register 1	TT1L	TT1	R/W	1	1	1	0000H
F01F5H		_	1	1	-	-	t	
F01F6H	Timer clock select register 1	TPS1		R/W	-	-	1	0000H
F01F7H				1	-	-	t	
F01F8H	Timer output register 1	TO1L	TO1	R/W	-	1	1	0000H
F01F9H		_			-	-	t	
F01FAH	Timer output enable register 1	TOE1L	TOE1	R/W	1	1	1	0000H
F01FBH		-	1	1	-	-	t	
F01FCH	Timer output level register 1	TOL1L	TOL1	R/W	-	1	1	0000H
F01FDH	1	_	1	1	-	-	t	
F01FEH	Timer output mode register 1	TOM1L	TOM1	R/W	-	1	1	0000H
F01FFH	1	_	7	1	_	-	t	
F0212H	Middle-speed on-chip oscillator trimming register	MIOTRM		R/W	-	4	-	90H
F0213H	Low-speed on-chip oscillator trimming register	LIOTRM		R/W	_	1	-	80H

20. 4.3.7 Port mode control A registers (PMCAxx) (Page 191)

Incorrect:

iguro i	110	mu		mouc	0011	01711	(ogioti	510						
Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W			
PMCAD	1	1	1	1	PMCAD 3	PMCA0 2	PMCAD 1	PMCA0 0	F0060H	FFH	R/W			
PMCA1	1	1	1	1	PMCA1 3	1	1	1	F0061H	FFH	R/W			
PMCA2	PMCA2 7	PMC/ 6	A2 PMCA2 5	PMCA2 4	PMCA2 3	PMCA2 2	PMCA2 1	PMCA2 0	F0062H	FFH	R/W			
PMCA3	PMCA3 7	PMC/ 6	A3 PMCA3 5	1	1	1	1	1	F0063H	FFH	R/W			
PMCA10	1	1	1	1	1	1	1	PMCA1 00	F006AH	FFH	R/W			
PMCA11	PMCA1 17	PMC/ 16	A1 PMCA1 15	1	1	1	1	1	F006BH	FFH	R/W			
PMCA12	1	1	1	1	1	1	1	PMCA1 20	F006CH	FFH	RW			
PMCA14	PMCA1 47	1	1	1	1	1	1	1	F006EH	FFH	R/W			
PMCA15	1	PMC/ 56	A1 PMCA1 55	PMCA1 54	PMCA1 53	PMCA1 52	PMCA1 51	PMCA1 50	F006FH	FFH	RW			
	PMCA	mn	Selection of digital I/O or analog input function for Pmn pin (m = 0 to 3, 10 to 12, 14, 15; n = 0 to 7)											
	0		Digital I/O											

Figure 4 - 7 Format of Port Mode Control A Registers

Analog input function

1

Caution 1. Select input mode by u	using port mode register 0 to 3,	10 to 12, 14, or 15 (PM0 to
PM3, PM10 to PM12,		

PM14, or PM15) for the port which is set to the analog input function by the PMCAxx register.

Caution 2. Do not set the pin that is specified as digital I/O by the PMCAxx register to the analog function by the

analog input channel specification register (ADS).

 $\label{eq:caution 3} \textbf{Caution 3}. \ \textbf{Be sure to set bits that are not implemented to their initial values}.$

Date: Nov. 24, 2021

Correct:

Figure 4 - 7 Format of Port Mode Control A Registers (PMCAxx)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PMCAD	1	1	1	1	PMCA0 3	PMCA0 2	PMCA0 1	PMCA0 0	F0060H	FFH	R/W
PMCA1	1	1	1	1	PMCA1 3	1	1	1	F0061H	FFH	R/W
PMCA2	PMCA2 7	PMCA2 6	PMCA2 5	PMCA2 4	PMCA2 3	PMCA2 2	PMCA2 1	PMCA2 0	F0062H	FFH	R/W
PMCA3	PMCA3 7	PMCA3 6	PMCA3 5	1	1	1	1	1	F0063H	FFH	R/W
PMCA10	1	1	1	1	1	1	1	PMCA1 00	F006AH	FFH	R/W
PMCA11	PMCA1 17	PMCA1 16	PMCA1 15	1	1	1	1	1	F006BH	FFH	R/W
PMCA12	1	1	1	1	1	1	1	PMCA1 20	F006CH	FFH	R/W
PMCA14	PMCA1 47	1	1	1	1	1	1	1	F006EH	FFH	R/W
PMCA15	1	PMCA1 56	PMCA1 55	PMCA1 54	PMCA1 53	PMCA1 52	PMCA1 51	PMCA1 50	F006FH	FFH	R/W

PMCAmn	Selection of digital I/O or analog input function for Pmn pin (m = 0 to 3, 10 to 12, 14, 15; n = 0 to 7)
0	Digital I/O
1	Analog input function

Caution 1. Select input mode by using port mode register 0 to 3, 10 to 12, 14, or 15 (PM0 to PM3, PM10 to PM12,

PM14, or PM15) for the port which is set to the analog input function by the PMCAxx register.

Caution 2. Do not set the pin that is specified as digital I/O by the PMCAxx register to the analog function by the

analog input channel specification register (ADS).

Caution 3. Be sure to set bits that are not implemented to their initial values.

Caution 4. The PMCA3, PMCA10, PMCA11, and PMCA15 registers in the 30- to 64-pin package products with 96 or 128 Kbytes of flash memory return 00H when read.

21. <u>4.5.4 Examples of register settings for port and alternate functions</u> (Page 211)

Incorrect:

4.5.4 Examples of register settings for port and alternate functions

Examples of register settings for port and alternate functions are shown in Table 4 - 7 and Table 4 - 8. The registers used to control the port functions should be set as shown in Table 4 - 7 and Table 4 - 8. See the following remark for legends used in Table 4 - 7 and Table 4 - 8.

Remark -: Not supported

×: Don't care

PIOR: Peripheral I/O redirection register

POMxx: Port output mode registers

PMCAxx: Port mode control A registers

PMCTxx: Port mode control T registers

PMCEx: Port mode control E registers

CCDE: Output current control enable register

CCSx: Output current select registers

PMxx: Port mode registers

Pxx: Port output latch

Functions in parentheses can be assigned via settings in the peripheral I/O redirection register (PIOR).

Date: Nov. 24, 2021

Correct:

4.5.4 Examples of register settings for port and alternate functions

Examples of register settings for port and alternate functions are shown in Table 4 - 7 and Table 4 - 8. The registers used to control the port functions should be set as shown in Table 4 - 7 and Table 4 - 8. See the following remark for legends used in Table 4 - 7 and Table 4 - 8.

Remark —: Not supported

×: Don't care
PIOR: Peripheral I/O redirection register
POMxx: Port output mode registers
PMCAxx: Port mode control A registers
PMCTxx: Port mode control T registers
PMCEx: Port mode control E registers
CCDE: Output current control enable register
CCSx: Output current select registers
PMxx: Port mode registers
PMxx: Port mode registers
PXx: Port output latch
Functions in parentheses can be assigned via settings in the peripheral I/O redirection register (PIOR).

Caution In examples of register settings, the port digital input disable register (PDIDISxx) is set for input to the input buffer being enabled.

22. <u>Table 4 - 7 Examples of Register and Output Latch Settings for</u> <u>Alternate Functions (30-Pin to 64-Pin Products with 96-Kbyte or</u> <u>128-Kbyte Flash Memory) (4/17) (Page 215)</u>

Incorrect:

Table 4 - 7 Examples of Register and Output Latch Settings for Alternate Functions (30-Pin to 64-Pin Products with 96-Kbyte or 128-Kbyte Flash Memory) (4/17)

	Function Used										Alternate F	unction Output								
Pin Name	Function Name	ю	PIOR	POMox	PARCAUK	PMCEX	CCDE	CCSX	PMXX	Pxx	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30- pin	32- pin	36- pin	40- pin	44- pin	48- pin	52- pin	64- pin
P13	P13	Input	-	x	0	0	-	-	1	x	x	×	4	1	1	4	4	4	4	1
		Output	-	٥	0	0	-	-	0	0/1	TxD2/	(TOB4) = 0								
		N-ch open drain output	-	1	0	0	-	-	0	0/1	8020 - 1	(SDAAD) = 0								
	EO13	Output	-	0/1	0	1	-	-	0	x	x	x	4	1	1	4	4	4	4	1
	TxD2	Output	PIOR1 = 0	01	0	٥	-	-	0	1	x	(TO04) = 0 (SDAAD) = 0	*	*	4	4	*	*	*	4
	8020	Output	PIOR1 = 0	01	0	0	-	-	0	1	x	(TO04)= 0 (SDAAD)= 0	4	4	4	4	4	*	4	4
	(SDAAD)	NO	PIOR2 = 1	1	0	0	-	-	0	0	x	(TOB4) = 0	4	1	1	4	4	4	*	1
	(TID4)	Input	PIOR0 = 1	x	0	0	-	-	1	X	X	x	4	1	1	1	4	1	1	1
	(TO04)	Output	PIOR0 = 1	٥	0	0	-	-	0	0	x	(SDAAD) = 0	1	1	1	1	1	1	1	1
	IVREFO	Analog Input	-	x	1	0	-	-	1	x	x	X	4	1	1	1	1	1	1	1

Correct:

Table 4 - 7 Examples of Register and Output Latch Settings for Alternate Functions (30-Pin to64-Pin Products with 96-Kbyte or 128-Kbyte Flash Memory) (4/17)

	Fund	ton Used									Alternate F	unction Output								
Pin Name	Function Name	ю	PIOR	POMIX	PMCAXX	NOEX	CCDE	CCSK	xxwd	жd	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (Including clock output from the UARTA)	30- pin	32- pin	36- pin	40- pin	44- pin	48- pin	52- pin	64- pin
P13	P13	input	-	×	0	0	-	-	1	x	x	x	1	1	1	1	*	1	1	1
		Output	-	0	0	0	-	-	٥	01	7x02/	(TO04) = 0								
		N-ch open drain output	-	1	0	0	-	-	0 01 8020-1		8020-1	(SDAAD) = 0								
	EO13	Output	-	0/1	0	1	-	-	٥	X	x	x	1	4	1	1	1	4	1	1
	TXD2	Output	PIOR1 = 0	0/1	0	0	-	-	0	1	x	(TC04) = 0 (SDAA0) = 0	4	4	4	*	4	*	4	4
	8020	Output	PIOR1 = 0	01	0	0	-	-	0	1	x	(TO04)= 0 (SDAA0)= 0	*	4	*	1	*	*	4	4
	(SDAAD)	10	PIOR2 = 1	1	0	0	-	-	٥	٥	×	(TO04) = 0	1	1	1	4	*	*	1	1
	(TID4)	Input	PIOR0 = 1	x	0	0	-	-	1	X	X	x	×	1	1	1	*	1	×	1
	(TO04)	Output	PIOR0 = 1	0	0	0	-	-	٥	٥	x	(SDAAD) = 0	V	A	1	*	*	4	4	1
	INREF1	Analog Input	-	X	1	0	-	-	1	X	X	X	1	1	1	1	1	1	1	1

23. <u>Table 4 - 8 Examples of Register and Output Latch Settings for</u> <u>Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash</u> <u>Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash</u> <u>Memory) (1/21) (Page 228)</u>

Incorrect:

Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (1/21)

	Fund	ction Used								Alternate Fu	nction Output											
Pin Name	Function Name	vo	PIOR	XWWOd	PMCAXX	PMCTXX	PMCEX	PMXX	жd	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	00-pin	uid-001	128-pin
P00	P00	Input	-	x	ONote 1	0	-	1	x	×	-	1	4	4	4	1	×	4	4	1	×	*
		Output	-	0	ONote 1	0	-	0	0/1	TxD1 = 1	-											
		N-ch open drain output	-	1	ONote 1	٥	-	٥	0/1	Note 2												
	ANI17	Analog Input	-	×	1	0	-	1	×	×	-	4	4	-	-	-	-	-	-	1	-	-
	TS26	vo	-	x	ONote 1	1	-	1	x	×	-	4	1	1	4	1	4	4	*	1	1	4
	E100	Input	-	x	ONote 1	٥	-	1	×	x	-	4	4	4	4	4	4	4	1	4	4	4
	T100	Input	-	x	ONote 1	٥	-	1	x	x	-	4	4	1	1	1	4	4	1	1	1	4
	TxD1	Output	-	0/1	ONote 1	0	-	0	1	x	-	1	4	1	1	1	1	-	-	-	-	-
P01	P01	Input	-	-	ONote 1	٥	0	1	x	-	x	1	1	1	1	1	1	4	*	1	1	*
		Output	-	-	ONote 1	0	0	0	0/1	-	TO00 = 0											
	ANI16	Analog Input	-	-	1	0	0	1	x	-	x	4	1	-	-	-	-	-	-	-	-	-
	T827	vo	-	-	ONote 1	1	0	1	x	-	x	٧	V	4	1	1	۷	4	1	1	V	4
	EI01	Input	-	-	ONote 1	0	0	1	x	-	x	1	1	1	4	1	٧	4	1	1	۷	*
	EO01	Output	-	-	ONote 1	0	1	0	x	-	x	4	4	1	4	4	٧	4	1	1	۷	*
	това	Output	-	-	ONote 1	0	0	0	0	-	x	4	٧	4	1	4	1	1	1	1	۷	*
	RxD1	Input	-	-	ONote 1	0	0	1	x	-	x	1	4	1	1	1	۷	-	-	-	-	-
P02	P02	Input	-	x	0	0	-	1	x	x	-	-	-	-	-	-	-	4	1	1	۷	4
		Output	-	0	0	0	-	0	0/1	TxD1 = 1	-											
		N-ch open drain output	-	1	٥	0	-	0	0/1	Note 4												
	ANI17	Analog Input	-	x	1	0	-	1	×	x	-	-	-	-	-	-	-	4	*	1	*	4
	T828	Output	-	x	0	1	-	1	×	×	-	-	-	-	-	-	-	4	1	4	×	4
	TxD1	Output	PIOR5 = 0 Note 3	0/1	٥	٥	-	٥	1	×	-	-	-	-	-	-	-	4	4	4	4	*
	8010	Output	PIOR5 = 0 Note 3	0/1	٥	٥	-	0	1	×	-	-	-	-	-	-	-	-	4	*	1	*
P03	P03	Input	-	x	0	0	-	1	×	x	-	-	-	-	-	-	-	4	*	*	*	4
		Output	-	0	0	0	-	0	0/1	SDA10 = 1	-											
		N-ch open drain output	-	1	٥	٥	-	0	0/1													
	ANI16	Analog Input	-	x	1	0	-	1	X	X	-	-	-	-	-	-	-	1	1	1	V	4
	T829	Output	-	X	0	1	-	1	×	x	-	-	-	-	-	-	-	1	1	1	1	*
	SI10	Input	PIOR5 = 0 Note 3	X	٥	٥	-	1	x	X	-	-	-	-	-	-	-	-	4	4	4	4
	RxD1	Input	PIOR5 = 0 Note 3	x	٥	0	-	1	×	×	-	-	-	-	-	-	-	4	4	4	4	4
	SDA10	vo	PIORS = 0 Note 3	1	٥	0	-	0	1	x	-	-	-	-	-	-	-	-	*	*	4	*

Correct:

Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (1/21)

			(=.)																			
	Fun	ction Used	ļ							Alternate Fu	nction Output	Ļ										
Pin Name	Function Name	ю	PIOR	POMox	PMC/vox	PIACTXX	PMOEX	PMKX	ă	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (Including clock output from the UARTA)	30-ph	niq-22	98-ph	40-pin	44-pin	48-pin	nid-00	64-bin	00-pin	100-pin	128-pin
P00	P00	Input	-	x	[Note 1	٥	-	1	x	x	-	1	4	1	4	4	4	4	1	4	٧	1
		Output	-	٥	[Note 1	٥	-	0	0/1	TxD1 = 1	-	Ī										
		N-ch open drain output	-	1	ONote 1	0	-	0	0/1	Note 2												
	ANI17	Analog Input	-	X	1	0	-	1	x	X	-	1	1	-	-	-	-	-	-	-	-	-
	T826	vo	-	x	ONote 1	1	-	1	x	x	-	1	1	1	4	1	4	1	V	V	V	1
	EI00	Input	-	X	ONote 1	0	-	1	x	x	-	1	1	1	1	1	1	1	٧	۷	۷	N
	T100	Input	-	x	ONote 1	٥	-	1	x	x	-	1	1	1	1	1	1	1	٧	۷	۷	1
	TXD1	Output	-	0/1	ONote 1	٥	-	0	1	x	-	1	1	1	1	1	1	-	-	-	-	-
P01	P01	Input	-	-	ONote 1	٥	٥	1	×	-	x	1	1	1	1	1	1	1	٧	۷	٧	A.
		Output	-	-	(Note 1	٥	0	0	0/1	-	T000 = 0	t										
	ANI16	Analog Input	-	-	1	٥	0	1	x	-	x	1	1	_	-	-	-	-	_	-	-	—
	T827	vo	-	-	ONote 1	1	٥	1	x	-	x	1	1	1	1	4	1	1	٧	۷	V	A.
	EI01	Input	-	-	[Note 1	٥	٥	1	x	-	x	1	1	1	1	1	1	1	٧	1	V	A.
	E001	Output	-	-	(Note 1	٥	1	0	×	-	x	1	1	1	1	4	٧	1	٧	۷	٧	A.
	тово	Output	-	-	(Note 1	0	0	0	0	-	x	1	1	1	1	1	1	1	٧	۷	٧	N
	RxD1	Input	-	-	ONote 1	٥	0	1	x	-	x	1	1	1	1	1	1	-	-	-	-	-
P02	P02	Input	-	x	0	0	-	1	x	x	-	-	-	-	-	-	-	1	٧	۷	٧	1
		Output	-	٥	0	٥	-	0	0/1	TxD1=1	-	Ī										
		N-ch open drain output	-	1	٥	0	-	٥	0/1	8018 = 1 Note 4												
	ANI17	Analog Input	-	x	1	٥	-	1	×	x	-	-	-	-	-	-	I	1	1	1	1	1
	T828	VO	-	x	0	1	-	1	×	X	-	-	-	-	-	-	-	1	1	1	1	4
	TXD1	Output	PIOR5 = 0 Note 3	0/1	٥	0	-	٥	1	×	-	-	-	-	-	-	-	4	4	1	4	1
	8010	Output	PIOR5 = 0 Note 3	0/1	٥	٥	-	٥	1	×	-	-	-	-	-	-	-	-	۷	1	4	4
P03	P03	Input	-	×	0	٥	-	1	×	x	-	-	-	-	-	-	-	1	1	1	V	1
		Output	-	0	0	0	-	0	0/1	SDA10 = 1	-											
		N-ch open drain output	-	1	0	0	-	0	0/1													
	ANI16	Analog Input	-	X	1	٥	-	1	X	X	-	-	-	-	-	-	-	1	1	A.	V	1
	T829	10	-	X	0	1	-	1	X	X	-	-	-	-	-	-	-	1	1	1	1	1
	8110	Input	PIOR5 = 0 Note 3	X	٥	0	-	1	×	×	-	-	-	-	-	-	-	-	4	1	4	4
	RxD1	Input	PIOR5 = 0 Note 3	X	٥	0	-	1	X	X	-	-	-	-	-	-	-	4	A	4	4	4
	SDA10	ю	PIOR5 = 0 Note 3	1	0	٥	-	٥	1	x	-	-	-	-	-	-	-	-	4	4	4	4
																						<u> </u>

24. <u>Table 4 - 8 Examples of Register and Output Latch Settings for</u> <u>Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash</u> <u>Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash</u> <u>Memory) (4/21) (Page 231)</u>

Incorrect:

Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (4/21)

	Funct	ion Used									Atemate Fi	unction Output											
Pin Name	Function Name	vo	PIOR	POMIX	PMCAX	PMCEx	CCDE	CCSX	PMIC	ж.d	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin	128-pin
P13	P13	Input	-	x	0	0	-	-	1	x	×	×	1	4	1	1	1	4	4	*	1	1	1
		Output	-	0	0	0	-	-	0	0/1	TxD2/	(TO04) = 0											
		N-ch open drain output	-	1	٥	0	-	-	٥	0/1	8020-1	(301040) = 0											
	EO13	Output	-	0/1	0	1	-	-	0	x	×	×	4	4	1	4	1	1	4	*	1	4	*
	TXD2	Output	PIOR1 = 0	0/1	٥	0	-	-	٥	1	×	(TO04) = 0 (SDAA0) = 0	4	4	4	4	4	4	4	*	*	4	*
	8020	Output	PIOR1 = 0	0/1	٥	0	-	-	٥	1	x	(TO04) = 0 (SDAA0) = 0	4	٧	4	4	4	4	4	4	4	4	4
	(SDAAD)	١/O	PIOR2 = 1	1	0	0	-	-	0	0	x	(TO04) = 0	4	4	1	4	1	4	4	1	4	V	4
	(T104)	Input	PIOR0 = 1	X	٥	0	-	-	1	x	×	X	1	1	1	1	1	1	1	1	1	V	1
	(TO04)	Output	PIOR0 = 1	0	٥	0	-	-	٥	0	x	(SDAA0) = 0	1	4	1	1	1	1	1	1	1	×	4
	IVREFO	Analog Input	-	X	1	0	-	-	1	x	×	X	4	4	1	4	1	1	*	*	*	V	*

Correct:

Table 4 - 8 Examples of Register and Output Latch Settings for Alternate Functions (Products with 192-Kbyte to 768-Kbyte Flash Memory and 80-Pin and 100-Pin Products with 128-Kbyte Flash Memory) (4/21)

	Fund	ton Used									Atemate Fi	unction Output											
Pin Name	Function Name	vo	PIOR	XWO:	PMCAxx	PMCEX	OCDE	CCSK	PMKX	Ъх	SAU and UARTA (excluding clock output from the UARTA)	Other than SAU and UARTA (including clock output from the UARTA)	30-pin	uid-22	19-88 19-88	40-pin	44-pin	48-pin	uid-20	64-pin	80-pin	100-pin	128-pin
P13	P13	Input	-	×	0	0	-	-	1	×	×	x	1	×	1	1	1	1	4	1	1	*	1
		Output	-	0	0	0	-	-	0	0/1	TXD2/	(TO04) = 0											
		N-ch open drain output	-	1	0	٥	-	-	٥	0/1	8020-1	(SUAND) = 0											
	EO13	Output	-	0/1	0	1	-	-	0	x	X	x	1	4	1	1	1	4	1	4	4	1	1
	TXD2	Output	PIOR1 = 0	0/1	٥	٥	-	-	٥	1	×	(TC04) = 0 (SDAA0) = 0	4	4	4	4	4	4	4	4	4	4	4
	8020	Output	PIOR1 = 0	0/1	0	٥	-	-	٥	1	x	(TO04) = 0 (SDAA0) = 0	4	4	4	4	4	4	4	4	4	1	4
	(SDAAD)	vo	PIOR2 = 1	1	0	0	-	-	0	0	x	(TO04) = 0	1	1	1	1	1	4	1	1	1	1	1
	(TID4)	Input	PIORD = 1	X	0	٥	-	-	1	X	x	x	1	1	1	1	1	1	1	1	1	1	1
	(TO04)	Output	PIORD = 1	0	0	0	-	-	0	0	X	(SDAAD) = 0	1	1	1	1	1	1	1	1	1	1	1
	IVREF1	Analog input	-	X	1	٥	-	-	1	x	X	x	1	1	1	1	1	1	1	1	1	1	1

25. Figure 6 - 9 Format of Subsystem Clock Supply Mode Control Register (OSMC) (Page 282)

Incorrect:

Figure 6 - 9 Format of Subsystem Clock Supply Mode Control Register (OSMC)

Address:	F00F3H
After reset:	Undefined

R/W: R/WNote 1

Symbol	<7>	6	5	<4>	3	2	1	<₽>
OSMC	RTCLPC	0	0	WUTMMCK 0	x	x	0	HIPREC
				•				
I								

Note 4	Setting in STOP mode or in HALT mode while the CPU is operating with the subsystem clock.
0	Enables supply of the subsystem clock to peripheral functions
	(See Table 23 - 1 to Table 23 - 4 for peripheral functions whose operations are enabled.)
1	Stops supply of the subsystem clock to peripheral functions other than the realtime clock.

WUTMMC КО	Selection of the operating clock for the realtime clock, 32-bit interval timer, serial interfaces UARTA0 and UARTA1, remote control signal receiver, and clock output/buzzer output controller
0	Subsystem clock X
1	Low-speed on-chip oscillator clockNotes 2, 3

HIPREC	State of the high-speed on-chip oscillator clock Notes 6, 8
0	The high-speed on-chip oscillator clock is being started at high speed and waiting for the
	precision of its oscillation to become stable is in progress. Note 7
1	The high-speed on-chip oscillator clock is operating with high precision.

Date: Nov. 24, 2021

Correct:

After reset:	Indefined														
K/W:	R/WNote 1														
Symbol	<7>	6	5	<4>	3	2	1	<0>							
OSMC	RTCLPC	0	0	WUTMMCK 0	x	x	٥	HIPREC							
	RTCLPC Note 4	Setting in ST	OP mode or	In HALT mode	while the CP	U is operating	with the sul	bsystem clock X							
	0	Enables supply of the subsystem clock X to peripheral functions (See Table 23 - 1 to Table 23 - 4 for peripheral functions whose operations are enabled.) Stops supply of the subsystem clock to peripheral functions other than the realitime clock.													
	1														
	WUTMMC КО	Selection of the operating clock for the realtime clock, 32-bit interval timer, serial interfaces UARTA0 and UARTA1, remote control signal receiver, and clock output/buzzer output controller													
	0	Subsystem of	lock X												
	1	Low-speed o	n-chip oscilia	ator clockNotes :	2, 3										

HIPREC	State of the high-speed on-chip oscillator clock Notes 5, 6
0	The high-speed on-chip oscillator clock is being started at high speed and waiting for the
	precision of its oscillation to become stable is in progress. Note 7
1	The high-speed on-chip oscillator clock is operating with high precision.

26. 9.2.11 Interval timer status register (ITLS0) (Page 483)

Incorrect:

Figure 9 - 12 Format of Interval Timer Status Register (ITLS0)

Address:	F036BH
After reset:	00H

R/W: R/WNote

Symbol	7	6	5	4	3	2						
ITLS0	0	0	0	ITFOC	ITF03	ITF02	Γ					
							-					
	ITF0C		Capture detection flag									
	0	Completion of capturing has not been detected.										

Completion of capturing has been detected.

	•
ITF03	Compare match detection flag for channel 3
0	A compare match signal has not been detected in channel 3.
1	A compare match signal has been detected in channel 3.

ITF02	Compare match detection flag for channel 2
0	A compare match signal has not been detected in channel 2.
1	A compare match signal has been detected in channel 2.

ITF01	Compare match detection flag for channel 1
0	A compare match signal has not been detected in channel 1.
1	A compare match signal has been detected in channel 1.

ITF00	Compare match detection flag for channel 0
0	A compare match signal has not been detected in channel 0.
1	A compare match signal has been detected in channel 0.

- **Note** Writing 1 to each bit is ignored. To clear the ITF0C or ITF0i bit, write 0 to the desired bit and 1 to the other bits by using an 8-bit memory manipulation instruction.
- **Caution** If the value of the ITLS0 register is other than 00H, the interrupt request flag (ITLIF bit) is not set even when a compare match for the channel currently having that event or completion of capture is detected. That is, an interrupt is not generated in such cases. For this reason, when clearing the detection flags, check all channels that are in use and set the ITLS0 register to 00H.

Date: Nov. 24, 2021

Correct:

0

ITF00

ITF01

Figure 9 - 12 Format of Interval Timer Status Register (ITLS0)

Address:	F036BH										
After reset:	00H										
R/W:	R/WNote										
Symbol	7	6	5	4	3	2	1	0			
ITLSO	0	0	0	ITFOC	ITF03	ITF02	ITF01	ITF00			
	ITFOC			Cap	ture detection	flag					
	0	Completion of	of capturing h	as not been de	etected.						
	1	Completion of	of capturing h	as been detec	ted.						
	ITF03		C	ompare matcl	h detection flag	g for channel	3				
	0	A compare n	atch signal h	as not been d	etected in cha	nnel 3.					
	1	A compare n	atch signal h	as been deteo	ted in channel	3.					
		· ·									
	ITF02		C	compare match	h detection flag	g for channel	2				
	0	A compare n	atch signal h	as not been d	etected in cha	nnel 2.					
	1	A compare n	atch signal h	as been deteo	ted in channel	2.					
	ITF01		C	ompare match	h detection flag	g for channel	1				
	0	A compare n	atch signal h	as not been d	etected in cha	nnel 1.					
	1	A compare match signal has been detected in channel 1.									
	ITF00	ITF00 Compare match detection flag for channel 0									
	0	A compare n	atch signal h	as not been d	etected in cha	nnel O.					
	1	A compare n	hatch signal h	as been deteo	ted in channel	0.					

Note Writing 1 to each bit is ignored. To clear the ITF0C or ITF0i bit (i = 0, 1, 2, 3), write 0 to the desired bit and 1 to the other bits by using an 8-bit memory manipulation instruction.

Caution 1. If clearing any of the ITF0C, ITF03, ITF02, ITF01, ITF00 flag bits to 0 does not lead to the value of the ITLS0 register becoming 00H, an interrupt request (INTITL) is generated and the interrupt request flag (ITLIF) is set to 1.

Caution 2. To clear a flag bit in the ITLS0 register to 0, only write 0 to a bit that has the setting 1. This is because writing 0 to a bit that has the setting 0 may make detecting a compare match signal or capture detection signal generated at the same time as the writing of 0 impossible. For example, when the ITF01 flag bit is set to 1, write 00011101B to the ITLS0 register to clear the ITF01 flag bit.

27. Table 12 - 3 A/D Conversion Time Selection (3/8) (Page 527)

Incorrect:

Table 12 - 3 A/D Conversion Time Selection (3/8)

(3) When there is A/D power supply stabilization wait time

AD AD) Conv) Conv	erter I erter I	Aode F Aode F	kegiste Kegiste	r0 r1			Number of Clock Cycles for A/D Power Supply Stabilization Wait	r Number of Clock Cycles for Conversion	Number of Clock Cycles for	AD Conversion Time (AD Power Supply Stabilization Walt Time + Conversion Time + Interrupt Output Delay Time)								
(AD M1)		(ADMO)		Mode	Conversion Clock (fAp)			Cycles for Interrupt Output		2.4 V ≤ AVREFP ≤ VDD ≤ 5.5 V							
ADL SP	FR2	FR1	FRD	LV1	LVO					Delay Note 2		folk = 1 MHz	folk = 4 MHz	folk - 8 MHz	folk 16 MHz	ICLK 32 MHz			
٥	0	0	0	0	0	Normal 1	fcux/32	4 fab	64 fAD	4 fap	2304/fcLK	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	72 µs			
٥	0	0	1				fcux/16	4 fab	64 fAD	4 fad	1152/fcLK	Setting prohibited	Setting prohibited	Setting prohibited	72 µs	36 µs			
٥	0	1	0				fcux/8	6 fAD	64 fAD	4 fap	592/fcux	Setting prohibited	Setting prohibited	74 µs	37 µs	18.5 µs			
0	0	1	1				fcux/4	10 fap	64 fAD	4 fad	312/foux	Setting prohibited	Setting prohibited	39 µs	19.5 µs	9.75 µs			
٥	1	0	0	•		•			fcux/2	18 fAD	64 fAD	4 fab	172/fcux	Setting prohibited	Setting prohibited	21.5 µs	10.75 µs	5.375 µs	
٥	1	0	1										folk	34 fab	64 fAD	4 fap	102/fcux	Setting prohibited	Setting prohibited
1	0	1	1				fcux/4	4 fab	64 fAD	4 fab	288/fcux	288 µs	72 µs	Setting prohibited	Setting prohibited	Setting prohibited			
1	1	0	0				fcux/2	4 fab	64 fAD	4 fap	144/foux	144 µs	36 µs	Setting prohibited	Setting prohibited	Setting prohibited			
1	1	0	1				TOLK	6 fAD	64 fAD	4 fab	74/fcux	74 µs	18.5 µs	Setting prohibited	Setting prohibited	Setting prohibited			
Other than the above										Setting	prohibited								

Normal mode 1 and 2 (for software trigger wait select mode and hardware trigger wait select mode^{Note 1})

Date: Nov. 24, 2021

Correct:

Table 12 - 3 A/D Conversion Time Selection (3/8)

(3) When there is A/D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger wait select mode and hardware trigger wait select mode^{Note 1})

AT AT	AD Converter Mode Register 0 AD Converter Mode Register 1			er O er 1			Number of Clock	blumber of	Number of Clock	AID Con	version Tim Conversion	e (AID Powe Time + Inter	r Supply Stai Tupt Output	blization Wa Delay Time)	t Time +	
(AD M1)		(ADMO	0		Mode	Conversion Clock (MD)	Cycles for A/D Power Supply Stabilization Weit	Clock Cycles for	Cycles for Interrupt Output Delxy Note 2		2.4 V ≤ AVREFP ≤ VDD ≤ 5.5 V				
ADL 8P	FR2	FRI	FRO	LVI	LVO				Conversion			folk = 1 MHz	foux = 4 MHz	foux = 8 MHz	fcux = 16 MHz	folk = 32 MHz
0	٥	0	0	0	0	Normai 1	foux/32	4 fAD	64 fab	4 fab	2304/folk	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	72 µs
0	0	0	1				foux/16	4 fAD	64 fao	4 fap	1152/fcLK	Setting prohibited	Setting prohibited	Setting prohibited	72 µs	36 µs
0	0	1	0				fcux/8	6 fAD	64 fap	4 fab	592/foux	Setting prohibited	Setting prohibited	74 µs	37 µs	18.5 µs
0	0	1	1				foux/4	10 fao	64 fab	4 fab	312/foux	Setting prohibited	Setting prohibited	39 µs	19.5 µs	9.75 µs
0	1	0	۰				fcux/2	18 fap	64 fao	4 fap	172/feux	Setting prohibited	Setting prohibited	21.5 µs	10.75 µs	5.375 µs
0	1	0	1				folk	34 fab	64 fap	4 fab	102/feux	Setting prohibited	Setting prohibited	12.75 µs	6.375 µs	3.1875 µs
1	0	1	1				foux/4	4 fAD	64 fab	4 fab	288/fcux	Setting prohibited	72 µs	Setting prohibited	Setting prohibited	Setting prohibited
1	1	0	0				fcux/2	4 fAD	64 fao	4 fap	144/foux	Setting prohibited	36 µs	Setting prohibited	Setting prohibited	Setting prohibited
1	1	0	1				folk	6 fAD	64 fab	4 fab	74flock	74 µs	18.5 µs	Setting prohibited	Setting prohibited	Setting prohibited
Other than the above Setting prohibited																

28. <u>12.3.6 12-bit/10-bit A/D conversion result register (ADCRn) (Page 543)</u>

Incorrect:

(n = 0 to 3)

Figure 12 - 10 Format of 12-bit/10-bit A/D Conversion Result Register (ADCRn)

Address:	FFF1FH, FFF1EH (ADCR) ^{Wote} , F0021H, F0020H (ADCR0) ^{Note} , F0023H, F0022H (ADCR1), F0025H, F0024H (ADCR2), F0027H, F0026H (ADCR3)
After reset:	0000H
R/W-	R

1	When /	A/D con	version	with 12	-bit reso	olution is	selecte	ed								
			FF	FF1FH(for ADC	CR)					FF	F1EH (for ADC	R)		
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCRn n = 0 to 3)	0	0	0	0												
I	When /	A/D con	version Ff	with 10 FF1FH (-bit reso for ADC	olution is CR)	selecte	ed			FF	F1EH (for ADC	R)		
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCRn											-	-	-	-	_	-

Note The contents of the ADCR register are stored in the ADCR0 register.

- **Caution 1**. When 8-bit resolution A/D conversion is selected (when the ADTYP1 and ADTYP0 bits of A/D converter mode register 2 (ADM2) are respectively set to 01) and the ADCRn register is read, 0 is read from the bits other than the higher 8 bits.
- **Caution 2**. When the ADCRn register is accessed in 16-bit units, and A/D conversion with 10bit resolution is selected, the higher 10 bits of the conversion result are read in order starting at bit 15 of the ADCRn register. When A/D conversion with 12-bit resolution is selected, the higher 12 bits of the conversion result are read in order starting at bit 11 of the ADCRn register.

Correct:

Figure 12 - 10 Format of 12-bit/10-bit A/D Conversion Result Register (ADCRn)

Address:	FFF1FH, FFF1EH (ADCR) ^{Note} , F0021H, F0020H (ADCR0) ^{Note} , F0023H, F0022H (ADCR1), F0025H, F0024H (ADCR2), F0027H, F0026H (ADCR3)
After reset:	0000H
R/W:	R

	When /	A/D con	version	with 12	-bit reso	olution is	select	ed											
	FFF1FH (for ADCR)										FFF1EH (for ADCR)								
									~ ~ ~										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
ADCRn (n = 0 to 3)	0	0	0	0															
When A/D conversion with 10-bit resolution is selected FFF1FH (for ADCR)											FF	F1EH (for ADC	R)					
	\sim				~				-				_						
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
ADCRn (n = 0 to 3)											0	0	0	0	0	0			

Note The contents of the ADCR register are stored in the ADCR0 register.

- **Caution 1**. When 8-bit resolution A/D conversion is selected (when the ADTYP1 and ADTYP0 bits of A/D converter mode register 2 (ADM2) are respectively set to 01) and the ADCRn register is read, 0 is read from the bits other than the higher 8 bits.
- **Caution 2**. When the ADCRn register is accessed in 16-bit units, and A/D conversion with 10bit resolution is selected, the higher 10 bits of the conversion result are read in order starting at bit 15 of the ADCRn register. When A/D conversion with 12-bit resolution is selected, the higher 12 bits of the conversion result are read in order starting at bit 11 of the ADCRn register.
- **Caution 3**. When writing to any of the following registers, the contents of the ADCRnH register may become undefined:

A/D converter mode register 0 (ADM0), analog input channel specification register (ADS), port mode control A registers 0, 2, 3, 10, 11, 12, 14, and 15 (PMCA0, PMCA2, PMCA3, PMCA10, PMCA11, PMCA12, PMCA14, and PMCA15), port mode control T registers 0, 2, and 15 (PMCT0, PMCT2, and PMCT15), and port mode control E register 0 (PMCE0)

Read the conversion result following conversion completion before writing to the ADM0, ADS, PMCAxx, PMCTxx, or PMCEx register. Using timing other than the above may cause an incorrect conversion result to be read.

0 0 0 0 0 0

29. Figure 12 - 12 Format of Analog Input Channel Specification Register (ADS) (Page 546)

Incorrect:

Figure 12 - 12 Format of Analog Input Channel Specification Register (ADS) <Select mode (ADMD = 0)> (2/2)

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Analog input channel	Input source		
0	1	1	0	1	1	Setting prohibited			
1	0	0	0	0	0	-	Temperature sensor output voltage		
1	0	0	0	0	1	 Internal reference voltage^{Note 3} 			
	(Other than	the above	Setting prohibited					

Caution 1. Be sure to clear bits 6 and 5 to 0.

- **Caution 2**. Set the channel that is specified as the analog input by a PMCAxx, PMCTxx, or PMCEx register to the input mode by using port mode registers 0, 2, 3, 10 to 12, 14, or 15 (PM0, PM2, PM3, PM10 to PM12, PM14, PM15).
- **Caution 3**. When specifying an input channel by the ADS register, do not select the pin that is specified as digital I/O by port mode control A register 0, 2, 3, 10, 11, 12, 14, or 15 (PMCA0, PMCA2, PMCA3, PMCA10, PMCA11, PMCA12, PMCA14, or PMCA15), port mode control T register 0, 2, or 15 (PMCT0, PMCT2, or PMCT15), or port mode control E register 0 (PMCE0).
- **Caution 4**. Rewrite the value of the ADISS bit while conversion is stopped (ADCS = 0, ADCE = 0).
- **Caution 5**. If using AVREFP as the + side reference voltage of the A/D converter, do not select ANI0 as an A/D conversion channel.
- **Caution 6**. If using AVREFM as the side reference voltage of the A/D converter, do not select ANI1 as an A/D conversion channel.
- **Caution 7.** If the ADISS bit is set to 1, the internal reference voltage cannot be used for the + side reference voltage. After the ADISS bit is set to 1, the initial conversion result cannot be used. For the setting flow, see 12.7.5 Example of using the ADC when selecting the temperature sensor output voltage or internal reference voltage, and software trigger no-wait mode and one-shot conversion mode. For details about the internal reference voltage, see CHAPTER 37 ELECTRICAL CHARACTERISTICS TA = -40 to +105°C.

Correct:

Figure 12 - 12 Format of Analog Input Channel Specification Register (ADS) <Select mode (ADMD = 0)> (2/2)

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Analog Input channel	Input source			
0	0 1 1 0 1 1						Setting prohibited			
0	4	4	4	4			Voltage on the TSCAP pin			
U	1	1		1	U	=	of the CTSU			
0	1	1	1	1	1	Setting prohibited				
1	0	0	0	0	0	-	Temperature sensor output			
							voltage			
1	0	0	0	0	1	-	Internal reference voltageNote 3			
		Other than	the abov	Setting prohibited						

Caution 1. Be sure to clear bits 6 and 5 to 0.

- **Caution 2**. Set the channel that is specified as the analog input by a PMCAxx, PMCTxx, or PMCEx register to the input mode by using port mode registers 0, 2, 3, 10 to 12, 14, or 15 (PM0, PM2, PM3, PM10 to PM12, PM14, PM15).
- Caution 3. When specifying an input channel by the ADS register, do not select the pin that is specified as digital I/O by port mode control A register 0, 2, 3, 10, 11, 12, 14, or 15 (PMCA0, PMCA2, PMCA3, PMCA10, PMCA11, PMCA12, PMCA14, or PMCA15), port mode control T register 0, 2, or 15 (PMCT0, PMCT2, or PMCT15), or port mode control E register 0 (PMCE0).
- **Caution 4**. Rewrite the value of the ADISS bit while conversion is stopped (ADCS = 0, ADCE = 0).
- **Caution 5**. If using AVREFP as the + side reference voltage of the A/D converter, do not select ANI0 as an A/D conversion channel.
- **Caution 6**. If using AVREFM as the side reference voltage of the A/D converter, do not select ANI1 as an A/D conversion channel.
- Caution 7. If the ADISS bit is set to 1, the internal reference voltage cannot be used for the + side reference voltage. After the ADISS bit is set to 1, the initial conversion result cannot be used. For the setting flow, see 12.7.5 Example of using the ADC when selecting the temperature sensor output voltage or internal reference voltage, and software trigger no-wait mode and one-shot conversion mode. For details about the internal reference voltage, see CHAPTER 37 ELECTRICAL CHARACTERISTICS TA = -40 to +105°C.

Caution 8. Do not set the ADISS bit to 1 when shifting to STOP mode, or to HALT mode while the CPU is operating on the subsystem clock. When the ADISS bit is set to 1, the A/D converter reference voltage current (IADREF) indicated in 37.3.2 Supply current characteristics will be added. Date: Nov. 24, 2021

Caution 8. Do not set the ADISS bit to 1 when shifting to STOP mode, or to HALT mode while the CPU is operating on the subsystem clock. When the ADISS bit is set to 1, the A/D converter reference voltage current (IADREF) indicated in 37.3.2 Supply current characteristics will be added.

Caution9. When the setting of the ADISS bit is 1, the hardware trigger wait mode and one-shot conversion mode cannot be used.

30. <u>12.6.2 Software trigger no-wait mode (select mode, one-shot</u> <u>conversion mode) (Page 555)</u>

Incorrect:

Figure 12 - 19 Example of Software Select No-Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

Caution When <u><4></u>, <u><5></u>, <u>or <6></u> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Correct:

Figure 12 - 19 Example of Software Select No-Wait Mode (Select Mode, One-Shot Conversion

Caution When <5>, or <6> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

31. <u>12.6.4 Software trigger no-wait mode (scan mode, one-shot</u> <u>conversion mode) (Page 557)</u>

Incorrect:

Figure 12 - 21 Example of Software Trigger No-Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <u><4></u>, <<u>5></u>, or <<u>6></u> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Date: Nov. 24, 2021

Correct:

Figure 12 - 21 Example of Software Trigger No-Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <5>, or <6> is detected while conversion is in progress, conversion is

automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

32. <u>12.6.6 Software trigger wait mode (select mode, one-shot</u> <u>conversion mode) (Page 559)</u>

Incorrect:

Figure 12 - 23 Example of Software Trigger Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

Caution When <4>, <5>, or <6> is detected during conversion operation, conversion is restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Correct:

Figure 12 - 23 Example of Software Trigger Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

Caution When <5>, or <6> is detected during conversion operation, conversion is

restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Date: Nov. 24, 2021

33. <u>12.6.8 Software trigger wait mode (scan mode, one-shot</u> <u>conversion mode) (Page 561)</u>

Incorrect:

Figure 12 - 25 Example of Software Trigger Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <4>, <5>, or <6> is detected during conversion operation, conversion is restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Date: Nov. 24, 2021

Correct:

Figure 12 - 25 Example of Software Trigger Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <5>, or <6> is detected during conversion operation, conversion is

restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

34. <u>12.6.9 Hardware trigger no-wait mode (select mode, sequential</u> <u>conversion mode) (Page 562)</u>

Incorrect:

Figure 12 - 26 Example of Hardware Trigger No-Wait Mode (Select Mode, Sequential Conversion Mode) Operation Timing

Caution When <4>, <5>, or <6> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Correct:

Figure 12 - 26 Example of Hardware Trigger No-Wait Mode (Select Mode, Sequential Conversion Mode) Operation Timing

Caution When <5>, <6>, or <7> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

35. <u>12.6.10 Hardware trigger no-wait mode (select mode, one-shot</u> <u>conversion mode) (Page 563)</u>

Incorrect:

Figure 12 - 27 Example of Hardware Trigger No-Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

Caution When <u><4>, <5>, or <6></u> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Date: Nov. 24, 2021

Correct:

Figure 12 - 27 Example of Hardware Trigger No-Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

Caution When <6>, <7>, or <8> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

36. <u>12.6.11 Hardware trigger no-wait mode (scan mode, sequential</u> <u>conversion mode) (Page 564)</u>

Incorrect:

Figure 12 - 28 Example of Hardware Trigger No-Wait Mode (Scan Mode, Sequential Conversion Mode) Operation Timing

Caution When <u><4></u>, <u><5></u>, <u>or <6></u> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Correct:

Figure 12 - 28 Example of Hardware Trigger No-Wait Mode (Scan Mode, Sequential Conversion Mode) Operation Timing

Caution When <5>, <6>, or <7> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

37. <u>12.6.12 Hardware trigger no-wait mode (scan mode, one-shot</u> <u>conversion mode) (Page 566)</u>

Incorrect:

Figure 12 - 29 Example of Hardware Trigger No-Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <u><4></u>, <<u>5></u>, or <<u>6></u> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Date: Nov. 24, 2021

Correct:

Figure 12 - 29 Example of Hardware Trigger No-Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <6>, <7>, or <8> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

38. <u>12.6.14 Hardware trigger wait mode (select mode, one-shot</u> <u>conversion mode) (Page 568)</u>

Incorrect:

Figure 12 - 31 Example of Hardware Trigger Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

Caution When <4>, <5>, or <6> is detected during conversion operation, conversion is restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Correct:

Figure 12 - 31 Example of Hardware Trigger Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

Caution1. When <5>, <6>, or <7> is detected during conversion operation, conversion is restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Caction2. The setting of ADISS being 1 (the input source is temperature sensor output voltage and internal reference voltage) cannot be used in the hardware trigger wait mode (select mode and one-shot conversion mode).

39. <u>12.6.16 Hardware trigger wait mode (scan mode, one-shot</u> <u>conversion mode) (Page 570)</u>

Incorrect:

Figure 12 - 33 Example of Hardware Trigger Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <4>, <5>, or <6> is detected during conversion operation, conversion is restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

Correct:

Figure 12 - 33 Example of Hardware Trigger Wait Mode (Scan Mode, One-Shot Conversion Mode) Operation Timing

Caution When <5>, <6>, or <7> is detected during conversion operation, conversion is restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 12 - 3 A/D Conversion Time Selection (3/8) and Table 12 - 3 A/D Conversion Time Selection (4/8).)

40. Figure 15 - 35 Example of Contents of Registers for Master Reception of 3-Wire Serial SPI (CSI00, CSI01, CSI10,CSI11, CSI20, CSI21, CSI30, CSI31) (Page 676)

Incorrect:

Figure 15 - 35 Example of Contents of Registers for Master Reception of 3-Wire Serial SPI (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21, CSI30, CSI31)

(a) Serial mode register mn (SMRmn)

Selection of the data and clock phase D: inputs/outputs data with MSB first (For details about the setting, see 16.3 1: inputs/outputs data with LSB first Registers to Control the Serial Array Unit.) Correct:

Figure 15 - 35 Example of Contents of Registers for Master Reception of 3-Wire Serial SPI (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21, CSI30, CSI31)

(a) Serial mode register mn (SMRmn)

(b) Serial communication operation setting register mn (SCRmn)

Setting of data length

0: 7-bit data length

1: 8-bit data length

41. <u>Table 15 - 3 Baud Rate Setting for UART Reception in SNOOZE</u> <u>Mode (Page 752)</u>

Incorrect:

Table 15 - 3 Baud Rate Setting for UART Reception in SNOOZE Mode

	Baud Rate for UART Reception in SNOOZE Mode						
High-speed On-chip Oscillator		Baud Rate of 4800 bps					
(fiH)	Operation Clock (fмск)	SDRmn [15:9]	Maximum Permissible Value	Minimum Permissible Value			
32 MHz±1.0%Note	foux/25	105	2.27%	-1.53%			
24 MHz±1.0%Note	foux/25	79	1.60%	-2.18%			
16 MHz±1.0%Note	fouk/24	105	2.27%	-1.53%			
12 MHz±1.0%Note	foux/24	79	1.60%	-2.19%			
8 MHz±1.0%Note	foux/23	105	2.27%	-1.53%			
6 MHz±1.0%Note	foux/23	79	1.60%	-2.19%			
4 MHz±1.0%Note	foux/22	105	2.27%	-1.53%			
3 MHz±1.0% Note	fcuk/2 ²	79	1.60%	-2.19%			
2 MHz±1.0%Note	fcLK/2	105	2.27%	-1.54%			
1 MHz±1.0%Note	foux	105	2.27%	-1.57%			

Date: Nov. 24, 2021

Correct:

Table 15 - 3 Baud Rate Setting for UART Reception in SNOOZE Mode when Starting of the High-Speed On-Chip Oscillator is at Normal Speed (FWKUP = 0)

Baud Rate	High-Speed On-Chip Oscillator (fiH)	Operating Clock (fMCK)	SDRmn [15:9]	Maximum Permissible Value	Minimum Permissible Value
4800 bos	32 MHz ± 1%Note	fcLk/25	106	1.45%	-1.67%
4000 bps 24 MHz	24 MHz ± 1% ^{Note}	fcuk/25	79	1.77%	-1.37%
9600 bos	32 MHz ± 1% ^{Note}	fcLk/24	106	1.45%	-1.67%
5000 008	24 MHz ± 1% ^{Note}	fcLk/24	79	1.77%	-1.37%

Table 15 - 4 Baud Rate Setting for UART Reception in SNOOZE Mode when Starting of the High-Speed On-Chip Oscillator is at High Speed (FWKUP = 1)

Baud Rate	High-Speed On-Chip Oscillator (fiH)	Operating Clock (fMCK)	SDRmn [15:9]	Maximum Permissible Value	Minimum Permissible Value
4800 bps		fcLk/25	106	1.45%	-1.67%
9600 bps		fcLk/24	106	1.45%	-1.67%
19200 bps		fcLk/23	106	1.45%	-1.67%
31250 bps	32 MHz ± 1% ^{Note}	fcLk/23	65	1.05%	-2.06%
38400 bps		fcLK/2 ²	106	1.45%	-1.67%
76800 bps		fcLK/2	106	1.45%	-1.67%
115200 bps		fcuk/2	70	1.93%	-1.21%

42. 17.3.2 UART Mode, (5) Continuous transmission (Page 911)

Incorrect:

(5) Continuous transmission

UARTAn has two separate registers for continuous transmission: the transmit buffer register

(TXBAn) and the transmit shift register.

At the moment the transmit shift register starts a shift operation, the next transmit data can be written to the transmit buffer register (TXBAn). This operation enables continuous transmission, thereby improving communication rate.

Note that continuous transmission is not achieved when writing to the TXBAn register is not completed within the maximum number of clock cycles defined below from generation of the transmit buffer register (TXBAn) empty interrupt.

Maximum number of clock cycles = Data transfer length \times 2k - (2k + 3) k: the value set with the BRGCAn bits (k = 2, 3, 4, 5, 6, ..., 255)

An example of calculating the maximum number of clock cycles is described below. When the BRGCAn register = 02H (k = 2),

start bit = 1 bit, character length = 8 bits, parity used, and stop bit = 1 bit: The maximum number of clock cycles = Transfer length $\times 2k - (2k + 3) = 11 \times 2 \times 2 - (2 \times 2 + 3) = 37$ (Writing must be completed within 37 clock cycles.)

Continuous transmission is achieved by the following two methods.

Date: Nov. 24, 2021

Correct:

(5) Continuous transmission

UARTAn has two separate registers for continuous transmission: the transmit buffer register

(TXBAn) and the transmit shift register.

At the moment the transmit shift register starts a shift operation, the next transmit data can be written to the transmit buffer register (TXBAn). This operation enables continuous transmission, thereby improving communication rate.

Note that continuous transmission is not achieved when writing to the TXBAn register is not completed within the maximum number of clock cycles defined below from generation of the buffer empty interrupt.

Maximum number of clock cycles = Data transfer length \times 2k - (2k + 3) k: the value set with the BRGCAn bits (k = 2, 3, 4, 5, 6, ..., 255)

An example of calculating the maximum number of clock cycles is described below. When the BRGCAn register = 02H (k = 2), start bit = 1 bit, character length = 8 bits, parity used, and stop bit = 1 bit: The maximum number of clock cycles = Transfer length × 2k - $(2k + 3) = 11 \times 2 \times 2 - (2 \times 2 + 3) = 37$ (Writing must be completed within 37 clock cycles of the UARTAn operating clock (fUTAn).)

Continuous transmission is achieved by the following two methods.

43. <u>Figure 23 - 4 Procedure for Settings to Switch from Shutdown</u> <u>Mode to Normal Mode (Page 1108)</u>

Incorrect:

Figure 23 - 4 Procedure for Settings to Switch from hutdown Mode to Normal Mode

Date: Nov. 24, 2021

Correct:

Figure 23 - 4 Procedure for Settings to Switch from Shutdown Mode to Normal Mode

Caution When the RAM returns to normal mode from shutdown mode, the contents of the

RAM other than in the range from FF000H to FFEFFH are undefined. Initialize the RAM area to be used.

44. Table 23 - 1 Operating Statuses in HALT Mode (1) (2/2) (Page 1110)

Incorrect:

Table 23 - 1 Operating Statuses in HALT Mode (1) (2/2)

	HALT Mode Setting	g When HALT Instruction is Executed While CPU is Operating on Main System Clock				
		When CPU is Operating on High-speed On-chip Oscillator Clock (Hu)	When CPU is Operating on Middle-speed On- chip Oscillator Clock (fw)	When CPU is Operating on X1 Clock (%)	When CPU is Operating on External Main System Clock (fex)	
tem						
Clock output/buzzer output	ut	Operation enabled				
A/D converter						
D/A converter						
Comparator						
Serial array unit						
Serial Interface IICA						
Serial Interface UARTA						
Remote control signal rec	elver					
Data transfer controller (DTC)						
SNOOZE mode sequence	er					
Logic and event link contr	oller (ELCL)	Operation-enabled function blocks can be linked				
Power-on-reset function		Operation enabled				
Voltage detection function	1					
External Interrupt						
Key Interrupt function						
Capacitive sensing unit (C	CTSU)					
CRC operation function	High-speed CRC					
	General-purpose CRC	OSE Capable of operations in response to access by the DTC or SMS to obtain data for calculations from the RAM area				
liegal-memory access detection function		Capable of operations in r	response to access by the D	DTC or SMS		
RAM parity error detection function						
RAM guard function						
SFR guard function						

Date: Nov. 24, 2021

Correct:

Table 23 - 1 Operating Statuses in HALT Mode (1) (2/2)

	HALT Mode Setting	When HALT Instruction is Executed While CPU is Operating on Main System Clock				
		When CPU is Operating on High-speed On-chip	When CPU is Operating on Middle-speed On-	When CPU is Operating on X1 Clock (fx)	When CPU is Operating on External Main System	
ltem		Oscillator Clock (fH)	chip Oscillator Clock (fix)		Clock (fltx)	
Clock output/buzzer outp	ut	Operation enabled				
A/D converter						
D/A converter						
Comparator						
Serial array unit						
Serial Interface IICA						
Serial Interface UARTA						
Remote control signal rec	ceiver					
Data transfer controller (DTC)						
SNOOZE mode sequence	er					
Logic and event link cont	roller (ELCL)	Operation-enabled function blocks can be linked				
Power-on-reset function		Operation enabled				
Voltage detection function	n					
External Interrupt						
Key Interrupt function						
Capacitive sensing unit (CTSU)					
CRC operation function	High-speed CRC					
	General-purpose CRC	Capable of operations in r RAM area	response to access by the D	TC or SMS to obtain data f	for calculations from the	
llegal-memory access detection function		Capable of operations in r	response to access by the D	TC or SMS		
RAM parity error detection function		[
RAM guard function						
SFR guard function						
True random numbe	er generator	Operation enabled				

45. Table 23 - 2 Operating Statuses in HALT Mode (2) (2/2) (Page 1112)

Incorrect:

Table 23 - 2 Operating Statuses in HALT Mode (2) (2/2)

	HALT Mode Setting		When HALT Instruction is Executed While CPU is Operating on Subsystem Clock			
item		When CPU is Operating on XT1 Clock (fxr)	When CPU is Operating on External Subsystem Clock (fexs)	When CPU is Operating on Low-speed on-chip oscillator clock (fL)		
SNOOZE mode sequencer		Operates when the RTCLPC bit is RTCLPC bit is not 0).	Operates when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).			
Logic and event link control	er (ELCL)	Operation-enabled function blocks	can be linked			
Power-on-reset function		Operation enabled				
Voltage detection function						
External Interrupt]				
Key Interrupt function		1				
Capaditve sensing unit (CT	SU)	Operates when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).				
CRC operation function	High-speed CRC	Operation disabled				
	General-purpose CRC	Capable of operations in response to access by the DTC or SMS to obtain data for calculations from RAM area		blain data for calculations from the		
llegal-memory access detection function		Capable of operations in response to access by the DTC or SMS				
RAM parity error detection function						
RAM guard function						
SFR guard function						

Date: Nov. 24, 2021

Correct:

Table 23 - 2 Operating Statuses in HALT Mode (2) (2/2)

/	HALT Mode Setting	When HALT Instruction is Executed While CPU is Operating on Subsystem Clock				
ltem		When CPU is Operating on XT1 Clock (fX1)	When CPU is Operating on External Subsystem Clock (fEXS)	When CPU is Operating on Low-speed on-chip oscillator clock (fiL)		
SNOOZE mode sequencer		Operates when the RTCLPC bit is RTCLPC bit is not 0).	Operates when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).			
Logic and event link control	er (ELCL)	Operation-enabled function blocks	can be linked			
Power-on-reset function		Operation enabled				
Voltage detection function						
External Interrupt	External Interrupt					
Key Interrupt function						
Capacitive sensing unit (CT)	3U)	Operates when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).				
CRC operation function	High-speed CRC	Operation disabled				
	General-purpose CRC	Capable of operations in response RAM area	to access by the DTC or SMS to o	btain data for calculations from the		
llegal-memory access detec	tion function	Capable of operations in response to access by the DTC or SMS				
RAM parity error detection function						
RAM guard function						
SFR guard function						
True random number	generator	Operation enabled				

46. Table 23 - 3 Operating Statuses in STOP Mode (2/2) (Page 1117)

Incorrect:

Table 23 - 3 Operating Statuses in STOP Mode (2/2)

STOP Mode Setting		When STOP Instruction is Executed While CPU is Operating on Main System Clock				
Item		When CPU is Operating on High-speed On-chip Oscillator Clock (fiH)	When CPU is Operating on Middle-speed On-chip Oscillator Clock (1w)	When CPU is Operating on X1 Clock (fx)	When CPU is Operating on External Main System Clock (fex)	
CRC operation	High-speed CRC	Operation stopped				
Tuncoon	General-purpose CRC					
Illegal-memory acc function	ess detection	•				
RAM parity error de	etection function					
RAM guard function	n					
SFR guard function	1					

47. Table 23 - 4 Operating Statuses in SNOOZE Mode (2/2) (Page 1124)

Incorrect:

Table 23 - 4 Operating Statuses in SNOOZE Mode (2/2)

STOP Mode Setting	Generation of source conditions which lead to transitions to SNOOZE mode during STOP mode		
item	When CPU Is Operating on High-speed On-chip Oscillator Clock (fi+)	When CPU is Operating on Middle-speed On-chip Oscillator Clock (fm)	
llegal-memory access detection function	Capable of operations in response to access by the D	DTC or SMS	
RAM parity error detection function			
RAM guard function			
SFR guard function			

Date: Nov. 24, 2021

Correct:

Table 23 - 3 Operating Statuses in STOP Mode (2/2)

	STOP Mode Setting	When STOP Instruction is Executed While CPU is Operating on Main System Clock				
ltem		When CPU is Operating on High-speed On-chip Oscillator Clock (fiH)	When CPU is Operating on Middle-speed On-chip Oscillator Clock (fM)	When CPU is Operating on X1 Clock (fx)	When CPU is Operating on External Main System Clock (fltX)	
CRC operation	High-speed CRC	Operation stopped				
function	General-purpose CRC					
llegal-memory acc function	cess detection					
RAM parity error d	letection function					
RAM guard function	n					
SFR guard function						
True random r	number generator					

Correct:

Table 23 - 4 Operating Statuses in SNOOZE Mode (2/2)

STOP Mode Setting	Generation of source conditions which lead to transitions to SNOOZE mode during STOP mode			
ltem	When CPU is Operating on High-speed On-chip Oscillator Clock (fH)	When CPU is Operating on Middle-speed On-chip Oscillator Clock (flM)		
llegal-memory access detection function	Capable of operations in response to access by the DTC or SMS			
RAM parity error detection function				
RAM guard function	Ī			
SFR guard function	Ī			
True random number generator	Ţ			

48. Figure 26 - 11 Delays from the Time an LVD0 or LVD1 Reset Source Condition is Satisfied until an LVD0 or LVD1 Reset has been Generated and Deasserted (Page 1155)

Incorrect:

Figure 26 - 11 Delays from the Time an LVD0 or LVD1 Reset Source Condition is Satisfied until an LVD0 or LVD1 Reset has been Generated and Deasserted

<1>: Delay for detection (300 µs (max.))

Correct:

Figure 26 - 11 Delays from the Time an LVD0 or LVD1 Reset Source Condition is Satisfied until an LVD0 or LVD1 Reset has been Generated and Deasserted

<1>: Delay for detection (500 µs (max.))

49. <u>Figure 28 - 3 Procedure for Using the True Random Number</u> <u>Generator to Generate a Random Number Seed (Page 1188)</u>

Incorrect:

Figure 28 - 3 Procedure for Using the True Random Number Generator to Generate a Random Number Seed

Date: Nov. 24, 2021

Correct:

Figure 28 - 3 Procedure for Using the True Random Number Generator to Generate a Random Number Seed

50. 28.2.2 Setting of flash read protection (Page 1190)

Incorrect:

Table 28 - 2 Method of Setting Flash Read Protection

Item to Be Set	Method of Setting	Method of Changing
Block where flash read protection starts	Using a flash memory programmer or self-programming.	Using a flash memory programmer or self-programming. Note that the block where protection starts is not adjustable while fixing of the flash read protection settings is enabled.
Block where flash read protection ends	Using a flash memory programmer or self-programming.	Using a flash memory programmer or self-programming. Note that the block where protection ends is not adjustable while fixing of the flash read protection settings is enabled.
Fixing the flash read protection settings	Using a flash memory programmer or self-programming.	Fixing of the flash read protection settings can be released by using a flash memory programmer. ^{Note} If you do so, the values for the start and end blocks are initialized.

- **Note** Release from the fixed setting is only possible when erasure of blocks is not prohibited, rewriting of <u>boot cluster 0</u> is not prohibited, and the code and data flash memory areas are blank.
- **Caution 1**. The settings for flash read protection in the extra area are not readable. To confirm that the settings for flash read protection are in place, read from the read-access disabled area and confirm that FFH is returned.
- **Caution 2**. To specify the read-access disabled area for flash read protection, be sure to specify the numbers of both the block where protection starts and the block where it ends.
- **Caution 3**. Reading from the read-access disabled area by using an on-chip debugger is also impossible. This means that program code allocated to the read access-disabled area cannot be debugged by using the on-chip debugger. Therefore, only make the settings for flash read protection after having debugged the program code in the protected areas.
- **Caution 4**. When a part of boot cluster 0 or boot cluster 1 is to be set as a part of the readaccess disabled area, boot swapping may cause data in the read-access disabled area to be swapped with data in the read access-enabled area. To prevent this, when setting a part of boot cluster 0 or boot cluster 1 as part of the read-access disabled area, make the setting for prohibiting the rewriting of <u>boot cluster 0</u> so as to prohibit boot swapping itself.

Correct:

Table 28 - 2 Method of Setting Flash Read Protection

Item to Be Set	Method of Setting	Method of Changing
Block where flash read protection starts	Using a flash memory programmer or self-programming.	Using a flash memory programmer or self-programming. Note that the block where protection starts is not adjustable while fixing of the flash read protection settings is enabled.
Block where flash read protection ends	Using a flash memory programmer or self-programming.	Using a flash memory programmer or self-programming. Note that the block where protection ends is not adjustable while fixing of the flash read protection settings is enabled.
Fixing the flash read protection settings	Using a flash memory programmer or self-programming.	Fixing of the flash read protection settings can be released by using a flash memory programmer. ^{Note} If you do so, the values for the start and end blocks are initialized.

- **Note** Release from the fixed setting is only possible when erasure of blocks is not prohibited, rewriting of <u>boot area</u> is not prohibited, and the code and data flash memory areas are blank.
- **Caution 1**. The settings for flash read protection in the extra area are not readable. To confirm that the settings for flash read protection are in place, read from the read-access disabled area and confirm that FFH is returned.
- **Caution 2**. To specify the read-access disabled area for flash read protection, be sure to specify the numbers of both the block where protection starts and the block where it ends.
- **Caution 3**. Reading from the read-access disabled area by using an on-chip debugger is also impossible. This means that program code allocated to the read access-disabled area cannot be debugged by using the on-chip debugger. Therefore, only make the settings for flash read protection after having debugged the program code in the protected areas.
- **Caution 4**. When a part of boot clust 0 or boot cluster 1 is to be set as a part of the readaccess disabled area, boot swapping may cause data in the read-access disabled area to be swapped with data in the read access-enabled area. To prevent this, when setting a part of boot cluster 0 or boot cluster 1 as part of the read-access disabled area, make the setting for prohibiting the rewriting of boot area so as to prohibit boot swapping itself.

51. <u>CHAPTER 30 CAPACITIVE SENSING UNIT (CTSU2L), Number of</u> the CTSU2L output channels (Page 1236)

Incorrect:

ROM size		64 to 128 Kbytes							
Pin count	30	32	36	40, 44	48	52	64	80	100
Number of the CTSU2L output channels	2 (TS00, TS01)	3 (TS00 to TS02)	5 (TS00 to TS04)	6 (TS00 to TS05)	8 (TS00 to TS07)	10 (TS00 to TS09)	12 (TS00 to TS11)	30 (TS00 to TS15, TS20 to TS33)	32 (TS00 to TS15, TS20 to TS35)

ROM size		192 to 768 Kbytes								
Pin count	30	32	36	40	44	48	52	64	80	100, 128
Number of the CTSU2L output channels	6 (TS00, TS01, TS20, TS21, TS26, TS27)	7 (TS00 to TS02, TS20, TS21, TS26, TS27)	11 (TS00 to TS04, TS20 to TS23, TS26, TS27)	13 (TS00 to TS05, TS20 to TS24, TS26, TS27)	14 (TS00 to TS05, TS20 to TS27)	16 (TS00 to TS07, TS20 to TS27)	20 (TS00 to TS09, TS20 to TS29)	22 (TS00 to TS11, TS20 to TS29)	30 (TS00 to TS15, TS20 to TS33)	32 (TS00 to TS15, TS20 to TS35)

Date: Nov. 24, 2021

Correct:

ROM size	96 to 128	96 to 128 Kbytes							
Pin count	30	32	36	40, 44	48	52	64	80	100
Number of the CTSU2L output channels	2 (TS00, TS01)	3 (TS00 to TS02)	5 (TS00 to TS04)	6 (TS00 to TS05)	8 (TS00 to TS07)	10 (TS00 to TS09)	12 (TS00 to TS11)	30 (TS00 to TS15, TS20 to TS33)	32 (TS00 to TS15, TS20 to TS35)

ROM size	192 to 256	Kbytes			192 to 768	Kbytes				256 to 768 Kbytes
Pin count	30	32	36	40	44	48	52	64	80	100, 128
Number of the CTSU2L output channels	6 (TS00, TS01, TS20, TS21, TS26, TS27)	7 (TS00 to TS02, TS20, TS21, TS26, TS27)	11 (TS00 to TS04, TS20 to TS23, TS26, TS27)	13 (TS00 to TS05, TS20 to TS24, TS26, TS27)	14 (TS00 to TS05, TS20 to TS27)	16 (TS00 to TS07, TS20 to TS27)	20 (TS00 to TS09, TS20 to TS29)	22 (TS00 to TS11, TS20 to TS29)	30 (TS00 to TS15, TS20 to TS33)	32 (TS00 to TS15, TS20 to TS35)

52. <u>Table 30 - 1 CTSU Functions, Transmission power switching of</u> <u>mutual capacitance method (Page 1238)</u>

Incorrect:

Table 30 - 1 CTSU Functions

	Item	Configuration			
CTSU2L operati	ng voltage condition	Vpp = 1.8 to 5.5 V			
Operating clock		fcux, fcux/2, fcux/4, or fcux/8			
Pins	Electrostatic capacitance measurement	TSm (m = 00 to 15, 20 to 35) up to 32 channels			
	Connection pin to capacitor for measurement secondary power	TSCAP (10 nF) We recommend connecting a 10-nF capacitor.			
Measurement mode	Self-capacitance measurement mode	Electrostatic capacitance is measured from the charged current that flows toward the electrode used in the self-capacitance method.			
	Mutual capacitance measurement mode	Electrostatic capacitance is measured from the charged current that flows toward the capacitance generated between the transmit and receive electrodes used in the mutual capacitance method.			
	DC current measurement mode	Current from a measurement pin is measured.			
Calibration mode	e	Characteristic correction of the current control oscillator for measurement			
Noise prevention	n	Synchronous noise prevention, high-pass noise prevention Majority decision by multi-frequency measurement			
Adjustment for e	each pin	Offset current adjustment function Sensor drive pulse frequency specification Measurement time specification			
Measurement st	art conditions	Software trigger External trigger (ELCL)			
Low-power function		SNOOZE function supported			
Requests	Data transfer request	Channel measurement setting write request Measurement result read request			
	Interrupt request	Measurement end interrupt request			
Transmission power switching of mutual capacitance method		The power for transmission in the mutual capacitance method can be switched among Vbo (VCL), Vcc (I/O port), and Vcc (dedicated).			

Correct:

Table 30 - 1 CTSU Functions

	Item	Configuration			
CTSU operating	voltage condition	VDD = 1.8 to 5.5 V			
Operating clock		fclk, fclk/2, fclk/4, or fclk/8			
Pins	Electrostatic capacitance measurement	TSm (m = 00 to 15, 20 to 35) up to 32 channels			
	Connection pin to capacitor for measurement secondary power	TSCAP (10 nF) We recommend connecting a 10-nF capacitor.			
Measurement mode	Self-capacitance measurement mode	Electrostatic capacitance is measured from the charged current that flows toward the electrode used in the self-capacitance method.			
	Mutual capacitance measurement mode	Electrostatic capacitance is measured from the charged current that flows toward the capacitance generated between the transmit and receive electrodes used in the mutual capacitance method.			
	Current measurement mode	Current from a measurement pin is measured.			
Calibration mode	3	Characteristic correction of the current control oscillator for measurement			
Noise prevention	1	Synchronous noise prevention, high-pass noise prevention Majority decision by multi-frequency measurement			
Adjustment for e	ach pin	Offset current adjustment function Sensor drive pulse frequency specification Measurement time specification			
Measurement sta	art conditions	Software trigger External trigger (ELCL)			
Low-power function		SNOOZE function supported			
Interrupt requests	DTC activation source/ DTC interrupt source	Request to write to a configuration register of an individual CTSU channel Request to transfer data measured by the CTSU			
	Interrupt source	Measurement end interrupt			
Transmission power switching of mutual capacitance method		The power for transmission in the mutual capacitance method is switchable.			

53. Table 30 - 2 External Pins Used in CTSU (Page 1239)

Incorrect:

Table 30 - 2 External Pins Used in CTSU

Pin name	Input/output	Function
TSm (m = 00 to 15, 20 to 35)	Output	Electrostatic capacitance measurement pin, transmit pin in the mutual capacitance method, active shield control pin, or current measurement pin
TSCAP		Connection pin to capacitor for measurement secondary power

Date: Nov. 24, 2021

Correct:

Table 30 - 2 External Pins Used in CTSU

Pin name	Input/output	Function
TSm (m = 00 to 15, 20 to 35)	Input/output	Electrostatic capacitance measurement pin, transmit pin in the mutual capacitance method, active shield control pin, or current measurement pin
TSCAP	Input/output	Connection pin to capacitor for measurement secondary power

54. Figure 30 - 7 Format of CTSU Control Registers AL and AH (CTSUCRAL, CTSUCRAH) (Page 1245, Page 1246, Page 1247)

Incorrect:

Figure 30 - 7 Format of CTSU Control Registers AL and AH (CTSUCRAL, CTSUCRAH)

MD1	Measurement Mode Select 1					
0 Self-capacitance method (single measurement)						
	When CHTRCx is set to 1 (transmission), the transmit pin outputs the first (same phase) pulse.					
	When multiple bits are set to 1, scan is performed.					
	When CHTRCx is set to all 0, measurement is performed without transmission.					
1	Mutual capacitance method (double-measurement requiring CHTRCx setting)					
When CHTRCx is set to all 0, scan fails without measurement.						
The MD1 bit selects single measurement (assuming self-capacitance method) or double-measurement						
(assuming mutual capacitance method).						

TXVSEL	Transmission Power Supply Select
0	Vcc (I/O port)
1	Vbb (VCL)

TXVSEL2	Transmission Power Supply Select 2
0	Follows the TXVSEL setting.
1	Vcc (dedicated)

Correct:

Figure 30 - 7 Format of CTSU Control Registers AL and AH (CTSUCRAL, CTSUCRAH)

MD1	Measurement Mode Select 1
0	Self-capacitance method (single measurement)
	When CHTRCx is set to 1 (transmission), the same phase pulse is output from the TSm pin for
	measurement.
	When multiple CHTRCx bits are set to 1, measurement is scanned.
1	Mutual capacitance method (double-measurement)
	Set the CHTRCx bit to 1 (transmission) to handle measurement.
	The same phase pulse is output from the TSm pin in the first measurement.
	The reverse phase pulse is output from the TSm pin in the second measurement.
Set the MD1	bit to select self-capacitance method. Set the MD1 bit to select mutual-capacitance method.

TXVSEL	TXVSEL2	Transmission Power Supply Select
0	0	Not recommended
0	1	This setting is recommended when transmission power of mutual capacitance
		method transmission is used. Note
1	0	Use this setting when the active shield function is in use.
1	1	This setting is recommended when transmission power of mutual capacitance
		method transmission is used. Note

Note The same transmission power supply is selected when the setting of TXVSEL2 is 1.

RENESAS TECHNICAL UPDATE TN-RL*-A0100B/E

	SNZ	SNOOZE Enable									
	0	Disables the SNOOZE function.									
	1	Enables the SNOOZE function.									
П	The SNZ bit enables or disables the SNOOZE function when an external trigger is selected (CAP = 1).										
Se	etting this b	it to 1 drives the C	TSU hardware	macro into the	e suspended state	to enable low-power					
0	peration in t	he standby state.									
		,									
1	CTSU bard	ware macro state o	cintral >								
	or our haid	ware macro state c	And A								
	PON	SNZ	CAP	STRT	External trigger	Hardware macro (VDC) state					
	0	0	0	0	_	Stopped					
	1	0	-	-	-	Operating					
Ιſ	1	1	1	0	-	Suspended					
	1	1	1	1	None (walting)	Suspended					
	1	1	1	1	Provided (active)	Operating					
	1 1 0 0 - Software suspended										
		0	Other than above	2		Setting prohibited					

The SNZ bit enables SNOOZE operation. In the external trigger waiting state enabled by setting the STRT bit to 1, the CPU can enter STOP mode. When a falling edge of the external trigger is detected during STOP mode, the CTSU sends a clock request to the clock generating block and enters the SNOOZE state to start measurement. After the measurement end interrupt, clear this bit to 0 by software.

The software suspended state in this table is used when the software of a system without SNOOZE function suspends the CTSU hardware macro to enable low-power operation. In this case, set the SNZ bit to 0 after the CPU returns to the previous state by an external interrupt, and then set the STRT bit to 1 to start measurement upon a software trigger. Date: Nov. 24, 2021

SNZ		SNOOZE Enable						
0	Disab	les the S	SNOOZE	function.				
1	Enabl	Enables the SNOOZE function.						
The SNZ b	The SNZ bit enables or disables the SNOOZE function when an external trigger is selected (CAP = 1).							
Setting this	Setting this bit to 1 drives the CTSU hardware macro into the suspended state to enable low-power							
operation in the standby state.								
<ctsu control="" hardware="" state=""></ctsu>								
PON	SNZ	CAP	STRT	Trigger	State of the CTSU			

PON	SNZ	CAP	STRT	Trigger	State of the CTSU		
0	0	0	0	-	Stopped		
1	0	0	0		State until measurement starts (VDC = ON)		
1	0	0	1	_	Measurement in the normal mode (VDC = ON)		
1	1	1	0	 Prepared for measurement start by an external (VDC = OFF) 			
1	1	1	1	Not present	Suspended (waiting for a trigger) (VDC = OFF)		
1	1	1	1	Present	Measurement in the SNOOZE mode (VDC = ON) ^{Note}		
1	1	0	0	-	Software suspended (VDC = OFF)		
	Other than above				Setting prohibited		

Note When a trigger is generated in the STOP mode, measurement is handled in the SNOOZE mode.

The SNZ bit enables SNOOZE operation. In the external trigger waiting state enabled by setting the STRT bit to 1, the CPU can enter STOP mode. When a falling edge of the external trigger is detected during STOP mode, the CTSU sends a clock request to the clock generating block and enters the SNOOZE state to start measurement. After the measurement end interrupt, clear this bit to 0 by software.

The software suspended state in this table is used when the software of a system without SNOOZE function suspends the CTSU hardware macro to enable low-power operation. In this case, set the SNZ bit to 0 after the CPU returns to the previous state by an external interrupt, and then set the STRT bit to 1 to start measurement upon a software trigger.

55. Figure 30 - 15 Format of CTSU Calibration Registers L and H (CTSUDBGR0, CTSUDBGR1) (Page 1264, Page 1266)

Incorrect:

Figure 30 - 15 Format of CTSU Calibration Registers L and H (CTSUDBGR0, CTSUDBGR1)

Address:	F0528H, F052AH
After reset:	0000H, 0000H
R/W:	R/W

Symbol	15	14	13	12	11	10	9	8
CTSUDBGR1	TXREV	CCOCALIB	CCOCLK	DACCLK	SUCARRY	SUMSEL	DACCARRY	DACMSEL
-								
	7	6	5	4	3	2	1	0
[0	0	0	0	0	0	0	0
-								
Symbol	15	14	13	12	11	10	9	8
CTSUDBGR0	0	0	0	0	DCOFF	0	IOC	CNTRDSEL
-								
	7	6	5	4	3	2	1	0
Γ	TSOC	SUCLKEN	CLKSE	:LO[1:0]	DRV	TSOD	TEST	[1:0]

TEST[1:0]		Test Mode				
0	0	Normal operation mode				
0	1	Setting prohibited				
1	0	Setting prohibited. Burn-in mode 1 (STRESS)				
1	1	Setting prohibited				
The TEST[1:0] bits control operating mode of the CTSU hardware macro.						
Burn-in mode 1 (STRESS)						
This mode is used to increase the reference voltage to stress the Voo system.						

Date: Nov. 24, 2021

Correct:

Figure 30 - 15 Format of CTSU Calibration Registers L and H (CTSUDBGR0, CTSUDBGR1)

Address: After reset: R/W:	F0528H, F052AH 0000H, 0000H R/W								
Symbol	15	14	13	12	11	10	9	8	
CTSUDBGR1	TXREV	CCOCALIB	CCOCLK	DACCLK	SUCARRY	SUMSEL	DACCARRY	DACMSEL	
					•		•		
	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	0	
Symbol	15	14	13	12	11	10	9	8	
CTSUDBGR0	0	0	0	0	DCOFF	0	IOC	CNTRDSEL	
	7	6	5	4	3	2	1	0	
	TSOC	SUCLKEN	CLKSE	:LO[1:0]	DRV	TSOD	0	0	

56. <u>CHAPTER 30 CAPACITIVE SENSING UNIT (CTSU2L), Cautions</u> when using capacitive sensing unit (Page 1271)

Correct:

30.3 Usage Notes of the Capacitive Sensing Unit

1. Evaluation of detection by the capacitive sensing unit (CTSU)

In the final stage of development, the user must judge whether or not detection by the touch sensor is reliable in the systems for customers. To do so, the user must run the systems in nearly completed products and use the QE for Capacitive Touch tool (development assistance tool for capacitive touch sensors) to thoroughly evaluate operation by monitoring the measurement of electrostatic capacitance.

If obtaining the desired results of detection is not possible, adjust the CapTouch parameters (mainly the touch threshold) through QE for Capacitive Touch and re-evaluate the system. Note that, if the CTSU is to be used with the mutual-capacitance method, the measured values for electrostatic capacitance (counted values) might fluctuate according to the state of the port output of the microcomputer due to fluctuations of the output voltage on the transmission pin. If such a phenomenon is observed, use QE for Capacitive Touch to set the touch threshold in consideration of the fluctuations in the counted values. Such fluctuations will not be seen with the self-capacitance method.

Date: Nov. 24, 2021

57. 31.1 Overview (Page 1272)

Incorrect:

31.1 Overview

The RL78/G23 incorporates a circuit for constant voltage operation. To stabilize the output voltage from the regulator, connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Use a capacitor with good characteristics, since it is for stabilizing the internal voltage.

Correct:

31.1 Overview

The RL78/G23 incorporates a circuit for constant voltage operation. To stabilize the output voltage from the regulator, connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Use a capacitor with good characteristics, since it is for stabilizing the internal voltage. The REGC pin can be used as a reference voltage for an external circuit. An external circuit for connection to the REGC pin for this purpose must have an input impedance of at least 1.5 M Ω . The voltage on the REGC pin is in the range from 1.38 to 1.60 V, and the typical value is 1.5 V.

58. Figure 32 - 5 Format of User Option Byte (000C2H or 040C2H) (Page 1279)

Incorrect:

Figure 32 - 5 Format of User Option Byte (000C2H or 040C2H)

Address: 000C2H or 040C2HNote

FRQSEL0
ltage Range
5.5 V
5.5 V
5.5 V
5.5 V
5.5 V
1 ta 0 5 0 5 0 5 0 5 0 5

Date: Nov. 24, 2021

Correct:

Figure 32 - 5 Format of User Option Byte (000C2H or 040C2H)

Address: 000C2H or 040C2HNote

Symbol	7	6	5	4	3	2	1	0
	CMODE1	CMODED	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

Value of the (000	Option Byte C2H)	Flash Operation Mode	Operating Frequency	Operating Voltage Range	
CMODE1	CMODED		Range		
0	1	LP (low-power main)	1 MHz to 2 MHz	1.6 V to 5.5 V	
		mode	(Rewriting of flash		
			memory is not possible.)		
1	0	LS (low-speed main)	1 MHz to 2 MHz	1.6 V to 5.5 V	
		mode	1 MHz to 4 MHz		
			(Rewriting of flash		
			memory is not possible.)		
			1 MHz to 24 MHz	1.8 V to 5.5 V	
1	1	1 HS (high-speed main) 1 MHz to 2 MHz		1.6 V to 5.5 V	
		mode	1 MHz to 4 MHz		
			(Rewriting of flash		
			memory is not possible.)		
			1 MHz to 32 MHz	1.8 V to 5.5 V	
Other th	an above	Setting prohibited	•	•	

RENESAS TECHNICAL UPDATE TN-RL*-A0100B/E

59. Figure 33 - 8 Flow of Self-Programming (Rewriting Flash Memory) (Page 1297)

Incorrect:

Figure 33 - 8 Flow of Self-Programming (Rewriting Flash Memory)

Date: Nov. 24, 2021

Correct:

Figure 33 - 8 Flow of Self-Programming (Rewriting Flash Memory)

60. <u>33.6.2.1 Flash address pointer registers H and L (FLAPH, FLAPL)</u> (Page 1300)

Incorrect:

is operating.

Date: Nov. 24, 2021

Correct:

Figure 33 - 9 Format of Flash Address Pointer Registers H and L (FLAPH, FLAPL)

RENESAS TECHNICAL UPDATE TN-RL*-A0100B/E

61. <u>33.6.2.2 Flash end address pointer registers H and L (FLSEDH,</u> <u>FLSEDL) (Page 1301)</u>

Incorrect:

Figure 33 - 10 Format of Flash End Address Pointer Registers H and L (FLSEDH, FLSEDL)

Date: Nov. 24, 2021

Correct:

Figure 33 - 10 Format of Flash End Address Pointer Registers H and L (FLSEDH, FLSEDL)

Address:	F02C8H								
After reset:	00H								
R/W:	R/W								
Symbol	7	6	5	4	3	2	1	0	
FLSEDH	0	0	0	0	EWA19	EWA18	EWA17	EWA16	
Address:	F02C6H								
After reset:	0000H								
R/W:	R/W								
Combo			12	10					
Symbol	15	14	13	12	11	10	9	8	
FLOEDL	EWAID	EWA14	EWAIS	EWRIZ	EWATI	EWAIU	EVWAa	EVINO	
	7	6	5	4	3	2	1	0	
	EWA7	EWA6	EWA5	EWA4	EWA3	EWA2	EWA1	EWA0	
Caution 1	. The FLS	EDH and	FLSEDL I	registers o	an be rev	ritten und	ler either o	of the	
	following	conditions	5.						
	- The FLS	PM bit in	the FLPM	IC register	r is 1 (Coo	le flash m	emorv are	ea:	
	programm	ning mode	•)				,		
		ID hit in t	n ha El DM(² register	ia 1 (Data	floop mo	monuoroo		
					is i (Dala		nory area		
	programm	ning mode	e).						
Caution 2	. Rewrite	or read the	ese registe	ers when	the extra a	area sequ	encer and	I the	
	code/data	flash me	mory area	a sequenc	er are sto	pped (the	SQEND a	and ESQE	ND
	bits in FS	ASTH are	0).						
Caution 3	. The setti	ngs of the	EWA1 ar	nd EWA0	bits are m	eaningles	s during p	orogrammi	ng
	of the cod	le flash m	emorv.				Ŭ.	-	Ţ.
			j -						

62. <u>33.6.2.3 Flash write buffer registers H and L (FLWH, FLWL) (Page</u> <u>1303)</u>

Incorrect:

33.6.2.3 Flash write buffer registers H and L (FLWH, FLWL)

The FLWH and FLWL registers hold data to be written during programming of the flash memory.

The FLWH and FLWL registers can be set by a 16-bit memory manipulation instruction.

The value of each of the FLWH and FLWL registers is 0000H under any of the following conditions.

• Following a reset

• The value of the FLRST bit of the FLRST register is 1.

• The flash memory sequencer has finished operating.

Writing to these registers is not possible while the value of the FLRST bit is 1.

Set data to be written to the data flash memory in the 8 lower-order bits of the FLWL register.

Figure 33 - 11 Format of Flash Write Buffer Registers H and L (FLWH, FLWL)

FLW5

Address: F02CEH After reset: 0000H R/W: R/W

Symbol	15	14	13	12	11	10	9	8
FLWH	FLW31	FLW30	FLW29	FLW28	FLW27	FLW26	FLW25	FLW24
	7	6	5	4	3	2	1	0
	FLW23	FLW22	FLW21	FLW20	FLW19	FLW18	FLW17	FLW16
Address: After reset: R/W:	F02CCH 0000H R/W							
Symbol	15	14	13	12	11	10	9	8
FLWL	FLW15	FLW14	FLW13	FLW12	FLW11	FLW10	FLW9	FLW8
	7	6	5	4	3	2	1	0

FLW4

FLW3

Date: Nov. 24, 2021

Correct:

33.6.2.3 Flash write buffer registers H and L (FLWH, FLWL)

The FLWH and FLWL registers hold data to be written during programming of the flash memory.

The FLWH and FLWL registers can be set by a 16-bit memory manipulation instruction. The value of each of the FLWH and FLWL registers is 0000H under any of the following conditions.

- Following a reset
- The value of the FLRST bit of the FLRST register is 1.
- The flash memory sequencer has finished operating.

Set data to be written to the data flash memory in the 8 lower-order bits of the FLWL register.

Figure 33 - 11 Format of Flash Write Buffer Registers H and L (FLWH, FLWL)

Address: F02CEH After reset: 0000H R/W: R/W

Symbol	15	14	13	12	11	10	9	8
FLWH	FLW31	FLW30	FLW29	FLW28	FLW27	FLW26	FLW25	FLW24
-								
	7	6	5	4	3	2	1	0
Г	FLW23	FLW22	FLW21	FLW20	FLW19	FLW18	FLW17	FLW16
-								

Address: F02CCH After reset: 0000H

R/W: R/W

Symbol	15	14	13	12	11	10	9	8
FLWL	FLW15	FLW14	FLW13	FLW12	FLW11	FLW10	FLW9	FLW8
-								
	7	6	5	4	3	2	1	0
Г	FLW7	FLW6	FLW5	FLW4	FLW3	FLW2	FLW1	FLW0

FLW6

FLW7

FLW2

FLW1

FLW0

RENESAS TECHNICAL UPDATE TN-RL*-A0100B/E

- Caution 1. Reading from these registers is not possible while a sequencer command is being executed.
- Caution 2. When writing to the data flash memory, set 0s in the FLWH register and the bits of the FLWL register other than the 8 lower-order bits.
- Caution 3. New values cannot be written to these registers while the flash memory sequencer is operating.

Date: Nov. 24, 2021

Caution 1. The FLWH and FLWL registers can be rewritten under either of the following
conditions.
- The FLSPM bit in the FLPMC register is 1 (Code flash memory area:
programming mode).
- The EEMD bit in the FLPMC register is 1 (Data flash memory area:
programming mode).
Caution 2. Rewrite or read these registers when the extra area sequencer and the
code/data flash memory area sequencer are stopped (the SQEND and ESQEND
bits in FSASTH are 0).
Caution 3. When writing to the data flash memory, set write data in the 8 lower-order bits of
the FLWL register. Set other bits to 0.

63. <u>33.6.2.6 Flash programming mode control register (FLPMC) (Page</u> <u>1306)</u>

Incorrect:

Figure 33	- 14 Form	at of Flasł	n Program	nming Moo	de Control	Register	(FLPMC)	
Address: After reset:	F02C0H 08H							
R/W:	R/W							
Symbol	7	6	5	4	3	2	1	0
FLPMC	0	0	0	EEEMD	FWEDIS	0	FLSPM	0
	EEEMD		Selection of the programming mode for the data flash memory					
	0	Rewrite-disal	Rewrite-disabled mode					
	1	Programming	Programming mode					
	EWEDIS		Software cont	rol over enabli	ing or disablin	g erasure and	l programming	
	1 112010			of the c	ode flash men	NoryNote		
	0	Enables eras	sure and prog	ramming.				
	1	Disables era	Disables erasure and programming.					
	FLSPM		Selection of	of the program	ming mode fo	r the code fla	sh memory	
	0	Rewrite-disa	bled mode					
	1	Programming	g mode					

Note Be sure to keep the value of this bit at 0 until erasure or programming of the code flash memory is completed.

Date: Nov. 24, 2021

Correct:

Figure 33 - Address: After reset: R/W:	14 Forma F02C0H 08H R/W	at of Flash	Program	ming Mod	e Control I	Register	(FLPMC)		
Symbol	7	6	5	4	3	2	1	0	
FLPMC	0	0	0	EEEMD	FWEDIS	0	FLSPM	0	
	EEEMD		Selection	of the program	nming mode fo	r the data fla	ash memory		
	0	Non-progra	Non-programmable mode						
	1	Programming	Programming mode						
	FWEDIS	Software control over enabling or disabling erasure and programming of the code flash memory Note							
	0	Enables erasure and programming. Disables erasure and programming.							
	1								
	FLSPM		Selection of	of the program	ming mode fo	r the code fi	ash memory		
	0	Non-progra	mmable mod	е					
	1	Programming	g mode						
		-							

Note Be sure to keep the value of this bit at 0 until erasure or programming of the code flash memory is completed.

Caution When the extra area sequencer and the code/data flash memory area sequencer

are stopped (the SQEND and ESQEND bits in FSASTH are 0), rewriting to the FLPMC register is enabled.

64. <u>33.6.2.8 Flash memory sequencer initial setting register (FSSET)</u> (Page 1308)

Incorrect:

Figure 33 - 16 Format of Flash Memory Sequencer Initial Setting Register (FSSET)

Address:	F00B6H
After reset:	00H
R/W:	R/W

Symbol	7	6	5	4	3	2	1	0
FSSET	TMSPMD	TMBTSEL	0	FSET4	FSET3	FSET2	FSET1	FSETO

0 Follows the information in the extra area.	Specification for boot swappingNote	Specification	TMSPMD
	n in the extra area.	Follows the information in the extra area.	0
1 Follows the setting of the TMBTSEL bit.	the TMBTSEL bit.	Follows the setting of the TMBTSEL bit.	1

TMBTSEL	Setting for temporary boot swappingNote
0	Specifies boot cluster 0 as the boot area (boot swapping does not proceed).
1	Specifies boot cluster 1 as the boot area (boot swapping proceeds).
FSET[4:0]	Setting of the operating frequency of the flash memory sequencer
_	Set the operating frequency of the flash memory sequencer.

For the correspondence between the operating frequency of the flash memory sequencer and the setting of the FSET[4:0] bits, see Table 33 - 12.

Note Setting the TMSPMD and TMBTSEL bits is not possible <u>while boot protection is set</u> (BTPR = 0).

Caution Set the value corresponding to that obtained by rounding the CPU operating

frequency up to the nearest whole number in the FSET[4:0] bits. For example, when the CPU operating frequency is 4.5 MHz, set the bits for 5 MHz.

Note that frequencies that are not whole numbers, such as 1.5 MHz, are not available as CPU operating frequencies below 4 MHz.

Correct:

Figure 33 - 16 Format of Flash Memory Sequencer Initial Setting Register (FSSET) Address: F00B6H After reset: 00H R/W: R/W Symbol 3 7 6 5 4 2 0 TMSPMD TMBTSEL FSET4 FSET3 FSET2 FSET1 FSET0 FSSET 0 TMSPMD Selection of boot area setting Note 0 Specifies the boot area according to the setting of EX bit 8 (BTFLG) in the security flag and boot swap function setting area of the extra area. BTFLG = 0: Boot cluster 1 as the boot area BTFLG = 1: Boot cluster 0 as the boot area (default) Specifies the boot area according to the setting of the TMBTSEL bit. 1 TMBTSEL Specification of the boot area when TMPSMD = 1 Specifies boot cluster 0 as the boot area 0 1 Specifies boot cluster 1 as the boot area. FSET4 to Setting of the operating frequency of the flash memory sequencer FSET0 Sets the operating frequency of the flash memory sequencer. For the correspondence between the operating frequency of the flash memory sequencer and the setting of the FSET4 to FSET0 bits, see Table 33 - 11. Note Setting the TMSPMD and TMBTSEL bits is not possible while the BTPR bit in FLSEC is 0 (rewriting of the boot area disabled). **Caution 1.** The FSSET register can be rewritten under either of the following conditions.

Caution 1. The FSSET register can be rewritten under either of the following conditions.

- The FLSPM bit in the FLPMC register is 1 (Code flash memory area: programming mode)

- The EEMD bit in the FLPMC register is 1 (Data flash memory area: programming mode)

Caution 2. The set values of the boot area are immediately reflected. To change the boot area after a reset is released, read the MBTSL bit in FSASTL while TMPSMD = 0 and set the same value to the TMBTSL bit. After that, set the TMPSMD bit to 1, and then specify the boot cluster to be set as the boot area after release from the reset state in the BTFLG bit using the extra area sequencer. The boot cluster set by the BTFLG bit is activated as a boot area at the next reset release.

Table 33 - 12 Correspondence between the Operating Frequency of the Flash Memory Sequencer and the Setting of the FSET[4:0] Bits

Operating Frequency (MHz)	Setting of the FSET[4:0] Bits	Operating Frequency (MHz)	Setting of the FSET[4:0] Bits	Operating Frequency (MHz)	Setting of the FSET[4:0] Bits
32	11111b	31	11110b	30	11101b
29	11100b	28	11011b	27	11010b
26	11001b	25	11000b	24	10111b
23	10110b	22	10101b	21	10100b
20	10011b	19	10010b	18	10001b
17	10000ь	16	01111b	15	01110b
14	01101b	13	01100b	12	01011b
11	01010b	10	01001b	9	01000b
8	00111b	7	00110b	6	00101b
5	00100b	4	00011b	3	00010b
2	00001b	1	00000ь	-	_

Date: Nov. 24, 2021

Table 33 - 12 Correspondence between the Operating Frequency of the Flash MemorySequencer and the Setting of the FSET4 to FSET0 Bits

Operating Frequency (MHz)	Setting of the FSET4 to FSET0 Bits	Operating Frequency (MHz)	Setting of the FSET4 to FSET0 Bits	Operating Frequency (MHz)	Setting of the FSET4 to FSET0 Bits
32	11111b	31	11110b	30	11101b
29	11100b	28	11011b	27	11010b
26	11001b	25	11000b	24	10111b
23	10110b	22	10101b	21	10100b
20	10011b	19	10010b	18	10001b
17	10000b	16	01111b	15	01110b
14	01101b	13	01100b	12	01011b
11	01010b	10	01001b	9	01000b
8	00111b	7	00110b	6	00101b
5	00100b	4	00011b	3	00010b
2	00001b	1	00000b	_	_

Caution Set the value corresponding to that obtained by rounding the CPU operating frequency up to the nearest whole number in the FSET[4:0] bits.(For example, when the CPU operating frequency is 4.5 MHz, set the bits for 5 MHz.)Note that frequencies that are not whole numbers, such as 1.5 MHz, are not available as CPU operating frequencies below 4 MHz.

65. <u>33.6.2.9 Flash memory sequencer control register (FSSQ) (Page</u> <u>1310, Page 1311)</u>

Incorrect:

33.6.2.9 Flash memory sequencer control register (FSSQ)

The FSSQ register specifies the commands to be used when the code/data flash memory area sequencer is activated.

The FSSQ register can be set by a 1-bit or 8-bit memory manipulation instruction. The value of the FSSQ register is 00H under either of the following conditions.

• Following a reset

• The value of the FLRST bit of the FLRST register is 1.

Figure 33 - 17 Format of Flash Memory Sequencer Control Register (FSSQ)

Symbol	7	6	5	4	3	2	1	0
FSSQ	SQST	FSSTP	0	0	MDCH	SQMD2	SQMD1	SQMD0

SQST	Operation control of the code/data flash memory area sequencer
0	The code/data flash memory area sequencer is stopped.
1	The code/data flash memory area sequencer is started.
FSSTP	Forcible termination control of the code/data flash memory area sequencer
0	The code/data flash memory area sequencer is not forcibly terminated.

1 The code/data flash memory area sequencer is forcibly terminated.

Date: Nov. 24, 2021

Correct:

33.6.2.9 Flash memory sequencer control register (FSSQ)

The FSSQ register specifies operation control and commands for use with the code/data flash memory area sequencer.

When the SQST bit in this register is set to 1, the code/data flash memory area sequencer executes the command set in the MDCH, SQMD2, SQMD1, and SQMD0 bits.

The FSSQ register can be set by a 1-bit or 8-bit memory manipulation instruction. The value of the FSSQ register is 00H under either of the following conditions.

· Following a reset

• The value of the FLRST bit of the FLRST register is 1.

Figure 33 - 17 Format of Flash Memory Sequencer Control Register (FSSQ) (1/2)

Address: F02C5H After reset: 00H R/W: R/W

Symbol	<7>	<8>	5	4	3	2	1	0			
FSSQ	SQST	FSSTP	0	0	MDCH	SQMD2	SQMD1	SQMD0			
]	SQST		Operation control of the code/data flash memory area sequencer								
ľ	0	The code/data flash memory area sequencer is stopped.Note 1									
	1	The code/data flash memory area sequencer is started.									
[FSSTP	For	Forcible termination control of the code/data flash memory area sequencer								
[0	The code/data flash memory area sequencer is not forcibly terminated.									
[1	The code/data flash memory area sequencer is forcibly terminated.									

SQMD[2:0]	MDCH setting	Control of the code/data flash memory area sequencer
011	CE:0	Write
VIN	DE:0	white data are sided in the ELWAL and ELWA conjuters to the address energiant.
	UF: U	writes data specified in the FLWH and FLWL registers to the address specified
		In the FLAPH and FLAPL registers.
		 Writing 1 word (4 bytes) of data to the code flash memory. Set the data in the
		FLWH and FLWL registers.
		Writing 1 byte of data to the data flash memory: Set the data in the FLW[7:0]
		bits of the FLWL register.
03H	CF: 0	Blank check
	DF: 1	Executes blank checking of the range from the address specified in the FLAPH
		and FLAPL registers to the address specified in the FLSEDH and FLSEDL
		registers.
		The setting of the MDCH bit of the FSSQ register depends on the target flash
		memory area for blank checking. Blank checking of the code flash memory or
		data flash memory respectively requires setting the MDCH bit to 0 or 1 before
		running the check.
04H	CF: 0	Block erase
	DE: 0	Erases blocks in the range from the block start address specified in the FLAPL
		and FLAPH registers to the block and address specified in the FLSEDL and
		El SEDU registere
Other than above		Setting prohibited

Caution Initialization by setting the FLRST bit to 1 is only enabled while the sequencer is

stopped (both the SQEND and ESQEND bits of the FSASTH register have the setting

<u>0).</u>

Date: Nov. 24, 2021

мосы	SOMD2	SOMD1	SOMDO	Commands for Use with the Code/Data Flash Memory Area
MUCH	SQMD2	SUMDI	SUMDU	Sequencer
0	0	0	1	Writing
				Writes data stored in the FLWH and FLWL registers to the
				address specified in the FLAPH and FLAPL registers. Note 2
				Writes 4-byte data when the code flash memory area address
				is specified. Writes the 1-byte data stored in the eight lower-
				order bits (FLW7 to FLW0) in FLWL to the specified address
				when the data flash memory area address is specified.
0	0	1	1	Blank checking of the code flash memory area
				Checks whether the value of the code flash memory area
				(from the address specified in the FLAPH and FLAPL registers
				to the address specified in the FLSEDH and FLSEDL
				registers) is 0. Note 3
1	0	1	1	Blank checking of the data flash memory area
				Checks whether the value of the data flash memory area (from
				the address specified in the FLAPH and FLAPL registers to
				the address specified in the FLSEDH and FLSEDL registers)
				is 0.
0	1	0	0	Block erasure
				Erases blocks in the range from the block start address
				specified in the FLAPH and FLAPL registers to the block end
				address specified in the FLSEDH and FLSEDL registers.Note 4
	Other than above			Setting prohibited

- **Note 1**. Check that the SQEND bit in the FSASTH register is 1 (the code/data flash memory area sequencer being stopped.), and then set the SQST bit to 0 to stop the code/data flash memory area sequencer.
- **Note 2**. Four-byte data can be written to the code flash memory area. Set the two lower-order bits of the FLSEDL register to 00B to be a multiple of 4. For details, see 33.6.6.4 Operations for rewriting the code flash memory area.
- **Note 3**. Specify a start address (at intervals of four bytes) for blank checking of the code flash memory area. Set the two lower-order bits of the FLSEDL register to 00B to be a multiple of 4. For details, see 33.6.6.4 Operations for rewriting the code flash memory area.

Note 4. The code flash memory area blocks can be erased in units of 2 Kbytes. The data flash memory blocks can be erased in units of 256 bytes. Specify the erase addresses (start address and end address) so that all blocks to be erased are included. For details, see 33.6.6.4 Operations for rewriting the code flash memory area and 33.6.6.5 Operations for rewriting the data flash memory area. For the relationship between the address and block number, see Table 3 - 1 Correspondence between Addresses and Block Numbers in Flash Memory (1/3).

Caution The FSSQ register can be rewritten under either of the following conditions.

 The FLSPM bit in the FLPMC register is 1 (code flash memory area: programming mode) and the FWEDIS bit is 0 (enabling erasure and programming of the code flash memory).

- The EEEMD bit in the FLPMC register is 1 (data flash memory area: programming mode).

66. <u>33.6.2.10 Flash extra sequencer control register (FSSE) (Page</u> <u>1312)</u>

Incorrect:

Figure 33 - 18 Format of Flash Extra Sequencer Control Register (FSSE)

ESQMD [3:0]	Control of the extra area sequencer
00H	Write to the extra area (programming of the FSW-related data)
	Writes data specified in the FLWH and FLWL registers. Sets up the FSW, FSW control, and
	FSW protection flag. When the FSW protection flag has been set (FSPR = 0), this action
	cannot be executed. Attempted execution leads to a sequencer error (setting the ESEQER bit
	of the FSASTL register to 1).
06H	Write to the extra area (programming of the read-prohibited area of software from a third party
	and the protection flag)
	Writes data specified in the FLWH and FLWL registers. Sets up the read-prohibited area of
	software from a third party and the protection flag. When the protection flag has been set
	(SWPR = 0), this action cannot be executed. Attempted execution leads to a sequencer error
	(setting the ESEQER bit of the FSASTL register to 1).
07H	Write to the extra area (programming of the security flags and boot area switching flag)
	Writes data specified in the FLWH and FLWL registers. Sets up the security flags and boot
	area switching flag. For the security flags, only changing the current state of each flag to
	"disabled" is possible. If boot protection has been set (BTPR = 0), setting the boot area
	switching flag is not possible.
Other than	Setting prohibited
above	

Date: Nov. 24, 2021

Correct:

Figure 33 - 18 Format of Flash Extra Area Sequencer Control Register (FSSE) (2/2)

_					
I	ESQMD3	ESQMD2	ESQMD1	ESQMD0	Commands for Use with the extra area sequencer
Ī	0	0	0	1	Write to the flash shield window setting area
					Writes the 4-byte data specified in the FLWH and FLWL
					registers to the flash shield window setting area of the extra
					area to control flash shield window mode and set the start
					block and end block.
					Also, if the setting of EX bit 15 (FSPR) in the flash shield
					window setting area is 0, no value can be written to the area.
					Attempted writing leads to setting of the extra area sequencer
					error flag (ESEQER) to 1.
I	0	1	1	0	Write to the flash read protection setting area
					Writes the 4-byte data specified in the FLWH and FLWL
					registers to the flash read protection setting area of the extra
					area to disable changing of the flash read protection setting
					and set the start block and end block.
					Also, if the setting of EX bit 31 (SWPR) in the flash read
					protection setting area is 0, no value can be written to the
					area. Attempted writing leads to setting of the extra area
					sequencer error flag (ESEQER) to 1.
	0	1	1	1	Write to the security flag and boot swap function setting area
					Writes the 4-byte data specified in the FLWH and FLWL
					registers to the flash memory security flag and boot swap
					function setting area of the extra area to disable block erasure,
					writing, and rewriting of boot cluster 0 and set selection of the
					boot area.
					Also, if the setting of EX bit 9 (BTPR) in the security flag and
					boot swap function setting area is 0, no value can be written to
					the area. Attempted writing leads to setting of the extra area
ļ					sequencer error flag (ESEQER) to 1.
		Other that	an above		Setting prohibited

- <u>Caution 1</u>. Initialization by setting the FLRST bit to 1 is only enabled while the sequencer is stopped (both the SQEND and ESQEND bits of the FSASTH register have the setting 0).
- **Caution 2**. To write to the extra area, set the EXA bit of the FLARS register to 1 and set the data to be written in the FLWH and FLWL registers before activating the extra area sequencer.
- **Caution 3**. Values read from the FLAPL, FLWH, FLWL, and FSSQ registers are undefined after activation of the extra area sequencer.

Date: Nov. 24, 2021

Note Check that the ESQEND bit in the FSASTH register is 1 (The extra area sequencer being stopped), and then set the ESQST bit to 0 to stop the extra area sequencer.

- Caution 1. The FSSE register can be rewritten when the following condition is met. - The FLSPM bit in the FLPMC register is 1 (code flash memory area: programming mode) and the FWEDIS bit is 0 (enabling erasure and programming of the code flash memory).
- Caution 2. To write to the extra area, set the EXA bit of the FLARS register to 1 and set the data to be written in the FLWH and FLWL registers before activating the extra area sequencer.
- Caution 3. Rewrite the ESQMD3 to ESQMD0 bits while the extra area sequencer and the code/data flash memory area sequencer are stopped (SQEND = 0, ESQEND = 0 in FSASTH).

67. 33.6.2.11 Flash registers initialization register (FLRST) (Page 1313)

Incorrect:

Figure 33 - 19 Format of Flash Registers Initialization Register (FLRST)

0			0		•	`	,		
Address: After reset: R/W:	F02C9H 00H R/W								
Symbol	7	6	5	4	3	2	1	0	
FLRST	0	0	0	0	0	0	0	FLRST	
	FLRST		Control of initializing the registersNote						
	0	The registers	The registers are not initialized.						
	1	The registers	The registers are initialized.						

Note For details on how to handle the FLRST register, see 33.6.4 Clearing the registers for

use with the flash memory sequencer.

Caution The registers below are initialized with the use of this register.

FLAPH, FLAPL, FLSEDH, FLSEDL, FLWH, FLWL, FLARS, FSSQ, FSSE

Date: Nov. 24, 2021

Correct:

Figure 33 - 19 Format of Flash Registers Initialization Register (FLRST)

- **Caution 1**. Registers can be initialized by setting the FLRST bit to 1 only when the extra area sequencer and the code/data flash memory area sequencer are stopped (SQEND = 0, ESQEND = 0 in FSASTH).
- **Caution 2**. When using the sequencer, be sure to set the FLRST bit to 0 before setting the FLAPH, FLAPL, FLSEDH, FLSEDL, FLWH, FLWL, FLARS, FSSQ, and FSSE registers. Do not set the FLRST bit to 1 during operation of the sequencer.

68. <u>33.6.2.12 Flash memory sequencer status registers H and L</u> (FSASTH, FSASTL) (Page 1314)

Incorrect:

Figure 33 - 20 Format of Flash Memory Sequencer Status Registers H and L (FSASTH, FSASTL)

Note The initial value of the MBTSEL bit is undefined because it depends on the value of the BTFLG bit (boot area switching flag) stored in the extra area.

Date: Nov. 24, 2021

Correct:

Figure 33 - 20 Format of Flash Memory Sequencer Status Registers H and L (FSASTH, FSASTL)

Address: After reset: R/W:	F02CBH 00H R							
Symbol	7	6	5	4	3	2	1	0
FSASTH	ESQEND	SQEND	0	0	0	0	0	0
Address: After reset: R/W:	F02CAH Undefined No R	to						
Symbol	7	6	5	4	3	2	1	0
FSASTL	MBTSEL	MOPEN	ESEQER	SEQER	BLER	0	WRER	ERER

Note The initial value of the MBTSEL bit is undefined because it depends on the value of the BTFLG bit (boot area switching flag) stored in the extra area.

69. 33.6.2.13 Flash security flag monitoring register (FLSEC) (Page <u>1316)</u>

Incorrect:

Figure 33 - 21 Format of Flash Security Flag Monitoring Register (FLSEC)

Address:	F00B0H
After reset:	Undefined

R/W: R

Symbol	15	14	13	12	11	10	9	8	
FLSEC	0	0	0	WRPR	0	SEPR	BTPR	BTFLG	
	7	6	5	4	3	2	1	0	
	0	0	0	0	SWPR	0	1	0	
	WRPR		Write-prohibited flag						
	0	Writing is pro	Writing is prohibited.						
	1	Writing is en	abled.						
	SEPR			Block	erase-prohibit	ed flag			
	0	Block erasur	Block erasure is prohibited.						
	1	Block erasur	Block erasure is enabled.						

BTPR	Boot area rewrite-prohibited flag
0	Rewriting of the boot area is prohibited.
1	Rewriting of the boot area is enabled.
0	Rewriting of the boot area is prohibited. Rewriting of the boot area is enabled.

BTFLG	Boot area switching flag
0	The boot area is boot cluster 0.
1	The boot area is boot cluster 1.

SWPR	Software from a third party read-prohibited flag
0	Reading software from a third party is prohibited.
1	Reading software from a third party is enabled.

Date: Nov. 24, 2021

Correct:

Figure 33 - 21 Format of Flash Security Flag Monitoring Register (FLSEC)

Address:	FOOBOH							
After reset:	Undefined							
R/W:	R							
Symbol	15	14	13	12	11	10	0	8
FLSEC		0	0	WRPR	0	SEPR	BTPR	BTELG
		-	-		-			
	7	6	5	4	3	2	1	0
	0	0	0	0	SWPR	0	IFPR	IDEN
	WRPR			W	ite-disabled fla	ag		
	0	Writing is dis	abled.					
	1	Writing is en	abled.					
	SEPR			Block	erase-disable	d flag		
	0	Block erasur	e is disabled.					
	1	Block erasur	e is enabled.					
	0700			Perto	the start	lad Rea		
	ырк			Boot are	a rewrite-disat	иео пад		
	0	Rewriting of	the boot area	is disabled.				
	1	Rewriting of	the boot area	is enabled.				
	BTFLG			Boot	area switching) flag		
	0	The boot are	a is boot clus	ter 1.				
	1	The boot are	a is boot clus	ter O.				
	SWPR	Flag	to indicate dis	sabling changi	ng of the flash	memory rea	d protection se	etting
	0	Changing of	the flash men	nory read prot	ection setting i	s disabled.		
	1	Changing of	the flash men	nory read prot	ection setting i	s enabled.		
	1000				e			
	IFPR	Flag to	o indicate disa	abling of conne	ection to the pr	ogrammer ar	nd on-chip deb	ugger
	0	Connection t	o the program	nmer and on-c	hip debugger i	s disabled.		
	1	Connection t	o the progran	nmer and on-c	hip debugger i	is enabled.		
	IDEN	I	Flag to indicat	te enabling of	programmer o	onnection ID	authentication	l.
	0	ID authentica	ation is enable	ed.				
	1	ID authentica	ation is disable	ed.				

70. 33.6.2.14 Flash FSW monitoring register E (FLFSWE) (Page 1317)

Incorrect:

Figure 33 - 22 Format of Flash FSW Monitoring Register E (FLFSWE)

Address: F00B4H After reset: Undefined

R/W: R

Symbol	15	14	13	12	11	10	9	8	
FLFSWE	FSWC	0	0	0	0	0	0	FSWE8	
	7	6	5	4	3	2	1	0	
	FSWE7	FSWE6	FSWE5	FSWE4	FSWE3	FSWE2	FSWE1	FSWE0	
	FSWE[8:0]		End block number specified for the flash shield area						
	_	End block number (end block number in the window range + 1)Note							
	FSWC		Setting of the shield area						

0	The shield area is set inside the window range.
1	The shield area is set outside the window range.

Note The setting during serial programming is different from this. For details, see Table 33 -

<u>13.</u>

Date: Nov. 24, 2021

Correct:

Figure 33 - 22 Format of Flash FSW Monitoring Register E (FLFSWE)

Address: After reset: R/W:	F00B4H Undefined R							
Symbol	15	14	13	12	11	10	9	8
FLFSWE	FSWC	0	0	0	0	0	0	FSWE8
	7	6	5	4	3	2	1	٥
	FSWE7	FSWE6	FSWE5	FSWE4	FSWE3	FSWE2	FSWE1	FSWE0
	FSWC		S	etting of the	flash memo	ry shield are	ea	
	0	Inside shield	mode					
		The flash r	memory shie	eld area is se	et inside the	window ran	ige.	
	1	Outside shie	ld mode					
		The flash r	The flash memory shield area is set outside the window range.					
	FSWE8 to FSWE0	End block	number of tl	ne flash mer	mory shield	area		
	-	End block	number + 1	Note				

Note These bits show the value set in the extra area. The actual end block number is (the value of the FSWE8 to FSWE0 bits - 1). Though the end block number is specified for serial programming, (end block number + 1) is set in the extra area. For details, see Table 33 - 12.

71. 33.6.2.16 Data flash control register (DFLCTL) (Page 1319)

Incorrect:

33.6.2.16 Data flash control register (DFLCTL) <u>The DFLCTL register enables or disables access to the data flash memory.</u> The DFLCTL register can be set by a 1-bit or 8-bit memory manipulation instruction. The value of this register is 00H following a reset.

Figure 33 - 24 Format of Data Flash Control Register (DFLCTL)

Address: F0090H After reset: 00H R/W: R/W

Symbol	7	6	5	4	3	2	1	⊲⊳
DFLCTL	0	0	0	0	0	0	0	DFLEN

DFLEN	Data flash access control
0	Access to the data flash memory is disabled.
1	Access to the data flash memory is enabled.

Date: Nov. 24, 2021

Correct:

33.6.2.16 Data flash control register (DFLCTL)

The DFLCTL register enables or disables access to the data flash memory area and extra area.

The DFLCTL register can be set by a 1-bit or 8-bit memory manipulation instruction. The value of this register is 00H following a reset.

Figure 33 - 24 Format of Data Flash Control Register (DFLCTL)

Address: After reset: R/W:	F0090H 00H R/W							
Symbol	7	6	5	4	3	2	1	<0>
DFLCTL	0	0	0	0	0	0	0	DFLEN
	DFLEN		Data flash memory area/extra area access control					
	0	Access to the	Access to the data flash memory area and extra area is disabled.					
	1	Access to the	e data flash m	emory area a	nd extra area	is enabled.		

72. 33.6.3 Setting the flash memory control mode (Page 1322)

Incorrect:

33.6.3 Setting the flash memory control mode

Execution of the specific sequence for use with the flash memory sequencer enables setting the flash memory control mode to the states where the code or data flash memory area or neither of them can be rewritten.

<u>– State where the code flash memory (and extra area) can be rewritten: Code flash programming mode</u>

- State where the data flash memory can be rewritten: Data flash programming mode

 <u>– State where the flash memory (and extra area) cannot be rewritten: Rewrite-disabled</u> mode

Caution For handling of the extra area or data flash memory area, follow the procedure while access to the data flash memory is enabled (the value of the DFLEN bit of the DFLCTL register is 1).

Correct:

33.6.3 Setting the flash memory control mode

The flash memory has the following flash memory control modes.

Code flash programming mode

The code flash memory area and the extra area can be rewritten.

Data flash programming mode

The data flash memory area and the extra area can be rewritten.

Rewrite-disabled mode

The flash memory (code flash memory area, data flash memory area, and extra area) cannot be rewritten.

To rewrite the flash memory, set the flash memory control mode to code flash programming mode or data flash programming mode. Setting each of the flash memory control modes requires executing the specific sequence for setting the flash protect command register (PFCMD) and flash programming mode control register (FLPMC).

Caution For handling of the extra area or data flash memory area, follow the procedure while access to the data flash memory is enabled (the value of the DFLEN bit of the DFLCTL register is 1).

73. <u>33.6.3.1 Procedure for executing the specific sequence (Page</u> <u>1322)</u>

Incorrect:

33.6.3.1 Procedure for executing the specific sequence

Writing the required values to <u>the flash programming mode control register (FLPMC register)</u> by following steps 1 to 4 below enables the transitions to each of the flash memory control modes.

<1> Write A5H to the PFCMD register.

- <2> Write the value to be set to the FLPMC register.
- <3> Write the inverse of the value to be set to the FLPMC register.
- <4> Write the value to be set to the FLPMC register.
- The specific sequence can only be executed while the value of the FLRST bit of the FLRST register is 0 and the flash memory sequencer is stopped.
- If writing to any other memory area or register is attempted in the intervals between steps 1 to 4 during execution of the specific sequence, a protection error occurs, writing to the specified register does not proceed, and the FPRERR flag of the flash status register (PFS) is set to 1. The FPRERR flag is cleared following a reset or when execution of the specific sequence is re-started.

Correct:

33.6.3.1 Procedure for executing the specific sequence

Writing the required values to the flash protect command register (PFCMD) and the flash programming mode control register (FLPMC) by following steps 1 to 4 below enables the transitions to each of the flash memory control modes.

<1> Write A5H to the PFCMD register.

- <2> Write the value to be set to the FLPMC register.
- <3> Write the inverse of the value to be set to the FLPMC register.

<4> Write the value to be set to the FLPMC register.

- The specific sequence can only be executed while the value of the FLRST bit of the FLRST register is 0 and the flash memory sequencer is stopped.
- If writing to any other memory area or register is attempted in the intervals between steps 1 to 4 during execution of the specific sequence, a protection error occurs, writing to the specified register does not proceed, and the FPRERR flag of the flash status register (PFS) is set to 1. The FPRERR flag is cleared following a reset or when execution of the specific sequence is re-started.

74. <u>33.6.6.4 Operations for rewriting the code flash memory area (Page 1326)</u>

Incorrect:

33.6.6.4 Operations for rewriting the code flash memory area <u>To rewrite the code flash memory area</u>, enter the code flash programming mode and then <u>execute commands for use with the code/data flash memory area sequencer. Before starting</u> to execute a command, set the data required for execution, such as specifying an address, addresses, or data, in the corresponding registers.

Units for block erasure and for writing in rewriting of the code flash memory area

- Unit for blocks to be erased: 2 Kbytes

– Unit for writing: 1 word (4 bytes)

<Handling the commands>

The commands to be used are for writing to and for block erasure and blank checking of the code flash memory area.

- Enter the code flash programming mode. For the procedure for entry to the code flash programming mode, see 33.6.3.1 Procedure for executing the specific sequence and 33.6.3.2 Procedure for entry to the code flash programming mode.
- FLARS register = 00H (EXA bit = 0): Setting to select the user (not extra) area
- Set the specified data in the corresponding registers before executing the individual commands.

FLAPH and FLAPL registers: Block start address in the code flash memory (example: 0x002000)

FLSEDH and FLSEDL registers: Block end address in the code flash memory (example: 0x0027FF)

(2) Writing: As writing proceeds in one-word (four-byte) units, set the address bits to a multiple of four; that is, set the two lower-order bits to 00B.

FLAPH and FLAPL registers: Start address in the target flash memory area (example: 0x002000)

<u>FLSEDH and FLSEDL registers: Set all bits to 0 or do not set them (example: 0x000000).</u> FLWH and FLWL registers: One-word (four-byte) values to be written

Correct:

33.6.6.4 Operations for rewriting the code flash memory area To rewrite the code flash memory area, execute commands for use with the code/data flash memory area sequencer. Before starting to execute a command, set the data required for execution, such as specifying an address, addresses, or data, in the corresponding registers. Allocate the processing software to rewrite the code flash memory area in the RAM and execute it from the RAM.

Units for block erasure and for writing in rewriting of the code flash memory area

- Unit for blocks to be erased: 2 Kbytes
- Unit for writing: 4 bytes

<Handling the commands>

- <1> Enter the code flash programming mode. For the procedure for entry to the code flash programming mode, see 33.6.3.1 Procedure for executing the specific sequence and 33.6.3.2 Procedure for entry to the code flash programming mode.
- <2> Set the EXA bit of the FLARS register to 0 (code/data flash memory areas).
- <3> Before executing each command, set the address, data, write data, and command in the corresponding registers.
 - Block erasure

Set the block start addressNote 1 (example: 0x002000) of the code flash memory to be erased in the FLAPH and FLAPL registers.

Set the block end addressNote 1 (example: 0x0027FF) of the code flash memory to be erased in the FLSEDH and FLSEDL registers.

Writing

Set the start addressNote 2 (example: 0x002000) of the flash memory to be written in the FLAPH and FLAPL registers.

Set 4-byte write data in the FLWH and FLWL registers.

⁽¹⁾ Block erasure

(3) Blank checking: As blank checking proceeds in one-word (four-byte) units, set the address	Blank checking
bits to a multiple of four; that is, set the two lower-order bits to 00B.	Set the start addressNote 2 (example: 0x002000) of the flash memory to be blank-
FLAPH and FLAPL registers: Start address in the target flash memory area (example:	checked in the FLAPH and FLAPL registers.
<u>0x002000)</u>	Set the end address (example: 0x0027FF) of the flash memory to be blank-checked in
FLSEDH and FLSEDL registers: End address in the target flash memory area (example:	the FLSEDH and FLSEDL registers.
<u>0x0027FF)</u>	When blank checking is only to be applied to one word (four bytes), set the FLSEDH
* When blank checking is only to be applied to one word (four bytes), set the FLSEDH and	and FLSEDL registers to the same values as those in the FLAPH and FLAPL registers.
FLSEDL registers to the same values as those in the FLAPH and FLAPL registers.	<4> When the value of the command to be executed is set in the MDCH and SQMD2 to
	SQMD0 bits of the FSSQ register and the SQST bit is set to 1, the code/data flash
 After issuing a command for use with the code/data flash memory area sequencer, wait for 	memory area sequencer executes the specified command.
the completion of its execution. For details on the procedure for waiting for the completion	The MDCH, SQST, and SQMD2 to SQMD0 bits can be set simultaneously.
of command execution, see the section titled "Procedure for checking the completion of	If these bits are set simultaneously, the FSSQ register is set to the following values.
commands for use with the code/data flash memory area sequencer" in 33.6.6.9 Procedures	Block erasure: 84H
for checking completion of the commands for use with the flash memory sequencer in the	Writing: 81H
respective areas.	 Blank checking of the code flash memory area: 83H
 Processing after executing a command 	<5> Wait until the command for use with the code/data flash memory area sequencer is
When command processing is to continue:	complete. For details on the procedure for waiting for the completion of command
The same command with the target registers set to updated values or a rewrite command	execution, see the section titled "Procedure for checking the completion of commands
for any other area in the code flash memory can be executed with the state remaining in	for use with the code/data flash memory area sequencer" in 33.6.6.9 Procedures for
code flash programming mode.	checking completion of the commands for use with the flash memory sequencer in the
When command processing has been completed:	respective areas.
Switch to the rewrite-disabled mode. For the procedure for switching to the rewrite-disabled	<6> Processing after executing a command
<u>mode, see 33.6.3.1</u>	<continuing command="" processing=""></continuing>
Procedure for executing the specific sequence and 33.6.3.4 Procedure for entry to the	The same command or another command can be executed by continuously updating
rewrite-disabled mode.	the address, data, and write data (in step 3) with the state remaining in code flash
	programming mode.
	<completing command="" processing=""></completing>
	Switch to the non-programmable mode. For the procedure for switching to the non-
	programmable mode, see 33.6.3.1 Procedure for executing the specific sequence and
	33.6.3.4 Procedure for entry to the nonprogrammable mode.
	Note 1. The code flash memory area blocks can be erased in units of 2 Kbytes. Specify the
	erase addresses (start address and end address) so that all blocks to be erased
	are included. For the relationship between addresses and block numbers, see
	Table 3 - 1 Correspondence between Addresses and Block Numbers in Flash
	Memory (1/3).
	Note 2. The code flash memory area can be written and blank-checked in units of 4 bytes.
	Therefore, set the two lower-order bits of the FLAPL register for specifying the
	address to 00B (an integer of 4).

Date: Nov. 24, 2021

75. <u>33.6.6.5 Operations for rewriting the data flash memory area (Page 1327)</u>

Incorrect:

33.6.6.5 Operations for rewriting the data flash memory area <u>To rewrite the data flash memory area</u>, enter the data flash programming mode and then execute commands for use with the code/data flash memory area sequencer. Before starting to execute a command, set the data required for execution, such as specifying an address, addresses, or data, in the corresponding registers.

Units for block erasure and for writing in rewriting of the data flash memory area

- Unit for blocks to be erased: 256 bytes

- Unit for writing: 1 byte

<Handling the commands>

The commands to be used are for writing to and for block erasure and blank checking of the data flash memory area.

• Enter the data flash programming mode. For the procedure for entry to the data flash programming mode, see 33.6.3.1

Procedure for executing the specific sequence and 33.6.3.3 Procedure for entry to the data flash programming mode.

- FLARS register = 00H (EXA bit = 0): Setting to select the user (not extra) area
- Set the specified data in the corresponding registers before executing the individual commands.

(1) Block erasure

FLAPH and FLAPL registers: Block start address in the data flash memory (example: 0x0F1100)

FLSEDH and FLSEDL registers: Block end address in the data flash memory (example: 0x0F11FF)

(2) Writing: 1 byte

FLAPH and FLAPL registers: Start address in the target flash memory area (example: 0x0F1101)

FLSEDH and FLSEDL registers: Set all bits to 0 or do not set them (example: 0x000000). FLWH and FLWL registers: Set a value to be written in the range from 0x00000000 to 0x000000FF, since only the FLW7 to FLW0 bits are valid.

Correct:

33.6.6.5 Operations for rewriting the data flash memory area To rewrite the data flash memory area, execute commands for use with the code/data flash memory area sequencer. Before starting to execute a command, set the data required for execution, such as specifying an address, addresses, or data, in the corresponding registers.

Units for block erasure and for writing in rewriting of the data flash memory area

- Unit for blocks to be erased: 256 bytes
- Unit for writing: 1 byte

<Handling the commands>

<1> Enter the data flash programming mode. For the procedure for entry to the data flash programming mode, see 33.6.3.1 Procedure for executing the specific sequence and 33.6.3.3 Procedure for entry to the data flash programming mode.

<2> Set the EXA bit of the FLARS register to 0 (code/data flash memory areas).

<3> Before executing each command, set the address, data, write data, and command in the corresponding registers.

Block erasure

Set the block start address**Note** (example: 0x0F1100) of the data flash memory to be erased in the FLAPH and FLAPL registers.

Set the block end address**Note** (example: 0x0F11FF) of the data flash memory to be erased in the FLSEDH and FLSEDL registers.

Writing

Set the start address (example: 0x0F1101) of the flash memory to be written in the FLAPH and FLAPL registers.

Set the write data in the 8 lower-order bits of the FLWL register.

Blank checking:

Set the start address (example: 0x0F1100) of the flash memory to be blank-checked in the FLAPH and FLAPL registers.

Set the end address (example: 0x0F11FF) of the flash memory to be blank-checked in the FLSEDH and FLSEDL registers.

When blank checking is only to be applied to one byte, set the FLSEDH and FLSEDL registers to the same values as those in the FLAPH and FLAPL registers.

(3) Blank checking:

FLAPH and FLAPL registers: Start address in the target flash memory area (example: 0x0F1100)

FLSEDH and FLSEDL registers: End address in the target flash memory area (example: 0x0F11FF)

* When blank checking is only to be applied to one byte, set the FLSEDH and FLSEDL registers to the same

values as those in the FLAPH and FLAPL registers.

 After issuing a command for use with the code/data flash memory area sequencer, wait for the completion of its execution. For details on the procedure for waiting for the completion of command execution, see the section titled "Procedure for checking the completion of commands for use with the code/data flash memory area sequencer" in 33.6.6.9 Procedures for checking completion of the commands for use with the flash memory sequencer in the respective areas.

Processing after executing a command

When command processing is to continue:

The same command with the target registers set to updated values or a rewrite command for any other area in the data flash memory can be executed with the state remaining in data flash programming mode.

When command processing has been completed:

Switch to the rewrite-disabled mode. For the procedure for switching to the rewrite-disabled mode, see 33.6.3.1

Procedure for executing the specific sequence and 33.6.3.4 Procedure for entry to the rewrite-disabled mode.

Date: Nov. 24, 2021

<4> When the value of the command to be executed is set in the MDCH and SQMD2 to
SQMD0 bits of the FSSQ register and the SQST bit is set to 1, the code/data flash
memory area sequencer executes the specified command. The MDCH, SQST, and
SQMD2 to SQMD0 bits can be set simultaneously. If these bits are set simultaneously,
the FSSQ register is set to the following values.
Block erasure: 84H
Writing: 81H
Blank checking of the data flash memory area: 8BH
<5> Wait until the command for use with the code/data flash memory area sequencer is
complete. For details on the procedure for waiting for the completion of command
execution, see the section titled "Procedure for checking the completion of commands
for use with the code/data flash memory area sequencer" in 33.6.6.9 Procedures for
checking completion of the commands for use with the flash memory sequencer in the
respective areas.
<6> Processing after executing a command
<continuing command="" processing=""></continuing>
The same command or another command can be executed by continuously updating
the address, data, and write
data (in step 3) with the state remaining in data flash programming mode.
<completing command="" processing=""></completing>
Switch to the non-programmable mode. For the procedure for switching to the non-
programmable mode, see 33.6.3.1 Procedure for executing the specific sequence and
33.6.3.4 Procedure for entry to the nonprogrammable mode.
Note The data flash memory area blocks can be erased in units of 256 bytes. Therefore, set
the 8 lower-order bits of the FLAPL register for specifying the start address to 0000
0000B (an integer of 256). Also set the 8 lower-order bits of the FLSEDL register for
specifying the end address to 1111 1111B.

76. 33.6.6.7 Operations for rewriting the extra area (Page 1328)

Incorrect:

33.6.6.7 Operations for rewriting the extra area

To rewrite the extra area, enter the code flash programming mode and then execute commands for use with the extra area sequencer. Before starting to execute a command, set the data required for execution in the corresponding registers.

Unit for writing in rewriting of the extra area

- Unit for writing: 1 word (4 bytes)
- * No erasure command is available, so a unit is not specified.

<Handling the commands>

The target commands are for writing data to the extra area.

- Enter the code flash programming mode. For the procedure for entry to the code flash programming mode, see 33.6.3.1 Procedure for executing the specific sequence and 33.6.3.2 Procedure for entry to the code flash programming mode.
- FLARS register = 01H (EXA bit = 1): Setting to select the extra (not user) area
- Before executing a command, set a one-word (four-byte) value in the FLWH and FLWL registers. Specifically, set the value to be written to the target extra area data EX bits 31 to 0 in the FLW[31:0] bits of the FLWH and FLWL registers.
- Specifying a command determines the area to which data are to be written. Enter the target command number in the ESQMD[3:0] bits of the FSSE register and also set the ESQST bit of the same register to 1.

(1) For programming of the FSW-related data: 81H

(2) For programming of the read-prohibited area of software from a third party and the protection flag: 86H

- (3) For programming of the security flags and boot area switching flag: 87H
- After issuing a command for use with the extra area sequencer, wait for the completion of its execution. For details on the procedure for waiting for the completion of command execution, see the section titled "Procedure for checking the completion of commands for use with the extra area sequencer" in 33.6.6.9 Procedures for checking completion of the commands for use with the flash memory sequencer in the respective areas.

Date: Nov. 24, 2021

Correct:

33.6.6.7 Operations for rewriting the extra area

To rewrite the extra area, enter the code flash programming mode and then execute commands for use with the extra area sequencer. Before starting to execute a command, set the data required for executing each command in the corresponding registers.

<Handling the commands>

- <1> Enter the code flash programming mode. For the procedure for entry to the code flash programming mode, see 33.6.3.1 Procedure for executing the specific sequence and 33.6.3.2 Procedure for entry to the code flash programming mode.
- <2> Set the EXA bit of the FLARS register to 1 (extra area).
- <3> Before executing a command, set 4-byte data in the FLWH and FLWL registers. Each bit of the FLW31 to FLW0 bits corre-sponds to EX bits 31 to 0 of the target extra area data. For details of setting data for each command, see 33.6.6.8 Data to be set for the commands for use with the extra area sequencer.
- <4> When the value of the command to be executed is set in the ESQMD3 to ESQMD0 bits of the FSSE register and the ESQST bit is set to 1, the extra area sequencer executes the specified command. The ESQMD3 to ESQMD0 bits and the ESQST bit can be set simultaneously. If these bits are set simultaneously, the FSSE register is set to the following values.
- Write data to the flash shield window setting area: 81H
- Write data to the flash read protection setting area: 86H
- Write data to the security flag and boot swap function setting area: 87H
- <5> Wait until the command for use with the extra area sequencer is complete. For details on the procedure for waiting for the completion of command execution, see the section titled "Procedure for checking the completion of commands for use with the extra area sequencer" in 33.6.6.9 Procedures for checking completion of the commands for use with the flash memory sequencer in the respective areas.

• Processing after executing a command

When command processing is to continue:

The same command with the target registers set to updated values or a rewrite command for any other area in the extra area can be executed with the state remaining in code flash programming mode.

When command processing has been completed:

Switch to the rewrite-disabled mode. For the procedure for switching to the rewrite-disabled mode, see 33.6.3.1

Procedure for executing the specific sequence and 33.6.3.4 Procedure for entry to the rewrite-disabled mode.

Date: Nov. 24, 2021

<6> Processing after executing a command

<Continuing command processing>

The same command or another command can be executed by continuously updating the

FLWH and FLWL register data to be set in the extra area (in step 3) with the state

remaining in code flash programming mode.

<Completing command processing>

Switch to the non-programmable mode. For the procedure for switching to the non-

programmable mode, see 33.6.3.1 Procedure for executing the specific sequence and

33.6.3.4 Procedure for entry to the nonprogrammable mode.

77. <u>33.6.6.8 Data to be set for the commands for use with the extra</u> <u>area sequencer (Page 1329 to Page 1331)</u>

Incorrect:

33.6.6.8 Data to be set for the commands for use with the extra area sequencer Writing to the extra area proceeds per word (four bytes), including values that are not to be changed.

Before executing a command, set the value to be set in the extra area data EX bits 31 to 0 for each target command to be executed in the FLW[31:0] bits of the FLWH and FLWL registers.

(1) Programming of the FSW-related data

Set the value to be set in the extra area data EX bits 31 to 0 shown below in the FLW31 to FLW0 bits of the FLWH and FLWL registers.

EX bit 31	EX bit 30	EX bit 29	EX bit 28	EX bit 27	EX bit 26	EX bit 25	EX bit 24
FSWC	0	0	0	0	0	0	FSWE8
EX bit 23	EX bit 22	EX bit 21	EX bit 20	EX bit 19	EX bit 18	EX bit 17	EX bit 16
FSWE7	FSWE6	FSWE5	FSWE4	FSWE3	FSWE2	FSWE1	FSWE0
EX bit 15	EX bit 14	EX bit 13	EX bit 12	EX bit 11	EX bit 10	EX bit 9	EX bit 8
FSPR	0	0	0	0	0	0	FSWS8
			•				
EX bit 7	EX bit 6	EX bit 5	EX bit 4	EX bit 3	EX bit 2	EX bit 1	EX bit 0
FSWS7	FSWS6	FSWS5	FSWS4	FSWS3	FSWS2	FSWS1	FSWS0

- The value to be set in the FSWE8 to FSWE0 bits (bits 24 to 16) is the end block number (end block number in the window range + 1).

- The value to be set in the FSWC bit (bit 31) is for FSW mode control.

<u>FSWC = 0/1 (at shipment): Respectively select shielding of the area inside the window range</u> or outside the window range

- The value to be set in FSWS8 to FSWS0 bits (bits 8 to 0) is the start block number (start block number in the window range).

The value to be set in the FSPR bit (bit 15) is for making the FSW setting to prohibit rewriting.
 FSPR = 0/1 (at shipment): FSW is set to prohibit rewriting/FSW is set to enable rewriting.

Correct:

33.6.6.8 Data to be set for the commands for use with the extra area sequencer Writing to the extra area proceeds per 4 bytes.

Each command for use with the extra area sequencer writes the data set in the FLW31 to FLW0 bits of the FLWH and FSWL registers to EX bits 31 to 0 in the extra area corresponding to the given command.

(1) Write to the flash shield window setting area

Set the data in the FLWH and FLWL registers to the flash shield window setting area.

	EX bit 31	EX bit 30	EX bit 29	EX bit 28	EX bit 27	EX bit 26	EX bit 25	EX bit 24
Ι	FSWC	1	1	1	1	1	1	FSWE8
	EX bit 23	EX bit 22	EX bit 21	EX bit 20	EX bit 19	EX bit 18	EX bit 17	EX bit 16
Γ	FSWE7	FSWE6	FSWE5	FSWE4	FSWE3	FSWE2	FSWE1	FSWE0
-								
	EX bit 15	EX bit 14	EX bit 13	EX bit 12	EX bit 11	EX bit 10	EX bit 9	EX bit 8
Ι	FSPR	1	1	1	1	1	1	FSWS8
	EX bit 7	EX bit 6	EX bit 5	EX bit 4	EX bit 3	EX bit 2	EX bit 1	EX bit 0
Ι	FSWS7	FSWS6	FSWS5	FSWS4	FSWS3	FSWS2	FSWS1	FSWS0

Bit Name	Setting						
FSWC	Specifies the range of the flash memory shield area.						
	0 : Flash memory shield area: Inside the window range 1 : Flash memory shield area: Outside the window range (default)						
FSPR	Specifies whether to enable or disable changing of the flash shield window setting						
	area.						
	0 : Changing of the flash shield window setting area is disabled. 1 : Changing of the flash shield window setting area is enabled (default).						
FSWE8 - FSWE0	Flash shield window end block setting area						
	Specify the block number (end block number + 1).Note						
FSWS8 - FSWS0	Flash shield window start block setting area						
	Specify the start block number.Note						

Note For the relationship between addresses and block numbers, see Table 3 - 1 Correspondence
between Addresses and Block Numbers in Flash Memory (1/3).

Caution The value of the FSPR bit can be changed from 0 (disabling) to 1 (enabling) by executing the chip erase command of the dedicated flash memory programmer or the Security Release command for use in serial programming mode with the entire flash memory erased.
Note that if either of the disabling settings listed below is made, executing the chip erase command of the dedicated flash memory programmer or the Security Release command for use in serial programming mode is not possible.
SEPR = 0 (block erasure is disabled)
BTPR = 0 (rewriting of the boot area is disabled)

Moreover, setting the FSPR bit to 1 (enabling) is not possible because a command cannot be transmitted when connection in serial programming mode is not available due to the setting for disabling connection to the programmer and on-chip debugger or for enabling programmer connection ID authentication having been made.

(2	2) Programming of the read-prohibited area of software from a third party and the protection									
	flag									
	Set the value to be set in the extra area data EX bits 31 to 0 shown below in the FLW31									
	to FLW0 bits of the FLWH and FLWL registers.									
	EX bit 31	EX bit 30	EX bit 29	EX bit 28	EX bit 27	EX bit 26	EX bit 25	EX bit 24		
[SWPR		_	_	_	_	_	UPAddr8		
	EX bit 23	EX bit 22	EX bit 21	EX bit 20	EX bit 19	EX bit 18	EX bit 17	EX bit 16		
[UPAddr7	UPAddr6	UPAddr5	UPAddr4	UPAddr3	UPAddr2	UPAddr1	UPAddr0		
	EX bit 15	EX bit 14	EX bit 13	EX bit 12	EX bit 11	EX bit 10	EX bit 9	EX bit 8		
[_	_	_	-	-	_		LOWAddr8		
-										
	EX bit 7	EX bit 6	EX bit 5	EX bit 4	EX bit 3	EX bit 2	EX bit 1	EX bit 0		
[LOWAddr7	LOWAddr6	LOWAddr5	LOWAddr4	LOWAddr3	LOWAddr2	LOWAddr1	LOWAddr0		

- The value to be set in the UPAddr8 to UPAddr0 (bits 24 to 16) is the number of the end block in the read-prohibited area of software from a third party.

- The value to be set in the LOWAddr8 to LOWAddr0 (bits 8 to 0) is the number of the start block in the read-prohibited area of software from a third party.

- The value to be set in the SWPR bit (bit 31) controls the prohibition of rewriting in the readprohibited area of software from a third party.

<u>SWPR = 0/1 (at shipment): Rewriting in the read-prohibited area is prohibited/rewriting in the read-prohibited area is enabled.</u>

Date: Nov. 24, 2021

(2) Write to the flash read protection setting area

Set the data in the FLWH and FLWL registers to the flash read protection setting area.

EX bit 31	EX bit 30	EX bit 29	EX bit 28	EX bit 27	EX bit 26	EX bit 25	EX bit 24
SWPR	1	1	1	1	1	1	UPAddr8
EX bit 23	EX bit 22	EX bit 21	EX bit 20	EX bit 19	EX bit 18	EX bit 17	EX bit 16
UPAddr7	UPAddr6	UPAddr5	UPAddr4	UPAddr3	UPAddr2	UPAddr1	UPAddr0
EX bit 15	EX bit 14	EX bit 13	EX bit 12	EX bit 11	EX bit 10	EX bit 9	EX bit 8
1	1	1	1	1	1	1	LOWAddr8
EX bit 7	EX bit 6	EX bit 5	EX bit 4	EX bit 3	EX bit 2	EX bit 1	EX bit 0
LOWAddr7	LOWAddr6	LOWAddr5	LOWAddr4	LOWAddr3	LOWAddr2	LOWAddr1	LOWAddr0

Bit Name	Setting
SWPR	Specifies whether to enable or disable changing of the flash read protection setting
	area.
	0: Changing of the flash read protection setting area is disabled. 1: Changing of the flash read protection setting area is enabled (default).
UPAddr8 to	Flash read protection end block setting area
UPAddr0	Specify the end block number.Note
LOWAddr8 to	Flash read protection start block setting area
LOWAddr0	Specify the start block number.Note

Note For the relationship between addresses and block numbers, see Table 3 - 1 Correspondence

between Addresses and Block Numbers in Flash Memory (1/3). The flash read protection setting area cannot be read after a reset is released.

Caution The value of the SWPR bit can be changed from 0 (disabling) to 1 (enabling) by executing the

chip erase command of the dedicated flash memory programmer or the Security Release

command for use in serial programming mode with the entire flash memory erased.

Note that if either of the disabling settings listed below is made, executing the chip erase

command of the dedicated flash memory programmer or the Security Release command for

use in serial programming mode is not possible.

SEPR = 0 (block erasure is disabled)

- BTPR = 0 (rewriting of the boot area is disabled)

Moreover, setting the SWPR bit to 1 (enabling) is not possible because a command cannot be transmitted when connection in serial programming mode is not available due to the setting for disabling connection to the programmer and on-chip debugger or for enabling programmer connection ID authentication having been made.

RENESAS TECHNICAL UPDATE TN-RL*-A0100B/E									
(3) Programming of the security flags and boot area switching flag									
Set the val	ue to be s	set in the	extra area	a data EX	bits 31 to	o 0 shown	below in	the FLW31 to	
FLW0 bits	of the FLV	VH and F	LWL regis	ters.					
EX bit 31	EX bit 30	EX bit 29	EX bit 28	EX bit 27	EX bit 26	EX bit 25	EX bit 24		
1	1	1	1	1	1	1	1		
EX bit 23	EX bit 22	EX bit 21	EX bit 20	EX bit 19	EX bit 18	EX bit 17	EX bit 16		
1	1	1	1	1	1	1	1		
EX bit 15	EX bit 14	EX bit 13	EX bit 12	EX bit 11	EX bit 10	EX bit 9	EX bit 8		
1	1	1	WRPR	1	SEPR	BTPR	BTFLG		
EX bit 7	EX bit 6	EX bit 5	EX bit 4	EX bit 3	EX bit 2	EX bit 1	EX bit 0		
1	1	1	1	1	1	1	1		
– The valu	e to be se	t in the W	RPR bit (b	oit 12) con	trols the p	orohibition	of writing	in serial	
program	ning mode	e.		,					
WRPR =	0/1 (at sh	ipment): V	Vriting in s	erial prog	ramming	mode is pi	ohibited/v	vriting in serial	
program	ning mode	e is enable	ed.		-				
- The value	e to be se	t in the SE	<u>EPR bit (bi</u>	t 10) cont	rols the pr	ohibition o	of block er	<u>asure in serial</u>	
program	ning mode	<u>ə.</u>							
SEPR = 0/1 (at shipment): Block erasure in serial programming mode is prohibited/block									
erasure in serial programming mode is enabled.									
- The value to be set in the BTPR bit (bit 9) controls the prohibition of rewriting in the boot									
area through serial programming and self-programming.									
BTPR = 0/1 (at shipment): Rewriting in the boot area is prohibited/rewriting in the boot area									
is enabled.									
<u>– The valu</u>	<u>e to be se</u>	t in the B	<u> [FLG bit (</u>	bit 8) is fo	r control c	f the boot	cluster to	<u>be set as the</u>	
<u>boot area</u>	a when TI	MSPMD =	: 0; that is	s, boot sw	apping fo	llows the	informatio	on in the extra	

area (the BTFLG setting).

BTFLG = 0/1 (at shipment): The boot area is boot cluster 1/the boot area is boot cluster 0.

Date: Nov. 24, 2021

(3) Write to the security flag and boot swap function setting area

Set the data in the FLWH and FLWL registers to the security flag and boot swap function

setting area. For details of the security settings, see 33.9 Security Settings.

EX bit 31	EX bit 30	EX bit 29	EX bit 28	EX bit 27	EX bit 26	EX bit 25	EX bit 24
1	1	1	1	1	1	1	1
EX bit 23	EX bit 22	EX bit 21	EX bit 20	EX bit 19	EX bit 18	EX bit 17	EX bit 16
1	1	1	1	1	1	1	1
EX bit 15	EX bit 14	EX bit 13	EX bit 12	EX bit 11	EX bit 10	EX bit 9	EX bit 8
1	1	1	WRPR	1	SEPR	BTPR	BTFLG
EX bit 7	EX bit 6	EX bit 5	EX bit 4	EX bit 3	EX bit 2	EX bit 1	EX bit 0
1	1	1	1	1	IFPR	1	IDEN

Bit Name	Setting
WRPR	Specifies whether to enable or disable writing in serial programming mode.
	0: Writing in serial programming mode is disabled. 1: Writing in serial programming mode is enabled (default).
SEPR	Specifies whether to enable or disable block erasure in serial programming mode.
	0: Block erasure in serial programming mode is disabled. 1: Block erasure in serial programming mode is enabled (default).
BTPR	Specifies whether to enable or disable rewriting of the boot area and boot swapping.
	 Rewriting of the boot area and boot swapping are disabled. Rewriting of the boot area and boot swapping are enabled (default).
BTFLG	Specifies the boot area when the TMSPMD bit in the FSSET register is 0.
	0: Boot area: Boot cluster 1 1: Boot area: Boot cluster 0 (default)
IFPR	Specifies whether to enable or disable serial programming mode and connection to the
	programmer and on-chip debugger.
	 Serial programming mode and connection to the on-chip debugger are disabled. Serial programming mode and connection to the on-chip debugger are enabled (default).
IDEN	Specifies whether to enable or disable programmer connection ID authentication to be
	made in serial programming mode.
	0: ID authentication for connection in serial programming mode is enabled. 1: ID authentication for connection in serial programming mode is disabled (default).

Caution 1. When changing the value of the BTFLG bit, set all other bits to 1.

- Caution 2. When changing the values of security flags other than BTFLG to 0 (prohibition), read the register first and set the BTFLG bit to the same value as was read, and set the other bits to 1.
- Caution 3. When setting the WRPR bit to 0 (prohibition), the WRPR bit can only be set to 1 (enabling) by executing the chip erase command in serial programming mode. Note that if either of the prohibition settings listed below is made, executing the chip erase command in serial programming mode is not possible.
 - SEPR = 0 (Block erasure is prohibited.)
 - BTPR = 0 (Rewriting of the boot area is prohibited.)

Date: Nov. 24, 2021

Caution 1. When changing the value of the BTFLG bit, set all other bits to 1.

- Caution 2. When changing the values of security flags other than BTFLG to 0 (disabling), read the register first and set the BTFLG bit to the same value as was read, and set the other bits to 1.
- Caution 3. The value of the WRPR bit can be changed from 0 (disabling) to 1 (enabling) by executing the chip erase command of the dedicated flash memory programmer or the Security Release command for use in serial programming mode with the entire flash memory erased.

Note that if either of the disabling settings listed below is made, executing the chip erase command of the dedicated flash memory programmer or the Security Release command for use in serial programming mode is not possible.

- SEPR = 0 (block erasure is disabled)
- BTPR = 0 (rewriting of the boot area is disabled)

Moreover, setting the WRPR bit to 1 (enabling) is not possible because a command cannot be transmitted when connection in serial programming mode is not available due to the setting for disabling connection to the programmer and on-chip debugger or for enabling programmer connection ID authentication having been made.

Caution 4. Restoring the value of any among the SEPR, BTPR, IFPR, and IDEN bits to 1 after having set it to 0 is not possible.

78. 33.6.8 Flash shield window function (Page 1335)

Incorrect:

33.6.8 Flash shield window function

The flash shield window function is provided as one of the security functions for use with selfprogramming. It disables writing to and erasing of areas selected as being either inside or outside the range specified as the window. This function is only effective for self-programming. The window range can be set by specifying the start and end blocks. The window range can be set or changed during both serial programming and self-programming.

Writing to and erasing of areas selected as being either inside or outside the range specified as the window are disabled during self-programming. During serial programming, however, areas selected as being both inside and outside the range specified as the window can be written and erased.

Figure 33 - 29 Flash Shield Window Setting Example (Target Devices: R7F100GLG, Start Block Number in the Window Range: 04H, End Block Number in the Window Range: 06H, FSWC: 1)

Caution 1. If the rewrite-prohibited area of the <u>boot cluster 0</u> overlaps with the flash shield window range, prohibition to rewrite the <u>boot cluster 0</u> takes priority.

Caution 2. The flash shield window can only be used for the code flash memory (and is not supported for the data flash memory).

Correct:

33.8 Flash Shield Window Function

The flash shield window function is provided as a security function which disables writing to and erasing of the selected flash memory shield area. This function is only effective for selfprogramming. The flash memory shield area is selectable as either the area inside or areas outside the range specified as the window. The window range is set by specifying the blocks where it starts and ends. The flash memory shield area can be set or changed during both serial programming and self-programming. Writing to and erasing of the flash memory shield area are disabled during self-programming. During serial programming, however, the flash memory shield area can also be written and erased.

Figure 33 - 32 Flash Shield Window Setting Example (Target Devices: R7F100GLG, Start Block Number: 04H, End Block Number: 06H, FSWC: 1)

Caution 2. The flash shield window can only be used for the code flash memory (and is not supported for the data flash memory).

Table 33 - 13 Relationship between Flash Shield Window Function Setting/Change Methods and Commands

Programming Condition	Window Range Setting/Change Method	Command to be Executed			
Programming Containon	Hindow Hange Octangronange mesioa	Block erase	Write		
Self-programming	Specify the start block number (the start block number in the window range) and the end block number (the end block number in the window range + 1) by the flash self- programming code.	Block erasure is only possible either inside or outside the window range.	Writing is only possible either inside or outside the window range.		
Serial programming	Specify the start block number (the start block number in the window range) and the end block number (the end block number in the window range) on GUI of dedicated flash memory programmer, etc.	Block erasure is possible both inside and outside the window range.	Writing is possible both Inside and outside the window range.		

Remark See 33.7 Security Settings to prohibit writing/erasure during serial programming.

Date: Nov. 24, 2021

Table 33 - 12 Relationship between Fla	ash Shield V	Vindow F	unction	Setting/Change	Nethods
and Commands					

Programming Condition	Window Pages Setting/Change Method	Command to be Executed		
r rogramming contaitoir	window rearge Setting/onlange metrod	Block erase	Write	
Self-programming	Specify the window start block number and the (end block number + 1) block number (following the end block) in the flash shield window setting area using the self-programming.	Block erasure is not possible inside the flash memory shield area.	Writing is not possible inside the flash memory shield area.	
Serial programming	Specify the start block number in the window range and the end block number in the window range on GUI of dedicated flash memory programmer, etc.	Block erasure is also possible inside the flash memory shield area.	Writing is also possible inside the flash memory shield area.	

79. <u>33.6.10.3 Example of executing the commands to rewrite the extra</u> area (Page 1340)

Incorrect:

33.6.10.3 Example of executing the commands to rewrite the extra area Figure 33 - 32 shows the flow of executing the commands to rewrite the extra area.

Figure 33 - 32 Flow of Executing the Commands to Rewrite the Extra Area

Correct:

33.6.8.3 Example of executing the commands to rewrite the extra area Figure 33 - 29 shows the flow of executing the commands to rewrite the extra area.

80. 33.6.11 Notes on self-programming (Page 1341)

Incorrect:

- 33.6.11 Notes on self-programming
- (1) Rewriting the code flash memory or extra area

To rewrite the code flash memory or extra area, place the code or values in the RAM.

(2) Precondition for manipulating the data flash memory area

Before manipulating the data flash memory area, set the DFLEN bit of the data flash control register (DFLCTL) to 1 (enabling access to the data flash memory).

(3) Execution of programs during rewriting of the flash memory

The flash memory sequencer is used to control rewriting of the flash memory during selfprogramming. In the flash memory control modes where rewriting of the flash memory is enabled, reference to the flash memory to be manipulated is not possible.

- In code flash programming mode, reference to the code flash memory is not possible. Accordingly, in code flash programming mode, copy the user program that is to be executed from the ROM (code flash memory) and its data for reference to the RAM in advance so that the program can be executed and reference to the data in the RAM is possible.
- In data flash programming mode, reference to the data flash memory is not possible. Accordingly, in data flash programming mode, copy data that are for reference to the RAM in advance so that reference to the data in the RAM is possible.

Date: Nov. 24, 2021

Correct:

33.6.9 Notes on self-programming

(1) Rewriting the code flash memory or extra area

To rewrite the code flash memory or extra area, place the code or values in the RAM.

- (2) Precondition for manipulating the data flash memory area and extra area Before manipulating the data flash memory area and extra area, set the DFLEN bit of the data flash control register (DFLCTL) to 1 (enabling access to the data flash memory).
- (3) Execution of programs during rewriting of the flash memory

The flash memory sequencer is used to control rewriting of the flash memory during selfprogramming.

In the flash memory control modes where rewriting of the flash memory is enabled, reference to the flash memory to be manipulated is not possible.

- In code flash programming mode, reference to the code flash memory is not possible. Accordingly, in code flash programming mode, copy the user program that is to be executed from the ROM (code flash memory) and its data for reference to the RAM in advance so that the program can be executed and reference to the data in the RAM is possible.
- In data flash programming mode, reference to the data flash memory is not possible. Accordingly, in data flash programming mode, copy data that are for reference to the RAM in advance so that reference to the data in the RAM is possible.

(4) Specifying the range of unavailable area

Specify the range of blank checking and block erasure within the range of code flash memory area or data flash memory area. Do not specify any unavailable area or both the code flash memory area and data flash memory area including an unavailable area. (5) Specifying the range of code flash memory area

For products that have a code flash memory area larger than 512 Kbytes, specifying a range that spans addresses or blocks across the 512-Kbyte boundary for blank checking or block erasure is not possible. Specify an address range of 000000H to 7FFFFFH or 800000H to BFFFFFH for blank checking. Specify a block range of 000H to 099H or 100H to 17FH for block erasure.

81. 33.7 Security Settings (Page 1342, Page 1343)

Incorrect:

33.7 Security Settings

The RL78 microcontroller supports a security function that prohibits rewriting the user program written to the internal flash memory, so that the program cannot be changed by an unauthorized person.

The operations shown below can be performed using the security set command.

Disabling block erasure

Execution of the block erase command for a specific block in the code flash memory is prohibited during serial programming. However, blocks can be erased by means of self-programming.

Disabling writing

Execution of the write command for entire blocks in the code flash memory is prohibited during serial programming.

However, blocks can be written by means of self-programming.

After the setting to prohibit writing has been made, releasing the setting by the security release command is enabled by a reset.

Disabling rewriting boot cluster 0

Execution of the block erase command and write command on <u>boot cluster 0</u> (00000H to 00FFFH) in the code flash memory is prohibited by this setting.

The block erase, write commands, and rewriting <u>boot cluster 0</u> are enabled by the default setting when the flash memory is shipped. Security can be set by serial programming and self-programming. Each security setting can be used in combination.

Table 33 - 14 shows the relationship between the erase and write commands when the RL78 microcontroller security function is enabled.

Caution The security function of the dedicated flash programmer does not support self-programming.

Remark To prohibit writing and erasure during self-programming, use the flash shield window function (see 33.6.8 Flash shield window function for detail).

Correct:

33.9 Security Settings

The RL78 microcontroller supports a security function that prohibits rewriting the user program written to the internal flash memory, so that the program cannot be changed by an unauthorized person.

The operations shown below can be performed by serial programming or self-programming.

Disabling block erasure

Execution of the block erase command for a specific block in the code flash memory is prohibited during serial programming. However, blocks can be erased by means of self-programming.

Disabling writing

Execution of the write command for entire blocks in the code flash memory is prohibited during serial programming.

However, blocks can be written by means of self-programming.

After the setting to prohibit writing has been made, releasing the setting by the Security Release command is enabled by a reset.

Disabling rewriting the boot area

Execution of the block erase command and write command on the boot area (00000H to 00FFFH) in the code flash memory is prohibited.

Disabling connection to the programmer and on-chip debugger

Connection to a dedicated flash memory programmer and on-chip debugger is prohibited. A dedicated flash memory programmer and on-chip debugger cannot be used to manipulate the flash memory.

Enabling programmer connection ID authentication

Authentication for an arbitrary 10-byte ID code is enabled when connecting to a dedicated flash memory programmer. The 10-byte ID area is 000C4H to 000CDHNote. If the ID does not match when using serial programming, the dedicated flash memory programmer cannot be used to manipulate the flash memory.

Block erasure, writing, and rewriting the boot area are enabled by the default setting when the flash memory is shipped.

Security can be set by serial programming and self-programming. Each security setting can be used in combination.

Table 33 - 13 shows the relationship between the erase and write commands when the RL78 microcontroller security function is enabled.

Note The 10-byte ID code area for the programmer connection ID is shared with the security ID code for on-chip debugging.

Caution The security function of the dedicated flash programmer does not support selfprogramming.

Remark To prohibit writing and erasure during self-programming, use the flash shield window function (see 33.8 Flash Shield Window Function for detail).

Table 33 - 14 Relationship between Enabling the Security Function and Commands

(1) During serial programming

Valid Security	Command to be Executed	
value occurry	Block Erase	Write
Prohibition of block erasure	Blocks cannot be erased.	Data can be written.Note
Prohibition of writing	Blocks can be erased.	Data cannot be written.
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.

Note Confirm that no data have been written to the write area. If data in the area has not been erased, do not attempt further writing of data because data cannot be erased after the setting to prohibit block erasure has been made.

(2) During self-programming

Valid Security	Command to be Executed	
value Security	Block Erase	Write
Prohibition of block erasure	Blocks can be erased.	Data can be written.
Prohibition of writing		
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.

Remark To prohibit writing and erasure during self-programming, use the flash shield window function (see 33.6.8 Flash shield window function for detail).

Date: Nov. 24, 2021

Table 33 - 13 Relationship between Enabling the Security Function and Commands (1) During serial programming

Volid Security	Command to be Executed		
Valid Security	Block Erase	Write	
Prohibition of block erasure	Blocks cannot be erased.	Data can be written. ^{Note}	
Prohibition of writing	Blocks can be erased.	Data cannot be written.	
Prohibition of rewriting the boot area	The boot area cannot be erased	The boot area cannot be written.	
Prohibition of connection to the programmer and on-chip debugger	Blocks cannot be erased.	Data cannot be written.	
Success in authentication with programmer connection ID authentication enabled	Blocks can be erased.	Data can be written.	
Failure in authentication with programmer connection ID authentication enabled	Blocks cannot be erased.	Data cannot be written.	

Note Confirm that no data have been written to the write area. If data in the area has not been erased, do not attempt further writing of data because data cannot be erased after the setting to prohibit

block erasure has been made.

(2) During self-programming

Valid Security	Command to be Executed		
vana occarry	Block Erase	Write	
Prohibition of block erasure	Blocks can be erased.	Data can be written.	
Prohibition of writing			
Prohibition of rewriting the boot area	The boot area cannot be erased.	The boot area cannot be written.	
Prohibition of connection to the programmer and on-chip debugger	Blocks can be erased.	Data can be written.	
Programmer connection ID authentication enabled	Blocks can be erased.	Data can be written.	

Remark To prohibit writing and erasure during self-programming, use the flash shield window function

(see 33.8 Flash Shield Window Function for detail).

Table 33 - 15 Setting Security in Each Programming Mode (1)

During serial programming

Security	Security Setting	Disabling the Security Setting
Prohibition of block erasure	Set via GUI of dedicated flash memory	Disabling the setting is not possible.
Prohibition of writing	programmer, etc.	Set via GUI of dedicated flash memory programmer, etc.
Prohibition of rewriting boot cluster 0		Disabling the setting is not possible.

Caution The setting to prohibit writing can only be released when the settings to prohibit erasing blocks and rewriting boot cluster 0 are not made and the code and data flash memory areas are blank.

(2) During self-programming

Security	Security Setting	Disabiling the Security Setting
Prohibition of block erasure	Set by using flash self-programming code.	Disabling the setting is not possible.
Prohibition of writing		Disabiling the setting is not possible during self-programming (set via GUI of dedicated flash memory programmer, etc. during serial programming).
Prohibition of rewriting boot cluster 0		Disabiling the setting is not possible.

Date: Nov. 24, 2021

Table 33 - 14 Setting Security in Each Programming Mode

(1) During serial programming

Security	Security Setting	Disabling the Security Setting
Prohibition of block erasure	Set via GUI of dedicated flash memory	Disabling the setting is not possible.
Prohibition of writing	programmer, etc.	Set via GUI of dedicated flash memory programmer, etc.
Prohibition of rewriting the boot area		Disabling the setting is not possible.
Prohibition of connection to the programmer and on-chip debugger		
Enabling programmer connection ID authentication		

Caution The setting to prohibit writing can only be released when the settings to prohibit erasing blocks

and rewriting the boot area are not made and the code and data flash memory areas are blank. However, if connection for serial programming is prohibited due to the setting to prohibit connection to the programmer and on-chip debugger or to enable programmer connection ID authentication, releasing the setting to prohibit writing is not possible because serial programming cannot be executed.

(2) During self-programming

Security	Security Setting	Disabling the Security Setting
Prohibition of block erasure	Set by using self-programming.	Disabling the setting is not possible.
Prohibition of writing		Disabling the setting is not possible during self-programming. Set via GUI of dedicated flash memory programmer, etc.
Prohibition of rewriting the boot area		Disabling the setting is not possible.
Prohibition of connection to the programmer and on-chip debugger		
Enabling programmer connection ID authentication		

82. <u>34.2 Connection between the External Device that Incorporates</u> <u>UART and RL78/G23 (Page 1347)</u>

Incorrect:

34.2 Connection between the External Device that Incorporates UART and RL78/G23 On-board communications between an external device (a microcontroller or ASIC) that is connected to the RL78 microcontroller via a UART and the host machine is possible. Pins VDD, RESET, TOOL0, VSS, TOOLTxD, and TOOLRxD are used for the communications. Communications between the external device and the RL78 microcontroller is established by serial communication using the TOOLTxD and TOOLRxD pins via the dedicated UART of the RL78 microcontroller.

Note 1. This pin is only present in the 64-pin, 80-pin, 100-pin and 128-pin products.

Note 2. Connect the REGC pin to the ground via a capacitor (0.47 to 1 μ F).

Note 3. Set the port pin with which TOOLRxD is multiplexed as an input.

Correct:

34.2 Connection between the External Device that Incorporates UART and RL78/G23 On-board communications between an external device (a microcontroller or ASIC) that is connected to the RL78 microcontroller via a UART and the host machine is possible. Pins VDD, RESET, TOOL0, VSS, TOOLTxD, and TOOLRxD are used for the communications. Communications between the external device and the RL78 microcontroller is established by serial communication using the TOOLTxD and TOOLRxD pins via the dedicated UART of the RL78 microcontroller. For details and usage notes on the circuit to make the connection, refer to RL78 Debugging Functions Using the Serial Port (R20AN0632EJ0100).

Note 1. This pin is only present in the 64-pin, 80-pin, 100-pin and 128-pin products.
Note 2. Connect the REGC pin to the ground via a capacitor (0.47 to 1 μF).
Note 3. Set the port pin with which TOOLRxD is multiplexed as an input. The input to the input buffer must also be enabled by using the PDIDISx register.

83. 37.1 Absolute Maximum Ratings (Page 1375)

Incorrect:

(2/2)

Item	Symbols		Conditions	Ratings	Unit
High-level output current	ЮН1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	IOH2	Per pin	P20 to P27, P121 to P124, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Low-level output current	IOL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40Note	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P121 to P124, P150 to P156	1	mA
		Total of all pins		5	mA
Ambient operating	ТА	In normal operati	I operation mode		•C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	•c

Note The rating for the following port pins is 80 mA when IOL1 = 40.0 mA is specified by the 40-mA port output control register (PTDC).

- Pins P04, P10, and P120 of the 64- to 100-pin package products with 384- to 768-Kbyte flash ROM
- Pin P110 of the 100-pin package products with 384- to 768-Kbyte flash ROM
- Pins P17, P51, and P70 of the 30- to 52-pin package products

Correct:

Absolute Maximum Ratings

Item	Symbols		Conditions	Ratings	Unit
High-level output current	Іонт	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P60 to P67, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	IOH2	Per pin	P20 to P27, P121 to P124, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Low-level output current	IOL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40Note	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P121 to P124, P150 to P156	1	mA
	T	Total of all pins		5	mA
Ambient operating	ТА	In normal operati	on mode	-40 to +105	•C
temperature		In flash memory	programming mode		
Storage temperature	Tetg			-65 to +150	•C

Note The rating for the following port pins is 80 mA when IOL1 = 40.0 mA is specified by the 40-mA port output control register (PTDC).

- Pins P04, P10, and P120 of the 64- to 100-pin package products with 384- to 768-Kbyte flash ROM
- Pin P110 of the 100-pin package products with 384- to 768-Kbyte flash ROM
- Pins P17 and P51 of the 30- to 52-pin package products
- Pin P70 of the 32- to 52-pin package products

(2/2)

Date: Nov. 24, 2021

84. 37.2.1 Characteristics of the X1 and XT1 oscillators (Page 1376)

Incorrect:

37.2.1 Characteristics of the X1 and XT1 oscillators

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Item	Resonator	Conditions	Min.	тур.	Max.	Unit
X1 clock oscillation allowable input cycle time Note	Ceramic resonator/ crystal resonator		0.05		1	μs
XT1 clock oscillation frequency (fxT)Note	Crystal resonator			32.768		kHz

Correct:

37.2.1 Characteristics of the X1 and XT1 oscillators

(TA = $-40 \sim +105^{\circ}$ C, 2. 4V \leq VDD \leq 5.5 V (30- to 36-pin products), 1.6 V \leq VDD \leq 5.5 V (40- to 128-pin products), Vss = 0 V)

Item	Resonator	Conditions	Min.	тур.	Max.	Unit
X1 clock oscillation allowable input cycle time Note	Ceramic resonator/ crystal resonator		0.05		1	μs
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator			32.768		kHz

85. 37.3.1 Pin characteristics (Page 1378 to Page 1381)

Incorrect:

37.3.1 Pin characteristics

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Allowable high-level output current Note 1	Юн1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (when duty ≤ 70% ^{Note 3})	4.0 V ≤ EVDD0 ≤ 5.5 V			-55.0 Note 4	mA
			2.7 V ≤ EVDD0 < 4.0 V			-10.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			-5.0	mA
			1.6 V ≤ EV000 < 1.8 V			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (when duty ≈ 70% ^{Note 3})	4.0 V ≤ EVDD0 ≤ 5.5 V			-80.0 Note 5	mA
			2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
			1.6 V ≤ EV000 < 1.8 V			-5.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 6	mA
	IOH2	Per pin for P20 to P27, P121, P122, P150 to P156	4.0 V ≤ VDD ≤ 5.5 V			-3.0 Note 2	mA
			2.7 V ≤ V00 < 4.0 V			-1.0 Note 2	mA
			1.8 V ≤ V00 < 2.7 V			-1.0 Note 2	mA
			1.6 V ≤ VDD < 1.8 V			-0.5 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	4.0 V ≤ VDO ≤ 5.5 V			-20.0	mA
			2.7 V ≤ VDD < 4.0 V			-10.0	mA
			1.8 V ≤ VDD < 2.7 V			-5.0	mA
			1.6 V ≤ VDD < 1.8 V			-5.0	mA

Note 1. Device operation is guaranteed at the listed currents even if current is flowing from the EVDD0, EVDD1, or VDD pin to an output pin.

Note 2. The combination of these and other pins must also not exceed the value for maximum total current.

Correct:

37.3.1 Pin characteristics

Item	Symbol	Conditions		Min.	тур.	Max.	Unit
Allowable high-level output current Note 1	Юн1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (when duty ≤ 70% ^{Note 3})	4.0 V ≤ EVDD0 ≤ 5.5 V			-55.0 Note 4	mA
			2.7 V ≤ EVDD0 < 4.0 V			-10.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			-5.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (when duty ≤ 70% ^{Note 3})	4.0 V ≤ EVDD0 ≤ 5.5 V			-80.0 Note 5	mA
			2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
			1.6 V ≤ EV000 < 1.8 V			-5.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 6	mA
	Юн2	Per pin for P20 to P27, P121, P122, P150 to P156 4.0 V ≤ VD0 ≤ 5.5 V 2.7 V ≤ VD0 < 4.0 V			-3.0 Note 2	mA	
			2.7 V ≤ Voo < 4.0 V			-1.0 Note 2	mA
			1.8 V ≤ V00 < 2.7 V			-1.0 Note 2	mA
			1.6 V ≤ VDD < 1.8 V			-0.5 Note 2	mA
		Total of all pins (when duty ≤ 70% ^{Note 3})	4.0 V ≤ VDD ≤ 5.5 V			-20.0	mA
			2.7 V ≤ VDD < 4.0 V			-10.0	mA
			1.8 V ≤ VDD < 2.7 V			-5.0	mA
			1.6 V ≤ VDD < 1.8 V			-5.0	mA

Note 1. Device operation is guaranteed at the listed currents even if current is flowing from the EVDD0, EVDD1, or VDD pin to an output pin.

Note 2. The combination of these and other pins must also not exceed the value for maximum total current.

Note 3. The listed currents apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.

• Total output current from the listed pins = (IOH \Box 0.7)/(n \Box 0.01) Example when n = 80% and IOH = -10.0 mA

Total output current from the listed pins = $(-10.0 \square 0.7)/(80 \square 0.01) \square -8.7$ mA Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

- **Note 4**. The maximum value is -30 mA in the products for industrial applications (<u>R7F100Gxx3xxxC</u>) with an ambient operating temperature range of 85°C to 105°C.
- **Note 5**. The maximum value is -50 mA in the products for industrial applications (<u>R7F100Gxx3xxxC</u>) with an ambient operating temperature range of 85°C to 105°C.
- **Note 6**. The maximum values are respectively -100 mA and -60 mA in the products for industrial applications (<u>R7F100Gxx3xxxC</u>) with an ambient operating temperature range of -40°C to 85°C and of 85°C to 105°C.
- **Caution** The following pins are not capable of the output of high-level signals in the N-ch open-drain mode.

P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

- Note 3. The listed currents apply when the duty cycle is no greater than 70%. Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.
 Total output current from the listed pins = (IOH □ 0.7)/(n □ 0.01)
 - Example when n = 80% and IOH = -10.0 mA

Total output current from the listed pins = $(-10.0 \square 0.7)/(80 \square 0.01) \square -8.7$ mA Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

Note 4. The maximum value is -30 mA in the products for industrial applications (R7F100Gxx3xxxC) with an ambient operating temperature range of 85°C to 105°C.

Note 5. The maximum value is -50 mA in the products for industrial applications (R7F100Gxx3xxxC) with an ambient operating temperature range of 85°C to 105°C.

- **Note 6**. The maximum values are respectively -100 mA and -60 mA in the products for industrial applications (R7F100Gxx3xxxC) with an ambient operating temperature range of -40°C to 85°C and of 85°C to 105°C.
- **Caution** The following pins are not capable of the output of high-level signals in the N-ch open-drain mode.

P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

Allow

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}\text{DD0} = \text{EV}\text{DD1} \le \text{V}\text{DD} \le 5.5 \text{ V}, \text{V}\text{ss} = \text{EV}\text{ss0} = \text{EV}\text{ss1} = 0 \text{ V})(2/7)$

ltem	Symbol	Conditions		Min.	Тур.	Max.	Unit
Allowable low-level output current ^{Note} 1	lou	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P108, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 Notes 2, 3	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37, P40 to P47,	4.0 V ≤ EVppq ≤ 5.5 V			70.0 Note 6	mA
		P102 to P106, P120, P125 to P127, P130,	2.7 V ≤ EVbbc < 4.0 V			15.0	mA
		P140 to P145 (when duty < 70% Note 4)	1.8 V ≤ EVppc < 2.7 V			9.0	mA
		(when duty a row of	1.6 V ≤ EVoco < 1.8 V			4.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P30 to P37, P60 to P67, P60 to P67,	4.0 V ≤ EVppq ≤ 5.5 V			80.0 Note 6	mA
		P90 to P97, P100, P101,	2.7 V ≤ EVboo < 4.0 V			35.0	mA
		P110 to P117, P146, P147 (when duty < 70% Note 4)	1.8 V ≤ EVppq < 2.7 V			20.0	mA
		(intereduy 27070)	1.6 V ≤ EVoca < 1.8 V			10.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 4})				150.0 Note 6	mA
	loL2	Per pin for P20 to P27, P121,	4.0 V ≤ Vpp ≤ 5.5 V			8.5Note 2	mA
		P122, P100 to P100	2.7 V ≤ Vpp < 4.0 V			1.5Note 2	mA
			1.8 V ≤ Vpp < 2.7 V			0.6Note 2	mA
			1.6 V ≤ Vpp < 1.8 V			().4Note 2	mA
	Total of all pins		$4.0 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			20	mA
		(when duty ≤ 70%Note 4)	2.7 V ≤ Vpp < 4.0 V			20	mA
			1.8 V ≤ Vpp < 2.7 V			15	mA
			1.6 V ≤ Vpp < 1.8 V			10	mA

- **Note 1**. Device operation is guaranteed at the listed currents even if current is flowing from an output pin to the EVSS0, EVSS1, or VSS pin.
- **Note 2**. The combination of these and other pins must also not exceed the value for maximum total current.
- **Note 3**. The maximum rating for the following port pins is 40 mA when IOL1 = 40.0 mA is specified by the 40-mA port output control register (PTDC).
 - Pins P04, P10, and P120 of the 64- to 100-pin package products with 384- to 768-Kbyte flash ROM
 - Pin P101 of the 100-pin package products with 384- to 768-Kbyte flash ROM
 - Pins P17, P51, and P70 of the 30- to 52-pin package products

(TA = -40 to +105°C	, 1.6 V \leq EVDD0 = EVDD1	\leq VDD \leq 5.5 V, Vss = EVss	0 = EVss1 = 0 V) (2/7)
---------------------	------------------------------	-------------------------------------	------------------------

ltem	Symbol	Conditions		Min.	Тур.	Max.	Unit
able low-level it current ^{Note} 1	loL1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 Notes 2, 3	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P108, P100	4.0 V ≤ EVppc ≤ 5.5 V			70.0 Note 6	mA
		P125 to P127, P130,	2.7 V ≤ EVppq < 4.0 V			15.0	mA
		P140 to P145 (when duty < 70% Note 4)	1.8 V ≤ EVoco < 2.7 V			9.0	mA
		(miner day 2 / 0/0	1.6 V ≤ EVppq < 1.8 V			4.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87	4.0 V ≤ EVppc ≤ 5.5 V			80.0 Note 6	mA
		P90 to P97, P100, P101,	2.7 V ≤ EVoca < 4.0 V			35.0	mA
		P110 to P117, P146, P147 (when duty < 70% Note 4)	1.8 V ≤ EVocc < 2.7 V			20.0	mA
		(when duty 5 /0/6/000 4)	1.6 V ≤ EVppq < 1.8 V			10.0	mA
		Total of all pins (when duty ≤ 70% ^{Note 4})				150.0 Note 6	mA
	loL2	Per pin for P20 to P27, P121,	4.0 V ≤ Vpp ≤ 5.5 V			8.5Note 2	mA
		P122, P150 to P156	2.7 V ≤ Vpp < 4.0 V			1.5Note 2	mA
			1.8 V ≤ Vpp < 2.7 V			0.6Note 2	mA
			1.6 V ≤ Vpp < 1.8 V			().4Note 2	mA
		Total of all pins	4.0 V ≤ Vpp ≤ 5.5 V			20	mA
		(when duty ≤ 70% ^{Note 4})	2.7 V ≤ Vpp < 4.0 V			20	mA
			1.8 V ≤ Vpp < 2.7 V			15	mA
			1.6 V ≤ Vpp < 1.8 V			10	mA

- **Note 1**. Device operation is guaranteed at the listed currents even if current is flowing from an output pin to the EVSS0, EVSS1, or VSS pin.
- **Note 2**. The combination of these and other pins must also not exceed the value for maximum total current.
- **Note 3**. The maximum rating for the following port pins is 40 mA when IOL1 = 40.0 mA is specified by the 40-mA port output control register (PTDC).
 - Pins P04, P10, and P120 of the 64- to 100-pin package products with 384- to 768-Kbyte flash ROM
 - Pin P101 of the 100-pin package products with 384- to 768-Kbyte flash ROM
 - Pins P17 and P51 of the 30- to 52-pin package products
 - Pin P70 of the 32- to 52-pin package products

Date: Nov. 24, 2021

Note 4. The listed currents apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.

• Total output current from the listed pins = (IOL \Box 0.7)/(n \Box 0.01) Example when n = 80% and IOL = 10.0 mA

Total output current from the listed pins = $(10.0 \ \ 0.7)/(80 \ \ 0.01) \ \ 8.7 \ \text{mA}$ Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

Note 5. The maximum value is 40 mA in the products for industrial applications

(<u>R7F100Gxx3xxxC</u>) with an ambient operating temperature range of 85°C to 105°C.

Note 6. The maximum value is 80 mA in the products for industrial applications (<u>R7F100Gxx3xxxC</u>) with an ambient operating temperature range of 85°C to 105°C.

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

- **Note 4**. The listed currents apply when the duty cycle is no greater than 70%. Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.
 - Total output current from the listed pins = (IOL \square 0.7)/(n \square 0.01) Example when n = 80% and IOL = 10.0 mA

Total output current from the listed pins = $(10.0 \ \ 0.7)/(80 \ \ 0.01) \ \ 0.8.7 \text{ mA}$ Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

- Note 5. The maximum value is 40 mA in the products for industrial applications (R7F100Gxx3xxxC) with an ambient operating temperature range of 85°C to 105°C.
- **Note 6**. The maximum value is 80 mA in the products for industrial applications (R7F100Gxx3xxxC) with an ambient operating temperature range of 85°C to 105°C.
- **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

86. 37.3.2 Supply current characteristics (Page 1387 to Page 1394)

Incorrect:

37.3.2 Supply current characteristics

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V}) (1/4)$

Item	Symbol			Conditions			Min.	тур.	Max.	Unit
Supply	IDD1	Operating	HS	fiH = 32 MHzNote 2	Basic	V00 = 5.0 V		1.4	-	mA
Note 1		mode	(nigh-speed main) mode		operation	V00 = 1.8 V		1.4	-	
					Normal	VDD = 5.0 V		3.1	5.1	mA
					operation	VDD = 1.8 V		3.1	5.1	
			LS	fiH = 24 MHzNote 2	Normal	VDD = 5.0 V		2.3	3.9	mA
			(low-speed main) mode		operation	VDD = 1.8 V		2.3	3.9	
				fiH = 16 MHzNote 2	Normal	VDD = 5.0 V		1.7	2.8	mA
					operation	V00 = 1.8 V		1.7	2.8	
				fim = 4 MHzNote 3	Normal	V00 = 5.0 V		0.4	0.7	mA
					operation	Voo = 1.6 V		0.4	0.7	
			LP	fim = 2 MHzNote 3	Normal	V00 = 5.0 V		206	332	μA
			(low-power main) mode		operation	V00 = 1.6 V		205	331	
				fim = 1 MHzNote 3	Normal	VDD = 5.0 V		115	181	μA
					operation	Voo = 1.6 V		114	180	
			HS (blab coord main)	fixx = 20 MHzNote 4	Normal	VDD = 5.0 V		1.9	3.2	mA
			mode	Square wave input	operation	VDD = 1.8 V		1.9	3.2	
			LS	fixx = 20 MHzNote 4	Normal	VDD = 5.0 V		1.8	3.0	mA
			(low-speed main) mode	Square wave Input	operation	Voo = 1.8 V		1.8	3.0	
				fixx = 20 MHzNote 4	Normal	Voo = 5.0 V		2.0	3.3	mA
				Resonator connection	operation	Voo = 1.8 V		2.0	3.2	
				fixx = 10 MHzNote 4	Normal	Voo = 5.0 V		0.9	1.6	mA
				Square wave input	operation	V00 = 1.8 V		0.9	1.6	
				fixx = 10 MHzNote 4	Normal	V00 = 5.0 V		1.0	1.7	mA
				Resonator connection	operation	VDD = 1.8 V		1.0	1.7	
				fixx = 8 MHzNote 4	Normal	VDD = 5.0 V		0.8	1.3	mA
				Square wave input	operation	VDD = 1.8 V		0.8	1.3	
				fixx = 8 MHzNote 4	Normal	VDD = 5.0 V		0.9	1.4	mA
				Nesonator connection	operation	Voo = 1.8 V		0.9	1.4	

Date: Nov. 24, 2021

Correct:

37.3.2 Supply current characteristics

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V}) (1/4)$

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	HS	fiH = 32 MHzNote 2	Basic	V00 = 5.0 V		1.3	-	mA
Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.3	-	
					Normal	VDD = 5.0 V		3.0	5.0	mA
					operation	VDD = 1.8 V		3.0	5.0	
			LS	fiH = 24 MHzNote 2	Normal	Voo = 5.0 V		2.3	3.8	mA
			(low-speed main) mode		operation	V00 = 1.8 V		2.3	3.8	
				fiH = 16 MHzNote 2	Normal	VDD = 5.0 V		1.7	2.7	mA
					operation	VDD = 1.8 V		1.7	2.7	
				fim = 4 MHzNote 3	Normal	V00 = 5.0 V		0.4	0.7	mA
					operation	VDD = 1.6 V		0.4	0.7	
			LP	fim = 2 MHzNote 3	Normal	VDD = 5.0 V		200	325	μA
			(low-power main) mode		operation	VDD = 1.6 V		200	325	
				1M = 1 MHzNote 3	Normal	V00 = 5.0 V		112	178	μA
				normal operation	VDD = 1.6 V		111	176		
			HS	fixx = 20 MHzNote 4,	Normal	V00 = 5.0 V		1.9	3.2	mA
			(high-speed main) mode	Square wave Input	operation	VDD = 1.8 V		1.9	3.2	
			LS	fMX = 20 MHzNote 4	Normal	V00 = 5.0 V		1.8	3.0	mA
			(low-speed main) mode	Square wave Input	operation	V00 = 1.8 V		1.7	3.0	
				fixx = 20 MHzNote 4	Normal	VDD = 5.0 V		1.9	3.2	mA
				Resonator connection	operation	VDD = 1.8 V		1.9	3.2	
				fMX = 10 MHzNote 4	Normal	Voo = 5.0 V		0.9	1.6	mA
				Square wave Input	operation	VDD = 1.8 V		0.9	1.6	
				fixx = 10 MHzNote 4	Normal	VDD = 5.0 V		1.0	1.7	mA
				Resonator connection	operation	VDD = 1.8 V		1.0	1.7	
				fMx = 8 MHzNote 4	Normal	V00 = 5.0 V		0.8	1.3	mA
				Square wave Input	operation	Voo = 1.8 V		0.7	1.3	
				fixx = 8 MHzNote 4	Normal	V00 = 5.0 V		0.9	1.4	mA
				Resonator connection	operation	V00 = 1.8 V		0.8	1.4	

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- **Remark 3.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 4.** The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Nov. 24, 2021

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flM: Middle-speed on-chip oscillator clock frequency
- **Remark 3.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 4.** The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

(TA = -40 to +105°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	Subsystem	fsue = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.7	6.3	μA
Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		4.1	6.8	
						TA = +50°C		4.4	9.7	
						TA = +70°C		5.1	15.0	
						TA = +85°C		6.0	23.4	
						TA = +105°C		8.7	42.5	
				fsue = 32.768 kHzNote 3,	Normal	TA = -40°C		3.3	5.6	μA
				Square wave input	operation	TA = +25°C		3.5	5.7	
						TA = +50°C		3.7	8.4	
						TA = +70°C		4.3	13.5	
						TA = +85°C		5.2	21.3	
						TA = +105°C		7.6	38.7	
				fsue = 32.768 kHzNote 3	Normal	TA = -40°C		3.3	5.2	μA
				Resonator connection	operation	TA = +25°C		3.6	5.5	
						TA = +50°C		3.8	7.9	
						TA = +70°C		4.4	13.5	
						TA = +85°C		5.3	21.1	
						TA = +105°C		7.9	38.9	

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 1. flL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Date: Nov. 24, 2021

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM (Ta = 40 to $\pm 105^{\circ}$ C, 4.6 V/c EVppc $\pm 105^{\circ}$ C, 5.5 V/V/cc = EV/cc = 2.00 //

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	Subsystem	fsue = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.2	5.5	μA
Current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		3.5	5.8	
						TA = +50°C		3.8	8.5	
						TA = +70°C		4.4	13.8	
						TA = +85°C		5.3	22.1	
						TA = +105°C		7.7	40.9	
				fsue = 32.768 kHzNote 3,	Normal	TA = -40°C		3.2	5.6	μΑ
				Square wave input	operation	TA = +25°C		3.4	5.7	
						TA = +50°C		3.7	8.5	
						TA = +70°C		4.3	13.7	
						TA = +85°C		5.2	21.4	
						TA = +105°C		7.6	39.0	
				fsus = 32.768 kHzNote 3,	Normal	TA = -40°C		3.2	5.2	μA
				Resonator connection	operation	TA = +25°C		3.4	5.4	
						TA = +50°C		3.7	7.7	
						TA = +70°C		4.3	13.4	
						TA = +85°C		5.2	20.9	
						TA = +105°C		7.7	38.5	

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 1. fIL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

 $(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, \ 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \ \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V}) (3/4)$

Item	Symbol		Cont	ditions		Min.	Тур.	Max.	Unit
Supply	1002	HALT mode	HS	fiH = 32 MHzNote 8	V00 = 5.0 V		0.58	1.98	mA
currentNote 1	Note 2		(high-speed main) mode		VDD = 1.8 V		0.58	1.98	
			LS	fin = 24 MHzNote 3	Voo = 5.0 V		0.48	1.54	mA
			(low-speed main) mode		Voo = 1.8 V		0.48	1.54	
				fiH = 16 MHzNote 3	V00 = 5.0 V		0.48	1.23	mA
					V00 = 1.8 V		0.48	1.23	
				fim = 4 MHzNote 4	V00 = 5.0 V		0.09	0.27	mA
					V00 = 1.6 V		0.09	0.27	
			LP	fim = 2 MHzNote 4	V00 = 5.0 V		34	121	μA
			(low-power main) mode		V00 = 1.6 V		34	121	
				fim = 1 MHzNote 4	V00 = 5.0 V		29	75	μΑ
					V00 = 1.6 V		29	75	
			HS (block enable)	fixx = 20 MHzNote 6	Voo = 5.0 V		0.23	1.07	mA
			(nign-speed main) mode	Square wave input	VDD = 1.8 V		0.20	1.04	
			LS	fixx = 20 MHzNote 6	V00 = 5.0 V		0.23	1.07	mA
			(low-speed main) mode	Square wave Input	V00 = 1.8 V		0.20	1.04	
				fixx = 20 MHzNote 6	V00 = 5.0 V		0.41	1.29	mA
				Resonator connection	V00 = 1.8 V		0.41	1.29	
				fixx = 10 MHzNote 6	V00 = 5.0 V		0.14	0.57	mA
				Square wave input	V00 = 1.8 V		0.12	0.55	
				fixx = 10 MHzNote 6	V00 = 5.0 V		0.24	0.69	mA
				Resonator connection	V00 = 1.8 V		0.24	0.69	
				fMX = 8 MHzNote 5	V00 = 5.0 V		0.12	0.47	mA
				Square wave input	VDD = 1.8 V		0.10	0.45	
				fMx = 8 MHzNote 5	V00 = 5.0 V		0.21	0.58	mA
				Resonator connection	V00 = 1.8 V		0.21	0.58	

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Date: Nov. 24, 2021

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

(TA = -40 to +105°C	$1.6 V \le EVDD0 \le$	$VDD \leq 5.5 V$,	Vss = EVsso =	0 V) (3/4)
---------------------	-----------------------	--------------------	---------------	------------

Item	Symbol		Con	ditions		Min.	Тур.	Max.	Unit	
Supply	1002	HALT mode	HS	fiH = 32 MHzNote 3	V00 = 5.0 V		0.54	1.93	mA	
currentNote 1	Note 2		(high-speed main) mode		VDD = 1.8 V		0.53	1.92		
			LS	fiH = 24 MHzNote 3	V00 = 5.0 V		0.45	1.50	mA	
			(low-speed main) mode		V00 = 1.8 V		0.44	1.49		
				fiH = 16 MHzNote 3	V00 = 5.0 V		0.45	1.19	mA	
					V00 = 1.8 V		0.44	1.18		
				fim = 4 MHzNote 4	V00 = 5.0 V		0.08	0.26	mA	
					V00 = 1.6 V		0.08	0.26		
			LP	fim = 2 MHzNote 4	V00 = 5.0 V		33	120	μA	
				(low-power main) mode	1	V00 = 1.6 V		33	120	
				fim = 1 MHzNote 4	V00 = 5.0 V		29	76	μA	
					V00 = 1.6 V		28	74		
			HS	fMx = 20 MHzNote 5	V00 = 5.0 V		0.22	1.07	mA	
			(nign-speed main) mode	Square wave input	VDD = 1.8 V		0.19	1.03		
			LS	fMx = 20 MHzNote 5	V00 = 5.0 V		0.22	1.07	mA	
			(low-speed main) mode	Square wave input fwx = 20 MHz ^{Note 5} ,	V00 = 1.8 V		0.19	1.03		
					V00 = 5.0 V		0.40	1.28	mA	
				Resonator connection	V00 = 1.8 V		0.39	1.27		
				fMx = 10 MHzNote 5,	VDD = 5.0 V		0.14	0.57	mA	
				Square wave Input	V00 = 1.8 V		0.12	0.54		
				fMx = 10 MHzNote 5	V00 = 5.0 V		0.24	0.69	mA	
				Resonator connection	V00 = 1.8 V		0.23	0.68		
		MX = 8 MHzNote 5	V00 = 5.0 V		0.12	0.47	mA			
		Square wa	Square wave Input	V00 = 1.8 V		0.10	0.44			
				fMX = 8 MHzNote 5	V00 = 5.0 V		0.21	0.58	mA	
				Resonator connection	V00 = 1.8 V		0.20	0.57		

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fIH: High-speed on-chip oscillator clock frequency
- Remark 2. flM: Middle-speed on-chip oscillator clock frequency
- **Remark 3.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 4.** The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Nov. 24, 2021

- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fiH: High-speed on-chip oscillator clock frequency
- Remark 2. fIM: Middle-speed on-chip oscillator clock frequency
- **Remark 3.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 4.** The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V}) (4/4)$

Supply Note 1 Note 2 Note 1 HAL T mode Note 1 Subsystem dook operation mode peration Subsystem dook operation Subsystem dook operation TA0°C 0.05 2.84 MA Nume 2 Nume 32,768 kHz, 0-0-070 1.12 1.05 3.85 TA + 45°C 1.06 3.85 TA + 45°C 2.40 10.07 1.12 1.02 5.85 TA + 45°C 2.40 10.07 1.12 1.02 3.23 TA + 45°C 4.32 37.31 TA + 45°C 0.43 2.24 1.05 Supply Supp	Item	Symbol		0	Conditions		Min.	тур.	Max.	Unit
underet Node 2 0.04-epied on-chip oscillator Tx + 25°C 1.08 3.25 Tx + 450°C 1.30 5.55 Tx + 450°C 1.30 5.55 Tx + 450°C 1.32 1.08 Tx + 450°C 0.424 19.17 Tx + 450°C 0.422 20.1 Tx + 450°C 0.424 1.08 Tx + 450°C 0.424 1.08 Tx + 450°C 0.424 1.08 Tx + 450°C 0.424 4.46 Tx + 450°C 0.424 4.46 Tx + 450°C 0.424 2.35 Tx + 450°C 0.424 2.36 Tx + 450°C 0.424 2.35 Tx + 450°C 0.424 4.46 Tx + 450°C 0.424 4.46 Tx + 450°C 0.424 2.34 Tx + 450°C 0.424 2.41 Tx + 450°C 0.424 2.41 Tx + 450°C 0.48 9.33 Tx + 450°C 0.48 9.31 T	Supply	002	HALT mode	Subsystem clock	fsue = 32.768 kHz ^{Note 3}	TA = -40°C		0.85	2.94	μA
Icos STOP mode RAMSDS = 0Mode # TA = 40°C 1.30 5.95 TA = 45°C 2.40 19.17 fsue = 32.768 kHz, Square wave input Node 4 TA = 40°C 0.22 2.01 µA TA = 45°C 0.28 1.90 TA = 45°C 0.28 1.90 TA = 45°C 0.22 2.01 µA TA = 45°C 0.22 2.05 µA TA = 45°C 0.22 2.05 1.44 17.8 1.44 17.8 TA = 45°C 0.22 2.05 1.44 17.8 1.44 17.8 TA = 45°C 0.23 2.24 5.11 1 1.45 1.44 17.8 TA = 45°C 0.23 2.05 1.41 17.8 1.42 17.8 TA = 45°C 0.23 2.05 1.41 17.8 1.32 1.41 TA = 40°C 0.15 1.45 1.41 1.45 1.41 1.45 TA = 40°C 0.15 1.45 1.41 1.45 1.41 1.	Note 1	NOTE 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		1.08	3.25	
Icos STOP mode RAMSDS - (Mole 4 TA + 40°C 0.122 1.05 TA + 4105°C 4.33 37.31 µA TA + 4105°C 0.222 0.19 TA + 40°C 0.222 0.19 TA + 40°C 0.222 0.19 TA + 60°C 0.44 4.46 TA + 60°C 0.222 2.06 TA + 60°C 0.23 2.06 TA + 60°C 0.34 2.44 TA + 60°C 0.51 4.91 TA + 70°C 0.88 9.93 TA + 70°C 0.88 9.93 TA + 60°C 1.52 1.51 TA + 60°C 0.15 1.45 TA + 40°C 0.15 1.45 TA + 60°C 0.44 35 TA + 60°C						TA = +50°C		1.30	5.95	
Income TA + 48°C 2.40 19.17 TA + 105°C 4.32 37.31 Taue - 32.768 kHz, Square wave input Note 4 TA + 40°C 0.22 2.01 µA TA + 25°C 0.44 4.66 TA + 45°C 1.44 17.33 TA + 45°C 0.34 2.24 TA + 45°C 0.51 4.91 TA + 45°C 0.52 1.52 TA + 45°C 0.53 4.91 TA + 45°C 0.51 4.93 TA + 45°C 0.15 1.52 TA + 45°C 0.15 1.51 TA + 45°C						TA = +70°C		1.72	11.05	
Image: Stop mode RAMSDG = 1Node 7 Time 732.768 kHz, Square wave input Node 4 Time +105°C 0.22 2.01 µA Tor +25°C 0.23 1.90 Time +105°C 0.44 4.46 Tor +25°C 0.24 4.46 Time +105°C 0.44 4.46 Tor +105°C 0.44 4.46 Time +105°C 0.43 2.24 Tor +105°C 0.43 2.24 Time +105°C 0.43 2.24 Tor +45°C 1.52 18.11 Tor +45°C 0.23 1.64 Tor +45°C 0.23 1.45 Tor +45°C 0.23 1.45 Tor +45°C 0.43 4 1.45 Tor +45°C 0.43 4						TA = +85°C		2.40	19.17	
Ites = 32.768 kHz, Square wave input Nob 4 TA = 40°C 0.22 2.01 µA Square wave input Nob 4 TA = 45°C 0.24 4.46 TA = 45°C 0.44 4.45 TA = 40°C 0.23 2.06 TA = 40°C 0.34 2.24 TA = 40°C 0.51 4.91 TA = 40°C 0.68 9.3 TA = 40°C 0.61 11 TA = 40°C						TA = +105°C		4.32	37.31	
Image: Square wave input Note 4 TA + 425°C 0.29 1.90 TA + 450°C 0.44 4.46 TA + 450°C 0.24 3.81 TA + 450°C 0.23 2.06 µA TA + 450°C 0.24 2.24 3.11 TA + 450°C 0.34 2.24 3.11 TA + 450°C 0.51 4.91 TA + 450°C 0.51 4.91 TA + 450°C 0.88 9.93 TA + 450°C 0.45 4 TA + 450°C 0.45 4 TA + 450°C 0.45 4 TA + 450°C 0.45 4 TA + 450°C 1.66 17 TA + 450°C 0.45 4 TA + 450°C 0.45 4 TA + 450°C 0.41 1.45 TA + 450°C 0.41					fsue = 32.768 kHz,	TA = -40°C		0.22	2.01	μA
International control of the second control					Square wave input Note 4	TA = +25°C		0.29	1.90	
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						TA = +50°C		0.44	4.46	
Image: State in the second state in the sec					T T	TA = +70°C		0.80	9.36	
International and the second connection Notes TA + 105°C 3.24 35.11 International and the second connection Notes TA + 40°C 0.23 2.06 International and the second connection Notes TA + 40°C 0.23 2.06 TA + 25°C 0.34 2.24 TA + 40°C 0.51 4.91 TA + 40°C 0.51 4.91 TA + 45°C 1.52 18.11 TA + 40°C 0.15 1.45 TA + 40°C 0.15 1.45 Incos STOP mode RAMSDS - 0Note 8 TA - 40°C 0.15 1.45 TA + 40°C 0.15 1.45 MA TA + 40°C 0.45 4 TA + 40°C 0.45 4 35 TA + 40°C 0.45 4 TA + 40°C 0.14 1.45 MA TA + 40°C 0.14 1.45 RAMSDS - 1Note 7 TA + 40°C 0.14 1.45 MA TA + 40°C 0.14 1.45 RAMSDS - 1Note 7 TA + 40°C 0.14 1.45 TA + 40°C 0.14 1						TA = +85°C		1.44	17.53	
Ibus 32.768 kHz, Resonator connection Note 6 TA -40°C 0.23 2.06 µA TA - +25°C 0.34 2.24 TA - +25°C 0.34 2.24 µA TA - +25°C 0.51 4.91 TA - +30°C 0.61 4.91 YA TA - +105°C 0.51 4.91 TA - +105°C 3.32 36.04 YA Ibos STOP mode RAMSDS - 0Note 9 TA - 40°C 0.15 1.45 µA TA - +105°C 3.32 36.04 YA YA YA YA TA - +105°C 0.23 1.45 YA YA YA YA TA - +105°C 0.45 4 YA YA YA YA YA TA - +105°C 0.45 4 YA YA YA YA YA TA - +105°C 0.45 4 YA YA YA YA YA TA - +105°C 0.14 1.45 YA YA YA YA YA YA <td></td> <td></td> <td></td> <td></td> <td></td> <td>TA = +105°C</td> <td></td> <td>3.24</td> <td>35.11</td> <td> </td>						TA = +105°C		3.24	35.11	
Resonator connection Note 6 TA + 25°C 0.34 2.24 TA + 45°C 0.51 4.91 TA + 45°C 0.52 15.2 TA + 45°C 1.52 18.11 TA + 45°C 0.51 4.91 TA + 45°C 0.52 15.2 TA + 45°C 0.51 4.91 TA + 45°C 0.51 4.91 TA + 45°C 0.51 1.45 TA + 40°C 0.15 1.45 TA + 45°C 0.23 1.45 TA + 45°C 0.45 4 TA + 45°C 0.45 4 TA + 45°C 0.61 17 TA + 45°C 1.6 17 TA + 45°C 0.14 1.45 RAMSDS = 1Note 7 TA - 40°C 0.14 1.45 TA + 45°C 0.21 1.45 MA TA + 45°C 0.21 1.45 TA + 45°C TA + 45°C 0.4 35 TA + 45°C 0.4 TA + 45°C 0.4 35				fs R	fsue = 32.768 kHz,	TA = -40°C		0.23	2.06	μA
IDD3 STOP mode RAMSDS - 0Note 8 TA - +50°C 0.61 4.91 ID03 STOP mode RAMSDS - 0Note 8 TA - +35°C 1.52 18.11 TA - +105°C 3.327 36.04 ID03 STOP mode TA - +0°C 0.15 1.45 µA TA - +105°C 0.23 1.45 IA IA IA TA - +25°C 0.23 1.45 IA IA IA TA - +25°C 0.23 1.45 IA IA IA IA IA RAMSDS - 1Note 7 TA - +0°C 0.14 1.45 IA					Resonator connection Note 6	TA = +25°C		0.34	2.24	
$ \left \begin{array}{c c c c c c c c } \hline RAMSDS - 0^{Note 8} \\ \hline RAMSD - 0$					1 1 7	TA = +50°C		0.51	4.91	
IDD3 STOP mode RAMSDS = 0Note 8 TA = +85°C 1.52 18.11 TA = +105°C 3.3Z 36.04 IDD3 STOP mode TA = +105°C 0.15 1.45 µA TA = +25°C 0.23 1.45 µA TA = +50°C 0.45 4 TA = +50°C 0.45 4 TA = +50°C 0.16 17 TA = +85°C 1.6 17 TA = +105°C 4 35 RAMSDS = 1Note 7 TA = +00°C 0.14 1.45 TA = +25°C 0.21 1.45 µA TA = +25°C 0.21 1.45 µA TA = +0°C 0.14 1.45 µA TA = +0°C 0.22 1.53 TA = +0°C 0.22 1.53 TA = +105°C 1.4 15 TA = +105°C 0.32 1.56 TA = +25°C 0.32 1.56 TA = +25°C 0.32 1.56 TA = +25°C 0.32 1.56 TA = +50°C						TA = +70°C		0.88	9.93	
IDDS STOP mode RAMSDS = 0Note 6 TA = +105°C 3.37 36.04 IDDS STOP mode RAMSDS = 0Note 6 TA = 40°C 0.15 1.45 µA TA = +25°C 0.23 1.45 TA = +50°C 0.045 4 TA = +50°C 0.05 4 35 TA = +50°C 0.04 3.5 TA = +50°C 1.6 17 TA = +105°C 4 35 RAMSDS = 1Note 7 TA = 40°C 0.14 1.45 µA TA = +25°C 0.21 1.45 µA RAMSDS = 1Note 7 TA = 40°C 0.14 1.45 µA TA = +50°C 0.14 1.45 µA TA = +50°C 0.14 1.45 TA = +50°C 0.4 3.5 TA = +50°C 0.4 3.5 TA = +50°C 0.4 3.5 TA = +105°C 3.2 30 TA = +50°C 0.22 1.53 RAMSDS = 1, TA = +50°C 0.52 3.62 TA = +50°C 0.52 3.62						TA = +85°C		1.52	18.11	
Ibos STOP mode RAMSDS = 0Note 8 TA = 40°C 0.15 1.45 µA TA = +25°C 0.23 1.45 TA = +50°C 0.45 4 TA = +50°C 0.45 4 TA = +50°C 0.45 4 TA = +50°C 0.45 4 TA = +50°C 0.45 4 TA = +50°C 0.45 4 TA = +50°C 0.45 4 TA = +50°C 0.16 17 TA = +85°C 1.6 17 TA = +105°C 4 35 TA = +105°C 4 35 TA = +50°C 0.14 1.45 µA RAMISDS = 1Note 7 TA = +25°C 0.21 1.45 TA = +50°C 0.44 3.5 TA = +50°C 0.44 3.5 TA = +50°C 0.4 3.5 TA = +50°C 0.44 15 TA = +50°C 1.44 15 TA = +105°C 3.22 30 TA = +105°C 0.32 1.56 TA = +50°C 0.32 1.56 TA = +50°C 0.32 1.56 TA = +50°C 0.32 1.56						TA = +105°C		3.37	36.04	
$\begin{array}{ c c c c c c } \hline TA - +25^{\circ}C & 0.23 & 1.45 \\ \hline TA - +50^{\circ}C & 0.45 & 4 \\ \hline TA - +50^{\circ}C & 0.9 & 9 \\ \hline TA - +85^{\circ}C & 1.6 & 17 \\ \hline TA - +105^{\circ}C & 4 & 35 \\ \hline TA - +105^{\circ}C & 4 & 35 \\ \hline TA - +25^{\circ}C & 0.21 & 1.45 \\ \hline TA - +25^{\circ}C & 0.21 & 1.45 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +50^{\circ}C & 0.4 & 15 \\ \hline TA - +50^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline RAMSDS - 1, \\ 128 - Hz realtime clock operation Note 8 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.93 & 8.63 \\ \hline TA - +50^{\circ}C & 0.93 & 8.63 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.1$		IDD3	STOP mode	RAMSDS - ONote 8	1	TA = -40°C		0.15	1.45	μA
$\begin{array}{ c c c c c c } \hline TA - +50^{\circ}C & 0.45 & 4 \\ \hline TA - +70^{\circ}C & 0.9 & 9 \\ \hline TA - +85^{\circ}C & 1.6 & 17 \\ \hline TA - +105^{\circ}C & 4 & 35 \\ \hline TA - +105^{\circ}C & 4 & 35 \\ \hline TA - +105^{\circ}C & 0.14 & 1.45 \\ \hline TA - +25^{\circ}C & 0.21 & 1.45 \\ \hline TA - +25^{\circ}C & 0.4 & 3.5 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +35^{\circ}C & 1.4 & 15 \\ \hline TA - +35^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline RAMSDS = 1, & & \\ 128 - Hz \ realtime \ clock \ operation \ Note 8 & & \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.93 & 8.63 \\ \hline TA - +50^{\circ}C & 0.93 & 8.63 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +50^{\circ}C & 0.55 & 0.54 \\ \hline TA - +50^{\circ}C & 0.55 & 0.54 \\ \hline TA - +50^{\circ}C & 0.55 & 0.54 \\ \hline TA - +50^{\circ}C & 0.55 & 0.54 \\ \hline TA - +50^{\circ}C & 0.55 & 0.54 \\ \hline TA - +50^{\circ}C & 0.55 & 0.54 \\ \hline TA - +50^{\circ}C & 0.55 & 0.54 \\ \hline TA - +50^{\circ}C & 0.55 & 0.55 \\ \hline TA - +50^{\circ}C & 0.55 & 0.55 \\ \hline TA - +50^{\circ}C & 0.55 & 0.55 \\ \hline TA - +50^{\circ}C & 0.55 \\ \hline TA - +50^{\circ}C & 0.55 \\ \hline TA$						TA = +25°C		0.23	1.45	
$ \begin{array}{ c c c c c c } \hline TA - +70^{\circ}C & 0.9 & 9 \\ \hline TA - +85^{\circ}C & 1.6 & 17 \\ \hline TA - +105^{\circ}C & 4 & 35 \\ \hline TA - +105^{\circ}C & 0.14 & 1.45 \\ \hline TA - +25^{\circ}C & 0.21 & 1.45 \\ \hline TA - +25^{\circ}C & 0.21 & 1.45 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +70^{\circ}C & 0.8 & 8.5 \\ \hline TA - +85^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline RAMSDS - 1, & & \\ 128 - Hz realtime clock operation Note 8 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.54 & 15.14 \\ \hline TA - +105^{\circ}C & 3.34 & 30.14 \\ \hline \end{array} $						TA = +50°C		0.45	4	
$ \begin{array}{ c c c c c c } \hline TA - +85^{\circ}C & 1.6 & 17 \\ \hline TA - +105^{\circ}C & 4 & 35 \\ \hline TA - +05^{\circ}C & 0.14 & 1.45 \\ \hline TA - +25^{\circ}C & 0.21 & 1.45 \\ \hline TA - +25^{\circ}C & 0.4 & 3.5 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +70^{\circ}C & 0.8 & 8.5 \\ \hline TA - +85^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +70^{\circ}C & 0.93 & 8.63 \\ \hline TA - +70^{\circ}C & 0.52 & 3.62 \\ \hline TA - +105^{\circ}C & 1.54 & 15.14 \\ \hline TA - +105^{\circ}C & 3.34 & 30.14 \\ \hline \end{array} $						TA = +70°C		0.9	9	
$\begin{tabular}{ c c c c c c c } \hline $T_A - +105^{\circ}C$ & 4 & 35 \\ \hline $T_A - +25^{\circ}C$ & 0.14 & 1.45 \\ \hline $T_A - +25^{\circ}C$ & 0.21 & 1.45 \\ \hline $T_A - +55^{\circ}C$ & 0.4 & 3.5 \\ \hline $T_A - +55^{\circ}C$ & 0.4 & 3.5 \\ \hline $T_A - +55^{\circ}C$ & 1.4 & 15 \\ \hline $T_A - +105^{\circ}C$ & 3.2 & 30 \\ \hline $T_A - +25^{\circ}C$ & 0.32 & 1.56 \\ \hline $T_A - +25^{\circ}C$ & 0.32 & 1.56 \\ \hline $T_A - +25^{\circ}C$ & 0.32 & 1.56 \\ \hline $T_A - +25^{\circ}C$ & 0.32 & 1.56 \\ \hline $T_A - +55^{\circ}C$ & 0.52 & 3.62 \\ \hline $T_A - +55^{\circ}C$ & 1.54 & 15.14 \\ \hline $T_A - +105^{\circ}C$ & 1.56 & 1.56 \\ \hline $T_A - +105^{\circ}C$ & 1.56 & 1.56 \\ \hline$						TA = +85°C		1.6	17	
$\begin{tabular}{ c c c c c c c } \hline RAMSDS = 1 Note 7 & $$TA = -40^{\circ}C$ & 0.14 & 1.45 \\ \hline TA = +25^{\circ}C$ & 0.21 & 1.45 \\ \hline TA = +50^{\circ}C$ & 0.4 & 3.5 \\ \hline TA = +50^{\circ}C$ & 0.4 & 3.5 \\ \hline TA = +50^{\circ}C$ & 0.8 & 8.5 \\ \hline TA = +35^{\circ}C$ & 1.4 & 15 \\ \hline TA = +105^{\circ}C$ & 3.2 & 30 \\ \hline RAMSDS = 1, & $$TA = -40^{\circ}C$ & 0.22 & 1.53 \\ \hline 128 - Hz realtime clock operation Note 8 & $$TA = +25^{\circ}C$ & 0.32 & 1.56 \\ \hline TA = +50^{\circ}C$ & 0.32 & 1.56 \\ \hline TA = +50^{\circ}C$ & 0.32 & 1.56 \\ \hline TA = +50^{\circ}C$ & 0.93 & 8.63 \\ \hline TA = +35^{\circ}C$ & 1.54 & 15.14 \\ \hline TA = +105^{\circ}C$ & 3.34 & 30.14 \\ \hline \end{tabular}$						TA = +105°C		4	35	
$\begin{array}{ c c c c c c } \hline TA - +25^{\circ}C & 0.21 & 1.45 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +70^{\circ}C & 0.8 & 8.5 \\ \hline TA - +85^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.93 & 8.63 \\ \hline TA - +50^{\circ}C & 1.54 & 15.14 \\ \hline TA - +105^{\circ}C & 3.34 & 30.14 \\ \hline \end{array}$				RAMSDS = 1Note 7		TA = -40°C		0.14	1.45	μA
$ \begin{array}{ c c c c c c } \hline TA - +50^{\circ}C & 0.4 & 3.5 \\ \hline TA - +70^{\circ}C & 0.8 & 8.5 \\ \hline TA - +70^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +105^{\circ}C & 0.22 & 1.53 \\ 126 - Hz \ realtime \ clock \ operation \ Note 8 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +50^{\circ}C & 1.54 & 15.14 \\ \hline TA - +105^{\circ}C & 3.34 & 30.14 \\ \hline \end{array} $						TA = +25°C		0.21	1.45	
$ \begin{array}{ c c c c c c } \hline TA - +70^{\circ}C & 0.8 & 8.5 \\ \hline TA - +85^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +105^{\circ}C & 0.22 & 1.53 \\ 128 \text{-Hz realtime clock operation} & \hline TA40^{\circ}C & 0.22 & 1.53 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C & 0.52 & 3.62 \\ \hline TA - +70^{\circ}C & 0.93 & 8.63 \\ \hline TA - +85^{\circ}C & 1.54 & 15.14 \\ \hline TA - +105^{\circ}C & 3.34 & 30.14 \\ \hline \end{array} $						TA = +50°C		0.4	3.5	
$ \begin{array}{ c c c c c c } \hline TA - +85^{\circ}C & 1.4 & 15 \\ \hline TA - +105^{\circ}C & 3.2 & 30 \\ \hline TA - +105^{\circ}C & 0.22 & 1.53 \\ 128 - Hz \ realtime \ clock \ operation \ Note \ 8 \\ \hline TA - +25^{\circ}C & 0.32 & 1.56 \\ \hline TA - +25^{\circ}C & 0.52 & 3.62 \\ \hline TA - +70^{\circ}C & 0.93 & 8.63 \\ \hline TA - +85^{\circ}C & 1.54 & 15.14 \\ \hline TA - +105^{\circ}C & 3.34 & 30.14 \\ \hline \end{array} $						TA = +70°C		0.8	8.5	
$ \begin{array}{ c c c c c c c } \hline TA = +105^{\circ}C & 3.2 & 30 \\ \hline RAMSDS = 1, & & & \\ 126-Hz \ realtime \ clock \ operation \ Note \ 8 & & \\ \hline TA = +25^{\circ}C & 0.32 & 1.56 \\ \hline TA = +50^{\circ}C & 0.52 & 3.62 \\ \hline TA = +70^{\circ}C & 0.93 & 8.63 \\ \hline TA = +85^{\circ}C & 1.54 & 15.14 \\ \hline TA = +105^{\circ}C & 3.34 & 30.14 \\ \hline \end{array} $						TA = +85°C		1.4	15	
$\begin{array}{ c c c c c c } \mbox{RAMSDS = 1,} & $TA40^{\circ}C$ & 0.22 & 1.53 \\ 128-Hz \ realitime \ clock \ operation \ Note 8 \\ \hline TA - +25^{\circ}C$ & 0.32 & 1.56 \\ \hline TA - +50^{\circ}C$ & 0.52 & 3.62 \\ \hline TA - +70^{\circ}C$ & 0.93 & 8.63 \\ \hline TA - +85^{\circ}C$ & 1.54 & 15.14 \\ \hline TA - +105^{\circ}C$ & 3.34 & 30.14 \\ \hline \end{array}$						TA = +105°C		3.2	30	
128-Hz realtime clock operation/Notes TA = +25°C 0.32 1.56 TA = +50°C 0.52 3.62 TA = +70°C 0.93 8.63 TA = +85°C 1.54 15.14 TA = +105°C 3.34 30.14				RAMSDS - 1,		TA = -40°C		0.22	1.53	μA
$TA = +50^{\circ}C$ 0.52 3.62 $TA = +70^{\circ}C$ 0.93 8.63 $TA = +85^{\circ}C$ 1.54 15.14 $TA = +105^{\circ}C$ 3.34 30.14				128-Hz realtime clo	ck operation Note 8	TA = +25°C		0.32	1.56	
$TA = +70^{\circ}C$ 0.93 8.63 $TA = +85^{\circ}C$ 1.54 15.14 $TA = +105^{\circ}C$ 3.34 30.14						TA = +50°C		0.52	3.62	
TA = +85°C 1.54 15.14 TA = +105°C 3.34 30.14				TA = +70°C		0.93	8.63			
TA = +105°C 3.34 30.14				TA = +85°C		1.54	15.14			
						TA = +105°C		3.34	30.14	

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V}) (4/4)$

Item	Symbol		c	conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fsue = 32.768 kHzNote 3	TA = -40°C		0.53	2.31	μA
Note 1	NODE 2		operation mode	operation	TA = +25°C		0.65	2.38	
					TA = +50°C		0.80	4.95	
					TA = +70°C		1.17	9.97	
					TA = +85°C		1.78	17.96	
					TA = +105°C		4.41	37.71	
				fsue = 32.768 kHz,	TA = -40°C		0.20	1.97	μΑ
				Square wave input Note 4	TA = +25°C		0.29	2.00	
					TA = +50°C		0.54	5.33	
					TA = +70°C		0.99	10.94	
					TA = +85°C		1.70	19.62	
					TA = +105°C		4.10	41.82	
				fsue = 32.768 kHz,	TA = -40°C		0.21	2.04	μA
				Resonator connection Note 5	TA = +25°C		0.33	10.94 μA 10 41.82 21 2.04 μA 33 2.28 49 4.98 05 11.36 76 20.04 20 42.52 15 1.45 23 1.45 45 4	
					TA = +50°C		0.49		
					TA = +70°C	1.05 11 1.76 20	11.36		
					TA = +85°C		1.76	20.04	
					TA = +105°C		4.20	42.52	
	IDD3	STOP mode	RAMSDS = 0Note 6		TA = -40°C		0.15	1.45	μA
					TA = +25°C		0.23	1.45	
					TA = +50°C		0.45	4	
					TA = +70°C		0.9	9	
					TA = +85°C		1.6	17	
					TA = +105°C		4	35	
			RAMSDS = 1Note 7		TA = -40°C		0.14	1.45	μA
					TA = +25°C		0.21	1.45	
					TA = +50°C		0.4	3.5	
					TA = +70°C		0.8	8.5	
					TA = +85°C		1.4	15	
					TA = +105°C		3.2	30	
			RAMSDS = 1,	in a binte d	TA = -40°C		0.22	1.53	μA
			128-HZ realtime clo	ck operation wow a	TA = +25°C		0.32	1.56	
					TA = +50°C		0.53	3.62	
				TA = +70°C		0.94	8.64		
					TA = +85°C		1.55	15.15	
					TA = +105°C		3.40	30.20	

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and subsystem clock are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- **Note 7.** The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- **Note 8.** The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 1. fIL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Date: Nov. 24, 2021

- **Note 1.** The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pulldown resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and subsystem clock are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- **Note 7.** The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- **Note 8.** The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 1. fIL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

(2) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

ltem	Symbol		Conditions	Min.	Тур.	Max.	Unit
High-speed on-chip	FIHNote 1	HIPREC = 1			380	—	μA
current		HIPREC = 0			240	-	μA
Middle-speed on-chip oscillator operating current	FIMNote 1				20	_	μA
Low-speed on-chip oscillator operating current	FILNote 1				03	-	μA
RTC operating current	IRTC Notes 1, 2, 3	frtccuk = 32.7	68 kHz		0.005	-	μA
		frtccuk = 128	RTCOLK = 128 Hz			-	μA
32-bit interval timer operating current	liT Notes 1, 2, 4				0.04	-	μA
Watchdog timer operating current	IWDT Notes 1, 2, 6	fiL = 32.768 kH	iz (typ.)		0.32	-	μA
A/D converter operating		When	Normal mode, AVREFP = VDD = 5.0 V		0.95	1.6	mA
current	Notes 1, 6	conversion at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.75	mA
AVREFP current	ADREFNote 7	AVREFP = 5.0 \	AVREFP = 5.0 V			-	μA
A/D converter internal reference voltage current	ADREF ^{Note 1}						μA
Temperature sensor operating current	ITMPSNote 1						μA
D/A converter operating current	IDAC ^{Notes 1, 8}	Per channel	Per channel			-	μА
Comparator operating current	ICMPNotes 1, 9				6	-	μA
LVD operating current	luvdo Notes 1, 10				0.02	-	μA
	LVD1 Notes 1, 10				0.02	-	μA
Self-programming operating current	_{FSP} Notes 1, 11				2.5	12.2	mA
Data flash rewrite operating current	1800 Notes 1, 12				2.5	12.2	mA
Snooze mode sequencer	Isms	fiн = 32 MHz			1.1	—	mA
operating current	N0086 1, 13	fiL = 32.768 kH	z		1.2	—	μА
SNOOZE operating current	ISNOZNOTE 1	ADC to be in use	The ADC is shifting from the STOP mode to the SNOOZE mode.Note 14		0.6	0.81	mA
			The ADC is operating in the low-voltage mode. AVREFP = VD0 = 3.0 V		1.2	1.56	
		SPI (CSI)/UAR		0.7	0.92		
Remote control signal receiver operating current	IREM Notes 1, 15				0.03	-	μA
Low-speed peripheral clock supply current	ISXP Notes 1, 18	RTCLPC = 0			0.22	-	μA

Date: Nov. 24, 2021

(4) Peripheral Functions (Common to all products)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})(1/2)$

Item	Symbol		Conditions	Min.	Тур.	Max.	Unit
High-speed on-	FIHNote 1	HIPREC = 1			240	-	μA
operating current		HIPREC = 0			380	—	μA
Middle-speed on- chip oscillator operating current	FIMNote 1				20	-	μA
Low-speed on- chip oscillator operating current	IFILNote 1			0.3	_	μA	
RTC operating	IRTC	fretocuk = 32.768 kHz			0.005	_	μA
current	Notes 1, 2, 3	fRTCCLK = 128 Hz	сцк = 128 Hz		0.002	_	μA
32-bit interval timer operating current	IIT Notes 1, 2, 4				0.04	_	μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 32.768 kHz (typ.)	L = 32.768 kHz (typ.)		0.32	-	μA
A/D converter	IADC	When conversion at	Normal mode, AVREFP = VDD = 5.0 V		0.95	1.6	mA
operating current	Notes 1, 6	maximum speed	Low voltage mode, AVREFP - VDD - 3.0 V		0.5	0.75	mA
AVREFP current	LADREFNote 7	AVREFP = 5.0 V			52	-	μA
A/D converter Internal reference voltage current	LADREF ^{Note}				114	-	μA
Temperature sensor operating current	ITMPS ^{Note} 1				110	_	μA
D/A converter operating current	IDAC ^{Notes} 1,8	Per channel			150	-	μA
Comparator operating current	ICMP ^{Notes} 1, 9				6	-	μA
LVD operating current	ILVD0 Notes 1, 10				0.02	-	μA
	ILVD1 Notes 1, 10				0.02	-	μA
Self-programming operating current	FSPNotes				2.5	12.2	mA
Data flash rewrite operating current	IBGO Notes 1, 12				2.5	12.2	mA

© 2021 Renesas Electronics Corporation. All rights reserved.

ltem	Symbol	Conditions			Тур.	Max.	Unit
Output current control operating current	ICCDA Notes 1, 17	The setting of t	he CCDE register is not 00H.		100	-	μА
	ICCOP	Per single output current control port	Setting of the low-level output current: Hi-Z		30	-	μА
	Notes 1, 18		Setting of the low-level output current: 2 to 15 mA		200		μА

Date: Nov. 24, 2021

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (2/2)

Item	Symbol			Conditions	Min.	Тур.	Max.	Unit					
SNOOZE mode sequencer	ISMS Notes 1, 13	fiH = 32 MH;	z	30- to 64-pin package products with 96- to 128-Kbyte flash ROM		1.1	-	mA					
operating current				30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80- pin package product with 128- to 256- Kbyte flash ROM		1.1	-						
				44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package products		1.4	-						
		fil = 32.768	kHz	30- to 64-pin package products with 96- to 128-Kbyte flash ROM		1.2	-	μA					
			30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80- pin package product with 128- to 256- Kbyte flash ROM		1.2	-							
				44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package products		1.6	-						
SNOOZE operating current	ISNOZNOte 1	fiH=32 MHz	ADC to be In use	The ADC is shifting from the STOP mode to the SNOOZE mode. Note 14		0.6	0.81	mA					
				The ADC is operating in the low-voltage mode. AVREFP = VDD = 3.0 V		1.2	1.56						
			Simplified S	PI (CSI)/UART to be in use		0.7	0.92	mA					
								SMSNote 19	30- to 64-pin package products with 96- to 128-Kbyte flash ROM		1.6	-	mA
				30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80- pin package product with 128- to 256- Kbyte flash ROM		1.7	-						
				44- to 80-pin package products with 384- to 768-Kbyte flash ROM, and 100- to 128-pin package products		2.0	-						
Remote control signal receiver operating current	IREM Notes 1, 15					0.03	-	μA					
Low-speed peripheral clock supply current	ISXP Notes 1, 16	RTCLPC - (0			0.22	-	μA					
Output current control operating	ICCDA Notes 1, 17	The setting	of the CCDE	register is not ODH.		100	-	μA					
current	ICCDP	Per single or	utput current	Setting of the low-level output current: HI-Z		30	-	μA					
	10005 1, 18	control port		Setting of the low-level output current: 2 to 15 mA		200	-	μA					
Operating current of the true random number generator	ITRNG Note 1					1.1	-	mA					

Note 1. This current flows into VDD.

- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, and high-speed system clock are stopped.
- **Note 3.** This current flows into the realtime clock (RTC). It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IRTC, when the realtime clock is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current. IDD2 in the subsystem clock operation mode includes the operating current of the realtime clock.
- **Note 4.** This current only flows to the 32-bit interval timer. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IIT, when the 32-bit interval timer is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current.
- **Note 5.** This current only flows to the watchdog timer. It includes the operating current of the low-speed on-chip oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is operating.
- **Note 6.** This current only flows to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is operating or in the HALT mode.
- Note 7. This current flows into AVREFP.
- **Note 8.** This current only flows to the D/A converter. The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IDAC, when the D/A converter is operating or in the HALT mode.
- **Note 9.** This current only flows to the comparator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator is in operation.
- **Note 10.** This current only flows to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- Note 11. This current only flows during self programming.
- Note 12. This current only flows while the data flash memory is being rewritten.
- Note 13. This current only flows into the snooze mode sequencer. Note that the operating current of the low-speed on-chip oscillator and the XT1 oscillator are not included. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and ISMS, when the snooze mode sequencer is operating or in the HALT mode.

Note 1. This current flows into VDD.

- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed onchip oscillator, and high-speed system clock are stopped.
- **Note 3.** This current flows into the realtime clock (RTC). It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IRTC, when the realtime clock is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current. IDD2 in the subsystem clock operation mode includes the operating current of the realtime clock.
- **Note 4.** This current only flows to the 32-bit interval timer. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IIT, when the 32-bit interval timer is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL

should be included in the supply current.

- **Note 5.** This current only flows to the watchdog timer. It includes the operating current of the low-speed on-chip oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is operating.
- **Note 6.** This current only flows to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is operating or in the HALT mode.
- **Note 7.** This current flows into AVREFP.
- Note 8. This current only flows to the D/A converter.

The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IDAC, when the D/A converter is operating or in the HALT mode.

- **Note 9.** This current only flows to the comparator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator is in operation.
- **Note 10.** This current only flows to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- Note 11. This current only flows during self programming.
- Note 12. This current only flows while the data flash memory is being rewritten.
- Note 13. This current only flows into the SNOOZE mode sequencer. Note that the operating current of the low-speed on-chip oscillator and the XT1 oscillator are not included. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and ISMS, when the SNOOZE mode sequencer is operating or in the HALT mode.

- Note 14. For shift time to the SNOOZE mode, see 18.3.13 SNOOZE Mode Function.
- Note 15. This current flows into the remote control signal receiver. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IIT, when the remote control signal receiver is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current.
- Note 16. This current is added to the supply current in the HALT mode when the setting of <u>RTCLPC is 0 in the STOP mode, or when the setting of RTCLPC is 0 with the sub-</u> <u>system clock (fSUB) selected as the CPU clock.</u>
- **Note 17.** This current is added to the supply current when the output voltage control port is set.
- Note 18. This current does not include the current flowing into the I/O port pins.
- Remark 1. fIL: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fCLK: CPU/peripheral hardware clock frequency
- **Remark 4.** The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Nov. 24, 2021

Note 14. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode.

- Note 15. This current flows into the remote control signal receiver. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IIT, when the remote control signal receiver is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current.
- Note 16. This current is added to the supply current in the HALT mode when the setting of RTCLPC is 0 in the STOP mode, or when the setting of RTCLPC is 0 with the sub-system clock X (fsx) selected as the CPU clock, while the sub-system clock X (fsx) is oscillating.
- **Note 17.** This current is added to the supply current when the output voltage control port is set.
- Note 18. This current does not include the current flowing into the I/O port pins.
- **Note 19.** The listed values apply when the SNOOZE mode sequencer is in normal operation equivalent to IDD1. They do not include the current flowing into the peripheral functions other than the SNOOZE mode sequencer.

Remark 1. fIL: Low-speed on-chip oscillator clock frequency

- Remark 2. fSX: Subsystem clock X frequency
- **Remark 3.** fCLK: CPU/peripheral hardware clock frequency
- **Remark 4.** The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

87. 37.5.2 Serial interface UARTA (Page 1430)

Incorrect:

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate			200	0	19200	bps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Correct:

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate			200	0	153600	bps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

88. <u>37.6.1 A/D converter characteristics, (1) Normal modes 1 and 2</u> (Page 1434)

Incorrect:

(1) Normal modes 1 and 2

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V,

reference voltage (+) = AVREFP (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage)

ltem	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Bit
Conversion clock	fad		1		32	MHz
Overall errorNotes 1, 3, 4, 5	AINL	4.5 V ≤ AVREFP - VDD ≤ 5.5 V			±7.5	LSB
		2.7 V ≤ AVREFP - VDD ≤ 5.5 V			±9.0	LSB
		2.4 V ≤ AVREFP - VDD ≤ 5.5 V			±9.0	LSB
Conversion time ^{Note 8}	toonv	4.5 V ≤ AVREFP - VDD ≤ 5.5 V	2.0			μs
		2.7 V ≤ AVREFP - VDD ≤ 5.5 V	2.0			μs
		2.4 V ≤ AVREFP - VDD ≤ 5.5 V	2.0			μs
Zero-scale errorNotes 1, 2, 3, 4, 6	Ezs	4.5 V ≤ AVREFP - VDD ≤ 5.5 V			±0.17	%FSR
		2.7 V ≤ AVREFP - VDD ≤ 5.5 V			±0.21	%FSR
		2.4 V ≤ AVREFP - VDD ≤ 5.5 V			±0.21	%FSR
Full-scale errorNotes 1, 2, 3, 4, 6	EFS	4.5 V ≤ AVREFP - VDD ≤ 5.5 V			±0.17	%FSR
		2.7 V ≤ AVREFP - VDD ≤ 5.5 V			±0.21	%FSR
		2.4 V ≤ AVREFP - VDD ≤ 5.5 V			±0.21	%FSR
Integral linearity errorNotes 1, 4, 6	ILE	4.5 V ≤ AVREFP - VDD ≤ 5.5 V			±3.0	LSB
		2.7 V ≤ AVREFP - VDD ≤ 5.5 V			±3.0	LSB
		2.4 V ≤ AVREFP - VDD ≤ 5.5 V			±3.0	LSB
Differential linearity errorNote 1	DLE	$4.5 \text{ V} \le \text{AVREFP} = \text{Vdd} \le 5.5 \text{ V}$		±1.0		LSB
		2.7 V ≤ AVREFP - VDD ≤ 5.5 V		±1.0		LSB
		$2.4 \text{ V} \le \text{AVREFP} = \text{Vdd} \le 5.5 \text{ V}$		±1.0		LSB
Analog input voltage	Vain		0		AVREFP	v

Correct:

(1) Normal modes 1 and 2

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V,

reference voltage (+) = AVREFP (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage)

Item	Symbol		Conditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		12	Bit
Conversion clock	fad			1		32	MHz
Overall errorNotes 1, 3, 4, 5	AINL	12_hit	4.5 V ≤ AVREFP = VDD ≤ 5.5 V			±7.5	LSB
		resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±9.0	LSB
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±9.0	LSB
Conversion timeNote 6	tCONV	12_hit	4.5 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
		12-Dit	2.7 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
		resolution	2.4 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			με
Zero-scale error ^{Notes} 1, 2, 3, 4, 5	Ezs	12-bit	4.5 V ≤ AVREFP = VDD ≤ 5.5 V			±0.17	%FSR
			2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
		resolution	$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	EFS	12-bit	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.17	%FSR
		recolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
		resolution	$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
Integral linearity errorNotes 1, 4, 5	ILE	12-hit	4.5 V ≤ AVREFP = VDD ≤ 5.5 V			±3.0	LSB
		recolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±3.0	LSB
		resolution	2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±3.0	LSB
Differential linearity errorNote 1	DLE	10 hit	$4.5 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
		12-bit	$2.7 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
		resolution	$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$		±1.0		LSB
Analog Input voltage	VAIN			0		AVREFP	v

89. <u>37.6.1 A/D converter characteristics, (2) Low-voltage modes 1 and 2 (Page 1435)</u>

Incorrect:

(2) Low-voltage modes 1 and 2

(TA = -40 to +105°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V,

reference voltage (+) = AVREFP (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM (ADREFM = 1), target pins ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage)

ltem	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES		8		12	Bit
Conversion clock	fad		1		24	MHz
Overall errorNotes 1, 3, 4, 6	AINL	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±9	LSB
		2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±9	LSB
		1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±11.5	LSB
		$1.6 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$			±12.0	LSB
Conversion time ^{Note 8}	toonv	$2.7 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$	3.33			μs
		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$	5.0			μs
		1.8 V ≤ AVREFP = VDD ≤ 5.5 V	10.0			μs
		1.6 V ≤ AVREFP = VDD ≤ 5.5 V	20.0			μs
Zero-scale errorNotes 1, 2, 3, 4, 6	Ezs	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$			±0.21	%FSR
		1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±0.27	%FSR
		$1.6 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$			±0.28	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	EFS	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$			±0.21	%FSR
		1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±0.27	%FSR
		$1.6 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$			±0.28	%FSR
Integral linearity errorNotes 1, 4, 6	ILE	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±4.0	LSB
		2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±4.0	LSB
		1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±4.5	LSB
		$1.6 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$			±4.5	LSB
Differential linearity errorNote 1	DLE	2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±1.5		LSB
		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$		±1.5		LSB
		1.8 V ≤ AVREFP = VDD ≤ 5.5 V		±2.0		LSB
		$1.6 \text{ V} \le \text{AV}_{\text{REFP}} = \text{Vdd} \le 5.5 \text{ V}$		±2.0		LSB
Analog input voltage	VAIN		0		AVREFP	v

Correct:

(2) Low-voltage modes 1 and 2

(TA = -40 to +105°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V,

reference voltage (+) = AVREFP (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM (ADREFM = 1), target pins ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage)

Item	Symbol		Conditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		12	Bit
Conversion clock	fad			1		24	MHz
Overall errorNotes 1, 3, 4, 5	AINL	40.1.1	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±9	LSB
		12-bit	2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±9	LSB
		resolution	1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±11.5	LSB
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±12.0	LSB
Conversion timeNote 6	toonv	12-bit resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V	3.33			με
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V	5.0			μs
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V	10.0			με
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V	20.0			με
Zero-scale errorNotes 1, 2, 3, 4, 5	Ezs	10 hit	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
		resolution	$2.4 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±0.21	%FSR
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±0.27	%FSR
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±0.28	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	EFS	EF8	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
		resolution	2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±0.27	%FSR
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±0.28	%FSR
Integral linearity errorNotes 1, 4, 5	ILE	12-hit	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±4.0	LSB
		recelution	2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±4.0	LSB
		resolution	$1.8 \text{ V} \leq \text{AVREFP} = \text{VDD} \leq 5.5 \text{ V}$			±4.5	LSB
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±4.5	LSB
Differential linearity error ^{Note 1}	DLE	12 ₋ bit	2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±1.5		LSB
		recolution	$2.4 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$		±1.5		LSB
		resolution	1.8 V ≤ AVREFP = VDD ≤ 5.5 V		±2.0		LSB
			$1.6 \text{ V} \le \text{AVREFP} = \text{VDD} \le 5.5 \text{ V}$		±2.0		LSB
Analog Input voltage	VAIN			0		AVREFP	v

90. 37.6.4 Comparator characteristics (Page 1438)

Incorrect:

Item	Symbol	Conditions	; ;	Min.	Тур.	Max.	Unit
Input voltage range	IVREF	Input to the IVREF0 and IVRE COLVL = 0, C1LVL = 0	0		Vpp - 1.4	v	
		Input to the IVREF0 and IVRE COLVL = 1, C1LVL = 1	F1 pins	1.4		VDD	v
	IVCMP	Input to the IVCMP0 and IVCN	IP1 pins	-0.3		Voo + 0.3	v
Output delay	td	Voo = 3.0 V,	High-speed mode			1.5	μs
		input siew rate > 1 v/µs	Low-speed mode		3.0		μs
Offset voltage	-	High-speed mode				50	mV
		Low-speed mode			40	mV	
Operation stabilization wait time	tcmp			30			μs
Internal reference voltage	VBGR2			1.4		1.6	v

Correct:

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Item	Symbol	Conditions	i	Min.	тур.	Max.	Unit
Input voltage range	IVREF	Input to the IVREF0 and IVREF COLVL = 0, C1LVL = 0	0		VDD – 1.4 and EVDD0	v	
		Input to the IVREF0 and IVREF COLVL = 1, C1LVL = 1	F1 pins	1.4		EVDD0	v
	IVCMP	Input to the IVCMP0 and IVCM	IP1 pins	-0.3		EVDD0 + 0.3	v
Output delay	td	VDD = 3.0 V,	High-speed mode			1.5	μs
		Input siew rate > 1 V/µs	Low-speed mode		3.0		με
Offset voltage	-	High-speed mode	•			50	mV
		Low-speed mode			40	mV	
Operation stabilization wait time	tCMP			30			με
Internal reference voltage	VBGR2		1.4		1.6	v	

91. 37.8 Flash Memory Programming Characteristics (Page 1444)

Incorrect:

(2) Data flash memory

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

in an	here for the second		ICLK = 1 MHz		ICLK = 2 MHz, 3 MHz			$4~\text{MHz} \le 101\text{K} \le 8~\text{MHz}$			8 MHz s ICLK < 32 MHz			TOLK = 32 MHz			Unit	
illerni		aymbol -	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unic
Programming time	1 byte	5 74	Ι	74.7	656.5	-	51.0	464.6	-	41.7	384.8	-	37.1	346.2	-	34.2	321.9	5
Erasure time	256 bytes	te2K	-	7.8	259.2	-	6.4	232.0	-	5.8	218.5	-	5.5	211.8	-	5.4	209.7	ms
Blank checking	1 byte	tsc4	-	-	38.4	-	-	19.2	-	-	13.1	-	-	10.2	-	-	8.3	μs
ume	256 bytes	t8C2K	-	-	1326.1	-	-	663.1	-	-	335.1	-	-	171.2	-	-	121.0	μs
Time taken to fo the erasure	rcibly stop	tsep	-	-	18.0	-	-	14.0	-	-	12.0	-	-	11.0	-	-	10.3	μs
Time until progr starts following cancellation of t instruction	amming he STOP	-	20	-	-	20	-	-	20	-	-	20	-	-	20	-	-	24 R
Time until readi following setting to 1	p starts DFLEN	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	ns

Correct:

(2) Data flash memory

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Harm Sumba		Sumbel	foux = 1 MHz			foux = 2 MHz, 3 MHz		4 MHz s foux < 8 MHz		8 MHz s foux < 32 MHz			foux = 32 MHz			Link		
16211		oymoor	Min.	Тур.	Max.	Min.	Тур.	Max.	Mn.	Тур.	Max.	Min.	Тур.	Max.	Mn.	Тур.	Max.	1
Programming time	1 byte	tru .	-	74.7	656.5	-	51.0	464.6	-	41.7	384.8	-	37.1	346.2	-	34.2	321.9	μs
Erasure time	256 bytes	teax	-	7.8	259.2	-	6.4	232.0	-	5.8	218.5	-	5.5	211.8	-	5.4	209.7	ms
Blank checking	1 byte	tace -	-	-	38.4	-	-	19.2	-	-	13.1	-	-	10.2	-	-	8.3	μs
ume	256 bytes	tacax.	-	-	1326.1	-	-	663.1	-	-	335.1	-	-	171.2	-	-	121.0	μs
Time taken to fo the erasure	rdbly stop	tsep	-	-	18.0	-	-	14.0	-	-	12.0	-	-	11.0	-	-	10.3	μs
Time until progr starts following cancellation of t instruction	amming he STOP	-	20	-	-	20	-	-	20	-	-	20	-	-	20	-	-	μs
Time until readil following setting to 1	ng starts DFLEN	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	μs

Date: Nov. 24, 2021

92. 38.4 40-Pin Products (Page 1450)

Incorrect:

R7F100GEF3CNP, R7F100GEG3CNP, R7F100GEH3CNP, R7F100GEJ3CNP R7F100GEF2DNP, R7F100GEG2DNP, R7F100GEH2DNP, R7F100GEJ2DNP

Contact a Renesas Electronics sales office for details.

Correct:

⊕ #® ⊂ ∧ B

הטטוטיי

L(40X)

D2

R7F100GEF3CNP, R7F100GEG3CNP, R7F100GEH3CNP, R7F100GEJ3CNP R7F100GEF2DNP, R7F100GEG2DNP, R7F100GEH2DNP, R7F100GEJ2DNP

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN040-6x6-0.50	PWQN0040KD-A	0.08

Reference	Contension in Millimeters								
Symbol	Min.	Nom.	Max.						
Α	-	-	0.80						
A	0.00	0.02	0.05						
Aa		0.203 REF	-						
ь	0.18	0.25	0.30						
D		6.00 BSC							
E	6.00 BSC								
0	0.50 BSC								
L	0.30	0.40	0.50						
к	0.20	-	-						
D:	4.45	4.50	4.55						
E	4.45	4.50	4.55						
222		0.15							
ppp		0.10							
000		0.10							
ddd		0.05							
000	0.08								
=		0.10							

1.000

© 2021 Renesas Electronics Corporation. All rights reserved.

Date: Nov. 24, 2021

93. 38.6 48-Pin Products (Page 1453)

Incorrect:

R7F100GGF3CNP, R7F100GGG3CNP, R7F100GGH3CNP, R7F100GGJ3CNP R7F100GGK3CNP, R7F100GGL3CNP, R7F100GGN3CNP R7F100GGF2DNP, R7F100GGG2DNP, R7F100GGH2DNP, R7F100GGJ2DNP R7F100GGK2DNP, R7F100GGL2DNP, R7F100GGN2CNP

Contact a Renesas Electronics sales office for details.

Correct:

R7F100GGF3CNP, R7F100GGG3CNP, R7F100GGH3CNP, R7F100GGJ3CNP R7F100GGK3CNP, R7F100GGL3CNP, R7F100GGN3CNP R7F100GGF2DNP, R7F100GGG2DNP, R7F100GGH2DNP, R7F100GGJ2DNP R7F100GGK2DNP, R7F100GGL2DNP, R7F100GGN2CNP

