RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-R8C-A014A/E Rev. 1.			
Title	R8C/1x Series, R8C/2x Series, R8C/3x Series, R8C/Lx Series Note on Supply Voltage Fluctuation		Information Category	Technical Notification			
Applicable Product	See below	Lot No.	Reference Document	_			

When developing MCU application products, the customer should take care with events like power supply noise in their product and/or environment. The following is a general note pertaining to supply voltage variations due to events like power supply noise.

1. Applicable products

R8C/1x Series, R8C/2x Series, R8C/3x Series, and R8C/Lx Series

2. Note

After reset is deasserted, the supply voltage applied to the VCC pin must meet either or both the allowable ripple voltage $V_{r(VCC)}$ or ripple voltage falling gradient $dV_{r(VCC)}/dt$ shown in the figure below.

Symbol	Parameter		Standard		
Symbol		Min.	Тур.	Max.	Unit
V _{r(VCC)}	Allowable ripple voltage			0.1Vcc	V
dV _{r(VCC)} /dt	Ripple voltage falling gradient			10	V/ms
Vcc		+++++			Vr(Vcc)

To prevent operation error due to noise, connect a bypass capacitor (approximately 0.1 μ F) across pins VCC and VSS using the shortest and thickest possible wiring.

