
 

 
 

All information contained in these materials, including products and product specifications, represents 
information on the product at the time of publication and is subject to change by Renesas Electronics 
Corporation without notice. Please review the latest information published by Renesas Electronics 
Corporation through various means, including the Renesas Electronics Corporation website 
(http://www.renesas.com). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RZ/A1H Group 
 

Renesas Starter Kit+ FreeRTOS Integration 
Manual 

   

Rev. 1.00 Jun 2015 
 

32 
RENESAS MCU 
RZ Family / RZ/A1H Series 

32 

U
ser's M

anual 



 

 
 

Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the 

operation of semiconductor products and application examples. You are fully responsible for the incorporation of these 
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for 
any losses incurred by you or third parties arising from the use of these circuits, software, or information. 

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas 
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever 
for any damages incurred by you resulting from errors in or omissions from the information included herein. 

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property 
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in 
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other 
intellectual property rights of Renesas Electronics or others. 

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or 
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such 
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High 
Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, 
as indicated below. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio 
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial 
robots etc. 
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster 
systems; anticrime systems; and safety equipment etc. 

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a 
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may 
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality 
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas 
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable 
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for 
which the product is not intended by Renesas Electronics. 

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas 
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage 
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no 
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified 
ranges. 

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products 
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use 
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to 
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire 
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including 
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or 
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please 
evaluate the safety of the final products or systems manufactured by you. 

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all 
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, 
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your 
noncompliance with applicable laws and regulations. 

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose 
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not 
use Renesas Electronics products or technology described in this document for any purpose relating to military 
applications or use by the military, including but not limited to the development of weapons of mass destruction. When 
exporting the Renesas Electronics products or technology described in this document, you should comply with the 
applicable export control laws and regulations and follow the procedures required by such laws and regulations. 

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or 
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set 
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as 
a result of unauthorized use of Renesas Electronics products. 

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of 
Renesas Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its 
majority owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4) 



 

 
 

General Precautions in the Handling of MPU/MCU Products 
 
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes 
on the products covered by this document, refer to the relevant sections of the document as well as any 
technical updates that have been issued for the products. 
 

1.  Handling of Unused Pins 
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the 
manual. 
 The input pins of CMOS products are generally in the high-impedance state. In operation with an 

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an 
associated shoot-through current flows internally, and malfunctions occur due to the false 
recognition of the pin state as an input signal become possible. Unused pins should be handled as 
described under Handling of Unused Pins in the manual. 

2.  Processing at Power-on 
The state of the product is undefined at the moment when power is supplied. 
 The states of internal circuits in the LSI are indeterminate and the states of register settings and 

pins are undefined at the moment when power is supplied. 
In a finished product where the reset signal is applied to the external reset pin, the states of pins 
are not guaranteed from the moment when power is supplied until the reset process is completed. 
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function 
are not guaranteed from the moment when power is supplied until the power reaches the level at 
which resetting has been specified. 

3.  Prohibition of Access to Reserved Addresses 
Access to reserved addresses is prohibited. 
 The reserved addresses are provided for the possible future expansion of functions. Do not access 

these addresses; the correct operation of LSI is not guaranteed if they are accessed. 
4.  Clock Signals 

After applying a reset, only release the reset line after the operating clock signal has become stable. 
When switching the clock signal during program execution, wait until the target clock signal has 
stabilized. 
 When the clock signal is generated with an external resonator (or from an external oscillator) 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. 
Moreover, when switching to a clock signal produced with an external resonator (or by an external 
oscillator) while program execution is in progress, wait until the target clock signal is stable. 

5.  Differences between Products 
Before changing from one product to another, i.e. to a product with a different part number, confirm that 
the change will not lead to problems. 
 The characteristics of an MPU or MCU in the same group but having a different part number may 

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect 
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity 
to noise, and amount of radiated noise. When changing to a product with a different part number, 
implement a system-evaluation test for the given product. 

 
  



 

 
 

Disclaimer 
 
By using this Renesas Starter Kit+ (RSK+), the user accepts the following terms: 
 

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is 
assumed by the User. The RSK is provided by Renesas on an “as is” basis without warranty of any kind whether 
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular 
purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly 
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, 
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall 
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other 
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even 
if Renesas or its affiliates have been advised of the possibility of such damages.  

 
 
 
Precautions 
 
The following precautions should be observed when operating any RSK product: 
 

 

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity 
conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the 
laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the 
Electromagnetic Compatibility Directive and could lead to prosecution.  
 
The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio 
communications. However, there is no guarantee that interference will not occur in a particular installation. If this 
equipment causes harmful interference to radio or television reception, which can be determined by turning the 
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;  

 

• ensure attached cables do not lie across the equipment  

• reorient the receiving antenna  

• increase the distance between the equipment and the receiver  

• connect the equipment into an outlet on a circuit different from that which the receiver is connected  

• power down the equipment when not in use  

• consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever 
possible shielded interface cables are used.  

 
The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the 
following measures be undertaken;  
 

• The user is advised that mobile phones should not be used within 10m of the product when in use.  

• The user is advised to take ESD precautions when handling the equipment.  
 
The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the 
regulatory standards for an end product. 



 

 
 

How to Use This Manual 

1.    Purpose and Target Readers 
 
This manual is designed to provide the user with an understanding of how to use the e2 studio IDE to evaluate 
the FreeRTOS sample application provided. It is intended for users designing sample code on the RSK 
platform, using the many different incorporated peripheral devices. 
 
The manual comprises instructions to load and debug the enhanced FreeRTOS project in e2 studio, but does 
not intend to be a complete guide on the FreeRTOS software, or software development on the RSK platform. 
Further details regarding operating the RZA1H microcontroller may be found in suite of Renesas 
documentation. 
Further details on the FreeRTOS software and documentation available online. 
 
Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body 
of the text, at the end of each section, and in the Usage Notes section. 

 
 
The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of 
the manual for details. 

 
The following documents form part of the suite of Renesas documentation and apply specifically to the RZA1H 
Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents 
listed may be obtained from the Renesas Electronics Web site. 
 

Document Type Description Document Title Document No. 
Quick Start Guide Provides simple instructions to setup the RSK+ and 

run the first sample. 
RSK+RZA1H Quick 
Start Guide 

R20UT3006EG 

FreeRTOS Quick 
Start Guide 

Provides simple instructions on integrating one of 
Renesas Samples into the pre-configured 
FreeRTOS project. 

RSK+RZA1H 
FreeRTOS Quick 
Start Guide 

RXXUTXXXXEG 

User’s Manual Describes the technical details of the RSK+ 
hardware.  

RSK+RZA1H User’s 
Manual 

R20UT3007EG 

Tutorial Provides a guide to setting up RSK+ environment, 
running sample code and debugging programs. 

RSK+RZA1H 
Tutorial Manual 

R20UT3008EG 

Schematics Full detail circuit schematics of the RSK+. RSK+RZA1H 
Schematics 

R20UT2586EG 

Hardware Manual Provides technical details of the RZA1H 
microcontroller. 

RZA1H Group 
Hardware Manual 

R01UH0403EJ 

 

http://www.freertos.org/


 

 
 

2.    List of Abbreviations and Acronyms  
 
 

Abbreviation Full Form 
ADC Analog-to-Digital Converter 
e2 studio Renesas Eclipse Embedded Studio Integrated Debugging Environment 
EMC Electromagnetic Compatibility 
ESD Electrostatic Discharge 
J-LINK On-chip Debugger 
LCD Liquid Crystal Display 
LED Light Emitting Diode 
MCU Micro-controller Unit 
QSPI Quad Serial Peripheral Interface 
RSK Renesas Starter Kit 
RSK+ Renesas Starter Kit + (denotes extra functionality over standard RSK) 
RTOS Real Time Operating System  
 



 

 
 

Table of Contents 

1. Overview ............................................................................................................................ 8 
1.1 Purpose ...................................................................................................................................................... 8 
1.2 Features of CommonCore project ............................................................................................................. 8 

2. Introduction ........................................................................................................................ 9 

3. CommonCore Project Workspace ................................................................................... 10 
3.1 Introduction .............................................................................................................................................. 10 
3.2 Jumper and Switch Configuration ............................................................................................................ 10 
3.3 Copying the CommonCore FreeRTOS project ........................................................................................ 10 
3.4 Starting e2 studio and Importing Sample Code ........................................................................................ 11 
3.5 Build Configurations and Debug Sessions .............................................................................................. 13 

4. Testing CommonCore project .......................................................................................... 17 
4.1 Connecting to target board ...................................................................................................................... 17 
4.2 Interacting with software .......................................................................................................................... 20 

5. Interaction between Samples .......................................................................................... 22 
5.1 Available resources for sharing................................................................................................................ 22 
5.2 Memory resources ................................................................................................................................... 24 

6. Project Interaction with FreeRTOS .................................................................................. 25 
6.1 Overview .................................................................................................................................................. 25 
6.2 Sample Modules ...................................................................................................................................... 25 

7. Additional Information ...................................................................................................... 29 



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 8 of 33 

Jun 25, 2015  

1.   Overview 

1.1 Purpose 
 
The FreeRTOS project was conceived to provide an embedded, free, RTOS solution that was easy to use, 
build and deploy. The solution can be cross compiled on a windows PC deployed onto target microcontroller, 
and has been provided by Real Time Engineers Ltd. 
 
This document describes the FreeRTOS demonstration application RZ_RSK_FreeRTOS (known as 
CommonCore) that is used as the host for the Renesas software sample modules. Renesas has chosen to 
adopt this approach to allow them to deploy discrete sample code that can be mixed and matched as the 
solution demands. On top of the standard FreeRTOS   
 
The bare bones FreeRTOS project, officially supported is available on the website. This version does not 
provide the support required to run the renesas samples. 
 

1.2 Features of CommonCore project 
 
This FreeRTOS project provides the following features : 

 
• RSK+RZA1H board support. 
• LED driver layer. 
• PMOD display driver (PMOD connected to CN25/CN26)  
• Serial console (connected via USB mini-port CN18) 
• I2C driver layer (use to activate the Port Expanders on the RSK board). 
• Real-time Clock driver layer. 
 

http://www.freertos.org/RTOS-contact-and-support.html
http://www.freertos.org/a00090.html#RENESAS


RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 9 of 33 

Jun 25, 2015  

2.Introduction 

This manual is designed to provide guide to the Renesas CommonCore FreeRTOS project (referred to as 
CommonCore project). The document is arranged into the following sections 
• How to build the CommonCore project 
• How to test my project 
• How do the samples interact 
• How does the CommonCore project fit with FreeRTOS 

 
Files referred to in this manual are installed using the import wizard as you work through the tutorials. The 
tutorial examples in this manual assume that installation procedures described in the RSK+ Quick Start Guide 
have been completed. Please refer to the Quick Start Guide for details of preparing the configuration. 
 

This manual is not intended as a comprehensive introduction to the e2 studio environment, compiler toolchains, RSK or 
the J-Link LITE debugger. Please refer to the relevant user manuals for more in-depth information. 



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 10 of 33 

Jun 25, 2015  

3.  CommonCore Project Workspace 

3.1 Introduction 
 
e2 studio is an integrated development tool that allows the user to write, compile, program and debug a 
software project on the RZ family of Renesas microcontrollers. e2 studio will have been installed during the 
installation of the software support for the Renesas Starter Kit product. e2 studio has been used to provide the 
build environment for the FreeRTOS CommonCore project. 
This manual will describe the stages required to create an instance of the CommonCore project. It is strongly 
advised that customers never modify the original instance of the CommonCore project and always use a copy. 
 

3.2 Jumper and Switch Configuration 
Ensure that the RSK is in its default state, please refer to the schematic if you have changed any of the links 
to return the board to its default state. The jumpers and switches settings are in the following positions: 
 

Jumper Pins Switch Position Switch Position 
JP11 1 - 2 SW4-1 OFF SW6-1 OFF 
JP12 1 - 2 SW4-2 OFF SW6-2 ON 
JP18 1 - 2 SW4-3 OFF SW6-3 OFF 
JP21 1 - 2 SW4-4 OFF SW6-4 ON 
PWR_SEL 2 - 3 SW4-5 OFF SW6-5 ON 
-- -- SW4-6 OFF SW6-6 ON 
-- -- SW4-7 OFF -- -- 
-- -- SW4-8 OFF -- -- 

 
 

3.3 Copying the CommonCore FreeRTOS project  
 
• Open the Renesas sample code by selecting the folder from the Start Menu -> All Programs 

-> Renesas Electronics Tools -> Renesas e2 studio -> Sample Code.  

 
• Open the FreeRTOS folder and copy the zipfile to your desired workspace location. 

 
• Extract the Zip file. 

 
• Click ‘Browse’ and select a suitable location to store your workspace, using the ‘Create New 

Folder’ option as necessary. Click ‘OK’. 
 
 
 
 
 
 

 
 



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 11 of 33 

Jun 25, 2015  

 

 
 
 

3.4 Starting e2 studio and Importing Sample Code 
 
• Start Eclipse for e2 studio by selecting it from 

the Start Menu -> All Programs -> Renesas 
Electronics e2 studio 4.01 -> Renesas e2 
studio. The first dialog box to appear will be 
the Workspace Launcher. 

• Click ‘Browse’ and select the desired location 
to store your workspace. Click ‘OK’. 

 

 
 

 
• e2 studio will open with the ‘Welcome…’ tab as 

shown opposite. 
• Close the tab by clicking on the  cross. 

 
 

• Right click in the ‘Project Explorer’ window 
and select ‘Import…’ 

 
 



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 12 of 33 

Jun 25, 2015  

• The Import dialog box will now show. Expand 
the ‘General’ folder icon, and select ‘Existing 
Projects into Workspace’, then click ‘Next’. 

 
 

• The Import dialog box will allow you to specify 
a project to import. Click the ‘Browse’ button 
and locate your desired directory: 

• Select the project 
RZ_RSK_FreeRTOS_V8.1.2_e2studio 

• Ensure that the ‘Copy projects into workspace’ 
option is un-ticked. 

• Caution: Ticking this box will copy the projects 
from the location where they were installed. It 
is important NOT to select this option. 
This is because the FreeRTOS build structure 
include paths that exist outside of the current 
project and e2sudio copy project function will 
break the links. 

• Click ‘Finish’. 
 
 
 
 
 
 
 
 
 
 
 

 
 



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 13 of 33 

Jun 25, 2015  

3.5 Build Configurations and Debug Sessions 

3.5.1 Build Configuration 
 
The e2 studio workspace will be created with two build configurations: ‘HardwareDebug’ and ‘Release’. 
 
HardwareDebug 
This default build mode has all optimisation turned off, and provides full debug information. This is the best 
configuration to use whilst developing code as C code execution will be linear.  The ‘HardwareDebug’ build 
configuration provided for this Tutorial program is configured to load the code directly into RAM. 
 
• Click the top level ‘Tutorial’ folder again, 

and then the arrow next to the build 
button (hammer icon), and select the 
‘HardwareDebug’ option. 

 
e2 studio will now build the 
code. 

• The output from the build process will be 
presented in the console window of e2 
studio. 

 

 

3.5.2 Debug Configuration 
 
• Click the arrow next to the debug button 

(bug icon). Select ‘Debug 
Configurations’.  

 
 
 

• The ‘Debug Configurations’ dialog box 
will appear. Click on the button next to 
‘Renesas GDB Hardware Debugging’ to 
expand the view. 

• By default, e2 studio creates Debug 
Configurations for each existing build 
mode. The RSK+RZA1H project have 
pre-configured debug configurations 
that are ready to use. 

 
Note: 
To manually create a new e2 studio debug 

configuration, click on ‘Renesas GDB 
Hardware Debugging’ then click on the 
‘New’ button . 

 
 

 

 
  



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 14 of 33 

Jun 25, 2015  

The e2 studio workspace will be created with two build configurations: ‘HardwareDebug’ and ‘Release’. 
 

• The debug configurations control page will open.  Observe the settings under each tab.  
• Under the ‘Debugger’ tab, ensure the ‘Debugger hardware’ option is set to ‘J-Link ARM’. 
• The ‘Target Device’ is preset to ‘R7S721001’. 

 
Note: 
Do NOT modify any settings. 

  



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 15 of 33 

Jun 25, 2015  

• A security dialog may appear indicating that the Windows Firewall has blocked some features of the 
eclipse platform.  

•  Under the text ‘Allow eclipse to communicate on these networks’, ensure the check box next to ‘Private 
networks, such as my home or work network’ is ticked.  Click ‘Allow access’ 

 
• Select the ‘Startup’ tab. 

 
• Ensure the ‘Runtime Option’ ‘Set breakpoint at:’ is specified as ‘main’. 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
 



RSK+RZA1H  3.   ComponentCore  
 
 

R20UT3491EG0100 Rev.1.00  Page 16 of 33 

Jun 25, 2015  

 
• Click on ‘Debug’. 
 
 
• Before downloading the code a dialog 

box will appear asking if you would like 
to switch to the ‘e2 studio Debug 
perspective’. If you agree click 
‘Remember my decision’ to prevent this 
dialog box from appearing in future, 
then click ‘Yes’. 

• e2 studio will load the new perspective, 
which is optimised for debugging. 
 

• To change back to the default ‘C/C++’ 
perspective, from the menu bar select 
Window > Open Perspective > Other 

 
 
• The ‘Open Perpsective’ dialog box will 

appear. Click on the desired perspective 
to select it then ‘OK’. 

 
 
 
 

 
 
 
 
 

• Alternatively, click on the button within 
the top right corner of the screen, as 
shown opposite, and select the ‘C/C++’ 
perspective. 
 

 

  
 
 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 17 of 33 

Jun 25, 2015  

4.   Testing CommonCore project  

This section will cover basic testing of the CommonCore project, and covers 
• Locating sample software 
• Connecting to the target board  
• Interacting with the software 

 

4.1 Locating sample software 
 
Once software modules have been added to 
CommonCore sample project they are place into the 
Sample folder: 
 
ComponentCore\FreeRTOS\Demo\CORTEX_A9_RZ_R7
S72100_e2studio\src\RenesasFiles\Sample 
 
By default no supplemental samples are installed so this 
folder is empty. 
 
Samples can be added using the Renesas SDC Module 
wizard located in ‘File -> New’ Menu.  
 
For detailed instructions please refer to the quick start 
guide  
 
r20ut3490eg0100_rsk+rza1h_FreeRTOS_qsg.pdf 
 
 
 
 
 
 
 
 
 
 
 

4.2 Connecting to target board 
 
When the CommonCore project is downloaded to the target board and the device is in execution the software 
interacts with the user in a number of ways.  
 
• On board LEDs (LED0,LED1,LED2,LED3) on the target device  
• Serial output via USB Mini-B connector (CN18) 
• PMOD display (supplied with RSK kit) connected to either PMOD1, or PMOD2. 

 

4.2.1 On board LED’s 
Applications can use the 4 on board LED’s to indicate status. The LED’s are not used in the samples provided 
to allow users to customise their use in an application. 
 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 18 of 33 

Jun 25, 2015  

4.2.2 Serial output via USB Mini-B 
Serial Console output is provided via the RL78G1C USB to Serial converter connected to CN18 on the RSK. 
The serial connection required is Baud 115200, Data bits 8, Stop bits 1, Parity None, Flow Control None. 
By installing the RSK the required software for RSK serial port should already be available and selecting 
whichever com port maps to ‘RSK USB Serial Port’ should be used to establish the connection. 
 
Once connection is established and the CommonCore project is downloaded to the RSK and the device is 
running the following should be shown on the console (note version updates on each build): 
 

 
 

4.2.3 PMOD display 
Components can use the PMOD display (supplied with the RSK) to provide feedback to the customer. 
(Example below) 
 

 
 
With the default configuration of the CommonCore project the PMOD display is used to indicate the that 
software is running successfully, once FreeRTOS startup has completed and the scheduler is running a single 
use task is created to display a welcome message on the PMOD display, once its job has completed and the 
message is shown the task deletes itself, This is to allow other software to use the display in any way they see 
fit.  
 
The configuration uses two functions to utilise the PMOD display, (see Removing the PMOD sample 
commands) 
Function ‘lcd_pmod_init()’ initialises the pmod interface and MUST BE CALLED prior to any use of the PMOD 
display. This function is not optional if PMOD use is desired. 
 
Function ‘R_PMOD_Sample_Main()’ adds the PMOD demonstration commands 
 

• pmodstart - Run PMOD sample 
• pmodstop - Terminate PMOD sample 
• pmodrotate - Rotate image on PMOD display by 90 degrees clockwise. 

 
Which provide a simple demonstration of the PMOD use. 
 
 
 
 
 
 
 
 
 
 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 19 of 33 

Jun 25, 2015  

Command pmodstart 
Initialises a sequence of images to be shown on the display with about 1 second delay between each image. 
 
The images display in the following order 
 

   
 
 
 
 
 
 
 
 

Desert           Hydrangeas           Penguins 
 
          
Command pmodstop 
Terminates the pmodstart command. 
 
Command pmodrotate 
Rotates PMOD output 90 degrees clockwise, note that the associated function ‘R_LCD_ImageRotation()’ can be 
used by customised code to rotate the pmod output at any time.  
 
The display rotates in the following order: 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 20 of 33 

Jun 25, 2015  

4.2.3.1 Removing the PMOD sample commands 
The PMOD sample commands can be removed from the CommonCore project by removing the function call 
‘R_PMOD_Sample_Main()’ in the file  
‘RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/main.c’ 
Simply remove the line marked with a red box, to remove the commands from the console, though the PMOD 
interface shall still be available to use in code. 

  
 
4.2.3.2 Customised access to the PMOD interface 
Display access to the PMOD is managed by the interface file ‘r_lcd_pmod.h‘ can be found in the folder: 
‘RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/System/Device_Drivers/LCDPMod’ 

4.3 Interacting with software 
The serial console is the primary form of user input to the software, use the console to execute available 
commands, each command comes with simple instructions on use using the help or ‘?’ command. 
 
Following commands are available in the default project: 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 21 of 33 

Jun 25, 2015  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note  
No additional documentation of the commands are available. 
When adding sample code please refer to the associated ‘Description.txt’ file that shall be provided with the 
sample or type ‘help’ and see the new commands and their associated instructions. 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 22 of 33 

Jun 25, 2015  

5.Interaction between Samples 

This section detail how the independent samples utilise share resources. 

5.1 Available resources for sharing 
The samples share the following peripherals and as such their access is restricted. When access is required 
to the noted peripherals please use the associated interface: 
 

5.1.1 Display Access Locking Functions 
As the PMOD Display and LCD panel use some of the same I/O pins both cannot be driven at the same time. 
Use the following interface to provide exclusion. 
/RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/inc/r_scr_resource.h 
 
/******************************************************************************* 
* Function Name : R_SCR_ResourceLockDisplay 
* Description   : Attempts to lock screen resources for requesting task 
* Argument      : none 
* Return value  : true for success, false if the event could not be created 
*                 or the wait timed out 
*******************************************************************************/ 
_Bool R_SCR_ResourceLockDisplay (void); 
 
/******************************************************************************* 
* Function Name : R_SCR_ResourceUnlockDisplay 
* Description   : Frees screen resources  
* Argument      : none 
* Return value  : none 
*******************************************************************************/ 
void R_SCR_ResourceUnlockDisplay (void); 
 
/******************************************************************************* 
* Function Name : R_SCR_ResourceDisplayStatus 
* Description   : Check to see if Display is in use 
* Argument      : none 
* Return value  : 0 Not in use 
*                 non-zero taskID of display resource holder 
*******************************************************************************/ 
uint32_t R_SCR_ResourceDisplayStatus (void); 
 

5.1.2 User LED functions 
The LED’s (LED0,1,2,3) are driven by the interface 
/RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/System/Hardware_Interfaces/inc/hwLED.h 
/****************************************************************************** 
Function Name: led_on 
Description:   LED specified for iLedNum is turned on. 
Arguments:     IN iLedNum : LED number 
Return value:  none 
******************************************************************************/ 
void led_on(int32_t iLedNum); 
 
/****************************************************************************** 
Function Name: led_toggle 
Description:   LED specified for iLedNum is toggled. 
Parameters:    IN iLedNum : LED number 
Return value:  none 
******************************************************************************/ 
void led_toggle(int32_t iLedNum); 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 23 of 33 

Jun 25, 2015  

 
/****************************************************************************** 
Function Name: led_off 
Description:   LED specified for iLedNum is tuned off. 
Arguments:     IN iLedNum : LED number 
Return value:  none 
******************************************************************************/ 
void led_off(int32_t iLedNum); 
 
/****************************************************************************** 
Function Name: led_status 
Description:   LED status specified for "iLedNum". 
Arguments:     IN iLedNum : LED number 
Return value:  0 led on 
               1 led off 
******************************************************************************/ 
int32_t led_status(int32_t iLedNum); 
 

5.1.3 I2C Functions 
The I2C channel 0 is driven by the interface  
/RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/System/Hardware_Interfaces/inc/hwRIIC0.h 
 
/****************************************************************************** 
* Function Name: r_RIIC0_Open 
* Description  : Function to open RIIC channel 0 
* Arguments    : none 
* Return Value : 0 for success or -1 on error 
******************************************************************************/ 
int32_t r_RIIC0_Open(void); 
 
/****************************************************************************** 
* Function Name: r_RIIC0_Close 
* Description  : Function to close RIIC channel 0 
* Arguments    : none 
* Return Value : none 
******************************************************************************/ 
void r_RIIC0_Close(void); 
 
/****************************************************************************** 
 * Function Name: R_RIIC_CAMERA_write 
 * Description  : Configuration register for Camera 
******************************************************************************/ 
int32_t R_RIIC_CAMERA_write(uint32_t channel, 
                               uint8_t d_adr, 
                               uint16_t w_adr, 
                               uint8_t data); 
 
/****************************************************************************** 
 * Function Name: R_RIIC_HDMI_Enable 
 * Description  : Enable HDMI module on RSK TFT APP BOARD via I2C 
******************************************************************************/ 
int32_t R_RIIC_HDMI_Enable(void); 
 
The I2C channel 3 is driven by the interface  
/RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/System/Hardware_Interfaces/inc/hwRIIC3.h 
 
/****************************************************************************** 
* Function Name: r_RIIC3_Open 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 24 of 33 

Jun 25, 2015  

* Description  : Function to open RIIC channel 3 
* Arguments    : none 
* Return Value : 0 for success or -1 on error 
******************************************************************************/ 
 
int32_t r_RIIC3_Open(void); 
 
/****************************************************************************** 
* Function Name: r_RIIC3_Close 
* Description  : Function to close RIIC channel 3 
* Arguments    : none 
* Return Value : none 
******************************************************************************/ 
 
void r_RIIC3_Close(void); 
 
/****************************************************************************** 
* Function Name: r_RIIC3_UpdateState_PE1 
* Description  : Function to modify output state of Port Expander 1 
*                on RIIC channel 3 
* Arguments    : IN  mask - which pin(s) to modify 
*                IN  state - new state for pin(s) 
* Return Value : none 
******************************************************************************/ 
 
void R_RIIC3_UpdateState_PE1(uint8_t mask, uint8_t state); 
 
/****************************************************************************** 
* Function Name: r_RIIC3_UpdateState_PE2 
* Description  : Function to modify output state of Port Expander 2 
*                on RIIC channel 3 
* Arguments    : IN  mask - which pin(s) to modify 
*                IN  state - new state for pin(s) 
* Return Value : none 
******************************************************************************/ 
 
void R_RIIC3_UpdateState_PE2(uint8_t mask, uint8_t state); 
 

5.2 Memory resources 
The CommonCore project provides five heaps only two are used.  
 
Heap 0: Default size 128KB used for stacks allocation/deallocation for any created tasks.  
As each task has access to the System Memory (heap 3) using malloc, calloc, realloc, and free, it is advised 
that these memory utilities are to be used and specific task stacks are kept small. 
 
Heap 1: Default size 256KB, Reserved for future use 
 
Heap 2: Default size 512KB, Reserved for future use 
 
Heap 3: System Memory, Remaining free RAM is accessed through this heap, by default malloc, free etc. use 
this heap, this behaviour can be modified in the file  
 
/RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/System/CRT/RF/inc/malloc.h 
/* Define the memory that is used for malloc, calloc, realloc and free */ 
#define MALLOC_MEMORY_TYPE          HEAP_SRAM 
 
Heap 4: Default size 8.000MB, SDRAM can be accessed through this heap.



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 25 of 33 

Jun 25, 2015  

6.Project Interaction with FreeRTOS 

This section will examine how the CommonCore project and the sample modules interacts with FreeRTOS  
 

6.1 Overview 
The RSK CommonCore code runs in one FreeRTOS task, but has the ability to spawn supplemental tasks as 
required during execution. 
 
FreeRTOS runs using two tasks  

TMR SVC which services the tick timer 
IDLE which services the processor free time. 

CommonCore Runs single task 
Main task services the RSK and all its peripherals, as required, 

 

FreeRTOS
Scheduler

CommonCore
Main
Task

TMR
SVC
Task

IDLE
Task

 
Typical task list for CommonCore FreeRTOS (scheduler is hidden from the user) 

 

6.2 Sample Modules  
The samples supplied with CommonCore project that can be added as required. Instructions have been 
provided to explain how to add them but this section details how the CommonCore projects changes during 
execution. 
 
The standard operation of a sample will add a number of commands (command table) to the CommonCore 
command line and optionally start a monitor task associated with the sample. The user can then operate the 
sample by invoking the relevant command. 
 
The following code snippet shows how a typical example (in this case emmc) sample declares a new 
command table, adds to a free slot in the console, and creates a monitor task.  
 
There are 24 free slots available in the console for new command tables. Each table can contain a significant 
number of commands as the memory for each command group is statically defined in the CMDFNASS 
structure (below) 
 
  



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 26 of 33 

Jun 25, 2015  

/* Table that associates command letters, function pointer and a little 
 description of what the command does */ 
CMDFNASS gpcmdEMCSample[] = 
{ 
    "mmchi", 
    cmd_mmchi, 
    "<CR> - Run MMCHI sample commandline interface \n", 
 
}; 
 
/* Table that points to the above table and contains the number of entries */ 
static CMDTAB gcmdEMCSample = 
{ 
    gpcmdEMCSample, 
    ((sizeof(gpcmdEMCSample))/(sizeof(CMDFNASS))) 
}; 
 
void R_EMMC_SampleMain(FILE *pIn, FILE *pOut) 
{ 

 Code Cut for Clarity 
 

   /* Add commands to commandline */ 
   CommandAddCmdTab(&gcmdEMCSample); 
 
   /* Create monitor task */ 
   taskCreate((PTASKFN)task_monitor_emmc, 
      NULL, 
      TC_DEFAULT_STACK_SIZE, 
      TC_DEFAULT_HEAP, 
      TC_EMMC_TASK_NAME, 
      TC_EMMC_DEFAULT_PRIORITY);  
} 
 
The command interface use by the CommonCore project to process the command line is 
/RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/Console/inc/command.h 
 
/****************************************************************************** 
Function Name: CommandAddCmdTab 
Description:   Function to insert supplemental commands to the main console 
Arguments:     IN  pIn - Pointer to the input file stream 
Return value:  0 = ERROR 
               1 = handle to command line (use when removal is required) 
******************************************************************************/ 
int32_t CommandAddCmdTab(CMDTAB *cmd); 
 
Some samples (including emmc sample) add monitor tasks to the scheduler. These task once started stay 
resident regardless of whether the sample is executing.  
 
The task by the interface use by the CommonCore project to interface with FreeRTOS 
/RZ_RSK_FreeRTOS_V8.1.2_e2studio/src/RenesasFiles/System/Task_Control/inc/r_task.h 
 
 
/***************************************************************************** 
 Function Name: taskCreate 
 Description:   Function to create a task 
 Arguments:     IN  pTaskFunction - Pointer to the task function 
 IN  pParameters - Pointer to the task paramaters 
 IN  stStackSize - The required stack size for the task 
 IN  memType - The memory type to allocate the stack from 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 27 of 33 

Jun 25, 2015  

 IN  pszTaskName - The task name 
 IN  uiPriority - The priority of the task 
 Return value:  The task ID or -1U on error 
 *****************************************************************************/ 
uint32_t taskCreate(PTASKFN pTaskFunction, 
                           void *pParameters, 
                           size_t stStackSize, 
                           MEMTYPE memType, 
                           char *pszTaskName, 
                           uint32_t uiPriority); 
 
/***************************************************************************** 
 Function Name: taskDestroy 
 Description:   Function to destroy a task 
 Arguments:     IN  uiTaskID - The ID of the task to destroy 
 Return value:  true if the task was destroyed 
 *****************************************************************************/ 
_Bool taskDestroy(uint32_t uiTaskID); 
 
/***************************************************************************** 
 Function Name: taskGetID 
 Description:   Function to get the task ID 
 Arguments:     none 
 Return value:  The ID of the task 
 *****************************************************************************/ 
uint32_t taskGetID(void); 
 
/***************************************************************************** 
 Function Name: taskSleep 
 Description:   Function to sleep for a number of mS 
 Arguments:     IN  dwSleep_mS - The time to sleep in mS 
 Return value:  none 
 *****************************************************************************/ 
void taskSleep(uint32_t dwSleep_mS); 
 
/***************************************************************************** 
 Function Name: taskGetPriority 
 Description:   Function to get the task priority 
 Arguments:     IN uiTaskID - The ID of the task to get the priority of 
 Return value:  The priority of the task or -1U if not found 
 *****************************************************************************/ 
uint32_t taskGetPriority(uint32_t uiTaskID); 
 
/***************************************************************************** 
 Function Name: taskSetPriority 
 Description:   Function to set the priority of a task 
 Arguments:     IN  uiTaskID - The ID of the task to get the priority for 
 IN  uiPriority - The priority of the task 
 Return value:  true if the priority was set 
 *****************************************************************************/ 
_Bool taskSetPriority(uint32_t uiTaskID, uint32_t uiPriority); 
 
/***************************************************************************** 
 Function Name: taskSetState 
 Description:   Function set a task suspend / resume state 
 Arguments:     IN  uiTaskID - The ID of the task to change state 
 IN  bfSuspend - true to suspend the task 
 false to resume operation 
 Return value:  true if the state was changed 



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 28 of 33 

Jun 25, 2015  

 *****************************************************************************/ 
_Bool taskSetState(uint32_t uiTaskID, _Bool bfSuspend); 
 
/***************************************************************************** 
 Function Name: taskName 
 Description:   Function to get the task name 
 Arguments:     OUT pszName - Pointer to the destination name 
 IN  stLength - The length of the buffer 
 IN  uiTaskID - The task ID 
 Return value:  The number of chars delivered 
 *****************************************************************************/ 
size_t taskName(char *pszName, size_t stLength, uint32_t uiTaskID); 
 
/***************************************************************************** 
Function Name: taskInformation 
Description:   Function to get information on the running tasks in the form of 
               a dynamically allocated string. The string should be freed with 
               a call to free 
Arguments:     none 
Return value:  Pointer to a zero terminated string 
*****************************************************************************/ 
char *taskInformation(void); 
 
/***************************************************************************** 
 Function Name: taskSwitch 
 Description:   Function to cause a task switch 
 Arguments:     none 
 Return value:  none 
 *****************************************************************************/ 
void taskSwitch(void); 
 
/***************************************************************************** 
 Function Name: taskExit 
 Description:   Function to cause the current task to exit 
 Arguments:     none 
 Return value:  none 
 *****************************************************************************/ 
void taskExit(void); 
  



RSK+RZA1H  7.   Additional Information 
 

R20UT3491EG0100 Rev.1.00  Page 29 of 33 

Jun 25, 2015  

7.   Additional Information 

Technical Support 
For details on how to use e2 studio, refer to 
the help file by opening e2 studio, then 
selecting Help > Help Contents from the 
menu bar. 

 
 

For information about the RZA1H series microcontrollers refer to the RZA1H Group Hardware Manual. 
 
Technical Contact Details 
 
Please refer to the contact details listed in section 9 of the “Quick Start Guide” 
 
General information on Renesas microcontrollers can be found on the Renesas website at: 
http://www.renesas.com/ 
 
A real time operating system demonstration for the Renesas RZ microcontrollers (ARM Cortex-A9) is provided 
free of charge by FreeRTOS. This can be found on the FreeRTOS website at: 
 
http://www.freertos.org/Renesas_RZ_Cortex-A9-RTOS.html 
 
Trademarks 
All brand or product names used in this manual are trademarks or registered trademarks of their respective 
companies or organisations. 
 
 
Copyright 
This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of 
this document, either in whole or part is prohibited without the written permission of Renesas Electronics 
Europe Limited. 
 
© 2015 Renesas Electronics Europe Limited. All rights reserved. 
© 2015 Renesas Electronics Corporation. All rights reserved. 
© 2015 Renesas Solutions Corp. All rights reserved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.renesas.com/
http://www.freertos.org/Renesas_RZ_Cortex-A9-RTOS.html


 

 

 
REVISION HISTORY RSK+RZA1H FreeRTOS Integration Manual 

 
Rev. Date Description 

Page Summary 

1.00 April 28, 
2015 

 First Edition issued 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Renesas Starter Kit Manual: FreeRTOS Integration Manual 
 
Publication Date: Rev. 1.00 Jun 25, 2015 
  
 
Published by: Renesas Electronics Corporation 

 
 
 
  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SALES OFFICES  http://www.renesas.com 
Refer to "http://www.renesas.com/" for the latest and detailed information. 
 
Renesas Electronics America Inc.  
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. 
Tel: +1-408-588-6000, Fax: +1-408-588-6130 
 
Renesas Electronics Canada Limited 
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada 
Tel: +1-905-898-5441, Fax: +1-905-898-3220 
 
Renesas Electronics Europe Limited 
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K 
Tel: +44-1628-651-700, Fax: +44-1628-651-804  
 
Renesas Electronics Europe GmbH 
Arcadiastrasse 10, 40472 Düsseldorf, Germany 
Tel: +49-211-65030, Fax: +49-211-6503-1327 
 
Renesas Electronics (China) Co., Ltd. 
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China 
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
 
Renesas Electronics (Shanghai) Co., Ltd. 
Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, P. R. China 200333 
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
 
Renesas Electronics Hong Kong Limited 
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong 
Tel: +852-2886-9318, Fax: +852 2886-9022/9044  
 
Renesas Electronics Taiwan Co., Ltd. 
13F, No. 363, Fu Shing North Road, Taipei, Taiwan 
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
 
Renesas Electronics Singapore Pte. Ltd. 
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 
Tel: +65-6213-0200, Fax: +65-6213-0300  
 
Renesas Electronics Malaysia Sdn.Bhd. 
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia 
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
 
Renesas Electronics Korea Co., Ltd. 
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea 
Tel: +82-2-558-3737, Fax: +82-2-558-5141  
 

 
 

© 2014 Renesas Electronics Corporation. All rights reserved. 
Colophon 3.0 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
  

 
R20UT3491EG0100 

RZA1H Group 


	1.    Overview
	1.1 Purpose
	1.2 Features of CommonCore project

	2. Introduction
	3.   CommonCore Project Workspace
	3.1 Introduction
	3.2 Jumper and Switch Configuration
	3.3 Copying the CommonCore FreeRTOS project
	3.4 Starting e2 studio and Importing Sample Code
	3.5 Build Configurations and Debug Sessions
	3.5.1 Build Configuration
	3.5.2 Debug Configuration


	4.    Testing CommonCore project
	4.1 Locating sample software
	4.2 Connecting to target board
	4.2.1 On board LED’s
	4.2.2 Serial output via USB Mini-B
	4.2.3 PMOD display
	4.2.3.1 Removing the PMOD sample commands
	4.2.3.2 Customised access to the PMOD interface


	4.3 Interacting with software

	5. Interaction between Samples
	5.1 Available resources for sharing
	5.1.1 Display Access Locking Functions
	5.1.2 User LED functions
	5.1.3 I2C Functions

	5.2 Memory resources

	6. Project Interaction with FreeRTOS
	6.1 Overview
	6.2 Sample Modules

	7.    Additional Information

