intersil

ISL70592SEH

Neutron Test Report

Introduction

This report summarizes results of 1MeV equivalent neutron testing of the <u>ISL70592SEH</u> 1mA precision current source. The test was conducted to determine the sensitivity of the part to Displacement Damage (DD) caused by neutron or proton environments. Neutron fluences ranged from $5x10^{11}n/cm^2$ to $1x10^{14}n/cm^2$. This project was carried out in collaboration with Honeywell Aerospace in Clearwater, FL, and their support is gratefully acknowledged.

Product Description

The ISL70592SEH is a radiation tolerant 1mA precision current source, designed for thermistor and other resistive sensor excitation applications and provides a precision output current (\pm 1%) across voltages of 3V to 40V and across temperatures of -55°C to +125°C. This device is fabricated in the proprietary PR40 Silicon on Insulator (SOI) process and is immune to single event latch-up.

The ISL70592SEH is a bipolar, monolithic floating current source. The part contains a bandgap core that generates a temperature-independent voltage, and through feedback, forces the total current running through the part to also be independent of temperature. The high output impedance leaves ample room for variations in the power supply voltage and allows it to be insensitive to voltage drops across long lines, resulting in a typical initial accuracy of $\pm 0.3\%$ with a supply voltage of 20V and an accuracy over radiation of less than $\pm 1\%$ of the initial value of the part. The part can withstand a forward operating voltage of 40V and a reverse voltage of -0.5V.

Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency (DLA) in Columbus, OH. The SMD is the controlling document and must be cited when ordering.

Reference Literature

For a full list of related documents, visit our website:

- ISL70592SEH device page
- MIL-STD-883 test method 1017

1. Test Description

1.1 Irradiation Facility

Neutron fluence irradiations were performed on the test samples on June 25, 2018, at the WSMR Fast Burst Reactor (FBR) per Mil-STD-883G, Method 1017.2, with each part unpowered during irradiation and all leads shorted. The target irradiation levels were 5×10^{11} n/cm², 2×10^{12} n/cm², 1×10^{13} n/cm², and 1×10^{14} n/cm². As neutron irradiation activates many of the heavier elements found in a packaged integrated circuit, the parts exposed at the higher neutron levels required (as expected) cool down time before being shipped back to Renesas (Palm Bay, FL) for electrical testing.

1.2 Test Fixturing

No formal irradiation test fixturing is involved, as these DD tests are considered bag tests, which means the parts are irradiated with all leads shorted together.

1.3 Radiation Dosimetry

<u>Table 1</u> shows the TLD and Sulfur pellet dosimetry from WSMR indicating the total accumulated gamma dose and actual neutron fluence exposure levels for each sets of samples. This dosimetry process is traceable to NIST (IAW ASTM E722).

TLD		Sulfur Pellet						
TLD #	cGy(Si)	Pellet #	Distance (inches)	Exposure ID	Flu >3 MeV (n/cm ²)	% Unc	Total Fluence (n/cm ²)	1Mev Si (n/cm²)
293	1.169E+02	6479	26.6	Free Field	7.926E+10	7.1%	6.409E+11	5.513E+11
281	4.220E+02	6417	13.45	Free Field	3.043E+11	7.1%	2.401E+12	2.129E+12
263	2.147E+03	6488	24	Free Field	1.385E+12	7.1%	1.111E+13	9.613E+12
254	1.218E+04	6469	8	Free Field	8.774E+12	7.1%	6.888E+13	6.153E+13

Table 1. ISL70592SEH Neutron Fluence Dosimetry Data

Notes:

1. 1cGy(Si) = 1rad(Si)

2. The Uncertainty (% Unc) column is applicable only to the Fluence > 3MeV.

1.4 Characterization Equipment and Procedures

Electrical testing was performed before and after irradiation using the production Automated Test Equipment (ATE). All electrical testing was performed at room temperature.

1.5 Experimental Matrix

Testing proceeded in general accordance with the guidelines of MIL-STD-883 TM 1017. The planned experimental matrix consisted of five samples irradiated at $5x10^{11}$ n/cm², five samples irradiated at $2x10^{12}$ n/cm², five irradiated at $1x10^{13}$ n/cm², and five irradiated at $1x10^{14}$ n/cm². Three control units were used.

ISL70592SEH samples were drawn from Lot X84DAAEH. All samples were packaged in the 4 LD ceramic flatpack package (PKG code K4.A) and processed through burn-in before irradiation and screened to the SMD limits at room, low, and high temperatures before the start of neutron testing.

2. Results

Neutron testing of the ISL70592SEH is complete and the results are reported in the balance of this report. It should be understood when interpreting the data that each neutron irradiation was performed on a different set of samples; this is *not* total dose testing, where the damage is cumulative.

2.1 5.1 Attributes Data

<u>Table 2</u> summarizes the neutron exposure test results. The maximum planned fluence of 1×10^{14} n/cm² was not quite achieved, with the actual maximum fluence only reaching 6.15×10^{13} n/cm².

Table 2.Attributes Data

Fluence, (n/cm²)				
Planned	Actual	Sample Size	Pass (<u>Note 3</u>)	Fail
5x10 ¹¹	5.51x10 ¹¹	5	5	0
2x10 ¹²	2.13x10 ¹²	5	5	0
1x10 ¹³	9.61x10 ¹²	5	0	5
1x10 ¹⁴	6.15x10 ¹³	5	0	5

Note:

3. Pass indicates a sample that passes all SMD limits.

2.2 Variables Data

The plots in Figures 1 through 8 show data plots for key parameters before and after irradiation to each level. The plots show the mean of each parameter as a function of neutron irradiation. The plots also include error bars at each downpoint, representing the minimum and maximum measured values of the samples, although in some plots the error bars might not be visible due to their values compared to the scale of the graph. While the applicable electrical limits taken from the SMD are also shown, it should be noted that these limits are provided for guidance only as the ISL70592SEH is not specified for the neutron environment.

All samples passed the post-irradiation SMD limits after all exposures up to and including $2x10^{12}$ n/cm², but most of the parameters, failed the SMD post-irradiation limits after $1x10^{13}$ n/cm² and $1x10^{14}$ n/cm² and some parameters could not be plotted without greatly increasing the minimum or maximum y-axis values of the graphs and comprising the usefulness of the passing data.

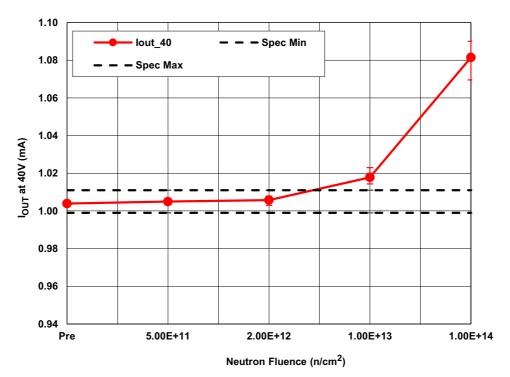


Figure 1. ISL70592SEH output current at 40V (I_{O40V}), following irradiation to each neutron fluence level. The error bars represent the minimum and maximum measured values. The post-irradiation SMD limits are 0.9990mA minimum and 1.0110mA maximum.

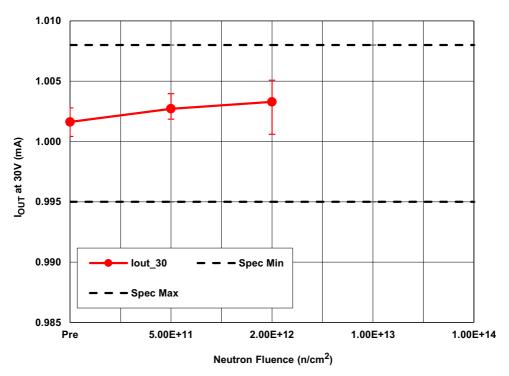
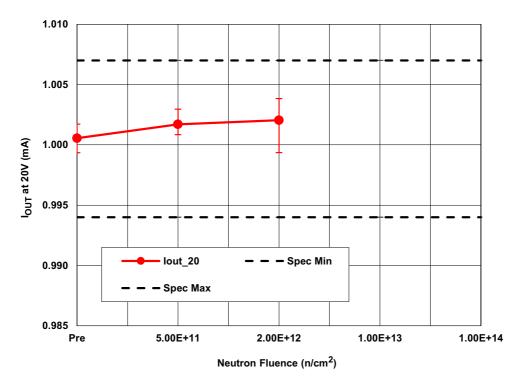
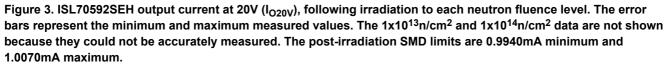
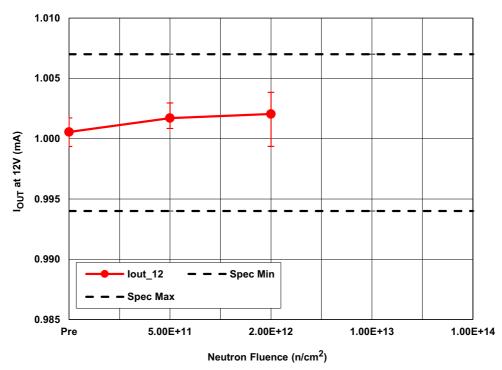
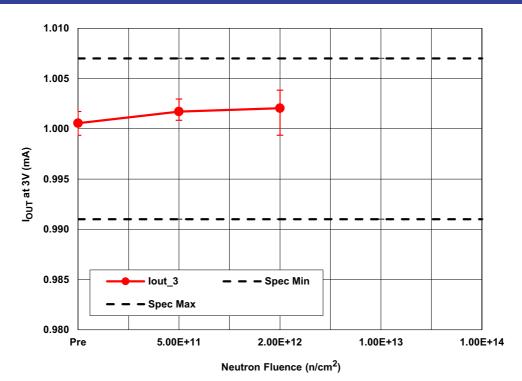
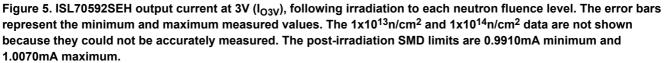
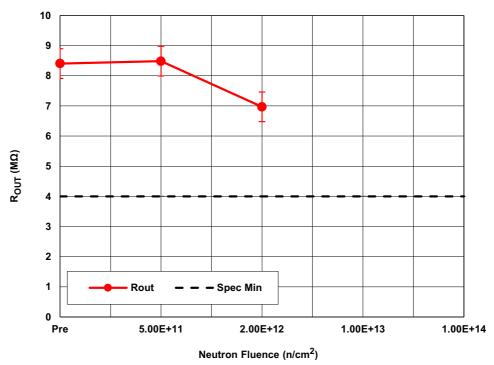
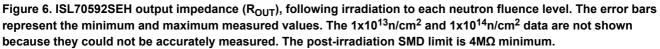




Figure 2. ISL70592SEH output current at 30V (I_{O30V}), following irradiation to each neutron fluence level. The error bars represent the minimum and maximum measured values. The 1x10¹³n/cm² and 1x10¹⁴n/cm² data are not shown because they could not be accurately measured. The post-irradiation SMD limits are 0.9950mA minimum and 1.0080mA maximum.

intersil


Figure 4. ISL70592SEH output current at 12V (I_{O12V}), following irradiation to each neutron fluence level. The error bars represent the minimum and maximum measured values. The 1x10¹³n/cm² and 1x10¹⁴n/cm² data are not shown because they could not be accurately measured. The post-irradiation SMD limits are 0.9930mA minimum and 1.0070mA maximum.

intersil

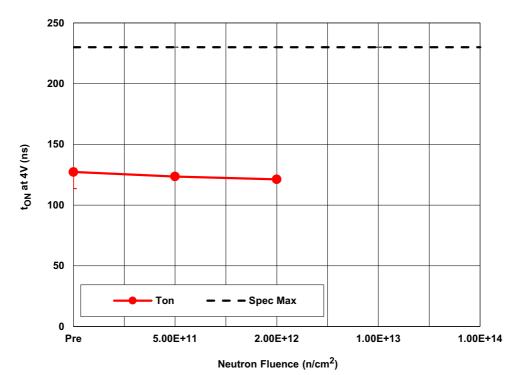


Figure 7. ISL70592SEH turn-on time at 4V (t_{ON}), following irradiation to each neutron fluence level. The error bars represent the minimum and maximum measured values. The $1x10^{13}n/cm^2$ and $1x10^{14}n/cm^2$ data are not shown because they could not be accurately measured. The post-irradiation SMD limit is 230µs maximum.

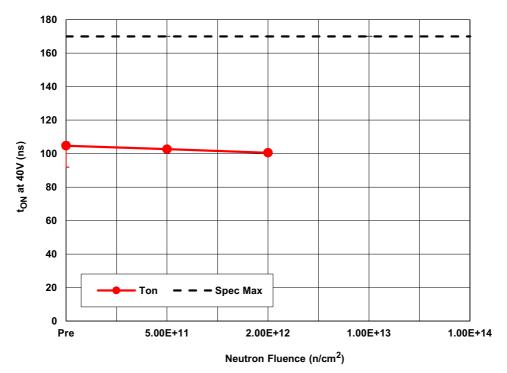


Figure 8. ISL70592SEH turn-on time at 40V (t_{ON}), following irradiation to each neutron fluence level. The error bars represent the minimum and maximum measured values. The 1x10¹³n/cm² and 1x10¹⁴n/cm² data are not shown because they could not be accurately measured. The post-irradiation SMD limit is 170µs maximum.

3. Discussion and Conclusion

This document reports the results of 1MeV equivalent neutron testing of the ISL70592SEH 1mA precision current source. Parts were tested at $5x10^{11}n/cm^2$, $2x10^{12}n/cm^2$, $1x10^{13}n/cm^2$, and $1x10^{14}n/cm^2$. The results of key parameters before and after irradiation to each level are plotted in Figures 1 through 8. The plots show the mean of each parameter as a function of neutron irradiation, with error bars that represent the minimum and maximum measured values. All samples passed the SMD limits after all exposures up to and including $1x10^{12}n/cm^2$, but failed after $1x10^{13}n/cm^2$ and could not be effectively plotted. Although the figures show the applicable electrical limits taken from the SMD, it should be remembered that these limits are provided for guidance only as the ISL70592SEH is not specified for the neutron environment.

4. Appendices

4.1 Reported Parameters

Fig.	Parameter	Symbol	Low Limit	High Limit	Units
1	Output Current at 40V	I _{O40V}	0.9990	1.0110	mA
2	Output Current at 30V	I _{O30V}	0.9950	1.0080	mA
<u>3</u>	Output Current at 20V	I _{O20V}	0.9940	1.0070	mA
<u>4</u>	Output Current at 12V	I _{O12V}	0.9930	1.0070	mA
<u>5</u>	Output Current at 3V	I _{O3V}	0.9910	1.0070	mA
<u>6</u>	Output Impedance	R _{OUT}	4	-	ΜΩ
Z	Turn-On Time at 4V	t _{ON}	-	230	μs
<u>8</u>	Turn-On Time at 40V	t _{ON}	-	170	μs

5. Revision History

Rev.	Date	Description
1.00	Aug.9.19	Initial release

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
 prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
 promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/