
…personal

…portable

…connected

DA1458x Prototype Bring-up Guide

© Copyright 2017 Dialog Semiconductor. All Rights Reserved

Problem Definition

System Overview

First power-up

Loading test firmware

Verification

Testing the sleep clock

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 2

Agenda

• Bringing up hardware prototypes based on the DA14580 and DA14581 obviously

involves the hardware itself, but it also requires a set of tools and SoC firmware.

• Because there are so many parameters in play, it is often hard to troubleshoot issues,

and troubleshooting often requires the involvement of separate hardware and software

developers.

• This presentation is an attempt to help structure the Bring-up procedure in such a way

that complexity is reduced to a minimum. This should allow you to troubleshoot actual

issues rather than spending time verifying your bring-up procedure.

• It is recommended that you familiarize yourself with the proposed bring-up procedure

using a DA14580 or DA14581 development kit as target before you attack a prototype

fresh-from-the-oven.

Problem Definition

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 3

Bring-up complexity

Problem Definition

System Overview

First power-up

Loading test firmware

Verification

Testing the sleep clock

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 4

Agenda

To perform a proper bring-up, we will need to determine the following about the system:

• Which interfaces are available for bring-up

• Is the device Boost or Buck mode operated?

• Does the system depend on internal or external sleep clock (RCX20 vs. 32k768Hz

XTAL or oscillator)?

• Will firmware be stored in OTP, external memory, or external MCU?

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 5

What type of hardware configuration are we looking at?

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 6

Which interfaces are available for Bring-up:

Pin Function Development Production

VPP OTP Programming voltage Required Required unless OTP is preprogrammed

SWDIO Debugger Data line Required Not required

SWCLK Debugger Clock line Required Not required

VBAT1V Boost mode supply Required for boost mode Required for boost mode (*1)

VBAT3V Buck mode supply Required for buck mode Required for buck mode (*1)

Bootable UART(*2)

RX and TX

Trimming, test, and programming

interface

Required Required

RST Reset (active High!) Recommended; not required(*3) Recommended; not required(*3)

GND Ground Required Required

The following Pins should be accessible as test pins for development and production:

(*1) RST must be made available if a battery is connected during test/programming

(*2) A Bootable UART pair consists of either P0_0 + P0_1, P0_2 + P0_3, P0_4 + P0_5, or P0_6 and P0_7.

P0_4 + P0_5 is the recommended pair. See AN-B-001 for details.

(*3) Using RST during production is currently not directly supported in Dialog’s production line solution, but will be in the future.

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 7

Minimal Boost mode configuration (Supplied by 0.9V – 1.8V)

Referring to the schematic on the previous slide:

• The schematic shows the minimal implementation of a boost mode operated DA14580.

The DA14581 minimal implementation is identical.

• The power source is connected to VBAT1V. The power source is typically an Alkaline, a

Silver/Oxide, or a Zink/Air cell.

• The 2u2H regulator inductor is placed between VBAT1V and SWITCH

• VBAT3V and VBAT_RF are connected directly

• VDCDC and VDCDC_RF are connected via a 4-10mm Meander line and are

individually decoupled by a 1uF capacitor (see AN-B-018 for details on the Meander

line)

• All capacitors, C1 to C4 are placed as close to the SoC as possible

• A minimum of 4 capacitors is required

• Note that, unless you have pre-loaded firmware into OTP, that all GPIOs of port 0 will

reference VBAT3V (2.8V in boost mode) while the primary boot loader runs. This means

that anything connected to port 0 will be exposed to 2.8V! (See AN-B-001 for details of

the primary boot loader)

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 8

Boost mode configuration (Supplied by 0.9V – 1.8V)

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 9

Minimal Buck mode configuration (Supplied by 2.4V – 3.3V)

Referring to the schematic on the previous slide:

• The schematic shows the minimal implementation of a buck mode operated DA14580.

The DA14581 minimal implementation is identical.

• The power source is connected to VBAT3V and VBAT_RF. The power source is

typically a coin cell or two alkaline cells in series.

• VBAT3V and VBAT_RF are connected directly.

• The 2u2H regulator inductor is placed between VDCDC and SWITCH.

• VDCDC and VDCDC_RF are connected via a 4-10mm Meander line and are

individually decoupled by a 1uF capacitor (see AN-B-018 for details on the Meander

line).

• The capacitors, C2 to C4 are placed as close to the SoC as possible. C1 is placed close

to the supply source.

• A minimum of 4 capacitors is required each 1uF.

• VBAT1V is connected to GND.

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 10

Buck mode configuration (Supplied by 2.4V – 3.3V)

Modules, based on the DA14580 (from Murata, Panasonic, TDK, and Alps) all operate in

buck mode!

• A reference clock is needed during extended and deep sleep

• This clock is referred to as sleep clock or Low-Power (LP) clock

• The LP clock source can be one of the following:

• An external crystal*

• An external oscillator*

• An internal RC oscillator (RCX20)

• The system does not require a sleep clock if sleep is disabled in the firmware

• A system in boost mode configuration, using RCX20 as sleep clock, must disable sleep

while in a Bluetooth connection – the timing of RCX20 in boost mode is not accurate

enough to maintain a connection!

*) An external clock source can provide a fixed frequency in the range from 10kHz to

100kHz, but the current SDK5.0.4 only supports 32.768kHz!

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 11

Sleep Clock

• Wired as shown below.

• No load capacitors needed unless frequency trimming is required

• 32k768kHz is the only sleep clock frequency currently supported in the SDK5.0.4

• The SDK defaults to using an external crystal as shown here:

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 12

Sleep Clock provided by external crystal

DA1458x

DA1458x

• Wired as shown below. The XTAL32Km pin must remain floating!

• The peak-peak voltage level on pin XTAL32Kp must be in the range from 0,1V to 1.5V

• C5 below serves as a signal attenuator. The internal load capacitance is in the range of

6pF to 9pF so the attenuation with a C5 value of 10pF allows for a peak-peak oscillator

output of up to approximately 3V.

• The XTAL32Kp pin is internally AC coupled, which allows for the output of the external

oscillator to be either sine or square waved.

• The sleep clock must be set to LP_CLK_XTAL32 as shown in previous slide (default)

• The XTAL32K_DISABLE_AMPREG bit of the CLK_32K_REG register must be set to 1

in the firmware! See next slide for details.

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 13

Sleep Clock provided by external oscillator or MCU

x

The XTAL32K_DISABLE_AMPREG bit of the CLK_32K_REG register must be set to 1:

• Modify the init_pwr_and_clk_ble() function of arch_system.c

• From this:

To this:

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 14

Sleep Clock provided by external oscillator or MCU

• Wired as shown below

• RCX20 can be selected as sleep clock in the SDK as shown below:

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 15

Sleep Clock provided by internal RCX20

DA1458x

• Using RCX20 in boost mode requires a change in the SDK – see next slide.

Supporting RCX20 in boost mode (sleep must be disabled during a Bluetooth connection!)

requires changes in the SDK. Open the file rwip.c and change modify the function

rwip_sleep()

From:

To:

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 16

Sleep Clock provided by internal RCX20

• Firmware can be loaded on boot-up from either of the sources below:

• From internal OTP

• From external MCU via SPI (DA1458x is slave)

• From external MCU via UART

• From external memory via SPI (DA1458x is master)

• From external memory via I2C

• The primary boot sequence is described in application note AN-B-001

• It is recommended that P0_4 and P0_5 are made available for UART communication

during production test and board bring-up. Note that, if the two pins are also used as

interface to an external MCU, that this MCU will need to be able to high-Z the pin

connected to P0_5.

System Overview

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 17

Firmware location

Problem Definition

System Overview

First power-up

Loading test firmware

Verification

Testing the sleep clock

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 18

Agenda

• Please review your design as described in the previous section BEFORE you power up

your board!

• It is recommended that you use a regulated power supply with overcurrent protection for

this step.

• Set the voltage of your lab power supply according to the boost/buck configuration of

your prototype (0.9V – 1.8V for boost mode and 2.4 – 3.3V for buck mode). Set the

current limitation to just above your expected maximal current (The DA1458x draws

around 5mA peak in buck mode and up to 20mA peak in boost mode, but remember to

add the current consumed by the rest of your implementation.

• Monitor the voltage on VDCDC as you power up the system. You should measure about

1.41V (both in boost and Buck mode). You should have a capacitor mounted really

close to the VDCDC pin that you can put your probe on.

• If the voltage on VDCDC isn’t close to 1.41V, then power the system off and verify that

the regulator inductor is mounted correctly and test that it has not burned open.

• Boost mode only: Verify that the voltage of VBAT3V is in the area of 2.8V. If this is not

the case, power down the system and verify that the capacitor from VBAT3V to GND is

mounted correctly and that it has not short circuited.

First power-up

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 19

No smoking, please!

Problem Definition

System Overview

First power-up

Loading test firmware

Verification

Testing the sleep clock

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 20

Agenda

Preparation:

• We will use the empty_peripheral_template project for this step. This project leaves all

GPIOs in their default configuration (Input with pull-down), thus avoiding any potential

hardware conflicts with other devices in your system.

• The empty_peripheral_template project does not use sleep mode. This allows you to

run this test regardless of the sleep clock used in your hardware.

• The test firmware will allow us to observe advertising and to establish a Bluetooth

connection with the prototype. The prototype will act as Bluetooth peripheral during this

test (which means that it becomes the slave when the Bluetooth connection is

established.

• We can use a Smart Phone or tablet to connect to the prototype. Use “Light Blue” for

iOS devices or “BLE Scanner” for Android devices.

• Build the empty_peripheral_template for the SoC on your prototype (DA14580 or

DA14581). Make sure that you are using an unmodified version of the project!

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 21

Using the empty_peripheral_template project from the SDK

• Determine if you wish to load the test software via the serial wire debugger interface or

via an available bootable UART on your prototype.

• The serial wire debugger interface (SWD) is recommended, but you may not have

access to it on your specific prototype due to board space constraints. In case you

don’t, you will have to use one of the four UART pin-pairs that are used by the primary

bootloader (See AN-B-001 for details):

• P0_0 and P0_1 at 57.6 kbit/s

• P0_2 and P0_3 at 115.2 kbit/s

• P0_4 and P0_5 at 57.6 kbit/s (This is the recommended UART interface)

• P0_6 and P0_7 at 9.6 kbit/s

• Loading firmware via the serial wire debugger requires a SEGGER debugger (you can

use the SEGGER debugger on your development kit, see following slide)

• Loading firmware via a bootable UART requires a RS232 level converter (you can use

the FTDI converter on your development kit, see following slide)

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 22

Selecting a hardware interface for download

The table below shows how you can use a BASIC or PRO development kit as the

download interface during bring-up. Remove all jumpers from J4 on the BASIC kit or J5 on

the PRO kit, and connect to your prototype as follows:

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 23

Using a development kit as hardware interface

Bootable UART pin-pairs are as follows (P0_4 and P0_5 are recommended):

Note: You cannot use the BASIC or PRO development kit with boost mode configuration!

• The instructions below are for SWD interface.

• Open SmartSnippets Toolbox

• Select the JTAG option and the proper SoC and version as shown here:

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 24

Using the ‘Booter’ tool in SmartSnippets toolbox with SWD

• Click the ‘Booter’ Icon

• Open SmartSnippets Toolbox

• Select the JTAG option and the proper SoC and version as shown here:

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 25

Using the ‘Booter’ tool in SmartSnippets toolbox with SWD

• Click the ‘Booter’ Icon, click ‘Browse’ and select the empty_peripheral_template.hex file

in the SDK

• Click ‘Download’

• The download should succeed as shown here:

• The instructions below are for UART interface.

• Open SmartSnippets Toolbox

• Select the UART Mode option, the COM port connected to your prototype and the

proper SoC and version as shown here:

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 26

Using the ‘Booter’ tool in SmartSnippets toolbox with UART

• Click the ‘Board Setup’ icon to the left

• Select the port-pin pair connected on your prototype (ignore all other settings)

• Close the Board Setup window

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 27

Using the ‘Booter’ tool in SmartSnippets toolbox with UART

Loading Test Firmware

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 28

Using the ‘Booter’ tool in SmartSnippets toolbox with UART

• Click the ‘Booter’ Icon, click ‘Browse’ and select the empty_peripheral_template.hex file

in the SDK

• Click ‘Download’ (Reset or power cycle your prototype if requested to do so)

• The download should succeed as shown here (note the reset request in the log):

Problem Definition

System Overview

First power-up

Loading test firmware

Verification

Testing the sleep clock

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 29

Agenda

• After successfully loading the test firmware it is time to see the prototype in action

• It is recommended that you use a smart phone or tablet running a Bluetooth smart app

(“Light Blue” for iOS or “BLE Scanner” for Android)

• Start the app and initiate a Bluetooth Smart Scan.

• You should see a device named “DIALOG-TMPL’ in the list of discovered devices. If you

do not see the ‘DIALOG-TMPL’ name in the list, you can try to turn off and on Bluetooth

on your phone or tablet and try again. Try to hold your smartphone a few inches away

from your prototype. If you still do not see your prototype in a scan, try to repeat the

download procedure described earlier. If you still do not see your device, something is

wrong with your antenna or the SoC’s connection to the antenna or the 16MHz crystal is

not oscillating. This can be due to bad soldering, so you may want to try another board.

• Use the app to establish a connection with your prototype. You should see the device

expose only the two mandatory services (Generic Access Service and Generic Attribute

Service)

• If you are not anticipating the use of sleep modes, you can skip the next section and

start testing your prototype on a system level.

Verification

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 30

Does the prototype come up?

Problem Definition

System Overview

First power-up

Loading test firmware

Verification

Testing the sleep clock

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 31

Agenda

• The final thing to verify is the sleep clock. By now you should already know how to

modify the empty_peripheral_template project in order to support your sleep clock

source (see the earlier section, System overview)

• Also, in the empty_peripheral_template project, enable extended sleep as shown here:

• Rebuild the project and repeat the Verification section. You should again see the

prototype advertise with the name “DIALOG-TMPL” and you should be able to establish

a connection just as we did earlier. If you cannot see the prototype in a scan or if you

cannot connect to the prototype, then there is a problem with your sleep clock. Check

with a high impedance scope probe that the XTAL32Kp pin is indeed oscillating (only if

you are using an external crystal or oscillator).

Testing the sleep clock

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 32

Putting the prototype to sleep and your mind to rest

Thank You !!!

Q&A

Prototype bring-up guide

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 33

…personal

…portable

…connected

…personal

…portable

…connected

© Copyright 2017 Dialog Semiconductor. All Rights Reserved 34

Powering the Smart
Connected Future

www.dialog-semiconductor.com

