
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

SuperHTM RISC engine C/C++ Compiler,
Assembler, Optimizing Linkage Editor

Compiler Package V.9.04 User's Manual

Rev.1.02 Mar 2022

Renesas Microcomputer Development Environment System

U
ser's M

anual

R20UT0704EJ0102 Rev. 1.02 Page i of viii
Mar 01, 2022

Preface

This manual explains how to use the C/C++ compiler, assembler, and optimizing linkage editor
for the SuperH RISC engine microcomputers. This system translates source programs written in
C/C++ language, DSP-C language*1 or assembly language into relocatable object programs for
SuperH RISC engine microcomputers.

Be sure to read this manual thoroughly and that you grasp its contents before using the compiler.

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
< > Indicates an item to be specified.

[] Indicates an item that can be omitted.

... Indicates that the preceding item can be repeated.

∆ Indicates one or more blanks.

| Indicates that one of the items must be selected.

This manual is intended for the software running under Microsoft® Windows® 2000, Windows®
XP, Windows® Vista, or Windows® 7*2 on IBM PC*3 and compatible computers.

Notes: 1. DSP-C was proposed to the ISO Standardization Committee in 1998 by ACE
(Associated Compiler Experts) of the Netherlands, based on their research into
language extensions necessary for DSP compiler implementation.

 2. Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the
United States and other countries.

 3. IBM PC is a registered trademark of International Business Machines Corporation.

Page ii of viii R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

All trademarks and registered trademarks are the property of their respective owners.

R20UT0704EJ0102 Rev. 1.02 Page iii of viii
Mar 01, 2022

Contents

Section 1 Overview .. 1
1.1 Procedures for Developing Programs ... 1
1.2 Compiler ... 3
1.3 Assembler ... 3
1.4 Optimizing Linkage Editor ... 4
1.5 Prelinker .. 4
1.6 Standard Library Generator .. 4
1.7 Call Walker ... 5

Section 2 Compiler Options ... 7
2.1 Option Specification Rules ... 7
2.2 Interpretation of Options ... 7

2.2.1 Source Options ... 8
2.2.2 Object Options ... 13
2.2.3 List Options ... 30
2.2.4 Optimize Options ... 33
2.2.5 Other Options ... 61
2.2.6 CPU Options .. 77
2.2.7 Options Other Than Above .. 86

Section 3 Assembler Options ... 91
3.1 Command Line Format ... 91
3.2 List of Options .. 91

3.2.1 Source Options ... 92
3.2.2 Object Options ... 96
3.2.3 List Options ... 101
3.2.4 Other Option .. 108
3.2.5 CPU Options .. 112
3.2.6 Options Other than Above ... 117

Section 4 Optimizing Linkage Editor Options .. 125
4.1 Option Specifications .. 125

4.1.1 Command Line Format .. 125
4.1.2 Subcommand File Format .. 125

4.2 List of Options .. 125
4.2.1 Input Options ... 126

Page iv of viii R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.2 Output Options... 133
4.2.3 List Options ... 158
4.2.4 Optimize Options ... 162
4.2.5 Section Options .. 170
4.2.6 Verify Options ... 175
4.2.7 Other Options... 180
4.2.8 Subcommand File Options ... 192
4.2.9 CPU Option ... 194
4.2.10 Options Other Than Above .. 195

Section 5 Standard Library Generator Operating Method 199
5.1 Option Specifications .. 199
5.2 Option Descriptions .. 199

5.2.1 Additional Options ... 200
5.2.2 Options Not Available for the Standard Library Generator 203
5.2.3 Notes on Specifying Options ... 205

Section 6 Operating CallWalker ... 207
6.1 Overview ... 207
6.2 Starting the CallWalker... 207

Section 7 Environment Variables ... 209
7.1 Environment Variable List .. 209
7.2 Compiler Implicit Declaration .. 213

Section 8 File Specifications .. 215
8.1 Naming Files ... 215
8.2 Compiler Listings ... 218

8.2.1 Structure of Compiler Listings... 218
8.2.2 Source Listing .. 219
8.2.3 Object Listing .. 221
8.2.4 Statistics Information ... 223
8.2.5 Command Line Specification .. 224

8.3 Assembly Listings ... 225
8.3.1 Structure of Assembly Listing ... 225
8.3.2 Source List Information ... 225
8.3.3 Cross Reference Listing ... 228
8.3.4 Section Information Listing ... 229

8.4 Linkage List .. 230
8.4.1 Structure of Linkage List ... 230

R20UT0704EJ0102 Rev. 1.02 Page v of viii
Mar 01, 2022

8.4.2 Option Information .. 232
8.4.3 Error Information ... 232
8.4.4 Linkage Map Information .. 233
8.4.5 Symbol Information ... 234
8.4.6 Symbol Deletion Optimization Information .. 235
8.4.7 Cross-Reference Information ... 236
8.4.8 Total Section Size .. 237
8.4.9 Vector Information .. 237
8.4.10 CRC Information ... 238

8.5 Library Listings ... 239
8.5.1 Structure of Library Listing ... 239
8.5.2 Option Information .. 240
8.5.3 Error Information ... 241
8.5.4 Library Information ... 241
8.5.5 Module, Section, and Symbol Information within Library 242

Section 9 Programming ... 243
9.1 Program Structure ... 243

9.1.1 Sections .. 243
9.1.2 C/C++ Program Sections ... 244
9.1.3 Assembly Program Sections .. 248
9.1.4 Linking Sections .. 250

9.2 Creation of Initial Setting Programs ... 253
9.2.1 Memory Allocation .. 254
9.2.2 Execution Environment Settings .. 262

9.3 Linking C/C++ Programs and Assembly Programs .. 300
9.3.1 Method for Mutual Referencing of External Names .. 300
9.3.2 Function Calling Interface ... 302
9.3.3 Examples of Parameter Allocation .. 312
9.3.4 Using the Registers and Stack Area ... 315

9.4 Important Information on Programming ... 316
9.4.1 Important Information on Program Coding ... 316
9.4.2 Important Information on Compiling a C Program with the C++ Compiler 321
9.4.3 Important Information on Program Development .. 322

Section 10 C/C++ Language Specifications .. 323
10.1 Language Specifications ... 323

10.1.1 Compiler Specifications ... 323
10.1.2 Internal Data Representation .. 331
10.1.3 Floating-Point Number Specifications ... 348

Page vi of viii R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.1.4 Operator Evaluation Order ... 357
10.2 DSP-C Specifications ... 358

10.2.1 Fixed-Point Data Types ... 358
10.2.2 Qualifiers ... 358
10.2.3 Constants ... 361
10.2.4 Type Conversion .. 362
10.2.5 Arithmetic Conversion ... 364
10.2.6 Pointer Conversion .. 365
10.2.7 Operators ... 365
10.2.8 Libraries ... 366

10.3 Extended Specifications .. 369
10.3.1 #pragma Extension Specifiers ... 369
10.3.2 Section Address Operator .. 408
10.3.3 Intrinsic Functions ... 410

10.4 C/C++ Libraries .. 487
10.4.1 Standard C Libraries .. 487
10.4.2 EC++ Class Libraries ... 665
10.4.3 Reentrant Library ... 753
10.4.4 Unsupported Libraries ... 759
10.4.5 DSP Library ... 760

Section 11 Assembly Specifications .. 817
11.1 Program Elements ... 817

11.1.1 Source Statements .. 817
11.1.2 Reserved Words ... 821
11.1.3 Symbols ... 821
11.1.4 Constants ... 824
11.1.5 Location Counter ... 834
11.1.6 Expressions .. 835
11.1.7 String Literals .. 844
11.1.8 Local Label .. 845

11.2 Executable Instructions ... 847
11.2.1 Overview of Executable Instructions ... 847
11.2.2 Notes on Executable Instructions ... 853

11.3 DSP Instructions ... 884
11.3.1 Program Contents .. 884
11.3.2 DSP Instructions .. 888

11.4 Assembler Directives .. 897
11.5 File Inclusion Function ... 964
11.6 Conditional Assembly Function ... 967

R20UT0704EJ0102 Rev. 1.02 Page vii of viii
Mar 01, 2022

11.6.1 Overview of the Conditional Assembly Function .. 967
11.6.2 Conditional Assembly Directives .. 973

11.7 Macro Function ... 988
11.7.1 Overview of the Macro Function ... 988
11.7.2 Macro Function Directives .. 991
11.7.3 Macro Body ... 995
11.7.4 Macro Call ... 999
11.7.5 String Literal Manipulation Functions ... 1001

11.8 Automatic Literal Pool Generation Function .. 1005
11.8.1 Overview of Automatic Literal Pool Generation ... 1005
11.8.2 Extended Instructions Related to Automatic Literal Pool Generation 1006
11.8.3 Size Mode for Automatic Literal Pool Generation .. 1006
11.8.4 Literal Pool Output .. 1007
11.8.5 Literal Sharing ... 1010
11.8.6 Literal Pool Output Suppression .. 1012
11.8.7 Notes on Automatic Literal Pool Generation ... 1013

11.9 Automatic Repeat Loop Generation Function .. 1016
11.9.1 Overview of Automatic Repeat Loop Generation Function 1016
11.9.2 Extended Instructions of Automatic Repeat Loop Generation Function 1017
11.9.3 REPEAT Description ... 1017
11.9.4 Coding Examples ... 1018
11.9.5 Notes on the REPEAT Extended Instruction ... 1021

11.10 Extended Automatic Repeat Loop Generation Function .. 1023
11.10.1 Overview of Extended Automatic Repeat Loop Generation Function 1023
11.10.2 Extended Instructions of Extended Automatic Repeat Loop Generation
 Function ... 1024
11.10.3 EREPEAT Description .. 1024
11.10.4 Coding Examples ... 1025
11.10.5 Notes on the EREPEAT Extended Instruction ... 1027

Section 12 Compiler Error Messages .. 1029
12.1 Error Format and Error Levels .. 1029
12.2 Error Messages.. 1029
12.3 Standard Library Error Messages.. 1098

Section 13 Assembler Error Messages .. 1103
13.1 Error Message Format and Error Levels ... 1103
13.2 Error Messages.. 1103

Page viii of viii R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Section 14 Error Messages for the Optimizing Linkage Editor 1127
14.1 Error Format and Error Levels .. 1127
14.2 Return Values for Errors ... 1127
14.3 List of Messages ... 1128

Section 15 Limitations .. 1147
15.1 Limitations of the Compiler .. 1147
15.2 Limitations of the Assembler .. 1150

Section 16 Notes on Version Upgrade ... 1151
16.1 Notes on Version Upgrade .. 1151

16.1.1 Guaranteed Program Operation ... 1151
16.1.2 Compatibility with Earlier Version .. 1152
16.1.3 Compatibility with Objects for Earlier Version ... 1153
16.1.4 Command-line Interface .. 1154
16.1.5 Provided Contents .. 1157
16.1.6 List File Specification .. 1158

16.2 Additions and Improvements .. 1158
16.2.1 Common Additions and Improvements (Package: Ver. 6) 1158
16.2.2 Added and Improved Compiler Functions ... 1158
16.2.3 Added and Improved Assembler Functions ... 1165
16.2.4 Added and Improved Optimizing Linkage Editor Functions 1165

Section 17 Appendix .. 1171
17.1 S-Type and HEX File Format ... 1171

17.1.1 S-Type File Format .. 1171
17.1.2 HEX File Format ... 1173

17.2 ASCII Code List ... 1176

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

R20UT0704EJ0102 Rev. 1.02 Page 1 of 1176
Mar 01, 2022

Section 1 Overview

1.1 Procedures for Developing Programs

Figure 1.1 shows the procedures for developing programs. The shaded part shows software
provided in the SuperH RISC engine C/C++ compiler package.

The C/C++ compiler, assembler, optimizing linkage editor, standard library generator, and call
walker are explained in this manual.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

Page 2 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Figure 1.1 Procedures for Developing Programs

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

R20UT0704EJ0102 Rev. 1.02 Page 3 of 1176
Mar 01, 2022

Outlines of the C/C++ compiler, assembler, optimizing linkage editor, prelinker, standard library
generator, and call walker are given in the following instructions.

1.2 Compiler

The SuperH RISC engine C/C++ compiler (hereinafter referred to as compiler) is software that
takes source programs written in C or C++ language as inputs, and produces relocatable object
programs or assembly source programs for SuperH RISC engine microcomputers.

Features of this compiler are as follows:

1. Generates an object program that can be written to ROM for installation in a user system.
2. Supports an optimization that improves the speed of execution of object programs and

minimizes program size.
3. Supports the C and C++ programming languages.
4. Supports functions that are essential for the programming of embedded programs but are not

supported by the C and C++ languages as extended functions. Such functions include interrupt
functions and descriptions of system instructions.

5. The output of debugging information to enable C/C++ source-level debugging by the debugger
is supported.

6. Either an assembly source program or a relocatable object program can be selected for output.
7. Supports an inter-module optimization information output to execute optimization for the

optimizing linkage editor.

1.3 Assembler

The SuperH RISC engine assembler (hereinafter referred to as assembler) is software that takes
source programs written in assembly language, and outputs relocatable object programs for
SuperH RISC engine microcomputers.

Features of this assembler are as follows:

1. Enables the efficient writing of source programs by providing the preprocessor functions
listed below:
 File include function
 Conditional assembly function
 Macro function

2. The mnemonics for execution instruction and assembly directives conform to the naming rules
laid out in the IEEE-694 specifications, and the system is uniform.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

Page 4 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

1.4 Optimizing Linkage Editor

The optimizing linkage editor is software that takes multiple object programs output by the
compiler or assembler and produces load modules or library files.

Features of this optimizing linkage editor are as follows:

1. Optimization can be applied to a set of several object files, depending on memory allocation
and relations among function calls which cannot be optimized by the compiler.

2. Any of the following five types of load modules can be selected for output:
 Relocatable ELF format
 Absolute ELF format
 S-type format
 HEX format
 Binary format

3. Generates and edits library files.
4. Outputs symbol reference count list.
5. Deletes debugging information from library and load module files.
6. Specifies the output of a stack information file for use by the call walker.

1.5 Prelinker

The prelinker is called from the optimizing linkage editor. When a C++ program template or
runtime type-detection function is used, the prelinker calls the compiler and instructs it to generate
the necessary object files. When neither a C++ program template nor the runtime type-detection
function is used, the speed of linkage can be improved by specifying the noprelink option for the
optimizing linkage editor.

1.6 Standard Library Generator

The SuperH RISC engine standard library generator (hereinafter referred to as the standard library
generator) is a software system for the reconfiguration of standard library files provided, using
user-specified options.

The standard library functions provided with the compiler include the standard set of C library
functions, a set of C++ class library functions for embedded systems, and a set of runtime routines
(arithmetic operations that are necessary for the execution of a program). In some cases, runtime
routine will be necessary, even though library functions are not used in source programs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

R20UT0704EJ0102 Rev. 1.02 Page 5 of 1176
Mar 01, 2022

1.7 Call Walker

The call walker is software that takes the stack information file that is output by the optimizing
linkage editor and calculates the size of the stack that will be used by C/C++ programs.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

Page 6 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 7 of 1176
Mar 01, 2022

Section 2 Compiler Options

2.1 Option Specification Rules

The format of the command line to initiate the compiler is as follows:

shc[∆<option>...][∆<file name>[∆<option>...] ...]

<option>:-<option>[=<suboption>][,...]

2.2 Interpretation of Options

In the command line format, uppercase letters indicate the abbreviations and characters underlined
indicate the defaults.

The format of the dialog menus that correspond to the integrated development environment is
category name [Item].

The order of options corresponds to that of the tabs in the integrated development environment.

Note that conditions apply to the application of some options related to optimization, i.e. some
may not be applicable. Check the output code to see whether or not the optimization has actually
been performed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 8 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

2.2.1 Source Options

Table 2.1 Source Category Options

Item Command Line Format Dialog Menu Specification
Include file
directory

Include = <path name>[,…] Source
[Show entries for :]
 [Include file directories]

Specifies include-file include
path name.

Default include
file

PREInclude =
 <file name>[,...]

Source
[Show entries for :]
 [Preinclude]

Includes the specified files at
the head of compiling units.

Macro name
definition

DEFine = <sub>[,...]
<sub>:
<macro name>
[=<string literal>]

Source
[Show entries for :]
 [Defines]

Defines <string literal> as
<macro name>.

Information
message

MEssage
NOMEssage
 [= <error number>
 [- <error number>][,…]]

Source
[Show entries for :]
 [Messages]
 [Display information
 level messages]

Output
Not output

Inter-file inline
expansion
directory
specification

FILE_INLINE_PATH =
 <path name>[,...]

Source
[Show entries for :]
 [File inline path]

Specifies the path name
where obtains a file for inline
expansion between files.

Message level CHAnge_message
 =<sub>[,...]
<sub>:<level>
 [=<n>[-m],...]
<level>:{Information
 | Warning
 | Error }

Source
[Message level :]

Changes message level.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 9 of 1176
Mar 01, 2022

Include: Include File Directory

Source[Show entries for :][Include file directories]

• Command Line Format
Include = <path name>[,…]

• Description
Specifies the name of the path where the include file is stored.
Two or more path names can be specified by separating them with a comma (,).
System include files are retrieved in the order of the include option specification directory, the
environment variable SHC_INC specification directory, and the environment variable
SHC_LIB specification directory. User include files are retrieved in the order of the current
directory, the include option specification directory, the environment variable SHC_INC
specification directory, and the environment variable SHC_LIB specification directory.

• Example
shc –include=c:\usr\inc,c:\usr\shc test.c

Directories c:\usr\inc and c:\usr\shc are retrieved as include file paths.

PREInclude: Default Include File

Source[Show entries for :][Preinclude]

• Command Line Format
PREInclude = <file name>[,…]

• Description
Includes the specified file contents at the head of the compiling unit. Two or more file names
can be specified by separating them with a comma (,).

• Example
shc -preinclude=a.h test.c

 Contents of <test.c>
int a;

main(){...}

 Interpretation at compilation
#include "a.h"

int a;

main(){...}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 10 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

DEFine: Macro Name Definition

Source[Show entries for :][Defines]

• Command Line Format
DEFine = <sub> [,…]
 <sub>: <macro name> [= <string literal>]

• Description
This option is the same as #define described in the C/C++ source file.
When <macro name>=<string literal> is specified, <string literal> is defined as a macro
name.
When only <macro name> is specified for a suboption, the macro name is assumed to be
defined. Names or integer constants can be written in <string literal>.

MEssage, NOMEssage: Information Message

Source[Show entries for :][Messages][Display information level messages]

• Command Line Format
MEssage
NOMEssage [= <error number> [- <error number>][,…]]

• Description
This option specifies whether or not the information-level messages are output.
When the message option is specified, the compiler outputs information-level messages.
When the nomessage option is specified, the compiler inhibits the output of the information-
level messages. When the error number is specified by a suboption, the output of the specified
information-level messages will be inhibited.
A range of error numbers to be inhibited can be specified by using a hyphen (-), that is, in the
form <error number> - <error number>.
The default for this option is nomessage.

• Example
shc –message test.c

Information-level messages will be output.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 11 of 1176
Mar 01, 2022

FILE_INLINE_PATH: Inter-file Inline Expansion Directory Specification

Source[Show entries for :][File inline path]

• Command Line Format
FILE_INLINE_PATH = <path name> [,…]

• Description
Specifies the name of the path where a file for inter-file inline expansion is stored.
Two or more path names can be specified by separating them with a comma (,).
Files for inter-file inline expansion are retrieved in the order of the file_inline_path option
specification directory and the current directory.

• Example
shc –file_inline_path=c:\usr\file –file_inline=test2.c test.c

Directory c:\usr\file is considered as the inter-file inline expansion specification directory to
retrieve test2.c specified by the file_inline option.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 12 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

CHAnge_message: Message Level

Source[Message level :]

• Command Line Format
CHAnge_message = <sub>[,...]
 <sub> : <error level>[=<error number>[- <error number>][,...]]
 <error level> : { Information | Warning | Error }

• Description
Changes the message level of information-level and warning-level messages.

• Example
change_message=information=<error number>

Warning level messages with the specified error numbers are changed to Information level
messages.
change_message=warning=<error number>

Information level messages with the specified error numbers are changed to Warning level
messages.
change_message=error=<error number>

Information and Warning level messages with the specified error numbers are changed to
Error level messages.
change_message=information

All warning-level messages are changed to Information level messages.
change_message=warning

All information-level messages are changed to Warning level messages.
change_message=error

All information-level and warning-level messages are changed to Error level messages.
• Remarks

Output of the messages which were changed to the information-level can be disabled by
nomessage specification.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 13 of 1176
Mar 01, 2022

2.2.2 Object Options

Table 2.2 Object Category Options

Item Command Line Format Dialog Menu Specification
Pre-processor
expansion

PREProcessor
 [= <file name>]

NOLINe

Object
[Output file type :]
 [Preprocessed source
 file]
 [Suppress #line in
 preprocessed source
 file]

Outputs source program after
preprocessor expansion.

Disables #line output at
preprocessor expansion.

Object type Code =

 { Machinecode
 | Asmcode }

Object
[Output file type :]
 [Machine code]
 [Assembly source code]

Outputs machine code program.
Outputs assembly-source
program.

Debugging
information

DEBug
NODEBug

Object
[Generate debug
information]

Output
Not output

Section name SEction = <sub>[,…]
<sub>:{
Program=
<section name>
| Const=<section name>
| Data=<section name>
| Bss=<section name>
}

Object
[Code generation]
[Section :]
 [Program section (P)]
 [Const section (C)]
 [Data section (D)]
 [Uninitialized data
 section (B)]

Program area section name
Constant area section name
Initialized data area section name
Non-initialized data area section
name

Area of string
literal to be
output

STring = { Const

 | Data }

Object
[Code generation]
[Store string data in :]

Outputs string literal to constant
section (C).
Outputs string literal to initialized
data section (D).

Object file
name
specification

OBjectfile = <file name> Object
[Output directory:]

Outputs the object file of the
specified file name.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 14 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.2 Object Category Options (cont)

Item Command Line Format Dialog Menu Specification
Template
instance
generation

Template={ None

 | Static

 | Used

 | ALl

 | AUto }

Object
[Code generation]
[Template :]

Does not generate instances.

Generates instances as internal
linkage only for referenced
templates.
Generates instances as external
linkage only for referenced
templates.
Generates instances for templates
declared or referenced.
Generates instances at linkage.

ABS16/20/
28/32
declaration

<ABS>=<sub>[,…]
<ABS>:
{ ABs16
 | ABS20
 | ABS28
 | ABS32}
<sub>:
{ Program
 | Const
 | Data
 | Bss
 | Run
 | All }

Object
[Code generation2]
[Address declaration]

Specifies the memory space
where the label addresses or
runtime routines belonging to the
specified section are to be
allocated.

Method of
division
[except for
SH-1]

DIvision = Cpu =

 { Inline

 | Runtime}

Object
[Code generation]
[Division sub-options :]

Uses the CPU’s division
instruction.
 Converts division to
 multiplication and performs inline
 expansion.
 Calls run-time routine.

Disabling of
save and
restore of
floating-point
registers
[SH-2E,
SH2A-FPU,
SH-4,
and SH-4A]

IFUnc Object
[Code generation]
[Use no FPU
instructions]

Disables save and restore of
floating-point registers.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 15 of 1176
Mar 01, 2022

Table 2.2 Object Category Options (cont)

Item Command Line Format Dialog Menu Specification
16-byte or
32-byte
alignment of
labels

ALIGN16

ALIGN32

NOALign

Object
[Code generation]
[Alignment of branch
destination]

Every first label appear an
unconditional branch instruction in
a program section is aligned on a
16-byte boundary.
Every first label appear an
unconditional branch instruction in
a program section is aligned on a
32-byte boundary.
Does not necessarily place labels
on a 16-byte or 32-byte boundary.

TBR relative
function call
[SH-2A and
SH2A-FPU]

TBR [= <section name>] Object
[Code generation2]
[TBR specification]

Calls functions using TBR relative
addresses.

Order of
uninitialized
variables

BSs_order =
 {DEClaration

 | DEFinition }

Object
[Code generation2]
[Order of uninitialized
variables :]

Outputs in the order of
declarations
Outputs in the order of definitions

Disposition of
variables

STUff [= {Bss | Data
| Const} [,…]]

NOSTuff

Object
[Code generation2]
[Disposition of
variables :]

Assigns variables according to the
size of variables

Do not assign variables

Disposition of
variables in
$G0/$G1

STUFF_GBR Object
[Code generation2]
[Disposition of
Variables in $G0/$G1]

Assigns variables according to the
size of variables in $G0/$G1

Alignment of
branch
destination

ALIGN4 ={
ALL |
LOOP |
INMOSTLOOP }

Object
[Code generation]
[Alignment of Branch
Destination]

Alignment of branch destination:
- All branch destination addresses
- Start addresses of all loops
- Start addresses of the innermost

loops
Allocate const
volatile
variables

CONST_VOLATILE = {
DATA |
CONST }

Object
[Code generation]
[const volatile
variables:]

Allocate const volatile variables to
the initialized data area
Allocate const volatile variables to
the constant area

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 16 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

PREProcessor, NOLINe: Preprocessor Expansion

• Object[Output file type :][Preprocessed source file]
[Suppress #line in preprocessed source file]

• Command Line Format
PREProcessor [= <file name>]

• Description
Outputs a source program processed by the preprocessor.
If no <file name> is specified, an output file with the same file name as the source file and
with a standard extension is created. The standard extension after C compilation is p (if the
input source program is written in C), and that after C++ compilation is pp (if the input source
program is written in C++).
When preprocessor is specified, no object file is output from the compiler.
When noline is specified, disables #line output at preprocessor expansion.

• Remarks
When preprocessor is specified, other than the following options become invalid:
show=source, include, expansion, width, length, tab, listfile, define, include, comment, euc,
sjis, latin1, subcommand, preinclude, message, lang, logo, cpu, change_message

Code: Object Type

Object[Output file type :][Machine code][Assembly source code]

• Command Line Format
Code = { Machinecode | Asmcode }

• Description
Specifies an object file output type.
When code=machinecode is specified, a relocatable object program (machine code) is
generated.
When code=asmcode is specified, an assembly source program is generated.
The default for this option is code=machinecode.

• Remarks
When code=asmcode is specified, show=object and goptimize become invalid.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 17 of 1176
Mar 01, 2022

DEBug, NODEBug: Debugging Information

Object[Generate debug information]

• Command Line Format
DEBug
NODEBug

• Description
When the debug option is specified, debugging information will be output to object files.
The debug option is valid regardless of whether or not the optimization option is specified.
When nodebug option is specified, no debugging information will be output to the object file.
The default for this option is nodebug.

SEction: Section Name

Object[Code generation][Section :][Program section (P)][Const section (C)][Data section (D)]
 [Uninitialized data section (B)]

• Command Line Format
SEction = <sub> [,…]
<sub>: { Program=<section name>
| Const= <section name>
| Data= <section name>
| Bss= <section name>
}

• Description
Specifies the section name of an object program.
section=program=<section name> specifies the section name in the program area.
section=const=<section name> specifies the section name in the constant area.
section=data=<section name> specifies the section name in the initialized data area.
section=bss=<section name> specifies the section name in the non-initialized data area.
The <section name> must be alphabetic, numeric, or underscore (_) or $. The first character
must not be numeric. The section name must be specified within 8192 characters.
The default for this option is section=program=P, const=C, data=D, bss=B.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 18 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Remarks
For details on correspondence between programs and section names, refer to section 9.1,
Program Structure. The same section name cannot be specified for different areas of the
section.

STring: String Literal Output Area

Object[Code generation][Store string data in :]

• Command Line Format
STring = { Const | Data }

• Description
Specifies the destination where string literals are output.
When string=const is specified, the compiler outputs the string literals to the constant area.
When string=data is specified, the compiler outputs the string literals to the initialized data
area.
The string literals output to the initialized data area can be modified at program execution;
however, the initialized data area must be allocated in both ROM and RAM in order to transfer
the string literals to RAM from ROM at the beginning of program execution. For details on
the initial settings of the initialized data area or on memory allocation, refer to section 9.2.1
Memory Allocation.
The default for this option is string=const.

OBjectfile: Object File Output

Object[Output directory :]

• Command Line Format
OBjectfile = <object file name>

• Description
Specifies an object file name to be output.
If this option is not specified, the object file name becomes the same as that of the source file
and the extension becomes obj for a relocatable object program and src for an assembly source
program, which is determined by code.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 19 of 1176
Mar 01, 2022

Template: Template Instance Generation

Object[Code generation][Template :]

• Command Line Format
Template = { None
| Static
| Used
| ALl
| AUto }

• Description
Specifies the condition to generate template instances.
When template=none is specified, instances are not generated.
When template=static is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the internal linkage.
When template=used is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the external linkage.
When template=all is specified, instances of all templates declared or referenced in the
compiling unit are generated.
When template=auto is specified, instances needed at linkage are generated.

• Remarks
When code=asmcode is specified, template=static must be specified.

ABs16, ABS20, ABS28, ABS32: ABS16/20/28/32 Declaration

Object[Code generation2][Address declaration]

• Command Line Format
ABs16 = { Program | Const | Data | Bss | Run | All }[,…]
ABS20 = { Program | Const | Data | Bss | Run | All }[,…]
ABS28 = { Program | Const | Data | Bss | Run | All }[,…]
ABS32 = { Program | Const | Data | Bss | Run | All }[,…]

• Description
Specifies the memory space where the label addresses or runtime routines belonging to the
section specified by the suboption are to be allocated.
The default for this option is abs32=all.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 20 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.3 Address Ranges

Option
Address Range
Beginning End

abs16 0x00000000 0x00007FFF
0xFFFF8000 0xFFFFFFFF

abs20 0x00000000 0x0007FFFF
0xFFF80000 0xFFFFFFFF

abs28 0x00000000 0x07FFFF7F*

0xF8000000 0xFFFFFFFF
abs32 0x00000000 0xFFFFFFFF
Note: * Note that the end of the address range is 0x07FFFF7F.

Table 2.4 Suboptions

Suboption Description
program Allocates the program areas to the specified memory space.
const Allocates the constant areas to the specified memory space.
data Allocates the initialized data areas to the specified memory space.
bss Allocates the uninitialized data areas to the specified memory space.
run Allocates the runtime routines to the specified memory space.
all Allocates all areas to the specified memory space.

• Example
Program
-abs20=program -abs28=const,data

→ Same as -abs20=program -abs28=const,data -abs32=bss,run
-abs20=data -abs16=data

→ Outputs a warning message and –abs16=data becomes valid
• Remarks

When this option and #pragma abs16|abs20|abs28|abs32 are specified simultaneously, the
#pragma specification is valid.
When this option and #pragma gbr_base|gbr_base1 are specified simultaneously, this option
specification is not applied to the variables specified by #pragma gbr_base|gbr_base1.
abs20|abs28 is only valid when cpu=sh2a|sh2afpu is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 21 of 1176
Mar 01, 2022

DIvision: Division Method Selection

Object[Code generation][Division sub-options :]/CPU[Division :]

• Command Line Format
DIvision = { Cpu [= { Inline | Runtime }]
| Peripheral
| Nomask }

• Description
Selects the method of integer type division and residue.
When division=cpu=inline is specified, division operations on constants are converted into
multiplications and inline-expanded, and for division operations on variables, the DIVS or
DIVU instruction is selected when cpu is SH-2A or SH2A-FPU; otherwise, the runtime
routine for the DIV1 instruction is selected. This option is invalid when cpu=sh1 is specified.
When division=cpu=runtime is specified, if a division cannot be performed through shift
operations, the DIVS or DIVU instruction is selected when cpu is SH-2A or SH2A-FPU;
otherwise, the runtime routine for the DIV1 instruction is selected. This option is invalid when
cpu=sh1 is specified.
When only division=cpu is specified, either division=cpu=runtime is assumed when the size
option is specified, and division=cpu=inline is assumed when the speed or nospeed option is
specified.
When division=peripheral is specified, the runtime routine that uses the divider is selected
(sets interrupt mask level to 15). Executable only if cpu is SH-2 (SH7604).
When division=nomask is specified, the runtime routine that uses the divider is selected (no
change in interrupt mask level). Executable only if cpu is SH-2 (SH7604).
When specifying peripheral or nomask, note the following:
1. Division by 0 is not checked and errno is not set up.
2. When nomask is specified, if an interrupt occurs during operation of the divider, and if the

divider is used in the interrupt processing routine, the result is not guaranteed.
3. Overflow interrupt is not supported.
4. Results of division by zero and overflow depend on specifications of the divider, and may

differ from the results obtained when the cpu suboption is specified.
The default for this option is division=cpu.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 22 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

IFUnc: Disabling of Save and Restore of Floating-Point Registers

Object[Code generation][Use no FPU instructions]

• Command Line Format
IFUnc

• Description
Disables saving and restoring of floating-point registers.

• Remarks
This specification can be made for each function unit using #pragma ifunc.
When a source program that generates floating-point instructions is compiled with this option
specified, an error occurs.
This option is only valid when cpu=sh2e, sh2afpu, sh4, or sh4a is specified.

ALIGN16, ALIGN32, NOALign: 16-Byte or 32-Byte Alignment of Labels

Object[Code generation][Align Labels after unconditional branches 16/32 byte boundaries]

• Command Line Format
ALIGN16
ALIGN32
NOALign

• Description
When align16 is specified, every first label within the program section to appear after an
unconditional branch instruction is aligned with a 16-byte boundary.
When align32 is specified, every first label within the program section to appear after an
unconditional branch instruction is aligned with a 32-byte boundary.
When noalign is specified, labels appearing after unconditional branch instructions are not
aligned with 16- or 32-byte boundaries.
The default for this option is noalign.

• Remarks
align16 and align32 cannot be specified simultaneously.
When the noalign16 option is specified, it is considered that noalign has been specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 23 of 1176
Mar 01, 2022

TBR: TBR Relative Function Call

Object[Code generation2][TBR specification]

• Command Line Format
TBR [= <section name>]

• Description
Calls functions using TBR relative addresses.
When <section name> is specified, the function address table for function definitions is output
to the $TBR<section name> section.
When <section name> is omitted, the function address table for function definitions is output
to the $TBR section.
For details, refer to section 10.3.1 (2), #pragma tbr.

• Remarks
This option is only valid when cpu=sh2a or sh2afpu is specified.
When this option and #pragma tbr are specified simultaneously, the #pragma tbr
specification is valid. When this option and pic=1 are specified simultaneously, this option is
invalid.
When the number of functions to be included in the function address table exceeds 255, an
error message will be output.

BSs_order: Order of Uninitialized Variables

Object[Code generation2][Order of uninitialized variables]

• Command Line Format
BSs_order = {declaration | definition}

• Description
When bss_order=declaration is specified, uninitialized variables are output in the order of
declarations.
When bss_order=definition is specified, uninitialized variables are output in the order of
definitions.
The default for this option is bss_order=declaration.

• Example
extern int a1;

extern int a2;

int a3;

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 24 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

extern int a4;

int a5;

int a2;

int a1;

int a4;

<bss_order=declaration is specified>

.SECTION B,DATA,ALIGN=4

_a1:

.RES.L 1

_a2:

.RES.L 1

_a3:

.RES.L 1

_a4:

.RES.L 1

_a5:

.RES.L 1

<bss_order=definition is specified>

.SECTION B,DATA,ALIGN=4

_a3:

.RES.L 1

_a5:

.RES.L 1

_a2:

.RES.L 1

_a1:

.RES.L 1

_a4:

.RES.L 1

• Remarks
When the stuff option is specified, uninitialized variables are output in the order of
declarations regardless of the bss_order setting.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 25 of 1176
Mar 01, 2022

STUff
NOSTuff: Disposition of Variables

Object[Code generation2][Disposition of variables :]

• Command Line Format
STUff [= <section type>[,...]]
NOSTuff
<section type> : {Bss | Data | Const}

• Description
When the stuff option is specified, the variables that belong to the <section type> are assigned
to 4-byte, 2-byte, or 1-byte boundary alignment sections depending on the size of the variables
(see table 2.5).
When <section type> is omitted, any variable is applicable.
C, D, and B are the section names specified by the section option or #pragma section. The
data assigned to each section are arranged in the order of definitions (bss_order option setting
is ignored).

Table 2.5 Relationship between Size of Variable and Section Name

Section Type

Size of Variable (Byte)
4n 4n-2 2n-1

const-type variables const C$4 C$2 C$1
Initialized variables data D$4 D$2 D$1
Uninitialized variables bss B$4 B$2 B$1

When the nostuff option is specified, all variables are assigned to 4-byte boundary alignment
sections.
The data assigned to sections C and D are arranged in the order of definitions, and the data
assigned to section B are arranged according to the bss_order option.
The default for this option is nostuff.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 26 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Example
int a;

char b=0;

const short c=0;

struct {

char x;

char y;

} ST;

<stuff is specified>

.SECTION C$2,DATA,ALIGN=2

_c:

.DATA.W H’0000

.SECTION D$1,DATA,ALIGN=1

_b:

.DATA.B H’00

.SECTION B$4,DATA,ALIGN=4

_a:

.RES.L 1

.SECTION B$2,DATA,ALIGN=2

_ST:

.RES.B 2

<nostuff is specified>

.SECTION C,DATA,ALIGN=4

_c:

.DATA.W H’0000

.SECTION D,DATA,ALIGN=4

_b:

.DATA.B H’00

.SECTION B,DATA,ALIGN=4

_a:

.RES.L 1

_ST:

.RES.B 2

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 27 of 1176
Mar 01, 2022

• Remarks
This option is invalid for variables with #pragma gbr_base | gbr_base1 or #pragma
global_register.

STUFF_GBR

Description Format: C/C++ <Object> [Code generation2] [Disposition of Variables in
$G0/$G1]

Command Line Format: STUFF_GBR

Description: Assigns a #pragma gbr_base|gbr_base1-specified variable to sections
listed in table 2.6 depending on the size of the variable. This reduces the
amount of gap area generated by boundary alignment.

Table 2.6 Size of the Variable and Section Names

 Size of the Variable (in Bytes)
4n 4n-2 2n-1

With #pragma gbr_base $G0$4 $G0$2 $G0$1
With #pragma gbr_base1 $G1$4 $G1$2 $G1$1

Note: n is integer.

Remarks: This option is valid only when gbr=user has been specified. Sections
starting with $G0 or $G1 should be assigned as shown in table 2.7.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 28 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.7 Allocation of Sections

Section Name Allocation
$G0 The start address should be a multiple of 4.
$G0$1, $G0$2, $G0$4 The section should be within 128 bytes from the start

address of $G0.
$G1 The start address should be 128 bytes far from the start

address of $G0.
$G1$1 The section should be within 256 bytes from the start

address of $G0.
$G1$2 The section should be within 512 bytes from the start

address of $G0.
$G1$4 The section should be within 1024 bytes from the start

address of $G0.

ALIGN4

Description Format: C/C++ <Object> [Code generation] [Alignment of Branch Destination]

Command Line Format: ALIGN4 = { ALL |

 LOOP |

 INMOSTLOOP }

Description: When align4=all is specified, all branch destination addresses are
aligned to the 4-byte boundary.

 When align4=loop is specified, the start addresses of all loops are
aligned to the 4-byte boundary.

 When align4=inmostloop is specified, the start addresses of the
innermost loops are aligned to the 4-byte boundary.

Remarks: This option is not available when align16 or align32 has already been
specified. When align4 is specified, the start address of the function is
always aligned to the 4-byte boundary. All functions with align4 will
not be optimized at linkage.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 29 of 1176
Mar 01, 2022

CONST_VOLATILE Allocate const volatile variables

Description Format: Object [Code generation] [const volatile variables:]

Command Line Format: -CONST_VOLATILE={ DATA | CONST}

Description: This option specifies the area where const- and volatile-qualified
variables should be allocated.

 When const_volatile=const, the variables will be allocated to the
constant area.

 When const_volatile=data, the variables will be allocated to the
initialized data area.

 The default for this option is const_volatile=data.

 [Examples]

 (1) Where variable c of const volatile int c=3; will be allocated
 const_volatile=data: Initialized data area (section D)
 const_volatile=const: Constant area (section C)
 const_volatile=const -stuff : Constant area (section C$4)
 const_volatile=const -section=const=N: Constant area (section N)

 (2) Where variable x of X const volatile __fixed x=0.5r; will be
 allocated

 const_volatile=data: Initialized data area (section $XD)
 const_volatile=const: Constant area (section $XC)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 30 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

2.2.3 List Options

Table 2.8 List Category Options

Item Command Line Format Dialog Menu Specification
Listing file Listfile [= <file name>]

NOListfile
List
[Generate list file]

Output
Not output

Listing
contents
and format

SHow = <sub> [,…]
<sub>:{
 SOurce | NOSOurce
| Object | NOObject
| STatistics | NOSTatistics
| Include | NOInclude
| Expansion | NOExpansion
| Width = <numeric value>

| Length = <numeric value>

| Tab = {4 | 8} }

List
[Contents]

With/without source list
With/without object list
With/without statistics information
With/without list after include expansion
With/without list after macro expansion
Maximum characters per line:
0 or 80 to 132
Maximum lines per page:
0 or 40 to 255
Number of columns when Tab is used: 4
or 8

Listfile, NOListfile: List File

List[Generate list file]

• Command Line Format
Listfile [= <file name>]
NOListfile

• Description
Specifies whether a listing file is output or not.
When listfile option is specified, a listing file will be output. By specifying <file name>, a file
name can also be specified.
When nolistfile is specified, a listing file will not be output.
A listing file name should be specified in accordance with section 8.1, Naming Files.
If no file name is specified, a listing file with the same name as the source and a standard
extension (lst/lpp) is created. The standard extension for filenames in C compilation is lst, and
that for filenames in C++ compilation is lpp.
The default for this option is nolistfile.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 31 of 1176
Mar 01, 2022

SHow: List Contents and Format

List[Contents]
• Command Line Format

SHow= <sub>[,…]
 <sub>: { SOurce | NOSOurce
| Object | NOObject
| STatistics | NOSTatistics
| Include | NOInclude
| Expansion | NOExpansion
| Width= <numeric value>
| Length= <numeric value>
| Tab = { 4 | 8 }
}

• Description
Specifies the contents and format of the list output by the compiler, and the cancellation of
listing output.
For examples of each list in this section, refer to section 8.2, Compiler Listings.
The default for this option is show=nosource, object, statistics, noinclude, noexpansion,
width=0, length=0, tab=8.

• Remarks
Table 2.9 shows a list of suboptions.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 32 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.9 List of Suboptions of show Option

Suboption Description
source Outputs a list of source programs
nosource Outputs no list of source programs
object Outputs a list of object programs
noobject Outputs no list of object programs
statistics Outputs a list of statistics information
nostatistics Outputs no list of statistics information
include Outputs a source program listing after include file expansion. If the

nosource suboption and the include suboption are specified
simultaneously, the include suboption will be invalid, and no source
program listing will be output to a file.

noinclude Outputs a source program listing before include file expansion. If the
nosource suboption and the noinclude suboption are specified
simultaneously, the noinclude suboption will be invalid, and no
source program listing will be output to a file.

expansion Outputs a source program listing after macro expansion. If the
nosource suboption and the expansion suboption are specified,
simultaneously the expansion suboption will be invalid, and no
source program listing will be output to a file.

noexpansion Outputs a source program listing before macro expansion. If the
nosource suboption and the noexpansion suboption are specified
simultaneously, the noexpansion suboption will be invalid, and no
source program listing will be output to a file.

width=<numeric value> The number specified by <numeric value> is set as the maximum
number of characters in a single line of a listing. The <numeric
value> can specify decimal numbers from 80 to 132 or 0.
If <numeric value> is specified as 0, the maximum number of
characters in a single line is not specified.

length=<numeric value> The number specified by <numeric value> is set as the maximum
number of lines on a single page of a listing. The <numeric value>
can specify decimal numbers from 40 to 255 or 0.
If <numeric value> is specified as 0, the maximum number of lines on
a single page of a listing is not specified.

tab = { 4 | 8 } Specifies the tab size when a listing is displayed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 33 of 1176
Mar 01, 2022

2.2.4 Optimize Options

Table 2.10 Optimize Category Options

Item

Command Line
Format

Dialog Menu

Specification

Optimization OPtimize =
 { 0
 | 1
 | Debug_only}

Optimize
[Optimization]

Outputs object without optimization.
Outputs object with optimization.
Outputs a code that does not affect the
debugging information.

Optimized for
speed

SPeed
SIze
NOSPeed

Optimize
[Speed or size :]
[Optimize for speed]
[Optimize for size]
[Optimize for both
speed and size]

Selects the optimization item.

Inter-module
optimization
information

Goptimize Optimize
[Generate file for
inter-module
optimization :]

Outputs information for inter-module
optimization.

Optimized for
access to
external
variables

MAP = <file name> Optimize
[Optimization for
access to external
variables :]
[Inter-module]

Optimized for access to external
variables.

Optimization
of external
variable
access

SMap Optimize
[Optimization for
access to external
variables :]
[Inner-module]

Optimizes access to external variables
defined in the file to be compiled.

Automatic
creation of
GBR relative
access code

GBr = { Auto

 | User}

Optimize
[Gbr relative
operation :]

Automatically creates GBR-relative
access codes.
Does not automatically create GBR-
relative access codes.

switch
statement
expansion
method

CAse = { Ifthen
 | Table }

Optimize
[Switch statement :]

Expands by if_then method.
Expands by jumping to a table.

Shift-
operation
expansion

SHIft = { Inline
 | Runtime }

Optimize
[Shift operation :]

Performs inline expansion.
The runtime routine will be called if shift
operations have a large number of
instructions to be expanded.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 34 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.10 Optimize Category Options (cont)

Item

Command Line
Format

Dialog Menu

Specification

Transfer-code
expansion

BLOckcopy =
 { Inline
 | Runtime }

Optimize
[Transfer code
 development :]

Performs inline expansion.
The runtime routine will be called
when a large block of memory is to be
transferred.

Unaligned
data transfer

Unaligned =
 {Inline
 | Runtime}

Optimize
[Unaligned move :]

Performs inline expansion.
The runtime routine will be called.

Automatic
inline
expansion

INLine
[= <numeric value>]
NOINLine

Optimize
[Details]
[Inline]
[Automatic inline
expansion]

Performs inline expansion
automatically.
Does not perform inline expansion
automatically.

Inter-file inline
expansion

FILe_inline =
 <file name>[,...]

Optimize
[Details]
[Inline]
[inline file path]

Specifies a file for inter-file inline
expansion.

External
variables
handled as
volatile

GLOBAL_Volatile = { 0

 | 1}

Optimize
[Details]
[Global variables]
[Treat global
variables as volatile
qualified]

External variables declared with
volatile are not handled (excluding
external variables declared with
volatile).
All external variables are handled as if
declared with volatile.

External
variable
optimizing
range

OPT_Range = { All

 | NOLoop

 | NOBlock }

Optimize
[Details]
[Global variables]
[Specify optimizing
range :]

Optimizes external variables within the
entire function.
Disables loop control variables or
external variables in a loop from being
moved outside the loop.
Disables optimization of external
variables which extend across loops
or branches.

Vacant loop
elimination

DEL_vacant_loop = { 0
 | 1 }

Optimize
[Details]
[Miscellaneous]
[Delete vacant loop]

Disables elimination of vacant loops.
Eliminates vacant loops.

Loop unroll LOop
NOLOop

Optimize
[Details]
[Miscellaneous]
[Loop unrolling :]

Performs loop unrolling.
Does not perform loop unrolling.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 35 of 1176
Mar 01, 2022

Table 2.10 Optimize Category Options (cont)

Item

Command Line
Format

Dialog Menu

Specification

Maximum
number of
loop
expansions

MAX_unroll = <numeric
value>
<numeric value>: 1 to 32

Optimize
[Details]
[Miscellaneous]
[Specify maximum
unroll factor :]

Specifies the maximum number of
times a loop is expanded.
Default: 1 (2 when speed or loop is
specified)

Elimination of
expression
preceding
infinite loop

INFinite_loop = { 0

 | 1 }

Optimize
[Details]
[Global variables]
[Delete assignment
to global variables
before an infinite
loop]

Disables elimination of an assignment
expression for external variables
preceding an infinite loop.
Eliminates an assignment expression
for external variables preceding an
infinite loop.

External
variable
register
allocation

GLOBAL_Alloc = { 0

 | 1 }

Optimize
[Details]
[Global variables]
[Allocate registers
to global
variables :]

Disables allocation of external
variables to registers.
Allocates external variables to
registers.

Structure/
union
member
register
allocation

STRUCT_Alloc = { 0

 | 1 }

Optimize
[Details]
[Miscellaneous]
[Allocate registers
to struct/union
members :]

Disables allocation of structure/union
members to registers.
Allocates structure/union members to
registers.

const
constant
propagation

CONST_Var_propagate =
 { 0

 | 1 }

Optimize
[Details]
[Global variables]
[Propagate
variables which are
const qualified :]

Disables constant propagation of
external constants declared by const.
Performs constant propagation of
external constants declared by const.

Expansion of
constant
loading
instructions

CONST_Load = { Inline

 | Literal }

Optimize
[Details]
[Miscellaneous]
[Load constant
value as :]

Expands instructions for loading
constants.
Accesses literal pool for loading
constants.
Default: When size is specified, up to
two or three instructions are
expanded. In other cases, the default
is literal.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 36 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.10 Optimize Category Options (cont)

Item

Command Line
Format

Dialog Menu

Specification

Instruction
scheduling

SChedule = { 0
 | 1 }

Optimize[
Details]
[Global variables]
[Schedule
instructions :]

Instructions are not scheduled.
Instructions are scheduled.

Software
pipelining [SH-
2A, SH2A-
FPU, SH-4,
SH-4A and
SH4AL-DSP]

SOftpipe Optimize
[Details]
[Miscellaneous]
[Software
pipelining :]

Validates software pipelining.

Division of
optimizing
ranges

SCOpe
NOSCope

Optimize
[Details]
[Miscellaneous]
[Not divide the
optimization range]

Optimizing ranges are divided.
Optimizing ranges are not divided.

GBR relative
logic
operation
generation

LOGIc_gbr Optimize
[Gbr relative
operation]

Generates code that uses GBR
relative addresses for logic operations
of external variables.

Preventing
expansion of
C++ Inline
functions

CPP_NOINLINE C/C++ <Optimize>
[Details]
[Inline]
[Doesn't Expand
C++ Inline
Functions]

C++ Inline functions are not expanded

Optimization
considering
type of object
indicated by
pointer

ALIAS = {ANSI |

NOANSI }

Optimize
[Details]
[Miscellaneous]
[Optimization
considering type of
object indicated by
pointer]

Optimization considering type of
object indicated by pointer is applied.
Optimization considering type of
object indicated by pointer is not
applied.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 37 of 1176
Mar 01, 2022

OPtimize: Optimization

Optimize[Optimization]

• Command Line Format
OPtimize = { 0 | 1 | Debug_only }

• Description
Specifies the level of compiler optimization for the object program.
When optimize=debug_only is specified, the compiler does not optimizes the object program.
The output has highly accurate debugging information, which eases debugging at the source
level.
When optimize=0 is specified, the compiler optimizes some parts of the object program,
allocating automatic variables to registers, consolidating function-exit blocks, consolidating
multiple functions where this is possible, etc. Accordingly, the code size may become smaller
than that compiled with the optimize=debug_only setting. When optimize=1 is specified, the
compiler optimizes the object program.
The default for this option is optimize=1.

SPeed, SIze, NOSPeed: Optimization for Speed

Optimize[Speed or size :][Optimize for speed][Optimize for size]
[Optimize for both speed and size]

• Command Line Format
SPeed
SIze
NOSPeed

• Description
Table 2.11 is a list of the items optimized for the speed, size, and nospeed options.
These optimization items can be controlled by option.
The default for this option is nospeed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 38 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.11 List of Optimization Items

Option

Automatic
Inline
Expansion

Optimize
for Loop
Expansion

Expansion
of Shift
Code

Expansion
of
Transfer
Code

Expansion
of Integer
Constant
Division

Unaligned
Data
Transfer

speed inline=20 loop inline inline inline inline
size noinline noloop runtime runtime runtime runtime
nospeed noinline noloop inline inline inline inline

Goptimize: Inter-Module Optimization

Optimize[Generate file for inter-module optimization]

• Command Line Format
Goptimize

• Description
Outputs the additional information for the inter-module optimization.
For the file specified with this option, the inter-module optimization is performed at linkage.

MAP: External Variable Access Optimization

Optimize[Optimization for access to external variables :][Inter-module]

• Command Line Format
MAP = <file name>

• Description
This option sets the base addresses by using an external symbol-allocation information file
created by the optimizing linkage editor and creates code that performs access to external or
static variables relative to the base address. When gbr=auto is specified, the compiler may set
the base address in the GBR register, and may create code that performs access to external or
static variables relative to the value in GBR.
Compile the program before using this option. At linkage, specify map=<file name> to create
the external symbol-allocation information file. Then specify map=<file name> and compile
the program again.

• Example
Source program (test.c)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 39 of 1176
Mar 01, 2022

int A,B,C;

void main()

{

A = 0;

B = 0;

C = 0;

}

(1) Command: shc test.c
<Output code>
_main:

MOV.L L11,R6 ;_A

MOV #0,R2

MOV.L R2,@R6

MOV.L L11+4,R6 ;_B

MOV.L R2,@R6

MOV.L L11+8,R6 ;_C

RTS

MOV.L R2,@R6

L11:

.DATA.L _A

.DATA.L _B

.DATA.L _C

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 40 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Command: shc test.c
optlnk –map=test.bls –start=P/400,B/1000 test.obj

shc –map=test.bls test.c

Data allocation after linkage

<Output code>
_main:

MOV.W L11,R1 ;_A Sets the address of A as the base address.
MOV #0,R0

MOV.L R0,@R1

MOV.L R0,@(4,R1)

RTS

MOV.L R0,@(8,R1)

L11:

.DATA.W _A The address of A consists of 2 bytes.
• Remarks

When the order of the definitions of external variables has been changed, a new external
symbol-allocation information file must be created.
If any option other than the map option in the previous compilation differs from the one in the
current compilation, or if any contents of a function are changed, the result of the object code
is not guaranteed. In such a case, a new external symbol-allocation information file must be
created.

C
B
A 0x100

 0x100
 0x100

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 41 of 1176
Mar 01, 2022

SMap: Optimization of External Variable Access

Optimize[Optimization for access to external variables :][Inner-module]

• Format
SMap

• Description
Specifies a base address for external or static variables defined in the file to be compiled, and
generates code that uses addresses relative to the base address for access to the variables.
When gbr=auto is specified, the compiler specifies a base address in the GBR according to the
conditions and generates code that uses GBR relative addresses for access to external or static
variables.

• Example
int A,B,C;

void main()

{

A = 0;

B = 0:

C = 0;

}

MOV.L L11,R6 ; _A

MOV #0,R2 ; H'00000000

MOV.L R2,@R6

MOV.L R2,@(4,R6)

RTS

MOV.L R2,@(8,R6)

• Remarks

When this option and map=<file name> are specified simultaneously, the map option is valid.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 42 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

GBr: Automatic Creation of GBR Relative Access Code

Optimize[Gbr relative operation :]

• Command Line Format
GBr = { Auto | User }

• Description
When gbr=auto is specified, the compiler will automatically create GBR-relative code for
logic operations by certain conditions. When gbr=auto and map=<file name> are specified,
the compiler may set a base address in GBR and may create code that performs access to
external or static variables relative to the value in GBR by certain conditions.
When gbr=user is specified, the user must specify the setting of and references to GBR and
access relative to the value in GBR by using the #pragma extensions #pragma gbr_base or
#pragma gbr_base1, or intrinsic functions that are related to GBR. The default for this option
is gbr=auto.

• Example
Program
char A,B,C;
void main()
{
 A |= 1;
 B &= 1;
 C ^= 1;
}

<Output code(gbr=auto)>
_main:
 STC GBR,@-R15 ; Saves the contents of GBR
 MOV #0,R0
 LDC R0,GBR ; Sets 0 to GBR
 MOV.L L11+2,R0 ; R0 <- Address of A
 OR.B #1,@(R0,GBR) ; A |= 1
 MOV.L L11+6,R0 ; R0 <- Address of B
 AND.B #1,@(R0,GBR) ; B &= 1
 MOV.L L11+10,R0 ; R0 <- Address of C
 XOR.B #1,@(R0,GBR) ; C ^= 1
 RTS
 LDC @R15+,GBR ; Restores the contents of GBR
L11:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 43 of 1176
Mar 01, 2022

 .RES.W 1
 .DATA.L _A
 .DATA.L _B
 .DATA.L _C

• Remarks
When gbr=auto is specified in compiling a program in which #pragma gbr_base or #pragma
gbr_base1 is used, a warning message will be displayed and the specifications by the
#pragma extensions will be ignored.
When gbr=auto is specified in compiling a program in which intrinsic functions that are
related to GBR are used, an error will occur.
When gbr=auto is specified, the contents of the GBR register will be saved and restored

CAse: switch Statement Expansion Method

Optimize[Switch statement :]

• Command Line Format
CAse = { Ifthen | Table }

• Description
Specifies a switch statement expansion method.
When case=ifthen is specified, the switch statement is expanded using the if_then method,
which repeats, for each case label, comparison between the evaluated value of the expression
in the switch statement and the case label value. If they match, execution jumps to the
statement of the case label. This method increases the object code size depending on the
number of case labels in the switch statement.
When case=table is specified, the switch statement is expanded using the table method, which
stores the case label jump destinations in a jump table and enables a jump to the statement of
the case label that matches the expression in the switch statement by accessing the jump table
only once. This method increases the jump table size in the literal pool depending on the
number of case labels in the switch statement, but the execution speed is always the same.
If this option is not specified, the compiler automatically selects one of the methods for
expansion.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 44 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SHIft: Shift Operation Expansion

Optimize[Shift Operation :]

• Command Line Format
SHIft = { Inline | Runtime }

• Description
Selects the method for shift operations where shifting is by a constant number of bits greater
than 0 and less than (length in bits of the left operand - 1).
When shift=inline is specified, all shift operations are expanded.
When shift=runtime is specified, the runtime routine will be called if some instructions are to
be expanded.
When the size option has been specified, the default for this option is shift=runtime. When the
speed or nospeed option has been specified, the default for this option is shift=inline.

BLOckcopy: Transfer Code Expansion

Optimize [Transfer code development :]

• Command Line Format
BLOckcopy = { Inline | Runtime }

• Description
When blockcopy=inline is specified, (the instructions of) all coding for transfer between areas
of memory are expanded.
When blockcopy=runtime is specified, the runtime routine will be called when a large block
of memory is to be transferred.
When the size option has been specified, the default for this option is blockcopy=runtime.
When the speed or nospeed option has been specified, the default for this option is
blockcopy=inline.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 45 of 1176
Mar 01, 2022

Unaligned: Unaligned Data Transfer

Optimize[Unaligned move :]

• Command Line Format
Unaligned = { Inline | Runtime }

• Description
When unaligned=inline is specified, unaligned data transfer are expanded.
When unaligned=runtime is specified, the runtime routine will be called if a large block of
unaligned data is to be transferred.
When the size option has been specified, the default for this option is unaligned=runtime.
When the speed or nospeed option has been specified, the default for this option is
unaligned=inline.

• Remarks
This option is used for transfer of a structure whose alignment value is 1.

INLine, NOINLine: Automatic Inline Expansion

Optimize[Details][Inline][Automatic inline expansion]

• Command Line Format
INLine=[<numeric value>]
NOINline

• Description
Specifies whether to automatically perform inline expansion of functions.
When the inline option is specified, the compiler automatically performs inline expansion.
The user is able to use inline=<numeric value>, to specify the allowed increase in the
program’s size due to the use of inline expansion. For example, when inline=50 is specified,
inline expansion will be applied until the program has grown to 150% of its size (gain of 50%).
When the noinline option is specified, automatic inline expansion is not performed.
When the speed option has been specified, the default for this option is inline=20. When the
nospeed or size option, or optimize=0 has been specified, the default is noinline.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 46 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

FILe_inline: Inter-file Inline Expansion

Optimize[Details][Inline][Inline file path]

• Command Line Format
FILe_inline=<file name>[,...]

• Description
Performs inline expansion for functions that extend across files for the files specified with
<file name>.

• Example
<a.c>

func(){

g()

}

<b.c>

g(){

h();

}

By compiling a program with shc –file_inline=b.c a.c specified, calling of function g() in a.c
is expanded as follows:

func(){

h();

}

• Remarks
If the file_inline option and noinline option are specified simultaneously, inline expansion is
performed for only the functions specified with #pragma inline.
If an extern function is defined with the same name in more than one function specified with
the file_inline option, no operation is guaranteed (using a single function definition randomly
selected for inline expansion).
The extension of the file name specified by <file name> cannot be omitted.
A file to be compiled cannot be specified with the file_inline option.
A wild card (* or ?) cannot be specified for <file name>.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 47 of 1176
Mar 01, 2022

GLOBAL_Volatile: Handling External Variables as volatile

Optimize[Details][Global variables][Treat global variables as volatile qualified]

• Command Line Format
GLOBAL_Volatile = { 0 | 1 }

• Description
When global_volatile=0 is specified, the external variables not declared with volatile are
optimized. Accordingly, the access count and access order for external variables may differ
from those in the written C/C++ program.
When global_volatile=1 is specified, all external variables are handled as if they were
declared with volatile. Accordingly, the access count and access order for external variables
are exactly the same as those in the written C/C++ program.
The default for this option is global_volatile=0.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 48 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

OPT_Range: External Variable Optimizing Range Specification

Optimize[Details][Global variables][Specify optimizing range :]

• Command Line Format
OPT_Range = { All | NOLoop | NOBlock }

• Description
When opt_range=all is specified, the compiler optimizes external variables within the entire
function.
When opt_range=noloop is specified, external variables in a loop and external variables used
in a loop iteration condition are not to be optimized.
When opt_range=noblock is specified, external variables extending across branches
(including loops) are not to be optimized.
When optimize=0 or optimize=debug_only is specified, the default for this option is
opt_range=noblock. For any other case, the default for this option is opt_range=all.

• Examples
(1) Optimization extending across a branch (done when opt_range=all or opt_range=noloop

is specified)
int A,B,C;

void f(int a) {

A = 1;

if (a)

B = 1;

C = A;

}

<Source program image after optimization>
int A,B,C;

void f(int a) {

A = 1;

if (a)

B = 1;

C = 1; /* Reference of A is eliminated and A = 1 is propagated */
}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 49 of 1176
Mar 01, 2022

(2) Optimization in a loop (done when opt_range=all is specified)
int A,B,C[100];

void f {

int i;

for (i=0;i<A;i++) {

C[i] = B;

}

}

<Source program image after optimization>
int A,B,C[100];

void f {

int i;

int temp_A, temp_B;

temp_A = A; /* Reference of A by loop iteration condition is moved outside the loop */

temp_B = B; /* Reference of B in the loop is moved outside the loop */

for (i=0;i< temp_A;i++) { /* Reference of A in the loop is eliminated */

C[i] = temp_B; /* Reference of B in the loop is eliminated */

}

}

• Remarks
When opt_range=noloop is specified, max_unroll=1 is always the default.
When opt_range=noblock is specified, max_unroll=1, const_var_propagate=0, and
global_alloc=0 are always the default.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 50 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

DEL_vacant_loop: Vacant Loop Elimination

Optimize[Details][Miscellaneous][Delete vacant loop]

• Command Line Format
DEL_vacant_loop = { 0 | 1 }

• Description
When del_vacant_loop=0 is specified, even when there is no loop internal processing, a loop
is not eliminated.
When del_vacant_loop=1 is specified, loops with no internal processing are eliminated.
The default for this option is del_vacant_loop=0.

• Remarks
Note that the default differs from that for earlier versions of Ver. 7.0 (up to Ver. 7.0.04) of the
SH C/C++ compiler.
 Up to Ver. 7.0.04: Vacant loops are eliminated.
 Ver. 7.0.06 or later: Vacant loops are not eliminated.

LOop, NOLOop: Loop Unrolling

Optimize[Details][Miscellaneous][Loop unrolling :]

• Command Line Format
LOop
NOLOop

• Description
Specifies whether to perform loop unrolling.
When the loop option is specified, optimization is performed in compiling loop statements (for,
while, and do-while).
When the noloop option is specified, optimization is not performed in compiling loop
statements.
When optimize=1 and speed are specified, the default for this option is loop. For any other
case, the default for this option is noloop.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 51 of 1176
Mar 01, 2022

MAX_unroll: Loop Expansion Maximum Number Specification

Optimize[Details][Miscellaneous][Specify maximum unroll factor :]

• Command Line Format
MAX_unroll = <numeric value>

• Description
Specifies the maximum number of loops to be expanded. An integer from 1 to 32 can be
specified for <numeric value>. If any other value is specified, an error will occur.
If speed or loop is specified, the default for this option is max_unroll=2. For any other case,
the default for this option is max_unroll=1.

• Remarks
When opt_range=noloop or opt_range=noblock is specified, the default for this option is
max_unroll=1.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 52 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

INFinite_loop: Elimination of Expression Preceding Infinite Loop

Optimize[Details][Global variables][Delete assignment to global variables before an infinite loop]

• Command Line Format
INFinite_loop = { 0 | 1 }

• Description
When infinite_loop=0 is specified, an assignment expression for external variables, which is
located immediately before an infinite loop is not eliminated.
When infinite_loop=1 is specified, an assignment expression that is located immediately
before an infinite loop and is for external variables that are not referenced from the infinite
loop is eliminated.
The default for this option is infinite_loop=0.

• Example
int A;

void f()

{

A = 1; /* Assignment expression for external variable A */
while(1) {} /* A is not referenced */
}

<Source program image when infinite_loop=1 is specified>
void f()

{

/* Assignment expression for external variable A is eliminated */
while(1) {}

}

• Remarks
Note that the default differs from that for earlier versions of Ver. 7.0 (up to Ver. 7.0.04) of the
SH C/C++ compiler.
 Up to Ver. 7.0.04: An assignment expression that is located immediately before an

 infinite loop and is for external variables that are not referenced from
 the infinite loop are eliminated.

 Ver. 7.0.06 or later: An assignment expression for external variables, which is located
 immediately before an infinite loop is not eliminated.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 53 of 1176
Mar 01, 2022

GLOBAL_Alloc: External Variable Register Allocation

Optimize[Details][Global variables][Allocate registers to global variables :]

• Command Line Format
GLOBAL_Alloc = { 0 | 1 }

• Description
When global_alloc=0 is specified, allocation of external variables to registers is disabled.
When global_alloc=1 is specified, external variables are allocated to registers.

• Remarks
When opt_range=noblock or optimize=debug_only is specified, the default for this option is
global_alloc=0.
Note that when optimize=0 is specified, the default differs from that for earlier versions of Ver.
7.0 (up to Ver. 7.0.04) of the SH C/C++ compiler.
 Up to Ver. 7.0.04: External variables are allocated to registers.
 Ver. 7.0.06 or later: Allocation of external variables to registers is disabled.
For any other case, the default for this option is global_alloc=1.

STRUCT_Alloc: Structure/Union Member Register Allocation

Optimize[Details][Miscellaneous][Allocate registers to struct/union members]

• Command Line Format
STRUCT_Alloc = { 0 | 1 }

• Description
When struct_alloc=0 is specified, allocation of structure or union members to registers is
disabled.
When struct_alloc=1 is specified, structure or union members are allocated to registers.

• Remarks
If struct_alloc=1 is specified when opt_range=noblock or global_alloc=0 is specified, only
local structure or union members are allocated to registers.
When optimize=debug_only is specified, the default for this option is struct_alloc=0. Note
that when optimize=0 is specified, the default differs from that for earlier versions of Ver. 7.0
(up to Ver. 7.0.04) of the SH C/C++ compiler.
 Up to Ver. 7.0.04: Structure or union members are allocated to registers.
 Ver. 7.0.06 or later: Allocation of structure or union members to registers is disabled.
For any other case, the default for this option is struct_alloc=1.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 54 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

CONST_Var_propagate: const Constant Propagation

Optimize[Details][Global variables][Propagate variables which are const qualified :]

• Command Line Format
CONST_Var_propagate = { 0 | 1 }

• Description
When const_var_propagate=0 is specified, constant propagation for external variables
declared by const is disabled.
When const_var_propagate=1 is specified, constant propagation is performed for even
external variables declared by const.

• Example
const int x = 1;

int A;

void f() {

A = x;

}

<Source program image when const_var_propagate=1 is specified>
void f() {

A = 1; /* x = 1 is propagated */

}

• Remarks
Variables declared by const in a C++ program cannot be controlled by this option (constant
propagation is always performed).
When optimize=0, optimize=debug_only, or opt_range=noblock is specified, the default for
this option is const_var_propagate=0. For any other case, the default for this option is
const_var_propagate=1.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 55 of 1176
Mar 01, 2022

CONST_Load: Constant Loading Instruction Expansion

Optimize[Details][Miscellaneous][Load constant value as :]

• Command Line Format
CONST_Load = { Inline | Literal }

• Description
When const_load=inline is specified, the instructions for loading constants within 2 bytes with
a sign are expanded.
When const_load=literal is specified, the literal pool is accessed for loading constants of two
bytes or more.
The following shows the default for this option.

Option Specified Default
-optimize=1 and -speed const_load=inline
-optimize=1 and -size The default for this option is const_load=inline when instruction

expansion for a 2-byte constant is possible with two instructions
or when instruction expansion for a 4-byte constant is possible
with three instructions. For any other case, the default for this
option is const_load=literal.

-optimize=1 and -nospeed

-optimize=0 or
-optimize=debug_only

const_load=literal

• Example
int f(){

return (257);

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 56 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(1) const_load=inline or speed is specified
MOV #1,R0 ; R0 <- 1

SHLL8 R0 ; R0 <- 256 (1<<8)

RTS

ADD #1,R0 ; R0 <- 257 (256+1)

(2) const_load=literal, or size or nospeed is specified
MOV.W #L11,R0

RTS

NOP

L11:

.DATA.W H’0101

SChedule: Instruction Scheduling

Optimize[Details][Global variables][Schedule instructions :]

• Command Line Format
SChedule = { 0 | 1 }

• Description
When schedule=0 is specified, instructions are not scheduled. Accordingly, processing is
performed in the same order the instructions have been written in the C/C++ program.
When schedule=1 is specified, instructions are scheduled taking into consideration pipeline
processing and superscalar (SH-2A, SH2A-FPU, SH-4, SH-4A, or SH4AL-DSP).
The default for this option is schedule=0 when optimize=0 or optimize=debug_only is
specified, and schedule=1 otherwise.

SOftpipe: Software Pipelining

Optimize[Details][Miscellaneous][Software pipelining :]

• Command Line Format
SOftpipe

• Description
Validates software pipelining.

• Remarks
This option is only valid when cpu=sh2a, cpu=sh2afpu, cpu=sh4, cpu=sh4a, or
cpu=sh4aldsp is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 57 of 1176
Mar 01, 2022

SCOpe, NOSCope: Division of Optimizing Ranges

Optimize[Details][Miscellaneous][Not divide the optimization range :]

• Command Line Format
SCOpe
NOSCope

• Description
When the scope option is specified, the compiler divides the optimizing ranges of the large-
size functions into many sections.
When the noscope option is specified, the compiler does not divide the optimizing ranges.
When the optimizing range is expanded, the object performance is generally improved
although the compilation time is delayed. However, if registers are not sufficient, the object
performance may be lowered.
Use this option at performance tuning because it affects the object performance depending on
the program.

LOGIc_gbr: GBR Relative Logic Operation Generation

Optimize[Gbr relative operation]

• Format
LOGIc_gbr

• Description
Generates code that uses GBR relative addresses for logic operations of external variables.

• Remarks
When gbr=auto is specified, this option is invalid.
When using this option, specify the $G0 section start address by intrinsic function set_gbr().

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 58 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

CPP_NOINLINE

Description Format: C/C++ <Optimize> [Details] [Inline] [Doesn't Expand C++ Inline
Functions]

Command Line Format: CPP_NOINLINE

Description: In compilation of a C++ source program, this option prevents inline
expansion of an inline-specified function or a member function defined
in a class or structure and generates a code as a calling static function
with internal linkage.

Remarks: This option is valid only in compilation of C++ source programs. If the
inline or speed option is specified or #pragma inline is used, the inline
expansion of a function that is supposed to be prevented by
CPP_NOINLINE may be carried out.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 59 of 1176
Mar 01, 2022

ALIAS: Optimization considering type of object indicated by pointer

Optimize[Details][Miscellaneous][Optimization considering type of object indicated by pointer]

• Command Line Format
ALIAS = {ANSI | NOANSI }

• Description
When alias=ansi is specified, the compiler performs optimization considering type of object
indicated by pointer in compliance with the ANSI standard. Although, this generally produces
object code with better performance than that when alias=noansi is specified, the results of
execution may differ from those for code produced by old versions of the compiler.
When alias=noansi is specified, the compiler does not perform ANSI-complaint optimization
considering type of object indicated by pointer. The default for this option is alias=noansi.

• Examples
long x,n;

void func(short * ps)

{

n = 1;

*ps = 2;

x = n;

}

[alias=noansi is specified]

;; The possibility of the value of n being overwritten by *ps = 2;

;; is considered, so the value of n is reloaded by (A)

MOV #1,R2 ; H'00000001

MOV.L L11+2,R6 ; _n

MOV.L R2,@R6 ; n

MOV #2,R2 ; H'00000002

MOV.W R2,@R4 ; *(ps)

MOV.L @R6,R2 ; n (A) n is reloaded

MOV.L L11+6,R6 ; _x

RTS

MOV.L R2,@R6 ; x

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 60 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

[alias=ansi is specified]
;; Since the types of *ps and n are different, we assume that the
;; n value will not overwritten by *ps = 2, and n = 1 is reused at
;; (B). Accordingly, the results will differ if the value of n was
;; overwritten by *ps = 2;.

MOV #1,R2 ; H'00000001

MOV.L L11+2,R6 ; _n

MOV.L R2,@R6 ; n

MOV #2,R2 ; H'00000002

MOV.W R2,@R4 ; *(ps)

MOV #1,R2 ; H'00000001 (B) n = 1 is reused

MOV.L L11+6,R6 ; _x

RTS

MOV.L R2,@R6 ; x

• Remarks
This option is only valid when optimize=1 has been specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 61 of 1176
Mar 01, 2022

2.2.5 Other Options

Table 2.12 Other Category Options

Item

Command Line
Format

Dialog Menu

Specification

Embedded
C++ language

ECpp Other
[Miscellaneous options :]
 [Check against EC++
 language specification]

Checks syntax according
to the Embedded C++
language specifications.

DSP-C
language
[SH2-DSP,
SH3-DSP and
SH4AL-DSP]

DSpc Other
[Miscellaneous options :]
 [Check against DSP-C
 language specification]

Checks syntax according
to the DSP-C language
specifications.

Comment
nesting

COMment =
{ Nest

| NONest }

Other
[Miscellaneous options :]
 [Allow comment nest]

Permits comment (/* */)
nesting.
Does not permit comment
(/* */) nesting.

MAC register Macsave = { 0

 | 1 }

Other
[Miscellaneous options :]
 [Callee saves/restores MACH
 and MACL registers if used]

Does not guarantee the
MAC register contents
before and after a
function is called.
Guarantees the MAC
register contents before
and after a function is
called.

Saving and
restoring SSR
and SPC
registers
[SH-3 to SH-4]

SAve_cont_reg = { 0

 | 1 }

Other
[Miscellaneous options :]
 [Saves/restores SSR and SPC
 registers]

Does not save or restore
SSR and SPC registers.
Saves and restores SSR
and SPC registers.

Extension of
return value

RTnext

NORTnext

Other
[Miscellaneous options :]
 [Expand return value to 4 byte]

Creates a sign-extension
or zero-extension of the
return value
Creates no sign-
extension or zero-
extension of the return
value

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 62 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.12 Other Category Options (cont)

Item

Command Line
Format

Dialog Menu

Specification

Converting the
floating-point
constant
divisions to
multiplications

APproxdiv Other
[Miscellaneous options :]
 [Approximate a floating-point
constant division]

Converts the division of
floating-point constant to
multiplication

Avoiding
SH7055 illegal
operation
[SH-2E]

PAtch=7055 Other
[Miscellaneous options :]
 [Avoid illegal SH7055 instructions]

Avoids the creation of a
program that includes
operations that are illegal
for the SH7055 due to the
order of instructions.

FPSCR
register
switching
[SH2A-FPU,
SH-4, and
SH-4A]

FPScr = { Safe

 | Aggressive

Other
[Miscellaneous options :]
 [Change FPSCR register if double
 data used]

The FPU is guaranteed to
be in single-precision
mode before and after
function calls.
The FPU is not
guaranteed to be in
single-precision mode
before and after function
calls.

Suppress
optimization of
loop iteration
condition

Volatile_loop Other
[Miscellaneous options :]
 [Treats loop condition as volatile
 qualified]

Suppresses optimization
of loop iteration condition

Enumeration
data size

AUto_enum Other
[Miscellaneous options :]
 [enum size is made the smallest]

Automatically selects the
enumeration data size.

Preferential
allocation of
register
storage class
variables

ENAble_register Other
[Miscellaneous options :]
 [Enable register declaration]

Allocates preferentially
the variables with register
storage class
specification to registers.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 63 of 1176
Mar 01, 2022

Table 2.12 Other Category Options (cont)

Item

Command Line
Format

Dialog Menu

Specification

ANSI
conformance

STRIct_ansi Other
[Miscellaneous options :]
 [Obey ansi specifications more
strictly]

Conforms to the ANSI
standard for the following
processing:

• unsigned int and long
type operations

• Associativity of
floating-point
operations

Conversion to
floating-point
division
[SH-2E, SH2A-
FPU, SH-4, and
SH-4A]

FDIv Other
[Miscellaneous options :]
 [Change integer division into
floating-point]

Converts integer division
to floating-point division.

Floating-point to
fixed-point
conversion
[SH2-DSP,
SH3-DSP and
SH4AL-DSP]

FIXED_Const Other
[Miscellaneous options :]
 [Floating-point constant is handled
as a fixed-point constant]

Handles floating-point
values as fixed-point
values.

Conversion of 1.0
to _ _fixed type
maximum value
[SH2-DSP,
SH3-DSP and
SH4AL-DSP]

FIXED_Max Other
[Miscellaneous options :]
 [treats 1.0 as maximum number of
fixed type]

Handles 1.0r (1.0R) as
the maximum value of
_ _fixed (long _ _fixed)
type.

Omitting type
conversion for
_ _fixed
multiplication
result
[SH2-DSP,
SH3-DSP and
SH4AL-DSP]

FIXED_Noround Other
[Miscellaneous options :]
 [delete type conversion after fixed
multiple]

Omits type conversion for
the operation result of
_ _fixed type
multiplication.

DSP repeat loop
[SH3-DSP and
SH4AL-DSP]

REPeat Other
[Miscellaneous options :]
 [DSP repeat loop is used]

Uses a DSP-expansion
repeat loop.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 64 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.12 Other Category Options (cont)

Item

Command Line
Format

Dialog Menu

Specification

Omitting range
check for
conversion
between floating-
point number and
integer
[SH-2E, SH2A-
FPU, SH-4, and
SH-4A]

SIMple_float_conv Other
[Miscellaneous options :]
[Not check the range in conversion
between floating point number and
integer]

Generates a code that
does not include a check
of the target value range
for the type conversion
between an unsigned
integer and a floating-pint
number

Suppress DIVS
and DIVU
instruction
generation

NOUSE_DIV_INS
T

Other
[Miscellaneous options :]
[Suppress DIVS and DIVU
instruction generation]

Suppress generation of
the DIVU and DIVS
instructions

Change
operation order
for floating-point
expression

FLOAT_ORDER Other
[Miscellaneous options :]
[Change operation order for
floating-point expression
aggressively]

Change operation order
for floating-point
expression aggressively

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 65 of 1176
Mar 01, 2022

ECpp: Embedded C++ Language

Other[Miscellaneous options:][Check against EC++ language specification]

• Command Line Format
ECpp

• Description
The compiler checks the syntax of the C++ source program according to the Embedded C++
language specifications. The Embedded C++ language specifications do not support such
keywords as catch, const_cast, dynamic_cast, explicit, mutable, namespace,
reinterpret_cast, static_cast, template, throw, try, typeid, typename, and using. Therefore,
if these keywords are written in the source program, the compiler will output an error message.

• Remarks
The Embedded C++ language specifications do not support a multiple inheritance or virtual
base class. If a multiple inheritance or virtual base class is written in the source program, the
compiler will display error message "C5882 (E) Embedded C++ does not support multiple or
virtual inheritance" at compilation.
This option and the exception option cannot be specified simultaneously.

DSpc: DSP-C Language

Other[Miscellaneous options :][Check against DSP-C language specification]

• Command Line Format
DSpc

• Description
The compiler checks the syntax of the DSP-C source program according to the DSP-C
language specifications. For details on the DSP-C language specifications, refer to
section 10.2, DSP-C Specifications.

• Remarks
This option can only be specified for cpu=sh2dsp, sh3dsp, or sh4aldsp.
This option cannot be specified for a C++ source program.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 66 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

COMment: Comment Nesting

Other[Miscellaneous options :][Allow comment nest]

• Command Line Format
COMment={Nest | NONest}

• Description
When comment=nest is specified, nested comments are allowed to be written in the source
program.
When comment=nonest is specified, and if nested comments are written, an error will occur.
The default for this option is comment=nonest.

• Example
/* This is an example of/* nested */ comment */

 ↑
 (1)

When comment=nest is specified, the compiler handles the above line as a nested comment;
however, when comment=nonest is specified, the compiler assumes (1) as the end of the
comment.

Macsave: MAC Register

Other[Miscellaneous options :][Callee saves/restores MACH and MACL registers if used]

• Command Line Format
Macsave = { 0 | 1 }

• Description
Specifies whether or not to guarantee the contents of the MACH and MACL registers before
and after a function call.
When macsave=0 is specified, the contents of the MACH and MACL registers before and
after a function call are not guaranteed.
When macsave=1 is specified, the contents of the MACH and MACL registers before and
after a function call are guaranteed.
Functions compiled with macsave=0 specified cannot be called from functions compiled with
macsave=1 specified. On the contrary, functions compiled with macsave=1 specified can be
called from functions compiled with macsave=0 specified.
The default for this option is macsave=1.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 67 of 1176
Mar 01, 2022

SAve_cont_reg: Saving and Restoring SSR and SPC Registers

Other[Miscellaneous options :][Saves/restores SSR and SPC registers]

• Command Line Format
SAve_cont_reg = { 0 | 1 }

• Description
Specifies whether or not to save and restore the contents of the SSR and SPC registers.
When save_cont_reg=0 is specified, the contents of the SSR and SPC registers are not saved
or restored.
When save_cont_reg=1 is specified, the contents of the SSR and SPC registers are saved and
restored.
This option is only valid when cpu=sh3, sh3dsp, sh4, sh4a, or sh4ldsp is specified and
#pragma interrupt is specified.
The default for this option is save_cont_reg=1.

RTnext, NORTnext: Return Value Extension

Other[Miscellaneous options :][Expand return value to 4 byte]

• Command Line Format
RTnext
NORTnext

• Description
Specifies whether to perform sign or zero extension of a return value in register R0 when a
type of a return value is char, signed char, unsigned char, short, signed short, or unsigned short
in a function where function prototype has been declared.
When the rtnext option is specified, sign or zero extension of the function return value is
performed.
When the nortnext option is specified, sign or zero extension of the function return value is
not performed.
The default for this option is nortnext.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 68 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

APproxdiv: Converting Floating-point Constant Division to Multiplication

Other[Miscellaneous options :][Approximate a floating-point constant division]

• Command Line Format
APproxdiv

• Description
Converts divisions of floating-point constants into multiplications of the corresponding
reciprocals as constants.

• Remarks
When this option is specified, the speed of execution of floating-point constant division will be
improved. The precision of operation may, however, be changed, so take care on this point.

PAtch: Avoiding SH7055 Illegal Operation

Other[Miscellaneous options :][Avoid illegal SH7055 instructions]

• Command Line Format
PAtch = 7055

• Description
Avoids the output of a program that includes operations that are illegal for the SH7055 due to
the order of instructions.

• Remarks
This option is only valid when cpu=sh2e has been specified.

FPScr: FPSCR Register Precision Mode Switching

Other[Miscellaneous options :][Change FPSCR register if double data used]

• Command Line Format
FPScr = { Safe | Aggressive }

• Description
Specifies whether or not to guarantee the precision mode for the FPSCR register before and
after a function call.
In the SH2A-FPU, SH-4, or SH-4A, single or double precision mode is specified for the
FPSCR register when executing float or double operation.
When fpscr=safe is specified, the compiler always switches the precision-mode setting of the
FPSCR register to single precision after return from function calls.
When fpscr=aggressive is specified, the contents of the FPSCR register in terms of precision
mode after return from function calls are not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 69 of 1176
Mar 01, 2022

This option is valid when cpu=sh2afpu|sh4|sh4a is specified and neither fpu=single nor
fpu=double is specified.
The default for this option is fpscr=aggressive.

Volatile_loop: Disabling Loop Iteration Condition Optimization

Other[Miscellaneous options :][Treats loop condition as volatile qualified]

• Command Line Format
Volatile_loop

• Description
Disables optimization of the loop iteration condition if the loop iteration condition includes an
external variable.
Note however that if type conversion is performed, if two or more external variables are
included, or if composite operation is performed, optimization may be performed.

• Remarks
Without this option, if the loop iteration condition is invariant in the loop, the loop iteration
condition may be eliminated.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 70 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

AUto_enum: Enumeration Data Size

Other[Miscellaneous options :][enum size is made the smallest]

• Command Line Format
AUto_enum

• Description
Processes the enum data as the minimum data type with which the enum value can fit in. The
default for this option is to process the enum value as the int type. Table 2.13 shows the
relationship between the possible enum values and data types.

Table 2.13 Relationship between enum Values and Data Types

Enumerator
Minimum Value Maximum Value Data Type
−128 127 signed char
0 255 unsigned char
−32768 32767 signed short
0 65535 unsigned short
Other than above Other than above int

ENAble_register: Preferential Allocation of register Storage Class Variables

Other[Miscellaneous options :][Enable register declaration]

• Format
ENAble_register

• Description
Allocates preferentially the variables with register storage class specification to registers.

• Remarks
If a variable cannot be allocated to a register, message C0102 (I) Register is not
allocated to "variable name" in "function name" will be output. Note, however,
that this message will not be output if a parameter is not allocated to a register.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 71 of 1176
Mar 01, 2022

STRIct_ansi: ANSI Conformance

Other[Miscellaneous options :][Obey ansi specifications more strictly]

• Format
STRIct_ansi

• Description
Conforms to the ANSI standard for the following processing:
 unsigned int and long type operations
Example:

long s1;

unsigned int ui;

s1 /= ui; /* When strict_ansi has been specified, unsigned int is applied for
 operation. Otherwise, long is applied. */

 Associativity of floating-point operations
• Remarks

When this option is specified, the operation results may be different from those of former-
version compilers.

FDIv: Conversion to Floating-Point Division

Other[Miscellaneous options :][Change integer division into floating-point]

• Format
FDIv

• Description
Converts integer division to floating-point division, which improves the speed of division
operation.

• Remarks
This option is only valid when cpu=sh2e, sh2afpu, sh4, or sh4a is specified.
This option is invalid when the ifunc option is specified and is invalid for the function
specified with #pragma ifunc.
When cpu=sh2afpu, sh4, or sh4a and fpu=double are specified, this conversion is applied to
division when divisor and dividend are both four bytes or less. In other cases, this conversion
is applied to division when divisor and dividend are both two bytes or less.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 72 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

FIXED_Const: Floating-Point Values to Fixed-Point Values Conversion

Other[Miscellaneous options :][Floating-point constant is handled as a fixed-point constant]

• Command Line Format
FIXED_Const

• Description
Generates an object with converting floating-point values to fixed-point values.

• Remarks
This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp and dspc are
specified.
When the expression format of the floating-point constant is explicitly used, an object is
generated as the floating-point constant even if this option is specified.

FIXED_Max: Conversion of 1.0 to _ _fixed Type Maximum Value

Other[Miscellaneous options :][treats 1.0 as maximum number of fixed type]

• Command Line Format
FIXED_Max

• Description
Generates an object with converting 1.0r to the maximum value of the _ _fixed type, and
converting 1.0R to the maximum value of the long _ _fixed type.
For details on the maximum value, refer to the description on fixed.h in section 10.4.1 (8),
Standard C Libraries.

• Remarks
This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp, and dspc are
specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 73 of 1176
Mar 01, 2022

FIXED_Noround: Omitting Type Conversion for _ _fixed Multiplication Result

Other[Miscellaneous options :][delete type conversion after fixed multiple]

• Command Line Format
FIXED_Noround

• Description
Omits converting the long _ _fixed type result obtained from _ _fixed type multiplication to
the _ _fixed type.

• Remarks
When this option is specified, the precision of operation may be changed.
This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp, and dspc are
specified.
When the expression format of the floating-point constant is explicitly used, an object is
generated as the floating-point constant even if this option is specified.

REPeat: DSP-expansion Repeat Loop

Other[Miscellaneous options :][DSP repeat loop is used]

• Command Line Format
REPeat

• Description
When the repeat option is specified, the loop may be expanded as the code that uses the DSP-
expansion repeat loop.

• Remarks
The expansion-repeat loop is only available for the CPU that supports the LDRC instruction.
This option is only valid when cpu=sh3dsp or cpu=sh4aldsp has been specified

SIMple_float_conv: Omitting Range Check for Conversion between Floating-Point Number
and Integer

Other[Miscellaneous options :][Not check the range in conversion between floating point number
and integer]

• Command Line Format
SIMple_float_conv

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 74 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Description
The compiler generates a code that does not include a check of the target value range for the
type conversion between unsigned integers and floating-point numbers.

• Examples
(1) unsigned long func(float f)
{

return ((unsigned int)f);

}

[Without simple_float_conv setting]
MOV #79,R2 ; 0x0000004F

SHLL8 R2

SHLL16 R2 ; 0x4F000000

LDS R2,FPUL

FSTS FPUL,FR8

FCMP/GT FR4,FR8

BT L12

FADD FR8,FR8 ; When f ≥ 0x4F000000,

FSUB FR8,FR4 ; (f - 0x4F800000) is used as the value before conversion.

L12:

FTRC FR4,FPUL ; Conversion from float to signed long

STS FPUL,R0

[With simple_float_conv setting]
FTRC FR4,FPUL ; Conversion from float to signed long

STS FPUL,R0

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 75 of 1176
Mar 01, 2022

(2) float func2(unsigned long u)
{

return ((float)u);

}

[Without simple_float_conv setting]
LDS R4,FPUL

CMP/PZ R4

BT/S L12

FLOAT FPUL,FR0 ; Conversion from signed long to float

MOVA L13+2,R

FMOV.S @R0,FR9 ; When u ≥ 0x80000000u,

FADD FR9,FR0 ; 0x4F800000 is added to the value after conversion.

L12:

RTS

NOP

L13:

RES.W 1

DATA.L H'4F800000

[With simple_float_conv setting]
LDS R4,FPUL

RTS

FLOAT FPUL,FR0 ; Conversion from signed long to float

• Remarks
This option is valid when cpu is sh2e, sh2afpu, sh4, or sh4a.
Correct operation is not guaranteed when the value before type conversion is not an integer
from 0 to 2147483647 or a floating-point number from 0.0 to 2147483647.0. When using a
value outside of these ranges, do not specify this option.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 76 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

NOUSE_DIV_INST: Inhibiting generation of the DIVU and DIVS instructions

Other[Miscellaneous options :][Suppress DIVS and DIVU instruction generation]

• Command Line Format
-NOUSE_DIV_INST

• Description
Expands all integer-type division operations and remainder operations into code which does
not use the DIVU and DIVS instructions.
This option is only valid when the cpu=sh2a | sh2afpu specification has been made.

FLOAT_ORDER: Change operation order for floating-point expression aggressively

Other[Miscellaneous options :][Change operation order for floating-point expression aggressively]

• Command Line Format
-FLOAT_ORDER

• Description
The compiler aggressively optimizes floating-point expressions by changing the order of
operations.
Although the object code generally has better performance than when float_order is not
specified, the precision of operations may differ from that for code produced by earlier
versions of the compiler.

• Examples
 /* -float_order is specified, performed as * (b + c) * 100.0f */

float a,b,c;

f()

{

 a = b * 100.0f + c * 100.0f;

}

• Remarks
This option is only valid when optimize=1 is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 77 of 1176
Mar 01, 2022

2.2.6 CPU Options

Table 2.14 CPU Tab Options

Item Command Line Format Dialog Menu Specification
CPU/operating
mode

CPu = { SH1
 | SH2
 | SH2E
 | SH2A
 | SH2AFPU
 | SH2DSP
 | SH3
 | SH3DSP
 | SH4
 | SH4A
 | SH4ALDSP }

CPU
[CPU :]

Generates SH-1 object.
Generates SH-2 object.
Generates SH-2E object.
Generates SH-2A object.
Generates SH2A-FPU object.
Generates SH2-DSP object.
Generates SH-3 object.
Generates SH3-DSP object.
Generates SH-4 object.
Generates SH-4A object.
Generates SH4AL-DSP object.

Byte order
[SH-3 to SH-4]

ENdian = { Big
 | Little }

CPU
[Endian :]

Specifies big endian.
Specifies little endian.

Floating-point
operation mode
[SH2A-FPU,
SH-4, and
SH-4A]

FPu = { Single

 | Double }

CPU
[FPU :]

Processes double-precision
floating-point operation in
single precision.
Processes single-precision
floating-point operation in
double precision.

Rounding mode
[SH2A-FPU,
SH-4, and
SH-4A]

Round = { Zero
 | Nearest }

CPU
[Round to :]

Rounds to zero.
Rounds to nearest.

Denormalized
numbers
[SH4 and
SH-4A]

DENormalize = { OFF

 | ON }

CPU
[Denormalized number
allower as a result]

Processes denormalized
numbers as zeros.
Processes denormalized
numbers as they are.

Program section
position
independent
[other than SH-1]

Pic= { 0

 | 1 }

CPU
[Position independent
code (PIC)]

Generates no position
independent codes for the
program section.
Generates position
independent codes for the
program section.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 78 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.14 CPU Tab Options (cont)

Item Command Line Format Dialog Menu Specification
double to float
conversion
[other than
SH2A-FPU,
SH-4, or
SH-4A]

DOuble=Float CPU
[Treat double as float]

Handles a double-type
variable as a float-type
variable.

Bit field order
specification

BIt_order={Left

 | Right }

CPU
[Bit field’s members are
allocated from the lower bit]

Stores bit-field members
from the upper bit.
Stores bit-field members
from the lower bit.

Boundary
alignment of
structure, union,
and class
members

PACK = { 1

 | 4 }

CPU
[Pack struct, union and
class]

Assumes the boundary
alignment value to be 1.
Follows the boundary
alignment.

Exception
handling

EXception

NOEXception

CPU
 [Use try, throw and catch of
C++]

Enables exception
handling function
Disables exception
handling function.

Runtime type
information

RTTI= {ON

 | OFF }

CPU
[Enable/disable runtime
information]

Enables dynamic_cast
and typeid.
Disables dynamic_cast
and typeid.

Method of
division*
[SH-2]

DIvision = { Cpu

 | Peripheral

 | Nomask }

CPU
[Division :]

Uses the CPU’s division
instruction.
Uses a divider
(interrupts are masked).
Uses a divider
(interrupts are not
masked).

Note: For details of this option, see section 2.2.2, Object Options.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 79 of 1176
Mar 01, 2022

CPu : CPU

CPU[CPU :]

• Command Line Format
CPu = { SH1
 | SH2
 | SH2E
 | SH2A
 | SH2AFPU
 | SH2DSP
 | SH3
 | SH3DSP
 | SH4
 | SH4A
 | SH4ALDSP
 }

• Description
Specifies the CPU type for the object program to be generated. Suboptions are listed in
table 2.15.
The default for this option is cpu=sh1.

Table 2.15 Suboptions for cpu Option

Suboption Description
sh1 Generates SH-1 object.
sh2 Generates SH-2 object.
sh2e Generates SH-2E object.
sh2a Generates SH-2A object.
sh2afpu Generates SH2A-FPU object.
sh2dsp Generates SH2-DSP object.
sh3 Generates SH-3 object.
sh3dsp Generates SH3-DSP object.
sh4 Generates SH-4 object.
sh4a Generates SH-4A object.
sh4aldsp Generates SH4AL-DSP object.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 80 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

ENdian: Memory Byte Order

CPU[Endian :]

• Command Line Format
ENdian = { Big | Little }

• Description
When endian=big is specified, data bytes are arranged in the big endian order.
When endian=little is specified, data bytes are arranged in the little endian order.
Little endian object programs do not run on the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, or
SH2-DSP.
The default for this option is endian=big.

FPu: Floating-point Operation Mode

CPU[FPU :]

• Command Line Format
FPu = { Single | Double }

• Description
When fpu=single is specified, double-precision floating-point operation is carried out in single
precision.
When fpu=double is specified, single-precision floating-point operation is carried out in
double precision.
Specify fpu=single if floating point calculations are not used in the program.
This option is valid only when cpu=sh2afpu|sh4|sh4a is specified.

• Note
When the fpu option is not specified or when fpu=single is specified, the precision mode
might need to be set to perform single-precision floating-point operation in an interrupt
function. For details, see section 9.4.1 (6) Interrupt Functions When the CPU Type Is SH2A-
FPU, SH4, or SH4A.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 81 of 1176
Mar 01, 2022

Round: Rounding Mode

CPU[Round to :]

• Command Line Format
Round = { Zero | Nearest }

• Description
Specifies the rounding method when floating-point constants are converted to object codes.
When round=zero is specified, values are rounded to zero.
When round=nearest is specified, values are rounded to nearest.
This option is valid only when cpu=sh2afpu|sh4|sh4a is specified.
The default for this option is round=zero.

DENormalize: Denormalized Numbers

CPU[Denormalized number allower as a result]

• Command Line Format
DENormalize = { OFF | ON }

• Description
Specifies the operation when denormalized numbers are used to describe floating-point
constants.
When denormalize=off is specified, denormalized numbers are treated as zeros.
When denormalize=on is specified, denormalized numbers as treated as they are.
This option is valid only when cpu=sh4|sh4a is specified.
The default for this option is denormalize=off.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 82 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Pic: Position Independent Code

CPU[Position independent code (PIC)]

• Command Line Format
Pic = { 0 | 1 }

• Description
When pic=1 is specified, a program section after linkage can be allocated to any address and
executed. A data section can only be allocated to an address specified at linkage. When using
this option as a position independent code, a function address cannot be specified as an initial
value. At C++ compilation, a pointer to a virtual function or function member requires a
function address as the initial value. Therefore, C++ programs containing virtual functions and
pointers to member functions cannot be executed as position independent codes.
Example 1:
extern int f ();

int (*fp)() = f; <-- Cannot be specified
Example 2:

struct A {virtual void f();}; <-- Cannot be specified
void (A::*ap)() = &A::f; <-- Cannot be specified

When cpu=sh1 is specified, pic=1 is ignored.
The default for this option is pic=0.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 83 of 1176
Mar 01, 2022

DOuble=Float: double to float Conversion

CPU[Treat double as float]

• Command Line Format
DOuble=Float

• Description
Generates an object with converting double-type (double-precision floating-point) values to
float-type (single-precision floating-point) values.

• Remarks
This option is invalid when cpu=sh2afpu|sh4|sh4a is specified, and assumes that fpu=single
is specified.

BIt_order: Bit Field Order Specification

CPU[Bit field’s members are allocated from the lower bit :]

• Command Line Format
BIt_order={ Left | Right }

• Description
Specifies the order of bit field members.
When bit_order=left is specified, members are allocated from the upper bit.
When bit_order=right is specified, members are allocated from the lower bit.
The default for this option is bit_order=left.

• Remarks
For details on allocation of bit field members, refer to section 10.1.2, Internal Data
Representation, and the description on #pragma bit_order in section 10.3.1, #pragma
Extension Specifiers.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 84 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

PACK: Boundary Alignment of Structure, Union, and Class Members

CPU[Pack struct, union and class]

• Command Line Format
PACK = { 1 | 4}

• Description
Specifies the boundary alignment value for structure, union, and class members.
The boundary alignment of structure members can also be specified by the #pragma pack
extension. If both this option and a #pragma extension are specified, the #pragma
specification is valid.
The boundary alignment value for structures, unions, and classes equals the maximum
boundary alignment of members.
For details, refer to section 10.1.2 (2), Compound Type (C), Class Type (C++).

• Remarks
When the iodefine.h file created by the Renesas High-Performance Embedded Workshop is in
use, if #pragma or an option is used to set the alignment value to 1, the members of I/O
register structures will not specify the correct addresses. To avoid this problem, place
#pragma pack4 at the start of iodefine.h and place #pragma unpack at the end of iodefine.h.
Table 2.16 shows the boundary alignment values for structure, union, and class members when
pack is specified.

Table 2.16 Boundary Alignment for Structure, Union, and Class Members when the pack

Option is Specified

Member Type pack=1 pack=4 Not Specified
(unsigned) char 1 1 1
(unsigned) short, and long _ _fixed 1 2 2
(unsigned) int, (unsigned) long,
(unsigned) long long, long _ _fixed,
_ _accum, long _ _accum,
floating-point type, and pointer type

1 4 4

Structures, unions, and classes aligned to
a 1-byte boundary

1 1 1

Structures, unions, and classes aligned to
a 2-byte boundary

1 2 2

Structures, unions, and classes aligned to
a 4-byte boundary

1 4 4

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 85 of 1176
Mar 01, 2022

EXception, NOEXception: Exception Handling

CPU[Use try, throw and catch of C++]

• Command Line Format
EXception
NOEXception

• Description
When the exception option is specified, the C++ exceptional handling function (try, catch,
throw) becomes valid.
When the noexception option is specified, the C++ exceptional handling function (try, catch,
throw) becomes invalid.
When the exception option is specified, the code performance may be reduced.
The default for this option is noexception.

• Remarks
In order to use the C++ exceptional handling function among files, specify rtti=on at
compilation, and do not specify the noprelink option at linkage.
The exception option and ecpp option cannot be specified simultaneously.
Object files created by using the exception option must not be registered with libraries or
output as relocatable files by the optimizing linkage editor. Doing so will lead to a duplicate-
definition or no-definition error.

RTTI: Runtime-Type Information

CPU[Enable/disable runtime information]

• Command Line Format
RTTI = { ON
 | OFF }

• Description
Enables or disables runtime type information.
When rtti=on is specified, dynamic_cast and typeid are enabled.
When rtti=off is specified, dynamic_cast and typeid are disabled.
The default for this option is rtti=off.

• Remarks
Do not define object files which are created by specifying this option in a library, and do not
output files with this information as relocatable object files through the optimizing linkage
editor. A symbol double definition error or symbol undefined error may occur.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 86 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

2.2.7 Options Other Than Above

Table 2.17 Options Other Than Above

Item

Command Line
Format

Dialog Menu

Specification

Selecting C or
C++ language

LAng = { C
 | CPp }


(Determined by an
extension)

Compiled as C source program.
Compiled as C++ source program.

Disable of
copyright
output

LOGO
NOLOGO


(nologo is always valid)

Outputs copyright.
Disables output of copyright.

Character code
select in string
literals

Euc
SJis
LATin1

 Selects euc code.
Selects sjis code.
Selects latin1 code.

Japanese
character code
specified within
object

OUtcode = { EUc
 | SJis }

 Selects euc code.
Selects sjis code.

Subcommand
file specified

SUbcommand =
 <file name>

 Command option is fetched from the
file specified with <file name>.

LAng: Selecting C or C++ Language

None (Always determined by an extension)

• Command Line Format
LAng = { C | CPp }

• Description
Specifies the language of the source program.
When lang=c is specified, the compiler will compile the program file as a C source program.
When lang=cpp is specified, the compiler will compile the program file as a C++ source
program.
If this option is not specified, the compiler will determine whether the source program is a C or
a C++ program by the extension of the file name. If the extension is c, the compiler will
compile it as a C source program. If the extension is cpp, cc, or cp, the compiler will compile
it as a C++ source program. If there is no extension, the compiler will compile the program as
a C source program.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 87 of 1176
Mar 01, 2022

• Example
shc test.c Compiled as a C source program.
shc test.cpp Compiled as a C++ source program.
shc -lang=cpp test.c Compiled as a C++ source program.
shc test Assumed to be test.c and thus be compiled as a
C source program.

• Remarks
If lang=c is specified, ecpp is invalid.

LOGO, NOLOGO: Copyright Output Control

None (nologo is always available)

• Command Line Format
LOGO
NOLOGO

• Description
Disables the copyright output.
When the logo option is specified, copyright display is output.
When the nologo option is specified, the copyright display output is disabled.
The default for this option is logo.

Euc, SJis, LATin1: Character Code Select in String Literals

None

• Command Line Format
Euc
SJis
LATin1

• Description
Use this option to specify the Japanese character code or ISO-Latin1 code written in a string
literal, a character constant, or a comment.
Table 2.18 shows character code in the string literals for three types of host computers.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 88 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 2.18 Relationship between the Host Computer and Character Code in String Literals

Host Computer

Option Specification
euc sjis latin1 Not Specified

PC euc sjis latin1 sjis
SPARC euc sjis latin1 euc
HP9000/700 euc sjis latin1 sjis

• Remarks
When the latin1 option is specified, the outcode option will become invalid.

OUtcode: Japanese Code Conversion in Object Code

None

• Command Line Format
OUtcode = { EUc | SJis }

• Description
Specifies the Japanese character code to be output to the object program when Japanese is
written in string literals and character constants.
When outcode=euc is specified, the compiler outputs the Japanese character code in the euc
code.
When outcode=sjis is specified, the compiler outputs the Japanese character code in the sjis
code.
Option euc or sjis can be specified for the Japanese character code in a source program.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

R20UT0704EJ0102 Rev. 1.02 Page 89 of 1176
Mar 01, 2022

SUbcommand: Subcommand File

None

• Format
SUbcommand = <file name>

• Description
Specifies the subcommand file where options used at compiler initiation are stored. The
command format in the subcommand file is the same as that on the command line.

• Example
opt.sub: -listfile -show=object -debug
Command line specification: shc -cpu=sh4 -subcommand=opt.sub test.c
Interpretation at compilation: shc -cpu=sh4 -listfile -show=object –debug
 test.c

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 90 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 91 of 1176
Mar 01, 2022

Section 3 Assembler Options

3.1 Command Line Format

The format of the command line to initiate the assembler is as follows:

asmsh [∆<option> …] [∆<file name> [,…]] [∆<option> …]

 <option>:-<option> [=<suboption> [,…]]

Note: When the user specifies multiple source files, the assembler will merge and assemble

these files as one unit in the order they were specified. In this case, the user must
write .END only in the file that was specified last.

3.2 List of Options

In the command line format, uppercase letters indicate the abbreviations. Characters underlined
indicate the default assumptions.

The format of the dialog menus for the integrated development environment is as follows:

Category [Item]

Options are described in the order of tabs in the integrated development environment’s option
dialog box.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 92 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

3.2.1 Source Options

Table 3.1 Source Category Options

Item Command Line Format Dialog Menu Specification
Include file
directory

Include = <path name>[,…] Source
[Show entries for:]
 [Include file directories]

Specifies include-file
destination path name.

Replacement
symbol
definition

DEFine = <sub>[, …]
<sub>:
<replacement symbol>
= "<string literal>"

Source
[Show entries for:]
 [Defines]

Defines replacement string
literal.

Integer
preprocessor
variable
definition

ASsignA = <sub>[, …]
<sub>:
<variable name>
= <integer constant>

Source
[Show entries for:]
 [Preprocessor
variables]

Defines integer preprocessor
variable.

Character
preprocessor
variable
definition

ASsignC = <sub>[, …]
<sub>:
<variable name>
= "<string literal>"

Source
[Show entries for:]
 [Preprocessor
variables]

Defines character preprocessor
variable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 93 of 1176
Mar 01, 2022

Include

Source [Show entries for:] [Include file directories]

• Command Line Format
Include = <path name> [,…]

• Description
The include option specifies the include file directory. The directory name depends on the
naming rule of the host machine used. As many directory names as can be input in one
command line can be specified. The current directory is searched first, and then the directories
specified by the include option are searched in the specified order.
Example: asmsh aaa.src –include=C:\common,C:\local

(.INCLUDE "file.h" is specified in aaa.src.)
The current directory, C:\common,C:\local are searched for file.h in that order.

Relationship with Assembler Directives

Option Assembler Directive Result
include (regardless of any specification) (1) Directory specified

by .INCLUDE
 (2) Directory specified by

include*
(no specification) .INCLUDE <file name> Directory specified by .INCLUDE
Note: The directory specified by the include option is added before that specified by .INCLUDE.

DEFine

Source [Show entries for:] [Defines]

• Command Line Format
DEFine = <sub>[,…]
<sub>:<replacement symbol>="<string literal>"

• Description
The define option defines the specified symbol as the corresponding string literal to be
replaced by the preprocessor.
Differences between define and assignc are the same as those between .DEFINE
and .ASSIGNC.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 94 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Relationship with Assembler Directives

Option Assembler Directive Result
define .DEFINE * String literal specified by define
 (no specification) String literal specified by define
(no specification) .DEFINE String literal specified by .DEFINE
Note: When a string literal is assigned to a replacement symbol by the define option, the

definition of the replacement symbol by .DEFINE is invalidated. This replacement is not
applied to the .AENDI, .AENDR, .AENDW, .AIFDEF, .END, and .ENDM directives.

ASsignA

Source[Show entries for:][Preprocessor variables]

• Command Line Format
ASsignA = <sub>[,…]
<sub>:<preprocessor variable>=<integer constant>

• Description
The assigna option sets an integer constant to a preprocessor variable. The naming rule of
preprocessor variables is the same as that of symbols. An integer constant is specified by
combining the radix (B', Q', D', or H') and a value. If the radix is omitted, the value is assumed
to be decimal. An integer constant must be within the range from –2,147,483,648 to
4,294,967,295. To specify a negative value, use a radix other than decimal.

Relationship with Assembler Directives

Option Assembler Directive Result
assigna .ASSIGNA* Integer constant specified by assigna

(no specification) Integer constant specified by assigna
(no specification) .ASSIGNA Integer constant specified by.ASSIGNA
Note: When a value is assigned to a preprocessor variable by the assigna option, the definition of

the preprocessor variable by .ASSIGNA is invalidated.

Example: asmsh aaa.src -assigna=_$=H'FF

Value H'FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$ in the source program are set to H'FF.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 95 of 1176
Mar 01, 2022

ASsignC

Source [Show entries for:][Preprocessor variables]

• Command Line Format
ASsignC = <sub>[,…]
<sub>:<preprocessor variable>="<string literal>"

• Description
The assignc option sets a string literal to a preprocessor variable.
The naming rule of preprocessor variables is the same as that of symbols.
A string literal must be enclosed with double-quotation marks (").
Up to 255 characters (bytes) can be specified for a string literal.

Relationship with Assembler Directives

Option Assembler Directive Result
assignc .ASSIGNC* String literal specified by assignc
 (no specification) String literal specified by assignc
(no specification) .ASSIGNC String literal specified by .ASSIGNC
Note: When a string literal is assigned to a preprocessor variable by the assignc option, the

definition of the preprocessor variable by .ASSIGNC is invalidated.

Example: asmsh aaa.src -assignc=_$="ON!OFF"
String literal ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON!OFF.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 96 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

3.2.2 Object Options

Table 3.2 Object Category Options

Item Command Line Format Dialog Menu Specification
Debugging
information

Debug
NODebug

Object
[Debug information:]

Controls output of debugging
information.

Pre-processor
expansion
result

EXPand
 [= <output file name>]

Object
[Generate assembly
source file after
preprocess]

Outputs preprocessor expansion
result.

Literal pool
output point

LITERAL = <point> [, …]
<point>:
{Pool | Branch | Jump
 | Return}

Object
[Generate literal pool
after:]

Specifies the point to output literal
pool.

Object
module
output

Object
[= <output file name>]
NOObject

Object
[Output file directory:]

Controls object module output.

Unresolved
symbol size
[SH-2A and
SH2A-FPU]

DIspsize = {4 | 12} Object
[Selects displacement
size]

Specifies the size of unresolved
symbols.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 97 of 1176
Mar 01, 2022

Debug, NODebug

Object [Debug information:]

• Command Line Format
Debug
NODebug

• Description
When the debug option is specified, debugging information is output. When the nodebug
option is specified, no debugging information is output. The debug and nodebug options are
only valid in cases where an object module is generated. The default is nodebug.

• Remarks
Debugging information is required when debugging a program with the debugger. Debugging
information includes information about source statement lines and symbols.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
debug (regardless of any specification) Debugging information is output.
nodebug (regardless of any specification) Debugging information is not

output.
(no specification) .OUTPUT DBG Debugging information is output.
 .OUTPUT NODBG Debugging information is not

output.
 (no specification) Debugging information is not

output.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 98 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

EXPand

Object [Generate assembly source file after preprocess]

• Command Line Format
EXPand [= <output file name>]

• Description
The expand option outputs an assembler source file for which macro expansion, conditional
assembly, and file inclusion have been performed.
When this option is specified, no object will be generated.
When the output file parameter is omitted, the assembler takes the following actions:
 If the file extension is omitted:

The file extension will be exp.
 If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be exp.

Note: Do not specify the same file name for the input and output files.

LITERAL

Object [Generate assembly source file after preprocess]

• Command Line Format
LITERAL = <point>[,…]
<point>:{Pool|Branch|Jump|Return}

• Description
The literal option specifies the point where the literal pool that was created by the automatic
literal pool creation function is placed.
 pool: The literal pool is output at the location of .POOL.
 branch: The literal pool is output after the BRA/BRAF instruction.
 jump: The literal pool is output after the JMP instruction.
 return: The literal pool is output after the RTS/RTE instruction.
The default is literal = pool, branch, jump, return.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 99 of 1176
Mar 01, 2022

Object, NOObject

Object [Output file directory:]

• Command Line Format
Object [= <object output file>]
NOObject

• Description
When the object option is specified, an object module is output.
When the noobject option is specified, no object module is output.
When the object output file parameter is omitted, the assembler takes the following actions:
 If the file extension is omitted:

The file extension will be obj.
 If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be obj.

The default is object.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
object (regardless of any specification) An object module is output.
noobject (regardless of any specification) An object module is not output.
(no specification) .OUTPUT OBJ An object module is output.
 .OUTPUT NOOBJ An object module is not output.
 (no specification) An object module is output.

Note: Do not specify the same file name for the input source file and the output object module. If
the same file is specified, the contents of the input source file will be lost.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 100 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

DIspsize

Object [Selects displacement size]

• Command Line Format
DIspsize = {4 | 12}

• Description
Specifies the size of external reference symbols and unresolved symbols.
This specification is applied to instructions that accept both 4 and 12 as the displacement size
for the addressing mode; it is not applied to instructions that only accept displacement size 4.
This option is only valid when the CPU type is SH-2A or SH2A-FPU.
The default is dispsize=12.

• Remarks
The allocation size specification (:12) overrides this option specification.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 101 of 1176
Mar 01, 2022

3.2.3 List Options

Table 3.3 List Category Options

Item Command Line Format Dialog Menu Specification
Assemble
listing
output
control

LISt [= <output file name>]
NOLISt

List
[Generate list file]

Controls output of assemble listing

Source
program
listing
output
control*

SOurce
NOSOurce

List
[Source
program:]

Controls output of source program
listing.

Part of
source
program
listing
output
control and
tab size
setting*

SHow [= <item>[, …]]
NOSHow [= <item>[, …]]
<item>:
{CONditionals | Definitions |
 CAlls | Expansions |
 CODe | TAB={ 4 | 8 } }

List
[Source program
list Contents:]
 [Conditions:]
 [Definitions:]
 [Calls:]
 [Expansions:]
 [Code:]
 [Tab Size:]

Controls output of parts of source
program listing and sets the size of tabs.

Cross-
reference
listing
output
control*

CRoss_reference
NOCRoss_reference

List
[Cross
reference:]

Controls output of cross-reference
listing.

Section
information
listing
output
control*

SEction
NOSEction

List
[Section:]

Controls output of section information
listing.

Note: These options are valid only if the list option is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 102 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

LISt, NOLISt

List [Generate list file]

• Command Line Format
LISt [= <listing output file>]
NOLISt

• Description
When the list option is specified, an assemble listing is output.
When the nolist option is specified, no assemble listing is output.
When the listing output file parameter is omitted, the assembler takes the following actions:

 If the file extension is omitted:

The file extension will be lis.
 If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be lis.

The default is nolist.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
list (regardless of any specification) An assemble listing is output.
nolist (regardless of any specification) An assemble listing is not output.
(no specification) .PRINT LIST An assemble listing is output.
 .PRINT NOLIST An assemble listing is not output.
 (no specification) An assemble listing is not output.

Note: Do not specify the same file for the input source file and the output object file. If the same
file is specified, the contents of the input source file will be lost.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 103 of 1176
Mar 01, 2022

SOurce, NOSOurce

List [Source program:]

• Command Line Format
SOurce
NOSOurce

• Description
When the source option is specified, a source program listing is output to the assemble listing.
When the nosource option is specified, no source program listing is output to the assemble
listing.
The source and nosource options are only valid in cases where an assemble listing is being
output.
The default is source.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler Directive

Result (When an Assemble
Listing Is Output)

source (regardless of any specification) A source program listing is output.
nosource (regardless of any specification) A source program listing is not

output.
(no specification) .PRINT SRC A source program listing is output.
 .PRINT NOSRC A source program listing is not

output.
 (no specification) A source program listing is output.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 104 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SHow, NOSHow

List [Source program list Contents:] [Conditions:], [Definitions:], [Calls:], [Expansions:], [Code:],
[Tab size:]

• Command Line Format
SHow [= <output type>[,...]]
NOSHow [=<output type>[,...]]
<output type>: {CONditionals | Definitions | CAlls | Expansions | CODe | TAB = { 4 | 8 } }

• Description
When the show option is specified, preprocessor source statements in the source program
listing and lines of object code are output in the specified tab size. When <output type> is
specified, only those items of the specified type are output. If no specification is made for the
tab size, the default value will be applied.
When the noshow option is specified, neither preprocessor source statements in the source
program listing nor lines of object code are output. When <output type> is specified, only the
specified items are not output.
The show and noshow options are only valid if an assembler listing is output. The following
items are available for <output type>:
Output Type Object Description
conditionals Unsatisfied condition Unsatisfied .AIF or .AIFDEF statements
definitions Definition Macro definition parts,

.AREPEAT and .AWHILE definition parts,

.INCLUDE, .ASSIGNA, and .ASSSIGNC
calls Call Macro call statements,

.AIF, .AIFDEF, and .AENDI
expansions Expansion Macro expansion statements

.AREPEAT and .AWHILE expansion statements
code Object code lines The object code lines exceeding the source

statement lines
tab={4|8} Tab size Size of a tab to display a listing

The default is show.

• Remarks

When specifying more than two output types, enclose the types with parentheses.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 105 of 1176
Mar 01, 2022

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
show[=<output type>] (regardless of any specification) The object code is output.
noshow[=<output type>] (regardless of any specification) The object code is not output.
(no specification) .LIST <output type> (output) The object code is output.
 .LIST <output type> (suppress) The object code is not output.
 (no specification) The object code is output.

CRoss_reference, NOCRoss_reference

List [Cross reference:]

• Command Line Format
CRoss_reference
NOCRoss_reference

• Description
When the cross_reference option is specified, a cross-reference listing is output to the
assemble listing.
When the nocross_reference option is specified, no cross-reference listing is output to the
assemble listing.
The cross_reference and nocross_reference options are valid only if an assemble listing is
being output.
The default is cross_reference.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 106 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler Directive

Result (When an Assemble
Listing Is Output)

cross_reference (regardless of any specification) A cross-reference listing is output.
nocross_reference (regardless of any specification) A cross-reference listing is not

output.
(no specification) .PRINT CREF A cross-reference listing is output.
 .PRINT NOCREF A cross-reference listing is not

output.
 (no specification) A cross-reference listing is output.

SEction, NOSEction

List [Section:]

• Command Line Format
SEction
NOSEction

• Description
When the section option is specified, a section information listing is output to the assemble
listing.
When the nosection option is specified, no section information listing is output to the assemble
listing.
The section and nosection options are valid only if an assemble listing is being output.
The default is section.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 107 of 1176
Mar 01, 2022

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler Directive

Result (When an Assemble
Listing Is Output)

section (regardless of any specification) A section information listing is
output.

nosection (regardless of any specification) A section information listing is not
output.

(no specification) .PRINT SCT A section information listing is
output.

 .PRINT NOSCT A section information listing is not
output.

 (no specification) A section information listing is
output.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 108 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

3.2.4 Other Option

Table 3.4 Other Category Option

Item

Command Line
Format

Dialog Menu

Specification

Size mode
specification for
automatic literal pool
generation

AUTO_literal Other
[Miscellaneous options:]
 [Automatically generate
 literal pool for
 immediate value]

Specifies size mode for
automatic literal pool
generation.

Preventing output of
information on
unreferenced
external symbols

Exclude
NOExclude

Other
[Miscellaneous options:]
 [Remove unreferenced
 external symbols]

Selects whether or not to
prevent output of
information on
unreferenced symbol
information.

Specification to
check privileged-
mode instructions

CHKMd Other
[Miscellaneous options:]
 [check privileged
 instructions]

Specifies to check
privileged-mode
instructions.

Specification to
check LDTLB
instructions

CHKTlb Other
[Miscellaneous options:]
 [check LDTLB instruction]

Specifies to check LDTLB
instructions.

Specification to
check cache-related
instructions.

CHKCache Other
[Miscellaneous options:]
 [check cache instructions]

Specifies to check cache-
related instructions.

Specification to
check DSP-related
instructions.

CHKDsp Other
[Miscellaneous options:]
 [check DSP instructions]

Specifies to check DSP-
related instructions.

Specification to
check FPU-related
instructions.

CHKFpu Other
[Miscellaneous options:]
 [check FPU instructions]

Specifies to check FPU-
related instructions.

Specification to
check 8-byte
boundary alignment
of .FDATA.

CHKAlign8 Other
[Miscellaneous options:]
 [check 8-byte alignment]

Specifies to check 8-byte
boundary alignment
of .FDATA.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 109 of 1176
Mar 01, 2022

AUTO_literal

Other [Miscellaneous options:] [Automatically generate literal pool for immediate value]

• Command Line Format
AUTO_literal

• Description
The auto_literal option specifies the size mode for automatic literal pool generation.
When this option is specified, automatic literal pool generation is performed in size selection
mode, and the assembler checks the imm value in the data transfer instruction without
operation size specification (MOV #imm,Rn) and automatically generates a literal pool if
necessary.
When this option is not specified, automatic literal pool generation is performed in size
specification mode, and the data transfer instruction without size specification is handled as a
1-byte data transfer instruction.
In the size selection mode, the imm value in the data transfer instruction without operation size
specification is handled as a signed value. Therefore, a value within the range from
H'00000080 to H'000000FF (128 to 255) is regarded as word-size data.

 Selected Size or Error

imm Value Range

Size Selection
Mode

Size Specification
Mode

H'80000000 to H'FFFF7FFF
(–2,147,483,648 to –32,769)

Longword Warning 835

H'FFFF8000 to H'FFFFFF7F (–32,768 to –129) Word Warning 835
H'FFFFFF80 to H'0000007F (–128 to 127) Byte Byte
H'00000080 to H'000000FF (128 to 255) Word Byte
H'00000100 to H'00007FFF (256 to 32,767) Word Warning 835
H'00008000 to H'7FFFFFFF
(32,768 to 2,147,483,647)

Longword Warning 835

Note: The value in parentheses () is in decimal.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 110 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Exclude, NOExclude

Other [Miscellaneous options:] [Remove unreferenced external symbols]

• Command Line Format
Exclude
NOExclude

• Description
When the exclude option is specified, no information on unreferenced external symbols is
output.
When the noexclude option is specified, information on unreferenced external symbols is
output.
The size of an object module can be smaller if output of information on unreferenced external
symbols is prevented.
Examples:
asmsh aaa.mar -exclude
No information on unreferenced external symbols is output.
asmsh aaa.mar -noexclude
Information on unreferenced external symbols is output.

CHKMd

Other [Miscellaneous options:] [check privileged instructions]

• Command Line Format
CHKMd

• Description
When this option is specified for the CPU type SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-
DSP, only user-mode instructions of the CPU are valid. If a privileged-mode instruction is
written, warning 704 occurs.

• Remarks
When the CPU type is SH3-DSP or SH4AL-DSP with the CHKDSP option not specified, the
following privileged-mode instructions will be handled as user-mode instructions.
LDC Rm,SR
LDC.L @Rm+,SR
STC SR,Rm
STC.L SR,@-Rn

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 111 of 1176
Mar 01, 2022

CHKTlb

Other [Miscellaneous options:] [check LDTLB instruction]

• Command Line Format
CHKTlb

• Description
When this option is specified for the CPU type SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-
DSP, warning 705 occurs if an LDTLB instruction is written.

CHKCache

Other [Miscellaneous options:] [check cache instructions]

• Command Line Format
CHKCache

• Description
When this option is specified for the CPU type SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-
DSP, warning 706 occurs if a cache-related instruction is written.

CHKDsp

Other [Miscellaneous options:] [check DSP instructions]

• Command Line Format
CHKDsp

• Description
When this option is specified for the CPU type SH3-DSP or SH4AL-DSP, warning 707 occurs
if a DSP-related instruction is written.

CHKFpu

Other [Miscellaneous options:] [check FPU instructions]

• Command Line Format
CHKFpu

• Description
When this option is specified for the CPU type SH2A-FPU, SH-4, or SH-4A, warning 708
occurs if an FPU-related instruction is written.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 112 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

CHKAlign8

Other [Miscellaneous options:] [check 8-byte alignment]

• Command Line Format
CHKAlign8

• Description
When this option is specified for the CPU type SH-4A or SH4AL-DSP, 8-byte boundary
alignment of .FDATA is checked. Warning 816 occurs if double-precision floating-point
constant data specified by .FDATA is not aligned to an 8-byte boundary.

3.2.5 CPU Options

Table 3.5 CPU Tab Options

Item Command Line Format Dialog Menu Specification
Target CPU
specification

CPU = <target CPU> CPU
[CPU:]

Specifies target CPU.

Endian type
specification

ENdian = {Big | Little} CPU
[Endian:]

Specifies the endian type.

Rounding
direction of
floating-point
data

Round = {Nearest | Zero} CPU
[Round to:]

Specifies the rounding
mode for floating-point
data.

Handling
denormalized
numbers in
floating-point
data

DENormalize = {ON |
OFF}

CPU
[Denormalized number
allower as a result:]

Specifies how to handle
denormalized numbers in
floating-point data.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 113 of 1176
Mar 01, 2022

CPU

CPU [CPU:]

• Command Line Format
CPU = <target CPU>

• Description
The cpu option specifies the target CPU for the source program to be assembled.
The following CPUs can be specified.
 SH1 (for SH-1)
 SH2 (for SH-2)
 SH2E (for SH-2E)
 SHDSP (for SH2-DSP)
 SH2A (for SH-2A)
 SH2AFPU (for SH2A-FPU)
 SH3 (for SH-3)
 SH3DSP (for SH3-DSP)
 SH4 (for SH-4)
 SH4A (for SH-4A)
 SH4ALDSP (for SH4AL-DSP)

Relationship with Assembler Directives

Option
Assembler Directive

SHCPU Environment
Variable

Result

cpu= <target CPU> (regardless of any
specification)

(regardless of any
specification)

Target CPU specified by
cpu

(no specification) .CPU <target CPU> (regardless of any
specification)

Target CPU specified
by .CPU

 (no specification) SHCPU = <target CPU> Target CPU specified by
SHCPU environment
variable

 (no specification) SH1

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 114 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

ENdian

CPU [Endian:]

• Command Line Format
ENdian = {Big | Little}

• Description
The endian option selects big endian or little endian for the target CPU.
The default is endian=big.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
endian=big (regardless of any specification) Assembles in big endian
endian=little (regardless of any specification) Assembles in little endian
(no specification) .ENDIAN BIG Assembles in big endian
 .ENDIAN LITTLE Assembles in little endian
 (no specification) Assembles in big endian

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 115 of 1176
Mar 01, 2022

Round

CPU [Round to:]

• Command Line Format
Round = {Nearest | Zero}

• Description
The round option specifies the rounding mode used when converting constants in floating-
point data assembler directives into object codes.
When round=nearest is specified, round to NEAREST even is selected.
When round=zero is specified, round to ZERO is selected.
When this option is omitted, the rounding mode depends on the target CPU as follows:

Target CPU Rounding Mode
SH1 round to NEAREST even
SH2 round to NEAREST even
SH2E round to ZERO
SH2A round to NEAREST even
SH2AFPU round to ZERO
SHDSP round to NEAREST even
SH3 round to NEAREST even
SH4 round to ZERO
SH3DSP round to NEAREST even
SH4A round to ZERO
SH4ALDSP round to NEAREST even

Note: When the target CPU is SH2E and round to NEAREST even is selected as the rounding
mode, warning 818 occurs at the first floating-point data assembler directive in the source
program, and object code is output in the selected "round to NEAREST even" rounding
mode.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 116 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

DENormalize

CPU [Denormalize:]

• Command Line Format
DENormalize = {ON | OFF}

• Description
The denormalize option specifies whether to handle the denormalized numbers in floating-
point data assembler directives as valid values.
The object code differs when denormalized numbers are specified as valid values (ON) and
invalid values (OFF).
When denormalize=on is specified, the denormalized numbers are valid.
When denormalize=off is specified, the denormalized numbers are invalid.
 Valid: Warning 842 occurs and the object code is output.
 Invalid: Warning 841 occurs and zero is output for the object code.
When this option is omitted, whether the denormalized numbers are valid depends on the
target CPU as follows:

Target CPU Denormalized Numbers
SH1 Valid (ON)
SH2 Valid (ON)
SH2E Invalid (OFF)
SH2A Valid (ON)
SH2AFPU Invalid (OFF)
SHDSP Valid (ON)
SH3 Valid (ON)
SH3DSP Valid (ON)
SH4 Invalid (OFF)
SH4A Invalid (OFF)
SH4ALDSP Valid (ON)

Note: When the target CPU is SH2E or SH2AFPU and denormalized numbers are specified as
valid, warning 818 occurs at the first floating-point data assembler directive in the source
program, and object code is output with the denormalized numbers handled as valid values
as specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 117 of 1176
Mar 01, 2022

3.2.6 Options Other than Above

Table 3.6 Options Other than Above

Item

Command Line
Format

Dialog Menu

Specification

Change of error level
at which the
assembler is
abnormally
terminated

ABort = {Warning |
 Error}

- Changes the error level at
which the assembler is
abnormally terminated.

Western code
character enabled

LATIN1 - Enables the use of
Western code characters
in source file.

Interpretation of
Japanese character
as Shift JIS code

SJIS - Interprets Japanese
character in source file as
shift JIS code.

Interpretation of
Japanese character
as EUC code

EUC - Interprets Japanese
character in source file as
EUC code.

Specification of
Japanese character

OUtcode = {SJIS |
 EUC}

- Specifies the Japanese
character for output to
object code.

Setting of the
number of lines in
the assemble listing

LINes =
 <number of lines>

- Specifies the number of
lines in assemble listing.

Setting of the
number of digits in
the assemble listing

COlumns =
 <number of digits>

- Specifies the number of
digits in assemble listing.

Copyright LOGO
NOLOGO

-
(nologo is always valid)

Output
Not output

Specification of
subcommand

SUBcommand =
 <file name>

- Inputs command line from
a file.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 118 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

ABort

None

• Command Line Format
ABort = {Warning|Error}

• Description
The abort option controls the error level at which the assembler will be abnormally
terminated.
When abort=warning is specified, processing is aborted by a warning.
When abort=error is specified, processing is aborted by an error.
When the return value to the OS becomes 1 or larger, the object module is not output.
The abort option is valid only if the object module is output.
The return value to the OS is as follows:

Number of Cases Return Value to OS when Option

Specified
Warning Error Fatal Error abort=warning abort=error
0 0 0 0 0
1 or more 0 0 2 0
— 1 or more 0 2 2
— — 1 or more 4 4

The default is abort=error.

LATIN1

None

• Command Line Format
LATIN1

• Description
The latin1 option enables the use of Western code characters in string literals and in
comments.
Do not specify this option together with the sjis, euc, or outcode option.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 119 of 1176
Mar 01, 2022

SJIS

None

• Command Line Format
SJIS

• Description
The sjis option interprets Japanese characters in string literals and comments as shift JIS code.
When both of sjis and euc options are omitted, Japanese characters in string literals and
comments are interpreted as Japanese characters depending on the host computer.
Do not specify this option together with the latin1 or euc option.

EUC

None

• Command Line Format
EUC

• Description
The euc option interprets Japanese characters in string literals and comments as EUC code.
When both of euc and sjis options are omitted, Japanese characters in string literals and
comments are interpreted as Japanese characters depending on the host computer.
Do not specify this option together with the latin1 or sjis option.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 120 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

OUtcode

None

• Command Line Format
OUtcode = {SJIS | EUC}

• Description
When outcode=sjis is specified, this option converts Japanese characters in the source file to
the shift JIS code for output to the object file.
When outcode=euc is specified, this option converts Japanese characters in the source file to
the EUC code for output to the object file.
The Japanese character output to the object file depends on the outcode specification and the
Japanese character (sjis or euc) in the source file as follows:

 Japanese Character in Source File
outcode Option sjis euc No Specification
sjis Shift JIS code Shift JIS code Shift JIS code
euc EUC code EUC code EUC code
No specification Shift JIS code EUC code Default code

Default code is as follows.

Host Computer Default Code
SPARC station EUC code
HP9000/700 series Shift JIS code
PC Shift JIS code

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 121 of 1176
Mar 01, 2022

LINes

None

• Command Line Format
LINes = <Number of lines>

• Description
The lines option sets the number of lines on a single page of the assemble listing. The range of
valid values for the line count is from 20 to 255.
This option is valid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
lines=<number of lines> (regardless of any specification) The number of lines on a page is

given by lines.
(no specification) .FORM LIN=< number of lines> The number of lines on a page is

given by .FORM.
 (no specification) The number of lines on a page is

60 lines.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 122 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

COlumns

None

• Command Line Format
COlumns = <Number of digits>

• Description
The columns option sets the number of digits in a single line of the assemble listing. The range
of valid values for the column count is from 79 to 255.
This option is valid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
columns=
<number of digits>

(regardless of any specification) The number of digits in a line is
given by columns.

(no specification) .FORM COL=<number of digits> The number of digits in a line is
given by .FORM.

 (no specification) The number of digits in a line is
132.

LOGO, NOLOGO

None (nologo is always available)

• Command Line Format
LOGO
NOLOGO

• Description
Controls the copyright output.
When the logo option is specified, copyright display is output.
When the nologo option is specified, the copyright display output is disabled.
The default is logo.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

R20UT0704EJ0102 Rev. 1.02 Page 123 of 1176
Mar 01, 2022

SUBcommand

None

• Command Line Format
SUBcommand = <file name>

• Description
The subcommand option inputs command line specifications from a file.
Specify input file names and command line options in the subcommand file in the same order
as for normal command line specifications.
Only one input file name or one command line option can be specified in one line in the
subcommand file.
This option must not be specified in a subcommand file.

Example:

asmsh aaa.src -subcommand=aaa.sub

The subcommand file contents are expanded to a command line and assembled.

The above command line and file aaa.sub are expanded as follows:
asmsh aaa.src,bbb.src -list -noobj

Note

A subcommand file must be no larger than 65,535 bytes.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 124 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 125 of 1176
Mar 01, 2022

Section 4 Optimizing Linkage Editor Options

4.1 Option Specifications

4.1.1 Command Line Format

The format of the command line is as follows:

optlnk[{∆<file name>|∆<option string>}...]

 <option string>:-<option>[=<suboption>[,...]]

4.1.2 Subcommand File Format

The format of the subcommand file is as follows:

<option>{=|∆}[<suboption>[,...]][∆&][;<comment>]

&: means line continuous.

For details, refer to section 4.2.8, Subcommand File Option.

4.2 List of Options

In the command line format in the following sections, uppercase letters indicate abbreviations.
Underlined characters indicate the default settings.

The format of the corresponding dialog menus in the High-performance Embedded Workshop is
as follows:
 Tab name <Category>[Item]....

The order of option description corresponds to that of the tabs and the categories in the High-
performance Embedded Workshop.

The file name and path name should not include a parenthesis ("(" or ")").

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 126 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.1 Input Options

Table 4.1 Input Category Options

Item Command Line Format Dialog Menu Specification

Input file Input = <sub>[{,|∆}...]
<sub>:
<file name>
 [(<module name>[,…])]

Link/Library <Input>
[Show entries for :]
[Relocatable files and object
files]

Specifies input file.
(Input file is specified without
input on the command line.)

Library file LIBrary = <file name>[,...] Link/Library <Input>
[Show entries for :]
 [Library files]

Specifies input library file.

Binary file Binary = <sub> [,...]
<sub>:
<file name>(<section name>
 [:<boundary alignment>]
 [/<section attribute>]
 [,<symbol name>])

Link/Library <Input>
[Show entries for :]
[Binary files]

Specifies input binary file.

Symbol
definition

DEFine = <sub>[,…]
<sub>:
<symbol name> =
 {<symbol name>

 |<numerical value>}

Link/Library <Input>
[Show entries for :]
 [Defines:]

Defines undefined symbols
forcedly.

Defined as the same value of
symbol name.
Defined as a numerical value.

Execution
start address

ENTry = { <symbol name>|
 <address>}

Link/Library <Input>
[Use entry point :]

Specifies an entry symbol.
Specifies an entry address.

Prelinker NOPRElink Link/Library <Input>
[Prelinker control :]

Disables prelinker initiation.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 127 of 1176
Mar 01, 2022

Input Input File
Link/Library <Input>[Show entries for :][Relocatable files and object files]

Format: Input = <suboption>[{, | ∆}…]

 <suboption>: <file name>[(<module name>[,…])]

Description: Specifies an input file. Two or more files can be specified by separating them
with a comma (,) or space.

 Wildcards (* or ?) can also be used for the specification. String literals specified
with wildcards are expanded in alphabetical order. Expansion of numerical values
precedes that of alphabetical letters. Uppercase letters are expanded before
lowercase letters.

 Specifiable files are object files output from the compiler or the assembler, and
relocatable or absolute files output from the optimizing linkage editor. A module
in a library can be specified as an input file using the format of <library
name>(<module name>). The module name is specified without an extension.

 If an extension is omitted from the input file specification, obj is assumed when a
module name is not specified and lib is assumed when a module name is
specified.

Examples: input=a.obj lib1(e) ; Inputs a.obj and module e in lib1.lib.
input=c*.obj ; Inputs all .obj files beginning with c.

Remarks: When form=object or extract is specified, this option is unavailable.

 When an input file is specified on the command line, input should be omitted.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 128 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

LIBrary Library File
Link/Library <Input>[Show entries for :][Library files]

Format: LIBrary = <file name>[,…]

Description: Specifies an input library file. Two or more files can be specified by separating
them with a comma (,).

 Wildcards (* or ?) can also be used for the specification. String literals specified
with wildcards are expanded in the alphabetical order. Expansion of numerical
values precedes that of alphabetical letters. Uppercase letters are expanded before
lowercase letters.

 If an extension is omitted from the input file specification, lib is assumed.

 If form=library or extract is specified, the library file is input as the target
library to be edited.

 Otherwise, after the linkage processing between files specified for the input files
are executed, undefined symbols are searched in the library file.

 The symbol search in the library file is executed in the following order: user
library files with the library option specification (in the specified order), the
system library files with the library option specification (in the specified order),
and then the default library (environment variable HLNK_LIBRARY1,2,3).

Examples: library=a.lib,b ; Inputs a.lib and b.lib.
library=c*.lib ; Inputs all files beginning with c with the extension .lib.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 129 of 1176
Mar 01, 2022

Binary Binary File
Link/Library <Input>[Show entries for :][Binary files]

Format: Binary = <suboption>[,…]

 <suboption>: <file name>(<section name>
 [:<boundary alignment>][/<section attribute>][,<symbol name>])

 <section attribute>: CODE | DATA

 <boundary alignment>: 1 | 2 | 4 | 8 | 16 | 32 (default: 1)

Description: Specifies an input binary file. Two or more files can be specified by separating
them with a comma (,).

 If an extension is omitted for the file name specification, bin is assumed.

 Input binary data is allocated as the specified section data. The section address is
specified with the start option. That section cannot be omitted.

 When a symbol is specified, the file can be linked as a defined symbol. For a
variable name referenced by a C/C++ program, add an underscore (_) at the head
of the reference name in the program.

 The section specified with this option can have its section attribute and boundary
alignment specified.

 CODE or DATA can be specified for the section attribute.

 When section attribute specification is omitted, the write, read, and execute
attributes are all enabled by default.

 A boundary alignment value can be specified for the section specified by this
option. A power of 2 can be specified for the boundary alignment; no other
values should be specified.

 When the boundary alignment specification is omitted, 1 is used as the default.

Examples: input=a.obj

start=P,D*/200

binary=b.bin(D1bin),c.bin(D2bin:4,_datab)

form=absolute

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 130 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 Allocates b.bin from 0x200 as the D1bin section.
Allocates c.bin after D1bin as the D2bin section (with boundary alignment = 4).
Links c.bin data as the defined symbol _datab.

Remarks: When form={object | library} or strip is specified, this option is unavailable.

 If no input object file is specified, this option cannot be specified.

DEFine Symbol Definition
Link/Library <Input>[Show entries for :][Defines]

Format: DEFine = <suboption>[,…]

 <suboption>: <symbol name>={<symbol name> | <numerical value>}

Description: Defines an undefined symbol forcedly as an externally defined symbol or a
numerical value.

 The numerical value is specified in the hexadecimal notation. If the specified
value starts with a letter from A to F, symbols are searched first, and if no
corresponding symbol is found, the value is interpreted as a numerical value.
Values starting with 0 are always interpreted as numerical values.

 If the specified symbol name is a C/C++ variable name, add an underscore (_) at
the head of the definition name in the program. If the symbol name is a C++
function name (except for the main function), enclose the definition name with
the double-quotes including parameter strings. If the parameter is void, specify as
"<function name>()".

Examples: define=_sym1=data ; Defines _sym1 as the same value as
 ; the externally defined symbol data.

 define=_sym2=4000 ; Defines _sym2 as 0x4000.

Remarks: When form={object | relocate | library} is specified, this option is unavailable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 131 of 1176
Mar 01, 2022

ENTry Execution Start Address
Link/Library <Input>[Use entry point :]

Format: ENTry = {<symbol name> | <address>}

Description: Specifies the execution start address with an externally defined symbol or
address.

 The address is specified in hexadecimal notation. If the specified value starts with
a letter from A to F, symbols are searched first, and if no corresponding symbol is
found, the value is interpreted as an address. Values starting with 0 are always
interpreted as addresses.

 For a C function name, add an underscore (_) at the head of the definition name
in the program. For a C++ function name (except for the main function), enclose
the definition name with double-quotes in the program including parameter
strings. If the parameter is void, specify as "<function name>()".

 If the entry symbol is specified at compilation or assembly, this option precedes
the entry symbol.

Examples: entry=_main ; Specifies main function in C/C++ as the execution
 ; start address.

 entry="init()" ; Specifies init function in C++ as the execution
 ; start address.

 entry=100 ; Specifies 0x100 as the execution start address.

Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.

 When optimization with undefined symbol deletion (optimize=symbol_delete) is
specified, the execution start address should be specified. If it is not specified, the
specification of the optimization with undefined symbol deletion is unavailable.
Optimization with undefined symbol deletion is not available when an address is
specified with this option.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 132 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

NOPRElink Prelinker
Link/Library <Input>[Show entries for :][Prelinker control :]

Format: NOPRElink

Description: Disables the prelinker initiation.

 The prelinker supports the functions to generate the C++ template instance
automatically and to check types at run time. When the C++ template function
and the run-time type test function are not used, specify the noprelink option to
reduce the link time.

Remarks: When extract or strip is specified, this option is unavailable.

 If form=lib or form=rel is specified while the C++ template function and run-
time type test are used, do not specify noprelink.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 133 of 1176
Mar 01, 2022

4.2.2 Output Options

Table 4.2 Output Category Options

Item Command Line Format Dialog Menu Specification

Output format FOrm ={ Absolute
 | Relocate
 | Object
 | Library [= {S|U}]
 | Hexadecimal
 | Stype
 | Binary }

Link/Library <Output>
[Type of output file :]

Absolute format
Relocatable format
Object format
Library format
HEX format
S-type format
Binary format

Debugging
information

DEBug
SDebug

NODEBug

Link/Library <Output>
[Debug information :]

Output (in output file)
Debugging information file
output
Not output

Record size
unification

REcord={ H16
 | H20
 | H32
 | S1
 | S2
 | S3 }

Link/Library <Output>
[Data record header :]

HEX record
Expansion HEX record
32-bit HEX record
S1 record
S2 record
S3 record

ROM support
function

ROm = <sub>[,…]

<sub>:<ROM section name>
 =<RAM section name>

Link/Library <Output>
[Show entries for :]
[ROM to RAM mapped
sections:]

Reserves an area in RAM for
the relocation of a symbol with
an address in RAM.

Output file OUtput = <sub>[,…]

<sub>:<file name>
 [=<output range>]

<output range>:
 {<start address>
 -<end address>
 |<section name>[:…]}

Link/Library <Output>
[Show entries for :]
[Output file path/ Messages]
or
[Divided output files:]

Specifies output file (range
specification and divided
output are enabled)

External
symbol-
allocation
information
file

MAp [= <file name>] Link/Library <Output>
[Generate external symbol-
allocation information file]

Specifies output of the external
symbol-allocation information
file (for SuperH Family and RX
Family)

Output to
unused area

SPace [= {<numerical value> |
Random}]

Link/Library <Output>
[Specify value filled in
unused area] [Output
padding data]

Specifies a value to output to
unused area

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 134 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Item Command Line Format Dialog Menu Specification

Information
message

Message
NOMessage [= <sub>[,…]]
<sub>:<error code>
 [-<error code>]

Link/Library <Output>
[Show entries for :]
[Output file path/ Messages]
[Repressed information
level messages:]

Output
No output
(error number specification
and range specification are
enabled)

Notification of
unreferenced
defined
symbol

MSg_unused Link/Library <Output>
[Show entries for :]
[Notify unused symbol:]

Notifies the user of the defined
symbol which is never
referenced

Reduce
empty areas
of boundary
alignment

DAta_stuff Link/Library <Output>
[Show entries for :]
[Reduce empty areas of
boundary alignment:]

Reduces empty areas
generated as the boundary
alignment of sections after
compilation (for SuperH Family
and H8, H8S, H8SX Family)

Specification
of data record
byte count

BYte_count=<numerical value> Link/Library <Output>
[Length of data record :]

Specifies the maximum byte
count of a data record

CRC CRc = <suboption>

<suboption>:
<address where the result is
output>=<target range>
[/<polynomial expression>]
[:<endian>]

<address where the result is
output>: <address>

<target range>: <start address>-
<end address>[,...]

<polynomial expression>:
 { CCITT | 16 }

<endian>: {BIG | LITTLE}

Link/Library <Output>
[Show entries for :]
[Generate CRC code]

Calculates the cyclic
redundancy check (CRC)
value for the target range at
linkage and outputs the result
to the specified address.

Filling
padding data
at section end

PADDING Link/Library <Output>
[Padding]

Outputs padding data to the
end of a section to make the
section match the boundary
alignment.

Address
setting for
specified
vector
number

VECTN=<suboption>[,...]

<suboption>:
<vector number>={<symbol> |
 | <address>}

Link/Library <Output>
[Show entries for :]
[Vector]
[Specific vector :]

Assigns an address to the
specified vector number in the
variable vector table (for RX
Family and M16C Series).

Address
setting for
unused
variable
vector area

VECT={<symbol>|<address>} Link/Library <Output>
[Show entries for :]
[Vector]
[Empty vector :]

Assigns an address to an
unused area in the variable
vector table (for RX Family
and M16C Series).

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 135 of 1176
Mar 01, 2022

Item Command Line Format Dialog Menu Specification

utl30
information
output

UTL Link/Library <Output>
[UTL information]

Outputs information for UTL30
(for M16C Series)

Jump table
output

JUMP_ENTRIES_FOR_PIC
=<section name>[…]

Link/Library <Output>
[Jump table output]

Outputs a jump table (for the
PIC function of RX Family)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 136 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

FOrm Output Format
Link/Library <Output>[Type of output file :]

Format: FOrm = {Absolute | Relocate | Object | Library[={S | U}]}
| Hexadecimal | Stype | Binary}

Description: Specifies the output format.

 When this option is omitted, the default is form=absolute. Table 4.3 lists the
suboptions.

Table 4.3 Suboptions of Form Option

Suboption Description
absolute Outputs an absolute file

relocate Outputs a relocatable file

object Outputs an object file. This is specified when a module is extracted as an
object file from a library with the extract option.

library Outputs a library file.
When library=s is specified, a system library is output.
When library=u is specified, a user library is output.
Default is library=u.

hexadecimal Outputs a HEX file. For details of the HEX format, refer to appendix 13.1.2,
HEX File Format.

stype Outputs an S-type file. For details of the S-type format, refer to appendix
13.1.1, S-Type File Format.

binary Outputs a binary file.

Remarks: Table 4.4 shows relations between output formats and input files or other options.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 137 of 1176
Mar 01, 2022

Table 4.4 Relations Between Output Format And Input File Or Other Options

Output
Format

Specified Option

Enabled
File Format

Specifiable Option*1

Absolute strip specified Absolute file input, output
Other than above Object file

Relocatable file
Binary file
Library file

input, library, binary, debug/nodebug,
sdebug, cpu, ps_check, start, rom, entry,
output, map, hide, optimize/nooptimize,
samesize, symbol_forbid,
samecode_forbid, variable_forbid,
function_forbid, section_forbid,
absolute_forbid, profile, cachesize, sbr,
compress, rename, delete, define, fsymbol,
stack, noprelink, memory, msg_unused,
data_stuff*5, show=symbol, reference,
xreference, jump_entries_for_pic,
aligned_section

Relocate extract specified Library file library, output
Other than above Object file

Relocatable file
Binary file
Library file

input, library, debug/nodebug, output, hide,
rename, delete, noprelink, msg_unused,
data_stuff*5, show=symbol, xreference

Object extract specified Library file library, output
Hexadecimal
Stype
Binary

 Object file
Relocatable file
Binary file
Library file

input, library, binary, cpu, ps_check, start,
rom, entry, output, map, space,
optimize/nooptimize, samesize,
symbol_forbid, samecode_forbid,
variable_forbid, function_forbid,
section_forbid, absolute_forbid, profile,
cachesize, sbr, rename, delete, define,
fsymbol, stack, noprelink, record, s9*2,
byte_count*3, memory, msg_unused,
data_stuff*5, show=symbol, reference,
xreference, jump_entries_for_pic,
aligned_section

Absolute file input, output, record, s9*2, byte_count*3,
show=symbol, reference, xreference

Library strip specified Library file library, output, memory*4, show=symbol,
section

extract specified Library file library, output
Other than above Object file

Relocatable file
input, library, output, hide, rename, delete,
replace, noprelink, memory*4,
show=symbol, section

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 138 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Notes: 1. message/nomessage, change_message, logo/nologo, form, list, and
subcommand can always be specified.

 2. s9 can be used only when form=stype is specified for the output format.
 3. byte_count can be used only when form=hexadecimal is specified for the output

format.
 4. memory cannot be used when hide is specified.
 5. data_stuff cannot be used when form=relocate is specified for the output format.

DEBug, SDebug, NODEBug Debugging Information
Link/Library <Output>[Debug information :]

Format: DEBug

 SDebug

 NODEBug

Description: Specifies whether debugging information is output.

 When debug is specified, debugging information is output to the output file.

 When sdebug is specified, debugging information is output to <output file
name>.dbg file.

 When nodebug is specified, debugging information is not output.

 If sdebug and form=relocate are specified, sdebug is interpreted as debug.

 If debug is specified and if two or more files are specified to be output with
output, they are interpreted as sdebug and debugging information is output to
<first output file name>.dbg.

 When this option is omitted, the default is debug.

Remarks: When form={object | library | hexadecimal | stype | binary}, strip or extract is
specified, this option is unavailable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 139 of 1176
Mar 01, 2022

REcord Record Size Unification
Link/Library <Output>[Data record header :]

Format: REcord = { H16 | H20 | H32 | S1 | S2 | S3 }

Description: Outputs data with the specified data record regardless of the address range.

 If there is an address that is larger than the specified data record, the appropriate
data record is selected for the address.

 When this option is omitted, various data records are output according to each
address.

Remarks: This option is available only when form=hexadecimal or stype is specified.

ROm ROM Support Function
Link/Library <Output>[Show entries for :][ROM to RAM mapped sections]

Format: ROm = <suboption>[,…]

 <suboption>: <ROM section name>=<RAM section name>

Description: Reserves ROM and RAM areas in the initialized data area and relocates a defined
symbol in the ROM section with the specified address in the RAM section.

 Specifies a relocatable section including the initial value for the ROM section.

 Specifies a nonexistent section or relocatable section whose size is 0 for the RAM
section.

Examples: rom=D=R

start=D/100,R/8000

 Reserves R section with the same size as D section and relocates defined symbols
in D section with the R section addresses.

Remarks: When form={object | relocate | library}or strip is specified, this option is
unavailable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 140 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

OUtput Output File
Link/Library <Output> [Show entries for :][Output file path/ Messages] or [Divided output files]

Format: OUtput = <suboption>[,…]

 <suboption>: <file name>[=<output range>]

 <output range>: {<start address>-<end address> | <section name>[:…]}

Description: Specifies an output file name. When form=absolute, hexadecimal, stype, or
binary is specified, two or more files can be specified. An address is specified in
the hexadecimal notation. If the specified data starts with a letter from A to F,
sections are searched first, and if no corresponding section is found, the data is
interpreted as an address. Data starting with 0 are always interpreted as addresses.

 When this option is omitted, the default is <first input file name>.<default
extension>.

 The default extensions are as follows:

 form=absolute: abs form=relocate: rel form=object: obj
form=library: lib form=hexadecimal: hex form=stype: mot
form=binary: bin

Examples: output=file1.abs=0-ffff,file2.abs=10000-1ffff

 Outputs the range from 0 to 0xffff to file1.abs and the range from 0x10000 to
0x1ffff to file2.abs.

 output=file1.abs=sec1:sec2,file2.abs=sec3

 Outputs the sec1 and sec2 sections to file1.abs and the sec3 section to file2.abs.

Remarks: When a file is output in section units while the CPU type is RX Family in big
endian, the section size should be a multiple of 4.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 141 of 1176
Mar 01, 2022

MAp Output of External Symbol Allocation Information File
Link/Library <Output>[Generate external symbol-allocation information file]

Format: MAp [= <file name>]

Description: Outputs the external-symbol-allocation information file that is used by the
compiler in optimizing access to external variables.

 When <file name> is not specified, the file has the name specified by the output
option or the name of the first input file, and the extension bls.

 If the order of the declaration of variables in the external-symbol-allocation
information file is not the same as the order of the declaration of variables found
when the object was read after compilations, an error will be output.

Remarks: This option is valid only when form={absolute | hexadecimal | stype | binary}
is specified.

 This option is available when the CPU type is SuperH Family or RX Family.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 142 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SPace Output to Unused Areas
Link/Library <Output>[Show entries for :][Specify value filled in unused area]

[Output padding data]

Format: SPace [= {<numerical value> | Random}]

Description: Fills the unused areas in the output ranges with random values or a user-specified
hexadecimal value.

 The following unused areas are filled with the value according to the output range
specification in the output option:

 When section names are specified for the output range:
The specified value is output to unused areas between the specified sections.

 When an address range is specified for the output range:
The specified value is output to unused areas within the specified address range.

 A 1-, 2-, or 4-byte value can be specified. The hexadecimal value specified to the
space option determines the output data size. If a 3-byte value is specified, the
upper digit is extended with 0 to use it as a 4-byte value. If an odd number of
digits are specified, the upper digits are extended with 0 to use it as an even
number of digits.

 If the size of an unused area is not a multiple of the size of the specified value,
the value is output as many times as possible, then a warning message is output.

Remarks: When no suboption is specified by this option, unused areas are not filled with
values.

 This option is available only when form={binary | stype | hexadecimal} is
specified.

 When no output range is specified by the output option, this option is
unavailable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 143 of 1176
Mar 01, 2022

Message, NOMessage Information Message
Link/Library <Output>[Show entries for :] [Output file path/ Messages]

[Repressed information level messages :]

Format: Message

 NOMessage [=<suboption>[,…]]

 <suboption>: <error number>[-<error number>]

Description: Specifies whether information level messages are output.

 When message is specified, information level messages are output.

 When nomessage is specified, the output of information level messages are
disabled. If an error number is specified, the output of the error message with the
specified error number is disabled. A range of error message numbers to be
disabled can be specified using a hyphen (-). If a warning or error level message
number is specified, the message output is disabled assuming that
change_message has changed the specified message to the information level.

 When this option is omitted, the default is nomessage.

Examples: nomessage=4,200-203,1300

 Messages of L0004, L0200 to L0203, and L1300 are disabled to be output.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 144 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

MSg_unused Notification of Unreferenced Symbol
Link/Library <Output>[Show entries for :] [Output Messages] [Notify unused symbol:]

Format: MSg_unused

Description: Notifies the user of the externally defined symbol which is not referenced during
linkage through an output message.

Examples: optlnk -msg_unused a.obj

Remarks: When an absolute file is input, this option is invalid.

 To output a message, the message option must also be specified.

 The linkage editor may output a message for the function that was inline-
expanded at compilation. To avoid this, add a static declaration for the function
definition.

 In any of the following cases, references are not correctly analyzed so that
information shown by output messages will be incorrect.

• goptimize is not specified at assembly and there are branches to the same
section within the same file (only when an H8, H8S, H8SX Family CPU is
specified).

• There are references to constant symbols within the same file.
• There are branches to immediate subordinate functions when optimization is

specified at compilation.
• The external variable access optimization is valid at compilation (only when

an SuperH Family CPU is specified).
• An offset value is directly specified in a #pragma tbr in the C source

program (only when the SH-2A or SH2A-FPU is specified as the CPU).
• Optimization is specified at linkage and constants or literals are unified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 145 of 1176
Mar 01, 2022

DAta_stuff Reduce empty areas of boundary alignment
Link/Library <Output>[Show entries for :] [Reduce empty areas of boundary alignment:]

Format: DAta_stuff

Description: At linkage, reduces empty areas of boundary alignment. This option affects
constant, initialized and uninitialized data areas.

 When this option is specified, empty areas generated as the boundary alignment
of sections after compilation are filled at linkage. However, the order of data
allocation is not changed.

 When this option is not specified, linkage is based on the boundary alignment of
sections after compilation.

 Specifying this option fills the unnecessary empty areas generated by boundary
alignment, reducing the size of the data sections as a whole.

Examples: <tp1.c> <tp2.c>

 long a; char d;

char b,c; long e;

 char f;

 Sizes of data sections after compilation (taking the output of the SuperH Family
compiler as an example):
tp1.obj: 4 + 1 + 1 = 6 bytes
tp2.obj: 1 + 3 [*] + 4 + 1 = 9 bytes

 Sizes of data sections for tp1.obj and tp2.obj after linkage:
1) When data_stuff is not specified
 Object files are linked based on the boundary alignment of the sections
 (conventional process).
 6 bytes [tp1] + 2 bytes [*] + 9 bytes [tp2] = 17 bytes

 2) When data_stuff is specified
 Linkage is performed with filling of the unnecessary empty spaces generated
 between sections by boundary alignment.
 (4 + 1 + 1) bytes + 1 byte + 1 byte [*] + 4 bytes + 1 byte = 13 bytes

Notes: 1. * indicates an empty area generated by boundary alignment.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 146 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 2. The sizes of the data sections after compilation may differ from
those in the above example according to the specification of other
options, etc. at compilation.

Remarks: Correct operation is not guaranteed if this option is specified when an object file
compiled with the smap option of the SuperH Family compiler is linked.

 The function of this option is not applicable to object files generated by the
assembler.

 Specification of this option is invalid in any of the following cases:

• form=library, object, or relocate is specified
• An absolute load module is input
• memory=low is specified
• nooptimize is not specified

 Optimization will not be applied in the linkage of a relocatable file that was

generated with this option specified.

 This option is unavailable when the CPU type is RX Family, M16C Series, or
R8C Family.

BYte_count Specification of Data Record Byte Count
Link/Library <Output>[Length of data record :]

Format: BYte_count=<numerical value>

Description: Specifies the maximum byte count for a data record when a file is to be created in
the Intel-Hex format. Specify a one-byte hexadecimal value (01 to FF) for the
byte count. When this option is not specified, the linkage editor assumes FF as
the maximum byte count when creating an Intel-Hex file.

Examples: byte_count=10

Remarks: This option is invalid when the file to be created is not an Intel-Hex-type
(form=hex) file.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 147 of 1176
Mar 01, 2022

CRc CRC
Link/Library <Output> [Show entries for :] [Generate CRC code]

Format: CRc = <suboption>

 <suboption>: <address where the result is output>=<target range>
 [/<polynomial expression>][:<endian>]

 <address where the result is output>: <address>

 <target range>: <start address>-<end address>[,...]

 <polynomial expression>: { CCITT | 16 }

 <endian>: {BIG | LITTLE}

Description: This option is used for cyclic redundancy checking (CRC) of values from the
lowest to the highest address of each target range and outputs the calculation
result to the specified address.

 <endian> can be specified only when the CPU type is RX Family. When
<endian> is specified, the calculation result is output to the specified address in
the specified endian. When <endian> is not specified, the result is output to the
specified address in the endian used in the absolute file.

 CRC-CCITT or CRC-16 is selectable as a polynomial expression (default:
CRC-CCITT).

 Polynomial expression:

 CRC-CCITT
X^16+X^12+X^5+1
In bit expression: (10001000000100001)

 CRC-16
X^16+X^15+X^2+1
In bit expression: (11000000000000101)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 148 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example 1: optlnk *.obj -form=stype -start=P1,P2/1000,P3/2000

 -crc=2FFE=1000-2FFD -output=out.mot=1000-2FFF

After linkage CRC Setting for the
output option

Output
(out.mot)

0x1000
P1 P1 P1

0x1000

P2 P2 P2

Free Calculated as
0xFF

0x2000 P3 P3 P3

Calculated as
0xFF

0x2FFE

0x2FFF
Address where the
result will be output Result of CRC 0x2FFF

Free

Target range
(0x1000 to
0x2FFF)

 crc option: -crc=2FFE=1000-2FFD

In this example, CRC will be calculated for the range from 0x1000 to 0x2FFD
and the result will be output to address 0x2FFE.
When the space option has not been specified, space=0xFF is assumed for
calculation of free areas within the target range.

 output option: -output=out.mot=1000-2FFF
Since the space option has not been specified, the free areas are not output to the
out.mot file. 0xFF is used in CRC for calculation of the free areas, but will not be
filled into these areas.

Notes: 1. The address where the result of CRC will be output cannot be
included in the target range.

 2. The address where the result of CRC will be output must be included
in the output range specified with the output option.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 149 of 1176
Mar 01, 2022

Example 2: optlnk *.obj -form=stype -start=P1/1000,P2/1800,P3/2000

 -space=7F -crc=2FFE=1000-17FF,2000-27FF

 -output=out.mot=1000-2FFF

After linkage CRC Setting for the
output option

Output
(out.mot)

0x1000
P1 P1 P1

0x1000

Free Calculated as
0x7F

Filled with
0x7F

0x1800 P2 P2

Free Filled with
0x7F

0x2000 P3 P3 P3

Calculated as
0x7F

0x2800
0x2FFE

0x2FFF
Address where the
result will be output

Result of CRC 0x2FFF

Target range
(0x1000 to
0x2FFF)

Free
Filled with

0x7F

 crc option: -crc=2FFE=1000-2FFD,2000-27FF

In this example, CRC will be calculated for the two ranges, 0x1000 to 0x17FF
and 0x2000 to 0x27FF, and the result will be output to address 0x2FFE.
Two or more non-contiguous address ranges can be selected as the target range
for CRC.

 space option: -space=7F
The value of the space option (0x7F) is used for CRC in free areas within the
target range.

 output option: -output=out.mot=1000-2FFF
Since the space option has been specified, the free areas are output to the out.mot
file. 0x7F will be filled into the free areas.

Notes: 1. The order that CRC is calculated for the specified address ranges is
not the order that the ranges have been specified. CRC proceeds from
the lowest to the highest address.

 2. Even if you wish to use the crc and space options at the same time,
the space option cannot be set as random or a value of 2 bytes or
more. Only 1-byte values are valid.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 150 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example 3: optlnk *.obj -form=stype -start=P1,P2/1000,P3/2000

 -crc=1FFE=1000-1FFD,2000-2FFF

 -output=flmem.mot=1000-1FFF

After linkage CRC Setting for the
output option

Output
(flmem.mot)

0x1000
P1 P1 P1

0x1000

P2 P2 P2

Calculated as
0xFF 0x1FFE

Address where the
result will be output

Result of CRC 0x1FFF
0x2000 P3 P3

0x2FFF

Free Calculated as
0xFF

Free

Target range
(0x1000 to
0x1FFF)

 crc option: -crc=1FFE=1000-1FFD,2000-2FFF

In this example, CRC will be calculated for the two ranges, 0x1000 to 0x1FFD
and 0x2000 to 0x2FFF, and the result will be output to address 0x1FFE.
When the space option has not been specified, space=0xFF is assumed for
calculation of free areas within the target range.

 output option: -output=flmem.mot=1000-1FFF
Since the space option has not been specified, the free areas are not output to the
flmem.mot file. 0xFF is used in CRC for calculation of the free areas, but will
not be filled into these areas.

Remarks: This option is invalid when two or more absolute files have been selected.

 This option is valid only when form={hexadecimal | stype}.

 When the space option has not been specified and the target range includes free
areas that will not be output, the linkage editor assumes in CRC that 0xFF has
been set in the free areas.

 An error occurs if the target range includes an overlay area.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 151 of 1176
Mar 01, 2022

Sample Code: The sample code shown below is provided to check the result of CRC figured out
by the crc option. The sample code program should match the result of CRC by
optlnk.

 When the selected polynomial expression is CRC-CCITT:

typedef unsigned char uint8_t;

typedef unsigned short uint16_t;

typedef unsigned long uint32_t;

uint16_t CRC_CCITT(uint8_t *pData, uint32_t iSize)

{

 uint32_t ui32_i;

 uint8_t *pui8_Data;

 uint16_t ui16_CRC = 0xFFFFu;

 pui8_Data = (uint8_t *)pData;

 for(ui32_i = 0; ui32_i < iSize; ui32_i++)

 {

 ui16_CRC = (uint16_t)((ui16_CRC >> 8u) |

 ((uint16_t)((uint32_t)ui16_CRC << 8u)));

 ui16_CRC ^= pui8_Data[ui32_i];

 ui16_CRC ^= (uint16_t)((ui16_CRC & 0xFFu) >> 4u);

 ui16_CRC ^= (uint16_t) ((ui16_CRC << 8u) << 4u);

 ui16_CRC ^= (uint16_t)(((ui16_CRC & 0xFFu) << 4u) << 1u);

 }

ui16_CRC = (uint16_t)(0x0000FFFFul &

 ((uint32_t)~(uint32_t)ui16_CRC));

 return ui16_CRC;

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 152 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 When the selected polynomial expression is CRC-16:

#define POLYNOMIAL 0xa001 // Generated polynomial expression CRC-16

typedef unsigned char uint8_t;

typedef unsigned short uint16_t;

typedef unsigned long uint32_t;

uint16_t CRC16(uint8_t *pData, uint32_t iSize)

{

 uint16_t crcdData = (uint16_t)0;

 uint32_t data = 0;

 uint32_t i,cycLoop;

 for(i=0;i<iSize;i++){

 data = (uint32_t)pData[i];

 crcdData = crcdData ^ data;

 for (cycLoop = 0; cycLoop < 8; cycLoop++) {

 if (crcdData & 1) {

 crcdData = (crcdData >> 1) ^ POLYNOMIAL;

 } else {

 crcdData = crcdData >> 1;

 }

 }

 }

 return crcdData;

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 153 of 1176
Mar 01, 2022

PADDING Filling padding data at section end

Format: PADDING

Description: Fills in padding data at the end of a section so that the section size is a multiple of
the boundary alignment of the section.

Examples: -start=P,C/0 –padding
When the boundary alignment of section P is 4 bytes, the size of section P is
0x06 bytes, the boundary alignment of section C is 1 byte, and the size of section
C is 0x03 bytes, two bytes of padding data is filled in section P to make its size
become 0x08 bytes and then linkage is performed.

 -start=P/0,C/7 –padding
When the boundary alignment of section P is 4 bytes, the size of section P is
0x06 bytes, the boundary alignment of section C is 1 byte, and the size of section
C is 0x03 bytes, if two bytes of padding data is filled in section P to make its size
become 0x08 bytes and then linkage is performed, error L2321 will be output
because section P overlaps with section C.

Remarks: The value of the created padding data is 0x00.

 Since padding is not performed to an absolute address section, the size of an
absolute address section should be adjusted by the user.

 This option is valid when the CPU type is SuperH Family or RX Family.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 154 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

VECTN Address Setting for Specified Vector Number
Link/Library <Output> [Show entries for:] [Address allocation on specific vector]

Format: VECTN = <suboption>[,...]

 <suboption>: <vector number> = {<symbol> | <address>}

Description: Assigns the specified address to the specified vector number in the variable
vector table section.

 When this option is specified, a variable vector table section is created and the
specified address is set in the table even if there is no interrupt function in the
source code.

 Specify a decimal value from 0 to 255 for <vector number>.

 Specify the external name of the target function for <symbol>.

 Specify the desired hexadecimal address for <address>.

Examples: -vectn=30=_f1,31=0000F100 ;Specifies the _f1 address for vector
 ;number 30 and 0x0f100 for vector
 ;number 31

Remarks: This option is valid when the CPU type is RX Family, M16C Series, or R8C
Family.

 This option is ignored when the user creates a variable vector table section in the
source program because the variable vector table is not automatically created in
this case.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 155 of 1176
Mar 01, 2022

VECT Address Setting for Unused Vector Area
Link/Library <Output> [Show entries for:] [Filling address on empty vector]

Format: VECT={<symbol>|<address>}

Description: Assigns the specified address to the vector number to which no address has been
assigned in the variable vector table section.

 When this option is specified, a variable vector table section is created by the
linkage editor and the specified address is set in the table even if there is no
interrupt function in the source code.

 Specify the external name of the target function for <symbol>.

 Specify the desired hexadecimal address for <address>.

Remarks: This option is valid when the CPU type is RX Family, M16C Series, or R8C
Family.

 This option is ignored when the user creates a variable vector table section in the
source program because the variable vector table is not automatically created in
this case.

 When the {<symbol>|<address>} specification is started with 0, the whole
specification is assumed as an address.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 156 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

UTL utl30 information output
Link/Library <Other> [Other option] [utl file output]

Format: UTL

Description: Generates an external file (utl file) to be input to the tool (utl30) included with
the compiler package.

 The generated file is assigned a name <output file name>.utl.

Examples: tp.obj

utl

output=test.abs

 Outputs inspector information from tp.obj to test.utl.

Remarks: This option is valid only when the compiler for the M16C microcontrollers is
used.

 This option cannot be used when processing the abs files input to the linkage
editor.

 This option is invalid when form={object | library} is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 157 of 1176
Mar 01, 2022

JUMP_ENTRIES_FOR_PIC Jump table output
Link/Library <Output> [Jump table]

Format: JUMP_ENTRIES_FOR_PIC=<section name>[,...]

Description: Outputs an assembly-language source for a jump table to branch to external
definition symbols in the specified section.

 This option is used for the PIC function of the RX family compilers.

 The file name is <output file>.jmp.

Examples: jump_entries_for_pic=sct2,sct3

output=test.abs

 A jump table for branching to external definition symbols in the sections sct2 and
sct3 is output to test.jmp.

 [Example of a file output to test.jmp]
;OPTIMIZING LINKAGE EDITOR GENERATED FILE 2009.07.19

 .glb _func01

 .glb _func02

 .SECTION P,CODE

_func01:

 MOV.L #1000H,R14

 JMP R14

_func02:

 MOV.L #2000H,R14

 JMP R14

 .END

Remarks: This option is invalid when form={object | relocate| library} or strip is
specified.

 This option is invalid when the CPU type is not the RX series.

 The generated jump table is output to the P section.

 Only the program section can be specified for the type of section in the section
name.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 158 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.3 List Options

Table 4.5 List Category Options

Item Command Line Format Dialog Menu Specification

List file LISt [= <file name>] Link/Library <List>
[Generate list file]

Specifies the output of list file.

List contents SHow [= <sub>[,...]]
<sub>: {SYmbol |
 Reference |
 SEction |
 Xreference |
 Total_size|
 VECTOR|
 ALL
 }

Link/Library <List>
[Contents :]

Symbol information
Number of references
Section information
Cross-reference information
Total sizes of sections
Vector Information
All information

LISt List File
Link/Library <List> [Generate list file]

Format: LISt [=<file name>]

Description: Specifies list file output and a list file name.

 If no list file name is specified, a list file with the same name as the output file (or
first output file) is created, with the extension lbp when form=library or extract
is specified, or map in other cases.

SHow List Contents
Link/Library <List> [Contents]

Format: SHow [=<sub>[,…]]
<sub>:{ SYmbol | Reference | SEction | Xreference | Total_size | VECTOR |
ALL}

Description: Specifies output contents of a list.

 Table 4.6 lists the suboptions.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 159 of 1176
Mar 01, 2022

 For details of list examples, refer to section 7.3, Linkage List, and section 7.4,
Library List in the user’s manual.

Table 4.6 Suboptions of show Option

Output Format Suboption Name Description

form=library
or extract is
specified.

symbol Outputs a symbol name list in a module (when extract is specified)

reference Not specifiable

section Outputs a section list in a module (when extract is specified)

xreference Not specifiable

total_size Not specifiable

vector Not specifiable

all Not specifiable (when extract is specified)

Outputs a symbol name list and a section list in a module (when
form=library)

Other than
form=library
and extract is not
specified.

symbol Outputs symbol address, size, type, and optimization contents.

reference Outputs the number of symbol references.

section Not specifiable

xreference Outputs the cross-reference information.

total_size Shows the total sizes of sections allocated to the ROM and RAM
areas.

vector Outputs vector information.

 all If form=rel, the linkage editor outputs the same information as
when show=symbol, xreference, or total_size is specified.

If form=rel and data_stuff have been specified, the linkage editor
outputs the same information as when show=symbol or total_size
is specified.

If form=abs, the linkage editor outputs the same information as
when show=symbol, reference, xreference, or total_size is
specified.

If form=hex, stype, or bin, the linkage editor outputs the same
information as when show=symbol, reference, xreference, or
total_size is specified.

If form=obj, all is not specifiable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 160 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: The following table shows whether suboptions will be valid or invalid by all
possible combinations of options form, show, and/or show=all.

 Symbol Reference Section Xreference Vector Total_size

form=abs show Valid Valid Invalid Invalid Invalid Invalid

show=all Valid Valid Invalid Valid Valid Valid

form=lib show Valid Invalid Valid Invalid Invalid Invalid

show=all Valid Invalid Valid Invalid Invalid Invalid

form=rel show Valid Invalid Invalid Invalid Invalid Invalid

show=all Valid Invalid Invalid Valid* Invalid Valid

form=obj show Valid Valid Invalid Invalid Invalid Invalid

show=all Valid Invalid Invalid Invalid Invalid Invalid

form=hex/bin/sty show Valid Valid Invalid Invalid Invalid Invalid

show=all Valid Valid Invalid Valid Valid* Valid*

 Note: The option is invalid if an absolute-format file is input.

Note the following limitations on output of the cross-reference information.

• When the relocatable format is specified for the output file and the data_stuff option is
specified, no cross-reference information is output.

• When an absolute-format file is input, the referrer address information is not output.

• When -goptimize is not specified at assembly, information about branches to the same section
within the same file is not output (only when an H8, H8S, H8SX Family CPU is specified).

• Information about references to constant symbols within the same file is not output.

• When optimization is specified at compilation, information about branches to immediate
subordinate functions is not output.

• When optimization of access to external variables is specified, information about references to
variables other than base symbols is not output (only when an SuperH Family or RX Family
CPU is specified).

• When an offset value is directly specified in a #pragma tbr in the C source program,
information about that function is not output (only when the SH-2A or SH2A-FPU is specified
as the CPU).

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 161 of 1176
Mar 01, 2022

• When optimization is specified at linkage and constants or literals are unified, information
about references to these constants or literals is not output.

• Both show=total_size and total_size output the same information.

• show=vector can be used when the CPU type is RX Family, M16C Series, or R8C Family.

• When show=reference is valid, the number of references of the variable specified by
#pragma address is output as 0 (only when a SuperH Family or RX Family CPU is specified).

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 162 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.4 Optimize Options

Table 4.7 Optimize Category Options

Item Command Line Format Dialog Menu Specification

Optimization OPtimize = <sub>[…]
<sub>: {STring_unify
 | SYmbol_delete
 | Register

 | SAMe_code
 | Branch

 | Speed
 | SAFe }
NOOPtimize}

Link/Library <Optimize>
[Show entries for :]
[Optimize items]
[Optimize :]

Executes optimization.
Unifies constants/string literals.
Deletes unreferenced symbols.
Provides optimization with
register save/restore.
Unifies same codes.
Provides optimization for
branches.
Provides optimization for speed.
Provides safe optimization.
No optimization.

Same code
size

SAMESize = <size>
(default: sames=1e)

Link/Library <Optimize>
[Eliminated size :]

Specifies the minimum size to
unify same codes.

Profile
information

PROfile = <file name> Link/Library <Optimize>
[Include profile :]

Specifies a profile information file.
(Dynamic optimization is
provided.)

Cache size CAchesize=<sub>
 <sub>: Size=<size> |
 Align=<line size>
(default: ca=s=8,a=20)

Link/Library <Optimize>
[Cache size :]

Specifies a cache size.
Specifies a cache line size.
(for SuperH Family)

Optimization
partially
disabled

SYmbol_forbid=
 <symbol name>[,…]

SAMECode_forbid=
 <function name>[,…]
Variable_forbid=
 <symbol name>[,…]

FUnction_forbid=
 <function name>[,…]
SEction_forbid = <sub>[,...]
 <sub>: [<file name>|
 <module name>]
 (<section name>[,...])
Absolute_forbid=
 <address>[+<size>][,…]

Link/Library <Optimize>
[Show entries for :]
 [Forbid item]

Specifies a symbol where
unreferenced symbol deletion is
disabled.
Specifies a symbol where same
code unification is disabled.
Specifies a symbol where short
absolute addressing mode is
disabled.
Specifies a symbol where indirect
addressing mode is disabled.
Specifies a section where
optimization is disabled.

Specifies an address range
where optimization is disabled.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 163 of 1176
Mar 01, 2022

OPtimize, NOOPtimize Optimization
Link/Library <Optimize> [Show entries for :][Optimize items][Optimize :]

Format: OPtimize [= <suboption>[,…]]

 NOOPtimize

 <suboption>: { STring_unify | SYmbol_delete | Register | SAMe_code | Branch
 | SPeed | SAFe }

Description: Specifies whether the inter-module optimization is executed.

 When optimize is specified, optimization is performed for the file specified with
the goptimize option at compilation or assembly.

 When nooptimize is specified, no optimization is executed for a module.

 When this option is omitted, the default is optimize.

 Table 4.8 shows the suboptions

Table 4.8 Suboptions of Optimize Option

Suboption Description

No parameter V.9.04 Release 01 or earlier
This suboption is the same as the following specifications:
 optimize=string_unify, symbol_delete, register, same_code, branch

V.9.04 Release 02 or later
This suboption is the same as the following specifications:
 optimize=string_unify, symbol_delete, same_code, branch

string_unify Unifies same-value constants having the const attribute. Constants having the const
attribute are:

• Variables defined as const in C/C++ program

• Initial value of character string data

• Literal constant

symbol_delete Deletes variables/functions that are not referenced. Always be sure to specify #pragma
entry at compilation or the entry option in the optimizing linkage editor.

register Investigates function calls, relocates registers and deletes redundant register save or
restore codes. Always be sure to specify #pragma entry at compilation or the entry option
in the optimizing linkage editor.

same_code Creates a subroutine for the same instruction sequence.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 164 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Suboption Description

branch Optimizes branch instruction size according to program allocation information. Even if this
option is not specified, it is performed when any other optimization is executed.

speed Executes optimizations other than those reducing object speed.

V.9.04 Release 01 or earlier
This suboption is the same as the following specifications:
 optimize=string_unify, symbol_delete, register, branch

V.9.04 Release 02 or later
This suboption is the same as the following specifications:
 optimize=string_unify, symbol_delete, branch

safe Executes optimizations other than those limited by variable or function attributes.

V.9.04 Release 01 or earlier
This suboption is the same as the following specifications:
 optimize=string_unify, register, branch

V.9.04 Release 02 or later
This suboption is the same as the following specifications:
 optimize=string_unify, branch

Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.

 When optimization of access to external variables is specified at compilation,
optimization with unification of constants/string literals (optimize=string_unify)
is invalid.

 When the CPU is SH-2A or SH2A-FPU, the code size may increase due to the
optimize=register function.

 When a start function with #pragma entry or entry is not specified,
optimize=symbol_delete is invalid.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 165 of 1176
Mar 01, 2022

SAMesize Common Code Size
Link/Library <Optimize> [Eliminated size :]

Format: SAMESize = <size>

Description: Specifies the minimum code size for the optimization with the same-code
unification (optimize=same_code). Specify a hexadecimal value from 8 to 7FFF.

 When this option is omitted, the default is samesize=1E.

Remarks: When optimize=same_code is not specified, this option is unavailable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 166 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

PROfile Profile Information
Link/Library <Optimize> [Include profile :]

Format: PROfile = <file name>

Description: Specifies a profile information file.

 Specifiable profile information files are those output from the High-performance
Embedded Workshop Ver. 2.0 or later.

 When a profile information file is specified, inter-module optimization according
to dynamic information can be performed.

 Table 4.9 shows optimizations influenced by a profile information input.

Table 4.9 Relations Between Profile Information and Optimization

Suboption Description

Program to be Optimized*1

SHC SHA H8C H8A

variable_access Allocates variables from those that are
dynamically accessed more frequently.

× × O O

function_call Lowers the optimizing priority of functions that
are dynamically accessed frequently.

× × O O

branch Allocates a function that is dynamically accessed
frequently near the calling function.

For the SH program, the optimization with
allocation is performed depending on the cache
size specified using the cachesize option.

O ∆*2 O ∆

Notes: 1. SHC: C/C++ program for SuperH Family
 SHA: Assembly program for SuperH Family
 H8C: C/C++ program for H8, H8S, H8SX Family
 H8A: Assembly program for H8, H8S, H8SX Family
 2. Movement is provided not in the function unit, but in the input file unit.

Remarks: When the optimize option is not specified, this option is unavailable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 167 of 1176
Mar 01, 2022

CAchesize Cache Size
Link/Library <Optimize> [Cache size :]

Format: CAchesize = <suboption>

 <suboption>: Size = <size> | Align = <line size>

Description: Specifies a cache size and cache line size.

 When profile is specified, this option is used at the branch instruction
optimization (optimize=branch).

 Specify the size in Kbytes and specify the line size in bytes in the hexadecimal
notation.

 When this option is omitted, the default is cachesize=size=8, align=20.

Remarks: If profile is not specified, this option is unavailable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 168 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SYmbol_forbid, SAMECode_forbid, Variable_forbid,
FUnction_forbid, SEction_forbid, Absolute_forbid Optimization Partially Disabled

Link/Library <Optimize> [Show entries for :] [Forbid item]

Format: SYmbol_forbid = <symbol name> [,…]

 SAMECode_forbid = <function name> [,…]

 Variable_forbid = <symbol name> [,…]

 FUnction_forbid = <function name> [,…]

 SEction_forbid = <sub>[,…]

 <sub>: [<file name>|<module name>](<section name>[,…])

 Absolute_forbid = <address> [+<size>] [,…]

Description: Disables optimization for the specified symbol, section, or address range. Specify
an address or the size in the hexadecimal notation. For a C/C++ variable or C
function name, add an underscore (_) at the head of the definition name in the
program. For a C++ function, enclose the definition name in the program with
double-quotes including the parameter strings. When the parameter is void,
specify as "<function name>()".

 Table 4.10 shows the suboptions.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 169 of 1176
Mar 01, 2022

Table 4.10 Suboptions of Optimization Partially Disabling Option

Suboption Parameter Description
symbol_forbid Function name

 | variable name
Disables optimization regarding unreferenced symbol
deletion

samecode_forbid Function name Disables optimization regarding same-code unification

variable_forbid Variable name Disables optimization regarding short absolute
addressing mode

function_forbid Function name Disables optimization regarding indirect addressing
mode

section_forbid Section name
File name
Module name

Disables optimization for the specified section. If an
input file name or library module name is also specified,
the optimization can be disabled for a specific file, not
only the entire section.

absolute_forbid Address [+ size] Disables optimization regarding address + size
specification

Examples: symbol_forbid="f(int)" ; Does not delete the C++ function f(int)
 ; even if it is not referenced.

 section_forbid=(P1) ; Disables any optimization for section
 ; P1.

 section_forbid=a.obj(P1,P2) ; Disables any optimization for sections
 ; P1 and P2 in a.obj.

Remarks: If optimization is not applied at linkage, this option is ignored.

 To disable optimization for an input file with its path name, type the path with the
file name when specifying section_forbid.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 170 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.5 Section Options

Table 4.11 Section Category Options

Item Command Line Format Dialog Menu Specification

Section
address

STARt = <sub>[,…]
<sub>: [(]<section name>
 [{ : | , }<section name>[,…]]
 [)][,...] [/<address>]

Link/Library <Section>
[Show entries for :]
[Section]

Specifies a section start address

Symbol
address file

FSymbol = <section name>[,…] Link/Library <Section>
[Show entries for :]
[Symbol file]

Outputs externally defined
symbol addresses to a definition
file.

Section
alignment
specification

ALIGNED_SECTION = <section
name>[,...]

Link/Library <Section>
[Show entries for :]
[Section alignment]

Changes the section alignment
value to 16 bytes.

STARt Section Address
Link/Library <Section> [Show entries for :] [Section]

Format: STARt = <sub> [,…]

 <sub>: [(] <section name> [{ : | , } <section name> [,…]] [)] [,…]
 [/ <address>]

Description: Specifies the start address of the section. Specify an address as the hexadecimal.

 The section name can be specified with wildcards “*”. Sections specified with
wildcards are expanded according to the input order.

 Two or more sections can be allocated to the same address (i.e., sections are
overlaid) by separating them with a colon “:”.

 Sections specified at a single address are allocated in the specification order.

 Sections to be overlaid can be changed by enclosing them by parentheses “()”.

 Objects in a single section are allocated in the specification order of the input file
or the input library.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 171 of 1176
Mar 01, 2022

 If no address is specified, the section is allocated at 0.

 A section which is not specified with the start option is allocated after the last
allocation address.

Examples: This example shows how sections are allocated when the objects are input in the
following order (names enclosed by parentheses are sections in the objects).

 tp1.obj(A,D1,E) -> tp2.obj(B,D3,F)) -> tp3.obj(C,D2,E,G)

 -> lib.lib(E)

 (1) -start=A,B,E/400,C,D*:F:G/8000

 0x400 0x8000

 A B C D1 D3 D2 E(tp1) E(tp3) E(lib)
F

 G

• Sections C, F, and G separated by colons are allocated to the same address.
• Sections specified with wildcards “*” (in this example, the sections whose

names start with D) are allocated in the input order.
• Objects in the sections having the same name (E in this example) are allocated

in the input order.
• An input library’s section having the same name (E in this example) as those

of input objects is allocated after the input objects.

 (2) -start=A,B,C,D1:D2,D3,E,F:G/400

 0x400

 A B C D1
D2 D3 E F

 G

• The sections that come immediately after the colons (A, D2, and G in this
example) are selected as the start and allocated to the same address.

 (3) -start=A,B,C,(D1:D2,D3),E,(F:G)/400

 0x400

 A B C D1

D3 D2
E F

 G

• When the sections to be allocated to the same address are enclosed by
parentheses, the sections within parentheses are allocated to the address

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 172 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

immediately after the sections that come before the parentheses (C and E in
this example).

• The section that comes after the parentheses (E in this example) is allocated
after the last of the sections enclosed by the parentheses.

Remarks: When form={object | relocate | library} or strip is specified, this option is

unavailable.

 Parentheses cannot be nested.

 One or more colons must be written within parentheses. Parentheses cannot be
written without a colon.

 Colons cannot be written outside of parentheses.

 When this option is specified with parentheses, optimization with the linkage
editor is disabled.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 173 of 1176
Mar 01, 2022

FSymbol Symbol Address File
Link/Library <Section> [Show entries for :][Symbol file]

Format: FSymbol = <section name> [,…]

Description: Outputs externally defined symbols in the specified section to a file in the
assembler directive format.

 The file name is <output file>.fsy.

Examples: fSymbol = sct2, sct3

output=test.abs

 Outputs externally defined symbols in sections sct2 and sct3 to test.fsy.

 [Output example of test.fsy]
;OPTIMIZING LINKAGE EDITOR GENERATED FILE 1999.11.26

;fsymbol = sct2, sct3

 ;SECTION NAME = sct2

 .export _f

_f: .equ h’00000000

 .export _g

_g: .equ h’00000016

;SECTION NAME = sct3

 .export _main

_main: .equ h’00000020

 .end

Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.

 This option is available when the CPU type is H8, H8S, H8SX Family, SuperH
Family, or RX Family.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 174 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

ALIGNED_SECTION Changing Section Alignment to 16 bytes
Link/Library <Section> [Show entries for :][Section alignment]

Format: ALIGNED_SECTION = <section name>[,...]

Description: Changes the alignment value for the specified section to 16 bytes.

Remarks: When form={object | relocate | library}, extract, or strip is specified, this
option is unavailable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 175 of 1176
Mar 01, 2022

4.2.6 Verify Options

Table 4.12 Verify Category Options

Item Command Line Format Dialog Menu Specification

Address
check

CPu = { <cpu information file
name>
| <memory type> =
 <address range>[,…]
| STRIDE}
<memory type>:
 { ROm | RAm
 | XROm | XRAm
 | YROm | YRAm }
<address range>:
 <start address>
 -<end address>

Link/Library <Verify>
[CPU information check :]

Specifies a specifiable allocation
range for section addresses.
The specified section will be
divided.

Physical
space overlap
check

PS_check=<sub>[:<sub>...]
 <sub>: <LS>,<LS>[,...]
 <LS>: <start address>
 -<end address>

Link/Library <Verify>
[Physical space overlap
check :]

Specifies address ranges that
may overlap each other in the
physical space.

Not divide the
specified
section

CONTIGUOUS_SECTION
= <section name>[,…]

Link/Library <Verify>
[Not divide the specified
section :]

The specified section will not be
divided.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 176 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

CPu Address Check
Verify [CPU information check:]

Format: CPu={<cpu information file name>
 | <memory type> = <address range> [,…]
 | STRIDE}

 <memory type>: { ROm | RAm | XROm | XRAm | YROm | YRAm | FIX}

 <address range>: <start address> - <end address>

Description: When cpu=stride is not specified, a section larger than the specified range of
addresses leads to an error.

 When cpu=stride is specified, a section larger than the specified range of
addresses is allocated to the next area of the same memory type or the section is
divided.

 [Example]
When the stride suboption is not specified:
start=D1,D2/100

cpu=ROM=100-1FF,RAM=200-2FF

The result is normal when D1 and D2 are respectively allocated within the ranges
from 100 to 1FF and from 200 to 2FF. If they are not allocated within the ranges,
an error will be output.

 [Example]
When the stride suboption is specified:
start=D1,D2/100

cpu=ROM=100-1FF,RAM=200-2FF,ROM=300-3FF

cpu=stride

The result is normal when D1 and D2 are allocated within the ROM area
(regardless of whether the section is divided). A linkage error occurs when they
are not allocated within the ROM area even though the section is divided.

 xrom and xram specify the X memory areas and yrom and yram specify the Y
memory areas in the DSP.

 Specify an address range in which a section can be allocated in hexadecimal
notation. The memory type attribute is used for the inter-module optimization.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 177 of 1176
Mar 01, 2022

 FIX for <memory type> is used to specify a memory area where the addresses
are fixed (e.g. I/O area).

 If the address range of <start>-<end> specified for FIX overlaps with that
specified for another memory type, the setting for FIX is valid.

 When <memory type> is ROM or RAM and the section size is larger than the
specified memory range, sub-option STRIDE can be used to divide a section and
allocate them to another area of the same memory type. Sections are divided in
module units.

 [Example]
cpu=ROM=0-FFFF,RAM=10000-1FFFF

Checks that section addresses are allocated within the range from 0 to FFFF or
from 10000 to 1FFFF.
Object movement is not provided between different attributes with the inter-
module optimization.

 cpu=ROM=100-1FF,ROM=400-4FF,RAM=500-5FF

cpu=stride

When section addresses are not allocated within the range from 100 to 1FF, the
linkage editor divides the sections in module units and allocates them to the range
from 400 to 4FF.

Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.

 When cpu=stride and memory=low are specified, this option is unavailable.

 Memory types xrom, xram, yrom, and yram are available only when the CPU is
SHDSP, SH2DSP, SH3DSP or SH4ALDSP.

 When cpu=stride and optimize=register are valid, error L2320 may be output.
In such cases, disable optimize=register.

 When section B is divided by cpu=stride, the size of section C$BSEC increases
by 8 bytes × number of divisions because this amount of information is required
for initialization.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 178 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

PS_check Physical Space Overlap Check
Verify [Physical space overlap check :]

Format: PS_check=<sub>[:<sub>...]

 <sub>: <LS>,<LS>[,...]

 <LS>: <start address>-<end address>

Description: Specifies objects that may overlap each other when they are allocated to the
memory.

 Use this option to detect SH3 or SH4 objects that will overlap each other when
they are allocated to the actual memory even if their virtual addresses do not
overlap.

 If an overlap is detected after this option setting, an error will be output and the
linkage operation will be terminated.

 Specify address ranges (<LS> in the command line format) that may overlap each
other in the memory.

 To check multiple physical memory spaces, specify them by separation with a
colon (:).

Examples: In the SH4, the 4-Gbyte address space is mapped to the 512-Mbyte (29-bit
address) external memory area when the MMU is disabled (the upper three bits of
address for the 4-Gbyte space are ignored).

 For example, when the U0 area (00000000 to 0x7fffffff) that can be used in user
mode is mapped to the external memory (512 Mbytes), overlapped objects can be
detected through the following setting.

 -PS_check=00000000-1fffffff,20000000-3fffffff,

40000000-5fffffff,60000000-7fffffff

 This setting means that addresses 00000000, 20000000, 40000000, and 60000000
are allocated to the same location in the actual memory.

Remarks: This option is only valid for the SuperH Family CPUs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 179 of 1176
Mar 01, 2022

 This option is invalid if object, relocate, or library is specified for the output
format (form option).

 This option is invalid when an absolute file is input.

 For the address space specifications of the CPU, refer to the hardware manual of
the target CPU.

CONTIGUOUS_SECTION Not divide the specific section
Link/Library <Verify> [Not divide the specified section :]

Format: CONTIGUOUS_SECTION=<section name>[,...]

Description: Allocates the specified section to another available area of the same memory type
without dividing the section when cpu=stride is valid.

Examples: start=P,PA,PB/100

cpu=ROM=100-1FF,ROM=300-3FF,ROM=500-5FF

cpu=stride

contiguous_section=PA

 Section P is allocated to address 100.

 If section PA which is specified as contiguous_section is over address 1FF,
section PA is allocated to address 300 without being divided.

 If section PB which is not specified as contiguous_section is over address 3FF,
section PB is divided and allocated to address 500.

Remarks: When cpu=stride is invalid, this option is unavailable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 180 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.7 Other Options

Table 4.13 Other Category Options

Item Command Line Format Dialog Menu Specification

End code S9 Link/Library <Other>
[Miscellaneous options :]
[Always output S9 record
at the end]

Always outputs the S9 record.

Stack
information
file

STACk Link/Library <Other>
[Miscellaneous options :]
[Stack information output]

Outputs a stack use information
file.

Debugging
information
compression

Compress

NOCOmpress

Link/Library <Other>
[Miscellaneous options :]
[Compress debug
information]

Compresses debugging
information
Does not compress debugging
information

Memory
occupancy
reduction

MEMory = [High | Low] Link/Library <Other>
[Miscellaneous options :]
[Low memory use during
linkage]

Specifies the memory
occupancy when an input file is
loaded

Symbol name
modification

REName = <sub>[,…]
<sub>:
 {<file name>
 (<name>=<name>[,…])
 | <module name>
 (<name><name>[,…]) }

Link/Library <Other>
[User defined options :]

Modifies a symbol name or
section name.

Symbol name
deletion

DELete = <sub>[,…]
<sub>:
 {<module name>
 | [<file name>]
 (<name>[,…]) }

Link/Library <Other>
[User defined options :]

Deletes a symbol name or
module name.

Module
replacement

REPlace = <sub>[,…]
<sub>: <file>
 [(<module>[,…])]

Link/Library <Other>
[User defined options :]

Replaces modules of the same
name in a library file.

Module
extraction

EXTract = <module>[,…] Link/Library <Other>
[User defined options :]

Extracts the specified module in
a library file.

Debugging
information
deletion

STRip Link/Library <Other>
[User defined options:]

Deletes debugging information
in an absolute file or a library
file.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 181 of 1176
Mar 01, 2022

Item Command Line Format Dialog Menu Specification

Message level CHange_message=<sub>[,…]
<sub>:
{Information | Warning | Error }
 [=<error number>
 [-<error number>] [,…]]

Link/Library <Other>
[User defined options:]

Modifies message levels.

Local symbol
name hide

Hide Link/Library <Other>
[User defined options:]

Deletes local symbol name
information

Showing total
sizes of
sections

Total_size Link/Library <Other>
[Miscellaneous options :]
[Displays total section size]

This newly added option sends
total sizes of sections after
linkage to standard output.

Information
file for the
emulator

RTs_file Link/Library <Other>
[Miscellaneous options :]
 [Rts information output]

Outputs an information file for
the emulator (for SuperH
Family).

S9 End Code
Link/Library <Other>[Miscellaneous options :][Always output S9 record at the end]

Format: S9

Description: Outputs the S9 record at the end even if the entry address exceeds 0x10000.

Remarks: When form=stype is not specified, this option is unavailable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 182 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

STACk Stack Information File
Link/Library <Other>[Miscellaneous options :][Stack information output]

Format: STACk

Description: Outputs a stack consumption information file.

 The file name is <output file name>.sni.

Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.

COmpress, NOCOmpress Debugging Information Compression
Link/Library <Other>[Miscellaneous options :][Compress debug information]

Format: COmpress

 NOCOmpress

Description: Specifies whether debugging information is compressed.

 When compress is specified, the debugging information is compressed.

 When nocompress is specified, the debugging information is not compressed.

 By compressing the debugging information, the debugger loading speed is
improved. If the nocompress option is specified, the link time is reduced.

 If this option is omitted, the default is nocompress.

Remarks: When form={object | relocate | library | hexadecimal | stype | binary} or strip
is specified, the compress option is unavailable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 183 of 1176
Mar 01, 2022

MEMory Memory Occupancy Reduction
Link/Library <Other>[Miscellaneous options :][Low memory use during linkage]

Format: MEMory = [High | Low]

Description: Specifies the memory size occupied for linkage.

 When memory = high is specified, the processing is the same as usual.

 When memory = low is specified, the linkage editor loads the information
necessary for linkage in smaller units to reduce the memory occupancy. This
increases file accesses and processing becomes slower when the occupied
memory size is less than the available memory capacity.

 memory = low is effective when processing is slow because a large project is
linked and the memory size occupied by the linkage editor exceeds the available
memory in the machine used.

Remarks: When one of the following options is specified, the memory=low option is
unavailable:

 When form=absolute, hexadecimal, stype, or binary is specified:

 compress, delete, rename, map, stack, cpu=stride, or
list and show[={reference | xreference}] are specified in combination.

 When form=library is specified:

 delete, rename, extract, hide, or replace

 When form=object or relocate is specified:

 extract

 When the microcontroller is of a type that is not a member of the NC family and
optimize is specified.

 Some combinations of this option and the input or output file format are
unavailable. For details, refer to table 4.4 in section 4.2.2, Output Options.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 184 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

REName Symbol Name Modification
Link/Library <Other>[User defined options :]

Format: REName = <suboption> [,…]

 <suboption>: {[<file>] (<name> = <name> [,…])
 | [<module>] (<name> = <name> [,…]) }

Description: Modifies a symbol name or a section name.

 Symbol names or section names in a specific file or library in a module can be
modified.

 For a C/C++ variable name, add an underscore (_) at the head of the definition
name in the program.

 When a function name is modified, the operation is not guaranteed.

 If the specified name matches both section and symbol names, the symbol name
is modified.

 If there are several files or modules of the same name, the priority depends on the
input order.

Examples: rename=(_sym1=data) ; Modifies _sym1 to data.

 rename=lib1(P=P1) ; Modifies the section P to P1
 ; in the library module lib1.

Remarks: When extract or strip is specified, this option is unavailable.

 When form=absolute is specified, the section name of the input library cannot be
modified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 185 of 1176
Mar 01, 2022

DELete Symbol Name Deletion
Link/Library <Other>[User defined options :]

Format: DELete = <suboption> [,…]

 <suboption>: {[<file>] (<name>[,...]) | <module>}

Description: Deletes an external symbol name or library module.

 Symbol names or modules in the specified file can be deleted.

 For a C/C++ variable name or C function name, add an underscore (_) at the head
of the definition name in the program. For a C++ function name, enclose the
definition name in the program with double-quotes including the parameter
strings. If the parameter is void, specify as "<function name>()". If there are
several files or modules of the same name, the file that is input first is applied.

 When a symbol is deleted using this option, the object is not deleted but the
attribute is changed to the internal symbol.

Examples: delete=(_sym1) ; Deletes the symbol _sym1 in all files.

 delete=file1.obj(_sym2) ; Deletes the symbol _sym2
 ; in the file file1.obj.

Remarks: When extract or strip is specified, this option is unavailable.

 When form=library has been specified, this option deletes modules.

 When form={absolute|relocate|hexadecimal|stype|binary}has been specified,
this option deletes external symbols.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 186 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

REPlace Module Replacement
Link/Library <Other>[User defined options :]

Format: REPlace = <suboption> [,…]

 <suboption>: <file name> [(<module name> [,…]) }

Description: Replaces library modules.

 Replaces the specified file or library module with the module of the same name in
the library specified with the library option.

Examples: replace=file1.obj ; Replaces the module file1
 ; with the module file1.obj.

 replace=lib1.lib(mdl1) ; Replaces the module mdl1 with
 ; the module mdl1 in the input library
 ; file lib1.lib.

Remarks: When form={object | relocate | absolute | hexadecimal | stype | binary},
extract, or strip is specified, this option is unavailable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 187 of 1176
Mar 01, 2022

EXTract Module Extraction
Link/Library <Other>[User defined options :]

Format: EXTract = <module name> [,…]

Description: Extracts library modules.

 Extracts the specified library module from the library file specified using the
library option.

Examples: extract=file1 ; Extracts the module file1.

Remarks: When form={absolute | hexadecimal | stype | binary} or strip is specified, this
option is unavailable.

 When form=library has been specified, this option deletes modules.

 When form={absolute|relocate|hexadecimal|stype|binary}has been specified,
this option deletes external symbols.

STRip Debugging Information Deletion
Link/Library <Other>[User defined options :]

Format: STRip

Description: Deletes debugging information in an absolute file or library file.

 When the strip option is specified, one input file should correspond to one output
file.

Examples: input=file1.abs file2.abs file3.abs

strip

 Deletes debugging information of file1.abs, file2.abs, and file3.abs, and outputs
this information to file1.abs, file2.abs, and file3.abs, respectively. Files before
debugging information is deleted are backed up in file1.abk, file2.abk, and
file3.abk.

Remarks: When form={object | relocate | hexadecimal | stype | binary} is specified, this
option is unavailable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 188 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

CHange_message Message Level
Link/Library <Other>[User defined options :]

Format: CHange_message = <suboption> [,…]

 <suboption>: <error level> [= <error number> [-<error number>] [,…]]

 <error level>: {Information | Warning | Error}

Description: Modifies the level of information, warning, and error messages.

 Specifies the execution continuation or abort at the message output.

Examples: change_message=warning=2310
Modifies L2310 to the warning level and specifies execution continuation at
L2310 output.

 change_message=error
Modifies all information and warning messages to error level messages.
When a message is output, the execution is aborted.

Hide Local Symbol Name Hide
Link/Library <Other>[User defined options :]

Format: Hide

Description: Deletes local symbol name information from the output file. Since all the name
information regarding local symbols is deleted, local symbol names cannot be
checked even if the file is opened with a binary editor. This option does not affect
the operation of the generated file.

 Use this option to keep the local symbol names secret.

 The following types of symbol names are hidden:
C source: Variable or function names specified with the static qualifiers
C source: Label names for the goto statements
Assembly source: Symbol names of which external definition (reference)
symbols are not declared

 Note: The entry function name is not hidden.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 189 of 1176
Mar 01, 2022

Examples: The following is a C source example in which this option is valid:

 int g1;
int g2=1;
const int g3=3;
static int s1; //<- The static variable name will be hidden.
static int s2=1; //<- The static variable name will be hidden.
static const int s3=2; //<- The static variable name will be hidden.

static int sub1() //<- The static function name will be hidden.
{
 static int s1; //<- The static variable name will be hidden.
 int l1;

 s1 = l1; l1 = s1;
 return(l1);
}

int main()
{
 sub1();
 if (g1==1)
 goto L1;
 g2=2;
L1: //<- The label name of the goto statement
 // will be hidden.
 return(0);
}

Remarks: This option is available only when the output file format is specified as absolute,
relocate, or library.

 When the input file was compiled or assembled with the goptimize option
specified, this option is unavailable if the output file format is specified as
relocate or library.

 To use this option with the external variable access optimization, do not use this
option for the first linkage, and use it only for the second linkage.

 The symbol names in the debugging information are not deleted by this option.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 190 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Total_size Showing total sizes of sections
Link/Library <Other> [Miscellaneous options :] [Displays total section size]

Format: Total_size

Description: Sends total sizes of sections after linkage to standard output. The sections are
categorized as follows, with the overall size of each being output.

• Executable program sections
• Non-program sections allocated to the ROM area
• Sections allocated to the RAM area

 This option makes it easy to see the total sizes of sections allocated to the ROM

and RAM areas.

Remarks: The show=total_size option must be used if total sizes of sections are to be
output in the linkage listing.

 When the ROM-support function (rom option) has been specified for a section,
the section will be used by both the source (ROM) and destination (RAM) of the
transfer. The sizes of sections of this type will be added to the total sizes of
sections in both ROM and RAM.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 191 of 1176
Mar 01, 2022

RTs_file Information File for the Emulator
Link/Library <Other> [Miscellaneous options :] [Rts information output]

Format: RTs_file

Description: This option creates a return address information file (.rts file) for the emulator.
For usage of this option, refer to the user’s manual for the emulator in use. This
option is not available in some types of emulators.

 The name of the return address information file is <load module name>.rts. If
the file to be output is test.abs as specified with the output option, for example,
its file will be created as test.rts. The return address information file is created
under the same directory where the load module has been created.

Remarks: This option is invalid when form={object | relocate | library} has been
specified.

 This option is invalid when an absolute file is selected as an input file.

 For usage of this option, refer to the user’s manual for the emulator in use. This
option is not available in some types of emulators.

 This option can be used when the CPU type is SuperH Family.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 192 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.8 Subcommand File Options

Table 4.14 Subcommand Tab Option

Item Command Line Format Dialog Menu Specification

Subcommand
file

SUbcommand =
 <file name>

Link/Library
<Subcommand file>
[Use external
subcommand file]

Specifies options with a
subcommand file

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 193 of 1176
Mar 01, 2022

SUbcommand Subcommand File
Link/Library <Subcommand file> [Use external subcommand file]

Format: SUbcommand = <file name>

Description: Specifies options with a subcommand file.

 The format of the subcommand file is as follows:
<option> { = | ∆ } [<suboption> [,…]] [∆&] [;<comment>]

 The option and suboption are separated by an “=” sign or a space.

 For the input option, suboptions are separated by a space.

 One option is specified per line in the subcommand file.

 If a subcommand description exceeds one line, the description can be allowed to
overflow to the next line by using an ampersand (&).

 The subcommand option cannot be specified in the subcommand file.

Examples: Command line specification:
 optlnk file1.obj -sub=test.sub file4.obj

 Subcommand specification:
 input file2.obj file3.obj ; This is a comment.
 library lib1.lib, & ; Specifies line continued.
 lib2.lib

 Option contents specified with a subcommand file are expanded to the location at
which the subcommand is specified on the command line and are executed.

 The order of file input is file1.obj, file2.obj, file3.obj, and file4.obj.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 194 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4.2.9 CPU Option

Table 4.15 CPU Tab Option

Item Command Line Format Dialog Menu Specification

SBR address
specification

SBr = { <SBR address>
 | User}

CPU
[Specify SBR address :]

Specifies the start address of
the 8-bit absolute area (for
H8SX Family).

SBr SBR Address Specification
CPU [Specify SBR address :]

Format: SBr = { <address> | User }

Description: Specifies the SBR address.

 When the SBR address is specified in this option, optimization using the abs8
area is available. When user is specified in this option, optimization for the abs8
area is disabled.

Remarks: This option is available only when the CPU is H8SX Family.

 If more than one SBR address is specified within the source or by tool options,
the optimizing linkage editor assumes that user is specified regardless of this
option setting.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 195 of 1176
Mar 01, 2022

4.2.10 Options Other Than Above

Table 4.16 Options Other Than Above

Item Command Line Format Dialog Menu Specification

Copyright LOgo
NOLOgo


(NOLOgo is always valid)

Output
Not output

Continuation END  Executes option strings already
input, inputs continuing option
strings and continues
processing.

Termination EXIt  Specifies the termination of
option input.

LOgo, NOLOgo Copyright
None (nologo is always available.)

Format: LOgo

 NOLOgo

Description: Specifies whether the copyright is output.

 When the logo option is specified, the copyright is displayed.

 When the nologo option is specified, the copyright display is disabled.

 When this option is omitted, the default is logo.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 196 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

END Execution Continued
None

Format: END

Description: Executes option strings specified before END. After the linkage processing is
terminated, option strings that are specified after END are input and the linkage
processing is continued.

 This option cannot be specified on the command line.

Examples: input=a.obj,b.obj ; Processing (1)
start=P,C,D/100,B/8000 ; Processing (2)
output=a.abs ; Processing (3)
end

input=a.abs ; Processing (4)
form=stype ; Processing (5)
output=a.mot ; Processing (6)

 Executes the processing from (1) to (3) and outputs a.abs. Then executes the
processing from (4) to (6) and outputs a.mot.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

R20UT0704EJ0102 Rev. 1.02 Page 197 of 1176
Mar 01, 2022

EXIt Termination Processing
None

Format: EXIt

Description: Specifies the end of the option specifications.

 This option cannot be specified on the command line.

Examples: Command line specification:
 optlnk -sub=test.sub -nodebug

 test.sub:
 input=a.obj,b.obj ; Processing (1)
 start=P,C,D/100,B/8000 ; Processing (2)
 output=a.abs ; Processing (3)
 exit

 Executes the processing from (1) to (3) and outputs a.abs.

 The nodebug option specified on the command line after exit is executed is
ignored.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 198 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

R20UT0704EJ0102 Rev. 1.02 Page 199 of 1176
Mar 01, 2022

Section 5 Standard Library Generator Operating Method

5.1 Option Specifications

The format of the command line is as follows:

lbgsh [∆<option string>...]

 <option string>:-<option>[=<suboption>[,...]]

5.2 Option Descriptions

Options and suboptions of the standard library generator are based on the compiler options. The
following section describes the difference between the options and suboptions of the standard
library generator and those of the compiler. For details on compiler options, refer to section 2,
Compiler Options.

In the command line format, uppercase letters indicate abbreviations. The format of the dialog
menus that correspond to the integrated development environment is as follows: Category name
[Item].

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 5 Standard Library Generator Operating Method Optimizing Linkage Editor

Page 200 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

5.2.1 Additional Options

Table 5.1 shows additional options.

Table 5.1 Additional Options

Item Command Line Format Dialog Menu Specification
Header file Head = <sub>[,…]

<sub>:{ ALL
 | RUNTIME
 | CTYPE
 | MATH
 | MATHF
 | STDARG
 | STDIO
 | STDLIB
 | STRING
 | IOS
 | NEW
 | COMPLEX
 | CPPSTRING }

Library
[Category:]

Specifies a configuration file.
All library functions
Runtime routine
ctype.h + runtime routine
math.h + runtime routine
mathf.h + runtime routine
stdarg.h + runtime routine
stdio.h + runtime routine
stdlib.h + runtime routine
string.h + runtime routine
ios + runtime routine
new + runtime routine
complex + runtime routine
string + runtime routine

Output file OUTPut = <file name> Object
[Output file:]

Specifies an output library file
name.

Simple I/O
function

NOFLoat Object
[Simple I/O
function:]

Creates simple I/O function.

Reentrant
library

REent Object
[Generate
reentrant library:]

Creates reentrant library.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

R20UT0704EJ0102 Rev. 1.02 Page 201 of 1176
Mar 01, 2022

Head

Library [Category:]

• Command Line Format
Head = <sub>[,…]
<sub>:{ ALL

| RUNTIME
| CTYPE
| MATH
| MATHF
| STDARG
| STDIO
| STDLIB
| STRING
| IOS
| NEW
| COMPLEX
| CPPSTRING }

• Description
Specifies a configuration file with a header file name. For relationships between header files
and library functions, refer to section 10.4, C/C++ Library. The runtime routine is always
configured. The default of this option is head=all.

• Example
lbgsh –output=sh2.lib –head=mathf –cpu=sh2

Compiles library functions defined by mathf.h and runtime routine with option: -cpu=sh2, and
outputs library file sh2.lib.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 5 Standard Library Generator Operating Method Optimizing Linkage Editor

Page 202 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

OUTPut

Object [Output file:]

• Command Line Format
OUTPut = <File name>

• Description
Specifies an output file name. The default of this option is output=stdlib.lib.

• Example
lbgsh –output=sh2.lib –optimize –speed –goptimize –cpu=sh2

Compiles all standard library source files with options: -optimize -speed
-goptimize -cpu=sh2, and outputs library file sh2.lib.

NOFLoat

Object[Simple I/O function:]

• Command Line Format
NOFLoat

• Description
Selects the creation of simple I/O functions that do not support the conversion of floating point
numbers (%f, %e, %E, %g, %G). When inputting or outputting files that do not require the
conversion of floating point numbers, ROM can be saved.
Target functions: fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf, and vsprintf

• Remarks
When a floating-point number is specified in I/O functions, linkages of library that are created
by this option will not operate correctly on the floating-point number thus specified.

REent

Object[Generate reentrant library:]

• Command Line Format
REent

• Description
Creates reentrant functions. Note that the rand and srand functions are not reentrant functions.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

R20UT0704EJ0102 Rev. 1.02 Page 203 of 1176
Mar 01, 2022

• Remarks
When reentrant functions are linked, use #define statements to define macro names (#define
_REENTRANT) or use the define option to define _REENTRANT at compilation before
including standard include files in the program.

5.2.2 Options Not Available for the Standard Library Generator

Table 5.2 shows options that cannot be specified for the standard library generator. If any of the
options listed in table 5.2 are specified, these specifications are ignored.

Table 5.2 Options Not Available for Standard Library Generator

Item

Option

Compiler
Interpretation

Description

Include file directory include None 
Inter-file inline
expansion directory
specification

file_inline_path None 

Macro name definition define None 
Message output
control

message
nomessage

nomessage No output

Preprocessor
inline output

preprocessor None 

Restriction for output at
preprocessor expansion

noline None 

Object type code code = machinecode Outputs machine code program
Debugging information debug

nodebug
nodebug No output

Object file output objectfile None 

Template instance
generation

template None No template function used

Listing file listfile
nolistfile

nolistfile No output

Listing format show None 

Inter-file inline
expansion

file_inline None 

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 5 Standard Library Generator Operating Method Optimizing Linkage Editor

Page 204 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 5.2 Options Not Available for Standard Library Generator (cont)

Item

Option

Compiler
Interpretation

Description

Comment nesting comment None No comment nesting function
used

MAC register macsave macsave = 1 Contents of MACH and MACL
registers are guaranteed.

Message level change_message None 

Selecting C or C++
language

lang None Determined by an extension

Disable of Copyright
output

logo
nologo

nologo Copyright output disabled

Character code select in
string literals

euc
sjis
latin1

None No character code used

Japanese character
conversion within object
code

outcode None No character code used

TBR relative function
call

tbr None —

Disposition of variables
in $G0/$G1

stuff_gbr None —

Preventing expansion of
C++ inline functions

cpp_noinline None —

Optimization considering
type of object indicated
by pointer

alias alias=noansi Optimization in consideration of
types of objects indicated by
pointers in compliance with the
ANSI standard is not performed

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

R20UT0704EJ0102 Rev. 1.02 Page 205 of 1176
Mar 01, 2022

5.2.3 Notes on Specifying Options

When options are specified, follow the rules below:

(1) Specify the same options as in compiling for options cpu, division, endian, fpu, round,
denormalize, pic, double=float, rtti, and pack.

(2) When #pragma global_register is used, specify a header file that includes the #pragma
global_register declaration with the preinclude option. When the integrated development
environment is used, specify it with Other[User defined options:].

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 5 Standard Library Generator Operating Method Optimizing Linkage Editor

Page 206 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 6 Operating CallWalker

R20UT0704EJ0102 Rev. 1.02 Page 207 of 1176
Mar 01, 2022

Section 6 Operating CallWalker

6.1 Overview

The CallWalker displays the stack amount by reading the stack information file (*.sni) output by
the optimizing linkage editor or the profile information file (*.pro) output by the simulator
debugger.

For the stack amount of the assembly program (assembled by the assembler of V6 or earlier) that
cannot be output in the stack information file, the information can be added or modified by using
the edit function. In addition, the stack amount of whole systems can be calculated.

The information on the edited stack amount can be saved and read as the call information file
(*.cal).

6.2 Starting the CallWalker

To start the CallWalker, select [Run...] from the start menu of Windows® and specify Call.exe for
execution.

When the Renesas High-Performance Embedded Workshop is used, select [Program] from the
start menu of Windows®, select the Renesas High-Performance Embedded Workshop menu, and
then select Call Walker.

After the Renesas High-Performance Embedded Workshop is started, the CallWalker can also be
started from the [Tools] menu.

For details on operation, refer to the help of the CallWalker.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 6 Operating CallWalker Optimizing Linkage Editor

Page 208 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 7 Environment Variables

R20UT0704EJ0102 Rev. 1.02 Page 209 of 1176
Mar 01, 2022

Section 7 Environment Variables

7.1 Environment Variable List

Environment variables are listed in table 7.1.

Table 7.1 Environment Variables

Environment
Variable

Description

path Specifies a storage directory for the execution file.
Specification format: C> path = <execution file path name>; [<previous path
 name>;...]

SHC_LIB Specifies a directory at which compiler load modules exist. This environment
variable must be specified for compilation from the command prompt.
Specification format: C> set SHC_LIB = <execution file path name>

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 7 Environment Variables Optimizing Linkage Editor

Page 210 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

SHCPU Specifies the CPU type by the cpu option of the compiler or assembler using
environment variables. The following is specified.
<CPU>
SH1
SH2
SH2E
SH2A
SH2AFPU
SH2DSP
SH3
SH3DSP
SH4
SH4A
SH4ALDSP
When the specification of CPU by the SHCPU environment variable and the
cpu options differ, a warning message is displayed and the cpu option has
priority over the SHCPU specification.
When SHDSP is specified for the compiler, SH2DSP is assumed.
Specification format: C> set SHCPU = <CPU>

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 7 Environment Variables

R20UT0704EJ0102 Rev. 1.02 Page 211 of 1176
Mar 01, 2022

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

SHC_INC* Specifies a directory at which a system include file of the compiler exists. A
system include file is searched for at a directory specified by the include
option, SHC_INC specified directory, and system directory (SHC_LIB) in this
order. User include files are searched for at the current directory, a directory
specified by the include option, SHC_INC specified directory, and system
directory (SHC_LIB) in this order.
If this option is not specified, no value is set.
Specification format: C> set SHC_INC = <include path name>
 [;<include path name>; ...]

SHC_TMP Specifies a directory for a temporary file generated by the compiler. This
environment variable must be specified for compilation from the command
prompt.
Specification format: C> set SHC_TMP = <temporary file path name>

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 7 Environment Variables Optimizing Linkage Editor

Page 212 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

HLNK_LIBRARY1
HLNK_LIBRARY2
HLNK_LIBRARY3

Specifies a default library name for the optimizing linkage editor. Libraries
which are specified by a library option are linked first. Then, if there is an
unresolved symbol, the default libraries are searched in the order 1, 2, 3.
Specification format:
C> set HLNK_LIBRARY1 = <library name 1>
C> set HLNK_LIBRARY2 = <library name 2>
C> set HLNK_LIBRARY3 = <library name 3>

HLNK_TMP Specifies a directory in which the optimizing linkage editor creates temporary
files. If HLNK_TMP is not specified, the temporary files are created in the
current directory.
Specification format: C> set HLNK_TMP = <temporary file path name>

HLNK_DIR* Specifies an input file storage directory for the optimizing linkage editor.
The order of searching for files specified by the input or library option is the
current directory then the directory specified as HLNK_DIR.
However, when a wild card is used in the file specification, only the current
directory is searched.
Specification format:
C> set HLNK_DIR = <input file path name>
[;<input file path name >;...]

Note: More than one directory can be specified by using semicolons (;) or commas (,) to
demarcate the directory names.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 7 Environment Variables

R20UT0704EJ0102 Rev. 1.02 Page 213 of 1176
Mar 01, 2022

7.2 Compiler Implicit Declaration

The following implicit #define declarations are made by the compiler according to the option
specification and the version.

Table 7.2 Compiler Implicit Declaration

Option Implicit Declaration
cpu=sh1
cpu=sh2
cpu=sh2e
cpu=sh2a
cpu=sh2afpu
cpu=sh2dsp
cpu=sh3
cpu=sh3dsp
cpu=sh4
cpu=sh4a
cpu=sh4aldsp

#define _SH1
#define _SH2
#define _SH2E
#define _SH2A
#define _SH2AFPU
#define _SH2DSP
#define _SH3
#define _SH3DSP
#define _SH4
#define _SH4A
#define _SH4ALDSP

pic=1 #define _PIC
endian=big #define _BIG
endian=little #define _LIT
double=float #define _FLT, #define_ _FLT_ _
fpu=single #define _FPS
fpu=double #define _FPD
denormalize=on #define _DON
round=nearest #define _RON
dspc #define _DSPC
fixed_const #define _FXD
— #define _ _HITACHI_VERSION_ _*1
— #define _ _HITACHI_ _*2
— #define _SH*2
— #define _ _RENESAS_VERSION_ _*1
— #define _ _RENESAS_ _*2

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 7 Environment Variables Optimizing Linkage Editor

Page 214 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Notes: 1. The value of _ _HITACHI_VERSION_ _ and _ _RENESAS_VERSION_ _
is referenced as follows:
C source program: _ _HITACHI_VERSION_ _==aabb
 aa: version
 bb: revision
Example definition in the compiler:
 #define _ _HITACHI_VERSION_ _ 0x0701 //V.7.1.00

 #define _ _HITACHI_VERSION_ _ 0x0900 //V.9.00.00
 #define _ _RENESAS_VERSION_ _ 0x0900 //V.9.00.00
 2. Always defined.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 215 of 1176
Mar 01, 2022

Section 8 File Specifications

8.1 Naming Files

A standard file extension is automatically added to the name of a compiled file when omitted. The
standard file extensions used by the integrated development environment are shown in table 8.1.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 216 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 8.1 Standard File Extensions Used by the Integrated Development Environment

No. File Extension Description
1 c Source program file written in C
2 cpp, cc, cp Source program file written in C++
3 h Include file
4 Ist C source program listing file
5 Ipp C++ source program listing file
6 p C source program preprocessor expansion file
7 pp C++ source program preprocessor expansion file
8 src Assembly source program file
9 exp Assembly program preprocessor expansion file
10 lis Assembly program listing file
11 obj Relocatable object program file
12 rel Relocatable load module file
13 abs Absolute load module file
14 map Linkage map listing file
15 lib Library file
16 lbp Library listing file
17 mot S-type format file
18 hex HEX format file
19 bin Binary file
20 fsy Symbol address file for optimizing linkage editor output
21 sni Stack information file
22 pro Profile information file
23 dbg DWARF2-format debugging information file
24 rti Object file including definition that was specified by a file with

extension td
25 cal Information file to be called
26 bls Information file for external symbol allocation

Filenames beginning with rti_ are reserved for the system; do not use those files.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 217 of 1176
Mar 01, 2022

Table 8.2 lists the extensions for files that are output under the tpldir folder generated by each
project.

Table 8.2 tpldir Folder Output File

No. File Extension Description
1 td Tentative-defined variable information file
2 ti Template information file
3 pi Parameter information file
4 ii Instance information file

For details on naming files, refer to the user's manual of the host computer because naming rules
vary according to each host computer.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 218 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.2 Compiler Listings

This section covers the contents and format of the compiler formats.

8.2.1 Structure of Compiler Listings

Table 8.3 shows the structure and contents of compiler listings.

Table 8.3 Structure and Contents of Compiler Listings

Creating List Contents Suboption *1 Default
Source listing
information

Source program listing *2 show=source
show=nosource

No output

Source program listing
after include file expansion
*3

show=include
show=noinclude

No output

Source program listing
after macro expansion *3

show=expansion
show=noexpansion

No output

Object information Machine code used in
object programs and the
assembly code

show=object
show=noobject

Output

Statistics
information

Total number of errors,
number of source program
lines, size of each section,
and number of symbols

show=statistics
show=nostatistics

Output

Command
specification
information

Displays file names and
options specified by the
command

 Output

Notes: 1. All options are valid when listfile option is specified.
 2. Source program listings are included in the object information when show=object

suboption is specified.
 3. The source program listing after include file expansion and macro expansion is valid

only when show=source is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 219 of 1176
Mar 01, 2022

8.2.2 Source Listing

The source listing may be output in two ways. When show=noinclude, noexpansion is specified,
the unpreprocessed source program is output. When show=include, expansion is specified, the
preprocessed source program is output. Figures 8.1 and 8.2 show these output formats,
respectively. In addition, figure 8.2 shows the differences between them with bold characters.

************ SOURCE LISTING ************

FILE NAME: m0260.c

Seq File Line 0----+----1----+----2----+----3----+----4----+----5---

 1 m0260.c 1 #include "header.h"

 4 m0260.c 2

 5 m0260.c 3 int sum2(void)

 6 m0260.c 4 { int j;

 7 m0260.c 5

 8 m0260.c 6 #ifdef SMALL

 9 m0260.c 7 j=SML_INT;

 10 m0260.c 8 #else

 11 m0260.c 9 j=LRG_INT;

 12 m0260.c 10 #endif

 13 m0260.c 11

 14 m0260.c 12 return j;/* continue123456789012345678901234567

 (1) (2) (3) +2345678901234567890 */

 (7)

 15 m0260.c 13 }

Figure 8.1 Source Listing Output for show = noinclude, noexpansion

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 220 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

************ SOURCE LISTING ************

FILE NAME: m0260.c

 Seq File Line 0----+----1----+----2----+----3----+----4----+----5---

 1 m0260.c 1 #include "header.h"

 2 header.h 1 #define SML_INT 1

 3 header.h 2 #define LRG_INT 100 (4)

 4 m0260.c 2

 5 m0260.c 3 int sum2(void)

 6 m0260.c 4 { int j;

 7 m0260.c 5

 8 m0260.c 6 #ifdef SMALL

 9 m0260.c 7 X (5) j=SML_INT;

 10 m0260.c 8 #else

 11 m0260.c 9 E (6) j=100;

 12 m0260.c 10 #endif

 13 m0260.c 11

 14 m0260.c 12 return j;/* continue123456789012345678901234567

 (1) (2) (3) ±2345678901234564890 */

 (7)

 15 m0260.c 13 }

Figure 8.2 Source Listing Output for show=include, expansion

Description:

(1) Listing line number
(2) Source program file name or include file name
(3) Line number in source program or include file
(4) Source program lines resulting from an include file expansion when show=include is specified.
(5) Source program lines that are not to be compiled due to conditional compile directives such as

#ifdef and #elif being marked with an X when show=expansion is specified.
(6) Source program lines containing a macro expansion #define directives being marked with an E

when show=expansion is specified.
(7) If a source program line is longer than the maximum listing line, the continuation symbol (+) is

used to indicate that the source program line is extended over two or more listing lines.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 221 of 1176
Mar 01, 2022

8.2.3 Object Listing

Figure 8.3 shows an example of object listing.

************ OBJECT LISTING ************

FILE NAME: m0251.c

 SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

 (1) (2) (3) (4) (5)

 m0251.c 1 extern int multipli(int);

 m0251.c 2

 m0251.c 3 int multipli(int x)

 P 00000000 _multipli: ;function: multipli

 ;frame size=16 (6)

00000000 4F22 STS.L PR,R15

 00000002 7FF4 ADD #-12,R15

 00000004 1F42 MOV.L R4,@(8,R15)

 m0251.c 4 {

 m0251.c 5 int i;

 m0251.c 6 int j;

 m0251.c 7

 m0251.c 8 j=1;

 00000006 E201 MOV #1,R2

 00000008 2F22 MOV.L R2,@R15

 m0251.c 9 for(i=1;i<=x;i++){

 0000000A E301 MOV #1,R3

 0000000C 1F31 MOV.L R3,@(4,R15)

 0000000E A009 BRA L213

 00000010 0009 NOP

 00000012 L214:

 m0251.c 10 j*=i;

 00000012 50F1 MOV.L @(4,R15),R0

 00000014 61F2 MOV @R15,R1

 00000016 D30A MOV.L L216+2,R3 ;_ _muli

 00000018 430B JSR @R3

 . .

 . .

Figure 8.3 Object Listing Output for show = source, object

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 222 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Description:

(1) Section name (P, C, D, B, C$INIT, and C$VTBL) of each section
(2) Offset address relative to the beginning of each section
(3) Contents of the offset address of each section
(4) Assembly code corresponding to machine language
(5) Comments corresponding to the program
(6) Stack frame size in bytes

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 223 of 1176
Mar 01, 2022

8.2.4 Statistics Information

Figure 8.4 shows an example of statistics information.

******** STATISTICS INFORMATION ********

********** ERROR INFORMATION ********** (1)

NUMBER OF ERRORS: 0

NUMBER OF WARNINGS: 0

NUMBER OF INFORMATIONS: 0

******** SOURCE LINE INFORMATION ******** (2)

COMPILED SOURCE LINE: 13

******** SECTION SIZE INFORMATION ******** (3)

PROGRAM SECTION(P): 0x000044 Byte(s)

CONSTANT SECTION(C): 0x000000 Byte(s)

DATA SECTION(D): 0x000000 Byte(s)

BSS SECTION(B): 0x000000 Byte(s)

TOTAL PROGRAM SECTION: 00000044 Byte(s)

TOTAL CONSTANT SECTION: 00000000 Byte(s)

TOTAL DATA SECTION: 00000000 Byte(s)

TOTAL BSS SECTION: 00000000 Byte(s)

 TOTAL PROGRAM SIZE: 0x000044 Byte(s)

********** LABEL INFORMATION ********** (4)

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 1

NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1

NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 6

Figure 8.4 Statistics Information

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 224 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Description:

(1) Total number of messages by the level
(2) Number of compiled lines from the source file
(3) Size of each section and total size of sections
(4) Number of external reference symbols, number of external definition symbols, and total

number of internal and external labels

Note: NUMBER OF INFORMATIONS in messages by the level ((1) above) is not output when

message option is not specified. Section size information (3) and label information (4) are
not output if the noobject option has been specified or if an error-level error or a fatal-
level error has occurred. In addition, section size information (3) is output (indicated as
"1") or not output (indicated as "0") according to its specification when code=asmcode
option is specified.

8.2.5 Command Line Specification

The file names and options specified on the command line when the compiler is invoked are
displayed. Figure 8.5 shows an example of command line specification information.

*** COMMAND PARAMETER ***

-listfile test.c

Figure 8.5 Command Line Specification

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 225 of 1176
Mar 01, 2022

8.3 Assembly Listings

This section covers the contents and format of the assembly listing.

8.3.1 Structure of Assembly Listing

Table 8.4 shows the structure and contents of the assembly listing.

Table 8.4 Structure and Contents of Assembly Listing

Creating List Contents Option* Default
Source list information Specifies the source program

information
source Output

Cross reference list
information

Specifies the source-program
symbol information

cross_reference Output

Section information list Specifies the source-program
section information

section Output

Note: All the options above are enabled when list option is specified.

8.3.2 Source List Information

The source list information is output. Figure 8.6 shows an example of the source list information.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 226 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

PROGRAM NAME = "SAMPLE" (7)

 1 1 .HEADING """SAMPLE"""

 2 2 POINT .ASSIGNA 16

 3 3 Parm1 .REG (R0)

 4 4 Parm2 .REG (R1)

 5 5 WORK1 .REG (R2)

 6 6 WORK2 .REG (R3)

 7 7 WORK3 .REG (R4)

 8 8 WORK4 .REG (R5)

 :

 20 00000000 9 I1 FIX_MUL:

 21 00000000 2107 10 I1 DIV0S Parm1,Parm2

 22 00000002 0229 11 I1 MOVT WORK1

 23 00000004 4011 12 I1 CMP/PZ Parm1

 24 00000006 8900 13 I1 BT MUL01

 25 00000008 600B 14 I1 NEG Parm1,Parm1

 (1) (2) (3) (4)(5) (6)

 :

 231 ***** BEGIN-POOL *****

 232 00000180 00018000 DATA FOR SOURCE-LINE 17 (8)

 233 00000184 00024000 DATA FOR SOURCE-LINE 18

 234 00000188 00030000 DATA FOR SOURCE-LINE 19

 235 0000018C 00050000 DATA FOR SOURCE-LINE 20

 236 ***** END-POOL *****

 237 35 .END

 ****TOTAL ERRORS 0

 ****TOTAL WARNINGS 0

 (9)

Figure 8.6 Source Program Listing

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 227 of 1176
Mar 01, 2022

Description:

(1) Line numbers (in decimal)
(2) The value of the location counter (in hexadecimal)
(3) The object code (in hexadecimal). The size of the reserved area in bytes is listed for areas

reserved with the .RES, .SRES, .SRESC, .SRESZ, and .FRES.
(4) Source line numbers (in decimal)
(5) Expansion type. Whether the statement is expanded by file inclusion, conditional assembly

function, or macro function is listed.
In: File inclusion (n indicates the nest level).
C: Satisfied conditional assembly, performed iterated expansion, or satisfied conditional

iterated expansion
M: Macro expansion

(6) The source statements
(7) The header setup with the .HEADING assembler directive.
(8) The literal pool
(9) The total number of errors and warnings. Error messages are listed on the line following the

source statement that caused the error.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 228 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.3.3 Cross Reference Listing

The cross reference information is output. Figure 8.7 shows an example of the cross reference
information listing.

*** CROSS REFERENCE LIST
 NAME SECTION ATTR VALUE SEQUENCE
 FIX_DIV SAMPLE 00000088 91* 223
 FIX_MUL SAMPLE 00000000 19* 218
 MUL01 SAMPLE 0000000A 23 25*
 MUL02 SAMPLE 00000010 26 28*
 MUL03 SAMPLE 00000082 87 89*
 Parm1 REG 3* 20 22 24 24
 28 29 29 31 32
 32 35 36 36 38
 40 45 49 55 57
 59 61 63 65 67
 69 71 73 75 77
 79 81 83 85 88
 88 93 94 99 101
 Parm2 REG 4* 20 25 27 27
 28 31 33 33 35
 38 41 43 44 46
 48 54 56 58 60
 62 64 66 68 70
 (1) (2) (3) (4) (5)

Figure 8.7 Cross Reference Listing

Description:

(1) The symbol name
(2) The name of the section that includes the symbol (first eight characters)
(3) The symbol attribute

EXPT: Export symbol
IMPT: Import symbol
SCT: Section name
REG: Symbol defined with the .REG assembler directive
FREG: Symbol defined with the .FREG assembler directive
ASGN: Symbol defined with the .ASSIGN assembler directive
EQU: Symbol defined with the .EQU assembler directive
MDEF: Symbol defined two or more times
UDEF: Undefined symbol

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 229 of 1176
Mar 01, 2022

No symbol attribute (blank): A symbol other than those listed above
(4) The value of symbol (in hexadecimal)
(5) The list line numbers (in decimal) of the source statements where the symbol is defined or

referenced. The line number marked with an asterisk is the line where the symbol is defined.

8.3.4 Section Information Listing

The section information is output. Figure 8.8 shows an example of the section information output.

*** SECTION DATA LIST
 SECTION ATTRIBUTE SIZE START
 SAMPLE REL-CODE 000000190
 (1) (2) (3) (4)

Figure 8.8 Section Information Listing

Description:

(1) The section name
(2) The section type

REL: Relative address section
ABS: Absolute address section
CODE: Code section
DATA: Data section
STACK: Stack section
DUMMY: Dummy section

(3) The section size (in hexadecimal, byte units)
(4) The start address of absolute address sections

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 230 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.4 Linkage List

This section covers the contents and format of the linkage list output by the optimizing linkage
editor.

8.4.1 Structure of Linkage List

Table 8.5 shows the structure and contents of the linkage list.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 231 of 1176
Mar 01, 2022

Table 8.5 Structure and Contents of Linkage List

No.
Output
Information Contents

When show
Option* is
Specified

When show Option
is not Specified

1 Option information Option strings specified by a
command line or
subcommand

None Output

2 Error information Error messages None Output

3 Linkage map
information

Section name, start/end
addresses, size, and type

None Output

4 Symbol information Static definition symbol
name, address, size, and
type in the order of address

show =symbol Not output

When show=reference is
specified:
Symbol reference count and
optimization information in
addition to the above
information

show =reference Not output

5 Symbol deletion
optimization
information

Symbols deleted by
optimization

show =symbol Not output

6 Cross-reference
information

Symbol reference
information

show =xreference Not output

7 Total section size Total sizes of RAM, ROM,
and program sections

show=total_size Not output

8 Vector information Vector numbers and
address information

show=vector Not output

9 CRC information CRC calculation result and
output addresses

None Always output when
the CRC option is
specified

Note: * The show option is valid when the list option is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 232 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.4.2 Option Information

The option strings specified by a command line or a subcommand file are output. Figure 8.9
shows an example of option information output when optlnk -sub=test.sub -list -show is
specified.

Figure 8.9 Example of Option Information Output (Linkage List)

(1) Outputs option strings specified by a command line or a subcommand in the specified order.
(2) Subcommand in the test.sub subcommand file

8.4.3 Error Information

Error messages are output. Figure 8.10 shows an example of error information output.

(1)

*** Error Information ***

** L2310 (E) Undefined external symbol “strcmp” referred to in “test.obj”

Figure 8.10 Example of Error Information Output (Linkage List)

(1) Outputs an error message.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 233 of 1176
Mar 01, 2022

8.4.4 Linkage Map Information

The start and end addresses, size, and type of each section are output in the order of address.
Figure 8.11 shows an example of linkage map information output.

Figure 8.11 Example of Linkage Map Information Output (Linkage List)

(1) Section name
(2) Start address
(3) End address
(4) Section size
(5) Section boundary alignment value

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 234 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.4.5 Symbol Information

When show=symbol is specified, the addresses, sizes, and types of externally defined symbols or
static internally defined symbols are output in the order of address. When show=reference is
specified, the symbol reference counts and optimization information are also output. Figure 8.12
shows an example of symbol information output.

*** Symbol List ***

SECTION=(1)
FILE=(2) START END SIZE

 (3) (4) (5)
 SYMBOL ADDR SIZE INFO COUNTS OPT
 (6) (7) (8) (9) (10) (11)

SECTION=P
FILE=test.obj

00000000 00000428 428
 _main

00000000 2 func ,g 0
 _malloc

00000000 32 func ,l 0
FILE=mvn3

00000428 00000490 68
 $MVN#3

00000428 0 none ,g 0

Figure 8.12 Example of Symbol Information Output (Linkage List)

(1) Section name
(2) File name
(3) Start address of a section included in the file indicated by (2) above
(4) End address of a section included in the file indicated by (2) above
(5) Section size of a section included in the file indicated by (2) above
(6) Symbol name
(7) Symbol address
(8) Symbol size
(9) Symbol type as shown below

Data type: func Function name
 data Variable name
 entry Entry function name
 none Undefined (label, assembler symbol)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 235 of 1176
Mar 01, 2022

Declaration type: g External definition
 l Internal definition

(10) Symbol reference count only when show=reference is specified. * is output when
show=reference is not specified.

(11) Optimization information as shown below.
ch Symbol modified by optimization
cr Symbol created by optimization
mv Symbol moved by optimization

8.4.6 Symbol Deletion Optimization Information

The size and type of symbols deleted by symbol deletion optimization (optimize=symbol_delete)
are output. Figure 8.13 shows an example of symbol deletion optimization information output.

*** Delete Symbols ***

SYMBOL SIZE INFO
 (1) (2) (3)
 _Version

 4 data ,g

Figure 8.13 Example of Symbol Deletion Optimization Information Output (Linkage List)

(1) Deleted symbol name
(2) Deleted symbol size
(3) Deleted symbol type as shown below

Data type: func Function name
 data Variable name
Declaration type: g External definition
 l Internal definition

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 236 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.4.7 Cross-Reference Information

The symbol reference information (cross-reference information) is output if show=xreference is
specified. Figure 8.14 shows an example of cross-reference information output.

*** Cross Reference List ***

No Unit Name Global.Symbol Location External Information
(1) (2) (3) (4) (5)
0001 a

SECTION=P _func
00000100

_func1
00000116

_main
0000012c

_g
00000136

SECTION=B
_a

00000190 0001(00000140:P)
0002(00000178:P)
0003(0000018c:P)

0002 b
SECTION=P

_func01
00000154 0001(00000148:P)

_func02
00000166 0001(00000150:P)

0003 c
SECTION=P

_func03
00000184

Figure 8.14 Example of Cross-Reference Information Output (Linkage List)

(1) Unit number, which is an identification number in object units
(2) Object name, which specifies the input order at linkage
(3) Symbol name output in ascending order of allocation addresses for every section
(4) Symbol allocation address, which is a relative value from the beginning of the section when

form=relocate is specified
(5) Address of an external symbol that has been referenced

Output format: <Unit number> (<address or offset in section>:<section name>)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 237 of 1176
Mar 01, 2022

8.4.8 Total Section Size

The total sizes of ROM, RAM, and program sections are output. Figure 8.15 shows an example of
total section size output.

Figure 8.15 Example of Total Section Size Output (Linkage List)

(1) Total size of RAM data sections
(2) Total size of ROM data sections
(3) Total size of program sections

8.4.9 Vector Information

The contents of the variable vector table are output if show=vector is specified. Figure 8.16 shows
an example of vector information output.

*** Variable Vector Table List ***

NO. SYMBOL/ADDRESS
(1) (2)
 0 $fdummy
 1 $fa
 2 00ff8800
 3 $fdummy

:
 <Omitted>

Figure 8.16 Example of Vector Output (Linkage List)

(1) Vector number
(2) Symbol. When no symbol is defined for the vector number, the address is output.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 238 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.4.10 CRC Information

The CRC calculation result and output address are output when the CRC option is specified.

Figure 8.17 Example of CRC Information Output (Linkage List)

(1) CRC calculation result
(2) Address where the CRC calculation result is output

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 239 of 1176
Mar 01, 2022

8.5 Library Listings

This section covers the contents and format of the library listing output by the optimizing linkage
editor.

8.5.1 Structure of Library Listing

Table 8.6 shows the structure and contents of the library listing.

Table 8.6 Structure and Contents of Library Listing

Creating List Contents Suboption* Default
Option information Displays option strings

specified by a command line
or subcommand

— Output

Error information Displays error messages — Output
Library information Displays library information — Output
Information of module,
section, and symbol
within library

Displays module within the
library

When show=symbol is
specified, displays a list of
symbol names in a module
within the library

When show=section is
specified, displays lists of
section names and symbol
names in a module within the
library

—

show=
symbol

show=
section

Output

Not output

Not output

Note: The suboptions above are enabled only when list option is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 240 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.5.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
Option information is output as shown in figure 8.17 when optlnk –sub = test.sub -list -show is
specified.

(test.sub contents)

form library
in adhry.obj
output test.lib

*** Options ***

-sub = test.sub
form library
in adhry.obj (2) (1)
output test.lib
-list
-show

Figure 8.17 Option Information Output Example (Library Listing)

Description:

(1) Outputs option strings specified by a command line or a subcommand in the specified order.
(2) Subcommand in the test.sub subcommand file

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

R20UT0704EJ0102 Rev. 1.02 Page 241 of 1176
Mar 01, 2022

8.5.3 Error Information

Error information outputs an error message as shown in figure 8.18.

*** Error information ***

** L1200 (W) Backed up file "main.lib" into "main.lbk" (1)

Figure 8.18 Error Information Output Example (Library Listing)

Description:

(1) Outputs an error message.

8.5.4 Library Information

Library information outputs library type in the format shown in figure 8.19.

*** Library Information ***

LIBRARY NAME = test.lib (1)
CPU = SuperH (2)
ENDIAN = Big (3)
ATTRIBUTE = system (4)
NUMBER OF MODULE = 1 (5)

Figure 8.19 Library Information Output Example (Library Listing)

Description:

(1) Library name
(2) CPU name
(3) Endian type
(4) Library file attribute either system library or user library
(5) Number of modules within the library

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Page 242 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8.5.5 Module, Section, and Symbol Information within Library

This information lists modules within the library.

When show=symbol is specified, symbol names in a module within the library are listed. When
show=section is specified, section names and symbol names in a module within the library are
listed.

Figure 8.20 shows an output example of module, section and symbol information within a library.

*** Library List ***

MODULE LAST UPDATE
 (1) (2)
 SECTION
 (3)
 SYMBOL
 (4)
adhry
 29-Feb-2000 12:34:56
 P
 _main
 _Proc0
 _Proc1
 C
 D
 _Version
 B
 _IntGlob
 _CharGlob

Figure 8.20 Module, Section, and Symbol Information Output Example (Library Listing)

Description:

(1) Module name
(2) Module definition date

If the module is updated, the latest module update date is displayed.
(3) Section name within a module
(4) Symbol within a section

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 243 of 1176
Mar 01, 2022

Section 9 Programming

9.1 Program Structure

9.1.1 Sections

Each of the regions for execution instructions and data of the object programs output by the
compiler or assembler comprises a section. A section is the smallest unit for data placement in
memory. Sections have the following properties.

• Section attributes
code Stores execution instructions
data Stores data
stack Stack area

• Format type
Relative-address format: A section that can be relocated by the optimizing linkage editor.
Absolute-address format: A section of which the address has been determined; it cannot be

relocated by the optimizing linkage editor.
• Initial values

Specifies whether there are initial values at the start of program execution. Data which has
initial values and data which does not have initial values cannot be included in the same
section. If there is even one initial value, the area without initial values is initialized to zero.

• Write operations
Specifies whether write operations are or are not possible during program execution.

• Boundary alignment
Corrections to addresses assigned to sections. The optimizing linkage editor corrects addresses
so that they are multiples of the boundary alignment.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 244 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9.1.2 C/C++ Program Sections

The correspondence between memory areas and sections for C/C++ programs and the standard
library is described in table 9.1.

Table 9.1 Summary of Memory Area Types and Their Properties

Name

Section

Format
Type

Initial Values

Align-
ment

Description

Name

Attribute

Write
Operations

Program area P*1 code Relative Yes 4*2
bytes

Stores machine code

No

Constant area C*1*5 data Relative Yes 4
bytes

Stores const-type data

No

Initialized data area D*1*5 data Relative Yes 4
bytes

Stores data with initial values

No

Uninitialized data
area

B*1*5 data Relative Yes 4
bytes

Stores data without initial
values Yes

X memory constant
area

$XC data Relative Yes 4
bytes

Stores const-type data in X
memory No

Y memory constant
area

$YC data Relative Yes 4
bytes

Stores const-type data in Y
memory No

X memory
initialized data area

$XD data Relative Yes 4
bytes

Stores data with initial values
in X memory Yes

Y memory
initialized data area

$YD data Relative Yes 4
bytes

Stores data with initial values
in Y memory Yes

X memory
uninitialized data
area

$XB data Relative No 4
bytes

Stores data without initial
values in X memory Yes

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 245 of 1176
Mar 01, 2022

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Name

Section

Format
Type

Initial Values

Align-
ment

Description

Name

Attribute

Write
Operations

Y memory
uninitialized data
area

$YB data Relative No 4
bytes

Stores data without initial
values in Y memory Yes

GBR section $G0*6 data Relative Yes 4
bytes

Stores data with initial values
specified by #pragma
gbr_base. If data does not
have initial values, 0 is stored.

Yes

GBR section $G1*6 data Relative Yes 4
bytes

Stores data with initial values
specified by #pragma
gbr_base1. If data does not
have initial values, 0 is stored.

Yes

C++ initial
processing/
postprocessing
data area

C$INIT data Relative Yes 4
bytes

Stores addresses of
constructors and destructors
called for global class objects No

C++ virtual function
table area

C$VTBL data Relative Yes 4
bytes

Stores data for calling the
virtual function when a virtual
function exists in the class
declaration

No

Stack area S stack Relative No 4
bytes

Area necessary for program
execution (see section 9.2.1
(2), Dynamic Memory
Allocation)

Yes

Heap area   Relative No  Area used by library functions
malloc, realloc, calloc, and
new (see section 9.2.1 (2),
Dynamic Memory Allocation)

Yes

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 246 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Name

Section

Format
Type

Initial Values

Align-
ment

Description

Name

Attribute

Write
Operations

TBR table area $TBR data Relative Yes 4
bytes

Stores data to call functions
using TBR relative addresses.

No

Absolute address
variable area

$ADDRESS
$<section>
<address>*3

data Absolute Yes/No*4  Stores variables specified by
#pragma address.

Yes/No*4

 Notes 1. Section names can be switched in the section option or extension #pragma section.
 2. Becomes 16 bytes when the align16 option is specified, or 32 bytes when the align32

option is specified.
 3. <section> is a C, D, or B section name, and <address> is an absolute address.
 4. The initial value and write operation depend on the attribute of the <section>.
 5. The stuff option divides sections up so that alignment is on one-, two-, or four-byte

boundaries. Refer to the description of the stuff option in section 2.2.2, Object Options
for details on the individual sections.

 6. The stuff_gbr option divides sections up so that alignment is on one-, two-, or four-byte
boundaries. Refer to the description of the stuff_gbr option in section 2.2.2, Object
Options for details on the individual sections.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 247 of 1176
Mar 01, 2022

Example 1: A program example is used to demonstrate the correspondence between a C program
and the compiler-generated sections.

Example 2: A program example is used to demonstrate the correspondence between a C++

program and the compiler-generated sections.

int a=1;

char b;

const int c=0;

void main(){

 ...

}

Program area (main() {...})

Constant area (c)

Initialized data area (a)

Uninitialized data area (b)

C program
Areas generated by the
compiler and stored data

Section name

P

C

D

B

class A{

 int m;

 A(int p);

 ~A();

};

A a(1);

int b;

extern const char c=’a’;

int d=1;

void f(){...}

Program area (f() {...})

Constant area (c)

Initialized data area (d)

Uninitialized data areas (a, b)

Initial processing/postprocessing data
areas (&A::A, &A::~A)

C++ program Areas generated by the
compiler and stored data

Section name

P

C

D

B

C$INIT

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 248 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9.1.3 Assembly Program Sections

In assembly programs, .SECTION is used to begin sections and declare attributes and format
types. The format for declaration of .SECTION is given below. For details, refer to section 11.4,
Assembler Directives.

.SECTION <section name>[, <section attribute>[, <format type>]]

 <format type>: In the case of a relative address section, ALIGN=< boundary alignment>
In the case of an absolute address section, LOCATE=<address value>

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 249 of 1176
Mar 01, 2022

Example: An example of an assembly program section declaration appears below.

 .CPU SH2

 .OUTPUT DBG

SIZE: .EQU 8

 .SECTION A,CODE,ALIGN=4 ;(1)

START:

 MOV.L LITERAL,R0

 MOV.L LITERAL+4,R1

 MOV.L #SIZE,R2

LOOP:

 CMP/PL R2

 BF EXIT

 MOV.B @R0+,R3

 MOV.B R3,@R1

 ADD #-1,R2

 ADD #1,R1

 BRA LOOP

 NOP

EXIT:

 SLEEP

 NOP

LITERAL:

 .DATA.L CONST

 .DATA.L DATA

;

 .SECTION B,DATA,LOCATE=H'00002000 ;(2)

CONST:

 .DATA.B H'01,H'02,H'03,H'04,H'05,H'06,H'07,H'08

;

 .SECTION C,STACK,ALIGN=4 ;(3)

DATA:

 .RES.B 8

 .END

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 250 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(1) Declares a code section with section name A, boundary alignment 4, and relative address
format.

(2) Declares a data section with section name B, allocated address H'2000, and absolute address
format.

(3) Declares a stack section with section name C, boundary alignment 4, and relative address
format.

9.1.4 Linking Sections

The optimizing linkage editor links the same sections within input object programs, and allocates
addresses specified by the start option.

(1) The same section names in different files are allocated continuously in the order of file input.

Section A

Section B

Section C

Section D

Section A

Section C

Section B

"file1.obj"

input file1.obj file2.obj file3.obj

start A,B/1000, C,D/8000

Options specified at linkage

file1. section A

file2. section A

file1. section B

file3. section B

file1. section C

file3. section C

file2. section D

0x1000

0x8000

"file2.obj" "file3.obj"

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 251 of 1176
Mar 01, 2022

(2) Sections with the same name but different boundary alignments are linked after alignment.
Section alignment uses the larger of the section alignments.

(3) When sections with the same name include both absolute-address and relative-address formats,

relative-address objects are linked following absolute-address objects. Even when relocatable
file output is specified (form=relocate), the section in question becomes an absolute-address
section.

Section A

(align=2, size=0x6D)

Section A

(align=4, size=0x100)

"file1.obj" "file2.obj"

input file1.obj file2.obj

start A/1000

Options specified at linkage

file1. section A

file2. section A

0x1000

0x1070

Alignment = 4
Size = 0x170

"file1.obj" "file2.obj"

Options specified at linkage

file2. section A

file1. section A

0x1000

0x1070

Absolute-address section

Size = 0x170

Section A

(align=4,size=0x100)

Section A

(locate=0x1000,size=0x6D)

input file1.obj file2.obj

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 252 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(4) Rules for the order of linking objects within the same section name are as follows.
a. Order specified by the input option or input files on the command line
b. Order specified for the user library by the library option and order of input of modules

within the library
c. Order specified for the system library by the library option and order of input of modules

within the library
d. Order specified for libraries by environment variables (HLNK_LIBRARY1 to

HLNK_LIBRARY3) and order of input of modules within the library

Section A

"file1.obj"

Options specified at linkage

Module 1 (Section A)

"usr1.lib"

Module 2 (Section A)

Module 5 (Section A)

"syslib1.lib"

Module 6 (Section A)

"file2.obj" "usr2.lib"

Module 3 (Section A)

Module 4 (Section A)

"syslib2.lib"

Module 7 (Section A)

Module 8 (Section A)

0x1000

Environment variables

Section A

input file1.obj file2.obj

library syslib1.lib usr1.lib

Start A/1000

HLNK_LIBRARY1=syslib2.lib

HLNK_LIBRARY2=usr2.lib

file1. section A
 file2. section A
 Module1. section A
 Module2. section A
 Module5. section A

 Module6. section A
 Module7. section A
 Module8. section A

Module4. section A

Module3. section A

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 253 of 1176
Mar 01, 2022

9.2 Creation of Initial Setting Programs

Here methods of installing embedded programs for systems employing the SuperH RISC engine
microcomputers are explained.

To install an embedded a program in a system, the following preparations are necessary.

• Memory allocation
Each section, the stack area, and the heap area must be allocated to system ROM and RAM.

• Settings for the program execution environment
Processing to set the program execution environment includes register initialization, memory
initialization, and program startup.

In addition, when using I/O and other C/C++ library functions, the library must be initialized
during preparation of the execution environment. In particular, when using I/O (stdio.h, ios,
streambuf, istream, ostream) and memory allocation (stdlib.h, new), low-level I/O routines and
memory allocation routines must be prepared.

When using C library functions for program termination (exit, atexit, abort functions), these
functions must be prepared separately according to the user system.

In section 9.2.1, the method used to determine addresses for program memory is explained, and
actual examples are used to describe the method for specifying options in the optimizing linkage
editor for determining addresses.

In section 9.2.2, execution environment settings are explained, and an actual example of a program
to set the execution environment is described.

Library function initialization processing, preparation of low-level interface routines, and
examples of preparation of functions for termination processing are also explained.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 254 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9.2.1 Memory Allocation

To install an object program generated by the compiler on a system, determine the size of each
memory area, and allocate the areas appropriately to the memory addresses.

Some memory areas, such as the area used to store machine code and the area used to store data
declared using external definitions or static data members, are allocated statically. Other memory
areas, such as the stack area, are allocated dynamically.

This section describes how to allocate each area in memory.

(1) Static Memory Allocation
(a) Contents of static memory

Sections other than the stack area and heap area are allocated statically.
Each of the sections in a C/C++ program (program area, constant area, initialized data area,
uninitialized data area, C++ initial processing/postprocessing data area, and C++ virtual
function table area) is allocated statically.

(b) Calculation of size
The size of static memory is the sum of the sizes of the object programs generated by the
compiler and assembler and the sizes of the library functions used by the C/C++ program.
After linking object programs, the sizes of each section, including libraries, are output to
the linkage map information within the linkage listing, and so the size of static memory can
be determined.
Figure 9.1 shows an example of linkage map information within the linkage listing.

 * * * Mapping list * * *

 SECTION START END SIZE ALIGN
 (1) (2) (3) (4) (5)

 P 00000000 000004d6 4d6 2

 C 000004d6 00000533 5d 2

 D 00000534 0000053c 8 2

 B 0000053c 00004112 3bd6 2

Figure 9.1 Example of Linkage Map Information within the Linkage Listing

Section sizes of compilation units and assembly units are output to the compile list
statistics information and assembly list section information. An example of compile list
statistics information is shown in figure 9.2, and an example of assembly list section
information is shown in figure 9.3.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 255 of 1176
Mar 01, 2022

******* SECTION SIZE INFORMATION *******

PROGRAM SECTION(P) :0x00004A Byte(s)

CONSTANT SECTION(C) :0x000018 Byte(s)

DATA SECTION(D) :0x000004 Byte(s)

BSS SECTION(B) :0x000004 Byte(s)

TOTAL PROGRAM SECTION : 0000004A Byte(s)

TOTAL CONSTANT SECTION : 00000018 Byte(s)

TOTAL DATA SECTION : 00000004 Byte(s)

TOTAL BSS SECTION : 00000004 Byte(s)

TOTAL PROGRAM SIZE: 0x00006A Byte(s)

Figure 9.2 Example of Compile List Statistics Information

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START

P REL-CODE 000000604
D REL-DATA 000000008
C REL-DATA 00000005D
B REL-DATA 000003BD6

Figure 9.3 Example of Assembly List Section Information

When not using a standard library, the total of section sizes for files is the size of the static
area.
If a standard library is used, add the memory area used by the library functions to the
memory area size of each section. Among the standard libraries provided by the compiler
are, in addition to C library functions stipulated by the C language specifications and C++
class libraries for embedding, routines to perform arithmetic calculations (runtime routines)
used for program execution. Accordingly, the standard library may be necessary even if
library functions are not used in the C/C++ source program.
The runtime routines used by the C/C++ programs are output as external reference symbols
in the assembly programs generated by the compiler (code=asmcode). The user can see
the runtime routine names used in the C/C++ programs through the external reference
symbols. Specific examples are presented below.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 256 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• C/C++ program

f(int a, int b)

{

 a /= b;

 return a;

}

• Assembly program output by the C compiler

 .IMPORT _ _divls ;(External reference declaration of runtime routine)
 .EXPORT _f
 .SECTION P,CODE,ALIGN=4
_f: ;function: f
 ;frame size=4
 STS.L PR,@-R15
 MOV R5, R0
 MOV.L L218,R3 ; _ _divls
 JSR @R3
 MOV R4, R1
 LDS.L @R15+, PR
 RTS
 NOP
L218:
 .DATA.L _ _divls
 .END

(c) ROM, RAM allocation

When preparing a program for systems with ROM, whether sections are allocated to RAM
or to ROM is determined by whether there are initial values and whether write operations
are enabled.
When preparing the sections of a C/C++ program for systems with ROM, sections are
allocated to ROM or to RAM as follows.
• Program area (section P) ROM
• Constant areas (sections C, $G0, $G1*3) ROM
• Uninitialized data areas (sections B, $G0, $G1*3) RAM
• Initialized data areas (sections D, $G0, $G1*3) ROM, RAM (see (d) below)
• Initial processing/postprocessing data area*1(section C$INIT) ROM
• Virtual function table area*2 (section C$VTBL) ROM

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 257 of 1176
Mar 01, 2022

Notes: 1. Generated by the compiler when a C++ program has a global class object.
 2. Generated by the compiler when a C++ program has a virtual function declaration
 3. $G0 and $G1 can be assigned to only one of the above areas.

(d) Allocation of initialized data areas
Sections which have initial values and can be altered on program execution, such as
initialized data areas, are placed in ROM at linkage and copied to RAM at the start of
program execution. Hence the rom option of the optimizing linkage editor must be used to
reserve the same memory area both in ROM and in RAM. For an example of this, refer to
"(e) Example of memory allocation and address specification at linkage" below. Initial
settings for sections to be copied from ROM to RAM are explained in section 9.2.2 (2),
Initialization (PowerON_Reset).

(e) Example of memory allocation and address specification at linkage

When creating an absolute load module, addresses of allocated areas are specified for each
section using an optimizing linkage editor option or a subcommand. Below, examples of
static memory allocation and address specification at linkage are explained.
Figure 9.4 shows an example of allocation of static memory areas.

Figure 9.4 Example of Static Memory Allocation

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 258 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

When allocating memory as shown in figure 9.4, the following subcommands are specified
at linkage.

ROM∆D=R ...[1]
START∆P,C,D/400,R,B/20000 ...[2]

Explanation [1] Space for section R, of a size equal to section D, is allocated in the output
load module. When symbols allocated to section D are referenced,
relocation is performed as if the addresses are in section R. Section D and
section R are the names of initialized data sections written to ROM and to
RAM, respectively.

Explanation [2] Sections P, C, and D are allocated to continuous areas of memory in
internal ROM starting from address 0x400. Sections R and B are
allocated to continuous memory areas starting from RAM address
0x20000.

(2) Dynamic Memory Allocation
(a) Contents of dynamic memory

The following two types of dynamic memory areas are used in C/C++ programs:
• Stack area
• Heap area (for memory allocation of library functions)

(b) Calculation of stack area size
The maximum stack area size used by C/C++ programs and standard libraries can be
calculated by specifying the stack option of the optimizing linkage editor to output a stack
information file, and using the callwalker. For details of use of the callwalker, see section
6, Operating CallWalker.
The stack area used by an assembly program (assembled by the assembler of V6 or earlier)
cannot be calculated by the callwalker. Instead, the stack usage of an assembly program
should be computed by the method outlined below for calculating the stack usage of a
C/C++ program, and the result should be added to the stack usage calculated by the
callwalker.
• Stack Usage Calculation of the C/C++ Program

The stack area used in C/C++ programs is allocated each time a function is called and is
deallocated each time a function is returned. The total stack area size is calculated
based on the stack size used by each function and the nesting of function calls.

• Stack Area Used by Each Function
The object list (frame size) output by the compiler determines the stack size used by
each function. The following example shows the object list, stack allocation, and stack
size calculation method.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 259 of 1176
Mar 01, 2022

Example:
The following shows the object list and stack size calculation in a C program.
The same calculation method is also applicable to C++ programs.

 extern int h(char, int *, double);

 int h(char a, register int *b, double c)

 {

 char *d;

 d= &a;

 h(*d,b,c);

 {

 register int i;

 i= *d;

 return i;

 }

 }

************ OBJECT LISTING ************

 FILE NAME: m0251.c

 SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT
 P
 00000000 _h: ;function: h
 ;frame size=20
 00000000 2FE6 MOV.L R14,@-R15
 00000002 4F22 STS.L PR,@-R15
 :

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 260 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

The size of the stack area used by a function is equal to the frame size. Therefore, in
the above example, the stack size used by function h is 20 bytes which is shown as
frame size=20 in COMMENT of the object listing.
For details on the parameter allocated to the parameter area on the stack, refer to section
9.3.2 (4), Setting and Referencing Parameters and Return Values.

• Stack size calculation
The following example shows a stack size calculation depending on the function call
nesting.
Example:
Figure 9.5 shows the function call nestings and stack size for each function.

Figure 9.5 Nested Function Calls and Stack Size

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 261 of 1176
Mar 01, 2022

If function g is called via function f, the stack area size is calculated according to the
formula listed in table 9.2.

Table 9.2 Stack Size Calculation Example

Call Route Sum of Stack Size (Bytes)
main (24)  f (32)  g (24) 80
main (24)  g (24) 48

As can be seen from table 9.2, the maximum size of stack area required for the longest
function calling route should be determined (80 bytes in this example) and at least this
size of memory should be allocated.

Note: If recursive calls are used in the C/C++ source program, first determine the stack area
required for a recursive call, and then multiply the size with the maximum level of
recursive calls.

(c) Heap Area
The total heap area required is equal to the sum of the areas to be allocated by memory
management library functions (calloc, malloc, realloc, or new) in the C/C++ program. Four
bytes must be added for one call because a 4-byte management area is used every time a
memory management library function allocates an area.
The compiler controls heap area in units of the user-specified memory size (_sbrk_size).
For the _sbrk_size specification, refer to section 9.2.2 (4), C/C++ library function initial
settings (_INITLIB). The area size allocated for the heap area (HEAPSIZE) is calculated
by the following formula:
 HEAPSIZE = _sbrk_size × n (n ≥ 1)
(Area size allocated by the memory management library) + control area size ≤ HEAPSIZE
An I/O library function uses memory management library functions for internal processing.
The size of the area allocated in an I/O is determined by the following formula:
 516 bytes × (maximum number of simultaneously opened files)

Note: Areas released by the free or delete function, which is a memory management library
function, can be reused. However, since these areas are often fragmented (separated from
one another), a request to allocate a new area may be rejected even if the net size of the
free areas is sufficient. To prevent this, take note of the following:
1. If possible, allocate the largest area first after program execution is started.
2. If possible, make the data area size to be reused constant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 262 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Rules for Allocating Dynamic Area
The dynamic area is allocated to RAM.
The stack area is determined by specifying the highest address of the stack to the vector
table, and refer to it as SP (stack pointer). Since the interrupt operation of the SH-3,
SH3-DSP, SH-4, SH-4A, and SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E,
SH-2A, SH2A-FPU, and SH2-DSP, interrupt handlers are necessary.
The heap area is determined by the initial settings of the low-level interface routine
(sbrk).
For details on stack and heap areas, refer to section 9.2.2 (1), Vector table setting
(VEC_TBL), and section 9.2.2 (6), Low-level interface routines, respectively.

9.2.2 Execution Environment Settings

Here, processing to prepare the environment for program execution is described. However, the
environment for program execution will differ among user systems, and so a program to set the
execution environment must be created according to the specifications of the user system.

Figure 9.6 shows an example of the structure of such a program.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 263 of 1176
Mar 01, 2022

Note: Necessary when there is a global class object declaration in the C++ program.

Figure 9.6 Example of Program Structure

The components are explained below.

• Vector Table Setting (VEC_TBL)
Sets the vector table to initiate the register initialization program (PowerON_Reset) and set the
stack pointer (SP) at power-on reset. Since the interrupt operation of the SH-3, SH3-DSP, SH-
4, SH-4A, and SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU,
and SH2-DSP, interrupt handlers are necessary.

• Initialization (PowerON_Reset)
Initializes registers and sequentially calls the initialization routines.

• Section Initialization Tables (DTBL, BTBL)
Uses the section address operator to set the starting and ending addresses for the section used
in the section initialization routine.

• Initializing Sections (_INITSCT)*1
Initializes to zero any static variable area (uninitialized data area) for which no initial values
are set. Also copies initial values of initialized data areas from ROM to RAM.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 264 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Global Class Object Initial Processing (_CALL_INIT)*1*2
Calls a constructor of a class object that is declared as global.

• Global Class Object Postprocessing (_CALL_END)*1*2
Calls a destructor of a global class object after the main function is executed.

• Initializing C/C++ Library Functions (_INITLIB)
Initializes library functions required to be initialized; especially, prepares standard I/O
functions.

• Closing Files (_CLOSEALL)
Closes all open files.

• Low-Level Interface Routines
Routines providing an interface between the user system and library functions which are
necessary when standard I/O (stdio.h, ios, streambuf, istream, and ostream) and memory
management libraries (stdlib.h and new) are used.

• Termination Processing Routine (exit, atexit, and abort)*3
Processing for terminating the program.

Notes: 1. Provided as a standard library.
 2. Required when there is a declaration of a global class object in a C++ program.
 3. When using the C library function exit, atexit, or abort to terminate a program, these

functions must be created as appropriate to the user system.
 When using the C++ program or C library macro assert, the abort function must always

be created.

Implementation of the above routines is described below.

(1) Vector table setting (VEC_TBL)
To call register initialization function PowerON_Reset at power-on reset, specify the starting
address of function PowerON_Reset at address 0 in the vector table. Also to specify the SP,
specify the highest address of the stack to address H'4. Since the interrupt operation of the SH-
3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E, SH-
2A, SH2A-FPU, and SH2-DSP, interrupt handlers are necessary. When the user system
implements interrupt handling, interrupt vector settings are also performed by this routine.
The coding example of VEC_TBL is shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 265 of 1176
Mar 01, 2022

Example 1 Vector Table for SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, and SH2-DSP:

#pragma interrupt (IRQ0)

extern void Manual_Reset_PC(void);
extern void Manual_Reset_SP(void);

extern void IRQ0(void);

#pragma section VECTTBL /* Outputs the RESET_Vectors to the CVECTTBL section */
 /* by #pragma section declaration */
 /* Allocates the CVECTTBL section to address 0x0 */
 /* by the start option at linkage */
void (*const RESET_Vectors[])(void)={
 (void*) PowerON_Reset_PC,
 _ _secend("S"),
 (void*) Manual_Reset_PC,
 _ _secend("S")
};

#pragma section VECT2 /* Outputs the vec_table2 to the CVECT2 section */
 /* by #pragma section declaration */
 /* Allocates the CVECT2 section to the specified */
 /* address by the starting address at linkage */

void (*const vec_table2[])(void)={IRQ0};

Example 2 Interrupt Handler when Bank 0 is Used in the Program (SH7708):

;;;
; env.inc ;
;;;

EXPEVT:
 .EQU H'FFFFFFD4
INTEVT:
 .EQU H'FFFFFFD8

;;;
; vect.inc ;
;;;

SR_Init:
 .EQU B'00000000000000000000000011110000

;<<VECTOR DATA START (POWER ON RESET)>>
 ;H'000 Power On Reset
 .GLOBAL PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
;<<VECTOR DATA START (MANUAL RESET)>>
 ;H'020 Manual Reset
 .GLOBAL Manual_Reset
;<<VECTOR DATA END (MANUAL RESET)>>
 ;H'040 TLB miss/invalid (load)
 .GLOBAL INT_TLBMiss_Load
 ;H'060 TLB miss/invalid (store)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 266 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 .GLOBAL INT_TLBMiss_Store
 ;H'080 Initial page write
 .GLOBAL INT_TLBInitial_Page
 ;H'0A0 TLB protect (load)
 .GLOBAL INT_TLBProtect_Load
 ;H'0C0 TLB protect (store)
 .GLOBAL INT_TLBProtect_Store
 ;H'0E0 Address error (load)
 .GLOBAL INT_Address_load
 ;H'100 Address error (store)
 .GLOBAL INT_Address_store
 ;H'120 Reserved
 .GLOBAL INT_Reserved1
 ;H'140 Reserved
 .GLOBAL INT_Reserved2
 ;H'160 TRAPA
 .GLOBAL INT_TRAPA
 ;H'180 Illegal code
 .GLOBAL INT_Illegal_code
 ;H'1A0 Illegal slot
 .GLOBAL INT_Illegal_slot
 ;H'1C0 NMI
 .GLOBAL INT_NMI
 ;H'1E0 User breakpoint trap
 .GLOBAL INT_User_Break
 ;H'200 External hardware interrupt
 .GLOBAL INT_Extern_0000
 ;H'220 External hardware interrupt
 .GLOBAL INT_Extern_0001
 ;H'240 External hardware interrupt
 .GLOBAL _INT_Extern_0010
 ;H'260 External hardware interrupt
 .GLOBAL _INT_Extern_0011
 ;H'280 External hardware interrupt
 .GLOBAL _INT_Extern_0100
 ;H'2A0 External hardware interrupt
 .GLOBAL _INT_Extern_0101
 ;H'2C0 External hardware interrupt
 .GLOBAL _INT_Extern_0110
 ;H'2E0 External hardware interrupt
 .GLOBAL _INT_Extern_0111
 ;H'300 External hardware interrupt
 .GLOBAL _INT_Extern_1000
 ;H'320 External hardware interrupt
 .GLOBAL _INT_Extern_1001
 ;H'340 External hardware interrupt
 .GLOBAL _INT_Extern_1010
 ;H'360 External hardware interrupt
 .GLOBAL _INT_Extern_1011
 ;H'380 External hardware interrupt
 .GLOBAL _INT_Extern_1100
 ;H'3A0 External hardware interrupt

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 267 of 1176
Mar 01, 2022

 .GLOBAL _INT_Extern_1101
 ;H'3C0 External hardware interrupt
 .GLOBAL _INT_Extern_1110
 ;H'3E0 External hardware interrupt
 .GLOBAL _INT_Extern_1111
 ;H'400 TMU0 TUNI0
 .GLOBAL _INT_Timer_Under_0
 ;H'420 TMU1 TUNI1
 .GLOBAL _INT_Timer_Under_1
 ;H'440 TMU2 TUNI2
 .GLOBAL _INT_Timer_Under_2
 ;H'460 TMU2 TICPI2
 .GLOBAL _INT_Input_Capture
 ;H'480 RTC ATI
 .GLOBAL _INT_RTC_ATI
 ;H'4A0 RTC PRI
 .GLOBAL _INT_RTC_PRI
 ;H'4C0 RTC CUI
 .GLOBAL _INT_RTC_CUI
 ;H'4E0 SCI ERI
 .GLOBAL _INT_SCI_ERI
 ;H'500 SCI RXI
 .GLOBAL _INT_SCI_RXI
 ;H'520 SCI TXI
 .GLOBAL _INT_SCI_TXI
 ;H'540 SCI TEI
 .GLOBAL _INT_SCI_TEI
 ;H'560 WDT ITI
 .GLOBAL _INT_WDT
 ;H'580 REF RCMI
 .GLOBAL _INT_REF_RCMI
 ;H'5A0 REF ROVI
 .GLOBAL _INT_REF_ROVI

;;;
; vhandler.src ;
;;;

 .INCLUDE "env.inc"
 .INCLUDE "vect.inc"

IMASKclr:
 .EQU H'FFFFFF0F
RBBLclr:
 .EQU H'CFFFFFFF
MDRBBLset:
 .EQU H'70000000

 .IMPORT RESET_Vectors
 .IMPORT INT_Vectors
 .IMPORT INT_MASK

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 268 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

;;;
; macro definition ;
;;;
 .MACRO PUSH_EXP_BASE_REG
 STC.L SSR,@-R15 ; save SSR
 STC.L SPC,@-R15 ; save SPC
 STS.L PR,@-R15 ; save CONTEXT REGISTERS
 STC.L R7_BANK,@-R15
 STC.L R6_BANK,@-R15
 STC.L R5_BANK,@-R15
 STC.L R4_BANK,@-R15
 STC.L R3_BANK,@-R15
 STC.L R2_BANK,@-R15
 STC.L R1_BANK,@-R15
 STC.L R0_BANK,@-R15
 .ENDM
;
 .MACRO POP_EXP_BASE_REG
 LDC.L @R15+,R0_BANK ; RECOVER REGISTERS
 LDC.L @R15+,R1_BANK
 LDC.L @R15+,R2_BANK
 LDC.L @R15+,R3_BANK
 LDC.L @R15+,R4_BANK
 LDC.L @R15+,R5_BANK
 LDC.L @R15+,R6_BANK
 LDC.L @R15+,R7_BANK
 LDS.L @R15+,PR
 LDC.L @R15+,SPC
 LDC.L @R15+,SSR
 .ENDM

;;;
; reset ;
;;;
 .SECTION RSTHandler,CODE
_ResetHandler:
 MOV.L #EXPEVT,R0
 MOV.L @R0,R0
 SHLR2 R0
 SHLR R0
 MOV.L #_RESET_Vectors,r1
 ADD R1,R0
 MOV.L @R0,R0
 JMP @R0
 NOP

;;;
; exceptional interrupt ;
;;;
 .SECTION INTHandler,CODE
 .EXPORT INTHandlerPRG
INTHandlerPRG:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 269 of 1176
Mar 01, 2022

_ExpHandler:
 PUSH_EXP_BASE_REG
;
 MOV.L #EXPEVT,R0 ; set event address
 MOV.L @R0,R1 ; set exception code
 MOV.L #_INT_Vectors,R0 ; set vector table address
 ADD #-(H'40),R1 ; exception code - H'40
 SHLR2 R1
 SHLR R1
 MOV.L @(R0,R1),R3 ; set interrupt function addr
;
 MOV.L #_INT_MASK,R0 ; interrupt mask table addr
 SHLR2 R1
 MOV.B @(R0,R1),R1 ; interrupt mask
 EXTU.B R1,R1
;
 STC SR,R0 ; save SR
 MOV.L #(RBBLclr&IMASKclr),R2
 ; RB,BL,mask clear data
 AND R2,R0 ; clear mask data
 OR R1,R0 ; set interrupt mask
 LDC R0,SSR ; set current status
;
 LDC.L R3,SPC
 MOV.L #__int_term,R0 ; set interrupt terminate
 LDS R0,PR
;
 RTE
 NOP
;
 .POOL
;

;;;
; Interrupt terminate ;
;;;
 .ALIGN 4
__int_term:
 MOV.L #MDRBBLset,R0 ; set MD,BL,RB
 LDC.L R0,SR
;
 POP_EXP_BASE_REG
;
 RTE ; return
 NOP
;
 .POOL
;

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 270 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

;;;
; TLB miss interrupt ;
;;;
 .ORG H'300
_TLBmissHandler:
 PUSH_EXP_BASE_REG
;
 MOV.L #EXPEVT,R0 ; set event address
 MOV.L @R0,R1 ; set exception code
 MOV.L #_INT_Vectors,R0 ; set vector table address
 ADD #-(H'40),R1 ; exception code - H'40
 SHLR2 R1
 SHLR R1
 MOV.L @(R0,R1),R3 ; set interrupt function addr
;
 MOV.L #_INT_MASK,R0 ; interrupt mask table addr
 SHLR2 R1
 MOV.B @(R0,R1),R1 ; interrupt mask
 EXTU.B R1,R1
;
 STC SR,R0 ; save SR
 MOV.L #(RBBLclr&IMASKclr),R2
 ; RB,BL,mask clear data
 AND R2,R0 ; clear mask data
 OR R1,R0 ; set interrupt mask
 LDC R0,SSR ; set current status
;
 LDC.L R3,SPC
 MOV.L #__int_term,R0 ; set interrupt terminate
 LDS R0,PR
;
 RTE
 NOP
;
 .POOL
;

;;;
; IRQ ;
;;;
 .ORG H'500
_IRQHandler:
 PUSH_EXP_BASE_REG
;
 MOV.L #INTEVT,R0 ; set event address
 MOV.L @R0,R1 ; set exception code
 MOV.L #_INT_Vectors,R0 ; set vector table address
 ADD #-(H'40),R1 ; exception code - H'40
 SHLR2 R1
 SHLR R1
 MOV.L @(R0,R1),R3 ; set interrupt function addr
;

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 271 of 1176
Mar 01, 2022

 MOV.L #_INT_MASK,R0 ; interrupt mask table addr
 SHLR2 R1
 MOV.B @(R0,R1),R1 ; interrupt mask
 EXTU.B R1,R1
;
 STC SR,R0 ; save SR
 MOV.L #(RBBLclr&IMASKclr),R2
 ; RB,BL,mask clear data
 AND R2,R0 ; clear mask data
 OR R1,R0 ; set interrupt mask
 LDC R0,SSR ; set current status
;
 LDC.L R3,SPC
 MOV.L #__int_term,R0 ; set interrupt terminate
 LDS R0,PR
;
 RTE
 NOP
;
 .POOL
 .END

Note: Do not link the function for which #pragma interrupt has been specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 272 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Initialization (PowerON_Reset)
When library functions are used, this function sequentially calls the initialization routine
_INITLIB and file closing routine _CLOSEALL. The coding example of PowerON_Reset is
shown below. Since the interrupt operation of the SH-3, SH3-DSP, SH-4, SH-4A, and
SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, and SH2-DSP,
interrupt handlers are necessary.
Example:

 #include <_h_c_lib.h>

 #include <machine.h>

 #pragma entry PowerON_Reset_PC

 #pragma stacksize 0x100

 #define SR_Init 0x000000F0

 /* The initial value is 0x400000F0 when cpu=sh3, cpu=sh3dsp, cpu=sh4, cpu=sh4a, or
 cpu=sh4aldsp is specified */

 #define FPSCR_Init 0x00040001*1

 /* Only when cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified */

 #define INT_OFFSET 0x10

 extern unsigned int INT_Vectors;

 extern void PowerON_Reset_PC();

 extern void main();

 #ifdef _ _cplusplus

 extern "C" {

 #endif

 extern void _INIT_IOLIB();

 extern void _INIT_OTHERLIB();

 extern void _CLOSEALL();

 #ifdef _ _cplusplus

 }

 #endif

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 273 of 1176
Mar 01, 2022

 void PowerON_Reset_PC() {

 set_vbr((void *)(INT_Vectors - INT_OFFSET));

 set_fpscr(FPSCR_Init);

 /* Set this value only when cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified */

 _INITSCT();

 _INIT_IOLIB();

 _INIT_OTHERLIB();

 #ifdef _ _cplusplus

 _CALL_INIT();

 #endif

 set_cr(SR_Init);

 main();

 #ifdef _ _cplusplus

 _CALL_END();

 #endif

 _CLOSEALL();

 sleep();

 }

Note *1 : Change the initial value for FPSCR in accord with option settings as described below.
Refer to the hardware manual for details.
-When–fpu=double is specified, set the PR bit in FPSCR to 1. Otherwise, set this bit
 to 0.
- When–round=nearest is specified, set the RM bit in FPSCR to 00. Otherwise, set this
 bit to 01.
- When–cpu=sh4 or -cpu=sh4a is specified along with -denormalize=on, set the DN
 bit in FPSCR to 0. Otherwise, set this bit to 1.

(3) Tables for section initialization (DTBL, BTBL)
The section initialization routine (_INITSCT) initializes any uninitialized data sections to zero,
and copies initialization data in ROM for initialized data sections to RAM. Here the start and
end addresses of sections which use the _INITSCT function are set in the table for section
initialization using the section address operator.
Section names in the section initialization table are declared, using C$BSEC for uninitialized
data areas, and C$DSEC for initialized data areas.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 274 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

A coding example is shown below.

(4) C/C++ library function initial settings (_INITLIB)

Here, the method for setting initial values for C/C++ library functions is explained.
In order to set only those values which are necessary for the functions that are actually to be
used, please refer to the following guidelines.
 When using the <stdio.h>, <ios>, <streambuf>, <istream>, or <ostream> functions or the

assert macro, the standard I/O initial setting (_INIT_IOLIB) is necessary.
 When an initial setting is required in the prepared low-level interface routines, the initial

setting (_INIT_LOWLEVEL) in accordance with the specifications of the low-level
interface routines is necessary.

 When using the rand function or the strtok function, initial settings other than those for
standard I/O (_INIT_OTHERLIB) are necessary.

An example of a program to perform initial library settings is shown below. FILE-type data is
shown in figure 9.7.

#pragma section $DSEC //Section name must be C$DSEC.
static const struct {
 void *rom_s; //Starting address member of the initialized data
 //section in ROM
 void *rom_e; //End address member of the initialized data
 //section in ROM
 void *ram_s; //Starting address member of the initialized data
 //section in RAM
} DTBL[] = {_ _sectop("D"), _ _secend("D"), _ _sectop("R")};

#pragma section $BSEC //Section name must be C$BSEC.
static const struct {
 void *b_s; //Starting address member of the uninitialized data
 //section
 void *b_e; //End address member of the uninitialized data
 //section
} BTBL[] = {_ _sectop("B"), _ _secend("B")};

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 275 of 1176
Mar 01, 2022

#include <stdio.h>
#include <stdlib.h>
#define IOSTREAM 3
const size_t _sbrk_size = 520; // Specifies the minimum unit of the size to define
 // for the heap area (default: 1024)
const int _nfiles = IOSTREAM; // Specifies the number of I/O files (default: 20)
struct _iobuf _iob[IOSTREAM];
unsigned char sml_buf[IOSTREAM];
extern char *_s1ptr;

#ifdef _ _cplusplus
extern "C" {
#endif
void _INITLIB (void)
{
 _INIT_LOWLEVEL(); // Set initial setting for low-level interface routines
 _INIT_IOLIB(); // Set initial setting for I/O library
 _INIT_OTHERLIB(); // Set initial setting for rand function, strtok function
}

void _INIT_LOWLEVEL (void)
{
 // Set necessary initial setting for low-level library
}

void _INIT_IOLIB(void)
{
 FILE *fp;
 for(fp = _iob; fp < _iob + _nfiles; fp++) // Set initial setting for FILE
 // type data
 {
 fp->_bufptr = NULL;
 fp->_bufcnt = 0;
 fp->_buflen = 0;
 fp->_bufbase = NULL;
 fp->_ioflag1 = 0;
 fp->_ioflag2 = 0;
 fp->_iofd = 0;
 }
 if(freopen("stdin*1", "r", stdin)== NULL) // Open standard input file
 stdin->_ioflag1 = 0xff; // Forbid file access if open fails
 stdin->_ioflag1 |= _IOUNBUF; // Disable data buffering*2
 if(freopen("stdout*1", "w", stdout)== NULL) // Open standard output file
 stdout->_ioflag1 = 0xff; // Forbid file access if open fails
 stdout->_ioflag1 |= _IOUNBUF; // Disable data buffering*2
 if(freopen("stderr*1", "w", stderr)== NULL) // Open standard error file
 stderr->_ioflag1 = 0xff; // Forbid file access if open fails
 stderr->_ioflag1 |= _IOUNBUF; // Disable data buffering*2
}

void _INIT_OTHERLIB(void)
{
 srand(1); // Set initial setting if using rand function
 _s1ptr=NULL; // Set initial setting if using strtok function
}
#ifdef _ _cplusplus
}
#endif

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 276 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Notes: 1. Specify the filename for the standard I/O file. This name is used in the low-level
interface routine "open".

 2. In the case of a console or other interactive device, a flag is set to prevent the use of
buffering.

 /* File-type data declaration in C language */

struct _iobuf{
 unsigned char *_bufptr; /* Pointer to buffer */
 long _bufcnt; /* Buffer counter */
 unsinged char *_bufbase; /* Base pointer to buffer */
 long _buflen; /* Buffer length */
 char _ioflag1; /* I/O flag */
 char _ioflag2; /* I/O flag */
 char _iofd; /* I/O flag */
}iob[_nfiles];

Figure 9.7 FILE-Type Data

(5) Closing files (_CLOSEALL)
Normally, output to files is held in a buffer area in memory, and when the buffer becomes full
data is actually written to an external memory device. Hence if a file is not closed properly, it
is possible that data output to a file may not actually be written to the external memory device.
In the case of a program intended for embedding in equipment, normally the program is not
terminated. However, if the main function is terminated due to a program error or for some
other reason, open files must all be closed.
This processing closes any files that are open at the time of termination of the main function.
An example of a program to close all open files is shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 277 of 1176
Mar 01, 2022

(6) Low-level interface routines
When using standard I/O or memory management library functions in a C/C++ program, low-
level interface routines must be prepared. Table 9.3 lists the low-level interface routines used
by C library functions.

Table 9.3 List of Low-Level Interface Routines

Name Description
open Opens file
close Closes file
read Reads from file
write Writes to file
lseek Sets the read/write position in a file
sbrk Allocates area in memory
sbrk_ _X Allocates area in X memory
sbrk_ _Y Allocates area in Y memory
errno_addr* Acquires errno address
wait_sem* Defines semaphore
signal_sem* Releases semaphore

Note: These routines are necessary when the reentrant library is used.

Initialization necessary for low-level interface routines must be performed on program startup.
This initialization should be performed using the _INIT_LOWLEVEL function described in
section 9.2.2 (4), C/C++ library function initial settings (_INITLIB).

#include <stdio.h>

#ifdef __cplusplus
extern "C"
#endif
void _CLOSEALL(void)
{
int i;

 for(i=0; i < _nfiles; i++)

 // Check to see whether the file is open or not
 if(_iob[i]._ioflag1 & (_IOREAD | _IOWRITE | _IORW))
 fclose(&_iob[i]); // Close the file
}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 278 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Below, after explaining the basic approach to low-level I/O, the specifications for each
interface routine are described.

Note: The function names open, close, read, write, lseek, sbrk, sbrk_ _X, sbrk_ _Y, errno_addr,

wait_sem, and signal_sem are reserved for low-level interface routines. They should not
be used in user programs.

(a) Approach to I/O
In the standard I/O library, files are managed by means of FILE-type data; but in low-level
interface routines, positive integers are assigned in a one-to-one correspondence with actual
files for management. These integers are called file numbers.
In the open routine, a file number is provided for a specified filename. The open routine
must set the following information such that this number can be used for file input and
output.
• The device type of the file (console, printer, disk file, etc.) (In the cases of special

devices such as consoles or printers, special filenames must be set by the system and
identified in the open routine.)

• When using file buffering, information such as the buffer position and size
• In the case of a disk file, the byte offset from the start of the file to the position for

reading or writing
Based on the information set using the open routine, all subsequent I/O (read and write
routines) and read/write positioning (lseek routine) is performed.
When output buffering is being used, the close routine should be executed to write the
contents of the buffer to the actual file, so that the data area set by the open routine can be
reused.

(b) Specifications of low-level interface routines
In this section, specifications for low-level interface routines are described. For each
routine, the interface for calling the routine, its operation, and information for using the
routine are described.
The interface for the routines is indicated using the following format. Low-level interface
routines should always be given a prototype declaration. Add "extern C" to declare in the
C++ program.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 279 of 1176
Mar 01, 2022

(Routine name)

Description (A summary of the routine operations is given)

Return value Normal: (The meaning of the return value on normal termination is
 explained)

 Error: (The return value when an error occurs is given)

Parameters (Name) (Meaning)

 (The name of the parameter (The meaning of the value
 appearing in the interface) passed as a parameter)

int open (char *name, int mode, int flg)

Description Prepares for operations on the file corresponding to the filename of the first
parameter. In the open routine, the file type (console, printer, disk file, etc.)
must be determined in order to enable writing or reading at a later time. The
file type must be referenced using the file number returned by the open
routine each time reading or writing is to be performed.

 The second parameter, mode, specifies processing to be performed when the
file is opened. The meanings of each of the bits of this parameter are as
follows.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 280 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 9.4 Explanation of Bits in Parameter "mode" of open Routine

Bit Description
O_RDONLY (bit 0) When this bit is 1, the file is opened in read-only mode
O_WRONLY (bit 1) When this bit is 1, the file is opened in write-only mode
O_RDWR (bit 2) When this bit is 1, the file is opened for both reading and

writing
O_CREAT (bit 3) When this bit is 1, if a file with the filename given does not

exist, it is created
O_TRUNC (bit 4) When this bit is 1, if a file with the filename given exists, the

file contents are deleted and the file size is set to 0
O_APPEND (bit 5) Sets the position within the file for the next read/write

operation
 When 0: Set to read/write from the beginning of file
 When 1: Set to read/write from file end

 When there is a contradiction between the file processing specified by mode
and the properties of the actual file, error processing should be performed.
When the file is opened normally, the file number (0 to 127) should be
returned which should be used in subsequent read, write, lseek, and close
routines. The correspondence between file numbers and the actual files must
be managed by low-level interface routines. If the open operation fails, -1
should be returned.

Return value Normal: The file number for the successfully opened file
Error: -1

Parameters name Filename of the file
mode Specifies the type of processing when the file is opened
flg Specifies processing when the file is opened (always 0777)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 281 of 1176
Mar 01, 2022

int close (int fileno)

Description The file number obtained using the open routine is passed as an parameter.
The file management information area set using the open routine should be
released to enable reuse. Also, when output file buffering is performed in
low-level interface routines, the buffer contents should be written to the
actual file.

 When the file is closed successfully, 0 is returned; if the close operation fails,
-1 is returned.

Return value Normal: 0

 Error: -1

Parameter fileno File number of the file to be closed

int read (int fileno, char *buf, unsigned int count)

Description Data is read from the file specified by the first parameter (fileno) to the area
in memory specified by the second parameter (buf). The number of bytes of
data to be read is specified by the third parameter (count).

 When the end of the file is reached, only a number of bytes fewer than or
equal to count bytes can be read.

 The position for file reading/writing advances by the number of bytes read.

 When reading is performed successfully, the actual number of bytes read is
returned; if the read operation fails, -1 is returned.

Return value Normal: Actual number of bytes read
Error: -1

Parameters fileno File number of the file to be read
buf Memory area to store read data
count Number of bytes to read

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 282 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int write (int fileno, char *buf, unsigned int count)

Description Writes data to the file indicated by the first parameter (fileno) from the
memory area indicated by the second parameter (buf). The number of bytes
to be written is indicated by the third parameter (count).

 If the device (disk, etc.) of the file to be written is full, only a number of
bytes fewer than or equal to count bytes can be written. It is recommended
that, if the number of bytes actually written is zero a certain number of times
in succession, the disk should be judged to be full and an error (-1) should be
returned.

 The position for file reading/writing advances by the number of bytes
written. If writing is successful, the actual number of bytes written should be
returned; if the write operation fails, -1 should be returned.

 When the value of parameter count is 0, the return value must also be 0.

Return value Normal: Actual number of bytes written
Error: -1

Parameters fileno File number to which data is to be written
buf Memory area containing data for writing
count Number of bytes to write

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 283 of 1176
Mar 01, 2022

int lseek (int fileno, long offset, int base)

Description Sets the position within the file, in byte units, for reading from and writing to
the file.

 The position within a new file should be calculated and set using the
following methods, depending on the third parameter (base).

 (1) When base is 0: Set the position at offset bytes from the file beginning

 (2) When base is 1: Set the position at the current position plus offset bytes

 (3) When base is 2: Set the position at the file size plus offset bytes

 When the file is a console, printer, or other interactive device, when the new
offset is negative, or when in cases (1) and (2) the file size is exceeded, an
error occurs.

 When the file position is set correctly, the new position for reading/writing
should be returned as an offset from the file beginning; when the operation is
not successful, -1 should be returned.

Return value Normal: The new position for file reading/writing, as an offset in bytes
 from the file beginning
Error: -1

Parameters fileno File number
offset Position for reading/writing, as an offset (in bytes)
base Starting-point of the offset

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 284 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

char *sbrk (int size)

Description The size of the memory area to be allocated is passed as a parameter.

 When calling the sbrk routine several times, memory areas should be
allocated in succession starting from lower addresses. If the memory area for
allocation is insufficient, an error should occur. When allocation is
successful, the address of the beginning of the allocated memory area should
be returned; if unsuccessful, (char *) -1 should be returned.

Return value Normal: Starting address of allocated memory
Error: (char *) -1

Parameter size Size of area to be allocated

char _ _X *sbrk_ _X (int size)

Description The size of the X memory area to be allocated is passed as a parameter.

 When calling the sbrk_ _X routine several times in a row, memory areas
should be allocated in succession starting from lower addresses. If the
memory area for allocation is insufficient, an error should occur. When
allocation is successful, the address of the beginning of the allocated memory
area should be returned; if unsuccessful, (char _ _X *) -1 should be returned.

Return value Normal: Starting address of allocated memory
Error: (char _ _X *) -1

Parameter size Size of area to be allocated

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 285 of 1176
Mar 01, 2022

char _ _Y *sbrk_ _Y (int size)

Description The size of the Y memory area to be allocated is passed as a parameter.

 When calling the sbrk_ _Y routine several times in a row, memory areas
should be allocated in succession starting from lower addresses. If the
memory area for allocation is insufficient, an error should occur. When
allocation is successful, the address of the beginning of the allocated memory
area should be returned; if unsuccessful, (char _ _Y *) -1 should be returned.

Return value Normal: Starting address of allocated memory
Error: (char _ _Y *) -1

Parameter size Size of area to be allocated

int *errno_addr (void)

Description Returns the address of the error number of the current task.

 This routine is necessary when using a standard library, which was created
by the standard library generator with the reent option specified.

Return value Address of the error number of the current task

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 286 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int wait_sem (int semnum)

Description Defines the semaphore specified by semnum.

 When the semaphore has been defined normally, 1 must be returned.
Otherwise, 0 must be returned.

 This routine is necessary when using a standard library, which was created
by the standard library generator with the reent option specified.

Return value Normal: 1
Error: 0

Parameter semnum Semaphore ID

int signal_sem (int semnum)

Description Releases the semaphore specified by semnum.

 When the semaphore has been released normally, 1 must be returned.
Otherwise, 0 must be returned.

 This routine is necessary when using a standard library, which was created
by the standard library generator with the reent option specified.

Return value Normal: 1
Error: 0

Parameter semnum Semaphore ID

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 287 of 1176
Mar 01, 2022

(c) Example of coding the low-level interface routines

/***/
/* lowsrc.c: */
/*---*/
/* SuperH RISC engine Series Simulator/Debugger Interface Routine */
/* Only standard I/O (stdin,stdout,stderr) are supported */
/***/
#include <string.h>

/* File Number */
#define STDIN 0 /* Standard input (Console) */
#define STDOUT 1 /* Standard output (Console) */
#define STDERR 2 /* Standard error output (Console) */

#define FLMIN 0 /* Minimum file number */
#define FLMAX 3 /* Maximum number of files */

/* File flags */
#define O_RDONLY 0x0001 /* Read only */
#define O_WRONLY 0x0002 /* Write only */
#define O_RDWR 0x0004 /* Read/Write */

/* Special character code */
#define CR 0x0d /* Carriage return */
#define LF 0x0a /* Line feed */

/* Area size managed by sbrk */
#define HEAPSIZE 1024

/**/
/* Reference function declaration: */
/* Assembly program reference which inputs/outputs characters to */
/* console using simulator/debugger */
/**/
extern void charput(char); /* One character input processing */
extern char charget(void); /* One character output processing */

/**/
/* Static variable definition : */
/* Definition of static variables used in low-level interface routine */
/**/
char flmod[FLMAX]; /* Mode setting location of open file */

union HEAP_TYPE{
 long dummy;/* Dummy for four-byte alignment */
 char heap[HEAPSIZE]; /* Declaration of area managed by sbrk */
};

static union HEAP_TYPE heap_area;
static _ _X union HEAP_TYPE heap_area_ _X;
static _ _Y union HEAP_TYPE heap_area_ _Y;
static char *brk=(char*)&heap_area; /* End address allocated by sbrk */
static _ _X char *brk_ _X=(char _ _X *)&heap_area_ _X;
 /* End address allocated by sbrk_ _X */
static _ _Y char *brk_ _Y=(char _ _Y *)&heap_area_ _Y;
 /* End address allocated by sbrk_ _Y */

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 288 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

/**/
/* open: Open file */
/* Return value: File Number (Normal) */
/* -1 (Error) */
/**/
int open(char *name, /* File name */
 int mode) /* File mode */
{
 /* Check mode according to the file name, and return the file number */

 if (strcmp(name,"stdin")==0) { /* Standard input file */
 if ((mode&O_RDONLY)==0) {
 return (-1);
 }
 flmod[STDIN]=mode;
 return (STDIN);
 }

 else if (strcmp(name,"stdout")==0) { /* Standard output file */
 if ((mode&O_WRONLY)==0) {
 return (-1);
 }
 flmod[STDOUT]=mode;
 return (STDOUT);
 }

 else if (strcmp(name,"stderr")==0){ /* Standard error output file */
 if ((mode&O_WRONLY)==0) {
 return (-1);
 }
 flmod[STDERR]=mode;
 return (STDERR);
 }

 else {
 return (-1); /* Error */
 }
}

/**/
/* close: Close file */
/* Return value 0 (Normal) */
/* -1 (Error) */
/**/
int close(int fileno) /* File number */
{
 if (fileno<FLMIN || FLMAX<fileno) { /* Check file number range */
 return -1;
 }

 flmod[fileno]=0; /* Reset file mode */

 return 0;
}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 289 of 1176
Mar 01, 2022

/**/
/* read: Read data */
/* Return value: Read character count (Normal) */
/* -1 (Error) */
/**/
int read(int fileno, /* File number */
 char *buf, /* Transfer destination buffer address */
 unsigned int count) /* Read character count */
{
 unsigned int i;

 /* Check mode according to file name, input one character each, */
 /* and store the characters to buffer */

 if (flmod[fileno]&O_RDONLY || flmod[fileno]&O_RDWR) {
 for (i=count;i>0;i--) {
 *buf=charget();
 if (*buf==CR) { /* Replace line feed character */
 *buf=LF;
 }
 buf++;
 }
 return count;
 }

 else {
 return -1;
 }
}

/**/
/* write: Write data */
/* Return value: Written data count (Normal) */
/* -1 (Error) */
/**/
int write(int fileno, /* File number */
 char *buf, /* Transfer source buffer address */
 unsigned int count) /* Written character count */
{
 unsigned int i;
 char c;

 /* Check mode according to file name and output one character at a time */

 if (flmod[fileno]&O_WRONLY || flmod[fileno]&O_RDWR) {
 for (i=count; i>0; i--) {
 c=*buf++;
 charput(c);
 }
 return count;
 }

 else {
 return -1;
 }

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 290 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

/***/
/* lseek: Set file read/write position */
/* Return value: Offset from the beginning of file to be read/written (Normal) */
/* -1 (Error) */
/* (Console I/O does not support lseek) */
/***/
long lseek(int fileno, /* File number */
 long offset, /* Read/write start position */
 int base) /* Start of offset */
{
 return -1;
}

/**/
/* sbrk: Memory area allocation */
/* Return value: Start address of allocated area (Normal) */
/* -1 (Error) */
/**/
char *sbrk(unsigned long size) /* Size of area to be allocated */
{
 char *p;

 /* Check empty area */

 if (brk+size>heap_area.heap+HEAPSIZE) {
 return (char *)-1;
 }

 p=brk; /* Allocate area */
 brk+=size; /* Update end address */
 return p;
}

/**/
/* sbrk_ _X: Memory area allocation */
/* Return value: Start address of allocated area (Normal) */
/* -1 (Error) */
/**/
char _ _X *sbrk_ _X(unsigned long size)
 /* Size of area to be allocated */
{
 _ _X char *p;

 /* Check empty area */

 if (brk_ _X+size>heap_area_ _X.heap+HEAPSIZE) {
 return (char _ _X *)-1;
 }

 p=brk_ _X; /* Allocate area */
 brk_ _X+=size; /* Update end address */
 return p;
}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 291 of 1176
Mar 01, 2022

/**/
/* sbrk_ _Y: Memory area allocation */
/* Return value: Start address of allocated area (Normal) */
/* -1 (Error) */
/**/
char _ _Y *sbrk_ _Y(unsigned long size)
 /* Size of area to be allocated */
{
 _ _Y char *p;

 /* Check empty area */

 if (brk_ _Y+size>heap_area_ _Y.heap+HEAPSIZE) {
 return (char _ _Y *)-1;
 }

 p=brk_ _Y; /* Allocate area */
 brk_ _Y+=size; /* Update end address */
 return p;
}

;;;
; lowlvl.src ;
;;;
; SuperH RISC engine Series Simulator/Debugger Interface Routine ;
; Input/Output one character ;
;;;
 .EXPORT _charput
 .EXPORT _charget
SIM_IO:
 .EQU H'0000 ; Specify TRAP_ADDRESS

 .SECTION P, CODE, ALIGN=4

;;;
; _charput: One character output ;
; C program interface: charput(char) ;
;;;

_charput:
 MOV.L O_PAR,R0 ; Set buffer address
 MOV.B R4,@R0 ; Set parameter to buffer
 MOV.L #O_PAR,R1 ; Set parameter block address
 MOV.L #H'01220000,R0 ; Set function code (PUTC)
 MOV.W #SIM_IO,R2 ; Set system call address
 JSR @R2
 NOP
 RTS
 NOP

 .ALIGN 4
O_PAR: ;Parameter block area
 .DATA.L OUT_BUF

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 292 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

;;;
; _charget: One character input ;
; C program interface: char charget(void) ;
;;;

 .ALIGN 4
_charget:
 MOV.L #I_PAR,R1 ; Set parameter block address
 MOV.L #H'01210000,R0 ; Set function code (GETC)
 MOV.W #SIM_IO,R2 ; Set system call address
 JSR @R2
 NOP
 MOV.L I_PAR,R0 ; Set buffer address
 MOV.B @R0,R0 ; Set the input data as the return value
 RTS
 NOP

 .ALIGN 4
I_PAR: ; Parameter block area
 .DATA.L IN_BUF

;;;
; Definition of I/O buffer ;
;;;

 .SECTION B,DATA,ALIGN=4

OUT_BUF:
 .RES.L 1 ; Output buffer
IN_BUF:
 .RES.L 1 ; Input buffer

 .END

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 293 of 1176
Mar 01, 2022

(d) Example of low-level interface routine for reentrant library
The following shows an example of a low-level interface routine for a reentrant library. This
routine is necessary when using a standard library, which was created by the standard library
generator with the reent option specified.
When an error is returned from the wait_sem function or signal_sem function, set errno as
follows to return from the library function.

Bit Function errno Description
wait_sem EMALRESM Failed to allocate semaphore resources for malloc

ETOKRESM Failed to allocate semaphore resources for strtok
EIOBRESM Failed to allocate semaphore resources for _iob

signal_sem EMALFRSM Failed to release semaphore resources for malloc
 ETOKFRSM Failed to release semaphore resources for strtok
 EIOBFRSM Failed to release semaphore resources for _iob

When an interrupt with a priority level higher than the current level is generated after
semaphores have been defined, dead locks will occur if semaphores are defined again.
Therefore, be careful for processes that share resources because they might be nested by
interrupts.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 294 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#define MALLOC_SEM 1 /* Semaphore No. for malloc */

#define STRTOK_SEM 2 /* Semaphore No. for strtok */

#define FILE_TBL_SEM 3 /* Semaphore No. for fopen */

#define MALLOC_SEM_ _X 4 /* Semaphore No. for malloc_ _X */

#define MALLOC_SEM_ _Y 5 /* Semaphore No. for malloc_ _Y */

#define IOB_SEM 6 /* Semaphore No. for _iob */

#define SEMSIZE 26 /* IOB_SEM + nfiles (when _nfiles = 20) */

#define TRUE 1

#define FALSE 0

#define OK 1

#define NG 0

extern int *errno_addr(void);

extern int wait_sem(int);

extern int signal_sem(int);

int sem_errno;

int force_fail_signal_sem = FALSE;

static int semaphore[SEMSIZE];

/***/

/* errno_addr: Acquisition of errno address */

/* Return value: errno address */

/***/

int *errno_addr(void)

{

 /* Return the errno address of the current task */

 return (&sem_errno);

}

/***/

/* wait_sem: Defines the specified numbers of semaphores */

/* Return value: OK(=1) (Normal) */

/* NG(=0) (Error) */

/***/

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 295 of 1176
Mar 01, 2022

int wait_sem(int semnum) /* Semaphore ID */

{

 if((0 <= semnum) && (semnum < SEMSIZE)) {

 if(semaphore[semnum] == FALSE) {

 semaphore[semnum] = TRUE;

 return(OK);

 }

 }

 return(NG);

}

/***/

/* signal_sem: Releases the specified numbers of semaphores */

/* Return value: OK(=1) (Normal) */

/* NG(=0) (Error) */

/***/

int signal_sem(int semnum) /* Semaphore ID */

{

 if(!force_fail_signal_sem) {

 if((0 <= semnum) && (semnum < SEMSIZE)) {

 if(semaphore[semnum] == TRUE) {

 semaphore[semnum] = FALSE;

 return(OK);

 }

 }

 return(NG);

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 296 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(7) Termination processing routine
(a) Example of preparation of a routine for termination processing registration and execution

(atexit)
The method for preparation of the library function atexit to register termination processing
is described.
The atexit function registers, in a table for termination processing, a function address
passed as a parameter. If the number of functions registered exceeds the limit (in this case,
the number that can be registered is assumed to be 32), or if an attempt is made to register
the same function twice, NULL is returned. Otherwise, a value other than NULL (in this
case, the address of the registered function) is returned.
A program example is shown below.

Example:

#include <stdlib.h>
typedef void *atexit_t ;

int _atexit_count=0 ;

atexit_t (*_atexit_buf[32])(void) ;

#ifdef _ _cplusplus
extern "C"
#endif
atexit_t atexit(atexit_t (*f)(void))
{
 int i;

 for(i=0; i<_atexit_count ; i++) // Check whether it is already registered
 if(_atexit_buf[i]==f)
 return NULL ;
 if(_atexit_count==32) // Check the limit value of number of registration
 return NULL ;
 else {
 atexit_buf[_atexit_count++]=f; // Register the function address
 return f;
 }
}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 297 of 1176
Mar 01, 2022

(b) Example of preparation of a routine for program termination (exit)
The method for preparation of an exit library function for program termination is described.
Program termination processing will differ among user systems; refer to the program
example below when preparing a termination procedure according to the specifications of
the user system.
The exit function performs termination processing for a program according to the
termination code for the program passed as a parameter, and returns to the environment in
which the program was started. Here, the termination code is set to an external variable,
and execution returned to the environment saved by the setjmp function immediately
before the main function was called. In order to return to the environment prior to program
execution, the following callmain function should be created, and instead of calling the
function main from the PowerON_Reset initial setting function, the callmain function
should be called.
A program example is shown below.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 298 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#include <setjmp.h>
#include <stddef.h>

typedef void * atexit_t ;
extern int _atexit_count ;

extern atexit_t (*_atexit_buf[32])(void) ;
#ifdef _ _cplusplus

extern "C"

#endif
void _CLOSEALL(void);

int main(void);
extern jmp_buf _init_env ;
int _exit_code ;

#ifdef _ _cplusplus

extern "C"

#endif
void exit(int code)
{
 int i;
 _exit_code=code ; // Set the return code in _exit_code
 for(i=_atexit_count-1; i>=0; i--) // Execute in sequence the functions
 (*_atexit_buf[i])(); // registered by the atexit function
 _CLOSEALL(); // Close all open functions
 longjmp(_init_env, 1) ; // Return to the environment saved by setjmp
}

#ifdef _ _cplusplus

extern "C"

#endif
void callmain(void)
{
 // Save the current environment using setjmp and call the main function
 if(!setjmp(_init_env))
 _exit_code=main(); // On returning from the exit function,
 // terminate processing

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 299 of 1176
Mar 01, 2022

(c) Example of creation of an abnormal termination (abort) routine
On abnormal termination, processing for abnormal termination must be executed in
accordance with the specifications of the user system.
In a C++ program, the abort function will also be called in the following cases:
• When exception processing was unable to operate correctly.
• When a pure virtual function is called.
• When dynamic_cast has failed.
• When typeid has failed.
• When information could not be acquired when a class array was deleted.
• When the definition of the destructor call for objects of a given class causes a

contradiction.
Below is shown an example of a program which outputs a message to the standard output
device, then closes all files and begins an infinite loop to wait for reset.

#include <stdio.h>

#ifdef _ _cplusplus
extern "C"
#endif
void _CLOSEALL(void);
#ifdef _ _cplusplus
extern "C"
#endif
void abort(void)
{
 printf("program is abort !!\n"); //Output message
 _CLOSEALL(); //Close all files
 while(1) ; //Begin infinite loop
}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 300 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9.3 Linking C/C++ Programs and Assembly Programs

Here the following matters to be born in mind when linking C/C++ programs and assembly
programs are discussed.

• Method for mutual referencing of external names
• Interface for function calls

9.3.1 Method for Mutual Referencing of External Names

External names which have been declared in a C/C++ program can be referenced and updated in
both directions between the C/C++ program and an assembly program. The compiler treats the
following items as external names.

• Global variables which are not declared as static storage classes (C/C++ programs)
• Variable names declared as extern storage classes (C/C++ programs)
• Function names not declared as static memory classes (C programs)
• Non-member, non-inline function names not specified as static memory classes (C++

programs)
• Non-inline member function names (C++ programs)
• Static data member names (C++ programs)

(1) Method for referencing assembly program external names in C/C++ programs

In assembly programs, .EXPORT is used to declare external symbol names (preceded by an
underscore (_)).
In C/C++ programs, symbol names (not preceded by an underscore) are declared using the
extern keyword.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 301 of 1176
Mar 01, 2022

(2) Method for referencing C/C++ program external names (variables and C functions) from
assembly programs
A C/C++ program can define external variable names (without an underscore (_)).
In an assembly program, .IMPORT is used to declare an external name (preceded by an
underscore).

(3) Method for referencing C++ program external names (functions) from assembly programs
By declaring functions to be referenced from an assembly program using the extern "C"
keyword, the function can be referenced using the same rules as in (2) above. However,
functions declared using extern "C" cannot be overloaded.

C++ program (callee)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 302 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Assembly program (caller)

9.3.2 Function Calling Interface

When either a C/C++ program or an assembly program calls the other, the assembly programs
must be written using rules involving the following:

1. Stack pointer
2. Allocating and deallocating stack frames
3. Registers
4. Setting and referencing parameters and return values

(1) Stack Pointer

Valid data must not be stored in a stack area with an address lower than the stack pointer (in
the direction of address H'0), since the data may be destroyed by an interrupt process.

(2) Allocating and Deallocating Stack Frames
In a function call (immediately after the JSR or the BSR instruction has been executed), the
stack pointer indicates the lowest address of the stack used by the calling function. Allocating
and setting data at addresses greater than this address must be done by the caller.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 303 of 1176
Mar 01, 2022

After the callee deallocates the area it has set with data, control returns to the caller usually
with the RTS instruction. The caller then deallocates the area having a higher address (the
return value address and the parameter area).

Figure 9.8 Allocation and Deallocation of a Stack Frame

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 304 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(3) Registers
Some registers may change during a function call, while some may not. Table 9.5 shows the
rules to save and restore registers.

Table 9.5 Rules to Save and Restore Registers

Item Registers Used in a Function Notes on Programming
Registers not
guaranteed

R0 to R7, FR0 to FR11*1,
DR0 to DR10*2, FPUL*1*2, FPSCR*1*2*4,
A0*3, A0G*3, A1*3, A1G*3, M0*3, M1*3,
X0*3, X1*3, Y0*3, Y1*3, DSR*3, MOD*3,
RS*3, and RE*3

If registers used in a function contain
valid data when a program calls the
function, the caller must save the
data onto the stack or into the
register before calling the function.
The callee function can use the
registers without saving the
contained data. However, when
fpscr=safe is specified, the contents
of FPSCR are guaranteed.

Registers
guaranteed

R8 to R15, MACH, MACL, PR, FR12 to
FR15*1, and DR12 to DR14*2

The data in registers used in
functions is saved onto the stack at
function entry, and restored from the
stack at function exit. Note that data
in the MACH and MACL registers are
not guaranteed if macsave=0 is
specified. When gbr=auto is
specified, the contents of GBR are
guaranteed.

Notes: 1. Single-precision floating point registers for SH-2E, SH2A-FPU, SH-4, and SH-4A.
 2. Double-precision floating point registers for SH2A-FPU, SH-4, and SH-4A.
 3. DSP registers for SH2-DSP, SH3-DSP, and SH4AL-DSP.
 4. The precision modes at the start of functions are as follows.

• When the fpu=double option is used, the mode is double-precision.
• When the fpu=single option is used or when the fpu option is not used, the mode is
single-precision. In the case of interrupt functions, the precision mode might need to be
set since they might actually be called in double-precision mode. For details, see
section 9.4.1 (6) Interrupt Functions When the CPU Type Is SH2A-FPU, SH4, or SH4A.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 305 of 1176
Mar 01, 2022

The following examples show the rules on registers.

• A subroutine in an assembly program is called by a C/C++ program

Assembly program (callee)

C/C++ program (caller)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 306 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• A function in a C/C++ program is called by an assembly program
C/C++ program (callee)

Assembly program (caller)

Note: The compiler uses a rule to convert the external name created by the function name or

static data member. When you need to know the external name created by the compiler,
refer to the external name created by the compiler using code=asmcode or the listfile
option. Defining a C++ function with extern "C" specified applies the same generation
rules as C functions to external names, although this makes overloading of the function
impossible.

(4) Setting and Referencing Parameters and Return Values
This section explains how to set and reference parameters and return values.
This section first explains the general rules concerning parameters and return values, and then
how the parameters are allocated, and how to set return values.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 307 of 1176
Mar 01, 2022

(a) General rules concerning parameters and return values
 Passing parameters

A function is called after parameters have been copied to a parameter area in registers or on
the stack. Since the caller does not reference the parameter area after control returns to it,
the caller is not affected even if the callee modifies the parameters.

 Rules on type conversion
Type conversion may be performed automatically when parameters are passed or a return
value is returned. The following explains the rules on type conversion.
• Type conversion of parameters whose types are declared

Parameters whose types are declared by a prototype declaration are converted to the
declared types.

• Type conversion of parameters whose types are not declared
Parameters whose types are not declared by a prototype declaration are converted
according to the following rules.
 (signed) char, unsigned char, (signed) short, and unsigned short type parameters are
 converted to (signed) int type parameters.
 float type parameters are converted to double type parameters.
 Types other than the above are not converted.

• Type conversion of a return value
A return value is converted to the data type returned by the function.

Examples:

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 308 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(b) Parameter area allocation
Parameters are allocated to registers, or when this is impossible, to a parameter area on the
stack. Figure 9.9 shows the parameter area allocation. Table 9.6 lists general rules on the
parameter area allocation. The this pointer to a nonstatic function member in a C++
program is assigned to R4.

Figure 9.9 Parameter Area Allocation

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 309 of 1176
Mar 01, 2022

Table 9.6 General Rules on Parameter Area Allocation

Parameters Allocated to Registers
Parameter Storage
Registers

Target Type

Parameters Allocated to a Stack

R4 to R7 char, unsigned char, bool, short,
unsigned short, int, unsigned int,
long, unsigned long, float (when
CPU is other than SH-2E, SH2A-
FPU, SH-4, or SH-4A), pointer,
pointer to a data member, and
reference

(1) Parameters whose types are other
than target types for register passing

(2) Parameters of a function which has
been declared by a prototype
declaration to have variable-number
parameters*3

(3) When other parameters are already
allocated to R4 to R7.

(4) When other parameters are already
allocated to FR4 (DR4) to FR11
(DR10).

(5) long long type and unsigned long long
type parameters

(6) _ _fixed type, long _ _fixed type,
_ _accum type, and long _ _accum
type parameters

FR4 to FR11*1 For SH-2E

• Parameter is float type.
• Parameter is double type and

double=float is specified.
For SH2A-FPU, SH-4, or SH-4A

• Parameter type is float type
and fpu=double is not
specified.

• Parameter type is double type
or long double type and
fpu=single is specified.

DR4 to DR10*2 For SH2A-FPU, SH-4, or SH-4A

• Parameter type is double type
or long double type and
fpu=single is not specified.

• Parameter type is float type
and fpu=double is specified.

Notes: 1. Single-precision floating-point registers for SH-2E, SH2A-FPU, SH-4, and SH-4A.
 2. Double-precision floating-point registers for SH2A-FPU, SH-4, and SH-4A.
 3. If a function has been declared to have variable parameters by a prototype declaration,

parameters which do not have a corresponding type in the declaration and the
immediately preceding parameter are allocated to a stack.

Example:

int f2(int,int,int,int,...);

 :

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 310 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

f2(a,b,c,x,y,z); ← x, y, and z are allocated to a stack.

(c) Parameter allocation
 Allocation to parameter storage registers

Following the order of their declaration in the source program, parameters are allocated to
the parameter storage registers starting with the smallest numbered register. Figure 9.10
shows an example of parameter allocation to registers.

Figure 9.10 Example of Allocation to Parameter Registers

 Allocation to a stack parameter area
Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type, union type, or class type,

parameters are allocated using 4-byte alignment. Also, the area size for each parameter
must be a multiple of four bytes. This is because the SuperH RISC engine microcomputer
stack pointer is incremented or decremented in 4-byte units. Refer to section 9.3.3,
Examples of Parameter Allocation, for examples of parameter allocation.

(d) Return value writing area
The return value is written to either a register or memory depending on its type. Refer to
table 9.7 for the relationship between the return value type and area.
When a function return value is to be written to memory, the return value is written to the area
indicated by the return value address. The caller must allocate the return value setting area in
addition to the parameter area, and must set the address of the return value area in the return
value address area before calling the function (see figure 9.11). The return value is not written
if its type is void.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 311 of 1176
Mar 01, 2022

Table 9.7 Return Value Type and Setting Area

Return Value Type Return Value Area
(signed) char, unsigned char,
(signed) short, unsigned short,
(signed) int, unsigned int, long,
unsigned long, float, pointer, bool,
reference, and pointer to a data
member

R0: 32 bits
The contents of the upper three bytes of (signed) char, or
unsigned char and the contents of the upper two bytes of
(signed) short or unsigned short are not guaranteed.
However, when the rtnext option is specified, sign extension
is performed for (signed) char or (signed) short type, and
zero extension is performed for unsigned char or unsigned
short type.
FR0: 32 bits

(1) For SH-2E
• Return value is float type.
• Return value is double type and double=float is

specified.
(2) For SH2A-FPU, SH-4, or SH-4A

• Return value is float type and fpu=double is not
specified.

• Return value is floating-point type and fpu=single is
specified.

double, long double, structure,
union, class, and pointer to a
function member

Return value setting area (memory)
DR0: 64 bits
For SH2A-FPU, SH-4, or SH-4A

• Return value is double type and fpu=single is not
specified.

• Return value is floating-point type and fpu=double is
specified.

(signed) long long and
unsigned long long

Return value setting area (memory)

_ _fixed, long _ _fixed, _ _accum,
and long _ _accum

Return value setting area (memory)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 312 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Figure 9.11 Return Value Setting Area Used When Return Value Is Written to Memory

9.3.3 Examples of Parameter Allocation

Example 1: Parameters passed by are allocated, in the order in which they are declared, to
registers R4 to R7.

int f(char,short,int,float);

 :

f(1,2,3,4.0);

R4 Not guaranteed 1

R5 Not guaranteed 2

R6 3

R7 4.0

Example 2: Parameters that cannot be allocated to registers are allocated to the stack. When the
parameters are (unsigned) char or (unsigned) short types and are allocated to the
parameter area in the stack, they are first extended to 4 bytes.

int f(int,short,long,float,char);

 :

f(1,2,3,4.0,5);

R4 1

R5 Not guaranteed 2

R6 3

R7 4.0

Parameter area
(stack)

 ↑Lower address

 Not guaranteed 5

 ↓Higher address

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 313 of 1176
Mar 01, 2022

Example 3: Parameters of types that cannot be allocated to registers are allocated to the stack.

struct s{int x,y;}a; R4
int f(int,struct s,int); R5
:

f(1,a,3);

 Parameter area
 (stack)

1

3

 ↑Lower address

a.x

a.y

 ↓ Higher address

Example 4: When declared in a prototype declaration as a function with a variable parameters, the
parameters without corresponding types and the immediately preceding parameter are
allocated to the stack in the order in which they are declared.

int f(double, int, int…); R4
:

f(1.0,2,3,4);

 Parameter area
 (stack)

2

 ↑Lower address

1.0

3

4

 ↓ Higher address

Example 5: When the type returned by a function is more than 4 bytes, or a class, the return value
address is set immediately before the parameter area. If the size of the class is not a
multiple of 4 bytes, unused space is padded.

struct s{char x,y,z;}a; Parameter area
double f(struct s); (stack)
:

f(a);

Return value address

a.x a.y a.z
Unused

area

 ↑Lower address

Area for setting return value

 ↓ Higher address

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 314 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example 6: When the CPU is SH-2E, float type parameters are allocated to the FPU registers.

int f(char,float,short,float,double); R4
: R5
f(1,2.0,3,4.0,5.0); R6
 R7

 Parameter area
 (stack)

Not guaranteed 1 FR4 2.0

Not guaranteed 3 FR5 4.0

 FR6

 FR7

 FR8

 FR9

 FR10

 FR11

 ↑Lower address

 5.0

 ↓ Higher address

Example 7: When the CPU is SH2A-FPU, SH-4, or SH-4A, float and double type parameters are
allocated to the FPU registers.

int f(char,float,double,float,short); FR4(DR4) 2.0

 : FR5 5.0

f(1,2.0,4.0,5.0,3); FR6(DR6) 4.0

 FR7

 FR8(DR8)

 R4 Not guaranteed 1 FR9

 R5 Not guaranteed 3 FR10(DR10)

 R6 FR11

 R7

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 315 of 1176
Mar 01, 2022

9.3.4 Using the Registers and Stack Area

This section describes how the compiler uses registers and stack areas. Registers and stack areas in
functions are controlled by the compiler and the user is not required to have any particular
understanding of how these areas are used. Figure 9.12 shows how the registers and stack areas are
used.

Figure 9.12 Using Registers and Stack Areas

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 316 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9.4 Important Information on Programming

In this section, important information on writing program code for the compiler, and matters to
bear in mind during development of a program from compiling through debugging, are discussed.

9.4.1 Important Information on Program Coding

(1) Functions with float Type Parameters

Functions must declare prototypes or change float type to double type when receiving and passing
float type parameters. Data values cannot be guaranteed when a float type parameter without a
prototype declaration receives data.

Example:

 void f (float);

 void g ()

 {

 float a;

 ...

 f (a);

 }

 void f (float x)

 {

 .

 .

 .

 }

Function f has a float type parameter. Therefore, a prototype must be declared.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 317 of 1176
Mar 01, 2022

(2) Expressions whose Evaluation Order is not Specified by the C/C++ Language

The effect of the execution is not guaranteed in a program whose execution results differ
depending on the evaluation order.

Example:

 a[i]=a[++i]; The value of i on the left side differs depending on whether the
right side of the assignment expression is evaluated first.

 sub(++i, i); The value of i for the second parameter differs depending on
whether the first function parameter is evaluated first.

(3) Overflow Operation and Zero Division

An error message is not output if an operation leading to an overflow or floating-point division by
zero is performed at run time. However, error messages will be output for any of the following
operations.

• Integer constants of the unsigned long long type for which the absolute values are out of range
• Floating-point constants of the float type where the values have the suffix f or F and are out of

range
• Floating-point constants of the double type where the values have no suffix or the suffix l or L

and are out of range
• Division by Zero performed with integer constants or floating-point constants

Example:

unsigned long long la,lb,lc,ld,le=0;

float fa,fb,fc,fc,fd,fe=0.0f;

double da,db,dc,dd,de=0.0;

void main()

{

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 318 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 la = 32767;

 fa = 3.5e+37f;

 da = 1.8e+307;

 lb = 18446744073709551616; /*(W) Overflow of an integer */

 /* constant will be detected. */

 fb = 3.5e+38f; /*(W) Overflow of a floating- */

 /* point constant will be */

 /* detected. */

 db = 1.8e+308; /*(W) Overflow of a floating- */

 /* point constant will be */

 /* detected. */

 lc = la + 18446744073709551615; /* No message is output. */

 fc = fa + 3.4e+38f; /* No message is output. */

 dc = da + 1.7e+308; /* No message is output. */

 ld /= 0; /*(W) Division by zero of an */

 /* integer constant will be */

 /* detected. */

 fd /= 0.0f; /*(W) Division by zero of a */

 /* floating-point constant will */

 /* be detected. */

 dd /= 0.0; /*(W) Division by zero of a
 */

 /* floating-point constant will */

 /* be detected. */

 ld /= le; /* No message is output. */

 fd /= fe; /* No message is output. */

 dd /= de; /* No message is output. */

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 319 of 1176
Mar 01, 2022

(4) Assignment to const Variables

Even if a variable is declared with const type, if assignment is done to a non-constant variable
converted from const type or if a program compiled separately uses a parameter of a different
type, the compiler cannot detect the error.

Example:

const char *p; /* Because the first parameter p in library */

 . /* function strcat is a pointer for char, */

 . /* the area indicated by the parameter p */

strcat(p, "abc"); /* may change. */

file 1

const int i;

file 2

extern int i; /* In file 2, parameter i is not declared as */

: /* const, therefore assignment to it in */

i=10; /* file 2 is not an error */

(5) Precision of Mathematical Function Libraries

For functions acos(x) and asin(x), an error is large around x=1. Therefore, precautions must be
taken. Note the error range below.

Absolute error for acos(1.0 − ε) double precision 2−39 (ε = 2−33)
 single precision 2−21 (ε = 2−19)

Absolute error for asin(1.0 − ε) double precision 2−39 (ε = 2−28)
single precision 2−21 (ε = 2−16)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 320 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(6) Interrupt Functions When the CPU Type is SH2A-FPU, SH4, or SH4A

In a CPU with floating-point precision mode (SH2A-FPU, SH4 or SH4A), when the fpu option is
not specified or when fpu=single is specified, floating-point operation code is generated assuming
that the precision mode is single-precision mode (the PR bit of the FPSCR register is 0) at the start
of all functions. However, in the case of interrupt functions, they might actually be called in
double-precision mode. Therefore, for an interrupt function that performs single-precision
floating-point operation, be sure to make the following settings for FPSCR in the function. The
settings are not required when fpu=double is specified.

When the fpu option is not specified
Set the precision mode of FPSCR to single precision (0) at the entrance of the interrupt function.

 Setting example:

 set_fpscr(get_fpscr()&0xFFF7FFFF);

When fpu=single is specified
Save the state of the PR bit of FPSCR, and then set the precision mode to single precision (0) at
the entrance of the interrupt function. Then, restore the PR bit to the original state at the exit of the
interrupt function.

 Setting example:

 At the entrance of the function

 int original_fpscr = get_fpscr();
 set_fpscr(original_fpscr&0xFFF7FFFF); // Set to single precision

 At the exit of the function

 set_fpscr(original_fpscr); // Restore the precision to original precision
 return;

However, a program with fpu=single specification can enter double-precision mode only during
execution of a standard library function that satisfies both of the following conditions.
• fprintf(), printf(), sprintf(), vfprintf(), vprintf(), or vsprintf() function
• In any of the functions above, format specification uses %g, %G, %f, %e, or %E.
If the program does not use a library function that satisfies these conditions, the above settings are
not required even if there is an interrupt function that performs single-precision floating-point
operation.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

R20UT0704EJ0102 Rev. 1.02 Page 321 of 1176
Mar 01, 2022

9.4.2 Important Information on Compiling a C Program with the C++ Compiler

(1) Function prototype declarations
Before using a function, a prototype declaration is necessary. At this time, the types of
parameters should also be declared.

(2) Linkage of const objects
Whereas in C programs const objects are linked externally, in C++ programs they are linked
internally. In addition, const objects require initial values.

(3) Assignment of void*

In C++ programs, if explicit casting is not used, assignment of pointers to other objects
(excluding pointers to functions and to members) is not possible.

extern void func1();

void g()

{

 func1(1); // Error

}

extern void func1(int);

void g()

{

 func1(1); // OK

}

const cvalue1;

 // Error

const cvalue2 = 1;

 // Internal

const cvalue1=0;

 // Gives initial value

extern const cvalue2 = 1;

 // Links externally

 // as a C program

void func(void *ptrv, int *ptri)

{

 ptri = ptrv; // Error

}

void func(void *ptrv, int *ptri)

{

 ptri = (int *)ptrv; //OK

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Page 322 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9.4.3 Important Information on Program Development

Important information for program development, from program creation through debugging, is
described below.

(1) Information concerning selection of the CPU
(a) The same CPU type should be specified at compilation time and assembly time.

The CPU type specified using the cpu option at compilation time and assembly time must
always be the same. If object programs created for different CPU types are linked,
operation of the object program at runtime is not guaranteed.

(b) The same CPU type at compilation time should be specified at assembly time.
When assembling an assembly program generated by the compiler, the cpu option should
be used to specify the same CPU type specified by the CPU at compilation time.

(c) At linkage, the standard library appropriate to the CPU type should be linked.
A library appropriate to the CPU type should always be specified. Operation in the event
that an inappropriate library is linked is not guaranteed.

(2) Important information on options
The options listed below should always be the same at compile time and when building
libraries. If object programs created using different options are linked, operation of the object
program at runtime is not guaranteed.
 endian = big | little (SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP)
 pic = 0 | 1 (excluding SH-1)
 fpu = single | double (SH2A-FPU, SH-4, or SH-4A)
 fpscr = safe | aggressive (SH2A-FPU, SH-4, or SH-4A)
 round = zero | nearest (SH2A-FPU, SH-4, or SH-4A)
 denormalize = on | off (SH-4 or SH-4A)
 double = float (excluding SH2A-FPU, SH-4, and SH-4A)
 exception | noexception
 rtti = on | off
 pack = 1 | 4
 rtnext | nortnext
 macsave
 gbr = auto | user
 bit_order = left | right
 auto_enum

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 323 of 1176
Mar 01, 2022

Section 10 C/C++ Language Specifications

10.1 Language Specifications

10.1.1 Compiler Specifications

The following shows compiler specifications for the implementation-defined items which are not
prescribed by language specifications.

(1) Environment

Table 10.1 Environment Specifications

No. Item Compiler Specifications
1 Purpose of actual argument for the "main"

function
Not stipulated

2 Structure of interactive I/O devices Not stipulated

(2) Identifiers

Table 10.2 Identifier Specifications

No. Item Compiler Specifications
1 Number of valid letters in non externally-linked

identifiers (internal names)
Up to 8189 letters in both external and
internal names

2 Number of valid letters in externally-linked
identifiers (external names)

Up to 8191 letters in both external and
internal names

3 Distinction of uppercase and lowercase letters
in externally-linked identifiers (external names)

Uppercase and lowercase letters are
distinguished

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 324 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(3) Characters

Table 10.3 Character Specifications

No. Item Compiler Specifications
1 Elements of source character sets and

execution environment character sets
Source program character sets and
execution environment character sets are
both ASCII character sets. However,
string literals and character constants can
be written in shift JIS or EUC Japanese
character code, or Latin1 code.

2 Shift states used in coding multi-byte
characters

Shift states are not supported.

3 Number of bits in characters in character sets
in program execution

8-bit

4 Relationship between source program
character sets in character constants and
string literals and characters in execution
environment character sets

Corresponds to same ASCII characters.

5 Values of integer character constants that
include characters or extended notation which
are not stipulated in language specifications

Characters and extended notations which
are not stipulated in the language
specifications are not supported.

6 Values of character constants that include two
or more characters, and wide character
constants that include two or more multi-byte
characters

The first two characters of character
constants are valid. Wide character
constants are not supported. Note that a
warning error message is output if you
specify more than one character.

7 Specifications of locale used for converting
multi-byte characters to wide characters

locale is not supported.

8 char type value Same value range as signed char type.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 325 of 1176
Mar 01, 2022

(4) Integers

Table 10.4 Integer Specifications

No. Item Compiler Specifications
1 Representation and values of integers See table 10.5.
2 Values when integers are converted to shorter

signed integer types or unsigned integers are
converted to signed integer types of the same
size (when a converted value cannot be
represented as the target type)

After conversion, the integer value
becomes the value of the eight lower-
order bytes (when the size of the post-
conversion type is eight bytes), four
lower-order bytes (when the size of
the post-conversion type is four
bytes), two lower-order bytes (when
the size of the post-conversion type
is two bytes), or the lowest-order byte
(when the size of the post-conversion
type is one byte).

3 Result of bit-wise operations on signed
integers

Signed value.

4 Remainder sign in integer division Same sign as dividend.
5 Result of right shift of signed integral types

with a negative value
Maintains sign bit.

Table 10.5 Range of Integer Types and Values

No. Type Value Range Data Size
1 char −128 to 127 1 byte
2 signed char −128 to 127 1 byte
3 unsigned char 0 to 255 1 byte
4 short −32768 to 32767 2 bytes
5 unsigned short 0 to 65535 2 bytes
6 int −2147483648 to 2147483647 4 bytes
7 unsigned int 0 to 4294967295 4 bytes
8 long −2147483648 to 2147483647 4 bytes
9 unsigned long 0 to 4294967295 4 bytes
10 long long -9223372036854775808 to

9223372036854775807
8 bytes

11 unsigned long long 0 to 18446744073709551615 8 bytes

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 326 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(5) Floating-point numbers

Table 10.6 Floating-Point Number Specifications

No. Item Compiler Specifications
1 Representation and values of floating-point

type
There are three types of floating-point
numbers: float, double, and long double
types. See section 10.1.3, Floating-Point
Number Specifications, for the internal
representation of floating-point types and
specifications for their conversion and
operation. Table 10.7 shows the limits of
floating-point type values that can be
expressed.

2 Method of truncation when integers are
converted into floating-point numbers that
cannot accurately represent the actual value

3 Methods of truncation or rounding when
floating-point numbers are converted into
shorter floating-point numbers

Table 10.7 Limits of Floating-Point Type Values

 Limits
No. Item Decimal Notation* Hexadecimal Notation
1 Maximum value of float type 3.4028235677973364e+38f

(3.4028234663852886e+38f)
7f7fffff

2 Minimum positive value of float
type

1.0000000000000000E-45f
(1.4012984643248171e−45f)

00000001

3 Maximum values of double
type and long double type

1.7976931348623158e+308
(1.7976931348623157e+308)

7fefffffffffffff

4 Minimum positive values of
double type and long double
type

4.9406564584124655e−324
(4.9406564584124654e−324)

0000000000000001

Notes: 1. The limits for decimal notation are the maximum value smaller than infinity and the
minimum value greater than 0. Values in parentheses are theoretical values.

 2. If double=float is specified, double type is treated as float type. If fpu=single is
specified, double and long double types are treated as float type. If fpu=double is
specified, float type is treated as double type.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 327 of 1176
Mar 01, 2022

(6) Arrays and Pointers

Table 10.8 Array and Pointer Specifications

No. Item Compiler Specifications
1 Integer type (size_t) required to hold maximum

array size
unsigned long type

2 Conversion from pointer type to integer type
(pointer type size >= integer type size)

Value of least significant byte of pointer
type

3 Conversion from pointer type to integer type
(pointer type size < integer type size)

Zero extension

4 Conversion from integer type to pointer type
(integer type size >= pointer type size)

Value of least significant byte of integer
type

5 Conversion from integer type to pointer type
(integer type size < pointer type size)

Sign extension

6 Integer type (ptrdiff_t) required to hold
difference between pointers to members in the
same array

int type

(7) Registers

Table 10.9 Register Specifications

No. Item Compiler Specifications
1 Maximum number of variables that can be

assigned to registers
7: char, unsigned char, bool, short,
unsigned short, int, unsigned int, long,
unsigned long, pointer
4: float*2
2: double*3

2 Types of variables that can be assigned to
registers

char, unsigned char, bool,
short, unsigned short,
int, unsigned int,
long, unsigned long,
float*2, double *3, pointer

Notes: 1. When register is assigned to variables, it does not matter whether or not the register-
storage class has been declared.
If enable_register is specified, however, variables for which the register-storage class
has been declared will be preferentially assigned to registers.

 2. When the CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A.
 3. When the CPU is SH2A-FPU, SH-4, or SH-4A.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 328 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(8) Class, Structure, Union, and Enumeration Types, and Bit Fields

Table 10.10 Class, Structure, Union, and Enumeration Types, and Bit Field Specifications

No. Item Compiler Specifications
1 Referencing members in union type accessed

by members of another type
Can be referenced but value cannot be
guaranteed.

2 Boundary alignment of class and structure
members

The maximum data size of the class and
structure members is used as the
boundary alignment value. For details on
assignment, see section 10.1.2 (2),
Compound Type (C), Class Type (C++).

3 Sign of bit fields of simple int types signed int type
4 Order of bit fields within int type size Assigned from most significant bit.*1 *2
5 Method of assignment when the size of a bit

field assigned after a bit field is assigned
within an int type size exceeds the remaining
size in the int type

Assigned to next int type area.*1

6 Permissible type specifiers in bit fields char, unsigned char, bool, short,
unsigned short, int, unsigned int, long,
unsigned long, enum, long long,
unsigned long long

7 Integer type representing value of
enumeration type

int type

Note: 1. For details of assignment of bit fields, see section 10.1.2 (3), Bit Fields.
 2. Specifying the bit_order=right option assigns bit fields from the least significant bit.

(9) Qualifiers

Table 10.11 Qualifier Specifications

No. Item Compiler Specifications
1 Types of volatile data access Not stipulated

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 329 of 1176
Mar 01, 2022

(10) Declarations

Table 10.12 Declaration Specifications

No. Item Compiler Specifications
1 Number of declarations modifying basic types

(arithmetic types, structure types, union types)
16 max.

The following shows examples of counting the number of types modifying basic types.

i. int a; Here, a has an int type (basic type) and the number of types modifying the basic type
is 0.

ii. char *f(); Here, f has a function type returning a pointer type to a char type (basic type), and
the number of types modifying the basic type is 2.

(11) Statements

Table 10.13 Statement Specifications

No. Item Compiler Specifications
1 Number of case labels that can be declared in

one switch statement
2,147,483,646 max.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 330 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(12) Preprocessor

Table 10.14 Preprocessor Specifications

No. Item Compiler Specifications
1 Relationship between single-character

character constants in constant expressions in
a conditional compile, and character sets in
the execution environment

Preprocessor statement character
constants are the same as the execution
environment character set.

2 Method of reading include files Files enclosed in "<" and ">" are read
from the directory specified in the include
option. If the specified file is not found,
the directory specified in environment
variable SHC_INC is searched, followed
by the system directory (SHC_LIB).

3 Support for include files enclosed in double
quotation marks

Supported. Include files are read from the
current directory. If not found in the
current directory, the file is searched for
as described in 2, above.

4 Space characters in string literals after a
macro is expanded

A string of space characters are
expanded as one space character.

5 Operation of #pragma statements See section 10.3.1, #pragma Extension
Specifiers.

6 _ _DATE_ _ and _ _TIME_ _ value A value is specified based on the host
computer’s timer at the start of compiling.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 331 of 1176
Mar 01, 2022

10.1.2 Internal Data Representation

This section explains the data type and the internal data representation. The internal data
representation is determined according to the following four items:

1. Size
Shows the memory size necessary to store the data.

2. Boundary alignment
Restricts the addresses to which data is allocated. There are three types of alignment; 1-byte
alignment in which data can be allocated to any address, 2-byte alignment in which data is
allocated to even byte addresses, and 4-byte alignment in which data is allocated to addresses
of multiples of four bytes.

3. Data range
Shows the range of data of scalar type (C) or basic type (C++).

4. Data allocation example
Shows an example of assignment of element data of compound type (C) or class type (C++).

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 332 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(1) Scalar Type (C), Basic Type (C++)

Table 10.15 shows internal representation of scalar type data in C and basic type data in C++.

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data

Data Type

Size
(bytes)

Align-
ment
(bytes)

Sign

Data Range

Minimum Value Maximum Value
char 1 1 Used −27 (−128) 27 − 1 (127)
signed char 1 1 Used −27 (−128) 27 − 1 (127)
unsigned char 1 1 Unused 0 28 − 1 (255)
short 2 2 Used −215 (−32768) 215 − 1 (32767)
unsigned short 2 2 Unused 0 216 − 1 (65535)
int 4 4 Used −231 (−2147483648) 231 − 1 (2147483647)
unsigned int 4 4 Unused 0 232 − 1 (4294967295)
long 4 4 Used −231 (−2147483648) 231 − 1 (2147483647)
unsigned long 4 4 Unused 0 232 − 1 (4294967295)
long long 8 4 Used -263

(-9223372036854775808)
263-1
(9223372036854775807)

unsigned
long long

8 4 Unused 0 264-1
(18446744073709551615)

enum*1 4 4 Used −231 (−2147483648) 231 − 1 (2147483647)
float 4*4 4 Used −∞ +∞
double,
long double

8*2, *4 4 Used −∞ +∞

Pointer 4 4 Unused 0 232 − 1 (4294967295)
bool*3 4 4 Used  
Reference*3 4 4 Unused 0 232 − 1 (4294967295)
Pointer to a data
member*3

4 4 Used 0 232 − 1 (4294967295)

Pointer to a
member
function*3, *5

12 4   

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 333 of 1176
Mar 01, 2022

Notes: 1. The size of enum type is variable if auto_enum has been specified.
 2. The size of double type is 4 bytes if double=float has been specified.
 3. These data types are valid for C++ compilation only.
 4. If cpu=sh2afpu, cpu=sh4, or cpu=sh4a and fpu=single have been specified, double

type and long double type are treated as 4 bytes (float type). If cpu=sh2afpu,
cpu=sh4, or cpu=sh4a and fpu=double have been specified, float type is treated as 8
bytes (double type).

 5. Pointers to function and virtual member functions are represented by classes in the
following data structure.

class _PMF{

 public:

 long d; //Object offset value.

 long i; //Index in the virtual

 //function table when

 //the target function is the

 //virtual function.

 union{

 void (*f)(); //Address of a function when

 //the target function is a

 //non-virtual function.

 long offset; //Object offset value of the

 //virtual function table

 //when the target function

 //is the virtual function.

 };

};

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 334 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Compound Type (C), Class Type (C++)

This section explains internal representation of array type, structure type, and union type data in C
and class type data in C++.

Table 10.16 shows internal representation of compound type and class type data.

Table 10.16 Internal Representation of Compound Type and Class Type Data

Data Type Alignment (bytes) Size (bytes) Data Allocation Example
Array Array element alignment Number of array elements

× element size
char a[10];
 Alignment: 1 byte
 Size: 10 bytes

Structure Maximum structure
member alignment

Total size of members.
Refer to Structure Data
Allocation, below.

struct {
 char a,b;
};
 Alignment: 1 byte
 Size: 2 bytes

Union Maximum union member
alignment

Maximum size of member.
Refer to Union Data
Allocation, below.

union {
 char a,b;
};
 Alignment: 1 byte
 Size: 1 byte

Class 1. Always 4 if a virtual
function is included

2. Other than 1 above:
maximum member
alignment

Sum of data members,
pointer to the virtual function
table, and pointer to the
virtual base class.
Refer to Class Data
Allocation, below.

class B:public A {
 virtual void f();
};
 Alignment: 4 bytes
 Size: 8 bytes
class A {
 char a;
};
 Alignment: 1 byte
 Size: 1 byte

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 335 of 1176
Mar 01, 2022

In the following examples, a rectangle indicates four bytes. The diagonal line represents blank area
for alignment.

Structure Data Allocation:

• When structure members are allocated, an unused area may be generated between structure
members to align them to boundaries.

struct {

 char a;

 int b;

} obj

• If a structure has 4-byte alignment and the last member ends at an 1-, 2-, or 3-byte address, the
following three, two, or one byte is included in this structure.

struct {

 int a;

 char b;

} obj

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 336 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Union Data Allocation:

• When an union has 4-byte alignment and its maximum member size is not a multiple of four,
the remaining bytes up to a multiple of four is included in this union.

union {

 int a;

 char b[7];

} o;

Class Data Allocation:

• For classes having no base class or virtual functions, data members are allocated according to
the allocation rules of structure data.

class A{

 char data1;

 int data2;

public:

 A();

 int getData1(){return data1;}

}obj;

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 337 of 1176
Mar 01, 2022

• If a class is derived from a base class of 1-byte alignment and the start member of the derived
class is 1-byte data, data members are allocated without unused areas.

class A{

 char data1;

};

class B:public A{

 char data2;

 short data3;

}obj;

• For a class having a virtual base class, a pointer to the virtual base class is allocated.

 class A{

 short data1;

 };

 class B: virtual protected A{

 char data2;

 }obj;

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 338 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• For a class having virtual functions, the compiler creates a virtual function table and allocates a
pointer to the virtual function table.

 class A{

 char data1;

 public:

 virtual int getData1();

 }obj;

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 339 of 1176
Mar 01, 2022

• An example is shown for class having virtual base class, base class, and virtual functions.

class A{

 char data1;

 virtual short getData1();

};

class B:virtual public A{

 char data2;

 char getData2();

 short getData1();

};

class C:virtual protected A{

 int data3;

};

class D:virtual public A,public B,public C{

 public:

 int data4;

 short getData1();

}obj;

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 340 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 341 of 1176
Mar 01, 2022

• For an empty class, a 1-byte dummy area is assigned.

class A{

 void fun();

}obj;

• For an empty class having an empty class as its base class, the dummy area is 1 byte.

class A{

 void fun();

};

class B: A{

 void sub();

}obj;

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 342 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Dummy areas shown in the above two examples are allocated only when the class size is 0. No
dummy area is allocated if a base class or a derived class has a data member or has a virtual
function.

class A{

 void fun();

};

class B: A{

 char data1;

}obj;

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 343 of 1176
Mar 01, 2022

(3) Bit Fields

A bit field is a member allocated with a specified size in a structure, union, or class. This part
explains how bit fields are allocated.

Bit Field Members: Table 10.17 shows the specifications of bit field members.

Table 10.17 Bit Field Member Specifications

Item Specifications
Type specifier allowed for bit fields (signed) char, unsigned char, bool*1

(signed) short, unsigned short, enum
(signed) int, unsigned int
(signed) long, unsigned long
(signed) long long, unsigned long long

How to treat a sign when data is
extended to the declared type*2

A bit field with no sign (unsigned is specified for type): Zero
extension*3

 A bit field with a sign (unsigned is not specified for type): Sign
extension*4

Notes: 1. The bool type is only valid at C++ compilation.
 2. To use a bit field member, data in the bit field is extended to the declared type. One-bit

field data with a sign is interpreted as the sign, and can only indicate 0 and −1. To
indicate 0 and 1, bit field data must be declared with unsigned.

 3. Zero extension: Zeros are written to the upper bits to extend data.
 4. Sign extension: The most significant bit of a bit field is used as a sign and the sign is

written to all higher-order bits to extend data.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 344 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Bit Field Allocation: Bit field members are allocated according to the following five rules:

• Bit field members are placed in an area beginning from the left, that is, the most significant bit.

struct b1 {
 int a:2;
 int b:3;
} x;

• Consecutive bit field members having type specifiers of the same size are placed in the same

area as much as possible.

struct b1 {
 long a:2;
 unsigned int b:3;
} y;

• Bit field members having type specifiers with different sizes are allocated to separate areas.

struct b1 {
 int a:5;
 char b:4;
} z;

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 345 of 1176
Mar 01, 2022

• If the number of remaining bits in an area is less than the next bit field size, though the type
specifiers indicate the same size, the remaining area is not used and the next bit field is
allocated to the next area.

struct b2 {
 char a:5;
 char b:4;
} v;

• If a bit field member with a bit field size of 0 is declared, the next member is allocated to the

next area.

struct b2 {
 char a:5;
 char :0;
 char c:3;
} w;

Note: It is also possible to place bit field members from the lower bit. For details, refer to the

description on the bit_order option in section 2.2, Interpretation of Options, and the
description on #pragma bit_order in section 10.3.1, #pragma Extension Specifiers.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 346 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(4) Memory Allocation in Little Endian
In little endian, data are allocated in the memory as follows:

One-byte data ((signed) char, unsigned char, and bool types): The order of bits in one-byte
data for the big endian and the little endian is the same.

Two-byte data ((signed) short and unsigned short types): The upper byte and the lower byte
will be reversed in two-byte data between the big endian and the little endian.

Example: When two-byte data 0x1234 is allocated at address 0x100:

Big endian: Address 0x100: 0x12 Little endian: Address 0x100: 0x34
Address 0x101: 0x34 Address 0x101: 0x12

Four-byte data ((signed) int, unsigned int, (signed) long, unsigned long, and float types): The
order of bytes will be reversed in four-byte data between the big endian and the little endian.

Example: When four-byte data 0x12345678 is allocated at address 0x100:

Big endian: Address 0x100: 0x12 Little endian: Address 0x100: 0x78
Address 0x101: 0x34 Address 0x101: 0x56
Address 0x102: 0x56 Address 0x102: 0x34
Address 0x103: 0x78 Address 0x103: 0x12

Eight-byte data ((signed) long long, unsigned long long, and double types): The order of bytes
will be reversed in eight-byte data between the big endian and the little endian.

Example: When eight-byte data 0x123456789abcdef is allocated at address 0x100:

Big endian: Address 0x100: 0x01 Little endian: Address 0x100: 0xef
Address 0x101: 0x23 Address 0x101: 0xcd
Address 0x102: 0x45 Address 0x102: 0xab
Address 0x103: 0x67 Address 0x103: 0x89
Address 0x104: 0x89 Address 0x104: 0x67
Address 0x105: 0xab Address 0x105: 0x45
Address 0x106: 0xcd Address 0x106: 0x23
Address 0x107: 0xef Address 0x107: 0x01

Compound-type and class-type data: Members of compound-type and class-type data will be
allocated in the same way as that of the big endian. However, the order of byte data of each
member will be reversed according to the rule of data size.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 347 of 1176
Mar 01, 2022

Example: When the following function exists at address 0x100:

 struct {

 short a;

 int b;

 }z= {0x1234, 0x56789abc};

Big endian: Address 0x100: 0x12 Little endian: Address 0x100: 0x34
Address 0x101: 0x34 Address 0x101: 0x12
Address 0x102: Empty area Address 0x102: Empty area
Address 0x103: Empty area Address 0x103: Empty area
Address 0x104: 0x56 Address 0x104: 0xbc
Address 0x105: 0x78 Address 0x105: 0x9a
Address 0x106: 0x9a Address 0x106: 0x78
Address 0x107: 0xbc Address 0x107: 0x56

Bit field: Bit fields will be allocated in the same way as that of the big endian. However, the
order of byte data in each area will be reversed according to the rule of data size.

Example: When the following function exists at address 0x100:

 struct {

 long a:16;

 unsigned int b:15;

 short c:5;

 }y= {1,1,1};

Big endian: Address 0x100: 0x00 Little endian: Address 0x100: 0x02
Address 0x101: 0x01 Address 0x101: 0x00
Address 0x102: 0x00 Address 0x102: 0x01
Address 0x103: 0x02 Address 0x103: 0x00
Address 0x104: 0x08 Address 0x104: 0x00
Address 0x105: 0x00 Address 0x105: 0x08
Address 0x106: Empty area Address 0x106: Empty area
Address 0x107: Empty area Address 0x107: Empty area

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 348 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.1.3 Floating-Point Number Specifications

(1) Internal Representation of Floating-Point Numbers
Floating-point numbers handled by this compiler are internally represented in the standard
IEEE format. This section outlines the internal representation of floating-point numbers in the
IEEE format.
(a) Format for internal representation

float types are represented in the IEEE single-precision (32-bit) format, while double types
and long double types are represented in the IEEE double-precision (64-bit) format.

(b) Structure of internal representation
Figure 10.1 shows the structure of the internal representation of float, double, and long
double types.

Figure 10.1 Structure of Internal Representation of Floating-Point Numbers

The internal representation format consists of the following parts:
i. Sign

Shows the sign of the floating-point number. 0 is positive, and 1 is negative.
ii. Exponent

Shows the exponent of the floating-point number as a power of 2.
iii. Mantissa

Shows the data corresponding to the significant digits (fraction) of the floating-point
number.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 349 of 1176
Mar 01, 2022

(c) Types of represented values of floating-point number
In addition to the normal real numbers, floating-point numbers can also represent values
such as infinity. The following describes the types of values represented by floating-point
numbers.
i. Normalized number

Represents a normal real value; the exponent is not 0 or not all bits are 1.
ii. Denormalized number

Represents real a value having a small absolute number; the exponent is 0 and the
mantissa is other than 0.

iii. Zero
Represents the value 0.0; the exponent and mantissa are 0.

iv. Infinity
Represents infinity; all bits of the exponent are 1 and the mantissa is 0.

v. Not-a-number
Represents the result of operation such as "0.0/0.0", "∞/∞", or "∞-∞", which does not
correspond to a number or infinity; all bits of the exponents are 1 and the mantissa is
other than 0.

Table 10.18 shows the types of values represented as floating-point numbers.

Table 10.18 Types of Values Represented as Floating-Point Numbers

 Exponent
Mantissa 0 Not 0 or not all bits are 1 All bits are 1
0 0 Normalized number Infinity
Other than 0 Denormalized number Not-a-number
Note: Denormalized numbers are floating-point numbers of small absolute values that are outside

the range represented by normalized numbers. There are fewer valid digits in a
denormalized number than in a normalized number. Therefore, if the result or intermediate
result of a calculation is a denormalized number, the number of valid digits in the result
cannot be guaranteed. When cpu=sh4 or cpu=sh4a and denormalize=off are specified,
denormalized numbers are processed as 0. When cpu=sh4 or cpu=sh4a and
denormalize=on are specified, denormalized numbers are processed as denormalized
numbers.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 350 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) float type
float types are internally represented by a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa.
i. Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
between 1 and 254 (28−2). The actual exponent is gained by subtracting 127 from this
value. The range is between −126 and 127. The mantissa is between 0 and 223−1. The
actual mantissa is interpreted as the value of which 223rd bit is 1 and this bit is followed by
the decimal point. Values of normalized numbers are as follows:
(−1)sign × 2exponent−127 × (1+(mantissa) × 2−23)
Example:

Sign: −
Exponent: 10000000(2) − 127 = 1, where (2) indicates binary
Mantissa: 1.11(2) = 1.75
Value: −1.75 × 21 = −3.5

ii. Denormalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
0 and the actual exponent is −126. The mantissa is between 1 and 223−1, and the actual
mantissa is interpreted as the value of which 223rd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:
(−1)sign × 2−126 × ((mantissa) × 2−23)
Example:

Sign: +
Exponent: −126
Mantissa: 0.11(2) = 0.75, where (2) indicates binary
Value: 0.75 × 2−126

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 351 of 1176
Mar 01, 2022

iii. Zero
The sign is 0 (positive) or 1 (negative), indicating +0.0 or −0.0, respectively. The exponent
and mantissa are both 0.
+0.0 and −0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

iv. Infinity
The sign is 0 (positive) or 1 (negative), indicating +∞ or −∞, respectively.
The exponent is 255 (28−1).
The mantissa is 0.

v. Not-a-number
The exponent is 255 (28−1).
The mantissa is a value other than 0.

Note: When the CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A, not-a-number is called a qNaN

when the MSB of the mantissa is 0, or sNaN when the MSB of the mantissa is 1. There are
no specifications regarding the values of other mantissa fields or the sign.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 352 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(3) double types and long double types
double types and long double types are internally represented by a 1-bit sign, an 11-bit
exponent, and a 52-bit mantissa.
i. Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
between 1 and 2046 (211−2). The actual exponent is gained by subtracting 1023 from this
value. The range is between −1022 and 1023. The mantissa is between 0 and 252−1. The
actual mantissa is interpreted as the value of which 252nd bit is 1 and this bit is followed by
the decimal point. Values of normalized numbers are as follows:
(−1)sign × 2exponent−1023 × (1+(mantissa) × 2−52)
Example:

Sign: +
Exponent: 1111111111(2) −1023 = 0, where (2) indicates binary
Mantissa: 1.111(2) = 1.875
Value: 1.875 × 20 = 1.875

ii. Denormalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
0 and the actual exponent is -1022. The mantissa is between 1 and 252-1, and the actual
mantissa is interpreted as the value of which 252nd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:
(-1)sign × 2−1022 × ((mantissa) × 2-52)
Example:

Sign: −
Exponent: −1022
Mantissa: 0.111(2) = 0.875, where (2) indicates binary
Value: 0.875 × 2−1022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 353 of 1176
Mar 01, 2022

iii. Zero
The sign is 0 (positive) or 1 (negative), indicating +0.0 or −0.0, respectively. The exponent
and mantissa are both 0.
+0.0 and −0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

iv. Infinity
The sign is 0 (positive) or 1 (negative), indicating +∞ or −∞, respectively. The exponent is
2047 (211−1).
The mantissa is 0.

v. Not-a-number
The exponent is 2047 (211−1).
The mantissa is a value other than 0.

Note: When the CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A, not-a-number is called a qNaN

when the MSB of the mantissa is 0, or sNaN when the MSB of the mantissa is 1. There are
no specifications regarding the values of other mantissa fields or the sign.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 354 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(4) Floating-Point Operation Specifications
This section describes the specifications for arithmetic operations on floating-point numbers in
C/C++, and for conversion between the decimal representation of floating-point numbers and
their internal representation during compilation and in library processing.
(a) Specifications for arithmetic operations

i. Rounding of results
When the result of arithmetic operations on floating-point numbers exceeds the number
of valid limit in the mantissa in internal representation, the result is rounded according
to the following rules:
a. For results of single-precision arithmetic when the CPU is SH-2E, any portion that

exceeds the number of valid digits is truncated.
b. When the CPU is SH2A-FPU, SH-4, or SH-4A, and round = zero is specified, the

portion that exceeds the valid digits is rounded toward zero.
c. Other than in the above cases, the result is rounded toward the closer of the two

possible internal representations of the approximating floating-point number.
 When the result is exactly equidistant from the two approximating floating-point

numbers, it is rounded to the floating-point number for which the last digit of the
mantissa is 0.

ii. Processing of overflows, underflows, and illegal operations
The following is performed in the event of an overflow, underflow, or illegal operation.
a. In the case of an overflow, the result is a positive or negative infinity, depending on

the sign of the result.
b. In the case of an underflow, the result is as follows depending on the setting in the

CPU.
b-1 In the SH-2E, the float-type result is a positive or negative zero depending on

the sign of the result, and the double-type or long double-type result is a
denormalized number.

b-2 In the SH2A-FPU, the result is a positive or negative zero depending on the
sign of the result.

b-3 In the SH-4 or SH-4A, the result is a denormalized number when
denormalize=on is specified or a positive or negative zero depending on the
sign of the result when denormalize=off is specified.

b-4 In the other CPUs, the result is a denormalized number.
c. In the case of an illegal operation, in which infinity values of the opposite sign have

been added, in which an infinity has been subtracted from another infinity of the
same sign, in which zero has been multiplied by infinity, in which zero is divided by
zero, or in which infinity is divided by infinity, the result is a not-a-number.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 355 of 1176
Mar 01, 2022

d. If an overflow results from conversion of a floating-point number to an integer, the
result is not guaranteed.

Note: Operations are performed on constant expressions during compilation. If an

overflow, underflow, or illegal operation occurs, a warning level error message
is output.

iii. Notes on operations on special values
The following are notes on operations on special values (zero, infinity, and not-a-
number).
a. The sum of a positive zero and a negative zero is a positive zero.
b. The difference between two zeros of the same sign is a positive zero.
c. The result of operations that include not-a-number in one or both operands is always

a not-a-number.
d. In comparative operations, positive zeros and negative zeros are processed as equal.
e. The result of comparative operations or equivalence operations where either one or

both operands are not-a-number is true for "!=" and false in all other cases.
(b) Conversion between decimal and internal representation

This section describes the specifications for conversions between floating-point numbers in
a source program and internal representation, and conversion by library functions between
the decimal representation of floating-point numbers in ASCII strings and their internal
representation.
i. When converting from decimal to internal representation, the decimal value is first

converted to its normalized form. The normalized form of a decimal value is
±M × 10±N, where M and N are in the following range:
a. Normalized form of float types

0 ≤ M ≤ 109−1
0 ≤ N ≤ 99

b. Normalized form of double and long double types
0 ≤ M ≤ 1017−1
0 ≤ N ≤ 999

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 356 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

If a decimal value cannot be converted to its normalized form, an overflow or
underflow occurs. If the decimal representation contains more valid numerals than
the normalized form, the trailing digits are truncated. In this case, a warning level
error message is output when compiling and the corresponding error number is set
in errno when the program is executed. For conversion to its normalized form, the
original decimal representation must, in the form of ASCII strings, be within 511
characters. If not, an error occurs when compiling and the corresponding error
number is set in errno when the program is executed. When converting from
internal representation to decimal, the value is first converted to the normalized
decimal form, then converted to ASCII strings according to the specified format.

ii. Conversion between normalized form of decimals and internal representation
When converting from the normalized form of decimals to internal representation, and
vice versa, errors cannot be avoided when the exponent is large or small. The following
describes the range within which conversion is accurate, and the error limits when the
values are outside that range.
a. Range for accurate conversion

The rounding shown in (a) i, "Rounding of results" is correctly applied for floating-
point numbers within the ranges shown below. No overflow or underflow will occur
within these ranges.
(1) float types: 0 ≤ M ≤ 109−1, 0 ≤ N ≤ 13
(2) double and long double types: 0 ≤ M ≤ 1017−1, 0 ≤ N ≤ 27

b. Error limits
The difference between the error that occurs when converting values that do not fall
in the ranges shown in a. above and the error that occurs when rounding is correctly
performed does not exceed 0.47 times the smallest digit of the valid numerals. If the
value exceeds the ranges shown in a. above, an overflow or underflow may occur
during conversion. In this case, a warning level error message is output during
compilation, and the corresponding error number is set in errno when the program
is executed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 357 of 1176
Mar 01, 2022

10.1.4 Operator Evaluation Order

If an expression includes multiple operators, the evaluation order of these operators is determined
according to the precedence and the associativity indicated by right or left.

Table 10.19 shows each operator precedence and associativity.

Table 10.19 Operator Precedence and Associativity

Precedence Operators Associativity Applicable Expression
1 ++ -- (postfix) () [] -> . Left Postfix expression
2 ++ -- (prefix) ! ~ + - * & sizeof Right Monomial expression
3 (Type name) Right Cast expression
4 * / % Left Multiplicative expression
5 + - Left Additive expression
6 << >> Left Shift expression
7 < <= > >= Left Relational expression
8 == != Left Equality expression
9 & Left Bitwise AND expression
10 ^ Left Bitwise XOR expression
11 | Left Bitwise OR expression
12 && Left Logical AND operation
13 || Left Logical OR expression
14 ?: Right Conditional expression
15 = += -= *= /= %= <<= >>= &= |= ^= Right Assignment expression
16 , Left Comma expression

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 358 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.2 DSP-C Specifications

This section describes the compiler specifications of the DSP-C language, which can be used
when the dspc option is specified.

10.2.1 Fixed-Point Data Types

Table 10.20 Internal Representation of the Fixed-Point Data Types

Type

Size
(Size in
Memory)

Alignment
(byte)

Data Range
Suffix of
Constant Minimum

Value

Maximum Value

_ _fixed 16 bits
(16 bits)

2 -1.0 1.0-2-15

(0.999969482421875)
r

long _ _fixed 32 bits
(32 bits)

4 -1.0 1.0-2-31

(0.99999999953433871
26922607421875)

R

_ _accum 24 bits
(32 bits)*

4 -256.0 256.0-2-15

(255.999969482421875)
a

long _ _accum 40 bits
(64 bits)*

4 -256.0 256.0-2-31

(255.999999999534338
7126922607421875)

A

Note: The number of bits is right-aligned in the memory. The sign bit is extended through the
higher-order bits.
Example:
(i) (_ _accum)128.5a: 00 40 40 00
(ii) (long _ _accum)(-256.0A): FF FF FF 80 00 00 00 00

10.2.2 Qualifiers

(1) Memory Qualifiers
The following qualifiers are used to explicitly specify storage in either the X or Y memory.

• _ _X: The data is stored in the X memory.
• _ _Y: The data is stored in the Y memory.

Table 10.21 shows the relationship between memory qualifiers and sections.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 359 of 1176
Mar 01, 2022

Table 10.21 Specifications of Memory Qualifiers

Name Section Description
Constant area $XC const-type data (stored in the X memory)
 $YC const-type data (stored in the Y memory)
Initialized data area $XD Data with an initial value (stored in the X memory)
 $YD Data with an initial value (stored in the Y memory)
Uninitialized data area $XB Data without an initial value (stored in the X memory)
 $YB Data without an initial value (stored in the Y memory)
Notes: 1. Do not specify two memory qualifiers for the same variable. An error message is

displayed.
2. For the variable with a memory qualifier, no section is switched by specifying

#pragma section.
3. A memory qualifier cannot change the function where the memory is stored.
4. When a memory qualifier has been specified for a local variable which has not been

specified as static, a warning message is displayed and the specification of the
memory qualifier becomes invalid. However, it is valid to specify a pointer to the data
with the memory qualifier.

The following shows examples of storage in memory when qualifiers _ _X and _ _Y are used.

• _ _X int a; //Stored in the X memory.
• int _ _X b; //Stored in the X memory.
• _ _Y int *c; //A pointer to an int-type variable in the Y memory (memory area is

 //undefined).
• int _ _Y *d; //A pointer to an int-type variable in the Y memory (memory area is

 //undefined).
• int *_ _Y e; //A pointer (stored in the Y memory) to an int-type variable.
• _ _X int *_ _Y f; //A pointer (stored in the Y memory) to int-type variables in the X

 //memory.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 360 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Saturation Qualifier
The following qualifier is used to specify saturation arithmetic.

• _ _sat

The _ _sat qualifier can only be used with the _ _fixed and long _ _fixed data types. An error will
occur if this qualifier is specified with any other type.

When there is at least one _ _sat specification in an expression, saturation arithmetic will be
applied in the operation.

Example:

_ _fixed a;

_ _sat _ _fixed b;

_ _fixed c;

a = -0.75r;

b = -0.75r;

c = a + b; //c = -1.0r

(3) Circular Qualifier
The following qualifier is used to specify modulo addressing.

• _ _circ

Modulo addressing can only be specified for _ _fixed-type one-dimensional arrays or pointers for
which memory qualifiers have been specified (_ _X or _ _Y). If such qualifiers are specified
when other conditions apply, an error will occur.

The targets of modulo addressing are one-dimensional arrays or pointers between intrinsic
functions set_circ_x() or set_circ_y() and clr_circ(). For the specifications of the intrinsic
functions, refer to section 10.3.3, Intrinsic Functions.

Operation is not guaranteed if multiple arrays are specified for modulo addressing at the same time
or an array or a pointer with the _ _circ specification is referred to outside the above combinations
of intrinsic functions.

Operations for which negative modulo addressing is specified are not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 361 of 1176
Mar 01, 2022

Data for modulo addressing should be arranged such that the upper 16 bits of the addresses are the
same at linkage.

Content of an array cannot be directly referred to.

Note: Operations are not guaranteed in any of the following cases (a warning message may be
displayed):

• Specifies optimize = 0.
• Specifies the _ _circ pointer as other than the local variable.
• Specifies volatile as the _ _circ pointer.
• Only updates the _ _circ pointer; not referred to.
• Calls a function between set_circ_x() / set_circ_y() and clr_circ() intrinsic functions.

10.2.3 Constants

Attaching a suffix of a constant (table 10.20) to a numeric value explicitly indicates that the value
is a fixed-point constant.

However, constants with suffixes r and R are processed as _ _accum and long _ _accum when
their numeric values include integer sections.

When a suffix of a constant is omitted, the value is processed as a double-type constant. When the
fixed_const option is specified, the value is processed as a fixed-point constant.

Although no fixed-point constant is the saturation type, explicit conversion of the type enables
saturation arithmetic.

Example:

_ _fixed a;

_ _fixed b;

a = -0.75r;

b = a + (_ _sat _ _fixed) (-0.75r); // b = -1.0r

Since a unary negation operator cannot be part of a fixed-point constant, -1.0r is not valid as a
_ _fixed type; it should be described as (-0.5r-0.5r) (In this manual, –1.0r is simply described as
–1.0 of _ _fixed type).

When the limits on precision for the decimal fraction are exceeded or the integer section without a
sign exceeds 255 which is the maximum value of _ _accum or long _ _accum, a warning message

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 362 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

is displayed and the decimal fraction above the precision is rounded down. For the integer section,
the least significant bit of the overflow is processed as a sign bit and the other bits are discarded.

10.2.4 Type Conversion

Table 10.22 shows the rules used in type conversion.

Table 10.22 Rules Used in Type Conversion

Conversion Specification
_ _fixed → long _ _fixed
_ _accum → long _ _accum

The 16 lower-order bits are padded with zeroes.
The value is not changed.

long _ _fixed → _ _fixed
long _ _accum → _ _accum

The 16 lower-order bits are discarded.
Precision of the decimal fraction is lowered.

_ _fixed → _ _accum
long _ _fixed → long _ _accum

Sign extension to fill the eight higher-order bits.
The value is not changed.

_ _fixed → long _ _accum Sign extension to fill the eight higher-order bits. The 16
lower-order bits are padded with zeroes.
The value is not changed.

long _ _fixed → _ _accum Sign extension to fill the eight higher-order bits. The 16
lower-order bits are discarded.
Precision of the decimal fraction is lowered.

_ _accum → _ _fixed
long _ _accum → long _ _fixed

The eight higher-order bits are discarded. The sign is
assigned to the ninth bit.
When the integer section is 0, the value is not changed.

_ _accum → long _ _fixed The eight higher-order bits are discarded. The sign is
assigned to the ninth bit.
When the integer section is 0, the value is not changed.

long _ _accum → _ _fixed The eight higher-order bits are discarded. The 16 lower-
order bits are discarded. The sign is assigned to the ninth
bit.
When the integer section is 0, the value is not changed.
Precision of the decimal fraction is lowered.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 363 of 1176
Mar 01, 2022

Table 10.22 Rules Used in Type Conversion (cont)

Conversion Specification
_ _fixed → signed integer
long _ _fixed → signed integer

–1 for –1.0r and –1.0R; 0 in other cases.

_ _accum → signed integer
long _ _accum → signed integer

The value of the decimal fraction is discarded.
The value after conversion is an integer in the range from
–256 to 255.

_ _fixed → unsigned integer
long _ _fixed → unsigned integer

The maximum value of the target type for –1.0r and
–1.0R.
0 in other cases.

_ _accum → unsigned integer
long _ _accum → unsigned integer

The decimal fraction is discarded.
For a positive value, the value after conversion is an
integer in the range from 0 to 255.
For a negative value: (value before conversion + 1 +
maximum value of the target type).

signed integer → _ _fixed
signed integer → long _ _fixed

The most significant bit before conversion is changed as
the most significant bit after conversion.
All other bits become 0.

signed integer → _ _accum
signed integer → long _ _accum

The nine lower-order bits of the value become the integer
section.
The decimal fraction is 0.

unsigned integer → _ _fixed
unsigned integer → long _ _fixed

All bits after conversion become 0.

unsigned integer → _ _accum
unsigned integer → long _ _accum

The nine lower-order bits of the value become the integer
section.
The decimal fraction is 0.

fixed point → floating point If the pre-conversion value can be expressed in the
floating-point type, the value remains the same.
If the same value cannot be expressed, it is rounded off
to the nearest value.

floating point → fixed point The specification for the decimal fraction is the same as
for ‘fixed point → floating point’ conversion.
The specification for the integer section is the same as for
‘floating point → integer’ conversion.
When the integer section is in the range that can be
expressed as a fixed-point value, the original value will be
kept. When the integer section is outside that range, the
least-significant bit of the portion that overflowed
becomes the sign bit.
Saturation operation is not applied, even if it has been
specified for the target type.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 364 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.2.5 Arithmetic Conversion

When two operands differ in type, calculation is done in accordance with the type that is higher in
the hierarchy of figure 10.2.

An error occurs if a calculation includes types that are neither above nor below each other in this
hierarchy (e.g., between integer type and fixed-point type, or between _ _accum and
long _ _fixed). When calculation is required in such cases, explicit cast should be applied to adjust
the types.

However, for the sake of efficiency and convenience, the above rules for conversion may be
ignored when a result is guaranteed.

Figure 10.2 Hierarchy of Arithmetic Conversion

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 365 of 1176
Mar 01, 2022

10.2.6 Pointer Conversion

(a) _ _circ Qualifier
When a pointer with the _ _circ qualifier is converted to a pointer without the _ _circ qualifier, a
warning message is displayed and modulo addressing is not applicable.

When _ _circ is specified for a pointer without the _ _circ qualifier, a warning message is not
displayed. However, modulo addressing is still not applicable.

(b) Memory Qualifier (_ _X or _ _Y)
An attempt to assign a memory qualifier to a variable already declared with another qualifier will
cause an error.

10.2.7 Operators

The following operators cannot be specified for the fixed-point type; if specified, an error will
occur.

• Operator for the 1’s complement (~)
• Bitwise AND operator (& or &=)
• Bitwise OR operator (| or |=)
• Bitwise XOR operator (^ or ^=)
• Shift operator (<<, >>, <<=, or >>=)
• Remainder operator (% or %=)

Table 10.23 shows the values returned by the sizeof operator.

Table 10.23 Values Returned by the sizeof Operator

Type Value
_ _fixed 2
long _ _fixed 4
_ _accum 4
long _ _accum 8

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 366 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.2.8 Libraries

(a) fixed.h
The include-file <fixed.h> defines the limit values of the fixed-point type. For details, refer to
section 10.4.1, Standard C Libraries.

(b) stdio.h
Table 10.24 shows the conversion specifiers for fixed-point values.

Table 10.24 Conversion Specifiers for Fixed-Point Values

Conversion Specifier Meaning
%r _ _fixed value
%lr long _ _fixed value
%a _ _accum value
%la long _ _accum value
%P _ _circ pointer value

The conversion of fixed-point values is based on the %f conversion (floating-point conversion).
The %P is converted in the same way as %p (pointer conversion).

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 367 of 1176
Mar 01, 2022

(c) stdlib.h
Table 10.25 shows the functions for the handling of fixed-point values. For details, refer to
section 10.4.1, Standard C Libraries.

Table 10.25 Functions

Type Function Name
String-value conversion long _ _fixed atolfixed(const char * nptr);
 long _ _accum atolaccum(const char * nptr);
 long _ _fixed strtolfixed(const char * nptr, char ** endptr);
 long _ _accum strtolaccum(const char * nptr, char ** endptr);
Storage-area management void _ _X *calloc_ _X(size_t nelem, size_t elsize);
 void free_ _X(void _ _X *ptr);
 void _ _X *malloc_ _X(size_t size);
 void _ _X *realloc_ _X(void _ _X *ptr, size_t size);
 void _ _Y *calloc_ _Y(size_t nelem, size_t elsize);
 void free_ _Y(void _ _Y *ptr);
 void _ _Y *malloc_ _Y(size_t size);
 void _ _Y *realloc_ _Y(void _ _Y *ptr, size_t size);

Note: The user should also prepare a low-level interface routine for the _ _X or _ _Y memory:
 char _ _X *sbrk_ _X(int size);
 char _ _Y *sbrk_ _Y(int size);
For details, refer to section 9.2.2 (6), Low-level interface routines.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 368 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(d) string.h
Table 10.26 shows the functions for the handling of fixed-point values. For details, refer to
section 10.4.1, Standard C Libraries.

Table 10.26 Functions

Type Function Name
Storage-area
copy

void _ _X * memcpy_ _X_ _X(void _ _X * s1, const void _ _X * s2, size_t n);
void _ _X * memcpy_ _X_ _Y(void _ _X * s1, const void _ _Y * s2, size_t n);

 void _ _Y * memcpy_ _Y_ _X(void _ _Y * s1, const void _ _X * s2, size_t n);
 void _ _Y * memcpy_ _Y_ _Y(void _ _Y * s1, const void _ _Y * s2, size_t n);

(e) DSP Library
When the dspc option is specified, _ _fixed-type arrays and pointers can be specified instead of
short-type arrays and pointer parameters. For details, refer to section 10.4.5, DSP Library.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 369 of 1176
Mar 01, 2022

10.3 Extended Specifications

The compiler supports the following extended specifications:

• #pragma extension specifiers
• Section address operators
• Intrinsic functions

10.3.1 #pragma Extension Specifiers

Tables 10.27 to 10.29 list #pragma extension specifiers. Note that conditions apply to the
application of some #pragma directives which are related to optimization, i.e. some may not be
applicable. Check the output code to see whether or not the optimization has actually been
performed.

Table 10.27 Extended Specifications Relating to Memory Allocation

#pragma Extension Specifier Function
#pragma section Switches sections
#pragma abs16
#pragma abs20
#pragma abs28
#pragma abs32

Specifies address range

#pragma stacksize Creates stack section

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 370 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.28 Extended Specifications Relating to Functions

#pragma Extension Specifier Function
#pragma interrupt Creates an interrupt function
#pragma inline Performs inline expansion of functions
#pragma inline_asm Expands an assembly-language description function.
#pragma regsave,
#pragma noregsave,
#pragma noregalloc

Generates or does not generate save and restore code at the
start and end of functions

#pragma entry Creates an entry function
#pragma ifunc Suppresses saving and restoring of the floating-point registers
#pragma tbr Calls functions by using TBR relative addresses

#pragma align4 Branch destination addresses in the specified function are
placed on 4-byte boundaries

Table 10.29 Other Extended Specifications

#pragma Extension Specifier Function
#pragma global_register Allocates global variables to registers
#pragma gbr_base,
#pragma gbr_base1

Specifies GBR base variables

#pragma bit_order Switches the order of bit assignment
#pragma pack
#pragma unpack

Specifies the boundary alignment value for structures, unions,
and classes.

#pragma address Specifies absolute addresses for variables

For some of the extended functions above, data members and member functions can be specified.
Specification format is (class name::member name). For the specifiable member types, see the
format of each function.

(1) Extended Specifications Related to Memory Allocation

#pragma section

Description Format: #pragma section [{<name> | <numeric value>}]

Description: Switches the section to be output by the compiler.
Table 10.30 lists the default section names and section names after switching
sections.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 371 of 1176
Mar 01, 2022

Table 10.30 Section Switching and Section Name

Target Area

Specification

Default Section
Name

After Switching
Section

Program area #pragma section
<xx>

P* P<xx>
Constant area C* C<xx>
Initialized data area D* D<xx>
Uninitialized data area B* B<xx>
Note: The default section name can be modified by the section option.

If <name> and <number> are not specified, the default section names will be used.

Example: #pragma section abc

int a; /* a is assigned to section Babc */

const int c=1; /* c is assigned to section Cabc */

void f(void) /* f is assigned to section Pabc */

{

 a=c;

}

#pragma section

int b; /* b is assigned to section B */

void g(void) /* g is assigned to section P */

{

 b=c;

}

Remarks: 1. #pragma section can be declared only outside the function definition.
2. Up to 2045 section names can be declared for each of #pragma section
 in one file.
3. When specified together with a memory specifier (_ _X or _ _Y),
 the specification of #pragma section will be invalid.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 372 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#pragma abs16
#pragma abs20
#pragma abs28
#pragma abs32

Description Format: #pragma abs16 [(]<identifier> [,…] [)]
#pragma abs20 [(]<identifier> [,…] [)]
#pragma abs28 [(]<identifier> [,…] [)]
#pragma abs32 [(]<identifier> [,…] [)]

Description: The variable or function declared with #pragma abs16, abs20, abs28, or
abs32 is treated as being allocated in the memory area shown in table 10.31.
Then, program size can be reduced.
For the identifier, a variable, a global function, a static data member, and a
member function can be specified.

Table 10.31 Address Ranges

#pragma Extension
Address Range

Beginning End
abs16 0x00000000 0x00007FFF

0xFFFF8000 0xFFFFFFFF
abs20 0x00000000 0x0007FFFF

0xFFF80000 0xFFFFFFFF
abs28 0x00000000 0x07FFFF7F*

0xF8000000 0xFFFFFFFF
abs32 0x00000000 0xFFFFFFFF

Note: Be aware that the end of the range is 0x07FFFF7F.

Remarks: 1. #pragma abs16, abs20, abs28, or abs32 cannot be used to specify
 an automatic object or non-static data member.
2. Variables and functions declared using #pragma abs16, abs20, abs28, or
 abs32 must be allocated in the corresponding address range shown above.
3. Multiple address ranges cannot be specified for a single identifier.
4. When #pragma abs16, abs20, abs28, or abs32 is specified together with
 the abs16, abs20, abs28, or abs32 option, the #pragma specification
 becomes valid.
 #pragma abs16, abs20, abs28, or abs32 is invalid when it is specified
 together with #pragma gbr_base or gbr_base1.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 373 of 1176
Mar 01, 2022

#pragma stacksize

Description Format: #pragma stacksize <constant>

Description: Creates a stack section of size <constant> for the section with name S.

Example: #pragma stacksize 100

<Example of code expansion>
.SECTION S, STACK, ALIGN=4
.RES.B 100

Remarks: The size, <constant>, must always be specified as a multiple of four.
#pragma stacksize can only be specified once in a file.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 374 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Extended Specifications Related to Functions

#pragma interrupt

Description Format: #pragma interrupt [(]<function name>[(interrupt specification)][,…][)]

Description: Declares an interrupt function.
Global functions and static member functions can be specified for the
function name. Table 10.32 lists interrupt specifications.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 375 of 1176
Mar 01, 2022

Table 10.32 Interrupt Specifications

Item Form Options Specifications
Stack switching sp= {<variable>

|&<variable>
|<constant>
|<variable> +
 <constant>
|&<variable> +
 <constant>
}

The address of a new stack is specified with a
variable or a constant.
<variable>: Variable (pointer type)
&<variable>: Variable (object type)
 address
<constant>: Constant value

Trap-instruction
return

tn= <constant> The interrupt function exits with the TRAPA
instruction.
<constant>: Constant value
 (trap vector number)

Register bank resbank None Output of code for saving the following
registers is suppressed.
R0 to R14, GBR, MACH, MACL, PR

If tn is not specified, a RESBANK instruction is
output immediately before the RTE instruction.

Register bank
switching and
RTS-instruction
return

sr_rts None The interrupt function exits with the RTS
instruction. The code for saving only the
registers used in the function is output. The
RB and BL bits of the SR are set at the end of
the function.

Interrupt handling
function

bank None When a sr_jsr() intrinsic function is used, the
code for saving the SSR and SPC is
generated and output of the code for saving
the R0 to R7 is suppressed. The code for
saving the other registers used in the function
is generated.

RTS-instruction
return

rts None The interrupt function exits with the RTS
instruction. Output of the code for saving the
SSR, SPC, or R0 to R7 is suppressed. The
code for saving the other registers used in the
function is generated.

 An interrupt function will guarantee register values before and after
processing (all registers used by the function are pushed onto and popped
from the stack when entering and exiting the function). The RTE instruction
directs the function to return. However, if the trap-instruction return is
specified, the TRAPA instruction is executed at the end of the function. An

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 376 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

interrupt function with no specifications is processed in the usual procedure.
The stack switching specification and the trap-instruction return specification
can be specified together.

 Example:
 extern int STK[100];

 #pragma interrupt(f(sp =STK+100, tn = 10),A::g)

 class A{

 public:

 static void g();
 };

 Explanation:

(a) Stack switching specification: STK+100 is set as the stack pointer used
by interrupt function f.

(b) Trap-instruction return specification: After the interrupt function has
completed its processing, TRAPA #H'10 is executed. The SP at the
beginning of trap exception processing is shown in figure 10.3. After
the previous PC (program counter) and SR (status register) are popped
from the stack by the RTE instruction in the trap routine, control is
returned from the interrupt function.

(c) The member function that can be specified in C++ program is a static
member function. In the example, static member function g of class A
is specified as an interrupt function. Note that nonstatic member
functions cannot be specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 377 of 1176
Mar 01, 2022

Figure 10.3 Stack Processing by an Interrupt Function

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 378 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 Nested interrupt functions can be created through the sr_rts and bank
settings and the sr_jsr() intrinsic function.

 Example:
 #include <machine.h>

 // Handling function declaration
 #pragma interrupt (func(bank))

 void func();

 // Interrupt processing function declaration
 #pragma interrupt (sub(sr_rts))

 void sub();

 void func() {

 :

 sr_jsr(sub,8); // Calls sub()
 // with RB = 0, BL = 0, and
 // interrupt level = 8
 :

 }

 void sub() {

 :

 }

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 379 of 1176
Mar 01, 2022

 func:

 ;

 MOV.L R14,@-R15

 STS.L PR,@-R15

 STC SSR,@-R15

 STC SPC,@-R15

 :

 STC SR,R6

 MOV.L L12+6,R1 ; H'CFFFFF0F

 MOV #-128,R4 ; H'FFFFFF80

 EXTU.B R4,R4

 MOV.L L12+10,R14 ; _sub

 AND R1,R6

 OR R4,R6

 LDC R6,SR

 JSR @R14

 NOP

 :

 LDC @R15+,SPC

 LDC @R15+,SSR

 LDS.L @R15+,PR

 MOV.L @R15+,R14

 RTE

 NOP

 _sub:

 MOV.L R0,@-R15

 MOV.L R1,@-R15

 :

RB = 0 and BL = 0

Calls the sub() function.
Execution will return with the
settings changed to RB = 1 and
BL = 1.

Saves the registers used
in the function.

Restores the registers used in
the function, SPC, and SSR,
except R0 to R7.
Changes the setting to IMASK
= 8.

Changes the
settings to RB = 0,
BL = 0, and
IMASK = 8.

Saves the registers used
in the function, SPC, and
SSR, except R0 to R7.

RB = 1, BL = 1

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 380 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 STC SR,R0

 MOV.L L12+2,R1 ; H'30000000

 OR R1,R0

 MOV.L @R15+,R1

 LDC R0,SR

 RTS

 LDC.L @R15+,R0_BANK

 An efficient interrupt function using register banks can be created through
the rts and bank settings.

 Example:
 #include <machine.h>

 // Handling function declaration
 #pragma interrupt (func(bank))

 void func();

 // Interrupt processing function declaration
 #pragma interrupt (sub(rts)

 void sub();

 void func() {

 :

 sub();

 :

 }

 void sub() {

 :

 }

Because the setting has been
changed to RB = 1.

Changes the settings to
RB = 1 and BL = 1, and
restores the registers used
in the function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 381 of 1176
Mar 01, 2022

 _func:

 ;

 STS.L PR,@-R15

 :

 MOV.L L12,R14; _sub

 JSR @R14

 NOP

 :

 LDS.L @R15+,PR

 RTE

 NOP

 _sub:

 MOV.L R14,@-R15

 MOV.L R13,@-R15

 :

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R14

Remarks: 1. resbank is only valid when cpu = sh2a or sh2afpu is specified.

 2. Register bank usage must be enabled before an interrupt for the function
 with resbank specification occurs.

 3. When both resbank and tn are specified, neither register saving code nor
 RESBANK instruction is output. In this case, generate a RESBANK
 instruction in the trap routine.

 4. When returning from the function with the resbank specification,
 the value of the variable specified with #pragma global_register is
 restored to its original value before the interrupt even when it is modified
 during interrupt processing.

 5. The interrupt operation in the SH-3, SH3-DSP, SH-4, SH-4A, and
 SH4AL-DSP is different from that in the SH-1, SH-2, SH-2E, SH-2A,
 SH2A-FPU, and SH2-DSP, and requires interrupt handlers. When the
 same function is specified for #pragma interrupt and #pragma
 noregsave, in the SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP, only

Saves the registers used in the
function except R0 to R7.

RB = 1 and BL = 1

Restores the registers used in
the function except R0 to R7.

Saves the registers used in the
function except R0 to R7.

Restores the registers used in
the function except R0 to R7.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 382 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 the contents of callee-save registers used within the function are saved
 and restored.

 6. When the repeat option is specified, the contents of the RS and RE
 registers are saved and restored.
 When the dspc option is specified, the contents of the DSP registers (X0,
 X1, Y0, Y1, M0, M1, A0, A0G, A1, and A1G), DSR register, and MOD
 register are saved and restored.

 7. Functions that can be specified for an interrupt function definition are the
 global function (in C/C++ program) and static member function (in C++
 program).

 The function must return only void data. The return statement cannot
 have a return value. If attempted, an error is output.

 Example:
 #pragma interrupt(f1(sp=100),f2)

 void f1(){...} (a)

 int f2(){...} (b)

 Description: (a) is a correct declaration.
 (b) returns type that is not void, thus (b) is an incorrect
 declaration. An error will occur.

 8. sr_rts, bank, and rts are valid when cpu=sh3|sh3dsp|sh4|sh4a|sh4aldsp
 is specified. The following shows the combinations of sr_rts, bank, or
 rts and other interrupt specifications that can be set together.

#pragma interrupt #pragma

noregsave sp tn sr_rts bank rts
sr_rts Error Error Error Error Error Error
bank Valid Error Error Error Error Valid
rts Error Error Error Error Error Error

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 383 of 1176
Mar 01, 2022

 An error will be output in the following cases.
 • A function with the sr_rts setting is called from a function other than
 the sr_jsr() intrinsic function.
 • A function with the bank setting is called.
 • A function with the rts setting is called from a function without bank
 or rts setting.

 9. A function declared as an interrupt function cannot be called within the
 program. If attempted, an error will occur. However, if the function is
 called within a program which does not have a declaration of the interrupt
 function, an error does not occur but correct program execution is not
 guaranteed.

 Example 1 (An interrupt function is declared):
 #pragma interrupt(f1)
 void f1(){...}
 int f2(){ f1();} (a)

 Description: Function f1 cannot be called in the program because it is
 declared as an interrupt function. An error occurs at (a).

 Example 2 (An interrupt function is not declared):
 int f1();
 int f2(){ f1();} (b)

 Description: Because function f1 is not declared as an interrupt function,
 an object is generated as a non-interrupt function, int f1();.
 If function f1 is declared as an interrupt function in another
 file, correct program execution cannot be guaranteed.

Note: In a CPU with floating-point precision mode (SH2A-FPU, SH4, or SH4A),
when the fpu option is not specified or when fpu=single is specified, the
precision mode might need to be set to perform single-precision floating-
point operation in an interrupt function. For details, see section 9.4.1 (6)
Interrupt Functions When the CPU Type Is SH2A-FPU, SH4, or SH4A.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 384 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#pragma inline

Description Format: #pragma inline [(]<function name>[,…][)]

Description: Declares a function for which inline expansion is performed.
A name of a global function or a static member function can be specified as a
function name.
A function specified by #pragma inline or a function with specifier inline
(C++) will be expanded where the function is called.

Example: Source Program
#pragma inline (func)

static int func (int a, int b)

{

 return (a+b)/2;

}

int x;

main ()

{

 x = func(10,20);

}

Inline Expansion Image
int x;

main()

{

 int func_result;

 {

 int a_1 = 10, b_1 = 20;

 func_result = (a_1+b_1)/2;

 }

 x = func_result;

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 385 of 1176
Mar 01, 2022

Remarks: 1. A function will not be expanded in the following cases:
  a function definition exists before the #pragma inline specification
  a function has variable parameters
  a parameter address is referenced in a function
  an address of a function to be expanded is used to call the function
  recursive calls are used
2. Specify #pragma inline before defining a function.
3. When a program file includes the definition of a function to be inlined, be
 sure to specify static before the function declaration because an external
 definition is generated for a function specified by #pragma inline. If
 static is specified, an external definition will not be created. External
 definition will not be created for functions for which inline (C++) is
 specified.
4. Also, when a scope option is specified, inline expansion may not be
 performed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 386 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#pragma inline_asm

Description Format: #pragma inline_asm [(]<function name>[(size=<numeric value>)][,...][)]

Description: Performs inline expansion for the functions written in assembly language
declared by #pragma inline_asm.

Parameters of a function that is written in an assembly language are
referenced from an inline_asm function because they are stacked or stored in
registers in the same way as general function calls. The return value of an
inline function written in an assembly language should be set in R0. When
the cpu is SH-2E, SH2A-FPU, SH-4, or SH-4A, return values of single-
precision floating-point type should be set in FR0. When the cpu is SH2A-
FPU, SH-4, or SH-4A, return values of double-precision floating-point type
should be set in DR0. A different register may be used depending on the
combination of options. For details, see table 9.7.
The length of an inline function written in an assembly language can be
specified by (size=<numeric value>).

Example: Source program
#pragma inline_asm(rot1)

static int rotl (int a)

{

 ROTL R4

 MOV R4,R0

}

int x;

main()

{

 x = 0x55555555;

 x = rotl(x);

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 387 of 1176
Mar 01, 2022

 Output result (partial)
 :

_main ;function main

 ;frame size = 4

 MOV.L R14,@-R15

 MOV.L L220+2,R14 ;_x

 MOV.L L220+6,R3 ;H'55555555

 MOV.L R3,@R14

 MOV R3,R4

 BRA L219

 NOP

L220:

 .RES.W 1

 .DATA.L _x

 .DATA.L H'55555555

L219:

 ROTL R4

 MOV R4,R0

 .ALIGN 4

 MOV.L R0,@R14
 RTS
 MOV.L @R15+,R14
 .SECTION B,DATA,ALIGN=4
_x: ;static: x

 .RES.L 1

 .END

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 388 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: 1. Specify #pragma inline_asm before the definition of a function. External
 definition will be created for functions specified by #pragma
 inline_asm.

 2. Be sure to use local labels in a function written in an assembly language.
 3. When the registers whose values are saved and restored at the start and

 end of a function (see table 9.5) are used in a function written in an
 assembly language, the contents of these registers must be saved and
 restored at the start and end of the function. Also, when registers FR12 to
 FR15 (if CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A) are used, or when
 registers DR12 to DR14 (if CPU is SH2A-FPU, SH-4, or SH-4A) are
 used, the contents of these registers must be saved and restored at the start
 and end of the inline function written in the assembly language.

 4. Do not use RTS at the end of a function written in an assembly language.
 5. When #pragma inline_asm is used, be sure to compile programs by

 specifying code=asmcode to generate assembly code.
 6. When specifying a number by (size=<numeric value>), specify

 a number larger than the actual object size. If a value smaller than
 the actual object size is specified, correct operation is not guaranteed. If
 a floating point or a numeric value less than 0 is specified, an error will
 occur.
7. Even when a register specified by the #pragma global_register function
 is used, the contents of this register must be saved and restored at the start
 and end of the inline function written in an assembly language.

 8. A member function cannot be specified for the function name.
9. Do not use a statement that generates a literal pool. (MOV.L #100000,
 R0 etc.)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 389 of 1176
Mar 01, 2022

#pragma regsave
#pragma noregsave
#pragma noregalloc

Description Format: #pragma regsave [(]<function name>[,…][)]
#pragma noregsave [(]<function name>[,…][)]
#pragma noregalloc [(]<function name>[,…][)]

Description: 1. Global functions and member functions can be specified as the
 function name.
2. Functions specified by #pragma regsave save and restore the contents
 of callee-save registers (see table 9.5) at the start and end of the
 functions, respectively. Inside the function specified by #pragma
 regsave, callee-save registers (R8 to R14, and FR12 to FR15 if CPU is
 SH-2E, SH2A-FPU, SH-4, or SH-4A) will not carry a value over a child
 function call.
3. Functions specified by #pragma noregsave do not save or restore the
 contents of callee-save registers at the start and end of the functions.
4. Functions specified by #pragma noregalloc do not save or restore the
 contents of callee-save registers at the start and end of the functions.
 Inside the function specified by #pragma noregsave, callee-save
 registers (R8 to R14, and FR12 to FR15 if CPU is SH-2E, SH2A-FPU,
 SH-4, or SH- 4A) will not carry a value over a child function call.
5. #pragma regsave and #pragma noregalloc can specify the same
 function at the same time. In this case, the contents of registers R8 to
 R14 (and FR12 to FR15 if CPU is SH-2E, SH2A-FPU, SH-4, or
 SH-4A) are saved and restored at the start and end of the function if
 they are used. Inside the function specified by #pragma regsave,
 callee-save registers (R8 to R14, and FR12 to FR15 if CPU is SH-2E,
 SH2A-FPU, SH-4, or SH-4A) will not carry a value over a child
 function call.
6. Functions specified by #pragma noregsave can be used in the
 following conditions:
 a. A function is the first function activated and is not called from any
 other function.
 b. A function is called from a function that is specified by #pragma
 regsave.
 c. A function is called from a function that is specified by #pragma
 regsave via #pragma noregalloc.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 390 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: #pragma noregsave(f, A::j)

#pragma noregalloc(g)

#pragma regsave(h)

class A{

public:

 static void j();

};

void f();

void g();

void h();

void h(){

 g();

 f(); /* Function f declared with #pragma */

 /* noregsave is directly called by h */

} /* declared with #pragma regsave */

void g(){

 f(); /* Functions f and A::j declared with */

 /* #pragma noregsave are indirectly called */

 /* by h via g declared with #pragma */

 /* noregalloc */

 A::j();

}

void f()

{

}

Remarks: The result of a call of a function declared with #pragma noregsave is not
guaranteed if it is called in a way other than that shown above.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 391 of 1176
Mar 01, 2022

#pragma entry

Description Format: #pragma entry [(]<function name>[(sp=<constant>)][)]

Description: Handles the function specified in <function name> as an entry function. The
entry function is created without any code to save and restore the contents of
registers. When SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP is specified
as the CPU and sp=<constant> is specified, or #pragma stacksize is
declared, the code that makes the initial setting of the stack pointer will be
output at the beginning of the function.

Example 1: #pragma entry INIT(sp=0x10000)

void INIT() {

 :

}

<Example of code expansion>
 .SECTION P, CODE

_INIT:

 MOV.L L1, R15

 :

L1: .DATA.L H’00010000

 :

Example 2: #pragma stacksize 100

#pragma entry INIT

void INIT() {

 :

}

<Example of code expansion>
 .SECTION S, STACK

 .RES.B 100

 .SECTION P, CODE

_INIT:

 MOV.L L1, R15

 :

L1: .DATA.L STARTOF S + SIZEOF S

 :

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 392 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: #pragma entry must be specified before the function is declared. Only one
entry function can be specified in a single load module. Always specify
<constant> as a multiple of four.
When cpu=sh1, sh2, sh2e, sh2a, sh2afpu, or sh2dsp has been specified, the
specification of sp=<constant> will be invalid.

#pragma ifunc

Description Format: #pragma [(]ifunc <function name>[)]

Description: Suppresses saving and restoring of the floating-point registers during
execution of the function specified by <function name>.

Remarks: #pragma ifunc must be specified before the function is declared. It is only
valid when cpu=sh2e, cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified. If
a floating-point number is used in the function specified in #pragma ifunc,
an error will occur.

Example: float f;

#pragma ifunc(func)

void func(void) {

 f=0.0f; /* Error */

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 393 of 1176
Mar 01, 2022

#pragma tbr

Description Format: #pragma tbr [()<function name> [({sn=<section name> | ov=<offset>})]
[,…][)]

Description: Declares functions to be called by using TBR relative addresses. See the
following detailed specifications.

(a) #pragma tbr <function name>
The function specified by <function name> is called by using an TBR
relative address.
When there is a definition of <function name>, the address of func is
output in $TBR section.

Example
#pragma tbr func

void func() {}

#pragma section AA

void func2() {

 func();

}

<Example of code expansion>
_func:
 RTS/N

_func2:

 STS.L PR,@-R15
 JSR/N @@($_func-(START OF $TBR),TBR)
 LDS.L @R15+,PR
 RTS/N

 .SECTION $TBR,DATA,ALIGN=4
$_func:
 .DATA.L _func

(b) #pragma tbr <function name> (sn=<section name>)
The function specified by <function name> is called by using an TBR
relative address.
When there is a definition of <function name>, the address of func is
output in $TBR<section name> section.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 394 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example
#pragma tbr func(sn=_A)
void func() {}

#pragma section AA
void func2() {
 func();
}

<Example of code expansion>
_func:
 RTS/N

_func2:

 STS.L PR,@-R15
 JSR/N @@($_func-(START OF $TBR_A),TBR)
 LDS.L @R15+,PR
 RTS/N

 .SECTION $TBR_A,DATA,ALIGN=4
$_func:
 .DATA.L _func

(c) #pragma tbr <function name> (ov=<offset>)
The function specified by <function name> is called by using an TBR
relative address.
A multiple of 4 within the range from 0 to 1020 should be specified for
<offset>.
The compiler outputs no TBR address table.

Example
#pragma tbr func(ov=32)
void func() {}

#pragma section AA
void func2() {
 func();
}

<Example of code expansion>
_func:
 RTS/N

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 395 of 1176
Mar 01, 2022

_func2:
 STS.L PR,@-R15
 JSR/N @@(32,TBR)
 LDS.L @R15+,PR
 RTS/N

Remarks: #pragma tbr is only valid when cpu=sh2a or sh2afpu is specified.
#pragma tbr overrides the tbr option if they are specified simultaneously.
When pic=1 is specified, #pragma tbr is invalid.
If both sn and ov are specified for a single function, the first specification is
valid.
Before calling the specified function, the start address of the corresponding
section must be specified in TBR by using intrinsic function set_tbr().
Up to 255 functions can be specified by #pragma tbr in each section.

#pragma align4

Command Line Format: #pragma align4 [(]<function name>=<type>[,...][)]

Description: This directive aligns the branch destination address of the function
specified as <function name> to the 4-byte boundary. Table 10.33
shows the selectable types.

Table 10.33 Types

Type Description
all Aligns all branch destination addresses within the specified

function to the 4-byte boundary.
loop Aligns the start addresses of all loops within the specified function

to the 4-byte boundary.
inmostloop Aligns the start addresses of the innermost loops within the

specified function to the 4-byte boundary.

Remarks: When #pragma align4 is specified for a function, the start address of
the function is always aligned to a 4-byte boundary. All functions with
#pragma align4 will not be optimized at linkage. When align4 and
#pragma align4 are specified at the same time, the type specified with
#pragma align4 will be valid. When align16 or align32 and #pragma
align4 are specified at the same time, branch destination addresses
within a function will be aligned with four-byte boundaries. The address

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 396 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

where a function starts is aligned with a four-byte boundary if it is
immediately preceded by a function for which #pragma align4 was
specified, but otherwise is aligned with a 16- or 32-byte boundary.

(3) Other Extended Specifications

#pragma global_register

Description Format: #pragma global_register [(]<variable name>=<register name>[,…][)]

Description: Allocates the global variable specified in <variable name> to the register
specified in <register name>.
Global variables and static data members can be specified as the variable
name.

Example: #pragma global_register(a = R8,A::b = R9)

class A(

public:

static int b;

);

int a;

void g()

{

a = A::b;

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 397 of 1176
Mar 01, 2022

Remarks: 1. This function is used for a simple or pointer type variable in the global
 variable; it cannot be used for an (unsigned) long long type variable.
 If CPU is other than SH2A-FPU, SH-4, or SH-4A, a double type
 variable can be specified only when double=float is specified.
2. Only use registers R8 to R14, FR12 to FR15 (if CPU is SH-2E,
 SH2A-FPU, SH-4, or SH-4A) and DR12 to DR14 (if CPU is
 SH2A-FPU, SH-4, or SH-4A).
3. The initial value cannot be set. In addition, the address of the specified
 variable cannot be referenced.
4. The reference of the specified variable from outside of the file is not
 guaranteed.
5. Static data members can be specified. Nonstatic data members cannot
 be specified.
  Type of variables that can be set in FR12 to FR15:
 For SH-2E CPU
 float type variables
 double type variables (when double=float is specified)
 For SH2A-FPU, SH-4, or SH-4A CPU
 float type variables (when fpu=double is not specified)
 double type variables (when fpu=single is specified)
  Type of variables that can be set in DR12 to DR14
 For SH2A-FPU, SH-4, or SH-4A CPU
 float type variables (when fpu=double is specified)
 double type variables (when fpu=single is not specified)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 398 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#pragma gbr_base
#pragma gbr_base1

Description Format: #pragma gbr_base [(]variable name[,...][)]
#pragma gbr_base1 [(]variable name[,...][)]

Description: Specifies variables to be accessed using a GBR register and an offset value.
For the variable name, variables and static data members can be specified.

The variable specified by #pragma gbr_base is assigned to section $G0, and
the variable specified by #pragma gbr_base1 is assigned to section $G1.

#pragma gbr_base specifies that the variable is located in an offset of 0 to
127 bytes from the address specified by the GBR register. #pragma
gbr_base1 specifies that the variable is located in an offset of 128 or more
bytes from the address specified by the GBR register, that is, a variable is in
a range beyond the range specified by #pragma gbr_base. An offset value
is 255 bytes at maximum for a char or unsigned char type, 510 bytes at
maximum for a short or unsigned short, and 1020 bytes at maximum for an
int, unsigned int, long, unsigned long, float, or double type. Based on the
above specification, the compiler generates an object program in a GBR
relative addressing mode that is optimized according to variable reference
and settings.

The compiler also generates an optimized bit instruction in the GBR indirect
addressing to char or unsigned char type data in the $G0 section.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 399 of 1176
Mar 01, 2022

Remarks: 1. If the total data size after the linker gathers sections $G0 exceeds 128
 bytes, the correct operation is not guaranteed. In addition, if there
 is data that has an offset value exceeding those specified above for
 #pragma gbr_base1 in section $G1, correct operation is not
 guaranteed.
2. Section $G1 must be allocated immediately after 128 bytes of section
 $G0 in linkage.
3. In using these #pragma's, be sure to set the start address of section $G0
 in the GBR register at the start of program execution.
4. Static data members can be specified, but non-static data members
 cannot be specified.
5. When gbr=auto is specified, the specification of #pragma gbr_base
 or #pragma gbr_base1 will be invalid.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 400 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#pragma bit_order

Description Format: #pragma bit_order [{left|right}]

Description: Switches the order of bit field assignment.

When left is specified, bit field members are assigned from the upper-bit side.
When right is specified, members are assigned from the lower-bit side.

The default is left.

If left or right is omitted, follow the options.

Example:

Remarks: The specified order of assignment is valid until it is switched again.

For details of bit fields, refer to section 10.1.2 (3), Bit Fields.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 401 of 1176
Mar 01, 2022

#pragma pack
#pragma unpack

Description Format: #pragma pack {1|4}
#pragma unpack

Description: Specifies the boundary alignment value for structure, union, and class
members after #pragma pack is specified in the source program.

The boundary alignment value specified by the pack option is used for
structure, union, and class members declared when this extension has not
been specified or after #pragma unpack has been specified. Table 10.34
shows #pragma pack specifications and the corresponding boundary
alignment values.

Table 10.34 #pragma pack Specifications and Corresponding Member Alignment Values

Extension and Member Type #pragma
pack 1

#pragma
pack 4

#pragma unpack or No
Extension Specified

[unsigned]char 1 1 1
[unsigned]short, and long _ _fixed 1 2 Value specified by pack

option
[unsigned]int, [unsigned]long,
[unsigned]long long, long _ _fixed,
_ _accum, long _ _accum,
floating-point type, and pointer type

1 4 Value specified by pack
option

Structure, union, and class of boundary
alignment value of 1

1 1 1

Structure, union, and class of boundary
alignment value of 2

1 2 Value specified by pack
option

Structure, union, and class of boundary
alignment value of 4

1 4 Value specified by pack
option

Example: #pragma pack 1

struct S1 {

 char a; /* offset:0 */

 int b; /* offset:1 */

 char c; /* offset:5 */

} ST1;

#pragma pack 4

struct S2 {

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 402 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 char a; /* offset:0 */

 /* gap:3 bytes */

 int b; /* offset:4 */

 /* gap:0 bytes */

 char c; /* offset:8 */

 /* gap:3 bytes */

} ST2;

Remarks: 1. The structure, union, and class member for which pack=1 or
 #pragma pack 1 is specified cannot be accessed using a pointer
 (including an access within a member function using a pointer).
 If the address of a structure member is used in an assignment statement,
 as an actual argument, or as a return value, a warning message will be
 output.

 Example

 #pragma pack 1

 struct st {

 char x;

 int y;

 } ST;

 int *p=&ST.y; /* The ST.y address may be an odd value. */

 void func(void) {

 ST.y=1; /* Can be accessed correctly. */

 p=1; / Cannot be accessed correctly in some cases. */

 }

 2. The boundary alignment value for structure, union, and class members
 can also be specified by the pack option. When both the option and
 #pragma extension are specified together, the #pragma extension takes
 priority.

 3. A single structure, union or class cannot include members with
different numbers of bytes for boundary alignment. If code includes
such a case, a warning is output.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 403 of 1176
Mar 01, 2022

 struct X {

 int m;

 } x;

 #pragma pack 1
 Struct S {
 char c;
 struct X a[2]; // Alignment is 4 byte →
 // a warning is output

 };

 4. When the iodefine.h file created by the Renesas High-Performance
Embedded Workshop is in use, if #pragma or an option is used to set
the alignment value to 1, the members of I/O register structures will not
specify the correct addresses. To avoid this problem, place #pragma
pack4 at the start of iodefine.h and place #pragma unpack at the end
of iodefine.h.

In addition, when having accessed using a pointer for the member of the structure, the union, and
the class, or when having accessed using a pointer within a member function, please keep in mind
that warning may not be outputted at the time of compile.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 404 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

#pragma address

Description Format: #pragma address [(]<variable name>=<absolute address>[,...][)]

Description: Allocates specified variables to specified addresses. The compiler assigns a
section for each specified variable, and the variable is allocated to the
specified absolute address during linkage. If variables are specified for
contiguous addresses, these variables are assigned to a single section.

Example 1: Scalar variable
#pragma address A=0x100

int A;

void func() {

 A=0;

}

<Example of code expansion>
_func:
 MOV #1,R2
 SHLL8 R2
 MOV #0,R4
 RTS
 MOV.L R4,@R2

 .SECTION $ADDRESS$B100,DATA,LOCATE=H’100
_A:
 .RES.L 1

Example 2: Structure
#pragma address ST=0x100

struct {

 int a;

 int b;

} ST;

void func() {

 ST.b=0;

}

<Example of code expansion>
_func:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 405 of 1176
Mar 01, 2022

 MOV #1,R2
 SHLL8 R2
 MOV #0,R4
 RTS
 MOV.L R4,@(4,R2)

 .SECTION $ADDRESS$B100,DATA,LOCATE=H’100
_ST:
 .RES.L 2

Example 3: Allocating multiple variables to contiguous area
#pragma address A=0x100,B=0x104
int A,B;
void func() {
 A=0;
 B=0;
}

<Example of code expansion>
_func:
 MOV #1,R2
 SHLL8 R2
 MOV #0,R4
 MOV.L R4,@R2
 RTS
 MOV.L R4,@(4,R2)

 .SECTION $ADDRESS$B100,DATA,LOCATE=H’100
_A:
 .RES.L 1
_B:
 .RES.L 1

Example 4: Allocating multiple variables to non-contiguous areas
#pragma address A=0x100,B=0x108
int A,B;
void func() {
 A=0;
 B=0;

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 406 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

}

<Example of code expansion>
_func:
 MOV #1,R2
 SHLL8 R2
 MOV #0,R4
 MOV.L R4,@R2
 RTS
 MOV.L R4,@(8,R2)

 .SECTION $ADDRESS$B100,DATA,LOCATE=H’100
_A:
 .RES.L 1

 .SECTION $ADDRESS$B108,DATA,LOCATE=H’108
_B:
 .RES.L 1

Example 5: Allocating multiple variables with different attributes to contiguous area
#pragma address A=0x100,B=0x104
int A;
const int B=0;
void func() {
 A=0;
}

<Example of code expansion>
_func:
 MOV #1,R2
 SHLL8 R2
 MOV #0,R4
 RTS
 MOV.L R4,@R2

 .SECTION $ADDRESS$B100,DATA,LOCATE=H’100
_A:
 .RES.L 1

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 407 of 1176
Mar 01, 2022

 .SECTION $ADDRESS$C104,DATA,LOCATE=H’104
_B:
 .DATA.L H'00000000

Remarks: 1. #pragma address must be specified before variables are declared.

 2. If a compound-type member or an object other than a variable is
 specified, an error will occur.

 3. If an odd address is specified for a variable or structure with boundary
 alignment value 2 or if an address which is not a multiple of 4 is
 specified for a variable or structure with boundary alignment value 4,
 an error will occur.

 4. If #pragma address is specified for a single variable more than one
 time, an error will occur.

 5. If a single address is specified for different variables or if specified
 variable addresses overlap each other, an error will occur.

 6. If any one of the following #pragma extensions is specified together
 with #pragma address for a single variable, an error will occur.
 #pragma section
 #pragma abs16, abs20, abs28, or abs32
 #pragma gbr_base or gbr_base1
 #pragma global_register

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 408 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.3.2 Section Address Operator

_ _sectop
_ _secend
_ _secsize

Description Format: _ _sectop("<section name>")
_ _secend("<section name>")
_ _secsize("<section name>")

Description: This function refers to the start address of the <section name> specified by
_ _sectop.
This function refers to the end address of the <section name> specified by
_ _secend.
This function generates the size of the <section name> specified by
_ _secsize.

Example: <_ _sectop, _ _secend>
#include <machine.h>

#pragma section $DSEC

static const struct {

 void *rom_s; /* Start address of initialized data */

 /* section in ROM */

 void *rom_e; /* End address of initialized data */

 /* section in ROM */

 void *ram_s; /* Start address of initialized data */

 /* section in RAM */

} DTBL[]={_ _sectop("D"), _ _secend("D"),

 _ _sectop("R")};

#pragma section $BSEC

static const struct {

 void *b_s; /* Start address of uninitialized */

 /* data section */

 void *b_e; /* End address of uninitialized data */

 /* section */

} BTBL[]={_ _sectop("B"), _ _secend("B")};

#pragma section

#pragma stacksize 0x100

#pragma entry INIT

void main(void);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 409 of 1176
Mar 01, 2022

void INIT(void)

{

 INITSCT();

 main();

 sleep();

}

<_ _secsize>

unsigned int size = _ _secsize("NAME");

 ↓
_size:

 .DATA.L SIZEOF NAME

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 410 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.3.3 Intrinsic Functions

The compiler provides the following functions that cannot be written in C/C++, as intrinsic
functions.

• Setting and referencing the status register
• Setting and referencing the vector base register
• I/O functions using the global base register
• System instructions which do not compete with register sources in C/C++ language
• Multimedia instructions using the floating-point unit and setting and referencing control

registers

Intrinsic functions can be written in the same call format as regular functions.

Table 10.35 lists intrinsic functions.

Table 10.35 Intrinsic Functions

Item Specifications Function
Status register
(SR)

void set_cr(int cr) Writes to SR
int get_cr(void) Reads SR
void set_imask(int mask) Writes to the interrupt mask bit
int get_imask(void) Reads the interrupt mask bit

Vector base
register (VBR)

void set_vbr(void *base) Writes to VBR
void *get_vbr(void) Reads VBR

Global base
register (GBR)

void set_gbr(void *base) Writes to GBR
void *get_gbr(void) Reads GBR

 unsigned char
gbr_read_byte(int offset)

Reads a GBR-based byte

 unsigned short
gbr_read_word(int offset)

Reads a GBR-based word

 unsigned short
gbr_read_long(int offset)

Reads a GBR-based longword

 void gbr_write_byte
(int offset, unsigned char data)

Writes a GBR-based byte

 void gbr_write_word
(int offset, unsigned short data)

Writes a GBR-based word

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 411 of 1176
Mar 01, 2022

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
Global base
register (GBR)
(cont)

void gbr_write_long
(int offset, unsigned long data)

Writes a GBR-based longword

void gbr_and_byte
(int offset, unsigned char mask)

ANDs a GBR-based byte

void gbr_or_byte
(int offset, unsigned char mask)

ORs a GBR-based byte

void gbr_xor_byte
(int offset, unsigned char mask)

XORs a GBR-based byte

int gbr_tst_byte
(int offset, unsigned char mask)

Tests a GBR-based byte

Special
instructions

void sleep(void) SLEEP instruction
int tas(char *addr) TAS instruction
Int trapa(int trap_no) TRAPA instruction
int trapa_svc
(int trap_no, int code, type1 para1, type2
para2, type3 para3, type4 para4)

OS system call

void prefetch (void *p) PREF instruction
void trace(long v) TRACE instruction
void ldtlb(void) LDTLB instruction
void nop(void) NOP instruction

64-bit
multiplication

long dmuls_h(long data1, long data2) Upper 32 bits of the numbers for a
signed 64-bit multiplication

unsigned long dmuls_l(long data1,
long data2)

Lower 32 bits of the numbers for a
signed 64-bit multiplication

unsigned long dmulu_h(unsigned long data1,
 unsigned long data2)

Upper 32 bits of the numbers for an
unsigned 64-bit multiplication

unsigned long dmulu_l(unsigned long data1,
 unsigned long data2)

Lower 32 bits of the numbers for an
unsigned 64-bit multiplication

Exchange of
upper and
lower bits of
data

unsigned short swapb(unsigned short data) SWAP.B instruction
unsigned long swapw(unsigned long data) SWAP.W instruction
unsigned long end_cnvl(unsigned long data) Reverses the byte order inside 4-

byte data

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 412 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
Multiply and
accumulate
operation

int macw(short *ptr1, short *ptr2,
unsigned int count)

MAC.W instruction

int macwl(short *ptr1, short *ptr2,
unsigned int count, unsigned int mask)
int macl(int *ptr1, int *ptr2,
unsigned int count)

MAC.L instruction

int macll(int *ptr1, int *ptr2,
unsigned int count, unsigned int mask)

Floating-point
unit

void set_fpscr(int cr) Sets FPSCR
int get_fpscr() Refers to FPSCR

Single-
precision
floating-point
vector
operation

float fipr(float vect1[4], float vect2[4]) FIPR instruction
void ftrv(float vec1[4],float vec2[4]) FTRV instruction
void ftrvadd(float vec1[4],float vec2[4],
float vec3[4])

Transforms 4-dimensional vector by
4×4 matrix, and adds the result to 4-
dimensional vector

void ftrvsub(float vec1[4],float vec2[4],
float vec3[4])

Transforms 4-dimensional vector by
4×4 matrix, and subtracts
4-dimensional vector from the result

Single-
precision
floating-point
vector
operation

void add4(float vec1[4],float vec2[4],
float vec3[4])

Performs addition of 4-dimension
vectors

void sub4(float vec1[4],float vec2[4],
float vec3[4])

Performs subtraction of 4-dimension
vectors

void mtrx4mul(float mat1[4][4],
float mat2[4][4])

Performs multiplication of 4×4 matrices

void mtrx4muladd(float mat1[4][4],
float mat2[4][4],float mat3[4][4])

Performs multiplication and addition of
4×4 matrices

void mtrx4mulsub(float mat1[4][4],
float mat2[4][4],float mat3[4][4])

Performs multiplication and subtraction
of 4×4 matrices

Access to
extension
register

void ld_ext(float mat[4][4]) Loads mat (4×4 matrix) to extension
register

void st_ext(float mat[4][4] Stores contents of extension register
to mat (4×4 matrix)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 413 of 1176
Mar 01, 2022

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
DSP
instructions

long _ _fixed pabs_lf(long _ _fixed data) Computes the absolute value
long _ _accum pabs_la
 (long _ _accum data)
_ _fixed pdmsb_lf(long _ _fixed data) Detects the MSB
_ _fixed pdmsb_la(long _ _accum data)
long _ _fixed psha_lf(long _ _fixed data,
 int count)

Shifts data arithmetically

long _ _accum psha_la
 (long _ _accum data,int count)
_ _accum rndtoa(long _ _accum data) Rounds data
_ _fixed rndtof(long _ _fixed data)
long _ _fixed long_as_lfixed(long data) Copies a bit pattern
long lfixed_as_long
 (long _ _fixed data)
void set_circ_x
 (_ _X _ _circ _ _fixed array[],
 size_t size)

Specifies modulo addressing

void set_circ_y
 (_ _Y _ _circ _ _fixed array[],
 size_t size)
void clr_circ(void) Cancels modulo addressing
void set_cs(unsigned int mode) Specifies the CS bit value (DSR

register)
Sine and cosine void fsca(long angle, float *sinv,

 float *cosv)
Computes the sine and cosine values

Inverse of
square root

float fsrra(float data) Computes the inverse of the square
root

Instruction cache
invalidation

void icbi(void *p) Invalidates the instruction cache block

Cache block
operation

void ocbi(void *p) Invalidates the cache block
void ocbp(void *p) Purges the cache block
void ocbwb(void *p) Writes back the cache block

Instruction cache
prefetch

void prefi(void *p) Prefetches instructions into the
instruction cache

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 414 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
System
synchronization

void synco(void) Synchronizes data operation

T bit reference
and setting

int movt(void) Refers to T bit
void clrt(void) Clears T bit
void sett(void) Sets T bit

Midsection
extract from
combined
registers

unsigned long xtrct(unsigned long data1,
 unsigned long data2)

Extracts middle 32 bits from
contiguous 64 bits

Addition with
carry

long addc(long data1, long data2) Adds two values and T bit, and sets
the carry to T bit

int ovf_addc(long data1, long data2) Adds two values and T bit, and refers
to the carry

long addv(long data1, long data2) Adds two values, and sets the carry
to T bit

int ovf_addv(long data1, long data2) Adds two values, and refers to the
carry

Subtraction with
borrow

long subc(long data1, long data2) Subtracts data2 and T bit from data1,
and sets the borrow to T bit

int unf_subc(long data1, long data2) Subtracts data2 and T bit from data1,
and refers to the borrow

long subv(long data1, long data2) Subtracts data2 from data1, and sets
the borrow to T bit

int unf_subv(long data1, long data2) Subtracts data2 from data1, and
refers to the borrow

Sign inversion long negc(long data) Subtracts data and T bit from 0, and
sets the borrow to T bit

1-bit division unsigned long div1(unsigned long data1,
 unsigned long data2)

Performs division data1/data2 for
one step, and sets the result to T bit

 int div0s(long data1, long data2) Performs initial settings for signed
division data1/data2, and refers to T
bit

 void div0u(void) Performs initial settings for unsigned
division

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 415 of 1176
Mar 01, 2022

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
Rotation unsigned long rotl(unsigned long data) Rotates data to left by one bit, and

sets the bit pushed out of the operand
to T bit

unsigned long rotr(unsigned long data) Rotates data to right by one bit, and
sets the bit pushed out of the operand
to T bit

unsigned long rotcl(unsigned long data) Rotates data including T bit to left by
one bit, and sets the bit pushed out of
the operand to T bit

unsigned long rotcr(unsigned long data) Rotates data including T bit to right by
one bit, and sets the bit pushed out of
the operand to T bit

Shift unsigned long shll(unsigned long data) Shifts data to left by one bit, and sets
the bit pushed out of the operand to T
bit

unsigned long shlr(unsigned long data) Shifts data logically to right by one bit,
and sets the bit pushed out of the
operand to T bit

long shar(long data) Shifts data arithmetically to right by
one bit, and sets the bit pushed out of
the operand to T bit

Saturation
operation

long clipsb(long data) Performs signed saturation operation
for 1-byte data

long clipsw(long data) Performs signed saturation operation
for 2-byte data

unsigned long clipub(unsigned long
data)

Performs unsigned saturation
operation for 1-byte data

unsigned long clipuw(unsigned long
data)

Performs unsigned saturation
operation for 2-byte data

TBR setting and
reference

void set_tbr(void *data) Sets data to TBR
void *get_tbr(void) Refers to TBR value

Nested interrupts void sr_jsr(void *func, int imask); Clears the RB and BL bits of SR to 0,
sets the imask value in the I0 to I3 bits
of SR, and calls the func function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 416 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
Manipulate bits in
memory

void bset(unsigned char *addr, unsigned
char bit_num);

Sets 1 to the specified bit (bit_num) of
the specified address (addr).

void bclr(unsigned char *addr, unsigned
char bit_num);

Sets 0 to the specified bit (bit_num) of
the specified address (addr).

void bcopy(unsigned char *from_addr,
unsigned char from_bit_num, unsigned
char *to_addr, unsigned char
to_bit_num);

Sets the value of bit [1] (from_bit_num)
of address [1] (from_bit_num) to bit T
and bit [2] (to_bit_num) of address [2]
(to_addr).

 void bnotcopy(unsigned char
*from_addr, unsigned char
from_bit_num, unsigned char *to_addr,
unsigned char to_bit_num);

Sets the inverted value of bit [1]
(from_bit_num) of address [1]
(from_bit_num) to bit T and bit [2]
(to_bit_num) of address [2] (to_addr).

<machine.h>, <umachine.h>, or <smachine.h> must be specified when intrinsic functions are
used.

<machine.h> is divided into <umachine.h> and <smachine.h> as shown in table 10.36 to
correspond to the SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP execution mode:

Table 10.36 Dividing <machine.h>

Include File Contents
<machine.h> Overall intrinsic functions
<smachine.h> Intrinsic functions that can be used in the privileged mode
<umachine.h> Intrinsic functions other than those in <smachine.h>

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 417 of 1176
Mar 01, 2022

void set_cr(int cr)

Description: Sets cr (32 bits) to the status register (SR).

Header: <machine.h> or <smachine.h>

Parameters: cr Setting value

Example: #include <machine.h>

void main(void)

{

 set_cr(0x60000000);/* Supervisor,RBank=1,BL=0,Imask=0 */

}

int get_cr(void)

Description: Reads the status register (SR).

Header: <machine.h> or <smachine.h>

Return value: Status register value

Example: #include <machine.h>

void main(void)

{

 set_cr(get_cr() | 0x1000000); /* Set BL bit */

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 418 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void set_imask(int mask)

Description: Sets mask (4 bits) to the interrupt mask bits (4 bits).

Header: <machine.h> or <smachine.h>

Parameters: mask Setting value (4 bits)

Example: #include <machine.h>

void main(void)

{

 set_imask(15);

}

int get_imask(void)

Description: Reads the interrupt mask bits (4 bits).

Header: <machine.h> or <smachine.h>

Return value: Value of the interrupt mask bits

Example: #include <machine.h>

void main(void)

{

 int mask;

 mask = get_imask();

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 419 of 1176
Mar 01, 2022

void set_vbr(void base)

Description: Sets base (32 bits) to the vector base register (VBR).

Header: <machine.h> or <smachine.h>

Parameters: base Setting value

Example: #include <machine.h>

#define VBR 0x0000FC00

void main(void)

{

 set_vbr((void *)VBR);

}

void *get_vbr(void)

Description: Reads the vector base register (VBR).

Header: <machine.h> or <smachine.h>

Return value: Value of the vector base register

Example: #include <machine.h>

void main(void)

{

 void *vbr;

 vbr = get_vbr();

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 420 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void set_gbr(void *base)

Description: Sets base (32 bits) to the global base register (GBR).

Header: <machine.h> or <umachine.h>

Parameters: base Setting value

Example: #include <machine.h>

#define IOBASE 0x05fffec0

void main(void)

{

 set_gbr((void *)IOBASE);

}

Remarks: As GBR is a control register whose contents are not guaranteed by all functions
 in this compiler, take care when changing GBR settings.
 This function is invalid when gbr=auto is specified.

void *get_gbr(void)

Description: Reads the global base register (GBR).

Header: <machine.h> or <umachine.h>

Return value: Value of the global base register

Example: #include <machine.h>

void main(void)

{

 void *gbr;

 gbr = get_gbr();

}

Remarks: This function is invalid when gbr=auto is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 421 of 1176
Mar 01, 2022

unsigned char gbr_read_byte (int offset)

Description: Reads a byte (8 bits) at the address indicated by adding GBR and the offset
specified.

Header: <machine.h> or <umachine.h>

Return value: Byte data (8 bits) reference value

Parameter: offset Offset address

Example: #include <machine.h>

#define BDATA 0

void main(void)

{

 if(gbr_read_byte(BDATA) !=0)

 :

}

Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +255 bytes.
3. This function is invalid when gbr=auto is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 422 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

unsigned short gbr_read_word (int offset)

Description: Reads a word (16 bits) at the address indicated by adding GBR and the offset
specified.

Header: <machine.h> or <umachine.h>

Return value: Word data (16 bits) reference value

Parameter: offset Offset address

Example: #include <machine.h>

#define WDATA 0

void main(void)

{

 if(gbr_read_word(WDATA) !=0)

 :

}

Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +510 bytes.
3. This function is invalid when gbr=auto is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 423 of 1176
Mar 01, 2022

unsigned long gbr_read_long (int offset)

Description: Reads a longword (32 bits) at the address indicated by adding GBR and the
offset specified.

Header: <machine.h> or <umachine.h>

Return value: Longword data (32 bits) reference value

Parameter: offset Offset address

Example: #include <machine.h>

#define LDATA 0

void main(void)

{

 if(gbr_read_long(LDATA) !=0)

 :

}

Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +1020 bytes.
3. This function is invalid when gbr=auto is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 424 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void gbr_write_byte(int offset, unsigned char data)

Description: Sets a byte (8 bits) at the address indicated by adding GBR and the offset
specified.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
data Setting value (8 bits)

Example: #include <machine.h>

#define BDATA 0

void main(void)

{

 gbr_write_byte(BDATA,0);

}

Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +255 bytes.
3. This function is invalid when gbr=auto is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 425 of 1176
Mar 01, 2022

void gbr_write_word(int offset, unsigned short data)

Description: Sets a word (16 bits) at the address indicated by adding GBR and the offset
specified.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
data Setting value (16 bits)

Example: #include <machine.h>

#define WDATA 0

void main(void)

{

 gbr_write_word(WDATA,0);

}

Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +510 bytes.
3. This function is invalid when gbr=auto is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 426 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void gbr_write_long(int offset, unsigned long data)

Description: Sets a longword (32 bits) at the address indicated by adding GBR and the
offset specified.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
data Setting value (32 bits)

Example: #include <machine.h>

#define LDATA 0

void main(void)

{

 gbr_write_long(LDATA,0);

}

Remarks: 1. offsets must be a constant.
2. The specifiable range for offset is +1020 bytes.
3. This function is invalid when gbr=auto is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 427 of 1176
Mar 01, 2022

void gbr_and_byte(int offset, unsigned char mask)

Description: ANDs mask and a byte (8 bits) at the address indicated by adding GBR and
the offset specified, and stores the result to the address indicated by adding
GBR and the specified offset.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
 mask Data (8 bits)

Example: #include <machine.h>

#define BDATA 0

void main(void)

{

 gbr_and_byte(BDATA,0x01);

}

Remarks: 1. offsets must be a constant.
2. The specifiable range for offset is +255 bytes.
3. The specifiable range for mask is 0 to +255.
4. This function is invalid when gbr=auto is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 428 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void gbr_or_byte(int offset, unsigned char mask)

Description: ORs mask and a byte (8 bits) at the address indicated by adding GBR and the
offset specified, and stores the result to the address indicated by adding GBR
and the specified offset.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
mask Data (8 bits)

Example: #include <machine.h>

#define BDATA 0

void main(void)

{

 gbr_or_byte(BDATA,0x01);

}

Remarks: 1. offsets must be a constant.
2. The specifiable range for offset is +255 bytes.
3. The specifiable range for mask is 0 to +255.
4. This function is invalid when gbr=auto is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 429 of 1176
Mar 01, 2022

void gbr_xor_byte(int offset, unsigned char mask)

Description: Exclusively ORs mask and a byte (8 bits) at the address indicated by adding
GBR and the offset specified, and stores the result to the address indicated by
adding GBR and the specified offset.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
 mask Data (8 bits)

Example: #include <machine.h>

#define BDATA 0

void main(void)

{

 gbr_xor_byte(BDATA,0x01);

}

Remarks: 1. offsets must be a constant.
2. The specifiable range for offset is +255 bytes.
3. The specifiable range for mask is 0 to +255.
4. This function is invalid when gbr=auto is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 430 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int gbr_tst_byte(int offset, unsigned char mask)

Description: ANDs mask and a byte (8 bits) at the address indicated by adding GBR and
the offset specified, checks whether the result is 0 or not, and sets the T bit
according to the result of the check.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
mask Data (8 bits)

Example: #include <machine.h>

 #define BDATA 0

 int a;

void main(void)

{

 if(gbr_tst_byte(BDATA,0))

 a = 0;

}

Remarks: 1. mask must be a constant.
2. The specifiable range for offset is +255 bytes.
3. The specifiable range for mask is 0 to +255.
4. This function is invalid when gbr=auto is specified.

 GBR Intrinsic Function Example:

#include <machine.h>

#define CDATA1 0

#define CDATA2 1

#define CDATA3 2

#define SDATA1 4

#define IDATA1 8

#define IDATA2 12

struct{

 char cdata1; /* offset 0 */

 char cdata2; /* offset 1 */

 char cdata3; /* offset 2 */

 short sdata1; /* offset 4 */

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 431 of 1176
Mar 01, 2022

 int idata1; /* offset 8 */

 int idata2; /* offset 12 */

}table;

void f();

void f()

{

 set_gbr(&table); /* Sets the start address of */

 : /* table to GBR. */

 gbr_write_byte(CDATA2, 10);

 /* Sets 10 to table.cdata2. */

 gbr_write_long(IDATA2, 100);

 /* Sets 100 to table.idata2. */

 :

 if(gbr_read_byte(CDATA2) != 10)

 /* Reads table.cdata2. */

 gbr_and_byte(CDATA2, 10);

 /* ANDs 10 and table.cdata2, */

 /* and sets it in table.cdata2.*/

 gbr_or_byte(CDATA2, 0x0F);

 /* ORs 0x0F and table.cdata2, */

 : /* and sets it in table.cdata2.*/

 sleep(); /* Expanded to the SLEEP */

 /* instruction */

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 432 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Effective Use of GBR Intrinsic Functions:

1. Allocate a frequently accessed object to memory and set the start address of the object to
GBR.

2. Byte data that frequently uses logical operations should be declared within 128 bytes of the
start address of the structure.
As a result, the load instruction of start address for accessing a structure can be reduced and
load/store instructions necessary for performing logical operation can be reduced.

void sleep(void)

Description: Expanded to the SLEEP instruction, which makes the CPU enter the low-
power consumption mode.

Header: <machine.h> or <smachine.h>

Example: #include <machine.h>

void main(void)

{

 sleep();

}

int tas(char *addr)

Description: Expanded to the TAS.B @Rn instruction.

Header: <machine.h> or <umachine.h>

Parameters: addr Address specified in the TAS instruction

Example: #include <machine.h>

char a;

void main(void)

{

 tas(&a);

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 433 of 1176
Mar 01, 2022

int trapa(int trap_no)

Description: Expanded to TRAPA #trap_no.

Header: <machine.h> or <umachine.h>

Parameters: trap_no Trap number

Example: #include <machine.h>
void main(void)
{
 trapa(0);
}

Remarks: trap_no should be a constant from 0 to 255.

int trapa_svc(int trap_no, int code, type1 para1, type2 para2, type3 para3, type4 para4)

Description: Enables executing HI7000 and other OS system calls. When trapa_svc is
executed, code is specified in R0, and para1 to para4 in R4 to R7,
respectively.
Then, TRAPA #trap_no is executed.

Header: <machine.h> or <umachine.h>

Parameters: trap_no Trap number
code Function code
para1 to para4 Parameters (0 to 4 variables)
 Types type1 to type4 are integer type or pointer type.

Example: #include <machine.h>

#define SIG_SEM 0xffc8

void main(void)

{

 trapa_svc(63, SIG_SEM, 0x05);

}

Remarks: trap_no should be a constant from 0 to 255.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 434 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void prefetch(void *p)

Description: An area indicated by the pointer (16-byte data from (int)p&0xfffffff0) is
written to the cache memory.

Header: <machine.h> or <umachine.h>

Parameters: p Prefetch address

Example: #include <machine.h>

char a[1200];

void main(void)

{

 char *pa = a;

 prefetch(pa);

}

Remarks: This function is valid only when cpu=sh2a, sh2afpu, sh3, sh3dsp, sh4, sh4a,
or sh4aldsp is specified. This function does not affect the operation of the
program.

void trace(long v)

Description: Supports the software trace function provided by some emulators.

Header: <machine.h> or <umachine.h>

Parameters: v Variable to be specified

Example: #include <machine.h>

void main(void)

{

 long v;

 trace(v);

}

Remarks: This function is valid only when other than cpu=sh1 is specified.
For details of the software trace function, refer to the user's manual of the
target emulator.
This function is available only during debugging with an emulator connected.
Do not use this function when no emulator is connected.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 435 of 1176
Mar 01, 2022

void ldtlb(void)

Description: Expanded to the LDTLB instruction.

Header: <machine.h> or <smachine.h>

Example: #include <machine.h>

void main(void)

{

 ldtlb();

}

Remarks: This function is only valid when cpu=sh3, sh3dsp, sh4, sh4a, or sh4aldsp is
specified.

void nop(void)

Description: Expanded to the NOP instruction.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

void main(void)

{

 int a;

 if (a) {

 nop();

 }

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 436 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long dmuls_h(long data1, long data2)

Description: Multiplies a pair of signed 32-bit data to produce a signed 64-bit data, and
refers to the upper 32 bits of the product.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern long data1, data2;

extern long result;

void main(void)

{

 result = dmuls_h(data1, data2);

}

Remarks: This function is invalid when cpu= sh1 is specified.

unsigned long dmuls_l(long data1, long data2)

Description: Multiplies a pair of signed 32-bit data to produce a signed 64-bit data, and
refers to the lower 32 bits of the product.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern long data1, data2;

extern unsigned long result;

void main(void)

{

 result = dmuls_l(data1, data2);

}

Remarks: This function is invalid when cpu= sh1 is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 437 of 1176
Mar 01, 2022

unsigned long dmulu_h(unsigned long data1, unsigned long data2)

Description: Multiplies a pair of unsigned 32-bit data to produce an unsigned 64-bit data,
and refers to the upper 32 bits of the product.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern unsigned long data1, data2;

extern unsigned long result;

void main(void)

{

 result = dmulu_h(data1, data2);

}

Remarks: This function is invalid when cpu= sh1 is specified.

unsigned long dmulu_l(unsigned long data1, unsigned long data2)

Description: Multiplies a pair of unsigned 32-bit data to produce an unsigned 64-bit data,
and refers to the lower 32 bits of the product.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern unsigned long data1, data2;

extern unsigned long result;

void main(void)

{

 result = dmulu_l(data1, data2);

}

Remarks: This function is invalid only when cpu= sh1 is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 438 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

unsigned short swapb(unsigned short data)

Description: Exchanges the upper byte and the lower byte in the two-byte data.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern unsigned short data;

extern unsigned short result;

void main(void)

{

 result = swapb(data);

 /* For example, when data=0x1234,

 the results will be result=0x3412 */

}

unsigned long swapw(unsigned long data)

Description: Exchanges the upper two bytes and the lower two bytes in the four-byte data.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern unsigned long data;

extern unsigned long result;

void main(void)

{

 result = swapw(data);

 /* For example, when data=0x12345678

 the results will be result=0x56781234 */

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 439 of 1176
Mar 01, 2022

unsigned long end_cnvl(unsigned long data)

Description: Reverses the order of bytes in the four-byte data.

Header: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern unsigned long data;

extern unsigned long result;

void main(void)

{

 result = end_cnvl(data);

 /* For example, when data=0x12345678 */

 /* the results will be result=0x78563412 */

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 440 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int macw(short *ptr1,short*ptr2,unsigned int count)
int macwl(short *ptr1,short*ptr2,unsigned int count,unsigned int mask)

Description: Multiplies and accumulates the contents of two data tables.

Header: <machine.h> or <umachine.h>

Return value: Operation result

Parameters: ptr1 Start address of data to be multiplied or accumulated
 ptr2 Start address of data to be multiplied or accumulated
 count Number of times the operation is performed
 mask Address mask that corresponds to the ring buffer

Example: #include <machine.h>

short tbl1[]={a1,a2,a3,a4};

short tbl2[]={b1,b2,b3,b4};

int result1,result2;

void main(void)

{

 result1=macw(tbl1,tbl2,3);

 /* Executes a1*b1 + a2*b2 */

 /* + a3*b3 */

 result2=macwl(tbl1,tbl2,4,0xfffffffb);

 /* Executes a1*b1 + a2*b2 */

 /* + a3*b1 + a4*b2 */

}

Remarks: This function does not check parameters. Therefore, keep the following in
mind:

 a. Tables indicated by ptr1 and ptr2 must be aligned on the boundaries of
 multiples of 2 bytes.

 b. The table indicated by ptr2 in macwl must be aligned on the boundary of
 a multiple of (ring buffer mask × 2).

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 441 of 1176
Mar 01, 2022

int macl(int *ptr1,int*ptr2,unsigned int count)
int macll(int *ptr1,int*ptr2,unsigned int count,unsigned int mask)

Description: Multiplies and accumulates contents of two data tables.

Header: <machine.h> or <umachine.h>

Return value: Operation result

Parameters: ptr1 Start address of data to be multiplied or accumulated
ptr2 Start address of data to be multiplied or accumulated
count Number of times the operation is performed
mask Address mask that corresponds to the ring buffer

Example: #include <machine.h>

short tbl1[]={a1,a2,a3,a4};

short tbl2[]={b1,b2,b3,b4};

int result1,result2;

void main(void)

{

 result1=macl(tbl1,tbl2,3);

 /* Executes a1*b1 + a2*b2 */

 /* + a3*b3 */

 result2=macll(tbl1,tbl2,4,0xfffffff7);

 /* Executes a1*b1 + a2*b2 */

 /* + a3*b1 + a4*b2 */

}

Remarks: 1. This function is invalid when the cpu=sh1 is specified.
2. This function does not check parameters. Therefore, keep the following
 in mind:

 a. Tables indicated by ptr1 and ptr2 must be aligned on the
 boundaries of multiples of 4 bytes.

 b. The table indicated by ptr2 in macll must be aligned on the
 boundary of a multiple of (ring buffer mask × 2).

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 442 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void set_fpscr(int cr)

Description: Sets cr (32 bits) to the floating-point status control register FPSCR.

Header: <machine.h> or <umachine.h>

Parameters: cr Setting value (32 bits)

Example: #include <machine.h>

void main(void)

{

 set_fpscr(0);

}

Remarks: This function is valid only when cpu=sh2e, sh2afpu, sh4, or sh4a is
specified.

int get_fpscr (void)

Description: Refers to the floating-point status control register FPSCR.

Header: <machine.h> or <umachine.h>

Return value: FPSCR value

Example: #include <machine.h>

int cr;

void main(void)

{

 cr = get_fpscr();

}

Remarks: This function is valid only when cpu=sh2e, sh2afpu, sh4, or sh4a is
specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 443 of 1176
Mar 01, 2022

float fipr(float vect1[4], float vect2[4])

Description: Calculates inner product of two vectors.

Header: <machine.h> or <umachine.h>

Return value: Operation result

Parameters: vect1 Vector
vect2 Vector

Example: #include <machine.h>

extern float data1[4],data2[4];

float result;

void main(void)

{

 result=fipr(data1,data2);

}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

float ftrv(float vec1[4], float vec2[4])

Description: Transforms vec1 (vector) by tbl (4×4 matrix), and stores the result to vec2
(vector). Note that tbl needs to be loaded using intrinsic function ld_ext().

Header: <machine.h> or <umachine.h>

Parameters: vec1 Vector
vec2 Vector

Example: #include <machine.h>

extern float tb1[4][4];

extern float data1[4],data2[4];

void main(void)

{

 ld_ext(tbl);

 ftrv(data1,data2);

 /* As i=0,1,2,3 the result in data2 will be as */

 /* follows: data2[i]=data1[0]*tbl[0][i]+ */

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 444 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 /* data1[1]*tbl[1][i] + data1[2]*tbl[2][i] */

 /* data1[3]*tbl[3][i] */

}

Remarks: 1. This function is valid only when cpu=sh4 or sh4a is specified.
2. Intrinsic functions ld_ext() and st_ext() change the floating-point register
 bank bit (FR) of the floating-point status control register (FPSCR) to
 access the extension registers. Therefore, when using intrinsic function
 ld_ext() or st_ext() in an interrupt function, change the interrupt mask
 before and after the vector operation intrinsic function as shown in the
 following example.

Example
 extern float mat1[4][4];

 extern float vec1[4],vec2[4];

 #pragma interrupt (intfunc)

 void intfunc(){

 :

 ld_ext();

 :

 }

 void normfunc(){

 :

 int maskdata=get_imask();

 set_imask(15);

 ld_ext(mat1);

 ftrv(vec1,vec2);

 set_imask(maskdata);

 :

 }

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 445 of 1176
Mar 01, 2022

void ftrvadd(float vec1[4], float vec2[4], float vec3[4])

Description: Transforms vec1 (vector) by tbl (4×4 matrix), adds the result to vec2 (vector),
then stores the sum to vec3 (vector). Note that tbl needs to be loaded using
intrinsic function ld_ext().

Header: <machine.h> or <umachine.h>

Parameters: vec1 Vector
vec2 Vector
vec3 Vector

Example: #include <machine.h>

extern float tb1[4][4];

extern float data1[4];

extern float data2[4];

extern float data3[4];

void main(void)

{

 ld_ext(tbl);

 ftrvadd(data1,data2,data3);

 /* data3 = data1 x tbl + data2 */

 /* As i=0,1,2,3 the result in data3 will be as */

 /* follows: data3[i]=data1[0]*tbl[0][i] */

 /* +data1[1]*tbl[1][i] */

 /* +data1[2]*tbl[2][i] */

 /* +data1[3]*tbl[3][i] */

 /* +data2[i] */

}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 446 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void ftrvsub(float vec1[4], float vec2[4], float vec3[4])

Description: Transforms vec1 (vector) by tbl (4×4 matrix), subtracts vec2 (vector) from
the result, then stores the difference to vec3 (vector). Note that tbl needs to
be loaded using intrinsic function ld_ext().

Header: <machine.h> or <umachine.h>

Parameters: vec1 Vector
vec2 Vector
vec3 Vector

Example: #include <machine.h>

extern float tb1[4][4];

extern float data1[4];

extern float data2[4];

extern float data3[4];

void main(void)

{

 ld_ext(tbl);

 ftrvsub(data1,data2,data3);

 /* data3 = data1 x tbl - data2 */

 /* As i=0,1,2,3 the result in data3 will be as */

 /* follows: data3[i]=data1[0]*tbl[0][i] */

 /* +data1[1]*tbl[1][i] */

 /* +data1[2]*tbl[2][i] */

 /* +data1[3]*tbl[3][i] */

 /* -data2[i] */

}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 447 of 1176
Mar 01, 2022

void add4(float vec1[4], float vec2[4], float vec3[4])

Description: Stores the sum of vec1 (vector) and vec2 (vector) to vec3 (vector).

Header: <machine.h> or <umachine.h>

Parameters: vec1 Vector
vec2 Vector
vec3 Vector

Example: #include <machine.h>

extern float data1[4];

extern float data2[4];

extern float data3[4];

void main(void)

{

 add4(data1,data2,data3); /* data3 = data1 + data2 */

}

Remarks: This function is valid only when cpu=sh2afpu, sh4, or sh4a is specified.

void sub4(float vec1[4], float vec2[4], float vec3[4])

Description: Stores the difference between vec1 (vector) and vec2 (vector) to vec3 (vector).

Header: <machine.h> or <umachine.h>

Parameters: vec1 Vector
vec2 Vector
vec3 Vector

Example: #include <machine.h>

extern float data1[4];

extern float data2[4];

extern float data3[4];

void main(void)

{

 sub4(data1,data2,data3); /* data3 = data1 - data2 */

}

Remarks: This function is valid only when cpu=sh2afpu, sh4, or sh4a is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 448 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void mtrx4mul(float mat1[4], float mat2[4])

Description: Transforms mat1 (4×4 matrix) by tbl (4×4 matrix), and stores the result to
 mat2.
 Note that tbl needs to be loaded using intrinsic instruction ld_ext().

Header: <machine.h> or <umachine.h>

Parameters: mat1 4×4 matrix
mat2 4×4 matrix

Example: #include <machine.h>

extern float tb1[4][4];

extern float tb11[4][4];

extern float tb12[4][4];

void main(void)

{

 ld_ext(tbl);

 mtrx4mul(tb1l,tbl2); /* tbl2 = tbl1 x tbl */

}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

 This function is 4×4 matrix operation and therefore is not commutative.

Example

 extern float matA[][];

extern float matB[][];

int judge(){

 float data1[4][4], data2[4][4];

 set_imask(15);

 ld_ext(matA);

 mtrx4mul(matB,data1);/* data1=matB × matA */
 ld_ext(matB);

 mtrx4mul(matA,data2);/* data2=matA × matB */
 /* elements of data1[][] and data2[][] do */

 /* not necessarily match. */

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 449 of 1176
Mar 01, 2022

void mtrx4muladd(float mat1[4], float mat2[4], float mat3[4])

Description: Transforms mat1 (4×4 matrix) by tbl (4×4 matrix), adds the result of mat2 (4×4
 matrix), and stores the sum to mat3 (4×4 matrix).
 Note that tbl needs to be loaded using intrinsic instruction ld_ext().

Header: <machine.h> or <umachine.h>

Parameters: mat1 4×4 matrix
mat2 4×4 matrix
mat3 4×4 matrix

Example: #include <machine.h>

extern float tb1[4][4];

extern float tbl1[4][4];

extern float tbl2[4][4];

extern float tbl3[4][4];

void main(void)

{

 ld_ext(tbl);

 mtrx4muladd(tb1l,tbl2, tbl3);

 /* tbl3 = tbl1 x tbl +tbl2 */

}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

 This function is 4×4 matrix operation and therefore is not commutative.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 450 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void mtrx4mulsub(float mat1[4], float mat2[4], float mat3[4])

Description: Transforms mat1 (4×4 matrix) by tbl (4×4 matrix), subtracts mat2 (4×4 matrix)
 from the result, and stores the difference to mat3 (4×4 matrix).
 Note that tbl needs to be loaded using intrinsic instruction ld_ext().

Header: <machine.h> or <umachine.h>

Parameters: mat1 4×4 matrix
mat2 4×4 matrix
mat3 4×4 matrix

Example: #include <machine.h>

extern float tb1[4][4];

extern float tbl1[4][4];

extern float tbl2[4][4];

extern float tbl3[4][4];

void main(void)

{

 ld_ext(tbl);

 mtrx4mulsub(tb1l,tbl2, tbl3);

 /* tbl3 = tbl1 x tbl - tbl2 */

}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

 This function is 4×4 matrix operation and therefore is not commutative.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 451 of 1176
Mar 01, 2022

void ld_ext(float mat[4] [4])

Description: Loads mat (4×4 matrix) to extension register.

Header: <machine.h> or <umachine.h>

Parameters: mat 4×4 matrix

Example: #include <machine.h>

extern float tb1[4][4];

void main(void)

{

 ld_ext(tbl);

}

Remarks: 1. This function is valid only when cpu=sh4 or sh4a is specified.
2. Intrinsic function ld_ext() changes the floating-point register bank bit
 (FR) of the floating-point status control register (FPSCR) to access
 extension register. Therefore, when this function is used in an interrupt
 function, change the interrupt mask before and after the vector operation
 intrinsic function.

void st_ext(float mat[4] [4])

Description: Stores contents of extension register to mat (4×4 matrix).

Header: <machine.h> or <umachine.h>

Parameters: mat 4×4 matrix

Example: #include <machine.h>

extern float tb1[4][4];

void main(void)

{

 st_ext(tbl);

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 452 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: 1. This function is valid only when cpu=sh4 or sh4a is specified.
2. Intrinsic function st_ext() changes the floating-point register bank bit
 (FR) of the floating-point status control register (FPSCR) to access the
 extension register. Therefore, when this function is used in an interrupt
 function, change the interrupt mask before and after the vector operation
 intrinsic function.

long _ _fixed pabs_lf (long _ _fixed data)
long _ _accum pabs_la (long _ _accum data)

Description: Computes the absolute value of a number.

Header file: <machine.h> or <umachine.h>

Return values: Operation result

Parameters: data Data of which absolute value is to be computed

Example: #include <machine.h>

long _ _fixed result;

long _ _fixed ptr;

void main(void)

{

 result=pabs_lf(ptr);

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.
If the result cannot be expressed as a type of return value (long _ _fixed or
long _ _accum), correct operation is not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 453 of 1176
Mar 01, 2022

_ _fixed pdmsb_lf (long _ _fixed data)
_ _fixed pdmsb_la (long _ _accum data)

Description: Detects the MSB (computes the shift count necessary to normalize data).

Header file: <machine.h> or <umachine.h>

Return values: Operation result

Parameters: data Data of which MSB is to be detected

Example: #include <machine.h>

_ _fixed result;

long _ _fixed ptr;

void main(void)

{

 result=pdmsb_lf(ptr);

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 454 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long _ _fixed psha_lf (long _ _fixed data,int count)
long _ _accum psha_la (long _ _accum data,int count)

Description: Shifts data arithmetically.

Header file: <machine.h> or <umachine.h>

Return values: Operation result

Parameters: data Data to be shifted arithmetically
count Shift count

Example: #include <machine.h>

long _ _fixed result;

long _ _fixed ptr;

int count;

void main(void)

{

 result=psha_lf(ptr,count);

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.
The specifiable range for count is -32 to +32. When a positive value is
specified, data is shifted to the left. When a negative value is specified, data
is shifted to the right up to its absolute value. If the specified value is out of
range, the behavior is not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 455 of 1176
Mar 01, 2022

long _ _fixed long_as_lfixed (long data)
long lfixed_as_long (long _ _fixed data)

Description: Copies a bit pattern (copy between a general register and a DSP register).

Header file: <machine.h> or <umachine.h>

Return values: Copy result

Parameters: data Data to be copied

Example: #include <machine.h>

long _ _fixed result;

long ptr;

void main(void)

{

 result=long_as_lfixed(ptr);

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

_ _accum rndtoa (long _ _accum data)
_ _fixed rndtof (long _ _fixed data)

Description: Rounds data.

Header file: <machine.h> or <umachine.h>

Return values: Operation result

Parameters: data Data to be rounded

Example: #include <machine.h>
_ _accum result;
long _ _accum ptr;
void main(void)
{
 result=rndtoa(ptr);
}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 456 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

void set_circ_x (_ _X_ _circ _ _fixed array[],size_t size)
void set_circ_y (_ _Y_ _circ _ _fixed array[],size_t size)

Description: Specifies modulo addressing.

Header file: <machine.h> or <smachine.h>

Parameters: array[] Data to which modulo addressing is to be applied
size Data size

Example: #include <machine.h>

_ _circ _ _X _ _fixed input[4] = {0.0r, 0.25r, 0.5r, 0.25r};

_ _Y _ _fixed output[8];

void main(void)

{

 int i;

 set_circ_x(input, sizeof(input)); /* Specifies modulo addressing. */

 for (i = 0; i < 8; i++) {

 output[i] = input[i];

 }

 clr_circ(); /* Cancels modulo addressing. */

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 457 of 1176
Mar 01, 2022

void clr_circ ()

Description: Cancels modulo addressing.
Clears SR bits 10 and 11 counted from the right to zero.

Header file: <machine.h> or <smachine.h>

Example: #include <machine.h>
_ _circ _ _X _ _fixed input[4] = {0.0r, 0.25r, 0.5r, 0.25r};

_ _Y _ _fixed output[8];

void main(void)

{

 int i;

 set_circ_x(input, sizeof(input)); /* Specifies modulo addressing. */

 for (i = 0; i < 8; i++) {

 output[i] = input[i];

 }

 clr_circ(); /* Cancels modulo addressing. */

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 458 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void set_cs (unsigned int mode)

Description: Specifies the CS bit value.

Header file: <machine.h> or <umachine.h>

Parameters: mode Mode to be specified (0 to 5)

Specified Value Mode
0 Carry/borrow mode
1 Negative mode
2 Zero mode
3 Overflow mode
4 Signed greater mode
5 Signed equal or greater mode

Example: #include <machine.h>

#define MODE 1

void main(void)

{

 set_cs(MODE);

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 459 of 1176
Mar 01, 2022

void fsca(long angle,float *sinv,float *cosv)

Description: Computes the approximate values of the sine and cosine from the angle
specified by angle and stores the results in an area specified by sinv and cosv.

Header file: <machine.h> or <umachine.h>

Parameters: angle Angle from which the sine and cosine are to be obtained
 (Specify a bit image for angle when a long-type 32-bit area is
 expressed as the fixed-point data with a decimal point at the right
 of 216 bits.)
sinv Address to store the obtained sine value
cosv Address to store the obtained cosine value

Example: #include <machine.h>

long angle = (45<<16)/360; /* 45 degrees */

float sinv;

float cosv;

void main(void)

{

 fsca(angle,&sinv,&cosv);

}

Remarks: This function is valid only when cpu=sh4a is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 460 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

float fsrra (float data)

Description: Computes the approximate values of the inverse of the square root of a value.

Header file: <machine.h> or <umachine.h>

Parameters: data Data of which inverse of the square root is to be computed

Return values: Operation result

Example: #include <machine.h>

float data;

float result;

void main(void)

{

 result=fsrra(data);

}

Remarks: This function is valid only when cpu=sh4a is specified.

void icbi (void *p)

Description: Invalidates the instruction cache.

Header file: <machine.h> or <umachine.h>

Parameters: p Address of a variable or a function

Example: #include <machine.h>

extern int *p;

void main(void)

{

 icbi(p);

}

Remarks: This function is valid only when cpu=sh4a or sh4aldsp is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 461 of 1176
Mar 01, 2022

void ocbi (void *p)
void ocbp (void *p)
void ocbwb (void *p)

Description: Operates the cache block.
ocbi: Invalidates the cache block
ocbp: Purges the cache block
ocbwb: Writes back the cache block

Header file: <machine.h> or <umachine.h>

Parameters: p Address of a variable or a function

Example: #include <machine.h>

extern int *p;

void main(void)

{

 ocbi(p);

}

Remarks: This function is valid only when cpu=sh4, sh4a, or sh4aldsp is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 462 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void prefi (void *p)

Description: Reads a 32-byte instruction block located at a 32-byte boundary into the
instruction cache.

Header file: <machine.h> or <umachine.h>

Parameters: p Prefetch address

Example: #include <machine.h>

void *pa;

void main(void)

{

 prefi(pa);

}

Remarks: This function is valid only when cpu=sh4a or sh4aldsp is specified.

void synco (void)

Description: This function is expanded into a SYNCO instruction. A SYNCO instruction
synchronizes data operation so that the instructions issued before the
SYNCO instruction are completed before the instructions after the SYNCO
instruction are started.

Header file: <machine.h> or <umachine.h>

Example: #include <machine.h>

void main(void)

{

 synco();

}

Remarks: This function is valid only when cpu=sh4a or sh4aldsp is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 463 of 1176
Mar 01, 2022

int movt (void)

Description: Refers to the value of T bit in SR.

Header file: <machine.h> or <umachine.h>

Return values: T bit value

Example: #include <machine.h>

extern int sr_t;

void main(void)

{

 sr_t = movt();

}

void clrt (void)

Description: Clears the T bit in SR.

Header file: <machine.h> or <umachine.h>

Example: #include <machine.h>

void main(void)

{

 clrt();

}

void sett (void)

Description: Sets the T bit in SR.

Header file: <machine.h> or <umachine.h>

Example: #include <machine.h>

void main(void)

{

 sett();

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 464 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

unsigned long xtrct (unsigned long data1, unsigned long data2)

Description: Extracts middle 32 bits from 64-bit data obtained by combining data1 and
data2.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Upper 32 bits of data
data2 Lower 32 bits of data

Return values: (lower 16 bits of data1):(upper 16 bits of data2)

Example: #include <machine.h>

extern unsigned long result,data1,data2;

void main(void)

{

 result = xtrct(data1,data2);

}

long addc (long data1, long data2)

Description: Adds data1, data2, and T bit, and sets the carry to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for addition
data2 Data 2 for addition

Return values: Addition result

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 result = addc(data1,data2);

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 465 of 1176
Mar 01, 2022

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.
if (a) {...} /* Sets comparison result to T bit */
result[1] = addc(data1[1], data2[1]); /* Adds comparison result */
result[0] = addc(data1[0], data2[0]); /* Reflects previous operation result */

int ovf_addc (long data1, long data2)

Description: Adds data1, data2, and T bit, and refers to the carry.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for addition
data2 Data 2 for addition

Return values: Carry

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 if (ovf_addc(data1,data2)) {

 result = 0;

 }

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.
if (a) {...} /* Sets comparison result to T bit */
if (ovf_addc(data1,data2)) { /* Adds comparison result */

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 466 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long addv (long data1, long data2)

Description: Adds data1 and data2, and sets the carry to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for addition
data2 Data 2 for addition

Return values: Addition result

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 result = addv(data1,data2);

}

int ovf_addv (long data1, long data2)

Description: Adds data1 and data2, and refers to the carry.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for addition
data2 Data 2 for addition

Return values: Carry

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 if (ovf_addv(data1,data2)) {

 result = 0;

 }

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 467 of 1176
Mar 01, 2022

long subc (long data1, long data2)

Description: Subtracts data2 and T bit from data1, and sets the borrow to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for subtraction
data2 Data 2 for subtraction

Return values: Subtraction result

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 result = subc(data1,data2);

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.
if (a) {...} /* Sets comparison result to T bit */
result[0] = subc(data1[0], data2[0]); /* Subtracts comparison result */
result[1] = subc(data1[1], data2[1]); /* Reflects previous operation result */

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 468 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int unf_subc (long data1, long data2)

Description: Subtracts data2 and T bit from data1, and refers to the borrow.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for subtraction
data2 Data 2 for subtraction

Return values: Borrow

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 if (unf_subc(data1,data2)) {

 result = 0;

 }

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.
if (a) {...} /* Sets comparison result to T bit */
if (unf_subc(data1,data2)) { /* Subtracts comparison result */

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 469 of 1176
Mar 01, 2022

long subv (long data1, long data2)

Description: Subtracts data2 from data1, and sets the borrow to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for subtraction
data2 Data 2 for subtraction

Return values: Subtraction result

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 result = subv(data1,data2);

}

int unf_subv (long data1, long data2)

Description: Subtracts data2 from data1, and refers to the borrow.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Data 1 for subtraction
data2 Data 2 for subtraction

Return values: Borrow

Example: #include <machine.h>

extern long result,data1,data2;

void main()

{

 if (unf_subv(data1,data2)) {

 result = 0;

 }

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 470 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long negc (long data)

Description: Subtracts data and T bit from 0, and sets the borrow to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Sign inversion result

Example: #include <machine.h>

extern long result,data;

void main()

{

 result = negc(data);

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.
if (a) {...}
result[0] = negc(data[0]); /* Subtracts comparison result */
result[1] = negc(data[1]); /* Reflects previous operation result */

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 471 of 1176
Mar 01, 2022

unsigned long div1 (unsigned long data1, unsigned long data2)

Description: Performs division data1/data2 for one step, and sets the result to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Dividend
data2 Divisor

Return values: Updated dividend value

Example: #include <machine.h>

extern unsigned long data1,data2;

void main(void)

{

 div0u();

 data1 = div1(data1,data2);

}

Remarks: Division can be implemented by repeating this function, but the M, Q, and T
bits must not be modified during the repeat (note that a comparison or shift
operation will modify the T bit).
Execute div0s() or div0u() immediately before this function to initialize the
M, Q, and T bits.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 472 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int div0s (long data1, long data2)

Description: Performs initial settings for signed division data1/data2, and refers to the T
bit.

Header file: <machine.h> or <umachine.h>

Parameters: data1 Dividend
data2 Divisor

Return values: T bit value

Example: #include <machine.h>

extern long data1,data2;

void main(void)

{

 (void)div0s(data1,data2);

 data1 = div1(data1,data2);

}

void div0u (void)

Description: Performs initial settings for unsigned division.

Header file: <machine.h> or <umachine.h>

Example: #include <machine.h>

extern unsigned long data1,data2;

void main(void)

{

 div0u();

 data1 = div1(data1,data2);

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 473 of 1176
Mar 01, 2022

unsigned long rotl (unsigned long data)

Description: Rotates data to left by one bit, and sets the bit pushed out of the operand to
the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Result of 1-bit left rotation

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

 result = rotl(data);

}

unsigned long rotr (unsigned long data)

Description: Rotates data to right by one bit, and sets the bit pushed out of the operand to
the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Result of 1-bit right rotation

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

 result = rotr(data);

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 474 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

unsigned long rotcl (unsigned long data)

Description: Rotates data including the T bit to left by one bit, and sets the bit pushed out
of the operand to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Result of 1-bit left rotation

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

 result = rotcl(data);

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.
if (a) {...} /* Sets comparison result to T bit */
result[1] = rotcl(data[1]); /* Rotates comparison result */

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 475 of 1176
Mar 01, 2022

unsigned long rotcr (unsigned long data)

Description: Rotates data including the T bit to right by one bit, and sets the bit pushed out
of the operand to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Result of 1-bit right rotation

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

 result = rotcr(data);

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.
if (a) {...} /* Sets comparison result to T bit */
result[1] = rotcr(data[1]); /* Rotates comparison result */

unsigned long shll (unsigned long data)

Description: Shifts data to left by one bit, and sets the bit pushed out of the operand to the
T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Result of 1-bit left shift

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

 result = shll(data);

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 476 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

unsigned long shlr (unsigned long data)

Description: Shifts data logically to right by one bit, and sets the bit pushed out of the
operand to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Result of 1-bit right shift

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

 result = shlr(data);

}

long shar (long data)

Description: Shifts data arithmetically to right by one bit, and sets the bit pushed out of
the operand to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: Result of 1-bit right shift

Example: #include <machine.h>

extern long result,data;

void main()

{

 result = shar(data);

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 477 of 1176
Mar 01, 2022

long clipsb (long data)

Description: Returns the value of data when data is in the range from –128 to 127, or
returns the upper limit or lower limit when data is outside the range.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: –128 (data < –128)
data (–128 <= data <= 127)
127 (127 < data)

Example: #include <machine.h>

extern long result,data;

void main()

{

 result = clipsb(data);

}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

long clipsw (long data)

Description: Returns the value of data when data is in the range from –32768 to 32767, or
returns the upper limit or lower limit when data is outside the range.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: –32768 (data < –32768)
data (–32768 <= data <= 32767)
32767 (32767 < data)

Example: #include <machine.h>

extern long result,data;

void main()

{

 result = clipsw(data);

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 478 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

unsigned long clipub (unsigned long data)

Description: Returns the value of data when data is in the range from 0 to 255, or returns
the upper limit when data is outside the range.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: data (data <= 255)
255 (255 < data)

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

 result = clipub(data);

}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

unsigned long clipuw (unsigned long data)

Description: Returns the value of data when data is in the range from 0 to 65535, or
returns the upper limit when data is outside the range.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values: data (data <= 65535)
65535 (65535 < data)

Example: #include <machine.h>

extern unsigned long result,data;

void main()

{

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 479 of 1176
Mar 01, 2022

 result = clipuw(data);

}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

void set_tbr (void *data)

Description: Sets data to TBR.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Example: #include <machine.h>

void *data;

void main(void)

{

 set_tbr(data);

}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

void *get_tbr (void)

Description: Refers to the TBR value.

Header file: <machine.h> or <umachine.h>

Return values: TBR value

Example: #include <machine.h>

void *result;

void main(void)

{

 result = get_tbr();

}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 480 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void *sr_jsr (void *func, int imask)

Description: Clears the RB and BL bits in the SR, sets the imask value as the interrupt
mask, and then calls the func function. A value form 0 to 15 can be specified
for imask. When 0 is specified for imask, the interrupt mask is not set and
only the RB and BL bits are cleared.

Header file: <machine.h> or <smachine.h>

Return values: None

Example: #include <machine.h>

#pragma interrupt func1(bank)

extern void func2(void);

void func1(void)

{

 sr_jsr(func2, 15);

}

_func1:

 MOV.L R14,@-R15

 STS.L PR,@-R15

 STC SSR,@-R15

 STC SPC,@-R15

 STC SR,R4

 MOV.L L11,R1 ; H'CFFFFF0F
 MOV #-16,R5 ; H'FFFFFFF0
 AND R1,R4 ; Clears the RB and BL bits.
 EXTU.B R5,R5

 MOV.L L11+4,R14 ; _func2
 OR R5,R4 ; Sets the interrupt mask to 15.
 LDC R4,SR

 JSR @R14

 NOP

 LDC @R15+,SPC

 LDC @R15+,SSR

 LDS.L @R15+,PR

 MOV.L @R15+,R14

 RTE

 NOP

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 481 of 1176
Mar 01, 2022

Remarks: This function is only valid when cpu = sh3, sh3dsp, sh4, sh4a, or sh4aldsp.
Only a function with a parameter or a return value or the pointer to such a
function can be specified for func.
If all of R8 to R14 are specified in #pragma global_register when the
sr_jsr() function is used, an error will be output.
If the sr_jsr() function is used in a function without the bank setting
(interrupt specification), an error will be output.
If a variable set to 0 is specified for imask, the interrupt mask is set to 0.

void bset(unsigned char *addr, unsigned char bit_num) Manipulate bits in memory

Description: Sets 1 to the specified bit (bit_num) of the specified address (addr). The
values specifiable for bit_num are 0 to 7.

Header: <machine.h> or <umachine.h>

Parameter: *addr Address
 bit_num Bit

Example: #include <machine.h>
 void func1(void)
 {
 bset((unsigned char *)(0xfffe3886),0);
 }

 After compilation:
 MOVI20 #-116602,R14 ; H'FFFE3886
 BSET.B #0,@(0,R14)

Remarks: This function is only valid when cpu= sh2a | sh2afpu is specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 482 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void bclr(unsigned char *addr, unsigned char bit_num) Manipulate bits in memory

Description: Sets 0 to the specified bit (bit_num) of the specified address (addr). The
values specifiable for bit_num are 0 to 7.

Header: <machine.h> or <umachine.h>

Parameter: *addr Address
 bit_num Bit

Example: #include <machine.h>
void func1(void)
{
 bclr((unsigned char *)(0xfffe3886),0);
}

 After compilation:
MOVI20 #-116602,R14 ; H'FFFE3886
BCLR.B #0,@(0,R14)

Remarks: This function is only valid when cpu= sh2a | sh2afpu is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 483 of 1176
Mar 01, 2022

void bcopy(unsigned char *from_addr, unsigned char from_bit_num, unsigned char
*to_addr, unsigned char to_bit_num) Manipulate bits in memory

Description: Sets the value of bit [1] (from_bit_num) of address [1] (from_addr) to
bit T and bit [2] (to_bit_num) of address [2] (to_addr). The values
specifiable for from_bit_num and to_bit_num are 0 to 7.

Header: <machine.h> or <umachine.h>

Parameter: *from_addr Address [1] (origin)
from_bit_num Bit [1] (origin)
*to_addr Address [2] (destination)
to_bit_num Bit [2] (destination)

Example: To copy the values of different bits at different addresses:
#include <machine.h>
void func1(void)
{
 bcopy((unsigned char *)(0xfffe3886),
 0,
 (unsigned char *)(0xfffd3886),
 1);
}

 After compilation:
MOVI20 #-116602,R14 ; H'FFFE3886
BLD.B #0,@(0,R14)
MOVI20 #-182138,R14 ; H'FFFD3886
BST.B #1,@(0,R14)
RTS/N

 To copy the values of different bits at the same address:
#include <machine.h>
void func1(void)
{
 bcopy((unsigned char *)(0xfffe3886),
 0,
 (unsigned char *)(0xfffe3886),
 1);
}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 484 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 After compilation:
MOVI20 #-116602,R14 ; H'FFFE3886
BLD.B #0,@(0,R14)
MOVI20 #-182138,R14 ; H'FFFD3886
BST.B #1,@(0,R14)
RTS/N

Remarks: This function is only valid when cpu= sh2a | sh2afpu is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 485 of 1176
Mar 01, 2022

void bnotcopy(unsigned char *from_addr, unsigned char from_bit_num, unsigned char
*to_addr, unsigned char to_bit_num) Manipulate bits in memory

Description: Sets the inverted value of bit [1] (from_bit_num) of address [1]
(from_addr) to bit T and bit [2] (to_bit_num) of address [2] (to_addr).
The values specifiable for from_bit_num and to_bit_num are 0 to 7.

Header: <machine.h> or <umachine.h>

Parameter: *from_addr Address [1] (origin)
from_bit_num Bit [1] (origin)
*to_addr Address [2] (destination)
to_bit_num Bit [2] (destination)

Example: To copy the inverted values of different bits at different addresses:
#include <machine.h>
void func1(void)
{
 bnotcopy ((unsigned char *)(0xfffe3886),
 0,
 (unsigned char *)(0xfffd3886),
 1);
}

 After compilation:
MOVI20 #-116602,R14 ; H'FFFE3886
BLDNOT.B #0,@(0,R14)
MOVI20 #-182138,R14 ; H'FFFD3886
BST.B #1,@(0,R14)
RTS/N

 To copy the inverted values of specific bits:
#include <machine.h>
void func1(void)
{
 bnotcopy((unsigned char *)(0xfffe3886),
 1,
 (unsigned char *)(0xfffe3886),
 1);
}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 486 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 After compilation:
MOVI20 #-116602,R14 ; H'FFFE3886
BLDNOT.B #1,@(0,R14)
BST.B #1,@(0,R14)
RTS/N

Remarks: This function is only valid when cpu= sh2a | sh2afpu is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 487 of 1176
Mar 01, 2022

10.4 C/C++ Libraries

10.4.1 Standard C Libraries

Overview of Libraries

This section describes the specifications of the C library functions, which can be used generally in
C/C++ programs. This section gives an overview of the library configuration, and describes the
layout and the terms used in this library function description.

(1) Library Types
A library implements standard processing such as input/output and string manipulation in the
form of C/C++ language functions. Libraries can be used by including standard include files
for each unit of processing.
Standard include files contain declarations for the corresponding libraries and definitions of the
macro names necessary to use them.
Table 10.37 shows the various library types and the corresponding standard include files.

Table 10.37 Library Types and Corresponding Standard Include Files

Library Type

Description

Standard Include
Files

Program diagnostics Outputs program diagnostic information. <assert.h>
Character handling Handles and checks characters. <ctype.h>
Mathematics Performs numerical calculations such as trigonometric

functions.
<math.h>
<mathf.h>

Non-local jumps Supports transfer of control between functions. <setjmp.h>
Variable arguments Supports access to variable arguments for functions

with such arguments.
<stdarg.h>

Input/output Performs input/output handling. <stdio.h>
General utilities Performs C program standard processing such

as storage area management.
<stdlib.h>

String handling Performs string comparison, copying, etc. <string.h>

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 488 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

In addition to the above standard include files, standard include files consisting solely of macro
name definitions, shown in table 10.38, are provided to improve programming efficiency.

Table 10.38 Standard Include Files Comprising Macro Name Definitions

Standard Include File Description
<stddef.h> Defines macro names used by the standard include files.
<float.h> Defines various limit values relating to the internal representation of

floating-point numbers.
<limits.h> Defines various limit values relating to compiler internal processing.
<errno.h> Defines the value to set in errno when an error is generated in a library

function.
<fixed.h> Defines various limit values relating to the internal representation of fixed-

point numbers.

(2) Organization of Library Part
The organization of the library part of this manual is described below.
Library functions are categorized for each standard include file, and descriptions are given for
each standard include file. For each category, there is first a description relating to the macro
names and function declarations defined in the standard include file (figure 10.4), followed by
a description of each function (figure 10.5).
Figure 10.4 shows the standard include file description layout, and figure 10.5, the function
description layout.

<standard include file name>

• Summarizes the overall function of this standard include file.

• Describes names defined or declared in this standard include file according to the name

 categories such as [Type], [Constant], [Variable], and [Function]. For macro names, (macro) is

 always attached beside the name category or name description.

• Adds description if implementation-defined specifications are included or notes common to the

 functions declared in this standard include file are given.

Figure 10.4 Layout of Standard Include File Description

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 489 of 1176
Mar 01, 2022

Function name

Description: Describes the library function.

Header file: Shows the name of standard include file to be declared.

Return value: Normal: Shows the return value when the library function ends normally.

 Abnormal: Shows the return value when the library function ends abnormally.

Parameters: Indicates the meanings of the parameters.

Example: Describes the calling procedure.

Error conditions:

 Conditions for the occurrence of errors that cannot be

 determined from the return value in library function processing.

 If such an error occurs, the value defined in each compiler for the error type is set

 in errno*.

Remarks: Details the library function specifications.

Implementation define:

 The compiler processing method.

Figure 10.5 Layout of Function Description

Note: errno is a variable that stores the error type if an error occurs during execution of a library
function. See section 10.4.1, descriptions for <stddef.h>, for details.

(3) Terms Used in Library Function Descriptions
(a) Stream input/output

In data input/output, it would lead to poor efficiency if each call of an input/output function,
which handles a single character, drove the input/output device and the OS functions. To
solve this problem, a storage area called a buffer is normally provided, and the data in the
buffer is input or output at one time.
From the viewpoint of the program, on the other hand, it is more convenient to call
input/output functions for each character.
Using the library functions, character-by-character input/output can be performed
efficiently without awareness of the buffer status within the program by automatically
performing buffer management.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 490 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Those library functions enable a programmer to write a program considering the
input/output as a single data stream, making the programmer be able to implement data
input/output efficiently without being aware of the detailed procedure. Such capability is
called stream input/output.

(b) FILE structure and file pointer
The buffer, and other information, required for the stream input/output described above are
stored in a single structure, defined by the name FILE in the <stdio.h> standard include file.
In stream input/output, all files are handled as having a FILE structure data structure. Files
of this kind are called stream files. A pointer to this FILE structure is called a file pointer,
and is used to specify an input/output file.
The file pointer is defined as

 FILE *fp;

When a file is opened by the fopen function, etc., the file pointer is returned. If the open
processing fails, NULL is returned. Note that if a NULL pointer is specified in another
stream input/output function, that function will end abnormally. When a file is opened, the
file pointer value must be checked to see whether the open processing has been successful.

(c) Functions and macros
There are two library function implementation methods: functions and macros.
A function has the same interface as an ordinary user-written function, and is incorporated
during linkage. A macro is defined using a #define statement in the standard include file
relating to the function.
The following points must be noted concerning macros:
(i) Macros are expanded automatically by the preprocessor, and therefore a macro

expansion cannot be invalidated even if the user declares a function with the same name.
(ii) If an expression with a side effect as a macro parameter (assignment expression,

increment, decrement) is specified, its result is not guaranteed.
Example: Macro definition of MACRO that calculates the absolute value of a

parameter, is as follows
If the following definition is made:
#define MACRO(a) (a) >= 0 ? (a) : -(a)

and if
X=MACRO(a++)

is in the program, the macro will be expanded as follows:
X = (a++) >= 0 ? (a++) : -(a++)

a will be incremented twice, and the resultant value will be different from the absolute
value of the initial value of a.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 491 of 1176
Mar 01, 2022

(d) EOF
In functions such as getc, getchar, and fgetc, which input data from a file, EOF is the
value returned at end-of-file. The name EOF is defined in the <stdio.h> standard include
file.

(e) NULL
This is the value when a pointer is not pointing at anything. The name NULL is defined in
the <stddef.h> standard include file.

(f) Null character
The end of a string literal in C is indicated by the characters \0. String parameters in
library functions must also conform to this convention. The characters \0 indicating the
end of a string are called null characters.

(g) Return code
With some library functions, a return value is used to determine the result (such as whether
the specified processing succeeded or failed). In this case, the return value is called as the
return code.

(h) Text files and binary files
Many systems have special file formats to store data. To support this facility, library
functions have two file formats: text files and binary files.
(i) Text files

A text file is used to store ordinary text, and consists of a collection of lines. In text file
input, the new-line designator (\n) is input as a line separator. In output, output of the
current line is terminated by outputting the new-line designator (\n). Text files are used
to input/output files that store standard text for each system. With text files, characters
input or output by a library function do not necessarily correspond to a physical stream
of data in the file.

(ii) Binary files
A binary file is configured as a row of byte data. Data input or output by a library
function corresponds to a physical list of data in the file.

(i) Standard input/output files
Files that can be used as standard by input/output library functions by default without
preparations such as opening file are called standard input/output files. Standard
input/output files comprise the standard input file (stdin), standard output file (stdout), and
standard error output file (stderr).
(i) Standard input file (stdin)

Standard file to be input to a program.
(ii) Standard output file (stdout)

Standard file to be output from a program.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 492 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(iii) Standard error output file (stderr)
Standard file for storing output of error messages, etc., from a program.

(j) Floating-point numbers
Floating-point numbers are numbers represented by approximation of real-numbers. In a C
source program, floating-point numbers are represented by decimal numbers, but inside the
computer they are normally represented by binary numbers.
In the case of binary numbers, the floating-point representation is as follows:
2n × m (n: integer, m: binary fraction)
Here, n is called the exponent of the floating-point number, and m is called the mantissa.
The number of bits to represent n and m is normally fixed so that a floating-point number
can be represented using a specific data size.
Some terms relating to floating-point numbers are explained below.

(i) Radix

An integer value indicating the number of distinct digits in the number system used by
a floating-point number (10 for decimal, 2 for binary, etc.). The radix is normally 2.

(ii) Rounding
Rounding is performed when an intermediate result of an operation of higher precision
than a floating-point number is stored as a floating-point number. There is rounding
up, rounding down, and half-adjust rounding (i.e., rounding up fractions over 1/2 and
rounding down fractions under 1/2; or, in binary representation, rounding down 0 and
rounding up 1).

(iii) Normalization
When a floating-point number is represented in the form 2n × m, the same number can
be represented in different ways.
Example: The following two expressions represent the same value.
25 × 1.0 (2) ((2) indicates a binary number)
26 × 0.1 (2)
Usually, a representation in which the leading digit is not 0 is used, in order to secure
the number of valid digits. This is called a normalized floating-point number, and the
operation that converts a floating-point number to this kind of representation is called
normalization.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 493 of 1176
Mar 01, 2022

(iv) Guard bit
When saving an intermediate result of a floating-point operation, data one bit longer
than the actual floating-point number is normally provided in order for rounding to be
carried out. However, this alone does not permit an accurate result to be achieved in
the event of digit dropping, etc. For this reason, the intermediate result is saved with
an extra bit, called a guard bit.

(k) File access mode
This is a string that indicates the kind of processing to be carried out on a file when it is
opened. There are 12 different strings, as shown in table 10.39.

Table 10.39 File Access Modes

Access Mode Meaning
'r' Open text file for reading
'w' Open text file for writing
'a' Open text file for addition
'rb' Open binary file for reading
'wb' Open binary file for writing
'ab' Open binary file for addition
'r+' Open text file for reading and updating
'w+' Open text file for writing and updating
'a+' Open text file for addition and updating
'r+b' Open binary file for reading and updating
'w+b' Open binary file for writing and updating
'a+b' Open binary file for addition and updating

(l) Implementation definition
Definitions differ by compilers.

(m)Error indicator and end-of-file indicator
The following two data items are held for each stream file: (1) an error indicator that
indicates whether or not an error has occurred during file input/output, and (2) an end-of-
file indicator that indicates whether or not the input file has ended.
These data items can be referenced by the ferror function and the feof function,
respectively.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 494 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

With some functions that handle stream files, error occurrence and end-of-file information
cannot be obtained from the return value alone. The error indicator and end-of-file
indicator are useful for checking the file status after execution of such functions.

(n) File position indicator
Stream files that can be read or written at any position within the file, such as disk files,
have an associated data item called a file position indicator that indicates the current
read/write position within the file.
File position indicators are not used with stream files that do not permit the read/write
position within the file to be changed, such as terminals.

(4) Notes on use of libraries
(a) The contents of macros defined in a library differ for each compiler.

When a library is used, the behavior is not guaranteed if the contents of these macros are
redefined.

(b) With libraries, errors are not detected in all cases. The behavior is not guaranteed if library
functions are called in a form other than those shown in the descriptions in the following
sections.

<stddef.h>

Defines macro names used in common in the standard include file.

The following macro names are all implementation-defined.

Type Definition Name Description
Type (macro) ptrdiff_t Indicates the type of the result of subtracting two pointers.

size_t Indicates the type of the result of an operation using the
sizeof operator.

Constant (macro) NULL Indicates the value when a pointer is not pointing at anything.
This value is such that the result of a comparison with 0
using the equality operator (==) is true.

Variable (macro) errno If an error occurs during library function processing, the error
code defined in the respective library is set in errno. By
setting 0 in errno before calling a library function and
checking the error code set in errno after the library function
processing has ended, it is possible to check whether an
error occurred during the library function processing.

Macro offsetof
(type, member)

Obtains the offset in bytes from the beginning of a structure
to a structure member.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 495 of 1176
Mar 01, 2022

Implementation Define

Item Compiler Specifications
Value of macro NULL The pointer type value 0 is set to void.
Contents of macro ptrdiff_t int type

<assert.h>

Adds diagnostics into programs.

Type Definition Name Description
Function (macro) assert Adds diagnostics into programs.

To invalidate the diagnostics defined by <assert.h>, define macro name NDEBUG with a #define
statement (#define NDEBUG) before including <assert.h>.

Note: If a #undef statement is used for macro name assert, the result of subsequent assert calls is
not guaranteed.

void assert (int expression)

Description: Adds diagnostics into programs.

Header file: <assert.h>

Parameters: expression Expression to be evaluated.

Example: #include <assert.h>
 int expression;
 assert (expression);

Remarks: When the expression is true, the assert macro terminates processing without
returning a value. If the expression is false, it outputs diagnostic information to
the standard error file in the form defined by the compiler, and then calls the
abort function.

 The diagnostic information includes the parameter's program text, source file
name, and source line numbers.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 496 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Implementation define:
The following message is output when the expression is false in assert
(expression):
ASSERTION FAILED:∆expression∆FILE∆<file name>,line∆<line number>

<ctype.h>

Performs type determination and conversion for characters.

Type Definition Name Description
Function isalnum Tests for an alphabetic character or a decimal digit.
 isalpha Tests for an alphabetic character.
 iscntrl Tests for a control character.
 isdigit Tests for a decimal digit.
 isgraph Tests for a printing character except space.
 islower Tests for a lowercase letter.
 isprint Tests for a printing character, including space.
 ispunct Tests for a special character.
 isspace Tests for a space character.
 isupper Tests for an uppercase letter.
 isxdigit Tests for a hexadecimal digit.
 tolower Converts an uppercase letter to lowercase.
 toupper Converts a lowercase letter to uppercase.

In the above functions, if the input parameter value is not within the range that can be represented
by the unsigned char type and is not EOF, the operation of the function is not guaranteed.
Character types are listed in table 10.40.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 497 of 1176
Mar 01, 2022

Table 10.40 Character Types

Character Type Description
Uppercase letter Any of the following 26 characters

‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’,
‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’

Lowercase letter Any of the following 26 characters
‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’, ‘n’, ‘o’, ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’,
‘v’, ‘w’, ‘x’, ‘y’, ‘z’

Alphabetic character Any uppercase or lowercase letter
Decimal digit Any of the following 10 characters

‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’
Printing character A character, including space (‘ ’) that is displayed on the screen

(corresponding to ASCII codes 0x20 to 0x7E)
Control character Any character except a printing character
White-space character Any of the following 6 characters

Space (‘ ’), form feed (‘\f’), new-line (‘\n’), carriage return (‘\r’), horizontal
tab (‘\t’), vertical tab (‘\v’)

Hexadecimal digit Any of the following 22 characters
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’,
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’,
‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’

Special character Any printing character except space (‘ ’), an alphabetic character, or a
decimal digit

Implementation Define

Item Compiler Specifications
The character set inspected by the isalnum
function, isalpha function, iscntrl function,
islower function, isprint function, and
isupper functions

Character set represented by the unsigned char type.
Table 10.41 shows the character set that results in a
true return value.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 498 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.41 True Character

Function Name True Characters
isalnum '0' to '9', 'A' to 'Z', 'a' to 'z'
isalpha 'A' to 'Z', 'a' to 'z'
iscntrl '\x00' to '\x1f', '\x7f'
islower 'a' to 'z'
isprint '\x20' to '\x7E'
isupper 'A' to 'Z'

int isalnum (int c)

Description: Tests for an alphabetic character or a decimal digit.

Header file: <ctype.h>

Return values: If character c is an alphabetic character or a decimal digit: Nonzero
 If character c is not an alphabetic character or a decimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isalnum(c);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 499 of 1176
Mar 01, 2022

int isalpha(int c)

Description: Tests for an alphabetic character.

Header file: <ctype.h>

Return values: If character c is an alphabetic character: Nonzero
 If character c is not an alphabetic character: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isalpha(c);

int iscntrl (int c)

Description: Tests for a control character.

Header file: <ctype.h>

Return values: If character c is a control character: Nonzero
 If character c is not a control character: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=iscntrl (c);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 500 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int isdigit (int c)

Description: Tests for a decimal digit.

Header file: <ctype.h>

Return values: If character c is a decimal digit: Nonzero
 If character c is not a decimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isdigit(c);

int isgraph (int c)

Description: Tests for any printing character except space (‘ ’).

Header file: <ctype.h>

Return values: If character c is a printing character except space: Nonzero
 If character c is not a printing character except space: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isgraph(c);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 501 of 1176
Mar 01, 2022

int islower (int c)

Description: Tests for a lowercase letter.

Header file: <ctype.h>

Return values: If character c is a lowercase letter: Nonzero
 If character c is not a lowercase letter: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=islower(c);

int isprint (int c)

Description: Tests for a printing character, including space (‘ ’).

Header file: <ctype.h>

Return values: If character c is a printing character, including space: Nonzero
 If character c is not a printing character, including space: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isprint(c);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 502 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int ispunct (int c)

Description: Tests for a special character.

Header file: <ctype.h>

Return values: If character c is a special character: Nonzero
 If character c is not a special character: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=ispunct(c);

int isspace (int c)

Description: Tests for a white-space character.

Header file: <ctype.h>

Return values: If character c is a white-space character: Nonzero
 If character c is not a white-space character: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isspace(c);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 503 of 1176
Mar 01, 2022

int isupper (int c)

Description: Tests for an uppercase letter.

Header file: <ctype.h>

Return values: If character c is an uppercase letter: Nonzero
 If character c is not an uppercase letter: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isupper(c);

int isxdigit (int c)

Description: Tests for a hexadecimal digit.

Header file: <ctype.h>

Return values: If character c is a hexadecimal digit: Nonzero
 If character c is not a hexadecimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
 int c, ret;
 ret=isxdigit(c);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 504 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int tolower (int c)

Description: Converts an uppercase letter to the corresponding lowercase letter.

Header file: <ctype.h>

Return values: If character c is an uppercase letter: Lowercase letter
 corresponding to character c
 If character c is not an uppercase letter: Character c

Parameters: c Character to be converted

Example: #include <ctype.h>
 int c, ret;
 ret=tolower(c);

int toupper (int c)

Description: Converts a lowercase letter to the corresponding uppercase letter.

Header file: <ctype.h>

Return values: If character c is a lowercase letter: Uppercase letter
 corresponding to character c
 If character c is not a lowercase letter: Character c

Parameters: c Character to be converted

Example: #include <ctype.h>
 int c, ret;
 ret=toupper(c);

<float.h>

Defines various limits relating to the internal representation of floating-point numbers.

The following macro names are all implementation-defined.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 505 of 1176
Mar 01, 2022

Type Definition Name Definition Value Description
Constant
(macro)

FLT_RADIX 2 Indicates the radix in exponent
representation.

 FLT_ROUNDS 1 Indicates whether or not the result of an
add operation is rounded off.
The meaning of this macro definition is as
follows:
(1) When result of add operation is

rounded off: Positive value
(2) When result of add operation is

rounded down: 0
(3) When nothing is specified: –1
The rounding-off and rounding-down
methods are implementation-defined.

 FLT_GUARD 1 Indicates whether or not a guard bit is
used in multiply operations.
The meaning of this macro definition is as
follows:
(1) When guard bit is used: 1
(2) When guard bit is not used: 0

 FLT_NORMALIZE 1 Indicates whether or not floating-point
values are normalized.
The meaning of this macro definition is as
follows:
(1) When normalized: 1
(2) When not normalized: 0

 FLT_MAX 3.4028235677973364e
+38F

Indicates the maximum value that can be
represented as a float type floating-point
value.

 DBL_MAX 1.7976931348623158e
+308

Indicates the maximum value that can be
represented as a double type floating-
point value.

 LDBL_MAX 1.7976931348623158e
+308

Indicates the maximum value that can be
represented as a long double type
floating-point value.

 FLT_MAX_EXP 127 Indicates the power-of-radix maximum
value that can be represented as a float
type floating-point value.

 DBL_MAX_EXP 1023 Indicates the power-of-radix maximum
value that can be represented as a double
type floating-point value.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 506 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Definition Value Description
Constant
(macro)

LDBL_MAX_EXP 1023 Indicates the power-of-radix maximum
value that can be represented as a long
double type floating-point value.

 FLT_MAX_10_EXP 38 Indicates the power-of-10 maximum value
that can be represented as a float type
floating-point value.

 DBL_MAX_10_EXP 308 Indicates the power-of-10 maximum value
that can be represented as a double type
floating-point value.

 LDBL_MAX_10_
EXP

308 Indicates the power-of-10 maximum value
that can be represented as a long
double type floating-point value.

 FLT_MIN ● When -cpu=sh4|sh4a
and -denormalize=off
1.1754943508222875
e-38F

● Other cases
1.4012984643248171
e-45F

Indicates the minimum positive value that
can be represented as a float type
floating-point value.

 DBL_MIN ● When -cpu=sh4|sh4a
and -denormalize=off
2.2250738585072014
e-308

● Other cases
4.9406564584124654
e-324

Indicates the minimum positive value that
can be represented as a double type
floating-point value.

 LDBL_MIN ● When -cpu=sh4|sh4a
and -denormalize=off
2.2250738585072014
e-308

● Other cases
4.9406564584124654
e-324

Indicates the minimum positive value that
can be represented as a long double type
floating-point value.

 FLT_MIN_EXP ● When -cpu=sh4|sh4a
and -denormalize=off
-126

● Other cases
-149

Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a float type positive value.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 507 of 1176
Mar 01, 2022

Type Definition Name Definition Value Description
Constant
(macro)

DBL_MIN_EXP ● When -cpu=sh4|sh4a
and -denormalize=off
-1022

● Other cases
-1074

Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a double type positive
value.

 LDBL_MIN_EXP ● When -cpu=sh4|sh4a
and -denormalize=off
-1022

● Other cases
-1074

Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a long double type positive
value.

 FLT_MIN_10_EXP ● When -cpu=sh4|sh4a
and -denormalize=off
-38

● Other cases
-44

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a float type positive value.

 DBL_MIN_10_EXP ● When -cpu=sh4|sh4a
and -denormalize=off
-308

● Other cases
-323

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a double type positive
value.

 LDBL_MIN_10_EXP ● When -cpu=sh4|sh4a
and -denormalize=off
-308

● Other cases
-323

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a long double type positive
value.

 FLT_DIG 6 Indicates the maximum number of digits in
float type floating-point value decimal-
precision.

 DBL_DIG 15 Indicates the maximum number of digits in
double type floating-point value decimal-
precision.

 LDBL_DIG 15 Indicates the maximum number of digits in
long double type floating-point value
decimal-precision.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 508 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Definition Value Description
Constant
(macro)

FLT_MANT_DIG 24 Indicates the maximum number of
mantissa digits when a float type floating-
point value is represented in the radix.

 DBL_MANT_DIG 53 Indicates the maximum number of
mantissa digits when a double type
floating-point value is represented in the
radix.

 LDBL_MANT_DIG 53 Indicates the maximum number of
mantissa digits when a long double type
floating-point value is represented in the
radix.

 FLT_EXP_DIG 8 Indicates the maximum number of
exponent digits when a float type floating-
point value is represented in the radix.

 DBL_EXP_DIG 11 Indicates the maximum number of
exponent digits when a double type
floating-point value is represented in the
radix.

 LDBL_EXP_DIG 11 Indicates the maximum number of
exponent digits when a long double type
floating-point value is represented in the
radix.

 FLT_POS_EPS
FLT_EPSILON

5.9604648328104311e
−8F

Indicates the minimum floating-point value
x for which 1.0 + x ≠ 1.0 in float type.

 DBL_POS_EPS
DBL_EPSILON

1.1102230246251567e
−16

Indicates the minimum floating-point value
x for which 1.0 + x ≠ 1.0 in double type.

 LDBL_POS_EPS
LDBL_EPSILON

1.1102230246251567e
−16

Indicates the minimum floating-point value
x for which 1.0 + x ≠ 1.0 in long double
type.

 FLT_NEG_EPS 2.9802324164052156e
−8F

Indicates the minimum floating-point value
x for which 1.0 – x ≠ 1.0 in float type.

 DBL_NEG_EPS 5.5511151231257834e
−17

Indicates the minimum floating-point value
x for which 1.0 – x ≠ 1.0 in double type

 LDBL_NEG_EPS 5.5511151231257834e
−17

Indicates the minimum floating-point value
x for which 1.0 – x ≠ 1.0 in long double
type.

 FLT_POS_EPS_EX
P

−23 Indicates the minimum integer n for which
1.0 + (radix)n ≠ 1.0 in float type.

 DBL_POS_EPS_EX
P

−52 Indicates the minimum integer n for which
1.0 +(radix)n ≠ 1.0 in double type.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 509 of 1176
Mar 01, 2022

Type Definition Name Definition Value Description
Constant
(macro)

LDBL_POS_EPS_E
XP

−52 Indicates the minimum integer n for which
1.0 + (radix)n ≠ 1.0 in long double type.

 FLT_NEG_EPS_EX
P

−24 Indicates the minimum integer n for which
1.0 – (radix)n ≠ 1.0 in float type.

 DBL_NEG_EPS_EX
P

−53 Indicates the minimum integer n for which
1.0 – (radix)n ≠ 1.0 in double type.

 LDBL_NEG_EPS_E
XP

−53 Indicates the minimum integer n
for which 1.0 – (radix)n ≠ 1.0 in long
double type.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 510 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<limits.h>

Defines various limits relating to the internal representation of integer type data.
The following macro names are all implementation-defined.

Type Definition Name Definition Value Description
Constant
(macro)

CHAR_BIT 8 Indicates the number of bits of which char type is
composed.

 CHAR_MAX 127 Indicates the maximum value that a char type
variable can have as a value.

 CHAR_MIN −128 Indicates the minimum value that a char type
variable can have as a value.

 SCHAR_MAX 127 Indicates the maximum value that a signed char
type variable can have as a value.

 SCHAR_MIN −128 Indicates the minimum value that a signed char
type variable can have as a value.

 UCHAR_MAX 255U Indicates the maximum value that an unsigned
char type variable can have as a value.

 SHRT_MAX 32767 Indicates the maximum value that a short type
variable can have as a value.

 SHRT_MIN −32768 Indicates the minimum value that a short type
variable can have as a value.

 USHRT_MAX 65535U Indicates the maximum value that an unsigned
short type variable can have as a value.

 INT_MAX 217483647 Indicates the maximum value that an int type
variable can have as a value.

 INT_MIN −2147483647−1 Indicates the minimum value that an int type
variable can have as a value.

 UINT_MAX 4294967295U Indicates the maximum value that an unsigned int
type variable can have as a value.

 LONG_MAX 217483647L Indicates the maximum value that a long type
variable can have as a value.

 LONG_MIN −2147483647L−1L Indicates the minimum value that a long type
variable can have as a value.

 ULONG_MAX 4294967295U Indicates the maximum value that an unsigned
long type variable can have as a value.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 511 of 1176
Mar 01, 2022

Type Definition Name Definition Value Description
Constant
(macro)

LLONG_MAX 922337203685477
5807LL

Indicates the maximum value that a long long
type variable can have as a value.

 LLONG_MIN −92233720368547
75807LL-1LL

Indicates the minimum value that a long long type
variable can have as a value.

 ULLONG_MAX 184467440737095
51615ULL

Indicates the maximum value that an unsigned
long long type variable can have as a value.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 512 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<errno.h>

Defines the value to set in errno when an error is generated in a library function.
The following macro names are all implementation-defined.

Type Definition Name Description
Variable
(macro)

errno int type variable. An error number is set when an error is
generated in a library function.

Constant
(macro)

ERANGE Refer to section 12.3, Standard Library Error Messages.

EDOM Same as above
 ESTRN Same as above
 PTRERR Same as above
 ECBASE Same as above
 ETLN Same as above
 EEXP Same as above
 EEXPN Same as above
 EFLOATO Same as above
 EFLOATU Same as above
 EDBLO Same as above
 EDBLU Same as above
 ELDBLO Same as above
 ELDBLU Same as above
 NOTOPN Same as above
 EBADF Same as above
 ECSPEC Same as above
 EFIXEDO Same as above
 EFIXEDU Same as above

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 513 of 1176
Mar 01, 2022

Type Definition Name Description
Constant
(macro)

EACCUMO Same as above

EACCUMU Same as above
 ELFIXEDO Same as above
 ELFIXEDU Same as above
 ELACCUMO Same as above
 ELACCUMU Same as above
 EMALRESM Same as above
 EMALFRSM Same as above
 ETOKRESM Same as above
 ETOKFRSM Same as above
 EIOBRESM Same as above
 EIOBFRSM Same as above

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 514 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<fixed.h>

Defines various limits relating to the internal representation of fixed-point numbers.

The following macro names are all implementation-defined.

Type Definition Name Definition Value Description
Constant
(macro)

FIXED_BIT 16 Indicates the number of bits in a _ _fixed
type value.

FIXED_MIN (-0.5r-0.5r) Indicates the minimum value that can be
represented by a _ _fixed type variable.

FIXED_MAX 0.999969482421875r Indicates the maximum value that can be
represented by a _ _fixed type variable.

FIXED_EPSILON 0.000030517578125r Indicates the difference between 0.0r and
the minimum value that is greater than
0.0r and can be represented as a _ _fixed
type value.

LFIXED_BIT 32 Indicates the number of bits in a long
_ _fixed type value.

LFIXED_MIN (-0.5R-0.5R) Indicates the minimum value that can be
represented by a long _ _fixed type
variable.

LFIXED_MAX 0.999999999534338712
6922607421875R

Indicates the maximum value that can be
represented by a long _ _fixed type
variable.

LFIXED_EPSILON 0.000000000465661287
3077392578125R

Indicates the difference between 0.0R and
the minimum value that is greater than
0.0R and can be represented as a long
_ _fixed type value.

ACCUM_BIT 24 Indicates the number of bits in an
_ _accum type value.

ACCUM_MIN (-128.0a-128.0a) Indicates the minimum value that can be
represented by an _ _accum type variable.

ACCUM_MAX 255.999969482421875a Indicates the maximum value that can be
represented by an _ _accum type variable.

 ACCUM_EPSILON 0.000030517578125a Indicates the difference between 0.0a and
the minimum value that is greater than
0.0a and can be represented as an
_ _accum type value.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 515 of 1176
Mar 01, 2022

Type Definition Name Definition Value Description
Constant
(macro)

LACCUM_BIT 40 Indicates the number of bits in a long
_ _accum type value.

LACCUM_MIN (-128.0A-128.0A) Indicates the minimum value that can be
represented by a long _ _accum type
variable.

LACCUM_MAX 255.99999999953433871
26922607421875A

Indicates the maximum value that can
be represented by a long _ _accum type
variable.

 LACCUM_EPSILON 0.0000000004656612873
077392578125A

Indicates the difference between 0.0A
and the minimum value that is greater
than 0.0A and can be represented as a
long _ _accum type value.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 516 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<math.h>

Performs various mathematical operations.
The following macro names are all implementation-defined.

Type Definition Name Description
Constant
(macro)

EDOM Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot
be represented as a double type value, or if overflow or underflow
occurs.

HUGE_VAL Indicates the value for the function return value if the result of a
function overflows.

Function acos Computes the arc cosine of a floating-point number.
 asin Computes the arc sine of a floating-point number.
 atan Computes the arc tangent of a floating-point number.
 atan2 Computes the arc tangent of the result of a division of two floating-

point numbers.
 cos Computes the cosine of a floating-point radian value.
 sin Computes the sine of a floating-point radian value.
 tan Computes the tangent of a floating-point radian value.
 cosh Computes the hyperbolic cosine of a floating-point number.
 sinh Computes the hyperbolic sine of a floating-point number.
 tanh Computes the hyperbolic tangent of a floating-point number.
 exp Computes the exponential function of a floating-point number.
 frexp Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.
 ldexp Multiplies a floating-point number by a power of 2.
 log Computes the natural logarithm of a floating-point number.
 log10 Computes the base-ten logarithm of a floating-point number.
 modf Breaks a floating-point number into integral and fractional parts.
 pow Computes a power of a floating-point number.
 sqrt Computes the positive square root of a floating-point number.
 ceil Computes the smallest integral value not less than or equal to the

given floating-point number.
 fabs Computes the absolute value of a floating-point number.
 floor Computes the largest integral value not greater than or equal to the

given floating-point number.
 fmod Computes the floating-point remainder of division of two floating-point

numbers.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 517 of 1176
Mar 01, 2022

Operation in the event of an error is described below.

(1) Domain error
A domain error occurs if the value of a parameter input to a function is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM is set in
errno. The function return value depends on the compiler.

(2) Range error

A range error occurs if the result of a function cannot be represented as a double type value. In
this case, the value of ERANGE is set in errno. If the result overflows, the function returns
the value of HUGE_VAL, with the same sign as the correct value of the function. If the result
underflows, 0 is returned as the return value.

Notes

1. If there is a possibility of a domain error resulting from a <math.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.

Example:

 .

 .

 .

 1 x=asin(a);

 2 if (errno==EDOM)

 3 printf ("error\n");

 4 else

 5 printf ("result is : %lf\n",x);

 .

 .

 .

In line 1, the arc sine value is computed using the asin function. If the value of parameter a is
outside the domain of the asin function [–1.0, 1.0], the EDOM value is set in errno. Line 2
determines whether a domain error has occurred. If a domain error has occurred, error is output
in line 3. If there is no domain error, the arc sine value is output in line 5.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 518 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

2. Whether or not a range error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as a value is used, <math.h> library functions can be
implemented without causing range errors.

3. In the following cases, errno will not be set even though an error has occurred in the function.
(1) cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified and fabs and sqrt functions are used.
(2) cpu=sh2e and double=float are specified and fabs function is used.

Implementation Define

Item Compiler Specifications
Value returned by a mathematical function if an
input parameter is out of the range

A not-a-number is returned. For details on the
format of not-a-numbers, refer to section
10.1.3, Floating-Point Number Specifications.

Whether errno is set to the value of macro
ERANGE if an underflow error occurs in a
mathematical function

Not specified

Whether a range error occurs if the second
argument in the fmod function is 0

A range error occurs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 519 of 1176
Mar 01, 2022

double acos (double d)

Description: Computes the arc cosine of a floating-point number.

Header file: <math.h>

Return values: Normal: Arc cosine of d

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which arc cosine is to be computed

Example: #include <math.h>
 double d, ret;
 ret=acos(d);

Error conditions:
 A domain error occurs for a value of d not in the range [–1.0, +1.0].

Remarks: The acos function returns the arc cosine in the range [0, π] by the radian.

double asin (double d)

Description: Computes the arc sine of a floating-point number.

Header file: <math.h>

Return values: Normal: Arc sine of d

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which arc sine is to be computed

Example: #include <math.h>
 double d, ret;
 ret=asin(d);

Error conditions:
 A domain error occurs for a value of d not in the range [–1.0, +1.0].

Remarks: The asin function returns the arc sine in the range [–π/2, +π/2] by the radian.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 520 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

double atan (double d)

Description: Computes the arc tangent of a floating-point number.

Header file: <math.h>

Return values: Arc tangent of d

Parameters: d Floating-point number for which arc tangent is to be computed

Example: #include <math.h>
 double d, ret;
 ret=atan(d);

Remarks: The atan function returns the arc tangent in the range (–π/2, +π/2) by the radian.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 521 of 1176
Mar 01, 2022

double atan2 (double y, double x)

Description: Computes the arc tangent of the division of two floating-point numbers.

Header file: <math.h>

Return values: Normal: Arc tangent value when y is divided by x

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Divisor
y Dividend

Example: #include <math.h>
 double x, y, ret;
 ret=atan2(y, x);

Error conditions: A domain error occurs if the values of both x and y are 0.0.

Remarks: The atan2 function returns the arc tangent in the range (–π, +π] by the radian.
The meaning of the atan2 function is illustrated in figure 10.6. As shown in the
figure, the result of the atan2 function is the angle between the X-axis and a
straight line passing through the origin and point (x, y). If y = 0.0 and x is
negative, the result is π.
If x = 0.0, the result is ±π/2, depending on whether y is positive or negative.
Depending on the MCU setting, however, this may lead to a zero division
exception.

Figure 10.6 Meaning of atan2 Function

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 522 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

double cos (double d)

Description: Computes the cosine of a floating-point radian value.

Header file: <math.h>

Return values: Cosine of d

Parameters: d Radian value for which cosine is to be computed

Example: #include <math.h>
 double d, ret;
 ret=cos(d);

double sin (double d)

Description: Computes the sine of a floating-point radian value.

Header file: <math.h>

Return values: Sine of d

Parameters: d Radian value for which sine is to be computed

Example: #include <math.h>
 double d, ret;
 ret=sin(d);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 523 of 1176
Mar 01, 2022

double tan (double d)

Description: Computes the tangent of a floating-point radian value.

Header file: <math.h>

Return values: Tangent of d

Parameters: d Radian value for which tangent is to be computed

Example: #include <math.h>
 double d, ret;
 ret=tan(d);

double cosh (double d)

Description: Computes the hyperbolic cosine of a floating-point number.

Header file: <math.h>

Return values: Hyperbolic cosine of d

Parameters: d Floating-point number for which hyperbolic cosine is to be
 computed

Example: #include <math.h>
 double d, ret;
 ret=cosh(d);

double sinh (double d)

Description: Computes the hyperbolic sine of a floating-point number.

Header file: <math.h>

Return values: Hyperbolic sine of d

Parameters: d Floating-point number for which hyperbolic sine is to be
 computed

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 524 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: #include <math.h>
 double d, ret;
 ret=sinh(d);

double tanh (double d)

Description: Computes the hyperbolic tangent of a floating-point number.

Header file: <math.h>

Return values: Hyperbolic tangent of d

Parameters: d Floating-point number for which hyperbolic tangent is to be
 computed

Example: #include <math.h>
 double d, ret;
 ret=tanh(d);

double exp (double d)

Description: Computes the exponential function of a floating-point number.

Header file: <math.h>

Return values: Exponential value of d

Parameters: d Floating-point number for which exponential function is to be
 computed

Example: #include <math.h>
 double d, ret;
 ret=exp(d);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 525 of 1176
Mar 01, 2022

double frexp (double value, double int *e)

Description: Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.

Header file: <math.h>

Return values: If value is 0.0: 0.0
 If value is not 0.0: Value of ret defined by ret * 2value pointed to by e = value

Parameters: value Floating-point number to be broken into a [0.5, 1.0) value
 and a power of 2
 e Pointer to storage area that holds power-of-2 value

Example: #include <math.h>
 double ret, value;

 int *e;

 ret=frexp(value, e);

Remarks: The frexp function breaks value into a [0.5, 1.0) value and a power of 2. It
stores the resultant power-of-2 value in the area pointed to by e.

The frexp function returns the return value ret in the range [0.5, 1.0) or as 0.0.

If value is 0.0, the contents of the int storage area pointed to by e and the value
of ret are both 0.0.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 526 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

double ldexp (double e, int f)

Description: Multiplies a floating-point number by a power of 2.

Header file: <math.h>

Return values: Result of e * 2f operation

Parameters: e Floating-point number to be multiplied by a power of 2
 f Power-of-2 value

Example: #include <math.h>
 double ret, e;
 int f;

 ret=ldexp(e, f);

double log (double d)

Description: Computes the natural logarithm of a floating-point number.

Header file: <math.h>

Return values: Normal: Natural logarithm of d

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which natural logarithm is to be
 computed

Example: #include <math.h>
 double d, ret;
 ret=log(d);

Error conditions:
 A domain error occurs if d is negative.
 A range error occurs if d is 0.0.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 527 of 1176
Mar 01, 2022

double log10 (double d)

Description: Computes the base-ten logarithm of a floating-point number.

Header file: <math.h>

Return values: Normal: Base-ten logarithm of d

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which base-ten logarithm is to be
 computed

Example: #include <math.h>
 double d, ret;
 ret=log10(d);

Error conditions:
 A domain error occurs if d is negative.
 A range error occurs if d is 0.0.

double modf (double a, double*b)

Description: Breaks a floating-point number into integral and fractional parts.

Header file: <math.h>

Return values: Fractional part of a

Parameters: a Floating-point number to be broken into integral and fractional
 parts
 b Pointer indicating storage area that stores integral part

Example: #include <math.h>
 double a, *b, ret;
 ret=modf(a, b);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 528 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

double pow (double x, double y)

Description: Computes a power of floating-point number.

Header file: <math.h>

Return values: Normal: Value of x raised to the power y

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Value to be raised to a power
 y Power value

Example: #include <math.h>
 double x, y, ret;
 ret=pow(x, y);

Error conditions:
 A domain error occurs if x is 0.0 and y is 0.0 or less, or if x is negative and y
 is not an integer.

double sqrt (double d)

Description: Computes the positive square root of a floating-point number.

Header file: <math.h>

Return values: Normal: Positive square root of d

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which positive square root is to
 be computed

Example: #include <math.h>
 double d, ret;
 ret=sqrt(d);

Error conditions:
 A domain error occurs if d is negative.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 529 of 1176
Mar 01, 2022

double ceil (double d)

Description: Returns the smallest integral value not less than or equal to the given floating-
 point number.

Header file: <math.h>

Return values: Smallest integral value not less than or equal to d

Parameters: d Floating-point number for which smallest integral value not less
 than that number is to be computed

Example: #include <math.h>
 double d, ret;
 ret=ceil(d);

Remarks: The ceil function returns the smallest integral value not less than or equal to d,
expressed as a double. Therefore, if d is negative, the value after truncation of
the fractional part is returned.

double fabs (double d)

Description: Computes the absolute value of a floating-point number.

Header file: <math.h>

Return values: Absolute value of d

Parameters: d Floating-point number for which absolute value is to be computed

Example: #include <math.h>
 double d, ret;
 ret=fabs(d);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 530 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

double floor (double d)

Description: Returns the largest integral value not greater than or equal to the given floating-
point number.

Header file: <math.h>

Return values: Largest integral value not greater than or equal to d

Parameters: d Floating-point number for which largest integral value not greater
 than that number is to be computed

Example: #include <math.h>
 double d, ret;
 ret=floor(d);

Remarks: The floor function returns the largest integral value not greater than or equal to
d, expressed as a double. Therefore, if d is negative, the value after rounding-up
of the fractional part is returned.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 531 of 1176
Mar 01, 2022

double fmod (double x, double y)

Description: Computes the floating-point remainder of division of two floating-point
 numbers.

Header file: <math.h>

Return values: When y is 0.0: x
 When y is not 0.0: Remainder of division of x by y

Parameters: x Dividend
y Divisor

Example: #include <math.h>
double x, y, ret;
 ret=fmod(x, y);

Remarks: In the fmod function, the relationship between parameters x and y and return
value ret is as follows:

x = y * I + ret (where I is an integer)

The sign of return value ret is the same as the sign of x.

If the quotient of x/y cannot be expressed, the value of the result is not
guaranteed.

When y is 0.0, depending on the MCU setting, however, this may lead to a zero
division exception.

<mathf.h>

Performs various mathematical operations.

<mathf.h> declares mathematical functions and defines macros in single-precision format. The
mathematical functions and macros used here do not follow the ANSI specifications. Each
function receives a float-type parameter and returns a float-type value.

The following constants (macros) are all implementation-defined.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 532 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Constant
(macro)

EDOM Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot
be represented as a float type value, or if overflow or underflow occurs.

HUGE_VALF Indicates the value for the function return value if the result of a
function overflows.

Function acosf Computes the arc cosine of a floating-point number.
 asinf Computes the arc sine of a floating-point number.
 atanf Computes the arc tangent of a floating-point number.
 atan2f Computes the arc tangent of the result of a division of two floating-

point numbers.
 cosf Computes the cosine of a floating-point radian value.
 sinf Computes the sine of a floating-point radian value.
 tanf Computes the tangent of a floating-point radian value.
 coshf Computes the hyperbolic cosine of a floating-point number.
 sinhf Computes the hyperbolic sine of a floating-point number.
 tanhf Computes the hyperbolic tangent of a floating-point number.
 expf Computes the exponential function of a floating-point number.
 frexpf Breaks a floating-point number into a [0.5f, 1.0f) value and a power of

2.
 ldexpf Multiplies a floating-point number by a power of 2.
 logf Computes the natural logarithm of a floating-point number.
 log10f Computes the base-ten logarithm of a floating-point number.
 modff Breaks a floating-point number into integral and fractional parts.
 powf Computes a power of a floating-point number.
 sqrtf Computes the positive square root of a floating-point number.
 ceilf Computes the smallest integral value not less than or equal to the

given floating-point number.
 fabsf Computes the absolute value of a floating-point number.
 floorf Computes the largest integral value not greater than or equal to the

given floating-point number.
 fmodf Computes the floating-point remainder of division of two floating-point

numbers.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 533 of 1176
Mar 01, 2022

Operation in the event of an error is described below.

1. Domain error
A domain error occurs if the value of a parameter input to a function is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM is set in
errno. The function return value depends on the compiler.

2. Range error
A range error occurs if the result of a function cannot be represented as a float type value. In
this case, the value of ERANGE is set in errno. If the result overflows, the function returns
the value of HUGE_VALF, with the same sign as the correct value of the function. If the
result underflows, 0 is returned as the return value.

Notes

1. If there is a possibility of a domain error resulting from a <mathf.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.

Example:

 .

 .

 .

1 x=asinf(a);

2 if (errno==EDOM)

3 printf ("error\n");

4 else

5 printf ("result is : %f\n",x);

 .

 .

 .

In line 1, the arc sine value is computed using the asinf function. If the value of parameter a is
outside the domain of the asinf function [–1.0f, 1.0f], the EDOM value is set in errno. Line 2
determines whether a domain error has occurred. If a domain error has occurred, error is output
in line 3. If there is no domain error, the arc sine value is output in line 5.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 534 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

2. Whether or not a range error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as a value is used, <mathf.h> library functions can be
implemented without causing range errors.

3. In the following cases, errno will not be set by the fabs or sqrt function even though an error

has occurred in the function.
(1) cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified and fabsf or sqrtf functions is used.
(2) cpu=sh2e is specified and fabsf function is used.

Implementation Define

Item Compiler Specifications
Value returned by a mathematical function if
an input parameter is out of the range

A not-a-number is returned. For details on the format
of not-a-numbers, refer to section 10.1.3, Floating-
Point Number Specifications.

Whether errno is set to the value of macro
ERANGE if an underflow error occurs in a
mathematical function

Not specified

Whether a range error occurs if the second
argument in the fmodf function is 0

A range error occurs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 535 of 1176
Mar 01, 2022

float acosf (float f)

Description: Computes the arc cosine of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Arc cosine of f

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which arc cosine is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=acosf(f);

Error conditions:
 A domain error occurs for a value of f not in the range [–1.0f, +1.0f].

Remarks: The acosf function returns the arc cosine in the range [0, π] by the radian.

float asinf (float f)

Description: Computes the arc sine of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Arc sine of f

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which arc sine is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=asinf(f);

Error conditions:
 A domain error occurs for a value of f not in the range [–1.0f, +1.0f].

Remarks: The asinf function returns the arc sine in the range [–π/2, +π/2] by the radian.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 536 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

float atanf (float f)

Description: Computes the arc tangent of a floating-point number.

Header file: <mathf.h>

Return values: Arc tangent of f

Parameters: f Floating-point number for which arc tangent is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=atanf(f);

Remarks: The atanf function returns the arc tangent in the range (–π/2, +π/2) by the radian.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 537 of 1176
Mar 01, 2022

float atan2f (float y, float x)

Description: Computes the arc tangent of the division of two floating-point numbers.

Header file: <mathf.h>

Return values: Normal: Arc tangent value when y is divided by x

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Divisor
y Dividend

Example: #include <mathf.h>
 float x, y, ret;
 ret=atan2f(y, x);

Error conditions:
A domain error occurs if the values of both x and y are 0.0f

Remarks: The atan2f function returns the arc tangent in the range (–π, +π] by the radian.
The meaning of the atan2f function is illustrated in figure 10.7. As shown in the
figure, the result of the atan2f function is the angle between the X-axis and a
straight line passing through the origin and point (x, y). If y = 0.0f and x is
negative, the result is π.
If x = 0.0f, the result is ±π/2, depending on whether y is positive or negative.
Depending on the MCU setting, however, this may lead to a zero division
exception.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 538 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Figure 10.7 Meaning of atan2f Function

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 539 of 1176
Mar 01, 2022

float cosf (float f)

Description: Computes the cosine of a floating-point radian value.

Header file: <mathf.h>

Return values: Cosine of f

Parameters: f Radian value for which cosine is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=cosf(f);

float sinf (float f)

Description: Computes the sine of a floating-point radian value.

Header file: <mathf.h>

Return values: Sine of f

Parameters: f Radian value for which sine is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=sinf(f);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 540 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

float tanf (float f)

Description: Computes the tangent of a floating-point radian value.

Header file: <mathf.h>

Return values: Tangent of f

Parameters: f Radian value for which tangent is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=tanf(f);

float coshf (float f)

Description: Computes the hyperbolic cosine of a floating-point number.

Header file: <mathf.h>

Return values: Hyperbolic cosine of f

Parameters: f Floating-point number for which hyperbolic cosine is to be
 computed

Example: #include <mathf.h>
 float f, ret;
 ret=coshf(f);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 541 of 1176
Mar 01, 2022

float sinhf (float f)

Description: Computes the hyperbolic sine of a floating-point number.

Header file: <mathf.h>

Return values: Hyperbolic sine of f

Parameters: f Floating-point number for which hyperbolic sine is to be
 computed

Example: #include <mathf.h>
 float f, ret;
 ret=sinhf(f);

float tanhf (float f)

Description: Computes the hyperbolic tangent of a floating-point number.

Header file: <mathf.h>

Return values: Hyperbolic tangent of f

Parameters: f Floating-point number for which hyperbolic tangent is to be
 computed

Example: #include <mathf.h>
 float f, ret;
 ret=tanhf(f);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 542 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

float expf (float f)

Description: Computes the exponential function of a floating-point number.

Header file: <mathf.h>

Return values: Exponential value of f

Parameters: f Floating-point number for which exponential function is to be
 computed

Example: #include <mathf.h>
 float f, ret;
 ret=expf(f);

float frexpf (float value, float int *e)

Description: Breaks a floating-point number into a [0.5f, 1.0f) value and a power of 2.

Header file: <mathf.h>

Return values: If value is 0.0f: 0.0f
 If value is not 0.0f:
 Value of ret defined by ret * 2value pointed to by e = value

Parameters: value Floating-point number to be broken into a [0.5f, 1.0f) value
 and a power of 2
e Pointer to storage area that holds power-of-2 value

Example: #include <mathf.h>
 float ret, value;
int *e
 ret=frexpf(value, e);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 543 of 1176
Mar 01, 2022

Remarks: The frexpf function breaks value into a [0.5f, 1.0f) value and a power of 2.
It stores the resultant power-of-2 value in the area pointed to by e.

The frexpf function returns the return value ret in the range [0.5f, 1.0f) or as
0.0f.

If value is 0.0f, the contents of the int storage area pointed to by e and the value
of ret are both 0.0f.

float ldexpf (float e, int f)

Description: Multiplies a floating-point number by a power of 2.

Header file: <mathf.h>

Return values: Result of e * 2f operation

Parameters: e Floating-point number to be multiplied by a power of 2
f Power-of-2 value

Example: #include <mathf.h>
 float ret, e;
int f;
 ret=idexpf(e, f);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 544 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

float logf (float f)

Description: Computes the natural logarithm of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Natural logarithm of f

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which natural logarithm is to be
 computed

Example: #include <mathf.h>
 float f, ret;
 ret=logf(f);

Error conditions:
 A domain error occurs if f is negative.
 A range error occurs if f is 0.0f.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 545 of 1176
Mar 01, 2022

float log10f (float f)

Description: Computes the base-ten logarithm of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Base-ten logarithm of f

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which base-ten logarithm is to be
 computed

Example: #include <mathf.h>
 float f, ret;
 ret=log10f(f);

Error conditions:
 A domain error occurs if f is negative.
 A range error occurs if f is 0.0f.

float modff (float a, float *b)

Description: Breaks a floating-point number into integral and fractional parts.

Header file: <mathf.h>

Return values: Fractional part of a

Parameters: a Floating-point number to be broken into integral and fractional
 parts
b Pointer indicating storage area that stores integral part

Example: #include <mathf.h>
 float a, *b, ret;
 ret=modff(a, b);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 546 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

float powf (float x, float y)

Description: Computes a power of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Value of x raised to the power y

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: x Value to be raised to a power
y Power value

Example: #include <mathf.h>
 float x, y, ret;
 ret=powf(x, y);

Error conditions:
 A domain error occurs if x is 0.0f and y is 0.0f or less, or if x is negative and y
 is not an integer.

float sqrtf (float f)

Description: Computes the positive square root of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Positive square root of f

 Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which positive square root is to
 be computed

Example: #include <mathf.h>
 float f, ret;
 ret=sqrtf(x, y);

Error conditions:
 A domain error occurs if f is negative.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 547 of 1176
Mar 01, 2022

float ceilf (float f)

Description: Returns the smallest integral value not less than or equal to the given floating-
point number.

Header file: <mathf.h>

Return values: Smallest integral value not less than or equal to f

Parameters: f Floating-point number for which smallest integral value not less
 than that number is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=ceilf(f);

Remarks: The ceilf function returns the smallest integral value not less than or equal to f,
expressed as a float. Therefore, if f is negative, the value after truncation of the
fractional part is returned.

float fabsf (float f)

Description: Computes the absolute value of a floating-point number.

Header file: <mathf.h>

Return values: Absolute value of f

Parameters: f Floating-point number for which absolute value is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=fabsf(f);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 548 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

float floorf (float f)

Description: Returns the largest integral value not greater than or equal to the given floating-
point number.

Header file: <mathf.h>

Return values: Largest integral value not greater than or equal to f

Parameters: f Floating-point number for which largest integral value not greater
 than that number is to be computed

Example: #include <mathf.h>
 float f, ret;
 ret=floorf(f);

Remarks: The floorf function returns the largest integral value not greater than or equal to
f, expressed as a float. Therefore, if f is negative, the value after rounding-up of
the fractional part is returned.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 549 of 1176
Mar 01, 2022

float fmodf (float x, float y)

Description: Computes the floating-point remainder of division of two floating-point numbers.

Header file: <mathf.h>

Return values: When y is 0.0f: x
When y is not 0.0f: Remainder of division of x by y

Parameters: x Dividend
y Divisor

Example: #include <mathf.h>
 float x, y, ret;
 ret=fmodf(x, y);

Remarks: In the fmodf function, the relationship between parameters x and y and return
 value ret is as follows:

x = y * i + ret (where i is an integer)

The sign of return value ret is the same as the sign of x.

If the quotient of x/y cannot be expressed, the value of the result is not
guaranteed.

When y is 0.0, depending on the MCU setting, however, this may lead to a zero
division exception.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 550 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<setjmp.h>

Supports transfer of control between functions.

The following macros are implementation-defined.

Type Definition Name Description
Type
(macro)

jmp_buf Indicates the type name corresponding to a storage area for storing
information that enables transfer of control between functions.

Function setjmp Saves the executing environment defined by jmp_buf of the currently
executing function in the specified storage area.

 longjmp Restores the function executing environment saved by the setjmp
function, and transfers control to the program location at which the
setjmp function was called.

The setjmp function saves the executing environment of the current function. The location in the
program that called the setjmp function can subsequently be returned to by calling the longjmp
function. An example of how transfer of control between functions is supported using the setjmp
and longjmp functions is shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 551 of 1176
Mar 01, 2022

Example:

 1 #include <stdio.h>

 2 #include <setjmp.h>

 3 jmp_buf env;

 4 void sub();

 5 void main()

 6 {

 7

 8 if (setjmp(env)!=0){

 9 printf("return from longjmp\n");

 10 exit(0);

 11 }

 12 sub();

 13 }

 14

 15 void sub()

 16 {

 17 printf("subroutine is running \n");

 18 longjmp(env, 1);

 19 }

Explanation

The setjmp function is called in line 8. At this time, the environment in which the setjmp
function was called is saved in jmp_buf type variable env. The return value in this case is 0, and
therefore function sub is called next.

The environment saved in variable env is restored by the longjmp function called within function
sub. As a result, the program behaves just as if a return had been made from the setjmp function
in line 8. However, the return value at this time is 1 specified by the second parameter of the
longjmp function. As a result, execution proceeds from line 9.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 552 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int setjmp (jmp_buf env)

Description: Saves the executing environment of the currently executing function in the
specified storage area.

Header file: <setjmp.h>

Return values: When setjmp function is called: 0
 On return from longjmp function: Nonzero

Parameters: env Pointer to storage area in which executing environment is to be
 saved

Example: #include <setjmp.h>
 int ret;
jmp_buf env;

 ret=setjmp(env);

Remarks: The executing environment saved by the setjmp function is used by the
longjmp function. The return value is 0 when the function is called as the
setjmp function, but the return value on return from the longjmp function is the
value of the second parameter specified by the longjmp function.

If the setjmp function is called from a complex expression, part of the current
executing environment, such as the intermediate result of expression evaluation,
may be lost. The setjmp function should only be used in the form of a
comparison between the result of the setjmp function and a constant expression,
and should not be called within a complex expression.

Do not use a pointer when calling the setjmp function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 553 of 1176
Mar 01, 2022

void longjmp (jmp_buf env, int ret)

Description: Restores the function executing environment saved by the setjmp function, and
transfers control to the program location at which the setjmp function was called.

Header file: <setjmp.h>

Parameters: env Pointer to storage area in which executing environment was saved

 ret Return code to setjmp function

Example: #include <setjmp.h>
 int ret;
jmp_buf env;
 longjmp(env, ret);

Remarks: From the storage area specified by the first parameter env, the longjmp function
restores the function executing environment saved by the most recent invocation
of the setjmp function in the same program, and transfers control to the program
location at which that setjmp function was called. The value of the second
parameter ret of the longjmp function is returned as the setjmp function return
value. However, if ret is 0, the value 1 is returned to the setjmp function as a
return value.

If the setjmp function has not been called, or if the function that called the
setjmp function has already executed a return statement, the operation of the
longjmp function is not guaranteed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 554 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<stdarg.h>

Enables referencing of variable arguments for functions with such arguments.

The following macros are implementation-defined.

Type Definition Name Description
Type
(macro)

va_list Indicates the types of variables used in common by the va_start,
va_arg, and va_end macros in order to reference variable parameters.

Function
(macro)

va_start Executes initialization processing for performing variable parameter
referencing.

 va_arg Enables referencing of the argument following the argument currently
being referenced for a function with variable parameters.

 va_end Terminates referencing of the arguments of a function with variable
parameters.

An example of a program using the macros defined by this standard include file is shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 555 of 1176
Mar 01, 2022

Example:

 1 #include <stdio.h>

 2 #include <stdarg.h>

 3

 4 extern void prlist(int count, ...);

 5

 6 void main()

 7 {

 8 prlist(1, 1);

 9 prlist(3, 4, 5, 6);

 10 prlist(5, 1, 2, 3, 4, 5);

 11 }

 12

 13 void prlist(int count, ...)

 14 {

 15 va_list ap;

 16 int i;

 17

 18 va_start(ap, count);

 19 for(i=0; i<count; i++)

 20 printf("%d", va_arg(ap, int));

 21 putchar('\n');

 22 va_end(ap);

 23 }

Explanation

In this example, the number of data items to be output is specified in the first parameter, and
function prlist is implemented, outputting that number of subsequent parameters.

In line 18, the variable parameter reference is initialized by va_start. Each time an parameter is
output, the next parameter is referenced by the va_arg macro (line 20). In the va_arg macro, the
type name of the parameter (in this case, int type) is specified in the second parameter.

When parameter referencing ends, the va_end macro is called (line 22).

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 556 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void va_start (va_list ap, parmN)

Description: Executes initialization processing for referencing variable parameters.

Header file: <stdarg.h>

Parameters: ap Variable for accessing variable parameters

 parmN Identifier of rightmost argument

Example: #include <stdarg.h>
 void func(int count, ...)
{

 va_list ap;

 va_start(ap, count);
}

Remarks: The va_start macro initializes ap for subsequent use by the va_arg and va_end
macros.

The parameter parmN is the identifier of the rightmost parameter in the
parameter list in the external function definition (the one just before the , ...).

To reference a function with no variable name, the va_start macro call must be
executed first of all.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 557 of 1176
Mar 01, 2022

type va_arg (va_list ap, type)

Description: Allows a reference to the parameter after the parameter currently being referred
to in the function with a variable number of parameters.

Header file: <stdarg.h>

Return values: Parameter value

Parameters: ap Variable for accessing variable parameters

 type Type of parameter to be accessed

Example: #include <stdarg.h>
 va_list ap;
int ret;

 ret=va_arg(ap, type);

Remarks: Specify a variable of the va_list type to be initialized by the va_start macro as
 the first parameter. The value of ap is updated each time va_arg is used, and, as
 a result a sequence of variable parameters is returned by sequential calls of this
 macro.

 Specify the type to refer to as the second parameter type.

 The ap parameter must be the same as the ap initialized by va_start.

It will not be possible to refer to the parameters correctly when a type for which
the size is changed by type conversion is specified, i.e., when char type,
unsigned char type, short type, unsigned short type, or float type is specified as
the type of the function parameter in type. If such a type is specified, correct
operation is not guaranteed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 558 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void va_end (va_list ap)

Description: Terminates referencing of the parameters of a function with variable arguments.

Header file: <stdarg.h>

Parameters: ap Variable for accessing variable parameters

Example: #include <stdarg.h>
 va_list ap;
 va_end(ap);

Remarks: The ap parameter must be the same as the ap initialized by va_start. If the
 va_end macro is not called before the return from a function, the operation of
 that function is not guaranteed.

<stdio.h>

Performs processing relating to input/output of stream input/output file.

The following macros are all implementation-defined.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 559 of 1176
Mar 01, 2022

Type Definition Name Description
Constant
(macro)

FILE Indicates a structure type that stores various control information
including a pointer to the buffer (required for stream input/output
processing), an error indicator, and an end-of-file indicator.

_IOFBF Indicates full buffering of input/output as the buffer area usage method.
_IOLBF Indicates line buffering of input/output as the buffer area usage

method.
_IONBF Indicates non-buffering of input/output as the buffer area usage

method.
BUFSIZ Indicates the buffer size required for input/output processing.
EOF Indicates end-of-file, that is, no more input from a file.
L_tmpnam* Indicates the size of an array large enough to store a string literal of a

temporary file name generated by the tmpnam function.
SEEK_CUR Indicates a shift of the current file read/write position to an offset from

the current position.
SEEK_END Indicates a shift of the current file read/write position to an offset from

the end-of-file position.
SEEK_SET Indicates a shift of the current file read/write position to an offset from

the beginning of the file.
SYS_OPEN* Indicates the number of files for which simultaneous opening is

guaranteed by the implementation.
TMP_MAX* Indicates the minimum number of unique file names that shall be

generated by the tmpnam function.
stderr Indicates the file pointer for the standard error file.
stdin Indicates the file pointer for the standard input file.
stdout Indicates the file pointer for the standard output file.

Function fclose Closes a stream input/output file.
 fflush Outputs stream input/output file buffer contents to the file.
 fopen Opens a stream input/output file under the specified file name.
 freopen Closes a currently open stream input/output file and reopens a new file

under the specified file name.
Note: These macros are not defined in this implementation method.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 560 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function setbuf Defines and sets a stream input/output buffer area on the user

program side.
 setvbuf Defines and sets a stream input/output buffer area on the user

program side.
 fprintf Outputs data to a stream input/output file according to a format.
 fscanf Inputs data from a stream input/output file and converts it according to

a format.
 printf Converts data according to a format and outputs it to the standard

output file (stdout).
 scanf Inputs data from the standard input file (stdin) and converts it

according to a format.
 sprintf Converts data according to a format and outputs it to the specified

area.
 sscanf Inputs data from the specified storage area and converts it according

to a format.
 vfprintf Outputs a variable parameter list to the specified stream input/output

file according to a format.
 vprintf Outputs a variable parameter list to the standard output file (stdout)

according to a format.
 vsprintf Outputs a variable parameter list to the specified area according to a

format.
 fgetc Inputs one character from a stream input/output file.
 fgets Inputs a string from a stream input/output file.
 fputc Outputs one character to a stream input/output file.
 fputs Outputs a string to a stream input/output file.
 getc (macro) Inputs one character from a stream input/output file.
 getchar (macro) Inputs one character from the standard input file.
 gets Inputs a string from the standard input file.
 putc (macro) Outputs one character to a stream input/output file.
 putchar (macro) Outputs one character to the standard output file.
 puts Outputs a string to the standard output file.
 ungetc Returns one character to a stream input/output file.
 fread Inputs data from a stream input/output file to the specified storage

area.
 fwrite Outputs data from a storage area to a stream input/output file.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 561 of 1176
Mar 01, 2022

Type Definition Name Description
Function fseek Shifts the current read/write position in a stream input/output file.
 ftell Computes the current read/write position in a stream input/output file.
 rewind Shifts the current read/write position in a stream input/output file to the

beginning of the file.
 clearerr Clears the error state of a stream input/output file.
 feof Tests for the end of a stream input/output file.
 ferror Tests for stream input/output file error state.
 perror Outputs an error message corresponding to the error number to the

standard error file (stderr).

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 562 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Specification Defined by the Implementation
Item Compiler Specifications
Whether the last line of the input text requires a
line feed character indicating end

Not specified. Depends on the low-level
interface routine specifications.

Whether the blank characters written
immediately before the carriage return character
are read
Number of null characters added to data written
in the binary file
Initial value of file position specifier in the
addition mode
Is a file data lost following text file input?
File buffering specifications
Whether a file with file length 0 exists
File name configuration rule
Whether the same file is opened simultaneously
Output format of the %p format conversion in
the fprintf function

Hexadecimal representation.

Input data representation of the %p format
conversion in the fscanf function.
The meaning of conversion specifier ‘−’ in the
fscanf function

Hexadecimal representation.

If ‘−’ is not the first or last character or ‘−’ does
not follow ‘^’, the compiler indicates the range
from the previous character to the following
character.

Value of errno specified by the fgetpos or ftell
function

The fgetpos function is not supported.
The ftell function does not specify the errno
value. The errno value depends on the low-
level interface routine specifications.

Output format of messages generated by the
perror function

See (a) below for the output message format.

calloc, malloc, or realloc function operation
when the size is 0.

The 0-byte area is allocated.

(a) The output format of perror function is
<string literal>:<error message for the error number specified in error>

(b) Table 10.42 shows the format when displaying the floating-point infinity and not-a-number in
printf and fprintf functions.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 563 of 1176
Mar 01, 2022

Table 10.42 Display Format of Infinity and Not-a-Number

Value Display Format
Positive infinity ++++++
Negative infinity ------
Not-a-number ******

An example of a program that performs a series of input/output processing operations for a stream
input/output file is shown in the following.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 564 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example

1 #include <stdio.h>

 2

 3 void main()

 4 {

 5 int c;

 6 FILE *ifp, *ofp;

 7

 8 if ((ifp=fopen("INPUT.DAT","r"))==NULL){

 9 fprintf(stderr,"cannot open input file\n");

 10 exit(1);

 11 }

 12 if ((ofp=fopen("OUTPUT.DAT","w"))==NULL){

 13 fprintf(stderr,"cannot open output file\n");

 14 exit(1);

 15 }

 16 while ((c=getc(ifp))!=EOF)

 17 putc(c, ofp);

 18 fclose(ifp);

 19 fclose(ofp);

 20 }

Explanation

This program copies the contents of file INPUT.DAT to file OUTPUT.DAT.

Input file INPUT.DAT is opened by the fopen function in line 8, and output file OUTPUT.DAT is
opened by the fopen function in line 12. If opening fails, NULL is returned as the return value of
the fopen function, an error message is output, and the program is terminated.

If the fopen function ends normally, the pointer to the data (FILE type) that stores information on
the opened files is returned; these are set in variables ifp and ofp.

After successful opening, input/output is performed using these FILE type data.

When file processing ends, the files are closed with the fclose function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 565 of 1176
Mar 01, 2022

int fclose (FILE *fp)

Description: Closes a stream input/output file.

Header file: <stdio.h>

Return values: Normal: 0

 Abnormal: Nonzero

Parameters: fp File pointer

Example: #include <stdio.h>
 FILE *fp;

int ret;

 ret=fclose(fp);

Remarks: The fclose function closes the stream input/output file indicated by file pointer
fp.

If the output file of the stream input/output file is open and data that is not
output remains in the buffer, that data is output to the file before it is closed.

If the input/output buffer was automatically allocated by the system, it is
cancelled.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 566 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int fflush (FILE *fp)

Description: Outputs stream input/output file buffer contents to the file.

Header file: <stdio.h>

Return values: Normal: 0

 Abnormal: Nonzero

Parameters: fp File pointer

Example: #include <stdio.h>
 FILE *fp;

int ret;

 ret=fflush(fp);

Remarks: When an output file of the stream input/output file is open, the fflush function
outputs the contents of the buffer that is not output for the stream input/output
file specified by file pointer fp to the file. When an input file is open, the
ungetc function specification is invalid.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 567 of 1176
Mar 01, 2022

FILE *fopen (const char *fname, const char *mode)

Description: Opens a stream input/output file under the specified file name.

Header file: <stdio.h>

Return values: Normal: File pointer indicating file information on opened file

 Abnormal: NULL

Parameters: fname Pointer to string indicating file name
mode Pointer to string indicating file access mode

Example: #include <stdio.h>
 FILE *ret;

const char *fname, *mode;

 ret=fopen(fname, mode);

Remarks: The fopen function opens the stream input/output file whose file name is the
string pointed to by fname. If a file that does not exist is opened in write mode
or addition mode, a new file is created wherever possible. When an existing file
is opened in write mode, writing processing is performed from the beginning of
the file, and previously written file contents are erased.

When a file is opened in addition mode, write processing is performed from the
end-of-file position. When a file is opened in update mode, both input and
output processing can be performed on the file. However, input cannot directly
follow output without intervening execution of the fflush, fseek, or rewind
function. Similarly, output cannot directly follow input without intervening
execution of the fflush, fseek, or rewind function.

A string indicating the opening method may be added after the string indicating
the file access mode.

The same file cannot be open for multiple tasks at the same time.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 568 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

FILE *freopen (const char *fname, const char *mode, FILE *fp)

Description: Closes a currently open stream input/output file and reopens a new file under
the specified file name.

Header file: <stdio.h>

Return values: Normal: fp

 Abnormal: NULL

Parameters: fname Pointer to string indicating new file name
mode Pointer to string indicating file access mode
fp File pointer of currently open stream input/output file

Example: #include <stdio.h>
 const char *fname, *mode;

FILE *ret, *fp;

 ret=freopen(fname, mode, fp);

Remarks: The freopen function first closes the stream input/output file indicated by file
pointer fp (the following processing is carried out even if this close processing is
unsuccessful). Next, the freopen function opens the file indicated by file name
fname for stream input/output, reusing the FILE structure pointed to by fp.

The freopen function is useful when there is a limit on the number of files being
opened at one time.

The freopen function normally returns the same value as fp, but returns NULL
when an error occurs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 569 of 1176
Mar 01, 2022

void setbuf (FILE *fp, char buf[BUFSIZ])

Description: Defines and sets a stream input/output buffer area by the user program.

Header file: <stdio.h>

Parameters: fp File pointer
buf Pointer to buffer area

Example: #include <stdio.h>
 FILE *fp;

char buf[BUFSIZ];

 setbuf(fp, buf);

Remarks: The setbuf function defines the storage area pointed to by buf so that it can be
used as an input/output buffer area for the stream input/output file indicated by
file pointer fp. As a result, input/output processing is performed using a buffer
area of size BUFSIZ.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 570 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int setvbuf (FILE *fp, char *buf, int type, size_t size)

Description: Defines and sets a stream input/output buffer area by the user program.

Header file: <stdio.h>

Return values: Normal: 0

 Abnormal: Nonzero

Parameters: fp File pointer
buf Pointer to buffer area
type Buffer management method
size Size of buffer area

Example: #include <stdio.h>
 FILE *fp;

char *buf;

int type, ret;

size_t size;

 ret=setvbuf(fp, buf, type, size);

Remarks: The setvbuf function defines the storage area pointed to by buf so that it can be
used as an input/output buffer area for the stream input/output file indicated by
file pointer fp.

There are three ways of using this buffer area, as follows:

(1) When _IOFBF is specified as type Input/output is fully buffered.

(2) When _IOLBF is specified as type Input/output is line buffered. That is,
input/output data is fetched from the buffer area when a new-line character
is written, when the buffer area is full, or when input is requested.

(3) When _IONBF is specified as type Input/output is unbuffered.
The setvbuf function usually returns 0. However, when an illegal value is
specified for type or size, or when the request on how to use the buffer
could not be accepted, a value other than 0 is returned.

The buffer area must not be released before the opened stream input/output file
is closed. Also, the setvbuf function must be used between opening of the
stream input/output file and execution of input/output processing,

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 571 of 1176
Mar 01, 2022

int fprintf (FILE *fp, const char *control[, arg…])

Description: Outputs data to a stream input/output file according to the format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output

 Abnormal: Negative value

Parameters: fp File pointer
control Pointer to string indicating format
arg,… List of data to be output according to format

Example: #include <stdio.h>
 FILE *fp;

const char *control="%s";

int ret;

char buffer[]="Hello World\n"

 ret=fprintf(fp, control, buffer);

Remarks: The fprintf function converts and edits argument arg according to the string that
indicates the format pointed to by control, and outputs the result to the stream
input/output file indicated by file pointer fp.

The fprintf function returns the number of characters converted and output
when the function is terminated successfully, or a negative value if an error
occurs.

The format specifications are shown below.

(1) Overview of formats

The string literal that represents the format is made up of two kinds of string.

(a) Ordinary characters

A character other than a conversion specification shown in (b) is output
unchanged.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 572 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(b) Conversion specifications

A conversion specification is a string beginning with % that specifies the
conversion method for the following argument. The conversion
specifications format conforms to the following rules:

When there is no parameter to be actually output for this conversion
specification, the behavior is not guaranteed. Also, when the number
of parameters to be actually output is greater than the conversion
specification, the excess parameters are ignored.

(2) Description of conversion specifications
 (a) Flags

Flags specify modifications to the data to be output, such as addition
of a sign. The types of flag that can be specified, and their meanings,
are shown in table 10.43.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 573 of 1176
Mar 01, 2022

Table 10.43 Flag Types and Their Meanings

Type Meaning
– If the number of converted data characters is less than the field width, the data will be

output left-justified within the field.
+ A plus or minus sign will be prefixed to the result of a signed conversion.
space If the first character of a signed conversion result is not a sign, a space will be prefixed to

the result. If the space and + flags are both specified, the space flag will be ignored.
The converted data is to be modified according to the conversion types described in

table 10.45.

(1) For c, d, i, s, and u conversions
This flag is ignored.

(2) For o conversion
The converted data is prefixed with 0.

(3) For x or X conversion
The converted data is prefixed with 0x (or 0X)

(4) For e, E, f, g, and G conversions
A decimal point is output even if the converted data has no fractional part. With g and
G conversions, the 0 suffixed to the converted data cannot be removed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 574 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 (b) Field width

The number of characters in the converted data to be output is
specified as a decimal number.

If the number of converted data characters is less than the field width,
the data is prefixed with spaces up to the field width. (However, if '-'
is specified as a flag, spaces are suffixed to the data.)

If the number of converted data characters exceeds the field width, the
field width is extended to allow the converted result to be output.

If the field width specification begins with 0, 0 characters, not spaces,
are prefixed to the output data.

 (c) Precision

The precision of the converted data is specified according to the type
of conversion, as described in table 10.45.

The precision is specified in the form of a period (.) followed by a
decimal integer. If the decimal integer is omitted, 0 is assumed to be
specified.

If the specified precision is incompatible with the field width
specification, the field width specification is ignored.

The precision specification has the following meanings according to
the conversion type.

 (1) For d, i, o, u, x, and X conversions
 The minimum number of digits in the converted data is specified.

 (2) For e, E, and f conversions
The number of digits after the decimal point in the converted data is
specified.

 (3) For g and G conversions
 The maximum number of significant digits in the converted data is
 specified.

 (4) For s conversion
 The maximum number of printed digits is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 575 of 1176
Mar 01, 2022

(d) Parameter size specification

For d, i, o, u, x, X, e, E, f, g, and G conversions (see table 10.45),
specifies the size (short type, long type, long long, or long double
type) of the data to be converted. In other conversions, this
specification is ignored. Table 10.44 shows the types of size
specification and their meanings.

Table 10.44 Parameter Size Specification Types and Meanings

Type Meaning
h For d, i, o, u, x, and X conversions, specifies that the data to be converted is of short type

or unsigned short type.
l For d, i, o, u, x, and X conversions, specifies that the data to be converted is of long type,

unsigned long type, or double type.
L For e, E, f, g, and G conversions, specifies that the data to be converted is of long double

type.
ll For d, i, o, u, x, and X conversions, specifies that the data to be converted is of long long

type or unsigned long long type. For n conversion, specifies that the data to be converted
is of pointer type to long long type.

(e) Conversion specifier

 Specifies the format into which the data is to be converted.

If the data to be converted is structure or array type, or is a pointer
pointing to those types, the behavior is not guaranteed except when a
character array is converted by s conversion or when a pointer is
converted by p conversion. Table 10.45 shows the conversion
specifier and conversion methods. If a letter which is not shown in
this table is specified as the conversion specifier, the behavior is not
guaranteed. The behavior, if the other character is specified, depends
on the compiler.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 576 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.45 Conversion Specifiers and Conversion Methods

Conversion
Specifier

Conversion
Type

Conversion Method

Data Type
Subject to
Conversion

Notes on Precision

d d conversion int type data is converted to a signed
decimal string. d conversion and i
conversion have the same
specification.

int type The precision specification indicates the
minimum number of characters output. If
the number of converted data characters
is less than the field width, the string is
prefixed with zeros. If the precision is
omitted, 1 is assumed. If conversion and
output of data with a value of 0 is
attempted with 0 specified as the
precision, nothing will be output.

i i conversion int type

o o conversion int type data is converted to an
unsigned octal string.

int type

u u conversion int type data is converted to an
unsigned decimal string.

int type

x x conversion int type data is converted to unsigned
hexadecimal. a, b, c, d, e, and f are
used as hexadecimal characters.

int type

X X conversion int type data is converted to unsigned
hexadecimal. A, B, C, D, E, and F are
used as hexadecimal characters.

int type

f f conversion double type data is converted to a
decimal string with the format
[–] ddd.ddd.

double type The precision specification indicates the
number of digits after the decimal point.
When there are characters after the
decimal point, at least one digit is output
before the decimal point. When the
precision is omitted, 6 is assumed. When
0 is specified as the precision, the decimal
point and subsequent characters are not
output. The output data is rounded.

e e conversion double type data is converted to a
decimal string with the format
[–] d.ddde±dd. At least two digits are
output as the exponent.

double type The precision specification indicates the
number of digits after the decimal point.
The format is such that one digit is output
before the decimal point in the converted
characters, and a number of digits equal
to the precision are output after the
decimal point. When the precision is
omitted, 6 is assumed. When 0 is
specified as the precision, characters after
the decimal point are not output.

The output data is rounded.

E E conversion double type data is converted to a
decimal string with the format
[–] d.dddE±dd. At least two digits are
output as the exponent.

double type

g g conversion
(or G
conversion)

Whether f conversion format output
or e conversion (or E conversion)
format output is performed is
determined by the value to be
converted and the precision value that
specifies the number of significant
digits. Then double type data is output.
If the exponent of the converted data is
less than –4, or larger than the precision
that indicates the number of significant
digits, conversion to e (or E) format is
performed.

double type The precision specification indicates the
maximum number of significant digits in
the converted data. G double type

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 577 of 1176
Mar 01, 2022

Table 10.45 Conversion Specifiers and Conversion Methods (cont)

Conversion
Specifier

Conversion
Type

Conversion Method

Data Type
Subject to
Conversion

Notes on Precision

c c conversion int type data is converted to unsigned
char data, with conversion to the
character corresponding to that data.

int type The precision specification is invalid.

s s conversion The string pointed to by pointer to char
type are output up to the null character
or up to the number of characters
specified by the precision. (Null
characters are not output. Space,
horizontal tab, and new line characters
are not included in the converted
characters.)

Pointer to
char type

The precision specification indicates the
number of characters to be output. If the
precision is omitted, characters are output
up to, but not including, the null character
in the string pointed to by the data. (Null
characters are not output. Space,
horizontal tab, and new line characters are
not included in the converted characters.)

p p conversion Assuming data as a pointer, conversion
is performed to a string of compiler-
defined printable characters.

Pointer to
void type

The precision specification is invalid.

n No conversion
is performed.

Data is regarded as pointer to int type,
and the number of characters output so
far is set in the storage area pointed to
by that data.

Pointer to int
type

% No conversion
is performed.

% is output. None

 (f) * specification for field width or precision

 * can be specified as the field width or precision specification value.
 In this case, the value of the parameter corresponding to the
 conversion specification is used as the field width or precision
 specification value. When this parameter has a negative field width,
 flag '–' is interpreted as being specified for the positive field width.
 When the parameter has a negative precision, the precision is
 interpreted as being omitted.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 578 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int fscanf (FILE *fp, const char *control[, ptr…])

Description: Inputs data from a stream input/output file and converts it according to a format.

Header file: <stdio.h>

Return values: Normal: Number of data items successfully input and converted

 Abnormal: Input data ends before input data conversion is performed: EOF

Parameters: fp File pointer
control Pointer to string indicating format
ptr,... Pointer to storage area that stores input data

Example: #include <stdio.h>
 FILE *fp;

const char *control="%d";

int ret,buffer[10];

 ret=fscanf(fp, control, buffer);

Remarks: The fscanf function inputs data from the stream input/output file indicated by
file pointer fp, converts and edits it according to the string indicating the format
pointed to by control, and stores the result in the storage area pointed to by ptr.

 The format specifications for inputting data are shown below.

 (1) Overview of formats
The string that represents the format is made up of the following three
kinds of string.
 (a) Space characters
 If a space (' '), horizontal tab ('\t'), or new-line character ('\n') is
 specified, processing is performed to skip to the next non-white-space
 character in the input data.
(b) Ordinary characters
 If a character that is neither one of the space characters listed in
 (a) nor % is specified, one input data character is input. The input
 character must match a character specified in the string that represents
 the format.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 579 of 1176
Mar 01, 2022

 (c) Conversion specification
 A conversion specification is a string beginning with % that specifies
 the method of converting the input data and storing it in the area
 pointed to by the following argument. The conversion specification
 format conforms to the following rules:

% [*] [Field width] [Converted data size] Conversion string

If there is no pointer to the storage area that stores input data for the
conversion specification in the format, the behavior is not guaranteed.
Also, when a pointer to a storage area that stores input data remains
though the format is exhausted, that pointer is ignored.

 (2) Description of conversion specification
 (a) * specification
 Suppresses storage of the input data in the storage area pointed to by
 the parameter.
 (b) Field width
 The maximum number of characters in the data to be input is
 specified as a decimal number.
 (c) Converted data size
 For d, i, o, u, x, X, e, E, and f conversions (see table 10.47), specifies
 the size (short type, long type, long long, or long double type) of the
 converted data. In other conversions, this specification is ignored.
 Table 10.46 shows the types of size specification and their meanings.

Table 10.46 Converted Data Size Specification Types and Meanings

Type Meaning
h For d, i, o, u, x, and X conversions, specifies that the converted data is of short type.
l For d, i, o, u, x, and X conversions, specifies that the converted data is of long type.

For e, E, and f conversions, specifies that the converted data is of double type.
L For e, E, and f conversions, specifies that the converted data is of long double type.
ll For d, i, o, u, x, and X conversions, specifies that the converted data is of long long type.

 (d) Conversion specifier
 The input data is converted according to the type of conversion
 specified by the conversion specifier. However, processing is
 terminated when a white-space character is read, when a character for

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 580 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 which conversion is not permitted is read, or when the specified field
 width has been exceeded.

Table 10.47 Conversion Specifiers and Conversion Methods

Conversion
Specifier

Conversion
Type

Conversion Method

Data Type Subject
to Conversion

d d conversion A decimal string is converted to integer type data. Integer type

i i conversion A decimal string with a sign prefixed, or a decimal string with u (U)
or l (L) suffixed is converted to integer type data. A string beginning
with 0x (or 0X) is interpreted as hexadecimal, and the string is converted
to int type data. A string beginning with 0 is interpreted as octal, and the
string is converted to int type data.

Integer type

o o conversion An octal string is converted to integer type data. Integer type

u u conversion An unsigned decimal string is converted to integer type data. Integer type

x x conversion A hexadecimal string is converted to integer type data.
There is no difference in meaning between x conversion and X conversion.

Integer type

X X conversion

s s conversion Characters are converted as a single string until a space, horizontal tab,
or new-line character is read. A null character is appended at the end of
the string. (The string in which the converted data is set must be large
enough to include the null character.)

Character type

c c conversion One character is input. The input character is not skipped even if it is a
white-space character. To read only non-white-space characters,
specify %1s. If the field width is specified, the number of characters
equivalent to that specification are read. In this case, therefore, the storage
area that stores the converted data needs the specified size.

char type

e e conversion A string indicating a floating-point number is converted to floating-point
type data. There is no difference in meaning between the e conversion
and E conversion, or between the g conversion and G conversion.
The input format is a floating-point number that can be represented by
the strtod function.

Floating-point type

E E conversion

f f conversion

g g conversion

G G conversion

p p conversion A string converted by p conversion of the fprintf function is
converted to pointer type data.

Pointer to void type

n No conversion
is performed.

Data input is not performed; the number of data characters input so far is
set.

Integer type

[[conversion A sequence of characters is specified after [, followed by]. This character
sequence defines a sequence of characters comprising a string. If the
first character of the character sequence is not a circumflex (^), the input
data is input as a single string until a character not in this character
sequence is first read. If the first character is ^, the input data is input as a
single string until a character which is in the character sequence following
the ^ is first read. A null character is automatically appended at the end of
the input string (so the string in which the converted data is set must be
large enough to include the null character).

Character type

% No conversion
is performed.

% is read. None

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 581 of 1176
Mar 01, 2022

If the conversion specifier is a letter not shown in table 10.47, the behavior is not
guaranteed. For the other characters, the behavior is implementation-defined.

int printf (const char *control[, arg…])

Description: Converts data according to a format and outputs it to the standard output file
(stdout).

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output

 Abnormal: Negative value

Parameters: control Pointer to string indicating format
arg,... Data to be output according to format

Example: #include <stdio.h>
const char *control="%s";

int ret;

char buffer[]="Hello World\n";

 ret=printf(control, buffer);

Remarks: The printf function converts and edits parameter arg according to the string that
indicates the format pointed to by control, and outputs the result to the standard
output file (stdout).

For details of the format specifications, see the description of the fprintf
 function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 582 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int scanf (const char *control[, ptr…])

Description: Inputs data from the standard input file (stdin) and converts it according to a
format.

Header file: <stdio.h>

Return values: Normal: Number of data items successfully input and converted

 Abnormal: EOF

Parameters: control Pointer to string indicating format
ptr,... Pointer to storage area that holds input and converted data

Example: #include <stdio.h>
const char *control="%d";

int ret,buffer[10];

 ret=scanf(control,buffer);

Remarks: The scanf function inputs data from the standard input file (stdin), converts and
 edits it according to the string indicating the format pointed to by control, and
 stores the result in the storage area pointed to by ptr.

 The scanf function returns the number of data items successfully input and
 converted as the return value. EOF is returned if the standard input file ends
 before the first conversion.

 For details of the format specifications, see the description of the fscanf
 function.

For %e conversion, specify l for double type, and specify L for long double type.
The default type is float.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 583 of 1176
Mar 01, 2022

int sprintf (char *s, const char *control[, arg…])

Description: Converts data according to a format and outputs it to the specified area.

Header file: <stdio.h>

Return values: Number of characters converted

Parameters: s Pointer to storage area to which data is to be output
control Pointer to string indicating format
arg,... Data to be output according to format

Example: #include <stdio.h>
char *s;

const char *control="%s";

int ret;

char buffer[]="Hello World\n";

 ret=sprintf(s, control, buffer);

Remarks: The sprintf function converts and edits parameter arg according to the string
that indicates the format pointed to by control, and outputs the result to the
storage area pointed to by s.

A null character is appended at the end of the converted and output string. This
null character is not included in the return value (number of characters output).

For details of the format specifications, see the description of the fprintf
function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 584 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int sscanf (const char *s, const char *control[, ptr…])

Description: Inputs data from the specified storage area and converts it according to a
format.

Header file: <stdio.h>

Return values: Normal: Number of data items successfully input and converted

 Abnormal: EOF

Parameters: s Storage area containing data to be input
control Pointer to string indicating format
ptr,... Pointer to storage area that holds input and converted data

Example: #include <stdio.h>
const char *s, *control="%d";

int ret,buffer[10];

 ret=sscanf(s, control, buffer);

Remarks: The sscanf function inputs data from the storage area pointed to by s, converts
 and edits it according to the string indicating the format pointed to by control,
 and stores the result in the storage area pointed to by ptr.

The sscanf function returns the number of data items successfully input and
converted. EOF is returned when the input data ends before the first conversion.

For details of the format specifications, see the description of the fscanf function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 585 of 1176
Mar 01, 2022

int vfprintf (FILE *fp, const char *control, va_list arg)

Description: Outputs a variable parameter list to the specified stream input/output file
according to a format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output

 Abnormal: Negative value

Parameters: fp File pointer
control Pointer to string indicating format
arg Argument list

Example: #include <stdarg.h>
#include <stdio.h>
FILE *fp;

const char *control="%d";

int ret;

 void prlist(int count ,...)

{

 va_list ap;

 int i;

 va_start(ap, count);

 for(i=0;i<count;i++)

 ret=vfprintf(fp, control, ap);
 va_end(ap);

}

Remarks: The vfprintf function sequentially converts and edits a variable parameter list
according to the string that indicates the format pointed to by control, and
outputs the result to the stream input/output file indicated by fp.

The vfprintf function returns the number of data items converted and output, or
a negative value when an error occurs.

Within the vfprintf function, the va_end macro is not invoked.

For details of the format specifications, see the description of the fprintf
 function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 586 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Parameter arg, indicating the argument list, must be initialized beforehand by
the va_start macro (and the succeeding va_arg macro).

int vprintf (const char *control, va_list arg)

Description: Outputs a variable parameter list to the standard output file (stdout) according
to a format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted and output

 Abnormal: Negative value

Parameters: control Pointer to string indicating format
arg Argument list

Example: #include <stdarg.h>

#include <stdio.h>

FILE *fp;

const char *control="%d";

int ret;

 void prlist(int count ,...)

{

 va_list ap;

 int i;

 va_start(ap, count);

 for(i=0;i<count;i++)

 ret=vprintf(control, ap);

 va_end(ap);

}

Remarks: The vprintf function sequentially converts and edits a variable parameter list
 according to the string that indicates the format pointed to by control, and
 outputs the result to the standard output file.

The vprintf function returns the number of data items converted and output, or a
negative value if an error occurs.

Within the vprintf function, the va_end macro is not invoked.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 587 of 1176
Mar 01, 2022

For details of the format specifications, see the description of the fprintf
 function.

Parameter arg, indicating the argument list, must be initialized
 beforehand by the va_start macro (and the succeeding va_arg macro).

int vsprintf (char *s, const char *control, va_list arg)

Description: Outputs a variable parameter list to the specified storage area according to a
format.

Header file: <stdio.h>

Return values: Normal: Number of characters converted

 Abnormal: Negative value

Parameters: s Pointer to storage area to which data is to be output
control Pointer to string indicating format
arg Argument list

Example: #include <stdarg.h>
#include <stdio.h>
char *s;

const char *control="%d";

int ret;

void prlist(int count ,...)

{

 va_list ap;

 int i;

 va_start(ap, count);

 for(i=0;i<count;i++) {

 ret=vsprintf(s,control,buffer);

 va_arg(ap,int)

 s += ret;

 }

}

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 588 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: The vsprintf function sequentially converts and edits a variable parameter list
according to the string that indicates the format pointed to by control, and
outputs the result to the storage area pointed to by s.

A null character is appended at the end of the converted and output string. This
null character is not included in the return value (number of characters output).

For details of the format specifications, see the description of the fprintf
 function.

Parameter arg, indicating the argument list, must be initialized
 beforehand by the va_start macro (and the succeeding va_arg macro).

int fgetc (FILE *fp)

Description: Inputs one character from a stream input/output file.

Header file: <stdio.h>

Return values: Normal: End-of-file: EOF
 Otherwise: Input character

 Abnormal: EOF

Parameters: fp File pointer

Example: #include <stdio.h>
FILE *fp;

int ret;

 ret=fgetc(fp);

Error conditions:
 When a read error occurs, the error indicator for that file is set.

Remarks: The fgetc function inputs one character from the stream input/output file
indicated by file pointer fp.

The fgetc function normally returns the input character, but returns EOF at end-
of-file or when an error occurs. At end-of-file, the end-of-file indicator for that
file is set.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 589 of 1176
Mar 01, 2022

char *fgets (char *s, int n, FILE *fp)

Description: Inputs a string from a stream input/output file.

Header file: <stdio.h>

Return values: Normal: End-of-file: NULL
 Otherwise: s

 Abnormal: NULL

Parameters: s Pointer to storage area to which string is input
n Number of bytes of storage area to which string is input
fp File pointer

Example: #include <stdio.h>
char *s, *ret;

int n;

 FILE *fp;
 ret=fgets(s, n, fp);

Remarks: The fgets function inputs a string from the stream input/output file indicated by
file pointer fp to the storage area pointed to by s.

The fgets function performs input up to the (n–1)th character or a new-line
character, or until end-of-file, and appends a null character at the end of the
input string.

The fgets function normally returns s, the pointer to the storage area to which
the string is input, but returns NULL at end-of-file or if an error occurs.

The contents of the storage area pointed to by s do not change at end-of-file, but
are not guaranteed when an error occurs.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 590 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int fputc (int c, FILE *fp)

Description: Outputs one character to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: Output character

 Abnormal: EOF

Parameters: c Character to be output
fp File pointer

Example: #include <stdio.h>
 FILE *fp;
int c, ret;

 ret=fputc(c, fp);

Error conditions:
 When a write error occurs, the error indicator for that file is set.

Remarks: The fputc function outputs character c to the stream input/output file indicated
by file pointer fp.

The fputc function normally returns c, the output character, but returns EOF
when an error occurs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 591 of 1176
Mar 01, 2022

int fputs (const char *s, FILE *fp)

Description: Outputs a string to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: 0

 Abnormal: Nonzero

Parameters: s Pointer to string to be output
fp File pointer

Example: #include <stdio.h>
 const char *s;
int ret;

 FILE *fp;
 ret=fputs(s, fp);

Remarks: The fputs function outputs the string up to the character preceding the null
character pointed to by s to the stream input/output file indicated by file pointer
fp. The null character indicating the end of the string is not output.

The fputs function normally returns zero, but returns nonzero when an error
occurs.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 592 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int getc (FILE *fp)

Description: Inputs one character from a stream input/output file.

Header file: <stdio.h>

Return values: Normal: End-of-file: EOF
 Otherwise: Input character

 Abnormal: EOF

Parameters: fp File pointer

Example: #include <stdio.h>
 FILE *fp;
int ret;

 ret=getc(fp);

Error conditions:
When a read error occurs, the error indicator for that file is set.

Remarks: The getc function inputs one character from the stream input/output file
indicated by file pointer fp.

The getc function normally returns the input character, but returns EOF at end-
of-file or if an error occurs. At end-of-file, the end-of-file indicator for that file
is set.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 593 of 1176
Mar 01, 2022

int getchar (void)

Description: Inputs one character from the standard input file (stdin).

Header file: <stdio.h>

Return values: Normal: End-of-file: EOF
 Otherwise: Input character

 Abnormal: EOF

Example: #include <stdio.h>
int ret;

 ret=getchar();

Error conditions:
 When a read error occurs, the error indicator for that file is set.

Remarks: The getchar function inputs one character from the standard input file (stdin).

The getchar function normally returns the input character, but returns EOF at
end-of-file or if an error occurs. At end-of-file, the end-of-file indicator for that
file is set.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 594 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

char *gets (char *s)

Description: Inputs a string from the standard input file (stdin).

Header file: <stdio.h>

Return values: Normal: End-of-file: NULL
 Otherwise: s

 Abnormal: NULL

Parameters: s Pointer to storage area to which string is input

Example: #include <stdio.h>
char *ret, *s;

 ret=gets(s);

Remarks: The gets function inputs a string from the standard input file (stdin) to the
storage area starting at s.

The gets function inputs characters up to end-of-file or until a new-line character
is input, and appends a null character instead of a new-line character.

The gets function normally returns s, the pointer to the storage area to which the
string is input, but returns NULL at the end of the standard input file or when an
error occurs.

The contents of the storage area pointed to by s do not change at the end of the
standard input file, but is not guaranteed when an error occurs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 595 of 1176
Mar 01, 2022

int putc (int c, FILE *fp)

Description: Outputs one character to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: Output character

 Abnormal: EOF

Parameters: c Character to be output
 fp File pointer

Example: #include <stdio.h>
FILE *fp;

int c, ret;

 ret=putc(c, fp);

Error conditions:
When a write error occurs, the error indicator for that file is set.

Remarks: The putc function outputs character c to the stream input/output file indicated by
file pointer fp.

The putc function normally returns c, the output character, but returns EOF
when an error occurs.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 596 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int putchar (int c)

Description: Outputs one character to the standard output file (stdout).

Header file: <stdio.h>

Return values: Normal: Output character
 Abnormal: EOF

Parameters: c Character to be output

Example: #include <stdio.h>
int c, ret;

 ret=putchar(c);

Error conditions:
 When a write error occurs, the error indicator for that file is set.

Remarks: The putchar function outputs character c to the standard output file (stdout).

The putchar function normally returns c, the output character, but returns EOF
when an error occurs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 597 of 1176
Mar 01, 2022

int puts (const char *s)

Description: Outputs a string to the standard output file (stdout).

Header file: <stdio.h>

Return values: Normal: 0
 Abnormal: Nonzero

Parameters: s Pointer to string to be output

Example: #include <stdio.h>
const char *s;
int ret;
 ret=puts(s);

Remarks: The puts function outputs the string pointed to by s to the standard output file
(stdout). The null character indicating the end of the string is not output, but a
new-line character is output instead.

The puts function normally returns zero, but returns nonzero when an error
occurs.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 598 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int ungetc (int c, FILE *fp)

Description: Returns one character to a stream input/output file.

Header file: <stdio.h>

Return values: Normal: Returned character

 Abnormal: EOF

Parameters: c Character to be returned
 fp File pointer

Example: #include <stdio.h>
int c, ret;

FILE *fp;

 ret=ungetc(c, fp);

Remarks: The ungetc function returns character c to the stream input/output file indicated
by file pointer fp. Unless the fflush, fseek, or rewind function is called, this
returned character will be the next input data.

The ungetc function normally returns character c, but returns EOF if an error
occurs.

The behavior is not guaranteed when the ungetc function is called more than
once without intervening fflush, fseek, or rewind function execution. When the
ungetc function is executed, the current file position indicator for that file is
moved back one position; however, when this file position indicator has already
been positioned at the beginning of the file, its value is not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 599 of 1176
Mar 01, 2022

size_t fread (void *ptr, size_t size, size_t n, FILE *fp)

Description: Inputs data from a stream input/output file to the specified storage area.

Header file: <stdio.h>

Return values: When size or n is 0: 0
 When size and n are both nonzero: Number of successfully input members

Parameters: ptr Pointer to storage area to which data is input
 size Number of bytes in one member
 n Number of members to be input
 fp File pointer

Example: #include <stdio.h>

void *ptr;

size_t size;

size_t n, ret;
FILE *fp;

 ret=fread(ptr, size, n, fp);

Remarks: The fread function inputs n members whose size is specified by size, from the
stream input/output file indicated by file pointer fp, into the storage area pointed
to by ptr. The file position indicator for the file is advanced by the number of
bytes input.

The fread function returns the number of members successfully input, which is
normally the same as the value of n. However, at end-of-file or when an error
occurs, the number of members successfully input so far is returned, and then
the return value will be less than n. The ferror and feof functions should be
used to distinguish between end-of-file and error occurrence.

When the value of size or n is zero, zero is returned as the return value and the
contents of the storage area pointed to by ptr are unchanged. When an error
occurs, or when only a part of the members can be input, the file position
indicator is not guaranteed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 600 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

size_t fwrite (const void *ptr, size_t size, size_t n, FILE *fp)

Description: Outputs data from a memory area to a stream input/output file.

Header file: <stdio.h>

Return values: Number of successfully output members

Parameters: ptr Pointer to storage area storing data to be output
 size Number of bytes in one member
 n Number of members to be input
 fp File pointer

Example: #include <stdio.h>

const void *ptr;

size_t size;

size_t n, ret;
FILE *fp;

 ret=fwrite(ptr, size, n, fp);

Remarks: The fwrite function outputs n members whose size is specified by size, from the
storage area pointed to by ptr, to the stream input/output file indicated by file
pointer fp. The file position indicator for the file is advanced by the number of
bytes output.

The fwrite function returns the number of members successfully output, which
is normally the same as the value of n. However, when an error occurs, the
number of members successfully output so far is returned, and then the return
value will be less than n.

When an error occurs, the file position indicator is not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 601 of 1176
Mar 01, 2022

int fseek (FILE *fp, long offset, int type)

Description: Shifts the current read/write position in a stream input/output file.

Header file: <stdio.h>

Return values: Normal: 0

 Abnormal: Nonzero

Parameters: fp File pointer
 offset Offset from position specified by type of offset
 type Type of offset

Example: #include <stdio.h>

FILE *fp;

long offset;

int type, ret;
 ret=fseek(fp, offset, type);

Remarks: The fseek function shifts the current read/write position in the stream
input/output file indicated by file pointer fp by offset bytes from the position
specified by type (the type of offset).
The types of offset are shown in table 10.48.
The fseek function normally returns zero, but returns nonzero in response to an
invalid request.

Table 10.48 Types of Offset

Offset Type Meaning
SEEK_SET Shifts to a position which is located offset bytes away from the beginning of the

file. The value specified by offset must be zero or positive.
SEEK_CUR Shifts to a position which is located offset bytes away from the current position in

the file. The shift is toward the end of the file if the value specified by offset is
positive, and toward the beginning of the file if negative.

SEEK_END Shifts to a position which is located offset bytes forward from end-of-file. The
value specified by offset must be zero or negative.

In the case of a text file, the type of offset must be SEEK_SET and offset must
be zero or the value returned by the ftell function for that file. Note also that
calling the fseek function cancels the effect of the ungetc function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 602 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long ftell (FILE *fp)

Description: Obtains the current read/write position in a stream input/output file.

Header file: <stdio.h>

Return values: Current file position indicator position (text file)
Number of bytes from beginning of file to current position (binary file)

Parameters: fp File pointer

Example: #include <stdio.h>

FILE *fp;

long ret;

 ret=ftell(fp);

Remarks: The ftell function obtains the current read/write position in the stream
input/output file indicated by file pointer fp.

For a binary file, the ftell function returns the number of bytes from the
beginning of the file to the current position. For a text file, it returns, as the
position of the file position indicator, an implementation-defined value that can
be used by the fseek function.

When the ftell function is used twice for a text file, the difference in the return
values will not necessarily represent the actual distance in the file.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 603 of 1176
Mar 01, 2022

void rewind (FILE *fp)

Description: Shifts the current read/write position in a stream input/output file to the
beginning of the file.

Header file: <stdio.h>

Parameters: fp File pointer

Example: #include <stdio.h>

FILE *fp;

 rewind(fp);

Remarks: The rewind function shifts the current read/write position in the stream
input/output file indicated by file pointer fp, to the beginning of the file.

The rewind function clears the end-of-file indicator and error indicator for the
file.

Note that calling the rewind function cancels the effect of the ungetc function.

void clearerr (FILE *fp)

Description: Clears the error state of a stream input/output file.

Header file: <stdio.h>

Parameters: fp File pointer

Example: #include <stdio.h>

FILE *fp;

 clearerr(fp);

Remarks: The clearerr function clears the error indicator and end-of-file indicator for the
stream input/output file indicated by file pointer fp.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 604 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int feof (FILE *fp)

Description: Tests for the end of a stream input/output file.

Header file: <stdio.h>

Return values: End-of-file: Nonzero
Otherwise: 0

Parameters: fp File pointer

Example: #include <stdio.h>

FILE *fp;

int ret;

 ret=feof(fp);

Remarks: The feof function tests for the end of the stream input/output file indicated by
file pointer fp.

The feof function tests the end-of-file indicator for the specified stream
input/output file, and if the indicator is set, returns nonzero to indicate that the
file is at its end. If the end-of-file indicator is not set, the feof function returns
zero to show that the file is not yet at its end.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 605 of 1176
Mar 01, 2022

int ferror (FILE *fp)

Description: Tests for stream input/output file error state.

Header file: <stdio.h>

Return values: If file is in error state: Nonzero
Otherwise: 0

Parameters: fp File pointer

Example: #include <stdio.h>

FILE *fp;

int ret;

 ret=ferror(fp);

Remarks: The ferror function tests whether the stream input/output file indicated by file
pointer fp is in the error state.

The ferror function tests the error indicator for the specified stream input/output
file, and if the indicator is set, returns nonzero to show that the file is in the error
state. If the error indicator is not set, the ferror function returns zero to show
that the file is not in the error state.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 606 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void perror (const char *s)

Description: Outputs an error message corresponding to the error number to the standard error
file (stderr).

Header file: <stdio.h>

Parameters: s Pointer to error message

Example: #include <stdio.h>

const char *s;

 perror(s);

Remarks: The perror function maps errno to the error message indicated by s, and
outputs the message to the standard error file (stderr).

If s is not NULL and the string pointed to by s is not the null character, the
output format is as follows: the string pointed to by s followed by a colon and
space, then the implementation-defined error message, and finally a new-line
character.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 607 of 1176
Mar 01, 2022

<stdlib.h>

Defines standard functions for standard processing of C programs.

The following macros are implementation-defined.

Type Definition Name Description
Type
(macro)

div_t Indicates the type of structure of the value returned by the div function.
ldiv_t Indicates the type of structure of the value returned by the ldiv function.
lldiv_t Indicates the type of structure of the value returned by the lldiv

function.
Constant
(macro)

RAND_MAX Indicates the maximum of pseudo-random integers generated by the
rand function.

Function atof Converts a number-representing string to a double type floating-point
number.

atoi Converts a decimal-representing string to an int type integer.
 atol Converts a decimal-representing string to a long type integer.
 atoll Converts a decimal-representing string to a long long type integer.
 atolfixed Converts a number-representing string to a long _ _fixed type fixed-

point number.
 atolaccum Converts a number-representing string to a long _ _accum type fixed-

point number.
 strtod Converts a number-representing string to a double type floating-point

number.
 strtol Converts a number-representing string to a long type integer.
 strtoul Converts a number-representing string to an unsigned long type

integer.
 strtoll Converts a number-representing string to a long long type integer.
 strtoull Converts a number-representing string to an unsigned long long type

integer.
 strtolfixed Converts a number-representing string to a long _ _fixed type fixed-

point number.
 strtolaccum Converts a number-representing string to a long _ _accum type fixed-

point number.
 rand Generates pseudo-random integers from 0 to RAND_MAX.
 srand Sets an initial value of the pseudo-random number series generated by

the rand function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 608 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function calloc Allocates storage areas and clears all bits in the allocated storage

areas to 0.
 free Releases specified storage area.
 malloc Allocates a storage area.
 realloc Changes the size of storage area to a specified value.
 calloc_ _X Allocates X storage areas and clears all bits in the allocated X storage

areas to 0.
 free_ _X Releases specified X storage area.
 malloc_ _X Allocates an _ _X storage area.
 realloc_ _X Changes the size of X storage area to a specified value.
 calloc_ _Y Allocates Y storage areas and clears all bits in the allocated Y storage

areas to 0.
 free_ _Y Releases specified Y storage area.
 malloc_ _Y Allocates an Y storage area.
 realloc_ _Y Changes the size of Y storage area to a specified value.
 bsearch Performs binary search.
 qsort Performs sorting.
 abs Calculates the absolute value of an int type integer.
 div Carries out division of int type integers and obtains the quotient and

remainder.
 labs Calculates the absolute value of a long type integer.
 ldiv Carries out division of long type integers and obtains the quotient and

remainder.
 llabs Calculates the absolute value of a long long type integer.
 lldiv Carries out division of long long type integers and obtains the quotient

and remainder.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 609 of 1176
Mar 01, 2022

double atof (const char *nptr)

Description: Converts a number-representing string to a double type floating-point number.

Header file: <stdlib.h>

Return values: Converted data as a double type floating-point number

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>

const char *nptr;

double ret;

 ret=atof(nptr);

Error conditions:
 If the converted result overflows or underflows, ERANGE is set to errno.

Remarks: Data is converted up to the first character that does not fit the floating-point data
 type.

The atof function does not guarantee the return value, if an error such as an
overflow occurs. When you want to acquire the guaranteed return value, use the
strtod function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 610 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int atoi (const char *nptr)

Description: Converts a decimal-representing string to an int type integer.

Header file: <stdlib.h>

Return values: Converted data as an int type integer

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>

const char *nptr;

int ret;

 ret=atoi(nptr);

Error conditions:
 If the converted result overflows, ERANGE is set to errno.

Remarks: Data is converted up to the first character that does not fit the decimal data type.

The atoi function does not guarantee the return value, if an error such as an
overflow occurs. When you want to acquire the guaranteed return value, use the
strtol function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 611 of 1176
Mar 01, 2022

long atol (const char *nptr)

Description: Converts a decimal-representing string to a long type integer.

Header file: <stdlib.h>

Return values: Converted data as a long type integer

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>

const char *nptr;

long ret;

 ret=atol(nptr);

Error conditions:
 If the converted result overflows, ERANGE is set to errno.

Remarks: Data is converted up to the first character that does not fit the decimal data type.

The atol function does not guarantee the return value, if an error such as an
overflow occurs. When you want to acquire the guaranteed return value, use the
strtol function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 612 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long long atoll (const char *nptr)

Description: Converts a decimal-representing string to a long long type integer.

Header file: <stdlib.h>

Return values: Converted data as a long long type integer

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>

const char *nptr;

long long ret;

 ret=atoll(nptr);

Error conditions:
 If the converted result overflows, ERANGE is set to errno.

Remarks: Data is converted up to the first character that does not fit the decimal data type.

The atoll function does not guarantee the return value, if an error such as an
overflow occurs. When you want to acquire the guaranteed return value, use the
strtoll function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 613 of 1176
Mar 01, 2022

long _ _fixed atolfixed (const char *nptr)

Description: Converts a number-representing string to a long _ _fixed type fixed-point
number.

Header file: <stdlib.h>

Return values: Converted data as a long _ _fixed type fixed-point number

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>

const char *nptr;

long _ _fixed ret;

 ret=atolfixed(nptr);

Error conditions:
 If the converted result overflows or underflows, ERANGE is set to errno.

Remarks: The atolfixed function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and
dspc are specified.

 Data is converted up to the first character that does not fit the fixed-point data
type.

The atolfixed function does not guarantee the return value, if an error such as an
overflow occurs. When you want to acquire the guaranteed return value, use the
strtolfixed function.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 614 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long _ _accum atolaccum (const char *nptr)

Description: Converts a number-representing string to a long _ _accum type fixed-point
number.

Header file: <stdlib.h>

Return values: Converted data as a long _ _accum type fixed-point number

Parameters: nptr Pointer to a number-representing string to be converted

Example: #include <stdlib.h>

const char *nptr;

long _ _accum ret;

 ret=atolaccum(nptr);

Error conditions:
 If the converted result overflows or underflows, ERANGE is set to errno.

Remarks: The atolaccum function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and
dspc are specified.

 Data is converted up to the first character that does not fit the fixed-point data
type.

The atolaccum function does not guarantee the return value, if an error such as
an overflow occurs. When you want to acquire the guaranteed return value, use
the strtolaccum function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 615 of 1176
Mar 01, 2022

double strtod (const char *nptr, char **endptr)

Description: Converts a string which represents a number to a double type floating-point
number.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr begins with a character that does
 not represent a floating-point number: 0
 If the string pointed by nptr begins with a character that
 represents a floating-point number: converted data as a double
 type floating-point number

 Abnormal: If the converted data overflows: HUGE_VAL with the same sign
 as that of the string before conversion
 If the converted data underflows: 0

Parameters: nptr Pointer to a string representing a number to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not comprise a floating-point number

Example: #include <stdlib.h>

const char *nptr;

char **endptr;

double ret;

 ret=strtod(nptr, endptr);

Error conditions:
If the converted result overflows or underflows, ERANGE is set to errno.

Remarks: According to the rules described in section 10.1.3 (4), Floating-Point Operation
Specifications, the strtod function converts data, from the first digit or the
decimal point up to the character immediately before the character that does not
comprise a floating-point number, into a double type floating-point number.
However, if neither an exponent nor a decimal point is found in the data to be
converted, the compiler assumes that the decimal point comes next to the last
digit in the string. In the area pointed by endptr, the function sets up a pointer
to the first character that does not compose a floating-point number. If some
characters that do not compose a floating-point number come before numerals,
the value of nptr is set. If endptr is NULL, nothing is set.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 616 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long strtol (const char *nptr, char **endptr, int base)

Description: Converts a string which represents a number to a long type integer.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr begins with a character that does
 not represent an integer: 0
 If the string pointed by nptr begins with a character that
 represents an integer: Converted data as a long type integer

 Abnormal: If the converted data overflows: LONG_MAX or LONG_MIN
 depending on the sign of the string before conversion

Parameters: nptr Pointer to a string representing a number to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not comprise an integer
 base Radix of conversion (0 or 2 to 36)

Example: #include <stdlib.h>

long ret;

const char *nptr;

char **endptr;

int base;

 ret=strtol(nptr, endptr, base);

Error conditions:
 If the converted result overflows, ERANGE is set to errno.

Remarks: The strtol function converts data, from the first numeral up to the character
before the first character that does not represent an integer, into a long type
integer.

In the storage area pointed by endptr, the function sets up a pointer to the first
character that does not represent an integer. If some characters that do not
represent an integer come before the first numeral, the value of nptr is set in this
area. If endptr is NULL, nothing is set in this area.

If the value of base is 0, the rules described in section 10.1.1 (4), Integers, are
observed at conversion. If the value of base is 2 to 36, it indicates the radix of
conversion, where a (or A) to z (or Z) in the string to be converted correspond to
numbers 10 to 35. If a character that is not smaller than the base value is found

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 617 of 1176
Mar 01, 2022

in the string to be converted, conversion stops immediately. A 0 after a sign is
ignored at conversion. Similarly, 0x (or 0X) at base 16 is ignored.

unsigned long strtoul (const char *nptr, char **endptr, int base)

Description: Converts a string which represents a number to an unsigned long type integer.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr begins with a character that does
 not represent an integer: 0
 If the string pointed by nptr begins with a character that
 represents an integer: Converted data as an unsigned long type
 integer

 Abnormal: If the converted data overflows: ULONG_MAX

Parameters: nptr Pointer to a string representing a number to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not comprise an integer
 base Radix of conversion (0 or 2 to 36)

Example: #include <stdlib.h>

unsigned long ret;

const char *nptr;

char **endptr;

int base;

 ret=strtoul(nptr, endptr, base);

Error conditions:
 If the converted result overflows, ERANGE is set to errno.

Remarks: The strtoul function converts data, from the first numeral up to the character
before the first character that does not represent an integer, into an unsigned
long type integer.

In the storage area pointed by endptr, the function sets up a pointer to the first
character that does not represent an integer. If some characters that do not
represent an integer come before the first numeral, the value of nptr is set in this
area. If endptr is NULL, nothing is set in this area.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 618 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

If the value of base is 0, the rules described in section 10.1.1 (4), Integers, are
observed at conversion. If the value of base is 2 to 36, it indicates the radix of
conversion, where a (or A) to z (or Z) in the string to be converted correspond to
numbers 10 to 35. If a character that is not smaller than the base value is found
in the string to be converted, conversion stops immediately. A 0 after a sign is
ignored at conversion. Similarly, 0x (or 0X) at base 16 is ignored.

long long strtoll (const char *nptr, char **endptr, int base)

Description: Converts a string which represents a number to a long long type integer.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr begins with a character that does
 not represent an integer: 0
 If the string pointed by nptr begins with a character that
 represents an integer: Converted data as a long long type integer

 Abnormal: If the converted data overflows: LLONG_MAX or LLONG_MIN
 depending on the sign of the string before conversion

Parameters: nptr Pointer to a string representing a number to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not comprise an integer
 base Radix of conversion (0 or 2 to 36)

Example: #include <stdlib.h>

long long ret;

const char *nptr;

char **endptr;

int base;

 ret=strtoll(nptr,endptr,base);

Error conditions:
 If the converted result overflows, ERANGE is set to errno.

Remarks: The strtoll function converts data, from the first numeral up to the character
before the first character that does not represent an integer, into a long long type
integer.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 619 of 1176
Mar 01, 2022

In the storage area pointed by endptr, the function sets up a pointer to the first
character that does not represent an integer. If some characters that do not
represent an integer come before the first numeral, the value of nptr is set in this
area. If endptr is NULL, nothing is set in this area.

If the value of base is 0, the rules described in section 10.1.1 (4), Integers, are
observed at conversion. If the value of base is 2 to 36, it indicates the radix of
conversion, where a (or A) to z (or Z) in the string to be converted correspond to
numbers 10 to 35. If a character that is not smaller than the base value is found
in the string to be converted, conversion stops immediately. A 0 after a sign is
ignored at conversion. Similarly, 0x (or 0X) at base 16 is ignored.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 620 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

unsigned long long strtoull (const char *nptr, char **endptr, int base)

Description: Converts a string which represents a number to an unsigned long long type
integer.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr begins with a character that does
 not represent an integer: 0
 If the string pointed by nptr begins with a character that
 represents an integer: Converted data as an unsigned long long
 type integer

 Abnormal: If the converted data overflows: ULLONG_MAX

Parameters: nptr Pointer to a string representing a number to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not comprise an integer
 base Radix of conversion (0 or 2 to 36)

Example: #include <stdlib.h>

unsigned long long ret;

const char *nptr;

char **endptr;

int base;

 ret=strtoull(nptr,endptr,base);

Error conditions:
 If the converted result overflows, ERANGE is set to errno.

Remarks: The strtoull function converts data, from the first numeral up to the character
before the first character that does not represent an integer, into an unsigned
long long type integer.

In the storage area pointed by endptr, the function sets up a pointer to the first
character that does not represent an integer. If some characters that do not
represent an integer come before the first numeral, the value of nptr is set in this
area. If endptr is NULL, nothing is set in this area.

If the value of base is 0, the rules described in section 10.1.1 (4), Integers, are
observed at conversion. If the value of base is 2 to 36, it indicates the radix of
conversion, where a (or A) to z (or Z) in the string to be converted correspond to

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 621 of 1176
Mar 01, 2022

numbers 10 to 35. If a character that is not smaller than the base value is found
in the string to be converted, conversion stops immediately. A 0 after a sign is
ignored at conversion. Similarly, 0x (or 0X) at base 16 is ignored.

long _ _fixed strtolfixed (const char *nptr, char **endptr)

Description: Converts a string which represents a number to a long _ _fixed type fixed-point
number.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr begins with a character that does
 not represent a fixed-point number: 0
 If the string pointed by nptr begins with a character that
 represents a fixed-point number: Converted data
 as a long _ _fixed type fixed-point number

 Abnormal: If the converted data overflows: LFIXED_MAX or
 LFIXED_MIN depending on the sign of the string before
 conversion
 If the converted data underflows: 0

Parameters: nptr Pointer to a string representing a number to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not comprise a fixed-point number

Example: #include <stdlib.h>

const char *nptr;

char **endptr;

long _ _fixed ret;

 ret=strtolfixed(nptr,endptr);

Error conditions:
 If the converted result overflows or underflows, ERANGE is set to errno.

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.
The strtolfixed function converts data, from the first digit or the decimal point
up to the character immediately before the character that does not comprise a
fixed-point number, into a long _ _fixed type fixed-point number. However, if

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 622 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

neither an exponent nor a decimal point is found in the data to be converted, the
compiler assumes that the decimal point comes next to the last digit in the string.
In the area pointed by endptr, the function sets up a pointer to the first character
that does not compose a fixed-point number. If some characters that do not
compose a fixed-point number come before numerals, the value of nptr is set.
If endptr is NULL, nothing is set.

long _ _accum strtolaccum (const char *nptr, char **endptr)

Description: Converts a string which represents a number to a long _ _accum type fixed-point
number.

Header file: <stdlib.h>

Return values: Normal: If the string pointed by nptr begins with a character that does
 not represent a fixed-point number: 0
 If the string pointed by nptr begins with a character that
 represents a fixed-point number: Converted data
 as a long _ _accum type fixed-point number

 Abnormal: If the converted data overflows: LACCUM_MAX or
 LACCUM_MIN depending on the sign of the string before
 conversion
 If the converted data underflows: 0

Parameters: nptr Pointer to a string representing a number to be converted
 endptr Pointer to the storage area containing a pointer to the first
 character that does not comprise a fixed-point number

Example: #include <stdlib.h>

const char *nptr;

char **endptr;

long _ _accum ret;

 ret=strtolaccum(nptr,endptr);

Error conditions:
If the converted result overflows or underflows, ERANGE is set to errno.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 623 of 1176
Mar 01, 2022

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.
The strtolaccum function converts data, from the first digit or the decimal point
up to the character immediately before the character that does not comprise a
fixed-point number, into a long _ _accum type fixed-point number. However, if
neither an exponent nor a decimal point is found in the data to be converted, the
compiler assumes that the decimal point comes next to the last digit in the string.
In the area pointed by endptr, the function sets up a pointer to the first character
that does not compose a fixed-point number. If some characters that do not
compose a fixed-point number come before numerals, the value of nptr is set.
If endptr is NULL, nothing is set.

int rand (void)

Description: Generates a pseudo-random integer from 0 to RAND_MAX.

Header file: <stdlib.h>

Return values: Pseudo-random integer

Example: #include <stdlib.h>

int ret;

 ret=rand();

void srand (unsigned int seed)

Description: Sets an initial value of the pseudo-random number series generated by the rand
function.

Header file: <stdlib.h>

Parameters: seed Initial value for pseudo-random number series generation

Example: #include <stdlib.h>

unsigned int seed;

 srand(seed);

Remarks: The srand function sets up an initial value for pseudo-random number series
generation of the rand function. If pseudo-random number series generation by

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 624 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

the rand function is repeated and if the same initial value is set up again by the
srand function, the same pseudo-random number series is repeated.

If the rand function is called before the srand function, 1 is set as the initial
value for the pseudo-random number generation.

void *calloc (size_t nelem, size_t elsize)

Description: Allocates a storage area and clears all bits in the allocated storage area to 0.

Header file: <stdlib.h>

Return values: Normal: Starting address of an allocated storage area

 Abnormal: Storage allocation failed, or either of the parameter is 0: NULL

Parameters: nelem Number of elements
 elsize Number of bytes occupied by a single element

Example: #include <stdlib.h>

size_t nelem, elsize;

void *ret;

 ret=calloc(nelem, elsize);

Remarks: The calloc function allocates as many storage units of size elsize as the number
specified by nelem. The function also clears all the bits in the allocated storage
area to 0.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 625 of 1176
Mar 01, 2022

void free (void *ptr)

Description: Releases specified storage area.

Header file: <stdlib.h>

Parameters: ptr Address of storage area to release

Example: #include <stdlib.h>

void *ptr;

 free(ptr);

Remarks: The free function releases the storage area pointed by ptr, to enable reallocation
 for use. If ptr is NULL, the function carries out nothing.

 If the storage area attempted to release was not allocated by the calloc, malloc,
or realloc function, or when the area has already been released by the free or
realloc function, correct operation is not guaranteed. Operation result of
reference to released storage area is also not guaranteed.

void *malloc (size_t size)

Description: Allocates a storage area.

Header file: <stdlib.h>

Return values: Normal: Starting address of allocated storage area

 Abnormal: Storage allocation failed, or size is 0: NULL

Parameters: size Size in number of bytes of storage area to allocate

Example: #include <stdlib.h>

size_t size;

void *ret;

 ret=malloc(size);

Remarks: The malloc function allocates a storage area of a specified number of bytes by
size.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 626 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void *realloc (void *ptr, size_t size)

Description: Changes the size of a storage area to a specified value.

Header file: <stdlib.h>

Return values: Normal: Starting address of storage area whose size has been changed

 Abnormal: Storage area allocation has failed, or size is 0: NULL

Parameters: ptr Starting address of storage area to be changed
 size Size of storage area in number of bytes after the change

Example: #include <stdlib.h>

size_t size;

void *ptr, *ret;

 ret=realloc(ptr, size);

Remarks: The realloc function changes the size of the storage area specified by ptr to the
number of bytes specified by size. If the newly allocated storage area is smaller
than the old one, the contents are left unchanged up to the size of the newly
allocated area.

 When ptr is not a pointer to the storage area allocated by the calloc, malloc, or
realloc function or when ptr is a pointer to the storage area released by the free
or realloc function, operation is not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 627 of 1176
Mar 01, 2022

void _ _X *calloc_ _X (size_t nelem, size_t elsize)

Description: Allocates an X storage area and clears all bits in the allocated X storage area to 0.

Header file: <stdlib.h>

Return values: Normal: Starting address of an allocated X storage area

 Abnormal: X storage allocation failed, or either of the parameter is 0: NULL

Parameters: nelem Number of elements
 elsize Number of bytes occupied by a single element

Example: #include <stdlib.h>

size_t nelem, elsize;

void _ _X *ret;

 ret=calloc_ _X(nelem,elsize);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.
The calloc_ _X function allocates as many X storage units of size elsize as the
number specified by nelem. The function also clears all the bits in the allocated
X storage area to 0.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 628 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void free_ _X (void _ _X *ptr)

Description: Releases specified X storage area.

Header file: <stdlib.h>

Parameters: ptr Address of X storage area to release

Example: #include <stdlib.h>

void _ _X *ptr;

 free_ _X(ptr);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
 specified.

 The free_ _X function releases the X storage area pointed by ptr, to enable
 reallocation for use. If ptr is NULL, the function carries out nothing.

 If the X storage area attempted to release was not allocated by the calloc_ _X,
malloc_ _X, or realloc_ _X function, or when the area has already been released
by the free_ _X or realloc_ _X function, operation is not guaranteed. Operation
result of reference to a released X storage area is also not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 629 of 1176
Mar 01, 2022

void _ _X *malloc_ _X (size_t size)

Description: Allocates X storage area.

Header file: <stdlib.h>

Return values: Normal: Starting address of allocated X storage area

 Abnormal: X storage allocation failed, or size is 0: NULL

Parameters: size Size in number of bytes of X storage area to allocate

Example: #include <stdlib.h>

size_t size;

void _ _X *ret;

 ret=malloc_ _X(size);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
 specified.

 The malloc_ _X function allocates an X storage area of a specified number of
bytes by size.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 630 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void _ _X *realloc_ _X (void _ _X *ptr, size_t size)

Description: Changes the size of an X storage area to a specified value.

Header file: <stdlib.h>

Return values: Normal: Starting address of X storage area whose size has been changed

 Abnormal: X storage area allocation has failed, or size is 0: NULL

Parameters: ptr Starting address of X storage area to be changed
 size Size of X storage area in number of bytes after the change

Example: #include <stdlib.h>

size_t size;

void _ _X *ptr, *ret;

 ret=realloc_ _X(ptr,size);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
 specified.

 The realloc_ _X function changes the size of the X storage area specified by ptr
to the number of bytes specified by size. If the newly allocated X storage area is
smaller than the old one, the contents are left unchanged up to the size of the
newly allocated X area.

 When ptr is not a pointer to the X storage area allocated by the calloc_ _X,
malloc_ _X, or realloc_ _X function or when ptr is a pointer to the X storage
area released by the free_ _X or realloc_ _X function, operation is not
guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 631 of 1176
Mar 01, 2022

void _ _Y *calloc_ _Y (size_t nelem, size_t elsize)

Description: Allocates a Y storage area and clears all bits in the allocated Y storage area to 0.

Header file: <stdlib.h>

Return values: Normal: Starting address of an allocated Y storage area

 Abnormal: Y storage allocation failed, or either of the parameter is 0: NULL

Parameters: nelem Number of elements
 elsize Number of bytes occupied by a single element

Example: #include <stdlib.h>

size_t nelem, elsize;

void _ _Y *ret;

 ret=calloc_ _Y(nelem,elsize);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.
The calloc_ _Y function allocates as many Y storage units of size elsize as the
number specified by nelem. The function also clears all the bits in the allocated
Y storage area to 0.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 632 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void free_ _Y (void _ _Y *ptr)

Description: Releases specified Y storage area.

Header file: <stdlib.h>

Parameters: ptr Address of Y storage area to release

Example: #include <stdlib.h>

void _ _Y *ptr;

 free_ _Y(ptr);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
 specified.

 The free_ _Y function releases the Y storage area pointed by ptr, to enable
 reallocation for use. If ptr is NULL, the function carries out nothing.

 If the Y storage area attempted to release was not allocated by the calloc_ _Y,
malloc_ _Y, or realloc_ _Y function, or when the area has already been released
by the free_ _Y or realloc_ _Y function, operation is not guaranteed. Operation
result of reference to a released Y storage area is also not guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 633 of 1176
Mar 01, 2022

void _ _Y *malloc_ _Y (size_t size)

Description: Allocates Y storage area.

Header file: <stdlib.h>

Return values: Normal: Starting address of allocated Y storage area

 Abnormal: Y storage allocation failed, or size is 0: NULL

Parameters: size Size in number of bytes of Y storage area to allocate

Example: #include <stdlib.h>

size_t size;

void _ _Y *ret;

 ret=malloc_ _Y(size);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
 specified.

 The malloc_ _Y function allocates the Y storage area of a specified number of
bytes by size.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 634 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void _ _Y *realloc_ _Y (void _ _Y *ptr, size_t size)

Description: Changes the size of a Y storage area to a specified value.

Header file: <stdlib.h>

Return values: Normal: Starting address of Y storage area whose size has been changed

 Abnormal: Y storage area allocation has failed, or size is 0: NULL

Parameters: ptr Starting address of Y storage area to be changed
 size Size of Y storage area in number of bytes after the change

Example: #include <stdlib.h>

size_t size;

void _ _Y *ptr, *ret;

 ret=realloc_ _Y(ptr,size);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
 specified.

 The realloc_ _Y function changes the size of the Y storage area specified by ptr
to the number of bytes specified by size. If the newly allocated Y storage area is
smaller than the old one, the contents are left unchanged up to the size of the
newly allocated Y area.

 When ptr is not a pointer to the Y storage area allocated by the calloc_ _Y,
malloc_ _Y, or realloc_ _Y function or when ptr is a pointer to the Y storage
area released by the free_ _Y or realloc_ _Y function, operation is not
guaranteed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 635 of 1176
Mar 01, 2022

void *bsearch (const void *key, const void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *))

Description: Performs binary search.

Header file: <stdlib.h>

Return values: If a matching member is found: Pointer to the matching member
If no matching member is found: NULL

Parameters: key Pointer to data to find
 base Pointer to a table to be searched
 nmemb Number of members to be searched
 size Number of bytes of a member to be searched
 compar Pointer to a function that performs comparison

Example: #include <stdlib.h>

const void *key, *base;

size_t nmemb, size;

int (*compar)(const void *, const void *);

void *ret;

 ret=bsearch(key, base, nmemb, size, compar);

Remarks: The bsearch function searches the table specified by base for a member that
matches the data specified by key, by binary search method. The function that
performs comparison should receive pointers p1 (first parameter) and p2
(second parameter) to two data items to compare, and return the result
complying with the specification below.

If *p1 < *p2, return a negative value.

If *p1 == *p2, return 0.

If *p1 > *p2, return a positive value.

Members to be searched must be placed in the ascending order.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 636 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void qsort (const void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *))

Description: Performs sorting.

Header file: <stdlib.h>

Parameters: base Pointer to the table to be sorted
 nmemb Number of members to sort
 size Number of bytes of a member to be sorted
 compar Pointer to a function to perform comparison

Example: #include <stdlib.h>

const void *base;

size_t nmemb, size;

int (*compar)(const void *, const void *)

 qsort(base, nmemb, size, compar);

Remarks: The qsort function sorts out data on the table pointed to by base. The data
arrangement order is specified by the pointer to a function to perform
comparison. This comparison function should receive pointers p1 (first
parameter) and p2 (second parameter) as two data items to be compared, and
return the result complying with the specification below.

If *p1 < *p2, return a negative value.

If *p1 == *p2, return 0.

If *p1 > *p2, return a positive value.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 637 of 1176
Mar 01, 2022

int abs (int i)

Description: Calculates the absolute value of an int type integer.

Header file: <stdlib.h>

Return values: Absolute value of i

Parameters: i Integer to calculate the absolute value of

Example: #include <stdlib.h>

int i, ret;

 ret=abs(i);

Remarks: If the result cannot be expressed as an int type integer, correct operation is not
 guaranteed.

div_t div (int numer, int denom)

Description: Carries out division of int type integers and obtains the quotient and remainder.

Header file: <stdlib.h>

Return values: Quotient and remainder of division of numer by denom

Parameters: numer Dividend
 denom Divisor

Example: #include <stdlib.h>

int numer, denom;

div_t ret;

 ret=div(numer, denom);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 638 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

long labs (long j)

Description: Calculates the absolute value of a long type integer.

Header file: <stdlib.h>

Return values: Absolute value of j

Parameters: j Integer to calculate the absolute value of

Example: #include <stdlib.h>

long j;

long ret;

 ret=labs(j);

Remarks: If the result cannot be expressed as a long type integer, correct operation is not
 guaranteed.

ldiv_t ldiv (long numer, long denom)

Description: Carries out division of long type integer and obtains the quotient and remainder.

Header file: <stdlib.h>

Return values: Quotient and remainder of division of numer by denom

Parameters: numer Dividend
 denom Divisor

Example: #include <stdlib.h>

long numer, denom;

ldiv_t ret;

 ret=ldiv(numer, denom);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 639 of 1176
Mar 01, 2022

long long llabs (long long j)

Description: Calculates the absolute value of a long long type integer.

Header file: <stdlib.h>

Return values: Absolute value of j

Parameters: j Integer to calculate the absolute value of

Example: #include <stdlib.h>

long long j;

long long ret;

 ret=llabs(j);

Remarks: If the result cannot be expressed as a long long type integer, correct operation is
 not guaranteed.

lldiv_t lldiv (long long numer,long long denom)

Description: Carries out division of long long type integers and obtains the quotient and
remainder.

Header file: <stdlib.h>

Return values: Quotient and remainder of division of numer by denom

Parameters: numer Dividend
 denom Divisor

Example: #include <stdlib.h>

long long numer, denom;

lldiv_t ret;

 ret=lldiv(numer,denom);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 640 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<string.h>

Defines functions for manipulating character arrays.

Type Definition Name Description
Function memcpy Copies contents of a source storage area of a specified length to a

destination storage area.
 memcpy_ _X_ _X Copies contents of a source X storage area of a specified length to a

destination X storage area.
 memcpy_ _X_ _Y Copies contents of a source Y storage area of a specified length to a

destination X storage area.
 memcpy_ _Y_ _X Copies contents of a source X storage area of a specified length to a

destination Y storage area.
 memcpy_ _Y_ _Y Copies contents of a source Y storage area of a specified length to a

destination Y storage area.
 strcpy Copies contents of a source string including the null character to a

destination storage area.
 strncpy Copies a source string of a specified length to a destination storage

area.
 strcat Concatenates a string after another string.
 strncat Concatenates a string of a specified length after another string.
 memcmp Compares two storage areas specified.
 strcmp Compares two strings specified.
 strncmp Compares two strings specified for a specified length.
 memchr Searches a specified storage area for the first occurrence of a

specified character.
 strchr Searches a specified string for the first occurrence of a specified

character.
 strcspn Checks a specified string from the beginning and counts the number

of consecutive characters at the beginning that are not included in
another string specified.

 strpbrk Searches a specified string for the first occurrence of any character
that is included in another string specified.

 strrchr Searches a specified string for the last occurrence of a specified
character.

 strspn Checks a specified string from the beginning and counts the number
of consecutive characters at the beginning that are included in
another string specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 641 of 1176
Mar 01, 2022

Type Definition Name Description
Function strstr Searches a specified string for the first occurrence of another string

specified.
strtok Divides a specified string into some tokens.

 memset Sets a specified character for a specified number of times at the
beginning of a specified storage area.

 strerror Sets error messages.
 strlen Calculates the length of a string.
 memmove Copies the specified size of the contents of a source area to the

destination storage area. If a part of the source storage area and a
part of the destination storage area overlap, correct copy is
performed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 642 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Implementation-Defined

Item Compiler Specifications
Error message returned by the strerror function Refer to section 12.3, Standard Library Error

Messages.

When using functions defined in this standard include file, note the following.

(1) On copying a string, if the destination area is smaller than the source area, correct operation is
not guaranteed.

Example

 char a[]="abc";

 char b[3];

 .

 .

 .

 strcpy (b, a);

In the above example, size of array a (including the null character) is 4 bytes. Copying by
strcpy overwrites data beyond the boundary of array b.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 643 of 1176
Mar 01, 2022

(2) On copying a string, if the source area overlaps the destination area, correct operation is not
guaranteed.

Example

 int a[]="a";

 :

 :

 strcpy(&a[1], a);

 :

In the above example, before the null character of the source is read, 'a' is written over the null
character. Then the subsequent data after the source string is overwritten in succession.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 644 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void *memcpy (void *s1, const void *s2, size_t n)

Description: Copies contents of a copy source storage area of a specified length to a
destination storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination storage area
 s2 Pointer to source storage area
 n Number of characters to be copied

Example: #include <string.h>

void *ret, *s1;

const void *s2;

size_t n;

 ret=memcpy(s1, s2, n);

void _ _X *memcpy_ _X_ _X (void _ _X *s1, const void _ _X *s2, size_t n)

Description: Copies contents of a copy source X storage area of a specified length to a
destination X storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination X storage area
 s2 Pointer to source X storage area
 n Number of characters to be copied

Example: #include <string.h>

void _ _X *ret, *s1;

const void _ _X *s2;

size_t n;

 ret=memcpy_ _X_ _X(s1,s2,n);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 645 of 1176
Mar 01, 2022

void _ _X *memcpy_ _X_ _Y (void _ _X *s1, const void _ _Y *s2, size_t n)

Description: Copies contents of a copy source Y storage area of a specified length to a
destination X storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination X storage area
 s2 Pointer to source Y storage area
 n Number of characters to be copied

Example: #include <string.h>

void _ _X *ret, *s1;

const void _ _Y *s2;

size_t n;

 ret=memcpy_ _X_ _Y(s1,s2,n);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 646 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void _ _Y *memcpy_ _Y_ _X (void _ _Y *s1, const void _ _X *s2, size_t n)

Description: Copies contents of a copy source X storage area of a specified length to a
destination Y storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination Y storage area
 s2 Pointer to source X storage area
 n Number of characters to be copied

Example: #include <string.h>

void _ _Y *ret, *s1;

const void _ _X *s2;

size_t n;

 ret=memcpy_ _Y_ _X(s1,s2,n);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 647 of 1176
Mar 01, 2022

void _ _Y *memcpy_ _Y_ _Y (void _ _Y *s1, const void _ _Y *s2, size_t n)

Description: Copies contents of a copy source Y storage area of a specified length to a
destination Y storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination Y storage area
 s2 Pointer to source Y storage area
 n Number of characters to be copied

Example: #include <string.h>

void _ _Y *ret, *s1;

const void _ _Y *s2;

size_t n;

 ret=memcpy_ _Y_ _Y(s1,s2,n);

Remarks: This function is only valid when cpu=sh2dsp, sh3dsp, sh4aldsp, and dspc are
specified.

char *strcpy (char *s1, const char *s2)

Description: Copies contents of a source string including the null character to a destination
storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination storage area
 s2 Pointer to source string

Example: #include <string.h>

char *s1, *ret;

const char *s2;

 ret=strcpy(s1, s2);

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 648 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

char *strncpy (char *s1, const char *s2, size_t n)

Description: Copies a source string of a specified length to a destination storage area.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to destination storage area
 s2 Pointer to source string
 n Number of characters to be copied

Example: #include <string.h>

char *s1, *ret;

const char *s2;

size_t n;

 ret=strncpy(s1, s2, n);

Remarks: The strncpy function copies up to n characters from the beginning of the string
pointed by s2 to a storage area pointed by s1. If the length of the string specified
by s2 is shorter than n characters, the function elongates the string to the length
by padding with null characters.

If the length of the string specified by s2 is longer than n characters, the copied
string in s1 storage area ends with a character other than the null character.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 649 of 1176
Mar 01, 2022

char *strcat (char *s1, const char *s2)

Description: Concatenates a string after another string.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to the string after which another string is appended
 s2 Pointer to the string to be added after the other string

Example: #include <string.h>

char *s1, *ret;

const char *s2;

 ret=strcat(s1, s2);

Remarks: The strcat function concatenates the string specified by s2 at the end of another
string specified by s1. The null character indicating the end of the s2 string is
also copied. The null character at the end of the s1 string is deleted.

char *strncat (char *s1, const char *s2, size_t n)

Description: Concatenates a string of a specified length after another string.

Header file: <string.h>

Return values: s1 value

Parameters: s1 Pointer to the string after which another string is appended
 s2 Pointer to the string to be appended after the other string
 n Number of characters to concatenate

Example: #include <string.h>

char *s1, *ret;

const char *s2;

size_t n;

 ret=strncat(s1, s2, n);

Remarks: The strncat function concatenates up to n characters from the beginning of the
string specified by s2 at the end of another string specified by s1. The null
character at the end of the s1 string is replaced by the first character of the s2
string. A null character is appended to the end of the concatenated string.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 650 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int memcmp (const void *s1, const void *s2, size_t n)

Description: Compares two storage areas specified.

Header file: <string.h>

Return values: If storage area pointed by s1 > storage area pointed by s2: Positive value
If storage area pointed by s1 == storage area pointed by s2: 0
If storage area pointed by s1 < storage area pointed by s2: Negative value

Parameters: s1 Pointer to the reference storage area to be compared
 s2 Pointer to the storage area to compare to the reference
 n Number of characters to compare

Example: #include <string.h>

const void *s1, *s2;

size_t n;

int ret;

 ret=memcmp(s1, s2, n);

Remarks: The memcmp function compares the contents of the first n characters in the
storage areas pointed by s1 and s2. The rule of comparison are implementation-
defined.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 651 of 1176
Mar 01, 2022

int strcmp (const char *s1, const char *s2)

Description: Compares two strings specified.

Header file: <string.h>

Return values: If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 == string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

Parameters: s1 Pointer to the reference string to be compared
 s2 Pointer to the string to compare to the reference

Example: #include <string.h>

const char *s1, *s2;

int ret;

 ret=strcmp(s1, s2);

Remarks: The strcmp function compares the contents of the strings pointed by s1 and s2,
and sets up the comparison result as a return value. The rule of comparison are
implementation-defined.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 652 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int strncmp (const char *s1, const char *s2, size_t n)

Description: Compares two strings specified up to a specified length.

Header file: <string.h>

Return values: If string pointed by s1 > string pointed by s2: Positive value
If string pointed by s1 == string pointed by s2: 0
If string pointed by s1 < string pointed by s2: Negative value

Parameters: s1 Pointer to the reference string to be compared
 s2 Pointer to the string to compare to the reference
 n Maximum number of characters to compare

Example: #include <string.h>

const char *s1, *s2;

size_t n;

int ret;

 ret=strncmp(s1, s2, n);

Remarks: The strncmp function compares the contents of the strings pointed by s1 and s2,
up to n characters. The rule of comparison are implementation-defined.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 653 of 1176
Mar 01, 2022

void *memchr (const void *s, int c, size_t n)

Description: Searches a specified storage area for the first occurrence of a specified character.

Header file: <string.h>

Return values: If the character is found: Pointer to the found character
If the character is not found: NULL

Parameters: s Pointer to the storage area to be searched
 c Character to search for
 n Number of characters to search

Example: #include <string.h>

const void *s;

int c;

size_t n;

void *ret;

 ret=memchr(s, c, n);

Remarks: The memchr function searches the storage area specified by s from the
beginning up to n characters, looking for the first occurrence of the character
specified as c. If the c character is found, the function returns the pointer to the
found character.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 654 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

char *strchr (const char *s, int c)

Description: Searches a specified string for the first occurrence of a specified character.

Header file: <string.h>

Return values: If the character is found: Pointer to the found character
If the character is not found: NULL

Parameters: s Pointer to the string to search
 c Character to search for

Example: #include <string.h>

const char *s;

int c;

char *ret;

 ret=strchr(s, c);

Remarks: The strchr function searches the string specified by s looking for the first
 occurrence of the character specified as c. If the c character is found, the
 function returns the pointer to the found character.

The null character at the end of the s string is included in the search object.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 655 of 1176
Mar 01, 2022

size_t strcspn (const char *s1, const char *s2)

Description: Checks a specified string from the beginning and counts the number of
consecutive characters at the beginning that are not included in another string
specified.

Header file: <string.h>

Return values: Number of characters at the beginning of the s1 string that are not included in
the s2 string

Parameters: s1 Pointer to the string to be checked
 s2 Pointer to the string used to check s1

Example: #include <string.h>

const char *s1, *s2;

size_t ret;

 ret=strcspn(s1, s2);

Remarks: The strcspn function checks from the beginning of the string specified by s1,
and counts the number of consecutive characters that are not included in another
string specified by s2, and returns that length.

The null character at the end of the s2 string is not taken as a part of the s2 string.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 656 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

char *strpbrk (const char *s1, const char *s2)

Description: Searches a specified string for the first occurrence of the character that is
included in another string specified.

Header file: <string.h>

Return values: If the character is found: Pointer to the found character
If the character is not found: NULL

Parameters: s1 Pointer to the string to search
 s2 Pointer to the string that indicates the characters to search s1 for

Example: #include <string.h>

const char *s1, *s2;

char *ret;

 ret=strpbrk(s1, s2);

Remarks: The strpbrk function searches the string specified by s1 looking for the first
occurrence of any character included in the string specified by s2. If the
searched character is found, the function returns the pointer to the first
occurrence.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 657 of 1176
Mar 01, 2022

char *strrchr (const char *s, int c)

Description: Searches a specified string for the last occurrence of a specified character.

Header file: <string.h>

Return values: If the character is found: Pointer to the found character
If the character is not found: NULL

Parameters: s Pointer to the string to be searched
 c Character to search for

Example: #include <string.h>

const char *s;

int c;

char *ret;

 ret=strrchr(s, c);

Remarks: The strrchr function searches the string specified by s looking for the last
occurrence of the character specified by c. If the c character is found, the
function returns the pointer to the last occurrence of that character.

The null character at the end of the s string is included in the search objective.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 658 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

size_t strspn (const char *s1, const char *s2)

Description: Checks a specified string from the beginning and counts the number of
consecutive characters at the beginning that are included in another string
specified.

Header file: <string.h>

Return values: Number of characters at the beginning of the s1 string that are
included in the s2 string

Parameters: s1 Pointer to the string to be checked
 s2 Pointer to the string used to check s1

Example: #include <string.h>

const char *s1, *s2;

size_t ret;

 ret=strspn(s1, s2);

Remarks: The strspn function checks from the beginning of the string specified by s1, and
counts the number of consecutive characters that are included in another string
specified by s2, and returns that length.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 659 of 1176
Mar 01, 2022

char *strstr (const char *s1, const char *s2)

Description: Searches a specified string for the first occurrence of another string specified.

Header file: <string.h>

Return values: If the string is found: Pointer to the found string
If the string is not found: NULL

Parameters: s1 Pointer to the string to be searched
 s2 Pointer to the string to search for

Example: #include <string.h>

const char *s1, *s2;

char *ret;

 ret=strstr(s1, s2);

Remarks: The strstr function searches the string specified by s1 looking for the first
occurrence of another string specified by s2, and returns the pointer to the first
occurrence.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 660 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

char *strtok (char *s1, const char *s2)

Description: Divides a specified string into some tokens.

Header file: <string.h>

Return values: If division into tokens is successful: Pointer to the first token divided
If division into tokens is unsuccessful: NULL

Parameters: s1 Pointer to the string to divide into some tokens
 s2 Pointer to the string representing string dividing characters

Example: #include <string.h>

char *s1, *ret;

const char *s2;

 ret=strtok(s1, s2);

Remarks: The strtok function should be repeatedly called to divide a string.

 (1) First call

 The string pointed by s1 is divided at a character included in the string
 pointed by s2. If a token has been separated, the function returns a pointer
 to the beginning of that token. Otherwise, the function returns NULL.

 (2) Second and subsequent calls

 Starting from the next character separated before as the token, the function
 repeats division at a character included in the string pointed by s2. If a
 token has been separated, the function returns a pointer to the beginning of
 that token. Otherwise, the function returns NULL.

 At the second and subsequent calls, specify NULL as the first parameter.

 The string pointed by s2 can be changed at each call.

 The null character is appended to the end of a separated token.

 An example of use of the strtok function is shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 661 of 1176
Mar 01, 2022

 Example
 1 #include <string.h>

 2 static char s1[]="a@b, @c/@d";

 3 char *ret;

 4

 5 ret = strtok(s1, "@");

 6 ret = strtok(NULL, ",@");

 7 ret = strtok(NULL, "/@");

 8 ret = strtok(NULL, "@");

 Explanation:

The above example program uses the strtok function to divide string "a@b,
@c/@d" into tokens a, b, c, and d.

 The second line specifies string "a@b, @c/@d" as an initial value for string s1.

The fifth line calls the strtok function to divide tokens using '@' as the delimiter.
As a result, a pointer to character 'a' is returned, and the null character is
embedded at '@,' the first delimiter after character 'a.' Thus string 'a' has been
separated.

Specify NULL for the first parameter to consecutively separate tokens from the
same string, and repeat calling the strtok function.

 Consequently, the function separates strings 'b,' 'c,' and 'd.'

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 662 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void *memset (void *s, int c, size_t n)

Description: Sets a specified character for a specified number of times at the beginning of a
specified storage area.

Header file: <string.h>

Return values: Value of s

Parameters: s Pointer to storage area to set characters in
 c Character to be set
 n Number of characters to be set

Example: #include <string.h>

void *s, *ret;

int c;

size_t n;
 ret=memset(s, c, n);

Remarks: The memset function sets the character specified by c for a number of times
specified by n to the storage area specified by s.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 663 of 1176
Mar 01, 2022

char *strerror (int s)

Description: Returns an error message corresponding to a specified error number.

Header file: <string.h>

Return values: Pointer to the error message (string) corresponding to the specified error number

Parameters: s Error number

Example: #include <string.h>

char *ret;

int s;

 ret=strerror(s);

Remarks: The strerror function receives an error number specified by s and returns an
error message corresponding to the number. Contents of error messages are
implementation-defined.

If the returned error message is modified, correct operation is not guaranteed.

size_t strlen (const char *s)

Description: Calculates the length of a string.

Header file: <string.h>

Return values: Number of characters of the string

Parameters: s Pointer to the string to check the length of

Example: #include <string.h>

const char *s;

size_t ret;

 ret=strlen(s);

Remarks: The null character at the end of the s string is excluded from the string length.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 664 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

void *memmove (void *s1, const void *s2, size_t n)

Description: Copies the specified size of the contents of a source area to the destination
storage area. If part of the source storage area and the destination storage area
overlaps, data is copied to the destination storage area before the overlapped
source storage area is overwritten. Therefore, correct copy is enabled.

Header file: <string.h>

Return values: Value of s1

Parameters: s1 Pointer to the destination storage area
 s2 Pointer to the source storage area
 n Number of characters to be copied

Example: #include <string.h>

void *ret, *s1

const void *s2;

size_t n;

 ret=memmove(s1, s2, n);

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 665 of 1176
Mar 01, 2022

10.4.2 EC++ Class Libraries

(1) Overview of Libraries

This section describes the specifications of the EC++ class libraries, which can be used as standard
libraries in C++ programs. This section gives an overview of the library configuration, and
describes the layout and the terms used in this library function description.

• Library Types
Table 10.49 shows the various library types and the corresponding standard include files.

Table 10.49 Library Types and Corresponding Standard Include Files

Library Type Description Standard Include Files
Stream input/output
class

Performs input/output processing. <ios>, <streambuf>,
<istream>,<ostream>,
<iostream>,<iomanip>

Memory management Performs memory allocation and deallocation <new>
Complex number
calculation

Performs complex number calculation <complex>

String manipulation Performs string manipulation <string>

(2) Stream Input/Output Class Library

The header files for stream input/output class libraries are as follows.

1. <ios>
Defines data members and function members that specify input/output formats and manage the
input/output states. The <ios> header file also defines the Init and ios_base classes.

2. <streambuf>
Defines functions for the stream buffer.

3. <istream>
Defines input functions from the input stream.

4. <ostream>
Defines output functions to the output stream.

5. <iostream>
Defines input/output functions.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 666 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

6. <iomanip>
Defines manipulators with parameters.

The following shows the inheritance relation of the above classes. An arrow (->) indicates that a
derived class refers to a base class. The streambuf class has no inheritance relation.

The following types are used by stream input/output class libraries.

Type Definition Name Description
Type streamoff Defined as long type.
 streamsize Defined as size_t type.
 int_type Defined as int type.
 pos_type Defined as long type.
 off_type Defined as long type.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 667 of 1176
Mar 01, 2022

(a) ios_base::Init Class

Type Definition Name Description
Variable init_cnt Static data member that counts the number of stream

input/output objects. The data must be initialized to 0 by a low-
level interface.

Function Init () Constructor
 ~ Init () Destructor

1. ios_base::Init::Init ()
Constructor of class Init.
Increments init_cnt.

2. ios_base::Init::~Init ()
Destructor of class Init.
Decrements init_cnt.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 668 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(b) ios_base Class

Type Definition Name Description
Type fmtflags Type that indicates the format control

information
iostate Type that indicates the stream buffer

input/output state
openmode Type that indicates the open mode of the file
seekdir Type that indicates the seek state of the

stream buffer
Variable fmtfl Format flag

wide Field width
prec Precision (number of decimal point digits) at

output
fillch Fill character

Function void _ec2p_init_base() Initializes the base class
 void _ec2p_copy_base(

 ios_base& ios_base_dt)
Copies ios_base_dt

 ios_base() Constructor
 ~ios_base() Destructor
 fmtflags flags() const References the format flag (fmtfl)
 fmtflags flags(fmtflags fmtflg) Sets fmtflg&format flag (fmtfl) to the format

flag (fmtfl)
 fmtflags setf(fmtflags fmtflg) Sets fmtflg to format flag (fmtfl)
 fmtflags setf(

 fmtflags fmtflg,
 fmtflags mask)

Sets mask&fmtflg to the format flag (fmtfl)

 void unsetf(fmtflags mask) Sets ~mask &format flag (fmtfl) to the format
flag (fmtfl)

 char fill() const Reads the fill character (fillch)
 char fill(char ch) Sets ch as the fill character (fillch)
 int precision() const Reads the precision (prec)
 streamsize precision(

 streamsize preci)
Sets preci as precision (prec)

 streamsize width() const Reads the field width (wide)
 streamsize width(streamsize wd) Sets wd as field width (wide)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 669 of 1176
Mar 01, 2022

1. ios_base::fmtflags
Defines the format control information relating to input/output processing.
The definition for each bit mask of fmtflags is as follows.

const ios_base::fmtflags ios_base::boolalpha = 0x0000;
const ios_base::fmtflags ios_base::skipws = 0x0001;
const ios_base::fmtflags ios_base::unitbuf = 0x0002;
const ios_base::fmtflags ios_base::uppercase = 0x0004;
const ios_base::fmtflags ios_base::showbase = 0x0008;
const ios_base::fmtflags ios_base::showpoint = 0x0010;
const ios_base::fmtflags ios_base::showpos = 0x0020;
const ios_base::fmtflags ios_base::left = 0x0040;
const ios_base::fmtflags ios_base::right = 0x0080;
const ios_base::fmtflags ios_base::internal = 0x0100;
const ios_base::fmtflags ios_base::adjustfield = 0x01c0;
const ios_base::fmtflags ios_base::dec = 0x0200;
const ios_base::fmtflags ios_base::oct = 0x0400;
const ios_base::fmtflags ios_base::hex = 0x0800;
const ios_base::fmtflags ios_base::basefield = 0x0e00;
const ios_base::fmtflags ios_base::scientific = 0x1000;
const ios_base::fmtflags ios_base::fixed = 0x2000;
const ios_base::fmtflags ios_base::floatfield = 0x3000;
const ios_base::fmtflags ios_base::fmtmask = 0x3fff;

2. ios_base::iostate
Defines the input/output state of the stream buffer.
The definition for each bit mask of iostate is as follows.

const ios_base::iostate ios_base::goodbit = 0x0;
const ios_base::iostate ios_base::eofbit = 0x1;
const ios_base::iostate ios_base::failbit = 0x2;
const ios_base::iostate ios_base::badbit = 0x4;
const ios_base::iostate ios_base::statemask = 0x7;

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 670 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

3. ios_base::openmode
Defines open mode of the file.
The definition for each bit mask of openmode is as follows.

const ios_base::openmode ios_base::in = 0x01; Opens the input file.
const ios_base::openmode ios_base::out = 0x02; Opens the output file.
const ios_base::openmode ios_base::ate = 0x04; Seeks for eof only once after the file

has been opened.
const ios_base::openmode ios_base::app = 0x08; Seeks for eof each time the file is

written to.
const ios_base::openmode ios_base::trunc = 0x10; Opens the file in overwrite mode.
const ios_base::openmode ios_base::binary = 0x20; Opens the file in binary mode.

4. ios_base::seekdir
Defines the seek state of the stream buffer.
Determines the position to continue the input/output of data in a string literal.
The definition for each bit mask of seekdir is as follows.

const ios_base::seekdir ios_base::beg = 0x0;
const ios_base::seekdir ios_base::cur = 0x1;
const ios_base::seekdir ios_base::end = 0x2;

5. void ios_base::_ec2p_init_base()
The initial settings are as follows.
 fmtfl = skipws | dec;
 wide = 0;
 prec = 6;
 fillch = ‘ ‘;

6. void ios_base::_ec2p_copy_base(ios_base& ios_base_dt)

Copies ios_base_dt.

7. ios_base::ios_base ()
Constructor of class ios_base.
Calls Init::Init().

8. ios_base::~ios_base ()

Destructor of class ios_base.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 671 of 1176
Mar 01, 2022

9. ios_base::fmtflags ios_base::flags() const
Reads format flag (fmtfl).
Return value: Format flag (fmtfl)

10. ios_base::fmtflags ios_base::flags (fmtflags fmtflg)

Sets fmtflg&format flag (fmtfl) to the format flag (fmtfl).
Return value: Format flag (fmtfl) before setting

11. ios_base::fmtflags ios_base::setf(fmtflags fmtflg)

Sets fmtflg to format flag (fmtfl).
Return value: Format flag (fmtfl) before setting

12. ios_base::fmtflags ios_base::setf((fmtflags fmtflg, fmtflags mask)

Sets ~mask&format flag (fmtfl) to the format flag (fmtfl).
Return value: Format flag (fmtfl) before setting.

13. void ios_base::unsetf(fmtflags mask)

Sets the result of bitwise AND of format flag (fmtfl) and ~mask to the format flag (fmtfl).

14. char ios_base::fill() const
Reads fill character (fillch).
Return value: Fill character (fillch)

15. char ios_base::fill (char ch)

Sets ch as fill character (fillch).
Return value: Fill character (fillch) before setting

16. int ios_base::precision() const

Reads precision (prec).
Return value: Precision (prec)

17. streamsize ios_base::precision (streamsize preci)

Sets preci as precision (prec).
Return value: Precision (prec) before setting

18. streamsize ios_base::width() const

References field width (wide).
Return value: Field width (wide)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 672 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

19. streamsize ios_base::width (streamsize wd)
Sets wd as field width (wide).
Return value: Field width (wide) before setting

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 673 of 1176
Mar 01, 2022

(c) ios Class

Type Definition Name Description
Variable sb Pointer to the streambuf object

tiestr Pointer to the ostream object
state State flag of streambuf

Function ios() Constructor
 ios(streambuf* sbptr)
 void init(streambuf* sbptr) Performs initial setting
 virtual ~ios() Destructor
 operator void*() const Tests whether an error has been generated

(!state&(badbit | failbit)
 bool operator!() const Tests whether an error has been generated

(state&(badbit | failbit))
 iostate rdstate() const Reads the state flag (state)
 void clear(iostate st=goodbit) Clears the state flag (state) except for the

specified state (st)
 void setstate(iostate st) Specifies st as the state flag (state)
 bool good() const Tests whether an error has been generated

(state==goodbit)
 bool eof() const Tests for the end of an input stream

(state&eofbit)
 bool bad() const Tests whether an error has been generated

(state&badbit)
 bool fail() const Tests whether input text matches the

requested pattern (state&(badbit | failbit))
 ostream* tie() const Reads the pointer to the ostream object

(tiestr)
 ostream* tie(ostream* tstrptr) Specifies tstrptr as the pointer to the

ostream object (tiestr)
 streambuf* rdbuf() const References the pointer to the stream buffer

(sb)
 streambuf* rdbuf(streambuf* sbptr) Specifies sbptr as the pointer to the stream

buffer (sb)
 ios& copyfmt(const ios& rhs) Copies the state flag (state) of rhs

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 674 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

1. ios::ios ()
Constructor of class ios.
Calls init(0) and specifies the initial value in the member object.

2. ios::ios (streambuf* sbptr)

Constructor of class ios.
Calls init(sbptr) and specifies the initial value in the member object.

3. void ios::init (streambuf* sbptr)

Specifies sbptr to sb.
Specifies state and tiestr to 0.

4. virtual ios::~ios ()

Destructor of class ios.

5. ios::operator void*() const
Tests whether an error has been generated (!state&(badbit | failbit)).
Return value: An error has been generated: false
 No error has been generated: true

6. bool ios::operator!() const

Tests whether an error has been generated (state&(badbit | failbit)).
Return value: An error has been generated: true
 No error has been generated: false

7. iostate ios::rdstate() const

References the state flag (state).
Return value: State flag (state)

8. void ios::clear(iostate st=goodbit)

Clears the state flag (state) except for the specified state (st).
If the pointer to the streambuf object (sb) is 0, badbit is specified to the state flag (state).

9. void ios::setstate(iostate st)

Specifies st to the state flag (state).

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 675 of 1176
Mar 01, 2022

10. bool ios::good() const
Tests whether an error has been generated (state==goodbit).
Return value: An error has been generated: false
 No error has been generated: true

11. bool ios::eof() const

Tests for the end of the input stream (state&eofbit).
Return value: End of the input stream has been reached: true
 End of the input stream has not been reached: false

12. bool ios::bad() const

Tests whether an error has been generated (state&badbit).
Return value: An error has been generated: true
 No error has been generated: false

13. bool ios::fail() const

Tests whether the input text matches the requested pattern (state&(badbit | failbit)).
Return value: Does not match the requested pattern: true
 Matches the requested pattern: false

14. ostream* ios::tie() const

Reads the pointer (tiestr) to the ostream object.
Return value: Pointer to the ostream object (tiestr)

15. ostream* ios::tie (ostream* tstrptr)

Specifies tstrptr as the pointer (tiestr) to the ostream object.
Return value: Pointer to the ostream object (tiestr) before setting

16. streambuf* ios::rdbuf() const

Reads the pointer to the streambuf object (sb).
Return value: Pointer to the streambuf object (sb)

17. streambuf* ios::rdbuf (streambuf* sbptr)

Specifies sbptr as the pointer to the streambuf object (sb).
Return value: Pointer to the streambuf object (sb) before setting

18. ios & ios::copyfmt(const ios& rhs)

Copies the state flag (state) of rhs.
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 676 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(d) ios Class Manipulators

Type Definition Name Description
Function ios_base& boolalpha(ios_base& str) Specifies bool type format
 ios_base& noboolalpha(

 ios_base& str)
Clears bool type format

 ios_base& showbase(ios_base& str) Specifies the radix display prefix mode
 ios_base& noshowbase(ios_base& str) Clears the radix display prefix mode
 ios_base& showpoint(ios_base& str) Specifies the decimal-point generation

mode
 ios_base& noshowpoint(ios_base& str) Clears the decimal-point generation mode
 ios_base& showpos(ios_base& str) Specifies the + sign generation mode
 ios_base& noshowpos(ios_base& str) Clears the + sign generation mode
 ios_base& skipws(ios_base& str) Specifies the space skipping mode
 ios_base& noskipws (ios_base& str) Clears the space skipping mode
 ios_base& uppercase(ios_base& str) Specifies the uppercase letter conversion

mode
 ios_base& nouppercase(

 ios_base& str)
Clears the uppercase letter conversion
mode

 ios_base& internal(ios_base& str) Specifies the internal fill mode
 ios_base& left(ios_base& str) Clears the left side fill mode
 ios_base& right(ios_base& str) Clears the right side fill mode
 ios_base& dec(ios_base& str) Specifies the decimal mode
 ios_base& hex(ios_base& str) Specifies the hexadecimal mode
 ios_base& oct(ios_base& str) Specifies the octal mode
 ios_base& fixed(ios_base& str) Specifies the fixed-point output mode
 ios_base& scientific(ios_base& str) Specifies the scientific description mode

1. ios_base& boolalpha(ios_base& str)
Specifies bool type format.
Return value: str

2. ios_base& noboolalpha(ios_base& str)

Clears bool type format.
Return value: str

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 677 of 1176
Mar 01, 2022

3. ios_base& showbase(ios_base& str)
Specifies an output mode of prefixing a radix at the beginning of data.
For a hexadecimal, 0x is prefixed.
For a decimal, nothing is prefixed. For an octal, 0 is prefixed.
Return value: str

4. ios_base& noshowbase(ios_base& str)

Clears the output mode of prefixing a radix at the beginning of data.
Return value: str

5. ios_base& showpoint(ios_base& str)

Specifies the output mode of showing decimal point.
If no precision is specified, six decimal-point (fraction) digits are displayed.
Return value: str

6. ios_base& noshowpoint(ios_base& str)

Clears the output mode of showing decimal point.
Return value: str

7. ios_base& showpos(ios_base& str)

Specifies the output mode of generating the + sign (adds a + sign to a positive number).
Return value: str

8. ios_base& noshowpos(ios_base& str)

Clears the output mode of generating the + sign.
Return value: str

9. ios_base& skipws(ios_base& str)

Specifies the input mode of skipping spaces (skips consecutive spaces).
Return value: str

10. ios_base& noskipws (ios_base& str)

Clears the input mode of skipping spaces.
Return value: str

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 678 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11. ios_base& uppercase(ios_base& str)
Specifies the output mode of converting letters to uppercases.
In hexadecimal, the radix will be the uppercase letters 0X, and the numeric value letters will be
uppercase letters. The exponential representation of a floating-point value will also use
uppercase letter E.
Return value: str

12. ios_base& nouppercase(ios_base& str)

Clears the output mode of converting letters to uppercases.
Return value: str

13. ios_base& internal(ios_base& str)

When data is output in the field width (wide) range, it is output in the order of
1. Sign and radix
2. Fill character (fill)
3. Numeric value
Return value: str

14. ios_base& left(ios_base& str)

When data is output in the field width (wide) range, it is aligned to the left.
Return value: str

15. ios_base& right(ios_base& str)

When data is output in the field width (wide) range, it is aligned to the right.
Return value: str

16. ios_base& dec(ios_base& str)

Specifies the conversion radix to the decimal mode.
Return value: str

17. ios_base& hex(ios_base& str)

Specifies the conversion radix to the hexadecimal mode.
Return value: str

18. ios_base& oct(ios_base& str)

Specifies the conversion radix to the octal mode.
Return value: str

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 679 of 1176
Mar 01, 2022

19. ios_base& fixed(ios_base& str)
Specifies the fixed-point output mode.
Return value: str

20. ios_base& scientific(ios_base& str)

Specifies the scientific description mode (exponential description).
Return value: str

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 680 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(e) streambuf Class

Type Definition Name Description
Constant eof Indicates the end of file.
Variable _B_cnt_ptr Pointer to the length of valid data of the

buffer.
B_beg_ptr Pointer to the base pointer of the buffer.
_B_len_ptr Pointer to the length of the buffer.
B_next_ptr Pointer to the next position of the buffer from

which data is to be read.
B_end_ptr Pointer to the end position of the buffer.
B_beg_pptr Pointer to the start position of the control

buffer.
B_next_pptr Pointer to the next position of the buffer from

which to read data.
C_flg_ptr Pointer to the input/output control flag of the

file.
Function char* _ec2p_getflag() const Reads the pointer for file input/output control

flag.
 char*& _ec2p_gnptr() Reads the pointer to the next position of the

buffer from which data is to be read.
 char*& _ec2p_pnptr() Reads the pointer to the next position of the

buffer where data is to be written.
 void _ec2p_bcntplus() Increments the valid data length of the

buffer.
 void _ec2p_bcntminus() Decrements the valid data length of the

buffer.
 void _ec2p_setbPtr(

 char** begptr,
 char** curptr,
 long* cntptr,
 long* lenptr,
 char* flgptr)

Sets the pointers of streambuf.

 streambuf() Constructor.
 virtual ~streambuf() Destructor.
 streambuf* pubsetbuf(char* s,

 streamsize n)
Reserves buffer for stream input/output.
This function calls setbuf (s,n)*1.

 pos_type pubseekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode
 which=ios_base::in | ios_base::out)

Moves the position to read or write data in
the input/output stream by using the method
specified by way.
This function calls seekoff(off,way,which)*1.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 681 of 1176
Mar 01, 2022

Type Definition Name Description
Function pos_type pubseekpos(

 pos_type sp,
 ios_base::openmode
 which=ios_base::in | ios_base::out)

Calculates the offset from the beginning of
the stream to the current position.
This function calls seekpos(sp,which)*1.

 int pubsync() Flushes the output stream.
This function calls sync()*1.

 streamsize in_avail() Calculates the offset from the end of the
input stream to the current position.

 int_type snextc() Reads the next character.
 int_type sbumpc() Reads one character and sets the pointer to

the next character.
 int_type sgetc() Reads one character.
 int sgetn(char* s, streamsize n) Reads n characters and sets them in the

memory area specified by s.
 int_type sputbackc(char c) Puts back the read position.
 int sungetc() Puts back the read position.
 int sputc(char c) Inserts character c.
 int_type sputn(const char* s,

 streamsize n)
Inserts n characters at the position pointed
to by s.

 char* eback() const Reads the start pointer of the input stream.
 char* gptr() const Reads the next pointer of the input stream.
 char* egptr() const Reads the end pointer of the input stream.
 void gbump(int n) Moves the next pointer of the input stream

for n.
 void setg(

 char* gbeg,
 char* gnext,
 char* gend)

Assigns each pointer of the input stream.

 char* pbase() const Calculates the start pointer of the output
stream.

 char* pptr() const Calculates the next pointer of the output
stream.

 char* epptr() const Calculates the end pointer of the output
stream.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 682 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function void pbump(int n) Moves the next pointer of the output

stream by n.
 void setp(char* pbeg, char* pend) Assigns each pointer of the output

stream.
 virtual streambuf* setbuf(char* s, streamsize n)

*1
For each derived class, a defined
operation is executed.

 virtual pos_type seekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode=(ios_base::openmode)
 (ios_base::in | ios_base::out)) *1

Changes the stream position.

 virtual pos_type seekpos(
 pos_type sp,
 ios_base::openmode=(ios_base::openmode)
 (ios_base::in | ios_base::out)) *1

Changes the stream position.

 virtual int sync() *1 Flushes the output stream.
 virtual int showmanyc() *1 Calculates the number of valid

characters in the input stream.
 virtual streamsize xsgetn(char* s, streamsize n) Reads n characters and sets them in

the memory area pointed to by s.
 virtual int_type underflow() *1 Reads one character without moving

the stream position.
 virtual int_type uflow() *1 Reads one character of the next

pointer.
 virtual int_type pbackfail(int type c = eof) *1 Puts back the character specified by

c.
 virtual streamsize xsputn(const char* s,

 streamsize n)
Inserts n characters in the position
pointed to by s.

 virtual int_type overflow(int type c = eof) *1 Inserts character c in the output
stream.

Note: 1. This class does not define the processing.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 683 of 1176
Mar 01, 2022

1. streambuf::streambuf ()
Constructor.
The initial settings are as follows:
_B_cnt_ptr = B_beg_ptr = B_next_ptr = B_end_ptr = C_flg_ptr = _B_len_ptr = 0
B_beg_pptr = &B_beg_ptr
B_next_pptr = &B_next_ptr

2. virtual streambuf::~streambuf ()

Destructor.

3. streambuf* streambuf::pubsetbuf(char* s, streamsize n)
Reserves the buffer for stream input/output.
This function calls setbuf (s,n).
Return value: setbuf(s,n)

4. pos_type streambuf::pubseekoff(off_type off,ios_base::seekdir way, ios_base::openmode

 which=(ios_base::openmode)(ios_base::in|ios_base::out))
Moves the read or write position for the input/output stream by using the method specified by
way.
This function calls seekoff(off,way,which).
Return value: The stream position newly specified

5. pos_type streambuf::pubseekpos(pos_type sp, ios_base::openmode

 which=(ios_base::openmode) (ios_base::in | ios_base::out))
Calculates the offset from the beginning of the stream to the current position.
Moves the current stream pointer by the amount specified by sp.
This function calls seekpos(sp,which).
Return value: The offset from the beginning of the stream

6. int streambuf::pubsync()

Flushes the output stream.
This function calls sync().
Return value: 0

7. streamsize streambuf::in_avail()

Calculates the offset from the end of the input stream to the current position.
Return value: If the position where data is read is valid: The offset from the end of the stream
 to the current position.
 If the position where data is read is invalid: 0 (showmanyc() is called)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 684 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8. int_type streambuf::snextc()
Reads one character. If the character read is not eof, the next character is read.
Return value: If the characters read is not eof: The character read
 If the characters read is eof: eof

9. int_type streambuf::sbumpc()

Reads one character and moves forward the pointer to the next.
Return value: If the position where data is read is valid: The character read
 If the position where data is read is invalid: eof

10. int_type streambuf::sgetc()

Reads one character.
Return value: If the position where data is read is valid: The character read
 If the position where data is read is invalid: eof

11. int streambuf::sgetn(char* s, streamsize n)

Reads n characters and sets them in the memory area specified by s. If an eof is found in the
string read, setting is terminated.
Return value: The specified number of characters.

12. int_type streambuf::sputbackc(char c) ;

If the data read position is correct and the put back data of the position is the same as c, the
read position is put back.
Return value: If the read position was put back: The value of c
 If the read position was not put back: eof

13. int streambuf::sungetc()

If the data read position is correct, the read position is put back.
Return value: If the read position was put back: The value that was put back
 If the read position was not put back: eof

14. int streambuf::sputc(char c)

Inserts characters c.
Return value: If the write position is correct: The value of c
 If the write position is incorrect: eof

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 685 of 1176
Mar 01, 2022

15. int_type streambuf::sputn(const char* s, streamsize n)
Inserts n characters at the position pointed to by s.
If the buffer is smaller than n, the number of characters for the buffer is inserted.
Return value: The number of characters inserted

16. char* streambuf::eback() const

Calculates the start pointer of the input stream.
Return value: Start pointer

17. char* streambuf::gptr() const

Calculates the next pointer of the input stream.
Return value: Next pointer

18. char* streambuf::egptr() const

Calculates the end pointer of the input stream.
Return value: End pointer

19. void streambuf::gbump(int n)

Moves forward the next pointer of the input stream by n.

20. void streambuf::setg(char* gbeg, char* gnext, char* gend)
Sets each pointer of the input stream as follows:
 *B_beg_pptr = gbeg;
 *B_next_pptr = gnext;
 B_end_ptr = gend;
 *_B_cnt_ptr = gend-gnext;
 *_B_len_ptr = gend-gbeg;

21. char* streambuf::pbase() const

Calculates the start pointer of the output stream.
Return value: Start pointer

22. char* streambuf::pptr () const

Calculates the next pointer of the output stream.
Return value: Next pointer

23. char* streambuf::epptr () const

Calculates the end pointer of the output stream.
Return value: End pointer

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 686 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

24. void streambuf::pbump (int n)
Moves forward the next pointer of the output stream by n.

25. void streambuf::setp(char* pbeg, char* pend)

The settings for each pointer of the output stream are as follows:
*B_beg_pptr = pbeg;
*B_next_pptr = pbeg;
B_end_ptr = pend;
*_B_cnt_ptr=pend-pbeg;
*_B_len_ptr=pend-pbeg;

26. virtual streambuf* streambuf::setbuf(char* s, streamsize n)

For each derived class from streambuf, a defined operation is executed.
Return value: *this (Process done by this member function is not defined.)

27. virtual pos_type streambuf::seekoff(off_type off, ios_base::seekdir way ,

 ios_base::openmode=(ios_base::openmode)(ios_base::in | ios_base::out))
Changes the stream position.
Return value: -1 (Process done by this member function is not defined.)

28. virtual pos_type streambuf::seekpos(pos_type sp,

 ios_base::openmode=(ios_base::openmode)(ios_base::in | ios_base::out))
Changes the stream position.
Return value: -1 (Process done by this member function is not defined.)

29. virtual int streambuf::sync()

Flushes the output stream.
Return value: 0 (Process done by this member function is not defined.)

30. virtual int streambuf::showmanyc()

Calculates the number of valid characters in the input stream.
Return value: 0 (Process done by this member function is not defined.)

31. virtual streamsize streambuf::xsgetn(char* s, streamsize n)

Reads n characters and sets them in the memory area specified by s.
If the buffer is smaller than n, the numbers of characters of the buffer is inserted.
Return value: The number of characters input

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 687 of 1176
Mar 01, 2022

32. virtual int_type streambuf::underflow()
Reads one character without moving the stream position.
Return value: eof (Process done by this member function is not defined.)

33. virtual int_type streambuf::uflow()

Reads one character of the next pointer.
Return value: eof (Process done by this member function is not defined.)

34. virtual int_type streambuf::pbackfail(int_type c=eof)

Puts back the character specified by c.
Return value: eof (Process done by this member function is not defined.)

35. virtual streamsize streambuf::xsputn(const char* s, streamsize n)

Inserts n characters pointed to by s in to the stream position.
If the buffer is smaller than n, the number of characters for the buffer is inserted.
Return value: The number of characters inserted

36. virtual int_type streambuf::overflow(int_type c=eof)

Inserts character c in the output stream.
Return value: eof (Process done by this member function is not defined.)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 688 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(f) istream::sentry Class

Type Definition Name Description
Variable ok_ Whether the current state is input-

enabled
Function sentry(istream& is, bool noskipws = false) Constructor
 ~sentry() Destructor
 operator bool() References ok_

1. istream::sentry::sentry (istream& is, bool noskipws=_false)
Constructor of internal class sentry.
If good() is non-zero, enables input with or without a format.
If tie() is non-zero, flushes related output stream.

2. istream::sentry::~sentry ()

Destructor of internal class sentry

3. istream::sentry::operator bool()
Reads ok_.
Return value: ok_

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 689 of 1176
Mar 01, 2022

(g) istream Class

Type Definition Name Description
Variable chcount The number of characters

extracted by the input function
called last.

Function

int _ec2p_getistr(char* str,unsigned int dig, int mode) Converts str with the radix
specified by dig.

 istream(streambuf* sb) Constructor.
 virtual ~istream() Destructor.
 istream& operator>>(bool& n) Stores the extracted characters in

n. istream& operator>>(short& n)
 istream& operator>>(unsigned short& n)
 istream& operator>>(int& n)
 istream& operator>>(unsigned int& n)
 istream& operator>>(long& n)
 istream& operator>>(unsigned long& n)
 istream& operator>>(long long& n)
 istream& operator>>(unsigned long long& n)
 istream& operator>>(float& n)
 istream& operator>>(double& n)
 istream& operator>>(long double& n)
 istream& operator>>(void*& p) Converts the extracted characters

to a pointer to void and stores
them in p.

 istream& operator >>(streambuf* sb) Extracts characters and stores
them in the memory area
specified by sb.

 streamsize gcount() const Calculates chcount (number of
characters extracted).

 int_type get() Extracts a character.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 690 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function istream& get(char& c) Stores the extracted characters in c.
 istream& get(signed char& c)
 istream& get(unsigned char& c)
 istream& get(char* s, streamsize n) Extracts string literals with size n-1 and

stores them in the memory area
specified by s.

 istream& get(signed char* s,streamsize n)
 istream& get(unsigned char* s, streamsize n)
 istream& get(char* s, streamsize n, char delim) Extracts string literals with size n-1 and

stores them in the memory area
specified by s.
If delim is found in the string literal,
input is stopped.

 istream& get(
 signed char* s,
 streamsize n,
 char delim)

 istream& get(
 unsigned char* s,
 streamsize n,
 char delim)

 istream& get(streambuf& sb) Extracts string literals and stores them
in the memory area specified by sb.

 istream& get(streambuf& sb, char delim) Extracts string literals and stores them
in the memory area specified by sb.
If character delim is found, input is
stopped.

 istream& getline(char* s, streamsize n) Extracts string literals with size n-1 and
stores them in the memory area
specified by s.

 istream& getline(signed char* s, streamsize n)
 istream& getline(unsigned char* s, streamsize n)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 691 of 1176
Mar 01, 2022

Type Definition Name Description
Function

istream& getline(char* s, streamsize n, char delim) Extracts string literals with size n-1
and stores them in the memory
area specified by s.
If character delim is found, input is
stopped.

istream& getline(
 signed char* s,
 streamsize n,
 char delim)

istream& getline(
 unsigned char* s,
 streamsize n,
 char delim)

istream& ignore(
 streamsize n=1,
 int_type delim=streambuf::eof)

Skips reading the number of
characters specified by n.
If character delim is found, skipping
is stopped.

int_type peek() Seeks for input characters that can
be acquired next.

istream& read(char* s, streamsize n) Extracts string literals with size n
and stores them in the memory
area specified by s.

istream& read(signed char* s, streamsize n)

istream& read(unsigned char* s, streamsize n)

 streamsize readsome(char* s, streamsize n) Extracts the number of string
literals specified by n and stores
them in the memory area specified
by s.

 streamsize readsome(signed char* s, streamsize n)
 streamsize readsome(

 unsigned char* s,
 streamsize n)

 istream& putback(char c) Puts back a character to the input
stream.

 istream& unget() Puts back the position of the input
stream.

 int sync() Checks the existence of a stream.
This function calls
streambuf::pubsync().

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 692 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function

pos_type tellg() Finds the input stream position.
This function calls
streambuf::pubseekoff(0,cur,in).

 istream& seekg(pos_type pos) Moves the current stream pointer
by the amount specified by pos.
This function calls
streambuf::pubseekpos(pos).

 istream& seekg(off_type off, ios_base::seekdir dir)

Moves the position to read the
input stream by using the method
specified by dir.
This function calls
stream::pubseekoff(off,dir).

1. int istream::_ec2p_getistr(char* str, unsigned int dig, int mode)
Converts str to the radix specified by dig.
Return value: Returns the converted radix.

2. istream::istream (streambuf* sb)

Constructor of class istream.
Calls ios::init(sb).
Specifies chcount=0.

3. virtual istream::~istream ()

Destructor of class istream.

4. istream& istream::operator>> (bool& n)
istream& istream::operator>>(short& n)
istream& istream::operator>>(unsigned short& n)
istream& istream::operator>>(int& n)
istream& istream::operator>>(unsigned int& n)
istream& istream::operator>>(long& n)
istream& istream::operator>>(unsigned long& n)
istream& istream::operator>>(long long& n)
istream& istream::operator>>(unsigned long long& n)
istream& istream::operator>>(float& n)
istream& istream::operator>>(double& n)
istream& istream::operator>>(long double& n)
Stores the extracted characters in n.
Return value: *this

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 693 of 1176
Mar 01, 2022

5. istream& istream::operator>>(void*& p)

Converts the extracted characters to a void* type and stores them in the memory specified by p.
Return value: *this

6. istream& istream::operator>> (streambuf* sb)

Extracts characters and stores them in the memory area specified by sb.
If there is no extracted characters, setstate(failbit) is called.
Return value: *this

7. streamsize istream::gcount() const

References chcount (number of extracted characters).
Return value: chcount

8. int_type istream::get()

Extracts a character.
Return value: If characters are extracted: Extracted characters.
 If no characters are extracted: Calls setstate(failbit), streambuf::eof.

9. istream& istream::get (char& c)

istream& istream::get(signed char& c)
istream& istream::get(unsigned char& c)
Extracts a character and stores it in c. If the extracted character is streambuf::eof, failbit is set.
Return value: *this

10. istream& istream::get(char* s, streamsize n)

istream& istream::get(signed char* s, streamsize n)
istream& istream::get(unsigned char* s, streamsize n)
Extracts a string literal with size n-1 and stores it in the memory area specified by s. If
ok_==false or no character has been extracted, failbit is set.
Return value: *this

11. istream& istream::get (char* s, streamsize n, char delim)

istream& istream::get(signed char* s, streamsize n, char delim)
istream& istream::get(unsigned char* s, streamsize n, char delim)
Extracts a string literal with size n-1 and stores it in the memory area specified by s.
If delim is found in the string literal, input is stopped.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 694 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

12. istream& istream::get (streambuf& sb)
Extracts a string literal and stores it in the memory area specified by sb.
If ok_==false or no character has been extracted, failbit is set.
Return value: *this

13. istream& istream::get (streambuf& sb, char delim)

Extracts a string literal and stores it in the memory area specified by sb.
If delim is found in the string literal, input is stopped.
If ok_==false or no character has been extracted, failbit is specified.
Return value: *this

14. istream& istream::getline(char* s, streamsize n)

istream& istream::getline(signed char* s, streamsize n)
istream& istream::getline(unsigned char* s, streamsize n)
Extracts s string literal with size n-1 and stores it in the memory area specified by s.
If ok_==false or no character has been extracted, failbit is specified.
Return value: *this

15. istream& istream::getline (char* s, streamsize n, char delim)

istream& istream::getline(signed char* s, streamsize n, char delim)
istream& istream::getline(unsigned char* s, streamsize n, char delim)
Extracts a string literal with size n-1 and stores it in the memory area specified by s.
If character delim is found, input is stopped.
If ok_==false or no character has been extracted, failbit is specified.
Return value: *this

16. istream& istream::ignore(streamsize n = 1, int_type delim = streambuf::eof)

Skips reading the number of characters specified by n.
If character delim is found, skipping is stopped.
Return value: *this

17. int_type istream::peek()

Seeks input characters that will be acquired next.
Return value: If ok_==false: streambuf::eof
 If ok_!=false: rdbuf()->sgetc()

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 695 of 1176
Mar 01, 2022

18. istream& istream::read(char* s, streamsize n)
istream& istream::read(signed char* s, streamsize n)
istream& istream::read(unsigned char* s, streamsize n)
If ok_!=false, extracts a string literal with size n and stores it in the memory area specified by s.
If the number of extracted characters does not match with the number of n, eofbit is specified.
Return value: *this

19. streamsize istream::readsome(char* s, streamsize n)

streamsize istream::readsome(signed char* s, streamsize n)
streamsize istream::readsome(unsigned char* s, streamsize n)
Extracts a string literal with size n and stores it in the memory area specified by s.
If the number of characters exceeds the stream size, only the number of characters equal to the
stream size is stored.
Return value: The number of extracted characters

20. istream& istream::putback(char c)

Puts back character c to the input stream.
If the characters put back are streambuf::eof, badbit is set.
Return value: *this

21. istream& istream::unget()

Puts back the pointer of the input stream by one.
If the extracted characters are streambuf::eof, badbit is set.
Return value: *this

22. int istream::sync()

Checks for an input stream.
This function calls streambuf::pubsync().
Return value: If there is no input stream: streambuf::eof
 If there is an input stream: 0

23. pos_type istream::tellg()

Checks for the position of an input stream.
This function calls streambuf::pubseekoff(0,cur,in).
Return value: Offset from the beginning of the stream.
 If an input processing error occurs, -1 is returned.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 696 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

24. istream& istream::seekg (pos_type pos)
Moves the current stream pointer for pos.
This function calls streambuf::pubseekpos(pos).
Return value: *this

25. istream& istream::seekg(off_type off, ios_base::seekdir dir)

Moves the position to read the input stream using the method specified by dir.
This function calls streambuf::pubseekoff(off,dir). If an input processing error occurs, this
processing is not performed.
Return value: *this

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 697 of 1176
Mar 01, 2022

(h) istream Class Manipulator

Type Definition Name Description
Function istream& ws(istream& is) Skips reading space

1. istream& ws(istream& is)
Skips reading white space.
Return value: is

(i) istream Non-Member Function

Type Definition Name Description
Function istream& operator>>(istream& in, char* s) Extracts a string of characters

and stores them in the memory
area specified by s

 istream& operator>>(istream& in, signed char* s)
 istream& operator>>(istream& in, unsigned char* s)
 istream& operator>>(istream& in, char& c) Extracts a character and stores

it in c istream& operator>>(istream& in, singed char& c)
 istream& operator>>(istream& in, unsigned char& c)

1. istream& operator>>(istream& in, char* s)
istream& operator>>(istream& in, signed char* s)
istream& operator>>(istream& in, unsigned char* s)
Extracts characters and stores them in the memory area specified by s. Processing is
terminated if
• the number of characters stored is equal to field width – 1
• streambuf::eof is found in the input stream
• the next available character c satisfies isspace(c)==1
If no characters are stored, failbit is specified.
Return value: in

2. istream& operator>> (istream& in, char& c)

istream& operator>>(istream& in, singed char& c)
istream& operator>>(istream& in, unsigned char& c)
Extracts a character and stores it in c. If no character is stored, failbit is set.
Return value: in

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 698 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(j) ostream::sentry Class

Definition Names

Type Definition Name Description
Variable ok_ Whether or not the current state allows output

_ _ec2p_os Pointer to the ostream object
Function sentry(ostrream& os) Constructor
 ~sentry() Destructor
 operator bool() References ok_

1. ostream::sentry::sentry (ostream& os)
Constructor of the internal class sentry.
If good() is non-zero and tie() is non-zero, flush() is called.
Specifies os to _ _ec2p_os.

2. ostream::sentry::~sentry ()

Destructor of internal class sentry.
If (_ _ec2p_os->flags() & ios_base::unitbuf) is true, flush() is called.

3. ostream::sentry::operator bool ()

References ok_.
Return value: ok_.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 699 of 1176
Mar 01, 2022

(k) ostream Class

Type Definition Name Description
Function ostream(streambuf* sbptr) Constructor.
 virtual~ostream() Destructor.
 ostream& operator<<(bool n) Inserts n in the output stream.
 ostream& operator<<(short n)
 ostream& operator<<(unsigned short n)
 ostream& operator<<(int n)
 ostream& operator<<(unsigned int n)
 ostream& operator<<(long n)
 ostream& operator<<(unsigned long n)
 ostream& operator<<(long long n)
 ostream& operator<<(unsigned long long n)
 ostream& operator<<(float n)
 ostream& operator<<(double n)
 ostream& operator<<(long double n)
 ostream& operator<<(void* n)
 ostream& operator<<(streambuf* sbptr) Inserts the output stream of

sbptr into the output stream.
 ostream& putc(char c) Inserts a character c into the

output stream.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 700 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function

ostream& write(
 const char* s,
 streamsize n)

Inserts n characters from s into the
output stream.

 ostream& write(
 const signed char* s,
 streamsize n)

 ostream& write(
 const unsigned char* s,
 streamsize n)

 ostream& flush() Flushes the output stream.
This function calls
streambuf::pubsync().

 pos_type tellp() Calculates the current write position.
This function calls
streambuf::pubseekoff(0,cur,out).

 ostream& seekp(pos_type pos) Calculates the offset from the
beginning of the stream to the current
position.
Moves the current stream pointer by
the amount specified by pos.
This function calls
streambuf::pubseekpos(pos).

 ostream& seekp(off_type off, seekdir dir) Moves the stream write position by the
amount specified by off, from dir.
This function calls
streambuf::pubseekoff(off,dir).

1. ostream::ostream (streambuf* sbptr)
Constructor.
Calls ios(sbptr).

2. virtual ostream::~ostream ()

Destructor.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 701 of 1176
Mar 01, 2022

3. ostream& ostream::operator<<(bool n)
ostream& ostream::operator<<(short n)
ostream& ostream::operator<<(unsigned short n)
ostream& ostream::operator<<(int n)
ostream& ostream::operator<<(unsigned int n)
ostream& ostream::operator<<(long n)
ostream& ostream::operator<<(unsigned long n)
ostream& ostream::operator<<(long long n)
ostream& ostream::operator<<(unsigned long long n)
ostream& ostream::operator<<(float n)
ostream& ostream::operator<<(double n)
ostream& ostream::operator<<(long double n)
ostream& ostream::operator<<(void* n)
If sentry::ok_==true, n is inserted into the output stream.
If sentry::ok_==false, failbit is specified.
Return value: *this

4. ostream& ostream::operator<< (streambuf* sbptr)

If sentry::ok_==true, the output string of sbptr is inserted into the output stream.
If sentry::ok_==false, failbit is specified.
Return value: *this

5. ostream& ostream::putc(char c)

If (sentry::ok_==true) and (rdbuf()->sputc(c)!=streambuf::eof), c is inserted into the output
stream.
Otherwise failbit is specified.
Return value: *this

6. ostream& ostream::write(const char* s, streamsize n)

ostream& ostream::write(const signed char* s, streamsize n)
ostream& ostream::write(const unsigned char* s, streamsize n)
If (sentry::ok_==true) and (rdbuf()->sputn(s, n)==n), n characters pointed to by s is inserted to
the output stream.
Otherwise badbit is specified.
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 702 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

7. ostream& ostream::flush()
Flushes the output stream.
This function calls streambuf::pubsync().
Return value: *this

8. pos_type ostream::tellp()

Calculates the current write position.
This function calls streambuf::pubseekoff(0,cur,out).
Return value: The current stream position.
 If an error occurs during processing, -1 is returned.

9. ostream& ostream::seekp(pos_type pos)

If no error occurs, the offset from the beginning of the stream to the current position is
calculated.
Moves the current stream by the amount specified by pos.
This function calls streambuf::pubseekpos(pos).
Return value: *this

10. ostream& ostream::seekp (off_type off, seekdir dir)

Moves the stream write position by the amount specified by off, from dir.
This function calls streambuf::pubseekoff(off,dir).
Return value: *this

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 703 of 1176
Mar 01, 2022

(l) ostream Class Manipulator

Type Definition Name Description
Function ostream& endl(ostream& os) Inserts a new line and flushes the output stream
 ostream& ends(ostream& os) Inserts a NULL code
 ostream& flush(ostream& os) Flushes the output stream

1. ostream& endl(ostream& os)
Inserts a new line code and flushes the output stream.
This function calls flush().
Return value: os

2. ostream& ends(ostream& os)

Inserts a NULL code to the output line.
Return value: os

3. ostream& flush (ostream& os)

Flushes the output stream.
This function calls streambuf::sync().
Return value: os

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 704 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(m) ostream Non-Member Function

Type Definition Name Description
Function ostream& operator<<(ostream& os, char s) Inserts s into the output

stream ostream& operator<<(ostream& os, signed char s)
 ostream& operator<<(ostream& os, unsigned char s)
 ostream& operator<<(ostream& os, const char* s)
 ostream& operator<<(ostream& os, const signed char* s)
 ostream& operator<<(ostream& os, const unsigned char* s)

1. ostream& operator<<(ostream& os, char s)
ostream& operator<<(ostream& os, signed char s)
ostream& operator<<(ostream& os, unsigned char s)
ostream& operator<<(ostream& os, const char* s)
ostream& operator<<(ostream& os, const singed char* s)
ostream& operator<<(ostream& os, const unsigned char* s)

If (sentry::ok_==true) and an error does not occur, s is inserted into the output stream.
Otherwise failbit is specified.
Return value: os

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 705 of 1176
Mar 01, 2022

(n) smanip Class Manipulator

Type Definition Name Description
Function

smanip resetiosflags(ios_base::fmtflags mask) Clears the flag specified by the mask
value

smanip setiosflags(ios_base::fmtflags mask) Specifies the format flag (fmtfl)
 smanip setbase(int base) Specifies the radix used at output
 smanip setfill(char c) Specifies the fill character (fillch)
 smanip setprecision(int n) Specifies the precision (prec)
 smanip setw(int n) Specifies the field width (wide)

1. smanip resetiosflags(ios_base::fmtflags mask)
Clears the flag specified by the mask value.
Return value: Target object of input/output

2. smanip setiosflags(ios_base::fmtflags mask)

Specifies the format flag (fmtfl).
Return value: Target object of input/output

3. smanip setbase(int base)

Specifies the radix used by output.
Return value: Target object of input/output

4. smanip setfill(char c);

Specifies the fill characters (fillch).
Return value: Target object of input/output

5. smanip setprecision(int n)

Specifies the precision (prec).
Return value: Target object of input/output

6. smanip setw(int n)

Specifies the field width (wide).
Return value: Target object of input/output

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 706 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(o) Example of Using EC++ Input/Output Libraries

Input/output stream can be used if a pointer to an object of the mystrbuf class is used instead of
streambuf at the initialization of objects istream and ostream.

The following shows the inheritance relationship of the above classes. An arrow (->) indicates
that a derived class at the start point refers to a base class at the end point.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 707 of 1176
Mar 01, 2022

Type Definition Name Description
Variable _file_Ptr File pointer.
Function

mystrbuf() Constructor.
Initializes the streambuf buffer. mystrbuf(void* ptr)

virtual ~mystrbuf() Destructor.
 void* myfptr() const Returns a pointer to the FILE type

structure.
 mystrbuf* open(

const char*
filename,
 int mode)

Specifies the file name and mode and
opens the file.

 mystrbuf* close() Closes the file.
 virtual streambuf* setbuf(char* s,

 stremsize n)
Reserves stream input/output buffer.

 virtual pos_type seekoff(
 off_type off,
 ios_base::seekdir way,
 ios_base::openmode=
(ios_base::openmode)
 (ios_base::in | ios_base::out))

Changes the position of the stream pointer.

 virtual pos_type seekpos(
 pos_type sp,
 ios_base::openmode=
(ios_base::openmode)
 (ios_base::in | ios_base::out))

Changes the position of the stream pointer.

 virtual int sync() Flushes the stream.
 virtual int showmanyc() Returns the number of valid characters of

input stream.
 virtual int_type underflow() Reads one character without moving the

stream position.
 virtual int_type pbackfail(int type c =

 streambuf::eof)
Puts back the character specified by c.

 virtual int_type overflow(int type c =
 streambuf::eof)

Inserts character specified by c.

 void _Init(_f_type* fp) Initialization.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 708 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

<Example>

#include <istream>

#include <ostream>

#include <mystrbuf>

#include <string>

#include <new>

#include <stdio.h>

void main(void)

{

 mystrbuf myfin(stdin);

 mystrbuf myfout(stdout);

 istream mycin(&myfin);

 ostream mycout(&myfout);

 int i;

 short s;

 long l;

 char c;

 string str;

 mycin >> i >> s >> l >> c >> str;

 mycout << "This is EC++ Library." << endl

 << i << s << l << c << str << endl;

 return;

}

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 709 of 1176
Mar 01, 2022

(3) Memory Management Library

The header file for the memory management library is shown below.

<new>
Defines memory allocation/deallocation function.

By setting an exception processing function address to the _ec2p_new_handler variable,
exception processing can be executed if memory allocation fails. The _ec2p_new_handler is a
static variable and the initial value is NULL. If this handler is used, reentrance will be lost.

Operations required for the exception processing function (of the memory management library):

• Creates an allocatable area and returns the area.
• Operations are not prescribed for cases where an area cannot be created and returned.

Type Definition Name Description
Macro new_handler Pointer type to the function that returns a

void type
Variable _ec2p_new_handler Pointer to an exception processing function
Function

void* operator new(size_t size) Allocates memory area with a size specified
by size

void* operator new[] (size_t size) Allocates array area with a size specified by
size

 void* operator new(
 size_t size, void* ptr)

Allocates the area specified by ptr as the
memory area

 void* operator new[](
 size_t size, void* ptr)

Allocates the area specified by ptr as the
array area

 void operator delete(void* ptr) Deallocates the memory area
 void operator delete[](void* ptr) Deallocates the array area
 new_handler set_new_handler(

 new_handler new_P)
Sets exception processing function address
(new_P) in _ec2p_new_handler

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 710 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

1. void* operator new(size_t size)
Allocates a memory area with the size specified by size.
If allocation fails and when the new_handler is set, new_handler is called.
Return value: If memory allocation succeeds: Pointer to void type
 If memory allocation fails: NULL

2. void* operator new[] (size_t size)

Allocates an array area with the size specified by size.
If allocation fails and when the new_handler is set, new_handler is called.
Return value: If memory allocation succeeds: Pointer to void type
 If memory allocation fails: NULL

3. void* operator new (size_t size, void* ptr)

Allocates the area specified by ptr as the storage area.
Return value: ptr

4. void* operator new [](size_t size, void* ptr)

Allocates the area specified by ptr as the array area.
Return value: ptr

5. void operator delete(void* ptr)

Deallocates the storage area specified by ptr.
If ptr is NULL, no operation will be performed.

6. void operator delete [] (void* ptr)

Deallocates the array area specified by ptr.
If ptr is NULL, no operation will be performed.

7. new_handler set_new_handler(new_handler new_P)

Sets new_P to _ec2p_new_handler.
Return value: _ec2p_new_handler

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 711 of 1176
Mar 01, 2022

(4) Complex Number Calculation Class Libraries

The header file for the complex number calculation class libraries is as follows.

<complex>
Defines float_complex class and double_complex class.

These classes have no derivation.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 712 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(a) float_complex Class

Type Definition Name Description
Type value_type float type.
Variable _re Defines the real part of float precision.

_im Defines the imaginary part of float
precision.

Function float_complex(float re = 0.0f, float im = 0.0f) Constructor.
 float_complex(const double_complex& rhs)
 float real() const Reads the real part (_re).
 float imag() const Reads the imaginary part (_im).
 float_complex& operator=(float rhs) Copies rhs to the real part.

0.0f is assigned to the imaginary part.
 float_complex& operator+=(float rhs) Adds rhs to the real part of *this and

stores the sum in *this.
 float_complex& operator-=(float rhs) Subtracts rhs from the real part of *this

and stores the difference in *this.
 float_complex& operator*=(float rhs) Multiplies *this by rhs and stores the

product in *this.
 float_complex& operator/=(float rhs) Divides *this by rhs and stores the

quotient in *this.
 float_complex& operator=(

 const float_complex& rhs)
Copies rhs to *this.

 float_complex& operator+=(
 const float_complex& rhs)

Adds rhs to *this and stores the sum in
*this.

 float_complex& operator-=(
 const float_complex& rhs)

Subtracts rhs from *this and stores the
difference in *this.

 float_complex& operator*=(
 const float_complex& rhs)

Multiplies *this by rhs and stores the
product in *this.

 float_complex& operator/=(
 const float_complex& rhs)

Divides *this by rhs and stores the
quotient in *this.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 713 of 1176
Mar 01, 2022

1. float_complex::float_complex (float re=0.0f, float im=0.0f)
Constructor of class float_complex.
The initial settings are as follows:
_re = re;
_im = im;

2. float_ complex::float_complex (const double_complex& rhs)

Constructor of class float_complex.
The initial settings are as follows:
_re = (float)rhs.real();
_im = (float)rhs.imag();

3. float float_complex::real() const

Reads the real part.
Return value: this->_re

4. float float_complex::imag() const

Reads the imaginary part.
Return value: this->_im

5. float_complex& float_complex::operator=(float rhs)

Copies rhs to the real part (_re).
0.0f is assigned to the imaginary part (_im).
Return value: *this

6. float_complex& float_complex::operator+= (float rhs)

Adds rhs to the real part (_re) and stores the sum in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

7. float_complex& float_complex::operator-=(float rhs)

Subtracts rhs from the real part (_re) and stores the difference in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

8. float_complex& float_complex::operator*=(float rhs)

Multiplies *this by rhs and stores the product in *this.
(_re=_re*rhs, _im=_im*rhs)
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 714 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9. float_complex& float_complex::operator/=(float rhs)
Divides *this by rhs and stores the quotient in *this.
(_re=_re/rhs, _im=_im/rhs)
Return value: *this

10. float_complex& float_complex::operator=(const float_complex& rhs)

Copies rhs to *this.
Return value: *this

11. float_complex& float_complex::operator+=(const float_complex& rhs)

Adds rhs to *this and stores the sum in *this
Return value: *this

12. float_complex& float_complex::operator-=(const float_complex& rhs)

Subtracts rhs from *this and stores the difference in *this.
Return value: *this

13. float_complex& float_complex::operator*=(const float_complex& rhs)

Multiplies *this by rhs and stores the product in *this.
Return value: *this

14. float_complex& float_complex::operator/=(const float_complex& rhs)

Divides *this by rhs and stores the quotient in *this.
Return value: *this

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 715 of 1176
Mar 01, 2022

(b) float_complex Non-Member Function

Type Definition Name Description
Function float_complex operator+(

 const float_complex& lhs)
Performs unary + operation of lhs

 float_complex operator+(
 const float_complex& lhs,
 const float_complex& rhs)

Adds lhs to rhs and stores the sum in lhs

 float_complex operator+(
 const float_complex& lhs,
 const float& rhs)

 float_complex operator+(
 const float& lhs,
 const float_complex& rhs)

 float_complex operator-(
 const float_complex& lhs)

Performs unary - operation of lhs

 float_complex operator-(
 const float_complex& lhs,
 const float_complex& rhs)

Subtracts rhs from lhs and stores the
difference in lhs

 float_complex operator-(
 const float_complex& lhs,
 const float& rhs)

 float_complex operator-(
 const float& lhs,
 const float_complex& rhs)

 float_complex operator*(
 const float_complex& lhs,
 const float_complex& rhs)

Multiples lhs by rhs and stores the product
in lhs

 float_complex operator*(
 const float_complex& lhs,
 const float& rhs)

 float_complex operator*(
 const float& lhs,
 const float_complex& rhs)

 float_complex operator/ (
 const float_complex& lhs,
 const float_complex& rhs)

Divides lhs by rhs and stores the quotient
in lhs

 float_complex operator/ (
 const float_complex& lhs,
 const float& rhs)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 716 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function float_complex operator/ (

 const float& lhs,
 const float_complex& rhs)

Divides lhs by rhs and stores the
quotient in lhs

 bool operator==(
 const float_complex& lhs,
 const float_complex& rhs)

Compares the real parts of lhs and rhs,
and the imaginary parts of lhs and rhs

 bool operator==(
 const float_complex& lhs,
 const float& rhs)

 bool operator== (
 const float& lhs,
 const float_complex& rhs)

 bool operator!=(
 const float_complex& lhs,
 const float_complex& rhs)

Compares the real parts of lhs and rhs,
and the imaginary parts of lhs and rhs

 bool operator!=(
 const float_complex& lhs,
 const float& rhs)

 bool operator!=(
 const float& lhs,
 const float_complex& rhs)

 istream& operator>>(
 istream& is,
 float_complex& x)

Inputs x in a format of u, (u), or (u,v)(u:
real part, v: imaginary part)

 ostream& operator<<(
 ostream& os,
 const float_complex& x)

Outputs x in a format of u, (u), or
(u,v)(u: real part, v: imaginary part)

 float real(const float_complex& x) Reads the real part
 float imag(const float_complex& x) Reads the imaginary part
 float abs(const float_complex& x) Calculates the absolute value
 float arg(const float_complex& x) Calculates the phase angle
 float norm(const float_complex& x) Calculates the absolute value of the

square
 float_complex conj(const float_complex& x) Calculates the conjugate complex

number of x

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 717 of 1176
Mar 01, 2022

Type Definition Name Description
Function

float_complex polar(
 const float& rho,
 const float& theta)

Calculates the float_complex value for a
complex number with size rho and phase
angle theta

 float_complex cos(const float_complex& x) Calculates the complex cosine
 float_complex cosh(const float_complex& x) Calculates the complex hyperbolic

cosine
 float_complex exp(const float_complex& x) Calculates the exponent function
 float_complex log(const float_complex& x) Calculates the natural logarithm
 float_complex log10(const float_complex& x) Calculates the common logarithm
 float_complex pow(

 const float_complex& x,
 int y)

Calculates the x to the yth power

 float_complex pow(
 const float_complex& x,
 const float& y)

 float_complex pow(
 const float_complex& x,
 const float_complex& y)

 float_complex pow(
 const float& x,
 const float_complex& y)

 float_complex sin(const float_complex& x) Calculates the complex sine
 float_complex sinh(const float_complex& x) Calculates the complex hyperbolic sine
 float_complex sqrt(const float_complex& x) Calculates the square root within the

right half space
 float_complex tan(const float_complex& x) Calculates the complex tangent
 float_complex tanh(const float_complex& x) Calculates the complex hyperbolic

tangent

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 718 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

1. float_complex operator+ (const float_complex& lhs)
Performs unary + operation of lhs.
Return value: lhs

2. float_complex operator+ (const float_complex& lhs, const float_complex& rhs)

float_complex operator+(const float_complex& lhs, const float& rhs)
float_complex operator+(const float& lhs, const float_complex& rhs)
Adds lhs to rhs and stores the sum in lhs.
Return value: float_complex(lhs)+=rhs

3. float_complex operator−(const float_complex& lhs)

Performs unary - operation of lhs.
Return value: float_complex(−lhs.real(),−lhs.imag())

4. float_complex operator− (const float_complex& lhs, const float_complex& rhs)

float_complex operator−(const float_complex& lhs, const float& rhs)
float_complex operator−(const float& lhs, const float_complex& rhs)
Subtracts rhs from lhs and stores the difference in lhs.
Return value: float_complex(lhs)−=rhs

5. float_complex operator* (const float_complex& lhs, const float_complex& rhs)

float_complex operator*(const float_complex& lhs, const float& rhs)
float_complex operator*(const float& lhs, const float_complex& rhs)
Multiples lhs by rhs and stores the product in lhs.
Return value: float_complex(lhs)*=rhs

6. float_complex operator/(const float_complex& lhs, const float_complex& rhs)

float_complex operator/(const float_complex& lhs, const float& rhs)
float_complex operator/(const float& lhs, const float_complex& rhs)
Divides lhs by rhs and stores the quotient in lhs.
Return value: float_complex(lhs)/=rhs

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 719 of 1176
Mar 01, 2022

7. bool operator==(const float_complex& lhs, const float_complex& rhs)
bool operator==(const float_complex& lhs, const float& rhs)
bool operator==(const float& lhs, const float_complex& rhs)
Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

8. bool operator!=(const float_complex& lhs, const float_complex& rhs)

bool operator!=(const float_complex& lhs, const float& rhs)
bool operator!=(const float& lhs, const float_complex& rhs)
Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a float type parameter, the imaginary part is assumed to be 0.0f.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

9. istream& operator>>(istream& is, float_complex& x)

Inputs x as a format of u,(u), or (u,v)(u: real part, v: imaginary part).
The input value is converted to float_complex.
If x is input in a format other than the u, (u), or (u,v) format, is.setstate(ios_base::failbit) is
called.
Return value: is

10. ostream& operator<< (ostream& os, const float_complex& x)

Outputs x to os.
The output format is u, (u), or (u,v)(u: real part, v: imaginary part).
Return value: os

11. float real(const float_complex& x)

Reads the real part.
Return value: x.real()

12. float imag(const float_complex& x)

Reads the imaginary part.
Return value: x.imag()

13. float abs(const float_complex& x)

Calculates the absolute value.
Return value: (|x.real()|2+ |x.imag()|2)1/2

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 720 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

14. float arg (const float_complex& x)
Calculates the phase angle.
Return value: atan2f(x.imag() , x.real())

15. float norm(const float_complex& x)

Calculates the absolute value of the square.
Return value: |x.real()|2 + |x.imag()|2

16. float_complex conj(const float_complex& x)

Calculates the conjugate complex number of x.
Return value: float_complex(x.real(), (-1)*x.imag())

17. float_complex polar(const float& rho, const float& theta)

Calculates the float_complex value for a complex number with size rho and phase angle
(argument) theta.
Return value: float_complex(rho*cosf(theta), rho*sinf(theta))

18. float_complex cos(const float_complex& x)

Calculates the complex cosine.
Return value: float_complex(cosf(x.real())*coshf(x.imag()),
(-1)*sinf(x.real())*sinhf(x.imag()))

19. float_complex cosh(const float_complex& x)

Calculates the complex hyperbolic cosine.
Return value: cos(float_complex((-1)*x.imag(), x.real()))

20. float_complex exp(const float_complex& x)

Calculates the exponential function.
Return value: float_complex(expf(x.real())*cosf(x.imag()),expf(x.real())*sinf(x.imag())

21. float_complex log(const float_complex& x)

Calculates the natural logarithm (base e).
Return value: float_complex(logf(abs(x)), arg(x))

22. float_complex log10(const float_complex& x)

Calculates the common logarithm (base 10).
Return value: float_complex(log10f(abs(x)), arg(x)/logf(10))

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 721 of 1176
Mar 01, 2022

23. float_complex pow(const float_complex& x, int y)
float_complex pow(const float_complex& x, const float& y)
float_complex pow(const float_complex& x, const float_complex& y)
float_complex pow(const float& x, const float_complex& y)
Calculates the x to the yth power.
If pow(0,0), a domain error will occur.
Return value: If float_complex pow (const float_complex& x, const float_complex& y):
 exp(y*logf(x))
 Otherwise: exp(y*log(x))

24. float_complex sin(const float_complex& x)

Calculates complex sine.
Return value: float_complex(sinf(x.real())*coshf(x.imag()), cosf(x.real())*sinhf(x.imag()))

25 float_complex sinh(const float_complex& x)

Calculates the complex hyperbolic sine.
Return value: float_complex(0,-1)*sin(float_complex((-1)*x.imag(),x.real()))

26. float_complex sqrt(const float_complex& x)

Calculates the square root within the right half space.
Return value: float_complex(sqrtf(abs(x))*cosf(arg(x)/2), sqrtf(abs(x))*sinf(arg(x)/2))

27. float_complex tan(const float_complex& x)

Calculates the complex tangent.
Return value: sin(x) / cos(x)

28. float_complex tanh(const float_complex& x)

Calculates the complex hyperbolic tangent.
Return value: sinh(x) / cosh(x)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 722 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(c) double_complex Class

Type Definition Name Description
Type value_type double type
Variable

_re Defines the real part of double
precision

_im Defines the imaginary part of double
precision

Function

double_complex(
 double re=0.0,
 double im=0.0)

Constructor

 double_complex(const float_complex&)
 double real() const Reads the real part
 double imag() const Reads the imaginary part
 double_complex& operator=(double rhs) Copies rhs to the real part

0.0 is assigned to the imaginary part
 double_complex& operator+=(double rhs) Adds rhs to the real part of *this and

stores the sum in *this
 double_complex& operator-=(double rhs) Subtracts rhs from the real part of *this

and stores the difference in *this.
 double_complex& operator*=(double rhs) Multiplies *this by rhs and stores the

product in *this
 double_complex& operator/=(double rhs) Divides *this by rhs and stores the

quotient in *this
 double_complex& operator=(

 const double_complex& rhs)
Copies rhs

 double_complex& operator+=(
 const double_complex& rhs)

Adds rhs to *this and stores the sum in
*this

 double_complex& operator-=(
 const double_complex& rhs)

Subtracts rhs from *this and stores the
difference in *this

 double_complex& operator*=(
 const double_complex& rhs)

Multiplies *this by rhs and stores the
product in *this

 double_complex& operator/=(
 const double_complex& rhs)

Divides *this by rhs and stores the
quotient in *this

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 723 of 1176
Mar 01, 2022

1. double_complex::double_complex (double re=0.0, double im=0.0)
Constructor of class double_complex.
The initial settings are as follows:
_re = re;
_im = im;

2. double_complex::double_complex (const float_complex&)

Constructor of class double_complex.
The initial settings are as follows:
_re = (double)rhs.real();
_im = (double)rhs.imag();

3. double double_complex::real() const

Reads the real part.
Return value: this->_re

4. double double_complex::imag() const

Reads the imaginary part.
Return value: this->_im

5. double_complex& double_complex::operator= (double rhs)

Copies rhs to the real part (_re).
0.0 is assigned to the imaginary part (_im).
Return value: *this

6. double_complex& double_complex::operator+=(double rhs)

Adds rhs to the real part (_re) and stores the sum in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

7. double_complex& double_complex::operator-= (double rhs)

Subtracts rhs from the real part (_re) and stores the difference in the real part (_re).
The value of the imaginary part (_im) does not change.
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 724 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

8. double_complex& double_complex::operator*=(double rhs)
Multiplies *this by rhs and stores the product in *this.
(_re=_re*rhs, _im=_im*rhs)
Return value: *this

9. double_complex& double_complex::operator/=(double rhs)

Divides *this by rhs and stores the quotient in *this.
(_re=_re/rhs, _im=_im/rhs))
Return value: *this

10. double_complex& double_complex::operator=(const double_complex& rhs)

Copies rhs to *this.
Return value: *this

11. double_complex& double_complex::operator+=(const double_complex& rhs)

Adds rhs to *this and stores the sum in *this.
Return value: *this

12. double_complex& double_complex::operator-=(const double_complex& rhs)

Subtracts rhs from *this and stores the difference in *this.
Return value: *this

13. double_complex& double_complex::operator*=(const double_complex& rhs)

Multiplies *this by rhs and stores the product in *this.
Return value: *this

14. double_complex& double_complex::operator/=(const double_complex& rhs)

Divides *this by rhs and stores the quotient in *this.
Return value: *this

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 725 of 1176
Mar 01, 2022

(d) double_complex Non-Member Function

Type Definition Name Description
Function

double_complex operator+(
 const double_complex& lhs)

Performs unary + operation of lhs

double_complex operator+(
 const double_complex& lhs,
 const double_complex& rhs)

Adds rhs to lhs and stores the sum in lhs

 double_complex operator+(
 const double_complex& lhs,
 const double& rhs)

 double_complex operator+(
 const double& lhs,
 const double_complex& rhs)

 double_complex operator-(
 const double_complex& lhs)

Performs unary - operation of lhs

 double_complex operator-(
 const double_complex& lhs,
 const double_complex& rhs)

Subtracts rhs from lhs and stores the
difference in lhs

 double_complex operator-(
 const double_complex& lhs,
 const double& rhs)

 double_complex operator-(
 const double& lhs,
 const double_complex& rhs)

 double_complex operator*(
 const double_complex& lhs,
 const double_complex& rhs)

Multiples lhs by rhs and stores the product
in lhs

 double_complex operator*(
 const double_complex& lhs,
 const double& rhs)

 double_complex operator*(
 const double& lhs,
 const double_complex& rhs)

 double_complex operator/ (
 const double_complex& lhs,
 const double_complex& rhs)

Divides lhs by rhs and stores the quotient
in lhs

 double_complex operator/ (
 const double_complex& lhs,
 const double& rhs)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 726 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function double_complex operator/ (

 const double& lhs,
 const double_complex& rhs)

Divides lhs by rhs and stores the quotient
in lhs

 bool operator==(
 const double_complex& lhs,
 const double_complex& rhs)

Compares the real part of lhs and rhs, and
the imaginary parts of lhs and rhs

 bool operator==(
 const double_complex& lhs,
 const double& rhs)

 bool operator== (
 const double& lhs,
 const double_complex& rhs)

 bool operator!=(
 const double_complex& lhs,
 const double_complex& rhs)

Compares the real parts of lhs and rhs,
and the imaginary parts of lhs and rhs

 bool operator!=(
 const double_complex& lhs,
 const double& rhs)

 bool operator!=(
 const double& lhs,
 const double_complex& rhs)

 istream& operator>>(
 istream& is,
 double_complex& x)

Inputs x in a format of u, (u), or (u,v) (u:
real part, v: imaginary part)

 ostream& operator<<(
 ostream& os,
 const double_complex& x)

Outputs x in a format of u, (u), or (u,v) (u:
real part, v: imaginary part)

 double real(const double_complex& x) Reads the real part
 double imag(const double_complex& x) Reads the imaginary part
 double abs(const double_complex& x) Calculates the absolute value
 double arg(const double_complex& x) Calculates the phase angle
 double norm(const double_complex& x) Calculates the absolute value of the square
 double_complex conj(

 const double_complex& x)
Calculates the conjugate complex number
of x

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 727 of 1176
Mar 01, 2022

Type Definition Name Description
Function double_complex polar(

 const double& rho,
 const double& theta)

Calculates the double_complex value for a
complex number with size rho and phase
angle theta

 double_complex cos(
 const double_complex& x)

Calculates the complex cosine

 double_complex cosh(
 const double_complex& x)

Calculates the complex hyperbolic cosine

 double_complex exp(
 const double_complex& x)

Calculates the exponential function

 double_complex log(
 const double_complex& x)

Calculates the natural logarithm

 double_complex log10(
 const double_complex& x)

Calculates the common logarithm

 double_complex pow(
 const double_complex& x,
 int y)

Calculates the x to the yth power

 double_complex pow(
 const double_complex& x,
 const double& y)

 double_complex pow(
 const double_complex& x,
 const double_complex& y)

 double_complex pow(
 const double& x,
 const double_complex& y)

 double_complex sin(
 const double_complex& x)

Calculates the complex sine

 double_complex sinh(
 const double_complex& x)

Calculates the complex hyperbolic sine

 double_complex sqrt(
 const double_complex& x)

Calculates the square root within the right
half space

 double_complex tan(
 const double_complex& x)

Calculates the complex tangent

 double_complex tanh(
 const double_complex& x)

Calculates the complex hyperbolic tangent

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 728 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

1. double_complex operator+ (const double_complex& lhs)
Performs unary + operation of lhs.
Return value: lhs

2. double_complex operator+ (const double_complex& lhs, const double_complex& rhs)

double_complex operator+(const double_complex& lhs, const double& rhs)
double_complex operator+(const double& lhs, const double_complex& rhs)
Adds lhs to rhs and stores the sum in lhs.
Return value: double_complex(lhs)+=rhs

3. double_complex operator−(const double_complex& lhs)

Performs unary - operation of lhs.
Return value: double_complex(−lhs.real(), −lhs.imag())

4. double_complex operator− (const double_complex& lhs, const double_complex& rhs)

double_complex operator−(const double_complex& lhs, const double& rhs)
double_complex operator−(const double& lhs, const double_complex& rhs)
Subtracts rhs from lhs and stores the difference in lhs.
Return value: double_complex(lhs)−=rhs

5. double_complex operator*(const double_complex& lhs, const double_complex& rhs)

double_complex operator*(const double_complex& lhs, const double& rhs)
double_complex operator*(const double& lhs, const double_complex& rhs)
Multiples lhs by rhs and stores the product in lhs.
Return value: double_complex(lhs)*=rhs

6. double_complex operator/(const double_complex& lhs, const double_complex& rhs)

double_complex operator/(const double_complex& lhs, const double& rhs)
double_complex operator/(const double& lhs, const double_complex& rhs)
Divides lhs by rhs and stores the quotient in lhs.
Return value: double_complex(lhs)/=rhs

7. bool operator==(const double_complex& lhs, const double_complex& rhs)

bool operator==(const double_complex& lhs, const double& rhs)
bool operator==(const double& lhs, const double_complex& rhs)
Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()==rhs.real() && lhs.imag()==rhs.imag()

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 729 of 1176
Mar 01, 2022

8. bool operator!=(const double_complex& lhs, const double_complex& rhs)
bool operator!=(const double_complex& lhs, const double& rhs)
bool operator!=(const double& lhs, const double_complex& rhs)
Compares the real parts of lhs and rhs, and the imaginary parts of lhs and rhs.
For a double type parameter, the imaginary part is assumed to be 0.0.
Return value: lhs.real()!=rhs.real() || lhs.imag()!=rhs.imag()

9. istream& operator>>(istream& is, double_complex& x)

Inputs x with a format of u,(u), or (u,v) (u: real part, v: imaginary part).
The input value is converted to double_complex.
If x is input in a format other than the u, (u), or (u,v) format, is.setstate(ios_base::failbit) is
called.
Return value: is

10. ostream& operator<<(ostream& os, const double_complex& x)

Outputs x to os.
The output format is u, (u), or (u,v) (u: real part, v: imaginary part).
Return value: os

11. double real(const double_complex& x)

Reads the real part.
Return value: x.real()

12. double imag(const double_complex& x)

Reads the imaginary part.
Return value: x.imag()

13. double abs(const double_complex& x)

Calculates the absolute value.
Return value: (|x.real()|2+ |x.imag()|2)1/2

14. double arg(const double_complex& x)

Calculates the phase angle.
Return value: atan2f(x.imag() , x.real())

15. double norm(const double_complex& x)

Calculates the absolute value of the square.
Return value: |x.real()|2 + |x.imag()|2

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 730 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

16. double_complex conj(const double_complex& x)
Calculates the conjugate complex number of x.
Return value: double_complex(x.real(), (-1)*x.imag())

17. double_complex polar(const double& rho, const double& theta)

Calculates the double_complex value for a complex number with size rho and phase angle
(argument) theta.
Return value: double_complex(rho*cos(theta), rho*sin(theta))

18. double_complex cos(const double_complex& x)

Calculates the complex cosine.
Return value: double_complex(cos(x.real())*cosh(x.imag()),
(-1)*sin(x.real())*sinh(x.imag()))

19. double_complex cosh(const double_complex& x)

Calculates the complex hyperbolic cosine.
Return value: cos(double_complex((-1)*x.imag(), x.real()))

20. double_complex exp(const double_complex& x)

Calculates the exponent function.
Return value: exp(x.real())*cos(x.imag()),exp(x.real())*sin(x.imag())

21. double_complex log(const double_complex& x)

Calculates the natural logarithm (base e).
Return value: double_complex(log(abs(x)), arg(x))

22. double_complex log10(const double_complex& x)

Calculates the common logarithm (base 10).
Return value: double_complex(log10(abs(x)), arg(x)/log(10))

23. double_complex pow(const double_complex& x, int y)

double_complex pow(const double_complex& x, const double& y)
double_complex pow(const double_complex& x, const double_complex& y)
double_complex pow(const double& x, const double_complex& y)
Calculates the x to the yth power.
If pow(0,0), a domain error will occur.
Return value: exp(y*log(x))

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 731 of 1176
Mar 01, 2022

24. double_complex sin(const double_complex& x)
Calculates the complex sine
Return value: double_complex(sin(x.real())*cosh(x.imag()), cos(x.real())*sinh(x.imag()))

25 double_complex sinh(const double_complex& x)

Calculates the complex hyperbolic sine
Return value: double_complex(0,-1)*sin(double_complex((-1)*x.imag(),x.real()))

26. double_complex sqrt(const double_complex& x)

Calculates the square root within the right half space
Return value: double_complex(sqrt(abs(x))*cos(arg(x)/2), sqrt(abs(x))*sin(arg(x)/2))

27. double_complex tan(const double_complex& x)

Calculates the complex tangent.
Return value: sin(x) / cos(x)

28. double_complex tanh(const double_complex& x)

Calculates the complex hyperbolic tangent.
Return value: sinh(x) / cosh(x)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 732 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(5) String Handling Class Library

The header files for string handling class library is as follows.

<string>
Defines the string class.

This class has no derivation.

(a) string Class

Type Definition Name Description
Type iterator char* type

const_iterator const char* type
Constant npos Maximum string literal length (UNIT_MAX

characters)
Variable s_ptr Pointer to the memory area where the

string literal is stored by the object
s_len The length of the string literal stored by the

object
s_res Size of the reserved memory area to store

string literal by the object
Function string(void) Constructor
 string::string(

 const string& str,
 size_t pos=0,
 size_t n=npos)

 string::string(const char* str, size_t n)
 string::string(const char* str)
 string::string(size_t n, char c)
 ~string() Destructor
 string& operator=(const string& str) Assigns str
 string& operator=(const char* str)
 string& operator=(char c) Assigns c
 iterator begin() Calculates the start pointer of the string

literal const_iterator begin() const

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 733 of 1176
Mar 01, 2022

Type Definition Name Description
Function iterator end() Calculates the end pointer of the string

literal const_iterator end() const
 size_t size() const Calculates the length of the stored string

literal size_t length() const
 size_t max_size() const Calculates the size of the reserved memory

area
 void resize(size_t n, char c) Changes the string literal length to n that

can be stored
 void resize(size_t n) Changes the string literal length to n that

can be stored
 size_t capacity() const Calculates the size of the reserved memory

area
 void reserve(size_t res_arg = 0) Performs re-allocation of the memory area
 void clear() Clears the stored string literal
 bool empty() const Checks whether the stored string literal

length is 0
 const char& operator[](size_t pos) const References s_ptr[pos]
 char& operator[](size_t pos)
 const char& at(size_t pos) const
 char& at(size_t pos)
 string& operator+=(const string& str) Adds string literal str
 string& operator+=(const char* str)
 string& operator+=(char c) Adds a character c
 string& append(const string& str) Adds string literal str
 string& append(const char* str)
 string& append(

 const string& str,
 size_t pos,
 size_t n)

Adds n characters of string literal str to the
object position pos

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 734 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function string& append(const char* str, size_t n) Adds n characters to string literal str
 string& append(size_t n, char c) Adds n characters, each of which is c
 string& assign(const string& str) Assigns string literal str
 string& assign(const char* str)
 string& assign(

 const string& str,
 size_t pos,
 size_t n)

Add n characters to string literal str at
position pos

 string& assign(const char* str, size_t n) Assigns n characters of string literal str
 string& assign(size_t n, char c) Assigns n characters, each of which is c
 string& insert(size_t pos1, const string& str) Inserts string literal str to position pos1
 string& insert(

 size_t pos1,
 const string& str,
 size_t pos2,
 size_t n)

Inserts n characters starting from pos2 of
string literal str to position pos1

 string& insert(
 size_t pos,
 const char* s,
 size_t n)

Inserts n characters of string literal str to
position pos

 string& insert(size_t pos, const char* str) Inserts string literal str to position pos
 string& insert(size_t pos, size_t n, char c) Inserts a string literal of n characters c to

position pos
 iterator insert(iterator p, char c=char()) Inserts a character c before the character

specified by p

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 735 of 1176
Mar 01, 2022

Type Definition Name Description
Function void insert(iterator p, size_t n, char c) Inserts n characters c before the character

specified by p
 string& erase(size_t pos=0, size_t n=npos) Deletes n characters from position pos
 iterator erase(iterator position) Deletes the character specified by position
 iterator erase(iterator first, iterator last) Deletes the characters in range [first, last]
 string& replace(

 size_t pos1,
 size_t n1,
 const string& str)

Replaces the string literal of n1 characters
starting from position pos1 with string
literal str

 string& replace(
 size_t pos1,
 size_t n1,
 const char* str)

 string& replace(
 size_t pos1,
 size_t n1,
 const string& str,
 size_t pos2,
 size_t n2)

Replaces the string literal of n1 characters
starting from position pos1 with string
literal of n2 characters from position pos2
of str

 string& replace(
 size_t pos,
 size_t n1,
 const char* str,
 size_t n2)

Replaces the string literal of n1 characters
starting from position pos1 with string
literal str

 string& replace(
 size_t pos,
 size_t n1,
 size_t n2,
 char c)

Replaces the string literal of n1 characters
starting from position pos1 with n2
characters, each of which is c

 string& replace(
 iterator i1,
 iterator i2,
 const string& str)

Replaces the string literal from position i1
to i2 with string literal str

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 736 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function string& replace(

 iterator i1,
 iterator i2,
 const char* str)

Replaces the string literal from position i1
to i2 with string literal str

string& replace(
 iterator i1,
 iterator i2,
 const char* str,
 size_t n)

Replaces string literal from position i1 to
i2 with n characters of string literal str

string& replace(
 iterator i1,
 iterator i2,
 size_t n,
 char c)

Replaces the string literal from position i1
to i2 with n characters, each of which is c

size_t copy(
 char* str,
 size_t n,
 size_t pos=0) const

Copies the first n characters of string
literal str to position pos

void swap(string& str) Swaps *this with string literal str
const char* c_str() const References the pointer to the memory

area where the string literal is stored const char* data() const
size_t find(
 const string& str,
 size_t pos=0) const

Finds the position where the string literal
same as string literal str first appears
after position pos

size_t find(
 const char* str,
 size_t pos=0) const
size_t find(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where the string literal
same as the n characters of str first
appears after position pos

size_t find(char c, size_t pos=0) const Finds the position where the character c
first appears after position pos

size_t rfind(
 const string& str,
 size_t pos=npos) const

Finds the position where a string literal
same as string literal str appears most
recently before position pos

size_t rfind(
 const char* str,
 size_t pos=npos) const

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 737 of 1176
Mar 01, 2022

Type Definition Name Description
Function size_t rfind(

 const char* str,
 size_t pos, size_t n) const

Finds the position where the string
literal same as n characters of str
appears most recently before position
pos

size_t rfind(char c, size_t pos=npos) const Finds the position where the
character c appears most recently
before position pos

size_t find_first_of(
 const string& str,
 size_t pos=0) const

Finds the position where any
character included in string literal str
first appears after position pos

size_t find_first_of(
 const char* str,
 size_t pos=0) const
size_t find_first_of(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where any
character included in n characters of
string literal str first appear after
position pos

size_t find_first_of(
 char c,
 size_t pos=0) const

Finds the position where the
character c first appears after position
pos

size_t find_last_of(
 const string& str,
 size_t pos=npos) const

Finds the position where any
character included in string literal str
appears most recently before position
pos size_t find_last_of(

 const char* str,
 size_t pos=npos) const
size_t find_last_of(
 const char* str,
 size_t pos,
 size_t n) const

Finds the position where any
character included in the n characters
of string literal str appears most
recently before position pos

size_t find_last_of(
 char c,
 size_t pos=npos) const

Finds the position where the
character c appears most recently
before position pos

size_t find_first_not_of(
 const string& str,
 size_t pos=0) const

Finds the position where a character
different from any character included
in string literal str first appears after
position pos size_t find_first_not_of(

 const char* str,
 size_t pos=0) const

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 738 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function

size_t find_first_not_of(
 const char* str,
 size_t pos, size_t n)const

Finds the position where a character
different from any character in the first n
characters of string literal str appears
after position pos.

size_t find_first_not_of(
 char c,
 size_t pos=0) const

Finds the position where a character
different from c first appears after
position pos

size_t find_last_not_of(
 const string& str,
 size_t pos=npos) const

Finds the position where a character
different from any character included in
string literal str appears most recently
before position pos size_t find_last_not_of(

 const char* str,
 size_t pos=npos) const
size_t find_last_not_of(
 const char* str,
 size_t pos, size_t n) const

Finds the position where a character
different from any character in the first n
characters of string literal str appears
most recently before position pos.

size_t find_last_not_of(
 char c,
 size_t pos=npos) const

Finds the location where a character
different from c appears most recently
before position pos

string substr(
 size_t pos=0,
 size_t n=npos) const

Creates an object from a string literal in
the range [pos,n] of the stored string
literal

int compare(const string& str) const Compares the string literal with string
literal str

int compare(
 size_t pos1,
 size_t n1,
 const string& str) const

Compares n1 characters from position
pos1 of *this with str

int compare(
 size_t pos1,
 size_t n1,
 const string& str,
 size_t pos2,
 size_t n2) const

Compares the string literal of n1
characters from position pos1 with the
string literal of n2 characters from
position pos2 of string literal str

int compare(const char* str) const Compares *this with string literal str
int compare(
 size_t pos1,
 size_t n1,
 const char* str,
 size_t n2=npos) const

Compares the string literal of n1
characters from position pos1 with n2
characters of string literal str

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 739 of 1176
Mar 01, 2022

1. string::string (void)

Sets as follows:
 s_ptr = 0;
 s_len = 0;
 s_res = 1;

2. string::string (const string& str, size_t pos=0, size_t n=npos)

Copies str. Note that s_len will be the smaller value of n and s_len.

3. string::string (const char* str, size_t n)
Sets as follows:
s_ptr = str;
s_len = n;
s_res = n+1;

4. string::string (const char* str)

Sets as follows:
s_ptr = str;
s_len = string length of str;
s_res = string length str + 1 of;

5. string::string (size_t n, char c)

Sets as follows:
s_ptr=string literal of n characters, each of which is c
s_len = n;
s_res = n+1;

6. string::~string ()

Destructor of the class string.
Deallocates the memory area where the string literal is stored.

7. string& string::operator=(const string& str)

Assigns the str data.
Return value: *this

8. string& string::operator= (const char* str)

Creates a string object from str and assigns the data of str to the string object.
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 740 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

9. string& string::operator= (char c)
Creates a string object from c and assigns the data of the string to the string object.
Return value: *this

10. string::iterator string::begin()

string::const_iterator string::begin() const
Calculates the start pointer of the string literal.
Return value: Start pointer of string literal

11. string::iterator string::end ()

string::const_iterator string::end() const
Calculates the end pointer of the string literal.
Return value: End pointer of string literal

12. size_t string::size () const

size_t string::length() const
Calculates the length of the stored string literal.
Return value: Length of the stored string literal

13. size_t string::max_size() const

Calculates the size of the reserved memory area.
Return value: Size of the reserved area

14. void string::resize(size_t n, char c)

Changes the string literal length available to n.
If n<=size(), replaces the string literal with the original string literal with length n.
If n>size(), replaces the string literal with a string literal that has c appended to the end so that
the length will be equal to n.
The length must be n<=max_size().
If n>max_size(), the string literal length is n=max_size().

15. void string::resize (size_t n)

Changes the string literal length available to n.
If n<=size(), replaces the string literal with the original string literal with length n.
The length must be n<=max_size.

16. size_t string::capacity() const

Calculates the size of the reserved memory area.
Return value: Size of the reserved memory area

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 741 of 1176
Mar 01, 2022

17. void string::reserve(size_t res_arg = 0)
Re-allocates the memory area.
After reserve(), capacity() will be equal to or larger than the reserve() parameter.
When memory area is re-allocated, all references, pointers, and iterator that references the
elements of the numeric literal (number sequence, series) become invalid.

18. void string::clear()

Clears the stored string literal.

19. bool string::empty() const
Checks whether the stored string literal length is 0.
Return value: If the length of the stored string literal is 0: true
 If the length of the stored string literal is non zero: false

20. const char& string::operator [](size_t pos) const

char& string::operator[] (size_t pos)
const char& string::at (size_t pos) const
char& string::at (size_t pos)
References s_ptr[pos].
Return value: If n< s_len: s_ptr [pos]
 If n>= s_len: ’\0’

21. string& string::operator+= (const string& str)

Appends the string literal stored in str to the left-hand-side object.
Return value: *this

22. string& string::operator+=(const char* str)

Creates a string object from str and adds the string literal to the left-hand-side object.
Return value: *this

23. string& string::operator+= (char c)

Creates a string object from c and adds the string literal.
Return value: *this

24. string& string::append(const string& str)

string& string::append(const char* str)
Appends string literal str to the object.
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 742 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

25. string& string::append (const string& str, size_t pos, size_t n);
Appends n characters of string literal str to the object position pos.
Return value: *this

26. string& string::append (const char* str, size_t n)

Appends n characters of string literal str to the object.
Return value: *this

27. string& string::append (size_t n, char c)

Appends n characters, each of which is c, to the object.
Return value: *this

28. string& string::assign(const string& str)

string& string::assign(const char* str)
Assigns string literal str.
Return value: *this

29. string& string::assign (const string& str, size_t pos, size_t n)

Assigns n characters of string literal str to position pos.
Return value: *this

30. string& string::assign (const char* str, size_t n)

Assigns n characters of string literal str.
Return value: *this

31. string& string::assign (size_t n, char c)

Assigns n characters, each of which is c.
Return value: *this

32. string& string::insert(size_t pos1, const string& str)

Inserts string literal str to position pos1.
Return value: *this

33. string& string::insert (size_t pos1, const string& str, size_t pos2, size_t n)

Inserts n characters started from position pos2 of string literal str to position pos1.
Return value: *this

34. string& string::insert (size_t pos, const char* str, size_t n)

Inserts n characters of string literal str to position pos.
Return value: *this

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 743 of 1176
Mar 01, 2022

35. string& string::insert (size_t pos, const char* str)

Inserts string literal str to position pos.
Return value: *this

36. string& string::insert (size_t pos, size_t n, char c)

Inserts a string literal of n characters, each of which is c, to position pos.
Return value: *this

37. string::iterator string::insert (iterator p, char c=char())

Inserts character c before the character specified by p.
Return value: Character inserted

38. void string::insert (iterator p, size_t n, char c)

Inserts n characters, each of which is c, before the character specified by p.

39. string& string::erase (size_t pos=0, size_t n=npos)
Deletes n characters starting from position pos.
Return value: *this

40. iterator string::erase(iterator position)

Deletes the character specified by position.
Return value: If the next iterator of the element to be deleted exists:
 The next iterator of the deleted elements
 If the next iterator of the elements to be deleted do not exist: end()

41. iterator string::erase (iterator first, iterator last)

Deletes the characters in range [first, last].
Return value: If the next iterator of last exists: The next iterator of last
 If the next iterator of last does not exists: end()

42. string& string::replace(size_t pos1, size_t n1, const string& str)

string& string::replace(size_t pos1, size_t n1, const char* str)
Replaces the string literal of n1 characters starting from position pos1 with string literal str.
Return value: *this

43. string& string::replace (size_t pos, size_t n1, const string& str, size_t pos2, size_t n2)

Replaces the string literal of n1 characters starting from position pos1 with the string literal of
n2 characters starting from position pos2 in string literal str.
Return value: *this

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 744 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

44. string& string::replace (size_t pos, size_t n1, const char* str, size_t n2)

Replaces the string literal of n1 characters starting from position pos1 with string literal str of
n2 characters.
Return value: *this

45. string& string::replace (size_t pos, size_t n1, size_t n2, char c)

Replaces the string literal of n1 characters starting from position pos with n2 characters, each
of which is c.
Return value: *this

46. string& string::replace (iterator i1, iterator i2, const string& str)

string& string::replace(iterator i1, iterator i2, const char* str)
Replaces the string literal from position i1 to i2 with string literal str.
Return value: *this

47. string& string::replace (iterator i1, iterator i2, const char* str, size_t n)

Replaces the string literal from position i1 to i2 with n characters of string literal str.
Return value: *this

48. string& string::replace (iterator i1, iterator i2, size_t n, char c)

Replaces the characters from position i1 to i2 with n characters, each of which is c.
Return value: *this

49. size_t string::copy(char* str, size_t n, size_t pos=0) const

Copies n characters of string literal str to position pos.
Return value: rlen

50. void string::swap(string& str)

Swaps *this with string literal str.

51. const char* string::c_str() const
const char* string::data() const
References the pointer to the area where the string literal is stored.
Return value: s_ptr

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 745 of 1176
Mar 01, 2022

52. size_t string::find (const string& str, size_t pos=0) const
size_t string::find (const char* str, size_t pos=0) const
Finds the position where the string literal same as string literal str first appears after position
pos.
Return value: Offset of string literal

53. size_t string::find (const char* str, size_t pos, size_t n) const

Finds the position where the string literal same as the n characters of str first appears after
position pos.
Return value: Offset of string literal

54. size_t string::find (char c, size_t pos=0) const

Finds the position where character c first appears after position pos.
Return value: Offset of string literal

55. size_t string::rfind(const string& str, size_t pos=npos) const

size_t string::rfind(char *str, size_t pos=npos) const
Finds the position where a string literal same as string literal str appears most recently before
position pos.
Return value: Offset of string literal

56. size_t string::rfind (const char* str, size_t pos, size_t n) const

Finds the position where the string literal same as n characters of str appears most recently
before position pos.
Return value: Offset of string literal

57. size_t string::rfind (char c, size_t pos=npos) const

Finds the position where character c appears most recently before position pos.
Return value: Offset of string literal

58. size_t string::find_first_of(const string& str, size_t pos=0) const

size_t string::find_first_of(const char* str, size_t pos=0) const
Finds the position where any character included in string literal str first appears after position
pos.
Return value: Offset of string literal

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 746 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

59. size_t string::find_first_of (const char* str, size_t pos, size_t n) const
Finds the position where any character included in n characters of string literal str first appear
after position pos.
Return value: Offset of string literal

60. size_t string::find_first_of (char c, size_t pos=0) const

Finds the position where character c first appears after position pos.
Return value: Offset of string literal

61. size_t string::find_last_of(const string& str, size_t pos=npos) const

size_t string::find_last_of(const char* str, size_t pos=npos) const
Finds the position where any character included in string literal str appears most recently
before position pos.
Return value: Offset of string literal

62. size_t string::find_last_of (const char* str, size_t pos, size_t n) const

Finds the position where any character included in the n characters of string literal str appears
most recently before position pos.
Return value: Offset of string literal

63. size_t string::find_last_of (char c, size_t pos=npos) const

Finds the position where character c appears most recently before position pos.
Return value: Offset of string literal

64. size_t string::find_first_not_of(const string& str, size_t pos=0) const

size_t string::find_first_not_of(const char* str, size_t pos=0) const
Finds the position where a character different from any character included in string literal str
first appears after position pos.
Return value: Offset of string literal

65. size_t string::find_first_not_of (const char* str, size_t pos, size_t n) const

Finds the position where a character different from any character in the first n characters of
string literal str first appears after position pos.
Return value: Offset of string literal

66. size_t string::find_first_not_of(char c, size_t pos=0) const

Finds the position where a character different from character c first appears after position pos.
Return value: Offset of string literal

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 747 of 1176
Mar 01, 2022

67. size_t string::find_last_not_of(const string& str, size_t pos=npos) const
size_t string::find_last_not_of(const char* str, size_t pos=npos) const
Finds the position where a character different from any character included in string literal str
appears most recently before position pos.
Return value: Offset of string literal

68. size_t string::find_last_not_of (const char* str, size_t pos, size_t n) const

Finds the position where a character different from any character in the first n characters of
string literal str appears most recently before position pos.
Return value: Offset of string literal

69. size_t string::find_last_not_of (char c, size_t pos=npos) const

Finds the position where a character different from character c appears most recently before
position pos.
Return value: Offset of string literal

70. string string::substr(size_t pos=0, size_t n=npos) const

Creates an object from a string literal in the range [pos,n] of the stored string literal.
Return value: Object address with string literal range [pos,n]

71. int string::compare(const string& str) const

Compares the string literal with string literal str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

72. int string::compare (size_t pos1, size_t n1, const string& str) const

Compares n1 characters from position pos1 of *this with string literal str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

73. int string::compare(size_t pos1, size_t n1, const string& str, size_t pos2, size_t n2) const

Compares a string literal of n1 characters from position pos1 with the string literal of n2
characters from position pos2 of string literal str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 748 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

74. int string::compare (const char* str) const
Compares *this with string literal str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

75. int string::compare (size_t pos1, size_t n1, const char* str, size_t n2=npos) const

Compares the string literal of n1 characters from position pos1 with n2 characters of string
literal str.
Return value: If the string literals are the same: 0
 If the string literals are different: 1 when this->s_len>str.s_len,
 -1 when this->s_len < str.s_len

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 749 of 1176
Mar 01, 2022

(b) string Class Manipulators

Type Definition Name Description
Function string operator +(

 const string& lhs,
 const string& rhs)

Appends the string literal (or
characters) of rhs to the string
literal (or character) of lhs, creates
an object and stores the string
literal in the object

 string operator+(const char* lhs, const string& rhs)
 string operator+(char lhs, const string& rhs)
 string operator+(const string& lhs, const char* rhs)
 string operator+(const string& lhs, char rhs)
 bool operator==(

 const string& lhs,
 const string& rhs)

Compares the string literal of lhs
with the string literal of rhs

 bool operator==(const char* lhs, const string& rhs)
 bool operator==(const string& lhs, const char* rhs)
 bool operator!=(const string& lhs, const string& rhs) Compares the string literal of lhs

with the string literal of rhs bool operator!=(const char* lhs, const string& rhs)
 bool operator!=(const string& lhs, const char* rhs)
 bool operator<(const string& lhs, const string& rhs) Compares the string literal length

of lhs with the string literal length of
rhs

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 750 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Type Definition Name Description
Function bool operator<(const char* lhs, const string& rhs) Compares the string literal length

of lhs with the string literal length of
rhs

 bool operator<(const string& lhs, const char* rhs)

 bool operator>(const string& lhs, const string& rhs) Compares the string literal length
of lhs with the string literal length of
rhs

 bool operator>(const char* lhs, const string& rhs)
 bool operator>(const string& lhs, const char* rhs)
 bool operator<=(

 const string& lhs,
 const string& rhs)

Compares the string literal length
of lhs with the string literal length of
rhs

 bool operator<=(const char* lhs, const string& rhs)
 bool operator<=(const string& lhs, const char* rhs)
 bool operator>=(const string& lhs, const string& rhs) Compares the string literal length

of lhs with the string literal length of
rhs

 bool operator>=(const char* lhs, const string& rhs)
 bool operator>=(const string& lhs, const char* rhs)
 void swap(string& lhs, string& rhs) Swaps the string literal of lhs with

the string literal of rhs
 istream& operator>>(istream& is,string& str) Extracts the string literal to str
 ostream& operator<<(

 ostream& os,
 const string& str)

Inserts string literal str

 istream& getline(
 istream& is,
 string& str,
 char delim)

Extracts a string literal from is and
appends it to str. If ‘delim’ is
detected, terminates input.

 istream& getline(istream& is, string& str) Extracts a string literal from is and
appends it to str. If a new-line
character is detected, terminates
input.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 751 of 1176
Mar 01, 2022

1. string operator+(const string& lhs, const string& rhs)
string operator+(const char* lhs, const string& rhs)
string operator+(char lhs, const string& rhs)
string operator+(const string& lhs, const char* rhs)
string operator+(const string& lhs, char rhs)
Appends the string literal (characters) of lhs with the strings literal (characters) of rhs, creates
an object and stores the string literal in the object.
Return value: Object where the linked string literals are stored

2. bool operator==(const string& lhs, const string& rhs)

bool operator==(const char* lhs, const string& rhs)
bool operator==(const string& lhs, const char* rhs)
Compares the string literal of lhs with the string literal of rhs.
Return value: If the string literals are the same: true
 If the string literals are different: false

3. bool operator!=(const string& lhs, const string& rhs)

bool operator!=(const char* lhs, const string& rhs)
bool operator!=(const string& lhs, const char* rhs)
Compares the string literal of lhs with the string literal of rhs.
Return value: If the string literals are the same: false
 If the string literals are different: true

4. bool operator<(const string& lhs, const string& rhs)

bool operator<(const char* lhs, const string& rhs)
bool operator<(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal length of rhs.
Return value: If lhs.s_len < rhs.s_len: true
 If lhs.s_len >= rhs.s_len: false

5. bool operator>(const string& lhs, const string& rhs)

bool operator>(const char* lhs, const string& rhs)
bool operator>(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal length of rhs.
Return value: If lhs.s_len > rhs.s_len: true
 If lhs.s_len <= rhs.s_len: false

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 752 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

6. bool operator<=(const string& lhs, const string& rhs)
bool operator<=(const char* lhs, const string& rhs)
bool operator<=(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal length of rhs.
Return value: If lhs.s_len <= rhs.s_len: true
 If lhs.s_len > rhs.s_len: false

7. bool operator>=(const string& lhs, const string& rhs)

bool operator>=(const char* lhs, const string& rhs)
bool operator>=(const string& lhs, const char* rhs)
Compares the string literal length of lhs with the string literal length of rhs.
Return value: If lhs.s_len >= rhs.s_len: true
 If lhs.s_len < rhs.s_len: false

8. void swap (string& lhs,string& rhs)

Swaps the string literal of lhs with the string literal of rhs.

9. istream& operator>>(istream& is,string& str)
Extracts a string literal to str.
Return value: is

10. ostream& operator<<(ostream& os, const string& str)

Inserts string literal str.
Return value: os

11. istream& getline (istream& is, string& str, char delim)

Extracts a string literal from is and appends it to str.
If the character delim is found, the input is terminated.
Return value: is

12. istream& getline (istream& is, string& str)

Extracts a string literal from is and appends it to str.
If a new-line character is found, the input is terminated.
Return value: is

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 753 of 1176
Mar 01, 2022

10.4.3 Reentrant Library

A library created by using the reent option of the standard library generator is able to execute all
reentrants except for the rand and srand functions.

Table 10.50 lists libraries that are reentrant when the reent option is not specified. A function that
is marked with ∆ in the table sets the errno variable. Such a function can be assumed to be
reentrant unless the program refers to errno.

Table 10.50 Reentrant Library List

No. Standard Include File Function Name Reentrant
1 stddef.h offsetof O
2 assert.h assert X
3 ctype.h isalnum O

isalpha O
iscntrl O
isdigit O
isgraph O
islower O
isprint O
ispunct O
isspace O
isupper O
isxdigit O
tolower O
toupper O

4 math.h acos ∆
 asin ∆
 atan ∆
 atan2 ∆
 cos ∆
 sin ∆
 tan ∆

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 754 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.50 Reentrant Library List (cont)

No. Standard Include File Function Name Reentrant
4 math.h(cont) cosh ∆

sinh ∆

tanh ∆

exp ∆

frexp ∆

ldexp ∆

log ∆

log10 ∆

modf ∆

pow ∆

sqrt ∆

ceil ∆

fabs ∆

floor ∆

fmod ∆
5 mathf.h acosf ∆
 asinf ∆
 atanf ∆
 atan2f ∆
 cosf ∆
 sinf ∆
 tanf ∆
 coshf ∆
 sinhf ∆
 tanhf ∆
 expf ∆
 frexpf ∆
 ldexpf ∆
 logf ∆
 log10f ∆

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 755 of 1176
Mar 01, 2022

Table 10.50 Reentrant Library List (cont)

No. Standard Include File Function Name Reentrant
5 mathf.h (cont) modff ∆

powf ∆

sqrtf ∆

ceil ∆

fabsf ∆

floorf ∆

fmodf ∆
6 setjmp.h setjmp O

longjmp O
7 stdarg.h va_start O

va_arg O
va_end O

8 stdio.h fclose X
 fflush X
 fopen X
 freopen X
 setbuf X
 setvbuf X
 fprintf X
 fscanf X
 printf X
 scanf X
 sprintf ∆
 sscanf ∆
 vfprintf X
 vprintf X
 vsprintf ∆
 fgetc X
 fgets X
 fputc X

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 756 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 10.50 Reentrant Library List (cont)

No. Standard Include File Function Name Reentrant
8 stdio.h (cont) fputs X

getc X

getchar X

gets X

putc X

putchar X

puts X

ungetc X

fread X

fwrite X

fseek X

ftell X

rewind X

clearerr X

feof X

ferror X

perror X
9 stdlib.h atof ∆
 atoi ∆
 atol ∆
 atoll ∆
 atolfixed ∆
 atolaccum ∆
 strtod ∆
 strtol ∆
 strtoul ∆
 strtoll ∆
 strtoull ∆
 strtolfixed ∆
 strtolaccum ∆

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 757 of 1176
Mar 01, 2022

Table 10.50 Reentrant Library List (cont)

No. Standard Include File Function Name Reentrant
9 stdlib.h (cont) rand X
 srand X
 calloc X
 free X
 malloc X
 realloc X
 free_ _X X
 malloc_ _X X
 realloc_ _X X
 calloc_ _X X
 free_ _Y X
 malloc_ _Y X
 realloc_ _Y X
 calloc_ _Y X
 bsearch O
 qsort O
 abs O
 div ∆
 labs O
 llabs O
 ldiv ∆
 lldiv ∆

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 758 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

No. Standard Include File Function Name Reentrant
10 string.h memcpy O
 memcpy_ _X_ _X O
 memcpy_ _X_ _Y O
 memcpy_ _Y_ _X O
 memcpy_ _Y_ _Y O
 strcpy O
 strncpy O
 strcat O
 strncat O
 memcmp O
 strcmp O
 strncmp O
 memchr O
 strchr O
 strcspn O
 strpbrk O
 strrchr O
 strspn O
 strstr O
 strtok X
 memset O
 strerror O
 strlen O
 memmove O
Reentrant column: O: Reentrant

 X: Non-reentrant
 ∆: errno is set.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 759 of 1176
Mar 01, 2022

10.4.4 Unsupported Libraries

Table 10.51 lists the libraries not supported by this compiler.

Table 10.51 Unsupported Libraries

No. Standard Include File Reentrant
1 locale.h* setlocale, localeconv
2 signal.h* signal, raise
3 stdio.h remove, rename, tmpfile, tmpnam, fgetpos, fsetpos
4 stdlib.h abort, atexit, exit, getenv, system, mblen, mbtowc, wctomb,

mbstowcs, wcstombs
5 string.h strcoll, strxfrm
6 time.h* clock, difftime, mktime, time, asctime, ctime, gmtime, localtime,

strftime
Note: The header file is not supported.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 760 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

10.4.5 DSP Library

(1) Overview

This section describes a digital signal processing (DSP) library for use with the SH2-DSP the
SH3-DSP, and the SH4AL-DSP (called SH-DSP hereafter). This library includes standard
DSP functions, so various DSP operations can be performed by using a single function or
using several functions in sequence.
This library includes the following functions.
• Fast Fourier Transforms
• Window Functions
• Filters
• Convolution and Correlation
• Miscellaneous

These are reentrant library functions except for the fast Fourier transforms and filters.
When using this library, include files shown in table 10.52, and link the library suitable for the
target CPU and compiler options as shown in table 10.53.
After calling the library, a return value, EDSP_OK, is returned if a function is correctly
terminated, and a return value, EDSP_BAD_ARG or EDSP_NO_HEAP, is returned if a
function is not correctly terminated. For details on the return values, refer to the description of
each function.

Table 10.52 Include Files for DSP Library

Library Type Contents Include File
DSP library Library for DSP operations <ensigdsp.h>
 <filt_ws.h>*

Note: When the filter functions are used in a program, filt_ws.h must be included once.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 761 of 1176
Mar 01, 2022

Table 10.53 DSP Libraries

CPU Option Library
SH2-DSP -pic=0 shdsplib.lib

-pic=1 shdsppic.lib
SH3-DSP -pic=0 -endian=big sh3dspnb.lib

-pic=1 -endian=big sh3dsppb.lib
-pic=0 -endian=little sh3dspnl.lib
-pic=1 -endian=little sh3dsppl.lib

SH4AL-DSP -pic=0 -endian=big sh4aldspnb.lib
 -pic=1 -endian=big sh4aldsppb.lib
 -pic=0 -endian=little sh4aldspnl.lib
 -pic=1 -endian=little sh4aldsppl.lib

(2) Data Formats

This library regards data as a signed 16-bit fixed-point number. The signed 16-bit fixed-point
number has a data format where the decimal point is fixed at the right of the most significant
bit (MSB) as shown in figure 10.8 (a). The signed 16-bit fixed-point number can represent
values in the range from -1 to 1-2-15. The library accepts data with a short-type data format.
Therefore, it is necessary to represent data as signed 16-bit fixed-point number when this
library is used in a C/C++ program.
For example, +0.5 is H'4000 when represented with signed 16-bit fixed-point number.
Therefore, the short-type real argument sent to the library function is H'4000.
For the operation within the library, signed 32-bit fixed-point numbers and signed 40-bit fixed-
point numbers are also used. The data format of the signed 32-bit fixed-point number is shown
in figure 10.8 (b). Values in the range from -1 to 1-2-31 can be represented. As shown in figure
10.8 (c), the signed 40-bit fixed-point number has a data format with eight guard bits. Values
in the range from -28 to 28-2-31 can be represented.
The product of signed 16-bit fixed-point numbers is stored as a signed 32-bit fixed-point
number. An overflow will occur only if H'8000 is multiplied by H'8000 for fixed-point
multiplication by using a DSP instruction. The least significant bit (LSB) of a product is
always 0. To use the product for the next operation, the upper 16 bits are converted to a signed
16-bit fixed-point number. At that time, an underflow can occur, and accuracy can be lost.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 762 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

For multiply-and-accumulate operation, the sum is stored in a signed 40-bit fixed-point
number. Be careful to prevent an overflow from occurring during addition. If an overflow
occurs during the operation, the result will be incorrect. To avoid an overflow, a scaling of the
coefficient and input data must be performed. This library incorporates a scaling function. For
details on scaling, refer to the description of each function.

Figure 10.8 Data Format

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 763 of 1176
Mar 01, 2022

(3) Efficiency

This library function is optimized for fast execution on the SH-DSP. To use the library
efficiently, the following two recommendations should be observed whenever possible in
defining the memory map of a target system.
• The program code segment should be located in the memory that supports single cycle 32-

bit reads.
• The data segment should be located in the memory that supports single cycle 16 (or 32) bit

reads and writes.

If there is sufficient internal 32-bit memory, this would be a suitable location for the library
code and data. If other memory is used, the recommendations above should be followed
whenever possible.

(4) Use with DSP-C

The DSP library can be used with the DSP-C language in a program. When a library function
has two types in the description of each function, the type listed above is used when the dspc
option is not specified, and the type listed below is used when the dspc option is specified.
When a library function has only one type, the type can be used in both cases when the dspc
option is specified and not specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 764 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(5) Fast Fourier Transforms

(a) Overview

Function Description
FftComplex Executes not-in-place, complex FFT.
FftReal Executes not-in-place, real FFT.
IfftComplex Executes not-in-place, complex inverse FFT.
IfftReal Executes not-in-place, real inverse FFT.
FftInComplex Executes in-place, complex FFT.
FftInReal Executes in-place, real FFT.
IfftInComplex Executes in-place, complex inverse FFT.
IfftInReal Executes in-place, real inverse FFT.
LogMagnitude Converts complex data to log magnitude format.
InitFft Generates FFT lookup tables.
FreeFft Releases FFT lookup table memory.

Note: For details on not-in-place and in-place, refer to section 10.4.5 (5) (e),FFT Structure.

These functions calculate the forward and inverse fast Fourier transforms with a user-
defined scaling. The forward Fourier transform is defined by:

where s is the number of stages in which scaling is performed and N is the number of data.
The inverse Fourier transform is defined by:

For details on scaling, refer to (d) Scaling below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 765 of 1176
Mar 01, 2022

(b) Complex Data Array Format
In FFT and IFFT routines, complex data are stored using two arrays: the real part of data
in X memory and the imaginary part of data in Y memory. However, the locations of real
FFT output data and real IFFT input data differ. Assuming the arrays x and y could have
real and imaginary parts respectively, element x[0] contains the real part of the DC
component of the signal, and y[0] contains the real part of the Fs/2 frequency (both DC and
Fs/2 components are real, and their imaginary parts are zero).

(c) Real Data Array Format
Real data can be specified in three possible formats:
• The data is represented in a single array, located in any memory block.
• The data is represented in a single array, located in X memory.
• The data is split into two arrays, each of which has size N/2. The first half of the data is

stored in the X memory; the second half is stored in the Y memory.
FftReal uses only the first representation for the real data. IfftReal, FftInReal and
IfftInReal allow the user to select either the second or third representation.

(d) Scaling

In an FFT, the signal power doubles at each natural radix-2 stage; the peak signal
amplitude can also double. This doubling can cause overflow when transforming a high
power signal, but can be prevented by a division by two at each radix-2 stage (this is called
scaling). However, excessive scaling will generate an unnecessary quantization error.
The optimum balance among overflow, quantization error, and scaling depends highly on
the characteristics of the input signal. When a peak of a signal spectrum is very large, for
example, the maximum scaling will be required to avoid overflow, whereas an impulse
signal will require very little scaling.
The safest approach is to perform scaling at every radix-2 stage. As long as each complex
input data is scaled to have power less than 230, this approach guarantees that overflow will
not occur. This library allows finer control of scaling, with scaling selectable individually
for each radix-2 stage. Careful selection of this scaling allows the combined effects of
overflow and quantization to be minimized.
To allow specification of the required approach each FFT function has a scale parameter.
The scale is interpreted starting with the least significant bit, with each bit corresponding to
each radix-2 stage. A division by two is performed at each radix-2 stage only if its
corresponding scale bit has been set to 1.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 766 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

The FFT implementation used in this library takes advantage of the radix-4 stages to
improve execution speed. The scale is interpreted starting with the least significant bit, with
each pair of bits corresponding to each radix-4 stage. If either in the pair is set to 1, a
division by two is performed; if both in the pair are set to 1, a division by four is performed.
This gives the same overall scaling between two radix-2 stages and a radix-4 stage, with
minor differences in the quantization error.
For example:
• scale = H'FFFFFFFF (or size-1) specifies to perform scaling on every radix-2 stage,

with a guarantee that no overflow will occur if the input data all have signal power less
than 230.

• scale = H'55555555 specifies to perform scaling on alternate radix-2 FFT stages.
• scale = 0 specifies no scaling.
EFFTALLSCALE (H'FFFFFFFF), EFFTMIDSCALE (H'55555555) and
EFFTNOSCALE (0), defined in ensigdsp.h, can be used to provide these values.

(e) FFT Structure
This library has two types of FFT structures: not-in-place FFT and in-place FFT. When a
not-in-place FFT structure is used, input data is fetched from the RAM, FFT is executed,
and output data is stored in another area of the RAM specified by the user. When an in-
place FFT structure is used, input data is fetched from the RAM, FFT is executed, and
output data is stored in the same area of the RAM. When an in-place FFT structure is used,
the used memory space can be reduced but the FFT execution time increases. Use not-in-
place FFT to use the same input data in other functions. Use in-place FFT to reduce the
memory space required.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 767 of 1176
Mar 01, 2022

int FftComplex (short op_x[], short op_y[], const short ip_x[],
 const short ip_y[], long size, long scale)
int FftComplex (_ _X _ _fixed op_x[], _ _Y _ _fixed op_y[],
 const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[], long size, long scale)

Description: Executes a complex Fast Fourier Transform.

Header: <ensigdsp.h>

Return value: EDSP_OK successfully completed
EDSP_BAD_ARG size < 4
 size not a power of 2
 size > max_fft_size

Parameters: op_x[] real part of output data
op_y[] imaginary part of output data
ip_x[] real part of input data
ip_y[] imaginary part of input data
size size of FFT
scale scaling specification

Remarks: 1. This routine calculates a complex Fast Fourier Transform. The
 calculation is not-in-place, so the input and output arrays must not
 overlap.
2. The storage of complex data arrays is described in section 10.4.5 (5) (b),
 Complex Data Array Format.
3. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
4. Scaling specification is described in section 10.4.5 (5) (d), Scaling.
5. Only the lower log2 (size) bits of scale are used.
6. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 768 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int FftReal (short op_x[], short op_y[], const short ip[], long size, long scale)
int FftReal (_ _X _ _fixed op_x[], _ _Y _ _fixed op_y[], const _ _fixed ip[],
 long size, long scale)

Description: Executes a real Fast Fourier Transform.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 8
 size not a power of 2
 size > max_fft_size

Parameters: op_x[] real part of positive output data
op_y[] imaginary part of positive output data
ip[] real input data
size size of FFT
scale scaling specification

Remarks: 1. On returning, op_x and op_y contain (size/2) positive output data only.
 The negative data are simply the conjugate complex number of the
 positive data. Since the output data values at both 0 and Fs/2 are real, the
 Fs/2 value is placed in op_y[0].
2. The calculation is not-in-place, so the input and output arrays must not
 overlap.
3. The storage of complex and real data arrays is described in section 10.4.5
 (5) (b), Complex Data Array Format, and section 10.4.5 (5) (c), Real Data
 Array Format.
4. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
5. Scaling specification is described in section 10.4.5 (5)(d), Scaling.
6. Only the lower log2 (size) bits of scale are used.
7. This routine is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 769 of 1176
Mar 01, 2022

int IfftComplex (short op_x[], short op_y[], const short ip_x[], const short ip_y[], long size,
 long scale)
int IfftComplex (_ _X _ _fixed op_x[], _ _Y _ _fixed op_y[],
 const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[], long size, long scale)

Description: Executes a complex inverse Fast Fourier Transform.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 4
 size not a power of 2
 size > max_fft_size

Parameters: op_x[] real part of output data
op_y[] imaginary part of output data
ip_x[] real part of input data
ip_y[] imaginary part of input data
size size of inverse FFT
scale scaling specification

Remarks: 1. The calculation is not-in-place, so the input and output arrays must not
 overlap.
2. The storage of complex data arrays is described in section 10.4.5 (5) (b),
 Complex Data Array Format.
3. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
4. Scaling specification is described in section 10.4.5 (5) (d), Scaling.
5. Only the lower log2 (size) bits of scale are used.
6. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 770 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int IfftReal (short op_x[], short scratch_y[], const short ip_x[],
 const short ip_y[], long size, long scale, int op_all_x)
int IfftReal (_ _X _ _fixed op_x[], _ _Y _ _fixed scratch_y [], const _ _X _ _fixed ip_x[],
 const _ _Y _ _fixed ip_y[], long size, long scale, int op_all_x)

Description: Executes a real inverse Fast Fourier Transform.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 8
 size not a power of 2
 size > max_fft_size
 op_all_x ≠ 0 or 1

Parameters: op_x[] real output data
scratch_y[] scratch memory or real output data
ip_x[] real part of positive input data
ip_y[] imaginary part of positive input data
size size of inverse FFT
scale scaling specification
op_all_x format specification of output data

Remarks: 1. ip_x and ip_y should contain the positive input data only. The negative
 data are simply the conjugate complex number of the positive data. Since
 the input data values at both 0 and Fs/2 can only be real, the input value at
 Fs/2 should be placed in ip_y[0].
2. op_all_x specifies the output data format.
 If op_all_x is 1, all output is stored in op_x. If op_all_x is 0, the first
 size/2 output data are stored in op_x; the remaining size/2 output data are
 stored in scratch_y.
3. The calculation is not-in-place, so the input and output arrays must not
 overlap.
4. Storage of complex and real data arrays is described in section 10.4.5 (5)
 (b), Complex Data Array Format, and section 10.4.5 (5) (c), Real Data
 Array Format.
5. ip_x and ip_y should have size/2 elements. op_x should have size or
 size/2 elements as required by the value of op_all_x.
6. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
7. Scaling specification is described in section 10.4.5 (5) (d), Scaling.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 771 of 1176
Mar 01, 2022

8. Only the lower log2 (size) bits of scale are used.
9. This routine is not reentrant.

int FftInComplex (short data_x[], short data_y[], long size, long scale)
int FftInComplex (_ _X _ _fixed data_x[], _ _Y _ _fixed data_y[], long size,
 long scale)

Description: Executes an in-place complex Fast Fourier Transform.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 4
 size not a power of 2
 size > max_fft_size

Parameters: data_x[] real part of data
data_y[] imaginary part of data
size size of FFT
scale scaling specification

Remarks: 1. The storage of complex data arrays is described in section 10.4.5 (5)
 (b), Complex Data Array Format.
2. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
3. Scaling specification is described in section 10.4.5 (5) (d), Scaling.
4. Only the lower log2 (size) bits of scale are used.
5. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 772 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int FftInReal (short data_x[], short data_y[], long size, long scale, int ip_all_x)
int FftInReal (_ _X _ _fixed data_x[], _ _Y _ _fixed data_y[], long size,
 long scale, int ip_all_x)

Description: Executes an in-place real Fast Fourier Transform.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 8
 size not a power of 2
 size > max_fft_size
 ip_all_x ≠ 0 or 1

Parameters: data_x[] real data on input, real part of positive data on output
data_y[] real data or unused on input, imaginary part of
 positive data on output
size size of FFT
scale scaling specification
ip_all_x format specification of input data

Remarks: 1. The format of the input data is specified by ip_all_x. If ip_all_x is 1, the
 input data are taken from the data_x. If ip_all_x is 0, the first size/2 data
 are taken from data_x, and the remaining size/2 data are taken from
 data_y.
2. On returning, data_x and data_y contain size/2 positive data only. The
 negative output data are simply the conjugate complex number of the
 positive data. Since the output data at both 0 and Fs/2 are real, the output
 value at Fs/2 is placed in data_y[0]
3. The storage of complex and real data arrays is described in section 10.4.5
 (4) (b), Complex Data Array Format, and section 10.4.5 (5) (c), Real Data
 Array Format.
4. data_y should have size/2 elements. data_x should have size or size/2
 elements as required by the value of ip_all_x.
5. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
6. Scaling specification is described in section 10.4.5 (5) (d), Scaling.
7. Only the lower log2 (size) bits of scale are used.
8. This routine is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 773 of 1176
Mar 01, 2022

int IfftInComplex (short data_x[], short data_y[], long size, long scale)
int IfftInComplex (_ _X _ _fixed data_x[], _ _Y _ _fixed data_y[], long size,
 long scale)

Description: Executes an in-place complex inverse Fast Fourier Transform.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 4
 size not a power of 2
 size > max_fft_size

Parameters: data_x[] real part of data
data_y[] imaginary part of data
size size of inverse FFT
scale scaling specification

Remarks: 1. The storage of complex data arrays is described in section 10.4.5
 (5) (b), Complex Data Array Format.
2. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
3. Scaling specification is described in section 10.4.5 (5) (d), Scaling.
4. Only the lower log2 (size) bits of scale are used.
5. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 774 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int IfftInReal (short data_x[], short data_y[], long size, long scale, int op_all_x)
int IfftInReal (_ _X _ _fixed data_x[], _ _Y _ _fixed data_y[], long size,
 long scale, int op_all_x)

Description: Executes an in-place real inverse Fast Fourier Transform.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 8
 size not a power of 2
 size > max_fft_size
 op_all_x ≠ 0 or 1

Parameters: data_x[] real part of positive data on input, real data on output
data_y[] imaginary part of positive data on input, real data or unused on
 output
size size of inverse FFT
scale scaling specification
op_all_x format specification of output data

Remarks: 1. data_x and data_y should contain size/2 positive input data only. The
 negative data are simply the conjugate complex number of the positive
 data. Since the input data values at both 0 and Fs/2 can only be real, the
 input value at Fs/2 should be placed in data_y[0].
2. op_all_x specifies the output data format. If op_all_x is 1, all output is
 stored in data_x. If op_all_x is 0, the first size/2 output data are stored in
 data_x; the remaining size/2 output data are stored in data_y.
3. The storage of complex and real data arrays is described in section 10.4.5
 (5) (b), Complex Data Array Format, and section 10.4.5 (5) (c), Real Data
 Array Format.
4. data_y should have size/2 elements. data_x should have size or size/2
 elements as required by the value of op_all_x.
5. Before calling this routine the lookup table and max_fft_size should be
 initialized by calling InitFft.
6. Scaling specification is described in section 10.4.5 (5) (d), Scaling.
7. Only the lower log2 (size) bits of scale are used.
8. This routine is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 775 of 1176
Mar 01, 2022

int LogMagnitude (short output[], const short ip_x[], const short ip_y[],
 long no_elements, float fscale)
int LogMagnitude (_ _fixed output[], const _ _X _ _fixed ip_x[],
 const _ _Y _ _fixed ip_y[], long no_elements, float fscale)

Description: Executes the log magnitude of the complex input data in decibels, and writes
 the scaled result into the output array

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 1
 no_elements > 32767
 |fscale| ≥ 215/(10log10231)

Parameters: output[] real output data z
ip_x[] real part of input data x
ip_y[] imaginary part of input data y
no_elements number of output data N
fscale output scaling factor

Remarks: z(n)=10fscale⋅log10(x(n)2+y(n)2) 0 ≤ n < N

The storage of complex data arrays is described in section 10.4.5 (5) (b),
Complex Data Array Format.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 776 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int InitFft (long max_size)

Description: Generates the (quarter size) lookup tables used by the FFT functions.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_NO_HEAP insufficient space available from malloc
EDSP_BAD_ARG max_size < 2
 max_size not a power of 2
 max_size > 32768

Parameters: max_size Maximum size of FFT that will be required.

Remarks: 1. The lookup tables are stored in memory allocated by malloc.
2. Once the lookup tables have been generated the global variable
 max_fft_size is updated to indicate the maximum permitted FFT size.
3. This routine must be called once before calling the first FFT function.
4. max_size must be 8 or larger.
5. The lookup tables are generated for the transform size specified by
 max_size. Smaller transforms will be performed using the same lookup
 tables.
6. The addresses of the lookup tables are stored in internal variables; they
 should not be accessed by user programs.
7. This routine is not reentrant.

void FreeFft (void)

Description: Release the memory used for storing FFT lookup tables.

Header: <ensigdsp.h>

Remarks: 1. Set the max_fft_size global variable as 0. To use a FFT function again
 after executing FreeFft, InitFft must be executed.
2. This function is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 777 of 1176
Mar 01, 2022

(6) Window Function

(a) Overview

Function Description
GenBlackman Generates a Blackman window.
GenHamming Generates a Hamming window.
GenHanning Generates a Hanning window.
GenTriangle Generates a Triangle window.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 778 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int GenBlackman (short output[], long win_size)
int GenBlackman (_ _fixed output[], long win_size)

Description: Generates a Blackman window in output.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG win_size ≤ 1

Parameters: output[] output data W(n)
win_size window size N

Remarks: VectorMult can be used to apply the window to a data array.
The function used is:

int GenHamming (short output[], long win_size)
int GenHamming (_ _fixed output[], long win_size)

Description: Generates a Hamming window in output.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSD_BAD_ARG win_size ≤ 1

Parameters: output[] output data W(n)
win_size window size N

Remarks: VectorMult can be used to apply the window to a data array.
The function used is:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 779 of 1176
Mar 01, 2022

int GenHanning (short output[], long win_size)
int GenHanning (_ _fixed output[], long win_size)

Description: Generates a Hanning window in output.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG win_size ≤ 1

Parameters: output[] output data W(n)
win_size window size N

Remarks: VectorMult can be used to apply the window to a data array.
The function used is:

int GenTriangle (short output[], long win_size)
int GenTriangle (_ _fixed output[], long win_size)

Description: Generates a Triangle window in output

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG win_size ≤ 1

Parameters: output[] output data W(n)
win_size window size N

Remarks: VectorMult can be used to apply the window to a data array.
The function used is:

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 780 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(7) Filters

(a) Overview

Function Description
Fir Executes a finite impulse response filter.
Fir1 Executes a finite impulse response filter for a single input data.
Iir Executes an infinite impulse response filter.
Iir1 Executes an infinite impulse response filter for a single input data.
DIir Executes a double precision infinite impulse response filter.
DIir1 Executes a double precision infinite impulse response filter for a

single input data.
Lms Executes a real adaptive FIR filter.
Lms1 Executes a real adaptive FIR filter for a single input data.
InitFir Allocates a workspace for FIR filter.
InitIir Allocates a workspace for IIR filter.
InitDIir Allocates a workspace for double precision DIIR filter.
InitLms Allocates a workspace for LMS filter.
FreeFir Releases a workspace allocated by InitFir.
FreeIir Releases a workspace allocated by InitIir.
FreeDIir Releases a workspace allocated by InitDIir.
FreeLms Releases a workspace allocated by InitLms.

Note: When the filter functions are used in a program, filt_ws.h must be included once.

(b) Coefficient Scaling
Filtering is likely to introduce saturation or quantization error. It can be minimized by
scaling the filter coefficients. However, the scaling of coefficients must be performed
carefully to balance the effects of saturation and quantization. If the coefficients are too
large, saturation may occur; if they are too small, excessive quantization error may be
introduced.
For FIR (finite impulse response) filters, no saturation will occur if
coeff[i] ≠ H'8000 for all i,
Σ|coeff| < 224, and
res_shift = 24.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 781 of 1176
Mar 01, 2022

Here, coeff is a filter coefficient, and res_shift is the number of bits shifted to the right at
output.
For many input signals, smaller res_shift values (or larger coeff values) can be used with a
low likelihood of saturation, and with significantly reduced quantization error. If H'8000
may be among the inputs, all coeff values should be limited to the range from H'8001 to
H'7FFF.
IIR (infinite impulse response) filters have a recursive structure, which means that the
scaling approach described above is inappropriate.
LMS (least mean squared) adaptive filters obey the same conventions as FIR filters.
However, the coefficients may be pushed into saturation as the coefficients are adapted. In
that case, the coefficients should not include H’8000.

(c) Workspace
Digital filters have state that must be preserved from the processing of one data to the next.
This filter state must be stored in memory that can be accessed with minimum overhead -
on this library, the Y-RAM area is used. The workspace must be initialized by the Init
function before calling a filter function.
The structure of the workspace memory is liable to change in the future, so user programs
should not attempt to read or modify this memory, it should only be accessed by the library
functions.

(d) Memory Usage
To allow efficient use of the SH-DSP for all filters, the coefficients must be located in X
memory. The input and output data may be located in any memory segment.
The filter coefficients must be located in X memory using the #pragma section directive.
When the dspc option is specified, _ _X memory qualifier should be used. In this case the
#pragma specification is not required.
Each individual filter is allocated to workspace from a global buffer using the Init routines.
The global buffer must be located in Y memory.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 782 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int Fir (short output[], const short input[], long no_samples, const short coeff[],
 long no_coeffs, int res_shift, short *workspace)
int Fir (_ _fixed output[], const _ _fixed input[], long no_samples,
 const _ _X _ _fixed coeff[], long no_coeffs, int res_shift, _ _Y _ _fixed *workspace)

Description: Executes a finite impulse response (FIR) filter.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_samples < 1
 no_coeffs ≤ 6
 res_shift < 0
 res_shift > 25

Parameters: output[] output data y
input[] input data x
no_samples number of data N
coeff[] filter coefficients h
no_coeffs number of coefficients K (length of filter)
res_shift right shift applied to each output
workspace pointer to workspace

Remarks: 1. It uses workspace to record the most recent input data. The result of
 filtering the data in input is written to output:

 2. For multiply-accumulate operation, the sum is accumulated in 39 bits.

 Each 16-bit output y(n) is extracted from the lower 16 bits of res_shift
 bits shifted to the right. If an overflow occurs, output is saturated to
 positive r negative maximum value.
3. Coefficient scaling is described in section 10.4.5 (7) (b), Coefficient
 Scaling.
4. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitFir.
5. When output is specified the same as input, input is overwritten.
6. This routine is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 783 of 1176
Mar 01, 2022

int Fir1 (short *output, short input, const short coeff[],
 long no_coeffs, int res_shift, short *workspace)

Description: Executes a finite impulse response (FIR) filter for a single input data only.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_coeffs ≤ 6
 res_shift < 0
 res_shift > 25

Parameters: output pointer to output data y(n)
input input data x(n)
coeff[] filter coefficients h
no_coeffs number of coefficients K (length of filter)
res_shift right shift applied to each output
workspace pointer to workspace

Remarks: 1. It uses workspace to record the most recent input data. The result of
 filtering the data in input is written to output:

 2. For multiply-accumulate operation, the sum is accumulated in 39 bits.

 Each 16 bit output is extracted from the lower 16 bits of res_shift bits
 shifted to the right. If an overflow occurs, output is saturated to positive
 or negative maximum value.
3. Coefficient scaling is described in section 10.4.5 (7) (b), Coefficient
 Scaling.
4. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitFir.
5. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 784 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int Iir (short output[], const short input[], long no_samples, const short coeff[],
 long no_sections, short *workspace)
int Iir (_ _fixed output[], const _ _fixed input[], long no_samples,
 const _ _X _ _fixed coeff[], long no_sections, _ _Y _ _fixed *workspace)

Description: Executes an infinite impulse response (IIR) filter.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_samples < 1
 no_sections < 1
 a0k < 0
 a0k > 16

Parameters: output[] output data yK-1
input[] input data x0
no_samples number of data N
coeff[] filter coefficients
no_sections number of second order filter sections K
workspace pointer to workspace

Remarks: 1. The filter is implemented as a cascade of K second order filters called
 biquads, with an additional scaling performed on the biquad output. The
 coefficients are specified in signed 16-bit fixed-point numbers and the
 output of each biquad is given by:
 Dk(n)=[a1kdk(n-1)+a2kdk(n-2)+215x(n)]⋅2-15
 yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)]⋅2-a0k
2. The input xk(n) to the kth section is the output yk-1(n) of the previous
 section. The input to the first (k=0) section is taken from input. The
 output from the last (k = K-1) section is written to output.
3. The filter coefficients should be specified in coeff in the order:
 a00, a10, a20, b00, b10, b20, a01, a11, a21, b01… b2K-1

 Here, a0k is the number of bits shifted to the right at kth biquad output.
4. Each biquad is calculated in 32 bits using saturating arithmetic. Each
 biquad output is extracted from the lower 16 bits of accumulator after 15
 or a0k bits shifted to the right. If an overflow occurs, output is saturated to
 positive or negative maximum value.
5. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitIir.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 785 of 1176
Mar 01, 2022

6. When output is specified the same as input, input is overwritten.
7. This routine is not reentrant.

int Iir1 (short *output, short input, const short coeff[], long no_sections,
 short *workspace)

Description: Executes an infinite impulse response (IIR) filter for a single input data only.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_sections < 1
 a0k < 0
 a0k > 16

Parameters: output pointer to output data yk-1 (n)
input input data x0 (n)
coeff[] filter coefficients
no_sections number of second order filter sections K
workspace pointer to workspace

Remarks: 1. The filter is implemented as a cascade of K second order filters called
 biquads, with an additional scaling performed on the biquad output. The
 coefficients are specified in signed 16-bit fixed-point numbers and the
 output of each biquad is given by:
 Dk(n)=[a1kdk(n-1)+a2kdk(n-2)+215x(n)]⋅2-15
 yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] 2-a0k
2. The input xk(n) to the kth section is the output yk-1(n) of the previous
 section. The input to the first (k=0) section is taken from input. The
 output from the last (k = K-1) section is written to output.
3. The filter coefficients should be specified in coeff in the order:
 a00, a10, a20, b00, b10, b20, a01, a11, a21, b01… b2K-1

 Here, a0k is the number of bits shifted to the right at kth biquad output.
4. Each biquad is calculated in 32 bits using saturating arithmetic. Each
 biquad output is extracted from the lower 16 bits of accumulator after 15
 or a0k bits shifted to the right. If an overflow occurs, output is saturated to
 positive or negative maximum value.
5. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitIir.
6. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 786 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int DIir (short output[], const short input[], long no_samples,
 const long coeff[], long no_sections, long *workspace)
int DIir (_ _fixed output[], const _ _fixed input[], long no_samples,
 const _ _X long _ _fixed coeff[], long no_sections, _ _Y long _ _fixed *workspace)

Description: Executes an infinite impulse response (IIR) filter with double precision
coefficients.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_samples < 1
 no_sections < 1
 a0k < 3
 a0k > 32 for k < K-1
 a0k > 48 for k = K-1

Parameters: output[] pointer to output data yk-1
input[] input data x
no_samples number of data N
coeff[] filter coefficients
no_sections number of second order filter sections K
workspace pointer to workspace

Remarks: 1. The filter is implemented as a cascade of K second order filters called
 biquads, with an additional scaling performed on the biquad output. The
 coefficients are specified in signed 32-bit fixed-point numbers and the
 output of each biquad is given by:
 Dk(n)=[a1kdk(n-1)+a2kdk(n-2)+229x(n)]⋅2-31
 yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] (2^(-a0k)) 22
2. The input xk(n) to the kth section is the output yk-1(n) of the previous
 section. The input to the first (k=0) section is taken from input after 16
 bits shifted to the left. The output from the last (k = K-1) section is
 written to output.
3. The filter coefficients should be specified in coeff in the order:
 a00, a10, a20, b00, b10, b20, a01, a11, a21, b01… b2K-1

 Here, a0k is the number of bits shifted to the right at kth biquad output.
4. DIir differs from Iir in that the filter coefficients are specified as 32
 rather than 16 bit values. For multiply-accumulate operation, the sum is
 accumulated in 64 bits. Intermediate biquad outputs are extracted from
 the lower 32 bits of accumulator after a0k bits shifted to the right. If an

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 787 of 1176
Mar 01, 2022

 overflow occurs, output is saturated to positive or negative maximum
 value.
5. In the final stage, output is extracted from the lower 16 bits of
 accumulator after a0K-1 bits shifted to the right. If an overflow occurs,
 output is saturated to positive or negative maximum value.
6. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitDIir.
7. Delay nodes dk(n) are rounded to 30-bit quantities. If an overflow occurs,
 they are saturated to positive or negative maximum value.
8. The most common use of DIir specifies the coefficients in signed 32-bit
 fixed-point numbers. In this case, a0k should be set to 31 for k < K-1 and
 to 47 for k = K-1.
9. When double-precision calculation is not required, Iir should be used in
 preference to DIir as it runs faster on the SH-DSP.
10. When output is specified the same as input, input is overwritten.
11. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 788 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int DIir1 (short *output, const short input, const long coeff[],
 long no_sections, long *workspace)

Description: Executes a double precision infinite impulse response (IIR) filter for a single
input data only.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_sections < 1
 a0k < 3
 a0k > 32 for k < K-1
 a0k > 48 for k = K-1

Parameters: output pointer to output data yk-1 (n)
input input data x0 (n)
coeff[] filter coefficients
no_sections number of second order filter sections K
workspace pointer to workspace

Remarks: 1. The filter is implemented as a cascade of K second order filters called
 biquads, with an additional scaling performed on the biquad output. The
 coefficients are specified in signed 32-bit fixed-point numbers and the
 output of each biquad is given by:
 Dk(n)=[a1kdk(n-1)+a2kdk(n-2)+229x(n)]⋅2-31
 yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] (2^(-a0k)) 22
2. The input xk(n) to the kth section is the output yk-1(n) of the previous
 section. The input to the first (k=0) section is taken from input after 16
 bits shifted to the left. The output from the last (k = K-1) section is
 written to output.
3. The filter coefficients should be specified in coeff in the order:
 a00, a10, a20, b00, b10, b20, a01, a11, a21, b01… b2K-1

 Here, a0k is the number of bits shifted to the right at kth biquad output.
4. DIir1 differs from Iir1 in that the filter coefficients are specified as 32
 rather than 16-bit values. For multiply-accumulate operation, the sum is
 accumulated in 64 bits. Intermediate biquad outputs are extracted from
 the lower 32 bits of accumulator after a0k bits shifted to the right. If an
 overflow occurs, output is saturated to positive or negative maximum
 value.
5. In the final stage, output is extracted from the lower 16 bits of
 accumulator after a0K-1 bits shifted to the right. If an overflow occurs,

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 789 of 1176
Mar 01, 2022

 output is saturated to positive or negative maximum value.
6. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitDIir.
7. Delay nodes dk(n) are rounded to 30-bit quantities. If an overflow occurs,
 they are saturated to positive or negative maximum value.
8. The most common use of DIir specifies the coefficients in signed 32-bit
 fixed-point numbers. In this case, a0k should be set to 31 for k < K-1 and
 to 47 for k = K-1.
9. When double-precision calculation is not required, Iir1 should be used in
 preference to DIir1 as it runs faster on the SH-DSP.
10. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 790 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int Lms (short output[], const short input[], const short ref_output[],
 long no_samples, short coeff[], long no_coeffs, int res_shift,
 short conv_fact, short *workspace)
int Lms (_ _fixed output[], const _ _fixed input[], const _ _fixed ref_output[],
 long no_samples, _ _X _ _fixed coeff[], long no_coeffs, int res_shift,
 short conv_fact, _ _Y _ _fixed *workspace)

Description: Executes a real adaptive FIR filter using the least mean square algorithm
(LMS).

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_samples < 1
 no_coeffs ≤ 6
 res_shift < 0
 res_shift > 25

Parameters: output[] output data y
input[] input data x
ref_output[] desired output value d
no_samples number of data N
coeff[] adaptive filter coefficients h
no_coeffs number of coefficients K
res_shift right shift applied to each output
conv_fact convergence factor 2µ
workspace pointer to workspace

Remarks: 1. The FIR filter is defined as:

 2. For multiply-accumulate operation, the sum is accumulated in 39 bits.

 Each 16-bit output is extracted from the lower 16 bits of res_shift bits
 shifted to the right. If an overflow occurs, output is saturated to positive
 or negative maximum value.
3. The Widrow-Hoff algorithm is used to update the filter coefficients:
 hn+1(k)=hn(k)+2µe(n)x(n-k)
 where e(n) is the error between the desired signal and the actual filter
 output:
 e(n)=d(n)-y(n)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 791 of 1176
Mar 01, 2022

4. The calculation of 2µe(n)x(n-k) requires two (16 bits) × (16 bits)
 multiplies. In both multiplies, upper 16 bits are stored and if an overflow
 occurs, data are saturated to positive or negative maximum value. If
 updated coefficients include H’8000, an overflow may occur for
 multiply-accumulate operation. In this case, the coefficients must
 set in the range from H’8001 to H’7FFF.
5. Coefficient specification is described in section 10.4.5 (7) (b), Coefficient
 Scaling. As the coefficients are adapted by LMS filters, the safest scaling
 scheme is to use fewer than 256 coefficients and set res_shift to 24.
6. conv_fact should normally be positive; it should never be H’8000.
7. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitLms.
8. When the output array is specified the same as the input or ref_output
 array, input or ref_output is overwritten.
9. This routine is not reentrant.

int Lms1 (short *output, short input, short ref_output, short coeff[],
 long no_coeffs, int res_shift, short conv_fact, short *workspace)

Description: Executes a real adaptive FIR filter using the least mean square algorithm
(LMS), for a single input data.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_coeffs ≤ 6
 res_shift < 0
 res_shift > 25

Parameters: output pointer to output data y(n)
input input data x(n)
ref_output desired output value d(n)
coeff[] adaptive filter coefficients h
no_coeffs number of coefficients K
res_shift right shift applied to each output
conv_fact convergence factor 2µ
workspace pointer to workspace

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 792 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Remarks: 1. The FIR filter is defined as:

 2. For multiply-accumulate operation, the sum is accumulated in 39 bits.

 Each 16-bit output y(n) is extracted from the lower 16 bits of res_shift
 bits shifted to the right. If an overflow occurs, output is saturated to
 positive or negative maximum value.
3. The Widrow-Hoff algorithm is used to update the filter coefficients:
 hn+1(k)=hn(k)+2µe(n)x(n-k)
 where e(n) is the (saturated) error between the desired signal and the
 actual filter output:
 e(n)=d(n)-y(n)
4. The calculation of 2µe(n)x(n-k) requires two (16 bits) × (16 bits)
 multiplies. In both multiplies, upper 16 bits are stored and if an
 overflow occurs, data are saturated to positive or negative maximum
 value. If updated coefficients include H’8000, an overflow may occur for
 multiply-accumulate operation. In this case, the coefficients must be set
 in the range from H’8001 to H’7FFF.
5. Coefficient specification is described in section 10.4.5 (7) (b), Coefficient
 Scaling. As the coefficients are adapted by LMS filters, the safest scaling
 scheme is to use fewer than 256 coefficients and set res_shift to 24.
6. conv_fact should normally be positive; it should never be H’8000.
7. Before calling this routine for a new filter, initialize the filter workspace
 by calling InitLms.
8. This routine is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 793 of 1176
Mar 01, 2022

int InitFir (short **workspace, long no_coeffs)
int InitFir (_ _Y _ _fixed **workspace, long no_coeffs)

Description: Allocates the memory required for subsequent calls to Fir and Fir1.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_NO_HEAP insufficient space available for workspace buffer
EDSP_BAD_ARG no_coeffs ≤ 2

Parameters: workspace pointer to pointer to workspace
no_coeffs number of coefficients K

Remarks: 1. Previous input data are initialized to zero.
2. The workspace buffer allocated by InitFir should only be manipulated by
 Fir, Fir1, Lms and Lms1. It should not be accessed by user programs.
3. This routine is not reentrant.

int InitIir (short **workspace, long no_sections)
int InitIir (_ _Y _ _fixed **workspace, long no_sections)

Description: Allocates the memory required for subsequent calls to Iir and Iir1.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_NO_HEAP insufficient space available for workspace buffer
EDSP_BAD_ARG no_sections < 1

Parameters: workspace pointer to pointer to workspace
no_sections number of second order filter sections K

Remarks: 1. Previous input data are initialized to zero.
2. The workspace buffer allocated by InitIir should only be manipulated by
 Iir and Iir1. It should not be accessed by user programs.
3. This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 794 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int InitDIir (long **workspace, long no_sections)
int InitDIir (_ _Y long _ _fixed **workspace, long no_sections)

Description: Allocates the memory required for subsequent calls to DIir and DIir1.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_NO_HEAP insufficient space available for workspace buffer
EDSP_BAD_ARG no_sections < 1

Parameters: workspace pointer to pointer to workspace
no_sections number of second order filter sections K

Remarks 1. Previous input data are initialized to zero.
2. The workspace buffer allocated by InitDIir should only be manipulated
 by DIir and DIir1. It should not be accessed by user programs.
3. This routine is not reentrant.

int InitLms (short **workspace, long no_coeffs)
int InitLms (_ _Y _ _fixed **workspace, long no_coeffs)

Description: Allocates the memory required for subsequent calls to Lms and Lms1.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_NO_HEAP insufficient space available for workspace buffer
EDSP_BAD_ARG no_coeffs ≤ 2

Parameters: workspace pointer to pointer to workspace
no_coeffs number of coefficients K

Remarks: 1. Previous input data are initialized to zero.
2. The workspace buffer allocated by InitLms should only be manipulated
 by Fir, Fir1, Lms and Lms1. It should not be accessed by user programs.
3. This routine is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 795 of 1176
Mar 01, 2022

int FreeFir (short **workspace, long no_coeffs)
int FreeFir (_ _Y _ _fixed **workspace, long no_coeffs)

Description: Frees workspace memory previously allocated by InitFir.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_coeffs ≤ 2

Parameters: workspace pointer to pointer to workspace
no_coeffs number of coefficients K

Remarks: This routine is not reentrant.

int FreeIir (short **workspace, long no_sections)
int FreeIir (_ _Y _ _fixed **workspace, long no_sections)

Description: Frees workspace memory previously allocated by InitIir.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_sections < 1

Parameters: workspace pointer to pointer to workspace
no_sections number of second order filter sections K

Remarks: This routine is not reentrant.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 796 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int FreeDIir (long **workspace, long no_sections)
int FreeDIir (_ _Y long _ _fixed **workspace, long no_sections)

Description: Frees workspace memory previously allocated by InitDIir.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_sections ≤ 2

Parameters: workspace pointer to pointer to workspace
no_sections number of second order filter sections K

Remarks: This routine is not reentrant.

int FreeLms (short **workspace, long no_coeffs)
int FreeLms (_ _Y _ _fixed **workspace, long no_coeffs)

Description: Frees workspace memory previously allocated by InitLms.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_coeffs < 1

Parameters: workspace pointer to pointer to workspace
no_coeffs number of coefficients K

Remarks: This routine is not reentrant.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 797 of 1176
Mar 01, 2022

(8) Convolution and Correlation

(a) Overview

Function Description
ConvComplete Completely convolves two arrays.
ConvCyclic Cyclically convolves two arrays.
ConvPartial Partially convolves two arrays.
Correlate Correlates two arrays.
CorrCyclic Cyclically correlates two arrays.

In each case, one of two input arrays must be located in X memory and the other in Y memory.
The output array may be located in any memory area.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 798 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int ConvComplete (short output[], const short ip_x[], const short ip_y[],
 long x_size, long y_size, int res_shift)
int ConvComplete (_ _fixed output[], const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[],
 long x_size, long y_size, int res_shift)

Description: Completely convolves the two input arrays x and y, and puts the result in the
output array z.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG x_size < 1
 y_size < 1
 res_shift < 0
 res_shift > 25

Parameters: output[] output z
ip_x[] input x
ip_y[] input y
x_size size of ip_x X
y_size size of ip_y Y
res_shift right shift applied to each output

Remarks: 1.

 2. Elements outside the input array are read as zero.
3. The output array size must be set more than X + Y - 1.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 799 of 1176
Mar 01, 2022

int ConvCyclic (short output[], const short ip_x[], const short ip_y[],
 long size, int res_shift)
int ConvCyclic (_ _fixed output[], const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[],
 long size, int res_shift)

Description: Cyclically convolves the two input arrays and puts the result in the output
array.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 6
 res_shift < 0
 res_shift > 25

Parameters: output[] output z
ip_x[] input x
ip_y[] input y
size size of arrays N
res_shift right shift applied to each output

Remarks:

 where |i|N is residue of i modulo N.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 800 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int ConvPartial (short output[], const short ip_x[], const short ip_y[],
 long x_size, long y_size, int res_shift)
int ConvPartial (_ _fixed output[], const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[],
 long x_size, long y_size, int res_shift)

Description: Partially convolves the two input arrays x and y, and puts the result to output
array z.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG x_size < 5
 y_size < 1
 res_shift < 0
 res_shift > 25

Parameters: output[] output z
ip_x[] input x
ip_y[] input y
x_size size of ip_x, X
y_size size of ip_y, Y
res_shift right shift applied to each output

Remarks: 1. This routine does not include outputs derived from elements outside
 the input array.

 where a is the smaller input array, A is its size, b is the other array and B

 is its size.
2. The output array size must be set more than |X-Y|+1.
3. Elements outside the input arrays are read as zero.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 801 of 1176
Mar 01, 2022

int Correlate (short output[], const short ip_x[], const short ip_y[], long x_size,
 long y_size, long no_corr, int x_is_larger, int res_shift)
int Correlate (_ _fixed output[], const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[],
 long x_size, long y_size, long no_corr, int x_is_larger, int res_shift)

Description: Correlates the two input arrays x and y, and puts the result in the output
array z.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG x_size < 1
 y_size < 1
 no_corr < 1
 res_shift < 0
 res_shift > 25
 x_is_larger ≠ 0 or 1

Parameters: output[] output z
ip_x[] input x
ip_y[] input y
x_size size of ip_x X
y_size size of ip_y Y
no_corr number of correlations M
x_is_larger array specification, if X=Y
res_shift right shift applied to each output

Remarks: 1. In this calculation a is the larger input array, A is its size, b is the other
 input (if X and Y are equal, x_is_larger = 1 defines a to be x and
 x_is_larger = 0 defines b to be x). Then:

 2. A < X+M is permissible. In this case, elements outside the input arrays

 are read as zero.
3. res_shift = 0 corresponds to an integer calculation.
 res_shift = 15 corresponds to a fractional calculation.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 802 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int CorrCyclic (short output[], const short ip_x[], const short ip_y[], long size,
 int reverse, int res_shift)
int CorrCyclic (_ _fixed output[], const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[],
 long size, int reverse, int res_shift)

Description: Cyclically correlates array x with array y and puts the result in the output
array z.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG size < 5
 res_shift < 0
 res_shift > 25
 reverse ≠ 0 or 1

Parameters: output[] output z
ip_x[] input x
ip_y[] input y
size size of arrays N
reverse reverse flag
res_shift right shift applied to each output

Remarks:

 where |i|N is residue of i modulo N. If reverse is 1 the elements in output are
reversed, to give the effective calculation:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 803 of 1176
Mar 01, 2022

(9) Miscellaneous

(a) Overview

Function Description
Limit Exchanges data from H’8000 to H’8001.
CopyXtoY Copies array from X memory to Y memory.
CopyYtoX Copies array from Y memory to X memory.
CopyToX Copies array from a specified location to X memory.
CopyToY Copies array from a specified location to Y memory.
CopyFromX Copies array from X memory to a specified location.
CopyFromY Copies array from Y memory to a specified location.
GenGWnoise Generates Gaussian white noise.
MatrixMult Multiplies two matrices.
VectorMult Multiplies two data.
MsPower Calculates mean square power.
Mean Calculates mean.
Variance Calculates mean and variance.
MaxI Searches for maximum in integer array.
MinI Searches for minimum in integer array.
PeakI Searches for maximum absolute value in integer array.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 804 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int Limit (short data_xy[], long no_elements, int data_is_x)
int Limit (_ _fixed data_xy[], long no_elements, int data_is_x)

Description: Exchanges data from H’8000 to H’8001. Therefore an overflow does not
occur for fixed-point multiply operation.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 1
 data_is_x ≠ 0 or 1

Parameters: data_xy data array
no_elements number of elements
data_is_x location specification of data

Remarks: 1. Even if this routine is performed, an overflow may occur for accumulate
 operation.
2. If data_is_x is 1, data_xy should be located in X memory.
 If data_is_x is 0, data_xy should be located in Y memory.

int CopyXtoY (short op_y[], const short ip_x[], long n)
int CopyXtoY (_ _Y _ _fixed op_y[], const _ _X _ _fixed ip_x[], long n)

Description: Copies the array ip_x to op_y.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG n < 6

Parameters: op_y[] output data
ip_x[] input data
n number of elements

Remarks: ip_x is located in X memory and op_y is located in Y memory.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 805 of 1176
Mar 01, 2022

int CopyYtoX (short op_x[], const short ip_y[], long n)
int CopyYtoX (_ _X _ _fixed op_x[], const _ _Y _ _fixed ip_y[], long n)

Description: Copies the array ip_y to op_x.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG n < 1

Parameters: op_x[] output data
ip_y[] input data
n number of elements

Remarks: op_x is located in X memory and ip_y is located in Y memory.

int CopyToX (short op_x[], const short input[], long n)
int CopyToX (_ _X _ _fixed op_x[], const _ _fixed input[], long n)

Description: Copies the array input to op_x.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG n < 1

Parameters: op_x[] output data
input[] input data
n number of elements

Remarks: op_x is located in X memory and input is located in any memory area.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 806 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int CopyToY (short op_y[], const short input[], long n)
int CopyToY (_ _Y _ _fixed op_y[], const _ _fixed input[], long n)

Description: Copies the array input to op_y.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG n < 1

Parameters: op_y[] output data
input[] input data
n number of elements

Remarks: op_y is located in Y memory and input is located in any memory area.

int CopyFromX (short output[], const short ip_x[], long n)
int CopyFromX (_ _fixed output[], const _ _X _ _fixed ip_x[], long n)

Description: Copies the array ip_x to output.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG n < 1

Parameters: output[] output data
ip_x[] input data
n number of elements

Remarks: ip_x is located in X memory and output is located in any memory area.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 807 of 1176
Mar 01, 2022

int CopyFromY (short output[], const short ip_y[], long n)
int CopyFromY (_ _fixed output[], const _ _Y _ _fixed ip_y[], long n)

Description: Copies the array ip_y to output.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG n < 1

Parameters: output[] output data
ip_y[] input data
n number of elements

Remarks: ip_y is located in Y memory and output is located in any memory area.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 808 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int GenGWnoise (short output[], long no_samples, float variance)
int GenGWnoise (_ _fixed output[], long no_samples, float variance)

Description: Generates Gaussian white noise with zero mean and user-specified variance.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_samples < 1
 variance ≤ 0.0

Parameters: output[] output white noise data
no_samples number of output data
variance variance of noise distribution σ2

Remarks: 1. Output data are produced in pairs. To produce a pair of output data, the
 standard random number generator provided by rand is used to generate
 pairs of random numbers γ1 and γ2 between -1 and 1, until a pair is found
 whose sum of squares x is less than 1. The pair of output data o1 and o2
 are then calculated:

 2. If an odd number of samples are requested, the second data of the last

 pair is discarded.
3. This routine is not strictly reentrant since any calls to rand will affect the
 sequence of random numbers used. However, such calls will not affect
 the random properties of the white noise generated.
4. Floating-point arithmetic is used in this function and this degrades the
 processing speed, so its use should be restricted to test programs rather
 than application programs whenever possible.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 809 of 1176
Mar 01, 2022

int MatrixMult (void *op_matrix, const void *ip_x, const void *ip_y, long m,
 long n, long p, int x_first, int res_shift)
int MatrixMult (void *op_matrix, const _ _X void *ip_x, const _ _Y void *ip_y,
 long m, long n, long p, int x_first, int res_shift)

Description: Multiplies the two matrices x and y and stores the result in op_matrix.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG m, n or p < 5
 res_shift < 0
 res_shift > 25
 x_first ≠ 0 or 1

Parameters: op_matrix pointer to the first element of output
ip_x pointer to the first element of input x
ip_y pointer to the first element of input y
m row dimension of matrix1
n column dimension of matrix1, row dimension of matrix2
p column dimension of matrix2
x_first order specification of matrix multiply
res_shift right shift applied to each output

Remarks: 1. If x_first is 1 the product x × y is calculated. In this case ip_x is m × n,
 ip_y is n × p and op_matrix is m × p.
2. If x_first is 0 the product y × x is calculated. In this case ip_y is m × n,
 ip_x is n × p and op_matrix is m × p.
3. For multiply-accumulate operation, the sum is accumulated in 39 bits.
 Each 16-bit output is extracted from the lower 16 bits of res_shift bits
 shifted to the right. If an overflow occurs, output is saturated to positive
 or negative maximum value.
4. Each matrix is stored in the normal ‘C’ manner (row major order):

 5. The function prototype specifies the array parameters as void * to allow
 arbitrary array sizes to be specified. These parameters should point to

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 810 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 short-type data.
6. ip_x, ip_y and op_matrix must not overlap.

int VectorMult (short output[], const short ip_x[], const short ip_y[],
 long no_elements, int res_shift)
int VectorMult (_ _fixed output[], const _ _X _ _fixed ip_x[], const _ _Y _ _fixed ip_y[],
 long no_elements, int res_shift)

Description: Multiplies pairs of elements from ip_x and ip_y and stores the results in
output.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 4
 res_shift < 0
 res_shift > 16

Parameters: output[] output
ip_x[] input1
ip_y[] input2
no_elements number of elements
res_shift right shift applied to each output

Remarks: 1. Output is extracted from the lower 16 bits of res_shift bits shifted to the
 right. If an overflow occurs, output is saturated to positive or negative
 maximum value.
2. This routine performs element-wise multiplication. To calculate a dot
 product use MatrixMult with m and p set to 1.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 811 of 1176
Mar 01, 2022

int MsPower (long *output, const short input[], long no_elements, int src_is_x)
int MsPower (long _ _fixed * output, const _ _fixed input[], long no_elements,
 int src_is_x)

Description: Calculates the mean square power of the input data

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 6
 src_is_x ≠ 0 or 1

Parameters: output pointer to output
input[] input x
no_elements number of elements N
src_is_x location specification of data

Remarks: 1.

 2. The division result is rounded to the nearest integral value.
3. The sum is accumulated in 63 bits. If no_elements is more than 232,
 an overflow may occur.
4. If src_is_x is 1, data is located in X memory.
 If src_is_x is 0, data is located in Y memory.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 812 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int Mean (short *mean, const short input[], long no_elements, int src_is_x)
int Mean (_ _fixed *mean, const _ _fixed input[], long no_elements, int src_is_x)

Description: Calculates the mean of input

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 6
 src_is_x ≠ 0 or 1

Parameters: mean pointer to mean x of input
input[] input x
no_elements number of elements N
src_is_x location specification of data

Remarks: 1.

 2. The division result is rounded to the nearest integral value.
3. The sum is accumulated in 32 bits. If no_elements is more than 216-1,
 an overflow may occur.
4. If src_is_x is 1, data is located in X memory.
 If src_is_x is 0, data is located in Y memory.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 813 of 1176
Mar 01, 2022

int Variance (long *variance, short *mean, const short input[],
 long no_elements, int src_is_x)
int Variance (long _ _fixed *variance_ptr, _ _fixed *mean_ptr,
 const _ _fixed input[], long no_elements, int src_is_x)

Description: Calculates the mean and variance of input

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 4
 src_is_x ≠ 0 or 1

Parameters: variance pointer to the variance σ2 of input
mean pointer to mean x of data
input[] input x
no_elements number of elements N
src_is_x location specification of data

Remarks: 1.

 2. The division results are rounded to the nearest integral values.

3. x is accumulated in 32 bits and is not checked for overflow. If
 no_elements is more than 216-1, an overflow may occur.
4. σ2 is accumulated in 63 bits and is not checked for overflow.
5. If src_is_x is 1, data is located in X memory.
 If src_is_x is 0, data is located in Y memory.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 814 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

int MaxI (short **max_ptr, short input[], long no_elements, int src_is_x)
int MaxI (_ _fixed **max_ptr, _ _fixed input[], long no_elements, int src_is_x)

Description: Searches for maximum value of array input, and returns its address in
max_ptr.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 1
 src_is_x ≠ 0 or 1

Parameters: max_ptr pointer to pointer to the maximum element
input[] input
no_elements number of elements
src_is_x location specification of data

Remarks: 1. If several elements have the same maximum value the one nearest the
 start of input is returned.
2. If src_is_x is 1, data is located in X memory.
 If src_is_x is 0, data is located in Y memory.

int MinI (short **min_ptr, short input[], long no_elements, int src_is_x)
int MinI (_ _fixed **min_ptr, _ _fixed input[], long no_elements, int src_is_x)

Description: Searches for minimum value of array input, and returns its address in
min_ptr.

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 1
 src_is_x ≠ 0 or 1

Parameters: min_ptr pointer to pointer to the minimum element
input[] input
no_elements number of elements
src_is_x location specification of data

Remarks: 1. If several elements have the same minimum value the one nearest the
 start of input is returned.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

R20UT0704EJ0102 Rev. 1.02 Page 815 of 1176
Mar 01, 2022

2. If src_is_x is 1, data is located in X memory.
 If src_is_x is 0, data is located in Y memory.

int PeakI (short **peak_ptr, short input[], long no_elements, int src_is_x)
int PeakI (_ _fixed **peak_ptr, _ _fixed input[], long no_elements, int src_is_x)

Description: Searches for maximum absolute value of array input, and returns its address
in peak_ptr

Header: <ensigdsp.h>

Return values: EDSP_OK successfully completed
EDSP_BAD_ARG no_elements < 1
 src_is_x ≠ 0 or 1

Parameters: peak_ptr pointer to pointer to the peak element
input[] input
no_elements number of elements
src_is_x location specification of data

Remarks 1. If several elements have the same peak value the one nearest the start of
 input is returned.
2. If src_is_x is 1, data is located in X memory.
 If src_is_x is 0, data is located in Y memory.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Page 816 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 817 of 1176
Mar 01, 2022

Section 11 Assembly Specifications

11.1 Program Elements

11.1.1 Source Statements

(1) Source Statement Structure
The following shows the structure of a source statement.

 [<label>] [∆<operation>[∆<operand(s)>]] [<comment>]

Example:

(a) Label
A symbol or a local symbol is written as a tag attached to a source statement.
A symbol is a name defined by the programmer.

(b) Operation
The mnemonic of an executable instruction, a DSP instruction, an extended instruction, an
assembler directive, or a directive statement is written as the operation.
Executable instructions and DSP instructions are microprocessor instructions.
Extended instructions are instructions that are expanded into executable instructions and
constant data (literals) or several executable instructions.
Assembler directives are instructions that give directions to the assembler.
Directive statements are used for file inclusion, conditional assembly, and macro functions.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 818 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(c) Operand
The object(s) of the operation's execution are written as the operand.
The number of operands and their types are determined by the operation. There are also
operations which do not require any operands.

(d) Comment
Notes or explanations that make the program easier to understand are written as the
comment.

(2) Coding of Source Statements
Source statements are written using ASCII characters. String literals and comments can
include Japanese characters (shift JIS code or EUC code) or LATIN1 code character.
In principle, a single statement must be written on a single line. The maximum length of a line
is 8192 bytes.
(a) Coding of Label

The label is written as follows:
• Written starting in the first column,
Or:
• Written with a colon (:) appended to the end of the label.

Examples:
LABEL1 ; This label is written starting in the first column.
 LABEL2: ; This label is terminated with a colon.
--
 LABEL3 ; This label is regarded as an error by the assembler,
 ; since it is neither written starting in the first column
 ; nor terminated with a colon.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 819 of 1176
Mar 01, 2022

(b) Coding of Operation
The operation is written as follows:
 When there is no label:

Written starting in the second or later column.
 When there is a label:

Written after the label, separated by one or more spaces or tabs.
Example:
 ADD R0,R1 ; An example with no label.
LABEL1: ADD R1,R2 ; An example with a label.

(c) Coding of Operand
The operand is written following the operation field, separated by one or more spaces or
tabs.

Example:
 ADD R0,R1 ; The ADD instruction takes two operands.
 SHAL R1 ; The SHAL instruction takes one operand.

(d) Coding of Comment
The comment is written following a semicolon (;).
The assembler regards all characters from the semicolon to the end of the line as the
comment.

Example:
 ADD R0,R1 ; Adds R0 to R1.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 820 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(3) Coding of Source Statements across Multiple Lines
A single source statement can be written across several lines in the following situations:
 When the source statement is too long as a single statement.
 When it is desirable to attach a comment to each operand.
Write source statements across multiple lines using the following procedure.
(a) Insert a new line after a comma that separates operands.
(b) Insert a plus sign (+) in the first column of the new line.
(c) Continue writing the source statement following the plus sign.
Spaces and tabs can be inserted following the plus sign. A comment can be written at the end
of each line.

Example:
 .DATA.L H'FFFF0000,
+ H'FF00FF00,
+ H'FFFFFFFF
; In this example, a single source statement is written across three lines.

A comment can be attached at the end of each line.

Example:
 .DATA.L H'FFFF0000, ; Initial value 1.
+ H'FF00FF00, ; Initial value 2.
+ H'FFFFFFFF ; Initial value 3.
; In this example, a comment is attached to each operand.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 821 of 1176
Mar 01, 2022

11.1.2 Reserved Words

Reserved words are names that the assembler reserves as symbols with special meanings.
Register names, operators, and the location counter are used as reserved words. Register names are
different depending on the target CPU. Refer to the programming manual of the target CPU, for
details.
Reserved words must not be used as symbols.

• Register names
R0 to R15, FR0 to FR15, DR0 to DR14 (only even values), XD0 to XD14 (only even values),
FV0 to FV12 (only multiples of four), R0_BANK to R7_BANK, SP*, SR, GBR, VBR,
MACH, MACL, PR, PC, SSR, SPC, FPUL, FPSCR, MOD, RE, RS, DSR, A0, A0G, A1, A1G,
M0, M1, X0, X1, Y0, Y1, XMTRX, DBR, SGR, TBR

• Operators
STARTOF, SIZEOF, HIGH, LOW, HWORD, LWORD, $EVEN, $ODD, $EVEN2, $ODD2

• Location counter
$

Note: R15 and SP indicate the same register.

11.1.3 Symbols

(1) Functions of Symbols
Symbols are names defined by the programmer, and perform the following functions.
 Address symbols: Express data storage or branch destination addresses.
 Constant symbols: Express constants.
 Aliases of register names: Express general registers and floating-point registers.
 Section names: Express section names.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 822 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

The following shows examples of symbol usage.

Examples:
 ∼

 BRA SUB1 ;BRA is a branch instruction.
 ;SUB1 is the address symbol of the destination.

 ∼
SUB1:
--
 ∼
MAX: .EQU 100 ;.EQU is an assembler directive that sets a value to a
 ;symbol.
 MOV.B #MAX,R0 ;MAX expresses the constant value 100.

 ∼
--
 ∼
MIN: .REG R0 ;.REG is an assembler directive that defines a register
 ;alias.
 MOV.B #100,MIN ;MIN is an alias for R0.

 ∼
--
 ∼
 .SECTION CD,CODE,ALIGN=4
 ;.SECTION is an assembler directive that declares a section.
 ;CD is the name of the current section.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 823 of 1176
Mar 01, 2022

(2) Naming Symbols
(a) Available Characters

The following ASCII characters can be used.
• Alphabetical uppercase and lowercase letters (A to Z, a to z)
• Numbers (0 to 9)
• Underscore (_)
• Dollar sign ($)
The assembler distinguishes uppercase letters from lowercase letters in symbols.

(b) First Character in a Symbol
The first character in a symbol must be one of the following.
• Alphabetical uppercase and lowercase letters (A to Z, a to z)
• Underscore (_)
• Dollar sign ($)

Note: The dollar sign character used alone is a reserved word that expresses the location counter.

(c) Maximum Length of a Symbol
Not limited.

(d) Names that Cannot Be Used as Symbols
Reserved words cannot be used as symbols. Names of the following type must not be used
because such names are used as internal symbols by the assembler.
_$Ommmmm (m is a number from 0 to F.)
_$$nnnnn (n is a number from 0 to 9.)

Note: Internal symbols are necessary for assembler internal processing. Internal symbols are not

output to assemble listings or object modules.

(e) Defining and Referencing Symbols
To define a symbol, it must be entered as a label. To reference a symbol, it must be entered
as an operand. Symbols that are entered as operands for .SECTION or .MACRO, however,
constitute an exception. To reference a symbol (macro name) that has been defined
by .MACRO, the symbol must be entered as an operation (macro call).
A symbol may be referenced before it has been defined. We reference to such as reference
as a forward reference. Such references can usually be used, but in some cases they are
prohibited.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 824 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

When a program consists of multiple source files, symbols may be referenced from more
than one file. The way a symbol defined in one file is referenced to from another file is
called external definition. To reference a symbol that is defined in another file is called
external reference. External definitions can be declared by .EXPORT and .GLOBAL.
External references can be defined by .IMPORT and .GLOBAL. Be careful with the use of
forward and external references, because in some cases, external references such as
forward references are prohibited.

11.1.4 Constants

(1) Integer Constants
Integer constants are expressed with a prefix that indicates the radix.
The radix indicator prefix is a notation that indicates the radix of the constant.
 Binary numbers The radix indicator "B'" plus a binary constant.
 Octal numbers The radix indicator "Q'" plus an octal constant.
 Decimal numbers The radix indicator "D'" plus a decimal constant.
 Hexadecimal numbers The radix indicator "H'" plus a hexadecimal constant.
The assembler does not distinguish uppercase letters from lowercase letters in the radix
indicator.
The radix indicator and the constant value must be written with no intervening space.
The radix indicator can be omitted. Integer constants with no radix indicator are normally
decimal constants, although the radix for such constants can be changed with .RADIX.

Example:
.DATA.B B'10001000 ;
.DATA.B Q'210 ;These source statements express the same
.DATA.B D'136 ;numerical value.
.DATA.B H'88 ;

Note: "Q" is used instead of "O" to avoid confusion with the digit 0.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 825 of 1176
Mar 01, 2022

(2) Character Constants
Character constants are considered to be constants that represent character codes.
Character constants are written by enclosing up to four-byte characters in double quotation
marks.
The following ASCII characters can be used in character constants.
ASCII code H'09 (tab)

H'20 (space) to H'7E (tilde)

In addition, Japanese characters (shift JIS code or EUC code) and LATIN1 code character can
be used. Use two double quotation marks in succession to indicate a single double quotation
mark in a character constant. When using Japanese characters in shift JIS code or EUC code,
be sure to specify the sjis or euc command line option, respectively. When using LATIN1
code character, be sure to specify the latin1 command line option. Note that the shift JIS code,
EUC code, and LATIN1 code character cannot be used together in one source program.

Example 1:
.DATA.L "ABC" ;This is the same as .DATA.L H'00414243.
.DATA.W "AB" ;This is the same as .DATA.W H'4142.
.DATA.B "A" ;This is the same as .DATA.B H'41.
 ;The ASCII code for A is: H'41
 ;The ASCII code for B is: H'42
 ;The ASCII code for C is: H'43

Example 2:
.DATA.B """" ;This is a character constant consisting of a single
 ;double quotation mark.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 826 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(3) Floating-Point Constants
Floating-point constants can be specified as operands in assembler directives for reserving
floating-point constants.
(a) Floating-Point Constant Representation:

Floating-point constants can be represented in decimal and hexadecimal.

• Decimal representation

F' Indicates that the number is decimal. It cannot be
omitted.

"n" indicates the integer part in decimal. "m" indicates
the fraction part in decimal. Either the integer part or
the fraction part can be omitted. If the sign (±) is
omitted, the assembler assumes it is positive.

t Indicates that the number is in either of the following
precisions
S: Single precision
D: Double precision
If omitted, the assembler assumes the operation size
of the assembler directive.

[{±}]xx Indicates the exponent part in decimal. If omitted, the
assembler assumes 0. If the sign (±) is omitted, the
assembler assumes it is positive.

Example:
F'0.5S–2 = 0.5 × 10–2 = 0.005 = H'3BA3D70A
F'.123D3 = 0.123 × 103 = 123 = H'405EC00000000000

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 827 of 1176
Mar 01, 2022

• Hexadecimal representation
H'xxxx[.t]
H' Indicates that the number is hexadecimal. It cannot be omitted.
xxxx Indicates the bit pattern of the floating-point constant in

hexadecimal. If the bit pattern is shorter than the specified data
length, it is aligned to the right end of the reserved area and 0s are
added to the remaining bits in the reserved area. If the bit pattern is
longer than the specified data length, the right-side bits of the bit
pattern are allocated for the specified data length and the remaining
bits of the bit pattern are ignored.

t Indicates that the number is in either of the following precisions
S: Single precision
D: Double precision
If omitted, the assembler assumes the operation size of the
assembler directive.

This format directly specifies the bit pattern of the floating-point constant to represent
data that is difficult to represent in decimal format, such as 0s or infinity for the
specified precision.

Example:
H'0123456789ABCDEF.S = H'89ABCDEF
H'FFFF.D = H'000000000000FFFF

(b) Floating-Point Data Range:
Table 11.1 lists the floating-point data types.

Table 11.1 Floating-Point Data Types

Data Type Description
Normalized number The absolute value is between the underflow and overflow boundaries

including the boundary values.
Denormalized number The absolute value is between 0 and the underflow boundary.
Zero The absolute value is 0.
Infinity The absolute value is larger than the overflow boundary.
Not-a-Number (NAN) A value that is not a numerical value. Includes sNAN (signaling NAN)

and qNAN (quiet NAN).

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 828 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

These data types are shown on the following number line. NAN cannot be shown on the number
line because it is not handled as a numerical value.

Table 11.2 lists the numerical value ranges the assembler can use.

Table 11.2 Data Types and Numerical Value Ranges (Absolute Value)

Data Type Single Precision Double Precision
Normalized number Maximum value 3.40 x 1038 1.79 x 10308
 Minimum value 1.18 x 10–38 2.23 x 10–308
Denormalized number Maximum value 1.17 x 10–38 2.22 x 10–308
 Minimum value 1.40 x 10–45 4.94 x 10–324

(c) Floating-Point Data Format:
The floating-point data format is shown below:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 829 of 1176
Mar 01, 2022

• Sign bit (S)
Indicates the sign of a value. Positive and negative are represented by 0 and 1,
respectively.

• Exponent part (E)
Indicates the exponent of a value. The actual exponent value is obtained by subtracting
the bias value from the value specified in this exponent part.

• Fraction part (F)
Each bit has its own significance and corresponds to 2–1, 2–2, ..., 2–n from the start bit,
respectively ("n" is the bit length of the fraction part).

Table 11.3 shows the size of each parameter in data format.

Table 11.3 Data Format Size

Parameter Single Precision Double Precision
Bit length 32 bits 64 bits
Sign bit (S) 1 bit 1 bit
Exponent part (E) 8 bits 11 bits
Fraction part (F) 23 bits 52 bits
Bias of exponent value 127 1023

A floating-point number is represented using the symbols in table 11.3 as follows:

(1. F) = 1 + b0 × 2–1 + b1 × 2–2 + + bn–1 × 2–n
(0. F) = b0 × 2–1 + b1 × 2–2 + + b n–1 × 2–n

b: Bit location in the fraction part
n: Bit length of the fraction part

Table 11.4 shows the floating-point representation for each data type. NAN cannot be represented
because it is not handled as a numerical value.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 830 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.4 Floating-Point Representation for Each Data Type

Data Type Single Precision Double Precision
Normalized number (–1)s · 2E–127 · (1. F) (–1)s · 2E–1023 · (1. F)
Denormalized number (–1)s · 2–126 · (0. F) (–1)s · 2–1022 · (0. F)
Zero (–1)s · 0 (–1)s · 0
Infinity (–1)s · ∞ (–1)s · ∞
Not-a-Number (NAN) quiet NAN, signaling NAN quiet NAN, signaling NAN

(d) Rounding of Floating-Point Constants:
When converting floating-point constants used in assembler directives for reserving
floating-point numbers into object codes, the assembler rounds them in the following two
modes to set the valid range.
• Round to Nearest even (RN)

Rounds the least significant bit in the object code to its nearest absolute value. When
two absolute values are at the same distance, rounds the least significant bit to become
zero.

• Round to Zero (RZ)
Rounds the least significant bit toward zero.

Example:
Object code of .FDATA.S F' 1S-1
RN: H'3DCCCCCD
RZ: H'3DCCCCCC

(e) Handling Denormalized Numbers:
The assembler handles denormalized numbers differently depending on the target CPU. In
a CPU that does not handle denormalized numbers, if a value in the denormalized number
range is used, warning 841 occurs and the object code is output as zero.
In a CPU that handles denormalized numbers, if a value in the denormalized number range
is used, warning 842 occurs and the object code is output in denormalized numbers.
How to handle denormalized numbers can be switched with the denormalize option.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 831 of 1176
Mar 01, 2022

Example:
CPU not handling denormalized numbers:
.FDATA.S F' 1S-40 Warning 841, Object code H'00000000
CPU handling denormalized numbers:
.FDATA.S F' 1S-40 Warning 842, Object code H'000116C2

(4) Floating-Point Arithmetic Operations

Floating-point arithmetic operations can be specified in the assembler directive for reserving
floating-point data.
(a) Rounding of Results:

When the result of floating-point arithmetic operations exceeds the valid fraction digits in
internal representation, the assembler rounds it as follows:
• Rounds the result to the nearest of two internal representations of floating-point

constants.
• Rounds the result so that the least significant digit of the fraction part becomes zero

when two internal representations are at the same distance from the result.
• For the SH-2E CPU, truncates the section that exceeds the valid digits.
• For the SH-4, SH-4A, or SH2A-FPU CPU, rounds the section that exceeds the valid

digits to the nearest value when round=nearest is specified, and truncates the section
that exceeds the valid digits when round =zero is specified.

(b) Handling of Overflows, Underflows, and Invalid Operations:
The assembler handles overflows, underflows, and invalid operations as follows:
• For an overflow, handles the result as a positive or negative infinity depending on the

sign of the result.
• For an underflow, handles the result as a positive or negative zero depending on the

sign of the result.
• For an invalid operation, which occurs when infinity values of the opposite sign are

added or when an infinity value is subtracted from another infinity value of the same
sign, handles the result as a not-a-number.

Note: Arithmetic operations on constant expressions are performed during assembly. If an

overflow, underflow, or invalid operation occurs during assembly, a warning level error
message is output.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 832 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(5) Fixed-Point Constants
Fixed-point constants can be specified as operands in the assembler directive for reserving
fixed-point data.
(a) Fixed-Point Number Representation:

Fixed-point numbers express real numbers ranging from –1.0 to 1.0 in decimal.
Word size and longword size are available for fixed-point numbers.
• Word-size fixed-point numbers

Two-byte signed integers expressing real numbers ranging from –1.0 to 1.0.
The real number expressed by 2-byte signed integer x (–32,768 < = x < = 32,767) is
x/32768.

Example:

Fixed-point number Word-size representation
–1.0 H'8000

–0.5 H'C000

0.0 H'0000

0.5 H'4000

1.0 H'7FFF

• Longword-size fixed-point numbers
Four-byte signed integers expressing real numbers ranging from –1.0 to 1.0. The real
number expressed by 4-byte signed integer x (–2,147,483,648 < = x < = 2,147,483,647)
is x/2147483648.

Example:

Fixed-point number Longword-size representation
–1.0 H'80000000

–0.5 H'C0000000

0.0 H'00000000

0.5 H'40000000

1.0 H'7FFFFFFF

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 833 of 1176
Mar 01, 2022

(b) Fixed-Point Data Format:
The fixed-point data format consists of a sign bit and a 15-bit fraction part in word size,
and a sign bit and a 31-bit fraction part in longword size. The decimal point is assumed to
be fixed on the right of the sign bit.

• Word size

• Longword size

 Sign bit (S)

Indicates the sign of a value. Positive and negative are represented by 0 and 1, respectively.
 Fraction part (F)

Each bit has its own significance and corresponds to 2–1, 2–2, ..., 2–31 from the start bit,
respectively.

(c) Valid Range for Fixed-Point Numbers:

In longword size, 31 bits can represent nine digits of data in decimal, but the assembler
handles ten digits in decimal as a valid number, rounds the 32nd bit in RN (round to the
nearest absolute value) mode, and uses the high-order 31 bits of the result as fixed-point
data.

Note: The actual fixed-point data range is –1.0 to 0.9999999999, but the assembler assumes 1.0

as 0.9999999999 and represents it as H'7FFFFFFF.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 834 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.1.5 Location Counter

The location counter expresses the address (location) in memory where the corresponding object
code (the result of converting executable instructions and data into code the microprocessor can
understand) is stored.
The value of the location counter is automatically adjusted according to the object code output.
The value of the location counter can be changed intentionally using assembler directives.

Examples:

.ORG

.DATA.W

.DATA.W

.DATA.W

.ALIGN

∼
H'00001000

H'FF

H'F0

H'10

4

;This assembler directive sets the location counter to H'00001000

;The object code generated by this assembler directive has
;a length of 2 bytes.
;The location counter changes to H'00001002.
;The object code generated by this assembler directive has
;a length of 2 bytes.
;The location counter changes to H'00001004.
;The object code generated by this assembler directive has
;a length of 2 bytes.
;The location counter changes to H'00001006.
;The value of the location counter is corrected to be a
;multiple of 4.
;The location counter changes to H'00001008.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 835 of 1176
Mar 01, 2022

.DATA.L H'FFFFFFFF ;The object code generated by this assembler directive has
;a length of 4 bytes.
;The location counter changes to H'0000100C.
;.ORG is an assembler directive that sets the value of the
location ;counter.
;.ALIGN is an assembler directive that adjusts the value of
the ;location
;.DATA is an assembler directive that reserves data in memory.
;.W is a specifier that indicates that data is handled in word
(2 ;bytes) size.
;.L is a specifier that indicates that data is handled in longword
(4 ;bytes) size.
∼

The location counter is referenced using the dollar sign symbol.

Examples:
LABEL1:

.EQU $

;This assembler directive sets the value of the

 ;location counter to the symbol LABEL1.
 ;.EQU is an assembler directive that sets the value to a symbol.

11.1.6 Expressions

Expressions are combinations of constants, symbols, and operators that derive a value, and are
used as the operands of executable instructions and assembler directives.

(1) Elements of Expression
An expression consists of terms, operators, and parentheses.
(a) Terms

The terms are the followings:
• A constant
• The location counter reference ($)
• A symbol (excluding aliases of the register name)
• The result of a calculation specified by a combination of the above terms and an

operator.
An individual term is also a kind of expression.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 836 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(b) Operators
Table 11.5 shows the operators supported by the assembler.

Table 11.5 Operators

Operator Type Operator Operation Coding
Arithmetic operations + Unary plus + <term>
 – Unary minus – <term>
 + Addition <term1> + <term2>
 – Subtraction <term1> – <term2>
 * Multiplication <term1> * <term2>
 / Division <term1> / <term2>
Logic operations ~ Unary negation ~ <term>
 & Logical AND <term1> & <term2>
 | Logical OR <term1> | <term2>
 ~ Exclusive OR <term1> ~ <term2>
Shift operations << Arithmetic left shift <term 1> << <term 2>
 >> Arithmetic right shift <term 1> >> <term 2>
Section set operations* STARTOF Determines the starting

address of a section set.
STARTOF <section name>

 SIZEOF Determines the size of a
section set in bytes.

SIZEOF <section name>

Even/odd operations $EVEN 1 when the value is a multiple
of 2, and 0 otherwise

$EVEN <symbol>

 $ODD 0 when the value is a multiple
of 2, and 1 otherwise

$ODD <symbol>

 $EVEN2 1 when the value is a multiple
of 4, and 0 otherwise

$EVEN2 <symbol>

 $ODD2 0 when the value is a multiple
of 4, and 1 otherwise

$ODD2 <symbol>

Extraction operations HIGH Extracts the high-order byte HIGH <term>
 LOW Extracts the low-order byte LOW <term>
 HWORD Extracts the high-order word HWORD <term>
 LWORD Extracts the low-order word LWORD <term>

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 837 of 1176
Mar 01, 2022

(c) Parentheses
Parentheses modify the operation precedence.

(2) Operation Precedence
When multiple operations appear in a single expression, the order in which the processing is
performed is determined by the operator precedence and by the use of parentheses. The
assembler processes operations according to the following rules.
 Rule 1

Processing starts from operations enclosed in parentheses.
When there are multiple parentheses, processing starts with the operations surrounded by
the innermost parentheses.

 Rule 2
Processing starts with the operator with the highest precedence.

 Rule 3
Processing proceeds in the direction of the operator association rule when operators have
the same precedence.

Table 11.6 shows the operator precedence and the association rule.

Table 11.6 Operator Precedence and Association Rules

Precedence Operator Association Rule
1

2
3
4
5
6

(high)

(low)

+ – ~ STARTOF SIZEOF
$EVEN $ODD $EVEN2 $ODD2
HIGH LOW HWORD LWORD*
* /
+ –
<< >>
&
| ~

Operators are processed from right to left.

Operators are processed from left to right.
Operators are processed from left to right.
Operators are processed from left to right.
Operators are processed from left to right.
Operators are processed from left to right.

Note: The operators of precedence 1 (highest precedence) are for unary operation.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 838 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

The figures below show examples of expressions.

Example 1:

The assembler calculates this expression in the order (a) to (d).
The result of (a) is –1
The result of (b) is 2
The result of (c) is 0
The result of (d) is 1

The final result of this calculation is 1.

Example 2:

The assembler calculates this expression in the order (a) to (e).
The result of (a) is H'0000000F
The result of (b) is H'00000F00
The result of (c) is H'00000F0F
The result of (d) is H'000000F0
The result of (e) is H'00000FFF

The final result of this calculation is H'00000FFF.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 839 of 1176
Mar 01, 2022

Example 3:

The assembler calculates this expression in the order (a) to (d).
The result of (a) is H'FFFFFFF0
The result of (b) is H'00000010
The result of (c) is H'FFFFFFEF
The result of (d) is H'00000011

The final result of this calculation is H'00000011.

(3) Detailed Description on Operation
(a) STARTOF Operation

Determines the start address of a section set after the specified sections are linked by the
optimizing linkage editor.

(b) SIZEOF Operation
Determines the size of a section set after the specified sections are linked by the optimizing
linkage editor.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 840 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 841 of 1176
Mar 01, 2022

(c) HIGH Operation
Extracts the high-order byte from the low-order two bytes of a 4-byte value.

Example:
LABEL .EQU H'00007FFF
 .DATA HIGH LABEL ; Reserves integer data H'0000007F on memory.

(d) LOW Operation
Extracts the lowest-order one byte from a 4-byte value.

(e) HWORD Operation
Extracts the high-order two bytes from a 4-byte value.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 842 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(f) LWORD Operation
Extracts the low-order two bytes from a 4-byte value.

(g) EVEN/ODD Operation
Determines if the value of the address symbol is a multiple of 2 or 4.
Table 11.7 shows the even/odd operations.

Table 11.7 Even/Odd Operations

Operator Operation
$EVEN 1 when the value is a multiple of 2, and 0 otherwise
$ODD 0 when the value is a multiple of 2, and 1 otherwise
$EVEN2 1 when the value is a multiple of 4, and 0 otherwise
$ODD2 0 when the value is a multiple of 4, and 1 otherwise

Example:
To obtain the current program counter value using an $ODD2 operator.

LAB:

 MOVA @(0,PC),R0

 ADD #-4+2*$ODD2 LAB,R0 ;$ODD2 gives 0 when LAB is

 ;a multiple of 4, and gives 1 when

 ;LAB is not a multiple of 4.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 843 of 1176
Mar 01, 2022

(4) Notes on Expressions
(a) Internal Processing

The assembler regards expression values as 32-bit signed values.

Example:
~H'F0
The assembler regards H'F0 as H'000000F0.
Therefore, the value of ~H'F0 is H'FFFFFF0F. (Note that this is not H'0000000F.)

(b) Arithmetic Operators
Where values must be determined at assembly, the multiplication and division operators
cannot take terms that contain relative values as their operands.
Also, a divisor of 0 cannot be used with the division operator.

Example:
.IMPORT SYM
.DATA SYM/10 ;Correctly assembled.
.ORG SYM/10 ;An error will occur.

(c) Logic Operators

The logic operators cannot take terms that contain relative values as their operands.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 844 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.1.7 String Literals

String literals are sequences of character data.
The following ASCII characters can be used in string literals.

ASCII code H'09 (tab)
H'20 (space) to H'7E (tilde)

A single character in a string literal has as its value the ASCII code for that character and is
represented as a byte sized data object. In addition, Japanese characters in shift JIS code or EUC
code, and LATIN1 code character can be used. When using Japanese characters in shift JIS code
or EUC code, be sure to specify the sjis or euc option, respectively. If not specified, Japanese
characters are handled as the Japanese code specified by the host computer. When using LATIN1
code character, be sure to specify the latin1 option.
String literals must be written enclosed in double quotation marks.
Use two double quotation marks in succession to indicate a single double quotation mark in a
string literal.

Examples:
 .SDATA "Hello!" ; This statement reserves the string literal data

; Hello!
 .SDATA " " " Hello!" " " ; This statement reserves the string literal data

; " Hello! "
; .SDATA is an assembler directive that reserves string literal data in memory.

Note: The difference between character constants and string literals is as follows.
Character constants are numeric values. They have a data size of either 1 byte, 2 bytes, or
4 bytes.
String literals cannot be handled as numeric values. A string literal has a data size between
1 byte and 255 bytes.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 845 of 1176
Mar 01, 2022

11.1.8 Local Label

(1) Local Label Functions
A local label is valid locally between address symbols. Since a local label does not conflict
with the other labels outside its scope, the user does not have to consider other label names. A
local label can be defined by writing in the label field in the same way as a normal address
symbol, and can be referenced by an operand.
An example of local label descriptions is shown below.

Note: A local label cannot be referenced during debugging.

A local label cannot be specified as any of the following items:

 Macro name
 Section name
 Object module name
 Label in .ASSIGNA, .ASSIGNC, .EQU, .ASSIGN, .REG, or .FREG
 Operand in .EXPORT, .IMPORT, or .GLOBAL

Example:
LABEL1: ;Local block 1 start
?0001:
 ∼
 CMP/EQ R1,R2
 BT ?0002 ;Branches to ?0002 of local block 1
 BRA ?0001 ;Branches to ?0001 of local block 1
?0002:
 ∼
LABEL2: ;Local block 2 start
?0001: ∼
 CMP/GE R1,R2
 BT ?0002 ;Branches to ?0002 of local block 2
 BRA ?0001 ;Branches to ?0001 of local block 2
?0002:
LABEL3: ;Local block 3 start

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 846 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Naming Local Labels
 First Character:

A local label is a string starting with a question mark (?).
 Usable Characters:

The following ASCII characters can be used in a local label, except for the first character:
• Alphabetical uppercase and lowercase letters (A to Z, a to z)
• Numbers (0 to 9)
• Underscore (_)
• Dollar sign ($)
The assembler distinguishes uppercase letters from lowercase ones in local labels.

 Maximum Length:
The length of local label characters is 2 to 16 characters. If 17 or more characters are
specified, the assembler will not recognize them as a local label.

(3) Scope of Local Labels

The scope of a local label is called a local block. Local blocks are separated by address
symbols, or by .SECTION.
The local label defined within a local block can be referenced in that local block.
A local label belonging to a local block is interpreted as being unique even if its spelling is the
same as local labels in other local blocks; it does not cause an error.

Note: The address symbols defined by .ASSIGNA, .ASSIGNC, .EQU, .ASSIGN, .REG,

or .FREG are not interpreted as delimiters for the local block.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 847 of 1176
Mar 01, 2022

11.2 Executable Instructions

11.2.1 Overview of Executable Instructions

The executable instructions are the instructions of microprocessor. The microprocessor interprets
and executes the executable instructions in the object code stored in memory.

An executable instruction source statement has the following basic form.

This section describes the mnemonic, operation size, and addressing mode.

(1) Mnemonic
The mnemonic expresses the executable instruction. Abbreviations that indicate the type of
processing are provided as mnemonics for microprocessor instructions.
The assembler does not distinguish uppercase and lowercase letters in mnemonics.

(2) Operation Size
The operation size is the unit for processing data. The operation sizes vary with the executable
instruction. The assembler does not distinguish uppercase and lowercase letters in the
operation size.

Specifier Data Size
B Byte (1 byte)
W Word (2 bytes)
L Longword (4 bytes)
S Single precision (4 bytes)
D Double precision (8 bytes)

(3) Addressing Mode
The addressing mode specifies the data area accessed, and the destination address. The
addressing modes vary with the executable instruction.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 848 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.8 lists the addressing modes.

Table 11.8 Addressing Modes

Addressing Mode Name Description
Rn Register direct The contents of the specified register.
@Rn Register indirect A memory location. The value in Rn gives the start

address of the memory accessed.
@Rn+ Register indirect with

post-increment
A memory location. The value in Rn (before being
incremented*1) gives the start address of the
memory accessed.
The microprocessor first uses the value in Rn for
the memory reference, and increments Rn
afterwards.

@–Rn Register indirect with
pre-decrement

A memory location. The value in Rn (after being
decremented*2) gives the start address of the
memory accessed.
The microprocessor first decrements Rn, and then
uses that value for the memory reference.

@(disp,Rn) Register indirect with
displacement*3

A memory location. The start address of the
memory access is given by: the value of Rn plus
the displacement (disp).
The value of Rn is not changed.

@(R0,Rn) Register indirect with
index

A memory location. The start address of the
memory access is given by: the value of R0 plus
the value of Rn.
The values of R0 and Rn are not changed.

@(disp,GBR) GBR indirect with
displacement

A memory location. The start address of the
memory access is given by: the value of GBR plus
the displacement (disp).
The value of GBR is not changed.

@(R0,GBR) GBR indirect with index A memory location. The start address of the
memory access is given by: the value of GBR plus
the value of R0.
The values of GBR and R0 are not changed.

@(disp,PC) PC relative with
displacement

A memory location. The start address of the
memory access is given by: the value of the PC
plus the displacement (disp).

Notes 1 to 3: See next page.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 849 of 1176
Mar 01, 2022

Table 11.8 Addressing Modes (cont)

Addressing Mode Name Description
@@(disp,TBR) TBR duplicate indirect

with displacement
A memory location. The start address of the
memory access is given by: the contents of the
location indicated by the value of TBR plus the
displacement (disp).
The value of TBR is not changed.

symbol PC relative specified
with symbol

[When used as the operand of a branch instruction]
The symbol directly indicates the destination
address.
The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp = symbol – PC.
[When used as the operand of a data move
instruction]
A memory location. The symbol indicates the start
address of the memory accessed.
The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp = symbol – PC.
[When used as the operand of an instruction that
specifies the RS or RE register (LDRS or LDRE
instruction)]
A memory location. The symbol indicates the start
address of the memory accessed.
The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp = symbol – PC.

#imm Immediate Indicates a constant.
Notes: 1. Increment
 The amount of the increment is 1 when the operation size is a byte, 2 when the

operation size is a word (two bytes), and 4 when the operation size is a longword (four
bytes).

 2. Decrement
 The amount of the decrement is 1 when the operation size is a byte, 2 when the

operation size is a word, and 4 when the operation size is a longword.
 3. Displacement
 A displacement is the distance between two points. In this assembly language, the unit

of displacement values is in bytes.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 850 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

The values that can be used for the displacement vary with the addressing mode and the operation
size.

Table 11.9 Allowed Displacement Values

Addressing Mode Displacement*
@(disp,Rn) When the operation size is byte (B):

 H'00000000 to H'0000000F (0 to 15)
When the operation size is word (W):
 H'00000000 to H'0000001E (0 to 30)
When the operation size is longword (L):
 H'00000000 to H'0000003C (0 to 60)

@(disp:12,Rn) When the operation size is byte (B):
 H'00000000 to H'00000FFF (0 to 4095)
When the operation size is word (W):
 H'00000000 to H'00001FFE (0 to 8190)
When the operation size is longword (L):
 H'00000000 to H'00003FFC (0 to 16380)

@(disp,GBR) When the operation size is byte (B):
 H'00000000 to H'000000FF (0 to 255)
When the operation size is word (W):
 H'00000000 to H'000001FE (0 to 510)
When the operation size is longword (L):
 H'00000000 to H'000003FC (0 to 1020)

@(disp,PC) [When used as an operand of a move instruction]
When the operation size is word (W):
 H'00000000 to H'000001FE (0 to 510)
When the operation size is longword (L):
 H'00000000 to H'000003FC (0 to 1020)
[When used as an operand of an instruction that sets the RS or RE
register (LDRS or LDRE)]
H'FFFFFF00 to H'000000FE (–256 to 254)

@@(disp,TBR) H'00000000 to H'000003FC (0 to 1020)
Note: Units are bytes, and numbers in parentheses are decimal.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 851 of 1176
Mar 01, 2022

Table 11.9 Allowed Displacement Values (cont)

Addressing Mode Displacement*
symbol [When used as a branch instruction operand]

When used as an operand for a conditional branch instruction (BT, BF,
BF/S, or BT/S):

 H'00000000 to H'000000FF (0 to 255)
H'FFFFFF00 to H'FFFFFFFF (–256 to –1)

 When used as an operand for an unconditional branch instruction
(BRA or BSR)

 H'00000000 to H'00000FFF (0 to 4095)
H'FFFFF000 to H'FFFFFFFF (–4096 to –1)

 [When used as the operand of a data move instruction]
When the operation size is word (W):
 H'00000000 to H'000001FE (0 to 510)
When the operation size is longword (L):
 H'00000000 to H'000003FC (0 to 1020)
[When used as an operand of an instruction that sets the RS or RE
register (LDRS or LDRE)]
H'FFFFFF00 to H'000000FE (–256 to 254)

Note: Units are bytes, and numbers in parentheses are decimal.

The values that can be used for immediate values vary with the executable instruction.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 852 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.10 Allowed Immediate Values

Executable Instruction Immediate Value
TST, AND, OR, XOR H'00000000 to H'000000FF (0 to 255)
MOV H'00000000 to H'000000FF (0 to 255)

H'FFFFFF80 to H'FFFFFFFF (–128 to –1)*1
ADD, CMP/EQ H'00000000 to H'000000FF (0 to 255)

H'FFFFFF80 to H'FFFFFFFF (–128 to –1)*1
TRAPA H'00000000 to H'000000FF (0 to 255)
SETRC, LDRC H'00000001 to H'000000FF (1 to 255)*2
MOVI20 H'00000000 to H'000FFFFF (0 to 1048575)
MOVI20S*3 H'00000000 to H'0FFFFF00 (0 to 268435200)
Bit manipulation instructions H'00000000 to H'00000007 (0 to 7)
Notes: 1. Values in the range H'FFFFFF80 to H'FFFFFFFF can be written as positive decimal

values.
 2. When zero is set as the immediate values of the SETRC or LDRC instruction, warning

number 835 occurs and the object code is output as zero. In this case, the range to be
repeated is executed once.
When an externally referenced symbol is set as the immediate values of the SETRC or
LDRC instruction, the linkage editor checks the range from H'00000000 to H'000000FF
(0 to 255).

 3. When the lower eight bits of immediate data are not 0, warning 845 is generated and
the lower eight bits are rounded down to 0.

Note: The assembler corrects the value of displacements under certain conditions.

Condition Type of Correction
When the operation size is a word and the
displacement is not a multiple of 2

→
→
→

The lowest bit of the displacement is
discarded, resulting in the value being a
multiple of 2.

When the operation size is a longword and
the displacement is not a multiple of 4

→
→
→

The lower 2 bits of the displacement are
discarded, resulting in the value being a
multiple of 4.

When the displacement of the branch
instruction is not a multiple of 2

→
→
→

The lowest bit of the displacement is
discarded, resulting in the value being a
multiple of 2.

Be sure to take this correction into consideration when using operands of the mode @(disp,Rn),
@(disp,GBR), @@(disp,TBR), and @(disp,PC).

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 853 of 1176
Mar 01, 2022

 Example:
MOV.L @(63,PC),R0

The assembler corrects the 63 to be 60, and generates object code identical to that for the
statement MOV.L @(60,PC),R0, and warning 870 occurs.

11.2.2 Notes on Executable Instructions

(1) Notes on the Operation Size
The operation size that can be specified vary with the mnemonic and the addressing mode
combination.
(a) SH-1 Executable Instruction and Operation Size Combinations:

Table 11.11 shows the SH-1 allowable executable instruction and operation size
combinations.
Symbol meanings:
Rn, Rm A general register (R0 to R15)
R0 General register R0
SR Status register
GBR Global base register
VBR Vector base register
MACH, MACL High-order and Low-Order Multiplication and accumulation registers
PR Procedure register
PC Program counter
imm An immediate value
disp A displacement value
symbol A symbol
B Byte
W Word (2 bytes)
L Longword (4 bytes)
µ Valid specification
× Invalid specification:
 The assembler regards instructions with this combination as the specification
 being omitted.
∆ The assembler regards them as extended instructions.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 854 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.11 SH-1 Executable Instruction and Operation Size Combinations (Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

MOV #imm,Rn O ∆ ∆ B *1
MOV @(disp,PC),Rn × O O L
MOV symbol,Rn × O O L
MOV Rn,Rm × × O L
MOV Rn,@Rm O O O L
MOV @Rn,Rm O O O L
MOV Rn,@–Rm O O O L
MOV @Rn+,Rm O O O L
MOV R0,@(disp,Rn) O O O L
MOV Rn,@(disp,Rm) × × O L *2
MOV @(disp,Rn),R0 O O O L
MOV @(disp,Rn),Rm × × O L *3
MOV Rn,@(R0,Rm) O O O L
MOV @(R0,Rn),Rm O O O L
MOV R0,@(disp,GBR) O O O L
MOV @(disp,GBR),R0 O O O L
MOVA #imm,R0 × × ∆ L
MOVA @(disp,PC),R0 × × O L
MOVA symbol,R0 × × O L
MOVT Rn × × O L
SWAP Rn,Rm O O × W
XTRCT Rn,Rm × × O L
Notes: 1. In size selection mode, the assembler selects the operation size according to the imm

value.
 2. In this case, Rn must be one of R1 to R15.
 3. In this case, Rm must be one of R1 to R15.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 855 of 1176
Mar 01, 2022

Table 11.11 SH-1 Executable Instruction and Operation Size Combinations (Part 2)

Arithmetic Operation Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

ADD Rn,Rm × × O L
ADD #imm,Rn × × O L
ADDC Rn,Rm × × O L
ADDV Rn,Rm × × O L
CMP/EQ #imm,R0 × × O L
CMP/EQ Rn,Rm × × O L
CMP/HS Rn,Rm × × O L
CMP/GE Rn,Rm × × O L
CMP/HI Rn,Rm × × O L
CMP/GT Rn,Rm × × O L
CMP/PZ Rn × × O L
CMP/PL Rn × × O L
CMP/STR Rn,Rm × × O L
DIV1 Rn,Rm × × O L
DIV0S Rn,Rm × × O L
DIV0U (no operands) × × × —
EXTS Rn,Rm O O × W
EXTU Rn,Rm O O × W
MAC @Rn+,@Rm+ × O × W
MULS Rn,Rm × O O L*
MULU Rn,Rm × O O L*
NEG Rn,Rm × × O L
NEGC Rn,Rm × × O L
SUB Rn,Rm × × O L
SUBC Rn,Rm × × O L
SUBV Rn,Rm × × O L
Note: The object code generated when W is specified is the same as that generated when L is

specified.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 856 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.11 SH-1 Executable Instruction and Operation Size Combinations (Part 3)

Logic Operation Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

AND Rn,Rm × × O L
AND #imm,R0 × × O L
AND #imm,@(R0,GBR) O × × B
NOT Rn,Rm × × O L
OR Rn,Rm × × O L
OR #imm,R0 × × O L
OR #imm,@(R0,GBR) O × × B
TAS @Rn O × × B
TST Rn,Rm × × O L
TST #imm,R0 × × O L
TST #imm,@(R0,GBR) O × × B
XOR Rn,Rm × × O L
XOR #imm,R0 × × O L
XOR #imm,@(R0,GBR) O × × B

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 857 of 1176
Mar 01, 2022

Table 11.11 SH-1 Executable Instruction and Operation Size Combinations (Part 4)

Shift Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

ROTL Rn × × O L
ROTR Rn × × O L
ROTCL Rn × × O L
ROTCR Rn × × O L
SHAL Rn × × O L
SHAR Rn × × O L
SHLL Rn × × O L
SHLR Rn × × O L
SHLL2 Rn × × O L
SHLR2 Rn × × O L
SHLL8 Rn × × O L
SHLR8 Rn × × O L
SHLL16 Rn × × O L
SHLR16 Rn × × O L

Table 11.11 SH-1 Executable Instruction and Operation Size Combinations (Part 5)

Branch Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

BF symbol × × × —
BT symbol × × × —
BRA symbol × × × —
BSR symbol × × × —
JMP @Rn × × × —
JSR @Rn × × × —
RTS (no operands) × × × —

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 858 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.11 SH-1 Executable Instruction and Operation Size Combinations (Part 6)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

CLRT (no operands) × × × —
CLRMAC (no operands) × × × —
LDC Rn,SR × × O L
LDC Rn,GBR × × O L
LDC Rn,VBR × × O L
LDC @Rn+,SR × × O L
LDC @Rn+,GBR × × O L
LDC @Rn+,VBR × × O L
LDS Rn,MACH × × O L
LDS Rn,MACL × × O L
LDS Rn,PR × × O L
LDS @Rn+,MACH × × O L
LDS @Rn+,MACL × × O L
LDS @Rn+,PR × × O L
NOP (no operands) × × × —
RTE (no operands) × × × —
SETT (no operands) × × × —
SLEEP (no operands) × × × —
STC SR,Rn × × O L
STC GBR,Rn × × O L
STC VBR,Rn × × O L
STC SR,@–Rn × × O L
STC GBR,@–Rn × × O L
STC VBR,@–Rn × × O L
STS MACH,Rn × × O L
STS MACL,Rn × × O L
STS PR,Rn × × O L
STS MACH,@–Rn × × O L
STS MACL,@–Rn × × O L
STS PR,@–Rn × × O L
TRAPA #imm × × O L

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 859 of 1176
Mar 01, 2022

(b) SH-2 Executable Instruction and Operation Size Combinations:
Table 11.12 lists the combination of executable instructions added to SH-2 from SH-1 and
the operation size.

Table 11.12 SH-2 Executable Instruction and Operation Size Combinations (Part 1)

Arithmetic Operation Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

MAC @Rn+,@Rm+ × O O W
MUL Rn,Rm × × O L
DMULS Rn,Rm × × O L
DMULU Rn,Rm × × O L
DT Rn × × × —

Table 11.12 SH-2 Executable Instruction and Operation Size Combinations (Part 2)

Branch Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

BF/S symbol × × × —
BT/S symbol × × × —
BRAF Rn × × × —
BSRF Rn × × × —

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 860 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(c) SH-2E Executable Instruction and Operation Size Combinations:
Table 11.13 lists the combination of executable instructions added to SH-2E from SH-2
and the operation size.
Symbol meanings:
FRm,FRn Floating-point register
FR0 FR0 floating-point register
FPUL Floating-point communication register
FPSCR Floating-point status control register
S Single precision (4 bytes)

Table 11.13 SH-2E Executable Instruction and Operation Size Combinations (Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L S Default when

Omitted

FLDI0 FRn × × × O S
FLDI1 FRn × × × O S
FMOV @Rm,FRn × × × O S
FMOV FRn,@Rm × × × O S
FMOV @Rm+,FRn × × × O S
FMOV FRn,@-Rm × × × O S
FMOV @(R0,Rm),FRn × × × O S
FMOV FRm,@(R0,Rm) × × × O S
FMOV FRm,FRn × × × O S

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 861 of 1176
Mar 01, 2022

Table 11.13 SH-2E Executable Instruction and Operation Size Combinations (Part 2)

Arithmetic Operation Instructions Operation Sizes
Mnemonic Addressing Mode B W L S Default when

Omitted

FABS FRn × × × O S
FADD FRm,FRn × × × O S
FCMP/EQ FRm,FRn × × × O S
FCMP/GT FRm,FRn × × × O S
FDIV FRm,FRn × × × O S
FMAC FR0,FRm,FRn × × × O S
FMUL FRm,FRn × × × O S
FNEG FRn × × × O S
FSUB FRm,FRn × × × O S

Table 11.13 SH-2E Executable Instruction and Operation Size Combinations (Part 3)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L S Default when

Omitted

FLDS FRm,FPUL × × × O S
FLOAT FPUL,FRn × × × O S
FSTS FPUL,FRn × × × O S
FTRC FRm,FPUL × × × O S
LDS Rm,FPUL × × O × L
LDS @Rm+,FPUL × × O × L
LDS Rm,FPSCR × × O × L
LDS @Rm+,FPSCR × × O × L
STS FPUL,Rn × × O × L
STS FPUL,@-Rn × × O × L
STS FPSCR,Rn × × O × L
STS FPSCR,@-Rn × × O × L

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 862 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(d) SH-3 Executable Instruction and Operation Size Combinations:
Table 11.14 lists the combination of executable instructions added to SH-3 from SH-2 and
the operation size.
Symbol meanings:
Rn_BANK Bank general register
SSR Saved status register
SPC Saved program counter

Table 11.14 SH-3 Executable Instruction and Operation Size Combinations (Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

PREF @Rn × × × —

Table 11.14 SH-3 Executable Instruction and Operation Size Combinations (Part 2)

Shift Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

SHAD Rn,Rm × × O L
SHLD Rn,Rm × × O L

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 863 of 1176
Mar 01, 2022

Table 11.14 SH-3 Executable Instruction and Operation Size Combinations (Part 3)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

CLRS (no operands) × × × —
SETS (no operands) × × × —
LDC Rm,SSR × × O L
LDC Rm,SPC × × O L
LDC Rm,Rn_BANK × × O L
LDC @Rm+,SSR × × O L
LDC @Rm+,SPC × × O L
LDC @Rm+,Rn_BANK × × O L
STC SSR,Rn × × O L
STC SPC,Rn × × O L
STC Rm_BANK,Rn × × O L
STC SSR,@–Rn × × O L
STC SPC,@–Rn × × O L
STC Rm_BANK,@–Rn × × O L
LDTLB (no operands) × × × —

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 864 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(e) SH-4 Executable Instruction and Operation Size Combinations:
Table 11.15 lists the combination of executable instructions added to SH-4 from SH-3 and
the operation size.
Symbol meanings:
DRm,DRn Double-precision floating-point register
XDm,XDn Extended double-precision floating-point register
FVm,FVn Single-precision floating-point vector register
XMTRX Single-precision floating-point extended register matrix
DBR Debug vector base register
SGR Save general register 15
D Double precision (8 bytes)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 865 of 1176
Mar 01, 2022

Table 11.15 SH-4 Executable Instruction and Operation Size Combinations (Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L S D Default when

Omitted

FLDI0 FRn × × × O × S
FLDI1 FRn × × × O × S
FMOV FRm,FRn × × × O × S
FMOV FRn,@Rm × × × O × S
FMOV FRn,@-Rn × × × O × S
FMOV FRn,@(R0,Rm) × × × O × S
FMOV @Rm,FRn × × × O × S
FMOV @Rm+,FRn × × × O × S
FMOV @(R0,Rm),FRn × × × O × S
FMOV DRm,DRn × × × × O D
FMOV DRm,@Rn × × × × O D
FMOV DRm,@-Rn × × × × O D
FMOV DRm,@(R0,Rn) × × × × O D
FMOV @Rm,DRn × × × × O D
FMOV @Rm+,DRn × × × × O D
FMOV @(R0,Rm),DRn × × × × O D
FMOV DRm,XDn × × × × O D
FMOV XDm,DRn × × × × O D
FMOV XDm,XDn × × × × O D
FMOV XDm,@Rn × × × × O D
FMOV XDm,@-Rn × × × × O D
FMOV XDm,@(R0,Rn) × × × × O D
FMOV @Rm,XDn × × × × O D
FMOV @Rm,XDn × × × × O D
FMOV @(R0,Rm),XDn × × × × O D

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 866 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.15 SH-4 Executable Instruction and Operation Size Combinations (Part 2)

Arithmetic Operation Instructions Operation Sizes
Mnemonic Addressing Mode B W L S D Default when

Omitted

FABS FRn × × × O × S
FABS DRn × × × × O D
FADD FRm,FRn × × × O × S
FADD DRm,DRn × × × × O D
FCMP/EQ FRm,FRn × × × O × S
FCMP/EQ DRm,DRn × × × × O D
FCMP/GT FRm,FRn × × × O × S
FCMP/GT DRm,DRn × × × × O D
FDIV FRm,FRn × × × O × S
FDIV DRm,DRn × × × × O D
FIPR FVm,FVn × × × O × S
FMAC FR0,FRm,FRn × × × O × S
FMUL FRm,FRn × × × O × S
FMUL DRm,DRn × × × × O D
FNEG FRn × × × O × S
FNEG DRn × × × × O D
FSQRT FRn × × × O × S
FSQRT DRn × × × × O D
FSUB FRm,FRn × × × O × S
FSUB DRm,DRn × × × × O D
FTRV XMTRX,FVn × × × O × S

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 867 of 1176
Mar 01, 2022

Table 11.15 SH-4 Executable Instruction and Operation Size Combinations (Part 3)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L S D Default when

Omitted

FCNVDS DRm,FPUL × × × × O D
FCNVSD FPUL,DRn × × × × O D
FLDS FRm,FPUL × × × O × S
FLOAT FPUL,FRn × × × O × S
FLOAT FPUL,DRn × × × × O D
FRCHG (no operands) × × × × × —
FSCHG (no operands) × × × × × —
FSTS FPUL,FRn × × × O × S
FTRC FRm,FPUL × × × O × S
FTRC DRm,FPUL × × × × O D
LDC Rm,DBR × × O × × L
LDC @Rm+,DBR × × O × × L
LDS Rm,FPUL × × O × × L
LDS @Rm+,FPUL × × O × × L
LDS Rm,FPSCR × × O × × L
LDS @Rm+,FPSCR × × O × × L
OCBI @Rn × × × × × —
OCBP @Rn × × × × × —
OCBWB @Rn × × × × × —
STC DBR,Rn × × O × × L
STC DBR,@-Rn × × O × × L
STC SGR,Rn × × O × × L
STC SGR,@-Rn × × O × × L
STS FPUL,Rm × × O × × L
STS FPUL,@-Rm × × O × × L
STS FPSCR,Rm × × O × × L
STS FPSCR,@-Rm × × O × × L

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 868 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(f) SH2-DSP, SH3-DSP Executable Instruction and Operation Size Combinations:
Table 11.16 shows the executable instruction and operation size combinations for the SH2-
DSP and SH3-DSP instructions added to those of the SH-2 and SH-3, respectively.
Symbol meanings:
MOD Modulo register
RS Repeat start register
RE Repeat end register
DSR DSP status register
A0 DSP data register (A0, A1, X0, X1, Y0, or Y1 can be specified.)

Table 11.16 SH2-DSP, SH3-DSP Executable Instruction and Operation Size Combinations

(Part 1)

Repeat Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

LDRS @(disp,PC) × × O L
LDRS symbol × × O L
LDRE @(disp,PC) × × O L
LDRE symbol × × O L
SETRC Rn × × × —
SETRC #imm × × × —

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 869 of 1176
Mar 01, 2022

Table 11.16 SH2-DSP, SH3-DSP Executable Instruction and Operation Size Combinations
(Part 2)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

LDC Rn,MOD × × O L
LDC Rn,RS × × O L
LDC Rn,RE × × O L
LDC @Rn+,MOD × × O L
LDC @Rn+,RS × × O L
LDC @Rn+,RE × × O L
LDS Rn,DSR × × O L
LDS Rn,A0 × × O L
LDS @Rn+,DSR × × O L
LDS @Rn+,A0 × × O L
STC MOD,Rn × × O L
STC RS,Rn × × O L
STC RE,Rn × × O L
STC MOD,@–Rn × × O L
STC RS,@–Rn × × O L
STC RE,@–Rn × × O L
STS DSR,Rn × × O L
STS A0,Rn × × O L
STS DSR,@–Rn × × O L
STS A0,@–Rn × × O L

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 870 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(g) SH4AL-DSP Executable Instruction and Operation Size Combinations:
Table 11.17 shows the executable instruction and operation size combinations for the
SH4AL-DSP instructions added to those of the SH3-DSP.

Table 11.17 SH4AL-DSP Executable Instruction and Operation Size Combinations

(Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

CLRDMXY (no operands) × × × —
MOVCA R0,@Rn × × O L
MOVCO R0,@Rn × × O L
MOVLI @Rn,R0 × × O L
MOVUA @Rn,R0 × × O L
MOVUA @Rn+,R0 × × O L
PREFI (no operands) × × × —
SETDMX (no operands) × × × —
SETDMY (no operands) × × × —

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 871 of 1176
Mar 01, 2022

Table 11.17 SH4AL-DSP Executable Instruction and Operation Size Combinations
(Part 2)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

ICBI @Rn × × O L
LDC Rn,DBR × × O L
LDC @Rn+,DBR × × O L
LDC Rn,SGR × × O L
LDC @Rn+,SGR × × O L
OCBI @Rn × × × —
OCBP @Rn × × × —
OCBWB @Rn × × × —
STC DBR,Rn × × O L
STC DBR,@-Rn × × O L
STC SGR,Rn × × O L
STC SGR,@-Rn × × O L
SYNCO @Rn × × O L

Table 11.17 SH4AL-DSP Executable Instruction and Operation Size Combinations
(Part 3)

Repeat Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

LDRC Rn × × × —

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 872 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(h) SH-4A Executable Instruction and Operation Size Combinations:
Table 11.18 shows the executable instruction and operation size combinations for
the SH-4A instructions added to those of the SH-4.

Table 11.18 SH-4A Executable Instruction and Operation Size Combinations

(Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

MOVCO R0,@Rn × × O L
MOVLI @Rn,R0 × × O L
MOVUA @Rn,R0 × × O L
MOVUA @Rn+,R0 × × O L
PREFI (no operands) × × × —

Table 11.18 SH-4A Executable Instruction and Operation Size Combinations
(Part 2)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L S D Default when

Omitted

FPCHG (no operands) × × × × × —
ICBI @Rn × × × × × —
LDC Rn,SGR × × O × × L
LDC @Rn+,SGR × × O × × L
FSCA FPUL,DRn × × × O × S
FSRRA FRn × × × O × S
SYNCO @Rn × × × × × —

(i) SH-2A Executable Instruction and Operation Size Combinations:
Table 11.19 shows the executable instruction and operation size combinations for
the SH-2A instructions added to those of the SH-2.
Symbol meanings:
TBR Jump table register

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 873 of 1176
Mar 01, 2022

Table 11.19 SH-2A Executable Instruction and Operation Size Combinations (Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

MOV R0,@Rn+ O O O L
MOV @-Rm,R0 O O O L
MOV Rm,@(disp:12,Rn) O O O L
MOV @(disp:12,Rm),Rn O O O L
MOVI20 #imm20,Rn × × O L
MOVI20S #imm20,Rn × × O L
MOVML Rm,@-R15 × × O L
MOVML @R15+,Rn × × O L
MOVMU Rm,@-R15 × × O L
MOVMU @R15+,Rn × × O L
MOVRT Rn × × O L
MOVU @(disp:12,Rm),Rn O O × W
NOTT (no operands) × × × —
PREF @Rn × × × —

Table 11.19 SH-2A Executable Instruction and Operation Size Combinations (Part 2)

Arithmetic Operation Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

CLIPS Rn O O × W
CLIPU Rn O O × W
DIVS R0,Rn × × O L
DIVU R0,Rn × × O L
MULR R0,Rn × × O L

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 874 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.19 SH-2A Executable Instruction and Operation Size Combinations (Part 3)

Shift Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

SHAD Rn, Rm × × O L
SHLD Rn, Rm × × O L

Table 11.19 SH-2A Executable Instruction and Operation Size Combinations (Part 4)

Branch Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

JSR/N @Rn × × × —
JSR/N @@(disp,TBR) × × × —
RTS/N (no operands) × × × —
RTV/N Rn × × × —

Table 11.19 SH-2A Executable Instruction and Operation Size Combinations (Part 5)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

LDBANK @Rm,R0 × × O L
LDC Rm,TBR × × O L
RESBANK (no operands) × × × —
STBANK R0,@Rn × × O L
STC TBR,Rn × × O L

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 875 of 1176
Mar 01, 2022

Table 11.19 SH-2A Executable Instruction and Operation Size Combinations (Part 6)

Bit Manipulation Instructions Operation Sizes
Mnemonic Addressing Mode B W L Default when

Omitted

BAND #imm,@(disp:12,Rn) O × × B
BANDNOT #imm,@(disp:12,Rn) O × × B
BCLR #imm,@(disp:12,Rn) O × × B
BCLR #imm,Rn × × O L
BLD #imm,@(disp:12,Rn) O × × B
BLD #imm,Rn × × O L
BLDNOT #imm,@(disp:12,Rn) O × × B
BOR #imm,@(disp:12,Rn) O × × B
BORNOT #imm,@(disp:12,Rn) O × × B
BSET #imm,@(disp:12,Rn) O × × B
BSET #imm,Rn × × O L
BST #imm,@(disp:12,Rn) O × × B
BST #imm,Rn × × O L
BXOR #imm,@(disp:12,Rn) O × × B

(j) SH2A-FPU Executable Instruction and Operation Size Combinations:
Table 11.20 shows the executable instruction and operation size combinations for
the SH2A-FPU instructions added to those of the SH-2E and SH-2A.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 876 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.20 SH2A-FPU Executable Instruction and Operation Size Combinations
(Part 1)

Data Transfer Instructions Operation Sizes
Mnemonic Addressing Mode B W L S D Default when

Omitted
FMOV DRm,DRn × × × × O D
FMOV DRm,@Rn × × × × O D
FMOV DRm@-Rn × × × × O D
FMOV DRm,@(R0,Rn) × × × × O D
FMOV @Rm,DRn × × × × O D
FMOV @Rm+,DRn × × × × O D
FMOV @(R0,Rm),DRn × × × × O D
FMOV @(disp:12,Rm),FRn × × × O × S
FMOV @(disp:12,Rm),DRn × × × × O D
FMOV FRm,@(disp:12,Rn) × × × O × S
FMOV DRm,@(disp:12,Rn) × × × × O D

Table 11.20 SH2A-FPU Executable Instruction and Operation Size Combinations
(Part 2)

Arithmetic Operation Instructions Operation Sizes
Mnemonic Addressing Mode B W L S D Default when

Omitted
FABS DRn × × × × O D
FADD DRm,DRn × × × × O D
FCMP/EQ DRm,DRn × × × × O D
FCMP/GT DRm,DRn × × × × O D
FDIV DRm,DRn × × × × O D
FMUL DRm,DRn × × × × O D
FNEG DRn × × × × O D
FSQRT FRn × × × O × S
FSQRT DRn × × × × O D
FSUB DRm,DRn × × × × O D

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 877 of 1176
Mar 01, 2022

Table 11.20 SH2A-FPU Executable Instruction and Operation Size Combinations
(Part 3)

System Control Instructions Operation Sizes
Mnemonic Addressing Mode B W L S D Default when

Omitted
FCNVDS DRm,FPUL × × × × O D
FCNVSD FPUL,DRn × × × × O D
FLOAT FPUL,DRn × × × × O D
FSCHG (no operands) × × × × × —
FTRC DRm,FPUL × × × × O D

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 878 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Notes on Delayed Branch Instructions
The unconditional branch instructions are delayed branch instructions. The microprocessors
execute the delay slot instruction (the instruction directly following a branch instruction in
memory) before executing the delayed branch instruction.
If an instruction inappropriate for a delay slot is specified, the assembler issues error 150 or
151.
Table 11.21 shows the relationship between the delayed branch instructions and the delay slot
instructions.

Table 11.21 Relationship between Delayed Branch Instructions and Delay Slot Instructions

 Delayed Branch Instruction
Delay Slot Instruction BF/S BT/S BRAF BSRF BRA BSR JMP JSR RTS RTE
BF × × × × × × × × × ×
BT × × × × × × × × × ×
BF/S × × × × × × × × × ×
BT/S × × × × × × × × × ×
BRAF × × × × × × × × × ×
BSRF × × × × × × × × × ×
BRA × × × × × × × × × ×
BSR × × × × × × × × × ×
JMP × × × × × × × × × ×
JSR × × × × × × × × × ×
JSR/N × × × × × × × × × ×
RTS × × × × × × × × × ×
RTS/N × × × × × × × × × ×
RTE × × × × × × × × × ×
RTV/N × × × × × × × × × ×
TRAPA × × × × × × × × × ×
DIVS × × × × × × × × × ×
DIVU × × × × × × × × × ×
LDC Rn,SR *1 *1 *1 *1 *1 *1 *1 *1 *1 *1

@Rn+,SR *1 *1 *1 *1 *1 *1 *1 *1 *1 *1
MOV @(disp,PC),Rn × × × × × × × × × ×
 symbol,Rn × × × × × × × × × ×

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 879 of 1176
Mar 01, 2022

Table 11.21 Relationship between Delayed Branch Instructions and Delay Slot Instructions
(cont)

 Delayed Branch Instruction
Delay Slot Instruction BF/S BT/S BRAF BSRF BRA BSR JMP JSR RTS RTE
MOVA @(disp,PC),R0 × × × × × × × × × ×

symbol,R0 × × × × × × × × × ×
LDRS @(disp,PC) × × × × × × × × × ×

symbol × × × × × × × × × ×
LDRE @(disp,PC) × × × × × × × × × ×

symbol × × × × × × × × × ×
Extended
instructions

MOV.L #imm,Rn × × × × × × × × × ×
MOV.W #imm,Rn × × × × × × × × × ×
MOVA #imm,R0 × × × × × × × × × ×

32-bit instructions*2 × × × × × × × × × ×
Register bank-related
instructions*3

× × × × × × × × × ×

Any other instructions O O O O O O O O O O
Symbol meanings:
O: Normal, i.e., the assembler generates the specified object code.
×: Error 150 or 151
 The instruction specified is inappropriate as a delay slot instruction.
 The assembler generates object code with a NOP instruction (H'0009).
Notes: 1. Operates normally when the CPU type is SH-1, SH-2, SH-2E, SH2-DSP, SH-2A, or

SH2A-FPU.
Any other CPU type will cause error 150 or 151 to occur.

 2. 32-bit instructions:
Instructions that accept a register-indirect address with 12-bit displacement or 20-bit
immediate data as an operand: MOVI20 and MOVI20S instructions.

 3. Register bank-related instructions: RESBANK, LDBANK, and STBANK instructions.

Note: If the delayed branch instruction and the delay slot instruction are coded in different
sections, the assembler does not check the validity of the delay slot instruction.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 880 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(3) Notes on Address Calculations
When the operand addressing mode is PC relative with displacement, i.e., @(disp,PC), the
value of PC must be taken into account in coding. The value of PC can vary depending on
certain conditions.
(a) Normal Case

The value of PC is the first address in the currently executing instruction plus 4 bytes.

Example:

(Consider the state when a MOV instruction is being executed at absolute address H'00001000.)

Figure 11.1 Address Calculation Example (Normal Case)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 881 of 1176
Mar 01, 2022

(b) During the Delay Slot Instruction
The value of PC is destination address for the delayed branch instruction plus 2 bytes.

Example:

(Consider the state when a MOV instruction is being executed at absolute address H'00001000.)

Figure 11.2 Address Calculation Example (When the Value of PC Differs Due to a
Branch)

Supplement: When the operand is the PC relative specified with the symbol, the assembler
derives the displacement taking account of the value of PC when generating the
object code.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 882 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(c) During the Execution of Either a MOV.L @(disp,PC),Rn or a MOVA @(disp,PC),R0
When the value of PC is not a multiple of 4, microprocessors correct the value by
discarding the lower 2 bits when calculating addresses.

Example 1:

When the microprocessor corrects the value of PC
(Consider the state when a MOV instruction is being executed at address H'00001002.)

Figure 11.3 Address Calculation Example (When Microprocessor Corrects the Value
of PC)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 883 of 1176
Mar 01, 2022

Example 2:

When the microprocessor does not correct the value of PC
(Consider the state when a MOV instruction is being executed at address H'00001000.)

Figure 11.4 Address Calculation Example (When Microprocessor Does Not Correct
the Value of PC)

Supplement: When the operand is the PC relative specified with the symbol, the assembler
derives the displacement taking account of the value of PC when generating the
object code.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 884 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.3 DSP Instructions

11.3.1 Program Contents

(1) Source Statements
The SH2-DSP, SH3-DSP, and SH4AL-DSP instructions are classified into two types:
executable instructions and DSP instructions. The DSP instructions manipulate DSP registers.
The instruction set and description format of DSP instructions are different from those of the
executable instructions. For the DSP instructions, many operations can be included in one
statement. The DSP instruction operation is as follows:
 DSP operation:

Specifies operations between DSP registers.
PABS, PADD, PADDC, PAND, PCLR, PCMP, PCOPY, PDEC, PDMSB, PINC, PLDS,
PMULS, PNEG, POR, PRND, PSHA, PSHL, PSTS, PSUB, PSUBC, PSWAP, PXOR

 X data transfer operation:
Specifies data transfer between a DSP register and X data memory.
MOVX, NOPX

 Y data transfer operation:
Specifies data transfer between a DSP register and Y data memory.
MOVY, NOPY

 Single data transfer operation:
Specifies data transfer between a DSP register and memory.
MOVS

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 885 of 1176
Mar 01, 2022

(2) Parallel Operation Instructions
Parallel operation instructions specify DSP operations as well as data transfer between a DSP
register and X or Y data memory at the same time. The instruction size is 32 bits. The
description format is as follows:

[<label>][∆<DSP operation part>][∆<data transfer part>][<comment>]

(a) DSP Operation Part Description Format:
[<condition>∆]<DSP operation>∆<operand>[∆...]
• Condition:

Specifies how parallel operation instruction is executed as follows:
DCT: The instruction is executed when the DC bit is 1.
DCF: The instruction is executed when the DC bit is 0.

• DSP operation:
Specifies DSP operation.
PADD and PMULS, PCLR and PMULS, and PSUB and PMULS can be specified in
combination.

(b) Data Transfer Part Description Format:

[<X data transfer operation>[∆<operand>]] [∆<Y data transfer operation>[∆<operand>]]

Be sure to specify X data transfer and Y data transfer in this order. Inputting an instruction
is not required when the data move instruction is NOPX or NOPY.

Example:

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 886 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(3) Data Transfer Instructions
Two types of data move instructions are available: combination of X data memory transfer and
Y data memory transfer, and single data transfer. The description formats are as follows:
(a) Combination of X Data Memory Transfer and Y Data Memory Transfer Instructions:

[<label>][∆<X data transfer operation>[∆<operand>]]
 [∆<Y data transfer operation>[∆<operand>]][<comment>]

Be sure to specify X data memory transfer and Y data memory transfer in this order.
Inputting an instruction is not required when the data move instruction is NOPX or NOPY.
Note that both X data memory and Y data memory cannot be omitted, unlike the parallel
operation instruction.

Example:
LABEL2: MOVX.W @R4,X0 ;Data move instruction

(Y data memory transfer is omitted)
 MOVX.W @R4,X0 MOVY.W @R6+, Y0

(b) Single Data Transfer Instruction:

[<label>][∆<single data transfer operation>∆<operand>][<comment>]

Specifies the MOVS instruction.

Example:
LABEL3: MOVS.W @-R2,A0 ;Single data transfer

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 887 of 1176
Mar 01, 2022

(4) Coding of Source Statements Across Multiple Lines
For the DSP instructions, many operations can be included in one statement, and therefore,
source statements become long and complicated. To make programs easy to read, source
statements for DSP instructions can be written across multiple lines by separating between an
operand and an operation, in addition to separating at a comma between operands.
Write source statements across multiple lines using the following procedure.
 Insert a new line between an operand and an operation.
 Insert a plus sign (+) in the first column of the new line.
 Continue writing the source statement following the plus sign.
Spaces and tabs can be inserted following the plus sign.

Example:
 PADD A0,M0,X0
+ PMULS A1,Y1,M0
+ MOVX @R4,X0
+ MOVY @R6,Y1
; A single source statement is written across four lines.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 888 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.3.2 DSP Instructions

(1) DSP Operation Instructions
Table 11.22 lists DSP instructions in mnemonic.

Table 11.22 DSP Instructions in Mnemonic

Specifications Mnemonic
DSP arithmetic operation instructions PADD, PSUB, PCOPY, PDMSB, PINC, PNEG, PMULS,

PADDC, PSUBC, PCMP, PDEC, PABS, PRND, PCLR,
PLDS, PSTS, PSWAP

DSP logic operation instructions POR, PAND, PXOR
DSP shift operation instructions PSHA, PSHL

(a) Operation Size:
For the DSP operation instructions, operation size cannot be specified.

(b) Addressing Mode:
Table 11.23 lists addressing modes for the DSP operation instructions.

Table 11.23 Addressing Modes for DSP Operation Instructions

Addressing Mode Description Format
DSP register direct Dp (DSP register name)
Immediate data #imm

• DSP register direct
Table 11.24 lists registers that can be specified in DSP register direct addressing mode.
For Sx, Sy, Dz, Du, Se, Sf, and Dg, refer to table 11.26, DSP Operation Instructions.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 889 of 1176
Mar 01, 2022

Table 11.24 Registers that Can Be Specified in DSP Register Direct Addressing Mode

 DSP Register
 A0 A1 M0 M1 X0 X1 Y0 Y1
Dp Sx Yes Yes Yes Yes
 Sy Yes Yes Yes Yes
 Dz Yes Yes Yes Yes Yes Yes Yes Yes
 Du Yes Yes Yes Yes
 Se Yes Yes Yes Yes
 Sf Yes Yes Yes Yes
 Dg Yes Yes Yes Yes

• Immediate data
Immediate data can only be specified for the first operand of the PSHA and PSHL
instructions. The following items can be specified:

 Value type
Constants, symbols, or expressions can be specified.

 Symbol type
Symbols including relative and externally defined symbols can be specified as
immediate data.

 Value range
Table 11.25 lists the specifiable value ranges.

Table 11.25 Ranges of Immediate Data

Immediate Data Range
PSHA H'FFFFFFE0 to H'00000020 (–32 to 32)
PSHL H'FFFFFFF0 to H'00000010 (–16 to 16)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 890 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(c) Combination of Multiple DSP Operation Instructions:
The PADD instruction and the PMULS instruction, the PCLR instruction and the PMULS
instruction, or the PSUB instruction and the PMULS instruction can be specified in
combination. Each of these two combinations is basically one DSP instruction. The PADD,
PCLR, or PSUB operand and a PMULS operand are separately described so that programs
can be read easily.
Example:
PADD A0,M0,A0 PMULS X0,Y0,M0 NOPX MOVY.W @R6+,Y0
PCLR A1 PMULS X0,Y0,M0 NOPX MOVY.W @R6+,Y0
PSUB A1,M1,A1 PMULS X1,Y1,M1 MOVX @R4+,X0 NOPY

Note: Warning 701 is displayed if the same register is specified as the destination registers

when multiple DSP operation instructions are specified in combination.
 PADD A0,M0,A0 PMULS X0,Y0,A0 ; Warning 701 will occur.

(d) Conditional DSP Operation Instructions:

Conditional DSP operation instructions specify if the program is executed according to the
DC bit of the DSR register.
DCT: When the DC bit is 1, the instruction is executed.
DCF: When the DC bit is 0, the instruction is executed.
Conditional DSP operation instructions are the following:
PABS, PADD, PAND, PCLR, PCOPY, PDEC, PDMSB, PINC, PLDS, PNEG, POR,
PRND, PSHA, PSHL, PSTS, PSUB, PSWAP, PXOR

(e) DSP Operation Instruction List:

Table 11.26 lists DSP operation instructions for the SH2-DSP and SH3-DSP. Table 11.27
lists DSP operation instructions for the SH4AL-DSP added to those of the SH2-DSP and
SH3-DSP. For the registers that can be specified as Sx, Sy, Dz, Du, Se, Sf, and Dg, refer to
table 11.24, Registers that Can Be Specified in DSP Register Direct Addressing Mode.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 891 of 1176
Mar 01, 2022

Table 11.26 DSP Operation Instructions

Mnemonic Addressing Mode Mnemonic Addressing Mode
PABS Sx, Dz
PABS Sy, Dz
PADD Sx, Sy, Dz
PADD Sx, Sy, Du PMULS Se, Sf, Dg
PADDC Sx, Sy, Dz
PAND Sx, Sy, Dz
PCLR Dz
PCMP Sx, Sy
PCOPY Sx, Dz
PCOPY Sy, Dz
PDEC Sx, Dz
PDEC Sy, Dz
PDMSB Sx, Dz
PDMSB Sy, Dz
PINC Sx, Dz
PINC Sy, Dz
PLDS Dz, MACH
PLDS Dz, MACL
PMULS Se, Sf, Dg
PNEG Sx, Dz
PNEG Sy, Dz
POR Sx, Sy, Dz
PRND Sx, Dz
PRND Sy, Dz
PSHA #imm, Dz
PSHA Sx, Sy, Dz
PSHL #imm, Dz
PSHL Sx, Sy, Dz
PSTS MACH, Dz
PSTS MACL, Dz

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 892 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.27 DSP Operation Instructions

Mnemonic Addressing Mode Mnemonic Addressing Mode
PSUB Sx, Sy, Dz
PSUB Sx, Sy, Du PMULS Se, Sf, Dg
PSUBC Sx, Sy, Dz
PXOR Sx, Sy, Dz
PCLR Du PMULS Se,Sf,Dg
PSUB Sy,Sx,Dz
PSWAP Sx,Dz
PSWAP Sy,Dz

(2) Data Transfer Instructions
(a) Mnemonics:

Two types of data transfer instructions are available: dual memory transfer instructions and
single memory transfer instructions.
Dual memory transfer instructions specify data transfer, at the same time, between X
memory and a DSP register, and between Y memory and a DSP register.
Single memory transfer instructions specify data transfer between arbitrary memory and a
DSP register. Table 11.28 lists data transfer instructions in mnemonic.

Table 11.28 Data Transfer Instructions in Mnemonic

Classification Mnemonic
Dual memory transfer X memory transfer NOPX

MOVX
 Y memory transfer NOPY

MOVY
Single memory transfer MOVS

(b) Operation Size:
NOPX and NOPY instructions: Operation size cannot be specified.
MOVX and MOVY instructions: Word size (W) or longword size (L) can be specified. If

omitted, word size is assumed.
MOVS instruction: Word size (W) or longword size (L) can be specified. If

omitted, longword size is assumed.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 893 of 1176
Mar 01, 2022

(c) Addressing Mode:
Table 11.29 lists addressing modes that can be specified for the data transfer instructions.

Table 11.29 Addressing Modes of Data Transfer Instructions

Addressing mode Description
DSP register direct Dz
Register indirect @Az
Register indirect with post-increment @Az+
Register indirect with index/post-increment @Az+Iz
Register indirect with pre-decrement @-Az

Register indirect with index/post-increment is a special addressing mode for the DSP data
transfer instructions. In this mode, after referring to the contents indicated by register Az,
register Az contents are incremented by the value of the Iz register.

(d) Registers that Can Be Specified in Addressing Modes:
Table 11.30 lists registers that can be specified in the DSP register direct, register indirect,
register indirect with post-increment, register indirect with index/post-increment, and
register indirect with pre-decrement addressing modes. For Dx, Dy, Dxy, Ds, Da, Ax, Ax2,
Ay, Ay2, As, Ix, Iy, and Is, refer to table 11.31, Data Transfer Instructions.

Table 11.30 Registers that Can Be Specified in Addressing Modes for Data Transfer

Instructions

 General Registers DSP Registers

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 A0 A1 M0 M1 X0 X1 Y0 Y1 A0G A1G

Dz Dx Yes Yes

Dy Yes Yes

Dxy Yes Yes Yes Yes

Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Da Yes Yes

Az Ax Yes Yes

Ax2 Yes Yes Yes Yes

Ay Yes Yes

Ay2 Yes Yes Yes Yes

As Yes Yes Yes Yes

Iz Ix Yes

 Iy Yes

 Is Yes

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 894 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Note: Warning 703 is displayed if the destination register for the DSP instruction and the
destination register for the data transfer instruction are the same register in the same
statement.

Example:
PADD A0,M0,Y0 NOPX MOVY.W @R6+,Y0 → Warning 703

(e) Data Transfer Instruction List:
Table 11.31 lists data transfer instructions for the SH2-DSP and SH3-DSP. Table 11.32
lists data transfer instructions for the SH4AL-DSP added to those of the SH2-DSP and
SH3-DSP. For registers that can be specified for Dx, Dy, Dxy, Ds, Da, Ax, Ax2, Ay, Ay2,
As, Ix, Iy, and Is, refer to table 11.30, Registers that Can Be Specified in Addressing
Modes for Data Transfer Instructions.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 895 of 1176
Mar 01, 2022

Table 11.31 Data Transfer Instructions

Classification Mnemonic Addressing Mode
X data transfer instructions NOPX
 MOVX.W @Ax, Dx
 MOVX.W @Ax+, Dx
 MOVX.W @Ax+Ix, Dx
 MOVX.W Da, @Ax
 MOVX.W Da, @Ax+
 MOVX.W Da, @Ax+Ix
Y data transfer instructions NOPY
 MOVY.W @Ay, Dy
 MOVY.W @Ay+, Dy
 MOVY.W @Ay+Iy, Dy
 MOVY.W Da, @Ay
 MOVY.W Da, @Ay+
 MOVY.W Da, @Ay+Iy
Single data transfer instructions MOVS.W @-As, Ds
 MOVS.W @As, Ds
 MOVS.W @As+, Ds
 MOVS.W @As+Is, Ds
 MOVS.W Ds, @-As
 MOVS.W Ds, @As
 MOVS.W Ds, @As+
 MOVS.W Ds, @As+Is
 MOVS.L @-As, Ds
 MOVS.L @As, Ds
 MOVS.L @As+, Ds
 MOVS.L @As+Is, Ds
 MOVS.L Ds, @-As
 MOVS.L Ds, @As
 MOVS.L Ds, @As+
 MOVS.L Ds, @As+Is

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 896 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.32 Data Transfer Instructions

Classification Mnemonic Addressing Mode
X data transfer instructions MOVX.W @Ax2,Dxy
 MOVX.W @Ax2+,Dxy
 MOVX.W @Ax2+R8,Dxy
 MOVX. L @Ax2,Dxy
 MOVX. L @Ax2+,Dxy
 MOVX. L @Ax2+R8,Dxy
Y data transfer instructions MOVY.W @Ay2,Dxy
 MOVY.W @Ay2+,Dxy
 MOVY.W @Ay2+R9,Dxy
 MOVY. L @Ay2,Dxy
 MOVY. L @Ay2+,Dxy
 MOVY. L @Ay2+R9,Dxy

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 897 of 1176
Mar 01, 2022

11.4 Assembler Directives

The assembler directives are instructions that the assembler interprets and executes. The
underlines indicate the default. Table 11.33 lists the assembler directives provided by this
assembler.

Table 11.33 Assembler Directives

Type Mnemonic Function
Target CPU .CPU Specifies the target CPU.
Section and the location
counter

.SECTION

.ORG

.ALIGN

Declares a section.
Sets the value of the location counter.
Corrects the value of the location counter to a
multiple of boundary alignment value.

Symbols .EQU
.ASSIGN
.REG
.FREG

Sets a symbol value.
Sets or resets a symbol value.
Defines the alias of a register name.
Defines a floating-point register name.

Data and data area
reservation

.DATA

.DATAB

.SDATA

.SDATAB

.SDATAC

.SDATAZ

.FDATA

.FDATAB

.XDATA

.RES

.SRES

.SRESC

.SRESZ

.FRES

Reserves integer data.
Reserves an integer data block.
Reserves string literal data.
Reserves a string literal data block.
Reserves string literal data (with length).
Reserves string literal data (with zero terminator).
Reserves floating-point data.
Reserves a floating-point data block.
Reserves fixed-point data.
Reserves data area.
Reserves string literal data area.
Reserves string literal data area (with length).
Reserves string literal data area (with zero
terminator).
Reserves floating-point data area.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 898 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 11.33 Assembler Directives (cont)

Type Mnemonic Function
Externally defined and
externally referenced symbol

.EXPORT

.IMPORT

.GLOBAL

Declares externally defined symbols.
Declares externally referenced symbols.
Declares externally defined and externally
referenced symbols.

Object modules .OUTPUT

.DEBUG

.ENDIAN
.LINE

Controls object module and debugging information
output.
Controls the output of symbolic debugging
information.
Selects big endian or little endian.
Changes line number.

Assemble listing .PRINT
.LIST
.FORM

.HEADING
.PAGE
.SPACE

Controls assemble listing output.
Controls the output of the source program listing.
Sets the number of lines and columns in the
assemble listing.
Sets the header for the source program listing.
Inserts a new page in the source program listing.
Outputs blank lines to the source program listing.

Other directives .PROGRAM
.RADIX

.END

.STACK

Sets the name of the object module.
Sets the radix in which integer constants with no
radix specifier are interpreted.
Specifies an entry point and the end of the source
program.
Defines the stack value for the specified symbol.

Note: .FILE is only used as a descriptor for assembly source code that is output by the compiler,
and is only valid for such code. Do not use .FILE in your own assembly programs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 899 of 1176
Mar 01, 2022

.CPU

Description Format: ∆.CPU∆<target CPU>

Specification Target CPU
SH1 Assembles program for SH-1
SH2 Assembles program for SH-2
SH2E Assembles program for SH-2E
SH2A Assembles program for SH-2A
SH2AFPU Assembles program for SH2A-FPU
SHDSP Assembles program for SH2-DSP
SH3 Assembles program for SH-3
SH3DSP Assembles program for SH3-DSP
SH4 Assembles program for SH-4
SH4A Assembles program for SH-4A
SH4ALDSP Assembles program for SH4AL-DSP

 The label field is not used.

Description: .CPU specifies the target CPU for which the source program is assembled.

Specify this directive at the beginning of the source program. If it is not
specified at the beginning, an error will occur. However, directives related to
assembly listing can be written before this directive.

When several .CPUs are specified, only the first specification becomes valid.

The assembler gives priority to target CPU specification in the order of
cpu option, .CPU, and the SHCPU environment variable.

If the directive is not specified, the CPU selected by the environment variable
SHCPU becomes valid.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 900 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: .CPU SH2 ; Assembles program for the SH-2.
.SECTION A,CODE,ALIGN=4
MOV.L R0,R1
MOV.L R0,R2

.SECTION

Description Format: ∆.SECTION∆<section name> [,<section attribute> [,<section type>]]

<section attribute>={ CODE | DATA | STACK | DUMMY }
<section type>={LOCATE= <start address>|
 ALIGN=<boundary alignment value>}

 The label field is not used.

Description: .SECTION specifies the declaration and restart of a section.
A section is a part of a program, and the optimizing linkage editor regards it
as a unit of processing.
The section attributes are as follows.
• CODE: Code section
• DATA: Data section
• STACK: Stack section
• DUMMY: Dummy section
Use LOCATE=<start address> to output an object in an absolute address
format. Use ALIGN=<boundary alignment value> to output an object in a
relative address format. The optimizing linkage editor will adjust the start
address of the section to be the multiple of the boundary alignment value.
When the section type is not specified, ALIGN=4 is assumed.
The following describes section declaration using the simple examples
shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 901 of 1176
Mar 01, 2022

It is possible to redeclare (and thus restart,) a section that was previously
declared in the same file. The following is a simple example of section restart.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 902 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

When using .SECTION to restart a section, the second and third operands must be omitted. (The
original specifications when first declaring the section remain valid.)

Use LOCATE = <start address> as the third operand when starting an absolute address section.
The start address is the absolute address of the start of that section.

The symbol value must be specified as follows:
• The specification must be a constant value, and
• Forward reference symbols must not appear in the specification.

The values allowed for the start address are from H'00000000 to H'FFFFFFFF. (From 0 to
4,294,967,295 in decimal.)
Use ALIGN = <boundary alignment value> to start a relative address section. The optimizing
linkage editor will adjust the start address of the section to be the multiple of the boundary
alignment value.
The boundary alignment value must be specified as follows:
• The specification must be a constant value, and
• Forward reference symbols must not appear in the specification.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 903 of 1176
Mar 01, 2022

The values allowed for the boundary alignment value are powers of 2, e.g. 20, 21, 22, ..., 231. For
code sections, the values must be 4 or larger powers of 2, e.g. 22, 23, 24, ..., 231.
The assembler provides a default section for the following cases:
• The use of executable, extended, or DSP instructions when no section has been declared.
• The use of data reservation assembler directives when no section has been declared.
• The use of .ALIGN when no section has been declared.
• The use of .ORG when no section has been declared.
• Reference to the location counter when no section has been declared.
• The use of statements consisting of only the label field when no section has been declared.

The default section is the following section:
• Section name: P
• Section type: Code section

 Relative address section (with a boundary alignment value of 4)

Example:

Note: This example assumes .SECTION does not appear in the parts indicated by "∼".

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 904 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.ORG

Description Format: ∆.ORG∆<location-counter value>

The label field is not used.

Description: .ORG sets the value of the location counter. .ORG is used to place executable
instructions or data at a specific address.
The location-counter value must be specified as follows:
• The specification must be a constant value or an address within the
 section, and,
• Forward reference symbols must not appear in the specification.

The values allowed for the location-counter value are from H'00000000 to
H'FFFFFFFF. (From 0 to 4,294,967,295 in decimal.)
When the location-counter value is specified with an absolute address value,
the following condition must be satisfied:
<location-counter value> ≥ <section start address> (when compared as
unsigned values)
The assembler handles the value of the location counter as follows:
• An absolute address value within an absolute address section.
• A relative address value (relative distance from the section head) within a
 relative address section.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 905 of 1176
Mar 01, 2022

Example: .SECTION DT,DATA,LOCATE=H'FFFF0000
.DATA.L H'11111111
.ORG H'FFFF0010 ; This statement sets the value of the location
 ; counter.
.DATA.L H'22222222 ; The integer data H'22222222 is stored at
 ; absolute address H'FFFF0010.
∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 906 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.ALIGN

Description Format: ∆.ALIGN∆<boundary alignment value>

The label field is not used.

Description: .ALIGN corrects the location-counter value to be a multiple of the boundary
alignment value. Executable instructions and data can be allocated on
specific boundary values (address multiples) by using .ALIGN.
The location counter value must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2, e.g.
20, 21, 22, ..., 231.
When .ALIGN is used in a relative section the following must be satisfied:

 Boundary alignment value specified by .SECTION ≥ Boundary
alignment value specified by .ALIGN

When .ALIGN is used in a code or data section, the assembler inserts NOP
instructions in the object code* to adjust the value of the location counter.
Odd byte size areas are filled with H'09.

Note: This object code is not displayed in the assemble listing.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 907 of 1176
Mar 01, 2022

Example: .SECTION P,CODE,ALIGN=4
.DATA.B H'11
.DATA.B H'22
.DATA.B H'33

.ALIGN 2 ; This statement adjusts the value of the location
.DATA.W H'4444 ; counter to be a multiple of 2.

.ALIGN 4 ; This statement adjusts the value of the location
.DATA.L H'55555555 ; counter to be a multiple of 4.
∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 908 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.EQU

Description Format: <symbol>[:]∆.EQU∆<symbol value>

Description: .EQU sets a value to a symbol.

Symbols defined with .EQU cannot be redefined.
The symbol value must be specified as follows:
• The specification must be a constant value, an address value, or an
 externally referenced symbol value* and,
• Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H'00000000 to
H'FFFFFFFF.
(From -2,147,483,648 to 4,294,967,295 in decimal.)

Note: An externally referenced symbol, externally referenced symbol +
constant, or externally referenced symbol – constant can be specified.

Example: ∼

X1: .EQU 10 ;The value 10 is set to X1.
X2: .EQU 20 ;The value 20 is set to X2.

 CMP/EQ #X1,R0 ;This is the same as CMP/EQ #10,R0.
 BT LABEL1
 CMP/EQ #X2,R0 ;This is the same as CMP/EQ #20,R0.
 BT LABEL2

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 909 of 1176
Mar 01, 2022

.ASSIGN

Description Format: <symbol>[:]∆.ASSIGN∆<symbol value>

Description: .ASSIGN sets a value to a symbol.

Symbols defined with .ASSIGN can be redefined with .ASSIGN.
The symbol value must be specified as follows:
• The specification must be a constant value or an address value, and,
• Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H'00000000 to
H'FFFFFFFF. (From –2,147,483,648 to 4,294,967,295 in decimal.)
Definitions with .ASSIGN are valid from the point of the definition forward
in the program.
Symbols defined with .ASSIGN have the following limitations:
• They cannot be used as externally defined or externally referenced
 symbols.
• They cannot be referenced from the debugger.

Example: ∼

X1: .ASSIGN 1
X2: .ASSIGN 2
 CMP/EQ #X1,R0 ;This is the same as CMP/EQ #1,R0.
 BT LABEL1
 CMP/EQ #X2,R0 ;This is the same as CMP/EQ #2,R0.
 BT LABEL2

 ∼

X1: .ASSIGN 3
X2: .ASSIGN 4
 CMP/EQ #X1,R0 ; This is the same as CMP/EQ #3,R0.
 BT LABEL3
 CMP/EQ #X2,R0 ; This is the same as CMP/EQ #4,R0.
 BF LABEL4
 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 910 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.REG

Description Format: <symbol>[:]∆.REG∆<register name>

 or
<symbol>[:]∆.REG∆(<register name>)

Description: .REG defines the alias of a register name.

The alias of a register name defined with .REG can be used in exactly the
same manner as the original register name.
The alias of a register name defined with .REG cannot be redefined.
The alias of a register name can only be defined for the general registers (R0
to R15, and SP).
Definitions with .REG are valid from the point of the definition forward in
the program.
Symbols defined with .REG have the following limitations:
They cannot be used as externally referenced or externally defined symbols.

Example: ∼

MIN: .REG R10
MAX: .REG R11
 MOV #0,MIN ;This is the same as MOV #1,R10.
 MOV #99,MAX ;This is the same as MOV #99,R11.

 CMP/HS MIN,R1
 BF LABEL
 CMP/HS R1,MAX
 BF LABEL

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 911 of 1176
Mar 01, 2022

.FREG

Description Format: <symbol>[:]∆.FREG∆<floating-point register name>
 or
<symbol>[:]∆.FREG∆(<floating-point register name>)

Description: .FREG defines the alias of a floating-point register name.

The alias of a floating-point register name defined with .FREG can be used
in exactly the same manner as the original register name.
The alias of a floating-point register name defined with .FREG cannot be
redefined.
The alias can only be defined for the floating-point registers FRm (m = 0 to
15), DRn (n = 0, 2, 4, 6, 8, 10, 12, 14), XDn (n = 0, 2, 4, 6, 8, 10, 12, 14), and
FVi (i = 0, 4, 8, 12).
Definitions with the .FREG are valid from the point of the definition forward
in the program.
Symbols defined with .FREG have the following limitations:
They cannot be used as externally referenced or externally defined symbols.
.FREG is valid only when SH2E, SH4, SH4A, or SH2AFPU is selected as
the CPU type.

Example: ∼

MAX: .FREG FR11
 FMOV FR1,MAX ; This is the same as
 ; FMOV FR1,FR11.

 FCMP/EQ MAX,FR2 ; This is the same as
 ; FCMP/EQ FR11,FR2.
 BF LABEL

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 912 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.DATA

Description Format: [<symbol>[:]]∆.[.<operation size>]∆<integer data>[,...]

<operation size>: { B | W | L }

Description: .DATA reserves integer data in memory.

The specifier determines the size of the reserved data.
The longword size is used when the operation size is omitted.
Arbitrary values, including relative values, forward referenced symbols and
externally referenced symbols, can be used to specify the integer data.
The operation size and the range of integer data are as follows:
Operation Size Integer Data Range*
B (Byte) H'00000000 to H'000000FF (0 to 255)

H'FFFFFF80 to H'FFFFFFFF (–128 to –1)
W (Word, 2 bytes) H'00000000 to H'0000FFFF (0 to 65,535)

H'FFFF8000 to H'FFFFFFFF (–32,768 to –1)
L (Longword, 4
bytes)

H'00000000 to H'7FFFFFFF (0 to 4,294,967,295)
H'80000000 to H'FFFFFFFF (–2,147,483,648 to –1)

Note: Numbers in parentheses are decimal.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 913 of 1176
Mar 01, 2022

Example: ∼

 .ALIGN 4
X: .DATA.L H'11111111 ;
 .DATA.W H'2222,H'3333; These statements reserve integer
 ; data.
 .DATA.B H'44,H'55 ;

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 914 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.DATAB

Description Format: [<symbol>[:]]∆.DATAB[.<operation range>]∆<block count>,<integer data>

<operation size>: { B | W | L }

Description: .DATAB reserves the specified number of integer data items consecutively in

memory.

The operation size determines the size of the reserved data.
The longword size is used when the operation size is omitted.

The block count must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

Arbitrary values, including relative values forward reference symbols, and
externally referenced symbols, can be used to specify the integer data.
The operation size and the range of block size are as follows:

Operation Size Block Size Range*
B (Byte) H'00000001 to H'FFFFFFFF (1 to 4,294,967,295)
W (Word, 2 bytes) H'00000001 to H'7FFFFFFF (1 to 2,147,483,647)
L (Longword, 4
bytes)

H'00000001 to H'3FFFFFFF (1 to 1,073,741,823)

Operation Size Integer Data Range*
B H'00000000 to H'000000FF (0 to 255)

H'FFFFFF80 to H'FFFFFFFF (–128 to –1)
W H'00000000 to H'0000FFFF (0 to 65,535)

H'FFFF8000 to H'FFFFFFFF (–32,768 to –1)
L H'00000000 to H'7FFFFFFF (0 to 4,294,967,295)

H'80000000 to H'FFFFFFFF (–2,147,483,648 to –1)
Note: Numbers in parentheses are decimal.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 915 of 1176
Mar 01, 2022

Example: ∼

 .ALIGN 4
X: .DATAB.L 1,H'11111111 ;
 .DATAB.W 2,H'2222 ; This statement reserves two blocks
 .DATAB.B 3,H'33 ; of integer data.

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 916 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.SDATA

Description Format: [<symbol>[:]]∆.SDATA∆"<string literal>"[,...]

Description: .SDATA reserves string literal data in memory.

A control character can be appended to a string literal.
The syntax for this notation is as follows:
"<string literal>"<ASCII code for a control character>
The ASCII code for a control character must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

Example: ∼

 .ALIGN 4
X: .SDATA "AAAAA" ; This statement reserves string
 ; literal data.
 .SDATA """BBB""" ; The string literal in this example
 ; includes double quotation marks.
 .SDATA "ABAB"<H'07> ; The string literal in this example
 ; has a control character appended.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 917 of 1176
Mar 01, 2022

.SDATAB

Description Format: [<symbol>[:]]∆.SDATAB∆<block count>,"<string literal>"

Description: .SDATAB reserves the specified number of string literals consecutively in

memory.
The <block count> must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

A value of 1 or larger must be specified as the block count.
The maximum value of the block count depends on the length of the string
literal data.
(The length of the string literal data multiplied by the block count must be
less than or equal to H'FFFFFFFF (4,294,967,295) bytes.)
A control character can be appended to a string literal.
The syntax for this notation is as follows:
"<string literal>"<ASCII code for a control character>
The ASCII code for a control character must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 918 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: ∼
 .ALIGN 4
X:
 .SDATAB 2,"AAAAA" ; This statement reserves two
 ; string literal data blocks.
 .SDATAB 2,"""BBB""" ; The string literal in this
 ; example includes double quotation
 ; marks.
 .SDATAB 2,"ABAB"<H'07> ; The string literal in this
 ; example has a control character
 ; appended.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 919 of 1176
Mar 01, 2022

.SDATAC

Description Format: [<symbol>[:]]∆.SDATAC∆"<string literal>"[,...]

Description: .SDATAC reserves string literal data (with length) in memory.

A string literal with length is a string literal with an inserted leading byte that
indicates the length of the string.
The length indicates the size of the string literal (not including the length) in
bytes.
A control character can be appended to a string literal.
The syntax for this notation is as follows:
"<string literal>"<control code>
The ASCII code for a control character must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 920 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: ∼

 .ALIGN 4
X:
 .SDATAC "AAAAA" ; This statement reserves character
 ; string data (with length).
 .SDATAC """BBB""" ; The string literal in this example
 ; includes double quotation marks.
 .SDATAC "ABAB"<H'07>; The string literal in this example
 ; has a control character appended.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 921 of 1176
Mar 01, 2022

.SDATAZ

Description Format: [<symbol>[:]]∆.SDATAZ∆"<string literal>"[,...]

Description: .SDATAZ reserves string literal data (with zero terminator) in memory.

A string literal with zero terminator is a string literal with an appended
trailing byte (with the value H'00) that indicates the end of the string.
A control character can be appended to a string literal.
The syntax for this notation is as follows:
"<string literal>"<ASCII code for a control character>
The ASCII code for a control character must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 922 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: ∼

 .ALIGN 4

X: .SDATAZ "AAAAA" ; This statement reserves character
 ; string data (with zero terminator).
 .SDATAZ """BBB""" ; The string literal in this example
 ; includes double quotation marks.
 .SDATAZ "ABAB"<H'07> ; The string literal in this example
 ; has a control character appended.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 923 of 1176
Mar 01, 2022

.FDATA

Description Format: [<symbol>[:]]∆.FDATA[.<operation size>]∆<floating-point data>[,...]

<operation size>: { S | D }

Description: .FDATA reserves floating-point data in memory.

The operation size determines the size of the reserved data.
Single precision is used when the operation size is omitted.
Operation size is as follows:
Operation Size Data Size

S Single precision (4 bytes)

D Double precision (8 bytes)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 924 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: ∼

 .ALIGN 4
X:
 .FDATA.S F'1.234 ; This statement reserves a 4-byte
 ; area 3F9DF3B6 (F'1.234S).
 .FDATA.S H'7F800000.S ; This statement reserves a 4-byte
 ; area 7F800000 (H'7F800000.S).
 .FDATA.D F'4.32D-1 ; This statement reserves an 8-byte
 ; area 3FDBA5E353F7CED9
 ; (F'4.32D-1).

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 925 of 1176
Mar 01, 2022

.FDATAB

Description Format: [<symbol>[:]]∆.FDATAB[.<operation size>]∆<block count>,

 <floating-point data>
<operation size>: { S | D }

Description: .FDATAB reserves the specified number of floating-point data items

consecutively in memory.
The operation size determines the size of the reserved data.
Single precision is used when the operation size is omitted.

The block count must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols, externally defined symbols, and relative
 symbols must not appear in specification.
The range of values that can be specified as the block count varies with the
operation size.
Operation Size Block Size Range*
S (single precision, 4 bytes) H'00000001 to H'3FFFFFFF

(1 to 1,073,741,823)
D (double precision, 8 bytes) H'00000001 to H'1FFFFFFF

(1 to 536,870,911)
Note: Numbers in parentheses are decimal.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 926 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: ∼

 .ALIGN 4
X:
 .FDATAB.S 2,H'7F800000.S ; This statement reserves two blocks
 ; of 4-byte areas 7F800000
 ; (H'7F800000.S).
 .FDATAB.D 3,F'4.32D-1 ; This statement reserves three
 ; blocks of 8-byte areas
 ; 3FDBA5E353F7CED9 (F'4.32D-1).

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 927 of 1176
Mar 01, 2022

.XDATA

Description Format: [<symbol>[:]]∆.XDATA[.<operation size>]∆<fixed-point data>[,...]

<operation size>: { W | L }

Description: .XDATA reserves fixed-point data in memory.
The operation size determines the size of the reserved data.
The longword size is used when the operation range is omitted.

The operation size is as follows:

Operation Size Data Size
W Word (2 bytes)
L Longword (4 bytes)

Example: ∼

 .ALIGN 4
X:
 .XDATA.L 0.5 ; This statement reserves 4-byte
 ; area (H'40000000).
 .XDATA.W 0.75,0.25 ; This statement reserves 2-byte
 ; areas (H'6000) and (H'2000).

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 928 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.RES

Description Format: [<symbol>[:]]∆.RES[.<operation size>]∆<area count>

<operation size>: { B | W | L }

Description: .RES reserves data areas in memory.

The operation size determines the size of one area.
The longword size is used when the specifier is omitted.
The area count must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

The range of values that can be specified as the area count varies with the
operation size.
The data size and the range of area count are as follows:
Operation Size Area Count Range*
B (byte) H'00000001 to H'FFFFFFFF (1 to 4,294,967,295)
W (word, 2 bytes) H'00000001 to H'7FFFFFFF (1 to 2,147,483,647)
L (longword, 4 bytes) H'00000001 to H'3FFFFFFF (1 to 1,073,741,823)
Note: Numbers in parentheses are decimal.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 929 of 1176
Mar 01, 2022

Example: ∼

 .ALIGN 4
X:
 .RES.L 2 ; This statement reserves two-longword-size
 ; areas.
 .RES.W 3 ; This statement reserves three-word-size
 ; areas.
 .RES.B 5 ; This statement reserves five-byte-size
 ; areas.

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 930 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.SRES

Description Format: [<symbol>[:]]∆.SRES∆<string literal area size>[,...]

Description: .SRES reserves string literal data areas.

The string literal area size must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

The values that are allowed for the string literal area size are from
H'00000001 to H'FFFFFFFF (from 1 to 4,294,967,295 in decimal).

Example: ∼

 .ALIGN 4
X:
 .SRES 7 ; This statement reserves a 7-byte area.
 .SRES 6 ; This statement reserves a 6-byte area.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 931 of 1176
Mar 01, 2022

.SRESC

Description Format: [<symbol>[:]]∆.SRESC∆<string literal area size>[,...]

Description: .SRESC reserves string literal data areas (with length) in memory.

A string literal with length is a string literal with an inserted leading byte that
indicates the length of the string.
The length indicates the size of the string literal (not including the length) in
bytes.
The string literal area size must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

The values that are allowed for the string literal area size are from
H'00000000 to H'000000FF (from 0 to 255 in decimal).
The size of the area reserved in memory is the size of the string literal area
itself plus 1 byte for the count.

Example: ∼

 .ALIGN 4
X:
 .SRESC 7 ; This statement reserves 7 bytes plus 1 byte
 ; for the count.
 .SRESC 6 ; This statement reserves 6 bytes plus 1 byte
 ; for the count.

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 932 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 933 of 1176
Mar 01, 2022

.SRESZ

Description Format: [<symbol>[:]]∆.SRESZ∆<string literal area size>[,...]

Description: .SRESZ allocates string literal data areas (with zero termination).

A string literal with zero termination is a string literal with an appended
trailing byte (with the value H'00) that indicates the end of the string.
The string literal area size must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

The values that are allowed for the string literal area size are from
H'00000000 to H'000000FF (from 0 to 255 in decimal).
The size of the area reserved in memory is the size of the string literal area
itself plus 1 byte for the terminating zero.

Example: ∼

 .ALIGN 4
X:
 .SRESZ 7 ; This statement reserves 7 bytes plus 1 byte
 ; for the terminating byte.
 .SRESZ 6 ; This statement reserves 6 bytes plus 1 byte
 ; for the terminating byte.

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 934 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 935 of 1176
Mar 01, 2022

.FRES

Description Format: [<symbol>[:]]∆.FRES[.<operation size>]∆<area count>

 <operation size> = { S | D }

Description: .FRES reserves floating-point data areas in memory.

The operation size determines the size of the reserved data.
Single precision is used when the specifier is omitted.
The area count must be specified as follows:
The specification must be a constant value,
• The specification must be a constant value, and,
• Forward reference symbols, externally referenced symbols, and relative
 symbols must not appear in the specification.
Operation size is as follows:

Operation Size Data Size
S Single precision (4 bytes)

D Double precision (8 bytes)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 936 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: ∼

 .ALIGN 4
X:
 .FRES.S 2 ; This statement reserves two areas.
 .FRES.D 3 ; This statement reserves three areas.

 ∼

.EXPORT

Description Format: ∆.EXPORT∆<symbol>[,...]

The label field is not used.

Description: .EXPORT declares externally defined symbols.
An externally defined symbol declaration is required to reference symbols
defined in the current file from other files.
The following can be declared to be externally defined symbols.
• Constant symbols (other than those defined with .ASSIGN)
• Absolute address symbols (other than address symbols in a dummy
 section)
• Relative address symbols

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 937 of 1176
Mar 01, 2022

To reference a symbol as an externally referenced symbol, it is necessary to
declare it to be an externally defined symbol, and also to declare it to be an
externally referenced symbol.
Externally referenced symbols are declared in the file in which they are
referenced using either .IMPORT or .GLOBAL.

Example: (In this example, a symbol defined in file A is referenced from file B.)
File A:

 .EXPORT X ; This statement declares X to be an
 ; externally defined symbol.
 ∼

X: .EQU H'10000000 ; This statement defines X.

 ∼

File B:

 .IMPORT X ; This statement declares X to be an
 ; externally referenced symbol.
 ∼

 .ALIGN 4
 .DATA.L X ; This statement references X.

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 938 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.IMPORT

Description Format: ∆.IMPORT∆<symbol>[,<symbol>...]

The label field is not used.

Description: .IMPORT declares externally referenced symbols.
An externally referenced symbol declaration is required to reference symbols
defined in another file.
Symbols defined in the current file cannot be declared to be externally
referenced symbols.
To reference a symbol as an externally referenced symbol, it is necessary to
declare it to be an externally referenced symbol, and also to declare it to be
an externally defined symbol.
Externally defined symbols are declared in the file in which they are defined
using either .EXPORT or .GLOBAL.

Example: (In this example, a symbol defined in file A is referenced from file B.)
File A:

 .EXPORT X ; This statement declares X to be an
 ; externally defined symbol.
 ∼

X: .EQU H'10000000 ; This statement defines X.

 ∼

File B:

 .IMPORT X ; This statement declares X to be an
 ; externally referenced symbol.
 ∼

 .ALIGN 4 ;
 .DATA.L X ; This statement references X.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 939 of 1176
Mar 01, 2022

.GLOBAL

Description Format: ∆.GLOBAL∆<symbol>[,<symbol>...]

The label field is not used.

Description: .GLOBAL declares symbols to be either externally defined symbols or
externally referenced symbols.
An externally defined symbol declaration is required to reference symbols
defined in the current file from other files. An externally referenced symbol
declaration is required to reference symbols defined in another file.
A symbol defined within the current file is declared to be an externally
defined symbol by a .GLOBAL declaration.
A symbol that is not defined within the current file is declared to be an
externally referenced symbol by a .GLOBAL declaration.
The following can be declared to be externally defined symbols.
• Constant symbols (other than those defined with .ASSIGN)
• Absolute address symbols (other than address symbols in a dummy

section)
• Relative address symbols

To reference a symbol as an externally referenced symbol, it is necessary to
declare it to be an externally defined symbol, and also to declare it to be an
externally referenced symbol.
Externally defined symbols are declared in the file in which they are defined
using either .EXPORT or .GLOBAL.
Externally referenced symbols are declared in the file in which they are
referenced using either .IMPORT or .GLOBAL.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 940 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: (In this example, a symbol defined in file A is referenced from file B.)
File A:

 .GLOBAL X ; This statement declares X to be an
 ; externally defined symbol.
 ∼

X: .EQU H'10000000 ; This statement defines X.

 ∼

File B:

 .GLOBAL X ; This statement declares X to be an
 ; externally referenced symbol.
 ∼

 .ALIGN 4 ;
 .DATA.L X ; This statement references X.

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 941 of 1176
Mar 01, 2022

.OUTPUT

Description Format: ∆.OUTPUT∆<output specifier>[,...]

<output specifier> = { OBJ | NOOBJ |
 DBG | NODBG }

The label field is not used.

Description: .OUTPUT controls object module and debugging information output.
 (1) Output of object module
 Controls the output of the object module.

Output Specifier Output Control
OBJ An object module is output.
NOOBJ No object module is output.

 (2) Output of debugging information
 Controls the output of the debugging information.

Output Specifier Output Control
DBG Debugging information is output in the object module.
NODBG No debugging information is output in the object module.

If .OUTPUT is used two or more times in a program with inconsistent output
specifiers, an error occurs.
Example: ∼

.OUTPUT OBJ

.OUTPUT NODBG

 ∼

← OK

 ∼
.OUTPUT OBJ

.OUTPUT NOOBJ
 ∼

← Error

Specifications concerning debugging information output are only valid when
an object module is output.
The assembler gives priority to command line option specifications
concerning the object module and debugging information output.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 942 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: This example and its description assume that no command line options
concerning object module or debugging information output were specified.

Example 1: .OUTPUT OBJ ; An object module is output.
 ; No debugging information is output.
 ∼

Example 2: .OUTPUT OBJ,DBG ; Both an object module and debugging
 ; information is output.
 ∼

Example 3: .OUTPUT OBJ,NODBG ; An object module is output.
 ; No debugging information is output.
∼

Supplement: Debugging information is required when debugging a program using the

debugger, and is part of the object module.
 Debugging information includes information about source statements and

information about symbols.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 943 of 1176
Mar 01, 2022

.DEBUG

Description Format: ∆.DEBUG∆<output specifier>

<output specifier>= { ON | OFF }

 The label field is not used.

Description: .DEBUG controls the output of symbolic debugging information.
This directive allows assembly time to be reduced by restricting the output of
symbolic debugging information to only those symbols required in
debugging.
The specification of .DEBUG is only valid when both an object module and
debugging information are output.
Output Specifier Output Control
ON Symbolic debugging information is output.
OFF No symbolic debugging information is output.

Example: ∼

.DEBUG OFF ; Starting with the next statement, the
 ; assembler does not output symbolic
 ; debugging information.

 ∼

.DEBUG ON ; Starting with the next statement, the

 ; assembler outputs symbolic debug
 ; information.

 ∼

Supplement: The term "symbolic debugging information" refers to the parts of debugging

information concerned with symbols.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 944 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.ENDIAN

Description Format: ∆.ENDIAN∆<endian>

<endian>:{ BIG | LITTLE}
The label field is not used.

Description: .ENDIAN specifies whether the byte order of the target microcomputer is in
big endian or little endian.
Enter .ENDIAN at the beginning of the source program.
The endian type takes priority for option specifications.
Endian Output Control
BIG Assembles program in big endian

LITTLE Assembles program in little endian

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 945 of 1176
Mar 01, 2022

Example: 1. When the big endian is selected
 .CPU SH3
 .ENDIAN BIG ; This statement selects the big endian.

 ∼

X: .DATA.L H'12345678 ;
 .DATA.W H'1234,H'5678 ; These statements reserve integer
 ; data.
 .DATA.B H'12,H'34 ;

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 946 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: 2. When the little endian is selected
 .CPU SH3
 .ENDIAN LITTLE ; This statement selects the little endian.

 ∼

X:
 .DATA.L H'12345678 ;
 .DATA.W H'1234,H'5678 ; These statements reserve integer
 ; data.
 .DATA.B H'12,H'34 ;

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 947 of 1176
Mar 01, 2022

.LINE

Description Format: ∆.LINE∆ ["<file name>",]<line number>

The label field is not used.

Description: .LINE changes the file name and line number referred to at error message
output or at debugging.
The line number and the file name specified with .LINE is valid until the
next .LINE.
The compiler (version 3.0 or later) generates .LINE corresponding to the line
in the C source file when the debugging option is specified and the assembly
source program is output.
If the file name is omitted, the file name is not changed, but only the line
number is changed.

Example:

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 948 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.PRINT

Description Format: ∆.PRINT∆<output specifier>[,...]

<output specifier>={ LIST | NOLIST | SRC | NOSRC |
 CREF | NOCREF | SCT | NOSCT }
The label field is not used.

Description: .PRINT controls the following output.
(1) Assemble listing
(2) Source program listing
(3) Cross-reference listing
(4) Section information listing

Item

Output
Specifier*1

Assembler Action

(1) LIST An assemble listing is output.*2
NOLIST No assemble listing is output.* 2

(2) SRC A source program listing is output in the assemble
listing.*3*4

NOSRC No source program listing is output in the assemble
listing.*3*4

(3) CREF A cross-reference listing is output in the assemble
listing.*3*5

NOCREF No cross-reference listing is output in the assemble
listing.*3*5

(4) SCT A section information listing is output in the assemble
listing.*3*6

 NOSCT No section information listing is output in the assemble
listing.*3*6

Notes: 1. This specification is valid only once.
2. Valid when the list or nolist option is not specified.
3. Valid when the assemble listing is output.
4. Valid when the source or nosource option is not specified.
5. Valid when the cross_reference or nocross_reference option is
 not specified.
6. Valid when the section or nosection option is not specified.

If .PRINT is used two or more times in a program with inconsistent output
specifiers, an error occurs.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 949 of 1176
Mar 01, 2022

Example: ∼
.PRINT LIST

.PRINT NOSRC

 ∼

← OK

 ∼
.PRINT LIST

.PRINT NOLIST
 ∼

← Error

Example: This example and its description assume that no options concerning assemble
listing output are specified.

Example 1: .PRINT LIST ; All types of assemble listing are output.

∼

Example 2: .PRINT LIST,NOSRC,NOCREF
 ; Only a section information listing is output.

∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 950 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.LIST

Description Format: ∆.LIST∆<output specifier>[,...]

<output specifier>={ ON | OFF | COND | NOCOND | DEF | NODEF |
 CALL | NOCALL | EXP | NOEXP |
 CODE | NOCODE }
The label field is not used.

Description: .LIST controls output of the source program listing in the following three

ways:
(1) Selects whether or not to output source statements.
(2) Selects whether or not to output source statements related to the

preprocessor function.
(3) Selects whether or not to output object code lines.
Output is controlled by output specifiers as follows:

 Output Specifier

Type Output Not output Object Description

(1) ON OFF Source statements The source statements following this directive

(2) COND NOCOND Failed condition*1 Condition-failed .AIF or .AIFDEF statements

 DEF NODEF Definition*1 Macro definition statements
.AREPEAT and .AWHILE definition
statements
.INCLUDE, .ASSIGNA, and .ASSSIGNC

 CALL NOCALL Call*1 Macro call statements,
.AIF, AIFDEF, and .AENDI

 EXP NOEXP Expansion*1 Macro expansion statements
.AREPEAT and .AWHILE expansion
statements

(3) CODE NOCODE Object code lines*1 The object code lines exceeding the source
statement lines

Note: This specification is valid when the show or noshow option is not
specified.

The specification of .LIST is only valid when an assemble listing is output.
The assembler gives priority to option specifications concerning source
program listing output.
.LIST statements themselves are not output on the source program listing.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 951 of 1176
Mar 01, 2022

Example: This example and its description assume that no options concerning assemble
 listing output are specified.

 .LIST NOCOND,NODEF
 .MACRO SHLRN COUNT,Rd

SHIFT .ASSIGNA \COUNT

 .AIF \&SHIFT GE 16
 SHLR16 \Rd
SHIFT .ASSIGNA \&SHIFT-16
 .AENDI

 .AIF \&SHIFT GE 8
 SHLR8 \Rd
SHIFT .ASSIGNA \&SHIFT-8
 .AENDI

 .AIF \&SHIFT GE 4
 SHLR2 \Rd
 SHLR2 \Rd
SHIFT .ASSIGNA \&SHIFT-4
 .AENDI

 .AIF \&SHIFT GE 2
 SHLR2 \Rd
SHIFT .ASSIGNA \&SHIFT-2
 .AENDI

 .AIF \&SHIFT GE 1
 SHLR \Rd
 .AENDI
 .ENDM

 SHLRN 23,R0

 This statement controls source program
listing output.

These statements define a general-
Purpose multiple-bit shift procedure as a
macro instruction.

Macro call

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 952 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Source Listing Output of Coding Example:

.LIST suppresses the output of the macro definition, .ASSIGNA and .ASSIGNC, and .AIF
and .AIFDEF condition-failed statements.

 31 31
 32 32 SHLRN 23,R0
 33 M
 35 M
 36 M .AIF 23 GE 16
 37 00000000 4029 C SHLR16 R0
 39 M .AENDI
 40 M
 41 M .AIF 7 GE 8
 45 M
 46 M .AIF 7 GE 4
 47 00000002 4009 C SHLR2 R0
 48 00000004 4009 C SHLR2 R0
 50 M .AENDI
 51 M
 52 M .AIF 3 GE 2
 53 00000006 4009 C SHLR2 R0
 55 M .AENDI
 56 M
 57 M .AIF 1 GE 1
 58 00000008 4001 C SHLR R0
 59 M .AENDI

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 953 of 1176
Mar 01, 2022

.FORM

Description Format: ∆.FORM∆<size specifier>[,...]

<size specifier> = { LIN = <line count> | COL = <column count> |
 TAB = {4 | 8} }
The label field is not used.

Description: .FORM sets the number of lines per page, columns per line, and tab size in
the assemble listing.
The line count and column count must be specified as follows:
• The specifications must be constant values, and,
• Forward reference symbols must not appear in the specifications.

Size Specifier

Listing Size

Allowable
Range

When Not Specified

LIN=<line count> The specified value
is set to the number
of lines per page.*1

20 to 255*4 60

COL=<column
count>

The specified value
is set to the number
of columns per
line.*2

79 to 255*4 132

TAB = {4 | 8} The specified value
is set to the tab
size.*3

4 or 8*5 8

Notes: 1. Valid when the lines option is not specified.
 2. Valid when the columns option is not specified.
 3. Valid when the tab suboption is not specified in the show option.
 4. When a value less than the minimum value is specified, the
 minimum value is assumed, and when a value larger than the
 maximum value is specified, the maximum value is assumed; no
 error is output.
 5. When an invalid value is specified, 8 is assumed; no error is
 output.

The assembler gives priority to command line option specifications
concerning the number of lines and columns in the assemble listing.
.FORM can be used any number of times in a given source program.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 954 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example: This example and its description assume that no options concerning the
 assemble listing line count, column count, and/or tab size are specified.

 ∼
 .FORM LIN=60, COL=200, TAB=4
 ; Starting with this page, the number of
 ; lines per page in the assemble listing
 ; is 60 lines.
 ; Starting with this line, the number
 ; of columns per line in the assemble
 ; listing is 200 columns.
 ; Outputs the assemble listing with
 ; setting the tab size as 4.
 ∼

 ∼
 .FORM LIN=55, COL=150 ; Starting with this page, the number of
 ; lines per page in the assemble listing is
 ; 55 lines.
 ; Starting with this line, the number
 ; of columns per line in the assemble
 ; listing is 150 columns.
 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 955 of 1176
Mar 01, 2022

.HEADING

Description Format: ∆.HEADING∆"<string literal>"

The label field is not used.

Description: .HEADING sets the header for the source program listing.
A string literal of up to 60 characters can be specified as the header.
.HEADING can be used any number of times in a given source program.
The range of validity for a given use of .HEADING is as follows:
• When .HEADING is on the first line of a page, it is valid starting with

that page.
• When .HEADING appears on the second or later line of a page, it is valid

starting with the next page.

Example: ∼

.HEADING """SAMPLE.SRC"" WRITTEN BY YAMADA"
 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 956 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.PAGE

Description Format: ∆.PAGE

The label field is not used.

Description: .PAGE inserts a new page in the source program listing at an arbitrary point.
.PAGE is ignored if it is used on the first line of a page.
.PAGE statements themselves are not output to the source program listing.

Example: ∼
MOV R0,R1
RTS
MOV R0,R2
.PAGE ;A new page is specified here since the section changes at
 this point.
.SECTION DT,DATA,ALIGN=4
.DATA.L H'11111111
.DATA.L H'22222222
.DATA.L H'33333333
∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 957 of 1176
Mar 01, 2022

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 958 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.SPACE

Description Format: ∆.SPACE[∆<line count>]

The label field is not used.

Description: .SPACE outputs the specified number of blank lines to the source program
listing.
The line count must be specified as follows:
• The specification must be a constant value, and,
• Forward reference symbols must not appear in the specification.

Values from 1 to 50 can be specified as the line count.
When a new page occurs as the result of blank lines output by .SPACE, any
remaining blank lines are not output on the new page.
.SPACE statements themselves are not output to the source program listing.

Example: .SECTION DT1,DATA,ALIGN=4
.DATA.L H'11111111
.DATA.L H'22222222
.DATA.L H'33333333
.DATA.L H'44444444 ;Inserts five blank lines at the point
.SPACE 5 ; where the section changes.
.SECTION DT2,DATA,ALIGN=4
∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 959 of 1176
Mar 01, 2022

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 960 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.PROGRAM

Description Format: ∆.PROGRAM∆<object module name>

The label field is not used.

Description: .PROGRAM sets the object module name.
The object module name is a name that is required by the optimizing linkage
editor to identify the object module.
Object module naming conventions are the same as symbol naming
conventions.
The assembler distinguishes uppercase and lowercase letter in object module
names.
Setting the object module name with .PROGRAM is valid only once in a
given program. (The assembler ignores the second and later specifications
of .PROGRAM.)
If there is no .PROGRAM specification of the object module name, the
assembler will set a default (implicit) object module name.
The default object module name is the file name of the object file (the object
module output destination).

The object module name can be the same as a symbol used in the program.

Example: .PROGRAM PROG1 ; This statement sets the object module
 ; name to be
 ; PROG1.
∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 961 of 1176
Mar 01, 2022

.RADIX

Description Format: ∆.RADIX∆<radix specifier>

<radix specifier> = { B | Q | D | H }

The label field is not used.

Description: .RADIX sets the radix (base) for integer constants with no radix
specification.
This specifier sets the radix (base) for integer constants with no radix
specification.
When there is no radix specification with .RADIX in a program, integer
constants with no radix specification are interpreted as decimal constants.
If hexadecimal (radix specifier H) is specified as the radix for integer
constants with no radix specification, integer constants whose first digit is A
through F must be prefixed with a 0 (zero). (The assembler interprets
expressions that begin with A through F to be symbols.)
Specifications with .RADIX are valid from the point of specification forward
in the program.

Radix Specifier Integer Constant with no Radix
B Binary

Q Octal

D Decimal

H Hexadecimal

Example: 1.

 ∼
 .RADIX D
 X: .EQU 100 ;This 100 is decimal.
 ∼
 .RADIX H
 Y: .EQU 64 ;This 64 is hexadecimal.
 ∼

2.
 ∼
 .RADIX H

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 962 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 Z: .EQU 0F ; A zero is prefixed to this constant "0F" since it
 ; would be interpreted as a symbol if it were
 ; written as simply "F".
 ∼

.END

Description Format: ∆.END[∆<symbol>]

Label: The label field is not used.

Description: .END sets the end of the source program and the entry point.
The assembly processing ends when .END is detected
A symbol specified for an operand is regarded as the entry point.
An externally defined symbol is specified for the symbol.

Example:
 .EXPORT START
 .SECTION P,CODE,ALIGN=4
START:
 ∼
 .END START ;Declares the end of the source program.
 ;Symbol START becomes the entry point.

.STACK

Description Format: ∆.STACK∆<symbol> = <stack value>

The label field is not used.

Description: .STACK defines the stack amount for a specified symbol referenced by using
the stack analysis tool.
The stack value for a symbol can be defined only one time; the second and
later specifications for the same symbol are ignored. A multiple of 4 in the
range from H'00000000 to H'FFFFFFFC can be specified for the stack value,
and any other value is invalid.
The stack value must be specified as follows:
• A constant value must be specified.
• Forward reference symbol, external reference symbol, and relative address
 symbol must not be used.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 963 of 1176
Mar 01, 2022

Example: ∼
 .STACK SYMBOL=H'100
 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 964 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.5 File Inclusion Function

The file inclusion function allows source files to be included into other source files at assembly.
The file included into another file is called an include file.

This assembler provides .INCLUDE to perform file inclusion.

The file specified with .INCLUDE is inserted at the location of .INCLUDE.

Example:

Source program

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 965 of 1176
Mar 01, 2022

.INCLUDE

Description Format: ∆.INCLUDE ∆"<file name>"

The label field is not used.

Description: .INCLUDE is the file inclusion assembler directive. If no file type is
specified, only the file name is used as specified (the assembler does not
assume any default file type).
The file name can include the directory. The directory can be specified either
by the absolute path (path from the root directory) or by the relative path
(path from the current directory).
Include files can include other files. The nesting depth for file inclusion is
limited to 30 levels.
The current directory for .INCLUDE in a source file is the directory where
the assembler is invoked. The current directory for .INCLUDE in an include
file is the directory where the include file exits.
The directory name of the filenames specified by .INCLUDE can be changed
by the include option.

Example: This example assumes the following directory configuration and operations:

• Starts the assembler from the root directory (\)
• Inputs source file \dir1\file1.src
• Makes file2.h included in file1.src
• Makes file3.h included in file2.h

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 966 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

The start command is as follows:

>asmsh \dir1\file1.src (RET)

file1.src must have the following include directive:

 .INCLUDE "dir2\file2.h" ; \ is the current directory
; (relative path
; specification).

or
 .INCLUDE "\dir2\file2.h" ; Absolute path

; specification

file2.h must have the following inclusion directive:

 .INCLUDE "file3.h" ; \dir2 is the current
; directory
; (relative path
; specification).

or
 .INCLUDE "\dir2\file3.h" ; Absolute path

; specification

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 967 of 1176
Mar 01, 2022

11.6 Conditional Assembly Function

11.6.1 Overview of the Conditional Assembly Function

The conditional assembly function provides the following assembly operations:

• Replaces a string literal in the source program with another string literal.
• Selects whether or not to assemble a specified part of a source program according to the

condition.
• Iteratively assembles a specified part of a source program.

(1) Preprocessor variables

Preprocessor variables are used to write assembly conditions. Preprocessor variables are of
either integer or character type.
(a) Integer preprocessor variables

Integer preprocessor variables are defined by .ASSIGNA (these variables can be
redefined).
When referencing integer preprocessor variables, insert a backslash (\) and an ampersand
(&) in front of them.
A coding example is shown below:

Example:

 FLAG: .ASSIGNA 1
 ∼
 .AIF \&FLAG EQ 1 ; MOV R0,R1 is assembled
 MOV R0,R1 ; when FLAG is 1.
 .AENDI
 ∼

(b) Character preprocessor variables

Character preprocessor variables are defined by .ASSIGNC (these variables can be
redefined).
When referencing character preprocessor variables, insert a backslash (\) and an ampersand
(&) in front of them.
A coding example is shown below:

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 968 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example:

 FLAG: .ASSIGNC "ON"
 ∼
 .AIF "\&FLAG" EQ "ON" ; MOV R0,R1 is assembled
 MOV R0,R1 ; when FLAG is "ON".
 .AENDI
 ∼

(2) Replacement Symbols

.DEFINE specifies symbols that will be replaced with the corresponding string literals at
assembly. A coding example is shown below.

Example:

 SYM1: .DEFINE "R1"
 ∼
 MOV.L SYM1,R0 ; Replaced with MOV.L R1,R0.
 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 969 of 1176
Mar 01, 2022

(3) Conditional Assembly
The conditional assembly function determines whether or not to assemble a specified part of a
source program according to the (specified) conditions. Conditional assembly is classified into
two types: conditional assembly with comparison using relational operators and conditional
assembly with definition of replacement symbols.
(a) Conditional Assembly with Comparison

Selects the part of program to be assembled according to whether or not the specified
condition is satisfied. A coding example is as follows:

Example:

 ∼

 .AIF "\&FLAG" EQ "ON"

 MOV R0,R10 ; Assembled when FLAG
 MOV R1,R11 ; is ON.
 MOV R2,R12 ;

 .AELSE

 MOV R10,R0 ; Assembled when FLAG
 MOV R11,R1 ; is not ON.
 MOV R12,R2 ;

 .AENDI

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 970 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(b) Conditional Assembly with Definition
Selects the part of program to be assembled by whether or not the specified replacement
symbol has been defined. A coding example is as follows:

Example:

 ∼

 .AIFDEF FLAG

 MOV R0,R10 ; Assembled when FLAG is defined with
 MOV R1,R11 ; .DEFINE before .AIFDEF
 MOV R2,R12 ; in the program.
 .AELSE

 MOV R10,R0 ; Assembled when FLAG is not defined with
 MOV R11,R1 ; .DEFINE before the .AIFDEF
 MOV R12,R2 ; in the program.
 .AENDI

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 971 of 1176
Mar 01, 2022

(4) Iterated Expansion
A part of a source program can be iteratively assembled the specified number of times. A
coding example is shown below.

Example:

 ∼

 .AREPEAT <count>

 <Statements to be iterated>
 .AENDR

 ∼

Example:

 ; This example is a division of 64-bit data by 32-bit data.
 ; R1:R2 (64 bits) ÷ R0 (32 bits) = R2 (32 bits): Unsigned
 TST R0,R0 ; Zero divisor check
 BT zero_div

 CMP/HS R0,R1 ; Overflow check
 BT over_div

 DIV0U ; Flag initialization
 .AREPEAT 32

 ROTCL R2 ; These statements are iteratively assembled 32 times.
 DIV1 R0,R1 ;
 .AENDR

 ROTCL R2 ; R2 = quotient

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 972 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(5) Conditional Iterated Expansion
A part of a source program can be iteratively assembled while the specified condition is
satisfied. A coding example is shown below.

 ∼

 .AWHILE <condition>

 <Statements to be iterated>
 .AENDW

 ∼

Example:

 ; This example is a multiply and
 ; accumulate
 ; operation.
TblSiz: .ASSIGNA 50 ; TblSiz: Data table size
 MOV A_Tbl1,R1 ; R1: Start address of data table 1
 MOV A_Tbl2,R2 ; R2: Start address of data table 2
 CLRMAC ; MAC register initialization
 .AWHILE \&TblSiz GT 0 ; While TblSiz is larger than 0,
 MAC.W @R1+,@R2+ ; this statement is iteratively assembled.
TblSiz: .ASSIGNA \&TblSiz-1 ; 1 is subtracted from TblSiz.
 .AENDW
 STS MACL,R0 ; The result is obtained in R0.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 973 of 1176
Mar 01, 2022

11.6.2 Conditional Assembly Directives

This assembler provides the following conditional assembly directives.

Category Mnemonic Function
Variable definition .ASSIGNA Defines an integer preprocessor variable. The defined

variable can be redefined.
.ASSIGNC Defines a character preprocessor variable. The defined

variable can be redefined.
.DEFINE Defines a preprocessor replacement string literal. The

defined variable cannot be redefined.
Conditional branch .AIF

.AELIF

.AELSE

.AENDI

Determines whether or not to assemble a part of a source
program according to the specified condition. When the
condition is satisfied, the statements after the .AIF are
assembled. When not satisfied, the statements after
the .AELIF or .AELSE are assembled.

.AIFDEF

.AELSE

.AENDI

Determines whether or not to assemble a part of a source
program according to the replacement symbol definition.
When the replacement symbol is defined, the statements
after the .AIFDEF are assembled. When not defined, the
statements after the .AELSE are assembled.

Iterated expansion .AREPEAT
.AENDR

Repeats assembly of a part of a source program
(between .AREPEAT and .AENDR) the specified number
of times.

.AWHILE

.AENDW
Assembles a part of a source program
(between .AWHILE and .AENDW) iteratively while the
specified condition is satisfied.

.EXITM Terminates .AREPEAT or .AWHILE iterated expansion.
Others .AERROR Processes an error during preprocessor expansion.
 .ALIMIT Specifies the maximum count of .AWHILE expansion.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 974 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.ASSIGNA

Description Format: <preprocessor variable>[:] ∆.ASSIGNA ∆<value>

Description: .ASSIGNA defines a value for an integer preprocessor variable. The syntax
of integer preprocessor variables is the same as that for symbols. An integer
preprocessor variable can be defined with up to 32 characters, and uppercase
and lowercase letters are distinguished.
The preprocessor variables defined with .ASSIGNA can be redefined
with .ASSIGNA.
The value to be assigned has the following format:

• Constant (integer constant and character constant)
• Defined preprocessor variable
• Expression using the above as terms

 Defined preprocessor variables are valid in the source statements following
the directive.
Defined preprocessor variables can be referenced in the following locations:
• .ASSIGNA
• .ASSIGNC
• .AIF
• .AELIF
• .AREPEAT
• .AWHILE
• Macro body (source statements between .MACRO and .ENDM)

 When referencing integer preprocessor variables, insert a backslash (\) and an
ampersand (&) in front of them.
\&<preprocessor variable>[']
To clearly distinguish the preprocessor variable name from the rest of the
source statement, an apostrophe (') can be added.
When a preprocessor string literal is defined by an option, .ASSIGNA
specifying the preprocessor variable having the same name as the string
literal is invalidated.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 975 of 1176
Mar 01, 2022

Example:

 ; This example generates a general-purpose multiple-bit
 ; shift instruction which shifts bits to the right by the
 ; number of SHIFT.
RN: .REG R0 ; R0 is set to Rn.
SHIFT: .ASSIGNA 27 ; 27 is set to SHIFT.

 .AIF \&SHIFT GE 16 ; Condition: SHIFT ≥ 16
 SHLR16 Rn ; When the condition is satisfied, Rn is shifted to the right by 16 bits.
SHIFT: .ASSIGNA \&SHIFT-16 ; 16 is subtracted from SHIFT.
 .AENDI

 .AIF \&SHIFT GE 8 ; Condition: SHIFT ≥ 8
 SHLR8 Rn ; When the condition is satisfied, Rn is shifted to the right by 8 bits.
SHIFT: .ASSIGNA \&SHIFT-8 ; 8 is subtracted from SHIFT.
 .AENDI

 .AIF \&SHIFT GE 4 ; Condition: SHIFT ≥ 4
 SHLR2 Rn ; When the condition is satisfied, Rn is shifted to the right by 4 bits.
 SHLR2 Rn ;

SHIFT: .ASSIGNA \&SHIFT-4 ; 4 is subtracted from SHIFT.
 .AENDI

 .AIF \&SHIFT GE 2 ; Condition: SHIFT ≥ 2
 SHLR2 Rn ; When the condition is satisfied, Rn is shifted to the right by 2 bits.
SHIFT: .ASSIGNA \&SHIFT-2 ; 2 is subtracted from SHIFT.
 .AENDI

 .AIF \&SHIFT EQ 1 ; Condition: SHIFT = 1
 SHLR Rn ; When the condition is satisfied, Rn is shifted to the right by 1 bit.
 .AENDI

The expanded results are as follows:
 SHLR16 R0 ; When the condition is satisfied, Rn is shifted to the right by 16 bits.
 SHLR8 R0 ; When the condition is satisfied, Rn is shifted to the right by 8 bits.
 SHLR2 R0 ; When the condition is satisfied, Rn is shifted to the right by 2 bits.
 SHLR R0 ; When the condition is satisfied, Rn is shifted to the right by 1 bit.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 976 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.ASSIGNC

Description Format: <preprocessor variable>[:] ∆.ASSIGNC ∆"<string literal>"

Description: .ASSIGNC defines a string literal for a character preprocessor variable. The
syntax of character preprocessor variables is the same as that for symbols. A
character preprocessor variable can be defined with up to 32 characters, and
uppercase and lowercase letters are distinguished.
The preprocessor variables defined with .ASSIGNC can be redefined
with .ASSIGNC.
String literals are specified by characters or preprocessor variables enclosed
with double quotation marks (").
Defined preprocessor variables are valid in the source statements following
the directive.
Defined preprocessor variables can be referenced in the following locations:
• .ASSIGNA
• .ASSIGNC
• .AIF
• .AELIF
• .AREPEAT
• AWHILE
• Macro body (source statements between .MACRO and .ENDM)

 When referencing character preprocessor variables, insert a backslash (\) and
an ampersand (&) in front of them.
\&<preprocessor variable>[']
To clearly distinguish the preprocessor variable name from the rest of the
source statement, an apostrophe (') can be added.
When a preprocessor string literal is defined by an option, .ASSIGNC
specifying the preprocessor variable having the same name as the string
literal is invalidated.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 977 of 1176
Mar 01, 2022

Example:

FLAG: .ASSIGNC "ON" ; "ON" is set to FLAG.
 ∼

 .AIF "\&FLAG" EQ "ON" ; MOV R0,R1 is assembled
 MOV R0,R1 ; when FLAG is "ON".
 .AENDI
 ∼

FLAG: .ASSIGNC "\&FLAG " ; A space (" ") is added to FLAG.
FLAGA: .ASSIGNC "OFF" ; "OFF" is added to FLAGA.
FLAG: .ASSIGNC "\&FLAG'AND \&FLAGA"

 ; An apostrophe (') is used to distinguish FLAG and
 ; AND.
 ; FLAG finally becomes "ON AND OFF".
 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 978 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.DEFINE

Description Format: <symbol>[:] ∆.DEFINE ∆"<replacement string literal>"

Description: .DEFINE specifies that the symbol is replaced with the corresponding string
literal.
The differences between .DEFINE and .ASSIGNC are as follows.
• The symbol defined by .ASSIGNC can only be used in the preprocessor

statement; the symbol defined by .DEFINE can be used in any statement.
• The symbols defined by .ASSIGNA and .ASSIGNC are referenced by the

"\&symbol" format; the symbol defined by .DEFINE is referenced by the
"symbol" format.

Defined symbols cannot be redefined. .DEFINE specifying a symbol is
invalidated when the same replacement symbol has been defined by a option.
This replacement is not applied to
the .AENDI, .AENDR, .AENDW, .AIFDEF, .END, and .ENDM directives.

Example:
 SYM1: .DEFINE "R1"

 ∼

 MOV.L SYM1,R0 ; Replaced with MOV.L R1,R0.

 ∼

 A hexadecimal number starting with an alphabetical character a to f or A to F

will be replaced when the same string literal is specified as a replacement
symbol by .DEFINE. Add 0 to the beginning of the number to stop replacing
such number.
C0: .DEFINE "0"
 MOV.B #H'C0,R0 ; Replaced with MOV.B #H'0,R0.
 MOV.B #H'0C0,R0 ; Not replaced.

 A radix indication (B', Q', D', or H') will also be replaced when the same
string literal is specified as a replacement symbol by .DEFINE. When
specifying a symbol having only one character, such as B, Q, D, H, b, q, d, or
h, make sure that the corresponding radix indication is not used.
B: .DEFINE "H"
 MOV.B #B'10,R0 ; Replaced with MOV.H #H'10,R0.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 979 of 1176
Mar 01, 2022

.AIF, .AELIF, .AELSE, .AENDI

Description Format: ∆.AIF ∆<term1> ∆<relational operator> ∆<term2>
 <Source statements assembled if the .AIF condition is satisfied>
[∆.AELIF ∆<term1> ∆<relational operator> ∆<term2>
 <Source statements assembled if the .AELIF condition is satisfied>]
[∆.AELSE
<Source statements assembled if all the conditions are not satisfied>]
 .AENDI

The label field is not used.

Description: .AIF, .AELIF, .AELSE, and .AENDI are the assembler directives that select
whether or not to assemble source statements according to the condition
specified. .AELIF and .AELSE can be omitted.
.AELIF can be specified repeatedly between .AIF and .AELSE.
The condition must be specified as follows:
.AIF: Condition to be compared.
.AELIF: Condition to be compared.
.ALESE: Operand field cannot be used.
.AENDI: Operand field cannot be used.

 Terms are specified with numeric values or string literals. However, when a
numeric value and a string literal are compared, the condition always fails.
Numeric values are specified by constants or preprocessor variables.
String literals are specified by characters or preprocessor variables enclosed
with double quotation marks ("). To specify a double quotation mark in a
string literal, enter two double quotation marks in succession.
The following relational operators can be used:
EQ: term1 = term2

 NE: term1 ≠ term2
 GT: term1 > term2

 LT: term1 < term2

 GE: term1 ≥ term2
 LE: term1 ≤ term2

 Numeric values are handled as 32-bit signed integers. For string literals, only
EQ and NE conditions can be used.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 980 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example:

 ∼

 .AIF \&TYPE EQ 1

 MOV R0,R3 ; These statements
 MOV R1,R4 ; are assembled
 MOV R2,R5 ; when TYPE is 1.
 .AELIF \&TYPE EQ 2

 MOV R0,R6 ; These statements
 MOV R1,R7 ; are assembled
 MOV R2,R8 ; when TYPE is 2.
 .AELSE

 MOV R0,R9 ; These statements
 MOV R1,R10 ; are assembled
 MOV R2,R11 ; when TYPE is not 1 nor 2.
 .AENDI

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 981 of 1176
Mar 01, 2022

.AIFDEF, .AELSE, .AENDI

Description Format: ∆.AIFDEF ∆<replacement symbol>
 <statements to be assembled when the specified replacement symbol is
defined>
[∆.AELSE
 <statements to be assembled when the specified replacement symbol is not
defined>]
 .AENDI
The label field is not used.

Description: .AIFDEF, .AELSE, and .AENDI are the assembler directives that select
whether or not to assemble source statements according to the replacement
symbol definition. .AELSE can be omitted
The condition must be specified as follows.
.AIFDEF: The condition to be defined.
.AELSE: The operand field cannot be used.
.AENDI: The operand field cannot be used.

 The replacement symbol can be defined by .DEFINE
When the specified replacement symbol is defined by the option or defined
before being referenced by theses directives, the condition is regarded as
satisfied. When the replacement symbol is defined after being referenced by
these directives or is not defined, the condition is regarded as unsatisfied.

Example:

 ∼

 .AIFDEF FLAG

 MOV R0,R3 ; These statements are assembled when
 MOV R1,R4 ; FLAG is defined by .DEFINE.
 .AELSE

 MOV R0,R6 ; These statements are assembled when
 MOV R1,R7 ; FLAG is not defined by .DEFINE.
 .AENDI

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 982 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.AREPEAT, .AENDR

Description Format: ∆.AREPEAT ∆<count>
<Source statements iteratively assembled>
∆.AENDR

The label field is not used.

Description: .AREPEAT and .AENDR are the assembler directives that assemble source
statements by iteratively expanding them the specified number of times.
The condition must be specified as follows.

 .AREPEAT: The number of iterations.
.AENDR: The operand field cannot be used.

 The source statements between .AREPEAT and .AENDR are iterated the
number of times specified with .AREPEAT. Note that the source statements
are simply copied the specified number of times, and therefore, the operation
is not a loop at program execution.
Counts are specified by constants or preprocessor variables.
Nothing is expanded if a value of 0 or smaller is specified.

Example:

 ; This example is a division of 64-bit data by 32-bit data.
 ; R1:R2 (64 bits) ÷ R0 (32 bits) = R2 (32 bits): Unsigned
 TST R0,R0 ; Zero divisor check
 BT zero_div

 CMP/HS R0,R1 ; Overflow check
 BT over_div

 DIV0U ; Flag initialization
 .AREPEAT 32

 ROTCL R2 ; These statements are
 DIV1 R0,R1 ; iterated 32 times.
 .AENDR

 ROTCL R2 ; R2 = quotient

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 983 of 1176
Mar 01, 2022

.AWHILE, .AENDW

Description Format: ∆.AWHILE ∆<term1> ∆<relational operator> ∆<term2>
<Source statements iteratively assembled>
∆.AENDW
The label field is not used.

Description: .AWHILE and .AENDW are the assembler directives that assemble source
statements by iteratively expanding them while the specified condition is
satisfied.

 The source statements between .AWHILE and .AENDW are iterated while
the condition specified with .AWHILE is satisfied. Note that the source
statements are simply copied iteratively, and therefore, the operation is not a
loop at program execution.

 Terms are specified with numeric values or string literals. However, when a
numeric value and a string literal are compared, the condition always fails.

 Numeric values are specified by constants or preprocessor variables.
 String literals are specified by characters or preprocessor variables enclosed

with double quotation marks ("). To specify a double quotation mark in a
string literal, enter two double quotation marks (" ") in succession.

 Conditional iterated expansion terminates when the condition finally fails.
 If a condition which never fails is specified, source statements are iteratively

expanded for 65,535 times or until the maximum count of statement
expansion specified by .ALIMIT is reached. Accordingly, the condition for
this directive must be carefully specified.

 The following relational operators can be used:
 EQ: term1 = term2

 NE: term1 ≠ term2
 GT: term1 > term2

 LT: term1 < term2

 GE: term1 ≥ term2
 LE: term1 ≤ term2

 Numeric values are handled as 32-bit signed integers. For string literals, only
EQ and NE conditions can be used.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 984 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example:

 ; This example is a multiply and accumulate
 ; operation.
TblSiz: .ASSIGNA 50 ; TblSiz: Data table size
 MOV A_Tbl1,R1 ; R1: Start address of data table 1
 MOV A_Tbl2,R2 ; R2: Start address of data table 2
 CLRMAC ; MAC register initialization
 .AWHILE \&TblSiz GT 0 ; While TblSiz is larger than 0,
 MAC.W @R0+,@R1+ ; this statement is iteratively assembled.
TblSiz: .ASSIGNA \&TblSiz-1 ; 1 is subtracted from TblSiz.
 .AENDW

 STS MACL,R0 ; The result is obtained in R0.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 985 of 1176
Mar 01, 2022

.EXITM

Description Format: ∆.EXITM
The label field is not used.

Description: .EXITM terminates an iterated expansion (.AREPEAT to .AENDR) or a
conditional iterated expansion (.AWHILE to .AENDW).

 Each expansion is terminated when this directive appears.
 This directive is also used to exit from macro expansions. The location of

this directive must be specified carefully when macro instructions and
iterated expansion are combined.

Example:

 ∼

COUNT .ASSIGNA 0 ; 0 is set to COUNT.
 .AWHILE 1 EQ 1 ; An infinite loop (condition is always satisfied) is
 ; specified.
 ADD R0,R1
 ADD R2,R3
COUNT .ASSIGNA \&COUNT+1 ; 1 is added to COUNT.
 .AIF \&COUNT EQ 2 ; Condition: COUNT = 2
 .EXITM ; When the condition is satisfied
 .AENDI ; .AWHILE expansion is terminated.
 .AENDW
 ∼

When COUNT is updated and satisfies the condition specified with the .AIF, .EXITM is assembled.
When .EXITM is assembled, .AWHILE expansion is terminated.

The expansion results are as follows:
 ADD R0,R1 When COUNT is 0
 ADD R2,R3
 ADD R0,R1 When COUNT is 1
 ADD R2,R3

After this, COUNT becomes 2 and expansion is terminated.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 986 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.AERROR

Description Format: ∆.AERROR
The label field is not used.

Description: When .AERROR is assembled, error 667 occurs and the assembler is
terminated with an error.

 .AERROR can be used to check values such as preprocessor variables.

Example:

 ∼

 .AIF \&FLG EQ 1

 MOV R1,R10

 MOV R2,R11

 .AELSE

 .AERROR ; When \&FLG is not 1, an error occurs.
 .AENDI

 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 987 of 1176
Mar 01, 2022

.ALIMIT

Description Format: ∆.ALIMIT ∆<count>
The label field is not used.

Description: .ALIMIT determines the maximum count for the conditional iterated
expansion (.AWHILE to .AENDW).

 <count> must be specified in the following format:
• Constant (integer constant, character constant)
• Defined preprocessor variable
• Expression in which a constant or a defined preprocessor variable is used

 as the term

 During conditional iterated (.AWHILE to .AENDW) expansion, if the

statement expansion count exceeds the maximum value specified
by .ALIMIT, warning 854 occurs and the expansion is terminated.

 If .ALIMIT is not specified, the maximum count is 65,535. The maximum
count of iteration expansion can be changed by respecifying this directive.
The respecification is valid for the source statements after this directive.

Example:

 .ALIMIT 20

 ∼

FLG: .ASSIGNA 0

 .AWHILE \&FLG EQ 0 ; Expansion is terminated after performed
 NOP ; 20 times, and a warning message is output.
 .AENDW

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 988 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.7 Macro Function

11.7.1 Overview of the Macro Function

The macro function allows commonly used sequences of instructions to be named and defined as
one macro instruction. This is called a macro definition. Macro instructions are defined as follows:

 ∼
 .MACRO <macro name>
 <macro body>
 .ENDM
 ∼

A macro name is the name assigned to a macro instruction, and a macro body is the statements to
be expanded as the macro instruction.

Using a defined macro instruction by specifying the name is called a macro call. Macro call is as
follows:

 ∼
 <defined macro name>
 ∼

An example of macro definition and macro call is shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 989 of 1176
Mar 01, 2022

Example:

 ∼
 .MACRO SUM ; Processing to obtain the sum of R0, R1, R2,
 MOV R0,R10 ; and R3 is defined as macro instruction SUM.
 ADD R1,R10
 ADD R2,R10
 ADD R3,R10
 .ENDM
 ∼

 SUM ; This statement calls macro instruction SUM.
 ; Macro body MOV R0,R10
 ; ADD R1,R10
 ; ADD R2,R10
 ; ADD R3,R10
 ; is expanded from the macro instruction.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 990 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Parts of the macro body can be modified when expanded by the following procedure:

(1) Macro definition
Define arguments after the macro name in .MACRO.
Use the arguments in the macro body. Arguments must be identified in the macro body by
placing a backslash (\) in front of them.

(2) Macro call
Specify macro parameters in the macro call.

When the macro instruction is expanded, the arguments are replaced with their corresponding
macro parameters.

Example:

 ∼
 .MACRO SUM ARG1 ; Argument ARG1 is defined.
 MOV R0,\ARG1 ; ARG1 is referenced in the macro body.
 ADD R1,\ARG1

 ADD R2,\ARG1

 ADD R3,\ARG1

 .ENDM

 ∼

 SUM R10 ; This statement calls macro instruction SUM

 ; specifying macro parameter R10.
 ; The argument in the macro body is
 ; replaced with the macro parameter, and
 ; MOV R0,R10
 ; ADD R1,R10
 ; ADD R2,R10
 ; ADD R3,R10 is expanded.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 991 of 1176
Mar 01, 2022

11.7.2 Macro Function Directives

This assembler provides the following macro function directives.

Directive Description

.MACRO Defines a macro instruction.

.ENDM

.EXITM Terminates macro instruction expansion. Refer to section 11.6.2, .EXITM.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 992 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.MACRO, .ENDM

Description Format: ∆.MACRO∆<macro name>[∆<argument>[,...]]
∆.ENDM

<argument>: <argument>[=<default argument>]

The label field is not used.

Description: .MACRO and .ENDM define a macro instruction (a sequence of source
statements that are collectively named and handled together).

 Naming as a macro instruction the source statements (macro body)
between .MACRO and .ENDM is called a macro definition.

 The operand must be specified as follows:
 .MACRO: Macro instruction, argument, or default (can be omitted)
 .ENDM: Operand field cannot be used.
 (1) Macro name
 Macro names are the names assigned to macro instructions.
 Arguments are specified so that parts of the macro body can be replaced

by specific parameters at expansion. Arguments are replaced with the
string literals (macro parameters) specified at macro expansion (macro
call).

 In the macro body, arguments are specified for replacement. The syntax
of argument is macro body is as follows:
\<argument name>[']

 To clearly distinguish the argument name from the rest of the source
statement, an apostrophe (') can be added.

 (2) Argument
 Defaults for arguments can be specified in macro definitions. The default

specifies the string literal to replace the argument when the corresponding
macro parameter is omitted in a macro call.

 The syntax of the argument is the same as that of symbol. The maximum
length of the argument is 32 characters, and uppercase and lowercase
letters are distinguished.

 (3) Default argument
 The default must be enclosed with double quotation marks (") or angle

brackets (<>) if any of the following characters are included in the
default.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 993 of 1176
Mar 01, 2022

• Space
• Tab
• Comma (,)
• Semicolon (;)
• Double quotation marks (")
• Angle brackets (< >)

 The assembler inserts defaults at macro expansion by removing the

double quotation marks or angle brackets that enclose the string literals.
 (4) Restrictions

 Macros cannot be defined in the following locations:
• Macro bodies (between .MACRO and .ENDM)
• Between .AREPEAT and .AENDR
• Between .AWHILE and .AENDW

 .END cannot be used within a macro body.
 No symbol can be inserted in the label field of .ENDM. .ENDM is

ignored if a symbol is written in the label field, but no error occurs in this
case.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 994 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Example:

 ∼

 .MACRO SUM ; Processing to obtain the sum of R0, R1, R2,
 MOV R0,R10 ; and R3 is defined as macro instruction SUM.
 ADD R1,R10

 ADD R2,R10

 ADD R3,R10

 .ENDM

 ∼

 SUM ; This statement calls macro instruction SUM

 ; Macro body MOV R0,R10
 ; ADD R1,R10
 ; ADD R2,R10
 ; ADD R3,R10 is expanded.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 995 of 1176
Mar 01, 2022

11.7.3 Macro Body

The source statements between .MACRO and .ENDM are called a macro body. The macro body is
expanded and assembled by a macro call.

(1) Argument reference
Arguments are used to specify the parts to be replaced with macro parameters at macro
expansion.
The syntax of argument reference in a macro body is as follows:
\<argument name>[']
To clearly distinguish the argument name from the rest of the source statement, add an
apostrophe (').

Example:

 .MACRO PLUS1 P,P1 ; P and P1 are arguments.
 ADD #1,\P1 ; Argument P1 is referenced.
 .SDATA "\P'1" ; Argument P is referenced.
 .ENDM

 PLUS1 R,R1 ; PLUS1 is expanded.
 ∼

Expanded results are as follows:

 ADD #1,R1 ; Argument P1 is referenced.
 .SDATA "R1" ; Argument P is referenced.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 996 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) Preprocessor variable reference
Preprocessor variables can be referenced in macro bodies.
The syntax for preprocessor variable reference is as follows:
\&<preprocessor variable name>[']
To clearly distinguish the preprocessor variable name from the rest of the source statement,
add an apostrophe (').

Example:

 .MACRO PLUS1

 ADD #1,R\&V1 ; Preprocessor variable V1 is referenced.
 .SDATA "\&V'1" ; Preprocessor variable V is referenced.
 .ENDM

V: .ASSIGNC "R" ; Preprocessor variable V is defined.
V1: .ASSIGNA 1 ; Preprocessor variable V1 is defined.
 PLUS1 ; PLUS1 is expanded.

Expanded results are as follows:

 ADD #1,R1 ; Preprocessor variable V1 is referenced.
 .SDATA "R1" ; Preprocessor variable V is referenced.

(3) Macro generation number

The macro generation number facility is used to avoid the problem that symbols used within a
macro body will be multiply defined if the macro is expanded multiple times. To avoid this
problem, specify the macro generation number marker as part of any symbol used in a macro.
This will result in symbols that are unique to each macro call.
The macro generation number marker is expanded as a 5-digit decimal number (between
00000 and 99999) unique to the macro expansion.
The syntax for specifying the macro generation number marker is as follows:
\@
Two or more macro generation number markers can be written in a macro body, and they will
be expanded to the same number in one macro call.
Because macro generation number markers are expanded to numbers, they must not be written
at the beginning of symbol names.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 997 of 1176
Mar 01, 2022

Example:

 .MACRO RES_STR STR, Rn

 MOV.L #str\@,\Rn

 BRA end_str\@

 NOP

str\@ .SDATA "\STR"

 .ALIGN 2

end_str\@

 .ENDM

 RES_STR "ONE",R0

 RES_STR "TWO",R1

Expanded results are as follows:

 MOV.L #str00000,R0

 BRA end_str00000

 NOP

str00000 .SDATA "ONE"

 .ALIGN 2

end_str00000

 MOV.L #str00001,R1

 BRA end_str00001

 NOP

str00001 .SDATA "TWO"

 .ALIGN 2

end_str00001

Different symbols are generated each time
RES_STR is expanded.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 998 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(4) Macro replacement processing exclusion
When a backslash (\) appears in a macro body, it specifies macro replacement processing.
Therefore, a means for excluding this macro processing is required when it is necessary to use
the backslash as an ASCII character.
The syntax for macro replacement processing exclusion is as follows:
\(<macro replacement processing excluded string literal>)
The backslash and the parentheses will be removed in macro processing.

Example:

 .MACRO BACK_SLASH_SET

 \(MOV #"\",R0) ; \ is expanded as an ASCII character.
 .ENDM

Expanded results are as follows:
 MOV #"\",R0 ; \ is expanded as an ASCII character.

(5) Comments in macros

Comments in macro bodies can be coded as normal comments or as macro internal comments.
When comments in the macro body are not required in the macro expansion code (to avoid
repeating the same comment in the listing file), those comments can be coded as macro
internal comments to suppress their expansion.
The syntax for macro internal comments is as follows:
\;<comment>

Example:

 .MACRO PUSH Rn

 MOV.L \Rn,@-R15 \; \Rn is a register.
 .ENDM

 PUSH R0

Expanded results are as follows (the comment is not expanded):
 MOV.L R0,@-R15

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 999 of 1176
Mar 01, 2022

(6) String literal manipulation functions
String literal manipulation functions can be used in a macro body. The following string literal
manipulation functions are provided.
.LEN String literal length.
.INSTR String literal search.
.SUBSTR String literal extraction.

11.7.4 Macro Call

Expanding a defined macro instruction is called a macro call. The syntax for macro calls is as
follows:

Description Format

 [<symbol>[:]] ∆<macro name>[∆<macro parameter> [,...]]
<macro parameter>: [=<argument name>]=<string literal>

The macro name must be defined (.MACRO) before a macro call. String literals must be specified
as macro parameters to replace arguments at macro expansion. The arguments must be declared in
the macro definition with .MACRO.

Description

1. Macro parameter specification
Macro parameters can be specified by either positional specification or keyword specification.

2. Positional specification
The macro parameters are specified in the same order as that of the arguments declared in the
macro definition with .MACRO.

3. Keyword specification
Each macro parameter is specified following its corresponding argument, separated by an
equal sign (=).

4. Macro parameter syntax
Macro parameters must be enclosed with double quotation marks (") or angle brackets (<>) if
any of the following characters are included in the macro parameters:
 Space
 Tab
 Comma (,)
 Semicolon (;)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1000 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 Double quotation marks (")
 Angle brackets (< >)
Macro parameters are inserted by removing the double quotation marks or angle brackets that
enclose string literals at macro expansion.

Example:

Expanded results are as follows (the arguments in the macro body are replaced with macro
parameters):

 MOV R0,R10

 MOV R1,R10

 MOV R2,R10

 MOV R3,R10

 MOV R4,R10

 MOV R5,R10

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1001 of 1176
Mar 01, 2022

11.7.5 String Literal Manipulation Functions

This assembler provides the following string literal manipulation functions.

Function Description
.LEN Counts the length of a string literal.
.INSTR Searches for a string literal.
.SUBSTR Extracts a string literal.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1002 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.LEN

Description Format: .LEN[∆]("<string literal>")

Description: .LEN counts the number of characters in a string literal and replaces itself
with the number of characters in decimal with no radix.

 String literals are specified by enclosing the desired characters with double
quotation marks ("). To specify a double quotation mark in a string literal,
enter two double quotation marks in succession.

 Macro arguments and preprocessor variables can be specified in the string
literal as shown below.

 .LEN("\<argument>")

 .LEN("\&<preprocessor variable>")

 This function can only be used within a macro body (between .MACRO
and .ENDM).

Example:

 ∼
 .MACRO RESERVE_LENGTH P1

 .ALIGN 4 .

 .SRES .LEN("\P1")

 .ENDM

 ∼

 RESERVE_LENGTH ABCDEF

 RESERVE_LENGTH ABC

Expanded results are as follows:

 .ALIGN 4

 .SRES 6 ; "ABCDEF" has six characters.
 .ALIGN 4

 .SRES 3 ; "ABC" has three characters.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1003 of 1176
Mar 01, 2022

.INSTR

Description Format: .INSTR[∆]("<string literal 1>","<string literal 2>" [,<start position>])

Description: .INSTR searches string literal 1 for string literal 2, and replaces itself with
the numerical value of the position of the found string (with 0 indicating the
start of the string) in decimal with no radix. .INSTR is replaced with –1 if
string literal 2 does not appear in string literal 1.

 String literals are specified by enclosing the desired characters with double
quotation marks ("). To specify a double quotation mark in a string literal,
enter two double quotation marks in succession.

 The start position parameter specifies the search start position as a numerical
value, with 0 indicating the start of string literal 1. Zero is used as default
when this parameter is omitted.

 Macro arguments and preprocessor variables can be specified in the string
literals and as the start position as shown below.

 .INSTR("\<argument>", ...)

 .INSTR("\&<preprocessor variable>", ...)

 This function can only be used within a macro body (between .MACRO
and .ENDM).

Example:

 ∼
 .MACRO FIND_STR P1

 .DATA.W .INSTR("ABCDEFG","\P1",0)

 .ENDM

 ∼

 FIND_STR CDE

 FIND_STR H

Expanded results are as follows:

 .DATA.W 2 ; The start position of "CDE" is 2 (0 indicating the
 beginning of the string) in "ABCDEFG"
 .DATA.W -1 ; "ABCDEFG" includes no "H".

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1004 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

.SUBSTR

Description Format: .SUBSTR[∆]("<string literal>",<start position>,<extraction length>)

Description: .SUBSTR extracts from the specified string literal a substring starting at the
specified start position of the specified length. .SUBSTR is replaced with the
extracted string literal enclosed with double quotation marks (").
String literals are specified by enclosing the desired characters in double
quotation marks ("). To specify a double quotation mark in a string literal,
enter two double quotation marks in succession.
The value of the extraction start position must be 0 or greater. The value of
the extraction length must be 1 or greater.
If illegal or inappropriate values are specified for the start position or
extraction length parameters, this function is replaced with a space (" ").
Macro arguments and preprocessor variables can be specified in the string
literal, and as the start position and extraction length parameters as shown
below.
.SUBSTR("\<argument>", ...)
.SUBSTR("\&<preprocessor variable>", ...)
This function can only be used within a macro body (between .MACRO
and .ENDM).

Example:

 ∼
 .MACRO RESERVE_STR P1=0,P2

 .SDATA .SUBSTR("ABCDEFG",\P1,\P2)

 .ENDM

 ∼

 RESERVE_STR 2,2

 RESERVE_STR ,3 ; Macro parameter P1 is omitted.

Expanded results are as follows:

 .SDATA "CD"

 .SDATA "ABC"

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1005 of 1176
Mar 01, 2022

11.8 Automatic Literal Pool Generation Function

11.8.1 Overview of Automatic Literal Pool Generation

To transfer 2-byte or 4-byte constant data (referred to below as a "literal") to a register, a literal
pool (a collection of literals) must be reserved and referred to in PC relative addressing mode. For
literal pool location, the following must be considered:

• Is data stored within the range that can be accessed by data transfer instructions?
• Is 2-byte data aligned to a 2-byte boundary and is 4-byte data aligned to a 4-byte boundary?
• Can data be shared by several data move instructions?
• Where in the program should the literal pool be located?

The assembler automatically generates from a single instruction .DATA and a PC relative MOV
or MOVA instruction, which moves constant data to a register.

For example, this function enables program (a) below to be coded as (b):

(a)

 MOV.L DATA1,R0

 MOV.L DATA2,R1

 ∼

 .ALIGN 4

DATA1 .DATA.L H'12345678

DATA2 .DATA.L 500000

(b)

 MOV.L #H'12345678,R0

 MOV.L #500000,R1

 ∼

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1006 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.8.2 Extended Instructions Related to Automatic Literal Pool Generation

The assembler automatically generates a literal pool corresponding to an extended instruction
(MOV.W #imm, Rn; MOV.L #imm, Rn; or MOVA #imm, R0) and calculates the PC relative
displacement value.

An extended instruction source statement is expanded to an executable instruction and literal data
as shown in table 11.34.

Table 11.34 Extended Instructions and Expanded Results

Extended Instruction Expanded Result
MOV.W #imm, Rn MOV.W @(disp, PC), Rn and 2-byte literal data
MOV.L #imm, Rn MOV.L @(disp, PC), Rn and 4-byte literal data
MOVA #imm, R0 MOVA @(disp, PC), R0 and 4-byte literal data

11.8.3 Size Mode for Automatic Literal Pool Generation

Automatic literal pool generation has two modes: size specification mode and size selection mode.
In size specification mode, a data transfer instruction (extended instruction) whose operation size
is specified is used to generate a literal pool. In size selection mode, when a transfer instruction
without size specification is written, the assembler automatically checks the imm operand value
and selects a suitable-size transfer instruction.

Table 11.35 shows data transfer instructions and size mode.

Table 11.35 Data Transfer Instructions and Size Mode

Data Transfer Instruction Size Specification Mode Size Selection Mode
MOV #imm, Rn Executable instruction Selected by assembler
MOV.B #imm, Rn Executable instruction Executable instruction
MOV.W #imm, Rn Extended instruction Extended instruction
MOV.L #imm, Rn Extended instruction Extended instruction

(1) Size Specification Mode
In this mode, a data transfer instruction without size specification (MOV #imm,Rn) is handled
as a normal executable instruction. This mode is used when auto_literal is not specified as the
option.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1007 of 1176
Mar 01, 2022

(2) Size Selection Mode
In this mode, when a data transfer instruction without size specification (MOV #imm,Rn) is
written, the assembler checks the imm operand value and automatically generates a literal pool
if necessary. The imm value is checked for the signed value range.
This mode is used when auto_literal is specified as the option.
Table 11.36 shows the instructions selected depending on imm value range.

Table 11.36 Instructions Selected in Size Selection Mode

imm Specification imm Value Range* Selected Instruction
Constant value
Constants symbols defined
before reference
Absolute address symbol
defined before reference

H'FFFFFF80 to H'0000007F
(–128 to 127)

MOV.B #imm, Rn

H'FFFF8000 to H'FFFFFF7F
(–32,768 to –129)
H'00000080 to H'00007FFF
(128 to 32,767)

MOV.W #imm, Rn
Expansion result:
[MOV.W @(disp, PC), Rn and
2-byte literal data]

H'80000000 to H'FFFF7FFF
(–2,147,483,648 to –32,769)
H'00008000 to H'7FFFFFFF
(32,768 to 2,147,483,647)

MOV.L #imm, Rn
Expansion result:
[MOV.L @(disp, PC), Rn and
4-byte literal data]

Relative address symbol
Externally referenced symbol
Constants symbols defined after
reference
Absolute address symbol
defined after reference

Does not depend on imm
value

MOV.L #imm, Rn
Expansion result:
[MOV.L @(disp, PC), Rn and
4-byte literal data]

Note: The values in parentheses () are decimal.

11.8.4 Literal Pool Output

The literal pool is output to one of the following locations:

• After an unconditional branch and its delay slot instruction
• Where .POOL has been specified by the programmer

Note that the output location can be selected by the literal option. The assembler outputs the
literal corresponding to an extended instruction to the nearest output location following the
extended instruction. The assembler gathers the literals to be output as a literal pool.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1008 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Note

When a label is specified in a delay slot instruction, no literal pool will be output to the location
following the delay slot.

(1) Literal Pool Output after Unconditional Branch
An example of literal pool output is shown below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1009 of 1176
Mar 01, 2022

(2) Literal Pool Output to the .POOL Location
If literal pool output location after unconditional branches is not available within the valid
displacement range (because the program has a small number of unconditional branches), the
assembler outputs error 402. In this case, .POOL must be specified within the valid
displacement range.
The valid displacement range is as follows:
 Word-size operation: 0 to 511 bytes
 Longword-size operation: 0 to 1023 bytes
When a literal pool is output to a .POOL location, a branch instruction is also inserted to jump
over the literal pool.
An example of literal pool output is shown below.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1010 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.8.5 Literal Sharing

When the literals for several extended instructions are gathered into a literal pool, the assembler
makes the extended instructions share identical immediate value.

The following operand forms can be identified and shared:

(1) Symbol
(2) Constant
(3) Symbol ± Constant

In addition to the above, expressions that are determined to have the same value at assembly
processing may be shared.

However, extended instructions having different operation sizes do not share literal data even
when they have the same immediate value.

An example of literal data sharing among extended instructions is shown on below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1011 of 1176
Mar 01, 2022

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1012 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.8.6 Literal Pool Output Suppression

When a program has too many unconditional branches, the following problems may occur:

• Many small literal pools are output
• Literals are not shared

In these cases, suppress literal pool output as shown below.

 ∼
 <delayed branch instruction>
 <delay slot instruction>
 .NOPOOL
 ∼

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1013 of 1176
Mar 01, 2022

11.8.7 Notes on Automatic Literal Pool Generation

(1) If an error occurs for an extended instruction
a. Extended instructions must not be specified in delay slots (error 151).
b. Extended instructions must not be specified in relative sections having a boundary

alignment value of less than 2 (error 152).
c. MOV.L #imm, Rn or MOVA #imm, R0 must not be specified in relative sections having a

boundary alignment value of less than 4 (error 152).
(2) If an error occurs when .POOL is written

.POOL must not be written after unconditional delayed branches (error 522).
(3) If an error occurs when .NOPOOL is written

.NOPOOL is valid only when written after delay slot instructions. If written at other
locations, .NOPOOL causes error 521.

(4) If the displacement of an executable instruction exceeds the valid range when an extended
instruction is expanded
The assembler generates a literal pool and outputs error 402 for the instruction having a
displacement outside the valid range.
Solution: Move the literal pool output location (for example, by .NOPOOL), or change the
location or addressing mode of the instruction causing the error.

(5) If the literal pool output location cannot be found
If the assembler cannot find a literal pool output location satisfying the following conditions in
respect to the extended instruction,
 Same file
 Same section
 The nearest output location following the extended instruction
the assembler outputs, at the end of the section which includes the extended instruction, the
literal pool and a BRA instruction with a NOP instruction in the delay slot to jump around the
literal pool, and outputs warning 876.

(6) If the displacement from the extended instruction exceeds the valid range
If the displacement of the literal pool from the extended instruction exceeds the valid range,
error 402 is generated.
Solution: Output the literal pool within the valid range (for example, using .POOL.)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1014 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(7) Differences between size specification mode and size selection mode
Version 2.0 of the assembler can only use the size specification mode, but the size selection
mode is added to the assembler version 3.1 or higher. If the source program created before for
version 2.0 is assembled in the size selection mode by version 3.1 or higher, the imm values of
data transfer instructions without size suffix will differ in the range of H'00000080 to
H'000000FF (128 to 255) from these assembled by version 2.0.
An example of source listing output in the size specification mode and size selection mode is
shown on below.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1015 of 1176
Mar 01, 2022

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1016 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.9 Automatic Repeat Loop Generation Function

11.9.1 Overview of Automatic Repeat Loop Generation Function

In the SH-DSP, SH3-DSP, or SH4AL-DSP, the start and end addresses of the repeat loop are set
in the RS and RE registers by the LDRS and LDRE instructions. The address settings differ
depending on the number of instructions in the repeat loop. When setting the address, consider the
relationship between the address and the number of instructions in the repeat loop shown in table
11.37.

Table 11.37 Repeat Loop Instructions and Address Setting

Register Name

One Instruction

Two
Instructions

Three
Instructions

Four or more
Instructions

RS s_addr0+8 s_addr0+6 s_addr0+4 s_addr
RE s_addr0+4 s_addr0+4 s_addr0+4 e_addr3+4
s_addr0: Address of the instruction one instruction before the repeat loop start address
s_addr: Repeat loop start address
e_addr3: Address of the instruction three instructions before the repeat loop end address

The automatic repeat loop generation automatically generates the PC relative instructions LDRS
and LDRE, and the SETRC instruction from a single extended instruction. The LDRS and LDRE
instructions transfer the repeat loop start and end to the RS and RE registers addresses based on
the number of instructions in the repeat loop, and the SETRC instruction specifies the repetition
count.

For example, program A can be written as program B when using the automatic repeat loop
generation.

Program A:

 LDRS s_addr0+6

 LDRE s_addr0+4

 SETRC #10

s_addr0: NOP

 PADD A0,M0,A0 ; Repeat loop start address
 PCMP X1,M0 ; Repeat loop end address

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1017 of 1176
Mar 01, 2022

Program B:

 REPEAT s_addr,e_addr,#10

 NOP

s_addr: PADD A0,M0,A0 ; Repeat loop start address
e_addr: PCMP X1,M0 ; Repeat loop end address

11.9.2 Extended Instructions of Automatic Repeat Loop Generation Function

The assembler automatically generates necessary instructions from extended instructions
(REPEAT s_label,e_label,#imm, REPEAT s_label,e_label,Rn, and REPEAT s_label,e_label) and
calculates the PC relative displacement.

Table 11.38 lists the source statement of each extended instruction and its expanded results of two
or three executable instructions.

Table 11.38 Extended Instructions and Expanded Results

Extended Instruction Expanded Results
REPEAT s_label,e_label,#imm LDRS @(disp,PC), LDRE@(disp,PC), and SETRC #imm
REPEAT s_label,e_label,Rn LDRS @(disp,PC), LDRE@(disp,PC), and SETRC Rn
REPEAT s_label,e_label LDRS @(disp,PC) and LDRE@(disp,PC)

11.9.3 REPEAT Description

Description Format

[<symbol>[:]] ∆REPEAT ∆<start address>,<end address>[,<repeat count>]

Statement Elements

1. Start and end addresses
Enter the labels of the start and end addresses of the repeat loop.

2. Repeat count
Enter the repeat count as an immediate value or as a general register name.

Description

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1018 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

1. REPEAT automatically generates the executable instructions LDRS and LDRE to repeat the
instructions in the range from the start address to the end address inclusive.

2. When the repeat count is specified, REPEAT generates a SETRC instruction. When the repeat
count is omitted, SETRC is not generated.

11.9.4 Coding Examples

To Repeat Four or More Instructions (Basic Example):

 REPEAT RptStart,RptEnd,#5

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PADD A0,Y0,Y0 PMULS X1,Y1,A0

 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

This program repeats execution of five instructions from RptStart to RptEnd five times.

The above program has the same meaning as the following:

 LDRS RptStart

 LDRE RptEnd3+4

 SETRC #5

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

RptEnd3: PADD A0,Y0,Y0 PMULS X1,Y1,A0; The label is not actually generated.
 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1019 of 1176
Mar 01, 2022

To Repeat One Instruction: Specify the same labels as the start and end addresses.

 REPEAT Rpt,Rpt,R0

 MOVX @R4+,X1 MOVY @R6,Y1

Rpt: PADD A0,Y0,Y0 PMULS X1,Y1,A0 MOVX @R4+,X1 MOVY @R6+,Y1

The above program has the same meaning as the following:

 LDRS RptStart0+8

 LDRE RptStart0+4

 SETRC R0

RptStart0: MOVX @R4+,X1 MOVY @R6,Y1 ;The label is not actually generated.
Rpt: PADD A0,Y0,Y0 PMULS X1,Y1,A0 MOVX @R4+,X1 MOVY @R6+,Y1

To Repeat Two Instructions:

 REPEAT RptStart,RptEnd,#10

 PCLR Y0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

RptEnd: PADD A0,Y0,Y0 PMULS X1,Y1,A0

The above program has the same meaning as the following:

 LDRS RptStart0+6

 LDRE RptStart0+4

 SETRC #10

RptStart0: PCLR Y0 ;The label is not actually generated.
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

RptEnd: PADD A0,Y0,Y0 PMULS X1,Y1,A0

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1020 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

To Repeat Three Instructions:

 REPEAT RptStart,RptEnd,R0

 PCLR Y0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PMULS X1,Y1,A0

RptEnd: PADD A0,Y0,Y0

The above program has the same meaning as the following:

 LDRE RptStart0+4

 LDRS RptStart0+4

 SETRC R0

RptStart0: PCLR Y0 ;The label is not actually generated.
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PMULS X1,Y1,A0

RptEnd: PADD A0,Y0,Y0

When Repeat Count is Omitted: When the repeat count is omitted, the assembler does not
generate SETRC. To separate the LDRS and LDRE from the SETRC, omit the repeat count.

 REPEAT RptStart,RptEnd

 ; The LDRS and LDRE are expanded here.
 MOV #10,R0

OuterLoop:

 SETRC #16

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PADD A0,Y0,Y0 PMULS X1,Y1,A0

 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

 DT R0

 BF OuterLoop

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1021 of 1176
Mar 01, 2022

11.9.5 Notes on the REPEAT Extended Instruction

Start and End Addresses: Only labels in the same section or local labels in the same local block
can be specified as the start and end addresses.

The start address must be at a higher address than the REPEAT extended instruction. The end
address must be at a higher address than the start address.

Instructions Inside Loops:

• If one of the following assembler directives that reserve data or data area or .ORG is used
inside a loop, the assembler outputs a warning message and counts the directive as one of the
instructions to be repeated. If .ALIGN is used inside a loop to adjust the boundary alignment,
the assembler outputs a warning message and counts .ALIGN as one of the instructions to be
repeated.
The following are the directives which cause this action:
.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
.XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, .ALIGN, and .ORG

• The assembler prevents automatic generation of literal pools within a loop. Therefore, even
when an unconditional branch is used in a loop, no literal pool is generated. If .POOL is used
in a loop, the assembler outputs a warning message and ignores .POOL.

Instruction Immediately before Loop: If three or fewer instructions are to be repeated, the
instruction immediately before the loop must be an executable instruction or a DSP instruction.
Therefore, when three or fewer instructions are to be repeated and if one of the following is
located immediately before the start address of the loop, the assembler outputs an error.

• Assembler directives that reserve a data item or a data area or .ORG
.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
.XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, or .ORG

• Literal pool generated by the automatic literal pool generation
If an unconditional branch instruction and a delay slot instruction are located immediately
before a loop, or if .POOL is located immediately before a loop, a literal pool may be
automatically generated. To prevent literal pool generation before a loop, use .NOPOOL
immediately after the delay slot instruction.

• One-byte alignment generated by .ALIGN

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1022 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

When .ALIGN is used at an odd address immediately before a loop, one-byte alignment may
be generated (for example, .ALIGN 4 is specified when the location counter value is 3). In this
case, the contents of the byte before a loop is not an executable instruction, and an error
message is output. If two or more-byte alignment is generated before a loop, their contents
consist of a NOP instruction and the program can be correctly executed.

Others:

• One or more executable or DSP instructions must be located between a REPEAT extended
instruction and the start address. Otherwise, the assembler outputs an error message.

• A REPEAT extended instruction must not be located between another REPEAT extended
instruction and its end address. If REPEAT extended instructions are nested, the assembler
outputs an error message.

• A branch instruction, TRAPA instruction (excluding cpu=sh4aldsp), or a load instruction
toward SR, RS, or RE must not be located between a REPEAT extended instruction and its
end address. If one of these instructions is used, the assembler outputs an error message.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1023 of 1176
Mar 01, 2022

11.10 Extended Automatic Repeat Loop Generation Function

11.10.1 Overview of Extended Automatic Repeat Loop Generation Function

In the SH4AL-DSP, the start and end addresses of the repeat loop are set in the RS and RE
registers by the LDRS and LDRE instructions.

The extended automatic repeat loop generation automatically generates the PC relative
instructions LDRS and LDRE, and the LDRC instruction from a single extended instruction. The
LDRS and LDRE instructions transfer the repeat start and end addresses to the RS and RE
registers, and the LDRC instruction specifies the repetition count.

For example, program A can be written as program B when using the extended automatic repeat
loop generation.

Program A:

 LDRS s_addr

 LDRE e_addr

 LDRC #10

 NOP

s_addr: PADD A0,M0,A0 ; Repeat loop start address
e_addr: PCMP X1,M0 ; Repeat loop end address

Program B:

 EREPEAT s_addr,e_addr,#10

 NOP

s_addr: PADD A0,M0,A0 ; Repeat loop start address
e_addr: PCMP X1,M0 ; Repeat loop end address

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1024 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

11.10.2 Extended Instructions of Extended Automatic Repeat Loop Generation Function

The assembler automatically generates necessary instructions from extended instructions
(EREPEAT s_label,e_label,#imm, EREPEAT s_label,e_label,Rn, and EREPEAT s_label,e_label).

Table 11.39 lists the source statement of each extended instruction and its expanded results of two
or three executable instructions.

Table 11.39 Extended Instructions and Expanded Results

Extended Instruction Expanded Results
EREPEAT s_label,e_label,#imm LDRS @(disp,PC), LDRE@(disp,PC), and LDRC #imm
EREPEAT s_label,e_label,Rn LDRS @(disp,PC), LDRE@(disp,PC), and LDRC Rn
EREPEAT s_label,e_label LDRS @(disp,PC) and LDRE@(disp,PC)

11.10.3 EREPEAT Description

Description Format

[<symbol>[:]] ∆EREPEAT ∆<start address>,<end address>[,<repeat count>]

Statement Elements

1. Start and end addresses
Enter the labels of the start and end addresses of the repeat loop.

2. Repeat count
Enter the repeat count as an immediate value or as a general register name.

Description

1. EREPEAT automatically generates the executable instructions LDRS and LDRE to repeat the
instructions in the range from the start address to the end address inclusive.

2. When the repeat count is specified, EREPEAT generates a LDRC instruction. When the repeat
count is omitted, LDRC is not generated.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1025 of 1176
Mar 01, 2022

11.10.4 Coding Examples

Basic Example:

 EREPEAT RptStart,RptEnd,#5

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PADD A0,Y0,Y0 PMULS X1,Y1,A0

 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

This program repeats execution of five instructions from RptStart to RptEnd five times.

The above program has the same meaning as the following:

 LDRS RptStart

 LDRE RptEnd3+4

 LDRC #5

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PADD A0,Y0,Y0 PMULS X1,Y1,A0

 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

When Repeat Count is Omitted: When the repeat count is omitted, the assembler does not
generate LDRC. To separate the LDRS and LDRE from the LDRC, omit the repeat count.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1026 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 EREPEAT RptStart,RptEnd

 ; The LDRS and LDRE are expanded here.
 MOV #10,R0

OuterLoop:

 LDRC #16

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PADD A0,Y0,Y0 PMULS X1,Y1,A0

 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

 DT R0

 BF OuterLoop

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 11 Assembly Specifications

R20UT0704EJ0102 Rev. 1.02 Page 1027 of 1176
Mar 01, 2022

11.10.5 Notes on the EREPEAT Extended Instruction

Start and End Addresses: Only labels in the same section or local labels in the same local block
can be specified as the start and end addresses.

The start address must be at a higher address than the EREPEAT extended instruction. The end
address must be at a higher address than the start address.

Instructions Inside Loops:

• If one of the following assembler directives that reserve data or data area or .ORG is used
inside a loop, the assembler outputs a warning message and counts the directive as one of the
instructions to be repeated. If .ALIGN is used inside a loop to adjust the boundary alignment,
the assembler outputs a warning message and counts .ALIGN as one of the instructions to be
repeated.
The following are the directives which cause this action:
.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
.XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, .ALIGN, and .ORG

• The assembler prevents automatic generation of literal pools within a loop. Therefore, even
when an unconditional branch is used in a loop, no literal pool is generated. If .POOL is used
in a loop, the assembler outputs a warning message and ignores .POOL.

Instruction Immediately before Loop: The instruction immediately before the loop must be an
executable instruction or a DSP instruction. Therefore, if one of the following is located
immediately before the start address of the loop, the assembler outputs an error.

• Assembler directives that reserve a data item or a data area or .ORG
.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
.XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, or .ORG

• Literal pool generated by the automatic literal pool generation
If an unconditional branch instruction and a delay slot instruction are located immediately
before a loop, or if .POOL is located immediately before a loop, a literal pool may be
automatically generated. To prevent literal pool generation before a loop, use .NOPOOL
immediately after the delay slot instruction.

• One-byte alignment generated by .ALIGN

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 11 Assembly Specifications Optimizing Linkage Editor

Page 1028 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

When .ALIGN is used at an odd address immediately before a loop, one-byte alignment may
be generated (for example, .ALIGN 4 is specified when the location counter value is 3). In this
case, the contents of the byte before a loop is not an executable instruction, and an error
message is output. If two or more-byte alignment is generated before a loop, their contents
consist of a NOP instruction and the program can be correctly executed.

Others:

• An EREPEAT extended instruction must not be used as another EREPEAT end instruction. If
EREPEAT extended instructions are nested, the assembler outputs an error message.

• A delayed branch instruction, or a load instruction toward SR, RS, or RE must not be used as
an EREPEAT end instruction. If one of these instructions is used, the assembler outputs an
error message.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1029 of 1176
Mar 01, 2022

Section 12 Compiler Error Messages

12.1 Error Format and Error Levels

In this section, error messages output in the following format and the details of errors are
explained.

Error number (Error level) Error message

Error details

There are five different error levels, corresponding to different degrees of seriousness.

Error Level Error Type Description
(I) Information Processing is continued and the object program is

output.
(W) Warning Processing is continued and the object program is

output.
(E) Error Processing is continued but the object program is not

output.
(F) Fatal Processing is interrupted and an error message is

output simultaneously.
(-) Internal Processing is interrupted and an error message is

output simultaneously.

12.2 Error Messages

C0001 (I) Character combination "String literal" in comment
A comment has "string literal".

C0002 (I) No declarator
A declaration without a declarator exists.

C0003 (I) Unreachable statement
A statement that will not be executed exists.

C0004 (I) Constant as condition
A constant expression is specified as the condition for an if or switch statement.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1030 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C0005 (I) Precision lost
Precision may be lost when assigning with type conversion a right hand side value to the left hand
side value.

C0006 (I) Conversion in argument
A function parameter expression is converted into a parameter type specified in the prototype
declaration.

C0008 (I) Conversion in return
A return statement expression is converted into a value type that should be returned from a
function.

C0010 (I) Elimination of needless expression
A needless expression exists.

C0011 (I) Used before set symbol: "variable name" in "function name"
A local variable is used before setting its value.

C0012 (I) Unused variable "variable name"
An unused variable exists.

C0015 (I) No return value
A return statement is not returning a value in a function that should return a type other than the
void type.

C0016 (I) Conversion in case constant expression
A constant expression of a case label is converted into the promoted type of the controlling
expression.

C0017 (I) Missing return statement
There is a control path that a return statement does not exist in a function that should return a type
other than the void type.

C0100 (I) Function "function name" not optimized
A function which is too large cannot be optimized.

C0101 (I) Optimizing range divided in function "function name"
The optimizing range of "function name" is divided into many sections.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1031 of 1176
Mar 01, 2022

C0102 (I) Register is not allocated to "variable name" in "function name"
Any register cannot be allocated to the variable of the register storage class.

C0200 (I) No prototype function
There is no prototype declaration.

C1000 (W) Illegal pointer assignment
A pointer is assigned to a pointer with a different data type.

C1001 (W) Illegal comparison in "operator"
The operands of the binary operator == or != are a pointer and an integer other than 0, respectively.

C1002 (W) Illegal pointer for "operator"
The operands of the binary operator ==, !=, >, <, >=, or <= are pointers assigned to different types.

C1003 (W) Illegal pointer initialization
The type specified for a pointer differs from the type in specification of the initial value for the
pointer.

C1005 (W) Undefined escape sequence
An undefined escape sequence (a backslash and the character following the backslash) is used in a
character constant or string literal.

C1007 (W) Long character constant
A character constant consists of two or more characters.

C1008 (W) Identifier too long
An identifier consists of more than 8189 characters. The 8190th and subsequent characters are
invalid.

C1010 (W) Character constant too long
A character constant consists of more than four characters.

C1012 (W) Floating point constant overflow
The value of a floating-point constant exceeds the limit. Assumes the internally represented value
corresponding to +∞ or −∞ depending on the sign of the result.

C1013 (W) Integer constant overflow
The integer value exceeds the limit of an unsigned long long integer constant. Assumes a value
ignoring the overflown upper bits.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1032 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C1014 (W) Escape sequence overflow
The value of an escape sequence indicating a bit pattern in a character constant or string literal
exceeds 255. The low order byte is valid.

C1015 (W) Floating point constant underflow
The absolute value of a floating-point constant is less than the lower limit. Assumes 0.0 as the
value of the constant.

C1016 (W) Argument mismatch
The data type assigned to a pointer specified as a formal parameter in a prototype declaration
differs from the data type assigned to a pointer used as the corresponding actual parameter in a
function call. Uses the internal representation of the pointer used for the function call actual
parameter.

C1017 (W) Return type mismatch
The function return type and the type of a return statement expression are pointers but the data
types assigned to these pointers are different. Uses the internal representation of the pointer
specified in the return statement expression.

C1019 (W) Illegal constant expression
The operands of the relational operator <, >, <=, or >= in a constant expression are pointers to
different data types. Assumes 0 as the result value.

C1020 (W) Illegal constant expression of "-"
The operands of the binary operator - in a constant expression are pointers to different data types.
Assumes 0 as the result value.

C1021 (W) Register saving pragma conflicts in interrupt function "function name"
Invalid #pragma that controls saving or recovery of register contents corresponding to an
interrupt function indicated by "function name". The #pragma specification is ignored.

C1022 (W) First operand of "operator" is not lvalue
The first operand "operator" cannot be the lvalue.

C1023 (W) Can not convert Japanese code "code" to output type
Some Japanese codes cannot be converted into the specified output codes.

C1024 (W) Out of float
The number of significant digits in a floating-point constant exceeds 17. The 18th and subsequent
digits are invalid.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1033 of 1176
Mar 01, 2022

C1026 (W) Address of packed member
The address of a structure member with pack=1 specification is referred to.

C1027 (W) Invalid #pragma gbr_base/gbr_base1
Both gbr=auto and either #pragma gbr_base or #pragma gbr_base1 have been specified. The
#pragma specification is ignored.

C1028 (W) #pragma "identifier" has no effect
The specified #pragma identifier is invalid.

C1029 (W) Function with ifunc calls "function name" without ifunc
A function with ifunc calls a function without ifunc specified.

C1030 (W) Bit order mismatch
The structure and the structure member have different bit_order.

C1031 (W) Multiple #pragma for one function
#pragma is specified for a single function more than once.

C1200 (W) Division by floating point zero
Division by the floating-point number 0.0 is carried out in a constant expression. Assumes the
internal representation value corresponding to +∞ or −∞ depending on the sign of the operands.

C1201 (W) Ineffective floating point operation
Invalid floating-point operations such as ∞ - ∞ or 0.0/0.0 are carried out in a constant expression.
Assumes the internal representation value corresponding to a not-a-number indicating the result of
an ineffective operation.

C1300 (W) Command parameter specified twice
The same compiler option is specified more than once. Uses the last specified compiler option.

C1301 (W) "option" option ignored
"option" is ignored at compilation.

C1302 (W) "double=float" option ignored
Both double=float and cpu=sh2afpu, sh4, or sh4a have been specified. The compiler ignores
double=float and assumes that fpu=single has been specified.

C1304 (W) "CPU type 1" is interpreted as "CPU type 2"
cpu=<CPU type 1> is invalid. The compiler will interpret this as cpu=<CPU type 2>.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1034 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C1308 (W) Duplicate number specified in option "option": "number"
The same number is specified twice in "option".

C1309 (W) Section name "Section name" specified
The name may be the same as that of created by the compiler.

C1310 (W) "repeat" option ignored
The compiler ignores the repeat option.

C1311 (W) "softpipe" option ignored
The compiler ignores the softpipe option.

C1312 (W) "fdiv" option ignored
The compiler ignores the fdiv option.

C1313 (W) "bss_order=declaration" option ignored
The compiler ignores the bss_order=declaration option.

C1314 (W) File_inline "file name" ignored by #pragma global_register mismatch
#pragma global_register is specified incorrectly. The file_inline option is ignored.

C1315 (W) File_inline "file name" ignored by same file as source file
The file to be compiled is same as the file_inline option's. The file_inline option is ignored.

C1400 (W) Function "function name" in #pragma inline is not expanded
A function specified using the #pragma inline could not be expanded. Ignores the #pragma
inline specification.

C1402 (W) #pragma "identifier" ignored
The #pragma "identifier" specification is ignored.

C1405 (W) Illegal #pragma syntax
The specified #pragma keyword is not allowed in this compiler syntax.

C1410 (W) A struct/union/class has different pack specifications
A single structure, union, or class has members with different pack specifications.

C1501 (W) Division by zero
Division by zero is generated.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1035 of 1176
Mar 01, 2022

C1600 (W) Debugging information describing location of "name" is lost
The compiler did not output symbol information on variable "name" because the total amount of
symbol information to be output by the compiler had exceeded the limit. So variable "name" does
not appear in the [Watch] window.
One of the reasons for this error may be a locally defined structure that has many members. If this
is the case, the error may be avoided in either of the following ways.

• Use the pointer to variable "name".
• Define variable "name" as static.

C1700 (W) Memory qualifier ignored
Ignores the specification of the memory qualifier.

C1701 (W) Conversion from pointer without memory qualifier to pointer with memory
qualifier

A pointer without the memory qualifier was converted to a pointer with the memory qualifier. The
memory qualifier becomes invalid.

C1702 (W) Conversion from pointer with circular qualifier to pointer without circular
qualifier

A pointer with the _ _circ qualifier was converted to a pointer without the _ _circ qualifier. The
_ _circ qualifier becomes invalid.

C1703 (W) Fixed point constant overflow
The value of a fixed-point constant exceeds the limit.

C1704 (W) Out of Fixed point
The number of significant digits in a fixed-point constant exceeds 17.

C1705 (W) Modulo addressing may be illegal in function "function name"
Modulo addressing may be illegal in a function indicated by "function name".

C1800 (W) Variable "variable name" type mismatch in files
The types of the variable are different in files. Do not use the file_inline option.

C2000 (E) Illegal preprocessor keyword
An illegal keyword is used in a preprocessor directive.

C2001 (E) Illegal preprocessor syntax
There is an error in a preprocessor directive or in a macro call specification.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1036 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2002 (E) Missing ","
A comma (,) is not used to delimit two arguments in a #define directive.

C2003 (E) Missing ")"
A right parenthesis ()) does not follow a name in a defined expression that determines whether the
name is defined by a #define directive.

C2004 (E) Missing ">"
A right angle bracket (>) does not follow a file name in an #include directive.

C2005 (E) Cannot open include file "file name"
The file specified by an #include directive cannot be opened.

C2006 (E) Multiple #define's
The same macro name is redefined by #define directives.

C2008 (E) Processor directive #elif mismatches
There is no #if, #ifdef, #ifndef, or #elif directive corresponding to an #elif directive.

C2009 (E) Processor directive #else mismatches
There is no #if, #ifdef, or #ifndef directive corresponding to an #else directive.

C2010 (E) Macro parameters mismatch
The number of macro call parameters and the number of macro definition parameters are different.

C2011 (E) Line too long
After macro expansion, a source program line exceeds the compiler limit.

C2012 (E) Keyword as a macro name
A preprocessor keyword is used as a macro name in a #define or #undef directive.

C2013 (E) Processor directive #endif mismatches
There is no #if, #ifdef, or #ifndef directive corresponding to an #endif directive.

C2014 (E) Missing #endif
There is no #endif directive corresponding to an #if, #ifdef, or #ifndef directive, and the end of
file is detected.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1037 of 1176
Mar 01, 2022

C2016 (E) Preprocessor constant expression too complex
The total number of operators and operands in a constant expression specified by an #if or #elif
directive exceeds the limit.

C2017 (E) Missing "
A closing double quotation mark (") does not follow a file name in an #include directive.

C2018 (E) Illegal #line
The line count specified by a #line directive exceeds the limit.

C2019 (E) File name too long
The length of a file name exceeds the limit.

C2020 (E) System identifier "name" redefined
The name of the defined symbol is the same as that of an intrinsic function.

C2021 (E) Invalid number specified in option "option": "number"
An invalid value is specified in "option". Check the range of the value.

C2022 (E) Error level message cannot be changed: "change_message"
The level of an error-level message cannot be changed.

C2027 (E) Cannot read specified file: "file name"
The specified file cannot be read correctly. Check the file specification.

C2100 (E) Multiple storage classes
Two or more storage class specifiers are used in a declaration.

C2101 (E) Address of register
A unary-operator & is used for a variable that has a register storage class.

C2102 (E) Illegal type combination
A combination of type specifiers is illegal.

C2103 (E) Bad self reference structure
A structure or union member has the same data type as its parent.

C2104 (E) Illegal bit field width
A constant expression indicating the width of a bit field is not an integer or it is negative.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1038 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2105 (E) Incomplete tag used in declaration
An incomplete tag name declared with a struct or union, or an undeclared tag name is used in a
typedef declaration or in the declaration of a data type not assigned to a pointer or to a function
return value.

C2106 (E) Extern variable initialized
A compound statement specifies an initial value for an extern storage class variable.

C2107 (E) Array of function
An array with a function type is specified.

C2108 (E) Function returning array
A function type with an array return value type is specified.

C2109 (E) Illegal function declaration
A storage class other than extern is specified in the declaration of a function type variable used in
a compound statement.

C2110 (E) Illegal storage class
The storage class in an external definition is specified as auto or register.

C2111 (E) Function as a member
A member of a structure or union is declared as a function type.

C2112 (E) Illegal bit field
The type specifier for a bit field is illegal. char, unsigned char, short, unsigned short, int,
unsigned int, long, unsigned long, long long, unsigned long long, bool, enum, or a combination
of const or volatile with one of the above types is allowed as a type specifier for a bit field.

C2113 (E) Bit field too wide
The width of a bit field is greater than the size (8, 16, 32, or 64 bits) indicated by its type specifier.

C2114 (E) Multiple variable declarations
A variable name is declared more than once in the same scope.

C2115 (E) Multiple tag declarations
A structure, union, or enum tag name is declared more than once in the same scope.

C2117 (E) Empty source program
There are no external definitions in the source program.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1039 of 1176
Mar 01, 2022

C2118 (E) Prototype mismatch "function name"
A function type differs from the one specified in the declaration.

C2119 (E) Not a parameter name "parameter name"
An identifier not in the function parameter list is declared as a parameter.

C2120 (E) Illegal parameter storage class
A storage class other than register is specified in a function parameter declaration.

C2121 (E) Illegal tag name
The combination of a structure, union, or enum with a tag name differs from the declared
combination.

C2122 (E) Bit field width 0
The width of a bit field specifying a member name is 0.

C2123 (E) Undefined tag name
An undefined tag name is specified in an enum declaration.

C2124 (E) Illegal enum value
A non-integral constant expression is specified as a value for an enum member.

C2125 (E) Function returning function
A function type with a function type return value is specified.

C2126 (E) Illegal array size
The value specifying the number of array elements is not an integer or out of range of 1 to
2147483647.

C2127 (E) Missing array size
The number of elements in an array is not specified.

C2128 (E) Illegal pointer declaration for "*"
A type specifier other than const or volatile is specified following an asterisk (*), which indicates
a pointer declaration.

C2129 (E) Illegal initializer type
The initial value specified for a variable is not a type that can be assigned to a variable.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1040 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2130 (E) Initializer should be constant
A value other than a constant expression is specified as either the initial value of a structure, union,
or array variable or as the initial value of a static variable.

C2131 (E) No type nor storage class
Storage class or type specifiers is not given in an external data definition.

C2132 (E) No parameter name
A parameter is declared even though the function parameter list is empty.

C2133 (E) Multiple parameter declarations
Either a parameter name is declared in a macro or function definition parameter list more than
once or a parameter is declared inside and outside the function declarator.

C2134 (E) Initializer for parameter
An initial value is specified in the declaration of a parameter.

C2135 (E) Multiple initialization
A variable is initialized more than once.

C2136 (E) Type mismatch
An extern or static storage class variable or function is declared more than once with different
data types.

C2137 (E) Null declaration for parameter
An identifier is not specified in the function parameter declaration.

C2138 (E) Too many initializers
The number of initial values specified for a structure, union, or array is greater than the number of
structure members or array elements. This error also occurs if two or more initial values are
specified when the first member of a union is scalar.

C2139 (E) No parameter type
A type is not specified in a function parameter declaration.

C2140 (E) Illegal bit field
A bit field is used in a union.

C2141 (E) Struct has no member name
An anonymous bit field is used as the first member of a structure.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1041 of 1176
Mar 01, 2022

C2142 (E) Illegal void type
void is used illegally. void can only be used in the following three cases:

(1) To specify a type assigned to a pointer
(2) To specify a function return type
(3) To explicitly specify that a function whose prototype is declared does not have a parameter

C2143 (E) Illegal static function
There is a function declaration with a static storage class function that has no definition in the
source program.

C2144 (E) Type mismatch
Variables or functions with the same name which have an extern storage class are assigned to
different data types.

C2145 (E) Const/volatile specified for incomplete type
An incomplete type is specified as a const or volatile type.

C2200 (E) Index not integer
An array index expression type is not integer.

C2201 (E) Cannot convert parameter "n"
The n-th parameter of a function call cannot be converted to the type of parameter specified in the
prototype declaration.

C2202 (E) Number of parameters mismatch
The number of parameters for a function call is not equal to the number of parameters specified in
the prototype declaration.

C2203 (E) Illegal member reference for "."
The expression to the left-hand side of the (.) operator is not a structure or union.

C2204 (E) Illegal member reference for "->"
The expression to the left-hand side of the -> operator is not a pointer to a structure or union.

C2205 (E) Undefined member name
An undeclared member name is used to reference a structure or union.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1042 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2206 (E) Modifiable lvalue required for "operator"
The operand for a prefix or suffix operator ++ or -- has a left value that cannot be assigned (a left
value whose type is not array or const).

C2207 (E) Scalar required for "!"
The unary operator ! is used on an expression that is not scalar.

C2208 (E) Pointer required for "*"
The unary operator * is used on an expression that is not a pointer or on an expression of a pointer
for void.

C2209 (E) Arithmetic type required for "operator"
The unary operator + or − is used on a non-arithmetic expression.

C2210 (E) Integer required for "~"
The unary operator ~ is used on a non-integral expression.

C2211 (E) Illegal sizeof
A sizeof operator is used for a bit field member, function, void, or array with an undefined size.

C2212 (E) Illegal cast
Either array, struct, or union is specified in a cast operator, or the operand of a cast operator is
void, struct, or union and cannot be converted.

C2213 (E) Arithmetic type required for "operator"
The binary operator *, /, *=, or /= is used in an expression that is not an arithmetic expression.

C2214 (E) Integer required for "operator"
The binary operator <<, >>, &, |, ^, %, <<=, >>=, &=, |=, ^=, or %= is used in an expression that
is not an integer expression.

C2215 (E) Illegal type for "+"
The combination of operand types used with the binary operator + is not allowed. Only the
following type combinations are allowed for the binary operator +:

(1) Two arithmetic operands
(2) Pointer and integer

C2216 (E) Illegal type for parameter
Type void is specified for a function call parameter type.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1043 of 1176
Mar 01, 2022

C2217 (E) Illegal type for "-"
The combination of operand types used with the binary operator – is not allowed. Only the
following three combinations are allowed for the binary operator:

(1) Two arithmetic operands
(2) Two pointers assigned to the same data type
(3) The first operand is a pointer and the second operand is an integer

C2218 (E) Scalar required
The first operand of the conditional operator ?: is not a scalar.

C2219 (E) Type not compatible in "?:"
The types of the second and third operands of the conditional operator ?: do not match with each
other. Only the following six combinations are allowed for the second and third operands when
using the ?: operator:

(1) Two arithmetic operands
(2) Two void operands
(3) Two pointers assigned to the same data type
(4) A pointer and an integer constant whose value is zero, or another pointer assigned to void that

was converted from an integer constant whose value is zero
(5) A pointer and another pointer assigned to void
(6) Two structure or union variables with the same data type

C2220 (E) Modifiable lvalue required for "operator"
An expression whose left value cannot be assigned (a left value whose type is not array or const)
is used as an operand of an assignment operator =, *=, /=, %=, +=, −=, <<=, >>=, &=, ^=, or | =.

C2221 (E) Illegal type for "operator"
The operand of the suffix operator ++ or -- is a pointer assigned to function type, void type, or to a
data type other than scalar type.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1044 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2222 (E) Type not compatible for "="
The operand types for the assignment operator = do not match. Only the following five
combinations are allowed for the operands of the assignment operator =:

(1) Two arithmetic operands
(2) Two pointers assigned to the same data type
(3) The left operand is a pointer and the right operand is an integer constant whose value is zero,

or another pointer assigned to void that was converted from an integer constant whose value is
zero

(4) A pointer and another pointer assigned to void
(5) Two structure or union variables with the same data type

C2223 (E) Incomplete tag used in expression
An incomplete tag name is used for a structure or union in an expression.

C2224 (E) Illegal type for assign
The operand types of the assignment operator += or -= are illegal.

C2225 (E) Undeclared name "name"
An undeclared name is used in an expression.

C2226 (E) Scalar required for "operator"
The binary operator && or || is used in a non-scalar expression.

C2227 (E) Illegal type for equality
The combination of operand types for the equality operator == or != is not allowed. Only the
following three combinations of operand types are allowed for the equality operator == or !=:

(1) Two arithmetic operands
(2) Two pointers assigned to the same data type
(3) A pointer and an integer constant whose value is zero or another pointer assigned to void

C2228 (E) Illegal type for comparison
The combination of operand types for the relational operator >, <, >=, or <= is not allowed. Only
the following two combinations of operand types are allowed for a relational operator:

(1) Two arithmetic operands
(2) Two pointers assigned to the same data type

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1045 of 1176
Mar 01, 2022

C2230 (E) Illegal function call
An expression which is not a function type or a pointer assigned to a function type is used for a
function call.

C2231 (E) Address of bit field
The unary operator & is used in a bit field.

C2232 (E) Illegal type for "operator"
The operand of the prefix operator ++ or -- is a pointer assigned to a function type, void type, or to
a data type other than scalar type.

C2233 (E) Illegal array reference
An expression used as an array is an array or a pointer assigned to a data type other than a function
or void.

C2234 (E) Illegal typedef name reference
A typedef name is used as a variable in an expression.

C2235 (E) Illegal cast
An attempt is made to cast a pointer with a floating-point or fixed-point type.

C2236 (E) Illegal cast in constant
In a constant expression, an attempt is made to cast a pointer with a char or short type.

C2237 (E) Illegal constant expression
In a constant expression, a pointer constant is cast with an integer and the result is manipulated.

C2238 (E) Lvalue or function type required for "&"
The unary operator & is not used in the lvalue or an expression other than function type.

C2239 (E) Illegal section name
The section name includes a character that is not available for use.

C2240 (E) Illegal section naming
There is an error in section naming. The same section name is specified for different use of the
section.

C2300 (E) Case not in switch
A case label is specified outside a switch statement.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1046 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2301 (E) Default not in switch
A default label is specified outside a switch statement.

C2302 (E) Multiple labels
A label name is defined more than once in a function.

C2303 (E) Illegal continue
A continue statement is specified outside a while, for, or do statement.

C2304 (E) Illegal break
A break statement is specified outside a while, for, do, or switch statement.

C2305 (E) Void function returns value
A return statement specifies a return value for a function with a void return type.

C2306 (E) Case label not constant
A case label expression is not an integer constant expression.

C2307 (E) Multiple case labels
Two or more case labels with the same value are specified for one switch statement.

C2308 (E) Multiple default labels
Two or more default labels are specified for one switch statement.

C2309 (E) No label for goto
There is no label corresponding to the destination specified by a goto statement.

C2310 (E) Scalar required
The control expression (that determines statement execution) for a while, for, or do statement is
not a scalar.

C2311 (E) Integer required
The control expression (that determines statement execution) for a switch statement is not an
integer.

C2312 (E) Missing (
The control expression (that determines statement execution) does not have a left parenthesis
(() for an if, while, for, do, or switch statement.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1047 of 1176
Mar 01, 2022

C2313 (E) Missing ;
A do statement is ended without a semicolon (;).

C2314 (E) Scalar required
A control expression (that determines statement execution) for an if statement is not a scalar.

C2316 (E) Illegal type for return value
An expression in a return statement cannot be converted to the type of value expected to be
returned by the function.

C2400 (E) Illegal character "character"
An illegal character is detected.

C2401 (E) Incomplete character constant
An end of line indicator is detected in the middle of a character constant.

C2402 (E) Incomplete string
An end of line indicator is detected in the middle of a string literal.

C2403 (E) EOF in comment
An end of file indicator is detected in the middle of a comment.

C2404 (E) Illegal character code "character code"
An illegal character code is detected.

C2405 (E) Null character constant
There are no characters in a character constant (i.e., no characters are specified between two
quotation marks).

C2407 (E) Incomplete logical line
A backslash (\) or a backslash followed by an end of line indicator (\ (RET)) is specified as the
last character in a non-empty source file.

C2408 (E) Comment nest too deep
The nesting level of the comment exceeds the limit of 255.

C2500 (E) Illegal token "phrase"
An illegal token sequence is used.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1048 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2501 (E) Division by zero
An integer or a fixed point is divided by zero in a constant expression.

C2600 (E) "string literal"
An error message specified by the #error string literal is output to the list file if the nolistfile
option is not specified.

C2650 (E) Invalid pointer reference
The specified address does not match the boundary alignment value.

C2700 (E) Function "function name" in #pragma interrupt already declared
A function specified in an interrupt function declaration #pragma interrupt has been declared as
a normal function.

C2701 (E) Multiple interrupt for one function
An interrupt function declaration #pragma interrupt has been declared more than once for the
same function.

C2702 (E) Multiple #pragma interrupt options
The same type of interrupt is declared more than once.

C2703 (E) Illegal #pragma interrupt declaration
An interrupt function declaration #pragma interrupt is specified incorrectly.

C2704 (E) Illegal reference to interrupt function
The interrupt function is incorrectly referenced.

C2705 (E) Illegal parameter in interrupt function
Parameter types to be used for an interrupt function do not match.

C2706 (E) Missing parameter declaration in interrupt function
There is no declaration for a variable to be used for an optional specification of an interrupt
function.

C2707 (E) Parameter out of range in interrupt function
The parameter value tn of an interrupt function exceeds the limit of 256.

C2709 (E) Illegal section name declaration
The #pragma section specification is illegal.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1049 of 1176
Mar 01, 2022

C2710 (E) Section name too long
The specified section name exceeds the limit of 31 characters.

C2711 (E) Section name table overflow
The number of sections specified in one file exceeds the limit of 64.

C2712 (E) GBR based displacement overflow
The variable declared in #pragma gbr_base or #pragma gbr_base1 overflows.

C2713 (E) Illegal #pragma interrupt function type
The function type specified #pragma interrupt is illegal.

C2799 (E) GBR used in-line function
A GBR-related intrinsic function cannot be used when gbr=auto is specified.

C2800 (E) Illegal parameter number in in-line function
The number of parameters to be used for an intrinsic function do not match.

C2801 (E) Illegal parameter type in in-line function
There are different parameter types in an intrinsic function.

C2802 (E) Parameter out of range in in-line function
A parameter exceeds the range that can be specified in an intrinsic function.

C2803 (E) Invalid offset value in in-line function
An argument for an intrinsic function is incorrectly specified.

C2804 (E) Illegal in-line function
An intrinsic function that cannot be used by the specified cpu option exists.

C2805 (E) Function "function name" in #pragma inline/inline_asm already declared
The function indicated by "function name" exists before the #pragma specification.

C2806 (E) Multiple #pragma for one function
Two or more #pragma directives are incorrectly specified for one function.

C2807 (E) Illegal #pragma inline/inline_asm declaration
#pragma inline or #pragma inline_asm is specified illegally.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1050 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2808 (E) Illegal option for #pragma inline_asm
The code=machinecode option is specified in addition to the #pragma inline_asm specification.

C2809 (E) Illegal #pragma inline/inline_asm function type
An identifier type that specifies #pragma inline or #pragma inline_asm is illegal.

C2810 (E) Global variable "variable name" in #pragma gbr_base/gbr_base1 already
declared
A variable definition indicated by "variable name" exists before the #pragma specification.

C2811 (E) Multiple #pragma for one global variable
Two or more #pragma directives are incorrectly specified for one variable.

C2812 (E) Illegal #pragma gbr_base/gbr_base1 declaration
The #pragma gbr_base or #pragma gbr_base1 specification is illegal.

C2813 (E) Illegal #pragma gbr_base/gbr_base1 global variable type
An identifier type that specifies #pragma gbr_base or #pragma gbr_base1 is illegal.

C2814 (E) Function "function name" in #pragma noregsave/noregalloc/regsave already
declared
The function indicated by "function name" exists before the #pragma specification.

C2815 (E) Illegal #pragma noregsave/noregalloc/regsave declaration
The #pragma noregsave, #pragma noregalloc, or #pragma regsave specification is illegal.

C2816 (E) Illegal #pragma noregsave/noregalloc/regsave function type
An identifier type that specifies #pragma noregsave, #pragma noregalloc, or #pragma regsave
is illegal.

C2817 (E) Symbol "identifier" in #pragma abs16/abs20/abs28/abs32 already declared
A name indicated by "identifier" exists before the #pragma specification.

C2818 (E) Multiple #pragma for one symbol
More than one #pragma is incorrectly specified for one identifier.

C2819 (E) Illegal #pragma abs16/abs20/abs28/abs32 declaration
The #pragma abs16/abs20/abs28/abs32 specification is illegal.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1051 of 1176
Mar 01, 2022

C2820 (E) Illegal #pragma abs16/abs20/abs28/abs32 symbol type
An identifier type that specifies #pragma abs16/abs20/abs28/abs32 is illegal.

C2821 (E) Global variable "variable name" in #pragma global_register already declared
The variable that specifies #pragma global_register has already been defined.

C2822 (E) Illegal register "register" in #pragma global_register
The register that specifies #pragma global_register is illegal.

C2823 (E) Illegal #pragma global_register declaration
The specification of #pragma global_register is illegal.

C2824 (E) Illegal #pragma global_register type
A variable that cannot specify #pragma global_register exists.

C2828 (E) Illegal #pragma entry declaration
There is an error in the #pragma entry declaration syntax.

C2829 (E) Function "function name" in #pragma entry already declared
A symbol with the same name as the function exists before the #pragma entry declaration or
#pragma has already been specified.

C2830 (E) Illegal #pragma entry function type
The specified symbol is not a function.

C2831 (E) Multiple #pragma entry declaration
There are two or more #pragma entry declarations.

C2832 (E) Illegal #pragma stacksize declaration
There is an error in the #pragma stacksize declaration syntax.

C2833 (E) Multiple #pragma stacksize declaration
There are multiple #pragma stacksize declarations.

C2840 (E) Illegal #pragma ifunc declaration
There is an error in the #pragma ifunc declaration syntax.

C2841 (E) Illegal #pragma ifunc function type
An illegal identifier is specified in the #pragma ifunc declaration.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1052 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C2842 (E) Function "function name" in #pragma ifunc already declared
The name indicated by "function name" is declared before the #pragma specification.

C2843 (E) Illegal floating type used in function
The float or double type is used in the function. The float or double type must not be used when
the function is declared by #pragma ifunc.

C2844 (E) Illegal #pragma pack/unpack declaration
There is an error in the #pragma pack/unpack declaration syntax.

C2845 (E) Illegal #pragma bit_order declaration
There is an error in the #pragma bit_order declaration syntax.

C2846 (E) Packed structure used in in-line function
The structure specified with pack is used for the intrinsic function.

C2847 (E) Illegal #pragma tbr declaration
There is an error in the #pragma tbr specification.

C2848 (E) Function "function name" in #pragma tbr already declared
The function indicated by "function name" exists before the #pragma tbr specification.

C2849 (E) Illegal offset in #pragma tbr
An illegal offset is specified.

C2850 (E) Illegal #pragma tbr function type
The specified symbol is not a function.

C2851 (F) Too many function in tbr
The number of functions specified in #pragma tbr exceeds the limit.

C2852 (E) Variable "variable name" in #pragma address already declared
The variable specified in #pragma address has already been defined.

C2853 (E) Illegal #pragma address symbol type
A compound type member or a symbol which is not a variable name is specified in #pragma
address.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1053 of 1176
Mar 01, 2022

C2854 (E) Illegal address in #pragma address
The specified address has one of the following errors.
(1) The specified address is not a multiple of 4 when the corresponding variable or structure has
 boundary alignment value 4.
(2) The specified address is not a multiple of 2 when the corresponding variable or structure has
 boundary alignment value 2.
(3) The same address is specified for different variables.
(4) The address ranges for different variables overlap each other.
(5) #pragma abs16/abs20/abs28 is specified but the absolute address is not included in that
 range.
(6) abs16/abs20/abs28 option is specified but the absolute address is not included in that range.

C2855 (E) All registers are used in #pragma global_register
All registers are occupied by #pragma global_register.

C2856 (E) Illegal usage of in-line function "function name"
The intrinsic function "function name" is used incorrectly.

C2857 (E) Function "function name" in #pragma already declared
The function is defined before the #pragma declaration is not specifiable.

C2858 (E) Illegal #pragma "identifier" function type
The symbol specified for #pragma "identifier" is not a function.

C2859 (E) Illegal #pragma "identifier" declaration
The #pragma "identifier" declaration has a syntax error.

C2900 (E) Incompatible memory qualifiers
There had been an attempt to convert to a pointer type with incompatible memory qualifiers.

C2901 (E) Illegal type qualifier
There is an error in the specification of the type qualifier.

C2902 (E) Illegal arithmetic conversion
There is an error in the arithmetic conversion.

C2903 (E) Illegal _ _circ specification
There is an error in the _ _circ specification.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1054 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C3000 (F) Statement nest too deep
The nesting level of an if, while, for, do, or switch statement exceeds the limit.

C3001 (F) Block nest too deep
The nesting level of a compound statement exceeds the limit.

C3006 (F) Too many parameters
The number of parameters in a function declaration or a function call exceeds the limit.

C3007 (F) Too many macro parameters
The number of parameters in a macro definition or a macro call exceeds the limit.

C3008 (F) Line too long
After a macro expansion, the length of a line exceeds the limit.

C3009 (F) String literal too long
The length of a string literal exceeds 32766 characters. The length of a string literal is the number
of bytes when linking string literals specified continuously. The length of the string literal is not
the length in the source program but the number of bytes included in the string literal data. Escape
sequence is counted as one character.

C3013 (F) Too many switches
The number of switch statements exceeds the limit.

C3014 (F) For nest too deep
The nesting level of a for statement exceeds the limit.

C3015 (F) Symbol table overflow
The number of symbols to be generated by the compiler exceeds the limit.

C3016 (F) Internal label overflow
The number of internal labels to be generated by the compiler exceeds the limit.

C3017 (F) Too many case labels
The number of case labels in one switch statement exceeds the limit.

C3018 (F) Too many goto labels
The number of goto labels defined in one function exceeds the limit.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1055 of 1176
Mar 01, 2022

C3019 (F) Cannot open source file "file name"
A source file cannot be opened.

C3020 (F) Source file input error "file name"
A source or include file cannot be read.

C3021 (F) Memory overflow
The compiler cannot allocate sufficient memory to compile the program.

C3022 (F) Switch nest too deep
The nesting level of a switch statement exceeds the limit.

C3023 (F) Type nest too deep
The number of types (pointer, array, and function) that qualify the basic type exceeds 16.

C3024 (F) Array dimension too deep
An array has more than six dimensions.

C3025 (F) Source file not found
A source file name is not specified in the command line.

C3026 (F) Expression too complex
An expression is too complex.

C3027 (F) Source file too complex
The nesting level of statements in the program is too deep or an expression is too complex.

C3030 (F) Too many compound statements
The number of compound statements in one function exceeds 2048.

C3031 (F) Data size overflow
The size of an array or a structure exceeds the limit of 2147483647 bytes.

C3100 (F) Misaligned pointer access
There has been an attempt to reference or specify using a pointer that has an invalid alignment.

C3201 (F) Object size overflow
The object file size exceeds the limit of 4 Gbytes.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1056 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C3203 (F) Assembly source line too long
The assembly source line is too long to output.

C3204 (F) Illegal stack access
The size of a stack to be used in a function (including a local variable area, register save area, and
parameter push area to call other functions) or a parameter area to call the function
exceeds 2 Gbytes.

C3205 (F) Cannot apply repeat operation for a loop
An extended repeat loop cannot be generated against a loop.
Modify the loop size small, or cancel the repeat option.

C3300 (F) Cannot open internal file
An error occurred due to one of the following three causes:
(1) An intermediate file internally generated by the compiler cannot be opened.
(2) A file that has the same file name as the intermediate file already exists.
(3) A file which the compiler uses internally cannot be opened.

C3301 (F) Cannot close internal file
An intermediate file internally generated by the compiler cannot be closed. Make sure the
compiler is correctly installed.

C3302 (F) Cannot input internal file
An intermediate file internally generated by the compiler cannot be read. Make sure the compiler
is correctly installed.

C3303 (F) Cannot output internal file
An intermediate file internally generated by the compiler cannot be written to. Increase the disk
space.

C3304 (F) Cannot delete internal file
An intermediate file internally generated by the compiler cannot be deleted. Check that the
intermediate file generated by the compiler is not being accessed.

C3305 (F) Invalid command parameter "option name"
An invalid compiler option is specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1057 of 1176
Mar 01, 2022

C3306 (F) Interrupt in compilation
An interrupt generated by a (CNTL) + C command (from a standard input terminal) is detected
during compilation.

C3307 (F) Compiler version mismatch
File versions in the compiler do not match the other file versions. Refer to the Install Guide for
the installation procedure, and reinstall the compiler.

C3308 (F) Cannot create file "file name"
The compiler cannot create necessary files.

C3320 (F) Command parameter buffer overflow
The command line specification exceeds 4096 characters.

C3321 (F) Illegal environment variable
An error occurred due to one of the following five causes:
(1) The environment variable SHC_LIB was not specified.
(2) Other than "SH1", "SH2", "SH2E", "SH2DSP", "SHDSP", "SH2A", "SH2AFPU", "SH3",

"SH3DSP", "SH4", "SH4A", or "SH4ALDSP" is set for the environment variable SHCPU.
(3) The environment variable SHC_TMP was not set.
(4) The folder name specified for the environment variable SHC_TMP does not exist.
(5) Double-quotation marks (" ") are used in the path name of the environment variable

SHC_TMP.

C3322 (F) Current directory cannot be read to get its name
Information on the current directory cannot be read.

C4000-C4999 () Internal error
An internal error occurred during compilation. Report the error occurrence to your local Renesas
sales office.

C5003 (F) #include file "file name" includes itself

C5004 (F) Out of memory

C5005 (F) Could not open source file "name"

C5006 (E) Comment unclosed at end of file

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1058 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5007 (E) (I) Unrecognized token

C5008 (E) (I) Missing closing quote

C5009 (I) Nested comment is not allowed

C5010 (E) "#" not expected here

C5011 (E) Unrecognized preprocessing directive

C5012 (E) Parsing restarts here after previous syntax error

C5013 (F) (E) Expected a file name

C5014 (E) Extra text after expected end of preprocessing directive

C5016 (F) "name" is not a valid source file name

C5017 (E) Expected a "]"

C5018 (E) Expected a ")"

C5019 (E) Extra text after expected end of number

C5020 (E) Identifier "name" is undefined

C5021 (W) Type qualifiers are meaningless in this declaration

C5022 (E) Invalid hexadecimal number

C5024 (E) Invalid octal digit

C5025 (E) Quoted string should contain at least one character

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1059 of 1176
Mar 01, 2022

C5026 (E) Too many characters in character constant

C5027 (W) Character value is out of range

C5028 (E) Expression must have a constant value

C5029 (E) Expected an expression

C5030 (E) Floating constant is out of range

C5031 (E) Expression must have integral type

C5032 (E) Expression must have arithmetic type

C5033 (E) Expected a line number

C5034 (E) Invalid line number

C5035 (F) #error directive: "line number"

C5036 (E) The #if for this directive is missing

C5037 (E) The #endif for this directive is missing

C5038 (W) Directive is not allowed -- an #else has already appeared

C5039 (W) Division by zero

C5040 (E) Expected an identifier

C5041 (E) Expression must have arithmetic or pointer type

C5042 (E) Operand types are incompatible ("type 1" and "type 2")

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1060 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5044 (E) Expression must have pointer type

C5045 (W) #undef may not be used on this predefined name

C5046 (W) This predefined name may not be redefined

C5047 (W) Incompatible redefinition of macro "name" (declared at line "line number")

C5049 (E) Duplicate macro parameter name

C5050 (E) "##" may not be first in a macro definition

C5051 (E) "##" may not be last in a macro definition

C5052 (E) Expected a macro parameter name

C5053 (E) Expected a ":"

C5054 (W) Too few arguments in macro invocation

C5055 (W) Too many arguments in macro invocation

C5056 (E) Operand of sizeof may not be a function

C5057 (E) This operator is not allowed in a constant expression

C5058 (E) This operator is not allowed in a preprocessing expression

C5059 (E) Function call is not allowed in a constant expression

C5060 (E) This operator is not allowed in an integral constant expression

C5061 (W) Integer operation result is out of range

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1061 of 1176
Mar 01, 2022

C5062 (W) Shift count is negative

C5063 (W) Shift count is too large

C5064 (W) Declaration does not declare anything

C5065 (E) Expected a ";"

C5066 (E) Enumeration value is out of "int" range

C5067 (E) Expected a "}"

C5068 (W) Integer conversion resulted in a change of sign

C5069 (W) Integer conversion resulted in truncation

C5070 (E) Incomplete type is not allowed

C5071 (E) Operand of sizeof may not be a bit field

C5075 (E) Operand of "*" must be a pointer

C5077 (E) This declaration has no storage class or type specifier

C5079 (E) Expected a type specifier

C5080 (E) A storage class may not be specified here

C5081 (E) More than one storage class may not be specified

C5083 (W) Type qualifier specified more than once

C5084 (E) Invalid combination of type specifiers

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1062 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5085 (E) Invalid storage class for a parameter

C5086 (E) Invalid storage class for a function

C5087 (E) A type specifier may not be used here

C5088 (E) Array of functions is not allowed

C5089 (E) Array of void is not allowed

C5090 (E) Function returning function is not allowed

C5091 (E) Function returning array is not allowed

C5093 (E) Function type may not come from a typedef

C5094 (E) The size of an array must be greater than zero

C5095 (E) Array is too large

C5097 (E) A function may not return a value of this type

C5098 (E) An array may not have elements of this type

C5100 (E) Duplicate parameter name

C5101 (E) "name" has already been declared in the current scope

C5103 (E) Class is too large

C5105 (E) Invalid size for bit field

C5106 (E) Invalid type for a bit field

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1063 of 1176
Mar 01, 2022

C5107 (E) Zero-length bit field must be unnamed

C5108 (W) Signed bit field of length 1

C5109 (E) Expression must have (pointer-to-) function type

C5110 (E) Expected either a definition or a tag name

C5111 (I) Statement is unreachable

C5112 (E) Expected "while"

C5114 (E) Entity-kind "name" was referenced but not defined

C5115 (E) A continue statement may only be used within a loop

C5116 (E) A break statement may only be used within a loop or switch

C5117 (W) Non-void entity-kind "name" should return a value

C5118 (E) A void function may not return a value

C5119 (E) Cast to type "type" is not allowed

C5120 (E) Return value type does not match the function type

C5121 (E) A case label may only be used within a switch

C5122 (E) A default label may only be used within a switch

C5123 (E) Case label value has already appeared in this switch

C5124 (E) Default label has already appeared in this switch

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1064 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5125 (E) Expected a "("

C5126 (E) Expression must be an lvalue

C5127 (E) Expected a statement

C5128 (I) Loop is not reachable from preceding code

C5129 (E) A block-scope function may only have extern storage class

C5130 (E) Expected a "{"

C5131 (E) Expression must have pointer-to-class type

C5132 (E) Expression must have pointer-to-struct-or-union type

C5133 (E) Expected a member name

C5134 (E) Expected a field name

C5135 (E) Entity-kind "name" has no member "member name"

C5136 (E) Entity-kind "name" has no field "field name"

C5137 (E) Expression must be a modifiable lvalue

C5139 (E) Taking the address of a bit field is not allowed

C5140 (E) Too many arguments in function call

C5142 (E) Expression must have pointer-to-object type

C5143 (F) Program too large or complicated to compile

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1065 of 1176
Mar 01, 2022

C5144 (E) A value of type "type 1" cannot be used to initialize an entity of type "type 2"

C5145 (E) Entity-kind "name" may not be initialized

C5146 (E) Too many initializer values

C5147 (E) Declaration is incompatible with "name" (declared at line "line number")

C5148 (E) Entity-kind "name" has already been initialized

C5149 (E) A global-scope declaration may not have this storage class

C5150 (E) A type name may not be redeclared as a parameter

C5151 (E) A typedef name may not be redeclared as a parameter

C5153 (E) Expression must have class type

C5154 (E) Expression must have struct or union type

C5157 (E) Expression must be an integral constant expression

C5158 (E) Expression must be an lvalue or a function designator

C5159 (E) Declaration is incompatible with previous "name" (declared at line "line

number")

C5160 (E) Name conflicts with previously used external name "name"

C5161 (I) Unrecognized #pragma

C5163 (F) Could not open temporary file "name"

C5164 (F) Name of directory for temporary files is too long ("name")

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1066 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5165 (E) Too few arguments in function call

C5166 (E) Invalid floating constant

C5167 (E) Argument of type "type 1" is incompatible with parameter of type "type 2"

C5168 (E) A function type is not allowed here

C5169 (E) Expected a declaration

C5170 (W) Pointer points outside of underlying object

C5171 (E) Invalid type conversion

C5172 (I) External/internal linkage conflict with previous declaration

C5173 (E) Floating-point value does not fit in required integral type

C5174 (I) Expression has no effect

C5175 (W) Subscript out of range

C5177 (W) (I) Entity-kind "name" was declared but never referenced

C5179 (W) Right operand of "%" is zero

C5182 (F) Could not open source file "name" (no directories in search list)

C5183 (E) Type of cast must be integral

C5184 (E) Type of cast must be arithmetic or pointer

C5185 (I) Dynamic initialization in unreachable code

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1067 of 1176
Mar 01, 2022

C5186 (W) Pointless comparison of unsigned integer with zero

C5187 (I) Use of "=" where "==" may have been intended

C5189 (F) Error while writing "file name" file

C5191 (W) Type qualifier is meaningless on cast type

C5192 (W) Unrecognized character escape sequence

C5193 (I) Zero used for undefined preprocessing identifier

C5219 (F) Error while deleting file "file name"

C5221 (W) Floating-point value does not fit in required floating-point type

C5224 (W) The format string requires additional arguments

C5225 (W) The format string ends before this argument

C5226 (W) Invalid format string conversion

C5228 (W) Trailing comma is nonstandard

C5229 (W) Bit field cannot contain all values of the enumerated type

C5235 (E) Variable "name" was declared with a never-completed type

C5236 (W) (I) Controlling expression is constant

C5237 (I) Selector expression is constant

C5238 (E) Invalid specifier on a parameter

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1068 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5239 (E) Invalid specifier outside a class declaration

C5240 (E) Duplicate specifier in declaration

C5241 (E) A union is not allowed to have a base class

C5242 (E) Multiple access control specifiers are not allowed

C5243 (E) Class or struct definition is missing

C5244 (E) Qualified name is not a member of class "type" or its base classes

C5245 (E) A nonstatic member reference must be relative to a specific object

C5246 (E) A nonstatic data member may not be defined outside its class

C5247 (E) Entity-kind "name" has already been defined

C5248 (E) Pointer to reference is not allowed

C5249 (E) Reference to reference is not allowed

C5250 (E) Reference to void is not allowed

C5251 (E) Array of reference is not allowed

C5252 (E) Reference entity-kind "name" requires an initializer

C5253 (E) Expected a ","

C5254 (E) Type name is not allowed

C5255 (E) Type definition is not allowed

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1069 of 1176
Mar 01, 2022

C5256 (E) Invalid redeclaration of type name "name" (declared at line "line number")

C5257 (E) Const entity-kind "name" requires an initializer

C5258 (E) "this" may only be used inside a nonstatic member function

C5259 (E) Constant value is not known

C5261 (I) Access control not specified ("name" by default)

C5262 (E) Not a class or struct name

C5263 (E) Duplicate base class name

C5264 (E) Invalid base class

C5265 (E) Entity-kind "name" is inaccessible

C5266 (E) "name" is ambiguous

C5269 (E) Implicit conversion to inaccessible base class "type" is not allowed

C5274 (E) Improperly terminated macro invocation

C5276 (E) Name followed by "::" must be a class or namespace name

C5277 (E) Invalid friend declaration

C5278 (E) A constructor or destructor may not return a value

C5279 (E) Invalid destructor declaration

C5280 (E) (W) Declaration of a member with the same name as its class

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1070 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5281 (E) Global-scope qualifier (leading "::") is not allowed

C5282 (E) The global scope has no "name"

C5283 (E) Qualified name is not allowed

C5284 (W) NULL reference is not allowed

C5285 (E) Initialization with "{...}" is not allowed for object of type "type"

C5286 (E) Base class "type" is ambiguous

C5287 (E) Derived class "type" contains more than one instance of class "type"

C5288 (E) Cannot convert pointer to base class "type 1" to pointer to derived class

"type 2" -- base class is virtual

C5289 (E) No instance of constructor "name" matches the argument list

C5290 (E) Copy constructor for class "type" is ambiguous

C5291 (E) No default constructor exists for class "type"

C5292 (E) "name" is not a nonstatic data member or base class of class "type"

C5293 (E) Indirect nonvirtual base class is not allowed

C5294 (E) Invalid union member -- class "type" has a disallowed member function

C5297 (E) Expected an operator

C5298 (E) Inherited member is not allowed

C5299 (E) Cannot determine which instance of entity-kind "name" is intended

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1071 of 1176
Mar 01, 2022

C5300 (E) A pointer to a bound function may only be used to call the function

C5302 (E) Entity-kind "name" has already been defined

C5304 (E) No instance of entity-kind "name" matches the argument list

C5305 (E) Type definition is not allowed in function return type declaration

C5306 (E) Default argument not at end of parameter list

C5307 (E) Redefinition of default argument

C5308 (E) More than one instance of entity-kind "name" matches the argument list:

C5309 (E) More than one instance of constructor "name" matches the argument list:

C5310 (E) Default argument of type "type 1" is incompatible with parameter of type

"type 2"

C5311 (E) Cannot overload functions distinguished by return type alone

C5312 (E) No suitable user-defined conversion from "type 1" to "type 2" exists

C5313 (E) Type qualifier is not allowed on this function

C5314 (E) Only nonstatic member functions may be virtual

C5315 (E) The object has type qualifiers that are not compatible with the member

function

C5316 (E) Program too large to compile (too many virtual functions)

C5317 (E) Return type is not identical to nor covariant with return type "type" of

overridden virtual function entity-kind" name"

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1072 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5318 (E) Override of virtual entity-kind "name" is ambiguous

C5319 (E) Pure specifier ("= 0") allowed only on virtual functions

C5320 (E) Badly-formed pure specifier (only "= 0" is allowed)

C5321 (E) Data member initializer is not allowed

C5322 (E) Object of abstract class type "type" is not allowed:

C5323 (E) Function returning abstract class "type" is not allowed:

C5324 (I) Duplicate friend declaration

C5325 (E) Inline specifier allowed on function declarations only

C5326 (E) "inline" is not allowed

C5327 (E) Invalid storage class for an inline function

C5328 (E) Invalid storage class for a class member

C5329 (E) Local class member entity-kind "name" requires a definition

C5330 (E) Entity-kind "name" is inaccessible

C5332 (E) Class "type" has no copy constructor to copy a const object

C5333 (E) Defining an implicitly declared member function is not allowed

C5334 (E) Class "type" has no suitable copy constructor

C5335 (E) Linkage specification is not allowed

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1073 of 1176
Mar 01, 2022

C5336 (E) Unknown external linkage specification

C5337 (E) Linkage specification is incompatible with previous "name" (declared at line

"line number")

C5338 (E) More than one instance of overloaded function "name" has "C" linkage

C5339 (E) Class "type" has more than one default constructor

C5340 (E) Value copied to temporary, reference to temporary used

C5341 (E) "operator" must be a member function

C5342 (E) Operator may not be a static member function

C5343 (E) No arguments allowed on user-defined conversion

C5344 (E) Too many parameters for this operator function

C5345 (E) Too few parameters for this operator function

C5346 (E) Nonmember operator requires a parameter with class type

C5347 (E) Default argument is not allowed

C5348 (E) More than one user-defined conversion from "type 1" to "type 2" applies:

C5349 (E) No operator "operator" matches these operands

C5350 (E) More than one operator "operator" matches these operands:

C5351 (E) First parameter of allocation function must be of type "size_t"

C5352 (E) Allocation function requires "void *" return type

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1074 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5353 (E) Deallocation function requires "void" return type

C5354 (E) First parameter of deallocation function must be of type "void *"

C5356 (E) Type must be an object type

C5357 (E) Base class "type" has already been initialized

C5359 (E) Entity-kind "name" has already been initialized

C5360 (E) Name of member or base class is missing

C5363 (E) Invalid anonymous union -- nonpublic member is not allowed

C5364 (E) Invalid anonymous union -- member function is not allowed

C5365 (E) Anonymous union at global or namespace scope must be declared static

C5366 (E) Entity-kind "name" provides no initializer for:

C5367 (E) Implicitly generated constructor for class "type" cannot initialize:

C5368 (W) Entity-kind "name" defines no constructor to initialize the following:

C5369 (E) Entity-kind "name" has an uninitialized const or reference member

C5370 (W) Entity-kind "name" has an uninitialized const field

C5371 (E) Class "type" has no assignment operator to copy a const object

C5372 (E) Class "type" has no suitable assignment operator

C5373 (E) Ambiguous assignment operator for class "type"

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1075 of 1176
Mar 01, 2022

C5375 (E) Declaration requires a typedef name

C5377 (E) "virtual" is not allowed

C5378 (E) "static" is not allowed

C5380 (E) Expression must have pointer-to-member type

C5381 (I) Extra ";" ignored

C5382 (W) Nonstandard member constant declaration (standard form is a static const

integral member)

C5384 (E) No instance of overloaded "name" matches the argument list

C5386 (E) No instance of entity-kind "name" matches the required type

C5388 (E) "operator->" for class "type 1" returns invalid type "type 2"

C5389 (E) A cast to abstract class "type" is not allowed:

C5391 (E) A new-initializer may not be specified for an array

C5392 (E) Member function "name" may not be redeclared outside its class

C5393 (E) Pointer to incomplete class type is not allowed

C5394 (E) Reference to local variable of enclosing function is not allowed

C5397 (E) Implicitly generated assignment operator cannot copy:

C5399 (I) Entity-kind "name" has an operator newxxxx () but no default operator

deletexxxx ()

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1076 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5400 (I) Entity-kind "name" has a default operator deletexxxx () but no operator
newxxxx ()

C5401 (E) Destructor for base class "type" is not virtual

C5403 (E) Entity-kind "name" has already been declared

C5404 (E) Function "main" may not be declared inline

C5405 (E) Member function with the same name as its class must be a constructor

C5407 (E) A destructor may not have parameters

C5408 (E) Copy constructor for class "type 1" may not have a parameter of type

"type2 "

C5409 (E) Entity-kind "name" returns incomplete type "type"

C5410 (E) Protected entity-kind "name" is not accessible through a "type" pointer or

object

C5411 (E) A parameter is not allowed

C5412 (E) An "asm" declaration is not allowed here

C5413 (E) No suitable conversion function from "type 1" to "type 2" exists

C5414 (W) Delete of pointer to incomplete class

C5415 (E) No suitable constructor exists to convert from "type 1" to "type 2"

C5416 (E) More than one constructor applies to convert from "type 1" to "type 2":

C5417 (E) More than one conversion function from "type 1" to "type 2" applies:

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1077 of 1176
Mar 01, 2022

C5418 (E) More than one conversion function from "type" to a built-in type applies:

C5424 (E) A constructor or destructor may not have its address taken

C5427 (E) Qualified name is not allowed in member declaration

C5429 (E) The size of an array in "new" must be non-negative

C5430 (W) Returning reference to local temporary

C5432 (E) "enum" declaration is not allowed

C5433 (E) Qualifiers dropped in binding reference of type "type 1" to initializer of type

"type 2"

C5434 (E) A reference of type "type 1" (not const-qualified) cannot be initialized with a

value of type "type 2"

C5435 (E) A pointer to function may not be deleted

C5436 (E) Conversion function must be a nonstatic member function

C5437 (E) Template declaration is not allowed here

C5438 (E) Expected a "<"

C5439 (E) Expected a ">"

C5440 (E) Template parameter declaration is missing

C5441 (E) Argument list for entity-kind "name" is missing

C5442 (E) Too few arguments for entity-kind "name"

C5443 (E) Too many arguments for entity-kind "name"

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1078 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5445 (E) Entity-kind "name 1" is not used in declaring the parameter types of entity-
kind "name 2"

C5449 More than one instance of entity-kind "name" matches the required type

C5452 (E) Return type may not be specified on a conversion function

C5456 (E) Excessive recursion at instantiation of entity-kind "name"

C5457 (E) "name" is not a function or static data member

C5458 (E) Argument of type "type 1" is incompatible with template parameter of type

"type 2"

C5459 (E) Initialization requiring a temporary or conversion is not allowed

C5461 (E) Initial value of reference to non-const must be an lvalue

C5463 (E) "template" is not allowed

C5464 (E) "type" is not a class template

C5466 (E) "main" is not a valid name for a function template

C5467 (E) Invalid reference to entity-kind "name" (union/nonunion mismatch)

C5468 (E) A template argument may not reference a local type

C5469 (E) Tag kind of "name 1" is incompatible with declaration of entity-kind "name 2"

(declared at line "line number")

C5470 (E) The global scope has no tag named "name"

C5471 (E) Entity-kind "name 1" has no tag member named "name 2"

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1079 of 1176
Mar 01, 2022

C5473 (E) Entity-kind "name" may be used only in pointer-to-member declaration

C5475 (E) A template argument may not reference a non-external entity

C5476 (E) Name followed by "::~" must be a class name or a type name

C5477 (E) Destructor name does not match name of class "type"

C5478 (E) Type used as destructor name does not match type "type"

C5479 (I) Entity-kind "name" redeclared "inline" after being called

C5481 (E) Invalid storage class for a template declaration

C5484 (E) Invalid explicit instantiation declaration

C5485 (E) Entity-kind "name" is not an entity that can be instantiated

C5486 (E) Compiler generated entity-kind "name" cannot be explicitly instantiated

C5487 (E) Inline entity-kind "name" cannot be explicitly instantiated

C5488 (E) Pure virtual entity-kind "name" cannot be explicitly instantiated

C5489 (E) Entity-kind "name" cannot be instantiated -- no template definition was

supplied

C5490 (E) Entity-kind "name" cannot be instantiated -- it has been explicitly

specialized

C5493 (E) No instance of entity-kind "name" matches the specified type

C5496 (E) Template parameter "name" may not be redeclared in this scope

C5497 (W) Declaration of "name" hides template parameter

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1080 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5498 (E) Template argument list must match the parameter list

C5499 (E) Conversion function to convert from "type 1" to "type 2" is not allowed

C5500 (E) Extra parameter of postfix "operatorxxxx" must be of type "int"

C5501 (E) An operator name must be declared as a function

C5502 (E) Operator name is not allowed

C5503 (E) Entity-kind "name" cannot be specialized in the current scope

C5505 (E) Too few template parameters -- does not match previous declaration

C5506 (E) Too many template parameters -- does not match previous declaration

C5507 (E) Function template for operator delete (void *) is not allowed

C5508 (E) Class template and template parameter may not have the same name

C5510 (E) A template argument may not reference an unnamed type

C5511 (E) Enumerated type is not allowed

C5512 (W) Type qualifier on a reference type is not allowed

C5513 (E) A value of type "type 1" cannot be assigned to an entity of type "type 2"

C5514 (W) Pointless comparison of unsigned integer with a negative constant

C5515 (E) Cannot convert to incomplete class "type"

C5516 (E) Const object requires an initializer

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1081 of 1176
Mar 01, 2022

C5517 (E) Object has an uninitialized const or reference member

C5519 (E) Entity-kind "name" may not have a template argument list

C5520 (E) Initialization with "{...}" expected for aggregate object

C5521 (E) Pointer-to-member selection class types are incompatible ("type 1" and

"type 2")

C5522 (W) Pointless friend declaration

C5526 (E) A parameter may not have void type

C5529 (E) This operator is not allowed in a template argument expression

C5530 (E) Try block requires at least one handler

C5531 (E) Handler requires an exception declaration

C5532 (E) Handler is masked by default handler

C5533 (E) Handler is potentially masked by previous handler for type "type"

C5534 (I) Use of a local type to specify an exception

C5535 (I) Redundant type in exception specification

C5536 (E) Exception specification is incompatible with that of previous entity-kind

"name" (declared at line "line number"):

C5540 (E) Support for exception handling is disabled

C5541 (W) Omission of exception specification is incompatible with previous entity-

kind "name" (declared at line "line number")

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1082 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5542 (F) Could not create instantiation request file "name"

C5543 (E) Non-arithmetic operation not allowed in nontype template argument

C5544 (E) Use of a local type to declare a nonlocal variable

C5545 (E) Use of a local type to declare a function

C5546 (E) Transfer of control bypasses initialization of:

C5548 (E) Transfer of control into an exception handler

C5549 (W) Entity-kind "name" is used before its value is set

C5550 (W) Entity-kind "name" was set but never used

C5551 (E) Entity-kind "name" cannot be defined in the current scope

C5552 (W) Exception specification is not allowed

C5553 (W) External/internal linkage conflict for entity-kind "name" (declared at line

"line number")

C5554 (W) Entity-kind "name" will not be called for implicit or explicit conversions

C5555 (E) Tag kind of "name" is incompatible with template parameter of type "type"

C5556 (E) Function template for operator new (size_t) is not allowed

C5558 (E) Pointer to member of type "type" is not allowed

C5559 (E) Ellipsis is not allowed in operator function parameter list

C5563 (F) Invalid preprocessor output file

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1083 of 1176
Mar 01, 2022

C5598 (E) A template parameter may not have void type

C5601 (E) A throw expression may not have void type

C5603 (E) Parameter of abstract class type "type" is not allowed:

C5604 (E) Array of abstract class "type" is not allowed:

C5610 (W) Entity-kind "name 1" does not match "name 2" -- virtual function override

intended?

C5611 (W) Overloaded virtual function "name 1" is only partially overridden in entity-

kind "name 2"

C5612 (E) Specific definition of inline template function must precede its first use

C5614 (F) Invalid error number: "specified number"

C5624 (E) "name" is not a type name

C5641 (F) "name" is not a valid directory

C5642 (F) Cannot build temporary file name

C5656 (E) Transfer of control into a try block

C5657 (W) Inline specification is incompatible with previous "name" (declared at line

"line number")

C5658 (E) Closing brace of template definition not found

C5660 (E) Invalid packing alignment value

C5662 (W) Call of pure virtual function

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1084 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5663 (E) Invalid source file identifier string

C5664 (E) A class template cannot be defined in a friend declaration

C5673 (E) A reference of type "type 1" cannot be initialized with a value of type

"type 2"

C5674 (E) Initial value of reference to const volatile must be an lvalue

C5678 (I) Call of entity-kind "name" (declared at line "line number") cannot be inlined

C5679 (I) Entity-kind "name" cannot be inlined

C5693 (E) <typeinfo> must be included before typeid is used

C5694 (E) "name" cannot cast away const or other type qualifiers

C5695 (E) The type in a dynamic_cast must be a pointer or reference to a complete class

type, or void *

C5696 (E) The operand of a pointer dynamic_cast must be a pointer to a complete class

type

C5697 (E) The operand of a reference dynamic_cast must be an lvalue of a complete

class type

C5698 (E) The operand of a runtime dynamic_cast must have a polymorphic class type

C5701 (E) An array type is not allowed here

C5702 (E) Expected an "="

C5703 (E) Expected a declarator in condition declaration

C5704 (E) "name", declared in condition, may not be redeclared in this scope

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1085 of 1176
Mar 01, 2022

C5705 (E) Default template arguments are not allowed for function templates

C5706 (E) Expected a "," or ">"

C5707 (E) Expected a template parameter list

C5708 (W) Incrementing a bool value is deprecated

C5709 (E) bool type is not allowed

C5710 (E) Offset of base class "name 1" within class "name 2" is too large

C5711 (E) Expression must have bool type (or be convertible to bool)

C5717 (E) The type in a const_cast must be a pointer, reference, or pointer to member

to an object type

C5718 (E) A const_cast can only adjust type qualifiers; it cannot change the underlying

type

C5719 (E) mutable is not allowed

C5720 (W) Redeclaration of entity-kind "name" is not allowed to alter its access

C5722 (W) Use of alternative token "<:" appears to be unintended

C5723 (W) Use of alternative token "%:" appears to be unintended

C5724 (E) namespace definition is not allowed

C5725 (E) Name must be a namespace name

C5726 (E) Namespace alias definition is not allowed

C5727 (E) namespace-qualified name is required

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1086 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5728 (E) A namespace name is not allowed

C5730 (E) Entity-kind "name" is not a class template

C5732 (E) Allocation operator may not be declared in a namespace

C5733 (E) Deallocation operator may not be declared in a namespace

C5734 (E) Entity-kind "name 1" conflicts with using-declaration of entity-kind

"name 2"

C5735 (E) Using-declaration of entity-kind "name 1" conflicts with entity-kind

"name 2" (declared at line "line number")

C5737 (W) Using-declaration ignored -- it refers to the current namespace

C5738 (E) A class-qualified name is required

C5741 (W) Using-declaration of entity-kind "name" ignored

C5742 (E) Entity-kind "name 1" has no actual member "name 2"

C5750 (E) Entity-kind "name" (declared at line "line number") was used before its

template was declared

C5751 (E) Static and nonstatic member functions with same parameter types cannot be

overloaded

C5752 (E) No prior declaration of entity-kind "name"

C5753 (E) A template-id is not allowed

C5754 (E) A class-qualified name is not allowed

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1087 of 1176
Mar 01, 2022

C5755 (E) Entity-kind "name" may not be redeclared in the current scope

C5756 (E) Qualified name is not allowed in namespace member declaration

C5757 (E) Entity-kind "name" is not a type name

C5761 (E) Typename may only be used within a template

C5766 (W) Exception specification for virtual entity-kind "name 1" is incompatible

with that of overridden entity-kind "name 2"

C5767 (W) Conversion from pointer to smaller integer

C5768 (W) Exception specification for implicitly declared virtual entity-kind "name 1"

is incompatible with that of overridden entity-kind "name 2"

C5771 (E) "explicit" is not allowed

C5772 (E) Declaration conflicts with "name" (reserved class name)

C5773 (E) Only "()" is allowed as initializer for array entity-kind "name"

C5774 (E) "virtual" is not allowed in a function template declaration

C5775 (E) Invalid anonymous union -- class member template is not allowed

C5776 (E) Template nesting depth does not match the previous declaration of entity-

kind "name"

C5777 (E) This declaration cannot have multiple "template <...>" clauses

C5779 (E) "name", declared in for-loop initialization, may not be redeclared in this

scope

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1088 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5782 (E) Definition of virtual entity-kind "name" is required here

C5784 (E) A storage class is not allowed in a friend declaration

C5785 (E) Template parameter list for "name" is not allowed in this declaration

C5786 (E) entity-kind "name" is not a valid member class or function template

C5787 (E) Not a valid member class or function template declaration

C5788 (E) A template declaration containing a template parameter list may not be

followed by an explicit specialization declaration

C5789 (E) Explicit specialization of entity-kind "name 1" must precede the first use of

entity-kind "name 2"

C5790 (E) Explicit specialization is not allowed in the current scope

C5791 (E) Partial specialization of entity-kind "name" is not allowed

C5792 (E) Entity-kind "name" is not an entity that can be explicitly specialized

C5793 (E) Explicit specialization of entity-kind "name" must precede its first use

C5794 (W) Template parameter "template" may not be used in an elaborated type

specifier

C5795 (E) Specializing entity-kind "name" requires "template< >" syntax

C5800 (E) This declaration may not have extern "C" linkage

C5801 (E) "name" is not a class or function template name in the current scope

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1089 of 1176
Mar 01, 2022

C5802 (W) Specifying a default argument when redeclaring an unreferenced function
template is nonstandard

C5803 (E) Specifying a default argument when redeclaring an already referenced

function template is not allowed

C5804 (E) Cannot convert pointer to member of base class "type 1" to pointer to

member of derived class "type 2" – base class is virtual

C5805 (E) Exception specification is incompatible with that of entity-kind "name"

(declared at line "line number"):

C5806 (W) Omission of exception specification is incompatible with entity-kind "name"

(declared at line "line number")

C5807 (E) The parse of this expression has changed between the point at which it

appeared in the program and the point at which the expression was evaluated --
"typename" may be required to resolve the ambiguity

C5808 (E) Default-initialization of reference is not allowed

C5809 (E) Uninitialized entity-kind "name" has a const member

C5810 (E) Uninitialized base class "type" has a const member

C5811 (E) Const entity-kind "name" requires an initializer -- class "type" has no

explicitly declared default constructor

C5812 (W) Const object requires an initializer -- class "type" has no explicitly declared

default constructor

C5815 (I) Type qualifier on return type is meaningless

C5817 (E) Static data member declaration is not allowed in this class

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1090 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5818 (E) Template instantiation resulted in an invalid function declaration

C5822 (E) Invalid destructor name for type "type"

C5824 (E) Destructor reference is ambiguous -- both entity-kind "name 1" and entity-

kind "name 2" could be used

C5825 (E) Virtual inline entity-kind "name" was never defined

C5826 (W) Entity-kind "name" was never referenced

C5827 (E) Only one member of a union may be specified in a constructor initializer list

C5831 (I) Support for placement delete is disabled

C5832 (E) No appropriate operator delete is visible

C5833 (E) Pointer or reference to incomplete type is not allowed

C5834 (E) Invalid partial specialization -- entity-kind "name" is already fully

specialized

C5835 (E) Incompatible exception specifications

C5836 (W) Returning reference to local variable

C5837 (W) Omission of explicit type is nonstandard ("int" assumed)

C5838 (E) More than one partial specialization matches the template argument list of

entity-kind "name"

C5840 (E) A template argument list is not allowed in a declaration of a primary

template

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1091 of 1176
Mar 01, 2022

C5841 (E) Partial specializations may not have default template arguments

C5842 (E) Entity-kind "name 1" is not used in template argument list of entity-kind

"name 2"

C5843 (E) The type of partial specialization template parameter entity-kind "name"

depends on another template parameter

C5844 (E) The template argument list of the partial specialization includes a nontype

argument whose type depends on a template parameter

C5845 (E) This partial specialization would have been used to instantiate entity-kind

"name"

C5846 (E) This partial specialization would have been made the instantiation of entity-

kind "name" ambiguous

C5847 (E) Expression must have integral or enum type

C5848 (E) Expression must have arithmetic or enum type

C5849 (E) Expression must have arithmetic, enum, or pointer type

C5850 (E) Type of cast must be integral or enum

C5851 (E) Type of cast must be arithmetic, enum, or pointer

C5852 (E) Expression must be a pointer to a complete object type

C5853 (E) A partial specialization of a member class template must be declared in the

class of which it is a member

C5854 (E) A partial specialization nontype argument must be the name of a nontype

parameter or a constant

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1092 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5855 (E) Return type is not identical to return type "type" of overridden virtual
function entity-kind "name"

C5857 (E) A partial specialization of a class template must be declared in the namespace

of which it is a member

C5858 (E) Entity-kind "name" is a pure virtual function

C5859 (E) Pure virtual entity-kind "name" has no overrider

C5861 (E) Invalid character in input line

C5862 (E) Function returns incomplete type "type"

C5864 (E) "name" is not a template

C5865 (E) A friend declaration may not declare a partial specialization

C5867 (W) Declaration of "size_t" does not match the expected type "type"

C5868 (E) Space required between adjacent ">" delimiters of nested template argument

lists (">>" is the right shift operator)

C5870 (W) Invalid multibyte character sequence

C5871 (E) Template instantiation resulted in unexpected function type of "type 1" (the

meaning of a name may have changed since the template declaration -- the type
of the template is "type 2")

C5873 (E) Non-integral operation not allowed in nontype template argument

C5875 (E) Embedded C++ does not support templates

C5876 (E) Embedded C++ does not support exception handling

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1093 of 1176
Mar 01, 2022

C5877 (E) Embedded C++ does not support namespaces

C5878 (E) Embedded C++ does not support run-time type information

C5879 (E) Embedded C++ does not support the new cast syntax

C5880 (E) Embedded C++ does not support using-declarations

C5881 (E) Embedded C++ does not support "mutable"

C5882 (E) Embedded C++ does not support multiple or virtual inheritance

C5885 (E) "type 1" cannot be used to designate constructor for "type 2"

C5891 (E) An explicit template argument list is not allowed on this declaration

C5894 (E) Entity-kind "name" is not a template

C5896 (E) Expected a template argument

C5898 (E) Nonmember operator requires a parameter with class or enum type

C5900 (E) Using-declaration of entity-kind "name" is not allowed

C5901 (E) Qualifier of destructor name "type 1" does not match type "type 2"

C5902 (W) Type qualifier ignored

C5916 (E) Cannot convert pointer to member of derived class "type 1" to pointer to

member of base class "type 2" – base class is virtual

C5919 (F) Invalid output file: "name"

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1094 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5920 (F) Cannot open output file: "name"

C5926 (F) Cannot open definition list file: "name"

C5928 (E) Incorrect use of va_start

C5929 (E) Incorrect use of va_arg

C5930 (E) Incorrect use of va_end

C5935 (E) "typedef" may not be specified here

C5936 (W) Redeclaration of entity-kind "name" alters its access

C5937 (E) A class or namespace qualified name is required

C5940 (W) Missing return statement at end of non-void entity-kind "name"

C5941 (W) Duplicate using-declaration of "name" ignored

C5946 (E) Name following "template" must be a member template

C5947 (E) Name following "template" must have a template argument list

C5952 (E) A template parameter may not have class type

C5953 (E) A default template argument cannot be specified on the declaration of a

member of a class template

C5954 (E) A return statement is not allowed in a handler of a function try block of a

constructor

C5959 (W) Declared size for bit field is larger than the size of the bit field type;

truncated to "size" bits

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1095 of 1176
Mar 01, 2022

C5960 (E) Type used as constructor name does not match type "type"

C5961 (W) Use of a type with no linkage to declare a variable with linkage

C5962 (W) Use of a type with no linkage to declare a function

C5963 (E) Return type may not be specified on a constructor

C5964 (E) Return type may not be specified on a destructor

C5965 (E) Incorrectly formed universal character name

C5966 (E) Universal character name specifies an invalid character
C5967 (E) A universal character name cannot designate a character in the basic

character set

C5968 This universal character is not allowed in an identifier

C5978 (E) A template friend declaration cannot be declared in a local class

C5979 (E) Ambiguous "?" operation: second operand of type "type 1" can be converted

to third operand type "type 2", and vice versa

C5980 (E) Call of an object of a class type without appropriate operator () or conversion

functions to pointer-to-function type

C5982 (E) There is more than one way an object of type "type" can be called for the

argument list

C5986 (E) Expected a section name string

C5988 (E) Invalid pragma declaration

C5989 (E) "name" has already been specified by other pragma

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1096 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

C5990 (E) Pragma may not be specified after definition

C5991 (E) Invalid kind of pragma is specified to this symbol

C5994 (W) Operator new and operator delete cannot be given internal linkage

C5995 (E) Storage class "mutable" is not allowed for anonymous unions

C5997 (E) Abstract class type "type" is not allowed as catch type:

C5998 (E) A qualified function type cannot be used to declare a nonmember function or a

static member function

C5999 (E) A qualified function type cannot be used to declare a parameter

C6000 (E) Cannot create a pointer or reference to qualified function type

C6001 (W) Extra braces are nonstandard

C6002 (E) An empty template parameter list is not allowed in a template template

parameter declaration

C6005 (E) Expected "class"

C6006 (E) The "class" keyword must be used when declaring a template template

parameter

C6007 (W) "function name 1" is hidden by "function name 2" -- virtual function override

intended?

C6008 (E) A qualified name is not allowed for a friend declaration that is a function

definition

C6009 (E) "type 1" is not compatible with "type 2"

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1097 of 1176
Mar 01, 2022

C6010 (W) A storage class may not be specified here

C6011 (E) Class member designated by a using-declaration must be visible in a direct base

class

C6016 (E) A template template parameter cannot have the same name as one of its

template parameters

C6017 (E) Recursive instantiation of default argument

C6018 (E) A parameter of a template template parameter cannot depend on the type of

another template parameter

C6019 (E) "instantiation name" is not an entity that can be defined

C6023 (E) A qualified friend template declaration must refer to a specific previously

declared template

C6028 (E) "class name" has no member class "member name"

C6029 (E) The global scope has no class named "class name"

C6030 (E) Recursive instantiation of template default argument

C6031 (E) Access declarations and using-declarations cannot appear in unions

C6032 (E) "name" is not a class member

C6038 (W) Invalid redeclaration of nested class

C6045 (E) "template name" cannot be declared in this scope

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1098 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

12.3 Standard Library Error Messages

For some library functions, if an error occurs during the library function execution, an error code
is set in the macro errno defined in the header file <errno.h> contained in the standard library.
Error messages are defined in the error codes so that error messages can be output. The following
shows an example of an error message output program.

Example:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <errno.h>

main()

{

 FILE *fp;

 fp=fopen("file", "w");

 fp=NULL;

 fclose(fp); /* error occurred */

 printf("%s\n", strerror(errno)); /* print error message */

}

Description:

1. Since the file pointer of NULL is passed to the fclose function as an actual parameter, an error
will occur. In this case, an error code corresponding to errno is set.

2. The strerror function returns a pointer of the string literal of the corresponding error message
when the error code is passed as an actual parameter. An error message is output by specifying
the output of the string literal of the printf function.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1099 of 1176
Mar 01, 2022

Table 12.1 List of Standard Library Error Messages

Error No. Error Message/Explanation Functions to Set Error Code
1100
(ERANGE)

Data out of range
An overflow occurred.

frexp, ldexp, modf, ceil, floor, fmod,
atof, atoi, atol, atoll, atolfixed,
atolaccum, strtod, strtol, strtoul, strtoll,
stroull, strtolfixed, strtolaccum, perror,
fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, acos,
acosf, asin, asinf, atan, atan2, atan2f,
atanf, ceilf, cos, cosf, cosh, coshf, exp,
expf, floorf, fmodf, ldexpf, log, log10,
log10f, logf, modff, pow, powf, sin,
sinf, sinh, sinhf, sqrt, sqrtf, tan, tanf,
tanh, tanhf, fabs, fabsf, frexpf

1101
(EDOM)

Data out of domain
Results for mathematical parameters are not
defined.

acos, acosf, asin, asinf, atan, atan2,
atan2f, atanf, ceil, ceilf, cos, cosf,
cosh, coshf, exp, expf, floor, floorf,
fmod, fmodf, ldexp, ldexpf, log, log10,
log10f, logf, modf, modff, pow, powf,
sin, sinf, sinh, sinhf, sqrt, sqrtf, tan,
tanf, tanh, tanhf, fabs, fabsf, frexp,
frexpf

1104
(ESTRN)

Too long string
The length of string literal exceeds 512
characters.

atof, atoi, atol, atoll, atolfixed,
atolaccum, strtod, strtol, strtoul, strtoll,
strtoull, strtolfixed, strtolaccum

1106
(PTRERR)

Invalid file pointer
The NULL pointer constant is specified as the
file pointer value.

fclose, fflush, freopen, setbuf, setvbuf,
fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, fgetc,
fgets, fputc, fputs, ungetc, fread,
fwrite, fseek, ftell, rewind, perror

1200
(ECBASE)

Invalid radix
An invalid radix was specified.

atoi, atol, atoll, strtol, strtoul, strtoll,
strtoull

1202
(ETLN)

Number too long
The specified number exceeds the number of
significant digits.

atof, atolfixed, atolaccum, strtod,
strtolfixed, strtolaccum, fscanf, scanf,
sscanf

1204
(EEXP)

Exponent too large
The specified exponent exceeds three digits.

strtod, fscanf, scanf, sscanf, atof

1206
(EEXPN)

Normalized exponent too large
The exponent exceeds three digits when the
string literal is normalized to the IEEE
standard decimal format.

strtod, fscanf, scanf, sscanf, atof

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1100 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 12.1 List of Standard Library Error Messages (cont)

Error No. Error Message/Explanation Functions to Set Error Code
1210
(EFLOATO)

Overflow out of float
A float-type decimal value is out of range
(overflow).

fscanf, scanf, sscanf

1220
(EFLOATU)

Underflow out of float
A float-type decimal value is out of range
(underflow).

fscanf, scanf, sscanf

1250
(EDBLO)

Overflow out of double
A double-type decimal value is out of range
(overflow).

fscanf, scanf, sscanf

1260
(EDBLU)

Underflow out of double
A double-type decimal value is out of range
(underflow).

fscanf, scanf, sscanf

1270
(ELDBLO)

Overflow out of long double
A long double-type decimal value is out of
range (overflow).

fscanf, scanf, sscanf

1280
(ELDBLU)

Underflow out of long double
A long double-type decimal value is out of
range (underflow).

fscanf, scanf, sscanf

1300
(NOTOPN)

File not open
The file is not open.

fclose, fflush, setbuf, setvbuf, fprintf,
fscanf, printf, scanf, sprintf, sscanf,
vfprintf, vprintf, vsprintf, fgetc, fgets,
fputc, fputs, gets, puts, ungetc, fread,
fwrite, fseek, ftell, rewind, perror,
freopen

1302
(EBADF)

Bad file number
An output function was issued for an input-
only file, or an input function was issued for
an output-only file.

fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, fgetc,
fgets, fputc, fputs, gets, puts, ungetc,
perror, fread, fwrite

1304
(ECSPEC)

Error in format
An erroneous format was specified for an
input/output function using format.

fprintf, fscanf, printf, scanf, sprintf,
sscanf, vfprintf, vprintf, vsprintf, perror

1400
(EFIXEDO)

Overflow out of _ _fixed
A _ _fixed-type decimal value is out of
range (overflow).

fscanf, scanf, sscanf

1410
(EFIXEDU)

Underflow out of _ _fixed
A _ _fixed-type decimal value is out of
range (underflow).

fscanf, scanf, sscanf

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 12 Compiler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1101 of 1176
Mar 01, 2022

Table 12.1 List of Standard Library Error Messages (cont)

Error No. Error Message/Explanation Functions to Set Error Code
1420
(EACCUMO)

Overflow out of _ _accum
An _ _accum-type decimal value is out of
range (overflow).

fscanf, scanf, sscanf

1430
(EACCUMU)

Underflow out of _ _accum
An _ _accum-type decimal value is out of
range (underflow).

fscanf, scanf, sscanf

1440
(ELFIXEDO)

Overflow out of long _ _fixed
A long _ _fixed-type decimal value is out of
range (overflow).

fscanf, scanf, sscanf

1450
(ELFIXEDU)

Underflow out of long _ _fixed
A long _ _fixed-type decimal value is out of
range (underflow).

fscanf, scanf, sscanf

1460
(ELACCUMO)

Overflow out of long _ _accum
A long _ _accum-type decimal value is out
of range (overflow).

fscanf, scanf, sscanf

1470
(ELACCUMU)

Underflow out of long _ _accum
A long _ _accum-type decimal value is out
of range (underflow).

fscanf, scanf, sscanf

2100
(EMALRESM)

Error in waiting semaphore
Failed to define semaphore resources for
malloc.

calloc, free, malloc, realloc,
calloc_ _X, free_ _X, malloc_ _X,
realloc_ _X, calloc_ _Y, free_ _Y,
malloc_ _Y, realloc_ _Y

2101
(EMALFRSM)

Error in signaling semaphore
Failed to define semaphore resources for
strtok.

calloc, free, malloc, realloc,
calloc_ _X, free_ _X, malloc_ _X,
realloc_ _X, calloc_ _Y, free_ _Y,
malloc_ _Y, realloc_ _Y

2110
(ETOKRESM)

Error in waiting semaphore
Failed to define semaphore resources for
strtok.

strtok

2111
(ETOKFRSM)

Error in signaling semaphore
Failed to release semaphore resources for
malloc.

strtok

2120
(EIOBRESM)

Error in waiting semaphore
Failed to release semaphore resources for
_iob.

fopen

2121
(EIOBFRSM)

Error in signaling semaphore
Failed to release semaphore resources for
_iob.

fopen

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 12 Compiler Error Messages Optimizing Linkage Editor

Page 1102 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1103 of 1176
Mar 01, 2022

Section 13 Assembler Error Messages

13.1 Error Message Format and Error Levels

This section gives lists of error messages in order of error code. A list of error messages are
provided for each level of errors in the format below:

Error code (Error Level: W, E, or F) Error Message
Meaning of the error message.

Error levels are classified into the following three types:

• (W): Warning error (Continues compiling processing and outputs the object program.)
• (E): Error (Continues compiling processing but does not output the object program.)
• (F): Fatal error (Aborts compiling processing.)

13.2 Error Messages

10 (E) NO INPUT FILE SPECIFIED
There is no input source file specified.
Specify an input source file.

20 (E) CANNOT OPEN FILE <file name>
The specified file cannot be opened.
Check and correct the file name and directory.

30 (E) INVALID COMMAND PARAMETER
The command line options are not correct.
Check and correct the command line options.

40 (E) CANNOT ALLOCATE MEMORY
All available memory is used up during processing.
This error only occurs when the amount of available user memory is extremely small. If there is
other processing occurring at the same time as assembly, interrupt that processing and restart the
assembler. If the error still occurs, check and correct the memory management employed on the
host system.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1104 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

50 (E) INVALID FILE NAME <file name>
The file name including the directory is too long or invalid file name.
Check and correct the file name.
It is possible that the object module output by the assembler after this error has occurred will not
be usable with the debugger.

101 (E) SYNTAX ERROR IN SOURCE STATEMENT
Syntax error in source statement.
Check and correct the whole source statement.

102 (E) SYNTAX ERROR IN DIRECTIVE
Syntax error in assembler directive source statement.
Check and correct the whole source statement.

104 (E) LOCATION COUNTER OVERFLOW
The value of location counter exceeded its maximum value.
Reduce the size of the program.

105 (E) ILLEGAL INSTRUCTION IN STACK SECTION
An executable instruction, DSP instruction, extended instruction, or assembler directive that
reserves data is in the stack section.
Remove, from the stack section, the executable instruction, DSP instruction, extended instruction,
or assembler directive that reserves data.

106 (E) TOO MANY ERRORS
Error display terminated due to too many errors.
Check and correct the whole source statement.

108 (E) ILLEGAL CONTINUATION LINE
Illegal continuation line.
Check and correct continuation line.

150 (E) INVALID DELAY SLOT INSTRUCTION
Illegal delay slot instruction placed following delayed branch instruction.
Change the order of the instructions so that the illegal delay slot instruction does not immediately
follow a delayed branch instruction.

151 (E) ILLEGAL EXTENDED INSTRUCTION POSITION
Extended instruction placed following a delayed branch instruction.
Place an executable instruction following the delayed branch instruction.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1105 of 1176
Mar 01, 2022

152 (E) ILLEGAL BOUNDARY ALIGNMENT VALUE
Illegal boundary alignment value specified for a section including extended instructions.
Specify 2 or a larger multiple of 2 as a boundary alignment value.

160 (E) REPEAT LOOP NESTING
Another REPEAT is located between a REPEAT and its end address.
Correct the REPEAT location.

161 (E) ILLEGAL START ADDRESS FOR REPEAT LOOP
No executable or DSP instructions are located between a REPEAT and the start address.
Use one or more executable or DSP instructions between the REPEAT and the start address.

162 (E) ILLEGAL DATA BEFORE REPEAT LOOP
Illegal data is found immediately before the loop specified by a REPEAT instruction.
If an assembler directive is located before the loop, correct the directive. If a literal pool is located
before the loop, use a .NOPOOL directive to prevent the literal pool output.
When three or fewer instructions are to be repeated, an executable or DSP instruction must be
located before the loop.

163 (E) ILLEGAL INSTRUCTION IN REPEAT LOOP
An illegal instruction is used in a repeat loop.
A branch instruction, TRAPA instruction (excluding cpu=sh4aldsp), or a load instruction toward
SR, RS, or RE must not be used between a REPEAT extended instruction and its end address.

164 (E) ILLEGAL INSTRUCTION IN REPEAT LOOP
An illegal instruction is used as a repeat end instruction.
A branch instruction, or a load instruction toward SR, RS, or RE must not be used as a repeat end
instruction.

200 (E) UNDEFINED SYMBOL REFERENCE
Undefined symbol reference.
Define the symbol.

201 (E) ILLEGAL SYMBOL OR SECTION NAME
Reserved word specified as symbol or section name.
Correct the symbol or section name.

202 (E) ILLEGAL SYMBOL OR SECTION NAME
Illegal symbol or section name.
Correct the symbol or section name.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1106 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

203 (E) ILLEGAL LOCAL LABEL
Illegal local label.
Correct the local label.

300 (E) ILLEGAL MNEMONIC
Illegal operation.
Correct the operation.

301 (E) TOO MANY OPERANDS OR ILLEGAL COMMENT
Too many operands of executable instruction, or illegal comment format.
Correct the operands or comment.

304 (E) LACKING OPERANDS
Too few operands.
Correct the operands.

307 (E) ILLEGAL ADDRESSING MODE
Illegal addressing mode in operand.
Correct the operand.

308 (E) SYNTAX ERROR IN OPERAND
Syntax error in operand.
Correct the operand.

309 (E) FLOATING POINT REGISTER MISMATCH
A double-precision floating-point register is specified for a single-precision operation, or a single-
precision floating-point register is specified for a double-precision operation.
Correct the operation size or the floating-point register.

350 (E) SYNTAX ERROR IN SOURCE STATEMENT (<mnemonic>)
There are syntax error(s) in the DSP instruction statement.
Correct the source statement.

351 (E) ILLEGAL COMBINATION OF MNEMONICS (<mnemonic>, <mnemonic>)
Illegal combination of DSP operation instruction is specified.
Correct the combination of DSP operation instructions.

352 (E) ILLEGAL CONDITION (<mnemonic>)
Illegal condition for DSP operation instruction is specified.
Delete the condition or change the DSP operation instruction.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1107 of 1176
Mar 01, 2022

353 (E) ILLEGAL POSITION OF INSTRUCTION (<mnemonic>)
The DSP operation instruction is specified in an illegal position.
Specify the DSP operation instruction in the correct position.

354 (E) ILLEGAL ADDRESSING MODE (<mnemonic>)
The addressing mode of the DSP operation instruction is illegal.
Correct the operand.

355 (E) ILLEGAL REGISTER NAME (<mnemonic>)
The register name of the DSP operation instruction is illegal.
Correct the register name.

357 (E) ILLEGAL COMBINATION OF MNEMONICS (<mnemonic>)
An illegal data transfer instruction is specified.
Correct the data transfer instruction.

371 (E) ILLEGAL COMBINATION OF MNEMONICS (<mnemonic>, <mnemonic>)
The combination of data transfer instructions is illegal.
Correct the combination of data transfer instructions.

372 (E) ILLEGAL ADDRESSING MODE (<mnemonic>)
An illegal addressing mode for the data transfer instruction operand is specified.
Correct the operand.

373 (E) ILLEGAL REGISTER NAME (<mnemonic>)
An illegal register name for the data transfer instruction is specified.
Correct the register name.

400 (E) CHARACTER CONSTANT TOO LONG
Character constant is longer than 4 characters.
Correct the character constant.

402 (E) ILLEGAL VALUE IN OPERAND
Operand value out of range for this instruction.
Change the value.

403 (E) ILLEGAL OPERATION FOR RELATIVE VALUE
Attempt to perform multiplication, division, or logic operation on relative-address value.
Correct the expression.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1108 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

404 (E) ILLEGAL IMMEDIATE DATA
An illegal value (forward reference symbol, external reference symbol, or relative address symbol)
is specified for the immediate value.
Correct the immediate value.

407 (E) MEMORY OVERFLOW
Memory overflow during expression calculation.
Simplify the expression.

408 (E) DIVISION BY ZERO
Attempt to divide by 0.
Correct the expression.

409 (E) REGISTER IN EXPRESSION
Register name in expression.
Correct the expression.

411 (E) INVALID STARTOF/SIZEOF OPERAND
STARTOF or SIZEOF specifies illegal section name.
Correct the section name.

412 (E) ILLEGAL SYMBOL IN EXPRESSION
Relative-address value specified as shift value.
Correct the expression.

450 (E) ILLEGAL DISPLACEMENT VALUE
Illegal displacement value. (Negative value is specified.)
Correct the displacement value.

452 (E) ILLEGAL DATA AREA ADDRESS
PC-relative data transfer instruction specifies illegal address for data area.
Access a correct address according to the instruction operation size. (4-byte boundary for MOV.L
and MOVA, and 2-byte boundary for MOV.W.)

453 (E) LITERAL POOL OVERFLOW
More than 510 extended instructions exist that have not output literals.
Output literal pools using .POOL.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1109 of 1176
Mar 01, 2022

460 (E) ILLEGAL SYMBOL
A label which does not reference a forward position, an undefined symbol, or a symbol other than
a label is specified as an operand of a REPEAT, or the start address comes after (which means at a
higher address than) the end address.
Correct the operand.

461 (E) SYNTAX ERROR IN OPERAND
Illegal operand.
Correct the operand.

462 (E) ILLEGAL VALUE IN OPERAND
The distance between a REPEAT and the label is out of range.
Correct the location of the REPEAT or the label.

463 (E) NO INSTRUCTION IN REPEAT LOOP
No instruction is found in a REPEAT loop, or no instruction is found at the end address.
Write an instruction between the start and end addresses, or specify an address storing an
instruction as the end address.

500 (E) SYMBOL NOT FOUND
Label not defined in directive that requires label.
Insert a label.

501 (E) ILLEGAL ADDRESS VALUE IN OPERAND
Illegal specification of the start address or the value of location counter in section.
Correct the start address or value of location counter.

502 (E) ILLEGAL SYMBOL IN OPERAND
Illegal value (forward reference symbol, import symbol, relative-address symbol, or undefined
symbol) specified in operand.
Correct the operand.

503 (E) UNDEFINED EXPORT SYMBOL
Symbol declared for export symbol not defined in the file.
Define the symbol. Alternatively, remove the export symbol declaration.

504 (E) INVALID RELATIVE SYMBOL IN OPERAND
Illegal value (forward reference symbol or import symbol) specified in operand.
Correct the operand.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1110 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

505 (E) ILLEGAL OPERAND
Misspelled operand.
Correct the operand.

506 (E) ILLEGAL OPERAND
Illegal element specified in operand.
Correct the operand.

508 (E) ILLEGAL VALUE IN OPERAND
Operand value out of range for this directive.
Correct the operand.

510 (E) ILLEGAL BOUNDARY VALUE
Illegal boundary alignment value.
Correct the boundary alignment value.

512 (E) ILLEGAL EXECUTION START ADDRESS
Illegal execution start address.
Correct the execution start address.

513 (E) ILLEGAL REGISTER NAME
Illegal register name.
Correct the register name.

514 (E) INVALID EXPORT SYMBOL
Symbol declared for export symbol that cannot be exported.
Remove the declaration for the export symbol.

516 (E) EXCLUSIVE DIRECTIVES
Inconsistent directive specification.
Check and correct all related directives.

517 (E) INVALID VALUE IN OPERAND
Illegal value (forward reference symbol, an import symbol, or relative-address symbol) specified
in operand.
Correct the operand.

518 (E) INVALID IMPORT SYMBOL
Symbol declared for import defined in the file.
Remove the declaration for the import symbol.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1111 of 1176
Mar 01, 2022

519 (E) ILLEGAL SYMBOL IN OPERAND
A symbol whose value is an address or a location counter value is specified for a constant value
operand when the CPU type is SH2A or SH2A-FPU.
Do not specify such a value for an operand when the CPU type is SH2A or SH2A-FPU.

520 (E) ILLEGAL .CPU DIRECTIVE POSITION
.CPU is not specified at the beginning of the program, or specified more than once.
Specify .CPU at the beginning of the program once.

521 (E) ILLEGAL .NOPOOL DIRECTIVE POSITION
.NOPOOL placed at illegal position.
Place .NOPOOL following a delayed branch instruction.

522 (E) ILLEGAL .POOL DIRECTIVE POSITION
.POOL placed following a delayed branch instruction.
Place an executable instruction following the delayed branch instruction.

523 (E) ILLEGAL OPERAND
Illegal .LINE operand.
Correct the operand.

525 (E) ILLEGAL .LINE DIRECTIVE POSITION
.LINE specified during macro expansion or conditional iterated expansion.
Change the specified position of .LINE.

526 (E) STRING TOO LONG
The operand character string has more than 255 characters.
The character strings to specify to the operand of .SDATA, .SDATAB, .SDATAC, and .SDATAZ
directives must have 255 or less characters.

527 (E) CANNOT SUPPORT COMMON SECTION SINCE VERSION 5
COMMON is specified for the section attribute.
Common section cannot be used.
More than one section can be allocated to the same address by using a colon (:) in the start option
of the optimizing linkage editor.

528 (E) SPECIFICATION OF THE ADDRESS OVERLAPS
Address allocation overlaps in a section.
Check the specified contents of .SECTION and .ORG.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1112 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

529 (E) THE ADDRESS BETWEEN SECTIONS OVERLAPS
Address allocation overlaps between sections.
Check the specified contents of .SECTION and .ORG.

530 (E) ILLEGAL OPERAND
Error in the operand of .FILE.
Correct the operand in .FILE.

531 (E) ILLEGAL .FILE DIRECTIVE POSITION
Macro expansion or conditional iterated expansion is specified for .FILE.
Correct the location of .FILE.

532 (E) ILLEGAL OPERAND
Error in the operand of .STACK.
Correct the stack value to be a multiple of 4.

533 (E) ILLEGAL .STACK DIRECTIVE POSITION
.STACK is specified in macro expansion or conditional iterated expansion.
Correct the location of .STACK.

600 (E) INVALID CHARACTER
Illegal character.
Correct it.

601 (E) INVALID DELIMITER
Illegal delimiter character.
Correct it.

602 (E) INVALID CHARACTER STRING FORMAT
Character string error.
Correct it.

603 (E) SYNTAX ERROR IN SOURCE STATEMENT
Source statement syntax error.
Check and correct the whole source statement.

604 (E) ILLEGAL SYMBOL IN OPERAND
Illegal operand specified in a directive.
No symbol or location counter ($) can be specified as an operand of this directive.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1113 of 1176
Mar 01, 2022

610 (E) MULTIPLE MACRO NAMES
Macro name reused in macro definition (.MACRO directive).
Correct the macro name.

611 (E) MACRO NAME NOT FOUND
Macro name not specified (.MACRO directive).
Specify a macro name in the name field of the .MACRO directive.

612 (E) ILLEGAL MACRO NAME
Macro name error (.MACRO directive).
Correct the macro name.

613 (E) ILLEGAL .MACRO DIRECTIVE POSITION
.MACRO directive appears in macro body (between .MACRO and .ENDM directives),
between .AREPEAT and .AENDR directives, or between .AWHILE and .AENDW directives.
Remove the .MACRO directive.

614 (E) MULTIPLE MACRO PARAMETERS
Identical formal parameters repeated in formal parameter declaration in macro definition
(.MACRO directive).
Correct the formal parameters.

615 (E) ILLEGAL .END DIRECTIVE POSITION
.END directive appears in macro body (between .MACRO and .ENDM directives).
Remove the .END directive.

616 (E) MACRO DIRECTIVES MISMATCH
.ENDM directive appears without a preceding .MACRO directive, or an .EXITM directive
appears outside of a macro body (between .MACRO and .ENDM directives), outside
of .AREPEAT and .AENDR directives, or outside of .AWHILE and .AENDW directives.
Remove the .ENDM or .EXITM directive.

618 (E) MACRO EXPANSION TOO LONG
Line with over 8,192 characters generated by macro expansion.
Correct the definition or call so that the line is less than or equal to 8,192 characters.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1114 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

619 (E) ILLEGAL MACRO PARAMETER
Macro parameter name error in macro call, or error in formal parameter in a macro body
(between .MACRO and .ENDM directives).
Correct the formal parameter.
When there is an error in a formal parameter in a macro body, the error will be detected and
flagged during macro expansion.

620 (E) UNDEFINED PREPROCESSOR VARIABLE
Reference to an undefined preprocessor variable.
Define the preprocessor variable.

621 (E) ILLEGAL .END DIRECTIVE POSITION
.END directive in macro expansion.
Remove the .END directive.

622 (E) ')' NOT FOUND
Matching parenthesis missing in macro processing exclusion.
Add the missing macro processing exclusion parenthesis.

623 (E) SYNTAX ERROR IN STRING FUNCTION
Syntax error in character string manipulation function.
Check and correct the character string manipulation function.

624 (E) MACRO PARAMETERS MISMATCH
Too many numbers of macro parameters for positional specification in macro call.
Correct the number of macro parameters.

631 (E) END DIRECTIVE MISMATCH
Terminating preprocessor directive does not agree with matching directive.
Check and correct the preprocessor directives.

640 (E) SYNTAX ERROR IN OPERAND
Syntax error in conditional assembly directive operand.
Check and correct the whole source statement.

641 (E) INVALID RELATIONAL OPERATOR
Error in conditional assembly directive relational operator.
Correct the relational operator.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1115 of 1176
Mar 01, 2022

642 (E) ILLEGAL .END DIRECTIVE POSITION
.END directive appears between .AREPEAT and .AENDR directives or between .AWHILE
and .AENDW directives.
Remove the .END directive.

643 (E) DIRECTIVE MISMATCH
.AENDR or .AENDW directive does not form a proper pair with .AREPEAT or .AWHILE
directive.
Check and correct the preprocessor directives.

644 (E) ILLEGAL .AENDW OR .AENDR DIRECTIVE POSITION
.AENDW or .AENDR directive appears between .AIF and .AENDI directives.
Remove the .AENDW or .AENDR directive.

645 (E) EXPANSION TOO LONG
After .AREPEAT or .AWHILE expansion, the number of characters in a line exceeds 8,192
characters.
Correct the .AREPEAT or .AWHILE to generate lines of less than or equal to 8,192 characters.

650 (E) INVALID INCLUDE FILE
Error in .INCLUDE file name.
Correct the file name.

651 (E) CANNOT OPEN INCLUDE FILE
Could not open the file specified by .INCLUDE directive.
Correct the file name.

652 (E) INCLUDE NEST TOO DEEP
File inclusion nesting exceeded 30 levels.
Limit the nesting to 30 or fewer levels.

653 (E) SYNTAX ERROR IN OPERAND
Syntax error in .INCLUDE operand.
Correct the operand.

660 (E) .ENDM NOT FOUND
Missing .ENDM following .MACRO.
Insert .ENDM.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1116 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

662 (E) ILLEGAL .END DIRECTIVE POSITION
.END appears between .AIF and .AENDI directives.
Remove .END.

663 (E) ILLEGAL .END DIRECTIVE POSITION
.END appears in included file.
Remove .END.

664 (E) ILLEGAL .END DIRECTIVE POSITION
.END appears between .AIF and .AENDI directives.
Remove .END.

665 (E) EXPANSION TOO LONG
The number of line characters exceeds 8,192 in .DEFINE.
Correct the characters as 8,192 or less.

667 (E) SUCCESSFUL CONDITION .AERROR
Statement including .AERROR was processed in the .AIF condition.
Check and correct the conditional statement so that .AERROR is not processed.

668 (E) ILLEGAL VALUE IN OPERAND
Error in the operand of .AIFDEF.
Specify, as the operand of this directive, a symbol defined by .DEFINE.

669 (E) STRING TOO LONG
The operand character string exceeds 255 characters.
The character strings to specify to the operand of .ASSIGNC, .DEFINE, and character
manipulating functions (.LEN, .INSTR, and .SUBSTR) must have 255 or less characters.

670 (E) ILLEGAL SYMBOL IN OPERAND
A symbol other than a preprocessor variable is specified in a preprocessor directive when the CPU
type is SH2A or SH2A-FPU.
Correct the symbol.

700 (W) ILLEGAL VALUE IN OPERAND (<mnemonic>)
The operand value of the DSP operation instruction is out of range.
Correct the operand value.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1117 of 1176
Mar 01, 2022

701 (W) MULTIPLE REGISTER IN DESTINATION (<mnemonic>, <mnemonic>)
The same register is specified as multiple destination operands of the DSP instruction.
Specify the register correctly.

702 (W) ILLEGAL OPERATION SIZE (<mnemonic>)
The operation size of the DSP operation instruction or the data transfer instruction is illegal.
Cancel or correct the operation size.

703 (W) MULTIPLE REGISTER IN DESTINATION (<mnemonic>, <mnemonic>)
The same register is specified as the destination registers of the DSP operation instruction and data
transfer instruction.
Specify the register correctly.

704 (W) A PRIVILEGED INSTRUCTION "mnemonic" IS USED
A privileged instruction is found when the CHKMD option is specified.

705 (W) A LDTLB INSTRUCTION IS USED
A LDTLB instruction is found when the CHKTLB option is specified.

706 (W) A CACHE INSTRUCTION "mnemonic" IS USED
A cache-related instruction is found when the CHKCACHE option is specified.

707 (W) A DSP INSTRUCTION "mnemonic" IS USED
A DSP-related instruction is found when the CHKDSP option is specified.

708 (W) A FPU INSTRUCTION "mnemonic" IS USED
An FPU-related instruction is found when the CHKFPU option is specified.

800 (W) SYMBOL NAME TOO LONG
A preprocessor variable name exceeds 32 characters.
Correct the preprocessor variable.
The assembler ignores the 33rd and later characters.

801 (W) MULTIPLE SYMBOLS
Symbol already defined.
Remove the symbol redefinition.
The assembler ignores the second and later definitions.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1118 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

807 (W) ILLEGAL OPERATION SIZE
Illegal operation size.
Correct the operation size.
The assembler ignores the incorrect operation size specification.

808 (W) ILLEGAL CONSTANT SIZE
Illegal notation of integer constant.
Correct the notation.
The assembler may misinterpret the integer constant, i.e., interpret it as a value not intended by the
programmer.

810 (W) TOO MANY OPERANDS
Too many operands or illegal comment format.
Correct the operand or the comment.
The assembler ignores the extra operands.

811 (W) ILLEGAL SYMBOL DEFINITION
A label specified in assembler directive that cannot have a label is written.
Remove the label.
The assembler ignores the label.

813 (W) SECTION ATTRIBUTE MISMATCH
A different section type is specified on section restart, or a section start address is respecified at
the restart of absolute-address section.
Do not respecify a different section type or a start address on section restart.
The specification of starting section remains valid.

814 (W) ILLEGAL OBJECT CODE SIZE
Illegal allocation size.
Only :12 can be specified for the allocation size.

815 (W) MULTIPLE MODULE NAMES
Respecification of object module name.
Specify the object module name once in a program.
The assembler ignores the second and later object module name specifications.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1119 of 1176
Mar 01, 2022

816 (W) ILLEGAL DATA AREA ADDRESS
Illegal allocation of data or data area.
Locate the word data or data area on an even address. Locate the long-word or single-precision
data or data area on an address of a multiple of 4. Locate the double-precision data or data area on
an address of a multiple of 8.
The assembler corrects the location of the data or data area according to its specified size.

817 (W) ILLEGAL BOUNDARY VALUE
A boundary alignment value less than 4 specified for a code section or stack section.
The specification is valid, but if an executable instruction, DSP instruction, or extended instruction
is located at an odd address, warning 882 occurs.
Special care must be taken when specifying 1 for code section or stack section boundary
alignment value.

818 (W) COMMANDLINE OPTION MISMATCH FOR FLOATING DIRECTIVE
When the CPU type is SH2E, round=nearest or denormalize=on is specified, or when the CPU
type is SH2A-FPU, denormalize=on is specified.
Change the specification in the round or denormalize option.
The assembler creates the object code according to the specification in the round or denormalize
option.

825 (W) ILLEGAL INSTRUCTION IN DUMMY SECTION
An executable instruction, DSP instruction, extended instruction, or assembler directive that
reserves data is in dummy section.
Remove, from the dummy section, the executable instruction, DSP instruction, extended
instruction, or assembler directive that reserves data.
The assembler ignores the executable instruction, DSP instruction, extended instruction, or
assembler directive that reserves data in dummy section.

826 (W) ILLEGAL PRECISION
The floating-point constant does not have the same precision specified with the operation size.
Correct the operation size or the precision type of the floating-point constant.
The assembler assumes the precision specified with the operation size.

832 (W) MULTIPLE ‘P’ DEFINITIONS
Symbol P already defined before a default section is used.
Do not define P as a symbol if a default section is used.
The assembler regards P as the name of the default section, and ignores other definitions of the
symbol P.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1120 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

835 (W) ILLEGAL VALUE IN OPERAND
Operand value out of range for the executable instruction.
Correct the value.
The assembler generates object code with a value corrected to be within range.

836 (W) ILLEGAL CONSTANT SIZE
Illegal notation of integer constant.
Correct the notation.
The assembler may misinterpret the integer constant, i.e., interpret it as a value not intended by the
programmer.

837 (W) SOURCE STATEMENT TOO LONG
After .AREPEAT or .AWHILE expansion, the number of characters in a line exceeds 8192
characters.
Rewrite the source statement to be within 8,192 bytes by, for example, rewriting the comment.
Alternatively, rewrite the statement as a multi-line statement.

838 (W) ILLEGAL CHARACTER CODE
The shift JIS code, EUC code, or LATIN1 code is specified outside character strings and
comments, or the sjis, euc, or latin1 option is not specified.
Specify the shift JIS code, EUC code, LATIN1 code in character strings or comments. Or specify
the sjis, euc, or latin1 option.

839 (W) ILLEGAL FIGURE IN OPERAND
Fixed-point data having six or more digits is specified in word size, or that having 11 or more
digits is specified in long-word size.
Reduce the digits to the limit.

840 (W) OPERAND OVERFLOW
Floating-point data overflowed.
Modify the value.
The assembler assumes +∞ when the value is positive and –∞ when negative.

841 (W) OPERAND UNDERFLOW
Floating-point data underflowed.
Modify the value.
The assembler assumes +0 when the value is positive and –0 when negative.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1121 of 1176
Mar 01, 2022

842 (W) OPERAND DENORMALIZED
Denormalized numbers are specified for floating-point data.
Check and correct the floating-point data.
The assembler creates the object code according to the specification (sets denormalized numbers).

843 (W) INEFFECTIVE FLOATING POINT OPERATION
An invalid operation such as ∞ - ∞ or 0.0 / 0.0 is specified in a constant expression.
An internal representation corresponding to a not-a-number, which represents an invalid operation
result, is assumed.

844 (W) DIVISION BY FLOATING POINT ZERO
Division by zero is specified in a constant expression.
An internal representation corresponding to +∞ or -∞ is assumed depending on the sign.

845 (W) ILLEGAL IMMEDIATE VALUE
Illegal immediate value; the lower eight bits are not 0.
The assembler corrects the lower eight bits of the immediate value to be 0.

850 (W) ILLEGAL SYMBOL DEFINITION
Symbol specified in label field.
Remove the symbol.

851 (W) MACRO SERIAL NUMBER OVERFLOW
Macro serial number exceeded 99,999.
Reduce the number of macro calls.

852 (W) UNNECESSARY CHARACTER
Characters appear after the operands.
Correct the operand(s).

854 (W) .AWHILE ABORTED BY .ALIMIT
Expansion count has reached the maximum value specified by .ALIMIT, and expansion has been
terminated.
Check and correct the condition for iterated expansion.

856 (W) MULTIPLE SYMBOLS
A stack value is defined for the same symbol again.
Remove the stack value redefinition.
The assembler ignores the second and later definitions.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1122 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

870 (W) ILLEGAL DISPLACEMENT VALUE
Illegal displacement value.
Either the displacement value is not an even number when the operation size is word, or the
displacement value is not a multiple of 4 when the operation size is long word.
Take account of the fact that the assembler corrects the displacement value.
The assembler generates object code with the displacement corrected according to the operation
size.
For a word size operation the assembler discards the low order bit of the displacement to create an
even number, and for a long-word-size operation the assembler discards the two low order bits of
the displacement to create a multiple of 4.

874 (W) CANNOT CHECK DATA AREA BOUNDARY
Cannot check data area boundary for PC-relative data transfer instructions.
Note carefully the data area boundary at linkage process.
The assembler outputs this message when a data transfer instruction is included in a relative-
address section, or when an import symbol is used to indicate a data area.

875 (W) CANNOT CHECK DISPLACEMENT SIZE
Cannot check displacement size for PC-relative data transfer instructions.
Note carefully the distance between data transfer instructions and data area at linkage.
The assembler outputs this message when a data transfer instruction is included in a relative-
address section, or when an import symbol is used to indicate a data area.

876 (W) ASSEMBLER OUTPUTS BRA INSTRUCTION
The assembler automatically outputs a BRA instruction.
Specify a literal pool output position using .POOL, or check that the program to which a BRA
instruction is added can run normally.
When a literal pool output location is not available, the assembler automatically outputs literal
pool and a BRA instruction to jump over the literal pool.

880 (W) .END NOT FOUND
No .END in the program.
Insert an .END.

881 (W) ILLEGAL DIRECTIVE IN REPEAT LOOP
An illegal assembler directive was found in a .REPEAT loop.
Delete the directive.
If a directive that reserves a data item or a data area, .ALIGN, or .ORG is used in a .REPEAT loop,
the assembler counts the directive as one of the instructions to be repeated.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1123 of 1176
Mar 01, 2022

882 (W) ILLEGAL ADDRESS
The executable instruction and extended instruction are written in an odd address.
Write the executable instruction and extended instruction are written in an even address.

883 (W) MULTIPLE FILE NAMES
.FILE is specified more than once.
The second and later specifications are ignored.

884 (W) "CPU type 1" is interpreted as "CPU type 2"
cpu=<CPU type 1> is invalid.
It is interpreted as cpu=<CPU type 2> for assembling.

885 (W) CANNOT SUPPORT "CPU type"
The CPU type specified by .CPU is not supported.
It is interpreted as the CPU type specified by the cpu option.

901 (F) SOURCE FILE INPUT ERROR
Source file input error.
Check the hard disk for adequate free space. Create the required free space, e.g. by deleting
unnecessary files.

902 (F) MEMORY OVERFLOW
Insufficient memory. (Unable to process the temporary information.)
Subdivide the program.

903 (F) LISTING FILE OUTPUT ERROR
Output error on the listing file.
Check the hard disk for adequate free space. Create the required free space, e.g. by deleting
unnecessary files.

904 (F) OBJECT FILE OUTPUT ERROR
Output error on the object file.
Check the hard disk for adequate free space. Create the required free space, e.g. by deleting
unnecessary files.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1124 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

905 (F) MEMORY OVERFLOW
Insufficient memory. (Unable to process the line information.)
Subdivide the program.

906 (F) MEMORY OVERFLOW
Insufficient memory. (Unable to process the symbol information.)
Subdivide the program.

907 (F) MEMORY OVERFLOW
Insufficient memory. (Unable to process the section information.)
Subdivide the program.

908 (F) SECTION OVERFLOW
Too much number of sections.
When debugging information is output, up to 62,265 sections can be enabled.
When debugging information is not output, up to 65,274 sections can be enabled.
Subdivide the program.

933 (F) ILLEGAL ENVIRONMENT VARIABLE
The specified target CPU is incorrect.
Correct the target CPU.

935 (F) SUBCOMMAND FILE INPUT ERROR
Subcommand file input error.
Check the hard disk for adequate free space. Create the required free space, e.g. by deleting
unnecessary files.

950 (F) MEMORY OVERFLOW
Insufficient memory.
Subdivide the source program.

951 (F) LITERAL POOL OVERFLOW
The number of literal pools exceeds 100,000.
Subdivide the source program.

952 (F) LITERAL POOL OVERFLOW
Literal pool capacity overflow.
Insert unconditional branch before overflow.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 13 Assembler Error Messages

R20UT0704EJ0102 Rev. 1.02 Page 1125 of 1176
Mar 01, 2022

953 (F) MEMORY OVERFLOW
Insufficient memory.
Subdivide the source program.

954 (F) LOCAL BLOCK NUMBER OVERFLOW
The number of local blocks that are valid in the local label exceeds 100,000.
Subdivide the source program.

956 (F) EXPAND FILE INPUT/OUTPUT ERROR
File output error for preprocessor expansion.
Check the hard disk for adequate free space. Create the required free space, e.g. by deleting
unnecessary files.

957 (F) MEMORY OVERFLOW
Insufficient memory.
Subdivide the source program.

958 (F) MEMORY OVERFLOW
Insufficient memory.
Subdivide the source program.

964 (F) MEMORY OVERFLOW
Insufficient memory (Unable to process the symbol information).
Subdivide the source program.

970 (F) MEMORY OVERFLOW
Insufficient memory.
Section size is too large. A large offset may have been given to the location counter using .ORG,
or a large data area may have been reserved by using directives such as .DATAB.
Subdivide the section or reduce the data area.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 13 Assembler Error Messages Optimizing Linkage Editor

Page 1126 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1127 of 1176
Mar 01, 2022

Section 14 Error Messages for the Optimizing Linkage
Editor

14.1 Error Format and Error Levels

This section gives a list of error messages and explains details of errors in the following format.

Error number (Error level) Error message
 Error details

There are five different error levels, corresponding to different degrees of seriousness.

Error Number

Error
Level

Error Type

Description

L0000–L0999
P0000–P0999

(I) Information Processing is continued.

L1000–L1999
P1000–P1999

(W) Warning Processing is continued.

L2000–L2999
P2000–P2999

(E) Error Option analysis processing is continued;
processing is interrupted.

L3000–L3999
P3000–P3999

(F) Fatal Processing is interrupted.

L4000–
P4000–

(–) Internal Processing is interrupted.

Error numbers beginning with an L are optimizing linkage editor output messages.

Error numbers beginning with a P are prelinker output messages. Output of errors with numbers
beginning with a P cannot be controlled using the nomessage or change_message options.

14.2 Return Values for Errors

When terminating execution, the optimizing linkage editor returns a numeric value to the OS
indicating the processing result as shown below.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1128 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Return Value Description
0 Processing was completed successfully, or processing was terminated after

an information message or a warning message was output.

1 An error, a fatal error, or an internal error occurred and processing was
forcibly terminated.

14.3 List of Messages

L0001 (I) Section "section" created by optimization "optimization"
The section named section was created as a result of the optimization.

L0002 (I) Symbol "symbol" created by optimization "optimization"
The symbol named symbol was created as a result of the optimization.

L0003 (I) "file"-"symbol" moved to "section" by optimization
As a result of variable_access optimization, the symbol named symbol in file was
moved.

L0004 (I) "file"-"symbol" deleted by optimization
As a result of symbol_delete optimization, the symbol named symbol in file was deleted.

L0005 (I) The offset value from the symbol location has been changed by optimization :
"file"-"section"-"symbol ± offset"
As a result of the size being changed by optimization within the range of symbol ±
offset, the offset value was changed. Check that this does not cause a problem. To
disable changing of the offset value, cancel the specification of the goptimize option on
assembly of file.

L0100 (I) No inter-module optimization information in "file"
No inter-module optimization information was found in file. Inter-module optimization is
not performed on file. To perform inter-module optimization, specify the goptimize
option on compiling and assembly. Note however that the goptimize option is not
available in asmsh.

L0101 (I) No stack information in "file"
No stack information was found in file. file may be an assembler output file or a
SYSROF-> ELF converted file. The contents of the file will not be in the stack
information file output by the optimizing linkage editor.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1129 of 1176
Mar 01, 2022

L0102 (I) Stack size "size" specified to the undefined symbol "symbol" in "file"
Stack size size is specified for the undefined symbol named symbol in file.

L0103 (I) Multiple stack sizes specified to the symbol "symbol"
Multiple stack sizes are specified for the symbol named symbol.

L0300 (I) Mode type "mode type 1" in "file" differ from "mode type 2"
A file with a different mode type was input.

L0400 (I) Unused symbol "file"–"symbol"
The symbol named symbol in file is not used.

L0500 (I) Generated CRC code at "address"
Generated CRC code at address.

L0510 (I) Section "section" was moved other area specified in option "cpu=<attribute>"
section without dividing is allocated according to cpu=<attribute>.

L0511 (I) Sections "section name","new section name" are Non-contiguous
section was divided and the newly created section is new section name.

L1000 (W) Option "option" ignored
The option named option is invalid, and is ignored.

L1001 (W) Option "option 1" is ineffective without option "option 2"
option 1 needs specifying option 2. option 1 is ignored.

L1002 (W) Option "option 1" cannot be combined with option "option 2"
option 1 and option 2 cannot be specified simultaneously. option 1 is ignored.

L1003 (W) Divided output file cannot be combined with option "option"
option and the option to divide the output file cannot be specified simultaneously. option
is ignored. The first input file name is used as the output file name.

L1004 (W) Fatal level message cannot be changed to other level : "number"
The level of a fatal error type message cannot be changed. The specification of number
is ignored. Only errors at the information/warning/error level can be changed with the
change_message option.

L1005 (W) Subcommand file terminated with end option instead of exit option
There is no processing specification following the end option. Processing is done with
the exit option assumed.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1130 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

L1006 (W) Options following exit option ignored
All options following the exit option is ignored.

L1007 (W) Duplicate option : "option"
Duplicate specifications of option were found. Only the last specification is effective.

L1008 (W) Option "option" is effective only in cpu type "CPU type"
option is effective only in CPU type. option is ignored.

L1010 (W) Duplicate file specified in option "option" : "file"
option was used to specify the same file twice. The second specification is ignored.

L1011 (W) Duplicate module specified in option "option" : "module"
option was used to specify the same module twice. The second specification is ignored.

L1012 (W) Duplicate symbol/section specified in option "option" : "name"
option was used to specify the same symbol name or section name twice. The second
specification is ignored.

L1013 (W) Duplicate number specified in option "option" : "number"
option was used to specify the same error number. Only the last specification is effective.

L1100 (W) Cannot find "name" specified in option "option"
The symbol name or section name specified in option cannot be found. The name
specification is ignored.

L1101 (W) "name" in rename option conflicts between symbol and section
name specified by the rename option exists as both a section name and as a symbol
name. Rename is performed for the symbol name only in this case.

L1102 (W) Symbol "symbol" redefined in option "option"
The symbol specified by option has already been defined. Processing is continued
without any change.

L1103 (W) Invalid address value specified in option "option" : "address"
address specified by option is invalid. The address specification is ignored.

L1104 (W) Invalid section specified in option "option" : "section"
An invalid section was specified in option. Confirm the following:
(1) The -output option does not accept a section that has no initial value.
(2) The -jump_entries_for_pic option accepts only a program section.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1131 of 1176
Mar 01, 2022

L1110 (W) Entry symbol "symbol" in entry option conflicts
A symbol other than symbol specified by the entry option is specified as the entry
symbol on compiling or assembling. The option specification is given priority.

L1120 (W) Section address is not assigned to "section"
section has no addresses specified for it. section will be located at the rearmost address.
Specify the address of the section using the optimizing linkage editor option -start.

L1121 (W) Address cannot be assigned to absolute section "section" in start option
section is an absolute address section. An address assigned to an absolute address section
is ignored.

L1122 (W) Section address in start option is incompatible with alignment : "section"
The address of section specified by the start option conflicts with memory boundary
alignment requirements. The section address is modified to conform to boundary
alignment.

L1130 (W) Section attribute mismatch in rom option : "section 1, section 2"
The attributes and boundary alignment of section 1 and section 2 specified by the rom
option are different. The larger value is effective as the boundary alignment of section 2.

L1140 (W) Load address overflowed out of record-type in option "option"
A record type smaller than the address value was specified. The range exceeding the
specified record type has been output as different record type.

L1141 (W) Cannot fill unused area from "address" with the specified value
Specified data cannot be output to addresses higher than address because the unused area
size is not a multiple of the value specified by the space option.

L1150 (W) Sections in "option" option have no symbol
The section specified in option does not have an externally defined symbol.

L1160 (W) Undefined external symbol "symbol"
An undefined external symbol symbol was referenced.

L1170 (W) Specified SBR addresses conflict
Different SBR addresses have been specified. Processing is done with SBR=USER
assumed.

L1171 (W) Least significant byte in SBR="constant" ignored
The least significant 8 bits in address constant specified by the SBR option are ignored.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1132 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

L1180 (W) Directive command "directive" is duplicated in "file"
directive was specified in multiple source files.
directive cannot be written more than once across files.

L1181 (W) Fail to write "type of output code"
Failed to write type of output code to the output file.
The output file may not contain the address to which type of output code should be
output.
Type of output code:
When failed to write ID code -> ID Code
→L1181 Fail to write "ID Code"
When failed to write PROTECT/OFSREG code -> Protect Code or OFSREG Code
→L1181 Fail to write "Protect Code" or "OFSREG Code"
When failed to write CRC code -> CRC Code
→L1181 Fail to write "CRC Code"

L1182 (W) Cannot generate vector table section "section"
The input file contains vector table section. The linkage editor does not create the section
automatically.

L1183 (W) Interrupt number "vector number" of "section" is defined in input file
The vector number specified by the VECTN option is defined in the input file.
Processing is continued with priority given on the definition in the input file.

L1190 (W) Section "section" was moved other area specified in option "cpu=<memory
attribute>"
The object size was modified through optimization of access to external variables.
Accordingly, the section in the area specified by the next cpu specification was moved.

L1191 (W) Area of "FIX" is within the range of the area specified by "cpu=<memory
type>" :"<start>-<end>"
In the cpu option, the address range of <start>-<end> specified for FIX overlapped with
that specified for another memory type. The setting for FIX is valid.

L1192 (W) Bss Section "section name" is not initialized
section name, which is a data section without an initial value, cannot be initialized by the
initial setup program. Check the address range specified with –cpu and the sizes of
pointer variables.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1133 of 1176
Mar 01, 2022

L1193 (W) Section "section name" specified in option "option" is ignored
option specified for the section newly created due to -cpu=stride is invalid. Do not
specify option for the newly created section.

L1194 (W) Section "option" in relocation "file"-"section"-"offset" is changed.
The relocation section file offset now refers to a location in the new section created with
the division of section. To prevent division, declare the contiguous_section option for
section.

L1200 (W) Backed up file "file 1" into "file 2"
Input file file 1 was overwritten. A backup copy of the data in the previous version of file
1 was saved in file 2.

L1300 (W) No debug information in input files
There is no debugging information in the input files. The debug, sdebug, or compress
option has been ignored. Check whether the relevant option was specified at compilation
or assembly.

L1301 (W) No inter-module optimization information in input files
No inter-module optimization information is present in the input files. The optimize
option has been ignored. Check whether the goptimize option was specified at
compilation or assembly.

L1302 (W) No stack information in input files
No stack information is present in the input files. The stack option is ignored. If all input
files are assembler output files or SYSROF->ELF converted files, the stack option is
ignored.

L1303 (W) No rts information in input files
No information in input files to generate .rts file. The processing will end without
creating an .rts file.

L1304 (W) No utl information in input files
The information necessary to generate a utl file was not input.

L1305 (W) Entry address in "file" conflicts : "address"
Multiple files with different entry addresses are input.

L1310 (W) "section" in "file" is not supported in this tool
An unsupported section was present in file. section has been ignored.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1134 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

L1311 (W) Invalid debug information format in "file"
Debugging information in file is not dwarf2. The debugging information has been
deleted.

L1320 (W) Duplicate symbol "symbol" in "file"
The symbol named symbol is duplicated. The symbol in the first file input is given
priority.

L1321 (W) Entry symbol "symbol" in "file" conflicts
Multiple object files containing more than one entry symbol definition were input. Only
the entry symbol in the first file input is effective.

L1322 (W) Section alignment mismatch : "section"
Sections with the same name but different boundary alignments were input. Only the
largest boundary alignment specification is effective.

L1323 (W) Section attribute mismatch : "section"
Sections with the same name but different attributes were input. If they are an absolute
section and relative section, the section is treated as an absolute section. If the read/write
attributes mismatch, both are allowed.

L1324 (W) Symbol size mismatch : "symbol" in "file"
Common symbols or defined symbols with different sizes were input. A defined symbol
is given priority. In the case of two common symbols, the symbol in the first file input is
given priority.

L1325 (W) Symbol attribute mismatch : "symbol":"file"
The attribute of symbol in file does not match the attribute of the same-name symbol in
other files. Check the symbol.

L1326 (W) Reserved symbol "symbol" is defined in "file"
Reserved symbol name symbol is defined in the file.

L1327 (W) Section alignment in option "aligned_section" is small : "section"
Since the boundary alignment value specified for the aligned_section option is 16, which
is smaller than that of section, the option settings made for that section are ignored.

L1330 (W) Cpu type "CPU type 1" in "file" differ from "CPU type 2"
Files with different CPU types were input. Processing is continued with the CPU type
assumed as H8SX.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1135 of 1176
Mar 01, 2022

L1400 (W) Stack size overflow in register optimization
During register optimization, the stack access code exceeded the stack size limit of the
compiler. The register optimization specification has been ignored.

L1401 (W) Function call nest too deep
The number of function call nesting levels is so deep that register optimization cannot be
performed.

L1402 (W) Parentheses specified in option "start" with optimization
Optimization is not available when parentheses "()" are specified in the start option.
Optimization has been disabled.

L1410 (W) Cannot optimize "file"-"section" due to multi label relocation operation
A section having multiple label relocation operations cannot be optimized. Section
section in file file has not been optimized.

L1420 (W) "file" is newer than "profile"
file was updated after profile. The profile information has been ignored.

L1430 (W) Cannot generate effective bls file for compiler optimization
An invalid bls file was created. This optimization is not available even if optimization of
access to external variables (map option) is specified for compilation.
The optimization of access to external variables (map option) in the compiler has the
following restriction. Check if this restriction is applicable and modify the section
allocation.

 Access to external variables cannot be optimized in some cases if a data section is
allocated immediately after a program section when the base option is specified for
compilation.

 Note: The bls file indicates the external symbol allocation information file.
 It contains the information to be used for the map option of the compiler.

L1500 (W) Cannot check stack size
There is no stack section, and so consistency of the stack size specified by the stack
option on compiling cannot be checked. To check the consistency of the stack size on
compiling, the goptimize option needs to be specified on compiling and assembling.

L1501 (W) Stack size overflow : "stack size"
The stack section size exceeded the stack size specified by the stack option on

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1136 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

compiling. Either change the option used on compiling, or change the program so as to
reduce the use of the stack.

L1502 (W) Stack size in "file" conflicts with that in another file
Different values for stack size are specified for multiple files. Check the options used on
compiling.

L1510 (W) Input file was compiled with option "smap" and option "map" is specified at
linkage
A file was compiled with smap specification. The file with smap specification should
not be compiled with the map option specification in the second build processing.

P1600 (W) An error occurred during name decoding of "instance"
instance could not be decoded. The message is output using the encoding name.

L2000 (E) Invalid option : "option"
option is not supported.

L2001 (E) Option "option" cannot be specified on command line
option cannot be specified on the command line. Specify this option in a subcommand
file.

L2002 (E) Input option cannot be specified on command line
The input option was specified on the command line. Input file specification on the
command line should be made without the input option.

L2003 (E) Subcommand option cannot be specified in subcommand file
The subcommand option was specified in a subcommand file. The subcommand option
cannot be nested.

L2004 (E) Option "option 1" cannot be combined with option "option 2"
option 1 and option 2 cannot be specified simultaneously.

L2005 (E) Option "option" cannot be specified while processing "process"
option cannot be specified for process.

L2006 (E) Option "option 1" is ineffective without option "option 2"
option 1 requires option 2 be specified.

L2010 (E) Option "option" requires parameter
option requires a parameter to be specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1137 of 1176
Mar 01, 2022

L2011 (E) Invalid parameter specified in option "option" : "parameter"
An invalid parameter was specified for option.

L2012 (E) Invalid number specified in option "option" : "value"
An invalid value was specified for option. Check the range of valid values.

L2013 (E) Invalid address value specified in option "option" : "address"
The address address specified in option is invalid. A hexadecimal address between 0 and
FFFFFFFF should be specified.

L2014 (E) Illegal symbol/section name specified in "option" : "name"
The section or symbol name specified in option uses an illegal character. Only
alphanumerics, the underscore (_), and the dollar sign ($) may be used in section/symbol
names (the leading character cannot be a number).

L2016 (E) Invalid alignment value specified in option "option" : "alignment value"
The alignment value specified in option is invalid. 1, 2, 4, 8, 16, or 32 should be
specified.

L2017 (E) Cannot output "section" specified in option "option"
Part of the code in section specified by option cannot be output. Part of the instruction
code in section has been swapped with instruction code in another section due to endian
conversion. Check the section address range with respect to 4-byte boundaries in the
linkage list and find which section code is swapped with the target section code.
Note: The endian conversion function is available only in the RX Family CPU.

L2020 (E) Duplicate file specified in option "option" : "file"
The same file was specified twice in option.

L2021 (E) Duplicate symbol/section specified in option "option" : "name"
The same symbol name or section name was specified twice in option.

L2022 (E) Address ranges overlap in option "option" : "address range"
Address ranges address range specified in option overlap.

L2100 (E) Invalid address specified in cpu option : "address"
An invalid address was specified in the cpu option.

L2101 (E) Invalid address specified in option "option" : "address"
The address specified in option exceeds the address range that can be specified by the
cpu or the range specified by the cpu option.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1138 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

L2110 (E) Section size of second parameter in rom option is not 0 : "section"
section whose size is not zero was specified in the second parameter of the rom option.

L2111 (E) Absolute section cannot be specified in "option" option : "section"
An absolute address section was specified in option.

L2112 (E) "section 1" and "section 2" cannot mapped as ROM/RAM in "file"
section 1 and section 2 specified in the name of file are not ROM/RAM-mapped.

L2113 (E) Option "rom" and internal information in the file are conflicted
Specification of the rom option conflicts with the internal information.

L2120 (E) Library "file" without module name specified as input file
A library file without a module name was specified as the input file.

L2121 (E) Input file is not library file : "file (module)"
The file specified by file (module) as the input file is not a library file.

L2130 (E) Cannot find file specified in option "option" : "file"
The file specified in option could not be found.

L2131 (E) Cannot find module specified in option "option" : "module"
The module specified in option could not be found.

L2132 (E) Cannot find "name" specified in option "option"
The symbol or section specified in option does not exist.

L2133 (E) Cannot find defined symbol "name" in option "option"
The externally defined symbol specified in option does not exist.

L2140 (E) Symbol/section "name" redefined in option "option"
The symbol or section specified in option has already been defined.

L2141 (E) Module "module" redefined in option "option"
The module specified in option has already been defined.

L2142 (E) Interrupt number "vector number" of "section" has multiple definition
Vector number definition was made multiple times in vector table section. Only one
address can be specified for a vector number. Check and correct the code in the source
file.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1139 of 1176
Mar 01, 2022

L2143 (E) Invalid vector number specified: "number"
The vector number indicated by number is not allowed.
Check and correct the vector number specified with #pragma special.

L2200* (E) Illegal object file : "file"
A format other than ELF format was input.
* The error number will be shown as P2200.

L2201 (E) Illegal library file : "file"
file is not a library file.

L2202 (E) Illegal cpu information file : "file"
file is not a cpu information file.

L2203 (E) Illegal profile information file : "file"
file is not a profile information file.

L2210 (E) Invalid input file type specified for option "option" : "file (type)"
When specifying option, a file (type) that cannot be processed was input.

L2211 (E) Invalid input file type specified while processing "process" : "file (type)"
A file (type) that cannot be processed was input during processing process.

L2212 (E) "option" cannot be specified for inter-module optimization information in "file"
The option option cannot be used because file includes inter-module optimization
information. Do not specify the goptimize option at compilation or assembly.

L2220 (E) Illegal mode type "mode type" in "file"
A file with a different mode type was input.

L2221 (E) Section type mismatch : "section"
Sections with the same name but different attributes (whether initial values present or
not) were input.

L2223 (E) Cpu type "CPU type 1" in "file" is incompatible with "CPU type 2"
A different CPU type was input.
Since these types are incompatible in part of the specifications, even if the file is linked,
correct operation cannot be guaranteed.

L2300 (E) Duplicate symbol "symbol" in "file"
There are duplicate occurrences of symbol.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1140 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

L2301 (E) Duplicate module "module" in "file"
There are duplicate occurrences of module.

L2310 (E) Undefined external symbol "symbol" referenced in "file"
An undefined symbol symbol was referenced in file.

L2311 (E) Section "section 1" cannot refer to overlaid section : "section 2"-"symbol"
A symbol defined in section 1 was referenced in section 2 that is allocated to the same
address as section 1 overlaid. section 1 and section 2 must not be allocated to the same
address.

L2320 (E) Section address overflowed out of range : "section"
The address of section exceeds the usable address range.

L2321 (E) Section "section 1" overlaps section "section 2"
The addresses of section 1 and section 2 overlap. Change the address specified by the
start option.

L2322 (E) Section size too large: "section"
The size of section is too large. The size of a $TBR section must be 1024 bytes or less.

L2323 (E) Section "section 1 (address range)" overlaps with section "section 2 (address
range)" in physical space
section 1 overlaps with section 2 in the physical memory. Check the addresses of the
sections.
<address range>: <section start address> - <section end address>

L2330 (E) Relocation size overflow : "file"-"section"-"offset"
The result of the relocation operation exceeded the relocation size. Possible causes
include inaccessibility of a branch destination, and referencing of a symbol which must
be located at a specific address. Ensure that the referenced symbol at the offset position
of section in the source list is placed at the correct position.

L2331 (E) Division by zero in relocation value calculation : "file"-"section"-"offset"
Division by zero occurred during a relocation operation. Check for problems in
calculation of the position at offset in section in the source list.

L2332 (E) Relocation value is odd number : "file"-"section"-"offset"
The result of the relocation operation is an odd number. Check for problems in
calculation of the position at offset in section in the source list.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1141 of 1176
Mar 01, 2022

L2340 (E) Symbol name "file"-"section"-"symbol..." is too long
The number of characters comprising symbol in section exceeds the translation limit of
the assembler.
When outputting a symbol address file, make sure that the number of characters
comprising the symbol name does not exceed the translation limit of the assembler.

L2400 (E) Global register in "file" conflicts : "symbol", "register"
Another symbol has already been allocated to a global register specified in file.

L2401 (E) near8, near16 symbol "symbol" is outside near memory area
symbol is not allocated in the near8 or near16 range. Either change the start
specification, or remove the near specifier at compilation, so that correct address
calculations can be made.

L2402 (E) Number of register parameter conflicts with that in another file : "function"
Different numbers of register parameters are specified for function in multiple files.

L2403 (E) Fast interrupt register in "file" conflicts with that in another file
The register number specified for the fast interrupt general register in file does not match
the settings in other files. Correct the register number to match the other settings and
recompile the code.

L2404 (E) Base register "base register type" in "file" conflicts with that in another file
The register number specified for base register type in file does not match the settings in
other files. Correct the register number to match the other settings and recompile the
code.

L2405 (E) Option "compile option" conflicts with that in other files
Specification of compile option is inconsistent between the input files.
Check and correct compile option.

L2410 (E) Address value specified by map file differs from one after linkage as to
"symbol"
The address of symbol differs between the address within the external symbol allocation
information file used at compilation and the address after linkage. Check (1) to (3) below.

(1) Do not change the program before or after the map option specification at
compilation.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1142 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(2) optlnk optimization may cause the sequence of the symbols after the map option
specification at compilation to differ from that before the map option. Disable the
map option at compilation or disable the optlnk option for optimization.

(3) When the tbr option or #pragma tbr is used, optimization by the compiler may
delete symbols after the map option specification at compilation. Disable the map
option at compilation or disable the tbr option or #pragma tbr.

L2411 (E) Map file in "file" conflicts with that in another file
Different external symbol allocation information files were used by the input files at
compilation.

L2412 (E) Cannot open file : "file"
file (external symbol allocation information file) cannot be opened. Check whether the
file name and access rights are correct.

L2413 (E) Cannot close file : "file"
file (external symbol allocation information file) cannot be closed. There may be
insufficient disk space.

L2414 (E) Cannot read file : "file"
file (external symbol allocation information file) cannot be read. An empty file may have
been input, or there may be insufficient disk space.

L2415 (E) Illegal map file : "file"
file (external symbol allocation information file) has an illegal format. Check whether the
file name is correct.

L2416 (E) Order of functions specified by map file differs from one after linkage as to
"function name"
The sequences of a function function name and those of other functions are different
between the information within the external symbol allocation information file used at
compilation and the location after linkage. The address of static within the function may
be different between the external symbol allocation information file and the result after
linkage.

L2417 (E) Map file is not the newest version: "file name"
The .bls file is not the latest version.

L2420 (E) "file 1" overlap address "file 2" : "address"
The address specified for file 1 is the same as that specified for file 2.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1143 of 1176
Mar 01, 2022

P2500 (E) Cannot find library file : "file"
file specified as a library file cannot be found.

P2501 (E) "instance" has been referenced as both an explicit specialization and a
generated instantiation
Instantiation has been requested of an instance already defined. For the file using
instance, confirm that form=relocate has not been used to generate a relocatable object
file.

P2502 (E) "instance" assigned to "file 1" and "file 2"
The definition of instance is duplicated in file 1 and file 2. For the file using instance,
confirm that form=relocate has not been used to generate a relocatable object file.

L3000 (F) No input file
There is no input file.

L3001 (F) No module in library
There are no modules in the library.

L3002 (F) Option "option 1" is ineffective without option "option 2"
The option option 1 requires that the option option 2 be specified.

L3004 (F) Unsupported inter-module optimization information type "type" in "file"
The file contains an unsupported inter-module optimization information type. Check if
the compiler and assembler versions are correct.

P3007 (F) Cannot create instantiation request file "file"
Unable to create an intermediate file for the instance generation process.
Check that the access rights of the object created folder and those beneath it are correct.

P3008 (F) Cannot change to directory "folder"
Unable to move to folder. Check that the folder exists.

P3009 (F) File "file" is read-only
file is read-only. Change its access right.

L3100 (F) Section address overflow out of range : "section"
The address of section exceeded FFFFFFFF. Change the address specified by the start
option. For details of the address space, refer to the hardware manual of the target CPU.

L3102 (F) Section contents overlap in absolute section "section"
Data addresses overlap within an absolute address section. Modify the source program.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1144 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

L3110 (F) Illegal cpu type "cpu type" in "file"
A file with a different cpu type was input.

L3111 (F) Illegal encode type "endian type" in "file"
A file with a different endian type was input.

L3112 (F) Invalid relocation type in "file"
There is an unsupported relocation type in file. Ensure the compiler and assembler
versions are correct.

L3120 (F) Illegal size of the absolute code section : "section" in "file"
Absolute-addressing program section section in file has an illegal size. When the CPU
type is RX Family in big endian, correct the size to a multiple of 4.

L3200 (F) Too many sections
The number of sections exceeded the translation limit. It may be possible to eliminate this
problem by specifying multiple file output.

L3201 (F) Too many symbols
The number of symbols exceeded the translation limit. It may be possible to eliminate
this problem by specifying multiple file output.

L3202 (F) Too many modules
The number of modules exceeded the translation limit. Divide the library.

L3203 (F) Reserved module name "optlnk_generates"
optlnk_generates_** (** is a value from 01 to 99) is a reserved name used by the
optimizing linkage editor. It is used as an .obj or .rel file name or a module name within
a library. Modify the name if it is used as a file name or a module name within a library.

L3300* (F) Cannot open file : "file"
file cannot be opened. Check whether the file name and access rights are correct.
* The error number will be shown as P3300.

L3301 (F) Cannot close file : "file"
file cannot be closed. There may be insufficient disk space.

L3302 (F) Cannot write file : "file"
Writing to file is not possible. There may be insufficient disk space.

L3303* (F) Cannot read file : "file"

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 14 Error Messages for the Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02 Page 1145 of 1176
Mar 01, 2022

file cannot be read. An empty file may have been input, or there may be insufficient disk
space.
* The error number will be shown as P3303.

L3310* (F) Cannot open temporary file
A temporary file cannot be opened. Check to ensure the HLNK_TMP specification is
correct, or there may be insufficient disk space.
* The error number will be shown as P3310.

L3311 (F) Cannot close temporary file
A temporary file cannot be closed. There may be insufficient disk space.

L3312 (F) Cannot write temporary file
Writing to a temporary file is not possible. There may be insufficient disk space.

L3313 (F) Cannot read temporary file
A temporary file cannot be read. There may be insufficient disk space.

L3314 (F) Cannot delete temporary file
A temporary file cannot be deleted. There may be insufficient disk space.

L3320* (F) Memory overflow
There is no more space in the usable memory within the linkage editor. Increase the
amount of memory available.
* The error number will be shown as P3320.

L3400 (F) Cannot execute "load module"
load module cannot be executed. Check whether the path for load module is set
correctly.

L3410 (F) Interrupt by user
An interrupt generated by (Ctrl) + C keys from a standard input terminal was detected.

L3420 (F) Error occurred in "load module"
An error occurred while executing the load module.

P3500 (F) Bad instantiation request file -- instantiation assigned to more than one file
An intermediate file for the instance generation process contains an error.
Recompile the files to be linked.

P3505 (F) Corrupted template information file or instantiation request file
An intermediate file for the template process or that for the instance generation process

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 14 Error Messages for the Optimizing Linkage Editor Optimizing Linkage Editor

Page 1146 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

contains an error.
Do not edit these files.

L4000* (–) Internal error : ("internal error code") "file line number" / "comment"
An internal error occurred during processing by the optimizing linkage editor. Make a
note of the internal error number, file name, line number, and comment in the message,
and contact the support department of the vendor.
* The error number will be shown as P4000.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 15 Limitations

R20UT0704EJ0102 Rev. 1.02 Page 1147 of 1176
Mar 01, 2022

Section 15 Limitations

15.1 Limitations of the Compiler

Table 15.1 shows the limitations of the compiler. Source programs must fall within these
limitations.

Table 15.1 Limitations of the Compiler

Classification Item Limit
Invoking the
compiler

Total number of macro names that can be specified
using the define option

None (the limit
depends on the
memory capacity)

Length of file name (characters) None (the limit
depends on the
OS)

Source
programs

Length of one line (characters) 32768
Number of source program lines in one file None (other than

the memory
capacity)

Number of source program lines that can be compiled None (other than
the memory
capacity)

Preprocessing Nesting levels of files in a #include directive None (the limit
depends on the
memory capacity)

 Total number of macro names that can be specified in a
#define directive

None (other than
the memory
capacity)

 Number of parameters that can be specified using a
macro definition or a macro call operation

None (the limit
depends on the
memory capacity)

 Number of expansions of a macro name None (the limit
depends on the
memory capacity)

 Nesting levels of #if, #ifdef, #ifndef, #else, or #elif
directive

None (the limit
depends on the
memory capacity)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 15 Limitations Optimizing Linkage Editor

Page 1148 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 15.1 Limitation of the Compiler (cont)

Classification Item Limit

Preprocessing Total number of operators and operands that can be
specified in a #if or #elif directive

None (the limit
depends on the
memory capacity)

Declarations Number of function definitions None (the limit
depends on the
memory capacity)

 Number of external identifiers used for external linkage None (the limit
depends on the
memory capacity)

 Number of valid internal identifiers used in one function None (the limit
depends on the
memory capacity)

 Total number of pointers, arrays, and function
declarators that qualify the basic type

16

 Array dimensions 6
 Size of arrays and structures 2147483647 bytes

Statements Nesting levels of compound statements None (the limit
depends on the
memory capacity)

 Nesting levels of statement in a combination of repeat
(while, do, and for) and select (if and switch)
statements

4096

 Number of goto labels that can be specified in one
function

2147483646

 Number of switch statements 2048

 Nesting levels of switch statements 2048

 Number of case labels in a single switch statement 2147483646

 Nesting levels of for statements 2048

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 15 Limitations

R20UT0704EJ0102 Rev. 1.02 Page 1149 of 1176
Mar 01, 2022

Table 15.1 Limitation of the Compiler (cont)

Classification Item Limit

Expressions Character array length 32766

Number of parameters that can be specified using a
function definition or a function call operation

2147483646

Total number of operators and operands that can be
specified in one expression

About 500

Standard library Number of files that can be opened simultaneously in an
open function

128

Sections Length of section name* 8192

 Number of sections that can be specified in #pragma
section in one file

2045

Note: This limitation is applied to the length of a section name created by the compiler when
generating an object. The length that can be specified in #pragma section or section
option is shorter than this limitation.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 15 Limitations Optimizing Linkage Editor

Page 1150 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

15.2 Limitations of the Assembler
Table 15.2 shows the limitations of the assembler.

Table 15.2 Limitations of the Compiler

Item Limit

Length of one line (characters) 8192

Character constants Up to 4

Symbol character arrays None*

Number of symbols None

Number of externally referenced symbols None

Number of externally defined symbols None

Maximum size for a section Up to H’FFFFFFFF bytes

Number of sections H'FEF1 (with debugging information) or
H'FEFA (without debugging information)

File include Up to 30 levels of nesting

Character array length 255

Length of file name (characters) None (the limit depends on the OS)
Note: For a preprocessor variable name, macro name, or macro parameter name, it is limited to

32 characters.
There is no limitation on the number of characters in a replacement symbol specified
in .DEFINE. However, the replacement string literal is limited to 255 characters, and up to
8192 characters can be specified in one line.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1151 of 1176
Mar 01, 2022

Section 16 Notes on Version Upgrade

16.1 Notes on Version Upgrade

This section describes notes when the version is upgraded from the earlier version (SuperH RISC
engine C/C++ Compiler Package Ver. 8.x or lower).

16.1.1 Guaranteed Program Operation

When a program is developed with an upgraded version of the compiler, operation of the program
may change. When creating the program, note the following and thoroughly test your program.

1. Programs Depending on Execution Time or Timing
C/C++ language specifications do not specify the program execution time. Therefore, a
version difference in the compiler may cause operation changes due to timing lag with the
program execution time and peripherals such as the I/O, or processing time differences in
asynchronous processing, such as in interrupts.

2. Programs Including an Expression with Two or More Side Effects

Operations may change depending on the version when two or more side effects are included
in one expression.

Example
a[i++]=b[i++]; /* increment order of i is undefined. */
f(i++, i++); /* Parameter value changes according to increment order. */
 /* This results in f(3, 4) or f(4, 3) when the value of i is 3. */

3. Programs with Overflow Results or an Illegal Operation

The value of the result is not guaranteed when an overflow occurs or an illegal operation is
performed. Operations may change depending on the version.

Example
int a, b;

x=(a*b)/10; /* This may cause an overflow depending on the value range of
 a and b. */

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1152 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

4. No Initialization of Variables or Type Inequality
When a variable is not initialized or the parameter or return value types do not match between
the calling and called functions, an illegal value is accessed. Operations may change depending
on the version.

Example
file 1:
int f(double d)

{

 :

}

file 2:
int g(void)

{

 f(1);

}

The parameter of the calling function is the int type, but the parameter of the called function is
the double type. Therefore, a value cannot be correctly referenced.

The information provided here does not include all cases that may occur. Please use this compiler
prudently, and thoroughly test your programs keeping the differences between the versions in
mind.

16.1.2 Compatibility with Earlier Version

The following notes cover situations in which the compiler (Ver. 5.x or lower) is used to generate
a file that is to be linked with files generated by the earlier version of the compiler or with object
files or library files that have been output by the assembler (Ver. 4.x or lower) or linkage editor
(Ver. 6.x or lower), or in case the debugger used with the earlier version is to be continuously
used.

1. Format Converter
Later versions of the compiler (Ver. 9.04 or higher) do not include the format converter.
Contact our support center if you need to input object files (SYSROF) output by earlier
versions of the compiler (up to Ver. 5.x) or assembler (up to Ver. 4.x) to the optimizing
linkage editor.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1153 of 1176
Mar 01, 2022

2. Point of Origin for Include Files
When an include file specified with a relative directory format was searched for, in the earlier
version, the search would start from the compiler’s directory. In the new version, the search
starts from the directory that contains the source file.

3. C++ Program

Since the encoding rule and execution method were changed, C++ object files created by the
earlier version of the compiler cannot be linked. Be sure to recompile such files.
The name of the library function for initial/post processing of the global class object, which is
used to set the execution environment, has also been changed. Refer to section 9.2.2,
Execution Environment Settings, and modify the name.

4. Specification of Entry via .END (Assembly Program)

Only an externally defined symbol can be specified with .END.

5. Objects Supported by the Optimizing Linkage Editor

The optimizing linkage editor supports different compiler or assembler depending on the
version. The following shows the version of the supported tool. Linkage processing for the
object file that is not described is not guaranteed.
 Optimizing linker Ver. 7: Ver. 7 or lower of the compiler, Ver. 5 or lower of the assembler
 Optimizing linker Ver. 8: Ver. 8 or lower of the compiler, Ver. 6 or lower of the assembler
 Optimizing linker Ver. 9: Ver. 9 or lower of the compiler, Ver. 7 or lower of the assembler

16.1.3 Compatibility with Objects for Earlier Version

(1) Specify the following option in Ver. 7 (or later) to link an object created by Ver. 7 (or later)
with an object created by Ver. 6.
 gbr=user
 pack=4 (after Ver. 8)
 bit_order=left (after Ver. 8)

(2) The following options should always be the same in compiling user files and in building
libraries. If the following option is specified during compilation in Ver. 6, the same option
should be specified during compilation in Ver. 7 (or later).
 endian=big/little (SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP)
 pic=0/1 (excluding SH-1)
 fpu=single/double (SH-4 or SH-4A)
 fpscr=safe/aggressive (SH-4 or SH-4A)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1154 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

 round=zero/nearest (SH-4 or SH-4A)
 denormalize=on/off (SH-4 or SH-4A)
 double=float (excluding SH-4 or SH-4A)
 exception/noexception
 rtti=on/off
 rtnext/nortnext
 macsave

(3) Assembly program

Conform to section 9.3.2, Function Calling Interface in the user’s manual.

Notes: 1. A compatibility regarding the version up is not guaranteed for the contents which is not

written in user’s manual. If assembly code depends on the order to save or restore
registers, and so on, an object created by Ver. 6 cannot be linked with an object created
by Ver. 7 (or later).

 2. Make contact with the sales office about linking with OS’s, middleware and so on.

16.1.4 Command-line Interface

1. Rules for Assembler and Optimizing Linkage Editor Command Lines
Spaces must be inserted between file names and options.
There are no limitations on the order in which options and their associated file names are
specified.

2. Optimizing Linkage Editor Option

Support for the interactive specification of options has been abolished.
The inter-module optimizing tool (optlnksh), linkage editor (lnk), librarian (lbr), and object
converter (cnvs) of earlier versions have been integrated into an optimizing linkage editor
(optlnk). Therefore, command-line specifications have changed greatly. Tables 16.1 and 16.2
is a list of changed commands.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1155 of 1176
Mar 01, 2022

Table 16.1 Changed Linkage Commands

No. Command Name Ver. 6 Ver. 7 Note
1 start start=section

(address)
start=section/
address



 Abbreviation: st Abbreviation: star
2 rom rom=(rom section,

ram section)
rom =rom section=
 ram section



3 define define=external
name (defined
value)

define=external
name=defined value



4 rename rename=
ed=before change
(after change),
er=before change
(after change),
un=before change
(after change)

rename=
(before change=
after change),
(before change=
after change),


The concept of unit
has been abolished
due to change in the
object format.

 Abbreviation: re Abbreviation: ren
5 delete delete=

ed=unit.symbol
un=unit

delete=(symbol)


The concept of unit
has been abolished
due to the change in
the object format.

6 print/noprint print
noprint

list


File name can be
omitted.

7 mlist mlist list 
8 information information message 
9 directory directory HLNK_DIR

(environment
variable)



10 form Abbreviation: f Abbreviation: fo 
11 output/nooutput Abbreviation: o;

nooutput can be
specified.

Abbreviation: ou;
nooutput cannot be
specified.

Only output can be
specified.

12 cpu Abbreviation: c Abbreviation: cp Direct range can be
specified.

13 elf/sysrof/sysrofplu
s

elf/sysrof/sysrofplus Abolished Always ELF

14 exclude/noexclude exclude/noexclude Abolished Always exclude
15 align_section align_section Abolished Always valid*

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1156 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Table 16.1 Changed Linkage Commands (cont)

No. Command Name Ver. 6 Ver. 7 Note
16 check_section check_section Abolished Always valid*
17 cpucheck cpucheck Abolished Always valid*
18 udf/noudf udf/noudf Abolished Always output*
19 udfcheck udfcheck Abolished Always valid*
20 echo/noecho echo/noecho Abolished Always disabled
21 exchange exchange Abolished The conception of

unit has been
abolished due to the
change in the object
format.

22 autopage autopage Abolished No target cpu
23 abort abort Abolished Interactive format

has been abolished.
24 list list Abolished Different from the

list option for Ver. 7.
25 library/nolibrary nolibrary can be

specified.
nolibrary cannot be
specified.

Only library can be
specified.

26 exit Cannot be omitted. Can be omitted. 
27 debug/nodebug At default: nodebug At default: depends

on the debugging
information in the
input file



Note: Invalidated by the change_message option.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1157 of 1176
Mar 01, 2022

Table 16.2 Changed Librarian Commands

No. Command Name Ver. 2 Ver. 7 Note
1 add add input 
2 directory directory HLNK_DIR

(environment
variable)



3 slist slist list
show



4 list list (s) list
show



5 delete Abbreviation: d Abbreviation: del 
6 create create (s | u) output

form = library (s | u)


7 output output (s | u) output
form = library (s | u)



 Abbreviation: o Abbreviation: ou
8 replace Abbreviation: r Abbreviation: rep 
9 abort abort Abolished Interactive format

has been abolished.
10 exit Abbreviation

disabled.
Abbreviation
enabled.



16.1.5 Provided Contents

In the SuperH RISC engine C/C++ Compiler Package, the following files have been changed.

1. Standard Library File
To specify any function interface or optimizing option, a standard library generator is provided
instead of the conventional standard library files.

2. Header File
The header file _h_c_lib.h newly added declares the _INITSCT, _CALL_INIT, and
_CALL_END functions as standard libraries.
The header file fixed.h that defines various limitations concerning the internal representation
of fixed-point numbers is also added.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1158 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

16.1.6 List File Specification

1. Optimizing Linkage Editor
The formats of the conventional linkage map and library lists have been renewed.

16.2 Additions and Improvements

16.2.1 Common Additions and Improvements (Package: Ver. 6)

1. Loosening Limits on Values
Limitations on source programs and command lines have been greatly loosened:
 Length of file name: 251 bytes -> unlimited
 Length of symbol: 251 bytes -> unlimited
 Number of symbols: 32,767 -> unlimited
 Number of source program lines: C/C++: 32,767, ASM: 65,535 -> unlimited
 Length of C program string literals: 512 characters -> 32,766 characters
 Length of assembly program line: 255 characters -> 8,192 characters
 Length of subcommand file line: ASM: 300 bytes, optlnk: 512 bytes -> unlimited
 Number of parameters of the optimizing linkage editor rom option: 64 -> unlimited

2. Hyphens for Directory and File Names

A hyphen (-) can be specified for directory and file names.

3. Specification of Copyright Display

Specifying the logo/nologo option can specify whether or not the copyright output is
displayed.

4. Prefix to Error Messages

To support the error-help function in the integrated development environment, a prefix has
been added to error messages for the compiler and optimizing linkage editor.

16.2.2 Added and Improved Compiler Functions

Functions Added and Improved in Ver. 7
(a) External Variable Access Optimization Function (map option support)

Accesses external variables and optimizes function branch instructions based on the
addresses of variables at linkage and addresses where functions are allocated.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1159 of 1176
Mar 01, 2022

Optimization is performed by recompiling the program with the map option specifying the
external symbol allocation-information file output by the optimizing linkage editor when
the program was complied for the first time.

(b) Automatic Creation of Code with GBR-Relative Access Code (gbr option support)
When gbr=auto is specified, the compiler sets the GBR and automatically creates code
with which GBR-relative access is used. The contents of GBR are guaranteed before and
after function calls. However, the GBR related intrinsic functions cannot be used.

(c) Enhancement of the speed/size Selection Option
Provides more precise adjustment to the speed/size option by the newly added shift,
blockcopy, division, and approxdiv options.

(d) Enhancement of Intrinsic Functions
• The number of intrinsic functions have been increased

Double-precision multiplication, SWAP, LDTLB, and NOP instructions.
• The number of #pragma extensions has increased and some extensions have been

 modified
#pragma entry: Specifies entry functions and sets SP
#pragma stacksize: Specifies the stack size
#pragma interrupt: Supports sp=<variable>+<constant> and
sp=&<variable>+<constant>

• Section operators are supported
Functions to describe the section address and the size reference in C language have
been added.

• The criteria for the generation of errors by cast expressions
Checking of the cast expression for the address-initialization of external variables has

 been made less strict.
(e) Improvement of Library Handling

• Reentrant library is supported
When the reent option is specified to the library generator, a reentrant library is
created.

• The unit of the size allocated by the malloc calls and the number of I/O files can be
changed
In the initial settings for the C/C++ library function, _sbrk_size can be used to specify
the unit size of a block for use with malloc, and _nfiles can be used to specify the
number of I/O files. This saves RAM capacity. The default size for malloc is 1024, and
the default size for the number of I/O files is 20.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1160 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Simple I/O Support
When the nofloat option is specified by the library generator, a small-size I/O routine
that does not support floating-point conversion will be created.

2. Functions Added and Improved in Ver. 7.1

(a) Optimizing options are added
The following options are added, and enabled finer adjustment of the level of compiler
optimization
• global_volatile
• opt_range
• del_vacant_loop
• max_unroll
• infinite_loop
• global_alloc
• struct_alloc
• const_var_propagate
• const_load
• schedule

3. Functions Added and Improved in Ver. 8

(a) Support for New CPUs
The SH-4A and SH4AL-DSP are supported.

(b) Extension and Change of Language Specifications
• The DSP-C language is supported.
• The data types of long long and unsigned long long are supported.

(c) Enhancement of Intrinsic Functions
• Intrinsic functions for DSP are added.

Detection of absolute value and MSB, arithmetic shift, rounding operation, bit pattern
copy, module addressing setting, module addressing cancellation, and CS bit setting

• Intrinsic functions for SH4-A and SH4AL-DSP are added.
Calculation of sine and cosine, reciprocal number of square root, invalidation of an
instruction cache block, prefetch of an instruction cache block, and synchronous data
operation

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1161 of 1176
Mar 01, 2022

• #pragma extensions are added and changed.
#pragma ifunc: Disables or enables save and restore of floating-point registers.
#pragma bit_order: Specifies the bit field order.
#pragma pack: Specifies the boundary alignment value for structures, unions,

and classes.
(d) Automatic Selection of Enumeration Type Size (auto_enum option support)

Enumeration data is handled as the minimum data type with which enumeration data can fit
in.

(e) Specification of Boundary Alignment of Structure, Union, and Class Members (pack
option support)
Boundary alignment of structure, union, and class members can be specified.

(f) Specification of Bit Field Order (bit_order option support)
The order of bit field members can be specified.

(g) Change of Error Level (change_message option support)
The error level of information-level and warning-level error messages can be individually
changed.

(h) Loosening Limits on Values
Number of switch statements: 256 -> 2048

(i) DSP Library of Fixed-Point Type Support
DSP library of fixed-point type is supported.

4. Functions Added and Improved in Ver. 9
(a) Support for New CPUs

The SH-2A and SH2A-FPU are supported.
An option and a #pragma extension are added to use TBR in the SH-2A and SH2A-FPU.

(b) Extension and Change of Language Specifications
• The following items conform to the ANSI standard.

• Array index
 int iarray[10], i=3;
 i[iarray] = 0; /* Same as iarray[i] = 0; */
• union bit field specification enabled
 union u {
 int a:3;
 };

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1162 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

• Constant operation
 static int i=1||2/0; /* Error is changed to warning for zero division */
• Addition of library and macro
 strtoul, FOPEN_MAX

• The following items conform to the ANSI standard when the strict_ansi option is
specified, which may cause a difference in results between Ver. 9 and former versions.
• unsigned int and long operations
• Associativity of floating-point operations

• The variables with register storage class specification are preferentially allocated to
registers when the enable_register option is specified.

(c) Enhancement of Intrinsic Functions
• Intrinsic functions for SH-2A and SH2A-FPU are added.

Saturation operations and TBR setting and reference
• Intrinsic functions for instructions that cannot be written in C are added.

Reference and setting of the T bit, extraction of the middle of registers connected,
addition with carry, subtraction with borrow, sign inversion, 1-bit division, rotation, and
shift.

(d) Loosening Limits on Values
The following limits are loosened.
• Nesting level in a combination of repeat statements (while, do, and for) and select

statements (if and switch): 32 levels -> 4096 levels
• Number of goto labels allowed in one function: 511 -> 2,147,483,646
• Nesting level of switch statements: 16 levels -> 2048 levels
• Number of case labels allowed in one switch statement: 511 -> 2,147,483,646
• Number of parameters allowed in a function definition or function call: 63 ->

2,147,483,646
• Length of section name: 31 bytes -> 8192 bytes
• Number of sections allowed in #pragma section in one file: 64 -> 2045

(e) Extension of Memory Space Allocation
More detailed settings can be made for memory space allocation.
• abs16/abs20/abs28/abs32 option
• #pragma abs16/abs20/abs28/abs32

(f) Specification of Absolute Address for Variables (support for #pragma address)
An absolute address can be specified for an external variable.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1163 of 1176
Mar 01, 2022

(g) Extension of Optimization for External Variable Access (support for smap option)
Optimization is applied to access to external variables defined in the file to be compiled.
Recompilation, which is required for the map option, is not necessary.

(h) Improvement in Precision of Mathematics Library
The precision of operation using the mathematics library is improved, which may cause a
difference in results between Ver. 9 and former versions.

5. Functions Added and Improved in Ver. 9.01

(a) Debugging Information Output Mode Added (Support for optimize=debug_only Option)
The information on local variables can be always referenced through the
optimize=debug_only option setting.

(b) Interrupt Specifications Added (SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP)
The following interrupt specifications for #pragma interrupt have been added so that
high-performance interrupt functions can be created.
• Interrupt specifications

#pragma interrupt sr_rts Register bank switching and RTS-instruction return
#pragma interrupt bank Interrupt handling function
#pragma interrupt rts RTS-instruction return

• Intrinsic function
sr_jsr() Nested interrupt control

(c) Function for Omitting Range Check for Conversion between Floating-Point Number and
Integer (Support for simple_float_conv Option: SH-2E, SH2A-FPU, SH-4, and SH-4A)
Through the simple_float_conv option setting, the check of the target value range for the
type conversion between unsigned integers and floating-point numbers can be omitted from
the output code.

(d) Added and Modified Specifications of Existing Functions
• The division=cpu=inline | runtime option can also be specified in the SH-2A and

SH2A-FPU.
• Intrinsic functions ocbi(), ocbp(), and ocbwb(), which manipulate the cache block, can

also be specified in the SH-4.
• The function specified with #pragma inline is inline-expanded regardless of the inline

option.
• The contents of the files specified with the subcommand option are output to the

compile listing when the subcommand option and listfile option are specified.
Accordingly, the options are output to the listing file when the listing file is output
through the Renesas integrated development environment.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1164 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(e) Improvement of Mathematical Function Libraries (SH-1, SH-2, SH2-DSP, SH-2A, SH-3,
SH3-DSP, and SH4AL-DSP)
The object sizes of floating-point mathematical functions sinf, cosf, tanf, expf, logf, sqrtf,
and atanf have been reduced and their speed and precision have been improved. Note that
the results of these functions may differ from those output by Ver. 9.00.

6. Functions Added and Improved in Ver. 9.02
(a) Specifying the allocation of variables in the $G0 and $G1 sections

Variables declared with #pragma gbr_base and #pragma gbr_base1 can be allocated
according to size by using the stuff_gbr option.

(b) Alignment of branch-destination addresses with four-byte boundaries
The align4 option and #pragma align4 can be used to align destination addresses for branch
instructions with four-byte boundaries.

(c) Preventing inline expansion for functions with the inline specification
The cpp_noinline option prevents the inline expansion of functions and member functions that
have the inline specification in C++.

7. Functions Added and Improved in Ver. 9.03
(a) Selection of destinations for the allocation of variables declared with the const and volatile

qualifiers
The const_volatile option is used to select the initialized data area or constant area for the
allocation of initialized variables declared with the const and volatile specifiers.

(b) Inclusion of intrinsic functions for bitwise processing
When compiled, the following intrinsic functions invariably employ instructions for bitwise
operations of the SH-2A core for the processing of individual bits in memory.

 bset(): The specified bit in memory is set to 1.

bclr(): The specified bit in memory is cleared to 0.
bcopy(): The value of a bit in memory is copied to another.
bnotcopy(): The value of a bit in memory is inverted and the result is copied to another
bit.

8. Functions Added and Improved in Ver. 9.04
(a) Optimization in consideration of type at locations indicated by pointers

The alias=ansi option can be used to select optimization in consideration of type at locations
indicated by pointers in accord with the ANSI standard.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1165 of 1176
Mar 01, 2022

(b) Ability to prevent the output of DIVS and DIVU instructions (for the SH-2A and SH2A-FPU)
The nouse_div_inst option can be used to prevent the output of DIVS and DIVU instructions
in code for SH-2A CPU cores.

(c) Optimization of the floating-point expressions by changing the order of operations
The float_order option can be used to optimize the floating-point expressions by changing the
order of operations, aggressively.

16.2.3 Added and Improved Assembler Functions

1. Functions Added and Improved in Ver. 7
(a) Support for New CPUs

The SH-2A and SH2A-FPU are supported.
(b) Loosening Limits on Values

The limitation on the number of characters in a replacement symbol specified in the define
option or .DEFINE is loosened from 32 characters to unlimited.

(c) Support for .STACK Directive
The .STACK directive is supported, which enables the stack size of a function written in
the assembly language to be reflected in the CallWalker.

16.2.4 Added and Improved Optimizing Linkage Editor Functions

1. Functions Added and Improved in Ver. 7
(a) Support for Wild Cards

A wild card can be specified with a section name of an input file or for file names in start
options.

(b) Search Path
An environment variable (HLNK_DIR) can be used to specify several search paths for
input files or library files.

(c) Subdividing the Output of Load Modules
The output of an absolute load module file can be subdivided.

(d) Changing the Error Level
For information, warning, and error level messages, the error level or disabling/enabling
the output can be individually changed.

(e) Support for Binary and HEX
Binary files can be input and output.
Intel® HEX-type output can be selected.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1166 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(f) Output of Stack Amount Information
The stack option can output an information file for the CallWalker.

(g) Debugging Information Deletion
The strip option can be used to delete only debugging information from either the load
module file or the library file.

(h) Debugging Information Compression
The compress option can be used to compress debugging information.

2. Functions Added and Improved in Ver. 7.1

Output of External Symbol Allocation-Information File (map option support)
When the map option is specified, an external symbol allocation file is created for use by the
compiler in optimizing accesses to external variables.

3. Functions Added and Improved in Ver. 8

(a) Output Specification of Empty Areas
When the space option is specified, the specified value can be written to an empty area.

(b) Specification of Memory Amount
The memory option can be used to specify the internal memory amount.

(c) Changing Error Level when a Section Address is Overlapped
When the section address is overlapped at linking, the error level was ‘Fatal’ in Ver. 7,
which has been changed as ‘Error’ in Ver. 8.0. This enables continuous processing under
user’s responsibilities by specifying the change_message option even if the section address
is overlapped.

4. Functions Added and Improved in Ver. 9

(a) Support for New CPUs
Object files with the SH-2A or SH2A-FPU as the CPU type can be input.

(b) Alignment Value Specification for Input Section with binary Option
A boundary alignment value can be specified for the section specified by the binary
option.

(c) Output of Cross-Reference Information
The cross-reference information is output to the linkage list when the show=xreference
option is specified, which is useful to determine the location that refers to a variable or
function.

(d) Notification of Unreferenced Symbol
When the msg_unused option is specified, the user can be notified of unreferenced
symbols even if optimization is not specified.

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1167 of 1176
Mar 01, 2022

5. Functions Added and Improved in Ver. 9.01
(a) Suppression of Optimization in Section Units

A new option (section_forbid) has been added, which allows suppression of inter-module
optimization in section units.

(b) Enhanced Overlay Function
Parentheses "()" can be used in the start option, which enables descriptions of more
complex overlay allocations than the former-version assemblers.

(c) Notification of Same-Name Symbols in a Library
The following message is output as a warning when multiple symbols have the same name
in a library file used at linkage.
** L1320 (W) Duplicate Symbol "symbol" in "library (module)"

6. Functions Added and Improved in Ver. 9.02

(a) Detection of Overlapped Objects in Physical Space
A new option (ps_check) has been added, which can detect overlapped objects in the
physical space.

(b) Specification of Byte Count of Data Record
A new option (byte_count) has been added, which can change the maximum byte count
for a data record in the Intel-Hex-type file.

(c) Unused Area Filling with Random Numbers
The space=random option enables an unused area to be filled with random numbers.

(d) Reduction of Memory Size Occupied for Library Creation
The memory occupancy reduction function (memory=low) can also be used for library file
creation.

7. Functions Added and Improved in Ver. 9.03

(a) Output of the total sizes of sections according to section types
The total_size option can be used to send the total sizes of the following types of section to
standard output.
Executable section
ROM allocation section
RAM allocation section

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1168 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

(b) Output of the total sizes of sections to the linkage list
The show=total_size option can be used for output to the linkage list of the total sizes of
different types of section produced by the total_size option.

8. Functions Added and Improved in Ver. 9.04
(a) Placing the results of CRC calculations in memory

The crc option can be used to place the results of calculations for CRC operations in a
specified range of code at designated locations in memory.

9. Functions Added and Improved in Ver. 9.05
(a) Splitting of sections when allocation to the specified region is not possible.

In the allocation of sections to addresses, if a section does not fit in the designated range of
memory, the cpu=stride option can be used to split sections and allocate the excess to the
next section with the same type of memory.

(b) Specifying sections as outside the scope of splitting
When the cpu=stride option is in effect, the contiguous_section option can be used to
specify sections for allocation to a given type of memory with no splitting.

(c) Strengthened functionality for output of listings
The show=all option can be used to select the output of all listings with full details.

(d) Output of linkage maps when errors are encountered
The output of linkage maps in cases of termination due to errors is specifiable.

(e) Easier specification of input files
Binary files are specifiable as input files at the time of output of relocatable files.

10. Functions Added and Improved in Ver. 10.00
(a) Multiplication of the number for alignment in setting up section sizes

The padding option can be used to multiply the number for alignment in setting up section
sizes.

11. Functions Added and Improved in Ver. 10.01
(a) Alignment on boundaries

The aligned_section option can be used to change the boundary-alignment number for
specified sections to 16 bytes in linkage units.

(b) Specifying the section attributes of binary data

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 16 Notes on Version Upgrade

R20UT0704EJ0102 Rev. 1.02 Page 1169 of 1176
Mar 01, 2022

The binary=<section attribute> option can be used to specify the section attributes of
binary data.

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 16 Notes on Version Upgrade Optimizing Linkage Editor

Page 1170 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 17 Appendix

R20UT0704EJ0102 Rev. 1.02 Page 1171 of 1176
Mar 01, 2022

Section 17 Appendix

17.1 S-Type and HEX File Format

This section describes the S-type files and HEX files that are output by the optimizing linkage
editor.

17.1.1 S-Type File Format

Figure 17.1 S-Type File Format

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 17 Appendix Optimizing Linkage Editor

Page 1172 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Figure 17.1 S-Type File Format (cont)

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 17 Appendix

R20UT0704EJ0102 Rev. 1.02 Page 1173 of 1176
Mar 01, 2022

17.1.2 HEX File Format

The execution address of each data record is obtained as described below.

• Segment address
(Segment base address << 4) + (Address offset of the data record)

• Linear address
(Linear base address << 16) + (Address offset of the data record)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 17 Appendix Optimizing Linkage Editor

Page 1174 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

Figure 17.2 HEX File Format

SuperHTM RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 17 Appendix

R20UT0704EJ0102 Rev. 1.02 Page 1175 of 1176
Mar 01, 2022

Figure 17.2 HEX File Format (cont)

 SuperHTM RISC engine C/C++ Compiler, Assembler,
Section 17 Appendix Optimizing Linkage Editor

Page 1176 of 1176 R20UT0704EJ0102 Rev. 1.02
 Mar 01, 2022

17.2 ASCII Code List

Table 17.1 ASCII Code List

Lower 4
bits

Upper 4 bits

 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS − = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

SuperH RISC engine C/C++ Compiler,
Assembler, Optimizing Linkage Editor
Compiler Package V.9.04 User's Manual

Publication Date: Rev.1.00, July 9, 2010
 Rev.1.01, July 6, 2011
 Rev.1.02, March 1, 2022

Published by: Renesas Electronics Corporation

p

SuperHTM RISC engine C/C++ Compiler,
Assembler, Optimizing Linkage Editor

Compiler Package V.9.04 User's Manual

R20UT0704EJ0102

	Cover
	Notice
	Preface
	Contents
	Section 1 Overview
	1.1 Procedures for Developing Programs
	1.2 Compiler
	1.3 Assembler
	1.4 Optimizing Linkage Editor
	1.5 Prelinker
	1.6 Standard Library Generator
	1.7 Call Walker

	Section 2 Compiler Options
	2.1 Option Specification Rules
	2.2 Interpretation of Options
	2.2.1 Source Options
	2.2.2 Object Options
	2.2.3 List Options
	2.2.4 Optimize Options
	2.2.5 Other Options
	2.2.6 CPU Options
	2.2.7 Options Other Than Above

	Section 3 Assembler Options
	3.1 Command Line Format
	3.2 List of Options
	3.2.1 Source Options
	3.2.2 Object Options
	3.2.3 List Options
	3.2.4 Other Option
	3.2.5 CPU Options
	3.2.6 Options Other than Above

	Section 4 Optimizing Linkage Editor Options
	4.1 Option Specifications
	4.1.1 Command Line Format
	4.1.2 Subcommand File Format

	4.2 List of Options
	4.2.1 Input Options
	4.2.2 Output Options
	4.2.3 List Options
	4.2.4 Optimize Options
	4.2.5 Section Options
	4.2.6 Verify Options
	4.2.7 Other Options
	4.2.8 Subcommand File Options
	4.2.9 CPU Option
	4.2.10 Options Other Than Above

	Section 5 Standard Library Generator Operating Method
	5.1 Option Specifications
	5.2 Option Descriptions
	5.2.1 Additional Options
	5.2.2 Options Not Available for the Standard Library Generator
	5.2.3 Notes on Specifying Options

	Section 6 Operating CallWalker
	6.1 Overview
	6.2 Starting the CallWalker

	Section 7 Environment Variables
	7.1 Environment Variable List
	7.2 Compiler Implicit Declaration

	Section 8 File Specifications
	8.1 Naming Files
	8.2 Compiler Listings
	8.2.1 Structure of Compiler Listings
	8.2.2 Source Listing
	8.2.3 Object Listing
	8.2.4 Statistics Information
	8.2.5 Command Line Specification

	8.3 Assembly Listings
	8.3.1 Structure of Assembly Listing
	8.3.2 Source List Information
	8.3.3 Cross Reference Listing
	8.3.4 Section Information Listing

	8.4 Linkage List
	8.4.1 Structure of Linkage List
	8.4.2 Option Information
	8.4.3 Error Information
	8.4.4 Linkage Map Information
	8.4.5 Symbol Information
	8.4.6 Symbol Deletion Optimization Information
	8.4.7 Cross-Reference Information
	8.4.8 Total Section Size
	8.4.9 Vector Information
	8.4.10 CRC Information

	8.5 Library Listings
	8.5.1 Structure of Library Listing
	8.5.2 Option Information
	8.5.3 Error Information
	8.5.4 Library Information
	8.5.5 Module, Section, and Symbol Information within Library

	Section 9 Programming
	9.1 Program Structure
	9.1.1 Sections
	9.1.2 C/C++ Program Sections
	9.1.3 Assembly Program Sections
	9.1.4 Linking Sections

	9.2 Creation of Initial Setting Programs
	9.2.1 Memory Allocation
	9.2.2 Execution Environment Settings

	9.3 Linking C/C++ Programs and Assembly Programs
	9.3.1 Method for Mutual Referencing of External Names
	9.3.2 Function Calling Interface
	9.3.3 Examples of Parameter Allocation
	9.3.4 Using the Registers and Stack Area

	9.4 Important Information on Programming
	9.4.1 Important Information on Program Coding
	9.4.2 Important Information on Compiling a C Program with the C++ Compiler
	9.4.3 Important Information on Program Development

	Section 10 C/C++ Language Specifications
	10.1 Language Specifications
	10.1.1 Compiler Specifications
	10.1.2 Internal Data Representation
	10.1.3 Floating-Point Number Specifications
	10.1.4 Operator Evaluation Order

	10.2 DSP-C Specifications
	10.2.1 Fixed-Point Data Types
	10.2.2 Qualifiers
	10.2.3 Constants
	10.2.4 Type Conversion
	10.2.5 Arithmetic Conversion
	10.2.6 Pointer Conversion
	10.2.7 Operators
	10.2.8 Libraries

	10.3 Extended Specifications
	10.3.1 #pragma Extension Specifiers
	10.3.2 Section Address Operator
	10.3.3 Intrinsic Functions

	10.4 C/C++ Libraries
	10.4.1 Standard C Libraries
	10.4.2 EC++ Class Libraries
	10.4.3 Reentrant Library
	10.4.4 Unsupported Libraries
	10.4.5 DSP Library

	Section 11 Assembly Specifications
	11.1 Program Elements
	11.1.1 Source Statements
	11.1.2 Reserved Words
	11.1.3 Symbols
	11.1.4 Constants
	11.1.5 Location Counter
	11.1.6 Expressions
	11.1.7 String Literals
	11.1.8 Local Label

	11.2 Executable Instructions
	11.2.1 Overview of Executable Instructions
	11.2.2 Notes on Executable Instructions

	11.3 DSP Instructions
	11.3.1 Program Contents
	11.3.2 DSP Instructions

	11.4 Assembler Directives
	11.5 File Inclusion Function
	11.6 Conditional Assembly Function
	11.6.1 Overview of the Conditional Assembly Function
	11.6.2 Conditional Assembly Directives

	11.7 Macro Function
	11.7.1 Overview of the Macro Function
	11.7.2 Macro Function Directives
	11.7.3 Macro Body
	11.7.4 Macro Call
	11.7.5 String Literal Manipulation Functions

	11.8 Automatic Literal Pool Generation Function
	11.8.1 Overview of Automatic Literal Pool Generation
	11.8.2 Extended Instructions Related to Automatic Literal Pool Generation
	11.8.3 Size Mode for Automatic Literal Pool Generation
	11.8.4 Literal Pool Output
	11.8.5 Literal Sharing
	11.8.6 Literal Pool Output Suppression
	11.8.7 Notes on Automatic Literal Pool Generation

	11.9 Automatic Repeat Loop Generation Function
	11.9.1 Overview of Automatic Repeat Loop Generation Function
	11.9.2 Extended Instructions of Automatic Repeat Loop Generation Function
	11.9.3 REPEAT Description
	11.9.4 Coding Examples
	11.9.5 Notes on the REPEAT Extended Instruction

	11.10 Extended Automatic Repeat Loop Generation Function
	11.10.1 Overview of Extended Automatic Repeat Loop Generation Function
	11.10.2 Extended Instructions of Extended Automatic Repeat Loop Generation Function
	11.10.3 EREPEAT Description
	11.10.4 Coding Examples
	11.10.5 Notes on the EREPEAT Extended Instruction

	Section 12 Compiler Error Messages
	12.1 Error Format and Error Levels
	12.2 Error Messages
	12.3 Standard Library Error Messages

	Section 13 Assembler Error Messages
	13.1 Error Message Format and Error Levels
	13.2 Error Messages

	Section 14 Error Messages for the Optimizing Linkage Editor
	14.1 Error Format and Error Levels
	14.2 Return Values for Errors
	14.3 List of Messages

	Section 15 Limitations
	15.1 Limitations of the Compiler
	15.2 Limitations of the Assembler

	Section 16 Notes on Version Upgrade
	16.1 Notes on Version Upgrade
	16.1.1 Guaranteed Program Operation
	16.1.2 Compatibility with Earlier Version
	16.1.3 Compatibility with Objects for Earlier Version
	16.1.4 Command-line Interface
	16.1.5 Provided Contents
	16.1.6 List File Specification

	16.2 Additions and Improvements
	16.2.1 Common Additions and Improvements (Package: Ver. 6)
	16.2.2 Added and Improved Compiler Functions
	16.2.3 Added and Improved Assembler Functions
	16.2.4 Added and Improved Optimizing Linkage Editor Functions

	Section 17 Appendix
	17.1 S-Type and HEX File Format
	17.1.1 S-Type File Format
	17.1.2 HEX File Format

	17.2 ASCII Code List

	Colophon
	Back Cover

