LENESANS

-
»
@
ﬁ‘
7)
<
Q
-
c
O

SuperH™ RISC engine C/C++ Compiler,
Assembler, Optimizing Linkage Editor

Compiler Package V.9.04 User's Manual

Renesas Microcomputer Development Environment System

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics

WWW.renesas.com Rev.1.02 Mar 2022

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and
"Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation

characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Preface

This manual explains how to use the C/C++ compiler, assembler, and optimizing linkage editor
for the SuperH RISC engine microcomputers. This system translates source programs written in
C/C++ language, DSP-C language*! or assembly language into relocatable object programs for
SuperH RISC engine microcomputers.

Be sure to read this manual thoroughly and that you grasp its contents before using the compiler.

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[] Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

| Indicates that one of the items must be selected.

This manual is intended for the software running under Microsoft® Windows® 2000, Windows®
XP, Windows® Vista, or Windows® 7*2 on IBM PC*? and compatible computers.

Notes: 1. DSP-C was proposed to the ISO Standardization Committee in 1998 by ACE
(Associated Compiler Experts) of the Netherlands, based on their research into
language extensions necessary for DSP compiler implementation.

2. Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the
United States and other countries.

3. IBM PC is a registered trademark of International Business Machines Corporation.

R20UT0704EJ0102 Rev. 1.02 Page i of viil
Mar 01, 2022 RENESAS

All trademarks and registered trademarks are the property of their respective owners.

Page ii of vii R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

Contents

Section I OVEIVIEW....cccuevuieriiiiieiieiieieeee st
1.1 Procedures for Developing Programscccceevevvieveeieseenreennens
1.2 COMPILET i
1.3 ASSCMDICT ..ot
1.4 Optimizing Linkage Editorccccocevinenininieniininincncnenceee
1.5 PrelinKer...oocoiiieieieeseeeeeeee e
1.6 Standard Library GEneratorcccceeeeeeververeeneenseesreneeseesseennens
1.7 Call WalKer ..c..eiiieiiiieieeeeeee e
Section 2 Compiler Options.........ccccvveeeveeerieeenieeenieeerieeenns
2.1 Option Specification RUIESccccoerineniriniinienininenceeeeeeen
2.2 Interpretation Of OPHONS.......c.eccverieerieerieeieeie e et eee e seee e
2.2.1 SOUICE OPLONS...cvrerrierierieeierreseerteesseesseesesssesseessaeseesens
2.2.2 ODbJect OPLiONSecvvierieerierieeiierieereereereseeseesreesaeesseennens
2.2.3 LiSt OPLiONS ..cceeereeeeieiieiiieiieeiieieete et see e
224 OptiMizZe OPHONS ..cveeeieueieiieetieiieieeieete e siee st sae e
2.2.5 Other OPtiONS......coceeieteriinieniinieneeeeeeeetentese e eieeenens
2.2.6 CPU OPHONSvvevieiieieeieeiesteseesreesseeseesesssesseessaesessens
2.2.7 Options Other Than AbOVe.........cccccvevvieriievieeieeiesieieeene
Section 3 Assembler Options.........ccceeeecvveerieeenieeeriieeerieeenns
3.1 Command Line FOrmat..........cccoeoiriiiiiniiiniiiee e
3.2 LiSt Of OPtONS ..coviiiiiriiriieiieiietctereeene ettt
3.2.1 SoUICE OPtiONS.....cccvvevieeeeeieerienieeieeieeae e seeseesaeessessnenns
3.2.2 ODbjJect OPLiONS.....cccvievieeieeieeriesiieieeieeresaeseeseesseessessnenns
3.2.3 LiSt OPLiONS ..ccveevveeiieiieeiieeieeieesteeieereereeee e sreesaeesneennens
324 Other OPtioncoceeiuieiieiieiieeieeeieee e
3.2.5 CPU OPtiONScoivieeieiieiiieiieetieieeie ettt
3.2.6 Options Other than AbOVe........c.ccocevereeienicneninencreenene
Section 4 Optimizing Linkage Editor Options
4.1 Option SPECIfiCAtIONS.......ccvievieierrierieieete ettt sae e
4.1.1 Command Line Format...........cccocenieriiniinininienieceene
4.1.2 Subcommand File Format............cccoooiiiiniiiiininiieeene
4.2 LiSt OF OPLIONS ..eoutiiiiiriieiiiieeiietetee ettt
4.2.1 INPUt OPLIONSoovvveniieiieeieeie e see et eee e eereeeeesseesseennens

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page iii of viii

4.2.2 OUPUL OPLIONS. c..cnviririiriiriieieetetete sttt ettt ettt sbe ettt et et saesbesbe b eaeeneen 133

4.2.3 LISt OPLIONS wevveuiiniiieniieiieieeitetetete sttt ettt st sttt sa e b b sae et eneen 158
424 OptiMiZe OPLIONS..c.ueervierireiieieeieriresteeieesteesesaestesseesseesseessessesssesssesseessessses 162
4.2.5 SeCtiON OPLIONS.....ccuiiruieiieiieiieteeeeesteesreeteeseeaesreesreesseesseessessseessesssesseesseessens 170
4.2.6 VErify OPHONS ..cveevviivieiieiieiieeeet ettt steesteesteesaeessesssessaesseesseenseessens 175
427 Other OPLIONS. ...c.eeiuieiiieieeie ettt ettt et e st e sae et et e st e eaeesbeeneeeneeas 180
4.2.8 Subcommand File Options........c.cccccrereririeiieniineninineeeeeeteenieee e 192
4.2.9 CPU OPLON «viniiiieieieeteee ettt ettt sttt sttt ettt st ene e 194
4.2.10 Options Other Than ADOVE........c.cccuevieriierieeienie et eee s 195
Section 5 Standard Library Generator Operating Methodccccccvveenneee. 199
5.1 Option SPECIfICATIONS ... ccuuieueieeieitietieieeie et te sttt ettt et et e e eeeeseeesaeesaeeneeeeeenee e 199
5.2 Option DESCIIPLIONS ...c.eeuveiiriiriiniiriieiteietenteete sttt ettt st ettt s s eae 199
52,1 Additional Options......c..ceeeceerieriiriineninietetetestese sttt ettt eanene 200
5.2.2 Options Not Available for the Standard Library Generator............c..cccceceeueeee. 203
5.2.3 Notes on Specifying OPtiONSccceevvieriieiieiieieniesieere e ereseesee e saeeneeneens 205
Section 6 Operating CallWalker..........c.coovieeiiiieiiiecieeee e 207
LTS B O 1< 4 1< OSSPSR 207
6.2 Starting the CallWalKer........c.cooiiiiiiiiiiiienieeetcteeese ettt 207
Section 7 Environment Variables...........ccccovieiirieniiiinieieeneeeeseeeee 209
7.1 Environment Variable List.........ocooiiiiiiiiiiiiiii e 209
7.2 Compiler Implicit Declarationceceeiiiierieiieii e 213
Section 8 File SPecifiCationsc.ceeeeriieriieniieniieeie et 215
8.1 NAMING FIlES..cuiiiiiiiieiicii ettt sttt ettt et e e e esbessaessaesseeseenseensenes 215
8.2 COMPIIET LISHINES ..ooveeviiiieiiieiieeiieie et eie ettt ettt e ev e et e st esbeesbeessessnesenesaeesseenseennens 218
8.2.1 Structure of Compiler LiStiNgS.......cccveeviiieriierieriieieeiieeeeeesieere e e 218
LI N 10101 (Tl BT 1 oSSR SS 219
8.2.3 ODBJECt LISHING ettt sttt 221
8.2.4 Statistics INfOrmMation..........cceeruierieiiiiiieeie et 223
8.2.5 Command Line SPecifiCationccecvervierierieriierieeie e eae e 224
8.3 ASSCMDLY LISTINES....ueiitiiiiieiiiiiciicieeie ettt ettt et et ebeeebeseae e e saeesseenneennens 225
8.3.1 Structure of Assembly LiStiNgccecevivviiivieriiriieiieiicieeeeee e 225
8.3.2 Source List INfOrmationccceoeeieiiiiieiieniecee e 225
8.3.3 Cross Reference LiStINgG.......ccccoiviririreeieieninieneeeneeeeeeeeie st 228
8.3.4 Section Information LiStNGccccveririeieiiiniiniininineeececceneee e 229
8.4 LINKAZE LSt ..eiiiiiiiiiiieiieieeieetestte ettt sttt et ee e st e st e et e e b e enbeesaesraessaeseenneenneens 230
8.4.1 Structure of LinKage LiSt........ccccoieriiiiiiiiiiieieerieeie et 230
Page iv of viii R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

8.4.2 Option INfOrmationceceeviiriirinininiiteceneee et 232

8.4.3 Error INfOrmationceeoueiieiierieiieie ettt 232
8.4.4 Linkage Map Informationcccceeevieriieiieiinienieseeieeie et see e esae e eene e 233
8.4.5 Symbol INfOrmation..........cceecuiiiiiieniieiieiieteeeese ettt es 234
8.4.6 Symbol Deletion Optimization Informationcccceeeveeeveiierieeneenieeieeeeans 235
8.4.7 Cross-Reference Information............cocoeiiiiiiiiiiiiiieiiee e 236
8.4.8 Total SECION SIZEcueeieeeeiieiierieeie ettt eneeene e e 237
8.4.9 Vector INfOrmationccoeceeiierienieiieeeieeeeee et 237
8.4.10 CRC INfOIMALION ..c.euviiiiieiienieierieetesi ettt st 238
8.5 LIDIAry LASHNES....ceeeieiiieiieieeiieiieiteeste ettt e ettt eteesbeesaesaaesaeesaeebeesseesseessesseenseenseas 239
8.5.1 Structure of Library LiStiNgcccoieviiiviieiiiienienieeie et see e esveeneenens 239
8.5.2 Option INfOrmAationceoueriiiiiiiet et 240
8.5.3 Error INfOrmationcceeoueeieiieiiei ettt 241
8.5.4 Library INformationcccccouevirinininirieiicienene ettt 241
8.5.5 Module, Section, and Symbol Information within Librarycccvevurennnne 242
Section 9 Programmingcccveeecuieeriieeniiieeriie e eereeeree e e eeeeeeeeee e 243
0.1 Program SIIUCTUIEeeiuieiieieeiie ittt ettt ettt ettt esteeeteeeee st e e s te e et emeeeneeeneesbeeseeneeas 243
LT O T () T 243
9.1.2 C/CH+ Program SECHIONSccueruerreririerieieeieienientestesieeieeetestetenee e saesneeaeenees 244
9.1.3 Assembly Program SECLIONSc.ccverveerieerierierienieseenieeeeereseeeseeesseeseessens 248
9.1.4 LinKiNG SECHIONS ...cveiviiiieiieiiieiteeteesteeteereereesaesteesteesaeesaeessesssesssesssesseessesssens 250
9.2 Creation of Initial Setting PrOgramsccccceeeerierieerieeieiieieese et eee e sreesreesneas 253
9.2.1 Memory AllOCAtION.......ccueeiieiieiieetieteeie ettt ettt 254
9.2.2 Execution Environment Settings..........ccecceveeierieneninenenenieieieneneneeieeeeneen 262
9.3 Linking C/C++ Programs and Assembly Programs..........c..cocoecevveeeecienencnincncneenens 300
9.3.1 Method for Mutual Referencing of External Names............cceceeveeienienieennens 300
9.3.2 Function Calling INterfacec.cccvevrieriieiiieiicieieeceeseee et 302
9.3.3 Examples of Parameter AIlOCAtiONccceeevevvereeiierieenieeie e eeeesreesveennens 312
9.3.4 Using the Registers and Stack Area........ccccoeverieiiiiienieniee e 315
9.4 Important Information on Programming........c..cecceceeeeierienininienenierienieneneseseeeenens 316
9.4.1 Important Information on Program Codingcccceceverervenienieninencneneene. 316
9.4.2 Important Information on Compiling a C Program with the C++ Compiler.... 321
9.4.3 Important Information on Program Development...............cccoeeveeveeiereenneennen. 322
Section 10 C/C++ Language Specificationsccceeeeveeevieeenieesiieeeieeeeene 323
10.1 Language SPECIfiCAtiONScceeeiiiiriirieriinienieiteteteteste ettt eanens 323
10.1.1 Compiler SPeCifiCatiONS......c.cecuetirieririiririeeietete ettt 323
10.1.2 Internal Data Representation.........c.cccuevverieerieecienienieseeieeieseeseeseesseeaeenne e 331
10.1.3 Floating-Point Number Specifications.............ccoccveevereerieerresieieereesreeie e 348
R20UT0704EJ0102 Rev. 1.02 Page v of viii

Mar 01, 2022 RENESAS

10.1.4 Operator Evaluation Order..........c.ccoerirerieieoiininenineeeeeeeeee e 357

10.2 DSP-C SPECIfICALIONSeuveutiiiiiiiniiriieiieteienteetesie ettt ettt sttt sae et eaeeanens 358
10.2.1 Fixed-Point Data TYPES ...ccvecverieriieiieieeieeiesieeieeieeiesteseneseesseesseesesnsessnenns 358
10.2.2 QUALTIETS ...veiieieeiee ettt ettt e et e et e et e et e e veeeeaeeereeeneeenes 358
10.2.3 CONSLANTSvviiiiiiiieeciiiie ettt eeta e et e e e et e e e etae e e eaaeeeeeateeeeeaseeeenaneeas 361
10.2.4 TYPE CONMVETSION.eutieiieiiieitieittertt ettt ettt e stee st e e e e eeteseeeseeeseeeseeaeeneeeneeeas 362
10.2.5 Arithmetic CONVEISION.cccveeeeereeeeeeeee e eeeeeeeeeeeeeeeeeeeeeae e e e e eeenreeeeenneens 364
10.2.6 POINter CONVEISIONeeeeeerieeeieieeeeeeeeeeeeeeeeeeeee e e e eeeaaeeeeeneeeeereeeeennneeeeenneens 365
TO.2.7 OPETALOTSeeeueieeiiieeiieeiieeite ettt eriteeieeettesbeeebtesbtesbtesabeesnbeesabeesnseesnseesnseesnne 365
1O.2.8 LIDIAIIES ...cuveiivieeiie ettt ettt ettt eete e et e et e e eteeeeteeeteeeteeeeaeeereeereeenns 366
10.3 Extended SPeCifiCatiONS.......c.cccuiiiiriieriieiieiieieeeesieeteereeeeseae e e sreeseesneesesesesseesseesseas 369
10.3.1 #pragma EXtension SPECIfiersccceririiirierieniieiieieeie et 369
10.3.2 Section Address OPErator...........coeeererereeterienienenienieeeeeereneente st sieeieeanens 408
10.3.3 IntrinSic FUNCHIONScooiiviiiiiiee e 410
104 C/CH LIDTATIES ..veeeveeeiii ettt ettt et ettt e et etveeetee e eaveeetseesabeeeaseeseseesaseesaveesaneeas 487
10.4.1 Standard C LiDIari€Sc...cooveeeiiiiieecie e et eetee et eeteeeeteeeeteeeeveeeeaeeeeveeeeaee e 487
10.4.2 ECH+ Class LIDIari€S....c...covueieuiiiiieeeieeeeiee et eeteeeeeeeeteeeeteeeeveeeeveeeeaeeeeveeeevee e 665
10.4.3 Reentrant LiDIaryccooeeeiiiiieiieeee ettt 753
10.4.4 Unsupported LIDIariesccceoerererirerieieieninenesieeieeieeseneenie s sieeneeneens 759
10.4.5 DSP LIDIATY ...ooviieiieiiciieieieiesie sttt ettt ea et be s eteesaessessessesessessesssassassans 760
Section 11 Assembly SpecifiCationscceecuverieeiiiinieiiiienieeie e 817
11.1 Program EICMENTS........c.occviiiiiieiieieeieeic ettt ae e sreesbeeaeesneesaesaaesaeesreenneas 817
T1.1.1 SoUICEe StAtCIMENES.......eeiieieie ettt e ettt e e e e et e e e et e e e eeaae e e eeaeeeas 817
11.1.2 RESEIVEA WOTAS.....coouveieieeiee e e 821
T1.1.30 SYMDOIS ottt st 821
T1.1.4 CONSLANTSuviiiiiiiieeiiiieeciiee et ettt e ee e e e et e e e s bt e e e eatbeeeeesaeeesarseeeennseeeenseeas 824
11.1.5 LOCAtioN COUNTETeeeeviiieiieietieeeieeeeteeeetee et eeteeeetee et e et e eeteeeeveeeeaeeeveeeaeeenns 834
T1.1.6 EXPIESSIONSueeivieiieeiieeteitteiteesteesteesteeteesresseesseesseesseesseessesssesssesseesseesseesessseans 835
11.1.7 String LIteralSoeouieiieieee ettt 844
L ST 1o Yo% 1 0 I 1) SRR 845
11.2 Executable INStIrUCHIONSveiiieerieeeceeee et et e e et e e e eenneeeeenneeeens 847
11.2.1 Overview of Executable INStructions..........c...covveeiiieiieeciieeieeiee e 847
11.2.2 Notes on Executable INStructions...........cccoovvieiiieiieieiieeeiee e 853
11.3 DSP INSEIUCHIONS ..eeouvveiiiiiiie ettt ettt eete et ettt eteeeeaeeeetaeeeteeeeaaeeeaaeeeveeeaseeeaseeeaneeas 884
11.3.1 Program CONLENLSceouerieriieriieriieieeie et etteeteestee e eteeetesseesseesbeeseeenaeeeeeneeens 884
11.3.2 DSP INStIUCHIONS ...eeeevieeeeeieee e e e e e e ereeeennreeeeenneens 888
11.4 ASSEMDICT DITECHIVESveeiieiieeetiee e e e et eeenaeeeeeaneeeens 897
11.5 File Inclusion FUNCHONociiiiiiiiciiiicieccee et 964
11.6 Conditional Assembly FUNCHONccveeviiiiiiiiciieiicieeicce et 967
Page vi of viii R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

11.6.1 Overview of the Conditional Assembly Function.......c..cc.ccceeeeeveninencncnnenee. 967

11.6.2 Conditional Assembly DIr€CtiVescoceeeeierienierineninieecierencsene e 973
11.7 MACTO FUNCHON ...ttt ettt st 988
11.7.1 Overview of the Macro FUNCtioncceceeiieiiinininenieieeee e 988
11.7.2 Macro Function DIT€CHIVESccueruerueririeiieieieie ettt 991
11.7.3 MaCTO BOAY ...t 995
11.7.4 MaCTO Call ...ooniiiniieiiieieeeeeee ettt et sneeae e e 999
11.7.5 String Literal Manipulation FUNCtions............cccceceverenenireenienenineneneneenes 1001
11.8 Automatic Literal Pool Generation FUNCtion...........ccccoceviveriiinieiienienenencecnceeene 1005
11.8.1 Overview of Automatic Literal Pool Generation...........ccceceevevenenenencncenee. 1005
11.8.2 Extended Instructions Related to Automatic Literal Pool Generation............. 1006
11.8.3 Size Mode for Automatic Literal Pool Generationccceceveerieneenneennne 1006
11.8.4 Literal POOl OULPUL ...c..ocvevuiriiiiiiiiiniierceieeteeeresesie ettt 1007
11.8.5 Literal Sharingc..ccccoeeueriiiiieiiieniieeneeeet ettt 1010
11.8.6 Literal Pool Output SUPPIESSION......c.eevvieruieriieieeieetienteeteeiesseseeeseeesseesseesnenns 1012
11.8.7 Notes on Automatic Literal Pool Generation.............cceceeeeeenienieneneneseneenee. 1013
11.9 Automatic Repeat Loop Generation FUNCHONcoceeviieiiiiieiiciiciieieeie e 1016
11.9.1 Overview of Automatic Repeat Loop Generation Functionccccceeeeneene 1016
11.9.2 Extended Instructions of Automatic Repeat Loop Generation Function 1017
11.9.3 REPEAT DESCIIPLION. ..c..eoueruieuieiiieniintenieetteitetete sttt ettt see e eeeenees 1017
11.9.4 Coding EXAMPIES......cccccvieriieiiieiieieiierienie et eeeeee e ebeesbesaessaesseesseenseennenns 1018
11.9.5 Notes on the REPEAT Extended InStruction...........cccceoeeeeienienenenencncecnee. 1021
11.10 Extended Automatic Repeat Loop Generation Functionccccceeeveviveveecnennesnnenne. 1023
11.10.1 Overview of Extended Automatic Repeat Loop Generation Function 1023
11.10.2 Extended Instructions of Extended Automatic Repeat Loop Generation
FUNCLION ...ttt ettt 1024
11.10.3 EREPEAT DESCIIPLION ...eouvveuvieiiieiiesiiesiiesieeieeeteeteesteesteebeesseseneseaesseesseensessnenns 1024
11.10.4 Coding EXAMPIES......cceeciiiriirieiieiieiieieeste ettt sveebeesaeeaesreesaeesaeeseenne e 1025
11.10.5 Notes on the EREPEAT Extended InStruction............c.cceeeevenienenienenencneenee. 1027
Section 12 Compiler Error MesSagescccvvevveeeriieeiieeeiee e e 1029
12.1 Error Format and Error Levels.........ccooieiiriirieiiecieee e 1029
12.2 EITOT IMESSAZES. . uvveeutieiiieeiieeieeetteeite st e st e st e steesabeesabeesabeesabeesateesabeesaseesaseesnseesnneens 1029
12.3 Standard Library EIror MESSAZES........ccverveeviriiiieiierieenieeteeeeeseesseesseeseessesssesssesseesnes 1098
Section 13 Assembler Error MeSSagesc.eeevveeeeieeeiieeeiiee e eiee e 1103
13.1 Error Message Format and Error Levels........c.ccocveoevinininniiiniciicccnceesceeene 1103
13.2 EITOT MESSAZES.cuieiieniieiieiieiteettete ettt et sttt et et ettt e esanesanesaeenee 1103
R20UT0704EJ0102 Rev. 1.02 Page vii of viii

Mar 01, 2022 RENESAS

Section 14 Error Messages for the Optimizing Linkage Editor 1127

14.1 Error Format and Error Levels.......c.ccoceiiviiiiiiiiiiiiececeeee e 1127
14.2 Return Values fOr EITOTSoouiiiiiiiiieieee sttt 1127
14.3 LiSt Of MESSAZES ...vvevieurieiiieiieiiieiieesteeste et et e et e teebeesbeesbeesaeseaesaeeseesseesseessesssesseesesnsens 1128
Section 15 Limitations........cccueeiuieriiiiiieniieiie it 1147
15.1 Limitations of the COMPIET.........cccoceririiiriiiinininceeceeereere et 1147
15.2 Limitations of the ASSEMDIET.........ccceriiiiriiiiriirineeeeeeee et 1150
Section 16 Notes on Version Upgradecccveeeveieeeiieeniieeniieeeieeeeeee e 1151
16.1 Notes on Version UPGrade.........coievieiieriieiiiieiesieeieeie ettt 1151
16.1.1 Guaranteed Program OpPerationcecceceeeeevenieneneneneeeeneneenieneseseeeenens 1151
16.1.2 Compatibility with Earlier Version.........c.cccceeevinenineneneeicnenencnenceeenene 1152
16.1.3 Compatibility with Objects for Earlier Version.........c..ccceceevevenenincncneenne 1153
16.1.4 Command-line INterfacecccoveririiiiieieiesesee e 1154
16.1.5 Provided COnteNts.........ceieierierieriieiesieeeeeiteiee sttt s eneene 1157
16.1.6 List File SpecifiCation.........cccceiierieriiiiee ettt 1158
16.2 Additions and IMProVEMENtScccceeeieriirierininenieeeeteesteete ettt eanens 1158
16.2.1 Common Additions and Improvements (Package: Ver. 6)ccccoceecenerennnene 1158
16.2.2 Added and Improved Compiler FUNCHONS.........cccevverieecieiieiiesieeeie e 1158
16.2.3 Added and Improved Assembler FUnctions............cceceeeveeieiieneenieenieeieenens 1165
16.2.4 Added and Improved Optimizing Linkage Editor Functions.............ccccceceeue. 1165
Section 17 APPENAIXvviiiiiiiiiie ettt e b e eavee s 1171
17.1 S-Type and HEX File FOrmat........c.cceceeoieriiniininininiiieicicntceteniceeee et 1171
17.1.1 S-Type File FOrmMat.......c..cccevciiiieriieniieiieieeieetieteeieete e svesne e saeeseeaesene e 1171
17.1.2 HEX File FOIMALocuiiiiiiiiieieie et 1173
17.2 ASCIL COAE LISt ..ottt sttt st 1176
Page viii of viii R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

Section 1 Overview

1.1 Procedures for Developing Programs

Figure 1.1 shows the procedures for developing programs. The shaded part shows software
provided in the SuperH RISC engine C/C++ compiler package.

The C/C++ compiler, assembler, optimizing linkage editor, standard library generator, and call
walker are explained in this manual.

R20UT0704EJ0102 Rev. 1.02 Page 1 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

include

file

SuperH RISC engine
C/C++ compiler

A A

Standard
include
files

———»| Additional

information
file*

User | Assembly External SuperH RISC engine
assembly source symbol- standard library generator
program program allocation

SuperH RISC engine > Relocatable
assembler object
file

Standard

library

library
file

file

Optimizing
linkage editor

A
Y
Load Profile Stack
module information information
A
y g \ 4
Note: - Input/output Debugger | Stack analysis tool
------ » : Initiation
Additional information files include:
- Template information files
- Parameter information files
- Instance information files) Calleq
- Tentative defined variable information files information

Figure 1.1 Procedures for Developing Programs

Page 2 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

Outlines of the C/C++ compiler, assembler, optimizing linkage editor, prelinker, standard library
generator, and call walker are given in the following instructions.

1.2 Compiler

The SuperH RISC engine C/C++ compiler (hereinafter referred to as compiler) is software that
takes source programs written in C or C++ language as inputs, and produces relocatable object
programs or assembly source programs for SuperH RISC engine microcomputers.

Features of this compiler are as follows:

1. Generates an object program that can be written to ROM for installation in a user system.

2. Supports an optimization that improves the speed of execution of object programs and
minimizes program size.

3. Supports the C and C++ programming languages.

4. Supports functions that are essential for the programming of embedded programs but are not
supported by the C and C++ languages as extended functions. Such functions include interrupt
functions and descriptions of system instructions.

5. The output of debugging information to enable C/C++ source-level debugging by the debugger
is supported.

6. Either an assembly source program or a relocatable object program can be selected for output.

7. Supports an inter-module optimization information output to execute optimization for the
optimizing linkage editor.

1.3 Assembler

The SuperH RISC engine assembler (hereinafter referred to as assembler) is software that takes
source programs written in assembly language, and outputs relocatable object programs for
SuperH RISC engine microcomputers.

Features of this assembler are as follows:

1. Enables the efficient writing of source programs by providing the preprocessor functions
listed below:

— File include function
— Conditional assembly function
— Macro function

2. The mnemonics for execution instruction and assembly directives conform to the naming rules
laid out in the IEEE-694 specifications, and the system is uniform.

R20UT0704EJ0102 Rev. 1.02 Page 3 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

1.4 Optimizing Linkage Editor

The optimizing linkage editor is software that takes multiple object programs output by the
compiler or assembler and produces load modules or library files.

Features of this optimizing linkage editor are as follows:

1. Optimization can be applied to a set of several object files, depending on memory allocation
and relations among function calls which cannot be optimized by the compiler.

N

Any of the following five types of load modules can be selected for output:
— Relocatable ELF format
— Absolute ELF format
— S-type format
— HEX format
— Binary format
Generates and edits library files.
Outputs symbol reference count list.
Deletes debugging information from library and load module files.

S v kW

Specifies the output of a stack information file for use by the call walker.

1.5 Prelinker

The prelinker is called from the optimizing linkage editor. When a C++ program template or
runtime type-detection function is used, the prelinker calls the compiler and instructs it to generate
the necessary object files. When neither a C++ program template nor the runtime type-detection
function is used, the speed of linkage can be improved by specifying the noprelink option for the
optimizing linkage editor.

1.6 Standard Library Generator

The SuperH RISC engine standard library generator (hereinafter referred to as the standard library
generator) is a software system for the reconfiguration of standard library files provided, using
user-specified options.

The standard library functions provided with the compiler include the standard set of C library
functions, a set of C++ class library functions for embedded systems, and a set of runtime routines
(arithmetic operations that are necessary for the execution of a program). In some cases, runtime
routine will be necessary, even though library functions are not used in source programs.

Page 4 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

1.7 Call Walker

The call walker is software that takes the stack information file that is output by the optimizing
linkage editor and calculates the size of the stack that will be used by C/C++ programs.

R20UT0704EJ0102 Rev. 1.02 Page 5 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

Page 6 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Section 2 Compiler Options

2.1 Option Specification Rules

The format of the command line to initiate the compiler is as follows:
shc[A<option>...] [A<file name>[A<option>...] ...]
<option>:-<option>[=<suboption>][,...]

2.2 Interpretation of Options

In the command line format, uppercase letters indicate the abbreviations and characters underlined
indicate the defaults.

The format of the dialog menus that correspond to the integrated development environment is
category name [Item].

The order of options corresponds to that of the tabs in the integrated development environment.

Note that conditions apply to the application of some options related to optimization, i.e. some
may not be applicable. Check the output code to see whether or not the optimization has actually
been performed.

R20UT0704EJ0102 Rev. 1.02 Page 7 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

2.2.1 Source Options

Table 2.1 Source Category Options

Item Command Line Format Dialog Menu Specification

Include file Include = <path name>[,...] Source Specifies include-file include
directory [Show entries for :] path name.

[Include file directories]

Default include PREInclude =

Source

Includes the specified files at

file <file name>[,...] [Show entries for :] the head of compiling units.
[Preinclude]
Macro name DEFine = <sub>[,...] Source Defines <string literal> as
definition <sub>: [Show entries for :] <macro name>.
<macro name> [Defines]
[=<string literal>]
Information MEssage Source Output
message NOMEssage [Show entries for :] Not output
[= <error number> [Messages]

[- <error number>][,...]]

[Display information
level messages]

Inter-file inline

expansion
directory
specification

FILE_INLINE_PATH =
<path name>[,...]

Source
[Show entries for :]
[File inline path]

Specifies the path name
where obtains a file for inline
expansion between files.

Message level

CHAnNnge_message
=<sub>[,...]
<sub>:<level>
[=<n>[-m],...]
<level>:{Information
| Warning
| Error }

Source
[Message level]

Changes message level.

Page 8 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Include: Include File Directory

Source[Show entries for :][Include file directories]

Command Line Format

Include = <path name>[,...]

Description

Specifies the name of the path where the include file is stored.

Two or more path names can be specified by separating them with a comma (,).

System include files are retrieved in the order of the include option specification directory, the
environment variable SHC INC specification directory, and the environment variable
SHC_LIB specification directory. User include files are retrieved in the order of the current
directory, the include option specification directory, the environment variable SHC INC
specification directory, and the environment variable SHC LIB specification directory.
Example

shc —-include=c:\usr\inc,c:\usr\shc test.c

Directories c:\usr\inc and c:\usr\shc are retrieved as include file paths.

PREInclude: Default Include File

Source[Show entries for :][Preinclude]

Command Line Format
PREInclude = <file name>[,...]
Description

Includes the specified file contents at the head of the compiling unit. Two or more file names
can be specified by separating them with a comma (,).

Example

shc -preinclude=a.h test.c
— Contents of <test.c>

int a;
main() {...}

— Interpretation at compilation

#include "a.h"

int a;
main() {...}
R20UT0704EJ0102 Rev. 1.02 Page 9 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

DEFine: Macro Name Definition

Source[Show entries for :][Defines]

Command Line Format
DEFine = <sub> [,...]
<sub>: <macro name> [= <string literal>]
Description
This option is the same as #define described in the C/C++ source file.
When <macro name>=<string literal> is specified, <string literal> is defined as a macro
name.
When only <macro name> is specified for a suboption, the macro name is assumed to be
defined. Names or integer constants can be written in <string literal>.

MEssage, NOMEssage: Information Message

Source[Show entries for :][Messages][Display information level messages]

Command Line Format

MEssage

NOMEssage [= <error number> [- <error number>][,...]]

Description

This option specifies whether or not the information-level messages are output.

When the message option is specified, the compiler outputs information-level messages.

When the nomessage option is specified, the compiler inhibits the output of the information-
level messages. When the error number is specified by a suboption, the output of the specified
information-level messages will be inhibited.

A range of error numbers to be inhibited can be specified by using a hyphen (-), that is, in the
form <error number> - <error number>.

The default for this option is nomessage.
Example
shc -message test.c

Information-level messages will be output.

Page 10 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

FILE_INLINE_PATH: Inter-file Inline Expansion Directory Specification
Source[Show entries for :][File inline path]

¢ Command Line Format
FILE INLINE PATH = <path name> [,...]

e Description
Specifies the name of the path where a file for inter-file inline expansion is stored.
Two or more path names can be specified by separating them with a comma (,).
Files for inter-file inline expansion are retrieved in the order of the file_inline_path option
specification directory and the current directory.

e Example
shc -file inline path=c:\usr\file -file inline=test2.c test.c
Directory c:\usr\file is considered as the inter-file inline expansion specification directory to
retrieve test2.c specified by the file_inline option.

R20UT0704EJ0102 Rev. 1.02 Page 11 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

CHAnge_message: Message Level

Source[Message level :]

Command Line Format

CHAnge message = <sub>[,...]
<sub> : <error level>[=<error number>[- <error number>][,...]]
<error level> : { Information | Warning | Error }

Description

Changes the message level of information-level and warning-level messages.

Example

change message=information=<error number>

Warning level messages with the specified error numbers are changed to Information level
messages.

change message=warning=<error number>

Information level messages with the specified error numbers are changed to Warning level
messages.

change message=error=<error number>

Information and Warning level messages with the specified error numbers are changed to
Error level messages.

change message=information

All warning-level messages are changed to Information level messages.

change message=warning

All information-level messages are changed to Warning level messages.

change message=error

All information-level and warning-level messages are changed to Error level messages.
Remarks

Output of the messages which were changed to the information-level can be disabled by
nomessage specification.

Page 12 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

2.2.2 Object Options

Table 2.2 Object Category Options

Item Command Line FormatDialog Menu Specification
Pre-processorPREProcessor Object Outputs source program after
expansion [= <file name>] [Output file type :] preprocessor expansion.
[Preprocessed source
file]
NOLINe [Suppress #line in Disables #line output at
preprocessed source preprocessor expansion.
file]
Object type Code = Object
[Output file type :]
{ Machinecode [Machine code] Outputs machine code program.
| Asmcode } [Assembly source code] Outputs assembly-source
program.
Debugging DEBug Object Output
information NODEBug [Generate debug Not output
information]
Section name SEction = <sub>[,...] Object
<sub>:{ [Code generation]
Program= [Section :]
<section name> [Program section (P)]

Program area section name
Constant area section name
Initialized data area section name
Non-initialized data area section

| Const=<section name> [Const section (C)]
| Data=<section name> [Data section (D)]
| Bss=<section name> [Uninitialized data

} section (B)] name
Area of string STring = { Const Object Outputs string literal to constant
literal to be [Code generation] section (C).
output | Data } [Store string datain:] Outputs string literal to initialized
data section (D).
Object file OBjectfile = <file name> Object Outputs the object file of the
name [Output directory:] specified file name.
specification
R20UT0704EJ0102 Rev. 1.02 Page 13 of 1176

Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.2 Object Category Options (cont)
Item Command Line Format Dialog Menu Specification
Template Template={ None Object Does not generate instances.
instance [Code generation]
generation | Static [Template :] Generates instances as internal
linkage only for referenced
templates.
| Used Generates instances as external
linkage only for referenced
templates.
| ALI Generates instances for templates
declared or referenced.
|,AUto } Generates instances at linkage.
ABS16/20/ <ABS>=<sub>[,...] Object Specifies the memory space
28/32 <ABS>: [Code generation2] where the label addresses or
declaration {ABs16 [Address declaration] runtime routines belonging to the
| ABS20 specified section are to be
| ABS28 allocated.
| ABS32}
<sub>:
{ Program
| Const
| Data
| Bss
| Run
| All }
Method of Dlvision = Cpu = Object Uses the CPU’s division
division [Code generation] instruction.
[except for {Inline [Division sub-options :] Converts division to
SH-1] multiplication and performs inline
| Runtime} expansion.
Calls run-time routine.
Disabling of IFUnc Object Disables save and restore of
save and [Code generation] floating-point registers.
restore of [Use no FPU
floating-point instructions]
registers
[SH-2E,
SH2A-FPU,
SH-4,
and SH-4A]

Page 14 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

Table 2.2 Object Category Options (cont)
Item Command Line Format Dialog Menu Specification
16-byte or ALIGN16 Object Every first label appear an
32-byte [Code generation] unconditional branch instruction in
alignment of [Alignment of branch a program section is aligned on a
labels destination] 16-byte boundary.
ALIGN32 Every first label appear an
unconditional branch instruction in
a program section is aligned on a
32-byte boundary.
NOALign Does not necessarily place labels
on a 16-byte or 32-byte boundary.
TBR relative TBR [= <section name>] Object Calls functions using TBR relative
function call [Code generation2] addresses.
[SH-2A and [TBR specification]
SH2A-FPU]
Order of BSs_order = Object
uninitialized {DEClaration [Code generation2] Outputs in the order of
variables [Order of uninitialized declarations
| DEFinition } variables :] Outputs in the order of definitions
Disposition of STUff [= {Bss | Data Object Assigns variables according to the
variables | Const} [,...]] [Code generation2] size of variables
[Disposition of
NOSTuff variables :] Do not assign variables
Disposition of STUFF_GBR Object Assigns variables according to the

variables in
$G0/$G1

[Code generation2]
[Disposition of

Variables in $G0/$G1]

size of variables in $G0/$G1

Alignment of ALIGN4 ={
bran_ch _ ALL |
destination

LOOP |

INMOSTLOOP }

Object

[Code generation]
[Alignment of Branch
Destination]

Alignment of branch destination:
- All branch destination addresses
- Start addresses of all loops

- Start addresses of the innermost
loops

Allocate constCONST_VOLATILE = {

volatile

Object
[Code generation]

Allocate const volatile variables to
the initialized data area

DATA |
variables [const volatile Allocate const volatile variables to
CONST ; .
} variables] the constant area
R20UT0704EJ0102 Rev. 1.02 Page 15 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

PREProcessor, NOLINe: Preprocessor Expansion

Object[Output file type :][Preprocessed source file]

[Suppress #line in preprocessed source file]

Command Line Format

PREProcessor [= <file name>]

Description

Outputs a source program processed by the preprocessor.

If no <file name> is specified, an output file with the same file name as the source file and
with a standard extension is created. The standard extension after C compilation is p (if the
input source program is written in C), and that after C++ compilation is pp (if the input source
program is written in C++).

When preprocessor is specified, no object file is output from the compiler.

When noline is specified, disables #line output at preprocessor expansion.

Remarks

When preprocessor is specified, other than the following options become invalid:
show=source, include, expansion, width, length, tab, listfile, define, include, comment, euc,
sjis, latin1l, subcommand, preinclude, message, lang, logo, cpu, change_message

Code: Object Type

Object[Output file type :][Machine code][Assembly source code]

Command Line Format

Code = { Machinecode | Asmcode }
Description

Specifies an object file output type.

When code=machinecode is specified, a relocatable object program (machine code) is
generated.

When code=asmcode is specified, an assembly source program is generated.
The default for this option is code=machinecode.
Remarks

When code=asmcode is specified, show=object and goptimize become invalid.

Page 16 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

DEBug, NODEBug: Debugging Information
Object[Generate debug information]

e Command Line Format
DEBug
NODEBug

e Description
When the debug option is specified, debugging information will be output to object files.
The debug option is valid regardless of whether or not the optimization option is specified.
When nodebug option is specified, no debugging information will be output to the object file.
The default for this option is nodebug.

SEction: Section Name

Object[Code generation][Section :][Program section (P)][Const section (C)][Data section (D)]
[Uninitialized data section (B)]

e Command Line Format
SEction = <sub> [,...]
<sub>: { Program=<section name>
| Const= <section name>
| Data= <section name>
| Bss= <section name>
}
e Description
Specifies the section name of an object program.
section=program=<section name> specifies the section name in the program area.
section=const=<section name> specifies the section name in the constant area.
section=data=<section name> specifies the section name in the initialized data area.
section=bss=<section name> specifies the section name in the non-initialized data area.

The <section name> must be alphabetic, numeric, or underscore () or $. The first character
must not be numeric. The section name must be specified within 8192 characters.

The default for this option is section=program=P, const=C, data=D, bss=B.

R20UT0704EJ0102 Rev. 1.02 Page 17 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Remarks

For details on correspondence between programs and section names, refer to section 9.1,
Program Structure. The same section name cannot be specified for different areas of the
section.

STring: String Literal Output Area

Object[Code generation][Store string data in :]

Command Line Format

STring = { Const | Data }

Description

Specifies the destination where string literals are output.

When string=const is specified, the compiler outputs the string literals to the constant area.
When string=data is specified, the compiler outputs the string literals to the initialized data
area.

The string literals output to the initialized data area can be modified at program execution;
however, the initialized data area must be allocated in both ROM and RAM in order to transfer
the string literals to RAM from ROM at the beginning of program execution. For details on
the initial settings of the initialized data area or on memory allocation, refer to section 9.2.1
Memory Allocation.

The default for this option is string=const.

OBjectfile: Object File Output

Object[Output directory :]

Command Line Format

OBjectfile = <object file name>
Description

Specifies an object file name to be output.

If this option is not specified, the object file name becomes the same as that of the source file
and the extension becomes obj for a relocatable object program and sre for an assembly source
program, which is determined by code.

Page 18 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Template: Template Instance Generation

Object[Code generation][Template :]

Command Line Format

Template = { None

| Static

| Used

| ALI

| AUto }

Description

Specifies the condition to generate template instances.

When template=none is specified, instances are not generated.

When template=static is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the internal linkage.

When template=used is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the external linkage.

When template=all is specified, instances of all templates declared or referenced in the
compiling unit are generated.

When template=auto is specified, instances needed at linkage are generated.
Remarks
When code=asmcode is specified, template=static must be specified.

ABs16, ABS20, ABS28, ABS32: ABS16/20/28/32 Declaration

Object[Code generation2][Address declaration]

Command Line Format

ABs16 = { Program | Const | Data | Bss | Run | All }[,...]
ABS20 = { Program | Const | Data | Bss | Run | All }[,...]
ABS28 = { Program | Const | Data | Bss | Run | All }[,...]
ABS32 = { Program | Const | Data | Bss | Run | All }[,...]
Description

Specifies the memory space where the label addresses or runtime routines belonging to the
section specified by the suboption are to be allocated.

The default for this option is abs32=all.

R20UT0704EJ0102 Rev. 1.02 Page 19 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Table 2.3 Address Ranges

Address Range

Option Beginning End

abs16 0x00000000 0x00007FFF
0xFFFF8000 OxFFFFFFFF

abs20 0x00000000 0x0007FFFF
0xFFF80000 OxFFFFFFFF

abs28 0x00000000 0x07FFFF7F*
0xF8000000 OxFFFFFFFF

abs32 0x00000000 OxFFFFFFFF

Note: * Note that the end of the address range is 0xO7FFFF7F.

Table 2.4 Suboptions

Suboption Description
program Allocates the program areas to the specified memory space.
const Allocates the constant areas to the specified memory space.
data Allocates the initialized data areas to the specified memory space.
bss Allocates the uninitialized data areas to the specified memory space.
run Allocates the runtime routines to the specified memory space.
all Allocates all areas to the specified memory space.
e Example
Program

-abs20=program -abs28=const,data
— Same as -abs20=program -abs28=const,data -abs32=bss,run
-abs20=data -absl6=data
— Outputs a warning message and —abs16=data becomes valid
e Remarks

When this option and #pragma abs16|abs20|abs28|abs32 are specified simultaneously, the
#pragma specification is valid.

When this option and #pragma gbr_base|gbr_basel are specified simultaneously, this option
specification is not applied to the variables specified by #pragma gbr_base|gbr_basel.

abs20|abs28 is only valid when cpu=sh2a|sh2afpu is specified.

Page 20 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

DIlvision: Division Method Selection

Object[Code generation][Division sub-options :]/CPU[Division :]

Command Line Format

Dlvision = { Cpu [= { Inline | Runtime }]

| Peripheral

| Nomask }

Description

Selects the method of integer type division and residue.

When division=cpu=inline is specified, division operations on constants are converted into

multiplications and inline-expanded, and for division operations on variables, the DIVS or

DIVU instruction is selected when cpu is SH-2A or SH2A-FPU; otherwise, the runtime

routine for the DIV 1 instruction is selected. This option is invalid when cpu=sh1 is specified.

When division=cpu=runtime is specified, if a division cannot be performed through shift

operations, the DIVS or DIVU instruction is selected when cpu is SH-2A or SH2A-FPU;

otherwise, the runtime routine for the DIV 1 instruction is selected. This option is invalid when

cpu=shl is specified.

When only division=cpu is specified, either division=cpu=runtime is assumed when the size

option is specified, and division=cpu=inline is assumed when the speed or nospeed option is

specified.

When division=peripheral is specified, the runtime routine that uses the divider is selected

(sets interrupt mask level to 15). Executable only if cpu is SH-2 (SH7604).

When division=nomask is specified, the runtime routine that uses the divider is selected (no

change in interrupt mask level). Executable only if cpu is SH-2 (SH7604).

When specifying peripheral or nomask, note the following:

1. Division by 0 is not checked and errno is not set up.

2. When nomask is specified, if an interrupt occurs during operation of the divider, and if the
divider is used in the interrupt processing routine, the result is not guaranteed.

3. Overflow interrupt is not supported.

4. Results of division by zero and overflow depend on specifications of the divider, and may
differ from the results obtained when the cpu suboption is specified.

The default for this option is division=cpu.

R20UT0704EJ0102 Rev. 1.02 Page 21 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

IFUnc: Disabling of Save and Restore of Floating-Point Registers

Object[Code generation][Use no FPU instructions]

Command Line Format

IFUnc

Description

Disables saving and restoring of floating-point registers.

Remarks

This specification can be made for each function unit using #pragma ifunc.

When a source program that generates floating-point instructions is compiled with this option
specified, an error occurs.

This option is only valid when cpu=sh2e, sh2afpu, sh4, or sh4a is specified.

ALIGN16, ALIGN32, NOALign: 16-Byte or 32-Byte Alignment of Labels

Object[Code generation][Align Labels after unconditional branches 16/32 byte boundaries]

Command Line Format
ALIGN16

ALIGN32

NOALign

Description

When align16 is specified, every first label within the program section to appear after an
unconditional branch instruction is aligned with a 16-byte boundary.

When align32 is specified, every first label within the program section to appear after an
unconditional branch instruction is aligned with a 32-byte boundary.

When noalign is specified, labels appearing after unconditional branch instructions are not
aligned with 16- or 32-byte boundaries.

The default for this option is noalign.
Remarks
align16 and align32 cannot be specified simultaneously.

When the noalign16 option is specified, it is considered that noalign has been specified.

Page 22 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

TBR: TBR Relative Function Call

Object[Code generation2][TBR specification]

Command Line Format

TBR [= <section name>]

Description

Calls functions using TBR relative addresses.

When <section name> is specified, the function address table for function definitions is output
to the STBR<section name> section.

When <section name> is omitted, the function address table for function definitions is output
to the $TBR section.

For details, refer to section 10.3.1 (2), #pragma tbr.

Remarks

This option is only valid when cpu=sh2a or sh2afpu is specified.

When this option and #pragma tbr are specified simultaneously, the #pragma tbr
specification is valid. When this option and pic=1 are specified simultaneously, this option is
invalid.

When the number of functions to be included in the function address table exceeds 255, an
error message will be output.

BSs_order: Order of Uninitialized Variables

Object[Code generation2][Order of uninitialized variables]

Command Line Format
BSs_order = {declaration | definition}
Description

When bss_order=declaration is specified, uninitialized variables are output in the order of
declarations.

When bss_order=definition is specified, uninitialized variables are output in the order of
definitions.

The default for this option is bss_order=declaration.

Example

extern int al;
extern int a2;

int a3;

R20UT0704EJ0102 Rev. 1.02 Page 23 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

extern int a4;
int ab;
int a2;
int al;

int a4;

<bss_order=declaration is specified>
.SECTION B, DATA,ALIGN=4
_al:
.RES.L 1
_az:
.RES.L 1
_a3:
.RES.L 1
_a4d:
.RES.L 1
as:

.RES.L 1

<bss_order=definition is specified>
.SECTION B, DATA,ALIGN=4
_a3:

.RES.L 1

_ab:

.RES.L 1

_az:

.RES.L 1

_al:

.RES.L 1

_ad:

.RES.L 1

e Remarks

When the stuff option is specified, uninitialized variables are output in the order of
declarations regardless of the bss_order setting.

Page 24 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

STUff
NOSTuff: Disposition of Variables

Object[Code generation2][Disposition of variables :]

e Command Line Format
STUff [= <section type>][,...]]
NOSTuff
<section type> : {Bss | Data | Const}
e Description

When the stuff option is specified, the variables that belong to the <section type> are assigned
to 4-byte, 2-byte, or 1-byte boundary alignment sections depending on the size of the variables
(see table 2.5).

When <section type> is omitted, any variable is applicable.

C, D, and B are the section names specified by the section option or #pragma section. The
data assigned to each section are arranged in the order of definitions (bss_order option setting
is ignored).

Table 2.5 Relationship between Size of Variable and Section Name

Size of Variable (Byte)

Section Type 4an 4n-2 2n-1
const-type variables const C$%4 C$2 C$1
Initialized variables data D$4 D$2 D$1
Uninitialized variables bss B$4 B$2 B$1

When the nostuff option is specified, all variables are assigned to 4-byte boundary alignment
sections.

The data assigned to sections C and D are arranged in the order of definitions, and the data
assigned to section B are arranged according to the bss_order option.

The default for this option is nostuff.

R20UT0704EJ0102 Rev. 1.02 Page 25 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Example

int a;

char b=0;

const short c=0;
struct {

char x;

char vy;

} ST;

<stuff is specified>

.SECTION C$2,DATA,ALIGN=2

Cc:
.DATA.W H’ 0000

.SECTION D$1,DATA,ALIGN=1

b:

.DATA.B H'00

.SECTION B$4,DATA,ALIGN=4

a:

.RES.L 1

.SECTION B$2,DATA,ALIGN=2

_ST:
.RES.B 2

<nostuff is specified>
.SECTION C,DATA,ALIGN=4
_c:

.DATA.W H’ 0000

.SECTION D, DATA,ALIGN=4
_b:

.DATA.B H’'00

.SECTION B, DATA,ALIGN=4

_a:
.RES.L 1
_ST:

.RES.B 2

Page 26 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

e Remarks

This option is invalid for variables with #pragma gbr_base | gbr_basel or #pragma
global_register.

STUFF_GBR

Description Format: C/C++ <Object> [Code generation2] [Disposition of Variables in
$G0/$G1]

Command Line Format: STUFF_GBR

Description: Assigns a #pragma gbr_base|gbr_basel-specified variable to sections
listed in table 2.6 depending on the size of the variable. This reduces the
amount of gap area generated by boundary alignment.

Table 2.6 Size of the Variable and Section Names

Size of the Variable (in Bytes)

4n 4n-2 2n-1
With #pragma gbr_base $G0%4 $G0%2 $G0%1
With #pragma gbr_base1 $G1%4 $G1%2 $G1$1
Note: nis integer.
Remarks: This option is valid only when gbr=user has been specified. Sections

starting with $GO0 or $G1 should be assigned as shown in table 2.7.

R20UT0704EJ0102 Rev. 1.02 Page 27 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Table 2.7 Allocation of Sections

Section Name

Allocation

$GO

The start address should be a multiple of 4.

$G0$1, $G0%$2, $G0$4

The section should be within 128 bytes from the start
address of $G0.

$G1 The start address should be 128 bytes far from the start
address of $GO0.

$G1$1 The section should be within 256 bytes from the start
address of $GO0.

$G1%2 The section should be within 512 bytes from the start
address of $GO0.

$G1%4 The section should be within 1024 bytes from the start
address of $GO0.

ALIGN4

Description Format:

Command Line Format:

Description:

Remarks:

C/C++ <Object> [Code generation] [Alignment of Branch Destination]
ALIGN4 = { ALL |

LOOP |

INMOSTLOOP }

When align4=all is specified, all branch destination addresses are
aligned to the 4-byte boundary.

When align4=loop is specified, the start addresses of all loops are
aligned to the 4-byte boundary.

When align4=inmostloop is specified, the start addresses of the
innermost loops are aligned to the 4-byte boundary.

This option is not available when align16 or align32 has already been
specified. When align4 is specified, the start address of the function is
always aligned to the 4-byte boundary. All functions with align4 will
not be optimized at linkage.

Page 28 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

CONST_VOLATILE
Description Format:
Command Line Format:

Description:

Allocate const volatile variables
Object [Code generation] [const volatile variables:]
-CONST VOLATILE={ DATA | CONST}

This option specifies the area where const- and volatile-qualified
variables should be allocated.

When const_volatile=const, the variables will be allocated to the
constant area.

When const_volatile=data, the variables will be allocated to the
initialized data area.

The default for this option is const_volatile=data.
[Examples]

(1) Where variable ¢ of const volatile int ¢=3; will be allocated
const_volatile=data: Initialized data area (section D)
const_volatile=const: Constant area (section C)
const_volatile=const -stuff : Constant area (section C$4)

const_volatile=const -section=const=N: Constant area (section N)

(2) Where variable x of X const volatile __fixed x=0.5r; will be
allocated

const_volatile=data: Initialized data area (section $XD)

const_volatile=const: Constant area (section $XC)

R20UT0704EJ0102 Rev. 1.02 Page 29 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

223 List Options

Table 2.8 List Category Options

Item Command Line Format Dialog Menu Specification
Listing file Listfile [= <file name>] List Output
NOListfile [Generate list file]Not output
Listing SHow = <sub>[,...] List
contents <sub>:{ [Contents]
and format SOurce | NOSOurce With/without source list
| Object | NOObject With/without object list
| STatistics | NOSTatistics With/without statistics information
| Include | NOlInclude With/without list after include expansion
| Expansion | NOExpansion With/without list after macro expansion
| Width = <numeric value> Maximum characters per line:
0or80to 132
| Length = <numeric value> Maximum lines per page:
0 or 40 to 255
| Tab={4 |8} } Number of columns when Tab is used: 4
or8

Listfile, NOListfile: List File

List[Generate list file]

Command Line Format

Listfile [= <file name>]

NOListfile

Description

Specifies whether a listing file is output or not.

When listfile option is specified, a listing file will be output. By specifying <file name>, a file
name can also be specified.

When nolistfile is specified, a listing file will not be output.
A listing file name should be specified in accordance with section 8.1, Naming Files.

If no file name is specified, a listing file with the same name as the source and a standard
extension (Ist/lpp) is created. The standard extension for filenames in C compilation is Ist, and
that for filenames in C++ compilation is lpp.

The default for this option is nolistfile.

Page 30 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SHow: List Contents and Format

List[Contents]
e Command Line Format

SHow= <sub>[,...]
<sub>: { SOurce | NOSOurce

Object | NOObject
STatistics | NOSTatistics
Include | NOInclude

|
|
|
| Expansion | NOExpansion
| Width= <numeric value>
| Length= <numeric value>
| Tab={4|8}
e Description
Specifies the contents and format of the list output by the compiler, and the cancellation of
listing output.
For examples of each list in this section, refer to section 8.2, Compiler Listings.
The default for this option is show=nosource, object, statistics, noinclude, noexpansion,
width=0, length=0, tab=8.
e Remarks

Table 2.9 shows a list of suboptions.

R20UT0704EJ0102 Rev. 1.02 Page 31 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Table 2.9 List of Suboptions of show Option

Suboption Description

source Outputs a list of source programs
nosource Outputs no list of source programs
object Outputs a list of object programs
noobject Outputs no list of object programs
statistics Outputs a list of statistics information

nostatistics

Outputs no list of statistics information

include

Outputs a source program listing after include file expansion. If the
nosource suboption and the include suboption are specified
simultaneously, the include suboption will be invalid, and no source
program listing will be output to a file.

noinclude

Outputs a source program listing before include file expansion. If the
nosource suboption and the noinclude suboption are specified
simultaneously, the noinclude suboption will be invalid, and no
source program listing will be output to a file.

expansion

Outputs a source program listing after macro expansion. If the
nosource suboption and the expansion suboption are specified,
simultaneously the expansion suboption will be invalid, and no
source program listing will be output to a file.

noexpansion

Outputs a source program listing before macro expansion. If the
nosource suboption and the noexpansion suboption are specified
simultaneously, the noexpansion suboption will be invalid, and no
source program listing will be output to a file.

width=<numeric value>

The number specified by <numeric value> is set as the maximum
number of characters in a single line of a listing. The <numeric
value> can specify decimal numbers from 80 to 132 or 0.

If <numeric value> is specified as 0, the maximum number of
characters in a single line is not specified.

length=<numeric value>

The number specified by <numeric value> is set as the maximum
number of lines on a single page of a listing. The <numeric value>
can specify decimal numbers from 40 to 255 or 0.

If <numeric value> is specified as 0, the maximum number of lines on
a single page of a listing is not specified.

tab={4|8}

Specifies the tab size when a listing is displayed.

Page 32 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 2 Compiler Options

2.2.4 Optimize Options

Table 2.10 Optimize Category Options

Command Line

Item Format Dialog Menu Specification
Optimization OPtimize = Optimize Outputs object without optimization.
{0 [Optimization] Outputs object with optimization.
|1 Outputs a code that does not affect the
| Debug_only} debugging information.
Optimized for Optimize Selects the optimization item.
speed [Speed or size :]
SPeed [Optimize for speed]
Slze [Optimize for size]
NOSPeed [Optimize for both
speed and size]
Inter-module Goptimize Optimize Outputs information for inter-module
optimization [Generate file for optimization.
information inter-module

optimization :]

Optimized for MAP = <file name> Optimize

access to [Optimization for
external access to external
variables variables :]

[Inter-module]

Optimized for access to external
variables.

Optimization SMap Optimize Optimizes access to external variables
of external [Optimization for defined in the file to be compiled.
variable access to external
access variables :]

[Inner-module]
Automatic GBr = { Auto Optimize Automatically creates GBR-relative
creation of [Gbr relative access codes.
GBR relative | User} operation :] Does not automatically create GBR-
access code relative access codes.
switch CAse = { Ifthen Optimize Expands by if _then method.
statement | Table } [Switch statement :] Expands by jumping to a table.
expansion
method
Shift- SHIft = { Inline Optimize Performs inline expansion.
operation | Runtime } [Shift operation :] The runtime routine will be called if shift
expansion operations have a large number of

instructions to be expanded.

R20UT0704EJ0102 Rev. 1.02

Page 33 of 1176

Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.10 Optimize Category Options (cont)

Command Line

Item Format Dialog Menu Specification
Transfer-code BLOckcopy = Optimize Performs inline expansion.
expansion {/Inline [Transfer code The runtime routine will be called
| Runtime } development :] when a large block of memory is to be
transferred.
Unaligned Unaligned = Optimize Performs inline expansion.
data transfer {Inline [Unaligned move :] The runtime routine will be called.
| Runtime}
Automatic INLine Optimize Performs inline expansion
inline [= <numeric value>] [Details] automatically.
expansion NOINLine [Inline] Does not perform inline expansion
[Automatic inline automatically.
expansion]
Inter-file inlineFlILe_inline = Optimize Specifies a file for inter-file inline
expansion <file name>[,...] [Details] expansion.
[Inline]
[inline file path]
External GLOBAL_Volatile = {0 Optimize External variables declared with
variables [Details] volatile are not handled (excluding
handled as [Global variables] external variables declared with
volatile [Treat global volatile).
| 1} variables as volatile All external variables are handled as if
qualified] declared with volatile.
External OPT_Range = { All Optimize Optimizes external variables within the
variable [Details] entire function.
optimizing | NOLoop [Global variables] Disables loop control variables or
range [Specify optimizing external variables in a loop from being
range :] moved outside the loop.
| NOBlock } Disables optimization of external
variables which extend across loops
or branches.
Vacant loop DEL_vacant_loop = {0 Optimize Disables elimination of vacant loops.
elimination | 1} [Details] Eliminates vacant loops.
[Miscellaneous]
[Delete vacant loop]
Loop unroll LOop Optimize Performs loop unrolling.
NOLOop [Details] Does not perform loop unrolling.

[Miscellaneous]
[Loop unrolling]

Page 34 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

Table 2.10 Optimize Category Options (cont)

Command Line

Item Format Dialog Menu Specification

Maximum MAX_unroll = <numeric Optimize Specifies the maximum number of
number of value> [Details] times a loop is expanded.

loop <numeric value>: 1 to 32 [Miscellaneous] Default: 1 (2 when speed or loop is
expansions [Specify maximum specified)

unroll factor :]

Elimination of INFinite_loop ={ 0 Optimize Disables elimination of an assignment
expression [Details] expression for external variables
preceding [Global variables] preceding an infinite loop.
infinite loop |13} [Delete assignmentEliminates an assignment expression
to global variables for external variables preceding an
before an infinite infinite loop.
loop]
External GLOBAL_Alloc ={0 Optimize Disables allocation of external
variable [Details] variables to registers.
register |1} [Global variables] Allocates external variables to
allocation [Allocate registers registers.
to global
variables :]
Structure/ STRUCT_Alloc ={0 Optimize Disables allocation of structure/union
union [Details] members to registers.
member |1} [Miscellaneous] Allocates structure/union members to
register [Allocate registers registers.
allocation to struct/union
members :]
const CONST_Var_propagate = Optimize
constant {0 [Details] Disables constant propagation of
propagation [Global variables] external constants declared by const.
|13} [Propagate Performs constant propagation of

variables which are external constants declared by const.
const qualified :]

Expansion of CONST_Load = { Inline Optimize Expands instructions for loading
constant [Details] constants.
loading | Literal } [Miscellaneous] Accesses literal pool for loading
instructions [Load constant constants.

value as :] Default: When size is specified, up to
two or three instructions are
expanded. In other cases, the default

is literal.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

Page 35 of 1176

RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Table 2.10 Optimize Category Options (cont)

Command Line

Item Format Dialog Menu Specification
Instruction SChedule = {0 Optimize[Instructions are not scheduled.
scheduling |13} Details] Instructions are scheduled.
[Global variables]
[Schedule
instructions :]
Software SOftpipe Optimize Validates software pipelining.
pipelining [SH- [Details]
2A, SH2A- [Miscellaneous]
FPU, SH-4, [Software
SH-4A and pipelining :]
SH4AL-DSP]
Division of SCOpe Optimize Optimizing ranges are divided.
optimizing NOSCope [Details] Optimizing ranges are not divided.
ranges [Miscellaneous]
[Not divide the
optimization range]
GBR relative LOGIc_gbr Optimize Generates code that uses GBR
logic [Gbr relative relative addresses for logic operations
operation operation] of external variables.
generation
Preventing CPP_NOINLINE C/C++ <Optimize> C++ Inline functions are not expanded
expansion of [Details]
C++ Inline [Inline]
functions [Doesn't Expand
C++ Inline
Functions]
Optimization ~ ALIAS = {ANSI | Optimize Optimization considering type of
considering [Details] object indicated by pointer is applied.
type of object NOaANS]) [Miscellaneous] optimization considering type of
indicated by [Optimization object indicated by pointer is not
pointer considering type of

o= applied.
object indicated by

pointer]

Page 36 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

OPtimize: Optimization

Optimize[Optimization]

Command Line Format

OPtimize = { 0 | 1 | Debug_only }

Description

Specifies the level of compiler optimization for the object program.

When optimize=debug_only is specified, the compiler does not optimizes the object program.
The output has highly accurate debugging information, which eases debugging at the source
level.

When optimize=0 is specified, the compiler optimizes some parts of the object program,
allocating automatic variables to registers, consolidating function-exit blocks, consolidating
multiple functions where this is possible, etc. Accordingly, the code size may become smaller
than that compiled with the optimize=debug_only setting. When optimize=1 is specified, the
compiler optimizes the object program.

The default for this option is optimize=1.

SPeed, Slze, NOSPeed: Optimization for Speed

Optimize[Speed or size :][Optimize for speed][Optimize for size]
[Optimize for both speed and size]

Command Line Format

SPeed

Slze

NOSPeed

Description

Table 2.11 is a list of the items optimized for the speed, size, and nospeed options.
These optimization items can be controlled by option.

The default for this option is nospeed.

R20UT0704EJ0102 Rev. 1.02 Page 37 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Table 2.11 List of Optimization Items

Expansion Expansion

Automatic Optimize Expansion of of Integer Unaligned
Inline for Loop of Shift Transfer Constant Data
Option Expansion Expansion Code Code Division Transfer
speed inline=20 loop inline inline inline inline
size noinline noloop runtime runtime runtime runtime
nospeed noinline noloop inline inline inline inline

Goptimize: Inter-Module Optimization

Optimize[Generate file for inter-module optimization]

Command Line Format

Goptimize

Description

Outputs the additional information for the inter-module optimization.

For the file specified with this option, the inter-module optimization is performed at linkage.

MAP: External Variable Access Optimization

Optimize[Optimization for access to external variables :][Inter-module]

Command Line Format

MAP = <file name>

Description

This option sets the base addresses by using an external symbol-allocation information file
created by the optimizing linkage editor and creates code that performs access to external or
static variables relative to the base address. When gbr=auto is specified, the compiler may set
the base address in the GBR register, and may create code that performs access to external or
static variables relative to the value in GBR.

Compile the program before using this option. At linkage, specify map=<file name> to create
the external symbol-allocation information file. Then specify map=<file name> and compile
the program again.

Example

Source program (test.c)

Page 38 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

int A,B,C;

void main ()

Q W oM o~
Il
o

(1) Command: shc test.c
<Output code>

_main:

MOV.L L11,R6 ;A

MOV #0,R2

MOV.L R2, QR6

MOV.L L11+4,R6 ; B

MOV.L R2, @R6

MOV.L L11+8,R6 ; C

RTS

MOV.L R2, @R6

L1l1l:

.DATA.L A

.DATA.L B

.DATA.L _C
R20UT0704EJ0102 Rev. 1.02 Page 39 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

(2) Command: shc test.c
optlnk -map=test.bls -start=P/400,B/1000 test.obj
shc —-map=test.bls test.c

Data allocation after linkage

0x100
g 0x100
C 0x100

<Output code>

~main:

MOV.W L11,R1 ; A Sets the address of A as the base address.
MOV #0, R0

MOV. L RO, @R1

MOV.L RO, @ (4,R1)

RTS

MOV.L RO, @(8,R1)

L11l:

DATAW A The address of A consists of 2 bytes.
Remarks

When the order of the definitions of external variables has been changed, a new external
symbol-allocation information file must be created.

If any option other than the map option in the previous compilation differs from the one in the
current compilation, or if any contents of a function are changed, the result of the object code
is not guaranteed. In such a case, a new external symbol-allocation information file must be
created.

Page 40 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SMap: Optimization of External Variable Access
Optimize[Optimization for access to external variables :][Inner-module]

e Format
SMap
e Description

Specifies a base address for external or static variables defined in the file to be compiled, and
generates code that uses addresses relative to the base address for access to the variables.

When gbr=auto is specified, the compiler specifies a base address in the GBR according to the
conditions and generates code that uses GBR relative addresses for access to external or static
variables.

e Example
int A,B,C;
void main ()

{

A = 0;
B = 0:
c = 0;
}
MOV.L L11,R6 ; A
MOV #0,R2 ; H'00000000
MOV.L R2, @R6
MOV.L R2,@(4,R6)
RTS
MOV.L R2,@(8,R6)
e Remarks

When this option and map=<file name> are specified simultaneously, the map option is valid.

R20UT0704EJ0102 Rev. 1.02 Page 41 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

GBr: Automatic Creation of GBR Relative Access Code
Optimize[Gbr relative operation :]

e Command Line Format
GBr = { Auto | User }

e Description
When gbr=auto is specified, the compiler will automatically create GBR-relative code for
logic operations by certain conditions. When gbr=auto and map=<file name> are specified,
the compiler may set a base address in GBR and may create code that performs access to
external or static variables relative to the value in GBR by certain conditions.
When gbr=user is specified, the user must specify the setting of and references to GBR and
access relative to the value in GBR by using the #pragma extensions #pragma gbr_base or
#pragma gbr basel, or intrinsic functions that are related to GBR. The default for this option
is gbr=auto.

e Example
Program
char A,B,C;
void main()
{
Al=1;
B &=1;
Cr=1;
}
<Output code(gbr=auto)>
_main:
STC GBR,@-R15 ; Saves the contents of GBR
MOV #0,RO
LDC R0O,GBR ; Sets 0 to GBR
MOV.L L11+2,R0 ; RO <- Address of A
OR.B #1,@R0O,GBR) ;A|=1
MOV.L L11+6,R0 ; RO <- Address of B
AND.B #1,@(R0O,GBR) ;B &=1
MOV.L L11+10,R0 ; RO <- Address of C
XOR.B #1,@(R0O,GBR) ;C"=1
RTS
LDC @R15+,GBR ; Restores the contents of GBR
L11:
Page 42 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 2 Compiler Options
.RES.W 1
.DATA.L A
.DATA.L B
.DATA.L C
e Remarks

When gbr=auto is specified in compiling a program in which #pragma gbr_base or #pragma
gbr_basel is used, a warning message will be displayed and the specifications by the
#pragma extensions will be ignored.

When gbr=auto is specified in compiling a program in which intrinsic functions that are
related to GBR are used, an error will occur.

When gbr=auto is specified, the contents of the GBR register will be saved and restored

CAse: switch Statement Expansion Method

Optimize[Switch statement :]

Command Line Format

CAse = { Ifthen | Table }

Description

Specifies a switch statement expansion method.

When case=ifthen is specified, the switch statement is expanded using the if then method,
which repeats, for each case label, comparison between the evaluated value of the expression
in the switch statement and the case label value. If they match, execution jumps to the
statement of the case label. This method increases the object code size depending on the
number of case labels in the switch statement.

When case=table is specified, the switch statement is expanded using the table method, which
stores the case label jump destinations in a jump table and enables a jump to the statement of
the case label that matches the expression in the switch statement by accessing the jump table
only once. This method increases the jump table size in the literal pool depending on the
number of case labels in the switch statement, but the execution speed is always the same.

If this option is not specified, the compiler automatically selects one of the methods for
expansion.

R20UT0704EJ0102 Rev. 1.02 Page 43 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

SHIft: Shift Operation Expansion

Optimize[Shift Operation :]

Command Line Format
SHIft = { Inline | Runtime }
Description

Selects the method for shift operations where shifting is by a constant number of bits greater
than 0 and less than (length in bits of the left operand - 1).

When shift=inline is specified, all shift operations are expanded.

When shift=runtime is specified, the runtime routine will be called if some instructions are to
be expanded.

When the size option has been specified, the default for this option is shift=runtime. When the
speed or nospeed option has been specified, the default for this option is shift=inline.

BLOckcopy: Transfer Code Expansion

Optimize [Transfer code development :]

Command Line Format

BLOckcopy = { Inline | Runtime }

Description

When blockcopy=inline is specified, (the instructions of) all coding for transfer between areas
of memory are expanded.

When blockcopy=runtime is specified, the runtime routine will be called when a large block
of memory is to be transferred.

When the size option has been specified, the default for this option is blockcopy=runtime.
When the speed or nospeed option has been specified, the default for this option is
blockcopy=inline.

Page 44 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Unaligned: Unaligned Data Transfer
Optimize[Unaligned move :]

e Command Line Format
Unaligned = { Inline | Runtime }
e Description
When unaligned=inline is specified, unaligned data transfer are expanded.

When unaligned=runtime is specified, the runtime routine will be called if a large block of
unaligned data is to be transferred.

When the size option has been specified, the default for this option is unaligned=runtime.
When the speed or nospeed option has been specified, the default for this option is
unaligned=inline.

e Remarks

This option is used for transfer of a structure whose alignment value is 1.
INLine, NOINLine: Automatic Inline Expansion
Optimize[Details][Inline][Automatic inline expansion]

e Command Line Format
INLine=[<numeric value>]
NOINIline

e Description
Specifies whether to automatically perform inline expansion of functions.
When the inline option is specified, the compiler automatically performs inline expansion.
The user is able to use inline=<numeric value>, to specify the allowed increase in the
program’s size due to the use of inline expansion. For example, when inline=50 is specified,
inline expansion will be applied until the program has grown to 150% of its size (gain of 50%).
When the noinline option is specified, automatic inline expansion is not performed.
When the speed option has been specified, the default for this option is inline=20. When the
nospeed or size option, or optimize=0 has been specified, the default is noinline.

R20UT0704EJ0102 Rev. 1.02 Page 45 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

FILe_inline: Inter-file Inline Expansion

Optimize[Details][Inline][Inline file path]

Command Line Format
FILe_inline=<file name>[,...]
Description

Performs inline expansion for functions that extend across files for the files specified with
<file name>.

Example
<a.c>

func () {

By compiling a program with she —file_inline=b.c a.c specified, calling of function g() in a.c
is expanded as follows:

func () {

h();

}
Remarks

If the file_inline option and noinline option are specified simultaneously, inline expansion is
performed for only the functions specified with #pragma inline.

If an extern function is defined with the same name in more than one function specified with
the file_inline option, no operation is guaranteed (using a single function definition randomly
selected for inline expansion).

The extension of the file name specified by <file name> cannot be omitted.
A file to be compiled cannot be specified with the file_inline option.

A wild card (* or ?) cannot be specified for <file name>.

Page 46 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

GLOBAL_Volatile: Handling External Variables as volatile
Optimize[Details][Global variables][Treat global variables as volatile qualified]

e (Command Line Format
GLOBAL Volatile= {01}
e Description

When global_volatile=0 is specified, the external variables not declared with volatile are
optimized. Accordingly, the access count and access order for external variables may differ
from those in the written C/C++ program.

When global_voelatile=1 is specified, all external variables are handled as if they were
declared with volatile. Accordingly, the access count and access order for external variables
are exactly the same as those in the written C/C++ program.

The default for this option is global_volatile=0.

R20UT0704EJ0102 Rev. 1.02 Page 47 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

OPT_Range: External Variable Optimizing Range Specification

Optimize[Details][Global variables][Specify optimizing range :]

Command Line Format

OPT_Range = { All | NOLoop | NOBlock }

Description

When opt_range=all is specified, the compiler optimizes external variables within the entire
function.

When opt_range=noloop is specified, external variables in a loop and external variables used
in a loop iteration condition are not to be optimized.

When opt_range=noblock is specified, external variables extending across branches
(including loops) are not to be optimized.
When optimize=0 or optimize=debug_only is specified, the default for this option is
opt_range=noblock. For any other case, the default for this option is opt_range=all.
Examples
(1) Optimization extending across a branch (done when opt_range=all or opt_range=noloop
is specified)
int A,B,C;
void f (int a) {

A =1;
if (a)
B =1;

= A;

<Source program image after optimization>
int A,B,C;
void f (int a) {

B
C=1; /*Reference of A is eliminated and A = 1 is propagated */

Page 48 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

(2) Optimization in a loop (done when opt_range=all is specified)
int A,B,C[100];
void f {
int 1i;
for (i=0;i<A;i++) |
Cl[i] = B;
}
}
<Source program image after optimization>
int A,B,C[100];
void f {
int 1i;
int temp A, temp B;
temp_A = A; /* Reference of A by loop iteration condition is moved outside the loop */
temp B = B; /* Reference of B in the loop is moved outside the loop */
for (i=0;i< temp_A;i++) { /* Reference of A in the loop is eliminated */
C[i] =temp_B; /* Reference of B in the loop is eliminated */
}
}

e Remarks
When opt_range=noloop is specified, max_unroll=1 is always the default.

When opt_range=noblock is specified, max_unroll=1, const_var_propagate=0, and
global_alloc=0 are always the default.

R20UT0704EJ0102 Rev. 1.02 Page 49 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

DEL_vacant_loop: Vacant Loop Elimination

Optimize[Details][Miscellaneous][Delete vacant loop]

Command Line Format
DEL vacant loop={0]|1}
Description

When del_vacant_loop=0 is specified, even when there is no loop internal processing, a loop
is not eliminated.

When del_vacant_loop=1 is specified, loops with no internal processing are eliminated.
The default for this option is del_vacant_loop=0.
Remarks

Note that the default differs from that for earlier versions of Ver. 7.0 (up to Ver. 7.0.04) of the
SH C/C++ compiler.

— Up to Ver. 7.0.04: Vacant loops are eliminated.
— Ver. 7.0.06 or later: Vacant loops are not eliminated.

LOop, NOLOop: Loop Unrolling

Optimize[Details][Miscellaneous][Loop unrolling :]

Command Line Format

LOop

NOLOop

Description

Specifies whether to perform loop unrolling.

When the loop option is specified, optimization is performed in compiling loop statements (for,
while, and do-while).

When the noloop option is specified, optimization is not performed in compiling loop
statements.

When optimize=1 and speed are specified, the default for this option is loop. For any other
case, the default for this option is noloop.

Page 50 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

MAX_ unroll: Loop Expansion Maximum Number Specification
Optimize[Details][Miscellaneous][Specify maximum unroll factor :]

e Command Line Format
MAX unroll = <numeric value>
e Description

Specifies the maximum number of loops to be expanded. An integer from 1 to 32 can be
specified for <numeric value>. If any other value is specified, an error will occur.

If speed or loop is specified, the default for this option is max_unroll=2. For any other case,
the default for this option is max_unroll=1.

e Remarks

When opt_range=noloop or opt_range=noblock is specified, the default for this option is
max_unroll=1.

R20UT0704EJ0102 Rev. 1.02 Page 51 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

INFinite_loop: Elimination of Expression Preceding Infinite Loop
Optimize[Details][Global variables][Delete assignment to global variables before an infinite loop]

e Command Line Format
INFinite loop={0]|1}
e Description

When infinite_loop=0 is specified, an assignment expression for external variables, which is
located immediately before an infinite loop is not eliminated.

When infinite_loop=1 is specified, an assignment expression that is located immediately
before an infinite loop and is for external variables that are not referenced from the infinite
loop is eliminated.

The default for this option is infinite_loop=0.
e Example
int A;
void f()
{
A= 1; /* Assignment expression for external variable A */
while (1) {} /* Aisnotreferenced */
}
<Source program image when infinite_loop=1 is specified>
void f()
{
/* Assignment expression for external variable A is eliminated */
while (1) {}
}

e Remarks

Note that the default differs from that for earlier versions of Ver. 7.0 (up to Ver. 7.0.04) of the

SH C/C++ compiler.

— Upto Ver. 7.0.04: An assignment expression that is located immediately before an
infinite loop and is for external variables that are not referenced from
the infinite loop are eliminated.

— Ver. 7.0.06 or later: An assignment expression for external variables, which is located
immediately before an infinite loop is not eliminated.

Page 52 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

GLOBAL_Alloc: External Variable Register Allocation

Optimize[Details][Global variables][Allocate registers to global variables :]

Command Line Format

GLOBAL Alloc={0]1}

Description

When global_alloc=0 is specified, allocation of external variables to registers is disabled.
When global_alloc=1 is specified, external variables are allocated to registers.

Remarks

When opt_range=noblock or optimize=debug_only is specified, the default for this option is
global_alloc=0.

Note that when optimize=0 is specified, the default differs from that for earlier versions of Ver.
7.0 (up to Ver. 7.0.04) of the SH C/C++ compiler.

— Up to Ver. 7.0.04: External variables are allocated to registers.
— Ver. 7.0.06 or later: Allocation of external variables to registers is disabled.

For any other case, the default for this option is global_alloc=1.

STRUCT _Alloc: Structure/Union Member Register Allocation

Optimize[Details][Miscellaneous][Allocate registers to struct/union members]

Command Line Format
STRUCT Alloc={0]|1}
Description

When struct_alloc=0 is specified, allocation of structure or union members to registers is
disabled.

When struct_alloc=1 is specified, structure or union members are allocated to registers.
Remarks

If struct_alloc=1 is specified when opt_range=noblock or global_alloc=0 is specified, only
local structure or union members are allocated to registers.

When optimize=debug_only is specified, the default for this option is struct_alloc=0. Note
that when optimize=0 is specified, the default differs from that for earlier versions of Ver. 7.0
(up to Ver. 7.0.04) of the SH C/C++ compiler.

— Up to Ver. 7.0.04: Structure or union members are allocated to registers.
— Ver. 7.0.06 or later: Allocation of structure or union members to registers is disabled.

For any other case, the default for this option is struct_alloc=1.

R20UT0704EJ0102 Rev. 1.02 Page 53 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

CONST_Var_propagate: const Constant Propagation

Optimize[Details][Global variables][Propagate variables which are const qualified :]

Command Line Format
CONST Var propagate={0]1}
Description

When const_var_propagate=0 is specified, constant propagation for external variables
declared by const is disabled.

When const_var_propagate=1 is specified, constant propagation is performed for even
external variables declared by const.

Example

const int x = 1;

int A;

void f() {

A = xX;

}

<Source program image when const_var_propagate=1 is specified>
void f() {

A = 1; /*x=1Iispropagated */

}

Remarks

Variables declared by const in a C++ program cannot be controlled by this option (constant
propagation is always performed).

When optimize=0, optimize=debug_only, or opt_range=noblock is specified, the default for
this option is const_var_propagate=0. For any other case, the default for this option is
const_var_propagate=1.

Page 54 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

CONST_Load: Constant Loading Instruction Expansion
Optimize[Details][Miscellaneous][Load constant value as :]

e Command Line Format
CONST Load = { Inline | Literal }

e Description
When const_load=inline is specified, the instructions for loading constants within 2 bytes with
a sign are expanded.
When const_load=literal is specified, the literal pool is accessed for loading constants of two
bytes or more.

The following shows the default for this option.

Option Specified Default
-optimize=1 and -speed const_load=inline
-optimize=1 and -size The default for this option is const_load=inline when instruction

expansion for a 2-byte constant is possible with two instructions
or when instruction expansion for a 4-byte constant is possible
with three instructions. For any other case, the default for this
option is const_load=literal.

-optimize=1 and -nospeed

-optimize=0 or const_load=literal
-optimize=debug_only

e Example
int f£(){
return (257);
}

R20UT0704EJ0102 Rev. 1.02 Page 55 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

(1) const_load=inline or speed is specified

MOV #1, RO ; RO <=1

SHLLS8 RO ; RO <- 256 (1<<8)
RTS

ADD #1,R0 ; RO <= 257 (256+1)

(2) const_load=literal, or size or nospeed is specified

MOV .W #L11,R0
RTS

NOP

L11l:

.DATA.W H’ 0101

SChedule: Instruction Scheduling
Optimize[Details][Global variables][Schedule instructions :]

e (Command Line Format
SChedule= {01}
e Description

When schedule=0 is specified, instructions are not scheduled. Accordingly, processing is
performed in the same order the instructions have been written in the C/C++ program.

When schedule=1 is specified, instructions are scheduled taking into consideration pipeline
processing and superscalar (SH-2A, SH2A-FPU, SH-4, SH-4A, or SH4AL-DSP).

The default for this option is schedule=0 when optimize=0 or optimize=debug_only is
specified, and schedule=1 otherwise.

SOftpipe: Software Pipelining
Optimize[Details][Miscellaneous][Software pipelining :]

e Command Line Format
SOftpipe
e Description
Validates software pipelining.
e Remarks
This option is only valid when cpu=sh2a, cpu=sh2afpu, cpu=sh4, cpu=sh4a, or
cpu=sh4aldsp is specified.

Page 56 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SCOpe, NOSCope: Division of Optimizing Ranges

Optimize[Details][Miscellaneous][Not divide the optimization range :]

Command Line Format

SCOpe

NOSCope

Description

When the scope option is specified, the compiler divides the optimizing ranges of the large-
size functions into many sections.

When the noscope option is specified, the compiler does not divide the optimizing ranges.
When the optimizing range is expanded, the object performance is generally improved
although the compilation time is delayed. However, if registers are not sufficient, the object
performance may be lowered.

Use this option at performance tuning because it affects the object performance depending on
the program.

LOGIc_gbr: GBR Relative Logic Operation Generation

Optimize[Gbr relative operation]

Format

LOGIc_gbr

Description

Generates code that uses GBR relative addresses for logic operations of external variables.
Remarks

When gbr=auto is specified, this option is invalid.

When using this option, specify the $GO section start address by intrinsic function set_gbr().

R20UT0704EJ0102 Rev. 1.02 Page 57 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

CPP_NOINLINE

Description Format:

Command Line Format:

Description:

Remarks:

C/C++ <Optimize> [Details] [Inline] [Doesn't Expand C++ Inline
Functions]

CPP_NOINLINE

In compilation of a C++ source program, this option prevents inline
expansion of an inline-specified function or a member function defined
in a class or structure and generates a code as a calling static function
with internal linkage.

This option is valid only in compilation of C++ source programs. If the
inline or speed option is specified or #pragma inline is used, the inline
expansion of a function that is supposed to be prevented by
CPP_NOINLINE may be carried out.

Page 58 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

ALIAS: Optimization considering type of object indicated by pointer

Optimize[Details][Miscellaneous][Optimization considering type of object indicated by pointer]

Command Line Format

ALIAS = {ANSI | NOANSI }

Description

When alias=ansi is specified, the compiler performs optimization considering type of object
indicated by pointer in compliance with the ANSI standard. Although, this generally produces
object code with better performance than that when alias=noansi is specified, the results of
execution may differ from those for code produced by old versions of the compiler.

When alias=noansi is specified, the compiler does not perform ANSI-complaint optimization
considering type of object indicated by pointer. The default for this option is alias=noansi.

Examples
long x,n;

void func (short * ps)

n=1;
*ps = 2;
X = n;

[alias=noansi is specified]
;7 The possibility of the value of n being overwritten by *ps = 2;

;7 1s considered, so the value of n is reloaded by (A)

MOV #1,R2 ; H'00000001
MOV.L L11+2,R6 ;o n
MOV.L R2,@R6 ;N
MOV #2,R2 ; H'00000002
MOV .W R2,@R4 ;7 *(ps)
MOV.L @R6,R2 ; n (A) n is reloaded
MOV.L L11+6,R6 P
RTS
MOV.L R2,@R6 ;X
R20UT0704EJ0102 Rev. 1.02 Page 59 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

[alias=ansi is specified]

;7 Since the types of *ps and n are different, we assume that the

;7 n value will not overwritten by *ps = 2, and n = 1 is reused at
;7 (B). Accordingly, the results will differ if the value of n was
;; overwritten by *ps = 2;.

MOV #1,R2 ; H'00000001
MOV.L L11+2,R6 ;o n
MOV.L R2, QRO ; n
MOV #2,R2 ; H'00000002
MOV .W R2, QR4 ; *(ps)
MOV #1,R2 ; H'00000001 (B) n = 1 is reused
MOV.L L11+6,R6 P
RTS
MOV.L R2,@R6 'S
Remarks

This option is only valid when optimize=1 has been specified.

Page 60 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

2.2.5 Other Options

Table 2.12 Other Category Options

Command Line

Item Format Dialog Menu Specification

Embedded ECpp Other Checks syntax according

C++ language [Miscellaneous options :] to the Embedded C++
[Check against EC++ language specifications.
language specification]

DSP-C DSpc Other Checks syntax according

language [Miscellaneous options :] to the DSP-C language

[SH2-DSP, [Check against DSP-C specifications.

SH3-DSP and language specification]

SH4AL-DSP]

Comment COMment = Other

nesting { Nest [Miscellaneous options :] Permits comment (/* */)
[Allow comment nest] nesting.

| NONest } Does not permit comment

(/* */) nesting.

MAC register Macsave ={0

Other
[Miscellaneous options :]

[Callee saves/restores MACH
and MACL registers if used]

Does not guarantee the
MAC register contents
before and after a
function is called.
Guarantees the MAC
register contents before
and after a function is
called.

Saving and SAve_cont_reg={0 Other Does not save or restore
restoring SSR [Miscellaneous options :] SSR and SPC registers.
and SPC |1} [Saves/restores SSR and SPC Saves and restores SSR
registers registers] and SPC registers.
[SH-3 to SH-4]
Extension of RTnext Other Creates a sign-extension
return value [Miscellaneous options :] or zero-extension of the
[Expand return value to 4 byte] return value
NORTnext Creates no sign-

extension or zero-
extension of the return
value

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 61 of 1176

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.12 Other Category Options (cont)

Command Line
Item Format

Dialog Menu

Specification

Converting the APproxdiv
floating-point

constant

divisions to

multiplications

Other
[Miscellaneous options :]

[Approximate a floating-point

constant division]

Converts the division of
floating-point constant to
multiplication

Avoiding PAtch=7055 Other Avoids the creation of a

SH7055 illegal [Miscellaneous options :] program that includes

operation [Avoid illegal SH7055 instructions] operations that are illegal

[SH-2E] for the SH7055 due to the
order of instructions.

FPSCR FPScr = { Safe Other The FPU is guaranteed to

register [Miscellaneous options :] be in single-precision

switching [Change FPSCR register if double mode before and after

[SH2A-FPU, data used] function calls.

SH-4, and | Aggressive The FPU is not

SH-4A] guaranteed to be in
single-precision mode
before and after function
calls.

Suppress Volatile_loop Other Suppresses optimization

optimization of [Miscellaneous options :] of loop iteration condition

loop iteration [Treats loop condition as volatile

condition qualified]

Enumeration AUto_enum Other Automatically selects the

data size [Miscellaneous options :] enumeration data size.

[enum size is made the smallest]

Preferential ENAble_register Other Allocates preferentially

allocation of [Miscellaneous options :] the variables with register

register [Enable register declaration] storage class

storage class specification to registers.

variables

Page 62 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

Table 2.12 Other Category Options (cont)

Command Line

Item Format Dialog Menu Specification

ANSI STRIct_ansi Other Conforms to the ANSI

conformance [Miscellaneous options :] standard for the following

[Obey ansi specifications more processing:
strictly] e unsigned int and long
type operations
e Associativity of

floating-point
operations

Conversion to FDIv Other Converts integer division

floating-point [Miscellaneous options :] to floating-point division.

division [Change integer division into

[SH-2E, SH2A- floating-point]

FPU, SH-4, and

SH-4A]

Floating-point to FIXED_Const Other Handles floating-point

fixed-point [Miscellaneous options :] values as fixed-point

conversion [Floating-point constant is handled values.

[SH2-DSP, as a fixed-point constant]

SH3-DSP and

SH4AL-DSP]

Conversion of 1.0 FIXED_Max
to _ _fixed type
maximum value

Other Handles 1.0r (1.0R) as
[Miscellaneous options :] the maximum value of
[treats 1.0 as maximum number of _ _fixed (long _ _fixed)

[SH2-DSP, fixed type] type.

SH3-DSP and

SH4AL-DSP]

Omitting type FIXED_Noround Other Omits type conversion for
conversion for [Miscellaneous options :] the operation result of
__fixed [delete type conversion after fixed _ _fixed type
multiplication multiple] multiplication.

result

[SH2-DSP,

SH3-DSP and

SH4AL-DSP]

DSP repeat loop REPeat Other Uses a DSP-expansion

[SH3-DSP and
SH4AL-DSP]

[Miscellaneous options :]
[DSP repeat loop is used]

repeat loop.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

/{ Page 63 of 1176
KENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.12 Other Category Options (cont)

Command Line
Item Format

Dialog Menu

Specification

Omitting range SIMple_float_conv Other

check for
conversion
between floating-
point number and

[Miscellaneous options :]

[Not check the range in conversion
between floating point number and
integer]

Generates a code that
does not include a check
of the target value range
for the type conversion
between an unsigned

integer integer and a floating-pint
[SH-2E, SH2A- number

FPU, SH-4, and

SH-4A]

Suppress DIVS NOUSE_DIV_INS Other Suppress generation of
and DIVU T [Miscellaneous options :] the DIVU and DIVS
instruction [Suppress DIVS and DIVU instructions

generation instruction generation]

Change FLOAT_ORDER Other Change operation order

operation order
for floating-point
expression

[Miscellaneous options :]
[Change operation order for
floating-point expression
aggressively]

for floating-point
expression aggressively

Page 64 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

ECpp: Embedded C++ Language

Other[Miscellaneous options:][Check against EC++ language specification]

Command Line Format

ECpp

Description

The compiler checks the syntax of the C++ source program according to the Embedded C++
language specifications. The Embedded C++ language specifications do not support such
keywords as catch, const_cast, dynamic_cast, explicit, mutable, namespace,
reinterpret_cast, static_cast, template, throw, try, typeid, typename, and using. Therefore,
if these keywords are written in the source program, the compiler will output an error message.
Remarks

The Embedded C++ language specifications do not support a multiple inheritance or virtual
base class. If a multiple inheritance or virtual base class is written in the source program, the
compiler will display error message "C5882 (E) Embedded C++ does not support multiple or
virtual inheritance" at compilation.

This option and the exception option cannot be specified simultaneously.

DSpc: DSP-C Language

Other[Miscellaneous options :][Check against DSP-C language specification]

Command Line Format
DSpc
Description

The compiler checks the syntax of the DSP-C source program according to the DSP-C
language specifications. For details on the DSP-C language specifications, refer to
section 10.2, DSP-C Specifications.

Remarks
This option can only be specified for cpu=sh2dsp, sh3dsp, or sh4aldsp.

This option cannot be specified for a C++ source program.

R20UT0704EJ0102 Rev. 1.02 Page 65 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

COMment: Comment Nesting

Other[Miscellaneous options :][Allow comment nest]

Command Line Format
COMment={Nest | NONest}
Description

When comment=nest is specified, nested comments are allowed to be written in the source
program.

When comment=nonest is specified, and if nested comments are written, an error will occur.

The default for this option is comment=nonest.

Example

/* This is an example of/* nested */ comment */
T
(1

When comment=nest is specified, the compiler handles the above line as a nested comment;
however, when comment=nonest is specified, the compiler assumes (1) as the end of the
comment.

Macsave: MAC Register

Other[Miscellaneous options :][Callee saves/restores MACH and MACL registers if used]

Command Line Format

Macsave={ 0|1}

Description

Specifies whether or not to guarantee the contents of the MACH and MACL registers before
and after a function call.

When macsave=0 is specified, the contents of the MACH and MACL registers before and
after a function call are not guaranteed.

When macsave=1 is specified, the contents of the MACH and MACL registers before and
after a function call are guaranteed.

Functions compiled with macsave=0 specified cannot be called from functions compiled with
macsave=1 specified. On the contrary, functions compiled with macsave=1 specified can be
called from functions compiled with macsave=0 specified.

The default for this option is macsave=1.

Page 66 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SAve_cont_reg: Saving and Restoring SSR and SPC Registers

Other[Miscellaneous options :][Saves/restores SSR and SPC registers]

Command Line Format

SAve cont reg={0]1}

Description

Specifies whether or not to save and restore the contents of the SSR and SPC registers.

When save_cont_reg=0 is specified, the contents of the SSR and SPC registers are not saved
or restored.

When save_cont_reg=1 is specified, the contents of the SSR and SPC registers are saved and
restored.

This option is only valid when cpu=sh3, sh3dsp, sh4, sh4a, or shd4ldsp is specified and
#pragma interrupt is specified.

The default for this option is save_cont_reg=1.

RTnext, NORTnext: Return Value Extension

Other[Miscellaneous options :][Expand return value to 4 byte]

Command Line Format

RTnext

NORTnext

Description

Specifies whether to perform sign or zero extension of a return value in register RO when a
type of a return value is char, signed char, unsigned char, short, signed short, or unsigned short
in a function where function prototype has been declared.

When the rtnext option is specified, sign or zero extension of the function return value is
performed.

When the nortnext option is specified, sign or zero extension of the function return value is
not performed.

The default for this option is nortnext.

R20UT0704EJ0102 Rev. 1.02 Page 67 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

APproxdiv: Converting Floating-point Constant Division to Multiplication

Other[Miscellaneous options :][Approximate a floating-point constant division]

Command Line Format
APproxdiv
Description

Converts divisions of floating-point constants into multiplications of the corresponding
reciprocals as constants.

Remarks

When this option is specified, the speed of execution of floating-point constant division will be
improved. The precision of operation may, however, be changed, so take care on this point.

PAtch: Avoiding SH7055 Illegal Operation

Other[Miscellaneous options :][Avoid illegal SH7055 instructions]

Command Line Format
PAtch = 7055
Description

Avoids the output of a program that includes operations that are illegal for the SH7055 due to
the order of instructions.

Remarks

This option is only valid when cpu=sh2e has been specified.

FPScr: FPSCR Register Precision Mode Switching

Other[Miscellaneous options :][Change FPSCR register if double data used]

Command Line Format

FPScr = { Safe | Aggressive }

Description

Specifies whether or not to guarantee the precision mode for the FPSCR register before and
after a function call.

In the SH2A-FPU, SH-4, or SH-4A, single or double precision mode is specified for the
FPSCR register when executing float or double operation.

When fpscr=safe is specified, the compiler always switches the precision-mode setting of the
FPSCR register to single precision after return from function calls.

When fpscr=aggressive is specified, the contents of the FPSCR register in terms of precision
mode after return from function calls are not guaranteed.

Page 68 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

This option is valid when cpu=sh2afpu|sh4|sh4a is specified and neither fpu=single nor
fpu=double is specified.

The default for this option is fpscr=aggressive.
Volatile_loop: Disabling Loop Iteration Condition Optimization
Other[Miscellaneous options :][Treats loop condition as volatile qualified]

e Command Line Format
Volatile loop
e Description

Disables optimization of the loop iteration condition if the loop iteration condition includes an
external variable.

Note however that if type conversion is performed, if two or more external variables are
included, or if composite operation is performed, optimization may be performed.

e Remarks

Without this option, if the loop iteration condition is invariant in the loop, the loop iteration
condition may be eliminated.

R20UT0704EJ0102 Rev. 1.02 Page 69 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

AUto_enum: Enumeration Data Size
Other[Miscellaneous options :][enum size is made the smallest]

e Command Line Format
AUto_enum
e Description

Processes the enum data as the minimum data type with which the enum value can fit in. The
default for this option is to process the enum value as the int type. Table 2.13 shows the
relationship between the possible enum values and data types.

Table 2.13 Relationship between enum Values and Data Types

Enumerator

Minimum Value Maximum Value Data Type
-128 127 signed char

0 255 unsigned char
-32768 32767 signed short

0 65535 unsigned short
Other than above Other than above int

ENAble_register: Preferential Allocation of register Storage Class Variables
Other[Miscellaneous options :][Enable register declaration]

e Format

ENAble register
e Description

Allocates preferentially the variables with register storage class specification to registers.
e Remarks

If a variable cannot be allocated to a register, message C0102 (I) Register is not
allocated to "variable name" in "function name" will be output. Note, however,
that this message will not be output if a parameter is not allocated to a register.

Page 70 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

STRIct_ansi: ANSI Conformance

Other[Miscellaneous options :][Obey ansi specifications more strictly]

Format
STRIct ansi
Description
Conforms to the ANSI standard for the following processing:
— unsigned int and long type operations
Example:
long sl;
unsigned int ui;

sl /= ui; /* When strict_ansi has been specified, unsigned int is applied for
operation. Otherwise, long is applied. */

— Associativity of floating-point operations
Remarks

When this option is specified, the operation results may be different from those of former-
version compilers.

FDIv: Conversion to Floating-Point Division

Other[Miscellaneous options :][Change integer division into floating-point]

Format
FDIv
Description

Converts integer division to floating-point division, which improves the speed of division
operation.

Remarks
This option is only valid when cpu=sh2e, sh2afpu, sh4, or sh4a is specified.

This option is invalid when the ifunc option is specified and is invalid for the function
specified with #pragma ifunc.

When cpu=sh2afpu, sh4, or sh4a and fpu=double are specified, this conversion is applied to
division when divisor and dividend are both four bytes or less. In other cases, this conversion
is applied to division when divisor and dividend are both two bytes or less.

R20UT0704EJ0102 Rev. 1.02 Page 71 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

FIXED_Const: Floating-Point Values to Fixed-Point Values Conversion

Other[Miscellaneous options :][Floating-point constant is handled as a fixed-point constant]

Command Line Format
FIXED_ Const

Description

Generates an object with converting floating-point values to fixed-point values.

Remarks

This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp and dspc are
specified.

When the expression format of the floating-point constant is explicitly used, an object is
generated as the floating-point constant even if this option is specified.

FIXED_ Max: Conversion of 1.0 to _ _fixed Type Maximum Value

Other[Miscellaneous options :][treats 1.0 as maximum number of fixed type]

Command Line Format
FIXED_ Max
Description

Generates an object with converting 1.0r to the maximum value of the __fixed type, and
converting 1.0R to the maximum value of the long __fixed type.

For details on the maximum value, refer to the description on fixed.h in section 10.4.1 (8),
Standard C Libraries.

Remarks

This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp, and dspc are
specified.

Page 72 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

FIXED Noround: Omitting Type Conversion for _ _fixed Multiplication Result

Other[Miscellaneous options :][delete type conversion after fixed multiple]

Command Line Format
FIXED Noround
Description

Onmits converting the long _fixed type result obtained from fixed type multiplication to
the fixed type.

Remarks

When this option is specified, the precision of operation may be changed.

This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp, and dspc are
specified.

When the expression format of the floating-point constant is explicitly used, an object is
generated as the floating-point constant even if this option is specified.

REPeat: DSP-expansion Repeat Loop

Other[Miscellaneous options :]J[DSP repeat loop is used]

Command Line Format
REPeat
Description

When the repeat option is specified, the loop may be expanded as the code that uses the DSP-
expansion repeat loop.

Remarks
The expansion-repeat loop is only available for the CPU that supports the LDRC instruction.
This option is only valid when cpu=sh3dsp or cpu=sh4aldsp has been specified

SIMple_float_conv: Omitting Range Check for Conversion between Floating-Point Number
and Integer

Other[Miscellaneous options :][Not check the range in conversion between floating point number
and integer]

Command Line Format

SIMple float conv

R20UT0704EJ0102 Rev. 1.02 Page 73 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

e Description

The compiler generates a code that does not include a check of the target value range for the
type conversion between unsigned integers and floating-point numbers.

e Examples

(1) unsigned long func(float f)

{

return ((unsigned int)f);

}

[Without simple_float_conv setting]

MOV
SHLLS
SHLL16
LDS
FSTS
FCMP/GT
BT

FADD
FSUB
L12:
FTRC
STS

#79,R2
R2

R2

R2, FPUL
FPUL, FR8
FR4, FR8
L12

FR8, FR8
FR8, FR4

FR4, FPUL
FPUL, RO

’

’

’

’

’

0x0000004F

0x4F000000

; When f > 0x4F000000,
; (f- 0x4F800000) is used as the value before conversion.

Conversion from float to signed long

[With simple_float_conv setting]

FTRC
STS

FR4,FPUL ; Conversion from float to signed long

FPUL, RO

Page 74 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

(2) float func2(unsigned long u)
{

return ((float)u):;

}

[Without simple_float_conv setting]

LDS R4, FPUL

CMP/PZ R4

BT/S L12

FLOAT FPUL, FRO ; Conversion from signed long to float
MOVA L13+2,R

FMOV.S @QRO, FRO ; When u > 0x80000000u,

FADD FR9, FRO ; 0x4F800000 is added to the value after conversion.
L12:

RTS

NOP

L13:

RES.W 1

DATA.L H'4F800000

[With simple_float_conv setting]

LDS R4, FPUL

RTS

FLOAT FPUL, FRO ; Conversion from signed long to float
e Remarks

This option is valid when cpu is sh2e, sh2afpu, sh4, or sh4a.

Correct operation is not guaranteed when the value before type conversion is not an integer
from 0 to 2147483647 or a floating-point number from 0.0 to 2147483647.0. When using a
value outside of these ranges, do not specify this option.

R20UT0704EJ0102 Rev. 1.02 Page 75 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

NOUSE_DIV_INST: Inhibiting generation of the DIVU and DIVS instructions

Other[Miscellaneous options :][Suppress DIVS and DIVU instruction generation]

Command Line Format
-NOUSE_DIV_INST

Description

Expands all integer-type division operations and remainder operations into code which does
not use the DIVU and DIVS instructions.

This option is only valid when the cpu=sh2a | sh2afpu specification has been made.

FLOAT_ORDER: Change operation order for floating-point expression aggressively

Other[Miscellaneous options :]J[Change operation order for floating-point expression aggressively]

Command Line Format
-FLOAT _ORDER
Description

The compiler aggressively optimizes floating-point expressions by changing the order of
operations.

Although the object code generally has better performance than when float_order is not
specified, the precision of operations may differ from that for code produced by earlier
versions of the compiler.

Examples
/* —-float order is specified, performed as * (b + c) * 100.0f */
float a,b,c;
£()
{
a=Db * 100.0f + ¢ * 100.0f;
}
Remarks
This option is only valid when optimize=1 is specified.

Page 76 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

2.2.6 CPU Options

Table 2.14 CPU Tab Options

Item Command Line Format Dialog Menu Specification
CPU/operating CPu ={SH1 CPU Generates SH-1 object.
mode | SH2 [CPU 1] Generates SH-2 object.
| SH2E Generates SH-2E object.
| SH2A Generates SH-2A object.
| SH2AFPU Generates SH2A-FPU object.
| SH2DSP Generates SH2-DSP object.
| SH3 Generates SH-3 object.
| SH3DSP Generates SH3-DSP object.
| SH4 Generates SH-4 object.
| SH4A Generates SH-4A object.
| SH4ALDSP } Generates SH4AL-DSP object.
Byte order ENdian = { Big CPU Specifies big endian.
[SH-3 to SH-4] | Little } [Endian :] Specifies little endian.
Floating-point FPu = { Single CPU Processes double-precision
operation mode [FPU 1] floating-point operation in
[SH2A-FPU, single precision.
SH-4, and | Double } Processes single-precision
SH-4A] floating-point operation in
double precision.
Rounding mode Round = { Zero CPU Rounds to zero.
[SH2A-FPU, | Nearest } [Round to :] Rounds to nearest.
SH-4, and
SH-4A]
Denormalized DENormalize = { OFF CPU Processes denormalized
numbers [Denormalized numbernumbers as zeros.
[SH4 and | ON} allower as a result] Processes denormalized
SH-4A] numbers as they are.

Program section Pic={0
position

independent

[other than SH-1] | 1

CPU

[Position independent

code (PIC)]
}

Generates no position
independent codes for the
program section.
Generates position
independent codes for the
program section.

R20UT0704EJ0102 Rev.
Mar 01, 2022

1.02

RENESAS

Page 77 of 1176

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.14 CPU Tab Options (cont)

Item

Command Line Format Dialog Menu

Specification

double to float DOuble=Float CPU Handles a double-type
conversion [Treat double as float] variable as a float-type
[other than variable.
SH2A-FPU,
SH-4, or
SH-4A]
Bit field order Blt_order={Left CPU Stores bit-field members
specification [Bit field’s members are from the upper bit.
| Right } allocated from the lower bit] Stores bit-field members
from the lower bit.
Boundary PACK ={1 CPU Assumes the boundary
alignment of [Pack struct, union and alignment value to be 1.
structure, union, |4} class] Follows the boundary
and class alignment.
members
Exception EXception CPU Enables exception
handling [Use try, throw and catch of handling function
NOEXception C++] Disables exception
handling function.
Runtime type RTTI= {ON CPU Enables dynamic_cast
information [Enable/disable runtime and typeid.
| OFF } information] Disables dynamic_cast
and typeid.
Method of Dlvision = { Cpu CPU Uses the CPU’s division
division* [Division :] instruction.
[SH-2] | Peripheral Uses a divider
(interrupts are masked).
| Nomask } Uses a divider
(interrupts are not
masked).
Note: For details of this option, see section 2.2.2, Object Options.

Page 78 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

CPu :CPU
CPU[CPU ;]

e (Command Line Format

CPu= {SH1
SH2
SH2E
SH2A
SH2AFPU
SH2DSP
SH3
SH3DSP

SH4A
SH4ALDSP

e Description

|
|
|
|
|
|
|
| SH4
|
|
}

Specifies the CPU type for the object program to be generated. Suboptions are listed in

table 2.15.

The default for this option is cpu=shl.

Table 2.15 Suboptions for cpu Option

Suboption Description

sh1 Generates SH-1 object.

sh2 Generates SH-2 object.

sh2e Generates SH-2E object.
sh2a Generates SH-2A object.
sh2afpu Generates SH2A-FPU object.
sh2dsp Generates SH2-DSP object.
sh3 Generates SH-3 object.
sh3dsp Generates SH3-DSP object.
sh4 Generates SH-4 object.

shda Generates SH-4A object.
sh4aldsp Generates SH4AL-DSP object.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 79 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

ENdian: Memory Byte Order

CPUJ[Endian :]

Command Line Format

ENdian = { Big | Little }

Description

When endian=big is specified, data bytes are arranged in the big endian order.
When endian=little is specified, data bytes are arranged in the little endian order.

Little endian object programs do not run on the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, or
SH2-DSP.

The default for this option is endian=big.

FPu: Floating-point Operation Mode

CPU[FPU :]

Command Line Format

FPu = { Single | Double }

Description

When fpu=single is specified, double-precision floating-point operation is carried out in single
precision.

When fpu=double is specified, single-precision floating-point operation is carried out in
double precision.

Specify fpu=single if floating point calculations are not used in the program.

This option is valid only when cpu=sh2afpu|sh4|sh4a is specified.

Note

When the fpu option is not specified or when fpu=single is specified, the precision mode
might need to be set to perform single-precision floating-point operation in an interrupt
function. For details, see section 9.4.1 (6) Interrupt Functions When the CPU Type Is SH2A-
FPU, SH4, or SH4A.

Page 80 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Round: Rounding Mode

CPU[Round to :]

Command Line Format

Round = { Zero | Nearest }

Description

Specifies the rounding method when floating-point constants are converted to object codes.
When round=zero is specified, values are rounded to zero.

When round=nearest is specified, values are rounded to nearest.

This option is valid only when cpu=sh2afpu|sh4|sh4a is specified.

The default for this option is round=zero.

DENormalize: Denormalized Numbers

CPU[Denormalized number allower as a result]

Command Line Format
DENormalize = { OFF | ON }
Description

Specifies the operation when denormalized numbers are used to describe floating-point
constants.

When denormalize=off is specified, denormalized numbers are treated as zeros.
When denormalize=on is specified, denormalized numbers as treated as they are.
This option is valid only when cpu=sh4|sh4a is specified.

The default for this option is denormalize=off.

R20UT0704EJ0102 Rev. 1.02 Page 81 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Pic: Position Independent Code

CPU[Position independent code (PIC)]

Command Line Format

Pic={0]1}

Description

When pic=1 is specified, a program section after linkage can be allocated to any address and
executed. A data section can only be allocated to an address specified at linkage. When using
this option as a position independent code, a function address cannot be specified as an initial
value. At C++ compilation, a pointer to a virtual function or function member requires a
function address as the initial value. Therefore, C++ programs containing virtual functions and
pointers to member functions cannot be executed as position independent codes.

Example 1:

extern int £ ();

int (*fp) () = £; <-- Cannot be specified
Example 2:

struct A {virtual void f();}; <--Cannot be specified
void (A::*ap) () = &A::f; <-- Cannot be specified
When epu=shl1 is specified, pic=1 is ignored.
The default for this option is pic=0.

Page 82 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

DOuble=Float: double to float Conversion
CPU[Treat double as float]

e Command Line Format
DOuble=Float

e Description
Generates an object with converting double-type (double-precision floating-point) values to
float-type (single-precision floating-point) values.

e Remarks

This option is invalid when cpu=sh2afpu|sh4|sh4a is specified, and assumes that fpu=single
is specified.

BIt_order: Bit Field Order Specification
CPU[Bit field’s members are allocated from the lower bit :]

e Command Line Format
BIt order={ Left | Right }

e Description
Specifies the order of bit field members.
When bit_order=left is specified, members are allocated from the upper bit.
When bit_order=right is specified, members are allocated from the lower bit.
The default for this option is bit_order=left.

e Remarks

For details on allocation of bit field members, refer to section 10.1.2, Internal Data
Representation, and the description on #pragma bit_order in section 10.3.1, #pragma
Extension Specifiers.

R20UT0704EJ0102 Rev. 1.02 Page 83 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

PACK: Boundary Alignment of Structure, Union, and Class Members

CPU[Pack struct, union and class]

Command Line Format

PACK = {14}

Description

Specifies the boundary alignment value for structure, union, and class members.

The boundary alignment of structure members can also be specified by the #pragma pack

extension. If both this option and a #pragma extension are specified, the #pragma
specification is valid.

The boundary alignment value for structures, unions, and classes equals the maximum
boundary alignment of members.

For details, refer to section 10.1.2 (2), Compound Type (C), Class Type (C++).

Remarks

When the iodefine.h file created by the Renesas High-Performance Embedded Workshop is in
use, if #pragma or an option is used to set the alignment value to 1, the members of I/O
register structures will not specify the correct addresses. To avoid this problem, place
#pragma pack4 at the start of iodefine.h and place #pragma unpack at the end of iodefine.h.
Table 2.16 shows the boundary alignment values for structure, union, and class members when
pack is specified.

Table 2.16 Boundary Alignment for Structure, Union, and Class Members when the pack

Option is Specified

Member Type pack=1 pack=4 Not Specified

(unsigned) char 1 1 1

unsigned) short, and long _ _fixed 1 2 2

unsigned) int, (unsigned) long, 1 4 4
unsigned) long long, long _ _fixed,

_ _accum, long _ _accum,
floating-point type, and pointer type

Structures, unions, and classes aligned to 1 1 1
a 1-byte boundary

Structures, unions, and classes aligned to 1 2 2
a 2-byte boundary

Structures, unions, and classes aligned to 1 4 4
a 4-byte boundary

Page 84 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

EXception, NOEXception: Exception Handling
CPU[Use try, throw and catch of C++]

e Command Line Format
EXception
NOEXception

e Description

When the exception option is specified, the C++ exceptional handling function (try, catch,
throw) becomes valid.

When the noexception option is specified, the C++ exceptional handling function (try, catch,
throw) becomes invalid.

When the exception option is specified, the code performance may be reduced.
The default for this option is noexception.
e Remarks

In order to use the C++ exceptional handling function among files, specify rtti=on at
compilation, and do not specify the noprelink option at linkage.

The exception option and ecpp option cannot be specified simultaneously.

Object files created by using the exception option must not be registered with libraries or
output as relocatable files by the optimizing linkage editor. Doing so will lead to a duplicate-
definition or no-definition error.

RTTI: Runtime-Type Information
CPUJ[Enable/disable runtime information]

e (Command Line Format

RTTI= { ON
| OFF }

e Description
Enables or disables runtime type information.
When rtti=on is specified, dynamic_cast and typeid are enabled.
When rtti=off is specified, dynamic_cast and typeid are disabled.
The default for this option is rtti=off.

e Remarks

Do not define object files which are created by specifying this option in a library, and do not
output files with this information as relocatable object files through the optimizing linkage
editor. A symbol double definition error or symbol undefined error may occur.

R20UT0704EJ0102 Rev. 1.02 Page 85 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

2.2.7 Options Other Than Above

Table 2.17 Options Other Than Above

Command Line

Item Format Dialog Menu Specification

SelectingCor LAng={C — Compiled as C source program.

C++ language | CPp} (Determined by an Compiled as C++ source program.
extension)

Disable of LOGO — Outputs copyright.

copyright NOLOGO (nologo is always valid) Disables output of copyright.

output

Character code Euc — Selects euc code.

selectin string SJis Selects sjis code.

literals LATin1 Selects latin1 code.

Japanese OUtcode ={EUc — Selects euc code.

character code | SJis } Selects sjis code.

specified within

object

Subcommand SUbcommand = — Command option is fetched from the
file specified <file name> file specified with <file name>.

LAng: Selecting C or C++ Language

None (Always determined by an extension)

e (Command Line Format
LAng={C|CPp}

e Description

Specifies the language of the source program.

When lang=c is specified, the compiler will compile the program file as a C source program.

When lang=cpp is specified, the compiler will compile the program file as a C++ source

program.

If this option is not specified, the compiler will determine whether the source program is a C or
a C++ program by the extension of the file name. If the extension is ¢, the compiler will
compile it as a C source program. If the extension is ¢cpp, cc, or ¢p, the compiler will compile
it as a C++ source program. If there is no extension, the compiler will compile the program as
a C source program.

Page 86 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 2 Compiler Options
e Example

shc test.c Compiled as a C source program.

shc test.cpp Compiled as a C++ source program.

shc -lang=cpp test.c Compiled as a C++ source program.
shc test Assumed to be test.c and thus be compiled as a
C source program.

e Remarks

If lang=c is specified, ecpp is invalid.
LOGO, NOLOGO: Copyright Output Control
None (nologo is always available)

e Command Line Format
LOGO
NOLOGO
e Description
Disables the copyright output.
When the logo option is specified, copyright display is output.

When the nologo option is specified, the copyright display output is disabled.

The default for this option is logo.
Euc, SJis, LATin1: Character Code Select in String Literals
None

e Command Line Format
Euc
Slis
LATinl

e Description

Use this option to specify the Japanese character code or ISO-Latinl code written in a string

literal, a character constant, or a comment.

Table 2.18 shows character code in the string literals for three types of host computers.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page 87 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Table 2.18 Relationship between the Host Computer and Character Code in String Literals

Option Specification

Host Computer euc sjis latin1 Not Specified
PC euc sjis latin1 sjis
SPARC euc sjis latin1 euc
HP9000/700 euc sjis latin1 sjis

e Remarks
When the latinl option is specified, the outcode option will become invalid.

OUtcode: Japanese Code Conversion in Object Code
None

e Command Line Format
OUtcode = { EUc | SJis }
e Description

Specifies the Japanese character code to be output to the object program when Japanese is
written in string literals and character constants.

When outcode=euc is specified, the compiler outputs the Japanese character code in the euc
code.

When outcode=sjis is specified, the compiler outputs the Japanese character code in the sjis
code.

Option euc or sjis can be specified for the Japanese character code in a source program.

Page 88 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SUbcommand: Subcommand File
None

e Format
SUbcommand = <file name>
e Description

Specifies the subcommand file where options used at compiler initiation are stored. The
command format in the subcommand file is the same as that on the command line.

e Example
opt.sub: -listfile -show=object -debug
Command line specification: shc -cpu=sh4 -subcommand=opt.sub test.c

Interpretation at compilation: shc -cpu=sh4 -listfile -show=object -debug
test.c

R20UT0704EJ0102 Rev. 1.02 Page 89 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 90 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Section 3 Assembler Options

3.1 Command Line Format
The format of the command line to initiate the assembler is as follows:

asmsh [A<option> ..] [A<file name> [,..]] [A<option> ..]

<option>:-<option> [=<suboption> [,..]]

Note: When the user specifies multiple source files, the assembler will merge and assemble
these files as one unit in the order they were specified. In this case, the user must
write .END only in the file that was specified last.

3.2 List of Options

In the command line format, uppercase letters indicate the abbreviations. Characters underlined
indicate the default assumptions.

The format of the dialog menus for the integrated development environment is as follows:
Category [Item]

Options are described in the order of tabs in the integrated development environment’s option
dialog box.

R20UT0704EJ0102 Rev. 1.02 Page 91 of 1176
Mar 01, 2022 RENESAS

Section 3 Assembler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

3.2.1 Source Options

Table 3.1 Source Category Options

Item Command Line Format Dialog Menu Specification

Include file Include = <path name>[,...] Source Specifies include-file
directory [Show entries for:] destination path name.

[Include file directories]

Replacement DEFine = <sub>[, ...]

Source

Defines replacement string

symbol <sub>: [Show entries for:] literal.
definition <replacement symbol> [Defines]
= "<string literal>"
Integer ASsignA = <sub>[, ...] Source Defines integer preprocessor
preprocessor <sub>: [Show entries for:] variable.
variable <variable name> [Preprocessor
definition = <integer constant> variables]
Character ASsignC = <sub>[, ...] Source Defines character preprocessor
preprocessor <sub>: [Show entries for:] variable.
variable <variable name> [Preprocessor
definition = "<string literal>" variables]

Page 92 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Include

Source [Show entries for:] [Include file directories]

Command Line Format

Include = <path name> [,...]

Description

The include option specifies the include file directory. The directory name depends on the
naming rule of the host machine used. As many directory names as can be input in one
command line can be specified. The current directory is searched first, and then the directories
specified by the include option are searched in the specified order.

Example: asmsh aaa.src —-include=C:\common,C:\local

(.INCLUDE "file.h" is specified in aaa.src.)
The current directory, C:\common,C:\local are searched for file.h in that order.

Relationship with Assembler Directives

Option Assembler Directive Result
include (regardless of any specification) (1) Directory specified
by .INCLUDE
(2) Directory specified by
include”
(no specification) .INCLUDE <file name> Directory specified by .INCLUDE

Note: The directory specified by the include option is added before that specified by .INCLUDE.

DEFine

Source [Show entries for:] [Defines]

Command Line Format

DEFine = <sub>[,...]

<sub>:<replacement symbol>="<string literal>"

Description

The define option defines the specified symbol as the corresponding string literal to be
replaced by the preprocessor.

Differences between define and assignc are the same as those between .DEFINE
and .ASSIGNC.

R20UT0704EJ0102 Rev. 1.02 Page 93 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Relationship with Assembler Directives

Option Assembler Directive Result

define .DEFINE * String literal specified by define
(no specification) String literal specified by define

(no specification) .DEFINE String literal specified by .DEFINE

Note: When a string literal is assigned to a replacement symbol by the define option, the
definition of the replacement symbol by .DEFINE is invalidated. This replacement is not
applied to the .AENDI, . AENDR, .AENDW, .AIFDEF, .END, and .ENDM directives.

ASsignA
Source[Show entries for:][Preprocessor variables]

e Command Line Format
ASsignA = <sub>[,...]
<sub>:<preprocessor variable>=<integer constant>

e Description
The assigna option sets an integer constant to a preprocessor variable. The naming rule of
preprocessor variables is the same as that of symbols. An integer constant is specified by
combining the radix (B', Q', D', or H') and a value. If the radix is omitted, the value is assumed
to be decimal. An integer constant must be within the range from —2,147,483,648 to
4,294,967,295. To specify a negative value, use a radix other than decimal.

Relationship with Assembler Directives

Option Assembler Directive Result

assigna ASSIGNA* Integer constant specified by assigna
(no specification) Integer constant specified by assigna

(no specification) ASSIGNA Integer constant specified by. ASSIGNA

Note: When a value is assigned to a preprocessor variable by the assigna option, the definition of
the preprocessor variable by .ASSIGNA is invalidated.

Example: asmsh aaa.src -assigna=_ S$=H'FF

Value H'FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$ in the source program are set to H'FF.

Page 94 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

ASsignC
Source [Show entries for:][Preprocessor variables]

e Command Line Format
ASsignC = <sub>[,...]
<sub>:<preprocessor variable>="<string literal>"
e Description
The assignc option sets a string literal to a preprocessor variable.
The naming rule of preprocessor variables is the same as that of symbols.
A string literal must be enclosed with double-quotation marks (").

Up to 255 characters (bytes) can be specified for a string literal.

Relationship with Assembler Directives

Option Assembler Directive Result

assignc .ASSIGNC* String literal specified by assignc
(no specification) String literal specified by assignc

(no specification) .ASSIGNC String literal specified by .ASSIGNC

Note: When a string literal is assigned to a preprocessor variable by the assignc option, the
definition of the preprocessor variable by .ASSIGNC is invalidated.

Example: asmsh aaa.src -assignc=_$="ON!OFF"

String literal ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON!OFF.

R20UT0704EJ0102 Rev. 1.02 Page 95 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options

Optimizing Linkage Editor

3.2.2 Object Options

Table 3.2 Object Category Options

Item Command Line FormatDialog Menu Specification
Debugging Debug Object Controls output of debugging
information NODebug [Debug information:] information.
Pre-processorEXPand Object Outputs preprocessor expansion
expansion [= <output file name>] [Generate assembly result.
result source file after
preprocess]

Literal pool LITERAL = <point> [, ...]Object Specifies the point to output literal
output point <point>: [Generate literal pool pool.

{Pool | Branch | Jump after:]

| Return}
Object Object Object Controls object module output.
module [= <output file name>] [Output file directory:]
output NOObject
Unresolved Dlspsize = {4 | 12} Object Specifies the size of unresolved
symbol size [Selects displacement symbols.
[SH-2A and size]
SH2A-FPU]

Page 96 of 1176
RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Debug, NODebug
Object [Debug information:]

e (Command Line Format
Debug

NODebug
e Description

When the debug option is specified, debugging information is output. When the nodebug
option is specified, no debugging information is output. The debug and nodebug options are
only valid in cases where an object module is generated. The default is nodebug.

e Remarks

Debugging information is required when debugging a program with the debugger. Debugging
information includes information about source statement lines and symbols.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
debug (regardless of any specification) Debugging information is output.
nodebug (regardless of any specification) Debugging information is not
output.
(no specification) .OUTPUT DBG Debugging information is output.
.OUTPUT NODBG Debugging information is not
output.
(no specification) Debugging information is not
output.
R20UT0704EJ0102 Rev. 1.02 Page 97 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options Optimizing Linkage Editor

EXPand

Object [Generate assembly source file after preprocess]

Command Line Format
EXPand [= <output file name>]
Description
The expand option outputs an assembler source file for which macro expansion, conditional
assembly, and file inclusion have been performed.
When this option is specified, no object will be generated.
When the output file parameter is omitted, the assembler takes the following actions:
— If the file extension is omitted:
The file extension will be exp.
— If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be exp.

Note: Do not specify the same file name for the input and output files.

LITERAL

Object [Generate assembly source file after preprocess]

Command Line Format

LITERAL = <point>],...]

<point>: {Pool|Branch|Jump|Return}

Description

The literal option specifies the point where the literal pool that was created by the automatic
literal pool creation function is placed.

— pool: The literal pool is output at the location of .POOL.

— branch: The literal pool is output after the BRA/BRAF instruction.

— jump: The literal pool is output after the JMP instruction.

— return: The literal pool is output after the RTS/RTE instruction.

The default is literal = pool, branch, jump, return.

Page 98 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Object, NOObject
Object [Output file directory:]

e Command Line Format
Object [= <object output file>]
NOObject
e Description
When the object option is specified, an object module is output.
When the noobject option is specified, no object module is output.
When the object output file parameter is omitted, the assembler takes the following actions:
— If the file extension is omitted:
The file extension will be obj.
— If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be ob;.

The default is object.
Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

object (regardless of any specification) An object module is output.

noobject (regardless of any specification) An object module is not output.

(no specification) .OUTPUT OBJ An object module is output.
.OUTPUT NOOBJ An object module is not output.
(no specification) An object module is output.

Note: Do not specify the same file name for the input source file and the output object module. If
the same file is specified, the contents of the input source file will be lost.

R20UT0704EJ0102 Rev. 1.02 Page 99 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

DIspsize
Object [Selects displacement size]

e Command Line Format
Dlspsize = {4 | 12}
e Description
Specifies the size of external reference symbols and unresolved symbols.

This specification is applied to instructions that accept both 4 and 12 as the displacement size
for the addressing mode; it is not applied to instructions that only accept displacement size 4.

This option is only valid when the CPU type is SH-2A or SH2A-FPU.
The default is dispsize=12.
e Remarks

The allocation size specification (:12) overrides this option specification.

Page 100 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 3 Assembler Options

323 List Options

Table 3.3 List Category Options

Item Command Line Format

Dialog Menu Specification

Assemble LISt [= <output file name>]

List Controls output of assemble listing

listing NOLISt [Generate list file]
output
control
Source SOurce List Controls output of source program
program NOSOurce [Source listing.
listing program:]
output
control’
Part of SHow [= <item>[, ...]] List Controls output of parts of source
source NOSHow [= <item>[, ...]] [Source program program listing and sets the size of tabs.
program <item>: list Contents:]
listing {CONditionals | Definitions | [Conditions:]
output CAlls | Expansions | [Definitions:]
controland CODe | TAB={4|8}} [Calls:]
tab size [Expansions:]
setting” [Code:]
[Tab Size:]
Cross- CRoss_reference List Controls output of cross-reference
reference NOCRoss_reference [Cross listing.
listing reference:]
output
control’
Section SEction List Controls output of section information
information NOSEction [Section:] listing.
listing
output
control’

Note: These options are valid only if the list option is specified.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

Page 101 of 1176
RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

LISt, NOLISt
List [Generate list file]

e Command Line Format
LISt [= <listing output file>]
NOLISt
e Description
When the list option is specified, an assemble listing is output.
When the nolist option is specified, no assemble listing is output.

When the listing output file parameter is omitted, the assembler takes the following actions:

— If the file extension is omitted:
The file extension will be lis.
— If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be lis.

The default is nolist.
Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

list (regardless of any specification) An assembile listing is output.

nolist (regardless of any specification) An assembile listing is not output.

(no specification) .PRINT LIST An assembile listing is output.
.PRINT NOLIST An assembile listing is not output.
(no specification) An assemble listing is not output.

Note: Do not specify the same file for the input source file and the output object file. If the same
file is specified, the contents of the input source file will be lost.

Page 102 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

SOurce, NOSOurce
List [Source program:]

e Command Line Format
SOurce
NOSOurce

e Description
When the source option is specified, a source program listing is output to the assemble listing.
When the nosource option is specified, no source program listing is output to the assemble
listing.
The source and nosource options are only valid in cases where an assemble listing is being
output.
The default is source.

Relationship with Assembler Directives
The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)
source (regardless of any specification) A source program listing is output.
nosource (regardless of any specification) A source program listing is not
output.
(no specification) .PRINT SRC A source program listing is output.
.PRINT NOSRC A source program listing is not
output.
(no specification) A source program listing is output.
R20UT0704EJ0102 Rev. 1.02 Page 103 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

SHow, NOSHow

List [Source program list Contents:] [Conditions:], [Definitions:], [Calls:], [Expansions:], [Code:],
[Tab size:]

e Command Line Format
SHow [= <output type>[,...]]
NOSHow [=<output type>],...]]
<output type>: {CONditionals | Definitions | CAlls | Expansions | CODe | TAB={4 |8 } }
e Description
When the show option is specified, preprocessor source statements in the source program
listing and lines of object code are output in the specified tab size. When <output type> is

specified, only those items of the specified type are output. If no specification is made for the
tab size, the default value will be applied.

When the noshow option is specified, neither preprocessor source statements in the source
program listing nor lines of object code are output. When <output type> is specified, only the
specified items are not output.

The show and noshow options are only valid if an assembler listing is output. The following
items are available for <output type>:

Output Type Object Description
conditionals Unsatisfied condition Unsatisfied .AlF or .AIFDEF statements
definitions Definition Macro definition parts,

AREPEAT and .AWHILE definition parts,
.INCLUDE, .ASSIGNA, and .ASSSIGNC

calls Call Macro call statements,

.AlF, .AIFDEF, and .AENDI
expansions Expansion Macro expansion statements

AREPEAT and .AWHILE expansion statements
code Object code lines The object code lines exceeding the source

statement lines

tab={4|8} Tab size Size of a tab to display a listing

The default is show.

e Remarks

When specifying more than two output types, enclose the types with parentheses.

Page 104 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Relationship with Assembler Directives
The assembler gives priority to specifications made by options.

Option Assembler Directive Result

show[=<output type>] (regardless of any specification) The object code is output.

noshow[=<output type>] (regardless of any specification) The object code is not output.

(no specification) .LIST <output type> (output) The object code is output.

.LIST <output type> (suppress) The object code is not output.

(no specification) The object code is output.

CRoss_reference, NOCRoss_reference
List [Cross reference:]

e Command Line Format
CRoss_reference
NOCRoss_reference

e Description

When the cross_reference option is specified, a cross-reference listing is output to the
assemble listing.

When the nocross_reference option is specified, no cross-reference listing is output to the
assemble listing.

The cross_reference and nocross_reference options are valid only if an assemble listing is
being output.

The default is cross_reference.

R20UT0704EJ0102 Rev. 1.02 Page 105 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options

Optimizing Linkage Editor

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)

cross_reference (regardless of any specification) A cross-reference listing is output.

nocross_reference (regardless of any specification) A cross-reference listing is not
output.

(no specification) .PRINT CREF A cross-reference listing is output.

.PRINT NOCREF

A cross-reference listing is not
output.

(no specification)

A cross-reference listing is output.

SEction, NOSEction
List [Section:]

e Command Line Format
SEction
NOSEction

e Description

When the section option is specified, a section information listing is output to the assemble

listing.

When the nosection option is specified, no section information listing is output to the assemble

listing.

The section and nosection options are valid only if an assemble listing is being output.

The default is section.

Page 106 of 1176
RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 3 Assembler Options

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)

section (regardless of any specification) A section information listing is
output.

nosection (regardless of any specification) A section information listing is not
output.

(no specification) .PRINT SCT A section information listing is
output.

.PRINT NOSCT A section information listing is not

output.

(no specification)

A section information listing is
output.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 107 of 1176

Section 3 Assembler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

324 Other Option
Table 3.4 Other Category Option
Command Line
Item Format Dialog Menu Specification
Size mode AUTO _literal Other Specifies size mode for

specification for
automatic literal pool
generation

[Miscellaneous options:]
[Automatically generate
literal pool for
immediate value]

automatic literal pool
generation.

Preventing output of Exclude

Other

Selects whether or not to

information on NOExclude [Miscellaneous options:] prevent output of
unreferenced [Remove unreferenced information on
external symbols external symbols] unreferenced symbol
information.
Specification to CHKMd Other Specifies to check
check privileged- [Miscellaneous options:] privileged-mode
mode instructions [check privileged instructions.
instructions]
Specification to CHKTIb Other Specifies to check LDTLB
check LDTLB [Miscellaneous options:] instructions.
instructions [check LDTLB instruction]
Specification to CHKCache Other Specifies to check cache-

check cache-related

[Miscellaneous options:]

related instructions.

instructions. [check cache instructions]

Specification to CHKDsp Other Specifies to check DSP-
check DSP-related [Miscellaneous options:] related instructions.
instructions. [check DSP instructions]

Specification to CHKFpu Other Specifies to check FPU-
check FPU-related [Miscellaneous options:] related instructions.
instructions. [check FPU instructions]

Specification to CHKAIlign8 Other Specifies to check 8-byte

check 8-byte
boundary alignment
of .FDATA.

[Miscellaneous options:]
[check 8-byte alignment]

boundary alignment
of .FDATA.

Page 108 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

AUTO literal
Other [Miscellaneous options:] [Automatically generate literal pool for immediate value]

¢ Command Line Format
AUTO literal

e Description
The auto_literal option specifies the size mode for automatic literal pool generation.
When this option is specified, automatic literal pool generation is performed in size selection
mode, and the assembler checks the imm value in the data transfer instruction without
operation size specification (MOV #imm,Rn) and automatically generates a literal pool if
necessary.
When this option is not specified, automatic literal pool generation is performed in size
specification mode, and the data transfer instruction without size specification is handled as a
1-byte data transfer instruction.
In the size selection mode, the imm value in the data transfer instruction without operation size
specification is handled as a signed value. Therefore, a value within the range from
H'00000080 to H'000000FF (128 to 255) is regarded as word-size data.

Selected Size or Error

Size Selection Size Specification
imm Value Range Mode Mode
H'80000000 to H'FFFF7FFF Longword Warning 835
(—2,147,483,648 to —32,769)
H'FFFF8000 to H'FFFFFF7F (—32,768 to —129) Word Warning 835
H'FFFFFF80 to H'0000007F (—128 to 127) Byte Byte
H'00000080 to H'000000FF (128 to 255) Word Byte
H'00000100 to H'00007FFF (256 to 32,767) Word Warning 835
H'00008000 to H'7FFFFFFF Longword Warning 835
(32,768 to 2,147,483,647)
Note: The value in parentheses () is in decimal.
R20UT0704EJ0102 Rev. 1.02 Page 109 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options Optimizing Linkage Editor

Exclude, NOExclude

Other [Miscellaneous options:] [Remove unreferenced external symbols]

Command Line Format
Exclude

NOExclude
Description

When the exclude option is specified, no information on unreferenced external symbols is
output.

When the noexclude option is specified, information on unreferenced external symbols is
output.

The size of an object module can be smaller if output of information on unreferenced external
symbols is prevented.

Examples:

asmsh aaa.mar -exclude

No information on unreferenced external symbols is output.
asmsh aaa.mar —-noexclude

Information on unreferenced external symbols is output.

CHKMd

Other [Miscellaneous options:] [check privileged instructions]

Command Line Format
CHKMd
Description

When this option is specified for the CPU type SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-
DSP, only user-mode instructions of the CPU are valid. If a privileged-mode instruction is
written, warning 704 occurs.

Remarks

When the CPU type is SH3-DSP or SH4AL-DSP with the CHKDSP option not specified, the
following privileged-mode instructions will be handled as user-mode instructions.

LDC Rm,SR

LDC.L @Rm+,SR
STC SR,Rm
STC.L SR,@-Rn

Page 110 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

CHKTIb
Other [Miscellaneous options:] [check LDTLB instruction]

¢ (Command Line Format
CHKTIb
e Description

When this option is specified for the CPU type SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-
DSP, warning 705 occurs if an LDTLB instruction is written.

CHKCache
Other [Miscellaneous options:] [check cache instructions]

e (Command Line Format
CHKCache
e Description

When this option is specified for the CPU type SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-
DSP, warning 706 occurs if a cache-related instruction is written.

CHKDsp
Other [Miscellaneous options:] [check DSP instructions]

e Command Line Format
CHKDsp
e Description

When this option is specified for the CPU type SH3-DSP or SH4AL-DSP, warning 707 occurs
if a DSP-related instruction is written.

CHKFpu
Other [Miscellaneous options:] [check FPU instructions]

e Command Line Format
CHKFpu
e Description

When this option is specified for the CPU type SH2A-FPU, SH-4, or SH-4A, warning 708
occurs if an FPU-related instruction is written.

R20UT0704EJ0102 Rev. 1.02 Page 111 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

CHKAlign8
Other [Miscellaneous options:] [check 8-byte alignment]

¢ (Command Line Format
CHKAlign8
e Description

When this option is specified for the CPU type SH-4A or SH4AL-DSP, 8-byte boundary
alignment of .FDATA is checked. Warning 816 occurs if double-precision floating-point
constant data specified by .FDATA is not aligned to an 8-byte boundary.

3.2.5 CPU Options

Table 3.5 CPU Tab Options

Item Command Line Format Dialog Menu Specification

Target CPU CPU = <target CPU> CPU Specifies target CPU.
specification [CPU:]

Endian type ENdian = {Big | Little} CPU Specifies the endian type.
specification [Endian:]

Rounding Round = {Nearest | Zero} CPU Specifies the rounding
direction of [Round to:] mode for floating-point
floating-point data.

data

Handling DENormalize = {ON | CPU Specifies how to handle
denormalized OFF} [Denormalized number denormalized numbers in
numbers in allower as a result:] floating-point data.
floating-point

data

Page 112 of 1176 R20UTO0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 3 Assembler Options

CPU
CPU [CPU:]

e (Command Line Format
CPU = <target CPU>

e Description

The cpu option specifies the target CPU for the source program to be assembled.

The following CPUs can be specified.

— SHI (for SH-1)
— SH2 (for SH-2)
— SH2E (for SH-2E)

— SHDSP (for SH2-DSP)

— SH2A (for SH-2A)

— SH2AFPU (for SH2A-FPU)

— SH3 (for SH-3)

— SH3DSP (for SH3-DSP)

— SH4 (for SH-4)
— SH4A (for SH-4A)

— SH4ALDSP (for SH4AL-DSP)

Relationship with Assembler Directives

Option

Assembler Directive

SHCPU Environment
Variable

Result

cpu= <target CPU> (regardless of any
specification)

(regardless of any
specification)

Target CPU specified by
cpu

(no specification) .CPU <target CPU>

(regardless of any
specification)

Target CPU specified
by .CPU

(no specification)

SHCPU = <target CPU>

Target CPU specified by
SHCPU environment
variable

(no specification)

SH1

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 113 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

ENdian
CPU [Endian:]

¢ Command Line Format
ENdian = {Big | Little}

e Description
The endian option selects big endian or little endian for the target CPU.
The default is endian=big.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
endian=big (regardless of any specification) Assembles in big endian
endian=little (regardless of any specification) Assembles in little endian
(no specification) .ENDIAN BIG Assembles in big endian
.ENDIAN LITTLE Assembles in little endian
(no specification) Assembles in big endian
Page 114 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 3 Assembler Options

Round

CPU [Round to:]

Command Line Format
Round = {Nearest | Zero}

Description

The round option specifies the rounding mode used when converting constants in floating-
point data assembler directives into object codes.

When round=nearest is specified, round to NEAREST even is selected.

When round=zero is specified, round to ZERO is selected.

When this option is omitted, the rounding mode depends on the target CPU as follows:

Target CPU Rounding Mode

SH1 round to NEAREST even
SH2 round to NEAREST even
SH2E round to ZERO

SH2A round to NEAREST even
SH2AFPU round to ZERO

SHDSP round to NEAREST even
SH3 round to NEAREST even
SH4 round to ZERO

SH3DSP round to NEAREST even
SH4A round to ZERO
SH4ALDSP round to NEAREST even

Note: When the target CPU is SH2E and round to NEAREST even is selected as the rounding

mode, warning 818 occurs at the first floating-point data assembler directive in the source
program, and object code is output in the selected "round to NEAREST even" rounding

mode.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 115 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options Optimizing Linkage Editor

DENormalize

CPU [Denormalize:]

Command Line Format
DENormalize = {ON | OFF}
Description

The denormalize option specifies whether to handle the denormalized numbers in floating-
point data assembler directives as valid values.

The object code differs when denormalized numbers are specified as valid values (ON) and
invalid values (OFF).

When denormalize=on is specified, the denormalized numbers are valid.
When denormalize=off is specified, the denormalized numbers are invalid.
— Valid: Warning 842 occurs and the object code is output.

— Invalid: Warning 841 occurs and zero is output for the object code.

When this option is omitted, whether the denormalized numbers are valid depends on the
target CPU as follows:

Target CPU Denormalized Numbers
SH1 Valid (ON)
SH2 Valid (ON)
SH2E Invalid (OFF)
SH2A Valid (ON)
SH2AFPU Invalid (OFF)
SHDSP Valid (ON)
SH3 Valid (ON)
SH3DSP Valid (ON)
SH4 Invalid (OFF)
SH4A Invalid (OFF)
SH4ALDSP Valid (ON)

Note: When the target CPU is SH2E or SH2AFPU and denormalized numbers are specified as

valid, warning 818 occurs at the first floating-point data assembler directive in the source
program, and object code is output with the denormalized numbers handled as valid values
as specified.

Page 116 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 3 Assembler Options

3.2.6 Options Other than Above

Table 3.6 Options Other than Above

Command Line
Item Format

Dialog Menu

Specification

Change of error level ABort = {Warning |

Changes the error level at

at which the which the assembler is
assembler is abnormally terminated.
abnormally

terminated

Western code LATINA - Enables the use of

character enabled

Western code characters
in source file.

Interpretation of SJIS
Japanese character
as Shift JIS code

Interprets Japanese
character in source file as
shift JIS code.

Interpretation of EUC
Japanese character
as EUC code

Interprets Japanese
character in source file as
EUC code.

Specification of
Japanese character

OUtcode = {SJIS |

Specifies the Japanese
character for output to
object code.

Setting of the LINes =
number of lines in <number of lines>

the assemble listing

Specifies the number of
lines in assemble listing.

Setting of the

COlumns =

number of digits in <number of digits>

the assemble listing

Specifies the number of
digits in assemble listing.

(nologo is always valid)

Output
Not output

Copyright LOGO
NOLOGO

Specification of

subcommand

SUBcommand =
<file name>

Inputs command line from
a file.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 117 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options Optimizing Linkage Editor

ABort

None

Command Line Format
ABort = {Warning|Error}
Description

The abort option controls the error level at which the assembler will be abnormally
terminated.

When abort=warning is specified, processing is aborted by a warning.

When abort=error is specified, processing is aborted by an error.

When the return value to the OS becomes 1 or larger, the object module is not output.
The abort option is valid only if the object module is output.

The return value to the OS is as follows:

Number of Cases Return Value to OS when Option
Specified
Warning Error Fatal Error abort=warning abort=error
0 0 0 0 0
1ormore 0 0 2 0
— 1ormore 0 2 2
— — 1 or more 4 4

The default is abort=error.

LATIN1

None

Command Line Format
LATIN1
Description

The latin1 option enables the use of Western code characters in string literals and in
comments.

Do not specify this option together with the sjis, euc, or outcode option.

Page 118 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

SJIS
None

e Command Line Format
SIIS
e Description
The sjis option interprets Japanese characters in string literals and comments as shift JIS code.

When both of sjis and euc options are omitted, Japanese characters in string literals and
comments are interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latin1 or euc option.
EUC
None

e Command Line Format
EUC
e Description
The euc option interprets Japanese characters in string literals and comments as EUC code.

When both of euc and sjis options are omitted, Japanese characters in string literals and
comments are interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latin1 or sjis option.

R20UT0704EJ0102 Rev. 1.02 Page 119 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

OUtcode
None

e (Command Line Format
OUtcode = {SJIS | EUC}
e Description

When outcode=sjis is specified, this option converts Japanese characters in the source file to
the shift JIS code for output to the object file.

When outcode=euc is specified, this option converts Japanese characters in the source file to
the EUC code for output to the object file.

The Japanese character output to the object file depends on the outcode specification and the
Japanese character (sjis or euc) in the source file as follows:

Japanese Character in Source File

outcode Option sjis euc No Specification
sjis Shift JIS code Shift JIS code Shift JIS code
euc EUC code EUC code EUC code

No specification Shift JIS code EUC code Default code

Default code is as follows.

Host Computer Default Code

SPARC station EUC code

HP9000/700 series Shift JIS code

PC Shift JIS code

Page 120 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

LINes
None

¢ (Command Line Format
LINes = <Number of lines>
e Description

The lines option sets the number of lines on a single page of the assemble listing. The range of
valid values for the line count is from 20 to 255.

This option is valid only if an assemble listing is being output.
Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

lines=<number of lines> (regardless of any specification) The number of lines on a page is
given by lines.

(no specification) .FORM LIN=< number of lines> The number of lines on a page is
given by .FORM.

(no specification) The number of lines on a page is

60 lines.

R20UT0704EJ0102 Rev. 1.02 Page 121 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

COlumns
None

e Command Line Format
COlumns = <Number of digits>
e Description

The columns option sets the number of digits in a single line of the assemble listing. The range
of valid values for the column count is from 79 to 255.

This option is valid only if an assemble listing is being output.
Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

columns= (regardless of any specification) The number of digits_in a line is

<number of digits> given by columns.

(no specification) .FORM COL=<number of digits> The number of digits in a line is
given by .FORM.

(no specification) The number of digits in a line is

132.

LOGO, NOLOGO

None (nologo is always available)

e Command Line Format
LOGO
NOLOGO
e Description
Controls the copyright output.
When the logo option is specified, copyright display is output.
When the nologo option is specified, the copyright display output is disabled.
The default is logo.

Page 122 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

SUBcommand
None

e Command Line Format
SUBcommand = <file name>
e Description
The subcommand option inputs command line specifications from a file.

Specify input file names and command line options in the subcommand file in the same order
as for normal command line specifications.

Only one input file name or one command line option can be specified in one line in the
subcommand file.

This option must not be specified in a subcommand file.
Example:

asmsh aaa.src -subcommand=aaa.sub

The subcommand file contents are expanded to a command line and assembled.

bbb.src
-list

The above command line and file aaa.sub are expanded as follows:

asmsh aaa.src,bbb.src -list -noobj

Note

A subcommand file must be no larger than 65,535 bytes.

R20UT0704EJ0102 Rev. 1.02 Page 123 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Page 124 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

Section 4 Optimizing Linkage Editor Options

4.1 Option Specifications

4.1.1 Command Line Format
The format of the command line is as follows:

optlnk[{A<file name>|A<option string>}...]

<option string>:-<option>[=<suboption>[,...]]
4.1.2 Subcommand File Format
The format of the subcommand file is as follows:

<option>{=|A} [<suboption>[,...]][A&] [;<comment>]

&: means line continuous.

For details, refer to section 4.2.8, Subcommand File Option.

4.2 List of Options

In the command line format in the following sections, uppercase letters indicate abbreviations.
Underlined characters indicate the default settings.

The format of the corresponding dialog menus in the High-performance Embedded Workshop is
as follows:
Tab name <Category>[Item]....

The order of option description corresponds to that of the tabs and the categories in the High-
performance Embedded Workshop.

The file name and path name should not include a parenthesis ("(" or ")").

R20UTO0704EJ0102 Rev. 1.02 Page 125 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options

Optimizing Linkage Editor

4.2.1 Input Options
Table 4.1 Input Category Options
Item Command Line Format Dialog Menu Specification
Input file Input = <sub>[{,|A}...] Link/Library <Input> Specifies input file.
<sub>: [Show entries for :] (Input file is specified without
<file name> [Relocatable files and object input on the command line.)
[(<module name>[,...])] files]
Library file LIBrary = <file name>[,...] Link/Library <Input> Specifies input library file.
[Show entries for :]
[Library files]
Binary file Binary = <sub> [,...] Link/Library <Input> Specifies input binary file.
<sub>: [Show entries for :]
<file name>(<section name> [Binary files]
[:<boundary alignment>]
[/<section attribute>]
[,<symbol name>])
Symbol DEFine = <sub>[,...] Link/Library <Input> Defines undefined symbols
definition <sub>: [Show entries for :] forcedly.
<symbol nhame> = [Defines:]
{<symbol name> Defined as the same value of
symbol name.
|<numerical value>} Defined as a numerical value.
Execution ENTry = { <symbol name>| Link/Library <Input> Specifies an entry symbol.

start address

<address>}

[Use entry point :]

Specifies an entry address.

Prelinker

NOPRElIink

Link/Library <Input>
[Prelinker control :]

Disables prelinker initiation.

Page 126 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

Input

Input File

Format:

Description:

Examples:

Remarks:

Link/Library <Input>[Show entries for :][Relocatable files and object files]
Input = <suboption>[{, | A}...]
<suboption>: <file name>[(<module name>[,...])]

Specifies an input file. Two or more files can be specified by separating them
with a comma (,) or space.

Wildcards (* or ?) can also be used for the specification. String literals specified
with wildcards are expanded in alphabetical order. Expansion of numerical values
precedes that of alphabetical letters. Uppercase letters are expanded before
lowercase letters.

Specifiable files are object files output from the compiler or the assembler, and
relocatable or absolute files output from the optimizing linkage editor. A module
in a library can be specified as an input file using the format of <library
name>(<module name>). The module name is specified without an extension.

If an extension is omitted from the input file specification, obj is assumed when a
module name is not specified and lib is assumed when a module name is
specified.

input=a.obj libl (e) ; Inputs a.obj and module e in lib1.lib.
input=c*.obj ; Inputs all .obj files beginning with c.

When form=object or extract is specified, this option is unavailable.

When an input file is specified on the command line, input should be omitted.

R20UT0704EJ0102 Rev. 1.02 Page 127 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

LIBrary

Library File

Format:

Description:

Examples:

Link/Library <Input>[Show entries for :][Library files]
LIBrary = <file name>[,...]

Specifies an input library file. Two or more files can be specified by separating
them with a comma (,).

Wildcards (* or ?) can also be used for the specification. String literals specified
with wildcards are expanded in the alphabetical order. Expansion of numerical
values precedes that of alphabetical letters. Uppercase letters are expanded before
lowercase letters.

If an extension is omitted from the input file specification, lib is assumed.

If form=library or extract is specified, the library file is input as the target
library to be edited.

Otherwise, after the linkage processing between files specified for the input files
are executed, undefined symbols are searched in the library file.

The symbol search in the library file is executed in the following order: user
library files with the library option specification (in the specified order), the
system library files with the library option specification (in the specified order),
and then the default library (environment variable HLNK_LIBRARY1,2,3).

library=a.lib,b ;Inputs a.lib and b.lib.
library=c*.1lib ; Inputs all files beginning with ¢ with the extension .lib.

Page 128 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

Binary

Binary File

Link/Library <Input>[Show entries for :][Binary files]

Format: Binary = <suboption>[,...]
<suboption>: <file name>(<section name>
[:<boundary alignment>][/<section attribute>][,<symbol name>])
<section attribute>: CODE | DATA
<boundary alignment>: 1 |2 | 4| 8| 16|32 (default: 1)
Description: Specifies an input binary file. Two or more files can be specified by separating
them with a comma (,).
If an extension is omitted for the file name specification, bin is assumed.
Input binary data is allocated as the specified section data. The section address is
specified with the start option. That section cannot be omitted.
When a symbol is specified, the file can be linked as a defined symbol. For a
variable name referenced by a C/C++ program, add an underscore (_) at the head
of the reference name in the program.
The section specified with this option can have its section attribute and boundary
alignment specified.
CODE or DATA can be specified for the section attribute.
When section attribute specification is omitted, the write, read, and execute
attributes are all enabled by default.
A boundary alignment value can be specified for the section specified by this
option. A power of 2 can be specified for the boundary alignment; no other
values should be specified.
When the boundary alignment specification is omitted, 1 is used as the default.
Examples: input=a.obj
start=P,D*/200
binary=b.bin (Dlbin),c.bin(D2bin:4, datab)
form=absolute
R20UT0704EJ0102 Rev. 1.02 Page 129 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Remarks:

DEFine

Allocates b.bin from 0x200 as the D1bin section.
Allocates c.bin after D1bin as the D2bin section (with boundary alignment = 4).
Links c.bin data as the defined symbol _datab.

When form={object | library} or strip is specified, this option is unavailable.

If no input object file is specified, this option cannot be specified.

Symbol Definition

Format:

Description:

Examples:

Remarks:

Link/Library <Input>[Show entries for :][Defines]
DEFine = <suboption>[,...]
<suboption>: <symbol name>={<symbol name> | <numerical value>}

Defines an undefined symbol forcedly as an externally defined symbol or a
numerical value.

The numerical value is specified in the hexadecimal notation. If the specified
value starts with a letter from A to F, symbols are searched first, and if no
corresponding symbol is found, the value is interpreted as a numerical value.
Values starting with 0 are always interpreted as numerical values.

If the specified symbol name is a C/C++ variable name, add an underscore (_) at
the head of the definition name in the program. If the symbol name is a C++
function name (except for the main function), enclose the definition name with
the double-quotes including parameter strings. If the parameter is void, specify as
"<function name>()".

define= syml=data ; Defines_syml as the same value as
; the externally defined symbol data.

define= sym2=4000 ; Defines _sym2 as 0x4000.

When form={object | relocate | library} is specified, this option is unavailable.

Page 130 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

ENTry

Execution Start Address

Format:

Description:

Examples:

Remarks:

Link/Library <Input>[Use entry point :]
ENTry = {<symbol name> | <address>}

Specifies the execution start address with an externally defined symbol or
address.

The address is specified in hexadecimal notation. If the specified value starts with
a letter from A to F, symbols are searched first, and if no corresponding symbol is
found, the value is interpreted as an address. Values starting with 0 are always
interpreted as addresses.

For a C function name, add an underscore (_) at the head of the definition name
in the program. For a C++ function name (except for the main function), enclose
the definition name with double-quotes in the program including parameter
strings. If the parameter is void, specify as "<function name>()".

If the entry symbol is specified at compilation or assembly, this option precedes
the entry symbol.

entry= main ; Specifies main function in C/C++ as the execution
; start address.

entry="init ()" ; Specifies init function in C++ as the execution
; start address.

entry=100 ; Specifies 0x100 as the execution start address.

When form={object | relocate | library} or strip is specified, this option is
unavailable.

When optimization with undefined symbol deletion (optimize=symbol_delete) is
specified, the execution start address should be specified. If it is not specified, the
specification of the optimization with undefined symbol deletion is unavailable.
Optimization with undefined symbol deletion is not available when an address is
specified with this option.

R20UT0704EJ0102 Rev. 1.02 Page 131 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

NOPRElIink Prelinker
Link/Library <Input>[Show entries for :][Prelinker control :]

Format: NOPRElink
Description: Disables the prelinker initiation.

The prelinker supports the functions to generate the C++ template instance
automatically and to check types at run time. When the C++ template function
and the run-time type test function are not used, specify the noprelink option to
reduce the link time.

Remarks: When extract or strip is specified, this option is unavailable.

If form=lib or form=rel is specified while the C++ template function and run-
time type test are used, do not specify noprelink.

Page 132 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 4 Optimizing Linkage Editor Options

4.2.2 Output Options
Table 4.2 Output Category Options
Item Command Line Format Dialog Menu Specification
Output format FOrm ={ Absolute Link/Library <Output> Absolute format
| Relocate [Type of output file :] Relocatable format
| Object Object format
| Library [= {S|U}] Library format
| Hexadecimal HEX format
| Stype S-type format
| Binary } Binary format
Debugging DEBug Link/Library <Output> Output (in output file)
information SDebug [Debug information :] Debugging information file
output
NODEBug Not output
Record size REcord={ H16 Link/Library <Output> HEX record
unification | H20 [Data record header :] Expansion HEX record
| H32 32-bit HEX record
| S1 S1 record
| S2 S2 record
| S3} S3 record
ROM support ROm = <sub>[,...] Link/Library <Output> Reserves an area in RAM for
function <sub>:<ROM section hame> [Show entries for :] the relocatiqn of a symbol with
=<RAM section name> [ROM to RAM mapped an address in RAM.
sections:]
Output file OUtput = <sub>[,...] Link/Library <Output> Specifies output file (range
<sub>:<file name> [Show en.tries for :] specification and divided
[=<output range>] [Output file path/ Messages] output are enabled)
or
<output range>: [Divided output files:]
{<start address>
-<end address>
|<section name>[:...]}
External MAp [= <file name>] Link/Library <Output> Specifies output of the external
symbol- [Generate external symbol- symbol-allocation information
allocation allocation information file] file (for SuperH Family and RX
information Family)
file
Output to SPace [= {<numerical value> | Link/Library <Output> Specifies a value to output to

unused area

Random}]

[Specify value filled in
unused area] [Output
padding data]

unused area

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 133 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options

Optimizing Linkage Editor

Item Command Line Format Dialog Menu Specification
Information Message Link/Library <Output> Output
message NOMessage [= <sub>[,...]] [Show entries for :] No output

<sub>:<error code>
[-<error code>]

[Output file path/ Messages]
[Repressed information
level messages:]

(error number specification
and range specification are
enabled)

Notification of MSg_unused Link/Library <Output> Notifies the user of the defined
unreferenced [Show entries for :] symbol which is never

defined [Notify unused symbol:] referenced

symbol

Reduce DAta_stuff Link/Library <Output> Reduces empty areas

empty areas
of boundary

[Show entries for :]
[Reduce empty areas of

generated as the boundary
alignment of sections after

alignment boundary alignment:] compilation (for SuperH Family
and H8, H8S, H8SX Family)
Specification BYte_count=<numerical value> Link/Library <Output> Specifies the maximum byte
of data record [Length of data record :] count of a data record
byte count
CRC CRc = <suboption> Link/Library <Output> Calculates the cyclic
<suboption>: [zhow entrgs éor H| redun?ancy check (CRC)
<address where the result is [Generate CRC code] \{alue or the target range at
output>=<target range> I|nk:ge aanglgpl,:jtcsj the result
[/<polynomial expression>] to the specified address.
[:<endian>]
<address where the result is
output>: <address>
<target range>: <start address>-
<end address>],...]
<polynomial expression>:
{CCITT |16}
<endian>: {BIG | LITTLE}
Filling PADDING Link/Library <Output> Outputs padding data to the

padding data
at section end

[Padding]

end of a section to make the
section match the boundary
alignment.

Address VECTN=<suboption>[,...] Link/Library <Output> Assigns an address to the

setting for <suboption>: [Show entries for :] specified vector number in the

specified <vector num.ber>={<symbol> | [Vector] variable vector table (for RX

vector | <address>} [Specific vector :] Family and M16C Series).

number

Address VECT={<symbol>|<address>} Link/Library <Output> Assigns an address to an

setting for [Show entries for :] unused area in the variable

unused [Vector] vector table (for RX Family

variable [Empty vector :] and M16C Series).

vector area

Page 134 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 4 Optimizing Linkage Editor Options

Item

Command Line Format

Dialog Menu

Specification

uti30
information
output

UTL

Link/Library <Output>
[UTL information]

Outputs information for UTL30
(for M16C Series)

Jump table
output

JUMP_ENTRIES_FOR_PIC
=<section name>[...]

Link/Library <Output>
[Jump table output]

Outputs a jump table (for the
PIC function of RX Family)

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 135 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

FOrm

Output Format

Link/Library <Output>[Type of output file :]

Format: FOrm = {Absolute | Relocate | Object | Library[={S | U}]}
| Hexadecimal | Stype | Binary}
Description: Specifies the output format.
When this option is omitted, the default is form=absolute. Table 4.3 lists the
suboptions.
Table 4.3 Suboptions of Form Option
Suboption Description
absolute Outputs an absolute file
relocate Outputs a relocatable file
object Outputs an object file. This is specified when a module is extracted as an
object file from a library with the extract option.
library Outputs a library file.
When library=s is specified, a system library is output.
When library=u is specified, a user library is output.
Default is library=u.
hexadecimal Outputs a HEX file. For details of the HEX format, refer to appendix 13.1.2,
HEX File Format.
stype Outputs an S-type file. For details of the S-type format, refer to appendix
13.1.1, S-Type File Format.
binary Outputs a binary file.
Remarks: Table 4.4 shows relations between output formats and input files or other options.
Page 136 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 4 Optimizing Linkage Editor Options

Table 4.4 Relations Between Output Format And Input File Or Other Options
Output Enabled
Format Specified Option File Format Specifiable Option*’
Absolute strip specified Absolute file input, output
Other than above Obiject file input, library, binary, debug/nodebug,

Relocatable file sdebug, cpu, ps_check, start, rom, entry,

Binary file output, map, hide, optimize/nooptimize,

Library file samesize, symbol_forbid,
samecode_forbid, variable_forbid,
function_forbid, section_forbid,
absolute_forbid, profile, cachesize, sbr,
compress, rename, delete, define, fsymbol,
stack, noprelink, memory, msg_unused,
data_stuff*5, show=symbol, reference,
xreference, jump_entries_for_pic,
aligned_section

Relocate extract specified Library file library, output
Other than above Obiject file input, library, debug/nodebug, output, hide,

Relocatable file rename, delete, noprelink, msg_unused,

Binary file data_stuff*5, show=symbol, xreference

Library file

Object extract specified Library file library, output

Hexadecimal Object file input, library, binary, cpu, ps_check, start,
Stype Relocatable file rom, entry, output, map, space,

Binary Binary file optimize/nooptimize, samesize,

Library file symbol_forbid, samecode_forbid,
variable_forbid, function_forbid,
section_forbid, absolute_forbid, profile,
cachesize, sbr, rename, delete, define,
fsymbol, stack, noprelink, record, s9*2,
byte_count*3, memory, msg_unused,
data_stuff*5, show=symbol, reference,
xreference, jump_entries_for_pic,
aligned_section

Absolute file input, output, record, s9*2, byte _count*3,
show=symbol, reference, xreference

Library strip specified Library file library, output, memory*#, show=symbol,
section
extract specified Library file library, output
Other than above Object file input, library, output, hide, rename, delete,

Relocatable file

replace, noprelink, memory**,
show=symbol, section

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

Page 137 of 1176

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Notes: 1. message/nomessage, change_message, logo/nologo, form, list, and
subcommand can always be specified.
2. s9 can be used only when form=stype is specified for the output format.
3. byte_count can be used only when form=hexadecimal is specified for the output
format.
4. memory cannot be used when hide is specified.
5. data_stuff cannot be used when form=relocate is specified for the output format.

DEBug, SDebug, NODEBug Debugging Information
Link/Library <Output>[Debug information :]

Format: DEBug
SDebug
NODEBug
Description: Specifies whether debugging information is output.

When debug is specified, debugging information is output to the output file.

When sdebug is specified, debugging information is output to <output file
name>.dbg file.

When nodebug is specified, debugging information is not output.
If sdebug and form=relocate are specified, sdebug is interpreted as debug.

If debug is specified and if two or more files are specified to be output with
output, they are interpreted as sdebug and debugging information is output to
<first output file name>.dbg.

When this option is omitted, the default is debug.

Remarks: When form={object | library | hexadecimal | stype | binary}, strip or extract is
specified, this option is unavailable.

Page 138 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

REcord

Record Size Unification

Format:

Description:

Remarks:

ROm

Link/Library <Output>[Data record header :]
REcord = { H16 | H20 | H32 | S1|S2|S3 }
Outputs data with the specified data record regardless of the address range.

If there is an address that is larger than the specified data record, the appropriate
data record is selected for the address.

When this option is omitted, various data records are output according to each
address.

This option is available only when form=hexadecimal or stype is specified.

ROM Support Function

Format:

Description:

Examples:

Remarks:

Link/Library <Output>[Show entries for :][ROM to RAM mapped sections]
ROm = <suboption>[,...]
<suboption>: <ROM section name>=<RAM section name>

Reserves ROM and RAM areas in the initialized data area and relocates a defined
symbol in the ROM section with the specified address in the RAM section.

Specifies a relocatable section including the initial value for the ROM section.

Specifies a nonexistent section or relocatable section whose size is 0 for the RAM
section.

rom=D=R
start=D/100,R/8000

Reserves R section with the same size as D section and relocates defined symbols
in D section with the R section addresses.

When form={object | relocate | library}or strip is specified, this option is
unavailable.

R20UT0704EJ0102 Rev. 1.02 Page 139 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

OUtput

Output File

Link/Library <Output> [Show entries for :][Output file path/ Messages] or [Divided output files]

Format:

Description:

Examples:

Remarks:

OUtput = <suboption>[,...]
<suboption>: <file name>[=<output range>]
<output range>: {<start address>-<end address> | <section name>{:...]}

Specifies an output file name. When form=absolute, hexadecimal, stype, or
binary is specified, two or more files can be specified. An address is specified in
the hexadecimal notation. If the specified data starts with a letter from A to F,
sections are searched first, and if no corresponding section is found, the data is
interpreted as an address. Data starting with 0 are always interpreted as addresses.

When this option is omitted, the default is <first input file name>.<default
extension>.

The default extensions are as follows:

form=absolute: abs form=relocate: rel form=object: obj
form=library: lib form=hexadecimal: hex form=stype: mot
form=binary: bin

output=filel.abs=0-ffff,file2.abs=10000-1ffff

Outputs the range from 0 to 0xffff to filel.abs and the range from 0x10000 to
0x 1{fff to file2.abs.

output=filel.abs=secl:sec2,file2.abs=sec3
Outputs the secl and sec2 sections to filel.abs and the sec3 section to file2.abs.

When a file is output in section units while the CPU type is RX Family in big
endian, the section size should be a multiple of 4.

Page 140 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

MAp Output of External Symbol Allocation Information File

Link/Library <Output>[Generate external symbol-allocation information file]
Format: MAp [= <file name>]

Description: Outputs the external-symbol-allocation information file that is used by the
compiler in optimizing access to external variables.

When <file name> is not specified, the file has the name specified by the output
option or the name of the first input file, and the extension bls.

If the order of the declaration of variables in the external-symbol-allocation
information file is not the same as the order of the declaration of variables found
when the object was read after compilations, an error will be output.

Remarks: This option is valid only when form={absolute | hexadecimal | stype | binary}
is specified.

This option is available when the CPU type is SuperH Family or RX Family.

R20UTO0704EJ0102 Rev. 1.02 Page 141 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

SPace

Output to Unused Areas

Format:

Description:

Remarks:

Link/Library <Output>[Show entries for :][Specify value filled in unused area]
[Output padding data]

SPace [= {<numerical value> | Random}]

Fills the unused areas in the output ranges with random values or a user-specified
hexadecimal value.

The following unused areas are filled with the value according to the output range
specification in the output option:

When section names are specified for the output range:
The specified value is output to unused areas between the specified sections.

When an address range is specified for the output range:
The specified value is output to unused areas within the specified address range.

A 1-, 2-, or 4-byte value can be specified. The hexadecimal value specified to the
space option determines the output data size. If a 3-byte value is specified, the
upper digit is extended with 0 to use it as a 4-byte value. If an odd number of
digits are specified, the upper digits are extended with 0 to use it as an even
number of digits.

If the size of an unused area is not a multiple of the size of the specified value,
the value is output as many times as possible, then a warning message is output.

When no suboption is specified by this option, unused areas are not filled with
values.

This option is available only when form={binary | stype | hexadecimal} is
specified.

When no output range is specified by the output option, this option is
unavailable.

Page 142 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

Message, NOMessage Information Message

Link/Library <Output>[Show entries for :] [Output file path/ Messages]
[Repressed information level messages :]

Format: Message
NOMessage [=<suboption>[,...]]
<suboption>: <error number>[-<error number>]
Description: Specifies whether information level messages are output.
When message is specified, information level messages are output.
When nomessage is specified, the output of information level messages are
disabled. If an error number is specified, the output of the error message with the
specified error number is disabled. A range of error message numbers to be
disabled can be specified using a hyphen (-). If a warning or error level message
number is specified, the message output is disabled assuming that
change_message has changed the specified message to the information level.
When this option is omitted, the default is nomessage.
Examples: nomessage=4,200-203,1300
Messages of L0004, L0200 to L0203, and L1300 are disabled to be output.
R20UT0704EJ0102 Rev. 1.02 Page 143 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

MSg_unused

Notification of Unreferenced Symbol

Link/Library <Output>[Show entries for :] [Output Messages] [Notify unused symbol:]

Format:

Description:

Examples:

Remarks:

MSg unused

Notifies the user of the externally defined symbol which is not referenced during
linkage through an output message.

optlnk -msg unused a.obj
When an absolute file is input, this option is invalid.
To output a message, the message option must also be specified.

The linkage editor may output a message for the function that was inline-
expanded at compilation. To avoid this, add a static declaration for the function
definition.

In any of the following cases, references are not correctly analyzed so that
information shown by output messages will be incorrect.

e goptimize is not specified at assembly and there are branches to the same
section within the same file (only when an H8, H8S, H8SX Family CPU is
specified).

e There are references to constant symbols within the same file.

e There are branches to immediate subordinate functions when optimization is
specified at compilation.

e The external variable access optimization is valid at compilation (only when
an SuperH Family CPU is specified).

e An offset value is directly specified in a #pragma tbr in the C source
program (only when the SH-2A or SH2A-FPU is specified as the CPU).

e Optimization is specified at linkage and constants or literals are unified.

Page 144 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

DAta_stuff

Reduce empty areas of boundary alignment

Link/Library <Output>[Show entries for :] [Reduce empty areas of boundary alignment:]

Format: DAta stuff
Description: At linkage, reduces empty areas of boundary alignment. This option affects
constant, initialized and uninitialized data areas.
When this option is specified, empty areas generated as the boundary alignment
of sections after compilation are filled at linkage. However, the order of data
allocation is not changed.
When this option is not specified, linkage is based on the boundary alignment of
sections after compilation.
Specifying this option fills the unnecessary empty areas generated by boundary
alignment, reducing the size of the data sections as a whole.
Examples: <tpl.c> <tp2.c>
long a; char d;
char b, c; long e;
char £;
Sizes of data sections after compilation (taking the output of the SuperH Family
compiler as an example):
tpl.obj: 4 + 1+ 1 = 6 bytes
tp2.obj: 1 +3 [*]+4 + 1 =9 bytes
Sizes of data sections for tp1l.obj and tp2.obj after linkage:
1) When data_stuff is not specified
Object files are linked based on the boundary alignment of the sections
(conventional process).
6 bytes [tpl] + 2 bytes [*] + 9 bytes [tp2] = 17 bytes
2) When data_stuff is specified
Linkage is performed with filling of the unnecessary empty spaces generated
between sections by boundary alignment.
(4+1+1)bytes + 1 byte + 1 byte [*] + 4 bytes + 1 byte = 13 bytes
Notes: 1. * indicates an empty area generated by boundary alignment.
R20UT0704EJ0102 Rev. 1.02 Page 145 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Remarks:

BYte_count

2. The sizes of the data sections after compilation may differ from
those in the above example according to the specification of other
options, etc. at compilation.

Correct operation is not guaranteed if this option is specified when an object file
compiled with the smap option of the SuperH Family compiler is linked.

The function of this option is not applicable to object files generated by the
assembler.

Specification of this option is invalid in any of the following cases:

o form=library, object, or relocate is specified
e An absolute load module is input
o memory=low is specified

e nooptimize is not specified

Optimization will not be applied in the linkage of a relocatable file that was
generated with this option specified.

This option is unavailable when the CPU type is RX Family, M16C Series, or
R8C Family.

Specification of Data Record Byte Count

Format:

Description:

Examples:

Remarks:

Link/Library <Output>[Length of data record :]
BYte count=<numerical value>

Specifies the maximum byte count for a data record when a file is to be created in
the Intel-Hex format. Specify a one-byte hexadecimal value (01 to FF) for the
byte count. When this option is not specified, the linkage editor assumes FF as
the maximum byte count when creating an Intel-Hex file.

byte count=10

This option is invalid when the file to be created is not an Intel-Hex-type
(form=hex) file.

Page 146 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

CRe

CRC

Link/Library <Output> [Show entries for :] [Generate CRC code]

Format: CRc = <suboption>

<suboption>: <address where the result is output>=<target range>
[/<polynomial expression>][:<endian>]

<address where the result is output>: <address>

<target range>: <start address>-<end address>[,...]

<polynomial expression>: { CCITT | 16 }

<endian>: {BIG | LITTLE}

Description: This option is used for cyclic redundancy checking (CRC) of values from the
lowest to the highest address of each target range and outputs the calculation
result to the specified address.
<endian> can be specified only when the CPU type is RX Family. When
<endian> is specified, the calculation result is output to the specified address in
the specified endian. When <endian> is not specified, the result is output to the
specified address in the endian used in the absolute file.

CRC-CCITT or CRC-16 is selectable as a polynomial expression (default:
CRC-CCITT).
Polynomial expression:
CRC-CCITT
XM 6+XM2+XA5+1
In bit expression: (10001000000100001)
CRC-16
XA 6+XM5+XM2+1
In bit expression: (11000000000000101)
R20UT0704EJ0102 Rev. 1.02 Page 147 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Example 1: optlnk *.obj -form=stype -start=P1,P2/1000,P3/2000
-crc=2FFE=1000-2FFD -output=out.mot=1000-2FFF

. Setting for the Output
After linkage CRC output option (out.mot)
0x1000 0x1000
P1 P1 P1
P2 P2 P2
Free Calculated as
OXFF T(a(‘)rgféggnge
0x2000 x1000 to
P3 P3 OX2FFF) P3
Calculated as
Free OxFF Ox2FFE
Address where the
Ox2FFF result will be output Resultof CRC | 0y oFFF

crc option: —crc=2FFE=1000-2FFD

In this example, CRC will be calculated for the range from 0x1000 to 0x2FFD
and the result will be output to address 0x2FFE.

When the space option has not been specified, space=0xFF is assumed for
calculation of free areas within the target range.

output option: -output=out.mot=1000-2FFF

Since the space option has not been specified, the free areas are not output to the
out.mot file. OxFF is used in CRC for calculation of the free areas, but will not be
filled into these areas.

Notes: 1. The address where the result of CRC will be output cannot be
included in the target range.

2. The address where the result of CRC will be output must be included
in the output range specified with the output option.

Page 148 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 4 Optimizing Linkage Editor Options

Example 2:

optlnk *.obj

0x1000

0x1800

0x2000

0x2800

Ox2FFF

-form=stype -start=P1/1000,P2/1800,P3/2000

-space=7F -crc=2FFE=1000-17FF,2000-27FF

-output=out.mot=1000-2FFF

: Setting for the Output
After linkage CRC output option (out.mot)
0x1000
P1 P1 P1
Free Calculated as Filled with
Ox7F Ox7F
P2 P2
. Target range Filled with
ree (0x1000 to OXTF
Ox2FFF
P3 P3 X2FFF) P3
Calculated as
Ox7F Filled with
Free Ox7F
O0x2FFE
Address where the
result will be output Result of CRC 0X2FFF

crc option: —crc=2FFE=1000-2FFD, 2000-27FF
In this example, CRC will be calculated for the two ranges, 0x1000 to 0x17FF
and 0x2000 to 0x27FF, and the result will be output to address 0x2FFE.

Two or more non-contiguous address ranges can be selected as the target range

for CRC.

space option: -space=7F
The value of the space option (0x7F) is used for CRC in free areas within the
target range.

output option: —output=out.mot=1000-2FFF
Since the space option has been specified, the free areas are output to the out.mot
file. 0x7F will be filled into the free areas.

Notes:

1. The order that CRC is calculated for the specified address ranges is

not the order that the ranges have been specified. CRC proceeds from
the lowest to the highest address.

. Even if you wish to use the crc and space options at the same time,
the space option cannot be set as random or a value of 2 bytes or
more. Only 1-byte values are valid.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 149 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Example 3:

Remarks:

optlnk *.obj -form=stype -start=P1,P2/1000,P3/2000
-crc=1FFE=1000-1FFD, 2000-2FFF
-output=flmem.mot=1000-1FFF

: Setting for the Output
After linkage CRC output option (fimem.mot)
0x1000 0x1000
P1 P1 P1
P2 p2 Target range P2
(0x1000 to
Calculated as Ox1FFF)
Free OxFF Ox1FFE
Address where the
result will be output ResuliteliERNe 0x1FFF
0x2000 P3 p3
Free Calculated as
OxFF
O0x2FFF

cre option: —crc=1FFE=1000-1FFD, 2000-2FFF

In this example, CRC will be calculated for the two ranges, 0x1000 to Ox1FFD
and 0x2000 to 0x2FFF, and the result will be output to address Ox1FFE.

When the space option has not been specified, space=0xFF is assumed for
calculation of free areas within the target range.

output option: —output=flmem.mot=1000-1FFF

Since the space option has not been specified, the free areas are not output to the
flmem.mot file. OXFF is used in CRC for calculation of the free areas, but will
not be filled into these areas.

This option is invalid when two or more absolute files have been selected.
This option is valid only when form={hexadecimal | stype}.

When the space option has not been specified and the target range includes free
areas that will not be output, the linkage editor assumes in CRC that OxFF has
been set in the free areas.

An error occurs if the target range includes an overlay area.

Page 150 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 4 Optimizing Linkage Editor Options

Sample Code:

The sample code shown below is provided to check the result of CRC figured out

by the crc option. The sample code program should match the result of CRC by

optlnk.

When the selected polynomial expression is CRC-CCITT:

{

typedef unsigned char uint8 t;
typedef unsigned short uintlé_t;
typedef unsigned long uint32 t;
uintl6_t CRC _CCITT (uint8 t *pData, uint32 t iSize)
{
uint32 t ui32 i;
uint8 t *pui8 Data;
uintlé t uil6é CRC = OxFFFFu;
pui8 Data = (uint8 t *)pData;

for(ui32 i = 0; ui32 1 < iSize; ui32 i++)

uilé CRC = (uintl6 t) ((uilé CRC >> 8u) |
((uintl6_t) ((uint32_t)uil6 CRC << 8u)));
uil6é CRC "= pui8 Datal[ui32 i];
uilé CRC "= (uintl6_t) ((uilé6_CRC & OxFFu) >> 4u);
uilé CRC "= (uintl6_t) ((uil6 CRC << 8u) << 4u);
uilé CRC ~= (uintl6 t) (((uilé CRC & O0xFFu) << 4u) << 1u);
}
uilé CRC = (uintlé6_t) (0x0000FFFFul &

((uint32_t)~(uint32 t)uile CRC));

return uilé_CRC;

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

2 Page 151 of 1176
LENESAS

Section 4 Optimizing Linkage Editor Options

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

When the selected polynomial expression is CRC-16:

uint32 t data 0;

uint32_t i,cycLoop;

for (1i=0;i<iSize;i++) {

}

return crcdData;

#define POLYNOMIAL 0xa00l // Generated polynomial expression CRC-16
typedef unsigned char uint8_ t;
typedef unsigned short uintlé6 t;
typedef unsigned long uint32_t;
uintl6_t CRC16 (uint8_ t *pData, uint32 t iSize)
{
uintlé_t crcdbata = (uintl6_t)O0;

data = (uint32 t)pDatali];
crcdData = crcdData * data;
for (cycLoop = 0; cycLoop < 8; cycLoop++) {
if (crcdbData & 1) {
crcdData = (crcdData >> 1) ~ POLYNOMIAL;
} else {
crcdData = crcdbata >> 1;

Page 152 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

PADDING

Filling padding data at section end

Format:

Description:

Examples:

Remarks:

PADDING

Fills in padding data at the end of a section so that the section size is a multiple of
the boundary alignment of the section.

-start=P,C/0 -padding

When the boundary alignment of section P is 4 bytes, the size of section P is
0x06 bytes, the boundary alignment of section C is 1 byte, and the size of section
C is 0x03 bytes, two bytes of padding data is filled in section P to make its size
become 0x08 bytes and then linkage is performed.

-start=pP/0,C/7 —-padding

When the boundary alignment of section P is 4 bytes, the size of section P is
0x06 bytes, the boundary alignment of section C is 1 byte, and the size of section
C is 0x03 bytes, if two bytes of padding data is filled in section P to make its size
become 0x08 bytes and then linkage is performed, error L2321 will be output
because section P overlaps with section C.

The value of the created padding data is 0x00.

Since padding is not performed to an absolute address section, the size of an
absolute address section should be adjusted by the user.

This option is valid when the CPU type is SuperH Family or RX Family.

R20UT0704EJ0102 Rev. 1.02 Page 153 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

VECTN

Address Setting for Specified Vector Number

Format:

Description:

Examples:

Remarks:

Link/Library <Output> [Show entries for:] [Address allocation on specific vector]
VECTN = <suboption>],...]
<suboption>: <vector number> = {<symbol> | <address>}

Assigns the specified address to the specified vector number in the variable
vector table section.

When this option is specified, a variable vector table section is created and the
specified address is set in the table even if there is no interrupt function in the
source code.

Specify a decimal value from 0 to 255 for <vector number>.
Specify the external name of the target function for <symbol>.
Specify the desired hexadecimal address for <address>.

-vectn=30= f1,31=0000F100 ;Specifies the _fl address for vector
;number 30 and 0x0f100 for vector
;number 31

This option is valid when the CPU type is RX Family, M16C Series, or R§C
Family.

This option is ignored when the user creates a variable vector table section in the
source program because the variable vector table is not automatically created in
this case.

Page 154 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

VECT

Address Setting for Unused Vector Area

Link/Library <Output> [Show entries for:] [Filling address on empty vector]

Format: VECT={<symbol>|<address>}

Description: Assigns the specified address to the vector number to which no address has been
assigned in the variable vector table section.
When this option is specified, a variable vector table section is created by the
linkage editor and the specified address is set in the table even if there is no
interrupt function in the source code.
Specify the external name of the target function for <symbol>.
Specify the desired hexadecimal address for <address>.

Remarks: This option is valid when the CPU type is RX Family, M16C Series, or R§C
Family.
This option is ignored when the user creates a variable vector table section in the
source program because the variable vector table is not automatically created in
this case.
When the {<symbol>|<address>} specification is started with 0, the whole
specification is assumed as an address.

R20UT0704EJ0102 Rev. 1.02 Page 155 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

UTL

utl30 information output

Link/Library <Other> [Other option] [utl file output]

Format: UTL

Description: Generates an external file (utl file) to be input to the tool (utl30) included with
the compiler package.
The generated file is assigned a name <output file name>.utl.

Examples: tp.ob]
utl
output=test.abs
Outputs inspector information from tp.obj to test.utl.

Remarks: This option is valid only when the compiler for the M16C microcontrollers is
used.
This option cannot be used when processing the abs files input to the linkage
editor.
This option is invalid when form={object | library} is specified.

Page 156 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

JUMP_ENTRIES_FOR_PIC Jump table output

Link/Library <Output> [Jump table]

Format: JUMP_ENTRIES FOR_PIC=<section name>[,...]
Description: Outputs an assembly-language source for a jump table to branch to external
definition symbols in the specified section.
This option is used for the PIC function of the RX family compilers.
The file name is <output file>.jmp.
Examples: jump entries for pic=sct2,sct3
output=test.abs
A jump table for branching to external definition symbols in the sections sct2 and
sct3 is output to test.jmp.
[Example of a file output to test.jmp]
;OPTIMIZING LINKAGE EDITOR GENERATED FILE 2009.07.19
.glb func01
.glb func02
.SECTION P,CODE
_funcO01:
MOV.L #1000H,R14
JMP R14
_func02:
MOV.L #2000H,R14
JMP R14
.END
Remarks: This option is invalid when form={object | relocate| library} or strip is
specified.
This option is invalid when the CPU type is not the RX series.
The generated jump table is output to the P section.
Only the program section can be specified for the type of section in the section
name.
R20UT0704EJ0102 Rev. 1.02 Page 157 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

4.2.3 List Options

Table 4.5 List Category Options
Item Command Line Format Dialog Menu Specification
List file LISt [= <file name>] Link/Library <List> Specifies the output of list file.
[Generate list file]
List contents SHow [= <sub>[,...]] Link/Library <List>
<sub>: {SYmbol | [Contents :] Symbol information
Reference | Number of references
SEction | Section information
Xreference | Cross-reference information
Total_size| Total sizes of sections
VECTOR| Vector Information
ALL All information
}
LISt List File
Link/Library <List> [Generate list file]
Format: LISt [=<file name>]
Description: Specifies list file output and a list file name.
If no list file name is specified, a list file with the same name as the output file (or
first output file) is created, with the extension Ibp when form=library or extract
is specified, or map in other cases.
SHow List Contents
Link/Library <List> [Contents]
Format: SHow [=<sub>[,...]]
<sub>:{ SYmbol | Reference | SEction | Xreference | Total size | VECTOR |
ALL}
Description: Specifies output contents of a list.
Table 4.6 lists the suboptions.
Page 158 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

For details of list examples, refer to section 7.3, Linkage List, and section 7.4,
Library List in the user’s manual.

Table 4.6 Suboptions of show Option

Output Format Suboption Name Description
form=library symbol Outputs a symbol name list in a module (when extract is specified)
:;:;::;t Is reference Not specifiable
section Outputs a section list in a module (when extract is specified)
xreference Not specifiable
total_size Not specifiable
vector Not specifiable
all Not specifiable (when extract is specified)

Outputs a symbol name list and a section list in a module (when
form=library)

Other than symbol Outputs symbol address, size, type, and optimization contents.
form=library

and extract is not
specified. section Not specifiable

reference Outputs the number of symbol references.

xreference Outputs the cross-reference information.

total_size Shows the total sizes of sections allocated to the ROM and RAM
areas.

vector Outputs vector information.

all If form=rel, the linkage editor outputs the same information as
when show=symbol, xreference, or total_size is specified.

If form=rel and data_stuff have been specified, the linkage editor
outputs the same information as when show=symbol or total_size
is specified.

If form=abs, the linkage editor outputs the same information as
when show=symbol, reference, xreference, or total_size is
specified.

If form=hex, stype, or bin, the linkage editor outputs the same
information as when show=symbol, reference, xreference, or
total_size is specified.

If form=o0bj, all is not specifiable.

R20UTO0704EJ0102 Rev. 1.02 Page 159 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Remarks: The following table shows whether suboptions will be valid or invalid by all
possible combinations of options form, show, and/or show=all.

Symbol Reference Section Xreference Vector Total_size

form=abs show Valid Valid Invalid Invalid Invalid Invalid
show=all Valid Valid Invalid Valid Valid Valid
form=lib show Valid Invalid Valid Invalid Invalid Invalid
show=all Valid Invalid Valid Invalid Invalid Invalid
form=rel show Valid Invalid Invalid Invalid Invalid Invalid
show=all Valid Invalid Invalid Valid* Invalid Valid
form=obj show Valid Valid Invalid Invalid Invalid Invalid
show=all Valid Invalid Invalid Invalid Invalid Invalid
form=hex/bin/sty show Valid Valid Invalid Invalid Invalid Invalid
show=all Valid Valid Invalid Valid Valid* Valid*

Note: The option is invalid if an absolute-format file is input.

Note the following limitations on output of the cross-reference information.

e When the relocatable format is specified for the output file and the data_stuff option is
specified, no cross-reference information is output.

e When an absolute-format file is input, the referrer address information is not output.

e When -goptimize is not specified at assembly, information about branches to the same section
within the same file is not output (only when an H8, H8S, H8SX Family CPU is specified).

¢ Information about references to constant symbols within the same file is not output.

e When optimization is specified at compilation, information about branches to immediate
subordinate functions is not output.

e When optimization of access to external variables is specified, information about references to
variables other than base symbols is not output (only when an SuperH Family or RX Family
CPU is specified).

e When an offset value is directly specified in a #pragma tbr in the C source program,
information about that function is not output (only when the SH-2A or SH2A-FPU is specified
as the CPU).

Page 160 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

e When optimization is specified at linkage and constants or literals are unified, information
about references to these constants or literals is not output.

e Both show=total_size and total_size output the same information.
e show=vector can be used when the CPU type is RX Family, M16C Series, or R8C Family.

e When show=reference is valid, the number of references of the variable specified by
#pragma address is output as 0 (only when a SuperH Family or RX Family CPU is specified).

R20UTO0704EJ0102 Rev. 1.02 Page 161 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options

Optimizing Linkage Editor

4.2.4 Optimize Options

Table 4.7 Optimize Category Options

Item Command Line Format Dialog Menu Specification
Optimization = OPtimize = <sub>[...] Link/Library <Optimize> Executes optimization.
<sub>: {STring_unify [Show entries for :] Unifies constants/string literals.
| SYmbol_delete [Optimize items] Deletes unreferenced symbols.
| Register [Optimize :] Provides optimization with
register save/restore.
| SAMe_code Unifies same codes.
| Branch Provides optimization for
branches.
| Speed Provides optimization for speed.
| SAFe } Provides safe optimization.
NOOPtimize} No optimization.
Same code SAMESize = <size> Link/Library <Optimize> Specifies the minimum size to
size (default: sames=1e) [Eliminated size] unify same codes.
Profile PROfile = <file name> Link/Library <Optimize> Specifies a profile information file.
information [Include profile :] (Dynamic optimization is
provided.)
Cache size CAchesize=<sub> Link/Library <Optimize>
<sub>: Size=<size> | [Cache size :] Specifies a cache size.

Align=<line size>
(default: ca=s=8,a=20)

Specifies a cache line size.
(for SuperH Family)

Optimization ~ SYmbol_forbid= Link/Library <Optimize>
partially <symbol name>[,...] [Show entries for :]
disabled [Forbid item]

SAMECode_forbid=
<function name>[,...]
Variable_forbid=
<symbol name>[,...]

FUnction_forbid=
<function name>[,...]
SEction_forbid = <sub>[,...]
<sub>: [<file name>|
<module name>]
(<section name>[,...])
Absolute_forbid=
<address>[+<size>][,...]

Specifies a symbol where
unreferenced symbol deletion is
disabled.

Specifies a symbol where same
code unification is disabled.
Specifies a symbol where short
absolute addressing mode is
disabled.

Specifies a symbol where indirect
addressing mode is disabled.
Specifies a section where
optimization is disabled.

Specifies an address range
where optimization is disabled.

Page 162 of 1176
RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

OPtimize, NOOPtimize Optimization
Link/Library <Optimize> [Show entries for :][Optimize items][Optimize :]

Format: OPtimize [= <suboption>[,...]]
NOOPtimize

<suboption>: { STring unify | SYmbol delete | Register | SAMe code | Branch
| SPeed | SAFe }

Description: Specifies whether the inter-module optimization is executed.

When optimize is specified, optimization is performed for the file specified with
the goptimize option at compilation or assembly.

When nooptimize is specified, no optimization is executed for a module.
When this option is omitted, the default is optimize.
Table 4.8 shows the suboptions

Table 4.8 Suboptions of Optimize Option

Suboption Description

No parameter V.9.04 Release 01 or earlier
This suboption is the same as the following specifications:
optimize=string_unify, symbol_delete, register, same_code, branch

V.9.04 Release 02 or later
This suboption is the same as the following specifications:
optimize=string_unify, symbol_delete, same_code, branch

string_unify Unifies same-value constants having the const attribute. Constants having the const
attribute are:

e Variables defined as const in C/C++ program
o Initial value of character string data

e Literal constant

symbol_delete Deletes variables/functions that are not referenced. Always be sure to specify #pragma
entry at compilation or the entry option in the optimizing linkage editor.

register Investigates function calls, relocates registers and deletes redundant register save or
restore codes. Always be sure to specify #pragma entry at compilation or the entry option
in the optimizing linkage editor.

same_code Creates a subroutine for the same instruction sequence.

R20UTO0704EJ0102 Rev. 1.02 Page 163 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor
Suboption Description
branch Optimizes branch instruction size according to program allocation information. Even if this

option is not specified, it is performed when any other optimization is executed.

speed

Executes optimizations other than those reducing object speed.

V.9.04 Release 01 or earlier
This suboption is the same as the following specifications:
optimize=string_unify, symbol_delete, register, branch

V.9.04 Release 02 or later
This suboption is the same as the following specifications:
optimize=string_unify, symbol_delete, branch

safe

Executes optimizations other than those limited by variable or function attributes.

V.9.04 Release 01 or earlier
This suboption is the same as the following specifications:
optimize=string_unify, register, branch

V.9.04 Release 02 or later
This suboption is the same as the following specifications:
optimize=string_unify, branch

Remarks:

When form={object | relocate | library} or strip is specified, this option is
unavailable.

When optimization of access to external variables is specified at compilation,
optimization with unification of constants/string literals (optimize=string_unify)
is invalid.

When the CPU is SH-2A or SH2A-FPU, the code size may increase due to the
optimize=register function.

When a start function with #pragma entry or entry is not specified,
optimize=symbol_delete is invalid.

Page 164 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

SAMesize Common Code Size

Link/Library <Optimize> [Eliminated size :]
Format: SAMESize = <size>

Description: Specifies the minimum code size for the optimization with the same-code
unification (optimize=same_code). Specify a hexadecimal value from 8 to 7FFF.

When this option is omitted, the default is samesize=1E.

Remarks: When optimize=same_code is not specified, this option is unavailable.

R20UTO0704EJ0102 Rev. 1.02 Page 165 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

PROfile

Profile Information

Link/Library <Optimize> [Include profile :]

Format: PROfile = <file name>

Description: Specifies a profile information file.

Specifiable profile information files are those output from the High-performance

Embedded Workshop Ver. 2.0 or later.

When a profile information file is specified, inter-module optimization according

to dynamic information can be performed.

Table 4.9 shows optimizations influenced by a profile information input.

Table 4.9 Relations Between Profile Information and Optimization

Program to be Optimized*!

Suboption Description SHC SHA H8C HB8A

variable_access Allocates variables from those that are x x O
dynamically accessed more frequently.

(0]

function_call Lowers the optimizing priority of functions that x X O
are dynamically accessed frequently.

o}

branch Allocates a function that is dynamically accessed O A¥2 O
frequently near the calling function.

For the SH program, the optimization with
allocation is performed depending on the cache
size specified using the cachesize option.

Notes: 1. SHC: C/C++ program for SuperH Family
SHA: Assembly program for SuperH Family
H8C: C/C++ program for H8, H8S, H8SX Family
H8A: Assembly program for H8, H8S, H8SX Family
2. Movement is provided not in the function unit, but in the input file unit.

Remarks: When the optimize option is not specified, this option is unavailable.

Page 166 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

CAchesize Cache Size
Link/Library <Optimize> [Cache size :]

Format: CAchesize = <suboption>
<suboption>: Size = <size> | Align = <line size>
Description: Specifies a cache size and cache line size.

When profile is specified, this option is used at the branch instruction
optimization (optimize=branch).

Specify the size in Kbytes and specify the line size in bytes in the hexadecimal
notation.

When this option is omitted, the default is cachesize=size=8, align=20.

Remarks: If profile is not specified, this option is unavailable.

R20UTO0704EJ0102 Rev. 1.02 Page 167 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

SYmbol forbid, SAMECode_forbid, Variable_forbid,
FUnction_forbid, SEction_forbid, Absolute_forbid Optimization Partially Disabled

Link/Library <Optimize> [Show entries for :] [Forbid item]

Format: SYmbol forbid = <symbol name> [,...]
SAMECode_forbid = <function name> [,...]
Variable forbid = <symbol name> [,...]
FUnction_forbid = <function name> [,...]
SEction_forbid = <sub>[,...]
<sub>: [<file name>|<module name>](<section name>[,...])
Absolute_forbid = <address> [+<size>] [,...]

Description: Disables optimization for the specified symbol, section, or address range. Specify
an address or the size in the hexadecimal notation. For a C/C++ variable or C
function name, add an underscore (_) at the head of the definition name in the
program. For a C++ function, enclose the definition name in the program with
double-quotes including the parameter strings. When the parameter is void,
specify as "<function name>()".

Table 4.10 shows the suboptions.
Page 168 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

Table 4.10 Suboptions of Optimization Partially Disabling Option

Suboption Parameter Description
symbol_forbid Function name Disables optimization regarding unreferenced symbol
| variable name deletion
samecode_forbid Function name Disables optimization regarding same-code unification
variable_forbid Variable name Disables optimization regarding short absolute
addressing mode
function_forbid Function name Disables optimization regarding indirect addressing
mode
section_forbid Section name Disables optimization for the specified section. If an
File name input file name or library module name is also specified,
Module name the optimization can be disabled for a specific file, not

only the entire section.

absolute_forbid Address [+ size] Disables optimization regarding address + size
specification

Examples: symbol forbid="f (int)" ; Does not delete the C++ function f(int)
; even if it is not referenced.

section forbid=(P1) ; Disables any optimization for section
; P1.

section forbid=a.obj (P1,P2) ; Disables any optimization for sections
; P1 and P2 in a.obj.

Remarks: If optimization is not applied at linkage, this option is ignored.

To disable optimization for an input file with its path name, type the path with the
file name when specifying section_forbid.

R20UTO0704EJ0102 Rev. 1.02 Page 169 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

4.2.5 Section Options

Table 4.11 Section Category Options

Item Command Line Format Dialog Menu Specification

Section STARt = <sub>[,...] Link/Library <Section> Specifies a section start address

address <sub>: [(]J<section name> [Show entries for :]
[{:], }<section name>[,...]] [Section]

DIL.--] [/<address>]
Symbol FSymbol = <section name>[,...] Link/Library <Section> Outputs externally defined
address file [Show entries for :] symbol addresses to a definition
[Symbol file] file.

Section ALIGNED_SECTION = <section Link/Library <Section> Changes the section alignment

alignment name>[,...] [Show entries for :] value to 16 bytes.

specification [Section alignment]

STARt Section Address

Link/Library <Section> [Show entries for :] [Section]

Format: STARt = <sub> [,...]

<sub>: [(] <section name> [{ : |, } <section name> [,...]] D] [,...]
[/ <address>]

Description: Specifies the start address of the section. Specify an address as the hexadecimal.
The section name can be specified with wildcards “*”. Sections specified with
wildcards are expanded according to the input order.

Two or more sections can be allocated to the same address (i.e., sections are
overlaid) by separating them with a colon “:”.

Sections specified at a single address are allocated in the specification order.
Sections to be overlaid can be changed by enclosing them by parentheses “()”.
Objects in a single section are allocated in the specification order of the input file
or the input library.

Page 170 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

If no address is specified, the section is allocated at 0.

A section which is not specified with the start option is allocated after the last
allocation address.

Examples: This example shows how sections are allocated when the objects are input in the
following order (names enclosed by parentheses are sections in the objects).
tpl.obj(A,D1,E) -> tp2.0bj(B,D3,F)) -> tp3.0bj(C,D2,E,G)

-> lib.1lib(E)
(1) -start=A,B,E/400,C,D*:F:G/8000
0x400 0x8000
[a T8 [E@tpni E(tp3)iElib) | c [o1 I o3 o2
F
G
e Sections C, F, and G separated by colons are allocated to the same address.
e Sections specified with wildcards “*” (in this example, the sections whose
names start with D) are allocated in the input order.
e Objects in the sections having the same name (E in this example) are allocated
in the input order.
e An input library’s section having the same name (E in this example) as those
of input objects is allocated after the input objects.
(2) -start=A,B,C,D1:D2,D3,E,F:G/400
0x400
A B c | o1 |
D2 | D3 E [F |
L |
o The sections that come immediately after the colons (A, D2, and G in this
example) are selected as the start and allocated to the same address.
(3) -start=a,B,C, (D1:D2,D3),E, (F:G) /400
0x400
[B Jc D1 E F |
D2 | D3 G
e When the sections to be allocated to the same address are enclosed by
parentheses, the sections within parentheses are allocated to the address
R20UT0704EJ0102 Rev. 1.02 Page 171 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

immediately after the sections that come before the parentheses (C and E in
this example).

o The section that comes after the parentheses (E in this example) is allocated
after the last of the sections enclosed by the parentheses.

Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.

Parentheses cannot be nested.

One or more colons must be written within parentheses. Parentheses cannot be
written without a colon.

Colons cannot be written outside of parentheses.

When this option is specified with parentheses, optimization with the linkage
editor is disabled.

Page 172 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

FSymbol

Symbol Address File

Format:

Description:

Examples:

Remarks:

Link/Library <Section> [Show entries for :][Symbol file]
FSymbol = <section name> [,...]

Outputs externally defined symbols in the specified section to a file in the
assembler directive format.

The file name is <output file>.fsy.

fSymbol = sct2, sct3
output=test.abs

Outputs externally defined symbols in sections sct2 and sct3 to test.fsy.

[Output example of test.fsy]
;OPTIMIZING LINKAGE EDITOR GENERATED FILE 1999.11.26
; fsymbol = sct2, sct3

; SECTION NAME = sct2
.export f
_f: .equ h’00000000

.export g

~g: .equ h’00000016

; SECTION NAME = sct3
.export main

~main: .equ h’00000020

.end

When form={object | relocate | library} or strip is specified, this option is
unavailable.

This option is available when the CPU type is H8, H8S, H8SX Family, SuperH
Family, or RX Family.

R20UT0704EJ0102 Rev. 1.02 Page 173 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

ALIGNED_SECTION Changing Section Alignment to 16 bytes

Link/Library <Section> [Show entries for :][Section alignment]

Format: ALIGNED_ SECTION = <section name>[,...]
Description: Changes the alignment value for the specified section to 16 bytes.
Remarks: When form={object | relocate | library}, extract, or strip is specified, this

option is unavailable.

Page 174 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

4.2.6 Verify Options

Table 4.12 Verify Category Options

Item Command Line Format Dialog Menu Specification
Address CPu = { <cpu information file Link/Library <Verify> Specifies a specifiable allocation
check name> [CPU information check :] range for section addresses.
| <memory type> = The specified section will be
<address range>[,...] divided.
| STRIDE}
<memory type>:
{ROm | RAm
| XROm | XRAm

| YROm | YRAmM }
<address range>:
<start address>
-<end address>

Physical PS_check=<sub>[:<sub>...] Link/Library <Verify> Specifies address ranges that
space overlap <sub>: <LS>,<LS>],...] [Physical space overlap may overlap each other in the
check <LS>: <start address> check] physical space.
-<end address>

Not divide the CONTIGUOUS_SECTION Link/Library <Verify> The specified section will not be
specified = <section name>[,...] [Not divide the specified divided.

section section 3]
R20UT0704EJ0102 Rev. 1.02 Page 175 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

CPu

Address Check

Verify [CPU information check:]

Format: CPu={<cpu information file name>
| <memory type> = <address range> [,...]
| STRIDE}
<memory type>: { ROm | RAm | XROm | XRAm | YROm | YRAm | FIX}
<address range>: <start address> - <end address>
Description: When cpu=stride is not specified, a section larger than the specified range of
addresses leads to an error.
When cpu=stride is specified, a section larger than the specified range of
addresses is allocated to the next area of the same memory type or the section is
divided.
[Example]
When the stride suboption is not specified:
start=D1,D2/100
cpu=ROM=100-1FF, RAM=200-2FF
The result is normal when D1 and D2 are respectively allocated within the ranges
from 100 to 1FF and from 200 to 2FF. If they are not allocated within the ranges,
an error will be output.
[Example]
When the stride suboption is specified:
start=D1,D2/100
cpu=ROM=100-1FF, RAM=200-2FF, ROM=300-3FF
cpu=stride
The result is normal when D1 and D2 are allocated within the ROM area
(regardless of whether the section is divided). A linkage error occurs when they
are not allocated within the ROM area even though the section is divided.
xrom and xram specify the X memory areas and yrom and yram specify the Y
memory areas in the DSP.
Specify an address range in which a section can be allocated in hexadecimal
notation. The memory type attribute is used for the inter-module optimization.
Page 176 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

Remarks:

FIX for <memory type> is used to specify a memory area where the addresses
are fixed (e.g. I/O area).

If the address range of <start>-<end> specified for FIX overlaps with that
specified for another memory type, the setting for FIX is valid.

When <memory type> is ROM or RAM and the section size is larger than the
specified memory range, sub-option STRIDE can be used to divide a section and
allocate them to another area of the same memory type. Sections are divided in
module units.

[Example]

cpu=ROM=0-FFFF,RAM=10000-1FFFF

Checks that section addresses are allocated within the range from 0 to FFFF or
from 10000 to 1FFFF.

Object movement is not provided between different attributes with the inter-
module optimization.

cpu=ROM=100-1FF, ROM=400-4FF, RAM=500-5FF

cpu=stride

When section addresses are not allocated within the range from 100 to 1FF, the
linkage editor divides the sections in module units and allocates them to the range
from 400 to 4FF.

When form={object | relocate | library} or strip is specified, this option is
unavailable.

When cpu=stride and memory=low are specified, this option is unavailable.

Memory types Xrom, Xxram, yrom, and yram are available only when the CPU is
SHDSP, SH2DSP, SH3DSP or SH4ALDSP.

When cpu=stride and optimize=register are valid, error L2320 may be output.
In such cases, disable optimize=register.

When section B is divided by cpu=stride, the size of section C$BSEC increases
by 8 bytes x number of divisions because this amount of information is required
for initialization.

R20UT0704EJ0102 Rev. 1.02 Page 177 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

PS_check

Physical Space Overlap Check

Verify [Physical space overlap check :]

Format: PS_check=<sub>[:<sub>...]
<sub>: <LS>,<LS>|,...]
<LS>: <start address>-<end address>

Description: Specifies objects that may overlap each other when they are allocated to the
memory.

Use this option to detect SH3 or SH4 objects that will overlap each other when
they are allocated to the actual memory even if their virtual addresses do not
overlap.

If an overlap is detected after this option setting, an error will be output and the
linkage operation will be terminated.

Specify address ranges (<LS> in the command line format) that may overlap each
other in the memory.

To check multiple physical memory spaces, specify them by separation with a
colon (3).

Examples: In the SH4, the 4-Gbyte address space is mapped to the 512-Mbyte (29-bit
address) external memory area when the MMU is disabled (the upper three bits of
address for the 4-Gbyte space are ignored).

For example, when the U0 area (00000000 to Ox7ffffftf) that can be used in user
mode is mapped to the external memory (512 Mbytes), overlapped objects can be
detected through the following setting.

-PS check=00000000-1fffffff,20000000-3fffffff,
40000000-5fffffff,60000000-7f£f££££ £

This setting means that addresses 00000000, 20000000, 40000000, and 60000000
are allocated to the same location in the actual memory.

Remarks: This option is only valid for the SuperH Family CPUs.

Page 178 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

This option is invalid if object, relocate, or library is specified for the output
format (form option).

This option is invalid when an absolute file is input.

For the address space specifications of the CPU, refer to the hardware manual of
the target CPU.

CONTIGUOUS_SECTION Not divide the specific section

Link/Library <Verify> [Not divide the specified section :]

Format: CONTIGUOUS_SECTION=<section name>,...]

Description: Allocates the specified section to another available area of the same memory type
without dividing the section when cpu=stride is valid.

Examples: start=P, PA,PB/100
cpu=ROM=100-1FF, ROM=300-3FF, ROM=500-5FF
cpu=stride
contiguous_ section=PA
Section P is allocated to address 100.
If section PA which is specified as contiguous_section is over address 1FF,
section PA is allocated to address 300 without being divided.
If section PB which is not specified as contiguous_section is over address 3FF,
section PB is divided and allocated to address 500.

Remarks: When cpu=stride is invalid, this option is unavailable.

R20UT0704EJ0102 Rev. 1.02 Page 179 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options

Optimizing Linkage Editor

4.2.7 Other Options

Table 4.13 Other Category Options

Item Command Line Format Dialog Menu

Specification

End code S9 Link/Library <Other>
[Miscellaneous options :]
[Always output S9 record

Always outputs the S9 record.

at the end]
Stack STACk Link/Library <Other> Outputs a stack use information
information [Miscellaneous options :] file.
file [Stack information output]
Debugging Compress Link/Library <Other> Compresses debugging
information [Miscellaneous options :] information
compression NOCOmpress [Compress debug Does not compress debugging

information]

information

Memory MEMory = [High | Low] Link/Library <Other> Specifies the memory
occupancy [Miscellaneous options :] occupancy when an input file is
reduction [Low memory use during loaded
linkage]
Symbol name REName = <sub>[,...] Link/Library <Other> Modifies a symbol name or
modification ~ <sub>: [User defined options :] section name.
{<file name>
(<name>=<name>[,...])

| <module name>
(<name><name>[,...]) }

Symbol name DELete = <sub>[,...] Link/Library <Other>
deletion <sub>: [User defined options :]
{<module name>
| [<file name>]
(<name>[,...])}

Deletes a symbol name or
module name.

Module REPlace = <sub>[,...] Link/Library <Other>
replacement <sub>: <file> [User defined options :]
[(<module>[,...])]

Replaces modules of the same
name in a library file.

Module EXTract = <module>[,...] Link/Library <Other> Extracts the specified module in
extraction [User defined options :] a library file.

Debugging STRip Link/Library <Other> Deletes debugging information
information [User defined options:] in an absolute file or a library
deletion file.

Page 180 of 1176
RENESAS

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options
Item Command Line Format Dialog Menu Specification
Message level CHange_message=<sub>[,...] Link/Library <Other> Modifies message levels.

<sub>: [User defined options:]

{Information | Warning | Error }
[=<error number>
[-<error number>][,...]1]

Local symbol Hide Link/Library <Other> Deletes local symbol name
name hide [User defined options:] information

Showing total Total_size Link/Library <Other> This newly added option sends
sizes of [Miscellaneous options ;] total sizes of sections after
sections [Displays total section size] linkage to standard output.
Information RTs_file Link/Library <Other> Outputs an information file for
file for the [Miscellaneous options :] the emulator (for SuperH
emulator [Rts information output] Family).

S9 End Code

Link/Library <Other>[Miscellaneous options :][Always output S9 record at the end]
Format: S9
Description: Outputs the S9 record at the end even if the entry address exceeds 0x10000.

Remarks: When form=stype is not specified, this option is unavailable.

R20UTO0704EJ0102 Rev. 1.02 Page 181 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

STACk

Stack Information File

Link/Library <Other>[Miscellaneous options :][Stack information output]

Format: STACk
Description: Outputs a stack consumption information file.
The file name is <output file name>.sni.
Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.
COmpress, NOCOmpress Debugging Information Compression
Link/Library <Other>[Miscellaneous options :][Compress debug information]
Format: COmpress
NOCOmpress
Description: Specifies whether debugging information is compressed.
When compress is specified, the debugging information is compressed.
When nocompress is specified, the debugging information is not compressed.
By compressing the debugging information, the debugger loading speed is
improved. If the nocompress option is specified, the link time is reduced.
If this option is omitted, the default is nocompress.
Remarks: When form={object | relocate | library | hexadecimal | stype | binary} or strip
is specified, the compress option is unavailable.
Page 182 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

MEMory

Memory Occupancy Reduction

Link/Library <Other>[Miscellaneous options :]J[Low memory use during linkage]

Format: MEMory = [High | Low]
Description: Specifies the memory size occupied for linkage.
When memory = high is specified, the processing is the same as usual.
When memory = low is specified, the linkage editor loads the information
necessary for linkage in smaller units to reduce the memory occupancy. This
increases file accesses and processing becomes slower when the occupied
memory size is less than the available memory capacity.
memory = low is effective when processing is slow because a large project is
linked and the memory size occupied by the linkage editor exceeds the available
memory in the machine used.
Remarks: When one of the following options is specified, the memory=low option is
unavailable:
When form=absolute, hexadecimal, stype, or binary is specified:
compress, delete, rename, map, stack, cpu=stride, or
list and show[={reference | xreference}] are specified in combination.
When form=library is specified:
delete, rename, extract, hide, or replace
When form=object or relocate is specified:
extract
When the microcontroller is of a type that is not a member of the NC family and
optimize is specified.
Some combinations of this option and the input or output file format are
unavailable. For details, refer to table 4.4 in section 4.2.2, Output Options.
R20UT0704EJ0102 Rev. 1.02 Page 183 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

REName

Symbol Name Modification

Format:

Description:

Examples:

Remarks:

Link/Library <Other>[User defined options :]
REName = <suboption> [,...]

<suboption>: {[<file>] (<name> = <name> [,...])
| [<module>] (<name> = <name> [,...]) }

Modifies a symbol name or a section name.

Symbol names or section names in a specific file or library in a module can be
modified.

For a C/C++ variable name, add an underscore () at the head of the definition
name in the program.

When a function name is modified, the operation is not guaranteed.

If the specified name matches both section and symbol names, the symbol name
is modified.

If there are several files or modules of the same name, the priority depends on the
input order.

rename=(_syml=data) ;Modifies _sym1 to data.

rename=1ibl (P=P1) ; Modifies the section P to P1
; in the library module lib1.

When extract or strip is specified, this option is unavailable.

When form=absolute is specified, the section name of the input library cannot be
modified.

Page 184 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

DELete

Symbol Name Deletion

Link/Library <Other>[User defined options :]

Format: DELete = <suboption> [,...]
<suboption>: {[<file>] (<name>[,...]) | <module>}

Description: Deletes an external symbol name or library module.
Symbol names or modules in the specified file can be deleted.
For a C/C++ variable name or C function name, add an underscore () at the head
of the definition name in the program. For a C++ function name, enclose the
definition name in the program with double-quotes including the parameter
strings. If the parameter is void, specify as "<function name>()". If there are
several files or modules of the same name, the file that is input first is applied.
When a symbol is deleted using this option, the object is not deleted but the
attribute is changed to the internal symbol.

Examples: delete=(_ syml) ; Deletes the symbol _sym1 in all files.
delete=filel.obj (_sym2) ; Deletes the symbol _sym2

; in the file filel.obj.

Remarks: When extract or strip is specified, this option is unavailable.
When form=library has been specified, this option deletes modules.
When form={absolute|relocate|hexadecimal|stype|binary}has been specified,
this option deletes external symbols.

R20UT0704EJ0102 Rev. 1.02 Page 185 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

REPlace

Module Replacement

Link/Library <Other>[User defined options :]

Format: REPlace = <suboption> [,...]
<suboption>: <file name> [(<module name> [,...]) }
Description: Replaces library modules.
Replaces the specified file or library module with the module of the same name in
the library specified with the library option.
Examples: replace=filel.obj ; Replaces the module filel
; with the module filel.obj.
replace=1ibl.1ib(md11l) ; Replaces the module mdll with
; the module mdl1 in the input library
; file lib1.lib.
Remarks: When form={object | relocate | absolute | hexadecimal | stype | binary},
extract, or strip is specified, this option is unavailable.
Page 186 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

EXTract

Module Extraction

Link/Library <Other>[User defined options :]

Format: EXTract = <module name> [,...]

Description: Extracts library modules.
Extracts the specified library module from the library file specified using the
library option.

Examples: extract=filel ; Extracts the module filel.

Remarks: When form={absolute | hexadecimal | stype | binary} or strip is specified, this
option is unavailable.
When form=library has been specified, this option deletes modules.
When form={absolute|relocate|hexadecimal|stype|binary}has been specified,
this option deletes external symbols.

STRip Debugging Information Deletion

Link/Library <Other>[User defined options :]

Format: STRip

Description: Deletes debugging information in an absolute file or library file.
When the strip option is specified, one input file should correspond to one output
file.

Examples: input=filel.abs file2.abs file3.abs
strip
Deletes debugging information of filel.abs, file2.abs, and file3.abs, and outputs
this information to filel.abs, file2.abs, and file3.abs, respectively. Files before
debugging information is deleted are backed up in filel.abk, file2.abk, and
file3.abk.

Remarks: When form={object | relocate | hexadecimal | stype | binary} is specified, this
option is unavailable.

R20UT0704EJ0102 Rev. 1.02 Page 187 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

CHange_message Message Level

Link/Library <Other>[User defined options :]

Format: CHange message = <suboption> [,...]
<suboption>: <error level> [= <error number> [-<error number>] [,...]]
<error level>: {Information | Warning | Error}
Description: Modifies the level of information, warning, and error messages.
Specifies the execution continuation or abort at the message output.
Examples: change message=warning=2310
Modifies L2310 to the warning level and specifies execution continuation at
L2310 output.
change message=error
Modifies all information and warning messages to error level messages.
When a message is output, the execution is aborted.
Hide Local Symbol Name Hide
Link/Library <Other>[User defined options :]
Format: Hide
Description: Deletes local symbol name information from the output file. Since all the name
information regarding local symbols is deleted, local symbol names cannot be
checked even if the file is opened with a binary editor. This option does not affect
the operation of the generated file.
Use this option to keep the local symbol names secret.
The following types of symbol names are hidden:
C source: Variable or function names specified with the static qualifiers
C source: Label names for the goto statements
Assembly source: Symbol names of which external definition (reference)
symbols are not declared
Note: The entry function name is not hidden.
Page 188 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

Examples:

Remarks:

The following is a C source example in which this option is valid:

int gl;

int g2=1;

const int g3=3;

static int sl; //<- The static variable name will be hidden.
static int s2=1; //<- The static variable name will be hidden.

static const int s3=2; //<-The static variable name will be hidden.

static int subl () //<- The static function name will be hidden.
{
static int s1; //<- The static variable name will be hidden.
int 11;

sl = 11; 11 = sl;

return (11);

int main ()

subl () ;
if (gl==1)
goto L1;

Ll: //<- The label name of the goto statement
/I will be hidden.
return (0) ;

}

This option is available only when the output file format is specified as absolute,
relocate, or library.

When the input file was compiled or assembled with the goptimize option
specified, this option is unavailable if the output file format is specified as
relocate or library.

To use this option with the external variable access optimization, do not use this
option for the first linkage, and use it only for the second linkage.

The symbol names in the debugging information are not deleted by this option.

R20UT0704EJ0102 Rev. 1.02 Page 189 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Total_size

Showing total sizes of sections

Format:

Description:

Remarks:

Link/Library <Other> [Miscellaneous options :] [Displays total section size]
Total size

Sends total sizes of sections after linkage to standard output. The sections are
categorized as follows, with the overall size of each being output.

e Executable program sections
e Non-program sections allocated to the ROM area
e Sections allocated to the RAM area

This option makes it easy to see the total sizes of sections allocated to the ROM
and RAM areas.

The show=total_size option must be used if total sizes of sections are to be
output in the linkage listing.

When the ROM-support function (rom option) has been specified for a section,
the section will be used by both the source (ROM) and destination (RAM) of the
transfer. The sizes of sections of this type will be added to the total sizes of
sections in both ROM and RAM.

Page 190 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

RTs_file

Information File for the Emulator

Format:

Description:

Remarks:

Link/Library <Other> [Miscellaneous options :] [Rts information output]
RTs file

This option creates a return address information file (.rts file) for the emulator.
For usage of this option, refer to the user’s manual for the emulator in use. This
option is not available in some types of emulators.

The name of the return address information file is <load module name>.rts. If
the file to be output is test.abs as specified with the output option, for example,
its file will be created as test.rts. The return address information file is created
under the same directory where the load module has been created.

This option is invalid when form={object | relocate | library} has been
specified.

This option is invalid when an absolute file is selected as an input file.

For usage of this option, refer to the user’s manual for the emulator in use. This
option is not available in some types of emulators.

This option can be used when the CPU type is SuperH Family.

R20UT0704EJ0102 Rev. 1.02 Page 191 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

4.2.8 Subcommand File Options

Table 4.14 Subcommand Tab Option

Item Command Line Format Dialog Menu Specification
Subcommand SUbcommand = Link/Library Specifies options with a
file <file name> <Subcommand file> subcommand file

[Use external
subcommand file]

Page 192 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

SUbcommand

Subcommand File

Format:

Description:

Examples:

Link/Library <Subcommand file> [Use external subcommand file]
SUbcommand = <file name>
Specifies options with a subcommand file.

The format of the subcommand file is as follows:
<option> { =| A } [<suboption> [,...]] [A&] [;<comment>]

The option and suboption are separated by an “=" sign or a space.
For the input option, suboptions are separated by a space.

One option is specified per line in the subcommand file.

If a subcommand description exceeds one line, the description can be allowed to
overflow to the next line by using an ampersand (&).

The subcommand option cannot be specified in the subcommand file.

Command line specification:
optlnk filel.obj -sub=test.sub file4.obj

Subcommand specification:
input file2.obj file3.obj ; Thisis a comment.
library 1libl.lib, & ; Specifies line continued.
1ib2.1ib

Option contents specified with a subcommand file are expanded to the location at
which the subcommand is specified on the command line and are executed.

The order of file input is filel.obj, file2.obj, file3.obj, and file4.obj.

R20UT0704EJ0102 Rev. 1.02 Page 193 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

4.2.9 CPU Option

Table 4.15 CPU Tab Option

Item Command Line Format Dialog Menu Specification

SBR address SBr = { <SBR address> CPU Specifies the start address of

specification | User} [Specify SBR address :] the 8-bit absolute area (for
H8SX Family).

SBr SBR Address Specification

CPU [Specify SBR address :]
Format: SBr = { <address> | User }
Description: Specifies the SBR address.

When the SBR address is specified in this option, optimization using the abs8
area is available. When user is specified in this option, optimization for the abs8
area is disabled.

Remarks: This option is available only when the CPU is HS§SX Family.

If more than one SBR address is specified within the source or by tool options,
the optimizing linkage editor assumes that user is specified regardless of this
option setting.

Page 194 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

4.2.10 Options Other Than Above

Table 4.16 Options Other Than Above

Item Command Line Format Dialog Menu Specification
Copyright LOgo — Output
NOLOgo (NOLOgo is always valid) Not output
Continuation END — Executes option strings already

input, inputs continuing option
strings and continues

processing.

Termination EXIt — Specifies the termination of
option input.

LOgo, NOLOgo Copyright

None (nologo is always available.)
Format: LOgo
NOLOgo
Description: Specifies whether the copyright is output.
When the logo option is specified, the copyright is displayed.
When the nologo option is specified, the copyright display is disabled.

When this option is omitted, the default is logo.

R20UTO0704EJ0102 Rev. 1.02 Page 195 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

END Execution Continued
None

Format: END

Description: Executes option strings specified before END. After the linkage processing is

terminated, option strings that are specified after END are input and the linkage
processing is continued.

This option cannot be specified on the command line.

Examples: input=a.obj,b.obj ; Processing (1)
start=P,C,D/100,B/8000 ;Processing (2)
output=a.abs ; Processing (3)
end
input=a.abs ; Processing (4)
form=stype ; Processing (5)
output=a.mot ; Processing (6)

Executes the processing from (1) to (3) and outputs a.abs. Then executes the
processing from (4) to (6) and outputs a.mot.

Page 196 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 4 Optimizing Linkage Editor Options

EXIt Termination Processing
None

Format: EXIt

Description: Specifies the end of the option specifications.

This option cannot be specified on the command line.

Examples: Command line specification:
optlnk -sub=test.sub -nodebug

test.sub:
input=a.obj,b.obj ; Processing (1)
start=P,C,D/100,B/8000 ;Processing (2)
output=a.abs ; Processing (3)
exit

Executes the processing from (1) to (3) and outputs a.abs.

The nodebug option specified on the command line after exit is executed is
ignored.

R20UTO0704EJ0102 Rev. 1.02 Page 197 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 4 Optimizing Linkage Editor Options Optimizing Linkage Editor

Page 198 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

Section 5 Standard Library Generator Operating Method

5.1 Option Specifications
The format of the command line is as follows:

lbgsh [A<option string>...]

<option string>:-<option>[=<suboption>[,...]]

5.2 Option Descriptions

Options and suboptions of the standard library generator are based on the compiler options. The
following section describes the difference between the options and suboptions of the standard
library generator and those of the compiler. For details on compiler options, refer to section 2,
Compiler Options.

In the command line format, uppercase letters indicate abbreviations. The format of the dialog
menus that correspond to the integrated development environment is as follows: Category name
[Ttem].

R20UT0704EJ0102 Rev. 1.02 Page 199 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 5 Standard Library Generator Operating Method

Optimizing Linkage Editor

5.2.1 Additional Options

Table 5.1 shows additional options.

Table 5.1 Additional Options
Item Command Line Format Dialog Menu Specification
Header file Head = <sub>[,...] Library Specifies a configuration file.
<sub>{ ALL [Category:] All library functions

| RUNTIME Runtime routine

| CTYPE ctype.h + runtime routine

| MATH math.h + runtime routine

| MATHF mathf.h + runtime routine

| STDARG stdarg.h + runtime routine

| STDIO stdio.h + runtime routine

| STDLIB stdlib.h + runtime routine

| STRING string.h + runtime routine

| 10S ios + runtime routine

| NEW new + runtime routine

| COMPLEX complex + runtime routine

| CPPSTRING } string + runtime routine
Output file ~ OUTPut = <file name> Object Specifies an output library file

[Output file:] name.
Simple /O NOFLoat Object Creates simple 1/O function.
function [Simple I/O
function:]

Reentrant REent Object Creates reentrant library.
library [Generate

reentrant library:]

Page 200 of 1176
RENESAS

R20UTO0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

Head
Library [Category:]

e Command Line Format
Head = <sub>[,...]
<sub>:{ ALL

| RUNTIME
| CTYPE
| MATH

| MATHF
| STDARG

| STDIO

| STDLIB

| STRING

| I0S

| NEW

| COMPLEX

| CPPSTRING }

e Description
Specifies a configuration file with a header file name. For relationships between header files
and library functions, refer to section 10.4, C/C++ Library. The runtime routine is always
configured. The default of this option is head=all.

e Example
lbgsh -output=sh2.1ib -head=mathf -cpu=sh2
Compiles library functions defined by mathf.h and runtime routine with option: -cpu=sh2, and
outputs library file sh2.lib.

R20UT0704EJ0102 Rev. 1.02 Page 201 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 5 Standard Library Generator Operating Method Optimizing Linkage Editor

OUTPut

Object [Output file:]

Command Line Format

OUTPut = <File name>

Description

Specifies an output file name. The default of this option is output=stdlib.lib.
Example

lbgsh -output=sh2.l1ib -optimize -speed -goptimize -cpu=sh2
Compiles all standard library source files with options: -optimize -speed
-goptimize -cpu=sh2, and outputs library file sh2.lib.

NOFLoat

Object[Simple I/O function:]

Command Line Format
NOFLoat
Description

Selects the creation of simple I/O functions that do not support the conversion of floating point
numbers (%f, %e, %E, %g, %G). When inputting or outputting files that do not require the
conversion of floating point numbers, ROM can be saved.

Target functions: fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf, and vsprintf
Remarks

When a floating-point number is specified in I/O functions, linkages of library that are created
by this option will not operate correctly on the floating-point number thus specified.

REent

Object[Generate reentrant library:]

Command Line Format
REent
Description

Creates reentrant functions. Note that the rand and srand functions are not reentrant functions.

Page 202 of 1176 R20UTO0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

e Remarks
When reentrant functions are linked, use #define statements to define macro names (#define

_REENTRANT) or use the define option to define REENTRANT at compilation before
including standard include files in the program.

5.2.2 Options Not Available for the Standard Library Generator

Table 5.2 shows options that cannot be specified for the standard library generator. If any of the
options listed in table 5.2 are specified, these specifications are ignored.

Table 5.2 Options Not Available for Standard Library Generator

Compiler

Item Option Interpretation Description
Include file directory include None —
Inter-file inline file_inline_path None —
expansion directory
specification
Macro name definition define None —
Message output message nomessage No output
control nomessage
Preprocessor preprocessor None —
inline output
Restriction for output at noline None —
preprocessor expansion
Object type code code = machinecode Outputs machine code program
Debugging information debug nodebug No output

nodebug
Object file output objectfile None —
Template instance template None No template function used
generation
Listing file listfile nolistfile No output

nolistfile
Listing format show None —
Inter-file inline file_inline None —
expansion
R20UT0704EJ0102 Rev. 1.02 Page 203 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 5 Standard Library Generator Operating Method

Optimizing Linkage Editor

Table 5.2 Options Not Available for Standard Library Generator (cont)

Compiler
Item Option Interpretation Description
Comment nesting comment None No comment nesting function
used
MAC register macsave macsave = 1 Contents of MACH and MACL
registers are guaranteed.
Message level change_message None —
Selecting C or C++ lang None Determined by an extension
language
Disable of Copyright logo nologo Copyright output disabled
output nologo
Character code select in euc None No character code used
string literals sjis
latin1
Japanese character outcode None No character code used
conversion within object
code
TBR relative function tbr None —
call
Disposition of variables stuff_gbr None —
in $G0/$G1
Preventing expansion of cpp_noinline None —
C++ inline functions
Optimization consideringalias alias=noansi Optimization in consideration of

type of object indicated
by pointer

types of objects indicated by
pointers in compliance with the
ANSI standard is not performed

Page 204 of 1176

RENESAS

R20UTO0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 5 Standard Library Generator Operating Method

523 Notes on Specifying Options
When options are specified, follow the rules below:

(1) Specify the same options as in compiling for options cpu, division, endian, fpu, round,
denormalize, pic, double=float, rtti, and pack.

(2) When #pragma global register is used, specify a header file that includes the #pragma
global_register declaration with the preinclude option. When the integrated development
environment is used, specify it with Other[User defined options:].

R20UT0704EJ0102 Rev. 1.02 Page 205 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 5 Standard Library Generator Operating Method Optimizing Linkage Editor

Page 206 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 6 Operating CallWalker

Section 6 Operating CallWalker

6.1 Overview

The CallWalker displays the stack amount by reading the stack information file (*.sni) output by
the optimizing linkage editor or the profile information file (*.pro) output by the simulator
debugger.

For the stack amount of the assembly program (assembled by the assembler of V6 or earlier) that
cannot be output in the stack information file, the information can be added or modified by using
the edit function. In addition, the stack amount of whole systems can be calculated.

The information on the edited stack amount can be saved and read as the call information file
(*.cal).

6.2 Starting the CallWalker

To start the CallWalker, select [Run...] from the start menu of Windows® and specify Call.exe for
execution.

When the Renesas High-Performance Embedded Workshop is used, select [Program] from the
start menu of Windows®, select the Renesas High-Performance Embedded Workshop menu, and
then select Call Walker.

After the Renesas High-Performance Embedded Workshop is started, the CallWalker can also be
started from the [Tools] menu.

For details on operation, refer to the help of the CallWalker.

R20UT0704EJ0102 Rev. 1.02 Page 207 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 6 Operating CallWalker Optimizing Linkage Editor

Page 208 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 7 Environment Variables

Section 7 Environment Variables

7.1 Environment Variable List
Environment variables are listed in table 7.1.

Table 7.1 Environment Variables

Environment

Variable Description
path Specifies a storage directory for the execution file.
Specification format: C> path = <execution file path name>; [<previous path
name>;...]
SHC_LIB Specifies a directory at which compiler load modules exist. This environment

variable must be specified for compilation from the command prompt.
Specification format: C> set SHC_LIB = <execution file path name>

R20UT0704EJ0102 Rev. 1.02 Page 209 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 7 Environment Variables Optimizing Linkage Editor

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

SHCPU

Specifies the CPU type by the cpu option of the compiler or assembler using
environment variables. The following is specified.

<CPU>
SHA1

SH2
SH2E
SH2A
SH2AFPU
SH2DSP
SH3
SH3DSP
SH4
SH4A
SH4ALDSP

When the specification of CPU by the SHCPU environment variable and the
cpu options differ, a warning message is displayed and the cpu option has
priority over the SHCPU specification.

When SHDSP is specified for the compiler, SH2DSP is assumed.
Specification format: C> set SHCPU = <CPU>

Page 210 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 7 Environment Variables

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

SHC_INC*

Specifies a directory at which a system include file of the compiler exists. A
system include file is searched for at a directory specified by the include
option, SHC_INC specified directory, and system directory (SHC_LIB) in this
order. User include files are searched for at the current directory, a directory
specified by the include option, SHC_INC specified directory, and system
directory (SHC_LIB) in this order.

If this option is not specified, no value is set.

Specification format: C> set SHC_INC = <include path name>
[;<include path name>; ...]

SHC_TMP

Specifies a directory for a temporary file generated by the compiler. This
environment variable must be specified for compilation from the command
prompt.

Specification format: C> set SHC_TMP = <temporary file path name>

R20UT0704EJ0102 Rev. 1.02 Page 211 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 7 Environment Variables Optimizing Linkage Editor

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

HLNK_LIBRARY1
HLNK_LIBRARY2
HLNK_LIBRARY3

Specifies a default library name for the optimizing linkage editor. Libraries
which are specified by a library option are linked first. Then, if there is an
unresolved symbol, the default libraries are searched in the order 1, 2, 3.

Specification format:

C> set HLNK_LIBRARY1 = <library name 1>
C> set HLNK_LIBRARY?2 = <library name 2>
C> set HLNK_LIBRARY3 = <library name 3>

HLNK_TMP Specifies a directory in which the optimizing linkage editor creates temporary
files. If HLNK_TMP is not specified, the temporary files are created in the
current directory.

Specification format: C> set HLNK_TMP = <temporary file path name>

HLNK_DIR* Specifies an input file storage directory for the optimizing linkage editor.

The order of searching for files specified by the input or library option is the
current directory then the directory specified as HLNK_DIR.

However, when a wild card is used in the file specification, only the current
directory is searched.

Specification format:
C> set HLNK_DIR = <input file path name>
[;<input file path name >;...]

Note: More than one directory can be specified by using semicolons (;) or commas (,) to
demarcate the directory names.

Page 212 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 7 Environment Variables

7.2 Compiler Implicit Declaration

The following implicit #define declarations are made by the compiler according to the option

specification and the version.

Table 7.2 Compiler Implicit Declaration

Option Implicit Declaration
cpu=sh1 #define _SHA1
cpu=sh2 #define _SH2
cpu=sh2e #define _SH2E
cpu=sh2a #define _SH2A
cpu=sh2afpu #define _SH2AFPU
cpu=sh2dsp #define _SH2DSP
cpu=sh3 #define _SH3
cpu=sh3dsp #define _SH3DSP
cpu=sh4 #define _SH4
cpu=shd4a #define _SH4A
cpu=sh4aldsp #define _SH4ALDSP
pic=1 #define _PIC
endian=big #define _BIG
endian=little #define _LIT
double=float #define FLT, #define_ FLT
fpu=single #define _FPS
fpu=double #define _FPD
denormalize=on #define _DON
round=nearest #define _RON

dspc #define _DSPC
fixed_const #define _FXD

#define __HITACHI_VERSION_ 1

#define __HITACHI_

*2

#define _SH™

#define __RENESAS_VERSION_ "

#define_ _RENESAS_ 2

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 213 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 7 Environment Variables Optimizing Linkage Editor

Notes: 1. The value of __HITACHI_VERSION__and __RENESAS_VERSION_ _
is referenced as follows:

C source program: _ _HITACHI_VERSION_ _==aabb
aa: version
bb: revision
Example definition in the compiler:
#define _ _HITACHI_VERSION_ _ 0x0701 //V.7.1.00
#define _ _HITACHI_VERSION_ _ 0x0900 //V.9.00.00

#define _ _RENESAS_VERSION_ _ 0x0900 //V.9.00.00
2. Always defined.

Page 214 of 1176 R20UTO0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

Section 8 File Specifications

8.1 Naming Files

A standard file extension is automatically added to the name of a compiled file when omitted. The
standard file extensions used by the integrated development environment are shown in table 8.1.

R20UT0704EJ0102 Rev. 1.02 Page 215 of 1176
Mar 01, 2022 RENESAS

Section 8 File Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Table 8.1 Standard File Extensions Used by the Integrated Development Environment

No. File Extension Description

1 c Source program file written in C

2 cpp, cc, cp Source program file written in C++

3 h Include file

4 Ist C source program listing file

5 Ipp C++ source program listing file

6 p C source program preprocessor expansion file

7 pp C++ source program preprocessor expansion file

8 src Assembly source program file

9 exp Assembly program preprocessor expansion file

10 lis Assembly program listing file

11 obj Relocatable object program file

12 rel Relocatable load module file

13 abs Absolute load module file

14 map Linkage map listing file

15 lib Library file

16 Ibp Library listing file

17 mot S-type format file

18 hex HEX format file

19 bin Binary file

20 fsy Symbol address file for optimizing linkage editor output

21 sni Stack information file

22 pro Profile information file

23 dbg DWARF2-format debugging information file

24 rti Object file including definition that was specified by a file with
extension td

25 cal Information file to be called

26 bls Information file for external symbol allocation

Filenames beginning with rti_ are reserved for the system; do not use those files.

Page 216 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

Table 8.2 lists the extensions for files that are output under the tpldir folder generated by each
project.

Table 8.2 tpldir Folder Output File

No. File Extension Description

1 td Tentative-defined variable information file
2 i Template information file

3 pi Parameter information file

4 ii Instance information file

For details on naming files, refer to the user's manual of the host computer because naming rules
vary according to each host computer.

R20UT0704EJ0102 Rev. 1.02 Page 217 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

8.2 Compiler Listings

This section covers the contents and format of the compiler formats.

8.2.1 Structure of Compiler Listings
Table 8.3 shows the structure and contents of compiler listings.

Table 8.3 Structure and Contents of Compiler Listings

Creating List Contents Suboption * Default
Source listing Source program listing *2 show=source No output
information show=nosource

Source program listing show=include No output

after include file expansion show=noinclude

*3

Source program listing show=expansion No output

after macro expansion *3 show=noexpansion

Object information Machine code used in show=object Output
object programs and the show=noobject
assembly code

Statistics Total number of errors, show=statistics Output
information number of source program show=nostatistics

lines, size of each section,

and number of symbols

Command Displays file names and Output
specification options specified by the
information command

Notes: 1. All options are valid when listfile option is specified.
2. Source program listings are included in the object information when show=object
suboption is specified.
3. The source program listing after include file expansion and macro expansion is valid
only when show=source is specified.

Page 218 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

8.2.2 Source Listing

The source listing may be output in two ways. When show=noinclude, noexpansion is specified,
the unpreprocessed source program is output. When show=include, expansion is specified, the
preprocessed source program is output. Figures 8.1 and 8.2 show these output formats,
respectively. In addition, figure 8.2 shows the differences between them with bold characters.

Kk kkkkkkkkkk SOURCE LISTING Kk kK Kk Kk k Kk k Kk k Kk

FILE NAME: m0260.c

Seq File Line O0-—==4-—-=l--——F———-2 =3t ————f === =5
1 m0260.c 1 #include "header.h"
4 m0260.c 2
5 m0260.c 3 int sum2 (void)
6 m0260.c 4 { int j;
7 m0260.c 5
8 m0260.c 6 #ifdef SMALL
9 m0260.c 7 j=SML_INT;
10 m0260.c 8 #else
11 m0260.c 9 J=LRG_INT;
12 m0260.c 10 #endif
13 m0260.c 11
14 m0260.c 12 return Jj;/* continuel23456789012345678901234567
(1) (2) (3) +2345678901234567890 */
(7)
15 m0260.c 13 }

Figure 8.1 Source Listing Output for show = noinclude, noexpansion

R20UT0704EJ0102 Rev. 1.02 Page 219 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

R R R i SOURCE LISTING B R

FILE NAME: m0260.c

Seq File Line O-——-+---—-1l----+--—--2----+----3-——-+--—-4————F———-5-——
1 m0260.c 1 #include "header.h"
2 header.h 1 #define SML INT 1
3 header.h 2 #define LRG_INT 100 (4)
4 m0260.c 2
5 m0260.c 3 int sum2 (void)
6 m0260.c 4 { int j;
7 m0260.c 5
8 m0260.c 6 #ifdef SMALL
9 m0260.c 7 X (5) j=SML_INT;
10 m0260.c 8 #else
11 m0260.c 9 E (6) j=100;
12 m0260.c 10 #endif
13 m0260.c 11
14 m0260.c 12 return j;/* continuel23456789012345678901234567
(1) (2) (3) +2345678901234564890 */
(7)
15 m0260.c 13 }

Figure 8.2 Source Listing Output for show=include, expansion
Description:

(1) Listing line number

(2) Source program file name or include file name

(3) Line number in source program or include file

(4)Source program lines resulting from an include file expansion when show=include is specified.

(5) Source program lines that are not to be compiled due to conditional compile directives such as
#ifdef and #elif being marked with an X when show=expansion is specified.

(6) Source program lines containing a macro expansion #define directives being marked with an E
when show=expansion is specified.

(7) If a source program line is longer than the maximum listing line, the continuation symbol (+) is
used to indicate that the source program line is extended over two or more listing lines.

Page 220 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 8 File Specifications

8.2.3 Object Listing

Figure 8.3 shows an example of object listing.

*kkkkkkkkkkk OBRJECT LISTING KKK KKK KKK KKKk

FILE NAME: m0251.c
SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT
(1) (2) (3) (4) (5)
m0251.c 1 extern int multipli (int);
m0251.c 2
m0251.c 3 int multipli (int x)
P 00000000 _multipli: ;function: multipli
; frame size=16 (0)
00000000 4F22 STS.L PR,R15
00000002 TFF4 ADD #-12,R15
00000004 1F42 MOV.L R4,@(8,R15)
m0251.c 4 {
m0251.c 5 int i;
m0251.c 6 int j;
m0251.c 7
m0251.c 8 j=1;
00000006 E201 MOV #1,R2
00000008 2F22 MOV.L R2,@R15
m0251.c 9 for (i=1;i<=x;i++) {
0000000A E301 MOV #1,R3
0000000C 1F31 MOV.L R3,@(4,R15)
0000000E A009 BRA 1213
00000010 0009 NOP
00000012 L214:
m0251.c 10 j*=1i;
00000012 50F1 MOV.L @(4,R15),R0O
00000014 61F2 MOV @R15,R1
00000016 D30A MOV.L L216+2,R3 ; muli
00000018 430B JSR @R3

Figure 8.3 Object Listing Output for show = source, object

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

Page 221 of 1176
RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Description:

(1) Section name (P, C, D, B, CSINIT, and C$VTBL) of each section
(2) Offset address relative to the beginning of each section

(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine language

(5) Comments corresponding to the program

(6) Stack frame size in bytes

Page 222 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 8 File Specifications

8.2.4 Statistics Information

Figure 8.4 shows an example of statistics information.

*xkkxxkx STATISTICS INFORMATION *** k%

kxkxkxkxk*x ERROR INFORMATION *****%***%

NUMBER OF ERRORS: 0
NUMBER OF WARNINGS: 0
NUMBER OF INFORMATIONS: 0

*x%kxx%kx SOURCE LINE INFORMATTON ** %k *

COMPILED SOURCE LINE: 13

Frokxxkxx SECTION SIZE INFORMATION ***x**xkx

PROGRAM SECTION (P) : 0x000044
CONSTANT SECTION (C) : 0x000000
DATA SECTION (D) : 0x000000
BSS SECTION (B) : 0x000000

TOTAL PROGRAM SECTION: 00000044 Byte(s)
TOTAL CONSTANT SECTION: 00000000 Byte(s)
TOTAL DATA SECTION: 00000000 Byte (s)
TOTAL BSS SECTION: 00000000 Byte (s)

TOTAL PROGRAM SIZE: 0x000044 Byte(s)

*kkkkxkxkkx TABET, INFORMATION KKK KKK KK KKk

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 1
NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1
NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 6

Byte (s)
Byte (s)
Byte (s)
Byte (s)

Figure 8.4 Statistics Information

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022 RENESAS

Page 223 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

Description:

(1) Total number of messages by the level
(2) Number of compiled lines from the source file
(3) Size of each section and total size of sections

(4) Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels

Note: NUMBER OF INFORMATIONS in messages by the level ((1) above) is not output when
message option is not specified. Section size information (3) and label information (4) are
not output if the noobject option has been specified or if an error-level error or a fatal-
level error has occurred. In addition, section size information (3) is output (indicated as
"1") or not output (indicated as "0") according to its specification when code=asmcode
option is specified.

8.2.5 Command Line Specification

The file names and options specified on the command line when the compiler is invoked are
displayed. Figure 8.5 shows an example of command line specification information.

*** COMMAND PARAMETER ***

-listfile test.c

Figure 8.5 Command Line Specification

Page 224 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 8 File Specifications

8.3 Assembly Listings

This section covers the contents and format of the assembly listing.

8.3.1 Structure of Assembly Listing
Table 8.4 shows the structure and contents of the assembly listing.

Table 8.4 Structure and Contents of Assembly Listing

Creating List Contents Option* Default

Source list information Specifies the source program source Output
information

Cross reference list Specifies the source-program cross_reference Output

information symbol information

Section information list Specifies the source-program section OQutput

section information

Note: All the options above are enabled when list option is specified.

8.3.2 Source List Information

The source list information is output. Figure 8.6 shows an example of the source list information.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page 225 of 1176

Section 8 File Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

PROGRAM NAME = "SAMPLE" (7)
1 1 .HEADING """SAMPLE"""
2 2 POINT .ASSIGNA 16
3 3 Parml .REG (RO)
4 4 Parm2 .REG (R1)
5 5 WORK1 .REG (R2)
6 6 WORK2 .REG (R3)
7 7 WORK3 .REG (R4)
8 8 WORK4 .REG (R5)
20 00000000 9 I1 FIX MUL:
21 00000000 2107 10 11 DIVOS Parml,Parm?2
22 00000002 0229 11 I1 MOVT WORK1
23 00000004 4011 12 11 CMP/PZ Parml
24 00000006 8900 13 I1 BT MULO1
25 00000008 600B 14 I1 NEG Parml, Parml
(1) (2) (3) (4) (5) (6)
231 *xkxk BEGIN-POOL ***** —
232 00000180 00018000 DATA FOR SOURCE-LINE 17 (8)
233 00000184 00024000 DATA FOR SOURCE-LINE 18
234 00000188 00030000 DATA FOR SOURCE-LINE 19
235 0000018C 00050000 DATA FOR SOURCE-LINE 20
236 *kx k% END-—POOIL, ****%*),
237 35 .END
****TOTAL ERRORS 0
****TOTAL WARNINGS 0
(9)
Figure 8.6 Source Program Listing
Page 226 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

Description:

(1) Line numbers (in decimal)
(2) The value of the location counter (in hexadecimal)

(3) The object code (in hexadecimal). The size of the reserved area in bytes is listed for areas
reserved with the .RES, .SRES, .SRESC, .SRESZ, and .FRES.

(4) Source line numbers (in decimal)

(5) Expansion type. Whether the statement is expanded by file inclusion, conditional assembly
function, or macro function is listed.

In: File inclusion (n indicates the nest level).

C: Satisfied conditional assembly, performed iterated expansion, or satisfied conditional
iterated expansion

M: Macro expansion
(6) The source statements
(7) The header setup with the . HEADING assembler directive.
(8) The literal pool

(9) The total number of errors and warnings. Error messages are listed on the line following the
source statement that caused the error.

R20UT0704EJ0102 Rev. 1.02 Page 227 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

8.3.3 Cross Reference Listing

The cross reference information is output. Figure 8.7 shows an example of the cross reference
information listing.

*** CROSS REFERENCE LIST

NAME SECTION ATTR VALUE SEQUENCE

FIX DIV SAMPLE 00000088 91% 223

FIX MUL SAMPLE 00000000 19* 218

MULO1 SAMPLE 0000000A 23 25%

MULO2 SAMPLE 00000010 26 28%

MULO3 SAMPLE 00000082 87 89*

Parml REG 3% 20 22 24 24
28 29 29 31 32
32 35 36 36 38
40 45 49 55 57
59 61 63 65 67
69 71 73 75 77
79 81 83 85 88
88 93 94 99 101

Parm?2 REG 4% 20 25 27 27
28 31 33 33 35
38 41 43 44 46
48 54 56 58 60
62 64 66 68 70

(1) (2) (3) (4) (5)

Figure 8.7 Cross Reference Listing
Description:

(1) The symbol name
(2) The name of the section that includes the symbol (first eight characters)
(3) The symbol attribute
EXPT: Export symbol
IMPT: Import symbol
SCT: Section name
REG: Symbol defined with the .REG assembler directive
FREG: Symbol defined with the .FREG assembler directive
ASGN: Symbol defined with the .ASSIGN assembler directive
EQU: Symbol defined with the .EQU assembler directive
MDEF: Symbol defined two or more times
UDEF: Undefined symbol

Page 228 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

No symbol attribute (blank): A symbol other than those listed above
(4) The value of symbol (in hexadecimal)

(5) The list line numbers (in decimal) of the source statements where the symbol is defined or
referenced. The line number marked with an asterisk is the line where the symbol is defined.

8.34 Section Information Listing

The section information is output. Figure 8.8 shows an example of the section information output.

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START
SAMPLE REL-CODE 000000190
(1) (2) (3) (4)

Figure 8.8 Section Information Listing
Description:

(1) The section name
(2) The section type
REL: Relative address section
ABS: Absolute address section
CODE: Code section
DATA: Data section
STACK: Stack section
DUMMY: Dummy section
(3) The section size (in hexadecimal, byte units)

(4) The start address of absolute address sections

R20UT0704EJ0102 Rev. 1.02 Page 229 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

8.4 Linkage List

This section covers the contents and format of the linkage list output by the optimizing linkage
editor.

8.4.1 Structure of Linkage List

Table 8.5 shows the structure and contents of the linkage list.

Page 230 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

Table 8.5 Structure and Contents of Linkage List

When show
Output Option* is When show Option
No. Information Contents Specified is not Specified
1 Option information Option strings specified by a None Output
command line or
subcommand
Error information ~ Error messages None Output
Linkage map Section name, start/end None Output
information addresses, size, and type
4 Symbol information Static definition symbol show =symbol Not output

name, address, size, and
type in the order of address

When show=reference is show =reference Not output
specified:

Symbol reference count and

optimization information in

addition to the above

information
5 Symbol deletion Symbols deleted by show =symbol Not output
optimization optimization
information
6 Cross-reference Symbol reference show =xreference Not output
information information
7 Total section size Total sizes of RAM, ROM, show=total_size = Not output
and program sections
8 Vector information Vector numbers and show=vector Not output
address information
9 CRC information =~ CRC calculation result and None Always output when
output addresses the CRC option is
specified

Note: * The show option is valid when the list option is specified.

R20UT0704EJ0102 Rev. 1.02 Page 231 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

8.4.2 Option Information

The option strings specified by a command line or a subcommand file are output. Figure 8.9
shows an example of option information output when optlnk -sub=test.sub -list -show is
specified.

(test.sub contents)
INPUT test .obj

% Options *

-sub=test .sub
INPUT test .obj (2)
-list

-show

(1)

Figure 8.9 Example of Option Information Output (Linkage List)

(1) Outputs option strings specified by a command line or a subcommand in the specified order.
(2) Subcommand in the test.sub subcommand file

8.4.3 Error Information

Error messages are output. Figure 8.10 shows an example of error information output.

*** Error Information ***

(1)
**% L2310 (E) Undefined external symbol “strcmp” referred to in “test.obj”}

Figure 8.10 Example of Error Information Output (Linkage List)

(1) Outputs an error message.

Page 232 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 8 File Specifications

8.4.4 Linkage Map Information

The start and end addresses, size, and type of each section are output in the order of address.
Figure 8.11 shows an example of linkage map information output.

*** Mapping List ***

SECTION START
(1) (2)

P

00001000
C

00001004
D 2

00001008
B 2

000014de

00001000

00001007

000014dd

000050b3

(4) (5)
1 1
4 4
4de6 2
3bdé6 2

Figure 8.11 Example of Linkage Map Information Output (Linkage List)

(1) Section name
(2) Start address
(3) End address
(4) Section size

(5) Section boundary alignment value

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page 233 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

8.4.5 Symbol Information

When show=symbol is specified, the addresses, sizes, and types of externally defined symbols or
static internally defined symbols are output in the order of address. When show=reference is
specified, the symbol reference counts and optimization information are also output. Figure 8.12
shows an example of symbol information output.

%%x Symbol List *

SECTION= (1)

FILE=(2) START END SIZE
(3) (4) (5)
SYMBOL ADDR SIZE INFO COUNTS OPT
(6) (7) (8) (9) (10) (11)
SECTION=P
FILE=test.obj
00000000 00000428 428
_main
00000000 2 func ,g 0
~malloc
00000000 32 func ,1 0
FILE=mvn3
00000428 00000490 68
SMVN#3
00000428 0 none ,g 0

Figure 8.12 Example of Symbol Information Output (Linkage List)

(1) Section name

(2) File name

(3) Start address of a section included in the file indicated by (2) above
(4) End address of a section included in the file indicated by (2) above
(5) Section size of a section included in the file indicated by (2) above
(6) Symbol name

(7) Symbol address

(8) Symbol size

(9) Symbol type as shown below

Data type: func Function name
data Variable name
entry Entry function name
none Undefined (label, assembler symbol)
Page 234 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 8 File Specifications
Declaration type: g External definition
1 Internal definition

(10) Symbol reference count only when show=reference is specified. * is output when
show=reference is not specified.

(11) Optimization information as shown below.
ch Symbol modified by optimization
cr Symbol created by optimization

mv Symbol moved by optimization

8.4.6 Symbol Deletion Optimization Information

The size and type of symbols deleted by symbol deletion optimization (optimize=symbol_delete)
are output. Figure 8.13 shows an example of symbol deletion optimization information output.

*** Delete Symbols ***

SYMBOL SIZE INFO
(1) (2) (3)
_Version
4 data ,g

Figure 8.13 Example of Symbol Deletion Optimization Information Output (Linkage List)

(1) Deleted symbol name
(2) Deleted symbol size
(3) Deleted symbol type as shown below

Data type: func Function name
data Variable name
Declaration type: g External definition
1 Internal definition
R20UT0704EJ0102 Rev. 1.02 Page 235 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

8.4.7 Cross-Reference Information

The symbol reference information (cross-reference information) is output if show=xreference is
specified. Figure 8.14 shows an example of cross-reference information output.

%* Cross Reference List *

No Unit Name Global.Symbol Location External Information
(1) (2) (3) (4) (5)
0001 a
SECTION=P func
00000100
_funcl
00000116
_main
0000012c
_9
00000136
SECTION=B
!
00000190 0001(00000140:P)
0002 (00000178:P)
0003 (0000018c:P)
0002 b
SECTION=P
_func01
00000154 0001 (00000148:P)
_func02
00000166 0001 (00000150:P)
0003 c¢
SECTION=P
~func03

00000184

Figure 8.14 Example of Cross-Reference Information Output (Linkage List)

(1) Unit number, which is an identification number in object units
(2) Object name, which specifies the input order at linkage
(3) Symbol name output in ascending order of allocation addresses for every section

(4) Symbol allocation address, which is a relative value from the beginning of the section when
form=relocate is specified

(5) Address of an external symbol that has been referenced

Output format: <Unit number> (<address or offset in section>:<section name>)

Page 236 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

8.4.8 Total Section Size

The total sizes of ROM, RAM, and program sections are output. Figure 8.15 shows an example of
total section size output.

*** Total Section Size ***

RAMDATA SECTION : 00000660 Byte (s)
(1)
ROMDATA SECTION : 00000174 Byte (s)
(2)
PROGRAM SECTION : 000016d6 Byte (s)
(3)

Figure 8.15 Example of Total Section Size Output (Linkage List)

(1) Total size of RAM data sections
(2) Total size of ROM data sections
(3) Total size of program sections

8.4.9 Vector Information

The contents of the variable vector table are output if show=vector is specified. Figure 8.16 shows
an example of vector information output.

*** Variable Vector Table List ***

NO. SYMBOL/ADDRESS
(1) (2)
0 $ fdummy
Sfa
00££8800
S fdummy

w N

<Omitted>

Figure 8.16 Example of Vector Output (Linkage List)

(1) Vector number

(2) Symbol. When no symbol is defined for the vector number, the address is output.

R20UT0704EJ0102 Rev. 1.02 Page 237 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 8 File Specifications Optimizing Linkage Editor

8.4.10 CRC Information

The CRC calculation result and output address are output when the CRC option is specified.

*** CRC Code ***

CODE : cb0b

(1)

ADDRESS : 00007ffe
(2)

Figure 8.17 Example of CRC Information Output (Linkage List)

(1) CRC calculation result
(2) Address where the CRC calculation result is output

R20UT0704EJ0102 Rev. 1.02

Page 238 of 1176
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 8 File Specifications

8.5 Library Listings

This section covers the contents and format of the library listing output by the optimizing linkage

editor.

8.5.1 Structure of Library Listing

Table 8.6 shows the structure and contents of the library listing.

Table 8.6 Structure and Contents of Library Listing

Creating List Contents Suboption* Default
Option information Displays option strings — Output
specified by a command line
or subcommand
Error information Displays error messages — Output
Library information Displays library information — Output
Information of module, Displays module within the — Output
section, and symbol library
within library
When show=symbol is show= Not output
specified, displays a list of symbol
symbol names in a module
within the library
When show=section is show= Not output
specified, displays lists of section

section names and symbol
names in a module within the
library

Note: The suboptions above are enabled only when list option is specified.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 239 of 1176

Section 8 File Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

8.5.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
Option information is output as shown in figure 8.17 when optlnk —sub = test.sub -list -show is

specified.

(test.sub contents)

form library
in adhry.obj
output test.lib

*** QOptions ***

-sub = test.sub
form library
in adhry.obj
output test.1lib
-list

-show

Figure 8.17 Option Information Output Example (Library Listing)

Description:

(1) Outputs option strings specified by a command line or a subcommand in the specified order.

(2) Subcommand in the test.sub subcommand file

Page 240 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 8 File Specifications

8.5.3 Error Information

Error information outputs an error message as shown in figure 8.18.

***% Error information ***

**% L1200 (W) Backed up file "main.lib" into "main.lbk" (1)

Figure 8.18 Error Information Output Example (Library Listing)
Description:

(1) Outputs an error message.

8.5.4 Library Information

Library information outputs library type in the format shown in figure 8.19.

*** Library Information ***

LIBRARY NAME = test.lib
CPU = SuperH

ENDIAN = Big

ATTRIBUTE = system
NUMBER OF MODULE = 1 (5)

Figure 8.19 Library Information Output Example (Library Listing)
Description:

(1) Library name

(2) CPU name

(3) Endian type

(4) Library file attribute either system library or user library
(5) Number of modules within the library

R20UT0704EJ0102 Rev. 1.02 Page 241 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 8 File Specifications Optimizing Linkage Editor

8.5.5 Module, Section, and Symbol Information within Library
This information lists modules within the library.

When show=symbol is specified, symbol names in a module within the library are listed. When
show=section is specified, section names and symbol names in a module within the library are
listed.

Figure 8.20 shows an output example of module, section and symbol information within a library.

*** Library List ***

MODULE LAST UPDATE

(1) (2)
SECTION
(3)
SYMBOL
(4)
adhry
29-Feb-2000 12:34:56
P
_main
_Proc0
_Procl
C
D
_Version
B
_IntGlob
_CharGlob

Figure 8.20 Module, Section, and Symbol Information Output Example (Library Listing)
Description:

(1) Module name

(2) Module definition date
If the module is updated, the latest module update date is displayed.

(3) Section name within a module

(4) Symbol within a section

Page 242 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

9.1

Section 9 Programming

Program Structure

9.1.1 Sections

Each of the regions for execution instructions and data of the object programs output by the
compiler or assembler comprises a section. A section is the smallest unit for data placement in
memory. Sections have the following properties.

Section attributes

code Stores execution instructions
data Stores data

stack Stack area

Format type

Relative-address format: A section that can be relocated by the optimizing linkage editor.

Absolute-address format: A section of which the address has been determined; it cannot be
relocated by the optimizing linkage editor.

Initial values

Specifies whether there are initial values at the start of program execution. Data which has
initial values and data which does not have initial values cannot be included in the same
section. If there is even one initial value, the area without initial values is initialized to zero.

Write operations
Specifies whether write operations are or are not possible during program execution.
Boundary alignment

Corrections to addresses assigned to sections. The optimizing linkage editor corrects addresses
so that they are multiples of the boundary alignment.

R20UT0704EJ0102 Rev. 1.02 Page 243 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

9.1.2 C/C++ Program Sections

The correspondence between memory areas and sections for C/C++ programs and the standard
library is described in table 9.1.

Table 9.1 Summary of Memory Area Types and Their Properties

Section Initial Values
Format Write Align-
Name Name Attribute Type Operations ment Description
Program area P code Relative Yes 4*2 Stores machine code
Noi bytes
Constant area C*1*6 data Relative Yes 4 Stores const-type data
Noi bytes
Initialized data area D*'*® data Relative Yes 4 Stores data with initial values
Noi bytes
Uninitialized data ~ B*'*® data Relative Yes 4 Stores data without initial
area Yesi bytes values
X memory constant $XC data Relative Yes 4 Stores const-type data in X
area Noi bytes memory
Y memory constant $YC data Relative Yes 4 Stores const-type data in Y
area Noi bytes memory
X memory $XD data Relative Yes 4 Stores data with initial values
initialized data area Yesibytes in X memory
Y memory $YD data Relative Yes 4 Stores data with initial values
initialized data area Yesibytes in Y memory
X memory $XB data Relative No 4 Stores data without initial
uninitialized data Yesibytes values in X memory
area
Page 244 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 9 Programming

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Section Initial Values
Format Write Align-
Name Name Attribute Type Operations ment Description
Y memory $YB data Relative No 4 Stores data without initial
uninitialized data Yes bytes valuesinY memory
area
GBR section $G0*® data Relative Yes 4 Stores data with initial values
bytes specified by #pragma
Yes gbr_base. If data does not
have initial values, 0 is stored.
GBR section $G1*6 data Relative Yes 4 Stores data with initial values
bytes specified by #pragma
Yes gbr_base1. If data does not
have initial values, 0 is stored.
C++ initial CSINIT data Relative Yes 4 Stores addresses of
processing/ bytes constructors and destructors
postprocessing No called for global class objects
data area
C++ virtual function C$VTBL data Relative Yes 4 Stores data for calling the
table area No bytes virtual function when a virtual
function exists in the class
declaration
Stack area S stack Relative No 4 Area necessary for program
bytes execution (see section 9.2.1
Yes (2), Dynamic Memory
Allocation)
Heap area — — Relative No — Area used by library functions
malloc, realloc, calloc, and
Yes new (see section 9.2.1 (2),
Dynamic Memory Allocation)
R20UT0704EJ0102 Rev. 1.02 Page 245 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Section Initial Values
Format Write Align-
Name Name Attribute Type Operations ment Description
TBR table area $TBR data Relative Yes 4 Stores data to call functions
bytes using TBR relative addresses.
No
Absolute address $ADDRESS data Absolute Yes/No** — Stores variables specified by
variable area $<section> #pragma address.
<address>*? Yes/No*

Notes 1. Section names can be switched in the section option or extension #pragma section.
2. Becomes 16 bytes when the align16 option is specified, or 32 bytes when the align32
option is specified.
3. <section>is a C, D, or B section name, and <address> is an absolute address.
The initial value and write operation depend on the attribute of the <section>.

5. The stuff option divides sections up so that alignment is on one-, two-, or four-byte
boundaries. Refer to the description of the stuff option in section 2.2.2, Object Options
for details on the individual sections.

6. The stuff_gbr option divides sections up so that alignment is on one-, two-, or four-byte
boundaries. Refer to the description of the stuff_gbr option in section 2.2.2, Object
Options for details on the individual sections.

&

Page 246 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 9 Programming

Example 1: A program example is used to demonstrate the correspondence between a C program
and the compiler-generated sections.

int a=1;
char b;
const int c=0;

void main () {

C program

Program area (main() {...})

Constant area (c)

Initialized data area (a)

Uninitialized data area (b)

Areas generated by the
compiler and stored data

Section name

P

Example 2: A program example is used to demonstrate the correspondence between a C++
program and the compiler-generated sections.

class A{
int m;
A(int p);
~A();
bi
A al(l);
int b;
extern const char c="a’;
int d=1;
void £(){...}

Section name

Program area (f() {...})

P

Constant area (c)

C

Initialized data area (d)

D

Uninitialized data areas (a, b)

B

Initial processing/postprocessing data | C$INIT

areas (&A::A, &A::~A)

C++ program

Areas generated by the
compiler and stored data

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 247 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

9.1.3 Assembly Program Sections

In assembly programs, .SECTION is used to begin sections and declare attributes and format
types. The format for declaration of .SECTION is given below. For details, refer to section 11.4,
Assembler Directives.

.SECTION <section name>[, <section attribute>[, <format type>]]

<format type>: In the case of a relative address section, ALIGN=< boundary alignment>
In the case of an absolute address section, LOCATE=<address value>

Page 248 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 9 Programming

Example: An example of an assembly program section declaration appears below.

.CPU
.OUTPUT
SIZE: .EQU

.SECTION
START:
MOV. L
MOV. L
MOV.L
LOOP:
CMP/PL
BF
MOV.B
MOV.B
ADD
ADD
BRA
NOP
EXIT:
SLEEP
NOP
LITERAL:
.DATA.L
.DATA.L

.SECTION
CONST:
.DATA.B

.SECTION
DATA:

.RES.B

.END

SH2
DBG
8

A, CODE, ALIGN=4

LITERAL,RO
LITERAL+4,R1
#SIZE,R2

R2

EXIT

@RO+,R3

R3,@R1

#-1,R2

#1,R1
LOOP

CONST
DATA

B, DATA, LOCATE=H'00002000

H'01,H'02,H'03,H'04,H'05,H'06,H'07,H'08

C, STACK, ALIGN=4

7 (2)

7 (3)

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 249 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

(1) Declares a code section with section name A, boundary alignment 4, and relative address
format.

(2) Declares a data section with section name B, allocated address H'2000, and absolute address
format.

(3) Declares a stack section with section name C, boundary alignment 4, and relative address
format.

9.14 Linking Sections

The optimizing linkage editor links the same sections within input object programs, and allocates
addresses specified by the start option.

(1) The same section names in different files are allocated continuously in the order of file input.

"filel.obj" "file2.obj" "file3.obj"
Section A Section D Section C
Section B Section A Section B
Section C

'

Options specified at linkage

input filel.obj file2.o0bj file3.obj
start A,B/1000, C,D/8000

¢

file1. section A

0x1000

file2. section A

file1. section B

file3. section B

0x8000]]
file1. section C

file3. section C

file2. section D

Page 250 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 9 Programming

(2) Sections with the same name but different boundary alignments are linked after alignment.
Section alignment uses the larger of the section alignments.

"filel.obj"

"file2.obj"

Section A

(align=2, size=0x6D)

Section A

(align=4, size=0x100)

'

Obtions specified at linkaae

start A/1000

input filel.obj file2.obj

'

0x1000

file1. section A

Alignment = 4
Size = 0x170

0x1070 file2. section A

(3) When sections with the same name include both absolute-address and relative-address formats,
relative-address objects are linked following absolute-address objects. Even when relocatable
file output is specified (form=relocate), the section in question becomes an absolute-address

section.

"filel.obj"

"file2.obj"

Section A

(align=4,size=0x100)

Section A

(locate=0x1000,size=0x6D)

¢

Options specified at linkage

input filel.obj file2.obj

'

0x1000

file2. section A

0x1070

file1. section A

Size = 0x170

Absolute-address section

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 251 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

(4) Rules for the order of linking objects within the same section name are as follows.

a. Order specified by the input option or input files on the command line

b. Order specified for the user library by the library option and order of input of modules
within the library

c. Order specified for the system library by the library option and order of input of modules
within the library

d. Order specified for libraries by environment variables (HLNK LIBRARY1 to
HLNK LIBRARY?3) and order of input of modules within the library

"filel.obi" "usrl.lib" "syslibl.1lib"
Section A Module 1 (Section A) Module 5 (Section A)
Module 2 (Section A) Module 6 (Section A)
"file2.obj" "usr2.lib" "syslib2.1lib"
Section A Module 3 (Section A) Module 7 (Section A)
Module 4 (Section A) Module 8 (Section A)
Options specified at linkage Environment variables
input filel.obj fileZ.obj HLNK _LIBRARY1l=syslib2.1lib
library syslibl.lib usrl.lib HLNK LIBRARY2=usr2.lib
Start A/1000

¢

file1. section A

0x1000

file2. section A

Module1. section A

Module2. section A

Module5. section A

Module6. section A

Module7. section A

Module8. section A

Module3. section A

Module4. section A

Page 252 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

9.2 Creation of Initial Setting Programs

Here methods of installing embedded programs for systems employing the SuperH RISC engine
microcomputers are explained.

To install an embedded a program in a system, the following preparations are necessary.

e Memory allocation
Each section, the stack area, and the heap area must be allocated to system ROM and RAM.

e Settings for the program execution environment
Processing to set the program execution environment includes register initialization, memory
initialization, and program startup.

In addition, when using I/O and other C/C++ library functions, the library must be initialized
during preparation of the execution environment. In particular, when using I/O (stdio.h, ios,
streambuf, istream, ostream) and memory allocation (stdlib.h, new), low-level I/O routines and
memory allocation routines must be prepared.

When using C library functions for program termination (exit, atexit, abort functions), these
functions must be prepared separately according to the user system.

In section 9.2.1, the method used to determine addresses for program memory is explained, and
actual examples are used to describe the method for specifying options in the optimizing linkage
editor for determining addresses.

In section 9.2.2, execution environment settings are explained, and an actual example of a program
to set the execution environment is described.

Library function initialization processing, preparation of low-level interface routines, and
examples of preparation of functions for termination processing are also explained.

R20UT0704EJ0102 Rev. 1.02 Page 253 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

9.2.1 Memory Allocation

To install an object program generated by the compiler on a system, determine the size of each
memory area, and allocate the areas appropriately to the memory addresses.

Some memory areas, such as the area used to store machine code and the area used to store data
declared using external definitions or static data members, are allocated statically. Other memory
areas, such as the stack area, are allocated dynamically.

This section describes how to allocate each area in memory.

(1) Static Memory Allocation

(a) Contents of static memory
Sections other than the stack area and heap area are allocated statically.
Each of the sections in a C/C++ program (program area, constant area, initialized data area,
uninitialized data area, C++ initial processing/postprocessing data area, and C++ virtual
function table area) is allocated statically.

(b) Calculation of size
The size of static memory is the sum of the sizes of the object programs generated by the
compiler and assembler and the sizes of the library functions used by the C/C++ program.
After linking object programs, the sizes of each section, including libraries, are output to
the linkage map information within the linkage listing, and so the size of static memory can
be determined.
Figure 9.1 shows an example of linkage map information within the linkage listing.

* * * Mapping list * * *

SECTION START END SIZE ALIGN
(1) (2) (3) (4) (5)
P 00000000 000004de6 4d6 2
C 000004de6 00000533 5d 2
D 00000534 0000053c 8 2
B 0000053c 00004112 3bdo6 2

Figure 9.1 Example of Linkage Map Information within the Linkage Listing

Section sizes of compilation units and assembly units are output to the compile list
statistics information and assembly list section information. An example of compile list
statistics information is shown in figure 9.2, and an example of assembly list section
information is shown in figure 9.3.

Page 254 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

Frxxkokk SECTION SIZE INFORMATION ****x ko

PROGRAM SECTION (P) :0x00004A Byte(s)
CONSTANT SECTION (C) :0x000018 Byte(s)
DATA SECTION (D) :0x000004 Byte(s)
BSS SECTION (B) :0x000004 Byte(s)
TOTAL PROGRAM SECTION : 0000004A Byte(s)
TOTAL CONSTANT SECTION : 00000018 Byte(s)
TOTAL DATA SECTION : 00000004 Byte(s)
TOTAL BSS SECTION : 00000004 Byte(s)
TOTAL PROGRAM SIZE: 0x00006A Byte(s)

Figure 9.2 Example of Compile List Statistics Information

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START
P REL-CODE 000000604
D REL-DATA 000000008
C REL-DATA 00000005D
B REL-DATA 000003BD6

Figure 9.3 Example of Assembly List Section Information

When not using a standard library, the total of section sizes for files is the size of the static
area.

If a standard library is used, add the memory area used by the library functions to the
memory area size of each section. Among the standard libraries provided by the compiler
are, in addition to C library functions stipulated by the C language specifications and C++
class libraries for embedding, routines to perform arithmetic calculations (runtime routines)
used for program execution. Accordingly, the standard library may be necessary even if
library functions are not used in the C/C++ source program.

The runtime routines used by the C/C++ programs are output as external reference symbols
in the assembly programs generated by the compiler (code=asmcode). The user can see
the runtime routine names used in the C/C++ programs through the external reference
symbols. Specific examples are presented below.

R20UT0704EJ0102 Rev. 1.02 Page 255 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming

Optimizing Linkage Editor

e C/C++ program

f(int a, int b)
{
a /= b;

return a;

e Assembly program output by the C compiler

. IMPORT __divls
.EXPORT _f
.SECTION P, CODE, ALIGN=4
f: ;function:

;frame size=4

STS.L PR,@-R15

MOV R5, RO

MOV.L L218,R3 ;
JSR @R3

MOV R4, R1

LDS.L @R15+, PR

RTS

NOP

_ _divls

1L218:
.DATA.L
.END

_ _divls

;(External reference declaration of runtime routine)

(c) ROM, RAM allocation

When preparing a program for systems with ROM, whether sections are allocated to RAM
or to ROM is determined by whether there are initial values and whether write operations

are enabled.

When preparing the sections of a C/C++ program for systems with ROM, sections are

allocated to ROM or to RAM as follows.

e Program area (section P)

e Constant areas (sections C, $G0, $G1*3)

e Uninitialized data areas (sections B, $G0, $G1*3)
e Initialized data areas (sections D, $G0, $G1*?)

ROM
ROM
RAM
ROM, RAM (see (d) below)

e Initial processing/postprocessing data area*!(section C$INIT) ROM

e Virtual function table area*? (section C§VTBL)

ROM

Page 256 of 1176
RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

Notes: 1. Generated by the compiler when a C++ program has a global class object.
2. Generated by the compiler when a C++ program has a virtual function declaration

3. $GO0 and $G1 can be assigned to only one of the above areas.

(d) Allocation of initialized data areas

Sections which have initial values and can be altered on program execution, such as
initialized data areas, are placed in ROM at linkage and copied to RAM at the start of
program execution. Hence the rom option of the optimizing linkage editor must be used to
reserve the same memory area both in ROM and in RAM. For an example of this, refer to
"(e) Example of memory allocation and address specification at linkage" below. Initial
settings for sections to be copied from ROM to RAM are explained in section 9.2.2 (2),
Initialization (PowerON_Reset).

(e) Example of memory allocation and address specification at linkage

When creating an absolute load module, addresses of allocated areas are specified for each
section using an optimizing linkage editor option or a subcommand. Below, examples of
static memory allocation and address specification at linkage are explained.

Figure 9.4 shows an example of allocation of static memory areas.

0x000000
Interrupt vector
0x000400
Program area (P)
Constant area (C) Internal ROM
Initialized data area (D)
0x020000
Initialized data area (R)
RAM
Uninitialized data area (B)
OxFFECO00
Dynamic area Internal RAM
OxFFFBFF

P, C, D, B: Default section names generated by the compiler.

R: Section name specified by ROM support function of the optimizing linkage editor.

Figure 9.4 Example of Static Memory Allocation

R20UT0704EJ0102 Rev. 1.02 Page 257 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

When allocating memory as shown in figure 9.4, the following subcommands are specified

at linkage.
ROMAD=R ... [1
STARTAP,C,D/400,R,B/20000 ... 2]

Explanation [1] Space for section R, of a size equal to section D, is allocated in the output
load module. When symbols allocated to section D are referenced,
relocation is performed as if the addresses are in section R. Section D and
section R are the names of initialized data sections written to ROM and to
RAM, respectively.

Explanation [2] Sections P, C, and D are allocated to continuous areas of memory in
internal ROM starting from address 0x400. Sections R and B are
allocated to continuous memory areas starting from RAM address
0x20000.

(2) Dynamic Memory Allocation
(a) Contents of dynamic memory
The following two types of dynamic memory areas are used in C/C++ programs:
e Stack area
e Heap area (for memory allocation of library functions)
(b) Calculation of stack area size
The maximum stack area size used by C/C++ programs and standard libraries can be
calculated by specifying the stack option of the optimizing linkage editor to output a stack
information file, and using the callwalker. For details of use of the callwalker, see section
6, Operating CallWalker.
The stack area used by an assembly program (assembled by the assembler of V6 or earlier)
cannot be calculated by the callwalker. Instead, the stack usage of an assembly program
should be computed by the method outlined below for calculating the stack usage of a
C/C++ program, and the result should be added to the stack usage calculated by the
callwalker.
o Stack Usage Calculation of the C/C++ Program
The stack area used in C/C++ programs is allocated each time a function is called and is
deallocated each time a function is returned. The total stack area size is calculated
based on the stack size used by each function and the nesting of function calls.
e Stack Area Used by Each Function
The object list (frame size) output by the compiler determines the stack size used by

each function. The following example shows the object list, stack allocation, and stack
size calculation method.

Page 258 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

Example:

The following shows the object list and stack size calculation in a C program.
The same calculation method is also applicable to C++ programs.

extern int h(char, int *, double);

int h(char a,

{

register int *b, double c)

char *d;

d= &a;
h(*d,b,c);
{

register int i;

i= *d;

return 1i;

KxK kXK K kXX Kk OBJECT LISTING *** %% %%k % x %%
FILE NAME: m0251.c

SCT OFFSET CODE

C LABEL
P

00000000 h:

INSTRUCTION OPERAND COMMENT

; function: h

; frame size=20
00000000 2FE6

MOV.L R14,@-R15
00000002 4F22 STS.L PR,@-R15

R20UT0704EJ0102 Rev. 1.02 Page 259 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming Optimizing Linkage Editor
Lower T
address
R15(SP) — 0
Area used
within a Frame
function size
20 4
Higher l
address Stack

The size of the stack area used by a function is equal to the frame size. Therefore, in
the above example, the stack size used by function h is 20 bytes which is shown as
frame size=20 in COMMENT of the object listing.
For details on the parameter allocated to the parameter area on the stack, refer to section
9.3.2 (4), Setting and Referencing Parameters and Return Values.

o Stack size calculation
The following example shows a stack size calculation depending on the function call
nesting.
Example:
Figure 9.5 shows the function call nestings and stack size for each function.

main ()

Function Name Stack Size (Bytes)

main 24

fO) f 32
g()

Figure 9.5 Nested Function Calls and Stack Size

Page 260 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

If function g is called via function f, the stack area size is calculated according to the
formula listed in table 9.2.

Table 9.2 Stack Size Calculation Example

Call Route Sum of Stack Size (Bytes)
main (24) > f(32) > g (24) 80
main (24) > g (24) 48

As can be seen from table 9.2, the maximum size of stack area required for the longest
function calling route should be determined (80 bytes in this example) and at least this
size of memory should be allocated.
Note: If recursive calls are used in the C/C++ source program, first determine the stack area
required for a recursive call, and then multiply the size with the maximum level of
recursive calls.

(c) Heap Area

The total heap area required is equal to the sum of the areas to be allocated by memory
management library functions (calloc, malloc, realloc, or new) in the C/C++ program. Four
bytes must be added for one call because a 4-byte management area is used every time a
memory management library function allocates an area.
The compiler controls heap area in units of the user-specified memory size (_sbrk_size).
For the sbrk size specification, refer to section 9.2.2 (4), C/C++ library function initial
settings (_INITLIB). The area size allocated for the heap area (HEAPSIZE) is calculated
by the following formula:

HEAPSIZE = sbrk sizexn(nz=1)
(Area size allocated by the memory management library) + control area size < HEAPSIZE
An I/O library function uses memory management library functions for internal processing.
The size of the area allocated in an I/O is determined by the following formula:

516 bytes x (maximum number of simultaneously opened files)

Note: Areas released by the free or delete function, which is a memory management library
function, can be reused. However, since these areas are often fragmented (separated from
one another), a request to allocate a new area may be rejected even if the net size of the
free areas is sufficient. To prevent this, take note of the following:

1. If possible, allocate the largest area first after program execution is started.

2. If possible, make the data area size to be reused constant.

R20UT0704EJ0102 Rev. 1.02 Page 261 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

¢ Rules for Allocating Dynamic Area

The dynamic area is allocated to RAM.

The stack area is determined by specifying the highest address of the stack to the vector
table, and refer to it as SP (stack pointer). Since the interrupt operation of the SH-3,
SH3-DSP, SH-4, SH-4A, and SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E,
SH-2A, SH2A-FPU, and SH2-DSP, interrupt handlers are necessary.

The heap area is determined by the initial settings of the low-level interface routine
(sbrk).

For details on stack and heap areas, refer to section 9.2.2 (1), Vector table setting
(VEC_TBL), and section 9.2.2 (6), Low-level interface routines, respectively.

9.2.2 Execution Environment Settings

Here, processing to prepare the environment for program execution is described. However, the
environment for program execution will differ among user systems, and so a program to set the
execution environment must be created according to the specifications of the user system.

Figure 9.6 shows an example of the structure of such a program.

Page 262 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

Power-on reset

DTBL and BTBL . PowerON_Reset ' VEC_TBL i
_INITSCT _CALL_INIT=*1 _INITLIB User program || _CALL_END*1 _CLOSEALL

: Table always required
Standard library.

[] :Routine always required

[] : Routine required when library \
is used

[] : Supplied by the C/C++ compiler Low-level Termination
interface processing routine

Note: Necessary when there is a global class object declaration in the C++ program.

Figure 9.6 Example of Program Structure

The components are explained below.

Vector Table Setting (VEC_TBL)

Sets the vector table to initiate the register initialization program (PowerON Reset) and set the
stack pointer (SP) at power-on reset. Since the interrupt operation of the SH-3, SH3-DSP, SH-
4, SH-4A, and SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU,
and SH2-DSP, interrupt handlers are necessary.

Initialization (PowerON_Reset)

Initializes registers and sequentially calls the initialization routines.

Section Initialization Tables (DTBL, BTBL)

Uses the section address operator to set the starting and ending addresses for the section used
in the section initialization routine.

Initializing Sections (_INITSCT)"!

Initializes to zero any static variable area (uninitialized data area) for which no initial values
are set. Also copies initial values of initialized data areas from ROM to RAM.

R20UT0704EJ0102 Rev. 1.02 Page 263 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

e Global Class Object Initial Processing (CALL_INIT)"!"2

Calls a constructor of a class object that is declared as global.
e Global Class Object Postprocessing (CALL_END)"!*2

Calls a destructor of a global class object after the main function is executed.
e Initializing C/C++ Library Functions (_INITLIB)

Initializes library functions required to be initialized; especially, prepares standard I/O
functions.

e Closing Files (CLOSEALL)
Closes all open files.
e Low-Level Interface Routines

Routines providing an interface between the user system and library functions which are
necessary when standard I/O (stdio.h, ios, streambuf, istream, and ostream) and memory
management libraries (stdlib.h and new) are used.

e Termination Processing Routine (exit, atexit, and abort)™

Processing for terminating the program.

Notes: 1. Provided as a standard library.
2. Required when there is a declaration of a global class object in a C++ program.
3. When using the C library function exit, atexit, or abort to terminate a program, these
functions must be created as appropriate to the user system.
When using the C++ program or C library macro assert, the abort function must always
be created.

Implementation of the above routines is described below.

(1) Vector table setting (VEC_TBL)

To call register initialization function PowerON_Reset at power-on reset, specify the starting
address of function PowerON Reset at address 0 in the vector table. Also to specify the SP,
specify the highest address of the stack to address H'4. Since the interrupt operation of the SH-
3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E, SH-
2A, SH2A-FPU, and SH2-DSP, interrupt handlers are necessary. When the user system
implements interrupt handling, interrupt vector settings are also performed by this routine.

The coding example of VEC_TBL is shown below.

Page 264 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

Example 1 Vector Table for SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, and SH2-DSP:

#pragma interrupt (IRQO)

extern void Manual Reset_ PC(void) ;
extern void Manual Reset SP(void);

extern void IRQO (void);

#pragma section VECTTBL /* Outputs the RESET Vectors to the CVECTTBL section */

/* by #pragma section declaration */
/* Allocates the CVECTTBL section to address 0x0 */
/* by the start option at linkage */

void (*const RESET Vectors[]) (void)={
(void*) PowerON Reset PC,
_ _secend("s"),
(void*) Manual Reset PC,
~_secend("s"
i
#pragma section VECT2 /* Outputs the vec table2 to the CVECT2 section */
/* by #pragma section declaration */
/* Allocates the CVECT2 section to the specified */
/* address by the starting address at linkage */

void (*const vec table2[]) (void)={IRQO0};

Example 2 Interrupt Handler when Bank 0 is Used in the Program (SH7708):

AN NN

; env.inc ;
AR R R RN A
EXPEVT:

.EQU H'FFFFFFD4
INTEVT:

.EQU H'FFFFFFD8
IR iR iR i R R R R iR iR iR i i i
; vect.inc ;
AR R R R R RN A
SR Init:

.EQU B'00000000000000000000000011110000

;<<VECTOR DATA START (POWER ON RESET)>>
;H'000 Power On Reset
.GLOBAL PowerON Reset
;<<VECTOR DATA END (POWER ON RESET)>>
;<<VECTOR DATA START (MANUAL RESET)>>
;H'020 Manual Reset
.GLOBAL Manual Reset
;<<VECTOR DATA END (MANUAL RESET)>>
;H'040 TLB miss/invalid (load)
.GLOBAL INT TLBMiss Load
;H'060 TLB miss/invalid (store)

R20UT0704EJ0102 Rev. 1.02 Page 265 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

.GLOBAL INT TLBMiss_Store
;H'080 Initial page write

.GLOBAL INT_TLBInitial_Page
;H'OAO0 TLB protect (load)

.GLOBAL INT_TLBProtect Load
;H'0CO TLB protect (store)

.GLOBAL INT_TLBProtect_ Store
;H'OEO Address error (load)
.GLOBAL INT_Address_load
;H'100 Address error (store)
.GLOBAL INT _Address_store
;H'120 Reserved

.GLOBAL INT Reservedl

;H'140 Reserved

.GLOBAL INT_Reserved2

;H'160 TRAPA

.GLOBAL INT_ TRAPA

;H'180 Illegal code

.GLOBAL INT_TIllegal code
;H'1AO0 Illegal slot

.GLOBAL INT Illegal slot
;H'"1CO NMI

.GLOBAL INT NMI

;H'1EO0 User breakpoint trap
.GLOBAL INT User Break

;H'200 External hardware interrupt
.GLOBAL INT Extern 0000

;H'220 External hardware interrupt
.GLOBAL INT Extern 0001

;H'240 External hardware interrupt
.GLOBAL _INT Extern 0010
;H'260 External hardware interrupt
.GLOBAL _INT Extern 0011
;H'280 External hardware interrupt
.GLOBAL _INT Extern 0100
;H'2A0 External hardware interrupt
.GLOBAL _INT Extern 0101
;H'2C0 External hardware interrupt
.GLOBAL _INT Extern 0110
;H'2E0 External hardware interrupt
.GLOBAL _INT Extern 0111
;H'300 External hardware interrupt
.GLOBAL _INT Extern 1000
;H'320 External hardware interrupt
.GLOBAL _INT Extern 1001
;H'340 External hardware interrupt
.GLOBAL _INT Extern 1010
;H'360 External hardware interrupt
.GLOBAL _INT Extern 1011
;H'380 External hardware interrupt
.GLOBAL _INT Extern 1100
;H'3A0 External hardware interrupt

Page 266 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 9 Programming

.GLOBAL _INT Extern 1101
;H'3C0 External hardware interrupt
.GLOBAL _INT _Extern 1110
;H'3E0 External hardware interrupt
.GLOBAL _INT Extern 1111
;H'400 TMUO TUNIO

.GLOBAL _INT Timer_ Under_ 0
;H'"420 TMU1l TUNI1

.GLOBAL _INT Timer Under 1
;H'"440 TMU2 TUNIZ2

.GLOBAL _INT Timer Under 2
;H'460 TMU2 TICPIZ2

.GLOBAL _INT Input Capture
;H'"480 RTC ATI

.GLOBAL _INT RTC_ATI
;H'"4A0 RTC PRI

.GLOBAL _INT RTC_ PRI
;H'4C0O0 RTC CUI

.GLOBAL _INT RTC CUI
;H'"4EQ0 SCI ERI

.GLOBAL _INT SCI_ERI
;H'500 SCI RXI

.GLOBAL _INT SCI_RXI
;H'520 SCI TXI

.GLOBAL _INT SCI TXI
;H'540 SCI TEI

.GLOBAL _INT SCI_TEI
;H'560 WDT ITI

.GLOBAL _INT WDT

;H'580 REF RCMI

.GLOBAL _INT REF RCMI
;H'5A0 REF ROVI

.GLOBAL _INT REF _ROVI

AN NN

; vhandler.src

AN

. INCLUDE "env.inc"

. INCLUDE "vect.inc"
IMASKclr:

.EQU H'FFFFFFOF
RBBLclr:

.EQU H'CFFFFFFF
MDRBBLset:

.EQU H'70000000

. IMPORT RESET Vectors
. IMPORT INT Vectors
. IMPORT INT MASK

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page 267 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

AR NN

; macro definition ;

AN

.MACRO PUSH_EXP BASE REG

STC.L SSR,@-R15 ; save SSR

STC.L SPC,Q@-R15 ; save SPC

STS.L PR, @-R15 ; save CONTEXT REGISTERS
STC.L R7_BANK,@—R15

STC.L R6_BANK,@—R15

STC.L. R5 BANK,@-R15

STC.L R4_BANK,@—R15

STC.L R3_BANK,@—R15

STC.L R2 BANK, @-R15
STC.L R1_BANK, @-R15
STC.L RO_BANK,@-R15
. ENDM

.MACRO POP EXP BASE REG
LDC.L @R15+,RO_BANK ; RECOVER REGISTERS

LDC.L @R15+,R1_BANK
LDC.L @R15+,R2_BANK
LDC.L @R15+,R3_BANK
LDC.L @R15+,R4_BANK
LDC.L @R15+,R5 BANK
LDC.L @R15+,R6 BANK
LDC.L @R15+,R7_BANK
LDS.L @R15+,PR
LDC.L @R15+,SPC
LDC.L @R15+,SSR
ENDM

AR NN

; reset ;

AN

.SECTION RSTHandler, CODE
_ResetHandler:

MOV.L #EXPEVT, RO

MOV.L @RO,RO

SHLR2 RO

SHLR RO

MOV.L # RESET Vectors,rl
ADD R1, RO

MOV.L @RO,RO

JMP @RO

NOP

AN NN

; exceptional interrupt ;
.SECTION INTHandler, CODE
.EXPORT INTHandlerPRG
INTHandlerPRG:
Page 268 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

_ExpHandler:
PUSH EXP_BASE_ REG

MOV.L #EXPEVT, RO ; set event address

MOV.L QRO,R1 ; set exception code

MOV.L #_INT Vectors,RO ; set vector table address
ADD #-(H'40),R1 ; exception code - H'40

SHLR2 R1

SHLR R1

MOV.L @(RO,R1),R3 ; set interrupt function addr
MOV.L #_INT_MASK,RO ; interrupt mask table addr
SHLR2 R1

MOV .B @(RO,R1),R1 ; interrupt mask

EXTU.B RI1,R1

STC SR, RO ; save SR
MOV.L # (RBBLclr&IMASKclr),R2
; RB,BL,mask clear data

AND R2,R0 ; clear mask data
OR R1,RO ; set interrupt mask
LDC RO, SSR ; set current status

LDC.L R3,SPC

MOV.L # int term,RO ; set interrupt terminate

LDS RO, PR

RTE

NOP

. POOL
AR
; Interrupt terminate ;

.ALIGN 4
__int term:

MOV.L #MDRBBLset,RO ; set MD,BL,RB

LDC.L RO,SR
POP EXP BASE REG

RTE ; return
NOP

. POOL

R20UT0704EJ0102 Rev. 1.02 Page 269 of 1176
Mar 01, 2022 RENESAS

Section 9 Programming

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

AR NN

TLB miss interrupt ;

AN

.ORG

H'300

_TLBmissHandler:
PUSH_EXP_BASE_REG

MOV.L
MOV.L
MOV.L
ADD
SHLR2
SHLR
MOV.L

MOV.L
SHLR2
MOV.B
EXTU.B

STC
MOV.L

AND
OR
LDC

LDC.L
MOV.L
LDS

RTE
NOP

. POOL

#EXPEVT, RO

@RO, R1

INT Vectors,RO
#-(H'40),R1

R1

R1

@(RO,R1),R3

INT MASK,RO
R1

@ (RO,R1),R1
R1,R1

SR, RO

; set event address

; set exception code

; set vector table address

; exception code - H'40

; set interrupt function addr

; interrupt mask table addr

; interrupt mask

; save SR

(RBBLclr&IMASKclr) ,R2

R2, RO
R1, RO
RO, SSR

R3, SPC
int term,RO
RO, PR

; RB,BL,mask clear data
; clear mask data

; set interrupt mask

; set current status

; set interrupt terminate

AR N

IRQ

AN

.ORG
_IRQHandler:

H'500

PUSH EXP BASE REG

MOV.L #INTEVT, RO ; set event address
MOV.L @RO,R1 ; set exception code
MOV.L #_INT Vectors,RO ; set vector table address
ADD #-(H'40) ,R1 ; exception code - H'40
SHLR2 R1
SHLR R1
MOV.L @(RO,R1),R3 ; set interrupt function addr
Page 270 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 9 Programming
MOV.L #_INT_ MASK,RO ; interrupt mask table addr
SHLR2 R1
MOV.B @(RO,R1),R1 ; interrupt mask

EXTU.B R1,R1

STC SR, RO ; save SR
MOV.L # (RBBLclr&IMASKclr) ,R2
; RB,BL,mask clear data

AND R2,R0 ; clear mask data
OR R1,RO ; set interrupt mask
LDC RO, SSR ; set current status

LDC.L R3,SPC
MOV.L #_ int term,RO ; set interrupt terminate
LDs RO, PR

RTE
NOP

. POOL
.END

Note: Do not link the function for which #pragma interrupt has been specified.

R20UT0704EJ0102 Rev. 1.02 Page 271 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming

Optimizing Linkage Editor

(2) Initialization (PowerON_Reset)

When library functions are used, this function sequentially calls the initialization routine
_INITLIB and file closing routine CLOSEALL. The coding example of PowerON Reset is
shown below. Since the interrupt operation of the SH-3, SH3-DSP, SH-4, SH-4A, and
SH4AL-DSP differs from that of the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, and SH2-DSP,
interrupt handlers are necessary.

Example:

#include < h c lib.h>

#include <machine.h>

#pragma entry PowerON Reset PC

#pragma stacksize 0x100

#define SR Init 0x000000F0

/* The initial value is 0x400000F0 when cpu=sh3, cpu=sh3dsp, cpu=sh4, cpu=sh4a, or

cpu=sh4aldsp is specified */

#define FPSCR_Init 0x00040001%*!

/* Only when cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified */

#define INT OFFSET 0x10

extern
extern

extern

#ifdef

extern
#endif
extern
extern

extern

#ifdef

}
#endif

unsigned int INT Vectors;
void PowerON_Reset PC();
void main();

_cplusplus

CIGLEN|

void INIT IOLIB();
void INIT OTHERLIB();
void CLOSEALL() ;

_cplusplus

Page 272 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

void PowerON Reset PC() {
set _vbr((void *) (INT Vectors - INT OFFSET));
set fpscr (FPSCR Init);
/* Set this value only when cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified */
_INITSCT();
_INIT IOLIB();
_INIT OTHERLIB();
#ifdef _ _cplusplus
_CALL INIT();
#endif

set _cr (SR _Init);

main () ;
#ifdef cplusplus
_CALL_END() ;
#endif

_CLOSEALL () ;

sleep();

Note *1: Change the initial value for FPSCR in accord with option settings as described below.

Refer to the hardware manual for details.

-When—fpu=double is specified, set the PR bit in FPSCR to 1. Otherwise, set this bit
to 0.

- When—round=nearest is specified, set the RM bit in FPSCR to 00. Otherwise, set this
bit to 01.

- When—cpu=sh4 or -cpu=sh4a is specified along with -denormalize=on, set the DN
bit in FPSCR to 0. Otherwise, set this bit to 1.

(3) Tables for section initialization (DTBL, BTBL)

The section initialization routine (_INITSCT) initializes any uninitialized data sections to zero,
and copies initialization data in ROM for initialized data sections to RAM. Here the start and
end addresses of sections which use the INITSCT function are set in the table for section
initialization using the section address operator.

Section names in the section initialization table are declared, using C$BSEC for uninitialized
data areas, and C$DSEC for initialized data areas.

R20UT0704EJ0102 Rev. 1.02 Page 273 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

A coding example is shown below.

#pragma section $DSEC //Section name must be CS$DSEC.
static const struct {

void *rom s; //Starting address member of the initialized data
//section in ROM
void *rom e; //End address member of the initialized data
//section in ROM
void *ram_s; //Starting address member of the initialized data
//section in RAM
} DTBL[] = {__sectop("D"), _ _secend("D"), _ sectop("R")};

#pragma section $BSEC //Section name must be CS$BSEC.
static const struct {

void *b_s; //Starting address member of the uninitialized data
//section
void *b_e; //End address member of the uninitialized data
//section
} BTBL[] = {__sectop("B"), _ _secend("B")};

(4) C/C++ library function initial settings (_INITLIB)

Here, the method for setting initial values for C/C++ library functions is explained.

In order to set only those values which are necessary for the functions that are actually to be

used, please refer to the following guidelines.

— When using the <stdio.h>, <ios>, <streambuf>, <istream>, or <ostream> functions or the
assert macro, the standard I/O initial setting (_ INIT _IOLIB) is necessary.

— When an initial setting is required in the prepared low-level interface routines, the initial
setting (_ INIT LOWLEVEL) in accordance with the specifications of the low-level
interface routines is necessary.

— When using the rand function or the strtok function, initial settings other than those for
standard I/O (_INIT _OTHERLIB) are necessary.

An example of a program to perform initial library settings is shown below. FILE-type data is

shown in figure 9.7.

Page 274 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 9 Programming

#include <stdio.h>
#include <stdlib.h>
#define IOSTREAM 3

const size t sbrk size =

const int nfiles = IOSTREAM;
struct iobuf iob[IOSTREAM];

520;

// Specifies the minimum unit of the size to define
// for the heap area (default: 1024)
// Specifies the number of I/O files

(default: 20)

unsigned char sml buf[IOSTREAM];

extern char * slptr;

#ifdef _ _cplusplus
extern "C" {
#endif

void _INITLIB
{

(void)

_INIT_LOWLEVEL(); // Set

_INIT IOLIB(); // Set
_INIT OTHERLIB(); // Set
}
void INIT LOWLEVEL (void)
{
// Set

}

void INIT IOLIB(void)
{

initial setting for low-level interface routines
initial setting for I/O library

initial setting for rand function, strtok function

necessary initial setting for low-level library

FILE *fp;
for(fp = iob; fp < iob + nfiles; fp++) // Set initial setting for FILE
// type data
{
fp-> bufptr = NULL;
fp-> bufcnt = 0;
fp-> buflen = 0;
fp-> bufbase = NULL;
fp-> ioflagl = 0;
fp-> ioflag2 = 0;
fp-> iofd = 0;
}
if (freopen ("stdin™", "r", stdin)== NULL) // Open standard input file
stdin-> ioflagl = Oxff; // Forbid file access if open fails
stdin-> ioflagl |= IOUNBUF; // Disable data buffering"?
if (freopen ("stdout™", "w", stdout)== NULL) // Open standard output file
stdout-> ioflagl = Oxff; // Forbid file access if open fails
stdout-> ioflagl |= IOUNBUF; // Disable data buffering"?
if (freopen ("stderr™", "w", stderr)== NULL) // Open standard error file
stderr-> ioflagl = Oxff; // Forbid file access if open fails
stderr-> ioflagl |= IOUNBUF; // Disable data buffering"?

}

void INIT OTHERLIB (void)
{
srand (1) ;
~slptr=NULL;

}
$ifdef

}
#endif

_cplusplus

// Set initial setting if using rand function
// Set initial setting if using strtok function

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

Page 275 of 1176
RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Notes: 1. Specify the filename for the standard I/O file. This name is used in the low-level
interface routine "open".

2. In the case of a console or other interactive device, a flag is set to prevent the use of
buffering.

/* File-type data declaration in C language */

struct iobuf{

unsigned char * bufptr; /* Pointer to buffer */
long _bufent; /* Buffer counter */
unsinged char * bufbase; /* Base pointer to buffer */
long _buflen; /* Buffer length */

char _ioflagl; /*1/0 flag */

char _ioflag2; /*1/0 flag */

char _iofd; /*1/0 flag */

}iob[nfiles];

Figure 9.7 FILE-Type Data

(5) Closing files (CLOSEALL)

Normally, output to files is held in a buffer area in memory, and when the buffer becomes full
data is actually written to an external memory device. Hence if a file is not closed properly, it
is possible that data output to a file may not actually be written to the external memory device.
In the case of a program intended for embedding in equipment, normally the program is not
terminated. However, if the main function is terminated due to a program error or for some
other reason, open files must all be closed.

This processing closes any files that are open at the time of termination of the main function.

An example of a program to close all open files is shown below.

Page 276 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

#include <stdio.h>

#ifdef cplusplus
extern "C"

#endif

void CLOSEALL (void)
{

int 1i;
for(1i=0; i < nfiles; i++)
// Check to see whether the file is open or not

if(_iob[i]. ioflagl & (IOREAD | TOWRITE | TORW))
fclose(& iob[i]); // Close the file

(6) Low-level interface routines

When using standard I/O or memory management library functions in a C/C++ program, low-
level interface routines must be prepared. Table 9.3 lists the low-level interface routines used
by C library functions.

Table 9.3 List of Low-Level Interface Routines

Name Description

open Opens file

close Closes file

read Reads from file

write Writes to file

Iseek Sets the read/write position in a file
sbrk Allocates area in memory
sbrk_ X Allocates area in X memory
sbrk_ Y Allocates area in Y memory
errno_addr* Acquires errno address
wait_sem* Defines semaphore
signal_sem* Releases semaphore

Note: These routines are necessary when the reentrant library is used.

Initialization necessary for low-level interface routines must be performed on program startup.
This initialization should be performed using the INIT LOWLEVEL function described in
section 9.2.2 (4), C/C++ library function initial settings (_INITLIB).

R20UT0704EJ0102 Rev. 1.02 Page 277 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Below, after explaining the basic approach to low-level 1/0, the specifications for each
interface routine are described.

Note: The function names open, close, read, write, Iseek, sbrk, sbrk X, sbrk Y, errno_addr,
wait_sem, and signal sem are reserved for low-level interface routines. They should not
be used in user programs.

(a) Approach to I/O

In the standard I/O library, files are managed by means of FILE-type data; but in low-level

interface routines, positive integers are assigned in a one-to-one correspondence with actual

files for management. These integers are called file numbers.

In the open routine, a file number is provided for a specified filename. The open routine

must set the following information such that this number can be used for file input and

output.

o The device type of the file (console, printer, disk file, etc.) (In the cases of special
devices such as consoles or printers, special filenames must be set by the system and
identified in the open routine.)

¢ When using file buffering, information such as the buffer position and size

e In the case of a disk file, the byte offset from the start of the file to the position for
reading or writing

Based on the information set using the open routine, all subsequent I/O (read and write

routines) and read/write positioning (Iseek routine) is performed.

When output buffering is being used, the close routine should be executed to write the

contents of the buffer to the actual file, so that the data area set by the open routine can be

reused.
(b) Specifications of low-level interface routines

In this section, specifications for low-level interface routines are described. For each

routine, the interface for calling the routine, its operation, and information for using the

routine are described.

The interface for the routines is indicated using the following format. Low-level interface

routines should always be given a prototype declaration. Add "extern C" to declare in the

C++ program.

Page 278 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

(Routine name)

Description (A summary of the routine operations is given)
Return value Normal: (The meaning of the return value on normal termination is
explained)

Error: (The return value when an error occurs is given)

Parameters (Name) (Meaning)
(The name of the parameter (The meaning of the value
appearing in the interface) passed as a parameter)

int open (char *name, int mode, int flg)

Description Prepares for operations on the file corresponding to the filename of the first
parameter. In the open routine, the file type (console, printer, disk file, etc.)
must be determined in order to enable writing or reading at a later time. The
file type must be referenced using the file number returned by the open
routine each time reading or writing is to be performed.

The second parameter, mode, specifies processing to be performed when the
file is opened. The meanings of each of the bits of this parameter are as

follows.
15 5 4 3 2 1.0
e ST T T [1 1]
L — 0 _RDONLY
O_WRONLY
O_RDWR
O_CREAT
O_TRUNC
O_APPEND
R20UT0704EJ0102 Rev. 1.02 Page 279 of 1176

Mar 01, 2022 RENESAS

Section 9 Programming

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Table 9.4 Explanation of Bits in Parameter "mode' of open Routine

Bit

Description

O_RDONLY (bit 0)

When this bit is 1, the file is opened in read-only mode

O_WRONLY (bit 1)

When this bit is 1, the file is opened in write-only mode

O_RDWR (bit 2)

When this bit is 1, the file is opened for both reading and
writing

O_CREAT (bit 3)

When this bit is 1, if a file with the filename given does not
exist, it is created

O_TRUNC (bit 4)

When this bit is 1, if a file with the filename given exists, the
file contents are deleted and the file size is set to 0

O_APPEND (bit 5)

Sets the position within the file for the next read/write
operation

When 0: Set to read/write from the beginning of file
When 1: Set to read/write from file end

When there is a contradiction between the file processing specified by mode
and the properties of the actual file, error processing should be performed.
When the file is opened normally, the file number (0 to 127) should be
returned which should be used in subsequent read, write, Iseek, and close
routines. The correspondence between file numbers and the actual files must
be managed by low-level interface routines. If the open operation fails, -1
should be returned.

Return value Normal:
Error:

Parameters name
mode
flg

The file number for the successfully opened file
-1

Filename of the file
Specifies the type of processing when the file is opened
Specifies processing when the file is opened (always 0777)

Page 280 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

int close (int fileno)

Description

Return value

Parameter

The file number obtained using the open routine is passed as an parameter.
The file management information area set using the open routine should be
released to enable reuse. Also, when output file buffering is performed in
low-level interface routines, the buffer contents should be written to the
actual file.

When the file is closed successfully, 0 is returned; if the close operation fails,
-1 is returned.

Normal: 0
Error: -1
fileno File number of the file to be closed

int read (int fileno, char *buf, unsigned int count)

Description

Data is read from the file specified by the first parameter (fileno) to the area
in memory specified by the second parameter (buf). The number of bytes of
data to be read is specified by the third parameter (count).

When the end of the file is reached, only a number of bytes fewer than or
equal to count bytes can be read.

The position for file reading/writing advances by the number of bytes read.

When reading is performed successfully, the actual number of bytes read is
returned; if the read operation fails, -1 is returned.

Return value Normal: Actual number of bytes read
Error: -1
Parameters fileno File number of the file to be read
buf Memory area to store read data
count Number of bytes to read
R20UT0704EJ0102 Rev. 1.02 Page 281 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming Optimizing Linkage Editor

int write (int fileno, char *buf, unsigned int count)

Description

Return value

Parameters

Writes data to the file indicated by the first parameter (fileno) from the
memory area indicated by the second parameter (buf). The number of bytes
to be written is indicated by the third parameter (count).

If the device (disk, etc.) of the file to be written is full, only a number of
bytes fewer than or equal to count bytes can be written. It is recommended
that, if the number of bytes actually written is zero a certain number of times
in succession, the disk should be judged to be full and an error (-1) should be
returned.

The position for file reading/writing advances by the number of bytes
written. If writing is successful, the actual number of bytes written should be
returned; if the write operation fails, -1 should be returned.

When the value of parameter count is 0, the return value must also be 0.

Normal: Actual number of bytes written

Error: -1

fileno File number to which data is to be written
buf Memory area containing data for writing
count Number of bytes to write

Page 282 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

int Iseek (int fileno, long offset, int base)

Description

Sets the position within the file, in byte units, for reading from and writing to
the file.

The position within a new file should be calculated and set using the
following methods, depending on the third parameter (base).

(1) When base is 0: Set the position at offset bytes from the file beginning
(2) When base is 1: Set the position at the current position plus offset bytes
(3) When base is 2: Set the position at the file size plus offset bytes

When the file is a console, printer, or other interactive device, when the new
offset is negative, or when in cases (1) and (2) the file size is exceeded, an
€ITor OCCurs.

When the file position is set correctly, the new position for reading/writing
should be returned as an offset from the file beginning; when the operation is
not successful, -1 should be returned.

Return value Normal: The new position for file reading/writing, as an offset in bytes
from the file beginning
Error: -1
Parameters fileno File number
offset Position for reading/writing, as an offset (in bytes)
base Starting-point of the offset
R20UT0704EJ0102 Rev. 1.02 Page 283 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming Optimizing Linkage Editor

char *sbrk (int size)

Description

Return value

Parameter

The size of the memory area to be allocated is passed as a parameter.

When calling the sbrk routine several times, memory areas should be
allocated in succession starting from lower addresses. If the memory area for
allocation is insufficient, an error should occur. When allocation is
successful, the address of the beginning of the allocated memory area should
be returned; if unsuccessful, (char *) -1 should be returned.

Normal: Starting address of allocated memory
Error: (char *) -1
size Size of area to be allocated

char _ X *sbrk__X (int size)

Description

Return value

Parameter

The size of the X memory area to be allocated is passed as a parameter.

When calling the sbrk X routine several times in a row, memory areas
should be allocated in succession starting from lower addresses. If the
memory area for allocation is insufficient, an error should occur. When
allocation is successful, the address of the beginning of the allocated memory
area should be returned; if unsuccessful, (char X *) -1 should be returned.

Normal: Starting address of allocated memory
Error: (char X *)-1
size Size of area to be allocated

Page 284 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

char __Y *sbrk_ _Y (int size)

Description

Return value

Parameter

The size of the Y memory area to be allocated is passed as a parameter.

When calling the sbrk Y routine several times in a row, memory areas
should be allocated in succession starting from lower addresses. If the
memory area for allocation is insufficient, an error should occur. When
allocation is successful, the address of the beginning of the allocated memory
area should be returned; if unsuccessful, (char Y *) -1 should be returned.

Normal: Starting address of allocated memory
Error: (char Y *)-1
size Size of area to be allocated

int *errno_addr (void)

Description

Return value

Returns the address of the error number of the current task.

This routine is necessary when using a standard library, which was created
by the standard library generator with the reent option specified.

Address of the error number of the current task

R20UT0704EJ0102 Rev. 1.02 Page 285 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming Optimizing Linkage Editor

int wait_sem (int semnum)

Description

Return value

Parameter

Defines the semaphore specified by semnum.

When the semaphore has been defined normally, 1 must be returned.
Otherwise, 0 must be returned.

This routine is necessary when using a standard library, which was created
by the standard library generator with the reent option specified.

Normal: 1
Error: 0
semnum Semaphore ID

int signal_sem (int semnum)

Description

Return value

Parameter

Releases the semaphore specified by semnum.

When the semaphore has been released normally, 1 must be returned.
Otherwise, 0 must be returned.

This routine is necessary when using a standard library, which was created
by the standard library generator with the reent option specified.

Normal: 1
Error: 0
semnum Semaphore ID

Page 286 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 9 Programming

(c) Example of coding the low-level interface routines

/******************************

***/

/* lowsrc.c: */
K */
/* SuperH RISC engine Series Simulator/Debugger Interface Routine */
/* Only standard I/O (stdin,stdout,stderr) are supported */

/***/

#include <string.h>

/* File Number */

#define STDIN 0 /* Standard input (Console) */
#define STDOUT 1 /* Standard output (Console) */
#define STDERR 2 /* Standard error output (Console) */
#define FLMIN 0 /* Minimum file number */
#define FLMAX 3 /* Maximum number of files */
/* File flags */

#define O RDONLY 0x0001 /* Read only */

#define O WRONLY 0x0002 /* Write only */

#define O RDWR 0x0004 /* Read/Write */

/* Special character code */

#define CR 0x0d
#define LF 0x0a

/*

Carriage return */
/* Line feed */

*/

/* Area size managed by sbrk
#define HEAPSIZE 1024

Vadi R EEE et EEEEEEEE Rt AR Rttt EEE Lttty

/* Reference function declaration: */
/* Assembly program reference which inputs/outputs characters to */
/* console using simulator/debugger */

/**/

extern void charput(char); /* One character input processing */
extern char charget (void); /* One character output processing */

/**/

/* Static variable definition: */
/* Definition of static variables used in low-level interface routine */
Ak hkhkhkkhkhkhkhhkhkhhkhhkhhkhkhkhkhhkh bk hkhkhkhkhkhhkrhkhkhkhkhkhkrkhkhkhxkx*k
/ /

char flmod[FLMAX]; /* Mode setting location of open file */

union HEAP TYPE {
long dummy; /*
char heap[HEAPSIZE];

*/

Declaration of area managed by sbrk

Dummy for four-byte alignment
/* */

}i

static union HEAP TYPE heap area;
static X union HEAP_TYPE heap_ area _X;
static _ _Y union HEAP TYPE heap_area_ _Y;
static char *brk=(char*)é&heap area; /* End address allocated by sbrk */
static _ X char *brk X=(char _ X *)é&heap area _X;
/* End address allocated by sbrk X */
static Y char *brk Y=(char Y *)é&heap area Y;
/* End address allocated by sbrk Y */

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022 RENESAS

Page 287 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming Optimizing Linkage Editor

/**/

/* open: Open file */
/* Return value: File Number (Normal) */
/* -1 (Error) */

/**/
int open (char *name, /* File name */
int mode) /* File mode */

{

/* Check mode according to the file name, and return the file number */

if (strcmp(name,"stdin")==0) { /* Standard input file */
if ((mode&O RDONLY)==0) {
return (-1);

}
flmod [STDIN]=mode;
return (STDIN) ;

}

else if (strcmp (name,"stdout")==0) { /* Standard output file */
if ((mode&O WRONLY)==0) {
return (-1);
}
flmod [STDOUT] =mode;
return (STDOUT) ;
}

else if (strcmp (name,"stderr")==0) { /* Standard error output file */
if ((mode&O WRONLY)==0) {
return (-1);

}
flmod [STDERR]=mode;
return (STDERR) ;

}

else {
return (-1); /* Error */

}

/**/

/* close: Close file */
/* Return value 0 (Normal) */
/* -1 (Error) */

/***********************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k**************************************/
int close(int fileno) /* File number */
{
if (fileno<FLMIN || FLMAX<fileno) { /* Check file number range */
return -1;

}
flmod[fileno]=0; /* Reset file mode */

return O;

Page 288 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 9 Programming

/**

********************************/

/* read: Read data */
/* Return value: Read character count (Normal) */
/* -1 (Error) */
/*****~k~k~k~k***/
int read(int fileno, /* File number */
char *buf, /* Transfer destination buffer address */
unsigned int count) /* Read character count */
{
unsigned int i;
/* Check mode according to file name, input one character each, */

/* and store the characters to buffer */

if I

{

(flmod[fileno] &0 RDONLY {
for (i=count;i>0;i--)
*pbuf=charget () ;
if (*buf==CR) { /*
*buf=LF;

flmod[fileno] &0 RDWR)

*/

Replace line feed character

}
buf++;

}

return count;

}

else {
return -1;
}
}

/**/

/* write: Write data */
/* Return value: Written data count (Normal) */
/* -1 (Error) */
/**/
int write(int fileno, /* File number */

char *buf, /* Transfer source buffer address */

unsigned int count) /* Written character count */

unsigned int i;

char c;
/* Check mode according to file name and output one character at a time */
if (flmod[fileno]&O WRONLY || flmod[fileno]&O RDWR) {
for (i=count; i>0; i--) {
c=*buf++;
charput (c) ;
}
return count;
}
else {

return -1;

}

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022 RENESAS

Page 289 of 1176

Section 9 Programming

SuperH™ RISC engine C/C++ Compiler, Assembler,

VAR A AR EEE RS AR AR R EEEE Sttt AR EEEE R R Rt

/* lseek: Set file read/write position */
/* Return value: Offset from the beginning of file to be read/written (Normal) */
/* -1 (Error) */
/* (Console I/0 does not support lseek) */
/***/
long lseek(int fileno, /* File number */

long offset, /* Read/write start position */

int Dbase) /* Start of offset */

{
return -1;

}

/**/
/* sbrk: Memory area allocation */
/* Return value: Start address of allocated area (Normal) */
/* -1 (Error) */
/**/
char *sbrk(unsigned long size) /* Size of area to be allocated */

{

char *p;
/* Check empty area */

if (brk+size>heap area.heap+HEAPSIZE) {
return (char *)-1;

p=brk; /* Allocate area */
brk+=size; /* Update end address */
return p;

}

/**/

/* sbrk X: Memory area allocation */
/* Return value: Start address of allocated area (Normal) */
/* -1 (Error) */

/**/

char = X *sbrk X(unsigned long size)
/* Size of area to be allocated */

_ _X char *p;
/* Check empty area */

if (brk__X+size>heap area X.heap+HEAPSIZE) ({
return (char = X *)-1;

}

p=brk_ X; /* Allocate area */
brk = X+=size; /* Update end address */
return p;

Page 290 of 1176

Optimizing Linkage Editor

R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 9 Programming
/**/
/* sbrk _Y: Memory area allocation */
/* Return value: Start address of allocated area (Normal) */
/* -1 (Error) */
/~k~k**/
char _ Y *sbrk Y(unsigned long size)

/* Size of area to be allocated */

{

Y char *p;

/* Check empty area */

if (brk_ Y+size>heap area Y.heap+HEAPSIZE) ({

return (char _ Y *)-1;

}

p=brk Y; /* Allocate area */

brk Y+=size; /* Update end address */

return p;
}
; lowlvl.src i
; SuperH RISC engine Series Simulator/Debugger Interface Routine ;
; Input/Output one character ;
PP i

.EXPORT _charput

.EXPORT _charget
SIM IO:

.EQU H'0000 ; Specify TRAP ADDRESS

.SECTION P, CODE, ALIGN=4
RN
; _charput: One character output ;
; C program interface: charput (char) ;
_charput:

MOV.L O_PAR,RO ; Set buffer address

MOV.B R4, @RO ; Set parameter to buffer

MOV.L #0 PAR,R1 ; Set parameter block address

MOV.L #H'01220000,R0 ; Set function code (PUTC)

MOV.W #SIM I0,R2 ; Set system call address

JSR QR2

NOP

RTS

NOP

.ALIGN 4
O_PAR: ;Parameter block area

.DATA.L OUT BUF

R20UT0704EJ0102 Rev. 1.02 Page 291 of 1176

Mar 01, 2022 RENESAS

Section 9 Programming

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

rrrrrrrrrrrrrrg

rrrrrr s

.SECTION

OUT BUF:
.RES.L 1

IN BUF:
.RES.L 1
.END

rrrrrrrrrrrr

.ALIGN 4
_charget:
MOV.L #I_PAR,R1 ;
MOV.L #H'01210000,RO ;
MOV.W #SIM IO,R2 ;
JSR @R2
NOP
MOV.L I _PAR,RO ;
MOV.B @RO,RO ;
RTS
NOP
.ALIGN 4
I PAR: ;
.DATA.L IN BUF

PP i i i i i i i i i i i i i
_charget: One character input ;
C program interface: char charget (void) ;

AN NN

Set
Set
Set

Set
Set

Parameter block area

AR NN

Definition of I/0 buffer ;

AR NN

B, DATA, ALIGN=4

; Output buffer

; Input buffer

parameter block address
function code (GETC)
system call address

buffer address
the input data as the return value

Page 292 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

(d) Example of low-level interface routine for reentrant library

The following shows an example of a low-level interface routine for a reentrant library. This
routine is necessary when using a standard library, which was created by the standard library
generator with the reent option specified.

When an error is returned from the wait_sem function or signal_sem function, set errno as
follows to return from the library function.

Bit Function errno Description

wait_sem EMALRESM Failed to allocate semaphore resources for malloc
ETOKRESM Failed to allocate semaphore resources for strtok
EIOBRESM Failed to allocate semaphore resources for _iob

signal_sem EMALFRSM Failed to release semaphore resources for malloc
ETOKFRSM Failed to release semaphore resources for strtok
EIOBFRSM Failed to release semaphore resources for _iob

When an interrupt with a priority level higher than the current level is generated after
semaphores have been defined, dead locks will occur if semaphores are defined again.
Therefore, be careful for processes that share resources because they might be nested by
interrupts.

R20UT0704EJ0102 Rev. 1.02 Page 293 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 9 Programming Optimizing Linkage Editor
#define MALLOC_SEM 1 /* Semaphore No. for malloc */
#define STRTOK SEM 2 /* Semaphore No. for strtok */
#define FILE_TBL_SEM 3 /* Semaphore No. for fopen */
#define MALLOC_SEM X 4 /* Semaphore No. for malloc X */
#define MALLOC SEM Y 5 /* Semaphore No. for malloc Y */
#define IOB_SEM 6 /* Semaphore No. for _iob */
#define SEMSIZE 26 /* IOB_SEM + nfiles (when nfiles = 20) */
#define TRUE 1
#tdefine FALSE 0
#define OK 1
#define NG 0

extern int *errno_ addr (void);
extern int wait sem(int);

extern int signal sem(int);

int sem errno;
int force fail signal sem = FALSE;

static int semaphore[SEMSIZE];

VAR AR EEEEEEE Sttt EEEEE Rttt R R Rt

/* errno_addr: Acquisition of errno address */

/* Return value: errno address */

/‘k*‘k**‘k*‘k‘k*‘k‘k*‘k‘k‘k***********/
int *errno addr (void)
{

/* Return the errno address of the current task */

return (&sem errno);

/******‘k‘k‘k‘k‘k*************'k'k'k'k'k**/

/* wait sem: Defines the specified numbers of semaphores */
/* Return value: OK(=1) (Normal) */
/* NG (=0) (Error) */

VAR AR A EEEEEEEE RSttt AEEE Rttt EEEE Rt

Page 294 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

int wait sem(int semnum) /* Semaphore ID */
{
1if((0 <= semnum) && (semnum < SEMSIZE)) {
if (semaphore[semnum] == FALSE) {
semaphore [semnum] = TRUE;

return (OK) ;

}
return (NG) ;

KKK KKKk KK K K KKK K K K KK KK K K K KK KK K R R Kk K R ok kK K R ok Kk kK Rk kK R kR kR ok R Rk kR kK

/* signal sem: Releases the specified numbers of semaphores */
/* Return value: OK(=1) (Normal) */
/* NG (=0) (Error) */

/***/

int signal sem(int semnum) /* Semaphore ID */

{

if (!force fail signal sem) {

if((0 <= semnum) && (semnum < SEMSIZE)) {
if (semaphore[semnum] == TRUE) ({
semaphore [semnum] = FALSE;

return (OK) ;

}
return (NG) ;

R20UT0704EJ0102 Rev. 1.02 Page 295 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

(7) Termination processing routine
(a) Example of preparation of a routine for termination processing registration and execution

(atexit)
The method for preparation of the library function atexit to register termination processing
is described.
The atexit function registers, in a table for termination processing, a function address
passed as a parameter. If the number of functions registered exceeds the limit (in this case,
the number that can be registered is assumed to be 32), or if an attempt is made to register
the same function twice, NULL is returned. Otherwise, a value other than NULL (in this
case, the address of the registered function) is returned.

A program example is shown below.

Example:

#include <stdlib.h>
typedef void *atexit t ;

int _atexit count=0 ;
atexit t (* atexit buf[32]) (void) ;

#ifdef cplusplus

extern "C"

#endif

atexit t atexit(atexit t (*f) (void))
{

int 1i;

for (i=0; i< atexit count ; i++) // Check whether it is already registered
if (_atexit buf[i]==f)
return NULL ;
if (_atexit count==32) // Check the limit value of number of registration
return NULL ;

else {
atexit buf[atexit count++]=f; // Register the function address
return f;
}
}
Page 296 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

(b) Example of preparation of a routine for program termination (exit)

The method for preparation of an exit library function for program termination is described.
Program termination processing will differ among user systems; refer to the program
example below when preparing a termination procedure according to the specifications of
the user system.

The exit function performs termination processing for a program according to the
termination code for the program passed as a parameter, and returns to the environment in
which the program was started. Here, the termination code is set to an external variable,
and execution returned to the environment saved by the setjmp function immediately
before the main function was called. In order to return to the environment prior to program
execution, the following callmain function should be created, and instead of calling the
function main from the PowerON_Reset initial setting function, the callmain function
should be called.

A program example is shown below.

R20UT0704EJ0102 Rev. 1.02 Page 297 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

#include <setjmp.h>
#include <stddef.h>

typedef void * atexit t ;
extern int atexit count ;

extern atexit t (* atexit buf[32]) (void) ;
#ifdef = cplusplus

extern "C"

#endif

void CLOSEALL (void);

int main (void);

extern jmp buf init env ;

int exit code ;

#ifdef cplusplus
extern "C"

#endif
void exit (int code)

{

int 1i;
_exit code=code ; // Set the return code in _exit_code
for (i=_atexit count-1; i>=0; i--) //Execute in sequence the functions
(*_atexit buf[il) (); // registered by the atexit function
_CLOSEALL() ; // Close all open functions
longjmp(_init env, 1) ; // Return to the environment saved by setjmp
}
#ifdef _ cplusplus

extern "C"

#endif
void callmain (void)
{
// Save the current environment using setjmp and call the main function
if(!setjmp(_init env))
_exit code=main(); // On returning from the exit function,
// terminate processing

Page 298 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 9 Programming

(c) Example of creation of an abnormal termination (abort) routine

On abnormal termination, processing for abnormal termination must be executed in

accordance with the specifications of the user system.

In a C++ program, the abort function will also be called in the following cases:

e When exception processing was unable to operate correctly.

e When a pure virtual function is called.
e When dynamic_cast has failed.
e When typeid has failed.

e When information could not be acquired when a class array was deleted.

e When the definition of the destructor call for objects of a given class causes a

contradiction.

Below is shown an example of a program which outputs a message to the standard output
device, then closes all files and begins an infinite loop to wait for reset.

#include <stdio.h>

#ifdef cplusplus
extern "C"

#endif

void _CLOSEALL (void) ;
#ifdef cplusplus
extern "C"

#endif

void abort (void)

{

_CLOSEALL () ;
while (1) ;

printf ("program is abort !!\n");

/ /Output message
//Close all files
/ /Begin infinite loop

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022 RENESAS

Page 299 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

9.3 Linking C/C++ Programs and Assembly Programs

Here the following matters to be born in mind when linking C/C++ programs and assembly
programs are discussed.

e Method for mutual referencing of external names
e Interface for function calls

9.3.1 Method for Mutual Referencing of External Names

External names which have been declared in a C/C++ program can be referenced and updated in
both directions between the C/C++ program and an assembly program. The compiler treats the
following items as external names.

e Global variables which are not declared as static storage classes (C/C++ programs)

e Variable names declared as extern storage classes (C/C++ programs)

e Function names not declared as static memory classes (C programs)

e Non-member, non-inline function names not specified as static memory classes (C++
programs)

e Non-inline member function names (C++ programs)

o Static data member names (C++ programs)

(1) Method for referencing assembly program external names in C/C++ programs

In assembly programs, .EXPORT is used to declare external symbol names (preceded by an
underscore (_)).

In C/C++ programs, symbol names (not preceded by an underscore) are declared using the
extern keyword.

Assembly program (definition) C/C++ program (reference)

.EXPORT a, Db extern int a,b;

.SECTION D,DATA,ALIGN=4
a: .DATA.L 1

~b: .DATA.L 1 void f ()
.END {
at+=b;
}
Page 300 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

(2) Method for referencing C/C++ program external names (variables and C functions) from
assembly programs

A C/C++ program can define external variable names (without an underscore (_)).

In an assembly program, .IMPORT is used to declare an external name (preceded by an

underscore).
C/C++ program (definition) Assembly program (reference)

int a; .IMPORT a
.SECTION P,CODE,ALIGN=4
MOV. L A a,R1
MOV. L @R1,RO
ADD #1,R0
RTS
MOV. L RO, @R1
.ALIGN 4

A a: .DATA.L ~a

.END

(3) Method for referencing C++ program external names (functions) from assembly programs

By declaring functions to be referenced from an assembly program using the extern "C"
keyword, the function can be referenced using the same rules as in (2) above. However,
functions declared using extern "C" cannot be overloaded.

C++ program (callee)

extern "C"
void sub ()

{

R20UT0704EJ0102 Rev. 1.02 Page 301 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Assembly program (caller)

.IMPORT sub
.SECTION P,CODE,ALIGN=4

STS.L PR, @-R15
MOV. L R1,@(1,R15)
MOV R3,R12
MOV. L A sub, RO
JSR @RO
NOP
LDS.L @R15+, PR

A sub: .DATA.L sub
.END

9.3.2 Function Calling Interface

When either a C/C++ program or an assembly program calls the other, the assembly programs
must be written using rules involving the following:

1. Stack pointer

2. Allocating and deallocating stack frames
3. Registers
4

. Setting and referencing parameters and return values

(1) Stack Pointer
Valid data must not be stored in a stack area with an address lower than the stack pointer (in
the direction of address H'0), since the data may be destroyed by an interrupt process.

(2) Allocating and Deallocating Stack Frames
In a function call (immediately after the JSR or the BSR instruction has been executed), the
stack pointer indicates the lowest address of the stack used by the calling function. Allocating
and setting data at addresses greater than this address must be done by the caller.

Page 302 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 9 Programming

After the callee deallocates the area it has set with data, control returns to the caller usually
with the RTS instruction. The caller then deallocates the area having a higher address (the
return value address and the parameter area).

After function call and after

control returns from a function

SP —b

Return value address

Parameter area

* Lower address

: Area allocated by the callee

(during function call)

Area deallocated by the callee

(after control returns from a function)
[]: Area deallocated by the caller

+ Higher address

Figure 9.8 Allocation and Deallocation of a Stack Frame

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

Page 303 of 1176

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

(3) Registers
Some registers may change during a function call, while some may not. Table 9.5 shows the
rules to save and restore registers.

Table 9.5 Rules to Save and Restore Registers

Item Registers Used in a Function Notes on Programming
Registers not RO to R7, FRO to FR11*1, If registers used in a function contain
guaranteed DRO to DR10*?, FPUL*'*2, FPSCR*'*2*4 valid data when a program calls the

A0*3 AOG*3, A1%3 A1G*3 MO*3, M1*3, function, the caller must save the

X0*3, X1*3, YO*3, Y1*3, DSR*3, MOD*3, data onto the stack or into the

RS*3, and RE*3 register before calling the function.
The callee function can use the
registers without saving the
contained data. However, when
fpscr=safe is specified, the contents
of FPSCR are guaranteed.

Registers R8 to R15, MACH, MACL, PR, FR12to The data in registers used in

guaranteed FR15*' and DR12 to DR14%2 functions is saved onto the stack at
function entry, and restored from the
stack at function exit. Note that data
in the MACH and MACL registers are
not guaranteed if macsave=0 is
specified. When gbr=auto is
specified, the contents of GBR are
guaranteed.

Notes: 1. Single-precision floating point registers for SH-2E, SH2A-FPU, SH-4, and SH-4A.
2. Double-precision floating point registers for SH2A-FPU, SH-4, and SH-4A.
3. DSP registers for SH2-DSP, SH3-DSP, and SH4AL-DSP.
4. The precision modes at the start of functions are as follows.
¢ When the fpu=double option is used, the mode is double-precision.

* When the fpu=single option is used or when the fpu option is not used, the mode is
single-precision. In the case of interrupt functions, the precision mode might need to be
set since they might actually be called in double-precision mode. For details, see
section 9.4.1 (6) Interrupt Functions When the CPU Type Is SH2A-FPU, SH4, or SH4A.

Page 304 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

The following examples show the rules on registers.
e A subroutine in an assembly program is called by a C/C++ program

Assembly program (callee)

.EXPORT _sub
.SECTION P,CODE,ALIGN=4

sub: MOV.L R14,@-R15 Saves the registers used in the function.
MOV.L R13,@-R15
ADD #-8,R15 Processing of the function

(The contents of RO to R7 registers are
not guaranteed, so the registers can be used
without saving the contents in the function.)

ADD #8,R15
MOV. L @R15+,R13 Restores the saved registers.
RTS
MOV .L @R15+,R14
.END
C/C++ program (caller)

#ifdef cplusplus
extern "C"

#endif

void sub();

void f ()
{

sub () ;
}

R20UT0704EJ0102 Rev. 1.02 Page 305 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

¢ A function in a C/C++ program is called by an assembly program
C/C++ program (callee)

void sub ()

{

Assembly program (caller)

The called function name prefixed with (_) is

-IMPORT _sub } declared by the .IMPORT (C).

-SECTION P,CODE,ALIGN=4 The external name generated from the function declaration or
. definition by the compiler is declared by the .IMPORT (C++).

} Stores the PR register (return address storage

STS.L PR, @-R15 register) when calling the function.
If registers RO to R7 contain valid data

MOV.L R1,@(1,R15) ; ’

MOV R3.R12 } Fhe data is pughed onto the stack or stored
in unused registers.

MOV. L A_sub, RO } Calls function sub.

JSR @RO

NOP

LDS.L @R15+, PR } Restores the PR register.

A sub: .DATA.L _sub Address data of function sub.
.END

Note: The compiler uses a rule to convert the external name created by the function name or
static data member. When you need to know the external name created by the compiler,
refer to the external name created by the compiler using code=asmcode or the listfile
option. Defining a C++ function with extern "C" specified applies the same generation
rules as C functions to external names, although this makes overloading of the function
impossible.

(4) Setting and Referencing Parameters and Return Values
This section explains how to set and reference parameters and return values.
This section first explains the general rules concerning parameters and return values, and then
how the parameters are allocated, and how to set return values.

Page 306 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

(a) General rules concerning parameters and return values
— Passing parameters

A function is called after parameters have been copied to a parameter area in registers or on
the stack. Since the caller does not reference the parameter area after control returns to it,
the caller is not affected even if the callee modifies the parameters.

— Rules on type conversion

Type conversion may be performed automatically when parameters are passed or a return
value is returned. The following explains the rules on type conversion.

e Type conversion of parameters whose types are declared

Parameters whose types are declared by a prototype declaration are converted to the
declared types.

e Type conversion of parameters whose types are not declared

Parameters whose types are not declared by a prototype declaration are converted
according to the following rules.

— (signed) char, unsigned char, (signed) short, and unsigned short type parameters are
converted to (signed) int type parameters.

— float type parameters are converted to double type parameters.
— Types other than the above are not converted.
e Type conversion of a return value

A return value is converted to the data type returned by the function.

Examples:

(1) long £();
long f£()
{ float x;
return x; <*—— The return value is converted to long by a
prototype declaration.

(2) wvoid p (int, ...);
void £ ()
{ char c;
P (1.0, c);

} E cisconverted to int because a type is not
declared for the parameter.
1.0 is converted to int because the type of
the parameter is int.

R20UT0704EJ0102 Rev. 1.02 Page 307 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

(b) Parameter area allocation

Parameters are allocated to registers, or when this is impossible, to a parameter area on the
stack. Figure 9.9 shows the parameter area allocation. Table 9.6 lists general rules on the
parameter area allocation. The this pointer to a nonstatic function member in a C++
program is assigned to R4.

Stack
Lower
address
SP -
Address of the return Parameter storage registers
value

R4 FR4 (DR4)

R5 FR5

Parameter

area R6 FR6 (DR6)

R7 FR7
FR8 (DR8)

FR9

7
M Parameter area FR10 (DR10)
FR11
(When CPU is SH-2E, SH2A-FPU,
SH-4, or SH-4A)
Figure 9.9 Parameter Area Allocation
Page 308 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 9 Programming

Table 9.6

Parameters Allocated to Registers

General Rules on Parameter Area Allocation

Parameter Storage
Registers

Target Type

Parameters Allocated to a Stack

R4 to R7

char, unsigned char, bool, short,
unsigned short, int, unsigned int,
long, unsigned long, float (when
CPU is other than SH-2E, SH2A-
FPU, SH-4, or SH-4A), pointer,
pointer to a data member, and
reference

(1) Parameters whose types are other
than target types for register passing

(2) Parameters of a function which has
been declared by a prototype
declaration to have variable-number
parameters*3

FR4 to FR11*"

For SH-2E
e Parameter is float type.

e Parameter is double type and
double=float is specified.
For SH2A-FPU, SH-4, or SH-4A

e Parameter type is float type
and fpu=double is not
specified.

e Parameter type is double type
or long double type and
fpu=single is specified.

DR4 to DR10%*2

For SH2A-FPU, SH-4, or SH-4A

o Parameter type is double type
or long double type and
fpu=single is not specified.

e Parameter type is float type
and fpu=double is specified.

(3) When other parameters are already
allocated to R4 to R7.

(4) When other parameters are already
allocated to FR4 (DR4) to FR11
(DR10).

(5) long long type and unsigned long long
type parameters

(6) _ _fixed type, long _ _fixed type,
___accum type, and long _ _accum
type parameters

Notes: 1.

Single-precision floating-point registers for SH-2E, SH2A-FPU, SH-4, and SH-4A.

2. Double-precision floating-point registers for SH2A-FPU, SH-4, and SH-4A.

3. If a function has been declared to have variable parameters by a prototype declaration,
parameters which do not have a corresponding type in the declaration and the
immediately preceding parameter are allocated to a stack.

Example:

int f2(int,int,int,int,...);

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

Page 309 of 1176

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

f2(a,b,c,x,vy,2); <« X,Y,and z are allocated to a stack.

(c) Parameter allocation
— Allocation to parameter storage registers

Following the order of their declaration in the source program, parameters are allocated to
the parameter storage registers starting with the smallest numbered register. Figure 9.10
shows an example of parameter allocation to registers.

f (char a,int b)
{

31 87 0

R4 Not guaranteed a

R5 b

Figure 9.10 Example of Allocation to Parameter Registers

— Allocation to a stack parameter area

Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type, union type, or class type,
parameters are allocated using 4-byte alignment. Also, the area size for each parameter
must be a multiple of four bytes. This is because the SuperH RISC engine microcomputer
stack pointer is incremented or decremented in 4-byte units. Refer to section 9.3.3,
Examples of Parameter Allocation, for examples of parameter allocation.

(d) Return value writing area

The return value is written to either a register or memory depending on its type. Refer to

table 9.7 for the relationship between the return value type and area.

When a function return value is to be written to memory, the return value is written to the area
indicated by the return value address. The caller must allocate the return value setting area in
addition to the parameter area, and must set the address of the return value area in the return
value address area before calling the function (see figure 9.11). The return value is not written
if its type is void.

Page 310 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 9 Programming

Table 9.7 Return Value Type and Setting Area

Return Value Type

Return Value Area

(signed) char, unsigned char,
(signed) short, unsigned short,
(signed) int, unsigned int, long,
unsigned long, float, pointer, bool,
reference, and pointer to a data
member

RO: 32 bits

The contents of the upper three bytes of (signed) char, or
unsigned char and the contents of the upper two bytes of
(signed) short or unsigned short are not guaranteed.
However, when the rtnext option is specified, sign extension
is performed for (signed) char or (signed) short type, and
zero extension is performed for unsigned char or unsigned
short type.

FRO: 32 bits
(1) For SH-2E
e Return value is float type.
e Return value is double type and double=float is
specified.
(2) For SH2A-FPU, SH-4, or SH-4A
e Return value is float type and fpu=double is not
specified.
e Return value is floating-point type and fpu=single is
specified.

double, long double, structure,
union, class, and pointer to a
function member

Return value setting area (memory)
DRO: 64 bits
For SH2A-FPU, SH-4, or SH-4A
e Return value is double type and fpu=single is not
specified.
e Return value is floating-point type and fpu=double is
specified.

(signed) long long and
unsigned long long

Return value setting area (memory)

_ _fixed, long _ _fixed, _ _accum,
and long _ _accum

Return value setting area (memory)

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

Page 311 of 1176
RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Stack
ac /I\ Lower address

SP

Return value
address area Return value
setting area
(allocated by the
calling function)

Parameter
area

\l/ Higher address

Figure 9.11 Return Value Setting Area Used When Return Value Is Written to Memory

9.3.3 Examples of Parameter Allocation

Example 1: Parameters passed by are allocated, in the order in which they are declared, to

registers R4 to R7.
int f(char, short,int, float); R4 Not guaranteed | 1
R5 | Not guaranteed | 2
£(1,2,3,4.0); R6 3
R7 4.0

Example 2: Parameters that cannot be allocated to registers are allocated to the stack. When the
parameters are (unsigned) char or (unsigned) short types and are allocated to the
parameter area in the stack, they are first extended to 4 bytes.

int f(int,short,long, float,char); R4 1

R5 | Not guaranteed 2
£(1,2,3,4.0,5); R6 3

R7 4.0

TLower address

Parameter area

(stack) Not guaranteed | 5 |
JHigher address
Page 312 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

Example 3: Parameters of types that cannot be allocated to registers are allocated to the stack.

struct s{int x,vy;}la; R4 1

int f(int,struct s,int); R5 3

£(1,a,3); TLower address
Parameter area ax
(stack) a.y

d Higher address

Example 4: When declared in a prototype declaration as a function with a variable parameters, the
parameters without corresponding types and the immediately preceding parameter are
allocated to the stack in the order in which they are declared.

int f (double, int, int...); R4 2

£(1.0,2,3,4);: TLower address
1.0

Parameter area
(stack)

d Higher address

Example 5: When the type returned by a function is more than 4 bytes, or a class, the return value
address is set immediately before the parameter area. If the size of the class is not a
multiple of 4 bytes, unused space is padded.

struct s{char x,y,z;}la; Parameter area Return value address
double f(struct s); (stack) Unused
a.x ay a.z area
f(a);
1 TLower address

| Area for setting return value

{ Higher address

R20UT0704EJ0102 Rev. 1.02 Page 313 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

Example 6: When the CPU is SH-2E, float type parameters are allocated to the FPU registers.

int f (char, float,short, float,double); R4 | Not guaranteed | 1 FR4 2.0
RS Inot guaranteed| 3 FR5 4.0
£(1,2.0,3,4.0,5.0); R6 FR6
R7 FR7
FR8
FR9
FR10
FR11

TLower address

Parameter area

(stack) 5.0

{ Higher address

Example 7: When the CPU is SH2A-FPU, SH-4, or SH-4A, float and double type parameters are
allocated to the FPU registers.

int f(char, float,double, float, short) ; FR4(DR4) 2.0
FR5 5.0
£(1,2.0,4.0,5.0,3); FR6(DR6) 4.0
FR7
FR8(DRS8)
R4 Not guaranteed | 1 FR9
R5 [Not guaranteed | 3 FR10(DR10)
R6 FR11
R7
Page 314 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

9.3.4 Using the Registers and Stack Area

This section describes how the compiler uses registers and stack areas. Registers and stack areas in
functions are controlled by the compiler and the user is not required to have any particular
understanding of how these areas are used. Figure 9.12 shows how the registers and stack areas are
used.

Lower

(SH-2E, SH2A-FPU, SH-4, and SH-4A only) f address
A A
FRO (DRO) RO Stack area
FR1 R1
FR2 (DR2) R2 Function Frame
work area size
FR3 R3
FR4 (DR4) R4 X Stack
Return value address 4 bytes | frame
FR5 R5 Y
FR6 (DR6) R6
Argument area
FR7 R7
FR8 (DR8) R8
Stack area
FR9 R9 v
¢ Higher

FR10 (DR10) R10 address
FR11 R11
FR12 (DR12) R12
FR13 R13
FR14 (DR14) R14
FR15 R15

(SP)

FRO to FR15: For variables and temporary storage RO to R14: For variables and temporary storage
(DRO) (DR14) (intermediate results of operations) (intermediate results of operations)

FR4 to FR11: For storing arguments. Indicated by [[__]]. R4 to R7: For storing arguments. Indicated by [[_]].
(DR4) (DR10)

Figure 9.12 Using Registers and Stack Areas

R20UT0704EJ0102 Rev. 1.02 Page 315 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

9.4 Important Information on Programming

In this section, important information on writing program code for the compiler, and matters to
bear in mind during development of a program from compiling through debugging, are discussed.
94.1 Important Information on Program Coding

(1) Functions with float Type Parameters

Functions must declare prototypes or change float type to double type when receiving and passing
float type parameters. Data values cannot be guaranteed when a float type parameter without a
prototype declaration receives data.

Example:

void £ (float);
void g ()
{

float a;

£ (a);
}
void £ (float x)
{

}

Function f has a float type parameter. Therefore, a prototype must be declared.

Page 316 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

(2) Expressions whose Evaluation Order is not Specified by the C/C++ Language

The effect of the execution is not guaranteed in a program whose execution results differ
depending on the evaluation order.

Example:
alil=al++i]l; The value of i on the left side differs depending on whether the
right side of the assignment expression is evaluated first.
sub (++i, 1i); The value of i for the second parameter differs depending on

whether the first function parameter is evaluated first.
(3) Overflow Operation and Zero Division

An error message is not output if an operation leading to an overflow or floating-point division by
zero is performed at run time. However, error messages will be output for any of the following
operations.

o Integer constants of the unsigned long long type for which the absolute values are out of range

o Floating-point constants of the float type where the values have the suffix f or F and are out of
range

¢ Floating-point constants of the double type where the values have no suffix or the suffix 1 or L
and are out of range

e Division by Zero performed with integer constants or floating-point constants
Example:

unsigned long long la,lb,1lc,1d,le=0;
float fa, fb, fc, fc, fd, fe=0.0£f;
double da,db,dc,dd,de=0.0;

void main ()

{

R20UT0704EJ0102 Rev. 1.02 Page 317 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

la = 32767;
fa = 3.5e+37f;
da = 1.8e+307;

1lb = 18446744073709551616; /* (W) Overflow of an integer */
/* constant will be detected. */
fb = 3.5e+38f; /* (W) Overflow of a floating- */
/* point constant will be */
/* detected. */
db = 1.8e+308; /* (W) Overflow of a floating- */
/* point constant will be */
/* detected. */
lc = la + 18446744073709551615; /* No message is output. */
fc = fa + 3.4e+38f; /* No message 1s output. */
dc = da + 1.7e+308; /* No message is output. */
14 /= 0; /* (W) Division by zero of an */
/* integer constant will be */
/* detected. */
fd /= 0.0f; /* (W) Division by zero of a */

/* floating-point constant will */

/* be detected. */

dd /= 0.0; /* (W) Division by zero of a

*/
/* floating-point constant will */
/* be detected. */

1d /= le; /* No message is output. */

fd /= fe; /* No message is output. */

dd /= de; /* No message 1s output. */

}
Page 318 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

(4) Assignment to const Variables

Even if a variable is declared with const type, if assignment is done to a non-constant variable
converted from const type or if a program compiled separately uses a parameter of a different
type, the compiler cannot detect the error.

Example:
const char *p; /* Because the first parameter p in library */
/* function strcat is a pointer for char, */
/* the area indicated by the parameter p */
strcat (p, "abc"); /* may change. */
file 1
const int 1i;
file 2
extern int i; /* In file 2, parameter i is not declared as */
/* const, therefore assignment to it in */
i=10; /* file 2 is not an error */

(5) Precision of Mathematical Function Libraries

For functions acos(x) and asin(x), an error is large around x=1. Therefore, precautions must be
taken. Note the error range below.

Absolute error for acos(1.0 — €) double precision 27 (g = 273%)
single precision 272! (¢ = 2719)

Absolute error for asin(1.0 — ¢) double precision 273 (¢ = 2728)
single precision 272! (¢ = 271%)

R20UT0704EJ0102 Rev. 1.02 Page 319 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

(6) Interrupt Functions When the CPU Type is SH2A-FPU, SH4, or SH4A

In a CPU with floating-point precision mode (SH2A-FPU, SH4 or SH4A), when the fpu option is
not specified or when fpu=single is specified, floating-point operation code is generated assuming
that the precision mode is single-precision mode (the PR bit of the FPSCR register is 0) at the start
of all functions. However, in the case of interrupt functions, they might actually be called in
double-precision mode. Therefore, for an interrupt function that performs single-precision
floating-point operation, be sure to make the following settings for FPSCR in the function. The
settings are not required when fpu=double is specified.

When the fpu option is not specified
Set the precision mode of FPSCR to single precision (0) at the entrance of the interrupt function.

Setting example:
set_fpscr(get fpscr()&O0xFFF7FFFF);

When fpu=single is specified

Save the state of the PR bit of FPSCR, and then set the precision mode to single precision (0) at
the entrance of the interrupt function. Then, restore the PR bit to the original state at the exit of the
interrupt function.

Setting example:
At the entrance of the function

int original fpscr = get fpscr();
set_fpscr(original fpscr&O0xFFF7FFFF); // Set to single precision

At the exit of the function

set_fpscr(original _fpscr); // Restore the precision to original precision
return;

However, a program with fpu=single specification can enter double-precision mode only during
execution of a standard library function that satisfies both of the following conditions.

* fprintf(), printf(), sprintf(), viprintf(), vprintf(), or vsprintf() function

* In any of the functions above, format specification uses %g, %G, %f, %e, or %E.

If the program does not use a library function that satisfies these conditions, the above settings are
not required even if there is an interrupt function that performs single-precision floating-point
operation.

Page 320 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 9 Programming

9.4.2 Important Information on Compiling a C Program with the C++ Compiler

(1) Function prototype declarations

Before using a function, a prototype declaration is necessary. At this time, the types of
parameters should also be declared.

extern void funcl () ; extern void funcl (int);
void g{() void g{()
{ {
funcl(l); // Error funcl(l); // OK
} }

(2) Linkage of const objects

Whereas in C programs const objects are linked externally, in C++ programs they are linked
internally. In addition, const objects require initial values.

const cvaluel; const cvaluel=0;

// Error // Gives initial value
const cvalue2 = 1; extern const cvalue2 = 1;
// Internal // Links externally

// as a C program

(3) Assignment of void*

In C++ programs, if explicit casting is not used, assignment of pointers to other objects
(excluding pointers to functions and to members) is not possible.

void func(void *ptrv, int *ptri) void func(void *ptrv, int *ptri)
{ {
btri = ptrv; // Error ptri = (int *)ptrv; / /0K
}
}
R20UT0704EJ0102 Rev. 1.02 Page 321 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 9 Programming Optimizing Linkage Editor

9.4.3 Important Information on Program Development

Important information for program development, from program creation through debugging, is
described below.

(1) Information concerning selection of the CPU
(a) The same CPU type should be specified at compilation time and assembly time.
The CPU type specified using the cpu option at compilation time and assembly time must
always be the same. If object programs created for different CPU types are linked,
operation of the object program at runtime is not guaranteed.

(b) The same CPU type at compilation time should be specified at assembly time.

When assembling an assembly program generated by the compiler, the cpu option should
be used to specify the same CPU type specified by the CPU at compilation time.

(c) At linkage, the standard library appropriate to the CPU type should be linked.

A library appropriate to the CPU type should always be specified. Operation in the event
that an inappropriate library is linked is not guaranteed.
(2) Important information on options

The options listed below should always be the same at compile time and when building

libraries. If object programs created using different options are linked, operation of the object

program at runtime is not guaranteed.

— endian = big | little (SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP)

— pic =0 1 (excluding SH-1)

— fpu = single | double (SH2A-FPU, SH-4, or SH-4A)

— fpscr = safe | aggressive (SH2A-FPU, SH-4, or SH-4A)

— round = zero | nearest (SH2A-FPU, SH-4, or SH-4A)

— denormalize = on | off (SH-4 or SH-4A)

— double = float (excluding SH2A-FPU, SH-4, and SH-4A)

— exception | noexception

— rtti = on | off

— pack=114

— rtnext | nortnext

— macsave

— gbr = auto | user

— bit_order = left | right

— auto_enum

Page 322 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Section 10 C/C++ Language Specifications

10.1 Language Specifications

10.1.1 Compiler Specifications

The following shows compiler specifications for the implementation-defined items which are not
prescribed by language specifications.

(1) Environment

Table 10.1 Environment Specifications

No. Item Compiler Specifications
1 Purpose of actual argument for the "main" Not stipulated

function
2 Structure of interactive 1/0 devices Not stipulated

(2) Identifiers

Table 10.2 Identifier Specifications

No. Item Compiler Specifications

1 Number of valid letters in non externally-linked Up to 8189 letters in both external and
identifiers (internal names) internal names

2 Number of valid letters in externally-linked Up to 8191 letters in both external and
identifiers (external names) internal names

3 Distinction of uppercase and lowercase letters Uppercase and lowercase letters are

in externally-linked identifiers (external names) distinguished

R20UT0704EJ0102 Rev. 1.02 Page 323 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(3) Characters

Table 10.3 Character Specifications

No. Item Compiler Specifications
1 Elements of source character sets and Source program character sets and
execution environment character sets execution environment character sets are

both ASCII character sets. However,
string literals and character constants can
be written in shift JIS or EUC Japanese
character code, or Latin1 code.

2 Shift states used in coding multi-byte Shift states are not supported.
characters
3 Number of bits in characters in character sets 8-bit

in program execution

4 Relationship between source program Corresponds to same ASCII characters.
character sets in character constants and
string literals and characters in execution
environment character sets

5 Values of integer character constants that Characters and extended notations which
include characters or extended notation which are not stipulated in the language
are not stipulated in language specifications specifications are not supported.

6 Values of character constants that include two The first two characters of character
or more characters, and wide character constants are valid. Wide character
constants that include two or more multi-byte constants are not supported. Note that a
characters warning error message is output if you
specify more than one character.
7 Specifications of locale used for converting locale is not supported.
multi-byte characters to wide characters
8 char type value Same value range as signed char type.
Page 324 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

(4) Integers

Table 10.4 Integer Specifications

No. Item

Compiler Specifications

Representation and values of integers

See table 10.5.

2 Values when integers are converted to shorter After conversion, the integer value
signed integer types or unsigned integers are becomes the value of the eight lower-
converted to signed integer types of the same order bytes (when the size of the post-

size (when a converted value cannot be
represented as the target type)

conversion type is eight bytes), four
lower-order bytes (when the size of
the post-conversion type is four
bytes), two lower-order bytes (when
the size of the post-conversion type
is two bytes), or the lowest-order byte
(when the size of the post-conversion
type is one byte).

3 Result of bit-wise operations on signed Signed value.
integers
4 Remainder sign in integer division Same sign as dividend.

Result of right shift of signed integral types

Maintains sign bit.

with a negative value

Table 10.5 Range of Integer Types and Values

No. Type Value Range Data Size
1 char -128 to 127 1 byte
2 signed char -128 to 127 1 byte
3 unsigned char 0 to 255 1 byte
4 short -32768 to 32767 2 bytes
5 unsigned short 0 to 65535 2 bytes
6 int —2147483648 to 2147483647 4 bytes
7 unsigned int 0 to 4294967295 4 bytes
8 long —2147483648 to 2147483647 4 bytes
9 unsigned long 0 to 4294967295 4 bytes
10 long long -9223372036854775808 to 8 bytes
9223372036854775807
11 unsigned long long 0 to 18446744073709551615 8 bytes

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 325 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

(5) Floating-point numbers

Table 10.6 Floating-Point Number Specifications

No. Item Compiler Specifications
1 Representation and values of floating-point There are three types of floating-point
type numbers: float, double, and long double

2 Method of truncation when integers are
converted into floating-point numbers that
cannot accurately represent the actual value

types. See section 10.1.3, Floating-Point
Number Specifications, for the internal
representation of floating-point types and
specifications for their conversion and

3 Methods of truncation or rounding when operation. Table 10.7 shows the limits of
floating-point numbers are converted into floating-point type values that can be
shorter floating-point numbers expressed.

Table 10.7 Limits of Floating-Point Type Values

Limits
No. Item Decimal Notation* Hexadecimal Notation
1 Maximum value of float type 3.4028235677973364e+38f Vaitaiiiii
(3.4028234663852886e+38f)
2 Minimum positive value of float 1.0000000000000000E-45f 00000001
type (1.4012984643248171e—-45f)
3 Maximum values of double 1.7976931348623158e+308 Tfefffffffffff
type and long double type (1.7976931348623157e+308)
4 Minimum positive values of 4.9406564584124655e-324 0000000000000001

double type and long double (4.9406564584124654e—-324)

type

Notes: 1. The limits for decimal notation are the maximum value smaller than infinity and the
minimum value greater than 0. Values in parentheses are theoretical values.
2. If double=float is specified, double type is treated as float type. If fpu=single is
specified, double and long double types are treated as float type. If fpu=double is

specified, float type is treated as double type.

Page 326 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

(6) Arrays and Pointers

Table 10.8 Array and Pointer Specifications

No. Item Compiler Specifications
1 Integer type (size_t) required to hold maximum unsigned long type
array size
2 Conversion from pointer type to integer type ~ Value of least significant byte of pointer

(pointer type size >= integer type size)

type

3 Conversion from pointer type to integer type
(pointer type size < integer type size)

Zero extension

4 Conversion from integer type to pointer type
(integer type size >= pointer type size)

Value of least significant byte of integer
type

5 Conversion from integer type to pointer type
(integer type size < pointer type size)

Sign extension

6 Integer type (ptrdiff_t) required to hold

difference between pointers to members in the

Same array

int type

(7) Registers
Table 10.9 Register Specifications

No. Item

Compiler Specifications

1 Maximum number of variables that can be
assigned to registers

7: char, unsigned char, bool, short,
unsigned short, int, unsigned int, long,
unsigned long, pointer

4: float™
2: double™

2 Types of variables that can be assigned to
registers

char, unsigned char, bool,
short, unsigned short,

int, unsigned int,

long, unsigned long,
float*2, double *3, pointer

Notes: 1. When register is assigned to variables, it does not matter whether or not the register-
storage class has been declared.
If enable_register is specified, however, variables for which the register-storage class
has been declared will be preferentially assigned to registers.
2. When the CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A.

3. When the CPU is SH2A-FPU, SH-4, or SH-4A.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

/{ Page 327 of 1176
KENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

(8) Class, Structure, Union, and Enumeration Types, and Bit Fields

Table 10.10 Class, Structure, Union, and Enumeration Types, and Bit Field Specifications

No. Item Compiler Specifications
1 Referencing members in union type accessed Can be referenced but value cannot be
by members of another type guaranteed.
2 Boundary alignment of class and structure The maximum data size of the class and
members structure members is used as the
boundary alignment value. For details on
assignment, see section 10.1.2 (2),
Compound Type (C), Class Type (C++).
Sign of bit fields of simple int types signed int type
Order of bit fields within int type size Assigned from most significant bit.*! *2
5 Method of assignment when the size of a bit ~ Assigned to next int type area.*!
field assigned after a bit field is assigned
within an int type size exceeds the remaining
size in the int type
6 Permissible type specifiers in bit fields char, unsigned char, bool, short,
unsigned short, int, unsigned int, long,
unsigned long, enum, long long,
unsigned long long
7 Integer type representing value of int type
enumeration type
Note: 1. For details of assignment of bit fields, see section 10.1.2 (3), Bit Fields.

2. Specifying the bit_order=right option assigns bit fields from the least significant bit.

(9) Qualifiers

Table 10.11 Qualifier Specifications

No.

Item

Compiler Specifications

1

Types of volatile data access

Not stipulated

Page 328 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

(10) Declarations

Table 10.12 Declaration Specifications

No. Item Compiler Specifications

1 Number of declarations modifying basic types 16 max.
(arithmetic types, structure types, union types)

The following shows examples of counting the number of types modifying basic types.

i. int a; Here, a has an int type (basic type) and the number of types modifying the basic type
is 0.

ii. char *f(); Here, f has a function type returning a pointer type to a char type (basic type), and
the number of types modifying the basic type is 2.

(11) Statements

Table 10.13 Statement Specifications

No. Item Compiler Specifications

1 Number of case labels that can be declared in 2,147,483,646 max.
one switch statement

R20UT0704EJ0102 Rev. 1.02 Page 329 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

(12) Preprocessor

Table 10.14 Preprocessor Specifications

No. Item Compiler Specifications
1 Relationship between single-character Preprocessor statement character
character constants in constant expressions in constants are the same as the execution
a conditional compile, and character sets in environment character set.
the execution environment
2 Method of reading include files Files enclosed in "<" and ">" are read
from the directory specified in the include
option. If the specified file is not found,
the directory specified in environment
variable SHC_INC is searched, followed
by the system directory (SHC_LIB).
3 Support for include files enclosed in double Supported. Include files are read from the
quotation marks current directory. If not found in the
current directory, the file is searched for
as described in 2, above.
4 Space characters in string literals after a A string of space characters are
macro is expanded expanded as one space character.
5 Operation of #pragma statements See section 10.3.1, #pragma Extension
Specifiers.
6 _ _DATE_ _and _ _TIME_ _ value A value is specified based on the host

computer’s timer at the start of compiling.

Page 330 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

10.1.2 Internal Data Representation

This section explains the data type and the internal data representation. The internal data
representation is determined according to the following four items:

1. Size
Shows the memory size necessary to store the data.

2. Boundary alignment
Restricts the addresses to which data is allocated. There are three types of alignment; 1-byte
alignment in which data can be allocated to any address, 2-byte alignment in which data is
allocated to even byte addresses, and 4-byte alignment in which data is allocated to addresses
of multiples of four bytes.

3. Data range
Shows the range of data of scalar type (C) or basic type (C++).

4. Data allocation example
Shows an example of assignment of element data of compound type (C) or class type (C++).

R20UT0704EJ0102 Rev. 1.02 Page 331 of 1176
Mar 01, 2022 RENESAS

Section 10 C/C++ Language Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

(1) Scalar Type (C), Basic Type (C++)

Table 10.15 shows internal representation of scalar type data in C and basic type data in C++.

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data

Align-
Size ment Data Range
Data Type (bytes) (bytes) Sign Minimum Value Maximum Value
char 1 1 Used —27 (-128) 27— 1(127)
signed char 1 1 Used -27(-128) 27 -1 (127)
unsigned char 1 1 Unused 0 28 — 1 (255)
short 2 2 Used —2'5(-32768) 215 _ 1 (32767)
unsigned short 2 2 Unused 0 216 _ 1 (65535)
int 4 4 Used 231 (-2147483648) 231 -1 (2147483647)
unsigned int 4 4 Unused 0 232 — 1 (4294967295)
long 4 4 Used —231(-2147483648) 231 _ 1 (2147483647)
unsigned long 4 4 Unused 0 252 — 1 (4294967295)
long long 8 4 Used -263 2631
(-9223372036854775808) (9223372036854775807)

unsigned 8 4 Unused 0 2641
long long (18446744073709551615)
enum*’ 4 4 Used 231 (-2147483648) 231 -1 (2147483647)
float 44 4 Used - +o0
double, 8g*2. x4 4 Used -o +00
long double
Pointer 4 4 Unused 0 232 — 1 (4294967295)
bool*3 4 4 Used — —
Reference*3 4 4 Unused 0 232 — 1 (4294967295)
Pointer to a data 4 4 Used O 252 — 1 (4294967295)
member*3
Pointer to a 12 4 — — _
member
function*3 5
Page 332 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Notes: 1. The size of enum type is variable if auto_enum has been specified.
2. The size of double type is 4 bytes if double=float has been specified.
3. These data types are valid for C++ compilation only.
4. If cpu=sh2afpu, cpu=sh4, or cpu=sh4a and fpu=single have been specified, double
type and long double type are treated as 4 bytes (float type). If cpu=sh2afpu,

cpu=sh4, or cpu=sh4a and fpu=double have been specified, float type is treated as 8
bytes (double type).

5. Pointers to function and virtual member functions are represented by classes in the
following data structure.

class PMF{

public:
long d; //Object offset value.
long i; //Index in the virtual
//function table when
//the target function is the
//virtual function.
union/{
void (*f) (); //Address of a function when
//the target function is a
//non-virtual function.
long offset; //Object offset value of the
//virtual function table
//when the target function
//is the virtual function.
bi
}i
R20UT0704EJ0102 Rev. 1.02 Page 333 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

(2) Compound Type (C), Class Type (C++)

This section explains internal representation of array type, structure type, and union type data in C

and class type data in C++.

Table 10.16 shows internal representation of compound type and class type data.

Table 10.16 Internal Representation of Compound Type and Class Type Data

Data Type Alignment (bytes)

Size (bytes)

Data Allocation Example

Array Array element alignment Number of array elements char a[l0];
x element size Alignment: 1 byte
Size: 10 bytes
Structure Maximum structure Total size of members. struct {

member alignment

Refer to Structure Data
Allocation, below.

char a,b;
i
Alignment: 1 byte

Size: 2 bytes
Union Maximum union member Maximum size of member. union {
alignment Refer to Union Data char a,b;
Allocation, below. }:
Alignment: 1 byte
Size: 1 byte
Class 1. Always 4 if a virtual Sum of data members, class B:public A {

function is included

2. Other than 1 above:
maximum member

alignment

pointer to the virtual function
table, and pointer to the
virtual base class.

Refer to Class Data
Allocation, below.

virtual void f();
}i

Alignment: 4 bytes

Size: 8 bytes

class A {
char a;

}i
Alignment: 1 byte
Size: 1 byte

Page 334 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

In the following examples, a rectangle indicates four bytes. The diagonal line represents blank area
for alignment.

Structure Data Allocation:

e When structure members are allocated, an unused area may be generated between structure
members to align them to boundaries.

struct {
char a;
int b;

} obj

T

obj.a

obj.b

e Ifa structure has 4-byte alignment and the last member ends at an 1-, 2-, or 3-byte address, the
following three, two, or one byte is included in this structure.

struct {
int a;
char b;
} obj
obj.a
obj.b
R20UT0704EJ0102 Rev. 1.02 Page 335 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Union Data Allocation:

e When an union has 4-byte alignment and its maximum member size is not a multiple of four,
the remaining bytes up to a multiple of four is included in this union.

union {
int a;
char b[7];

} o;

0.b[0] | ob[] | ob2] | ob[3

obl4] | ob[s] | oble]

Class Data Allocation:

e For classes having no base class or virtual functions, data members are allocated according to
the allocation rules of structure data.

class A{

char datal;

int data?2;
public:

A();

int getDatal () {return datal;}
}obj;

obj.data!

obj.data2

Page 336 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

e [Ifaclassis derived from a base class of 1-byte alignment and the start member of the derived
class is 1-byte data, data members are allocated without unused areas.

class Af{
char datal;

}i

class B:public A{
char data?2;
short data3;

}obj;

obj.data1:obj.data2 obj.data3

e For a class having a virtual base class, a pointer to the virtual base class is allocated.

class A{
short datal;
bi
class B: virtual protected A{

char data2;

}obj;
obj.data2
[|Pointer to the virtual base class (generated by the compiler)
obj.data1 :
R20UT0704EJ0102 Rev. 1.02 Page 337 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

e For a class having virtual functions, the compiler creates a virtual function table and allocates a
pointer to the virtual function table.

class Af{
char datal;
public:
virtual int getDatal();
}obj;

obj.data1
Pointer to the virtual function table (generated by the compiler)

Virtual function table (generated by the compiler)
0
A:.getData1

v

Page 338 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

e An example is shown for class having virtual base class, base class, and virtual functions.

class A{
char datal;
virtual short getDatal();
bi
class B:virtual public A{
char data2;
char getDataz2();
short getDatal();
}i
class C:virtual protected A{
int data3;
bi
class D:virtual public A,public B,public C{
public:
int data4;
short getDatal (),

}obj;

R20UT0704EJ0102 Rev. 1.02 Page 339 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

obj.data2
Pointer to the virtual function table (generated by the compiler)
Pointer to the virtual base class (generated by the compiler)
obj.data3
Pointer to the virtual base class (generated by the compiler)
obj.data4

obj.data1
Pointer to the virtual function table (generated by the compiler)

Virtual function table (generated by the compiler)

v

-18
A::getData
R Virtual function table (generated by the compiler)
g 0
B::getData1
Page 340 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

e For an empty class, a 1-byte dummy area is assigned.

class A{
void fun();

}obj;

One byte

Dummy area

o For an empty class having an empty class as its base class, the dummy area is 1 byte.

class Af{
void fun () ;

}i

class B: A{
void sub () ;

}obj;

One byte

Dummy area

R20UT0704EJ0102 Rev. 1.02 Page 341 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

e Dummy areas shown in the above two examples are allocated only when the class size is 0. No
dummy area is allocated if a base class or a derived class has a data member or has a virtual

function.
class Af{
void fun () ;
b
class B: A{
char datal;
}obj;
One byte
obj.data1
Page 342 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

(3) Bit Fields

A bit field is a member allocated with a specified size in a structure, union, or class. This part

explains how bit fields are allocated.

Bit Field Members: Table 10.17 shows the specifications of bit field members.

Table 10.17 Bit Field Member Specifications

Item

Specifications

Type specifier allowed for bit fields

(signed) char, unsigned char, bool*"
(signed) short, unsigned short, enum
(signed) int, unsigned int

(signed) long, unsigned long

(signed) long long, unsigned long long

How to treat a sign when data is
extended to the declared type*?

A bit field with no sign (unsigned is specified for type): Zero
extension*3

A bit field with a sign (unsigned is not specified for type): Sign
extension**

Notes: 1. The bool type is only valid at C++ compilation.

2. To use a bit field member, data in the bit field is extended to the declared type. One-bit
field data with a sign is interpreted as the sign, and can only indicate 0 and -1. To
indicate 0 and 1, bit field data must be declared with unsigned.

3. Zero extension: Zeros are written to the upper bits to extend data.

4. Sign extension: The most significant bit of a bit field is used as a sign and the sign is
written to all higher-order bits to extend data.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

/{ Page 343 of 1176
KENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Bit Field Allocation: Bit field members are allocated according to the following five rules:

¢ Bit field members are placed in an area beginning from the left, that is, the most significant bit.

struct bl {
int a:2;
int b:3;
}ox;

Bit31 . 0
xa: Xb !
©29—3—1
o Consecutive bit field members having type specifiers of the same size are placed in the same
area as much as possible.

struct bl {

’

long a:2
unsigned int b:3;
by

Bit 31 . 0
ya: yb !
243

¢ Bit field members having type specifiers with different sizes are allocated to separate areas.

struct bl {

int a:5;
char b:4;
}oz;
Bit 31 0
za | |
5 T
zb ‘
Page 344 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

o [f the number of remaining bits in an area is less than the next bit field size, though the type
specifiers indicate the same size, the remaining area is not used and the next bit field is
allocated to the next area.

struct b2 {
char a:
char b:
}ovs

’

5;
4

Bit 15 87 0
v.a / V.

b |
5 —4—

e If a bit field member with a bit field size of 0 is declared, the next member is allocated to the
next area.

struct b2 {

char a:5;

char :0;

char c:3;
}ows

Bit 15 87 0

w.a .C |

LW
3
Note: It is also possible to place bit field members from the lower bit. For details, refer to the

description on the bit_order option in section 2.2, Interpretation of Options, and the
description on #pragma bit_order in section 10.3.1, #pragma Extension Specifiers.

e—5——

R20UT0704EJ0102 Rev. 1.02 Page 345 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(4) Memory Allocation in Little Endian
In little endian, data are allocated in the memory as follows:

One-byte data ((signed) char, unsigned char, and bool types): The order of bits in one-byte
data for the big endian and the little endian is the same.

Two-byte data ((signed) short and unsigned short types): The upper byte and the lower byte
will be reversed in two-byte data between the big endian and the little endian.

Example: When two-byte data 0x1234 is allocated at address 0x100:

Big endian: Address 0x100: 0x12 Little endian: Address 0x100: 0x34
Address 0x101: 0x34 Address 0x101: 0x12

Four-byte data ((signed) int, unsigned int, (signed) long, unsigned long, and float types): The
order of bytes will be reversed in four-byte data between the big endian and the little endian.

Example: When four-byte data 0x12345678 is allocated at address 0x100:

Big endian: Address 0x100: 0x12 Little endian: Address 0x100: 0x78
Address 0x101: 0x34 Address 0x101: 0x56
Address 0x102: 0x56 Address 0x102: 0x34
Address 0x103: 0x78 Address 0x103: 0x12

Eight-byte data ((signed) long long, unsigned long long, and double types): The order of bytes
will be reversed in eight-byte data between the big endian and the little endian.

Example: When eight-byte data 0x123456789abcdef is allocated at address 0x100:

Big endian: Address 0x100: 0x01 Little endian: Address 0x100: Oxef
Address 0x101: 0x23 Address 0x101: Oxcd
Address 0x102: 0x45 Address 0x102: Oxab
Address 0x103: 0x67 Address 0x103: 0x89
Address 0x104: 0x89 Address 0x104: 0x67
Address 0x105: Oxab Address 0x105: 0x45
Address 0x106: Oxcd Address 0x106: 0x23
Address 0x107: Oxef Address 0x107: 0x01

Compound-type and class-type data: Members of compound-type and class-type data will be
allocated in the same way as that of the big endian. However, the order of byte data of each
member will be reversed according to the rule of data size.

Page 346 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Example: When the following function exists at address 0x100:

struct {
short a;
int b;
}z= {0x1234, 0x56789%abc};

Big endian: Address 0x100: 0x12 Little endian: Address 0x100: 0x34
Address 0x101: 0x34 Address 0x101: 0x12
Address 0x102: Empty area Address 0x102: Empty area
Address 0x103: Empty area Address 0x103: Empty area
Address 0x104: 0x56 Address 0x104: Oxbc
Address 0x105: 0x78 Address 0x105: 0x9a
Address 0x106: 0x9a Address 0x106: 0x78
Address 0x107: 0xbc Address 0x107: 0x56

Bit field: Bit fields will be allocated in the same way as that of the big endian. However, the
order of byte data in each area will be reversed according to the rule of data size.

Example: When the following function exists at address 0x100:

struct {
long a:16;
unsigned int b:15;
short c:5;

ty= {1,1,1};

Big endian: Address 0x100: 0x00 Little endian: Address 0x100: 0x02
Address 0x101: 0x01 Address 0x101: 0x00
Address 0x102: 0x00 Address 0x102: 0x01
Address 0x103: 0x02 Address 0x103: 0x00
Address 0x104: 0x08 Address 0x104: 0x00
Address 0x105: 0x00 Address 0x105: 0x08
Address 0x106: Empty area Address 0x106: Empty area
Address 0x107: Empty area Address 0x107: Empty area
R20UT0704EJ0102 Rev. 1.02 Page 347 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

10.1.3 Floating-Point Number Specifications

(1) Internal Representation of Floating-Point Numbers
Floating-point numbers handled by this compiler are internally represented in the standard
IEEE format. This section outlines the internal representation of floating-point numbers in the
IEEE format.

(a) Format for internal representation

float types are represented in the IEEE single-precision (32-bit) format, while double types
and long double types are represented in the IEEE double-precision (64-bit) format.

(b) Structure of internal representation

Figure 10.1 shows the structure of the internal representation of float, double, and long

double types.
float type
3130 2322 0
] [Exponent (8 bits)| Mantissa (23 bits) |
Sigrl (1 bit)
double type and long double type
63 62 5251 0
| Exponent (11 bits)] Mantissa (52 bits)
Sigr‘\ (1 bit)

Note: When the -double=float option is specified, double types are internally represented
in the same format as float types. When the cpu=sh2afpu or cpu=sh4 and fpu=single options
are specified, double types and long double types are internally represented in the same
format as float types. When the cpu=sh2afpu or cpu=sh4 and fpu=double options are specified,
float types are internally represented in the same format as double types.

Figure 10.1 Structure of Internal Representation of Floating-Point Numbers

The internal representation format consists of the following parts:
i. Sign
Shows the sign of the floating-point number. 0 is positive, and 1 is negative.
ii. Exponent
Shows the exponent of the floating-point number as a power of 2.
iii. Mantissa
Shows the data corresponding to the significant digits (fraction) of the floating-point
number.

Page 348 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

(¢) Types of represented values of floating-point number

In addition to the normal real numbers, floating-point numbers can also represent values
such as infinity. The following describes the types of values represented by floating-point
numbers.

i. Normalized number
Represents a normal real value; the exponent is not 0 or not all bits are 1.
ii. Denormalized number

Represents real a value having a small absolute number; the exponent is 0 and the
mantissa is other than 0.

iii. Zero

Represents the value 0.0; the exponent and mantissa are 0.
iv. Infinity

Represents infinity; all bits of the exponent are 1 and the mantissa is 0.
v. Not-a-number

Represents the result of operation such as "0.0/0.0", "oo/0", or "oo-00", which does not
correspond to a number or infinity; all bits of the exponents are 1 and the mantissa is
other than 0.

Table 10.18 shows the types of values represented as floating-point numbers.

Table 10.18 Types of Values Represented as Floating-Point Numbers

Exponent
Mantissa 0 Not 0 or not all bits are 1 All bits are 1
0 0 Normalized number Infinity
Other than 0 Denormalized number Not-a-number

Note: Denormalized numbers are floating-point numbers of small absolute values that are outside
the range represented by normalized numbers. There are fewer valid digits in a
denormalized number than in a normalized number. Therefore, if the result or intermediate
result of a calculation is a denormalized number, the number of valid digits in the result
cannot be guaranteed. When cpu=sh4 or cpu=sh4a and denormalize=off are specified,
denormalized numbers are processed as 0. When cpu=sh4 or cpu=shd4a and
denormalize=on are specified, denormalized numbers are processed as denormalized
numbers.

R20UT0704EJ0102 Rev. 1.02 Page 349 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(2) float type

float types are internally represented by a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa.

1.

ii.

Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
between 1 and 254 (28-2). The actual exponent is gained by subtracting 127 from this
value. The range is between —126 and 127. The mantissa is between 0 and 22*~1. The
actual mantissa is interpreted as the value of which 2%3rd bit is 1 and this bit is followed by
the decimal point. Values of normalized numbers are as follows:

(—1)sien x pexponent=127 o (] 4(mantissa) x 2723)

Example:

3130 23 22 0
1110000000 |11000000000000000000000

Sign: -

Exponent: 10000000y — 127 = 1, where (2 indicates binary
Mantissa: 1.11¢) = 1.75

Value: -1.75x2' = 3.5

Denormalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
0 and the actual exponent is —126. The mantissa is between 1 and 223~1, and the actual
mantissa is interpreted as the value of which 2%3rd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:

(=1)%e" x 27126 x ((mantissa) x 272%)

Example:

3130 23 22 0
0/00000000 |11000000000000000000000

Sign: +

Exponent: —126

Mantissa: 0.11) = 0.75, where (2) indicates binary
Value: 0.75 x 27126

Page 350 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

iii. Zero

1v.

V.

Note:

The sign is 0 (positive) or 1 (negative), indicating +0.0 or —0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and —0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

Infinity

The sign is 0 (positive) or 1 (negative), indicating +oo or —oo, respectively.
The exponent is 255 (28-1).

The mantissa is 0.

Not-a-number

The exponent is 255 (28-1).

The mantissa is a value other than 0.

When the CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A, not-a-number is called a qNaN
when the MSB of the mantissa is 0, or sNaN when the MSB of the mantissa is 1. There are
no specifications regarding the values of other mantissa fields or the sign.

R20UT0704EJ0102 Rev. 1.02 Page 351 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(3) double types and long double types

double types and long double types are internally represented by a 1-bit sign, an 11-bit
exponent, and a 52-bit mantissa.

1.

6362

Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
between 1 and 2046 (2''-2). The actual exponent is gained by subtracting 1023 from this
value. The range is between —1022 and 1023. The mantissa is between 0 and 232—1. The
actual mantissa is interpreted as the value of which 2%nd bit is 1 and this bit is followed by
the decimal point. Values of normalized numbers are as follows:

(=1)sien x exponent=1023 o (] 4+(mantissa) x 2752)

Example:

52 51 0

‘0‘01 111111111 ‘1 11000

il.

6362

Sign: +

Exponent: 1111111111y —-1023 = 0, where () indicates binary
Mantissa: 1.111¢) = 1.875

Value: 1.875x 2% = 1.875

Denormalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
0 and the actual exponent is -1022. The mantissa is between 1 and 2%2-1, and the actual
mantissa is interpreted as the value of which 22nd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:

(-1)%e" x 271922 x ((mantissa) x 27%2)

Example:

52 51 0

‘1 ‘00000000000 111000

Sign: —

Exponent: —1022

Mantissa: 0.111¢) = 0.875, where () indicates binary
Value: 0.875 x 271022

Page 352 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

iii. Zero

1v.

V.

Note:

The sign is 0 (positive) or 1 (negative), indicating +0.0 or —0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and —0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

Infinity

The sign is 0 (positive) or 1 (negative), indicating +oo or —oo, respectively. The exponent is
2047 (21-1).

The mantissa is 0.

Not-a-number

The exponent is 2047 (2''-1).

The mantissa is a value other than 0.

When the CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A, not-a-number is called a qNaN
when the MSB of the mantissa is 0, or sNaN when the MSB of the mantissa is 1. There are
no specifications regarding the values of other mantissa fields or the sign.

R20UT0704EJ0102 Rev. 1.02 Page 353 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(4) Floating-Point Operation Specifications
This section describes the specifications for arithmetic operations on floating-point numbers in
C/C++, and for conversion between the decimal representation of floating-point numbers and
their internal representation during compilation and in library processing.

(a) Specifications for arithmetic operations

1.

il.

Rounding of results

When the result of arithmetic operations on floating-point numbers exceeds the number
of valid limit in the mantissa in internal representation, the result is rounded according
to the following rules:

a.

For results of single-precision arithmetic when the CPU is SH-2E, any portion that
exceeds the number of valid digits is truncated.

When the CPU is SH2A-FPU, SH-4, or SH-4A, and round = zero is specified, the
portion that exceeds the valid digits is rounded toward zero.

Other than in the above cases, the result is rounded toward the closer of the two
possible internal representations of the approximating floating-point number.
When the result is exactly equidistant from the two approximating floating-point
numbers, it is rounded to the floating-point number for which the last digit of the
mantissa is 0.

Processing of overflows, underflows, and illegal operations
The following is performed in the event of an overflow, underflow, or illegal operation.

a.

In the case of an overflow, the result is a positive or negative infinity, depending on

the sign of the result.

In the case of an underflow, the result is as follows depending on the setting in the

CPU.

b-1 In the SH-2E, the float-type result is a positive or negative zero depending on
the sign of the result, and the double-type or long double-type result is a
denormalized number.

b-2 In the SH2A-FPU, the result is a positive or negative zero depending on the
sign of the result.

b-3 Inthe SH-4 or SH-4A, the result is a denormalized number when
denormalize=on is specified or a positive or negative zero depending on the
sign of the result when denormalize=off is specified.

b-4 In the other CPUs, the result is a denormalized number.

In the case of an illegal operation, in which infinity values of the opposite sign have

been added, in which an infinity has been subtracted from another infinity of the

same sign, in which zero has been multiplied by infinity, in which zero is divided by
zero, or in which infinity is divided by infinity, the result is a not-a-number.

Page 354 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

d.

If an overflow results from conversion of a floating-point number to an integer, the
result is not guaranteed.

Note: Operations are performed on constant expressions during compilation. If an

overflow, underflow, or illegal operation occurs, a warning level error message
is output.

iii. Notes on operations on special values

The following are notes on operations on special values (zero, infinity, and not-a-
number).

a.
b.

C.

The sum of a positive zero and a negative zero is a positive zero.
The difference between two zeros of the same sign is a positive zero.

The result of operations that include not-a-number in one or both operands is always
a not-a-number.

In comparative operations, positive zeros and negative zeros are processed as equal.

The result of comparative operations or equivalence operations where either one or
both operands are not-a-number is true for "!=" and false in all other cases.

(b) Conversion between decimal and internal representation

This section describes the specifications for conversions between floating-point numbers in
a source program and internal representation, and conversion by library functions between
the decimal representation of floating-point numbers in ASCII strings and their internal
representation.

i. When converting from decimal to internal representation, the decimal value is first
converted to its normalized form. The normalized form of a decimal value is
+M x 10*N, where M and N are in the following range:

a. Normalized form of float types
0<M<10°-1
0<N<99
b. Normalized form of double and long double types
0<M<10"-1
0<N <999
R20UT0704EJ0102 Rev. 1.02 Page 355 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

ii.

If a decimal value cannot be converted to its normalized form, an overflow or
underflow occurs. If the decimal representation contains more valid numerals than
the normalized form, the trailing digits are truncated. In this case, a warning level
error message is output when compiling and the corresponding error number is set
in errno when the program is executed. For conversion to its normalized form, the
original decimal representation must, in the form of ASCII strings, be within 511
characters. If not, an error occurs when compiling and the corresponding error
number is set in errno when the program is executed. When converting from
internal representation to decimal, the value is first converted to the normalized
decimal form, then converted to ASCII strings according to the specified format.

Conversion between normalized form of decimals and internal representation

When converting from the normalized form of decimals to internal representation, and
vice versa, errors cannot be avoided when the exponent is large or small. The following
describes the range within which conversion is accurate, and the error limits when the
values are outside that range.

a. Range for accurate conversion

The rounding shown in (a) i, "Rounding of results" is correctly applied for floating-
point numbers within the ranges shown below. No overflow or underflow will occur
within these ranges.

(1) float types: 0 <M <10°-1,0<N<13

(2) double and long double types: 0 <M < 10'7-1,0 < N <27

Error limits

The difference between the error that occurs when converting values that do not fall
in the ranges shown in a. above and the error that occurs when rounding is correctly
performed does not exceed 0.47 times the smallest digit of the valid numerals. If the
value exceeds the ranges shown in a. above, an overflow or underflow may occur
during conversion. In this case, a warning level error message is output during
compilation, and the corresponding error number is set in errno when the program
is executed.

Page 356 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

10.1.4 Operator Evaluation Order

If an expression includes multiple operators, the evaluation order of these operators is determined
according to the precedence and the associativity indicated by right or left.

Table 10.19 shows each operator precedence and associativity.

Table 10.19 Operator Precedence and Associativity

Precedence Operators Associativity Applicable Expression
1 ++ -- (postfix) () [1->. Left Postfix expression

2 ++ -- (prefix) | ~ + - * & sizeof Right Monomial expression

3 (Type name) Right Cast expression

4 *1 % Left Multiplicative expression
5 + - Left Additive expression

6 << >> Left Shift expression

7 <<=>>= Left Relational expression

8 === Left Equality expression

9 & Left Bitwise AND expression
10 A Left Bitwise XOR expression
11 | Left Bitwise OR expression
12 && Left Logical AND operation
13 Il Left Logical OR expression
14 ? Right Conditional expression
15 = 4= === Y%= <<=>>= &= |= = Right Assignment expression
16 , Left Comma expression
R20UT0704EJ0102 Rev. 1.02 Page 357 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

10.2 DSP-C Specifications

This section describes the compiler specifications of the DSP-C language, which can be used
when the dspc option is specified.

10.2.1 Fixed-Point Data Types

Table 10.20 Internal Representation of the Fixed-Point Data Types

Size Data Range
. (I\?lze in l:)llgtjnment Minimum (S:uffl); oft
ype emory) (byte) Value Maximum Value onstan
__fixed 16 bits 2 -1.0 1.0-2°1% r
(16 bits) (0.999969482421875)
long _ _fixed 32 bits 4 -1.0 1.0-2-31 R
(32 bits) (0.99999999953433871
26922607421875)
_ _accum 24 bits 4 -256.0 256.0-2-1° a
(32 bits)* (255.999969482421875)
long _ _accum 40 bits 4 -256.0 256.0-2-31 A
(64 bits)* (255.999999999534338
7126922607421875)

Note: The number of bits is right-aligned in the memory. The sign bit is extended through the
higher-order bits.

Example:
(i) (_ _accum)128.5a: 00404000
(i) (long _ _accum)(-256.0A): FF FF FF 80 00 00 00 00

10.2.2 Qualifiers

(1) Memory Qualifiers
The following qualifiers are used to explicitly specify storage in either the X or Y memory.

e X: The data is stored in the X memory.
e Y: The data is stored in the Y memory.

Table 10.21 shows the relationship between memory qualifiers and sections.

Page 358 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Table 10.21 Specifications of Memory Qualifiers

Name Section Description

Constant area $XC const-type data (stored in the X memory)
$YcC const-type data (stored in the Y memory)

Initialized data area $XD Data with an initial value (stored in the X memory)
$YD Data with an initial value (stored in the Y memory)

Uninitialized data area $XB Data without an initial value (stored in the X memory)
$YB Data without an initial value (stored in the Y memory)

Notes: 1. Do not specify two memory qualifiers for the same variable. An error message is
displayed.

2. For the variable with a memory qualifier, no section is switched by specifying
#pragma section.

3. A memory qualifier cannot change the function where the memory is stored.

4. When a memory qualifier has been specified for a local variable which has not been
specified as static, a warning message is displayed and the specification of the
memory qualifier becomes invalid. However, it is valid to specify a pointer to the data
with the memory qualifier.

The following shows examples of storage in memory when qualifiers _ X and _ _Y are used.

e Xinta; //Stored in the X memory.

e int Xb; //Stored in the X memory.

e Yint*c //A pointer to an int-type variable in the Y memory (memory area is
//undefined).

e int Y *d; //A pointer to an int-type variable in the Y memory (memory area is
/lundefined).

e int* Ye; //A pointer (stored in the Y memory) to an int-type variable.

e Xint* Yf //A pointer (stored in the Y memory) to int-type variables in the X
//memory.

R20UT0704EJ0102 Rev. 1.02 Page 359 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(2) Saturation Qualifier
The following qualifier is used to specify saturation arithmetic.

e sat

The _sat qualifier can only be used with the __ fixed and long __fixed data types. An error will
occur if this qualifier is specified with any other type.

When there is at least one __sat specification in an expression, saturation arithmetic will be
applied in the operation.

Example:

__fixed a;

_ _sat fixed b;

__fixed c;

a=-0.75r;

b=-0.75r;

c=atb; /lc=-1.0r
(3) Circular Qualifier

The following qualifier is used to specify modulo addressing.
e circ

Modulo addressing can only be specified for _fixed-type one-dimensional arrays or pointers for
which memory qualifiers have been specified (X or __Y). If such qualifiers are specified
when other conditions apply, an error will occur.

The targets of modulo addressing are one-dimensional arrays or pointers between intrinsic
functions set_circ_x() or set_circ_y() and clr_circ(). For the specifications of the intrinsic
functions, refer to section 10.3.3, Intrinsic Functions.

Operation is not guaranteed if multiple arrays are specified for modulo addressing at the same time
or an array or a pointer with the _ _circ specification is referred to outside the above combinations
of intrinsic functions.

Operations for which negative modulo addressing is specified are not guaranteed.

Page 360 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Data for modulo addressing should be arranged such that the upper 16 bits of the addresses are the
same at linkage.

Content of an array cannot be directly referred to.

Note: Operations are not guaranteed in any of the following cases (a warning message may be
displayed):

e Specifies optimize = 0.

o Specifies the _ _cire pointer as other than the local variable.
e Specifies volatile as the _ _circ pointer.

e Only updates the _ _circ pointer; not referred to.

e Calls a function between set_circ_x() / set_circ_y() and clr_circ() intrinsic functions.

10.2.3 Constants

Attaching a suffix of a constant (table 10.20) to a numeric value explicitly indicates that the value
is a fixed-point constant.

However, constants with suffixes r and R are processed as __accum and long __accum when
their numeric values include integer sections.

When a suffix of a constant is omitted, the value is processed as a double-type constant. When the
fixed_const option is specified, the value is processed as a fixed-point constant.

Although no fixed-point constant is the saturation type, explicit conversion of the type enables
saturation arithmetic.

Example:
__fixed a;
__fixed by
a = -0.75r;
b=a+ (_ _sat fixed) (-0.75r); // b = -1.0r

Since a unary negation operator cannot be part of a fixed-point constant, -1.0r is not valid as a
__fixed type; it should be described as (-0.5r-0.5r) (In this manual, —1.0r is simply described as
—1.0 of __fixed type).

When the limits on precision for the decimal fraction are exceeded or the integer section without a
sign exceeds 255 which is the maximum value of _accum or long __accum, a warning message

R20UT0704EJ0102 Rev. 1.02 Page 361 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

is displayed and the decimal fraction above the precision is rounded down. For the integer section,
the least significant bit of the overflow is processed as a sign bit and the other bits are discarded.

10.2.4 Type Conversion
Table 10.22 shows the rules used in type conversion.

Table 10.22 Rules Used in Type Conversion

Conversion Specification

_ _fixed - long _ _fixed The 16 lower-order bits are padded with zeroes.

_ _accum — long _ _accum The value is not changed.

long _ _fixed —» _ _fixed The 16 lower-order bits are discarded.

long _ _accum — _ _accum Precision of the decimal fraction is lowered.

_ _fixed > _ _accum Sign extension to fill the eight higher-order bits.

long _ _fixed —» long _ _accum The value is not changed.

_ _fixed > long _ _accum Sign extension to fill the eight higher-order bits. The 16

lower-order bits are padded with zeroes.
The value is not changed.

long _ _fixed » _ _accum Sign extension to fill the eight higher-order bits. The 16
lower-order bits are discarded.
Precision of the decimal fraction is lowered.

__accum — __fixed The eight higher-order bits are discarded. The sign is
long _ _accum — long _ _fixed assigned to the ninth bit.
When the integer section is 0, the value is not changed.

__accum — long _ _fixed The eight higher-order bits are discarded. The sign is
assigned to the ninth bit.
When the integer section is 0, the value is not changed.

long _ _accum — _ _fixed The eight higher-order bits are discarded. The 16 lower-
order bits are discarded. The sign is assigned to the ninth
bit.
When the integer section is 0, the value is not changed.
Precision of the decimal fraction is lowered.

Page 362 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Table 10.22 Rules Used in Type Conversion (cont)

Conversion

Specification

_ _fixed — signed integer
long _ _fixed — signed integer

—1 for —1.0r and —1.0R; 0 in other cases.

_ _accum — signed integer
long _ _accum — signed integer

The value of the decimal fraction is discarded.
The value after conversion is an integer in the range from
—256 to 255.

_ _fixed — unsigned integer
long _ _fixed — unsigned integer

The maximum value of the target type for —1.0r and
-1.0R.
0 in other cases.

_ _accum — unsigned integer
long _ _accum — unsigned integer

The decimal fraction is discarded.

For a positive value, the value after conversion is an
integer in the range from 0 to 255.

For a negative value: (value before conversion + 1 +
maximum value of the target type).

signed integer —» _ _fixed
signed integer — long _ _fixed

The most significant bit before conversion is changed as
the most significant bit after conversion.
All other bits become 0.

signed integer —» _ _accum
signed integer — long _ _accum

The nine lower-order bits of the value become the integer
section.
The decimal fraction is 0.

unsigned integer — _ _fixed
unsigned integer — long _ _fixed

All bits after conversion become 0.

unsigned integer —» _ _accum
unsigned integer — long _ _accum

The nine lower-order bits of the value become the integer
section.
The decimal fraction is 0.

fixed point — floating point

If the pre-conversion value can be expressed in the
floating-point type, the value remains the same.

If the same value cannot be expressed, it is rounded off
to the nearest value.

floating point — fixed point

The specification for the decimal fraction is the same as
for ‘fixed point — floating point’ conversion.

The specification for the integer section is the same as for
‘floating point — integer’ conversion.

When the integer section is in the range that can be
expressed as a fixed-point value, the original value will be
kept. When the integer section is outside that range, the
least-significant bit of the portion that overflowed
becomes the sign bit.

Saturation operation is not applied, even if it has been
specified for the target type.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

/{ Page 363 of 1176
KENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

10.2.5 Arithmetic Conversion

When two operands differ in type, calculation is done in accordance with the type that is higher in
the hierarchy of figure 10.2.

An error occurs if a calculation includes types that are neither above nor below each other in this
hierarchy (e.g., between integer type and fixed-point type, or between __accum and

long fixed). When calculation is required in such cases, explicit cast should be applied to adjust
the types.

However, for the sake of efficiency and convenience, the above rules for conversion may be
ignored when a result is guaranteed.

double
(long double)

A

float
unsigned int | long _ _accum |
unsigned long

N

(signed) int

(signed) long

Figure 10.2 Hierarchy of Arithmetic Conversion

Page 364 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

10.2.6 Pointer Conversion

(a) _ _circ Qualifier

When a pointer with the __cire qualifier is converted to a pointer without the _ _cire qualifier, a
warning message is displayed and modulo addressing is not applicable.

When _ _cire is specified for a pointer without the _ _cire qualifier, a warning message is not
displayed. However, modulo addressing is still not applicable.

(b) Memory Qualifier (. Xor__Y)

An attempt to assign a memory qualifier to a variable already declared with another qualifier will
cause an error.

10.2.7 Operators

The following operators cannot be specified for the fixed-point type; if specified, an error will
occur.

e Operator for the 1’s complement (~)
e Bitwise AND operator (& or &=)

e Bitwise OR operator (| or |=)

e Bitwise XOR operator (* or =)

o Shift operator (<<, >>, <<=, or >>=)

e Remainder operator (% or %=)
Table 10.23 shows the values returned by the sizeof operator.

Table 10.23 Values Returned by the sizeof Operator

Type Value
_ _fixed 2
long _ _fixed 4
_ _accum 4
long _ _accum 8

R20UT0704EJ0102 Rev. 1.02 Page 365 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

10.2.8 Libraries

(a) fixed.h

The include-file <fixed.h> defines the limit values of the fixed-point type. For details, refer to
section 10.4.1, Standard C Libraries.

(b) stdio.h

Table 10.24 shows the conversion specifiers for fixed-point values.

Table 10.24 Conversion Specifiers for Fixed-Point Values

Conversion Specifier Meaning

Yor _ _fixed value

Ylr long _ _fixed value
Y%a _ _accum value

%la long _ _accum value
%P _ _circ pointer value

The conversion of fixed-point values is based on the %f conversion (floating-point conversion).
The %P is converted in the same way as %p (pointer conversion).

Page 366 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

(c) stdlib.h

Table 10.25 shows the functions for the handling of fixed-point values. For details, refer to
section 10.4.1, Standard C Libraries.

Table 10.25 Functions

Type

Function Name

String-value conversion

long _ _fixed atolfixed(const char * nptr);

long _ _accum atolaccum(const char * nptr);

long _ _fixed strtolfixed(const char * nptr, char ** endptr);

long _ _accum strtolaccum(const char * nptr, char ** endptr);

Storage-area management

void _ X *calloc_ _X(size_t nelem, size_t elsize);

void free_ _X(void _ _X *ptr);

void _ _X *malloc_ _X(size_t size);

void _ X *realloc_ _X(void _ _X *ptr, size_t size);

void _ _Y *calloc_ _Y(size_t nelem, size_t elsize);

void free_ _Y(void _ _Y *ptr);

void _ _Y *malloc_ _Y(size_t size);

void _ _Y *realloc_ _Y(void _ _Y *ptr, size_t size);

Note: The user should also prepare a low-level interface routine for the __X or _ _Y memory:
char _ _X*sbrk_ _X(int size);

char _ _Y *sbrk_ _Y(int size);
For details, refer to section 9.2.2 (6), Low-level interface routines.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

/{ Page 367 of 1176
KENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(d) string.h
Table 10.26 shows the functions for the handling of fixed-point values. For details, refer to
section 10.4.1, Standard C Libraries.

Table 10.26 Functions

Type Function Name

Storage-area void _ _X*memcpy_ _X_ _X(void _ _X*s1, const void _ _X * s2, size_t n);

copy void __X*memcpy__X__Y(void _ _X*s1, constvoid _ _Y *s2, size_t n);
void __Y *memcpy_ _Y__X(void _ _Y *s1, constvoid __X *s2, size_t n);
void _ _Y *memcpy_ _Y_ _Y(void __Y *s1, constvoid _ _Y *s2, size_t n);

(e) DSP Library

When the dspe option is specified, fixed-type arrays and pointers can be specified instead of
short-type arrays and pointer parameters. For details, refer to section 10.4.5, DSP Library.

Page 368 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

10.3 Extended Specifications
The compiler supports the following extended specifications:

e {#pragma extension specifiers
e Section address operators

e Intrinsic functions

10.3.1 #pragma Extension Specifiers

Tables 10.27 to 10.29 list #pragma extension specifiers. Note that conditions apply to the
application of some #pragma directives which are related to optimization, i.e. some may not be
applicable. Check the output code to see whether or not the optimization has actually been
performed.

Table 10.27 Extended Specifications Relating to Memory Allocation

#pragma Extension Specifier Function

#pragma section Switches sections

#pragma abs16 Specifies address range
#pragma abs20
#pragma abs28
#pragma abs32

#pragma stacksize Creates stack section

R20UT0704EJ0102 Rev. 1.02 Page 369 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Table 10.28 Extended Specifications Relating to Functions

#pragma Extension Specifier Function

#pragma interrupt

Creates an interrupt function

#pragma inline

Performs inline expansion of functions

#pragma inline_asm

Expands an assembly-language description function.

#pragma regsave,
#pragma noregsave,
#pragma noregalloc

Generates or does not generate save and restore code at the
start and end of functions

#pragma entry

Creates an entry function

#pragma ifunc

Suppresses saving and restoring of the floating-point registers

#pragma tbr

Calls functions by using TBR relative addresses

#pragma align4

Branch destination addresses in the specified function are
placed on 4-byte boundaries

Table 10.29 Other Extended Specifications

#pragma Extension Specifier Function

#pragma global_register

Allocates global variables to registers

#pragma gbr_base,
#pragma gbr_base1

Specifies GBR base variables

#pragma bit_order

Switches the order of bit assignment

#pragma pack
#pragma unpack

Specifies the boundary alignment value for structures, unions,
and classes.

#pragma address

Specifies absolute addresses for variables

For some of the extended functions above, data members and member functions can be specified.
Specification format is (class name::member name). For the specifiable member types, see the

format of each function.

(1) Extended Specifications Related to Memory Allocation

#pragma section

Description Format: #pragma section [{<name> | <numeric value>}]

Description: Switches the section to be output by the compiler.
Table 10.30 lists the default section names and section names after switching

sections.

Page 370 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Table 10.30 Section Switching and Section Name

Default Section After Switching

Target Area Specification Name Section
Program area #pragma section P’ P<xx>
Constant area xx> C C<xx>
Initialized data area D’ D<xx>
Uninitialized data area B B<xx>

Note: The default section name can be modified by the section option.
If <name> and <number> are not specified, the default section names will be used.

Example: #pragma section abc
int a; /* a is assigned to section Babc */
const int c=1; /* c is assigned to section Cabc */
void f (void) /* f is assigned to section Pabc */
{
a=c;

}

#pragma section

int b; /* b is assigned to section B */
void g(void) /* g is assigned to section P */
{
b=c;
}
Remarks: 1. #pragma section can be declared only outside the function definition.
2. Up to 2045 section names can be declared for each of #pragma section
in one file.
3. When specified together with a memory specifier (__Xor _ _Y),
the specification of #pragma section will be invalid.
R20UT0704EJ0102 Rev. 1.02 Page 371 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
#pragma abs16
#pragma abs20
#pragma abs28
#pragma abs32
Description Format: #pragma abs16 [(J<identifier> [,...][)]
#pragma abs20 [(]<identifier> [,...][)]
#pragma abs28 [(]<identifier> [,...] [)]
#pragma abs32 [(]<identifier> [,...][)]
Description: The variable or function declared with #pragma abs16, abs20, abs28, or

abs32 is treated as being allocated in the memory area shown in table 10.31.
Then, program size can be reduced.

For the identifier, a variable, a global function, a static data member, and a
member function can be specified.

Table 10.31 Address Ranges

Address Range

#pragma Extension Beginning End

abs16 0x00000000 0x00007FFF
0xFFFF8000 OxFFFFFFFF

abs20 0x00000000 0x0007FFFF
O0xFFF80000 OxFFFFFFFF

abs28 0x00000000 Ox07FFFF7F*
0xF8000000 OxFFFFFFFF

abs32 0x00000000 OxFFFFFFFF

Note: Be aware that the end of the range is 0xO7FFFF7F.

Remarks: 1. #pragma abs16, abs20, abs28, or abs32 cannot be used to specify
an automatic object or non-static data member.

2. Variables and functions declared using #pragma abs16, abs20, abs28, or
abs32 must be allocated in the corresponding address range shown above.

3. Multiple address ranges cannot be specified for a single identifier.

4. When #pragma abs16, abs20, abs28, or abs32 is specified together with
the abs16, abs20, abs28, or abs32 option, the #pragma specification
becomes valid.

#pragma abs16, abs20, abs28, or abs32 is invalid when it is specified
together with #pragma gbr_base or gbr_basel.

Page 372 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

#pragma stacksize
Description Format: #pragma stacksize <constant>

Description: Creates a stack section of size <constant> for the section with name S.

Example: #pragma stacksize 100

<Example of code expansion>
.SECTION S, STACK, ALIGN=4
.RES.B 100

Remarks: The size, <constant>, must always be specified as a multiple of four.
#pragma stacksize can only be specified once in a file.

R20UT0704EJ0102 Rev. 1.02 Page 373 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(2) Extended Specifications Related to Functions
#pragma interrupt
Description Format: #pragma interrupt [(]<function name>[(interrupt specification)][,...][)]

Description: Declares an interrupt function.
Global functions and static member functions can be specified for the
function name. Table 10.32 lists interrupt specifications.

Page 374 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Table 10.32 Interrupt Specifications

Item Form Options Specifications
Stack switching sp= {<variable> The address of a new stack is specified with a
|&<variable> variable or a constant.
|<constant> <variable>: Variable (pointer type)
|<variable> + &<variable>: Variable (object type)
<constant> address
|&<variable> + <constant>: Constant value
<constant>
}
Trap-instruction tn= <constant> The interrupt function exits with the TRAPA
return instruction.
<constant>: Constant value
(trap vector number)
Register bank resbank None Output of code for saving the following
registers is suppressed.
RO to R14, GBR, MACH, MACL, PR
If tn is not specified, a RESBANK instruction is
output immediately before the RTE instruction.
Register bank sr_rts None The interrupt function exits with the RTS
switching and instruction. The code for saving only the
RTS-instruction registers used in the function is output. The
return RB and BL bits of the SR are set at the end of
the function.
Interrupt handling bank None When a sr_jsr() intrinsic function is used, the
function code for saving the SSR and SPC is
generated and output of the code for saving
the RO to R7 is suppressed. The code for
saving the other registers used in the function
is generated.
RTS-instruction rts None The interrupt function exits with the RTS

return

instruction. Output of the code for saving the
SSR, SPC, or RO to R7 is suppressed. The
code for saving the other registers used in the
function is generated.

An interrupt function will guarantee register values before and after
processing (all registers used by the function are pushed onto and popped
from the stack when entering and exiting the function). The RTE instruction
directs the function to return. However, if the trap-instruction return is
specified, the TRAPA instruction is executed at the end of the function. An

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

Page 375 of 1176

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

interrupt function with no specifications is processed in the usual procedure.
The stack switching specification and the trap-instruction return specification
can be specified together.
Example:

extern int STK[100];

#pragma interrupt (f(sp =STK+100, tn = 10),A::q)

class A{

public:

static void g();

b

Explanation:

(a) Stack switching specification: STK+100 is set as the stack pointer used
by interrupt function f.

(b) Trap-instruction return specification: After the interrupt function has
completed its processing, TRAPA #H'10 is executed. The SP at the
beginning of trap exception processing is shown in figure 10.3. After
the previous PC (program counter) and SR (status register) are popped
from the stack by the RTE instruction in the trap routine, control is
returned from the interrupt function.

(c) The member function that can be specified in C++ program is a static
member function. In the example, static member function g of class A
is specified as an interrupt function. Note that nonstatic member
functions cannot be specified.

Page 376 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
Immediately after interrupt During interrupt function Just after the interrupt function
processing has completed processing
(Immediately before the TRAPA
Lower address instruction is issued)
STKIO0] STKIO]
STK[99] STK[99]
ptr_> sp —

Upper address 4

Lower address
sp

Previous PC Previous PC Previous PC
Previous SR Previous SR Previous SR

Upper address J

Figure 10.3 Stack Processing by an Interrupt Function

R20UT0704EJ0102 Rev. 1.02 Page 377 of 1176
Mar 01, 2022 RENESAS

Section 10 C/C++ Language Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Nested interrupt functions can be created through the sr_rts and bank
settings and the sr_jsr() intrinsic function.

Example:

#include <machine.h>

// Handling function declaration

#pragma interrupt

void func () ;

(func (bank))

// Interrupt processing function declaration

#pragma interrupt
void sub () ;

void func () {

sr jsr(sub,8);

void sub () {

(sub(sr_rts))

// Calls sub()
// with RB=0, BL =0, and

// interrupt level = 8

Page 378 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
func:
< - RB=1,BL=1

MOV.L R14,@-R15

STS . L PR, @-R15 Saves the registers used
in the function, SPC, and

sTC SSR,@-RL5 SSR, except RO to R7.

STC SPC,@-R15

STC SR, R6 N\

MOV.L L12+6,R1 ; H'CFFFFFOF

MOV #-128,R4 ; H'FFFFFF80
Changes the

EXTU.B R4,R4 settings to RB =0,

MOV . L L12+10,R14 ; sub BL =0, and

AND R1,R6 IMASK = 8.

OR R4,R6

LDC R6, SR J

JSR @R14 <« Calls the sub() function.

Execution will return with the
settings changed to RB =1 and

NOP BL=1.
LDC @R15+, SPC
,DC @R15+, SSR Restores the registers used in
the function, SPC, and SSR,
. +
LDS. L ER15+, PR except RO to R7.
MOV.L @R15+,R14 Changes the setting to IMASK
RTE =8
NOP
sub: < RB=0and BL=0

MOV. L RO, @-R15 Saves the registers used
MOV. L R1,@-R15 in the function.
R20UT0704EJ0102 Rev. 1.02 Page 379 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
STC SR, RO N
MOV.L L12+2,R1 ; H'30000000
OR R1, RO Changes the settings to

RB=1and BL=1, and

MOV. L @RIS+,R1 > restores the registers used
LDC RO, SR in the function.
RTS
LDC.L @R15+,RO_BZ—\NK _J

Because the setting has been

changed to RB =
An efficient interrupt function using register banks can be created through

the rts and bank settings.
Example:

#include <machine.h>

// Handling function declaration
#pragma interrupt (func (bank))

void func();

// Interrupt processing function declaration
#pragma interrupt (sub(rts)

void sub () ;

void func () |

sub () ;

void sub () {

Page 380 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
_func:
< ‘ RB=1and BL=1
STS.L PR, @-RI15 Saves the registers used in the
: function except RO to R7.
MOV. L L12,R14; _sub
JSR @R14
NOP
LDS.L @R15+, PR
RTE Restores the registers used in
the function except RO to R7.
NOP
sub:
MOV.L R14,Q@-R15 Saves the registers used in the
MOV. L. R13,@-R15 function except RO to R7.
MOV . L @R15+,R13
Restores the registers used in
S the function except RO to R7.
MOV.L @R15+,R14
Remarks: . resbank is only valid when cpu = sh2a or sh2afpu is specified.

. Register bank usage must be enabled before an interrupt for the function
with resbank specification occurs.

. When both resbank and tn are specified, neither register saving code nor
RESBANK instruction is output. In this case, generate a RESBANK
instruction in the trap routine.

. When returning from the function with the resbank specification,
the value of the variable specified with #pragma global_register is
restored to its original value before the interrupt even when it is modified
during interrupt processing.

. The interrupt operation in the SH-3, SH3-DSP, SH-4, SH-4A, and
SH4AL-DSP is different from that in the SH-1, SH-2, SH-2E, SH-2A,
SH2A-FPU, and SH2-DSP, and requires interrupt handlers. When the
same function is specified for #pragma interrupt and #pragma
noregsave, in the SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP, only

R20UT0704EJ0102 Rev. 1.02 Page 381 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

the contents of callee-save registers used within the function are saved
and restored.

. When the repeat option is specified, the contents of the RS and RE

registers are saved and restored.

When the dspc option is specified, the contents of the DSP registers (X0,
X1,Y0, Y1, MO, M1, A0, AOG, Al, and A1G), DSR register, and MOD
register are saved and restored.

. Functions that can be specified for an interrupt function definition are the

global function (in C/C++ program) and static member function (in C++
program).

The function must return only void data. The return statement cannot
have a return value. If attempted, an error is output.

Example:

#pragma interrupt (f1 (sp=100),£f2)

void £1 () {.e i} it e e (a)
Int £2 () { ..o} cii e e (b)

Description: (a) is a correct declaration.
(b) returns type that is not void, thus (b) is an incorrect
declaration. An error will occur.

. sr_rts, bank, and rts are valid when cpu=sh3|sh3dsp|sh4|sh4a|sh4aldsp

is specified. The following shows the combinations of sr_rts, bank, or
rts and other interrupt specifications that can be set together.

#pragma interrupt

#pragma
sp tn sr_rts bank rts noregsave
sr_rts Error Error Error Error Error Error
bank Valid Error Error Error Error Valid
rts Error Error Error Error Error Error

Page 382 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

An error will be output in the following cases.

¢ A function with the sr_rts setting is called from a function other than
the sr_jsr() intrinsic function.

¢ A function with the bank setting is called.

e A function with the rts setting is called from a function without bank
or rts setting.

. A function declared as an interrupt function cannot be called within the

program. If attempted, an error will occur. However, if the function is
called within a program which does not have a declaration of the interrupt
function, an error does not occur but correct program execution is not
guaranteed.

Example 1 (An interrupt function is declared):
#pragma interrupt (f1)

void f£1(){...}

int f20){ £f10);} .o, (a)

Description: Function f1 cannot be called in the program because it is
declared as an interrupt function. An error occurs at (a).

Example 2 (An interrupt function is not declared):
int £1();
int f20{ £f10:} oo (b)

Description: Because function f1 is not declared as an interrupt function,
an object is generated as a non-interrupt function, int f1();.
If function f1 is declared as an interrupt function in another
file, correct program execution cannot be guaranteed.

Note: In a CPU with floating-point precision mode (SH2A-FPU, SH4, or SH4A),
when the fpu option is not specified or when fpu=single is specified, the
precision mode might need to be set to perform single-precision floating-
point operation in an interrupt function. For details, see section 9.4.1 (6)
Interrupt Functions When the CPU Type Is SH2A-FPU, SH4, or SH4A.

R20UT0704EJ0102 Rev. 1.02 Page 383 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

#pragma inline

Description Format: #pragma inline [(]<function name>[,...][)]

Description:

Example:

Declares a function for which inline expansion is performed.

A name of a global function or a static member function can be specified as a
function name.

A function specified by #pragma inline or a function with specifier inline
(C++) will be expanded where the function is called.

Source Program
#pragma inline (func)
static int func (int a, int b)
{
return (a+b)/2;
}
int x;
main ()
{
x = func (10,20);

Inline Expansion Image
int x;
main()
{
int func_result;
{
int a 1 = 10, b 1 = 20;
func_result = (a_l+b _1)/2;

}
x = func result;

}

Page 384 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Remarks:

. A function will not be expanded in the following cases:

— a function definition exists before the #pragma inline specification
— a function has variable parameters

— a parameter address is referenced in a function

— an address of a function to be expanded is used to call the function
— recursive calls are used

. Specify #pragma inline before defining a function.
. When a program file includes the definition of a function to be inlined, be

sure to specify static before the function declaration because an external
definition is generated for a function specified by #pragma inline. If
static is specified, an external definition will not be created. External
definition will not be created for functions for which inline (C++) is
specified.

. Also, when a scope option is specified, inline expansion may not be

performed.

R20UT0704EJ0102 Rev. 1.02 Page 385 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

#pragma inline_asm

Description Format: #pragma inline asm [(]<function name>[(size=<numeric value>)][,...][)]

Description:

Example:

Performs inline expansion for the functions written in assembly language
declared by #pragma inline_asm.

Parameters of a function that is written in an assembly language are
referenced from an inline_asm function because they are stacked or stored in
registers in the same way as general function calls. The return value of an
inline function written in an assembly language should be set in R0. When
the cpu is SH-2E, SH2A-FPU, SH-4, or SH-4A, return values of single-
precision floating-point type should be set in FRO. When the cpu is SH2A-
FPU, SH-4, or SH-4A, return values of double-precision floating-point type
should be set in DRO. A different register may be used depending on the
combination of options. For details, see table 9.7.

The length of an inline function written in an assembly language can be
specified by (size=<numeric value>).

Source program
#pragma inline asm(rotl)
static int rotl (int a)
{
ROTL R4
MOV R4, RO
}
int x;
main()
{
= 0x55555555;

X
x = rotl(x);

Page 386 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

=4

Output result (partial)
_main ;function main
;frame size
MOV.L R14,@-R15
MOV.L L220+2,R14 ;o x
MOV.L L220+6,R3 ;H'55555555
MOV.L R3,@R14
MOV R3,R4
BRA L219
NOP
L220:
.RES.W 1
.DATA.L _x
.DATA.L H'55555555
L219:
ROTL R4
MOV R4, RO
.ALIGN 4
MOV. L RO, @R14
RTS
MOV.L @R15+,R14
.SECTION B,DATA,ALIGN=4
Xt ;static:
.RES.L 1
.END

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 387 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Remarks:

. Specify #pragma inline_asm before the definition of a function. External

definition will be created for functions specified by #pragma
inline_asm.

. Be sure to use local labels in a function written in an assembly language.

3. When the registers whose values are saved and restored at the start and

end of a function (see table 9.5) are used in a function written in an
assembly language, the contents of these registers must be saved and
restored at the start and end of the function. Also, when registers FR12 to
FR15 (if CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A) are used, or when
registers DR12 to DR14 (if CPU is SH2A-FPU, SH-4, or SH-4A) are
used, the contents of these registers must be saved and restored at the start
and end of the inline function written in the assembly language.

. Do not use RTS at the end of a function written in an assembly language.
. When #pragma inline_asm is used, be sure to compile programs by

specifying code=asmcode to generate assembly code.

. When specifying a number by (size=<numeric value>), specify

a number larger than the actual object size. If a value smaller than

the actual object size is specified, correct operation is not guaranteed. If
a floating point or a numeric value less than 0 is specified, an error will
occur.

. Even when a register specified by the #pragma global_register function

is used, the contents of this register must be saved and restored at the start
and end of the inline function written in an assembly language.

. A member function cannot be specified for the function name.
. Do not use a statement that generates a literal pool. (MOV.L #100000,

RO etc.)

Page 388 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

#pragma regsave
#pragma noregsave
#pragma noregalloc

Description Format: #pragma regsave [(]<function name>{,...][)]
#pragma noregsave [(]<function name>[,...][)]
#pragma noregalloc [(]J<function name>[,...][)]

Description: 1.

Global functions and member functions can be specified as the
function name.
Functions specified by #pragma regsave save and restore the contents
of callee-save registers (see table 9.5) at the start and end of the
functions, respectively. Inside the function specified by #pragma
regsave, callee-save registers (R8 to R14, and FR12 to FR15 if CPU is
SH-2E, SH2A-FPU, SH-4, or SH-4A) will not carry a value over a child
function call.
Functions specified by #pragma noregsave do not save or restore the
contents of callee-save registers at the start and end of the functions.
Functions specified by #pragma noregalloc do not save or restore the
contents of callee-save registers at the start and end of the functions.
Inside the function specified by #pragma noregsave, callee-save
registers (R8 to R14, and FR12 to FR15 if CPU is SH-2E, SH2A-FPU,
SH-4, or SH- 4A) will not carry a value over a child function call.
#pragma regsave and #pragma noregalloc can specify the same
function at the same time. In this case, the contents of registers R8 to
R14 (and FR12 to FR15 if CPU is SH-2E, SH2A-FPU, SH-4, or
SH-4A) are saved and restored at the start and end of the function if
they are used. Inside the function specified by #pragma regsave,
callee-save registers (R8 to R14, and FR12 to FR15 if CPU is SH-2E,
SH2A-FPU, SH-4, or SH-4A) will not carry a value over a child
function call.
Functions specified by #pragma noregsave can be used in the
following conditions:
a. A function is the first function activated and is not called from any
other function.
b. A function is called from a function that is specified by #pragma
regsave.
c. A function is called from a function that is specified by #pragma
regsave via #pragma noregalloc.

R20UT0704EJ0102 Rev. 1.02 Page 389 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

Example: #pragma noregsave (f, A::j)

Remarks:

#pragma noregalloc (g)

#pragma regsave (h)

class A{

public:
static void

}i

void f£();

void g();

void h{();
void h() {
g)
£() /*
/*
} /*
void g(){
£() /*
/*
/*
/*
A::j();
}
void f£()

3O

Function f declared with #pragma */
noregsave 1is directly called by h */
declared with #pragma regsave */
Functions f and A::3j declared with */
#pragma noregsave are indirectly called */
by h via g declared with #pragma */
noregalloc */

The result of a call of a function declared with #pragma noregsave is not
guaranteed if it is called in a way other than that shown above.

Page 390 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

#pragma entry
Description Format: #pragma entry [(]<function name>[(sp=<constant>)][)]

Description: Handles the function specified in <function name> as an entry function. The
entry function is created without any code to save and restore the contents of
registers. When SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP is specified
as the CPU and sp=<constant> is specified, or #pragma stacksize is
declared, the code that makes the initial setting of the stack pointer will be
output at the beginning of the function.

Example 1: #pragma entry INIT (sp=0x10000)
void INIT () {

}
<Example of code expansion>
.SECTION P, CODE

_INIT:
MOV. T L1, R15
Ll: .DATA.L H'00010000
Example 2: #pragma stacksize 100

#pragma entry INIT
void INIT() {

}

<Example of code expansion>
.SECTION S, STACK
.RES.B 100
.SECTION P, CODE

_INIT:
MOV. L L1, R15
Ll: .DATA.L STARTOF S + SIZEOF S
R20UT0704EJ0102 Rev. 1.02 Page 391 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Remarks:

#pragma ifunc
Description Format:

Description:

Remarks:

Example:

#pragma entry must be specified before the function is declared. Only one
entry function can be specified in a single load module. Always specify
<constant> as a multiple of four.

When cpu=shl, sh2, sh2e, sh2a, sh2afpu, or sh2dsp has been specified, the
specification of sp=<constant> will be invalid.

#pragma [(]ifunc <function name>[)]

Suppresses saving and restoring of the floating-point registers during
execution of the function specified by <function name>.

#pragma ifunc must be specified before the function is declared. It is only
valid when cpu=sh2e, cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified. If
a floating-point number is used in the function specified in #pragma ifunc,
an error will occur.

float £;

#pragma ifunc (func)

void func(void) {
f=0.0f; /* Error */

Page 392 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

#pragma tbr

Description Format: #pragma tbr [()<function name> [({sn=<section name> | ov=<offset>})]

[,---1D]

Description: Declares functions to be called by using TBR relative addresses. See the
following detailed specifications.

(a) #pragma tbr <function name>
The function specified by <function name> is called by using an TBR
relative address.
When there is a definition of <function name>, the address of func is
output in $TBR section.

Example

#pragma tbr func

void func () {}

#pragma section AA

void func2 () {
func () ;

}

<Example of code expansion>
_func:
RTS/N

_func2:
STS.L PR,Q@-R15
JSR/N @@ ($ func- (START OF $TBR),TBR)
LDS.L @R15+,PR
RTS/N

.SECTION $TBR, DATA,ALIGN=4
$ func:
.DATA.L _func

(b) #pragma tbr <function name> (sn=<section name>)
The function specified by <function name> is called by using an TBR
relative address.
When there is a definition of <function name>, the address of func is
output in $TBR<section name> section.

R20UT0704EJ0102 Rev. 1.02 Page 393 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(c)

Example
#pragma tbr func(sn= A)
void func () {}
#pragma section AA
void func2 () {

func () ;

}

<Example of code expansion>
_func:
RTS/N

_func2:
STS.L PR,Q@-R15
JSR/N @@ ($_func- (START OF $TBR A),TBR)
LDS.L @R15+,PR
RTS/N

.SECTION STBR A,DATA,ALIGN=4
$_func:
.DATA.L func

#pragma tbr <function name> (ov=<offset>)

The function specified by <function name> is called by using an TBR
relative address.

A multiple of 4 within the range from 0 to 1020 should be specified for
<offset>.

The compiler outputs no TBR address table.

Example
#pragma tbr func (ov=32)
void func () {}
#pragma section AA
void func2 () {
func () ;

}

<Example of code expansion>
_func:
RTS/N

Page 394 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

_func2:
STS.L PR,Q@-R15
JSR/N @@ (32, TBR)
LDS.L @R15+,PR
RTS/N

Remarks: #pragma tbr is only valid when cpu=sh2a or sh2afpu is specified.
#pragma tbr overrides the tbr option if they are specified simultaneously.
When pic=1 is specified, #pragma tbr is invalid.
If both sn and ov are specified for a single function, the first specification is
valid.
Before calling the specified function, the start address of the corresponding
section must be specified in TBR by using intrinsic function set_tbr().
Up to 255 functions can be specified by #pragma tbr in each section.

#pragma align4
Command Line Format:

Description:

Table 10.33 Types

Type

#pragma align4 [(]<function name>=<type>[,...][)]

This directive aligns the branch destination address of the function
specified as <function name> to the 4-byte boundary. Table 10.33
shows the selectable types.

Description

all

Aligns all branch destination addresses within the specified
function to the 4-byte boundary.

loop

Aligns the start addresses of all loops within the specified function
to the 4-byte boundary.

inmostloop

Aligns the start addresses of the innermost loops within the
specified function to the 4-byte boundary.

Remarks:

When #pragma align4 is specified for a function, the start address of
the function is always aligned to a 4-byte boundary. All functions with
#pragma align4 will not be optimized at linkage. When align4 and
#pragma align4 are specified at the same time, the type specified with
#pragma align4 will be valid. When align16 or align32 and #pragma
align4 are specified at the same time, branch destination addresses
within a function will be aligned with four-byte boundaries. The address

R20UT0704EJ0102 Rev. 1.02 Page 395 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

where a function starts is aligned with a four-byte boundary if it is
immediately preceded by a function for which #pragma align4 was
specified, but otherwise is aligned with a 16- or 32-byte boundary.

(3) Other Extended Specifications
#pragma global_register
Description Format: #pragma global register [(J<variable name>=<register name>{,...][)]

Description: Allocates the global variable specified in <variable name> to the register
specified in <register name>.
Global variables and static data members can be specified as the variable
name.

Example: #pragma global register(a = R8,A::b = R9)
class A(
public:
static int b;
)i
int a;

void g()

Page 396 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Remarks: 1.

This function is used for a simple or pointer type variable in the global
variable; it cannot be used for an (unsigned) long long type variable.
If CPU is other than SH2A-FPU, SH-4, or SH-4A, a double type
variable can be specified only when double=float is specified.
Only use registers R8 to R14, FR12 to FR15 (if CPU is SH-2E,
SH2A-FPU, SH-4, or SH-4A) and DR12 to DR14 (if CPU is
SH2A-FPU, SH-4, or SH-4A).
The initial value cannot be set. In addition, the address of the specified
variable cannot be referenced.
The reference of the specified variable from outside of the file is not
guaranteed.
Static data members can be specified. Nonstatic data members cannot
be specified.
— Type of variables that can be set in FR12 to FR15:

For SH-2E CPU

float type variables

double type variables (when double=float is specified)

For SH2A-FPU, SH-4, or SH-4A CPU

float type variables (when fpu=double is not specified)

double type variables (when fpu=single is specified)
— Type of variables that can be set in DR12 to DR14

For SH2A-FPU, SH-4, or SH-4A CPU

float type variables (when fpu=double is specified)

double type variables (when fpu=single is not specified)

R20UT0704EJ0102 Rev.
Mar 01, 2022

1.02 Page 397 of 1176
RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

#pragma gbr_base
#pragma gbr_basel

Description Format: #pragma gbr base [(Jvariable namef,...][)]

Description:

#pragma gbr_basel [(Jvariable name],...][)]

Specifies variables to be accessed using a GBR register and an offset value.
For the variable name, variables and static data members can be specified.

The variable specified by #pragma gbr_base is assigned to section $G0, and
the variable specified by #pragma gbr_basel is assigned to section $G1.

#pragma gbr_base specifies that the variable is located in an offset of 0 to
127 bytes from the address specified by the GBR register. #pragma
gbr_basel specifies that the variable is located in an offset of 128 or more
bytes from the address specified by the GBR register, that is, a variable is in
a range beyond the range specified by #pragma gbr_base. An offset value
is 255 bytes at maximum for a char or unsigned char type, 510 bytes at
maximum for a short or unsigned short, and 1020 bytes at maximum for an
int, unsigned int, long, unsigned long, float, or double type. Based on the
above specification, the compiler generates an object program in a GBR
relative addressing mode that is optimized according to variable reference
and settings.

The compiler also generates an optimized bit instruction in the GBR indirect
addressing to char or unsigned char type data in the $GO section.

Page 398 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Remarks: 1.

If the total data size after the linker gathers sections $GO0 exceeds 128
bytes, the correct operation is not guaranteed. In addition, if there

is data that has an offset value exceeding those specified above for
#pragma gbr_basel in section $G1, correct operation is not
guaranteed.

Section $G1 must be allocated immediately after 128 bytes of section
$GO in linkage.

In using these #pragma's, be sure to set the start address of section $GO
in the GBR register at the start of program execution.

Static data members can be specified, but non-static data members
cannot be specified.

When gbr=auto is specified, the specification of #pragma gbr_base
or #pragma gbr_basel will be invalid.

R20UT0704EJ0102 Rev. 1.02 Page 399 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

#pragma bit_order
Description Format: #pragma bit order [{left|right}]

Description: Switches the order of bit field assignment.

When left is specified, bit field members are assigned from the upper-bit side.
When right is specified, members are assigned from the lower-bit side.

The default is left.

If left or right is omitted, follow the options.

Example:

#pragma bit order left :Empty area
typedef struct({ . Py
- 4 on) 76543210
unsigned char a:2;
unsigned char b:3; Ei> | xd | xb |

}x;

#pragma bit_order right 76543210
typedef struct{ | | yvb Jya |
unsigned char a:2; Ei>
unsigned char b:3;
}yi

/I Different size
#pragma bit order right 3 2 0
typedef struct{ | za
unsigned short
unsigned char
Yz;

oo

I/ Large size 7 S 4 0

#pragma bit order right | | v.a |

typedef struct{ Ei> 7 4 3 0
unsigned char a:5; | | v.b
unsigned char b:4;

tv;

Remarks: The specified order of assignment is valid until it is switched again.
For details of bit fields, refer to section 10.1.2 (3), Bit Fields.

Page 400 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compile
Optimizing Linkage Editor

r, Assembler,

Section 10 C/C++ Language Specifications

#pragma pack
#pragma unpack

Description Format: #pragma pack {14}

#pragma unpack

Description: Specifies the boundary alignment value for structure, union, and class
members after #pragma pack is specified in the source program.

The boundary alignment value specified by the pack option is used for
structure, union, and class members declared when this extension has not
been specified or after #pragma unpack has been specified. Table 10.34
shows #pragma pack specifications and the corresponding boundary

alignment values.

Table 10.34 #pragma pack Specifications and Corresponding Member Alignment Values

Extension and Member Type #pragma #pragma #pragma unpack or No
pack 1 pack 4 Extension Specified

[unsigned Jchar 1 1 1

[unsigned Jshort, and long _ _fixed 1 2 Value specified by pack
option

[unsigned]int, [unsigned]long, 1 4 Value specified by pack

[unsigned Jlong long, long _ _fixed, option

___accum, long _ _accum,

floating-point type, and pointer type

Structure, union, and class of boundary 1 1 1

alignment value of 1

Structure, union, and class of boundary 1 2 Value specified by pack

alignment value of 2 option

Structure, union, and class of boundary 1 4 Value specified by pack

alignment value of 4

option

Example: #pragma pack 1

struct S1 {
char a;
int b;
char c;
} ST1;

/* offset:0 */
/* offset:1 */
/* offset:5 */

#pragma pack 4

struct S2 {

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 401 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
char a; /* offset:0 */
/* gap:3 bytes */
int b; /* offset:4 */

/* gap:0 bytes */
char c; /* offset:8 */
/* gap:3 bytes */
} ST2;

Remarks: 1. The structure, union, and class member for which pack=1 or
#pragma pack 1 is specified cannot be accessed using a pointer
(including an access within a member function using a pointer).
If the address of a structure member is used in an assignment statement,
as an actual argument, or as a return value, a warning message will be
output.

Example

#pragma pack 1
struct st {

char x;
int y;
} ST;

int *p=&ST.y; /* The ST.y address may be an odd value. */

void func (void) {
ST.y=1; /* Can be accessed correctly. */

p=1; / Cannot be accessed correctly in some cases. */

2. The boundary alignment value for structure, union, and class members
can also be specified by the pack option. When both the option and
#pragma extension are specified together, the #pragma extension takes
priority.

3. A single structure, union or class cannot include members with
different numbers of bytes for boundary alignment. If code includes
such a case, a warning is output.

Page 402 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

struct X {
int m;
} X

#pragma pack 1

Struct S {

char c;

struct X a[2]; /Alignment is 4 byte —
/la warning is output

b

When the iodefine.h file created by the Renesas High-Performance
Embedded Workshop is in use, if #pragma or an option is used to set
the alignment value to 1, the members of I/O register structures will not
specify the correct addresses. To avoid this problem, place #pragma
pack4 at the start of iodefine.h and place #pragma unpack at the end
of iodefine.h.

In addition, when having accessed using a pointer for the member of the structure, the union, and
the class, or when having accessed using a pointer within a member function, please keep in mind
that warning may not be outputted at the time of compile.

R20UT0704EJ0102 Rev. 1.02 Page 403 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

#pragma address
Description Format: #pragma address [(]<variable name>=<absolute address>],...][)]

Description: Allocates specified variables to specified addresses. The compiler assigns a
section for each specified variable, and the variable is allocated to the
specified absolute address during linkage. If variables are specified for
contiguous addresses, these variables are assigned to a single section.

Example 1: Scalar variable
#pragma address A=0x100
int A;
void func() {
A=0;

<Example of code expansion>

_func:
MOV #1,R2
SHLL8 R2
MOV #0,R4
RTS

MOV.L R4, @R2

.SECTION S$ADDRESS$B100,DATA,LOCATE=H’100

.RES.L 1

Example 2: Structure
#pragma address ST=0x100
struct {
int a;
int b;
} ST;
void func () {
ST.b=0;

<Example of code expansion>

_func:

Page 404 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

MOV #1,R2

SHLL8 R2
MOV #0,R4
RTS

MOV.L R4,@(4,R2)

.SECTION SADDRESSS$B100,DATA, LOCATE=H’100
_ST:
.RES.L 2

Example 3: Allocating multiple variables to contiguous area
#pragma address A=0x100,B=0x104
int A,B;
void func() {
A=0;
B=0;

<Example of code expansion>

__func:
MOV #1,R2
SHLL8 R2

MOV #0,R4
MOV.L R4,QR2
RTS

MOV.L R4,@(4,R2)

.SECTION S$ADDRESS$B100,DATA, LOCATE=H’100

_A:
.RES.L 1
B:
.RES.L 1
Example 4: Allocating multiple variables to non-contiguous areas
#pragma address A=0x100,B=0x108
int A,B;
void func() {
A=0;
B=0;
R20UT0704EJ0102 Rev. 1.02 Page 405 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Example 5:

<Example of code expansion>

_func:
MOV #1,R2
SHLL8 R2

MOV #0,R4
MOV.L R4, QR2
RTS

MOV.L R4,Q(8,R2)

.SECTION S$ADDRESS$B100,DATA,LOCATE=H’100
.RES.L 1
.SECTION S$ADDRESS$B108,DATA,LOCATE=H’108

.RES.L 1

Allocating multiple variables with different attributes to contiguous area
#pragma address A=0x100,B=0x104
int A;
const int B=0;
void func() {
A=0;

<Example of code expansion>

_func:
MOV #1,R2
SHLL8 R2
MOV #0,R4
RTS

MOV.L R4, @R2

.SECTION S$ADDRESS$B100,DATA,LOCATE=H’100

.RES.L 1

Page 406 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Remarks: 1.

.SECTION S$ADDRESS$C104,DATA,LOCATE=H’104

.DATA.L H'00000000

#pragma address must be specified before variables are declared.

If a compound-type member or an object other than a variable is
specified, an error will occur.

If an odd address is specified for a variable or structure with boundary
alignment value 2 or if an address which is not a multiple of 4 is
specified for a variable or structure with boundary alignment value 4,
an error will occur.

If #pragma address is specified for a single variable more than one
time, an error will occur.

If a single address is specified for different variables or if specified
variable addresses overlap each other, an error will occur.

If any one of the following #pragma extensions is specified together
with #pragma address for a single variable, an error will occur.
#pragma section

#pragma abs16, abs20, abs28, or abs32

#pragma gbr_base or gbr_basel

#pragma global_register

R20UT0704EJ0102 Rev.
Mar 01, 2022

1.02 Page 407 of 1176
RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

10.3.2 Section Address Operator

___Ssectop
__secend
__secsize

Description Format:

Description:

Example:

__sectop("<section name>")
__secend("<section name>")
__secsize("<section name>")

This function refers to the start address of the <section name> specified by

__sectop.

This function refers to the end address of the <section name> specified by

__secend.

This function generates the size of the <section name> specified by
secsize.

< _sectop, _ _secend>
#include <machine.h>
#pragma section S$DSEC
static const struct {
void *rom s; /* Start address of initialized data */
/* section in ROM */
void *rom e; /* End address of initialized data */
/* section in ROM */
void *ram s; /* Start address of initialized data */
/* section in RAM */
} DTBL[]={_ sectop("D"), _ secend("D"),
__sectop("R") };
#pragma section $BSEC

static const struct {

void *b_s; /* Start address of uninitialized */
/* data section */
void *b e; /* End address of uninitialized data */

/* section */
} BTBL[]={ sectop("B"), __secend("B")};
#pragma section
#pragma stacksize 0x100
#pragma entry INIT

void main (void) ;

Page 408 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void INIT (void)
{
INITSCT () ;
main () ;

sleep();

< secsize>
unsigned int size = = secsize ("NAME");
2
_size:
.DATA.L SIZEOF NAME

R20UT0704EJ0102 Rev. 1.02 Page 409 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

10.3.3 Intrinsic Functions

The compiler provides the following functions that cannot be written in C/C++, as intrinsic

functions.

e Setting and referencing the status register

e Setting and referencing the vector base register

e [/O functions using the global base register

e System instructions which do not compete with register sources in C/C++ language

e Multimedia instructions using the floating-point unit and setting and referencing control

registers

Intrinsic functions can be written in the same call format as regular functions.

Table 10.35 lists intrinsic functions.

Table 10.35 Intrinsic Functions

Item Specifications Function
Status register void set_cr(int cr) Writes to SR
(SR) int get_cr(void) Reads SR

void set_imask(int mask)

Writes to the interrupt mask bit

int get_imask(void)

Reads the interrupt mask bit

Vector base

void set_vbr(void *base)

Writes to VBR

register (VBR) " 0id *get_vbr(void) Reads VBR
Global base void set_gbr(void *base) Writes to GBR
register (GBR) y4iq *get_gbr(void) Reads GBR

unsigned char
gbr_read_byte(int offset)

Reads a GBR-based byte

unsigned short
gbr_read_word(int offset)

Reads a GBR-based word

unsigned short
gbr_read_long(int offset)

Reads a GBR-based longword

void gbr_write_byte
(int offset, unsigned char data)

Writes a GBR-based byte

void gbr_write_word
(int offset, unsigned short data)

Writes a GBR-based word

Page 410 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
Global base void gbr_write_long Writes a GBR-based longword
register (GBR) (int offset, unsigned long data)
(cont) void gbr_and_byte ANDs a GBR-based byte
(int offset, unsigned char mask)
void gbr_or_byte ORs a GBR-based byte
(int offset, unsigned char mask)
void gbr_xor_byte XORs a GBR-based byte
(int offset, unsigned char mask)
int gbr_tst_byte Tests a GBR-based byte
(int offset, unsigned char mask)
Special void sleep(void) SLEEP instruction
instructions int tas(char *addr) TAS instruction
Int trapa(int trap_no) TRAPA instruction
int trapa_svc OS system call
(int trap_no, int code, type1 para1, type2
para2, type3 para3, type4 para4)
void prefetch (void *p) PREF instruction
void trace(long v) TRACE instruction
void Idtlb(void) LDTLB instruction
void nop(void) NOP instruction
64-bit long dmuls_h(long data1, long data2) Upper 32 bits of the numbers for a

multiplication

signed 64-bit multiplication

unsigned long dmuls_lI(long data1,
long data2)

Lower 32 bits of the numbers for a
signed 64-bit multiplication

unsigned long dmulu_h(unsigned long data1,

unsigned long data2)

Upper 32 bits of the numbers for an
unsigned 64-bit multiplication

unsigned long dmulu_l(unsigned long data1,

unsigned long data2)

Lower 32 bits of the numbers for an
unsigned 64-bit multiplication

Exchange of
upper and
lower bits of
data

unsigned short swapb(unsigned short data)

SWAP.B instruction

unsigned long swapw(unsigned long data)

SWAP.W instruction

unsigned long end_cnvl(unsigned long data)

Reverses the byte order inside 4-
byte data

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 411 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
Multiply and int macw(short *ptr1, short *ptr2, MAC.W instruction
accumulate unsigned int count)
operation

int macwl(short *ptr1, short *ptr2,
unsigned int count, unsigned int mask)

int macl(int *ptr1, int *ptr2,
unsigned int count)

MAC.L instruction

int macll(int *ptr1, int *ptr2,
unsigned int count, unsigned int mask)

Floating-point
unit

void set_fpscr(int cr)

Sets FPSCR

int get_fpscr()

Refers to FPSCR

Single-
precision
floating-point
vector

float fipr(float vect1[4], float vect2[4])

FIPR instruction

void ftrv(float vec1[4],float vec2[4])

FTRYV instruction

void ftrvadd(float vec1[4],float vec2[4],

Transforms 4-dimensional vector by
4x4 matrix, and adds the result to 4-

operation float vec3[4])
dimensional vector
void ftrvsub(float vec1[4],float vec2[4], Transforms 4-dimensional vector by
float vec3[4]) 4x4 matrix, and subtracts
4-dimensional vector from the result
Single- void add4(float vec1[4],float vec2[4], Performs addition of 4-dimension
precision float vec3[4]) vectors

floating-point
vector

void sub4(float vec1[4],float vec2[4],
float vec3[4])

Performs subtraction of 4-dimension
vectors

operation
void mtrx4mul(float mat1[4][4], Performs multiplication of 4x4 matrices
float mat2[4][4])
void mtrx4muladd(float mat1[4][4], Performs multiplication and addition of
float mat2[4][4],float mat3[4][4]) 4x4 matrices
void mtrx4dmulsub(float mat1[4][4], Performs multiplication and subtraction
float mat2[4][4],float mat3[4][4]) of 4x4 matrices
Access to void Id_ext(float mat[4][4]) Loads mat (4x4 matrix) to extension
extension register
register

void st_ext(float mat[4][4]

Stores contents of extension register
to mat (4x4 matrix)

Page 412 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Table 10.35 Intrinsic Functions (cont)

Item Specification Function
DSP long _ _fixed pabs_If(long _ _fixed data) Computes the absolute value
instructions

long _ _accum pabs_la
(long _ _accum data)

_ _fixed pdmsb_lIf(long _ _fixed data)

Detects the MSB

_ _fixed pdmsb_la(long _ _accum data)

long _ _fixed psha_lf(long _ _fixed data, Shifts data arithmetically

int count)

long _ _accum psha_la
(long _ _accum data,int count)

_ _accum rndtoa(long _ _accum data)

Rounds data

_ _fixed rndtof(long _ _fixed data)

long _ _fixed long_as_Ifixed(long data)

Copies a bit pattern

long Ifixed_as_long
(long _ _fixed data)

void set_circ_x
(L _X_ _circ _ _fixed array[],
size_t size)

Specifies modulo addressing

void set_circ_y
(__Y _ _circ_ _fixed array[],
size_t size)

void clr_circ(void)

Cancels modulo addressing

void set_cs(unsigned int mode)

Specifies the CS bit value (DSR
register)

Sine and cosine

void fsca(long angle, float *sinv,
float *cosv)

Computes the sine and cosine values

Inverse of
square root

float fsrra(float data)

Computes the inverse of the square
root

Instruction cache void icbi(void *p)

invalidation

Invalidates the instruction cache block

Cache block
operation

void ocbi(void *p)

Invalidates the cache block

void ocbp(void *p)

Purges the cache block

void ocbwb(void *p)

Writes back the cache block

Instruction cache void prefi(void *p)

prefetch

Prefetches instructions into the
instruction cache

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

Page 413 of 1176

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

Table 10.35 Intrinsic Functions (cont)

Item Specification

Function

System void synco(void)
synchronization

Synchronizes data operation

T bit reference int movt(void)

Refers to T bit

and setting void clrt(void) Clears T bit

void sett(void) Sets T bit
Midsection unsigned long xtrct(unsigned long data1, Extracts middle 32 bits from
extract from unsigned long data2) contiguous 64 bits
combined
registers

Addition with long addc(long data1, long data2)
carry

Adds two values and T bit, and sets
the carry to T bit

int ovf_addc(long data1, long data2)

Adds two values and T bit, and refers
to the carry

long addv(long data1, long data2)

Adds two values, and sets the carry
to T bit

int ovf_addv(long data1, long data2)

Adds two values, and refers to the
carry

Subtraction with long subc(long data1, long data2)
borrow

Subtracts data2 and T bit from data1,
and sets the borrow to T bit

int unf_subc(long data1, long data2)

Subtracts data2 and T bit from data1,
and refers to the borrow

long subv(long data1, long data2)

Subtracts data2 from data1, and sets
the borrow to T bit

int unf_subv(long data1, long data2)

Subtracts data2 from data1, and
refers to the borrow

Sign inversion long negc(long data)

Subtracts data and T bit from 0, and
sets the borrow to T bit

1-bit division unsigned long div1(unsigned long data1,
unsigned long data2)

Performs division data1/data2 for
one step, and sets the result to T bit

int divOs(long data1, long data2)

Performs initial settings for signed
division data1/data2, and refersto T
bit

void divOu(void)

Performs initial settings for unsigned
division

Page 414 of 1176
RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Table 10.35 Intrinsic Functions (cont)

Item

Specification

Function

Rotation

unsigned long rotl(unsigned long data)

Rotates data to left by one bit, and
sets the bit pushed out of the operand
to T bit

unsigned long rotr(unsigned long data)

Rotates data to right by one bit, and
sets the bit pushed out of the operand
to T bit

unsigned long rotcl(unsigned long data)

Rotates data including T bit to left by
one bit, and sets the bit pushed out of
the operand to T bit

unsigned long rotcr(unsigned long data)

Rotates data including T bit to right by
one bit, and sets the bit pushed out of
the operand to T bit

Shift

unsigned long shll(unsigned long data)

Shifts data to left by one bit, and sets
the bit pushed out of the operand to T
bit

unsigned long shir(unsigned long data)

Shifts data logically to right by one bit,
and sets the bit pushed out of the
operand to T bit

long shar(long data)

Shifts data arithmetically to right by
one bit, and sets the bit pushed out of
the operand to T bit

Saturation
operation

long clipsb(long data)

Performs signed saturation operation
for 1-byte data

long clipsw(long data)

Performs signed saturation operation
for 2-byte data

unsigned long clipub(unsigned long
data)

Performs unsigned saturation
operation for 1-byte data

unsigned long clipuw(unsigned long
data)

Performs unsigned saturation
operation for 2-byte data

TBR setting and
reference

void set_tbr(void *data)

Sets data to TBR

void *get_tbr(void)

Refers to TBR value

Nested interrupts void sr_jsr(void *func, int imask);

Clears the RB and BL bits of SR to 0,
sets the imask value in the 10 to 13 bits
of SR, and calls the func function.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

Page 415 of 1176

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Table 10.35 Intrinsic Functions (cont)

Item Specification Function

Manipulate bits invoid bset(unsigned char *addr, unsigned Sets 1 to the specified bit (bit_num) of
memory char bit_num); the specified address (addr).

void bclr(unsigned char *addr, unsigned Sets 0 to the specified bit (bit_num) of
char bit_num); the specified address (addr).

void bcopy(unsigned char *from_addr, Sets the value of bit [1] (from_bit_num)
unsigned char from_bit_num, unsigned of address [1] (from_bit_num) to bit T

char *to_addr, unsigned char and bit [2] (to_bit_num) of address [2]
to_bit_num); (to_addr).

void bnotcopy(unsigned char Sets the inverted value of bit [1]
*from_addr, unsigned char (from_bit_num) of address [1]
from_bit_num, unsigned char *to_addr, (from_bit_num) to bit T and bit [2]
unsigned char to_bit_num); (to_bit_num) of address [2] (to_addr).

<machine.h>, <umachine.h>, or <smachine.h> must be specified when intrinsic functions are
used.

<machine.h> is divided into <umachine.h> and <smachine.h> as shown in table 10.36 to
correspond to the SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP execution mode:

Table 10.36 Dividing <machine.h>

Include File Contents
<machine.h> Overall intrinsic functions
<smachine.h> Intrinsic functions that can be used in the privileged mode
<umachine.h> Intrinsic functions other than those in <smachine.h>
Page 416 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void set_cr(int cr)

Description: Sets cr (32 bits) to the status register (SR).
Header: <machine.h> or <smachine.h>
Parameters: cr Setting value

Example: #include <machine.h>

void main (void)
{
set cr(0x60000000) ;/* Supervisor,RBank=1,BL=0, Imask=0 */

int get_cr(void)

Description: Reads the status register (SR).
Header: <machine.h> or <smachine.h>
Return value: Status register value

Example: #include <machine.h>

void main (void)
{
set _cr(get cr() | 0x1000000); /* Set BL bit */

R20UT0704EJ0102 Rev. 1.02 Page 417 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void set_imask(int mask)

Description: Sets mask (4 bits) to the interrupt mask bits (4 bits).
Header: <machine.h> or <smachine.h>

Parameters: mask Setting value (4 bits)

Example: #include <machine.h>

void main (void)
{
set imask (15);

int get_imask(void)

Description: Reads the interrupt mask bits (4 bits).
Header: <machine.h> or <smachine.h>
Return value: Value of the interrupt mask bits
Example: #include <machine.h>

void main (void)
{
int mask;

mask = get imask();

Page 418 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void set_vbr(void base)

Description: Sets base (32 bits) to the vector base register (VBR).
Header: <machine.h> or <smachine.h>

Parameters: base Setting value

Example: #include <machine.h>

#define VBR 0x0000FCOO0
void main (void)
{

set vbr ((void *)VBR);

void *get_vbr(void)

Description: Reads the vector base register (VBR).
Header: <machine.h> or <smachine.h>
Return value: Value of the vector base register
Example: #include <machine.h>

void main (void)
{
void *vbr;

vbr = get vbr();

R20UT0704EJ0102 Rev. 1.02 Page 419 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void set_gbr(void *base)

Description: Sets base (32 bits) to the global base register (GBR).
Header: <machine.h> or <umachine.h>

Parameters: base Setting value

Example: #include <machine.h>

#define IOBASE 0x05fffecO
void main (void)
{

set gbr((void *)IOBASE);
}

Remarks: As GBR is a control register whose contents are not guaranteed by all functions
in this compiler, take care when changing GBR settings.
This function is invalid when gbr=auto is specified.

void *get_gbr(void)

Description: Reads the global base register (GBR).
Header: <machine.h> or <umachine.h>
Return value: Value of the global base register
Example: #include <machine.h>

void main (void)
{

void *gbr;

gbr = get gbr();
}

Remarks: This function is invalid when gbr=auto is specified.

Page 420 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

unsigned char gbr_read_byte (int offset)

Description:

Header:

Return value:

Reads a byte (8 bits) at the address indicated by adding GBR and the offset
specified.

<machine.h> or <umachine.h>

Byte data (8 bits) reference value

Parameter: offset Offset address
Example: #include <machine.h>

#define BDATA O

void main (void)

{

if (gbr_read byte (BDATA) !=0)

}
Remarks: 1. offset must be a constant.

2. The specifiable range for offset is +255 bytes.

3. This function is invalid when gbr=auto is specified.
R20UT0704EJ0102 Rev. 1.02 Page 421 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

unsigned short gbr_read_word (int offset)

Description: Reads a word (16 bits) at the address indicated by adding GBR and the offset
specified.

Header: <machine.h> or <umachine.h>

Return value: Word data (16 bits) reference value

Parameter: offset Offset address

Example: #include <machine.h>

#define WDATA O
void main (void)
{
if (gbr read word(WDATA) !=0)

Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +510 bytes.
3. This function is invalid when gbr=auto is specified.
Page 422 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

unsigned long gbr_read_long (int offset)

Description:

Header:

Return value:

Reads a longword (32 bits) at the address indicated by adding GBR and the
offset specified.

<machine.h> or <umachine.h>

Longword data (32 bits) reference value

Parameter: offset Offset address
Example: #include <machine.h>

#define LDATA O

void main (void)

{

if (gbr read long(LDATA) !=0)

}
Remarks: 1. offset must be a constant.

2. The specifiable range for offset is +1020 bytes.

3. This function is invalid when gbr=auto is specified.
R20UT0704EJ0102 Rev. 1.02 Page 423 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void gbr_write_byte(int offset, unsigned char data)

Description: Sets a byte (8 bits) at the address indicated by adding GBR and the offset
specified.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
data Setting value (8 bits)

Example: #include <machine.h>

#define BDATA O
void main (void)
{
gbr write byte (BDATA,O) ;

Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +255 bytes.
3. This function is invalid when gbr=auto is specified.

Page 424 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void gbr_write_word(int offset, unsigned short data)

Description: Sets a word (16 bits) at the address indicated by adding GBR and the offset
specified.
Header: <machine.h> or <umachine.h>
Parameter: offset Offset address
data Setting value (16 bits)
Example: #include <machine.h>
#define WDATA 0
void main (void)
{
gbr write word(WDATA,O) ;
}
Remarks: 1. offset must be a constant.
2. The specifiable range for offset is +510 bytes.
3. This function is invalid when gbr=auto is specified.
R20UT0704EJ0102 Rev. 1.02 Page 425 of 1176

Mar 01, 2022

RENESAS

Section 10 C/C++ Language Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

void gbr_write_long(int offset, unsigned long data)

Description:

Header:

Parameter:

Example:

Remarks:

Sets a longword (32 bits) at the address indicated by adding GBR and the

offset specified.
<machine.h> or <umachine.h>

offset Offset address
data Setting value (32 bits)

#include <machine.h>
#define LDATA O
void main (void)
{
gbr write long (LDATA,O);

1. offsets must be a constant.
2. The specifiable range for offset is +1020 bytes.

3. This function is invalid when gbr=auto is specified.

Page 426 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void gbr_and_byte(int offset, unsigned char mask)

Description:

Header:

Parameter:

Example:

Remarks:

ANDs mask and a byte (8 bits) at the address indicated by adding GBR and
the offset specified, and stores the result to the address indicated by adding
GBR and the specified offset.

<machine.h> or <umachine.h>

offset Offset address
mask Data (8 bits)

#include <machine.h>
#define BDATA O
void main (void)
{
gbr and byte (BDATA, 0x01) ;

offsets must be a constant.

The specifiable range for offset is +255 bytes.

The specifiable range for mask is 0 to +255.

This function is invalid when gbr=auto is specified.

b=

R20UT0704EJ0102 Rev. 1.02 Page 427 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void gbr_or_byte(int offset, unsigned char mask)

Description: ORs mask and a byte (8 bits) at the address indicated by adding GBR and the
offset specified, and stores the result to the address indicated by adding GBR
and the specified offset.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
mask Data (8 bits)

Example: #include <machine.h>

#define BDATA O
void main (void)
{
gbr or byte (BDATA, 0x01) ;

Remarks: 1. offsets must be a constant.
2. The specifiable range for offset is +255 bytes.
3. The specifiable range for mask is 0 to +255.
4. This function is invalid when gbr=auto is specified.
Page 428 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void gbr_xor_byte(int offset, unsigned char mask)

Description: Exclusively ORs mask and a byte (8 bits) at the address indicated by adding
GBR and the offset specified, and stores the result to the address indicated by
adding GBR and the specified offset.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
mask Data (8 bits)

Example: #include <machine.h>
#define BDATA 0
void main (void)
{
gbr xor byte (BDATA, 0x01);

Remarks: 1. offsets must be a constant.
2. The specifiable range for offset is +255 bytes.
3. The specifiable range for mask is 0 to +255.
4. This function is invalid when gbr=auto is specified.
R20UT0704EJ0102 Rev. 1.02 Page 429 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

int gbr_tst_byte(int offset, unsigned char mask)

Description:

Header:

Parameter:

Example:

Remarks:

ANDs mask and a byte (8 bits) at the address indicated by adding GBR and
the offset specified, checks whether the result is 0 or not, and sets the T bit
according to the result of the check.

<machine.h> or <umachine.h>

offset Offset address
mask Data (8 bits)

#include <machine.h>
#define BDATA 0
int a;
void main (void)
{
if (gbr_ tst byte (BDATA,0))

a = 0;

mask must be a constant.

The specifiable range for offset is +255 bytes.

The specifiable range for mask is 0 to +255.

This function is invalid when gbr=auto is specified.

b=

GBR Intrinsic Function Example:

#include <machine.h>
#define CDATALl O
#define CDATA2 1
#define CDATA3 2
#define SDATALl 4
#define IDATALl 8
#define IDATA2 12

struct{
char cdatal; /* offset O */
char cdata2; /* offset 1 */
char cdata3; /* offset 2 */
short sdatal; /* offset 4 */

Page 430 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
int idatal; /* offset 8 */
int idata2; /* offset 12 */
ltable;

void f£();

void f ()
{
set_gbr(&table); /* Sets the start address of */
: /* table to GBR. */
gbr write byte(CDATA2, 10);
/* Sets 10 to table.cdata2. */
gbr write long(IDATAZ, 100);
/* Sets 100 to table.idata2. */

if (gbr read byte(CDATA2) != 10)

/* Reads table.cdata2. */
gbr and byte(CDATA2, 10);
/* ANDs 10 and table.cdata2, */
/* and sets it in table.cdata2.*/
gbr or byte(CDATA2, O0xOF);

/* ORs 0xOF and table.cdata2, */
: /* and sets it in table.cdata2.*/
sleep(); /* Expanded to the SLEEP */

/* instruction */
}
R20UT0704EJ0102 Rev. 1.02 Page 431 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Effective Use of GBR Intrinsic Functions:

1. Allocate a frequently accessed object to memory and set the start address of the object to

GBR.

2. Byte data that frequently uses logical operations should be declared within 128 bytes of the
start address of the structure.
As aresult, the load instruction of start address for accessing a structure can be reduced and
load/store instructions necessary for performing logical operation can be reduced.

void sleep(void)

Description:

Header:

Example:

int tas(char *addr)
Description:
Header:

Parameters:

Example:

Expanded to the SLEEP instruction, which makes the CPU enter the low-
power consumption mode.

<machine.h> or <smachine.h>

#include <machine.h>
void main (void)
{

sleep();

Expanded to the TAS.B @Rn instruction.
<machine.h> or <umachine.h>
addr Address specified in the TAS instruction

#include <machine.h>
char a;
void main (void)
{
tas (&a);

Page 432 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

int trapa(int trap_no)

Description: Expanded to TRAPA #trap no.
Header: <machine.h> or <umachine.h>
Parameters: trap_no Trap number
Example: #include <machine.h>

void main (void)
{

trapa (0);
}

Remarks: trap_no should be a constant from 0 to 255.
int trapa_svce(int trap_no, int code, typel paral, type2 para2, type3 para3, type4 para4)

Description: Enables executing HI7000 and other OS system calls. When trapa_svc is
executed, code is specified in RO, and paral to para4 in R4 to R7,
respectively.

Then, TRAPA #trap_no is executed.

Header: <machine.h> or <umachine.h>
Parameters: trap_no Trap number
code Function code
paral to para4 Parameters (0 to 4 variables)

Types typel to type4 are integer type or pointer type.

Example: #include <machine.h>
#define SIG_SEM Oxffc8
void main (void)
{
trapa svc (63, SIG SEM, 0x05);
}

Remarks: trap_no should be a constant from 0 to 255.

R20UT0704EJ0102 Rev. 1.02 Page 433 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void prefetch(void *p)

Description: An area indicated by the pointer (16-byte data from (int)p&Oxfffftft0) is
written to the cache memory.

Header: <machine.h> or <umachine.h>

Parameters: p Prefetch address

Example: #include <machine.h>

char a[l12007];
void main (void)
{
char *pa = a;
prefetch(pa);
}

Remarks: This function is valid only when cpu=sh2a, sh2afpu, sh3, sh3dsp, sh4, sh4a,
or sh4aldsp is specified. This function does not affect the operation of the
program.

void trace(long v)

Description: Supports the software trace function provided by some emulators.
Header: <machine.h> or <umachine.h>

Parameters: v Variable to be specified

Example: #include <machine.h>

void main (void)
{
long v;
trace (v);

}

Remarks: This function is valid only when other than cpu=sh1 is specified.
For details of the software trace function, refer to the user's manual of the
target emulator.
This function is available only during debugging with an emulator connected.
Do not use this function when no emulator is connected.

Page 434 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
void ldtlb(void)

Description: Expanded to the LDTLB instruction.

Header: <machine.h> or <smachine.h>

Example: #include <machine.h>

void main (void)

{

1dtlb () ;
}
Remarks: This function is only valid when cpu=sh3, sh3dsp, sh4, sh4a, or sh4aldsp is
specified.
void nop(void)
Description: Expanded to the NOP instruction.
Header: <machine.h> or <umachine.h>
Example: #include <machine.h>
void main (void)
{
int a;
if (a) |
nop () ;
}
}
R20UT0704EJ0102 Rev. 1.02 Page 435 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

long dmuls_h(long datal, long data2)

Description:

Header:

Example:

Remarks:

Multiplies a pair of signed 32-bit data to produce a signed 64-bit data, and
refers to the upper 32 bits of the product.

<machine.h> or <umachine.h>

#include <machine.h>
extern long datal, dataZ2;
extern long result;
void main (void)
{
result = dmuls h(datal, dataZ2);
}

This function is invalid when cpu= sh1 is specified.

unsigned long dmuls_I(long datal, long data2)

Description:

Header:

Example:

Remarks:

Multiplies a pair of signed 32-bit data to produce a signed 64-bit data, and
refers to the lower 32 bits of the product.

<machine.h> or <umachine.h>

#include <machine.h>
extern long datal, dataZ2;
extern unsigned long result;
void main (void)
{
result = dmuls 1 (datal, data2);
}

This function is invalid when cpu= shl1 is specified.

Page 436 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

unsigned long dmulu_h(unsigned long datal, unsigned long data2)

Description:

Header:

Example:

Remarks:

Multiplies a pair of unsigned 32-bit data to produce an unsigned 64-bit data,
and refers to the upper 32 bits of the product.

<machine.h> or <umachine.h>

#include <machine.h>
extern unsigned long datal, data2;
extern unsigned long result;
void main (void)
{

result = dmulu h(datal, dataZ2);
}

This function is invalid when cpu= sh1 is specified.

unsigned long dmulu_l(unsigned long datal, unsigned long data2)

Description: Multiplies a pair of unsigned 32-bit data to produce an unsigned 64-bit data,
and refers to the lower 32 bits of the product.
Header: <machine.h> or <umachine.h>
Example: #include <machine.h>
extern unsigned long datal, data2;
extern unsigned long result;
void main (void)
{
result = dmulu 1 (datal, data2);
}
Remarks: This function is invalid only when cpu= shl1 is specified.
R20UT0704EJ0102 Rev. 1.02 Page 437 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

unsigned short swapb(unsigned short data)

Description: Exchanges the upper byte and the lower byte in the two-byte data.
Header: <machine.h> or <umachine.h>
Example: #include <machine.h>

extern unsigned short data;
extern unsigned short result;
void main (void)
{
result = swapb (data);
/* For example, when data=0x1234,
the results will be result=0x3412 */

unsigned long swapw(unsigned long data)

Description: Exchanges the upper two bytes and the lower two bytes in the four-byte data.
Header: <machine.h> or <umachine.h>
Example: #include <machine.h>

extern unsigned long data;
extern unsigned long result;
void main (void)
{
result = swapw(data);
/* For example, when data=0x12345678
the results will be result=0x56781234 */

Page 438 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

unsigned long end_cnvl(unsigned long data)

Description: Reverses the order of bytes in the four-byte data.
Header: <machine.h> or <umachine.h>
Example: #include <machine.h>

extern unsigned long data;

extern unsigned long result;

void main (void)

{
result = end cnvl (data);
/* For example, when data=0x12345678 */
/* the results will be result=0x78563412 */

R20UT0704EJ0102 Rev. 1.02 Page 439 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

int macw(short *ptrl,short*ptr2,unsigned int count)
int macwl(short *ptrl,short*ptr2,unsigned int count,unsigned int mask)

Description: Multiplies and accumulates the contents of two data tables.

Header: <machine.h> or <umachine.h>

Return value: Operation result

Parameters: ptrl Start address of data to be multiplied or accumulated
ptr2 Start address of data to be multiplied or accumulated

count Number of times the operation is performed
mask Address mask that corresponds to the ring buffer

Example: #include <machine.h>
short tbll[]={al,a2,a3,ad};
short tbl2[]={bl,b2,b3,b4d};
int resultl,result2;
void main (void)
{
resultl=macw (tbll, tbl2, 3);

/* Executes al*bl + a2*b2 */
/* + a3*b3 */
result2=macwl (tbll,tbl2,4,0xffff£fffb);
/* Executes al*bl + a2*b2 */
/* + a3*bl + a4*b2 */
}
Remarks: This function does not check parameters. Therefore, keep the following in

mind:

a. Tables indicated by ptrl and ptr2 must be aligned on the boundaries of
multiples of 2 bytes.

b. The table indicated by ptr2 in macwl must be aligned on the boundary of
a multiple of (ring buffer mask x 2).

Page 440 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications

int macl(int *ptrl,int*ptr2,unsigned int count)
int macll(int *ptr1,int*ptr2,unsigned int count,unsigned int mask)

Description: Multiplies and accumulates contents of two data tables.

Header: <machine.h> or <umachine.h>

Return value: Operation result

Parameters: ptrl Start address of data to be multiplied or accumulated
ptr2 Start address of data to be multiplied or accumulated
count Number of times the operation is performed
mask Address mask that corresponds to the ring buffer

Example: #include <machine.h>

short tbll[]={al,a2,a3,ad};
short tbl2[]={bl,b2,b3,b4d};
int resultl,result2;
void main (void)
{
resultl=macl (tbll, tbl2, 3);
/* Executes al*bl + a2*b2
/* + a3*b3
result2=macll (tbll,tbl2,4,0xffff£f£f£f7);
/* Executes al*bl + a2*b2
/* + a3*bl + a4*b2

Remarks:

—_—

This function is invalid when the cpu=sh1 is specified.

2. This function does not check parameters. Therefore, keep the following

in mind:

a. Tables indicated by ptrl and ptr2 must be aligned on the

boundaries of multiples of 4 bytes.

b. The table indicated by ptr2 in macll must be aligned on the

boundary of a multiple of (ring buffer mask x 2).

*/
*/

*/
*/

R20UT0704EJ0102 Rev. 1.02 Page 441 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void set_fpscr(int cr)

Description: Sets er (32 bits) to the floating-point status control register FPSCR.
Header: <machine.h> or <umachine.h>

Parameters: cr Setting value (32 bits)

Example: #include <machine.h>

void main (void)
{

set fpscr(0);
}

Remarks: This function is valid only when cpu=sh2e, sh2afpu, sh4, or sh4a is
specified.

int get_fpscr (void)

Description: Refers to the floating-point status control register FPSCR.
Header: <machine.h> or <umachine.h>
Return value: FPSCR value
Example: #include <machine.h>
int cr;

void main (void)
{

cr = get fpscr();
}

Remarks: This function is valid only when cpu=sh2e, sh2afpu, sh4, or sh4a is
specified.

Page 442 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

float fipr(float vect1[4], float vect2[4])

Description:
Header:
Return value:

Parameters:

Example:

Remarks:

Calculates inner product of two vectors.
<machine.h> or <umachine.h>
Operation result

vectl Vector
vect2 Vector

#include <machine.h>
extern float datal[4],data2[4];
float result;
void main (void)
{
result=fipr(datal,data2);
}

This function is valid only when cpu=sh4 or sh4a is specified.

float ftrv(float vecl[4], float vec2[4])

Description: Transforms vecl (vector) by tbl (4x4 matrix), and stores the result to vec2
(vector). Note that tbl needs to be loaded using intrinsic function 1d_ext().
Header: <machine.h> or <umachine.h>
Parameters: vecl Vector
vec2 Vector
Example: #include <machine.h>
extern float tbl[4][4];
extern float datal[4],data2[4];
void main (void)
{
1d_ext (tbl);
ftrv (datal,data?2);
/* As 1=0,1,2,3 the result in data2 will be as */
/* follows: data2[il=datal[0]*tbl[0] [1i]+ */
R20UT0704EJ0102 Rev. 1.02 Page 443 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
/* datal[l]*tbl[1][1] + datall[2]*tbl[2][1] */
/* datal[3]1*tbl[3][1] */
}
Remarks: 1. This function is valid only when cpu=sh4 or sh4a is specified.

2. Intrinsic functions Id_ext() and st_ext() change the floating-point register
bank bit (FR) of the floating-point status control register (FPSCR) to
access the extension registers. Therefore, when using intrinsic function
Id_ext() or st_ext() in an interrupt function, change the interrupt mask
before and after the vector operation intrinsic function as shown in the
following example.

Example
extern float matl([4][4];
extern float vecl[4],vec2([4];
#pragma interrupt (intfunc)

void intfunc () {

1d ext();

}

void normfunc () {

int maskdata=get imask();
set imask (15);

1d ext (matl);

ftrv (vecl,vec?);

set imask(maskdata);

Page 444 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void ftrvadd(float vecl[4], float vec2[4], float vec3[4])

Description: Transforms vecl (vector) by tbl (4x4 matrix), adds the result to vec2 (vector),
then stores the sum to vee3 (vector). Note that tbl needs to be loaded using
intrinsic function 1d_ext().

Header: <machine.h> or <umachine.h>
Parameters: vecl Vector

vec2 Vector

vec3 Vector
Example: #include <machine.h>

extern float tbl[4][4];
extern float datall[4];
extern float data2[4];
extern float data3[4];
void main (void)
{
1d ext(tbl);
ftrvadd (datal,data2,data3);

/* data3 = datal x tbl + data2 */
/* As i=0,1,2,3 the result in data3 will be as */
/* follows: data3([i]=datal[0]*tbl1[0][1] */
/* +datal [1]*tbl1[1][1] */
/* +datal[2]*tbl[2] [1] */
/* +datal [3]*tbl[3][1i] */
/* +data2[i] */
}
Remarks: This function is valid only when cpu=sh4 or sh4a is specified.
R20UT0704EJ0102 Rev. 1.02 Page 445 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void ftrvsub(float vecl1[4], float vec2[4], float vec3[4])

Description:

Header:

Parameters:

Example:

Remarks:

Transforms vecl (vector) by tbl (4x4 matrix), subtracts vec2 (vector) from
the result, then stores the difference to vec3 (vector). Note that tbl needs to
be loaded using intrinsic function 1d_ext().

<machine.h> or <umachine.h>

vecl Vector
vec2 Vector
vec3 Vector

#include <machine.h>
extern float tbl[4][4];
extern float datall[4];
extern float data2[4];
extern float data3[4];
void main (void)
{
1d ext(tbl);
ftrvsub (datal,data2,data3);

/* data3 = datal x tbl - data2 */
/* As i=0,1,2,3 the result in data3 will be as */
/* follows: data3[i]=datal[0]*tbl1[0][1] */
/* +datal[1l]*tbl[1][1] */
/* +datal[2]*tbl[2] [1] */
/* +datal [3]*tbl[3][1i] */
/* -data2[1i] */

}

This function is valid only when cpu=sh4 or sh4a is specified.

Page 446 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void add4(float vecl|[4], float vec2[4], float vec3[4])

Description: Stores the sum of vecl (vector) and vec2 (vector) to vec3 (vector).
Header: <machine.h> or <umachine.h>
Parameters: vecl Vector
vec2 Vector
vec3 Vector
Example: #include <machine.h>

extern float datall4];
extern float data2[4];
extern float data3[4];
void main (void)
{
add4 (datal,data2,data3’) ; /* data3 = datal + data2 */
}

Remarks: This function is valid only when cpu=sh2afpu, sh4, or sh4a is specified.

void sub4(float vecl|[4], float vec2[4], float vec3[4])

Description: Stores the difference between vecl (vector) and vec2 (vector) to vee3 (vector).
Header: <machine.h> or <umachine.h>
Parameters: vecl Vector
vec2 Vector
vec3 Vector
Example: #include <machine.h>

extern float datall4];
extern float data2([4];
extern float data3[4];
void main (void)
{
sub4 (datal,data2,data3); /* data3 = datal - data2 */
}

Remarks: This function is valid only when cpu=sh2afpu, sh4, or sh4a is specified.

R20UT0704EJ0102 Rev. 1.02 Page 447 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void mtrx4mul(float matl1[4], float mat2[4])

Description: Transforms mat1 (4x4 matrix) by tbl (4x4 matrix), and stores the result to
mat2.
Note that tbl needs to be loaded using intrinsic instruction 1d_ext().

Header: <machine.h> or <umachine.h>

Parameters: matl 4x4 matrix
mat2 4x4 matrix

Example: #include <machine.h>

extern float tbl[4][4];
extern float tbl1[4][4];
extern float tbl2[4][4];
void main (void)
{
1d ext(tbl);
mtrx4mul (tbll, tbl2); /* tbl2 = tbll x tbl */
}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

This function is 4x4 matrix operation and therefore is not commutative.

Example

extern float matA[][];
extern float matB[][];
int judge () {
float datal[4][4], data2[4]1[4];
set imask (15);
1d ext (matha) ;
mtrx4mul (matB,datal);/* datal=matB x matA */
1d ext (matB) ;
mtrx4mul (matA,data?);/* data2=matA x matB */
/* elements of datal[][] and data2[][] do */

/* not necessarily match. */

Page 448 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void mtrx4muladd(float mat1[4], float mat2[4], float mat3[4])

Description: Transforms matl (4x4 matrix) by tbl (4x4 matrix), adds the result of mat2 (4x4
matrix), and stores the sum to mat3 (4x4 matrix).
Note that tbl needs to be loaded using intrinsic instruction 1d_ext().

Header: <machine.h> or <umachine.h>

Parameters: matl 4x4 matrix
mat2 4x4 matrix
mat3 4x4 matrix

Example: #include <machine.h>

extern float tbl[4]([4];
extern float tbl1(4][4];
extern float tbl2[(4][4];
extern float tbl3[4][4];
void main (void)
{

1d ext(tbl);

mtrx4muladd (tbll,tbl2, tbl3);

/* thbl3 = tbll x tbl +tbl2 */

}

Remarks: This function is valid only when cpu=sh4 or sh4a is specified.

This function is 4x4 matrix operation and therefore is not commutative.

R20UT0704EJ0102 Rev. 1.02 Page 449 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

void mtrx4mulsub(float mat1[4], float mat2[4], float mat3[4])

Description:

Header:

Parameters:

Example:

Remarks:

<machine.h> or <umachine.h>

matl 4x4 matrix
mat2 4x4 matrix
mat3 4x4 matrix

#include <machine.h>
extern float tbl[4][4];
extern float tbl1[4][4];
extern float tbl2[4][4];
extern float tbl3[4][4];
void main (void)
{
1d ext(tbl);
mtrx4mulsub (tbll,tbl2, tbl3);

/* tbl3

}

Transforms matl (4x4 matrix) by tbl (4x4 matrix), subtracts mat2 (4x4 matrix)
from the result, and stores the difference to mat3 (4x4 matrix).
Note that tbl needs to be loaded using intrinsic instruction 1d_ext().

= tbll x tbl - tbl2 */

This function is valid only when cpu=sh4 or sh4a is specified.

This function is 4x4 matrix operation and therefore is not commutative.

Page 450 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void 1d_ext(float mat[4] [4])

Description: Loads mat (4x4 matrix) to extension register.
Header: <machine.h> or <umachine.h>

Parameters: mat 4x4 matrix

Example: #include <machine.h>

extern float tbl[4][4];
void main (void)
{
1d _ext (tbl);
}

Remarks: 1. This function is valid only when cpu=sh4 or sh4a is specified.
2. Intrinsic function 1d_ext() changes the floating-point register bank bit
(FR) of the floating-point status control register (FPSCR) to access
extension register. Therefore, when this function is used in an interrupt
function, change the interrupt mask before and after the vector operation
intrinsic function.

void st_ext(float mat[4] [4])

Description: Stores contents of extension register to mat (4x4 matrix).
Header: <machine.h> or <umachine.h>

Parameters: mat 4x4 matrix

Example: #include <machine.h>

extern float tbl[4][4];
void main (void)
{

st ext (tbl);

R20UT0704EJ0102 Rev. 1.02 Page 451 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Remarks:

1. This function is valid only when cpu=sh4 or sh4a is specified.

2. Intrinsic function st_ext() changes the floating-point register bank bit
(FR) of the floating-point status control register (FPSCR) to access the
extension register. Therefore, when this function is used in an interrupt
function, change the interrupt mask before and after the vector operation
intrinsic function.

long __fixed pabs_If (long _ _fixed data)
long _ _accum pabs_la (long __accum data)

Description:
Header file:
Return values:
Parameters:

Example:

Remarks:

Computes the absolute value of a number.

<machine.h> or <umachine.h>

Operation result

data Data of which absolute value is to be computed

#include <machine.h>
long fixed result;
long -~ _fixed ptr;
void main (void)
{

result=pabs 1f (ptr);

This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

If the result cannot be expressed as a type of return value (long __ fixed or
long _accum), correct operation is not guaranteed.

Page 452 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

_ _fixed pdmsb_If (long _ _fixed data)
_ _fixed pdmsb_la (long _ _accum data)

Description: Detects the MSB (computes the shift count necessary to normalize data).
Header file: <machine.h> or <umachine.h>

Return values: Operation result

Parameters: data Data of which MSB is to be detected

Example: #include <machine.h>

__fixed result;
long = fixed ptr;
void main (void)
{
result=pdmsb 1f (ptr);

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

R20UT0704EJ0102 Rev. 1.02 Page 453 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

long _ _fixed psha_If (long _ _fixed data,int count)
long __accum psha_la (long _ _accum data,int count)

Description:
Header file:
Return values:

Parameters:

Example:

Remarks:

Shifts data arithmetically.
<machine.h> or <umachine.h>
Operation result

data Data to be shifted arithmetically
count Shift count

#include <machine.h>
long = fixed result;
long _ fixed ptr;
int count;
void main (void)
{
result=psha 1f (ptr,count);
}

This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

The specifiable range for count is -32 to +32. When a positive value is
specified, data is shifted to the left. When a negative value is specified, data
is shifted to the right up to its absolute value. If the specified value is out of
range, the behavior is not guaranteed.

Page 454 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

long _ _fixed long_as_Ifixed (long data)
long Ifixed_as_long (long _ _fixed data)

Description: Copies a bit pattern (copy between a general register and a DSP register).
Header file: <machine.h> or <umachine.h>
Return values: Copy result
Parameters: data Data to be copied
Example: #include <machine.h>
long = fixed result;
long ptr;

void main (void)
{
result=long as lfixed(ptr);

}

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

_ _accum rndtoa (long _ _accum data)
_ _fixed rndtof (long _ _fixed data)

Description: Rounds data.

Header file: <machine.h> or <umachine.h>
Return values: Operation result

Parameters: data Data to be rounded
Example: #include <machine.h>

__accum result;
long accum ptr;
void main (void)
{
result=rndtoa (ptr);

R20UT0704EJ0102 Rev. 1.02 Page 455 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Remarks:

void set_circ_x (_
void set_circ_y (_

Description:
Header file:

Parameters:

Example:

Remarks:

This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

_X__circ __fixed array]|],size_t size)
Y _circ _ _fixed array]|],size_t size)

Specifies modulo addressing.
<machine.h> or <smachine.h>

array[] Data to which modulo addressing is to be applied
size Data size

#include <machine.h>
_ _circ X fixed input[4] = {0.0r, 0.25r, 0.5r, 0.25r};
Y fixed output[8];

void main (void)

{
int i;
set_circ_x(input, sizeof (input)); /* Specifies modulo addressing. */
for (1 = 0; 1 < 8; i++) {
output[i] = input[i];
}

clr_circ(); /* Cancels modulo addressing. */

This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

Page 456 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void clr_cire ()

Description: Cancels modulo addressing.
Clears SR bits 10 and 11 counted from the right to zero.
Header file: <machine.h> or <smachine.h>
IExarnple: #include <machine.h>
_ _circ X _ _fixed input[4] = {0.0r, 0.25r, 0.5r, 0.25r};
Y fixed output([8];
void main (void)
{
int i;
set_circ x(input, sizeof (input)); /* Specifies modulo addressing. */
for (1 = 0; 1 < 8; i++) |
output[i] = input[i];
}
clr _circ(); /* Cancels modulo addressing. */
}
Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.
R20UT0704EJ0102 Rev. 1.02 Page 457 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void set_cs (unsigned int mode)

Description: Specifies the CS bit value.
Header file: <machine.h> or <umachine.h>
Parameters: mode Mode to be specified (0 to 5)
Specified Value Mode
0 Carry/borrow mode
1 Negative mode
2 Zero mode
3 Overflow mode
4 Signed greater mode
5 Signed equal or greater mode
Example: #include <machine.h>

#define MODE 1
void main (void)
{

set cs(MODE) ;

Remarks: This function is valid only when cpu= sh2dsp, sh3dsp, sh4aldsp, and dspc
are specified.

Page 458 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

void fsca(long angle,float *sinv,float *cosv)

Description: Computes the approximate values of the sine and cosine from the angle
specified by angle and stores the results in an area specified by sinv and cosv.
Header file: <machine.h> or <umachine.h>
Parameters: angle Angle from which the sine and cosine are to be obtained
(Specify a bit image for angle when a long-type 32-bit area is
expressed as the fixed-point data with a decimal point at the right
of 2! bits.)
sinv Address to store the obtained sine value
cosv Address to store the obtained cosine value
Example: #include <machine.h>
long angle = (45<<16)/360; /* 45 degrees */
float sinv;
float cosv;
void main (void)
{
fsca(angle, &sinv, &cosv) ;
}
Remarks: This function is valid only when cpu=sh4a is specified.
R20UT0704EJ0102 Rev. 1.02 Page 459 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

float fsrra (float data)

Description:
Header file:
Parameters:
Return values:

Example:

Remarks:

void icbi (void *p)
Description:
Header file:
Parameters:

Example:

Remarks:

Computes the approximate values of the inverse of the square root of a value.
<machine.h> or <umachine.h>

data Data of which inverse of the square root is to be computed
Operation result

#include <machine.h>
float data;

float result;

void main (void)

{

result=fsrra (data);

This function is valid only when cpu=sh4a is specified.

Invalidates the instruction cache.
<machine.h> or <umachine.h>
p Address of a variable or a function

#include <machine.h>
extern int *p;
void main (void)
{
icbi(p);

This function is valid only when cpu=sh4a or sh4aldsp is specified.

Page 460 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

void ocbi (void *p)
void ocbp (void *p)

void ocbwb (void *p)

Description:

Header file:
Parameters:

Example:

Remarks:

Operates the cache block.

ocbi: Invalidates the cache block
ocbp: Purges the cache block
ocbwb: Writes back the cache block

<machine.h> or <umachine.h>
p Address of a variable or a function

#include <machine.h>
extern int *p;
void main (void)
{
ocbi (p);

This function is valid only when cpu=sh4, sh4a, or sh4aldsp is specified.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 461 of 1176

Section 10 C/C++ Language Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

void prefi (void *p)

Description:

Header file:
Parameters:

Example:

Remarks:

void synco (void)

Description:

Header file:

Example:

Remarks:

Reads a 32-byte instruction block located at a 32-byte boundary into the
instruction cache.

<machine.h> or <umachine.h>
p Prefetch address

#include <machine.h>
void *pa;
void main (void)
{
prefi(pa);

This function is valid only when cpu=sh4a or sh4aldsp is specified.

This function is expanded into a SYNCO instruction. A SYNCO instruction
synchronizes data operation so that the instructions issued before the
SYNCO instruction are completed before the instructions after the SYNCO
instruction are started.

<machine.h> or <umachine.h>

#include <machine.h>
void main (void)
{

synco () ;

This function is valid only when cpu=sh4a or sh4aldsp is specified.

Page 462 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

int movt (void)

Description: Refers to the value of T bit in SR.
Header file: <machine.h> or <umachine.h>
Return values: T bit value

Example: #include <machine.h>

extern int sr t;
void main (void)
{

sr_t = movt();

void clrt (void)

Description: Clears the T bit in SR.

Header file: <machine.h> or <umachine.h>
Example: #include <machine.h>

void main (void)

{

clrt();
}
void sett (void)
Description: Sets the T bit in SR.
Header file: <machine.h> or <umachine.h>
Example: #include <machine.h>

void main (void)
{
sett();

R20UT0704EJ0102 Rev. 1.02 Page 463 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

unsigned long xtrct (unsigned long datal, unsigned long data2)

Description:

Header file:

Parameters:

Return values:

Example:

Extracts middle 32 bits from 64-bit data obtained by combining datal and
data2.

<machine.h> or <umachine.h>

datal Upper 32 bits of data
data2 Lower 32 bits of data

(lower 16 bits of datal):(upper 16 bits of data2)

#include <machine.h>
extern unsigned long result,datal,data2;
void main (void)
{
result = xtrct(datal,data2);

long addc (long datal, long data2)

Description:
Header file:

Parameters:

Return values:

Example:

Adds datal, data2, and T bit, and sets the carry to the T bit.
<machine.h> or <umachine.h>

datal Data 1 for addition
data2 Data 2 for addition

Addition result

#include <machine.h>
extern long result,datal,dataZ2;
void main ()
{
result = addc(datal,dataZ2?);

Page 464 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Remarks:

As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.

if (a) {...} /* Sets comparison result to T bit */
result[1] = addc(datal[1], data2[1]); /* Adds comparison result */

result[0] = addc(datal[0], data2[0]); /* Reflects previous operation result */

int ovf_addc (long datal, long data2)

Description:
Header file:

Parameters:

Return values:

Example:

Remarks:

Adds datal, data2, and T bit, and refers to the carry.
<machine.h> or <umachine.h>

datal Data 1 for addition
data2 Data 2 for addition

Carry

#include <machine.h>
extern long result,datal,dataZ2;
void main ()
{
if (ovf addc(datal,data2)) {

result = 0;

}

As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.

if (a) {...} /* Sets comparison result to T bit */
if (ovf_addc(datal,data2)) { /* Adds comparison result */

R20UT0704EJ0102 Rev. 1.02 Page 465 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

long addv (long datal, long data2)

Description:
Header file:

Parameters:

Return values:

Example:

Adds datal and data2, and sets the carry to the T bit.
<machine.h> or <umachine.h>

datal Data 1 for addition
data2 Data 2 for addition

Addition result

#include <machine.h>
extern long result,datal,dataZ2;
void main ()
{
result = addv(datal,data2);

int ovf_addv (long datal, long data2)

Description:
Header file:

Parameters:

Return values:

Example:

Adds datal and data2, and refers to the carry.
<machine.h> or <umachine.h>

datal Data 1 for addition
data2 Data 2 for addition

Carry

#include <machine.h>
extern long result,datal,dataZ2;
void main ()
{
if (ovf addv(datal,data2)) {

result = 0;

Page 466 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

long subc (long datal, long data2)

Description:
Header file:

Parameters:

Return values:

Example:

Remarks:

Subtracts data2 and T bit from datal, and sets the borrow to the T bit.
<machine.h> or <umachine.h>

datal Data 1 for subtraction
data2 Data 2 for subtraction

Subtraction result

#include <machine.h>
extern long result,datal,dataZ2;
void main ()
{

result = subc(datal,data2);
}

As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.

if (a) {...} /* Sets comparison result to T bit */
result[0] = subc(datal[0], data2[0]); /* Subtracts comparison result */
result[1] = subc(datal[1], data2[1]); /* Reflects previous operation result */

R20UT0704EJ0102 Rev. 1.02 Page 467 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

int unf_subc (long datal, long data2)

Description: Subtracts data2 and T bit from datal, and refers to the borrow.
Header file: <machine.h> or <umachine.h>
Parameters: datal Data 1 for subtraction

data2 Data 2 for subtraction
Return values: Borrow

Example: #include <machine.h>
extern long result,datal,dataZ2;
void main ()
{
if (unf subc(datal,data2)) {

result = 0;

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.

if (a) {...} /* Sets comparison result to T bit */
if (unf subc(datal,data2)) { /* Subtracts comparison result */
Page 468 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

long subv (long datal, long data2)

Description: Subtracts data2 from datal, and sets the borrow to the T bit.
Header file: <machine.h> or <umachine.h>
Parameters: datal Data 1 for subtraction
data2 Data 2 for subtraction
Return values: Subtraction result
Example: #include <machine.h>

extern long result,datal,dataZ2;
void main ()

{

result = subv(datal,dataZ2);

int unf_subv (long datal, long data2)

Description: Subtracts data2 from datal, and refers to the borrow.
Header file: <machine.h> or <umachine.h>
Parameters: datal Data 1 for subtraction
data2 Data 2 for subtraction
Return values: Borrow
Example: #include <machine.h>

extern long result,datal,dataZ2;
void main ()
{

if (unf subv(datal,data2)) {

result = 0;

R20UT0704EJ0102 Rev. 1.02 Page 469 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
long negc (long data)

Description: Subtracts data and T bit from 0, and sets the borrow to the T bit.

Header file: <machine.h> or <umachine.h>

Parameters: data Data

Return values:

Example:

Remarks:

Sign inversion result

#include <machine.h>
extern long result,data;
void main ()
{

result = negc(data);

}

As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.

if (a) {...}

result[0] = negc(data[0]); /* Subtracts comparison result */
result[1] = negc(data[1]); /* Reflects previous operation result */

Page 470 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

unsigned long divl (unsigned long datal, unsigned long data2)

Description:
Header file:

Parameters:

Return values:

Example:

Remarks:

Performs division datal/data2 for one step, and sets the result to the T bit.
<machine.h> or <umachine.h>

datal Dividend
data2 Divisor

Updated dividend value

#include <machine.h>
extern unsigned long datal,data2;
void main (void)
{
divOu () ;
datal = divl (datal,data2);
}

Division can be implemented by repeating this function, but the M, Q, and T
bits must not be modified during the repeat (note that a comparison or shift
operation will modify the T bit).

Execute div0s() or divOu() immediately before this function to initialize the
M, Q, and T bits.

R20UT0704EJ0102 Rev. 1.02 Page 471 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

int div0s (long datal, long data2)

Description:

Header file:

Parameters:

Return values:

Example:

void divOu (void)
Description:
Header file:

Example:

Performs initial settings for signed division datal/data2, and refers to the T
bit.

<machine.h> or <umachine.h>

datal Dividend
data2 Divisor

T bit value

#include <machine.h>

extern long datal,data2;

void main (void)

{
(void)divOs (datal,data?);
datal = divl (datal,data2);

Performs initial settings for unsigned division.
<machine.h> or <umachine.h>

#include <machine.h>
extern unsigned long datal,data2;
void main (void)
{
divOu () ;
datal = divl (datal,data2);

Page 472 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

unsigned long rotl (unsigned long data)

Description:

Header file:

Parameters:

Return values:

Example:

Rotates data to left by one bit, and sets the bit pushed out of the operand to
the T bit.

<machine.h> or <umachine.h>
data Data
Result of 1-bit left rotation

#include <machine.h>
extern unsigned long result,data;
void main ()
{
result = rotl(data);

unsigned long rotr (unsigned long data)

Description:

Header file:

Parameters:

Return values:

Rotates data to right by one bit, and sets the bit pushed out of the operand to
the T bit.

<machine.h> or <umachine.h>
data Data

Result of 1-bit right rotation

Example: #include <machine.h>

extern unsigned long result,data;

void main ()

{

result = rotr(data);

}
R20UT0704EJ0102 Rev. 1.02 Page 473 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

unsigned long rotcl (unsigned long data)

Description: Rotates data including the T bit to left by one bit, and sets the bit pushed out
of the operand to the T bit.

Header file: <machine.h> or <umachine.h>
Parameters: data Data

Return values: Result of 1-bit left rotation
Example: #include <machine.h>

extern unsigned long result,data;
void main ()
{

result = rotcl(data);

}

Remarks: As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.

if (a) {...} /* Sets comparison result to T bit */
result[1] = rotcl(data[1]); /* Rotates comparison result */
Page 474 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

unsigned long rotcr (unsigned long data)

Description:

Header file:

Parameters:

Return values:

Example:

Remarks:

Rotates data including the T bit to right by one bit, and sets the bit pushed out
of the operand to the T bit.

<machine.h> or <umachine.h>
data Data
Result of 1-bit right rotation

#include <machine.h>
extern unsigned long result,data;
void main ()
{
result = rotcr(data);

}

As this function refers to the T bit value, it must be ensured that the T bit
value is correct immediately before this function. If a comparison or shift
operation is written immediately before this function, the T bit reflects the
operation result and this function cannot be executed correctly.

if (a) {...} /* Sets comparison result to T bit */
result[1] = rotcr(data[1]); /* Rotates comparison result */

unsigned long shll (unsigned long data)

Description:

Header file:

Parameters:

Return values:

Example:

Shifts data to left by one bit, and sets the bit pushed out of the operand to the
T bit.

<machine.h> or <umachine.h>
data Data

Result of 1-bit left shift

#include <machine.h>
extern unsigned long result,data;
void main ()
{
result = shll (data);
}

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

/{ Page 475 of 1176
KENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

unsigned long shlr (unsigned long data)

Description:

Header file:
Parameters:

Return values:

Shifts data logically to right by one bit, and sets the bit pushed out of the
operand to the T bit.

<machine.h> or <umachine.h>
data Data

Result of 1-bit right shift

Example: #include <machine.h>
extern unsigned long result,data;
void main ()
{
result = shlr(data);
}
long shar (long data)
Description: Shifts data arithmetically to right by one bit, and sets the bit pushed out of
the operand to the T bit.
Header file: <machine.h> or <umachine.h>
Parameters: data Data

Return values:

Example:

Result of 1-bit right shift

#include <machine.h>
extern long result,data;
void main ()

{

result = shar (data);

Page 476 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

long clipsb (long data)

Description: Returns the value of data when data is in the range from —128 to 127, or
returns the upper limit or lower limit when data is outside the range.

Header file: <machine.h> or <umachine.h>
Parameters: data Data
Return values: —128 (data <—128)
data (—128 <= data <= 127)
127 (127 < data)
Example: #include <machine.h>

extern long result,data;
void main ()
{

result = clipsb(data);
}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.
long clipsw (long data)
Description: Returns the value of data when data is in the range from —32768 to 32767, or

returns the upper limit or lower limit when data is outside the range.

Header file: <machine.h> or <umachine.h>
Parameters: data Data
Return values: —32768 (data <-32768)
data (—32768 <= data <= 32767)
32767 (32767 < data)
Example: #include <machine.h>

extern long result,data;
void main ()
{

result = clipsw(data);

R20UT0704EJ0102 Rev. 1.02 Page 477 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Remarks:

This function is only valid when cpu = sh2a or sh2afpu.

unsigned long clipub (unsigned long data)

Description:

Header file:
Parameters:

Return values:

Example:

Remarks:

Returns the value of data when data is in the range from 0 to 255, or returns
the upper limit when data is outside the range.

<machine.h> or <umachine.h>
data Data

data (data <= 255)
255 (255 < data)

#include <machine.h>
extern unsigned long result,data;
void main ()
{
result = clipub (data);
}

This function is only valid when cpu = sh2a or sh2afpu.

unsigned long clipuw (unsigned long data)

Description:

Header file:
Parameters:

Return values:

Example:

Returns the value of data when data is in the range from 0 to 65535, or
returns the upper limit when data is outside the range.

<machine.h> or <umachine.h>
data Data

data (data <= 65535)
65535 (65535 < data)

#include <machine.h>
extern unsigned long result,data;
void main ()

{

Page 478 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications

result = clipuw(data);

}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

void set_tbr (void *data)

Description: Sets data to TBR.

Header file: <machine.h> or <umachine.h>
Parameters: data Data

Example: #include <machine.h>

void *data;
void main (void)
{
set tbr (data);
}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

void *get_tbr (void)

Description: Refers to the TBR value.
Header file: <machine.h> or <umachine.h>
Return values: TBR value

Example: #include <machine.h>

void *result;
void main (void)
{
result = get tbr();
}

Remarks: This function is only valid when cpu = sh2a or sh2afpu.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page 479 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

void *sr_jsr (void *func, int imask)

Description: Clears the RB and BL bits in the SR, sets the imask value as the interrupt
mask, and then calls the func function. A value form 0 to 15 can be specified
for imask. When 0 is specified for imask, the interrupt mask is not set and
only the RB and BL bits are cleared.

Header file: <machine.h> or <smachine.h>
Return values: None
Example: #include <machine.h>

#pragma interrupt funcl (bank)
extern void func?2 (void);
void funcl (void)

{

sr_jsr(func2, 15);

_funcl:
MOV.L R14,@-R15
STS.L PR, @-R15
STC SSR, @-R15
STC SPC,@-R15
STC SR, R4
MOV.L L11,R1 ; H'CFFFFFOF
MOV #-16,R5 ; H'FFFFFFFO
AND R1,R4 ; Clears the RB and BL bits.
EXTU.B R5,R5
MOV. L L11+4,R14 ; _func2
OR R5,R4 ; Sets the interrupt mask to 15.
LDC R4, SR
JSR @R14
NOP
LDC @R15+, SPC
LDC @R15+, SSR
LDS.L @R15+, PR
MOV . L @R15+,R14
RTE
NOP
Page 480 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Remarks: This function is only valid when cpu = sh3, sh3dsp, sh4, sh4a, or sh4aldsp.
Only a function with a parameter or a return value or the pointer to such a
function can be specified for func.

If all of R8 to R14 are specified in #pragma global register when the

sr_jsr() function is used, an error will be output.

If the sr_jsr() function is used in a function without the bank setting

(interrupt specification), an error will be output.

If a variable set to O is specified for imask, the interrupt mask is set to 0.
void bset(unsigned char *addr, unsigned char bit_num) Manipulate bits in memory
Description: Sets 1 to the specified bit (bit_num) of the specified address (addr). The

values specifiable for bit_num are 0 to 7.
Header: <machine.h> or <umachine.h>
Parameter: *addr Address

bit num Bit
Example: #include <machine.h>

void funcl (void)

{

bset ((unsigned char *) (0xfffe3886),0);

}

After compilation:

MOVI20 #-116602,R14 ; H'FFFE3886

BSET.B #0,@(0,R14)
Remarks: This function is only valid when cpu= sh2a | sh2afpu is specified.
R20UT0704EJ0102 Rev. 1.02 Page 481 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
void belr(unsigned char *addr, unsigned char bit_num) Manipulate bits in memory
Description: Sets 0 to the specified bit (bit num) of the specified address (addr). The

Header:

Parameter:

Example:

Remarks:

values specifiable for bit_num are 0 to 7.
<machine.h> or <umachine.h>

*addr Address
bit_ num Bit

#include <machine.h>
void funcl (void)
{
bclr ((unsigned char *) (0xfffe3886),0);

}

After compilation:
MOVI20 #-116602,R14 ; H'FFFE3886
BCLR.B #0,@(0,R14)

This function is only valid when cpu= sh2a | sh2afpu is specified.

Page 482 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

void beopy(unsigned char *from_addr, unsigned char from_bit_num, unsigned char
*to_addr, unsigned char to_bit num) Manipulate bits in memory

Description:

Header:

Parameter:

Example:

Sets the value of bit [1] (from_bit num) of address [1] (from_addr) to
bit T and bit [2] (to_bit num) of address [2] (to_addr). The values
specifiable for from_bit_num and to_bit_num are 0 to 7.

<machine.h> or <umachine.h>

*from_addr Address [1] (origin)
from bit num Bit [1] (origin)
*to_addr Address [2] (destination)
to_bit num Bit [2] (destination)

To copy the values of different bits at different addresses:

#include <machine.h>

void funcl (void)

{

bcopy ((unsigned char *) (0xfffe3886),
0,
(unsigned char *) (0xfffd388¢6),

1)

}

After compilation:

MOVIZ2O0 #-116602,R14 ; H'FFFE3886
BLD.B #0,@(0,R14)

MOVI20 #-182138,R14 ; H'FFFD3886
BST.B #1,@(0,R14)

RTS/N

To copy the values of different bits at the same address:
#include <machine.h>
void funcl (void)
{
bcopy ((unsigned char *) (0xfffe3886),
0 14
(unsigned char *) (0xfffe3886),
1);

R20UT0704EJ0102 Rev. 1.02 Page 483 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Remarks:

After compilation:

MOVIZ20 #-116602,R14 ; H'FFFE3886
BLD.B #0,Q@(0,R14)

MOVI20 #-182138,R14 ; H'FFFD3886
BST.B #1,Q@(0,R14)

RTS/N

This function is only valid when cpu= sh2a | sh2afpu is specified.

Page 484 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

void bnotcopy(unsigned char *from_addr, unsigned char from_bit_num, unsigned char

*to_addr, unsigned char to_bit num)

Manipulate bits in memory

Description: Sets the inverted value of bit [1] (from_bit num) of address [1]
(from_addr) to bit T and bit [2] (to_bit_num) of address [2] (to_addr).
The values specifiable for from_bit num and to_bit_num are 0 to 7.

Header: <machine.h>

Parameter: *from_addr

or <umachine.h>

Address [1] (origin)

from bit num Bit [1] (origin)

*to_addr
to_bit num

Address [2] (destination)
Bit [2] (destination)

Example: To copy the inverted values of different bits at different addresses:

#include

<machine.h>

void funcl (void)

{

bnotcopy ((unsigned char *) (0xfffe3886),

}

0,
(unsigned char *) (0xfff£fd3886),
1);

After compilation:

MOVI20
BLDNOT.B
MOVI20
BST.B
RTS/N

#-116602,R14 ; H'FFFE3886
#0,Q@(0,R14)
#-182138,R14 ; H'FFFD3886
#1,Q@(0,R14)

To copy the inverted values of specific bits:

#include

<machine.h>

void funcl (void)

{

bnotcopy ((unsigned char *) (0xfffe3886),

1,
(unsigned char *) (0xfffe3886),
1),
}
R20UT0704EJ0102 Rev. 1.02 Page 485 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Remarks:

After compilation:

MOVI20 #-116602,R14 ; H'FFFE3886
BLDNOT.B #1,@(0,R14)

BST.B #1,@(0,R14)

RTS/N

This function is only valid when cpu= sh2a | sh2afpu is specified.

Page 486 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

10.4

10.4.1

C/C++ Libraries

Standard C Libraries

Overview of Libraries

This section describes the specifications of the C library functions, which can be used generally in
C/C++ programs. This section gives an overview of the library configuration, and describes the
layout and the terms used in this library function description.

(1) Library Types

A library implements standard processing such as input/output and string manipulation in the
form of C/C++ language functions. Libraries can be used by including standard include files
for each unit of processing.

Standard include files contain declarations for the corresponding libraries and definitions of the
macro names necessary to use them.

Table 10.37 shows the various library types and the corresponding standard include files.

Table 10.37 Library Types and Corresponding Standard Include Files

Standard Include

Library Type Description Files

Program diagnostics Outputs program diagnostic information. <assert.h>

Character handling Handles and checks characters. <ctype.h>

Mathematics Performs numerical calculations such as trigonometric <math.h>
functions. <mathf.h>

Non-local jumps Supports transfer of control between functions. <setjmp.h>

Variable arguments Supports access to variable arguments for functions <stdarg.h>
with such arguments.

Input/output Performs input/output handling. <stdio.h>

General utilities Performs C program standard processing such <stdlib.h>
as storage area management.

String handling Performs string comparison, copying, etc. <string.h>

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 487 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

In addition to the above standard include files, standard include files consisting solely of macro
name definitions, shown in table 10.38, are provided to improve programming efficiency.

Table 10.38 Standard Include Files Comprising Macro Name Definitions

Standard Include File Description

<stddef.h> Defines macro names used by the standard include files.

<float.h> Defines various limit values relating to the internal representation of
floating-point numbers.

<limits.h> Defines various limit values relating to compiler internal processing.

<errno.h> Defines the value to set in errno when an error is generated in a library
function.

<fixed.h> Defines various limit values relating to the internal representation of fixed-

point numbers.

(2) Organization of Library Part

The organization of the library part of this manual is described below.

Library functions are categorized for each standard include file, and descriptions are given for
each standard include file. For each category, there is first a description relating to the macro
names and function declarations defined in the standard include file (figure 10.4), followed by
a description of each function (figure 10.5).

Figure 10.4 shows the standard include file description layout, and figure 10.5, the function
description layout.

<standard include file name>

Summarizes the overall function of this standard include file.

Describes names defined or declared in this standard include file according to the name
categories such as [Type], [Constant], [Variable], and [Function]. For macro names, (macro) is
always attached beside the name category or name description.

Adds description if implementation-defined specifications are included or notes common to the

functions declared in this standard include file are given.

Figure 10.4 Layout of Standard Include File Description

Page 488 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Function name
Description:
Header file:

Return value:

Parameters:

Example:

Error conditions:

Remarks:

Describes the library function.

Shows the name of standard include file to be declared.

Normal: Shows the return value when the library function ends normally.
Abnormal: Shows the return value when the library function ends abnormally.
Indicates the meanings of the parameters.

Describes the calling procedure.

Conditions for the occurrence of errors that cannot be

determined from the return value in library function processing.

If such an error occurs, the value defined in each compiler for the error type is set
in errno®.

Details the library function specifications.

Implementation define:

The compiler processing method.

Figure 10.5 Layout of Function Description

Note: errno is a variable that stores the error type if an error occurs during execution of a library
function. See section 10.4.1, descriptions for <stddef.h>, for details.

(3) Terms Used in Library Function Descriptions

(a) Stream input/output

In data input/output, it would lead to poor efficiency if each call of an input/output function,
which handles a single character, drove the input/output device and the OS functions. To
solve this problem, a storage area called a buffer is normally provided, and the data in the
buffer is input or output at one time.

From the viewpoint of the program, on the other hand, it is more convenient to call
input/output functions for each character.

Using the library functions, character-by-character input/output can be performed
efficiently without awareness of the buffer status within the program by automatically
performing buffer management.

R20UT0704EJ0102 Rev. 1.02 Page 489 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Those library functions enable a programmer to write a program considering the
input/output as a single data stream, making the programmer be able to implement data
input/output efficiently without being aware of the detailed procedure. Such capability is
called stream input/output.

(b) FILE structure and file pointer
The buffer, and other information, required for the stream input/output described above are
stored in a single structure, defined by the name FILE in the <stdio.h> standard include file.

In stream input/output, all files are handled as having a FILE structure data structure. Files
of this kind are called stream files. A pointer to this FILE structure is called a file pointer,
and is used to specify an input/output file.
The file pointer is defined as

FILE *fp;
When a file is opened by the fopen function, etc., the file pointer is returned. If the open
processing fails, NULL is returned. Note that if a NULL pointer is specified in another
stream input/output function, that function will end abnormally. When a file is opened, the
file pointer value must be checked to see whether the open processing has been successful.

(c¢) Functions and macros
There are two library function implementation methods: functions and macros.

A function has the same interface as an ordinary user-written function, and is incorporated
during linkage. A macro is defined using a #define statement in the standard include file
relating to the function.

The following points must be noted concerning macros:

(i) Macros are expanded automatically by the preprocessor, and therefore a macro
expansion cannot be invalidated even if the user declares a function with the same name.

(i1) If an expression with a side effect as a macro parameter (assignment expression,
increment, decrement) is specified, its result is not guaranteed.

Example: Macro definition of MACRO that calculates the absolute value of a
parameter, is as follows

If the following definition is made:

#define MACRO (a) (a) > 0 2 (a) : -(a)

and if

X=MACRO (a++)

is in the program, the macro will be expanded as follows:

X = (a++) >= 0 ? (a++) : —-(a++)

a will be incremented twice, and the resultant value will be different from the absolute
value of the initial value of a.

Page 490 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

(d) EOF
In functions such as getc, getchar, and fgetc, which input data from a file, EOF is the
value returned at end-of-file. The name EOF is defined in the <stdio.h> standard include
file.
(e) NULL
This is the value when a pointer is not pointing at anything. The name NULL is defined in
the <stddef.h> standard include file.
(f) Null character
The end of a string literal in C is indicated by the characters \0. String parameters in
library functions must also conform to this convention. The characters \0 indicating the
end of a string are called null characters.
(g) Return code
With some library functions, a return value is used to determine the result (such as whether
the specified processing succeeded or failed). In this case, the return value is called as the
return code.
(h) Text files and binary files
Many systems have special file formats to store data. To support this facility, library
functions have two file formats: text files and binary files.
(1) Text files
A text file is used to store ordinary text, and consists of a collection of lines. In text file
input, the new-line designator (\n) is input as a line separator. In output, output of the
current line is terminated by outputting the new-line designator (\n). Text files are used
to input/output files that store standard text for each system. With text files, characters
input or output by a library function do not necessarily correspond to a physical stream
of data in the file.
(i1) Binary files
A binary file is configured as a row of byte data. Data input or output by a library
function corresponds to a physical list of data in the file.
(1) Standard input/output files
Files that can be used as standard by input/output library functions by default without
preparations such as opening file are called standard input/output files. Standard
input/output files comprise the standard input file (stdin), standard output file (stdout), and
standard error output file (stderr).
(i) Standard input file (stdin)
Standard file to be input to a program.
(i1) Standard output file (stdout)

Standard file to be output from a program.

R20UT0704EJ0102 Rev. 1.02 Page 491 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

(ii1) Standard error output file (stderr)
Standard file for storing output of error messages, etc., from a program.
(j) Floating-point numbers

Floating-point numbers are numbers represented by approximation of real-numbers. Ina C
source program, floating-point numbers are represented by decimal numbers, but inside the
computer they are normally represented by binary numbers.

In the case of binary numbers, the floating-point representation is as follows:

2™ x m (n: integer, m: binary fraction)

Here, n is called the exponent of the floating-point number, and m is called the mantissa.
The number of bits to represent n and m is normally fixed so that a floating-point number
can be represented using a specific data size.

Some terms relating to floating-point numbers are explained below.

(1) Radix
An integer value indicating the number of distinct digits in the number system used by
a floating-point number (10 for decimal, 2 for binary, etc.). The radix is normally 2.
(i1) Rounding
Rounding is performed when an intermediate result of an operation of higher precision
than a floating-point number is stored as a floating-point number. There is rounding
up, rounding down, and half-adjust rounding (i.e., rounding up fractions over 1/2 and
rounding down fractions under 1/2; or, in binary representation, rounding down 0 and
rounding up 1).
(iii) Normalization
When a floating-point number is represented in the form 21 x m, the same number can
be represented in different ways.
Example: The following two expressions represent the same value.
25%1.0 @) ((2) indicates a binary number)
26 % 0.1 ¥
Usually, a representation in which the leading digit is not 0 is used, in order to secure
the number of valid digits. This is called a normalized floating-point number, and the
operation that converts a floating-point number to this kind of representation is called
normalization.

Page 492 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

(iv) Guard bit
When saving an intermediate result of a floating-point operation, data one bit longer
than the actual floating-point number is normally provided in order for rounding to be
carried out. However, this alone does not permit an accurate result to be achieved in
the event of digit dropping, etc. For this reason, the intermediate result is saved with
an extra bit, called a guard bit.

(k) File access mode

This is a string that indicates the kind of processing to be carried out on a file when it is
opened. There are 12 different strings, as shown in table 10.39.

Table 10.39 File Access Modes

Access Mode Meaning

Open text file for reading

Open text file for writing

a Open text file for addition

'rb’ Open binary file for reading

'wb' Open binary file for writing

‘ab’ Open binary file for addition

r+' Open text file for reading and updating
'w+' Open text file for writing and updating
‘at' Open text file for addition and updating
r+b' Open binary file for reading and updating
‘Wb’ Open binary file for writing and updating
'‘atb’ Open binary file for addition and updating

() Implementation definition
Definitions differ by compilers.
(m)Error indicator and end-of-file indicator

The following two data items are held for each stream file: (1) an error indicator that
indicates whether or not an error has occurred during file input/output, and (2) an end-of-
file indicator that indicates whether or not the input file has ended.

These data items can be referenced by the ferror function and the feof function,
respectively.

R20UT0704EJ0102 Rev. 1.02 Page 493 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

With some functions that handle stream files, error occurrence and end-of-file information
cannot be obtained from the return value alone. The error indicator and end-of-file
indicator are useful for checking the file status after execution of such functions.

(n) File position indicator
Stream files that can be read or written at any position within the file, such as disk files,

have an associated data item called a file position indicator that indicates the current
read/write position within the file.

File position indicators are not used with stream files that do not permit the read/write
position within the file to be changed, such as terminals.

(4) Notes on use of libraries
(a) The contents of macros defined in a library differ for each compiler.

When a library is used, the behavior is not guaranteed if the contents of these macros are
redefined.

(b) With libraries, errors are not detected in all cases. The behavior is not guaranteed if library
functions are called in a form other than those shown in the descriptions in the following
sections.

<stddef.h>
Defines macro names used in common in the standard include file.

The following macro names are all implementation-defined.

Type Definition Name Description
Type (macro) ptrdiff_t Indicates the type of the result of subtracting two pointers.
size t Indicates the type of the result of an operation using the

sizeof operator.

Constant (macro) NULL Indicates the value when a pointer is not pointing at anything.
This value is such that the result of a comparison with 0
using the equality operator (==) is true.

Variable (macro) errno If an error occurs during library function processing, the error
code defined in the respective library is set in errno. By
setting 0 in errno before calling a library function and
checking the error code set in errno after the library function
processing has ended, it is possible to check whether an
error occurred during the library function processing.

Macro offsetof Obtains the offset in bytes from the beginning of a structure
(type, member) to a structure member.

Page 494 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Implementation Define

Item Compiler Specifications

Value of macro NULL The pointer type value 0 is set to void.
Contents of macro ptrdiff_t int type

<assert.h>

Adds diagnostics into programs.

Type Definition Name Description

Function (macro) assert Adds diagnostics into programs.

To invalidate the diagnostics defined by <assert.h>, define macro name NDEBUG with a #define
statement (#define NDEBUG) before including <assert.h>.

Note: If a #undef statement is used for macro name assert, the result of subsequent assert calls is
not guaranteed.

void assert (int expression)

Description: Adds diagnostics into programs.

Header file: <assert.h>

Parameters: expression Expression to be evaluated.
Example: #include <assert.h>

int expression;

assert (expression);

Remarks: When the expression is true, the assert macro terminates processing without
returning a value. If the expression is false, it outputs diagnostic information to
the standard error file in the form defined by the compiler, and then calls the
abort function.

The diagnostic information includes the parameter's program text, source file
name, and source line numbers.

R20UT0704EJ0102 Rev. 1.02 Page 495 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Implementation define:
The following message is output when the expression is false in assert
(expression):
ASSERTION FAILED:AexpressionAFILEA<file name>,lineA<line number>

<ctype.h>

Performs type determination and conversion for characters.

Type Definition Name Description

Function isalnum Tests for an alphabetic character or a decimal digit.
isalpha Tests for an alphabetic character.
iscntrl Tests for a control character.
isdigit Tests for a decimal digit.
isgraph Tests for a printing character except space.
islower Tests for a lowercase letter.
isprint Tests for a printing character, including space.
ispunct Tests for a special character.
isspace Tests for a space character.
isupper Tests for an uppercase letter.
isxdigit Tests for a hexadecimal digit.
tolower Converts an uppercase letter to lowercase.
toupper Converts a lowercase letter to uppercase.

In the above functions, if the input parameter value is not within the range that can be represented
by the unsigned char type and is not EOF, the operation of the function is not guaranteed.
Character types are listed in table 10.40.

Page 496 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Table 10.40 Character Types

Character Type Description

Uppercase letter Any of the following 26 characters
NUBLCLD B, LG CHL T, UL K, UM, N O P, QL RS
ToUL VLW, XY, 7

Lowercase letter Any of the following 26 characters
@0, e, e, F g W L K T o g s o

v, w, X,Y, Z

Alphabetic character Any uppercase or lowercase letter

Decimal digit Any of the following 10 characters
02, T 8 Y

Printing character A character, including space (‘') that is displayed on the screen
(corresponding to ASCII codes 0x20 to Ox7E)

Control character Any character except a printing character

White-space character Any of the following 6 characters
Space (*’), form feed (\f'), new-line (\n’), carriage return (\r’), horizontal
tab (\t'), vertical tab (‘\v’)

Hexadecimal digit Any of the following 22 characters
‘0,'1,'2,'3,'4,'5,'6’, '7", '8, ‘9,
‘A, 'B,‘'C, D, E,F,
‘a, ‘b, ‘c,'d, ‘e, f
Special character Any printing character except space (‘’), an alphabetic character, or a
decimal digit

Implementation Define

Item Compiler Specifications

The character set inspected by the isalnum Character set represented by the unsigned char type.
function, isalpha function, iscntrl function, Table 10.41 shows the character set that results in a
islower function, isprint function, and true return value.

isupper functions

R20UT0704EJ0102 Rev. 1.02 Page 497 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Table 10.41 True Character

Function Name True Characters
isalnum '0'to'9",'A'to'Z','a' to '7'
isalpha 'A'to'Z','a' to 'Z'

iscntrl \x00' to "\x1f", "\x7f'
islower 'a'to 'z’

isprint "\x20' to "\x7E'

isupper '‘A'to 'Z'

int isalnum (int c)
Description: Tests for an alphabetic character or a decimal digit.
Header file: <ctype.h>

Return values: If character ¢ is an alphabetic character or a decimal digit: Nonzero
If character c is not an alphabetic character or a decimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
int ¢, ret;

ret=isalnum(c) ;

Page 498 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

int isalpha(int c)

Description:
Header file:

Return values:

Parameters:

Example:

int iscntrl (int ¢)

Description:
Header file:

Return values:

Tests for an alphabetic character.
<ctype.h>

If character ¢ is an alphabetic character: Nonzero
If character ¢ is not an alphabetic character: 0

c Character to be tested

#include <ctype.h>
int ¢, ret;

ret=isalpha(c);

Tests for a control character.
<ctype.h>

If character c is a control character: Nonzero
If character ¢ is not a control character: 0

Parameters: C Character to be tested
Example: #include <ctype.h>
int ¢, ret;
ret=iscntrl (c);
R20UT0704EJ0102 Rev. 1.02 Page 499 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

int isdigit (int ¢)
Description: Tests for a decimal digit.
Header file: <ctype.h>

Return values: If character ¢ is a decimal digit: Nonzero
If character ¢ is not a decimal digit: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
int ¢, ret;
ret=isdigit (c);
int isgraph (int c)
Description: Tests for any printing character except space (“).

Header file: <ctype.h>

Return values: If character c¢ is a printing character except space: Nonzero
If character c is not a printing character except space: 0

Parameters: C Character to be tested

Example: #include <ctype.h>
int ¢, ret;

ret=isgraph (c);

Page 500 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

int islower (int c)
Description: Tests for a lowercase letter.
Header file: <ctype.h>

Return values: If character ¢ is a lowercase letter: Nonzero
If character ¢ is not a lowercase letter: 0

Parameters: c Character to be tested

Example: #include <ctype.h>
int ¢, ret;
ret=islower (c);
int isprint (int c)
Description: Tests for a printing character, including space (°).

Header file: <ctype.h>

Return values: If character ¢ is a printing character, including space: Nonzero
If character ¢ is not a printing character, including space: 0

Parameters: C Character to be tested

Example: #include <ctype.h>
int ¢, ret;

ret=isprint (c);

R20UT0704EJ0102 Rev. 1.02 Page 501 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

int ispunct (int c)

Description:
Header file:

Return values:

Parameters:

Example:

Tests for a special character.
<ctype.h>

If character c is a special character: Nonzero
If character ¢ is not a special character: 0

c Character to be tested

#include <ctype.h>
int ¢, ret;

ret=ispunct (c);

int isspace (int c)

Description:
Header file:

Return values:

Tests for a white-space character.
<ctype.h>

If character ¢ is a white-space character: Nonzero
If character ¢ is not a white-space character: 0

Parameters: C Character to be tested
Example: #include <ctype.h>
int ¢, ret;
ret=isspace(c);
Page 502 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

int isupper (int c)

Description:
Header file:

Return values:

Parameters:

Example:

Tests for an uppercase letter.
<ctype.h>

If character ¢ is an uppercase letter: Nonzero
If character c¢ is not an uppercase letter: 0

c Character to be tested

#include <ctype.h>
int ¢, ret;

ret=isupper (c) ;

int isxdigit (int c)

Description:
Header file:

Return values:

Tests for a hexadecimal digit.
<ctype.h>

If character c is a hexadecimal digit: Nonzero
If character c is not a hexadecimal digit: 0

Parameters: C Character to be tested
Example: #include <ctype.h>
int ¢, ret;
ret=isxdigit (c);
R20UT0704EJ0102 Rev. 1.02 Page 503 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

int tolower (int c)
Description: Converts an uppercase letter to the corresponding lowercase letter.
Header file: <ctype.h>

Return values: If character ¢ is an uppercase letter: Lowercase letter
corresponding to character ¢
If character c is not an uppercase letter: Character ¢

Parameters: c Character to be converted

Example: #include <ctype.h>
int ¢, ret;

ret=tolower (c) ;

int toupper (int c)

Description: Converts a lowercase letter to the corresponding uppercase letter.
Header file: <ctype.h>

Return values: If character ¢ is a lowercase letter: Uppercase letter

corresponding to character ¢
If character ¢ is not a lowercase letter: Character ¢

Parameters: c Character to be converted

Example: #include <ctype.h>
int ¢, ret;

ret=toupper (c);

<float.h>
Defines various limits relating to the internal representation of floating-point numbers.

The following macro names are all implementation-defined.

Page 504 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
Type Definition Name Definition Value Description
Constant FLT_RADIX 2 Indicates the radix in exponent
(macro) representation.
FLT_ROUNDS 1 Indicates whether or not the result of an

add operation is rounded off.
The meaning of this macro definition is as
follows:

(1) When result of add operation is
rounded off: Positive value

(2) When result of add operation is
rounded down: 0

(3) When nothing is specified: —1

The rounding-off and rounding-down
methods are implementation-defined.

FLT_GUARD 1 Indicates whether or not a guard bit is
used in multiply operations.
The meaning of this macro definition is as
follows:

(1) When guard bit is used: 1
(2) When guard bit is not used: 0

FLT_NORMALIZE 1 Indicates whether or not floating-point
values are normalized.
The meaning of this macro definition is as
follows:
(1) When normalized: 1

(2) When not normalized: 0

FLT_MAX 3.4028235677973364e Indicates the maximum value that can be
+38F represented as a float type floating-point
value.
DBL_MAX 1.7976931348623158e Indicates the maximum value that can be
+308 represented as a double type floating-
point value.
LDBL_MAX 1.7976931348623158e Indicates the maximum value that can be
+308 represented as a long double type
floating-point value.
FLT_MAX_EXP 127 Indicates the power-of-radix maximum

value that can be represented as a float
type floating-point value.

DBL_MAX_EXP 1023 Indicates the power-of-radix maximum
value that can be represented as a double
type floating-point value.

R20UT0704EJ0102 Rev. 1.02 Page 505 of 1176
Mar 01, 2022 RENESAS

Section 10 C/C++ Language Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Type Definition Name Definition Value

Description

Constant LDBL_MAX_EXP 1023
(macro)

Indicates the power-of-radix maximum
value that can be represented as a long
double type floating-point value.

FLT_MAX_10_EXP 38

Indicates the power-of-10 maximum value
that can be represented as a float type
floating-point value.

DBL_MAX_10_EXP 308

Indicates the power-of-10 maximum value
that can be represented as a double type
floating-point value.

LDBL_MAX_10_ 308
EXP

Indicates the power-of-10 maximum value
that can be represented as a long
double type floating-point value.

FLT_MIN e When -cpu=sh4|sh4a Indicates the minimum positive value that
and -denormalize=off can be represented as a float type

1.1754943508222875 floating-point value.

e-38F

e Other cases
1.4012984643248171

e-45F

DBL_MIN e When -cpu=sh4|sh4a Indicates the minimum positive value that
and -denormalize=off can be represented as a double type

2.2250738585072014 fl0ating-point value.

e-308

e Other cases
4.9406564584124654

e-324

LDBL_MIN e When -cpu=sh4|sh4a Indicates the minimum positive value that
and -denormalize=off can be represented as a long double type

2.2250738585072014 floating-point value.

e-308

e Other cases
4.9406564584124654

e-324

FLT_MIN_EXP

e When -cpu=sh4|sh4a Indicates the power-of-radix minimum

and -denormalize=off value of a floating-point value that can be

-126

e Other cases

-149

represented as a float type positive value.

Page 506 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Type Definition Name Definition Value Description
Constant DBL_MIN_EXP e When -cpu=sh4|sh4a Indicates the power-of-radix minimum
(macro) and -denormalize=off value of a floating-point value that can be

-1022
Other cases
-1074

represented as a double type positive
value.

LDBL MIN_EXP

When -cpu=sh4|sh4a
and -denormalize=off

-1022
Other cases
-1074

Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a long double type positive
value.

FLT_MIN_10_EXP e

When -cpu=sh4|sh4a
and -denormalize=off

-38
Other cases
-44

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a float type positive value.

DBL_MIN_10_EXP e

When -cpu=sh4|sh4a
and -denormalize=off

-308
Other cases
-323

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a double type positive
value.

LDBL_MIN_10_EXP e

When -cpu=sh4|sh4a
and -denormalize=off

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a long double type positive

-308
value.
e Other cases
-323

FLT_DIG 6 Indicates the maximum number of digits in
float type floating-point value decimal-
precision.

DBL_DIG 15 Indicates the maximum number of digits in
double type floating-point value decimal-
precision.

LDBL_DIG 15 Indicates the maximum number of digits in
long double type floating-point value
decimal-precision.

R20UT0704EJ0102 Rev. 1.02 Page 507 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications

Optimizing Linkage Editor

Type

Definition Name

Definition Value

Description

Constant
(macro)

FLT_MANT _DIG

24

Indicates the maximum number of
mantissa digits when a float type floating-
point value is represented in the radix.

DBL_MANT _DIG

53

Indicates the maximum number of
mantissa digits when a double type
floating-point value is represented in the
radix.

LDBL_MANT _DIG

53

Indicates the maximum number of
mantissa digits when a long double type
floating-point value is represented in the
radix.

FLT_EXP_DIG

Indicates the maximum number of
exponent digits when a float type floating-
point value is represented in the radix.

DBL_EXP_DIG

11

Indicates the maximum number of
exponent digits when a double type
floating-point value is represented in the
radix.

LDBL_EXP_DIG

Indicates the maximum number of
exponent digits when a long double type
floating-point value is represented in the
radix.

FLT_POS_EPS
FLT_EPSILON

5.9604648328104311e
-8F

Indicates the minimum floating-point value
x for which 1.0 + x = 1.0 in float type.

DBL_POS_EPS
DBL_EPSILON

1.1102230246251567¢e
-16

Indicates the minimum floating-point value
x for which 1.0 + x = 1.0 in double type.

LDBL_POS_EPS
LDBL_EPSILON

1.1102230246251567¢e
-16

Indicates the minimum floating-point value
x for which 1.0 + x = 1.0 in long double

type.

FLT _NEG_EPS 2.9802324164052156€e Indicates the minimum floating-point value
-8F x for which 1.0 — x # 1.0 in float type.
DBL_NEG_EPS 5.5511151231257834e Indicates the minimum floating-point value

=17

x for which 1.0 — x # 1.0 in double type

LDBL_NEG_EPS

5.5511151231257834¢
-17

Indicates the minimum floating-point value
x for which 1.0 — x = 1.0 in long double

type.

FLT_POS_EPS_EX -23

P

Indicates the minimum integer n for which
1.0 + (radix)" = 1.0 in float type.

DBL_POS_EPS_EX -52

P

Indicates the minimum integer n for which
1.0 +(radix)" # 1.0 in double type.

Page 508 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Type Definition Name Definition Value Description

Constant LDBL_POS_EPS_E -52 Indicates the minimum integer n for which

(macro) XP 1.0 + (radix)" # 1.0 in long double type.
FLT_NEG_EPS_EX -24 Indicates the minimum integer n for which
P 1.0 — (radix)" # 1.0 in float type.
DBL_NEG_EPS_EX -53 Indicates the minimum integer n for which
P 1.0 — (radix)" = 1.0 in double type.
LDBL_NEG_EPS_E -53 Indicates the minimum integer n
XP for which 1.0 — (radix)" = 1.0 in long

double type.
R20UT0704EJ0102 Rev. 1.02 Page 509 of 1176

Mar 01, 2022 RENESAS

Section 10 C/C++ Language Specifications

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

<limits.h>

Defines various limits relating to the internal representation of integer type data.
The following macro names are all implementation-defined.

Type Definition Name Definition Value Description
Constant CHAR_BIT 8 Indicates the number of bits of which char type is
(macro) composed.
CHAR_MAX 127 Indicates the maximum value that a char type
variable can have as a value.
CHAR_MIN -128 Indicates the minimum value that a char type
variable can have as a value.
SCHAR_MAX 127 Indicates the maximum value that a signed char
type variable can have as a value.
SCHAR_MIN -128 Indicates the minimum value that a signed char
type variable can have as a value.
UCHAR_MAX 255U Indicates the maximum value that an unsigned
char type variable can have as a value.
SHRT_MAX 32767 Indicates the maximum value that a short type
variable can have as a value.
SHRT_MIN -32768 Indicates the minimum value that a short type
variable can have as a value.
USHRT_MAX 65535U Indicates the maximum value that an unsigned
short type variable can have as a value.
INT_MAX 217483647 Indicates the maximum value that an int type
variable can have as a value.
INT_MIN —2147483647-1 Indicates the minimum value that an int type
variable can have as a value.
UINT_MAX 4294967295U Indicates the maximum value that an unsigned int
type variable can have as a value.
LONG_MAX 217483647L Indicates the maximum value that a long type
variable can have as a value.
LONG_MIN —2147483647L—-1L Indicates the minimum value that a long type
variable can have as a value.
ULONG_MAX 4294967295U Indicates the maximum value that an unsigned

long type variable can have as a value.

Page 510 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
Type Definition Name Definition Value Description
Constant LLONG_MAX 922337203685477 Indicates the maximum value that a long long
(macro) 5807LL type variable can have as a value.
LLONG_MIN —92233720368547 Indicates the minimum value that a long long type
75807LL-1LL variable can have as a value.
ULLONG_MAX 184467440737095 Indicates the maximum value that an unsigned
51615ULL long long type variable can have as a value.
R20UT0704EJ0102 Rev. 1.02 Page 511 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

<errno.h>

Defines the value to set in errno when an error is generated in a library function.
The following macro names are all implementation-defined.

Type Definition Name Description
Variable errno int type variable. An error number is set when an error is
(macro) generated in a library function.
Constant ERANGE Refer to section 12.3, Standard Library Error Messages.
(macro) EDOM Same as above

ESTRN Same as above

PTRERR Same as above

ECBASE Same as above

ETLN Same as above

EEXP Same as above

EEXPN Same as above

EFLOATO Same as above

EFLOATU Same as above

EDBLO Same as above

EDBLU Same as above

ELDBLO Same as above

ELDBLU Same as above

NOTOPN Same as above

EBADF Same as above

ECSPEC Same as above

EFIXEDO Same as above

EFIXEDU Same as above
Page 512 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 10 C/C++ Language Specifications

Type Definition Name

Description

Constant EACCUMO

Same as above

(macro) EACCUMU

Same as above

ELFIXEDO

Same as above

ELFIXEDU

Same as above

ELACCUMO

Same as above

ELACCUMU

Same as above

EMALRESM

Same as above

EMALFRSM

Same as above

ETOKRESM

Same as above

ETOKFRSM

Same as above

EIOBRESM

Same as above

EIOBFRSM

Same as above

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

Page 513 of 1176

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

<fixed.h>
Defines various limits relating to the internal representation of fixed-point numbers.

The following macro names are all implementation-defined.

Type Definition Name Definition Value Description
Constant FIXED_BIT 16 Indicates the number of bits in a _ _fixed
(macro) type value.
FIXED_MIN (-0.5r-0.5r) Indicates the minimum value that can be
represented by a _ _fixed type variable.
FIXED_MAX 0.999969482421875r Indicates the maximum value that can be

represented by a _ _fixed type variable.

FIXED_EPSILON 0.000030517578125r Indicates the difference between 0.0r and
the minimum value that is greater than
0.0r and can be represented as a _ _fixed

type value.

LFIXED_BIT 32 Indicates the number of bits in a long
_ _fixed type value.

LFIXED_MIN (-0.5R-0.5R) Indicates the minimum value that can be
represented by a long _ _fixed type
variable.

LFIXED_MAX 0.999999999534338712 Indicates the maximum value that can be

6922607421875R represented by a long _ _fixed type
variable.

LFIXED_EPSILON 0.000000000465661287 Indicates the difference between 0.0R and

3077392578125R the minimum value that is greater than

0.0R and can be represented as a long
_ _fixed type value.

ACCUM_BIT 24 Indicates the number of bits in an
___accum type value.
ACCUM_MIN (-128.0a-128.0a) Indicates the minimum value that can be

represented by an _ _accum type variable.

ACCUM_MAX 255.999969482421875a Indicates the maximum value that can be
represented by an _ _accum type variable.

ACCUM_EPSILON 0.000030517578125a Indicates the difference between 0.0a and
the minimum value that is greater than
0.0a and can be represented as an
_ _accum type value.

Page 514 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
Type Definition Name Definition Value Description
Constant LACCUM_BIT 40 Indicates the number of bits in a long

(macro)

_ _accum type value.

LACCUM_MIN (-128.0A-128.0A)

Indicates the minimum value that can be
represented by a long _ _accum type
variable.

LACCUM_MAX 255.99999999953433871
26922607421875A

Indicates the maximum value that can
be represented by a long _ _accum type
variable.

LACCUM_EPSILON 0.0000000004656612873
077392578125A

Indicates the difference between 0.0A
and the minimum value that is greater
than 0.0A and can be represented as a
long _ _accum type value.

R20UT0704EJ0102 Rev. 1.02

Page 515 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

<math.h>

Performs various mathematical operations.
The following macro names are all implementation-defined.

Type Definition Name Description

Constant EDOM
(macro)

Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot
be represented as a double type value, or if overflow or underflow
oCcCcurs.

HUGE_VAL Indicates the value for the function return value if the result of a

function overflows.

Function acos

Computes the arc cosine of a floating-point number.

asin Computes the arc sine of a floating-point number.

atan Computes the arc tangent of a floating-point number.

atan2 Computes the arc tangent of the result of a division of two floating-
point numbers.

cos Computes the cosine of a floating-point radian value.

sin Computes the sine of a floating-point radian value.

tan Computes the tangent of a floating-point radian value.

cosh Computes the hyperbolic cosine of a floating-point number.

sinh Computes the hyperbolic sine of a floating-point number.

tanh Computes the hyperbolic tangent of a floating-point number.

exp Computes the exponential function of a floating-point number.

frexp Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.

Idexp Multiplies a floating-point number by a power of 2.

log Computes the natural logarithm of a floating-point number.

log10 Computes the base-ten logarithm of a floating-point number.

modf Breaks a floating-point number into integral and fractional parts.

pow Computes a power of a floating-point number.

sqrt Computes the positive square root of a floating-point number.

ceil Computes the smallest integral value not less than or equal to the
given floating-point number.

fabs Computes the absolute value of a floating-point number.

floor Computes the largest integral value not greater than or equal to the
given floating-point number.

fmod Computes the floating-point remainder of division of two floating-point

numbers.

Page 516 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Operation in the event of an error is described below.

(1) Domain error
A domain error occurs if the value of a parameter input to a function is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM is set in
errno. The function return value depends on the compiler.

(2) Range error
A range error occurs if the result of a function cannot be represented as a double type value. In
this case, the value of ERANGE is set in errno. If the result overflows, the function returns
the value of HUGE VAL, with the same sign as the correct value of the function. If the result
underflows, 0 is returned as the return value.

Notes

1. If there is a possibility of a domain error resulting from a <math.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.

Example:
1 x=asin (a);
2 if (errno==EDOM)
3 printf ("error\n");
4 else
5 printf ("result is : %$1f\n",x);

In line 1, the arc sine value is computed using the asin function. If the value of parameter a is
outside the domain of the asin function [-1.0, 1.0], the EDOM value is set in errno. Line 2
determines whether a domain error has occurred. If a domain error has occurred, error is output
in line 3. If there is no domain error, the arc sine value is output in line 5.

R20UT0704EJ0102 Rev. 1.02 Page 517 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

2. Whether or not a range error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as a value is used, <math.h> library functions can be
implemented without causing range errors.

3. In the following cases, errno will not be set even though an error has occurred in the function.
(1) cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified and fabs and sqrt functions are used.
(2) cpu=sh2e and double=float are specified and fabs function is used.

Implementation Define

Item Compiler Specifications

Value returned by a mathematical function ifan A not-a-number is returned. For details on the
input parameter is out of the range format of not-a-numbers, refer to section
10.1.3, Floating-Point Number Specifications.

Whether errno is set to the value of macro Not specified
ERANGE if an underflow error occurs in a
mathematical function

Whether a range error occurs if the second A range error occurs.
argument in the fmod function is 0

Page 518 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

double acos (double d)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Remarks:

Computes the arc cosine of a floating-point number.

<math.h>

Normal: Arc cosine of d

Abnormal: In case of domain error: Returns not-a-number.

d Floating-point number for which arc cosine is to be computed

#include <math.h>
double d, ret;

ret=acos (d) ;

A domain error occurs for a value of d not in the range [-1.0, +1.0].

The acos function returns the arc cosine in the range [0, «] by the radian.

double asin (double d)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Computes the arc sine of a floating-point number.

<math.h>

Normal: Arc sine of d

Abnormal: In case of domain error: Returns not-a-number.

d Floating-point number for which arc sine is to be computed

#include <math.h>
double d, ret;

ret=asin(d) ;

A domain error occurs for a value of d not in the range [-1.0, +1.0].

Remarks: The asin function returns the arc sine in the range [-nt/2, +7/2] by the radian.
R20UT0704EJ0102 Rev. 1.02 Page 519 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

double atan (double d)

Description: Computes the arc tangent of a floating-point number.

Header file: <math.h>

Return values: Arc tangent of d

Parameters: d Floating-point number for which arc tangent is to be computed

Example: #include <math.h>
double d, ret;

ret=atan (d) ;

Remarks: The atan function returns the arc tangent in the range (—n/2, +7/2) by the radian.

Page 520 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

double atan2 (double y, double x)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Remarks:

Computes the arc tangent of the division of two floating-point numbers.
<math.h>

Normal: Arc tangent value when y is divided by x

Abnormal: In case of domain error: Returns not-a-number.

X Divisor
y Dividend

#include <math.h>
double x, vy, ret;
ret=atan2 (y, x);

A domain error occurs if the values of both x and y are 0.0.

The atan2 function returns the arc tangent in the range (—m, +7] by the radian.
The meaning of the atan2 function is illustrated in figure 10.6. As shown in the
figure, the result of the atan2 function is the angle between the X-axis and a
straight line passing through the origin and point (x, y). If y = 0.0 and x is
negative, the result is .

If x = 0.0, the result is £n/2, depending on whether y is positive or negative.
Depending on the MCU setting, however, this may lead to a zero division
exception.

x,y)

/— atan2 (y, x)

X

X

Figure 10.6 Meaning of atan2 Function

R20UT0704EJ0102 Rev. 1.02 Page 521 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

double cos (double d)

Description:
Header file:
Return values:
Parameters:

Example:

Computes the cosine of a floating-point radian value.
<math.h>

Cosine of d

d Radian value for which cosine is to be computed

#include <math.h>
double d, ret;

ret=cos (d) ;

double sin (double d)

Description:
Header file:
Return values:
Parameters:

Example:

Computes the sine of a floating-point radian value.
<math.h>

Sine of d

d Radian value for which sine is to be computed

#include <math.h>
double d, ret;
ret=sin(d);

Page 522 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
double tan (double d)

Description: Computes the tangent of a floating-point radian value.

Header file: <math.h>

Return values: Tangent of d
Parameters: d Radian value for which tangent is to be computed

Example: #include <math.h>
double d, ret;
ret=tan (d) ;

double cosh (double d)
Description: Computes the hyperbolic cosine of a floating-point number.
Header file: <math.h>

Return values: Hyperbolic cosine of d

Parameters: d Floating-point number for which hyperbolic cosine is to be
computed
Example: #include <math.h>

double d, ret;
ret=cosh (d) ;

double sinh (double d)
Description: Computes the hyperbolic sine of a floating-point number.
Header file: <math.h>

Return values: Hyperbolic sine of d

Parameters: d Floating-point number for which hyperbolic sine is to be
computed

R20UT0704EJ0102 Rev. 1.02 Page 523 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Example:

#include <math.h>
double d, ret;
ret=sinh (d) ;

double tanh (double d)
Description: Computes the hyperbolic tangent of a floating-point number.
Header file: <math.h>
Return values: Hyperbolic tangent of d
Parameters: d Floating-point number for which hyperbolic tangent is to be

computed
Example: #include <math.h>

double d, ret;
ret=tanh (d) ;

double exp (double d)
Description: Computes the exponential function of a floating-point number.
Header file: <math.h>

Return values:

Parameters:

Example:

Exponential value of d

d Floating-point number for which exponential function is to be
computed

#include <math.h>
double d, ret;
ret=exp (d) ;

Page 524 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

double frexp (double value, double int *e)

Description:
Header file:

Return values:

Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.
<math.h>

If value is 0.0: 0.0
If value is not 0.0: Value of ret defined by ret * 2value pointedtoby e = y3]ye

Parameters: value Floating-point number to be broken into a [0.5, 1.0) value
and a power of 2
e Pointer to storage area that holds power-of-2 value
Example: #include <math.h>
double ret, value;
int *e;
ret=frexp (value, e);
Remarks: The frexp function breaks value into a [0.5, 1.0) value and a power of 2. It
stores the resultant power-of-2 value in the area pointed to by e.
The frexp function returns the return value ret in the range [0.5, 1.0) or as 0.0.
If value is 0.0, the contents of the int storage area pointed to by e and the value
of ret are both 0.0.
R20UT0704EJ0102 Rev. 1.02 Page 525 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

double ldexp (double e, int f)

Description:
Header file:

Return values:

Multiplies a floating-point number by a power of 2.
<math.h>

Result of e * 2f operation

Parameters: e Floating-point number to be multiplied by a power of 2
f Power-of-2 value
Example: #include <math.h>
double ret, e;
int £;
ret=1dexp (e, f);
double log (double d)
Description: Computes the natural logarithm of a floating-point number.
Header file: <math.h>
Return values: Normal: Natural logarithm of d

Parameters:

Example:

Error conditions:

Abnormal: In case of domain error: Returns not-a-number.

d Floating-point number for which natural logarithm is to be
computed

#include <math.h>
double d, ret;
ret=log(d);

A domain error occurs if d is negative.
A range error occurs if d is 0.0.

Page 526 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
double log10 (double d)
Description: Computes the base-ten logarithm of a floating-point number.

Header file:

Return values:

Parameters:

Example:

Error conditions:

<math.h>
Normal: Base-ten logarithm of d
Abnormal: In case of domain error: Returns not-a-number.

d Floating-point number for which base-ten logarithm is to be
computed

#include <math.h>
double d, ret;
ret=10gl0(d) ;

A domain error occurs if d is negative.
A range error occurs if d is 0.0.

double modf (double a, double*b)

Description:
Header file:

Return values:

Breaks a floating-point number into integral and fractional parts.
<math.h>

Fractional part of a

Parameters: a Floating-point number to be broken into integral and fractional
parts

b Pointer indicating storage area that stores integral part
Example: #include <math.h>

double a, *b, ret;

ret=modf (a, b);

R20UT0704EJ0102 Rev. 1.02 Page 527 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

double pow (double x, double y)

Description: Computes a power of floating-point number.
Header file: <math.h>
Return values: Normal: Value of x raised to the power y

Abnormal: In case of domain error: Returns not-a-number.

Parameters: X Value to be raised to a power
y Power value
Example: #include <math.h>

double x, vy, ret;
ret=pow(x, Vy);

Error conditions:
A domain error occurs if x is 0.0 and y is 0.0 or less, or if x is negative and y
is not an integer.

double sqrt (double d)

Description: Computes the positive square root of a floating-point number.
Header file: <math.h>

Return values: Normal: Positive square root of d

Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which positive square root is to
be computed

Example: #include <math.h>
double d, ret;
ret=sqrt(d);

Error conditions:
A domain error occurs if d is negative.

Page 528 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
double ceil (double d)
Description: Returns the smallest integral value not less than or equal to the given floating-

Header file:

Return values:

point number.
<math.h>

Smallest integral value not less than or equal to d

Parameters: d Floating-point number for which smallest integral value not less

than that number is to be computed

Example: #include <math.h>
double d, ret;

ret=ceil (d);

Remarks: The ceil function returns the smallest integral value not less than or equal to d,
expressed as a double. Therefore, if d is negative, the value after truncation of
the fractional part is returned.

double fabs (double d)

Description: Computes the absolute value of a floating-point number.

Header file: <math.h>

Return values:

Absolute value of d

Parameters: d Floating-point number for which absolute value is to be computed
Example: #include <math.h>
double d, ret;
ret=fabs (d) ;
R20UT0704EJ0102 Rev. 1.02 Page 529 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
double floor (double d)
Description: Returns the largest integral value not greater than or equal to the given floating-

Header file:
Return values:

Parameters:

Example:

Remarks:

point number.
<math.h>
Largest integral value not greater than or equal to d

d Floating-point number for which largest integral value not greater
than that number is to be computed

#include <math.h>
double d, ret;
ret=floor (d);

The floor function returns the largest integral value not greater than or equal to
d, expressed as a double. Therefore, if d is negative, the value after rounding-up
of the fractional part is returned.

Page 530 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

double fmod (double x, double y)

Description: Computes the floating-point remainder of division of two floating-point
numbers.
Header file: <math.h>

Return values: Wheny is 0.0: x
When y is not 0.0: Remainder of division of x by y

Parameters: X Dividend
y Divisor
Example: #include <math.h>

double x, vy, ret;
ret=fmod (x, vy);

Remarks: In the fmod function, the relationship between parameters x and y and return
value ret is as follows:

x =y * I+ ret (where I is an integer)
The sign of return value ret is the same as the sign of x.

If the quotient of x/y cannot be expressed, the value of the result is not
guaranteed.

When y is 0.0, depending on the MCU setting, however, this may lead to a zero
division exception.

<mathf.h>

Performs various mathematical operations.

<mathf.h> declares mathematical functions and defines macros in single-precision format. The
mathematical functions and macros used here do not follow the ANSI specifications. Each
function receives a float-type parameter and returns a float-type value.

The following constants (macros) are all implementation-defined.

R20UT0704EJ0102 Rev. 1.02 Page 531 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Type Definition Name Description

Constant EDOM
(macro)

Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot
be represented as a float type value, or if overflow or underflow occurs.
HUGE_VALF Indicates the value for the function return value if the result of a

function overflows.

Function acosf

Computes the arc cosine of a floating-point number.

asinf Computes the arc sine of a floating-point number.

atanf Computes the arc tangent of a floating-point number.

atan2f Computes the arc tangent of the result of a division of two floating-
point numbers.

cosf Computes the cosine of a floating-point radian value.

sinf Computes the sine of a floating-point radian value.

tanf Computes the tangent of a floating-point radian value.

coshf Computes the hyperbolic cosine of a floating-point number.

sinhf Computes the hyperbolic sine of a floating-point number.

tanhf Computes the hyperbolic tangent of a floating-point number.

expf Computes the exponential function of a floating-point number.

frexpf Breaks a floating-point number into a [0.5f, 1.0f) value and a power of
2.

Idexpf Multiplies a floating-point number by a power of 2.

logf Computes the natural logarithm of a floating-point number.

log10f Computes the base-ten logarithm of a floating-point number.

modff Breaks a floating-point number into integral and fractional parts.

powf Computes a power of a floating-point number.

sqrtf Computes the positive square root of a floating-point number.

ceilf Computes the smallest integral value not less than or equal to the
given floating-point number.

fabsf Computes the absolute value of a floating-point number.

floorf Computes the largest integral value not greater than or equal to the
given floating-point number.

fmodf Computes the floating-point remainder of division of two floating-point

numbers.

Page 532 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Operation in the event of an error is described below.

1.

Domain error

A domain error occurs if the value of a parameter input to a function is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM is set in
errno. The function return value depends on the compiler.

2. Range error
A range error occurs if the result of a function cannot be represented as a float type value. In
this case, the value of ERANGE is set in errno. If the result overflows, the function returns
the value of HUGE VALF, with the same sign as the correct value of the function. If the
result underflows, 0 is returned as the return value.
Notes
1. If there is a possibility of a domain error resulting from a <mathf.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.
Example:
1 x=asinf (a);
2 if (errno==EDOM)
3 printf ("error\n");
4 else
5 printf ("result is : $f\n",x);
In line 1, the arc sine value is computed using the asinf function. If the value of parameter a is
outside the domain of the asinf function [—1.0f, 1.0f], the EDOM value is set in errno. Line 2
determines whether a domain error has occurred. If a domain error has occurred, error is output
in line 3. If there is no domain error, the arc sine value is output in line 5.
R20UT0704EJ0102 Rev. 1.02 Page 533 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

2. Whether or not a range error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as a value is used, <mathf.h> library functions can be
implemented without causing range errors.

3. In the following cases, errno will not be set by the fabs or sqrt function even though an error
has occurred in the function.

(1) cpu=sh2afpu, cpu=sh4, or cpu=sh4a is specified and fabsf or sqrtf functions is used.
(2) cpu=sh2e is specified and fabsf function is used.

Implementation Define

Item Compiler Specifications

Value returned by a mathematical function if A not-a-number is returned. For details on the format
an input parameter is out of the range of not-a-numbers, refer to section 10.1.3, Floating-
Point Number Specifications.

Whether errno is set to the value of macro Not specified
ERANGE if an underflow error occurs in a
mathematical function

Whether a range error occurs if the second A range error occurs.
argument in the fmodf function is 0

Page 534 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
float acosf (float f)
Description: Computes the arc cosine of a floating-point number.

Header file:

Return values:

Parameters:

Example:

Error conditions:

Remarks:

float asinf (float
Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

<mathf.h>

Normal: Arc cosine of f

Abnormal: In case of domain error: Returns not-a-number.

f Floating-point number for which arc cosine is to be computed

#include <mathf.h>
float f, ret;

ret=acosf (f);

A domain error occurs for a value of f not in the range [—1.0f, +1.01].

The acosf function returns the arc cosine in the range [0,] by the radian.

f)

Computes the arc sine of a floating-point number.

<mathf.h>

Normal: Arc sine of f

Abnormal: In case of domain error: Returns not-a-number.

f Floating-point number for which arc sine is to be computed

#include <mathf.h>
float f, ret;

ret=asinf (f);

A domain error occurs for a value of f not in the range [—1.0f, +1.01].

Remarks: The asinf function returns the arc sine in the range [-n/2, +7/2] by the radian.
R20UT0704EJ0102 Rev. 1.02 Page 535 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

float atanf (float f)

Description: Computes the arc tangent of a floating-point number.

Header file: <mathf.h>

Return values: Arc tangent of f

Parameters: f Floating-point number for which arc tangent is to be computed

Example: #include <mathf.h>
float f, ret;
ret=atanf (f);

Remarks: The atanf function returns the arc tangent in the range (—m/2, +1/2) by the radian.

Page 536 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

float atan2f (float y, float x)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Remarks:

Computes the arc tangent of the division of two floating-point numbers.
<mathf.h>

Normal: Arc tangent value when y is divided by x

Abnormal: In case of domain error: Returns not-a-number.

X Divisor
y Dividend

#include <mathf.h>
float x, y, ret;
ret=atan2f(y, x);

A domain error occurs if the values of both x and y are 0.0f

The atan2f function returns the arc tangent in the range (—r, +n] by the radian.
The meaning of the atan2f function is illustrated in figure 10.7. As shown in the
figure, the result of the atan2f function is the angle between the X-axis and a
straight line passing through the origin and point (x, y). If y = 0.0f and x is
negative, the result is .

If x = 0.0f, the result is +7/2, depending on whether y is positive or negative.
Depending on the MCU setting, however, this may lead to a zero division
exception.

R20UT0704EJ0102 Rev. 1.02 Page 537 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

Y

(x,y)

L atan2f (y, x)

Figure 10.7 Meaning of atan2f Function

Page 538 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
float cosf (float f)

Description: Computes the cosine of a floating-point radian value.

Header file: <mathf.h>

Return values: Cosine of f
Parameters: f Radian value for which cosine is to be computed

Example: #include <mathf.h>
float f, ret;

ret=cosf (f);

float sinf (float f)
Description: Computes the sine of a floating-point radian value.
Header file: <mathf.h>

Return values: Sine of f
Parameters: f Radian value for which sine is to be computed

Example: #include <mathf.h>
float £, ret;
ret=sinf (f);

R20UT0704EJ0102 Rev. 1.02 Page 539 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

float tanf (float f)

Description: Computes the tangent of a floating-point radian value.

Header file: <mathf.h>

Return values: Tangent of f

Parameters: f Radian value for which tangent is to be computed

Example: #include <mathf.h>
float f, ret;
ret=tanf (f);

float coshf (float f)
Description: Computes the hyperbolic cosine of a floating-point number.
Header file: <mathf.h>

Return values: Hyperbolic cosine of f

Parameters: f Floating-point number for which hyperbolic cosine is to be
computed
Example: #include <mathf.h>

float f, ret;
ret=coshf (f);

Page 540 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
float sinhf (float f)
Description: Computes the hyperbolic sine of a floating-point number.
Header file: <mathf.h>
Return values: Hyperbolic sine of f
Parameters: f Floating-point number for which hyperbolic sine is to be

computed
Example: #include <mathf.h>

float f, ret;
ret=sinhf (f);

float tanhf (float f)
Description: Computes the hyperbolic tangent of a floating-point number.
Header file: <mathf.h>
Return values: Hyperbolic tangent of f
Parameters: f Floating-point number for which hyperbolic tangent is to be

computed
Example: #include <mathf.h>

float f, ret;
ret=tanhf (f) ;

R20UT0704EJ0102 Rev. 1.02 Page 541 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
float expf (float f)
Description: Computes the exponential function of a floating-point number.

Header file:
Return values:

Parameters:

Example:

<mathf.h>
Exponential value of f

f Floating-point number for which exponential function is to be
computed

#include <mathf.h>
float f, ret;
ret=expf (f);

float frexpf (float value, float int *e)

Description:
Header file:

Return values:

Parameters:

Example:

Breaks a floating-point number into a [0.5f, 1.0f) value and a power of 2.
<mathf.h>

If value is 0.0f: 0.0f
If value is not 0.0f:
Value of ret defined by ret * 2value pointedtoby e = ya]ye

value Floating-point number to be broken into a [0.5f, 1.0f) value
and a power of 2
e Pointer to storage area that holds power-of-2 value

#include <mathf.h>
float ret, value;
int *e

ret=frexpf (value, e);

Page 542 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 10 C/C++ Language Specifications

Remarks:

The frexpf function breaks value into a [0.5f, 1.0f) value and a power of 2.
It stores the resultant power-of-2 value in the area pointed to by e.

The frexpf function returns the return value ret in the range [0.5f, 1.0f) or as
0.0f.

If value is 0.0f, the contents of the int storage area pointed to by e and the value
of ret are both 0.0f.

float ldexpf (float e, int f)

Description:
Header file:

Return values:

Multiplies a floating-point number by a power of 2.
<mathf.h>

Result of e * 2f operation

Parameters: e Floating-point number to be multiplied by a power of 2

f Power-of-2 value
Example: #include <mathf.h>

float ret, e;

int f£;

ret=idexpf (e, f);

R20UT0704EJ0102 Rev. 1.02 Page 543 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 10 C/C++ Language Specifications Optimizing Linkage Editor
float logf (float f)

Description: Computes the natural logarithm of a floating-point number.

Header file: <mathf.h>

Return values: Normal: Natural logarithm of f

Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which natural logarithm is to be
computed
Example: #include <mathf.h>

float f, ret;
ret=logf (f);

Error conditions:
A domain error occurs if f is negative.
A range error occurs if f is 0.0f.

Page 544 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
float log10f (float f)
Description: Computes the base-ten logarithm of a floating-point number.

Header file:

Return values:

Parameters:

Example:

Error conditions:

<mathf.h>
Normal: Base-ten logarithm of f
Abnormal: In case of domain error: Returns not-a-number.

f Floating-point number for which base-ten logarithm is to be
computed

#include <mathf.h>
float f, ret;
ret=1ogl0f (f);

A domain error occurs if f is negative.
A range error occurs if f is 0.0f.

float modff (float a, float *b)

Description:
Header file:

Return values:

Breaks a floating-point number into integral and fractional parts.
<mathf.h>

Fractional part of a

Parameters: a Floating-point number to be broken into integral and fractional
parts

b Pointer indicating storage area that stores integral part
Example: #include <mathf.h>

float a, *b, ret;

ret=modff (a, b);

R20UT0704EJ0102 Rev. 1.02 Page 545 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 10 C/C++ Language Specifications Optimizing Linkage Editor

float powf (float x, float y)

Description: Computes a power of a floating-point number.
Header file: <mathf.h>
Return values: Normal: Value of x raised to the power y

Abnormal: In case of domain error: Returns not-a-number.

Parameters: X Value to be raised to a power
y Power value
Example: #include <mathf.h>

float x, y, ret;
ret=powf (x, vy);

Error conditions:
A domain error occurs if x is 0.0f and y is 0.0f or less, or if x is negative and y
is not an integer.

float sqrtf (float f)
Description: Computes the positive square root of a floating-point number.
Header file: <mathf.h>
Return values: Normal: Positive square root of f
Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which positive square root is to
be computed

Example: #include <mathf.h>
float f, ret;
ret=sqrtf (x, y);

Error conditions:
A domain error occurs if f is negative.

Page 546 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 10 C/C++ Language Specifications
float ceilf (float f)
Description: Returns the smallest integral value not less than or equal to the given floating-

Header file:

Return values:

point number.
<mathf.h>

Smallest integral value not less than or equal to f

Parameters: f Floating-point number for which smallest integral value not less

than that number is to be computed

Example: #include <mathf.h>
float f, ret;

ret=ceilf (f);

Remarks: The ceilf function returns the smallest integral value not less than or equal to f,
expressed as a float. Therefore, if f is negative, the value after truncation of the
fractional part is returned.

float fabsf (float f)

Description: Computes the absolute value of a floating-point number.

Header file: <mathf.h>

Return values:

Absolute value of f

Parameters: f Floating-point number for which absolute value is to be computed
Example: #include <mathf.h>
float f, ret;
ret=fabsf (f) ;
R20UT0704EJ0102 Rev. 1.02 Page 547 of 1176
Mar 01, 2022 RENESAS

Sup