

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

R8C/Tiny Series
Software Manual

16

U
ser’s M

anual

Rev.2.00 2005.10

RENESAS 16-BIT SINGLE-CHIP
MICROCOMPUTER

Keep safety first in your circuit designs!

Notes regarding these materials

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, pro-
grams, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers con-
tact Renesas Technology Corp. or an authorized Renesas Technology Corp. product dis-
tributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by vari-
ous means, including the Renesas Technology Corp. Semiconductor home page (http://
www.renesas.com).

4. When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corp. assumes no responsibility for any damage, liabil-
ity or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at
stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology
Corp. product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or repro-
duce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the
products contained therein.

A Q&A table, symbols, a glossary, and an index are appended at the end of this manual.

Using This Manual

This software manual is written for the R8C/Tiny Series. It applies to all microcomputers

integrating the R8C/Tiny Series CPU core.

The reader of this manual is assumed to have a basic knowledge of electrical circuits, logic

circuits, and microcomputers.

This manual consists of six chapters. The chapters and the subjects they cover are listed

below.

• Outline of the R8C/Tiny Series and its featuresChapter 1, “Overview”

• Operation of addressing modes ... Chapter 2, “Addressing Modes”

• Instruction functions (syntax, operation, function, selectable src/dest (labels), flag changes,

description example, related instructions) .. Chapter 3, “Functions”

• Instruction codes and cyclesChapter 4, “Instruction Codes/Number of Cycles”

• Instruction interrupts ... Chapter 5, “Interrupts”

• How to calculate the number of cycles Chapter 6, “Calculating the Number of Cycles”

This manual also contains quick reference sections immediately following the table of con-

tents. These quick reference sections can be used to rapidly find the pages referring to

specific functions, instruction codes, and cycle counts.

• Alphabetic listing by mnemonicQuick Reference in Alphabetic Order

• Listing of mnemonics by function .. Quick Reference by Function

• Listing of addressing modes by mnemonic Quick Reference by Addressing Mode

M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document Contents

Short Sheet Hardware overview

Data Sheet Hardware overview and electrical characteristics

Hardware Manual Hardware specifications (pin assignments, memory maps, periph-

eral specifications, electrical characteristics, timing charts).

*Refer to the application note for how to use peripheral functions.

Software Manual Detailed description of assembly instructions and microcomputer

performance of each instruction

Application Note • Usage and application examples of peripheral functions

• Sample programs

• Introduction to the basic functions in the M16C family

• Programming method with Assembly and C languages

RENESAS TECHNICAL Preliminary report about the specification of a product, a document, etc.

UPDATE

NOTES:

1. Before using this material, please visit the our website to verify that this is the most updated

document available.

A-1

Table of Contents

Chapter 1 Overview ___

1.1 Features of R8C/Tiny Series ..2

1.1.1 Features of R8C/Tiny Series ..2

1.1.2 Speed Performance ..2

1.2 Address Space ...3

1.3 Register Configuration ..4

1.3.1 Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3) ...4

1.3.2 Address Registers (A0 and A1) ..5

1.3.3 Frame Base Register (FB) ..5

1.3.4 Program Counter (PC) ..5

1.3.5 Interrupt Table Register (INTB) ..5

1.3.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP) ..5

1.3.7 Static Base Register (SB) ...5

1.3.8 Flag Register (FLG) ..5

1.4 Flag Register (FLG) ..6

1.4.1 Bit 0: Carry Flag (C Flag) ..6

1.4.2 Bit 1: Debug Flag (D Flag) ..6

1.4.3 Bit 2: Zero Flag (Z Flag) ..6

1.4.4 Bit 3: Sign Flag (S Flag) ..6

1.4.5 Bit 4: Register Bank Select Flag (B Flag) ...6

1.4.6 Bit 5: Overflow Flag (O Flag) ..6

1.4.7 Bit 6: Interrupt Rnable Flag (I Flag) ..6

1.4.8 Bit 7: Stack Pointer Select Flag (U Flag) ..6

1.4.9 Bits 8 to 11: Reserved ..6

1.4.10 Bits 12 to 14: Processor Interrupt Priority Level (IPL)...7

1.4.11 Bit 15: Reserved ...7

1.5 Register Banks ...8

1.6 Internal State after Reset is Cleared ...9

1.7 Data Types ...10

1.7.1 Integer...10

1.7.2 Decimal ...11

1.7.3 Bits ..12

1.7.4 String ..15

A-2

1.8 Data Arrangement ..16

1.8.1 Data Arrangement in Register ..16

1.8.2 Data Arrangement in Memory...17

1.9 Instruction Formats ...18

1.9.1 Generic Format (:G) ..18

1.9.2 Quick Format (:Q) ...18

1.9.3 Short Format (:S) ..18

1.9.4 Zero Format (:Z) ...18

1.10 Vector Tables ..19

1.10.1 Fixed Vector Tables ..19

1.10.2 Variable Vector Tables ...20

Chapter 2 Addressing Modes ___

2.1 Addressing Modes ..22

2.1.1 General Instruction Addressing ..22

2.1.2 Special Instruction Addressing ...22

2.1.3 Bit Instruction Addressing ...22

2.2 Guide to This Chapter ...23

2.3 General Instruction Addressing ..24

2.4 Special Instruction Addressing ...27

2.5 Bit Instruction Addressing ...30

Chapter 3 Functions___

3.1 Guide to This Chapter ...34

3.2 Functions ...39

Chapter 4 Instruction Codes/Number of Cycles______________________________

4.1 Guide to This Chapter ...136

4.2 Instruction Codes/Number of Cycles ..138

Chapter 5 Interrupts ___

5.1 Outline of Interrupts ..246

5.1.1 Types of Interrupts ..246

5.1.2 Software Interrupts ...247

5.1.3 Hardware Interrupts ..248

A-3

5.2 Interrupt Control ..249

5.2.1 I Flag ...249

5.2.2 IR Bit ...249

5.2.3 ILVL2 to ILVL0 bis, IPL ...250

5.2.4 Changing Interrupt Control Register ...251

5.3 Interrupt Sequence ...252

5.3.1 Interrupt Response Time ..253

5.3.2 Changes of IPL When Interrupt Request Acknowledged ...253

5.3.3 Saving Register Contents ...254

5.4 Returning from Interrupt Routines ..255

5.5 Interrupt Priority ..256

5.6 Multiple Interrupts ...257

5.7 Note on Interrupts ...259

5.7.1 Reading Address 0000016 ...259

5.7.2 SP Setting ...259

5.7.3 Modifying Interrupt Control Register ...259

Chapter 6 Calculating the Number of Cycles ________________________________

6.1 Instruction Queue Buffer ...262

Quick Reference-1

Page No. for

Function
 Mnemonic Page No. for

Instruction Code

/No. of Cycles

Page No. for

Function
 Mnemonic Page No. for

Instruction Code

/No. of Cycles

Quick Reference in Alphabetic Order

171

172

173

175

177

178

178

179

180

180

181

182

182

182

182

182

182

182

182

182

182

182

182

182

182

182

182

183

185

187

188

189

191

191

192

193

193

200

138

138

140

140

146

147

150

150

152

152

152

152

152

152

152

152

152

152

152

152

152

152

152

153

154

154

155

156

156

157

157

158

159

160

160

161

165

167

169

170

ABS 39

ADC 40

ADCF 41

ADD 42

ADJNZ 44

AND 45

BAND 47

BCLR 48

BMCnd 49

 BMEQ/Z 49

 BMGE 49

 BMGEU/C 49

 BMGT 49

 BMGTU 49

 BMLE 49

 BMLEU 49

 BMLT 49

 BMLTU/NC 49

 BMN 49

 BMNE/NZ 49

 BMNO 49

 BMO 49

 BMPZ 49

BNAND 50

BNOR 51

BNOT 52

BNTST 53

BNXOR 54

BOR 55

BRK 56

BSET 57

BTST 58

BTSTC 59

BTSTS 60

BXOR 61

CMP 62

DADC 64

DADD 65

DEC 66

DIV 67

DIVU 68

DIVX 69

DSBB 70

DSUB 71

ENTER 72

EXITD 73

EXTS 74

FCLR 75

FSET 76

INC 77

INT 78

INTO 79

JCnd 80

 JEQ/Z 80

 JGE 80

 JGEU/C 80

 JGT 80

 JGTU 80

 JLE 80

 JLEU 80

 JLT 80

 JLTU/NC 80

 JN 80

 JNE/NZ 80

 JNO 80

 JO 80

 JPZ 80

JMP 81

JMPI 82

JSR 83

JSRI 84

LDC 85

LDCTX 86

LDE 87

LDINTB 88

LDIPL 89

MOV 90

MOVA 92

Quick Reference-2

Page No. for

Function
 Mnemonic Page No. for

Instruction Code

/No. of Cycles

Page No. for

Function
 Mnemonic Page No. for

Instruction Code

/No. of Cycles

Quick Reference in Alphabetic Order

220

221

222

224

225

228

230

231

231

232

233

233

235

235

236

236

239

241

241

242

243

ROT 112

RTS 113

SBB 114

SBJNZ 115

SHA 116

SHL 117

SMOVB 118

SMOVF 119

SSTR 120

STC 121

STCTX 122

STE 123

STNZ 124

STZ 125

STZX 126

SUB 127

TST 129

UND 130

WAIT 131

XCHG 132

XOR 133

MOVDir 93

 MOVHH 93

 MOVHL 93

 MOVLH 93

 MOVLL 93

MUL 94

MULU 95

NEG 96

NOP 97

NOT 98

OR 99

POP 101

POPC 102

POPM 103

PUSH 104

PUSHA 105

PUSHC 106

PUSHM 107

REIT 108

RMPA 109

ROLC 110

RORC 111

201

201

201

201

201

203

205

207

207

208

209

211

213

213

214

216

216

217

217

218

218

219

Quick Reference-3

MOV Transfer 90 193

MOVA Transfer effective address 92 200

MOVDir Transfer 4-bit data 93 201

POP Restore register/memory 101 211

POPM Restore multiple registers 103 213

PUSH Save register/memory/immediate data 104 214

PUSHA Save effective address 105 216

PUSHM Save multiple registers 107 217

LDE Transfer from extended data area 87 191

STE Transfer to extended data area 123 233

STNZ Conditional transfer 124 235

STZ Conditional transfer 125 235

STZX Conditional transfer 126 236

XCHG Exchange 132 242

BAND Logically AND bits 47 150

BCLR Clear bit 48 150

BMCnd Conditional bit transfer 49 152

BNAND Logically AND inverted bits 50 153

BNOR Logically OR inverted bits 51 154

BNOT Invert bit 52 154

BNTST Test inverted bit 53 155

BNXOR Exclusive OR inverted bits 54 156

BOR Logically OR bits 55 156

BSET Set bit 57 157

BTST Test bit 58 158

BTSTC Test bit and clear 59 159

BTSTS Test bit and set 60 160

BXOR Exclusive OR bits 61 160

ROLC Rotate left with carry 110 218

RORC Rotate right with carry 111 219

ROT Rotate 112 220

SHA Shift arithmetic 116 215

SHL Shift logical 117 228

ABS Absolute value 39 138

ADC Add with carry 40 138

ADCF Add carry flag 41 140

ADD Add without carry 42 140

CMP Compare 62 161

DADC Decimal add with carry 64 165

Transfer

Bit

manipulation

Shift

Arithmetic

Quick Reference by Function

DescriptionMnemonicFunction Page No. for

Function

Page No. for

Instruction Code

/No. of Cycles

Quick Reference-4

DADD Decimal add without carry 65 167

DEC Decrement 66 169

DIV Signed divide 67 170

DIVU Unsigned divide 68 171

DIVX Signed divide 69 172

DSBB Decimal subtract with borrow 70 173

DSUB Decimal subtract without borrow 71 175

EXTS Extend sign 74 178

INC Increment 77 180

MUL Signed multiply 94 203

MULU Unsigned multiply 95 205

NEG Complement of two 96 207

RMPA Calculate sum-of-products 109 218

SBB Subtract with borrow 114 222

SUB Subtract without borrow 127 236

AND Logical AND 45 147

NOT Invert all bits 98 208

OR Logical OR 99 209

TST Test 129 239

XOR Exclusive OR 133 243

ADJNZ Add and conditional jump 44 146

SBJNZ Subtract and conditional jump 115 224

JCnd Jump on condition 80 182

JMP Unconditional jump 81 184

JMPI Jump indirect 82 185

JSR Subroutine call 83 187

JSRI Indirect subroutine call 84 188

RTS Return from subroutine 113 221

SMOVB Transfer string backward 118 230

SMOVF Transfer string forward 119 231

SSTR Store string 120 231

BRK Debug interrupt 56 157

ENTER Build stack frame 72 177

EXITD Deallocate stack frame 73 178

FCLR Clear flag register bit 75 179

FSET Set flag register bit 76 180

INT Interrupt by INT instruction 78 181

INTO Interrupt on overflow 79 182

LDC Transfer to control register 85 189

LDCTX Restore context 86 189

LDINTB Transfer to INTB register 88 192

Quick Reference by Function

DescriptionMnemonicFunction Page No. for

Function

Page No. for

Instruction Code

/No. of Cycles

Arithmetic

Logical

Jump

String

Other

Quick Reference-5

Other LDIPL Set interrupt enable level 89 193

NOP No operation 97 207

POPC Restore control register 102 213

PUSHC Save control register 106 216

REIT Return from interrupt 108 216

STC Transfer from control register 121 232

STCTX Save context 122 233

UND Interrupt for undefined instruction 130 241

WAIT Wait 131 241

Quick Reference by Function

DescriptionMnemonicFunction Page No. for

Function

Page No. for

Instruction Code

/No. of Cycles

Quick Reference-6

R
0L

/R
0

R
0H

/R
1

R
1L

/R
2

R
1H

/R
3

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
]

ab
s1

6

#I
M

M
8

#I
M

M
16

#I
M

M
20

#I
M

M

Page No. for

Function

Page No. for

Instruction

Code

/No. of Cycles

Addressing ModeMnemonic

Quick Reference by Addressing Mode (General Instruction Addressing)

*1 Has special instruction addressing.

*2 Only R1L can be selected.

*3 Only R0L can be selected.

*4 Only R0H can be selected.

ABS

ADC

ADCF

ADD*1

ADJNZ*1

AND

CMP

DADC

DADD

DEC

DIV

DIVU

DIVX

DSBB

DSUB

ENTER

EXTS *2

INC *3 *4

INT

JMPI*1

JSRI*1

LDC*1

LDE*1

LDINTB

LDIPL

39

40

41

42

44

45

62

64

65

66

67

68

69

70

71

72

74

77

78

82

83

85

87

88

89

138

138

140

140

146

147

161

165

167

169

170

171

172

173

175

177

178

180

181

185

187

189

191

192

193

Quick Reference-7

MOV*1

MOVA

MOVDir

MUL

MULU

NEG

NOT

OR

POP

POPM*1

PUSH

PUSHA

PUSHM*1

ROLC

RORC

ROT

SBB

SBJNZ*1

SHA*1

SHL*1

STC*1

STCTX*1

STE*1

STNZ

STZ

R
0L

/R
0

R
0H

/R
1

R
1L

/R
2

R
1H

/R
3

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
]

ab
s1

6

#I
M

M
8

#I
M

M
16

#I
M

M
20

#I
M

M

Page No. for

Function

Page No. for

Instruction

Code

/No. of Cycles

Addressing ModeMnemonic

Quick Reference by Addressing Mode (General Instruction Addressing)

*1 Has special instruction addressing.

90

92

93

94

95

96

98

99

101

103

104

105

107

110

111

112

114

115

116

117

121

122

123

124

125

193

200

201

203

205

207

208

209

211

213

214

216

217

218

219

220

222

224

225

228

232

233

233

235

235

Quick Reference-8

R
0L

/R
0

R
0H

/R
1

R
1L

/R
2

R
1H

/R
3

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
]

ab
s1

6

#I
M

M
8

#I
M

M
16

#I
M

M
20

#I
M

M

STZX

SUB

TST

XCHG

XOR

Page No. for

Function

Page No. for

Instruction

Code

/No. of Cycles

Addressing ModeMnemonic

Quick Reference by Addressing Mode (General Instruction Addressing)

126

127

129

132

133

236

236

239

242

243

Quick Reference-9

ADD*1

ADJNZ*1

JCnd

JMP

JMPI*1

JSR

JSRI*1

LDC*1

LDCTX

LDE*1

LDINTB

MOV*1

POPC

POPM*1

PUSHC

PUSHM*1

SBJNZ*1

SHA*1

SHL*1

STC*1

STCTX*1

STE*1

ds
p:

20
[A

0]

ds
p:

20
[A

1]

ab
s2

0

R
2R

0/
R

3R
1

A
1A

0

[A
1A

0]

ds
p:

8[
S

P
]

la
be

l

S
B

/F
B

IS
P

/U
S

P

F
LG

IN
T

B
L/

IN
T

B
H

P
C

Addressing ModeMnemonic

Quick Reference by Addressing Mode (Special Instruction Addressing)

Page No. for

Function

Page No. for

Instruction

Code

/No. of Cycles

*1 Has general instruction addressing.

*2 INTBL and INTBH can be set simultaneously when using the LDINTB instruction.

42

44

80

81

82

83

84

85

86

87

88

90

102

103

106

107

115

116

117

121

122

123

140

146

182

184

185

187

188

189

189

191

192

193

213

213

216

217

224

225

228

232

233

233

*2

Quick Reference-10

BAND

BCLR

BMCnd

BNAND

BNOR

BNOT

BNTST

BNXOR

BOR

BSET

BTST

BTSTC

BTSTS

BXOR

FCLR

FSET

bi
t,R

n

bi
t,A

n

[A
n]

ba
se

:8
[A

n]

bi
t,b

as
e:

8[
S

B
/F

B
]

ba
se

:1
6[

A
n]

bi
t,b

as
e:

16
[S

B
]

bi
t,b

as
e:

16

bi
t,b

as
e:

11

U
/I/

O
/B

/S
/Z

/D
/C

Addressing ModeMnemonic

Quick Reference by Addressing Mode (Bit Instruction Addressing)

Page No. for

Function

Page No. for

Instruction

Code

/No. of Cycles

47

48

49

50

21

52

53

54

55

57

58

59

60

61

75

76

150

150

152

153

154

154

155

156

156

157

158

159

160

160

179

180

Quick Reference-11

This page intentionally left blank.

Chapter 1

Overview

1.1 Features of R8C/Tiny Series

1.2 Address Space

1.3 Register Configuration

1.4 Flag Register (FLG)

1.5 Register Banks

1.6 Internal State after Reset is Cleared

1.7 Data Types

1.8 Data Arrangement

1.9 Instruction Formats

1.10 Vector Tables

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 2 of 263
REJ09B0001-0200

1.1 Features of R8C/Tiny Series

1.1 Features of R8C/Tiny Series
The R8C/Tiny Series of single-chip microcomputers was developed for embedded applications.

The R8C/Tiny Series supports instructions tailored for the C language, with frequently used instructions

implemented in one-byte op-code. It thus allows development of efficient programs with reduced memory

requirements when using either assembly language or C. Furthermore, some instructions can be executed

in a single clock cycle, enabling fast arithmetic processing.

The instruction set comprises 89 discrete instructions matched to the R8C’s many addressing modes. This

powerful instruction set provides support for register-register, register-memory, and memory-memory op-

erations, as well as arithmetic/logic operations using single-bit and 4-bit data.

Some R8C/Tiny Series models incorporate an on-chip multiplier, allowing for high-speed computation.

1.1.1 Features of R8C/Tiny Series
● Register configuration

Data registers: Four 16-bit registers (of which two can be used as 8-bit registers)

Address registers: Two 16-bit registers

Base registers: Two 16-bit registers

● Versatile instruction set

Instructions suited to C language (stack frame manipulation): ENTER, EXITD, etc.

Instructions that do not discriminate by register or memory area MOV, ADD, SUB, etc.

Powerful bit manipulation instructions: BNOT, BTST, BSET, etc.

4-bit transfer instructions: MOVLL, MOVHL, etc.

Frequently used 1-byte instructions: MOV, ADD, SUB, JMP, etc.

High-speed 1-cycle instructions: MOV, ADD, SUB, etc.

● Fast instruction execution time

Minimum 1-cycle instructions: Of 89 instructions, 20 are 1-cycle instructions. (Approximately 75% of

instructions execute in five cycles or fewer.)

1.1.2 Speed Performance
Register-register transfer 2 cycles

Register-memory transfer 2 cycles

Register-register addition/subtraction 2 cycles

8 bits x 8 bits register-register operation 4 cycles

16 bits x 16 bits register-register operation 5 cycles

16 bits / 8 bits register-register operation 18 cycles

32 bits / 16 bits register-register operation 25 cycles

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 3 of 263
REJ09B0001-0200

The SFR area of some

models extends to

lower-address locations.

The RAM area of some

models extends to

higher-address loca-

tions.

1.2 Address Space

1.2 Address Space
Figure 1.2.1 shows the address space.

Addresses 0000016 through 002FF16 make up an SFR (special function register) area. In some models in

the R8C/Tiny Series, the SFR area extends from 002FF16 to lower addresses.

Addresses from 0040016 and below make up the memory area. In some models in the R8C/Tiny Series, the

RAM area extends from address 0040016 to higher addresses, and the ROM area extends from 0FFFF16 to

lower addresses. Addresses 0FFDC16 through 0FFFF16 make up a fixed vector area.

Figure 1.2.1 Address Space

0000016

002FF16

0040016

0FFDC16

0FFFF16

FFFFF16

SFR area

Internal RAM area

Internal ROM area

Fixed vector area

Extention area

The ROM area of some

models extends to

lower-address locations.

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 4 of 263
REJ09B0001-0200

1.3 Register Configuration

1.3 Register Configuration
The central processing unit (CPU) contains the 13 registers shown in figure 1.3.1. Of these registers, R0,

R1, R2, R3, A0, A1, and FB each consist of two sets of registers configured as two register banks.

1.3.1 Data Registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)
The data registers (R0, R1, R2, and R3) each consist of 16 bits and are used primarily for transfers and

arithmetic/logic operations.

Registers R0 and R1 can be divided into separate high-order (R0H, R1H) and low-order (R0L, R1L)

parts for use as 8-bit data registers. For some instructions, moreover, R2 and R0 or R3 and R1 can be

combined to configure a 32-bit data register (R2R0 or R3R1).

Figure 1.3.1 CPU Register Configuration

R0H (High-order of R0)

b15 b8 b7 b0

R3
Data register*

Address register*

Frame base register*

Program counter

Interrupt table register

User stack pointer

Interrupt stack pointer

Static base register

Flag register

INTBH

USP

ISP

SB

Note: * These registers configure register banks.This register
 bank consists of two sets.

AA
AA
AA
AA
AA
AA
A
A

AAAAAAA
AAAAAAA
AA
AA

AA
AA
AA
AA
A
A
AA
AA

CDZSBOIUIPL

R0L (Low-order of R0)

R1H (High-order of R1) R1L (Low-order of R1)

R2

b31

R3

R2

A1

A0

FB

b19

INTBL

b15 b0

PC

INTBH is the upper 4 bits of INTB.
INTBL is the lower 16 bits of INTB.

b19 b0

b15 b0

FLG

b15 b0

b15 b0 b7 b8

Carry flag

Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 5 of 263
REJ09B0001-0200

1.3.2 Address Registers (A0 and A1)
The address registers (A0 and A1) are 16-bit registers with functions similar to those of the data regis-

ters. These registers are used for address register-based indirect addressing and address register-

based relative addressing.

For some instructions, registers A1 and A0 can be combined to configure a 32-bit address register

(A1A0).

1.3.3 Frame Base Register (FB)
The frame base register (FB) is a 16-bit register used for FB-based relative addressing.

1.3.4 Program Counter (PC)
The program counter (PC) is a 20-bit register that indicates the address of the instruction to be executed

next.

1.3.5 Interrupt Table Register (INTB)
The interrupt table register (INTB) is a 20-bit register that indicates the initial address of the interrupt

vector table.

1.3.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
There are two types of stack pointers: a user stack pointer (USP) and an interrupt stack pointer (ISP).

Each consists of 16 bits.

The stack pointer (USP/ISP) to be used can be switched with the stack pointer select flag (U flag).

The stack pointer select flag (U flag) is bit 7 of the flag register (FLG).

1.3.7 Static Base Register (SB)
The static base register (SB) is a 16-bit register used for SB-based relative addressing.

1.3.8 Flag Register (FLG)
The flag register (FLG) is an 11-bit register used as flags in one-bit units. For details on the functions of

the flags, see Section 1.4, “Flag Register (FLG).”

1.3 Register Configuration

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 6 of 263
REJ09B0001-0200

1.4 Flag Register (FLG)
Figure 1.4.1 shows the configuration of the flag register (FLG). The function of each flag is described

below.

1.4.1 Bit 0: Carry Flag (C Flag)
This flag holds bits carried, borrowed, or shifted-out by the arithmetic/logic unit.

1.4.2 Bit 1: Debug Flag (D Flag)
This flag enables a single-step interrupt.

When this flag is set to 1, a single-step interrupt is generated after an instruction is executed. When the

interrupt is acknowledged, the flag is cleared to 0.

1.4.3 Bit 2: Zero Flag (Z Flag)
This flag is set to 1 when an arithmetic operation results in 0; otherwise, its value is 0.

1.4.4 Bit 3: Sign Flag (S Flag)
This flag is set to 1 when an arithmetic operation results in a negative value; otherwise, its value is 0.

1.4.5 Bit 4: Register Bank Select Flag (B Flag)
This flag selects a register bank. If it is set to 0, register bank 0 is selected; if it is set to 1, register bank

1 is selected.

1.4.6 Bit 5: Overflow Flag (O Flag)
This flag is set to 1 when an arithmetic operation results in an overflow.

1.4.7 Bit 6: Interrupt Enable Flag (I Flag)
This flag enables a maskable interrupt.

When this flag is set to 0, the interrupt is disabled; when it is set to 1, the interrupt is enabled. When the

interrupt is acknowledged, the flag is cleared to 0.

1.4.8 Bit 7: Stack Pointer Select Flag (U Flag)
When this flag is set to 0, the interrupt stack pointer (ISP) is selected; when it is set to 1, the user stack

pointer (USP) is selected.

This flag is cleared to 0 when a hardware interrupt is acknowledged or an INT instruction is executed for

software interrupt numbers 0 to 31.

1.4.9 Bits 8 to 11: Reserved

1.4 Flag Register (FLG)

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 7 of 263
REJ09B0001-0200

1.4 Flag Register (FLG)

Figure 1.4.1 Configuration of Flag Register (FLG)

IPL U I O B S Z D C

b15 b0

Carry flag

Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Flag register (FLG)

1.4.10 Bits 12 to 14: Processor Interrupt Priority Level (IPL)
The processor interrupt priority level (IPL) consists of three bits, enabling specification of eight proces-

sor interrupt priority levels from level 0 to level 7. If a requested interrupt’s priority level is higher than the

processor interrupt priority level (IPL), the interrupt is enabled.

1.4.11 Bit 15: Reserved

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 8 of 263
REJ09B0001-0200

1.5 Register Banks

R0 H L
b15 b8b7 b0

R3

A0

A1

FB

R1 H L

R2

R0 H L
b15 b8b7 b0

R3

A0

A1

FB

R1 H L

R2

Register bank 0 (B flag = 0) Register bank 1 (B flag = 1)

Figure 1.5.1 Configuration of Register Banks

1.5 Register Banks
The R8C/Tiny has two register banks, each comprising data registers (R0, R1, R2, and R3), address regis-

ters (A0 and A1), and a frame base register (FB). These two register banks are switched by the register

bank select flag (B flag) in the flag register (FLG).

Figure 1.5.1 shows the configuration of the register banks.

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 9 of 263
REJ09B0001-0200

1.6 Internal State after Reset is Cleared

1.6 Internal State after Reset is Cleared
The contents of each register after a reset is cleared are as follows.

• Data registers (R0, R1, R2, and R3): 000016

• Address registers (A0 and A1): 000016

• Frame base register (FB): 000016

• Interrupt table register (INTB): 0000016

• User stack pointer (USP): 000016

• Interrupt stack pointer (ISP): 000016

• Static base register (SB): 000016

• Flag register (FLG): 000016

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 10 of 263
REJ09B0001-0200

1.7 Data Types

b7 b0

b7 b0

 S

b15 b0

 S

Signed byte (8 bit) integer

Unsigned byte (8 bit) integer

Signed word (16 bit) integer

Unsigned word (16 bit) integer

Signed long word (32 bit) integer

Unsigned long word (32 bit) integer

S: Sign bit

 S

b31 b0

b31 b0

b15 b0

Figure 1.7.1 Integer Data

1.7 Data Types
There are four data types: integer, decimal, bit, and string.

1.7.1 Integer
An integer can be signed or unsigned. A negative value of a signed integer is represented by two’s

complement.

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 11 of 263
REJ09B0001-0200

1.7 Data Types

1.7.2 Decimal
The decimal data type is used by the DADC, DADD, DSBB, and DSUB instructions.

Pack format

(2 digits)

Pack format

(4 digits)

Figure 1.7.2 Decimal Data

b15 b0

b7 b0

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 12 of 263
REJ09B0001-0200

1.7 Data Types

1.7.3 Bits

● Register bits
Figure 1.7.3 shows register bit specification.

Register bits can be specified by register directly (bit, Rn or bit, An). Use bit, Rn to specify a bit in a

data register (Rn); use bit, An to specify a bit in an address register (An).

The bits in each register are assigned bit numbers from 0 to 15, from LSB to MSB. Therefore, bit, Rn

and bit, An can be used to specify a bit number from 0 to 15.

Figure 1.7.3 Register Bit Specification

● Memory bits
Figure 1.7.4 shows the addressing modes used for memory bit specification. Table 1.7.1 lists the ad-

dress range in which bits can be specified in each addressing mode. Be sure to observe the address

range in Table 1.7.1 when specifying memory bits.

b15 b0
bit,Rn

(bit: 0 to 15, n: 0 to 3)

Rn b15 b0
bit,An

(bit: 0 to 15, n: 0 to 1)

An

bit,base:8
bit,base:16

bit,base:8[SB]
bit,base:11[SB]
bit,base:16[SB]

bit,base:8[FB]

[An]

base:8[An]
base:16[An]

Addressing modes Absolute addressing

SB-based relative
addressing

FB-based relative
addressing
Address register-based indirect
addressing
Address register-based relative
addressing

bit,base:16

Figure 1.7.4 Addressing Modes Used for Memory Bit Specification

Addressing Specification range
 Remarks Lower Limit (Address) Upper Limit (Address)

bit,base:16 0000016 01FFF16

bit,base:8[SB] [SB] [SB]+0001F16 The access range is 0000016 to 0FFFF16.

bit,base:11[SB] [SB] [SB]+000FF16 The access range is 0000016 to 0FFFF16.

bit,base:16[SB] [SB] [SB]+01FFF16 The access range is 0000016 to 0FFFF16.

bit,base:8[FB] [FB]–0001016 [FB]+0000F16 The access range is 0000016 to 0FFFF16.

[An] 0000016 01FFF16

base:8[An] base:8 base:8+01FFF16 The access range is 0000016 to 020FE16.

base:16[An] base:16 base:16+01FFF16 The access range is 0000016 to 0FFFF16.

Table 1.7.1 Bit Specification Address Range

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 13 of 263
REJ09B0001-0200

0

n-1

n
n+1

nÅ{1 n nÅ|1 0
b7 b0b7 b0b7 b0 b7 b0

b7 b0

BSET 2,AH ;

b7 b2 b0

b15 b10 b8b7 b0

b87 b82 b80b79 b72 b7 b0

b23 b18 b16b15 b8b7 b0

BSET 10,9H ;

BSET 18,8H ;

BSET 82,0H ;

Address 0000916

These specifica-
tion examples all
specify bit 2 of
address 0000A16.

Address 0000016

Address 0000816

Address 0000A16

1.7 Data Types

Figure 1.7.6 Examples of How to Specify Bit 2 of Address 0000A16

(1) Bit Specification by Bit, Base
Figure 1.7.5 shows the relationship between the memory map and the bit map.

Memory bits can be handled as an array of consecutive bits. Bits can be specified by a combination of

bit and base. Using bit 0 of the address that is set in base as the reference (= 0), set the desired bit

position in bit. Figure 1.7.6 shows examples of how to specify bit 2 of address 0000A16.

Bit mapMemory map

Address

n+1 n n–1

Figure 1.7.5 Relationship between Memory Map and Bit Map

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 14 of 263
REJ09B0001-0200

1.7 Data Types

(2) SB/FB Relative Bit Specification
For SB/FB-based relative addressing, use bit 0 of the address that is the sum of the address set in

static base register (SB) or frame base register (FB) plus the address set in base as the reference

(= 0), and set the desired bit position in bit.

(3) Address Register Indirect/Relative Bit Specification
For address register-based indirect addressing, use bit 0 of address 0000016 as the reference (= 0)

and set the desired bit position in the address register (An).

For address register-based relative addressing, use bit 0 of the address set in base as the reference

(= 0) and set the desired bit position in the address register (An).

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 15 of 263
REJ09B0001-0200

1.7 Data Types

1.7.4 String
String data consists of a given length of consecutive byte (8-bit) or word (16-bit) data.

This data type can be used in three string instructions: character string backward transfer (SMOVB

instruction), character string forward transfer (SMOVF instruction), and specified area initialize (SSTR

instruction).

b15 b0

b7 b0

b7 b0

b7 b0

b15 b0

b15 b0

•

•

•

•

•

•

•

•

Figure 1.7.7 String Data

Byte (8-bit) data Word (16-bit) data

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 16 of 263
REJ09B0001-0200

1.8 Data Arrangement

1.8 Data Arrangement
1.8.1 Data Arrangement in Register

Figure 1.8.1 shows the relationship between a register’s data size and bit numbers.

b15 b0

b3 b0

b7 b0

MSB LSB

b31 b0

Nibble (4-bit) data

Byte (8-bit) data

Word (16-bit) data

Long word (32-bit) data

Figure 1.8.1 Data Arrangement in Register

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 17 of 263
REJ09B0001-0200

b7 b0

N DATA(L)

N+1 DATA(H)

N+2

N+3

b7 b0

N DATA

N+1

N+2

N+3

MOV.B N,R0H

MOV.W N,R0

R0
H L

b15 b0

R0
H L

b15 b0

DATA

DATA(H) DATA(L)

Word (16-bit) data

Byte (8-bit) data

1.8 Data Arrangement

Figure 1.8.2 Data Arrangement in Memory

Does not change.

1.8.2 Data Arrangement in Memory
Figure 1.8.2 shows the data arrangement in memory. Figure 1.8.3 shows some operation examples.

b7 b0

N DATA

N+1

N+2

N+3

b7 b0

N DATA(L)

N+1 DATA(H)

N+2

N+3

b7 b0

N DATA(L)

N+1 DATA(M)

N+2 DATA(H)

N+3

b7 b0

N DATA(LL)

N+1 DATA(LH)

N+2 DATA(HL)

N+3 DATA(HH)

Word (16-bit) dataByte (8-bit) data

Long Word (32-bit) data20-bit (Address) data

Figure 1.8.3 Operation Examples

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 18 of 263
REJ09B0001-0200

1.9 Instruction Formats

1.9 Instruction Formats
The instruction formats can be classified into four types: generic, quick, short, and zero. The number of

instruction bytes that can be chosen by a given format is least for the zero format, and increases succes-

sively for the short, quick, and generic formats, in that order.

The features of each format are described below.

1.9.1 Generic Format (:G)
The op-code in this format comprises two bytes. This op-code contains information on the operation

and the src*1 and dest*2 addressing modes.

The instruction code is composed of op-code (2 bytes), src code (0 to 3 bytes), and dest code (0 to 3

bytes).

1.9.2 Quick Format (:Q)
The op-code in this format comprises two bytes. This op-code contains information on the operation

and the immediate data and dest addressing modes. Note, however, that the immediate data in the op-

code is a numeric value that can be expressed as -7 to +8 or -8 to +7 (depending on the instruction).

The instruction code is composed of op-code (2 bytes) containing immediate data and dest code (0 to 2

bytes).

1.9.3 Short Format (:S)
The op-code in this format comprises one byte. This op-code contains information on the operation and

the src and dest addressing modes. Note, however, that the usable addressing modes are limited.

The instruction code is composed of op-code (1 byte), src code (0 to 2 bytes), and dest code (0 to 2

bytes).

1.9.4 Zero Format (:Z)
The op-code in this format comprises one byte. This op-code contains information on the operation

(plus immediate data) and dest addressing modes. Note, however, that the immediate data is fixed at 0,

and that the usable addressing modes are limited.

The instruction code is composed of op-code (1 byte) and dest code (0 to 2 bytes).

*1 src is an abbreviation of “source.”

*2 dest is an abbreviation of “destination.”

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 19 of 263
REJ09B0001-0200

1.10 Vector Tables

1.10 Vector Tables
Interrupt vector tables are the only vector tables. There are two types of interrupt vector tables: fixed and

variable.

1.10.1 Fixed Vector Tables
A fixed vector table is an address-fixed vector table. Part of the interrupt vector table is allocated to

addresses 0FFDC16 through 0FFFF16. Figure 1.10.1 shows a fixed vector table.

Interrupt vector tables are composed of four bytes per table. Each vector table must contain the inter-

rupt handler routine’s entry address.

FFFDC16

FFFE016

FFFE416

FFFE816

FFFEC16

FFFF016

FFFF416

FFFF816

FFFFC16

0FFDC16

0FFFF16

Interrupt

vector table

Figure 1.10.1 Fixed Vector Table

Undefined instruction

Overflow

BRK instruction

Address match

Single step
Oscillation stop detection/
watchdog timer

(Reserved)
(Reserved)

Reset

Chapter 1 Overview

Rev.2.00 Oct 17, 2005 page 20 of 263
REJ09B0001-0200

1.10 Vector Tables

1.10.2 Variable Vector Tables
A variable vector table is an address-variable vector table. Specifically, this type of vector table is a 256-

byte interrupt vector table that uses the value indicated by the interrupt table register (INTB) as the entry

address (IntBase). Figure 1.10.2 shows a variable vector table.

Variable vector tables are composed of four bytes per table. Each vector table must contain the inter-

rupt handler routine’s entry address.

Each vector table has software interrupt numbers (0 to 63), which are used by the INT instruction.

Interrupts for the on-chip peripheral functions of each M16C model are allocated to software interrupt

numbers 0 through 31.

b19 b0

0

1

32

31

63

33

INTB IntBase

IntBase+4

IntBase+8

IntBase+252

Vectors accommodat-

ing peripheral I/O

interrupts

Software interrupt

numbers

Figure 1.10.2 Variable Vector Table

Chapter 2

Addressing Modes

2.1 Addressing Modes

2.2 Guide to This Chapter

2.3 General Instruction Addressing

2.4 Special Instruction Addressing

2.5 Bit Instruction Addressing

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 22 of 263
REJ09B0001-0200

2.1 Addressing Modes
This section describes the symbols used to represent addressing modes and operations of each address-

ing mode. The R8C/Tiny Series has three types of addressing modes as outlined below.

2.1.1 General Instruction Addressing
This addressing mode type accesses the area from address 0000016 through address 0FFFF16.

The names of the general instruction addressing modes are as follows:

• Immediate

• Register direct

• Absolute

• Address register indirect

• Address register relative

• SB relative

• FB relative

• Stack pointer relative

2.1.2 Special Instruction Addressing
This addressing mode type accesses the area from address 0000016 through address FFFFF16 and the

control registers.

The names of the specific instruction addressing modes are as follows:

• 20-bit absolute

• Address register relative with 20-bit displacement

• 32-bit address register indirect

• 32-bit register direct

• Control register direct

• Program counter relative

2.1.3 Bit Instruction Addressing
This addressing mode type accesses the area from address 0000016 through address 0FFFF16.

The names of the bit instruction addressing modes are as follows:

• Register direct

• Absolute

• Address register indirect

• Address register relative

• SB relative

• FB relative

• FLG direct

2.1 Addressing Modes

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 23 of 263
REJ09B0001-0200

2.2 Guide to This Chapter
An example illustrating how to read this chapter is shown below.

Address register relative

dsp:8[A0]

dsp:8[A1]

dsp:16[A0]

dsp:16[A1]

 Memory

A0 / A1

 Register

address

dsp

(1) Name
The name of the addressing mode.

(2) Symbol
The symbol representing the addressing mode.

(3) Description
A description of the addressing operation and the effective address range.

(4) Operation diagram
A diagram illustrating the addressing operation.

(2)

(1)

(3)

(4)

2.2 Guide to This Chapter

The value indicated by the displace-
ment (dsp) plus the content of the
address register (A0/A1)—added
without the sign bits—is the effective
address for the operation.

However, if the addition results in a
value exceeding 0FFFF16, bits 17
and above are ignored, and the
address returns to 0000016.

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 24 of 263
REJ09B0001-0200

#IMM

#IMM8

#IMM16

#IMM20

Immediate

The immediate data indicated by #IMM
is the object of the operation.

Register direct

R0L

R0H

R1L

R1H

R0

R1

R2

R3

A0

A1

b8 b7 b0b15

b15 b8

b0

RegisterThe specified register is the object of
the operation.

b15 b7b8 b0

b15 b7b8 b0

b0

b19

abs16

Absolute

abs16

[A0]

[A1]

Address register indirect

A0 / A1 address

 Memory

R0L / R1L

R0H / R1H

R0 / R1 / R2 /

R3 / A0 / A1

#IMM8

#IMM16

#IMM20

b7

2.3 General Instruction Addressing

Register Memory

2.3 General Instruction Addressing

The value indicated by abs16 is the
effective address for the operation.

The effective address range is 0000016 to
0FFFF16.

The value indicated by the content of
the address register (A0/A1) is the
effective address for the operation.

The effective address range is 0000016

to 0FFFF16.

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 25 of 263
REJ09B0001-0200

address

address

AAA

Address register relative

dsp:8[A0]

dsp:8[A1]

dsp:16[A0]

dsp:16[A1]

dsp:8[SB]

dsp:16[SB]

SB relative

FB relative

dsp:8[FB]

The value indicated by the displace-
ment (dsp) plus the content of the
address register (A0/A1)—added
without the sign bits—is the effective
address for the operation.

However, if the addition results in a
value exceeding 0FFFF16, bits 17 and
above are ignored, and the address
returns to 0000016.

address

dsp

dsp

FB

SB

dsp

The address indicated by the content
of the frame base register (FB) plus
the value indicated by the displace-
ment (dsp)—added including the sign
bits—is the effective address for the
operation.

However, if the addition results in a
value outside the range 0000016 to
0FFFF16, bits 17 and above are
ignored, and the address returns to
0000016 or 0FFFF16.

Memory

addressA0 / A1

 If the dsp value is negative

 If the dsp value is positive

dsp
Register

MemoryRegister

Memory

Register

2.3 General Instruction Addressing

address

The address indicated by the content
of the static base register (SB) plus
the value indicated by the displace-
ment (dsp)—added without the sign
bits—is the effective address for the
operation.

However, if the addition results in a
value exceeding 0FFFF16, bits 17 and
above are ignored, and the address
returns to 0000016.

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 26 of 263
REJ09B0001-0200

dsp:8[SP]

Stack pointer relative

AAA
dsp

dsp

SP
Register

Memory
If the dsp value is negative

If the dsp value is positive

address

2.3 General Instruction Addressing

The address indicated by the content of the
stack pointer (SP) plus the value indicated by
the displacement (dsp)—added including the
sign bits—is the effective address for the
operation. The stack pointer (SP) here is the
one indicated by the U flag.

However, if the addition results in a value
outside the range 0000016 to 0FFFF16, bits
17 and above are ignored, and the address
returns to 0000016 or 0FFFF16.

This addressing mode can be used with the
MOV instruction.

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 27 of 263
REJ09B0001-0200

20-bit absolute

abs20

abs20

dsp:20[A0]

dsp:20[A1]

Address register relative with 20-bit displacement

addressA0

LDE, STE instructions

JMPI, JSRI instructions

PC

address
Register

A0 / A1

dsp

dsp

 32-bit address register indirect

address

A0A1

address-L
b16 b15 b0b31

address-H

[A1A0] The address indicated by the 32
concatenated bits of the address
registers (A0 and A1) is the effective
address for the operation.

However, if the concatenated register
value exceeds FFFFF16, bits 21 and
above are ignored.

This addressing mode can be used
with the LDE and STE instructions.

Memory

Memory

Memory

Memory

Register

Register

2.4 Special Instruction Addressing

The value indicated by abs20 is the
effective address for the operation.

The effective address range is 0000016 to
FFFFF16.

This addressing mode can be used with
the LDE, STE, JSR, and JMP instructions.

The address indicated by the displacement
(dsp) plus the content of the address
register (A0/A1)—added without the sign
bits—is the effective address for the
operation.

However, if the addition results in a value
exceeding FFFFF16, bits 21 and above are
ignored, and the address returns to
0000016.

This addressing mode can be used with
the LDE, STE, JMPI, and JSRI instructions.

Valid addressing mode and instruction
combinations are as follows.

dsp: 20[A0]
LDE, STE, JMPI, and JSRI
instructions

dsp: 20[A1]
 JMPI and JSRI instructions

2.4 Special Instruction Addressing

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 28 of 263
REJ09B0001-0200

 32-bit register direct

R2R0

R3R1

A1A0

 SHL, SHA instructions

JMPI, JSRI instructions

R2R0

R3R1

A1A0

b0b31 b15b16R2R0

R3R1

b0b31 b15b16

PC

The 32-bit concatenated register content of two
specified registers is the object of the operation.

This addressing mode can be used with the
SHL, SHA, JMPI, and JSRI instructions.

Valid register and instruction combinations
are as follows.

R2R0, R3R1
SHL, SHA, JMPI, and JSRI
instructions

A1A0
 JMPI and JSRI instructions

Control register direct

INTBL

INTBH

ISP

SP

SB

FB

FLG

The specified control register is the
object of the operation.

This addressing mode can be used
with the LDC, STC, PUSHC, and
POPC instructions.

If SP is specified, the stack pointer
indicated by the U flag is the object of
the operation.

Register

INTBL

INTBH

ISP

USP

SB

FB

FLG

b0b15

b0b15 b4 b3

b0b15

b0b15

b0b15

b0b15

b0b15

2.4 Special Instruction Addressing

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 29 of 263
REJ09B0001-0200

 +0 dsp +7

Memory
label

 Program counter relative

label

 Base address

 dsp

dsp

AAA
dsp

label

label

Memory

 Base address

If the dsp value is positive

2.4 Special Instruction Addressing

 If the dsp value is negative

• If the jump length specifier (.length)
is (.S), the base address plus the
value indicated by the displacement
(dsp)—added without the sign bits—is
the effective address.

This addressing mode can be used
with the JMP instruction.

• If the jump length specifier (.length) is
(.B) or (.W), the base address plus the
value indicated by the displacement
(dsp)—added including the sign bits—is
the effective address.

However, if the addition results in a value
outside the range 0000016 to FFFFF16,
bits 21 and above are ignored, and the
address returns to 0000016 or FFFFF16.

This addressing mode can be used with
the JMP and JSR instructions.

*1 The base address is (start address of instruction + 2).

*2 The base address varies depending on the instruction.

If the specifier is (.B), -128 dsp +127

If the specifier is (.W), -32768 dsp +32767

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 30 of 263
REJ09B0001-0200

The specified register bit is the object
of the operation.

A value of 0 to 15 may be specified
as the bit position (bit).

Register direct

 Address register indirect

The bit that is the number of bits

indicated by the address register (A0/

A1) away from bit 0 at address

0000016 is the object of the operation.

Bits at addresses 0000016 through
01FFF16 can be the object of the
operation.

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

b0b15

bit,R0

Absolute

The bit that is the number of bits

indicated by bit away from bit 0 at the

address indicated by base is the object

of the operation.

Bits at addresses 0000016 through
01FFF16 can be the object of the
operation.

0000016

b7 b0

b7 b0

R0

base

Bit position

Bit position

Bit position

bit,base:16

2.5 Bit Instruction Addressing

2.5. Bit Instruction Addressing
This addressing mode type can be used with the following instructions: BCLR, BSET, BNOT, BTST,

BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNXOR, BMCnd, BTSTS, BTSTC

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 31 of 263
REJ09B0001-0200

base

address

 Address register relative

base:8[A0]

base:8[A1]

base:16[A0]

base:16[A1]

SB relative

bit,base:8[SB]

bit,base:11[SB]

bit,base:16[SB]

b7 b0

b7 b0
Memory

address
Register

SB

base

Bit position

Bit position

2.5 Bit Instruction Addressing

The bit that is the number of bits

indicated by the address register

(A0/A1) away from bit 0 at the

address indicated by base is the

object of the operation.

However, if the address of the bit
that is the object of the operation
exceeds 0FFFF16, bits 17 and
above are ignored and the
address returns to 0000016.

The address range that can be
specified by the address register
(A0/A1) extends 8,192 bytes
from base.

The bit that is the number of bits

indicated by bit away from bit 0 at

the address indicated by the static

base register (SB) plus the value

indicated by base (added without

the sign bits) is the object of the

operation.

However, if the address of the bit
that is the object of the operation
exceeds 0FFFF16, bits 17 and
above are ignored and the address
returns to 0000016.

The address ranges that can be
specified by bit,base:8, bit,base:11,
and bit,base:16, respectively, extend
32 bytes, 256 bytes, and 8,192
bytes from the static base register
(SB) value.

Chapter 2 Addressing Modes

Rev.2.00 Oct 17, 2005 page 32 of 263
REJ09B0001-0200

address

 FB relative

bit,base:8[FB]

FB address
Register

base

base

If the base value is negative

 If the base value is positive

 Memory

Bit position

FLG direct

U

I

O

B

S

Z

D

C

U I O B S Z D C

b0b7

FLG

Register

2.5 Bit Instruction Addressing

The specified flag is the object of
the operation.

This addressing mode can be
used with the FCLR and FSET
instructions.

The bit that is the number of bits

indicated by bit away from bit 0 at the

address indicated by the frame base

register (FB) plus the value indicated by

base (added including the sign bit) is the

object of the operation.

However, if the address of the bit that is
the object of the operation is outside the
range 0000016 to 0FFFF16, bits 17 and
above are ignored and the address
returns to 0000016 or 0FFFF16.

The address range that can be specified
by bit, base:8 extends 16 bytes toward
lower addresses or 15 bytes toward
higher addresses from the frame base
register (FB) value.

 (Bit position)

Chapter 3

Functions

3.1 Guide to This Chapter

3.2 Functions

3.1 Guide to This Chapter
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 34 of 263
REJ09B0001-0200

[Operation]

dest src

90

MOVe MOV

[Function]

[Related Instruction] LDE, STE, XCHG

[Description Example]

MOV.B:S #0ABH,R0L

MOV.W #-1,R2

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP] R2R0 R3R1 A1A0 dsp:8[SP]

 [Selectable src/dest]

[Syntax]

MOV.size (:format) src,dest

3.1 Guide to This Chapter

In this chapter each instruction’s syntax, operation, function, selectable src/dest, and flag changes are

listed, and description examples and related instructions are shown.

An example illustrating how to read this chapter is shown below.

U I O B S Z D C

MOV Transfer

G , Q , Z , S (Can be specified)

B , W

 [Flag Change]

(2)

(6)

(7)

(5)

(4)

(3)

(1)

(8)

(9)

[Instruction Code/Number of Cycles]

Page: 193

3.2 Functions
Chapter 3 Functions

(See next page for src/dest classified by format.)

• This instruction transfers src to dest.
• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to

transfer data in 16 bits. If src is A0 or A1, the 8 low-order bits of A0 or A1 are transferred.

Conditions

S : The flag is set when the transfer results in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer results in 0; otherwise cleared.

 Flag

Change

3.1 Guide to This ChapterChapter 3 Functions

Rev.2.00 Oct 17, 2005 page 35 of 263
REJ09B0001-0200

(1) Mnemonic
The mnemonic explained in the page.

(2) Instruction Code/Number of Cycles
The page on which the instruction code and number of cycles is listed.

Refer to this page for information on the instruction code and number of cycles.

(3) Syntax
The syntax of the instruction using symbols. If (:format) is omitted, the assembler chooses the optimum

specifier.

MOV.size (: format) src , dest

 G , Q , S , Z (f)

 B , W (e)

 (a) (b) (c) (d)

(a) Mnemonic MOV

Shows the mnemonic.

(b) Size specifier .size

Shows the data sizes in which data is handled. The following data sizes may be specified:

.B Byte (8 bits)

.W Word (16 bits)

.L Long word (32 bits)

Some instructions do not have a size specifier.

(c) Instruction format specifier (: format)

Shows the instruction format. If (: format) is omitted, the assembler chooses the optimum specifier.

If (: format) is entered, its content is given priority. The following instruction formats may be specified:

:G Generic format

:Q Quick format

:S Short format

:Z Zero format

Some instructions do not have an instruction format specifier.

(d) Operands src, dest

Shows the operands.

(e) Shows the data sizes that can be specified in (b).

(f) Shows the instruction formats that can be specified in (c).

3.1 Guide to This Chapter
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 36 of 263
REJ09B0001-0200

90

MOVe MOV

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP] R2R0 R3R1 A1A0 dsp:8[SP]

 [Selectable src/dest]

U I O B S Z D C

Transfer

G , Q , Z , S (Can be specified)

B , W

(2)

(6)

(7)

(5)

(4)

(3)

(1)

(8)

(9)

MOV

(See next page for src/dest classified by format.)

3.2 Functions
Chapter 3 Functions

[Instruction Code/Number of Cycles]

Page: 193[Syntax]

MOV.size (:format) src,dest

[Operation]

dest src

[Function]
• This instruction transfers src to dest.
• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to transfer

data in 16 bits. If src is A0 or A1, the 8 low-order bits of A0 or A1 are transferred.

 [Flag Change]

 Flag

Change
Conditions

S : The flag is set when the transfer results in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer results in 0; otherwise cleared.

[Description Example]

MOV.B:S #0ABH,R0L

MOV.W #-1,R2

[Related Instruction] LDE, STE, XCHG

3.1 Guide to This ChapterChapter 3 Functions

Rev.2.00 Oct 17, 2005 page 37 of 263
REJ09B0001-0200

(4) Operation
Explains the operation of the instruction using symbols.

(5) Function
Explains the function of the instruction and precautions to be taken when using the instruction.

(6) Selectable src / dest (label)
If the instruction has operands, the valid formats are listed here.

(a) Items that can be selected as src (source)

(b) Items that can be selected as dest (destination)

(c) Addressing modes that can be selected

(d) Addressing modes that cannot be selected

(e) Shown on the left side of the slash (R0H) is the addressing mode when data is handled in bytes (8 bits).

Shown on the right side of the slash (R1) is the addressing mode when data is handled in words (16 bits).

(7) Flag change
Shows a flag change that occurs after the instruction is executed. The symbols in the table mean the

following.

“
—

” The flag does not change.

“O” The flag changes depending on a condition.

(8) Description example
Description examples for the instruction.

(9) Related instructions
Related instructions that cause an operation similar or opposite to that of the instruction.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP] R2R0 R3R1 A1A0 dsp:8[SP]

(a)

(b)

(c)

(d)

(e)

3.1 Guide to This Chapter
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 38 of 263
REJ09B0001-0200

The syntax of the jump instructions JMP, JPMI, JSR, and JSRI are illustrated below by example .

(3) Syntax
Indicates the instruction syntax using symbols.

(a) (b) (c)

(a) Mnemonic JMP

Shows the mnemonic.

(b) Jump distance specifier .length

Shows the distance of the jump. If (.length) is omitted from the JMP or JSR instruction, the assem-

bler chooses the optimum specifier. If (.length) is entered, its content is given priority.

The following jump distances may be specified:

.S 3-bit PC forward relative (+2 to +9)

.B 8-bit PC relative

.W 16-bit PC relative

.A 20-bit absolute

(c) Operand label

Shows the operand.

(d) Shows the jump distances that can be specified in (b).

JuMP
 Unconditional jump

JMP (.length) label

S, B, W, A (d)

[Syntax]

JMP (.length) label

JMP

S, B, W, A (Can be specified)

(2)

(3)

(1)

3.2 Functions
Chapter 3 Functions

JMP
[Instruction Code/Number of Cycles]

Page: 183

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 39 of 263
REJ09B0001-0200

Absolute value
ABSolute

[Syntax]

ABS.size dest

ABS.B R0L

ABS.W A0

[Selectable dest]

ABS

[Function]
• This instruction takes the absolute value of dest and stores it in dest.

[Description Example]

ABS

Conditions

O : The flag is set (= 1) when dest before the operation is –128 (.B) or –32768 (.W); otherwise cleared (= 0).

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag value is undefined.

[Flag Change]

[Operation]

 dest dest

B , W

U I O B S Z D C

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Instruction Code/Number of Cycles]

Page: 138

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 40 of 263
REJ09B0001-0200

[Instruction Code/Number of Cycles]

Page: 138

Add with carry
ADdition with Carry

[Related Instructions] ADCF, ADD, SBB, SUB

[Selectable src/dest]

[Syntax]

ADC.size src,dest

ADCADC

[Function]

[Description Example]

B , W

[Operation]

dest src + dest + C

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Flag Change]

• This instruction adds dest, src, and the C flag and stores the result in dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

calculation in 16 bits. If src is A0 or A1, the operation is performed on the eight low-order bits of A0 or

A1.

U I O B S Z D C

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

Conditions

O : The flag is set when a signed operation results in a value exceeding +32767 (.W) or –32768 (.W)

or +127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in a value exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

Change

ADC.B #2,R0L

ADC.W A0,R0

ADC.B A0,R0L

ADC.B R0L,A0

Flag

; 8 low-order bits of A0 and R0L are added.

; R0L is zero-expanded and added to A0.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 41 of 263
REJ09B0001-0200

Add carry flag
ADdition Carry Flag

[Selectable dest]

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

ADCF ADCF

[Function]

[Flag Change]

Conditions

O : The flag is set when a signed operation results in a value exceeding +32767 (.W) or –32768 (.W)

or +127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in a value exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

[Description Example]

ADCF.B R0L

ADCF.W Ram:16[A0]

[Related Instructions] ADC, ADD, SBB, SUB

B , W

[Syntax]

ADCF.size dest

[Operation]

dest dest + C

U I O B S Z D C

This instruction adds dest and the C flag and stores the result in dest.

[Instruction Code/Number of Cycles]

Page: 140

Change

Flag

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 42 of 263
REJ09B0001-0200

Add without carry
ADDition

[Related Instructions] ADC, ADCF, SBB, SUB

ADD ADD
[Syntax]

ADD.size (:format) src,dest

[Flag Change]

ADD.B A0,R0L

ADD.B R0L,A0

ADD.B Ram:8[SB],R0L

ADD.W #2,[A0]

G , Q , S (Can be specified)

B , W
[Operation]

dest dest + src

Conditions

O : The flag is set when a signed operation results in a value exceeding +32767 (.W) or –32768 (.W)

or +127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in a value exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

[Description Example]

; 8 low-order bits of A0 and R0L are added.

; R0L is zero-expanded and added to A0.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 140

Change

Flag

[Function]

• This instruction adds dest and src and stores the result in dest.
• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform calculation

in 16 bits. If src is A0 or A1, the operation is performed on the eight low-order bits of A0 or A1.
• If dest is a stack pointer and the selected size specifier (.size) is (.B), src is sign extended to perform

calculation in 16 bits.

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP*2

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0
*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simultaneously.

*2 The operation is performed on the stack pointer indicated by the U flag. Only #IMM can be selected for src.

(See next page for src /dest classified by format.)

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 43 of 263
REJ09B0001-0200

[src/dest Classified by Format]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*3 dsp:20[A0] dsp:20[A1] abs20 SP/SP*2

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP*2

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simultaneously.

*2 The operation is performed on the stack pointer indicated by the U flag. Only #IMM can be selected for src.

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*5 R0H*5 dsp:8[SB] dsp:8[FB] R0L*5 R0H*5 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*4 Only (.B) can be selected as the size specifier (.size).

*5 The same register cannot be used for src and dest simultaneously.

*2 The operation is performed on the stack pointer indicated by the U flag. Only #IMM can be selected for src.

*3 The acceptable range of values is –8 < #IMM < +7.

S format*4

Q format

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 44 of 263
REJ09B0001-0200

U I O B S Z D C

Add and conditional jump
ADdition then Jump on Not Zero

ADJNZ.W #–1,R0,label

[Related Instructions] SBJNZ

[Function]

ADJNZ ADJNZ
[Syntax]

ADJNZ.size src,dest,label

[Flag Change]

[Description Example]

B , W

[Operation]

dest dest + src

if dest 0 then jump label

src dest label

R0L/R0 R0H/R1 R1L/R2

R1H/R3 A0/A0 A1/A1

#IMM*1 [A0] [A1] dsp:8[A0] PC*2–126 label PC*2+129

dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB]

abs16

[Selectable src/dest/label]

• This instruction adds dest and src and stores the result in dest.

• If the addition results in any value other than 0, control jumps to label. If the addition results in 0, the

next instruction is executed.

• The op-code of this instruction is the same as that of SBJNZ.

*1 The acceptable range of values is –8 < #IMM < +7.

*2 PC indicates the start address of the instruction.

[Instruction Code/Number of Cycles]

Page: 146

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 45 of 263
REJ09B0001-0200

AND
Logically AND

[Related Instructions] OR, XOR, TST

[Function]

AND AND
[Syntax]

AND.size (:format) src,dest

[Selectable src/dest]

[Flag Change]

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

[Description Example]

AND.B Ram:8[SB],R0L

AND.B:G A0,R0L

AND.B:G R0L,A0

AND.B:S #3,R0L

G , S (Can be specified)

B , W
[Operation]

dest src dest

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

• This instruction logically ANDs dest and src and stores the result in dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

calculation in 16 bits. If src is A0 or A1, operation is performed on the eight low-order bits of A0 or A1.

; 8 low-order bits of A0 and R0L are ANDed.

; R0L is zero-expanded and ANDed with A0.

U I O B S Z D C

(See next page for src /dest classified by format.)

[Instruction Code/Number of Cycles]

Page: 147

Change

Flag

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 46 of 263
REJ09B0001-0200

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

S format*2

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*3 R0H*3 dsp:8[SB] dsp:8[FB] R0L*3 R0H*3 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*2 Only (.B) can be selected as the size specifier (.size).

*3 The same register cannot be used for src and dest.

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 47 of 263
REJ09B0001-0200

• This instruction logically ANDs the C flag and src and stores the result in the C flag.

Bit AND carry flag
Logically AND bits

[Related Instructions] BOR, BXOR, BNAND, BNOR, BNXOR

[Function]

BAND BAND
[Syntax]

BAND src

[Selectable src]

[Flag Change]

Conditions

C : The flag is set when the operation results in 1; otherwise cleared.

[Description Example]
BAND flag

BAND 4,Ram

BAND 16,Ram:16[SB]

BAND [A0]

[Operation]

 C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

U I O B S Z D C
Change

[Instruction Code/Number of Cycles]

Page: 150

Flag

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 48 of 263
REJ09B0001-0200

Bit CLeaR
Clear bit

[Syntax]

BCLR (:format) dest

[Related Instructions] BSET, BNOT, BNTST, BTST, BTSTC, BTSTS

[Function]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This dest can only be selected when in S format.

BCLR

[Selectable dest]

[Description Example]
BCLR flag

BCLR 4,Ram:8[SB]

BCLR 16,Ram:16[SB]

BCLR [A0]

G , S (Can be specified)

[Operation]

dest 0

• This instruction stores 0 in dest.

U I O B S Z D C

BCLR
[Instruction Code/Number of Cycles]

Page: 150

Flag

Change

[Flag Change]

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 49 of 263
REJ09B0001-0200

Cnd Condition Expression Cnd Condition Expression

GEU/C C=1 Equal to or greater than LTU/NC C=0 Less than

C flag is 1. C flag is 0.

EQ/Z Z=1 Equal to = NE/NZ Z=0 Not equal

Z flag is 1. Z flag is 0.

GTU

C Z=1 Greater than LEU

C Z=0 Equal to or less than

PZ S=0 Positive or zero 0 N S=1 Negative 0

GE S O=0 Equal to or greater than LE (S O) Z=1 Equal to or less than

(signed value) (signed value)

GT (S O) Z=0 Greater than (signed value) LT S O=1 Less than (signed value)

O O=1 O flag is 1. NO O=0 O flag is 0.

Bit Move Condition
Conditional bit transfer

[Related Instructions] JCnd

BMCnd BMCnd
[Syntax]

BMCnd dest

[Operation]

if true then dest 1

else dest 0

[Flag Change]

[Selectable dest]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

[Description Example]
BMN 3,Ram:8[SB]

BMZ C

• This instruction transfers the true or false value of the condition indicated by Cnd to dest. If the

condition is true, 1 is transferred; if false, 0 is transferred.

• The supported types of Cnd are as follows.

*1 The flag changes if the C flag was specified for dest.

U I O B S Z D C
*1

[Function]

[Instruction Code/Number of Cycles]

Page: 152

Change

Flag

A

A A

A

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 50 of 263
REJ09B0001-0200

Bit Not AND carry flag
Logically AND inverted bits

[Related Instructions] BAND, BOR, BXOR, BNOR, BNXOR

[Function]

BNAND
[Syntax]

BNAND src

• This instruction logically ANDs the C flag and the inverted value of src and stores the result in the C

flag.

[Selectable src]

[Flag Change]

[Description Example]

BNAND flag

BNAND 4,Ram

BNAND 16,Ram:16[SB]

BNAND [A0]

 [Operation]

 C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

Condition

C : The flag is set when the operation results in 1; otherwise cleared.

U I O B S Z D C

BNAND
[Instruction Code/Number of Cycles]

Page: 153

Change

Flag

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 51 of 263
REJ09B0001-0200

[Instruction Code/Number of Cycles]

Page: 154

Bit Not OR carry flag
Logically OR inverted bits

[Syntax]

BNOR src

[Description Example]

[Related Instructions] BAND, BOR, BXOR, BNAND, BNXOR

[Function]

• This instruction logically ORs the C flag and the inverted value of src and stores the result in the C

flag.

[Selectable src]

BNOR BNOR

[Flag Change]

BNOR flag

BNOR 4,Ram

BNOR 16,Ram:16[SB]

BNOR [A0]

[Operation]

C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

U I O B S Z D C

Condition

C : The flag is set when the operation results in 1; otherwise cleared.

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 52 of 263
REJ09B0001-0200

U I O B S Z D C

Bit NOT
Invert bit

 [Syntax]

BNOT(:format) dest

[Flag Change]

[Description Example]
BNOT flag

BNOT 4,Ram:8[SB]

BNOT 16,Ram:16[SB]

BNOT [A0]

[Related Instructions] BCLR, BSET, BNTST, BTST, BTSTC, BTSTS

[Function]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This dest can only be selected when in S format.

BNOTBNOT

[Selectable dest]

G , S (Can be specified)

Change

[Operation]

 dest dest

[Instruction Code/Number of Cycles]

Page: 154

• This instruction inverts dest and stores the result in dest.

Flag

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 53 of 263
REJ09B0001-0200

Bit Not TeST
Test inverted bit

[Flag Change]

[Description Example]

[Function]

[Selectable src]

BNTST BNTST
[Syntax]

BNTST src

Conditions

Z : The flag is set when src is 0; otherwise cleared.

C : The flag is set when src is 0; otherwise cleared.

BNTST flag

BNTST 4,Ram:8[SB]

BNTST 16,Ram:16[SB]

BNTST [A0]

[Related Instructions] BCLR, BSET, BNOT, BTST, BTSTC, BTSTS

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

[Operation]

Z src

C src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 155

• This instruction transfers the inverted value of src to the Z flag and the inverted value of src to the C

flag.

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 54 of 263
REJ09B0001-0200

Bit Not eXclusive OR carry flag
Exclusive OR inverted bits

[Flag Change]

[Description Example]

[Related Instructions] BAND, BOR, BXOR, BNAND, BNOR

[Function]

[Selectable src]

BNXOR
[Syntax]

BNXOR src

BNXOR flag

BNXOR 4,Ram

BNXOR 16,Ram:16[SB]

BNXOR [A0]

[Operation]

 C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

• This instruction exclusive ORs the C flag and the inverted value of src and stores the result in the C

flag.

U I O B S Z D C

Conditions

C : The flag is set when the operation results in 1; otherwise cleared.

BNXOR
[Instruction Code/Number of Cycles]

Page: 156

Flag

Change

A

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 55 of 263
REJ09B0001-0200

Bit OR carry flag
Logically OR bits

[Syntax]

BOR src

[Description Example]

[Related Instructions] BAND, BXOR, BNAND, BNOR, BNXOR

[Function]

[Selectable src]

BOR BOR

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

[Flag Change]

BOR flag

BOR 4,Ram

BOR 16,Ram:16[SB]

BOR [A0]

[Operation]

C src C

U I O B S Z D C

Conditions

C : The flag is set when the operation results in 1; otherwise cleared.

• This instruction logically ORs the C flag and src and stores the result in the C flag.

[Instruction Code/Number of Cycles]

Page: 156

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 56 of 263
REJ09B0001-0200

BReaK
Debug interrupt

BRK
[Description Example]

[Related Instructions] INT, INTO

[Function]

BRK BRK

[Flag Change]*1

Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

[Syntax]

BRK

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 157

• This instruction generates a BRK interrupt.

• The BRK interrupt is a nonmaskable interrupt.

Flag

Change

[Operation]
SP SP – 2
M(SP) (PC + 1)H, FLG
SP SP – 2
M(SP) (PC + 1)ML

PC M(FFFE416)

*1 The flags are saved to the stack area before the BRK in-

struction is executed. After the interrupt, the flags

change state as shown at left.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 57 of 263
REJ09B0001-0200

Bit SET
Set bit

 [Flag Change]

[Related Instructions] BCLR, BNOT, BNTST, BTST, BTSTC, BTSTS

[Function]

[Selectable dest]

BSET BSET
[Syntax]

BSET (:format) dest

[Description Example]
BSET flag

BSET 4,Ram:8[SB]

BSET 16,Ram:16[SB]

BSET [A0]

G , S (Can be specified)

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This dest can only be selected when in S format.

• This instruction stores 1 in dest.

U I O B S Z D C
Change

[Instruction Code/Number of Cycles]

Page: 157

Flag

[Operation]

 dest 1

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 58 of 263
REJ09B0001-0200

Bit TeST
Test bit

[Flag Change]

[Function]

[Related Instructions] BCLR, BSET, BNOT, BNTST, BTSTC, BTSTS

[Selectable src]

BTST BTST
[Syntax]

BTST (:format) src

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This src can only be selected when in S format.

[Description Example]

BTST flag

BTST 4,Ram:8[SB]

BTST 16,Ram:16[SB]

BTST [A0]

G , S (Can be specified)

[Operation]

Z src

C src

U I O B S Z D C

Conditions

Z : The flag is set when src is 0; otherwise cleared.

C : The flag is set when src is 1; otherwise cleared.

• This instruction transfers the inverted value of src to the Z flag and the non-inverted value of src to

the C flag.

Change

[Instruction Code/Number of Cycles]

Page: 158

Flag

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 59 of 263
REJ09B0001-0200

Bit TeST and Clear
Test bit and clear

[Flag Change]

[Description Example]

[Related Instructions] BCLR, BSET, BNOT, BNTST, BTST, BTSTS

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

BTSTC BTSTC
[Syntax]

BTSTC dest

[Selectable dest]

BTSTC flag

BTSTC 4,Ram

BTSTC 16,Ram:16[SB]

BTSTC [A0]

[Operation]

Z

 dest

C dest

dest 0

[Function]

U I O B S Z D C

Conditions

Z : The flag is set when dest is 0; otherwise cleared.

C : The flag is set when dest is 1; otherwise cleared.

• This instruction transfers the inverted value of dest to the Z flag and the non-inverted value of

dest to the C flag. Then it stores 0 in dest.

[Instruction Code/Number of Cycles]

Page: 159

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 60 of 263
REJ09B0001-0200

Bit TeST and Set
Test bit and set

[Flag Change]

[Description Example]

[Related Instructions] BCLR, BSET, BNOT, BNTST, BTST, BTSTC

[Selectable dest]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

BTSTS BTSTS

[Function]

• This instruction transfers the inverted value of dest to the Z flag and the non-inverted value of dest to
the C flag. Then it stores 1 in dest.

Conditions

Z : The flag is set when dest is 0; otherwise cleared.

C : The flag is set when dest is 1; otherwise cleared.

BTSTS flag

BTSTS 4,Ram

BTSTS 16,Ram:16[SB]

BTSTS [A0]

[Syntax]

BTSTS dest

[Operation]

Z

 dest

C dest

dest 1

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 160

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 61 of 263
REJ09B0001-0200

Bit eXclusive OR carry flag
Exclusive OR bits

[Flag Change]

[Description Example]

[Related Instructions] BAND, BOR, BNAND, BNOR, BNXOR

[Function]

[Selectable src]

BXOR
[Syntax]

BXOR src

BXOR

• This instruction exclusive ORs the C flag and src and stores the result in the C flag.

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

BXOR flag

BXOR 4,Ram

BXOR 16,Ram:16[SB]

BXOR [A0]

[Operation]

C src C

U I O B S Z D C

Conditions

C : The flag is set when the operation results in 1; otherwise cleared.

[Instruction Code/Number of Cycles]

Page: 160

Flag

Change

A

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 62 of 263
REJ09B0001-0200

[Instruction Code/Number of Cycles]

Page: 161

 Compare

[Syntax]

CMP.size (:format) src,dest

[Description Example]

[Selectable src/dest]

[Function]

[Flag Change]

CMP CMP

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

(See next page for src /dest classified by format.)

CMP.B:S #10,R0L

CMP.W:G R0,A0

CMP.W #–3,R0

CMP.B #5,Ram:8[FB]

CMP.B A0,R0L

[Operation]

dest – src

CoMPare

• Flag bits in the flag register change depending on the result of subtraction of src from dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

operation in 16 bits. If src is A0 or A1, operation is performed on the 8 low-order bits of A0 or A1.

U I O B S Z D C

Conditions

O : The flag is set when a signed operation results in a value exceeding +32767 (.W) or –32768 (.W),

or +127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in any value equal to or greater than 0;

otherwise cleared.

; 8 low-order bits of A0 and R0L are compared.

G , Q , S (Can be specified)

B , W

Flag

Change

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 63 of 263
REJ09B0001-0200

[src/dest Classified by Format]

S format*3

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

Q format

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*4 R0H*4 dsp:8[SB] dsp:8[FB] R0L*4 R0H*4 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*3 Only (.B) can be selected as the size specifier (.size).

*4 The same register cannot be used for src and dest.

*2 The acceptable range of values is –8 < #IMM < +7.

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 64 of 263
REJ09B0001-0200

Decimal ADdition with Carry
Decimal add with carry

[Syntax]

DADC.size src,dest

[Flag Change]

[Description Example]

[Related Instructions] DADD, DSUB, DSBB

[Function]

[Selectable src/dest]

DADC DADC

DADC.B #3,R0L

DADC.W R1,R0

B , W

[Operation]

dest src + dest + C

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when the operation results in a value exceeding +9999 (.W) or +99 (.B); otherwise

cleared.

• This instruction adds dest, src, and the C flag as decimal data and stores the result in dest.

[Instruction Code/Number of Cycles]

Page: 165

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 65 of 263
REJ09B0001-0200

Decimal ADDition
Decimal add without carry

[Flag Change]

[Description Example]
DADD.B #3,R0L

DADD.W R1,R0

[Related Instructions] DADC, DSUB, DSBB

[Function]

[Selectable src/dest]

DADD DADD

B , W

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Syntax]

DADD.size src,dest

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when the operation results in a value exceeding +9999 (.W) or +99 (.B); otherwise

cleared.

• This instruction adds dest and src as decimal data and stores the result in dest.

[Instruction Code/Number of Cycles]

Page: 167

Flag

Change

[Operation]

dest src + dest

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 66 of 263
REJ09B0001-0200

U I O B S Z D C

DECrement
Decrement

[Syntax]

DEC.size dest

[Flag Change]

[Related Instructions] INC

[Function]

DEC DEC

[Description Example]
DEC.W A0

DEC.B R0L

B , W

[Selectable dest]

[Operation]

dest dest – 1

dest

R0L*1 R0H*1 dsp:8[SB]*1 dsp:8[FB]*1

abs16*1 A0*2 A1*2

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

• This instruction decrements dest by 1 and stores the result in dest.

*1 Only (.B) can be specified as the size specifier (.size).

*2 Only (.W) can be specified as the size specifier (.size).

[Instruction Code/Number of Cycles]

Page: 169

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 67 of 263
REJ09B0001-0200

Signed divide
DIVide

DIV.B A0 ;Value of 8 low-order bits of A0 is the divisor.

DIV.B #4

DIV.W R0

[Related Instructions] DIVU, DIVX, MUL, MULU

DIV DIV
[Syntax]

DIV.size src
B , W

[Operation]

If the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src

If the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src

[Flag Change]

[Function]
• This instruction divides R2R0 (R0)*1 by the signed value of src and stores the quotient in R0 (R0L)*1

and the remainder in R2 (R0H)*1. The remainder has the same sign as the dividend. Items in paren-

theses and followed by“*1” ()*1 indicate registers that are the object of the operation when (.B) is

selected as the size specifier (.size).

• If src is A0 or A1 and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-

order bits of A0 or A1.

• If (.B) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient

exceeding 8 bits or the divisor is 0. In this case, R0L and R0H are undefined.

• If (.W) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient

exceeding 16 bits or the divisor is 0. In this case, R0 and R2 are undefined.

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

[Description Example]

U I O B S Z D C

Conditions

O : The flag is set when the operation results in a quotient exceeding 16 bits (.W) or 8 bits (.B) or the

divisor is 0; otherwise cleared.

[Instruction Code/Number of Cycles]

Page: 170

[Selectable src]

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 68 of 263
REJ09B0001-0200

DIVide Unsigned
Unsigned divide

[Description Example]

[Related Instructions] DIV, DIVX, MUL, MULU

DIVU DIVU
[Syntax]

DIVU.size src

DIVU.B A0 ;Value of 8 low-order bits of A0 is the divisor.

DIVU.B #4

DIVU.W R0

B , W

[Operation]

If the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src

If the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src

[Flag Change]

• This instruction divides R2R0 (R0)*1 by the unsigned value of src and stores the quotient in R0
(R0L)*1 and the remainder in R2 (R0H)*1. Items in parentheses and followed by“*1” ()*1 indicate
registers that are the object of the operation when (.B) is selected as the size specifier (.size).

• If src is A0 or A1 and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-

order bits of A0 or A1.

• If (.B) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient

exceeding 8 bits or the divisor is 0. In this case, R0L and R0H are undefined.

• If (.W) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient

exceeding 16 bits or the divisor is 0. In this case, R0 and R2 are undefined.

Conditions

O : The flag is set when the operation results in a quotient exceeding 16 bits (.W) or 8 bits (.B) or the

divisor is 0; otherwise cleared.

[Function]

[Selectable src]

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

[Instruction Code/Number of Cycles]

Page: 171

U I O B S Z D CFlag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 69 of 263
REJ09B0001-0200

DIVide eXtension
Signed divide

[Syntax]

DIVX.size src

[Description Example]

[Related Instructions] DIV, DIVU, MUL, MULU

DIVX DIVX

DIVX.B A0 ;Value of 8 low-order bits of A0 is the divisor.

DIVX.B #4

DIVX.W R0

B , W

[Operation]

If the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src

If the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src

[Flag Change]

U I O B S Z D CFlag

Conditions

O : The flag is set when the operation results in a quotient exceeding 16 bits (.W) or 8 bits (.B) or the

divisor is 0; otherwise cleared.

[Function]

• This instruction divides R2R0 (R0)*1 by the signed value of src and stores the quotient in R0 (R0L)*1 and the
remainder in R2 (R0H)*1. The remainder has the same sign as the divisor. Items in parentheses and followed
by“*1” ()*1 indicate registers that are the object of the operation when (.B) is selected as the size specifier (.size).

• If src is A0 or A1 and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-

order bits of A0 or A1.

• If (.B) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient

exceeding 8 bits or the divisor is 0. At this time, R0L and R0H are undefined.

• If (.W) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient

exceeding 16 bits or the divisor is 0. At this time, R0 and R2 are undefined.

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

[Selectable src]

Change

[Instruction Code/Number of Cycles]

Page: 172

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 70 of 263
REJ09B0001-0200

Decimal SuBtract with Borrow
Decimal subtract with borrow

[Syntax]

DSBB.size src,dest

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

DSBB DSBB

• This instruction subtracts src and the inverted value of the C flag from dest as decimal data and

stores the result in dest.

DSBB.B #3,R0L

DSBB.W R1,R0

[Related Instructions] DADC, DADD, DSUB

B , W

[Operation]

dest dest – src – C

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when the operation results in any value equal to or greater than 0; otherwise

cleared.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 173

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 71 of 263
REJ09B0001-0200

Decimal SUBtract
Decimal subtract without borrow

 [Syntax]

DSUB.size src,dest

 [Flag Change]

 [Description Example]

 [Related Instructions] DADC, DADD, DSBB

 [Function]

 [Selectable src/dest]

DSUB DSUB

DSUB.B #3,R0L

DSUB.W R1,R0

B , W

 [Operation]

dest dest – src

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D CFlag

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when the operation results in any value equal to or greater than 0; otherwise

cleared.

• This instruction subtracts src from dest as decimal data and stores the result in dest.

Change

[Instruction Code/Number of Cycles]
Page: 175

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 72 of 263
REJ09B0001-0200

ENTER function
Build stack frame

[Description Example]
ENTER #3

[Related Instructions] EXITD

ENTER ENTER

[Flag Change]

[Operation]

SP SP – 2

M(SP) FB

FB SP

SP SP – src

[Syntax]

ENTER src

src

#IMM8

[Selectable src]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 177

Flag

Change

Return address (L)

Return address (M)

Return address (H)

Argument of function

SP

FB

SP

After instruction execution

Auto variable area
Direction in
which address
increases

Number of bytes
indicated by src

FB (L)

FB (H)

Return address (L)

Return address (M)

Return address (H)

Argument of function

Before instruction execution

[Function]

• This instruction generates a stack frame. src represents the size of the stack frame.

• The diagrams below show the stack area status before and after the ENTER instruction is executed at

the beginning of a called subroutine.

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 73 of 263
REJ09B0001-0200

Argument of function

[Instruction Code/Number of Cycles]

Page: 178

EXIT and Deallocate stack frame

[Description Example]

[Syntax]

EXITD

[Related Instructions] ENTER

EXITD EXITD

[Operation]

SP FB

FB M(SP)

SP SP + 2

PCML M(SP)

SP SP + 2

PCH M(SP)

SP SP + 1

 [Function]

EXITD

Deallocate stack frame

• This instruction deallocates a stack frame and exits from the subroutine.

• Use this instruction in combination with the ENTER instruction.

• The diagrams below show the stack area status before and after the EXITD instruction is executed

at the end of a subroutine in which an ENTER instruction was executed.

[Flag Change]

U I O B S Z D CFlag

Change

FB (L)

FB (H)

Return address (L)
Return address (M)

Return address (H)

Argument of function

Auto variable area

SP

FB

SP

Direction in which
address increases

Before instruction execution After instruction execution

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 74 of 263
REJ09B0001-0200

EXTend Sign
Extend sign

[Description Example]

[Function]

[Flag Change]

EXTS EXTS
[Syntax]

EXTS.size dest

• This instruction sign extends dest and stores the result in dest.

• If (.B) is selected as the size specifier (.size), dest is sign extended to 16 bits.

• If (.W) is selected as the size specifier (.size), R0 is sign extended to 32 bits. In this case, R2 is used

for the upper bytes.

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

EXTS.B R0L

EXTS.W R0

B , W

[Operation]

dest EXT(dest)

U I O B S Z D C

Conditions

S : If (.B) is selected as the size specifier (.size), the flag is set when the operation results in MSB =

1; otherwise cleared. The flag does not change if (.W) is selected as the size specifier (.size).

Z : If (.B) is selected as the size specifier (.size), the flag is set when the operation results in 0;

otherwise cleared. The flag does not change if (.W) is selected as the size specifier (.size).

[Selectable dest]

[Instruction Code/Number of Cycles]

Page: 178

Flag

Change

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 75 of 263
REJ09B0001-0200

Flag register CLeaR
Clear flag register bit

[Flag Change]

[Description Example]

[Related Instructions] FSET

[Function]

dest

C D Z S B O I U

FCLR
[Syntax]

FCLR dest

FCLR I

FCLR S

[Operation]

dest 0

*1 The selected flag is cleared to 0.

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1

• This instruction stores 0 in dest.

[Selectable dest]

FCLR
[Instruction Code/Number of Cycles]

Page: 179

Flag

Change

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 76 of 263
REJ09B0001-0200

Flag register SET
Set flag register bit

[Description Example]

[Related Instructions] FCLR

[Function]

[Selectable dest]
dest

C D Z S B O I U

[Syntax]

FSET dest

[Flag Change]

FSET I

FSET S

FSET FSET

[Operation]

dest 1

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1 *1 The selected flag is set (= 1).

• This instruction stores 1 in dest.

[Instruction Code/Number of Cycles]

Page: 180

Flag

Change

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 77 of 263
REJ09B0001-0200

INCrement
Increment

[Description Example]
INC.W A0

INC.B R0L

[Related Instructions] DEC

[Function]

[Selectable dest]

INC INC

[Flag Change]

B , W

[Syntax]

INC.size dest

[Operation]

dest dest + 1

*1 Only (.B) can be selected as the size specifier (.size).

*2 Only (.W) can be selected as the size specifier (.size).

dest

R0L*1 R0H*1 dsp:8[SB]*1 dsp:8[FB]*1

abs16*1 A0*2 A1*2

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

• This instruction adds 1 to dest and stores the result in dest.

[Instruction Code/Number of Cycles]

Page: 180

Flag

Change

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 78 of 263
REJ09B0001-0200

Interrupt by INT instruction
INTerrupt

[Related Instructions] BRK, INTO

[Flag Change]

INT INT
[Syntax]

INT src

[Description Example]
INT #0

[Operation]
SP SP – 2
M(SP) (PC + 2)H, FLG
SP SP – 2
M(SP) (PC + 2)ML

PC M(IntBase + src 4)

src

#IMM*1*2

*1 #IMM denotes a software interrupt number.

*2 The acceptable range of values is 0 < #IMM < 63.

[Selectable src]

*3 The flags are saved to the stack area before the INT in-

struction is executed. After the interrupt, the flags

change state as shown at left.

U I O B S Z D CFlag

Conditions

U : The flag is cleared if the software interrupt number is 31 or smaller. The flag does not change if

the software interrupt number is 32 or larger.

I : The flag is cleared.

D : The flag is cleared.

Change

[Instruction Code/Number of Cycles]

Page: 181

[Function]

• This instruction generates a software interrupt specified by src. src represents a software interrupt
number.

• If src is 31 or smaller, the U flag is cleared to 0 and the interrupt stack pointer (ISP) is used.
• If src is 32 or larger, the stack pointer indicated by the U flag is used.
• The interrupts generated by the INT instruction are nonmaskable.

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 79 of 263
REJ09B0001-0200

INTerrupt on Overflow
Interrupt on overflow

[Syntax]

INTO

[Related Instructions] BRK, INT

[Flag Change]

INTO INTO

[Description Example]

INTO

[Operation]
SP SP – 2
M(SP) (PC + 1)H, FLG
SP SP – 2
M(SP) (PC + 1)ML

PC M(FFFE016)

U I O B S Z D C

Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

[Instruction Code/Number of Cycles]

Page: 182

Flag

Change

[Function]

• If the O flag is set to 1, this instruction generates an overflow interrupt. If the flag is cleared to 0, the

next instruction is executed.

• The overflow interrupt is nonmaskable.

*1 The flags are saved to the stack area before the INTO

instruction is executed. After the interrupt, the flags

change state as shown at left.

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 80 of 263
REJ09B0001-0200

Cnd Condition Expression Cnd Condition Expression

GEU/C C=1 Equal to or greater than LTU/NC C=0 Smaller than

C flag is 1. C flag is 0.

EQ/Z Z=1 Equal to = NE/NZ Z=0 Not equal

Z flag is 1. Z flag is 0.

GTU

C Z=1 Greater than LEU

C Z=0 Equal to or smaller than

PZ S=0 Positive or zero 0 N S=1 Negative 0

GE S O=0 Equal to or greater than LE (S O) Z=1 Equal to or smaller than

(signed value) (signed value)

GT (S O) Z=0 Greater than (signed value) LT S O=1 Smaller than (signed value)

O O=1 O flag is 1. NO O=0 O flag is 0.

Jump on Condition
Jump on condition

[Syntax]

JCnd label

[Selectable label]

[Description Example]
JEQ label

JNE label

[Related Instructions] BMCnd

[Function]

[Operation]

if true then jump label

JCnd

[Flag Change]

label Cnd

PC*1–127 label PC*1+128 GEU/C, GTU, EQ/Z, N, LTU/NC, LEU, NE/NZ, PZ

PC*1–126 label PC*1+129 LE, O, GE, GT, NO, LT

U I O B S Z D C

*1 PC indicates the start address of the instruction.

JCnd
[Instruction Code/Number of Cycles]

Page: 182

• This instruction causes program flow to branch after checking the execution result of the preceding
instruction against the following condition. If the condition indicated by Cnd is true, control jumps to
label. If false, the next instruction is executed.

• The following conditions can be used for Cnd :

Flag

Change

A

A A

A

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 81 of 263
REJ09B0001-0200

JuMP
Unconditional jump

[Syntax]

JMP(.length) label

[Description Example]

[Related Instructions] JMPI

JMP JMP

[Function]

[Selectable label]

JMP label

S , B , W , A (Can be specified)

[Operation]

PC label

.length label

.S PC*1+2 label PC*1+9

.B PC*1–127 label PC*1+128

.W PC*1–32767 label PC*1+32768

.A abs20

*1 PC indicates the start address of the instruction.

• This instruction causes control to jump to label.

[Instruction Code/Number of Cycles]

Page: 184

[Flag Change]

U I O B S Z D CFlag

Change

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 82 of 263
REJ09B0001-0200

[Operation]

When jump distance specifier (.length) is (.W) When jump distance specifier (.length) is (.A)

PC PC src PC src

JuMP Indirect
Jump indirect

[Description Example]

[Related Instructions] JMP

JMPI JMPI
[Syntax]

JMPI.length src

[Selectable src]

JMPI.A A1A0

JMPI.W R0

W , A

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 185

If (.A) is selected as the jump distance specifier (.length)

If (.W) is selected as the jump distance specifier (.length)

Flag

Change

[Function]

• This instruction causes control to jump to the address indicated by src. If src is a location in the
memory, specify the address at which the low-order address is stored.

• If (.W) is selected as the jump distance specifier (.length), control jumps to the start address of the instruction
plus the address indicated by src (added including the sign bits). If src is a location in the memory, the
required memory capacity is 2 bytes.

• If src is a location in the memory and (.A) is selected as the jump distance specifier (.length), the
required memory capacity is 3 bytes.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 83 of 263
REJ09B0001-0200

Jump SubRoutine
Subroutine call

[Syntax]

JSR(.length) label

[Flag Change]

[Description Example]

[Related Instructions] JSRI

JSR JSR

JSR.W func

JSR.A func

[Function]
• This instruction causes control to jump to a subroutine indicated by label.

[Selectable label]

.length label

.W PC*1–32767 label PC*1+32768

.A abs20

W , A (Can be specified)

U I O B S Z D C

*1 PC indicates the start address of the instruction.

[Instruction Code/Number of Cycles]

Page: 187

Flag

Change

[Operation]

SP SP – 1

M(SP) (PC + n)H

SP SP – 2

M(SP) (PC + n)ML

PC label
*1 n denotes the number of instruction bytes.

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 84 of 263
REJ09B0001-0200

U I O B S Z D C

Indirect subroutine call

[Related Instructions] JSR

W , A

Jump SubRoutine Indirect JSRI
[Instruction Code/Number of Cycles]

Page: 188

[Syntax]

JSRI.length src

JSRI

JSRI.A A1A0

JSRI.W R0

[Description Example]

[Selectable src]

[Flag Change]

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

Flag

Change

If (.W) is selected as the jump distance specifier (.length)

If (.A) is selected as the jump distance specifier (.length)

[Function]

*1 n denotes the number of instruction bytes.

• This instruction causes control to jump to a subroutine at the address indicated by src. If src is a
location in the memory, specify the address at which the low-order address is stored.

• If (.W) is selected as the jump distance specifier (.length), control jumps to the subroutine at the start
address of the instruction plus the address indicated by src (added including the sign bits). If src is
a location in the memory, the required memory capacity is 2 bytes.

• If src is a location in the memory and (.A) is selected as the jump distance specifier (.length), the
required memory capacity is 3 bytes.

[Operation]
When jump distance specifier (.length) is (.W) When jump distance specifier (.length) is (.A)

SP SP – 1 SP SP – 1
M(SP) (PC + n)H M(SP) (PC + n)H
SP SP – 2 SP SP – 2
M(SP) (PC + n)ML M(SP) (PC + n)H
PC PC src PC src

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 85 of 263
REJ09B0001-0200

LoaD Control register
Transfer to control register

[Flag Change]

[Description Example]

[Related Instructions] POPC, PUSHC, STC, LDINTB

[Selectable src/dest]

[Function]

LDC LDC
[Syntax]

LDC src,dest

• This instruction transfers src to the control register indicated by dest. If src is a location in the

memory, the required memory capacity is 2 bytes.

• If the destination is INTBL or INTBH, make sure that bytes are transferred in succession.

• No interrupt requests are accepted immediately after this instruction.

LDC R0,SB

LDC A0,FB

[Operation]

dest src

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 FB SB SP*1 ISP

A0/A0 A1/A1 [A0] [A1] FLG INTBH INTBL

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

U I O B S Z D C
*2 *2 *2 *2 *2 *2 *2 *2 *2 The flag changes only when dest is FLG.

*1 Operation is performed on the stack pointer indicated by the U flag.

[Instruction Code/Number of Cycles]

Page: 189

Flag

Change

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 86 of 263
REJ09B0001-0200

Register information for task with task number 0. (See above diagram.)
SP correction value for task with task number 0. (See above diagram.)
Register information for task with task number 1. (See above diagram.)
SP correction value for task with task number 1. (See above diagram.)

Register information for task with task number n*1. (See above diagram.)
SP correction value for task with task number n*1. (See above diagram.)

LoaD ConTeXt
Restore context

[Related Instructions] STCTX

LDCTX LDCTX
[Syntax]

LDCTX abs16,abs20

LDCTX Ram,Rom_TBL
[Description Example]

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 189

Flag

Change

[Function]
• This instruction restores task context from the stack area.
• Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.
• The required register information is specified from table data by the task number and the data in the

stack area is transferred to each register according to the specified register information. Then the SP
correction value is added to the stack pointer (SP). For this SP correction value, set the number of
bytes to be transferred.

• Information on transferred registers is configured as shown below. Logical 1 indicates a register to be
transferred and logical 0 indicates a register that is not transferred.

FB SB A1 A0 R3 R2 R1 R0

LSBMSB

Transferred sequentially
beginning with R0

• The table data is configured as shown below. The address indicated by abs20 is the base address of
the table. The data stored at an address twice the content of abs16 away from the base address
indicates register information, and the next address contains the stack pointer correction value.

abs20 Base address
of table

Direction in
which address
increases

abs16 2

*1 n=0 to 255

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 87 of 263
REJ09B0001-0200

LoaD from EXtra far data area
Transfer from extended data area

[Flag Change]

[Description Example]

[Related Instructions] STE, MOV, XCHG

B , W

[Selectable src/dest]

[Function]

LDE LDE
[Syntax]

LDE.size src,dest

• This instruction transfers src from the extended area to dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to transfer data

in 16 bits.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 [A1A0] R2R0 R3R1 A1A0

Conditions

S : The flag is set when the transfer results in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer results in dest = 0; otherwise cleared.

LDE.W [A1A0],R0

LDE.B Rom_TBL,A0

U I O B S Z D CFlag

Change

[Instruction Code/Number of Cycles]

Page: 191

[Operation]

dest src

Chapter 3 Functions 3.2 Functions

Rev.2.00 Oct 17, 2005 page 88 of 263
REJ09B0001-0200

LoaD INTB register
Transfer to INTB register

[Flag Change]

[Description Example]

[Related Instructions] LDC, STC, PUSHC, POPC

LDINTB LDINTB
[Syntax]

LDINTB src

[Function]

• This instruction transfers src to INTB.

• The LDINTB instruction is a macro-instruction consisting of the following:

 LDC #IMM, INTBH

 LDC #IMM, INTBL

LDINTB #0F0000H

[Operation]

INTBHL src

U I O B S Z D C

[Selectable src]

src

#IMM20

[Instruction Code/Number of Cycles]

Page: 192

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 89 of 263
REJ09B0001-0200

LoaD Interrupt Permission Level
Set interrupt enable level

[Syntax]

LDIPL src

[Flag Change]

[Description Example]
LDIPL #2

LDIPL LDIPL

[Function]

[Selectable src]

src

#IMM*1

• This instruction transfers src to IPL.

[Operation]

IPL src

U I O B S Z D C

*1 The acceptable range of values is 0 < #IMM < 7

[Instruction Code/Number of Cycles]

Page: 193

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 90 of 263
REJ09B0001-0200

MOVe
Transfer

[Related Instructions] LDE, STE, XCHG

[Description Example]

[Selectable src/dest]

[Function]

MOV MOV
[Syntax]

MOV.size (:format) src,dest

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP]*3 R2R0 R3R1 A1A0 dsp:8[SP]*2 *3

(See next page for src /dest classified by format.)

MOV.B:S #0ABH,R0L

MOV.W #–1,R2

G , Q , Z , S (Can be specified)
B , W

[Operation]

dest src

• This instruction transfers src to dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to transfer data

in 16 bits. If src is A0 or A1, the 8 low-order bits of A0 or A1 are transferred.

[Instruction Code/Number of Cycles]

Page: 193

[Flag Change]

U I O B S Z D C

Conditions

S : The flag is set when the transfer results in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer results in 0; otherwise cleared.

Flag

Change

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-
neously.

*2 If src is #IMM, dsp:8 [SP] cannot be chosen for dest.
*3 The operation is performed on the stack pointer indicated by the U flag. dsp:8 [SP] cannot be chosen

for src and dest simultaneously.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 91 of 263
REJ09B0001-0200

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 dsp:8[SP]*3 R2R0 R3R1 A1A0 dsp:8[SP]*2*3

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #0 abs16 A0 A1

Z format

S format

src dest

R0L*5*6*7 R0H*5*6*8 dsp:8[SB]*5 dsp:8[FB]*5 R0L*5*6 R0H*5*6 dsp:8[SB] dsp:8[FB]

abs16*5 #IMM abs16 A0*5*8 A1*5*7

R0L*5*6 R0H*5*6 dsp:8[SB] dsp:8[FB] R0L*5*6 R0H*5*6 dsp:8[SB]*5 dsp:8[FB]*5

abs16 #IMM abs16*5 A0 A1

R0L R0H dsp:8[SB] dsp:8[FB] R0L*5 R0H*5 dsp:8[SB]*5 dsp:8[FB]*5

abs16 #IMM*9 abs16*5 A0*9 A1*9

*5 Only (.B) can be selected as the size specifier (.size).
*6 The same register cannot be chosen for src and dest.
*7 If src is R0L, only A1 can be selected for dest as the address register.
*8 If src is R0H, only A0 can be selected for dest as the address register.
*9 (.B) or (.W) can be selected as the size specifier (.size).

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*4 dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

Q format

*4 The acceptable range of values is –8 < #IMM < +7.

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-
neously.

*2 If src is #IMM, dsp:8 [SP] cannot be chosen for dest.
*3 The operation is performed on the stack pointer indicated by the U flag. dsp:8 [SP] cannot be chosen

for src and dest simultaneously.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 92 of 263
REJ09B0001-0200

MOVe effective Address
Transfer effective address

[Flag Change]

[Description Example]

[Related Instructions] PUSHA

[Function]

[Selectable src/dest]

MOVA MOVA
[Syntax]

MOVA src,dest

[Operation]

dest EVA(src)

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D C

• This instruction transfers the affective address of src to dest.

MOVA Ram:16[SB],A0

[Instruction Code/Number of Cycles]

Page: 200

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 93 of 263
REJ09B0001-0200

MOVe nibble
Transfer 4-bit dataMOVDir MOVDir

[Operation]

[Syntax]

MOVDir src,dest

[Description Example]

Dir Operation

HH H4:dest H4:src

HL L4:dest H4:src

LH H4:dest L4:src

LL L4:dest L4:src

[Function]

Dir Function

HH Transfers src’s 4 high-order bits to dest’s 4 high-order bits.

HL Transfers src’s 4 high-order bits to dest’s 4 low-order bits.

LH Transfers src’s 4 low-order bits to dest’s 4 high-order bits.

LL Transfers src’s 4 low-order bits to dest’s 4 low-order bits.

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Flag Change]

U I O B S Z D C

MOVHH R0L,[A0]

MOVHL R0L,[A0]

[Instruction Code/Number of Cycles]

Page: 201

• Be sure to choose R0L for either src or dest.

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 94 of 263
REJ09B0001-0200

MULtiple
Signed multiply

[Syntax]

MUL.size src,dest

[Description Example]

[Related Instructions] DIV, DIVU, DIVX, MULU

[Function]

MUL MUL

B , W

[Operation]

dest dest src

• This instruction multiplies src and dest including the sign bits and stores the result in dest.

• If (.B) is selected as the size specifier (.size), src and dest are treated as 8-bit data for the operation

and the result is stored in 16 bits. If A0 or A1 is specified as either src or dest, the operation is

performed using the 8 low-order bits of A0 or A1.

• If (.W) is selected as the size specifier (.size), src and dest are treated as 16-bit data for the operation

and the result is stored in 32 bits. If R0, R1, or A0 is specified as dest, the result is stored in R2R0,

R3R1, or A1A0 accordingly.

MUL.B A0,R0L

MUL.W #3,R0

MUL.B R0L,R1L

MUL.W A0,Ram

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 203

Flag

Change

; 8 low-order bits of R0L and A0 are multiplied.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 95 of 263
REJ09B0001-0200

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

MULtiple Unsigned
Unsigned multiply

[Description Example]

[Related Instructions] DIV, DIVU, DIVX, MUL

[Syntax]

MULU.size src,dest

MULU MULU

B , W

[Operation]

dest dest src

[Function]

MULU.B A0,R0L ; 8 low-order bits of R0L and A0 are multiplied.
MULU.W #3,R0

MULU.B R0L,R1L

MULU.W A0,Ram

U I O B S Z D C

• This instruction multiplies src and dest without the sign bits and stores the result in dest.

• If (.B) is selected as the size specifier (.size), src and dest are treated as 8-bit data for the operation

and the result is stored in 16 bits. If A0 or A1 is specified as either src or dest, the operation is

performed using the 8 low-order bits of A0 or A1.

• If (.W) is selected as the size specifier (.size), src and dest are treated as 16-bit data for the operation

and the result is stored in 32 bits. If R0, R1, or A0 are specified as dest, the result is stored in R2R0,

R3R1, or A1A0 accordingly.

[Instruction Code/Number of Cycles]

Page: 205

[Selectable src/dest]

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-
neously.

[Flag Change]
Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 96 of 263
REJ09B0001-0200

NEGate
Complement of two

[Syntax]

NEG.size dest

[Flag Change]

[Description Example]

[Related Instructions] NOT

[Function]

NEG NEG

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

B , W

[Operation]

dest 0 – dest

NEG.B R0L

NEG.W A1

U I O B S Z D C

Conditions

O : The flag is set when dest before the operation is –128 (.B) or –32768 (.W); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when the operation results in 0; otherwise cleared.

• This instruction takes the complement of two of dest and stores the result in dest.

[Instruction Code/Number of Cycles]

Page: 207

[Selectable dest]

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 97 of 263
REJ09B0001-0200

 No OPeration
No operation

[Flag Change]

[Description Example]
NOP

[Function]

NOP NOP
[Syntax]

NOP

• This instruction adds 1 to PC.

[Operation]

PC PC + 1

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 207

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 98 of 263
REJ09B0001-0200

NOT
Invert all bits

[Related Instructions] NEG

NOT NOT

[Operation]

dest dest

[Function]

• This instruction inverts dest and stores the result in dest.

[Selectable dest]

dest

R0L*1/R0 R0H*1/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB]*1 dsp:8[FB]*1

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16*1

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Flag Change]

[Description Example]

G , S (Can be specified)
B , W

NOT.B R0L

NOT.W A1

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

*1 Can be selected in G and S formats.
In other cases, dest can be selected in G format.

[Instruction Code/Number of Cycles]

Page: 208

[Syntax]

NOT.size (:format) dest

U I O B S Z D CFlag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 99 of 263
REJ09B0001-0200

[Instruction Code/Number of Cycles]

Page: 209

OR
Logically OR

[Description Example]
OR.B Ram:8[SB],R0L

OR.B:G A0,R0L ; 8 low-order bits of A0 and R0L are ORed.

OR.B:G R0L,A0 ; R0L is zero-expanded and ORed with A0.

OR.B:S #3,R0L

[Related Instructions] AND, XOR, TST

[Selectable src/dest]

• This instruction logically ORs dest and src and stores the result in dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

operation in 16 bits. If src is A0 or A1, operation is performed using the 8 low-order bits of A0 or A1.

[Flag Change]

OR OR
[Syntax]

OR.size (:format) src,dest

[Function]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

(See next page for src /dest classified by format.)

G , S (Can be specified)

B , W
[Operation]

dest src dest

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

Flag

Change

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 100 of 263
REJ09B0001-0200

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

S format*2

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*3 R0H*3 dsp:8[SB] dsp:8[FB] R0L*3 R0H*3 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

*2 Only (.B) can be specified as the size specifier (.size).

*3 The same register cannot be chosen for src and dest.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 101 of 263
REJ09B0001-0200

POP
Restore register/memory

[Flag Change]

POP.B R0L

POP.W A0

[Related Instructions] PUSH, POPM, PUSHM

[Selectable dest]

POP POP

[Function]

• This instruction restores dest from the stack area.

dest

R0L*1/R0 R0H*1/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Description Example]

[Syntax]

POP.size (:format) dest
G , S (Can be specified)

B , W
[Operation]

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 211

Flag

Change

If the size specifier (.size) is (.W)

dest M(SP)

SP SP + 2

If the size specifier (.size) is (.B)

dest M(SP)

SP SP + 1

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 102 of 263
REJ09B0001-0200

POP Control register
Restore control register

[Flag Change]

[Description Example]

[Related Instructions] PUSHC, LDC, STC, LDINTB

POPC POPC
[Syntax]

POPC dest

 [Function]

• This instruction restores data from the stack area to the control register indicated by dest.

• When restoring an interrupt table register, always be sure to restore INTBH and INTBL in succession.

• No interrupt requests are accepted immediately after this instruction.

POPC SB

[Operation]

dest M(SP)

SP*1 SP + 2

U I O B S Z D C
*3 *3 *3 *3 *3 *3 *3 *3 *3 The flag changes only when dest is FLG.

[Selectable dest]
dest

FB SB SP*2 ISP FLG INTBH INTBL

*2 Operation is performed on the stack pointer indi-

cated by the U flag.

[Instruction Code/Number of Cycles]

Page: 213

Flag

Change

*1 When dest is SP or when the U flag = 0 and dest is ISP, 2 is not added to SP.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 103 of 263
REJ09B0001-0200

POP Multiple
Restore multiple registers

[Description Example]

[Related Instructions] POP, PUSH, PUSHM

[Selectable dest]

[Function]

FB SB A1 A0 R3 R2 R1 R0

POPM POPM
[Syntax]

POPM dest

• This instruction restores the registers selected by dest collectively from the stack area.

• Registers are restored from the stack area in the following order:

dest*2

R0 R1 R2 R3 A0 A1 SB FB

*2 More than one dest can be chosen.

[Flag Change]

POPM R0,R1,A0,SB,FB

[Operation]

dest M(SP)

SP SP + N*1 2

U I O B S Z D C

Restored sequentially beginning with R0

[Instruction Code/Number of Cycles]

Page: 213

*1 Number of registers to be restored

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 104 of 263
REJ09B0001-0200

PUSH
Save register/memory/immediate data

[Flag Change]

[Description Example]

[Related Instructions] POP, POPM, PUSHM

[Selectable src]

PUSH PUSH
[Syntax]

PUSH.size (:format) src

[Function]

• This instruction saves src to the stack area.

PUSH.B #5

PUSH.W #100H

PUSH.B R0L

PUSH.W A0

G , S (Can be specified)

B , W
[Operation]

src

R0L*1/R0 R0H*1/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 214

Change

Flag

If the size specifier (.size) is (.B)

SP SP – 1

M(SP) src

If the size specifier (.size) is (.W)

SP SP – 2

M(SP) src

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 105 of 263
REJ09B0001-0200

PUSH effective Address
Save effective address

 [Flag Change]

[Description Example]

[Related Instructions] MOVA

[Function]

[Selectable src]

PUSHA PUSHA
[Syntax]

PUSHA src

• This instruction saves the effective address of src to the stack area.

PUSHA Ram:8[FB]

PUSHA Ram:16[SB]

[Operation]

SP SP – 2

M(SP) EVA(src)

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

U I O B S Z D CFlag

Change

[Instruction Code/Number of Cycles]

Page: 216

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 106 of 263
REJ09B0001-0200

PUSH Control register
Save control register

[Syntax]

PUSHC src

[Flag Change]

[Description Example]

PUSHC SB

[Related Instructions] POPC, LDC, STC, LDINTB

PUSHC PUSHC

[Function]

• This instruction saves the control register indicated by src to the stack area.

[Selectable src]

src

FB SB SP*2 ISP FLG INTBH INTBL

[Operation]

SP SP – 2

M(SP) src*1

*2 Operation is performed on the stack pointer indicated by the U flag.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 216

Flag

Change

*1 When src is SP or when the U flag = 0 and src is ISP, SP is saved before 2 is subtracted.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 107 of 263
REJ09B0001-0200

PUSH Multiple
Save multiple registers

[Syntax]

PUSHM src

[Description Example]

[Related Instructions] POP, PUSH, POPM

[Function]

R0 R1 R2 R3 A0 A1 SB FB

PUSHM PUSHM

• This instruction saves the registers selected by src collectively to the stack area.

• The registers are saved to the stack area in the following order:

src*2

R0 R1 R2 R3 A0 A1 SB FB

*2 More than one src can be chosen.

PUSHM R0,R1,A0,SB,FB

[Operation]

SP SP – N*1 2

M(SP) src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 217

*1 Number of registers saved.

Saved sequentially beginning with FB

[Flag Change]

Flag

Change

[Selectable src]

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 108 of 263
REJ09B0001-0200

REturn from InTerrupt
Return from interrupt

[Syntax]

REIT

[Flag Change]

[Description Example]

[Function]

REIT REIT

• This instruction restores the PC and FLG values that were saved when an interrupt request was

accepted and returns from the interrupt handler routine.

REIT

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1

Flag
*1 The flags are reset to the FLG state before the interrupt

request was accepted.

[Instruction Code/Number of Cycles]

Page: 218

Change

[Operation]

PCML M(SP)

SP SP + 2

PCH, FLG M(SP)

SP SP + 2

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 109 of 263
REJ09B0001-0200

Repeat MultiPle and Addition
Calculate sum-of-products

[Description Example]

RMPA RMPA
[Syntax]

RMPA.size

B , W

[Function]

• This instruction performs sum-of-product calculations, with the multiplicand address indicated by A0, the multi-
plier address indicated by A1, and the count of operation indicated by R3. Calculations are performed including
the sign bits and the result is stored in R2R0 (R0)*1.

• If an overflow occurs during operation, the O flag is set to terminate the operation. R2R0 (R0)*1

contains the result of the addition performed last. A0, A1, and R3 are undefined.

• The content of A0 or A1 when the instruction is completed indicates the next address after the last-
read data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after a sum-of-
product addition is completed (i.e., after the content of R3 is decremented by 1).

• Make sure that R2R0 (R0)*1 is set to the initial value.

Items in parentheses and followed by “*1”()*1 apply when (.B) is selected as the size specifier (.size).

RMPA.B

[Operation]*1

Repeat

R2R0(R0) *2 R2R0(R0) *2 + M(A0) M(A1)

A0 A0 + 2 (1) *2

A1 A1 + 2 (1) *2

R3 R3 – 1

Until R3 = 0

*1 If R3 is set to 0, this instruction is ignored.

*2 Items in parentheses and followed by “*2”()*2 apply when (.B) is selected as the size speci-

fier (.size).

Conditions

O : The flag is set when +2147483647 (.W) or –2147483648 (.W), or +32767 (.B) or –32768 (.B) is

exceeded during operation; otherwise cleared.

U I O B S Z D CFlag

[Instruction Code/Number of Cycles]

Page: 218

[Fl ag Change]

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 110 of 263
REJ09B0001-0200

ROtate to Left with Carry
Rotate left with carry

C

[Description Example]

[Related Instructions] RORC, ROT, SHA, SHL

[Function]

[Selectable dest]

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

ROLC ROLC

[Flag Change]

ROLC.B R0L

ROLC.W R0

B , W

[Syntax]

ROLC.size dest

[Operation]

• This instruction rotates dest one bit to the left including the C flag.

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in dest = 0; otherwise cleared.

C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Instruction Code/Number of Cycles]

Page: 218

MSB dest LSB

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 111 of 263
REJ09B0001-0200

ROtate to Right with Carry
Rotate right with carry

[Syntax]

RORC.size dest

[Flag Change]

[Related Instructions] ROLC, ROT, SHA, SHL

[Function]

[Selectable dest]

RORC RORC

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Description Example]

RORC.B R0L

RORC.W R0

B , W

[Operation]

• This instruction rotates dest one bit to the right including the C flag.

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in dest = 0; otherwise cleared.

C : The flag is set when the shifted-out bit is 1; otherwise cleared.

C

[Instruction Code/Number of Cycles]

Page: 219

MSB dest LSB

Flag

Change

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 112 of 263
REJ09B0001-0200

ROTate
Rotate

[Related Instructions] ROLC, RORC, SHA, SHL

ROT ROT
[Syntax]

ROT.size src,dest
B , W

• This instruction rotates dest left or right the number of bits indicated by src. Bits overflowing from LSB
(MSB) are transferred to MSB (LSB) and the C flag.

• The direction of rotation is determined by the sign of src. If src is positive, bits are rotated left; if negative,
bits are rotated right.

• If src is an immediate value, the number of bits rotated is –8 to –1 or +1 to +8. Values less than –8, equal
to 0, or greater than +8 are not valid.

• If src is a register and (.B) is selected as the size specifier (.size), the number of bits rotated is –8 to +8.
Although a value of 0 may be set, no bits are rotated and no flags are changed. If a value less than –8 or
greater than +8 is set, the result of the rotation is undefined.

• If src is a register and (.W) is selected as the size specifier (.size), the number of bits rotated is –16 to +16.
Although a value of 0 may be set, no bits are rotated and no flags are changed. If a value less than –16 or
greater than +16 is set, the result of the rotation is undefined.

[Operation]

LSB

src>0

src<0

C

[Function]

MSB

[Description Example]
ROT.B #1,R0L ; Rotated left

ROT.B #–1,R0L ; Rotated right

ROT.W R1H,R2

[Flag Change]

U I O B S Z D C

*1 If src is R1H, R1 or R1H cannot be chosen for dest.

*2 The acceptable range of values is –8 < #IMM < +8. However, 0 is invalid.

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H*1/R3 R0L/R0 R0H/R1*1 R1L/R2 R1H/R3*1

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

C

[Instruction Code/Number of Cycles]

Page: 220

dest

Flag

Change

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when the bit shifted out last is 1; otherwise cleared.

*1 If the number of bits rotated is 0, no flags are changed.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 113 of 263
REJ09B0001-0200

ReTurn from Subroutine
Return from subroutine

[Flag Change]

[Description Example]
RTS

RTS RTS
[Syntax]

RTS

[Operation]

PCML M(SP)

SP SP + 2

PCH M(SP)

SP SP + 1

[Function]

Flag

Change

U I O B S Z D C

 • This instruction causes control to return from a subroutine.

[Instruction Code/Number of Cycles]

Page: 221

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 114 of 263
REJ09B0001-0200

SuBtract with Borrow
Subtract with borrow

[Syntax]

SBB.size src,dest

[Operation]

dest dest – src – C

[Flag Change]

[Description Example]
SBB.B #2,R0L

SBB.W A0,R0

SBB.B A0,R0L ; 8 low-order bits of A0 and R0L are the objects of the operation.

SBB.B R0L,A0 ; Zero-expanded value of R0L and A0 are the objects of the operation.

[Function]
• This instruction subtracts src and the inverted value of the C flag from dest and stores the result in dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

operation in 16 bits. If src is A0 or A1, the operation is performed using the 8 low-order bits of A0 or

A1.

[Selectable src/dest]

SBB SBB

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Related Instructions] ADC, ADCF, ADD, SUB

B , W

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

Conditions

O : The flag is set when a signed operation results in a value exceeding +32767 (.W) or –32768 (.W),

or +127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in any value equal to or greater than 0;

otherwise cleared.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 222

Flag

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 115 of 263
REJ09B0001-0200

SuBtract then Jump on Not Zero
Subtract and conditional jump

[Selectable src/dest/label]

[Related Instructions] ADJNZ

[Function]

SBJNZ SBJNZ
[Syntax]

SBJNZ.size src,dest,label

• This instruction subtracts src from dest and stores the result in dest.

• If the operation results in any value other than 0, control jumps to label. If the operation results in 0,

the next instruction is executed.

• The op-code of this instruction is the same as that of ADJNZ.

src dest label

R0L/R0 R0H/R1 R1L/R2

R1H/R3 A0/A0 A1/A1 PC*2–126 < label < PC*2+129

#IMM*1 [A0] [A1] dsp:8[A0]

dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB]

abs16

*1 The acceptable range of values is –7 < #IMM < +8.

*2 PC indicates the start address of the instruction.

[Flag Change]

[Description Example]

SBJNZ.W #1,R0,label

B , W

[Operation]

dest dest – src

if dest 0 then jump label

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 224

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 116 of 263
REJ09B0001-0200

SHift Arithmetic
Shift arithmetic

[Syntax]

SHA.size src,dest

[Related Instructions] ROLC, RORC, ROT, SHL

SHA

B , W , L

 [Function]

[Description Example]
SHA.B #3,R0L ; Arithmetically shifted left

SHA.B #–3,R0L ; Arithmetically shifted right

SHA.L R1H,R2R0

[Operation]

When src < 0

When src > 0

[Flag Change]

U I O B S Z D C

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H*1/R3 R0L/R0 R0H/R1*1 R1L/R2 R1H/R3*1

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0*3 R3R1*3 A1A0

*1 If src is R1H, R1 or R1H cannot be chosen for dest.
*2 The acceptable range of values is –8 < #IMM < +8. However, 0 is invalid.
*3 Only (.L) can be selected as the size specifier (.size). (.B) or (.W) can also be specified for dest.

SHA
[Instruction Code/Number of Cycles]

Page: 225

0

CMSB dest LSB

MSB dest LSBC

• This instruction arithmetically shifts dest left or right the number of bits indicated by src. Bits overflow-
ing from LSB (MSB) are transferred to the C flag.

• If src is an immediate value , the number of bits shifted is –8 to –1 or +1 to +8. Values less than –8,
equal to 0, or greater than +8 are not valid.

• If src is a register and (.B) is selected as the size specifier (.size), the number of bits shifted is –8 to +8.
Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value less than –
8 or greater than +8 is set, the result of the shift is undefined.

• If src is a register and (.W) or (.L) is selected as the size specifier (.size), the number of bits shifted is
–16 to +16. Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value
less than –16 or greater than +16 is set, the result of shift is undefined.

Flag

Change

Conditions
O : The flag is set when the operation results in MSB changing its state from 1 to 0 or from 0 to 1; otherwise

cleared. However, the flag does not change if (.L) is selected as the size specifier (.size).
S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared. However, the flag value is undefined if (.L)

is selected as the size specifier (.size).
C : The flag is set when the bit shifted out last is 1; otherwise cleared. However, the flag is indeterminate if (.L)

is selected as the size specifier (.size).

*1 If the number of bits shifted is 0, no flags are changed.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 117 of 263
REJ09B0001-0200

SHift Logical
Shift logical

[Syntax]

SHL.size src,dest

[Related Instructions] ROLC, RORC, ROT, SHA

SHL SHL

B , W , L

0

0

[Operation]

When src < 0

 When src > 0

• This instruction logically shifts dest left or right the number of bits indicated by src. Bits overflowing
from LSB (MSB) are transferred to the C flag.

• The direction of shift is determined by the sign of src. If src is positive, bits are shifted left; if negative,
bits are shifted right.

• If src is an immediate value, the number of bits shifted is –8 to –1 or +1 to +8. Values less than –8,
equal to 0, or greater than +8 are not valid.

• If src is a register and (.B) is selected as the size specifier (.size), the number of bits shifted is –8 to +8.
Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value less than –8
or greater than +8 is set, the result of the shift is undefined.

• If src is a register and (.W) or (.L) is selected as the size specifier (.size), the number of bits shifted is
–16 to +16. Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value
less than –16 or greater than +16 is set, the result of the shift is undefined.

[Function]

[Description Example]

SHL.B #3,R0L ; Logically shifted left

SHL.B #–3,R0L ; Logically shifted right

SHL.L R1H,R2R0

src dest

R0L/R0 R0H/R1 R1L/R2 R1H*1/R3 R0L/R0 R0H/R1*1 R1L/R2 R1H/R3*1

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0*3 R3R1*3 A1A0

[Selectable src/dest]

[Flag Change]

U I O B S Z D C

Conditions
S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared. However, the flag is undefined

if (.L) is selected as the size specifier (.size).
C : The flag is set when the bit shifted out last is 1; otherwise cleared. However, the flag is undefined

if (.L) is selected as the size specifier (.size).

[Instruction Code/Number of Cycles]

Page: 228

MSB dest LSB

MSB dest LSB

C

C

Flag

Change

*1 If src is R1H, R1 or R1H cannot be chosen for dest.
*2 The acceptable range of values is –8 < #IMM < +8. However, 0 is invalid.
*3 Only (.L) can be selected as the size specifier (.size). (.B) or (.W) can also be specified for dest.

*1 If the number of bits shifted is 0, no flags are changed.

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 118 of 263
REJ09B0001-0200

String MOVe Backward
 Transfer string backward

[Syntax]

SMOVB.size

[Description Example]

SMOVB.B

[Related Instructions] SMOVF, SSTR

SMOVB SMOVB

B , W

[Operation]*1

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 230

[Flag Change]

[Function]

• This instruction transfers a string from a 20-bit source address to a 16-bit destination address by

successively decrementing the address.

• Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in

A0, the destination address in A1, and the transfer count in R3.

• When the instruction is completed, A0 or A1 contains the next address after the last-read data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after one

data transfer is completed.

*1 If R3 is set to 0, this instruction is ignored.

*2 If A0 underflows, the content of R1H is decremented by 1.

When size specifier (.size) is (.B)

Repeat

M(A1) M(216 R1H + A0)

A0*2 A0 – 1

A1 A1 – 1

R3 R3 – 1

Until R3 = 0

When size specifier (.size) is (.W)

Repeat

M(A1) M(216 R1H + A0)

A0*2 A0 – 2

A1 A1 – 2

R3 R3 – 1

Until R3 = 0

3.2 Functions
Chapter 3 Functions

Rev.2.00 Oct 17, 2005 page 119 of 263
REJ09B0001-0200

String MOVe Forward
Transfer string forward

[Syntax]

SMOVF.size

[Description Example]

[Related Instructions] SMOVB, SSTR

SMOVF SMOVF

[Flag Change]

SMOVF.W

B , W

Flag

Change

U I O B S Z D C

[Operation]*1

[Instruction Code/Number of Cycles]

Page: 231

[Function]

• This instruction transfers a string from a 20-bit source address to a 16-bit destination address by

successively incrementing the address.

 • Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in

A0, the destination address in A1, and the transfer count in R3.

• When the instruction is completed, A0 or A1 contains the next address after the last-read data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after one

data transfer is completed.

*1 If R3 is set to 0, this instruction is ignored.

*2 If A0 overflows, the content of R1H is incremented by 1.

When size specifier (.size) is (.W)

Repeat

M(A1) M(216 R1H + A0)

A0*2 A0 + 2

A1 A1 + 2

R3 R3 – 1

Until R3 = 0

When size specifier (.size) is (.B)

Repeat

M(A1) M(216 R1H + A0)

A0*2* A0 + 1

A1 A1 + 1

R3 R3 – 1

Until R3 = 0

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 120 of 263
REJ09B0001-0200

String SToRe
Store string

[Function]

[Flag Change]

[Description Example]
SSTR.B

[Related Instructions] SMOVB, SMOVF

SSTR SSTR
[Syntax]

SSTR.size

• This instruction stores a string with the data to be stored indicated by R0, the transfer address indi-

cated by A1, and the transfer count indicated by R3.

• When the instruction is completed, A0 or A1 contains the next address after the last-written data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after one

data transfer is completed.

B , W

[Operation]*1

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 231

*1 If R3 is set to 0, this instruction is ignored.

When size specifier (.size) is (.W)

Repeat

M(A1) R0

A1 A1 + 2

R3 R3 – 1

Until R3 = 0

When size specifier (.size) is (.B)

Repeat

M(A1) R0L

A1 A1 + 1

R3 R3 – 1

Until R3 = 0

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 121 of 263
REJ09B0001-0200

Transfer from control register
STore from Control register

[Syntax]

STC src,dest

[Description Example]

[Related Instructions] POPC, PUSHC, LDC, LDINTB

[Function]

[Selectable src/dest]

STC STC

• This instruction transfers the content of the control register indicated by src to dest. If dest is a

location in the memory, specify the address in which to store the low-order address.

• If dest is a location in the memory and src is PC, the required memory capacity is 3 bytes. If src is not

PC, the required memory capacity is 2 bytes.

STC SB,R0

STC FB,A0

[Operation]

dest src

src dest

FB SB SP*1 ISP R0L/R0 R0H/R1 R1L/R2 R1H/R3

FLG INTBH INTBL A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

PC R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Flag Change]

*1 The operation is performed on the stack pointer indicated by the U flag.

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 232

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 122 of 263
REJ09B0001-0200

STore ConTeXt
Save context

STCTX Ram,Rom_TBL

[Related Instructions] LDCTX

[Flag Change]

STCTX STCTX
[Syntax]

STCTX abs16,abs20

[Description Example]

[Operation]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 233

Flag

Change

[Function]
• This instruction saves task context to the stack area.
• Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.
• The required register information is specified from table data by the task number and the data in the stack area is

transferred to each register according to the specified register information. Then the SP correction value is subtracted
from the stack pointer (SP). For this SP correction value, set the number of bytes to be transferred.

• Information on transferred registers is configured as shown below. Logical 1 indicates a register to be
transferred and logical 0 indicates a register that is not to be transferred.

Transferred sequentially beginning with FB

FB SB A1 A0 R3 R2 R1 R0

MSB LSB

abs20 Base address
of table

Direction in
which address
increases

Register information for task with task number 0. (See above diagram.)
SP correction value for task with task number 0. (See above diagram.)
Register information for task with task number 1. (See above diagram.)
SP correction value for task with task number 1. (See above diagram.)

Register information for task with task number n*1. (See above diagram.)
SP correction value for task with task number n*1. (See above diagram.)

abs16 x 2

*1 n=0 to 255

• The table data is configured as shown below. The address indicated by abs20 is the base address of
the table. The data stored at an address twice the content of abs16 away from the base address
indicates register information, and the next address contains the stack pointer correction value.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 123 of 263
REJ09B0001-0200

STore to EXtra far data area
Transfer to extended data area

[Flag Change]

[Description Example]
STE.B R0L,[A1A0]

STE.W R0,10000H[A0]

[Related Instructions] MOV, LDE, XCHG

[Function]

[Selectable src/dest]

STE STE
[Syntax]

STE.size src,dest

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 [A1A0]

[Operation]

dest src

B , W

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

• This instruction transfers src to dest in an extended area.

• If src is A0 or A1 and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-
order bits of A0 or A1. However, the flag changes depending on the A0 or A1 status (16 bits) before the

operation is performed.

[Instruction Code/Number of Cycles]

Page: 233

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 124 of 263
REJ09B0001-0200

STore on Not Zero
Conditional transfer

[Function]

[Flag Change]

[Description Example]

[Related Instructions] STZ, STZX

[Selectable src/dest]

STNZ STNZ
[Syntax]

STNZ src,dest

• This instruction transfers src to dest when the Z flag is 0.

STNZ #5,Ram:8[SB]

src dest

#IMM8 R0L R0H dsp:8[SB] dsp:8[FB]

abs16 A0 A1

[Operation]

if Z = 0 then dest src

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 235

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 125 of 263
REJ09B0001-0200

STore on Zero
Conditional transfer

[Syntax]

STZ src,dest

[Function]

[Flag Change]

• This instruction transfers src to dest when the Z flag is 1.

[Description Example]

[Related Instructions] STNZ, STZX

[Selectable src/dest]

STZSTZ

STZ #5,Ram:8[SB]

[Operation]

if Z = 1 then dest src

src dest

#IMM8 R0L R0H dsp:8[SB] dsp:8[FB]

abs16 A0 A1

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 235

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 126 of 263
REJ09B0001-0200

[Instruction Code/Number of Cycles]

Page: 236

STore on Zero eXtention
Conditional transfer

[Syntax]

STZX src1,src2,dest

[Flag Change]

[Description Example]

STZX #1,#2,Ram:8[SB]

[Related Instructions] STZ, STNZ

STZX STZX

[Selectable src/dest]

[Operation]

If Z = 1 then

dest src1

else

dest src2
[Function]

• This instruction transfers src1 to dest when the Z flag is 1. When the Z flag is 0, it transfers src2 to

dest.

src dest

#IMM8 R0L R0H dsp:8[SB] dsp:8[FB]

abs16 A0 A1

Flag

Change

U I O B S Z D C

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 127 of 263
REJ09B0001-0200

[Selectable src/dest]

SUBtract
Subtract without borrow

[Syntax]

SUB.size (:format) src,dest

[Operation]

dest dest – src

[Related Instructions] ADC, ADCF, ADD, SBB

[Function]

SUB SUB

• This instruction subtracts src from dest and stores the result in dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

operation in 16 bits. If src is A0 or A1, operation is performed on the 8 low-order bits of A0 or A1.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Flag Change]

[Description Example]
SUB.B A0,R0L ; 8 low-order bits of A0 and R0L are the objects of the operation.

SUB.B R0L,A0 ; Zero-expanded value of R0L and A0 are the objects of the operation.

SUB.B Ram:8[SB],R0L

SUB.W #2,[A0]

G , S (Can be specified)

B , W

Flag

Change

U I O B S Z D C

(See next page for src /dest classified by format.)

Conditions

O : The flag is set when a signed operation results in a value in exceeding +32767 (.W) or –32768

(.W), or +127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in any value equal to or greater than 0;

otherwise cleared.

[Instruction Code/Number of Cycles]

Page: 236

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 128 of 263
REJ09B0001-0200

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

S format*2

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*3 R0H*3 dsp:8[SB] dsp:8[FB] R0L*3 R0H*3 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*1 If (.B) is selected as for the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

*2 Only (.B) can be selected as for the size specifier (.size).

*3 The same registers cannot be chosen for src and dest.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 129 of 263
REJ09B0001-0200

TeST
Test

[Syntax]

TST.size src,dest

[Description Example]
TST.B #3,R0L

TST.B A0,R0L ; 8 low-order bits of A0 and ROL are the objects of the operation.

TST.B R0L,A0 ; Zero-expanded value of R0L and A0 are the objects of the operation.

[Related Instructions] AND, OR, XOR

 [Function]

TST TST

• Each flag in the flag register changes state depending on the result of a logical AND of src and dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

operation in 16 bits. If src is A0 or A1, the operation is performed on the 8 low-order bits of A0 or A1.

B , W

[Operation]

dest src

[Flag Change]

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

[Instruction Code/Number of Cycles]

Page: 239

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 130 of 263
REJ09B0001-0200

UNDefined instruction
Interrupt for undefined instruction

[Syntax]

UND

[Flag Change]

[Description Example]

UND UND

[Operation]

SP SP – 2

M(SP) (PC + 1)H, FLG

SP SP – 2

M(SP) (PC + 1)ML

PC M(FFFDC16)

U I O B S Z D C

Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

UND

[Instruction Code/Number of Cycles]

Page: 241

Flag

Change

• This instruction generates an undefined instruction interrupt.

• The undefined instruction interrupt is nonmaskable.

[Function]

*1 The flags are saved to the stack area before the UND

instruction is executed. After the interrupt, the flag status

becomes as shown at left.

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 131 of 263
REJ09B0001-0200

WAIT
Wait

[Syntax]

WAIT

[Flag Change]

[Description Example]

[Function]

WAIT WAIT

• This instruction halts program execution. Program execution is restarted when an interrupt of a higher

priority level than IPL is acknowledged or a reset is generated.

U I O B S Z D C

WAIT

[Operation]

[Instruction Code/Number of Cycles]

Page: 241

Flag

Change

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 132 of 263
REJ09B0001-0200

eXCHanGe
Exchange

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

XCHG XCHG
[Syntax]

XCHG.size src,dest

• This instruction exchanges the contents of src and dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), the content of src is zero-expanded to

16 bits and placed in A0 or A1, and the 8 low-order bits of A0 or A1 are placed in src.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 [A1A0] R2R0 R3R1 A1A0

[Related Instructions] MOV, LDE, STE

B , W

[Operation]

dest src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page: 242

Flag

Change

XCHG.B R0L,A0 ; 8 low-order bits of A0 and the zero-expanded value of R0L are exchanged.

XCHG.W R0,A1

XCHG.B R0L,[A0]

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 133 of 263
REJ09B0001-0200

eXclusive OR
Exclusive OR

[Syntax]

XOR.size src,dest

[Flag Change]

[Selectable src/dest]

[Description Example]

[Related Instructions] AND, OR, TST

[Function]

XOR XOR

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

XOR.B A0,R0L ; 8 low-order bits of A0 and R0L are exclusive ORed.

XOR.B R0L,A0 ; R0L is zero-expanded and exclusive ORed with A0.

XOR.B #3,R0L

XOR.W A0,A1

B , W

[Operation]

dest dest src

Flag

Change

U I O B S Z D C

Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

*1 If (.B) is selected as the size specifier (.size), A0 or A1 cannot be chosen for src and dest simulta-

neously.

• This instruction exclusive ORs src and dest and stores the result in dest.

• If dest is A0 or A1 and the selected size specifier (.size) is (.B), src is zero-expanded to perform

operation in 16 bits. If src is A0 or A1, the operation is performed on the 8 low-order bits of A0 or A1.

[Instruction Code/Number of Cycles]

Page: 243

A

Chapter 3 Functions
3.2 Functions

Rev.2.00 Oct 17, 2005 page 134 of 263
REJ09B0001-0200

This page intentionally left blank.

Chapter 4

Instruction Codes/Number of Cycles

4.1 Guide to This Chapter

4.2 Instruction Codes/Number of Cycles

Chapter 4 Instruction Codes
4.1 Guide to This Chapter

Rev.2.00 Oct 17, 2005 page 136 of 263
REJ09B0001-0200

4.1 Guide to This Chapter

This chapter lists the instruction code and number of cycles for each op-code.

An example illustrating how to read this chapter is shown below.

[Number of Bytes/Number of Cycles]

(1) MOV.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

Rn

[An]

An

dest DEST

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[An]
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

DEST

dest Rn An dsp:16[SB] abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB][An]

(1) LDIPL#IMM

LDIPL

MOV

0 1 1 1 0 1 0 SIZE 1 1 0 0 DEST

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 1 0 IMM4

b7 b0 b7 b0 dest code

dsp8

dsp16/abs16

#IMM8

#IMM16)
0000

0001

0010

0011

0100

0101

0110

0111

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

(4)

(3)

(2)

(1)

(1)

(3)

(2)

[Number of Bytes/Number of Cycles](4)

Chapter 4 Instruction Code 4.2 Instruction Codes/Number of Cycles

Bytes/Cycles

Bytes/Cycles 5/35/35/34/34/33/33/23/2

2/2

(

Chapter 4 Instruction Codes
4.1 Guide to This Chapter

Rev.2.00 Oct 17, 2005 page 137 of 263
REJ09B0001-0200

(1) Mnemonic
Shows the mnemonic explained in the page.

(2) Syntax
Shows an instruction syntax using symbols.

(3) Instruction code
Shows instruction code. Portions in parentheses () may be omitted depending on the selected src/dest.

dsp8

dsp16/abs16

#IMM8

#IMM16)0 1 1 1 0 1 0 SIZE 1 1 0 0 DEST

.size

.B

.W

SIZE

0

1

Rn

[An]

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

dest DEST

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[An]
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

DEST

b7 b0 b7 b0

0000

0001

0010

0011

0100

0101

0110

0111

(
dest code

Correspondence
Correspondence

Correspondence

Contents at addresses following

(start address of instruction + 2)

(See the figure below.)

Content at start address

of instruction

+0 +1 +2

8

b

i

t

s

b

7 b

0
d

s

p

8
#

I

M

M

8

L

o

w

-

o

r

d

e

r

8

b

i

t

s

b

7 b

0

H

i

g

h-

o

r

d

e

r

8

b

i

t

s

b

7 b

0
d

s

p

1

6
a

b

s

1

6
#

I

M

M

1

6

L

o

w

-

o

r

d

e

r

8

b

i

t

s

b

7 b

0

M

i

d

d

l

e-

o

r

d

e

r

8

b

i

t

s

b

7 b

0

0

0

0

0 H

i

g

h

-

o

r

d

e

r
4

b

i

t

s

b

7 b

0
a

b

s

2

0
d

s

p

2

0
#

I

M

M

2

0

(4) Table of cycles
Shows the number of cycles required to execute the instruction and the number of bytes in the instruction.

The number of cycles may increase due to software wait states, etc.

The number of bytes in the instruction is indicated on the left side of the slash and the number of

execution cycles is indicated on the right side.

Contents at addresses following (start address of instruction + 2) are arranged as follows:

Content at (start address

of instruction+1)

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 138 of 263
REJ09B0001-0200

ABS
(1) ABS.size dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

dsp:16[SB]

4/5 4/5

abs16dsp:8[An]

3/5

dsp:16[An]dsp:8[SB/FB]

3/5 4/5

An

2/52/32/3

[An]Rndest

[Number of Bytes/Number of Cycles]

ADC
dest code

dsp8

dsp16/abs16

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

)(
dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 1 1 1 DEST

(1) ADC.size #IMM, dest
b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 1 1 0 DEST

(

Bytes/Cycles

 Bytes/Cycles

DESTdestDESTdest

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 139 of 263
REJ09B0001-0200

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

ADC

b7 b0 b7 b0

1 0 1 1 0 0 0 SIZE SRC DEST

(2) ADC.size src, dest

((

dest
src

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 140 of 263
REJ09B0001-0200

ADCF
(1) ADCF.size dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

[Number of Bytes/Number of Cycles]

ADD

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

0 1 1 1 0 1 1 SIZE 0 1 0 0 DEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rn dest

dest code

dsp8)dsp16/abs16

dest

0 1 1 1 0 1 1 SIZE 1 1 1 0 DEST

b7 b0 b7 b0

b7 b0 b7 b0

(1) ADD.size:G #IMM, dest

(

(

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 141 of 263
REJ09B0001-0200

ADD
(2) ADD.size:Q #IMM, dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1
1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

destdest

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

An

DESTDEST

[Number of Bytes/Number of Cycles]

4/3 4/33/3 3/3 4/32/32/12/1

[An]Rndest

1 1 0 0 1 0 0 SIZE IMM4 DEST
b7 b0 b7 b0

dsp:16[SB] abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB]An

(

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 142 of 263
REJ09B0001-0200

ADD

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

dsp:8[SB/FB]

3/32/1

abs16

4/3

dest

[Number of Bytes/Number of Cycles]

Rn

)
dest code

dsp8

abs16

(3) ADD.B:S #IMM8, dest

#IMM81 0 0 0 0 DEST
b7 b0

(

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 143 of 263
REJ09B0001-0200

ADD
(4) ADD.size:G src, dest

1 0 1 0 0 0 0 SIZE SRC DEST dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

((

src
dest

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 144 of 263
REJ09B0001-0200

3/2

[Number of Bytes/Number of Cycles]

ADD

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

(6) ADD.size:G #IMM, SP

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 1 1

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

[Number of Bytes/Number of Cycles]

DESTdest

R0L

R0H

0

1

src

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

src

ADD
(5) ADD.B:S src, R0L/R0H

0 0 1 0 0 DEST SRC
b7 b0

b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

src code

dsp8)abs16(
SRC

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 145 of 263
REJ09B0001-0200

ADD
(7) ADD.size:Q #IMM, SP

[Number of Bytes/Number of Cycles]

2/1

#IMM IMM4IMM4 #IMM

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 1 1 IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

–8

–7

–6

–5

–4

–3

–2

–1

• The instruction code is the same regardless of whether (.B) or (.W) is selected as the size specifier (.size).

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 146 of 263
REJ09B0001-0200

ADJNZ

1 1 1 1 1 0 0 SIZE IMM4 DEST

(1) ADJNZ.size #IMM, dest, label
dest code

dsp8)dsp16/abs16

dsp8

label code

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

.size

.B

.W

SIZE

0

1
1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

dsp8 (label code) = address indicated by label – (start address of instruction + 2)

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]dsp:8[SB/FB]

4/5 5/5

An

3/53/33/3

[An]Rndest

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

(

Bytes/Cycles

• If the program branches to a label, the number of cycles indicated is increased by 4.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 147 of 263
REJ09B0001-0200

AND

0 1 1 1 0 1 1 SIZE 0 0 1 0 DEST

(1) AND.size:G #IMM, dest
dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest dsp:16[SB]

AND
(2) AND.B:S #IMM8, dest

1 0 0 1 0 DEST

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

[Number of Bytes/Number of Cycles]

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

)
dest code

dsp8

abs16

#IMM8

b7 b0 b7 b0

b7 b0

(

(

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 148 of 263
REJ09B0001-0200

(

AND
(3) AND.size:G src, dest

1 0 0 1 0 0 0 SIZE SRC DEST dsp8

dsp16/abs16)dsp8)dsp16/abs16

dest codesrc code

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn dsp:16[SB] abs16

b7 b0 b7 b0

(

destsrc

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 149 of 263
REJ09B0001-0200

(4) AND.B:S src, R0L/R0H
src code

dsp8)abs16

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

AND

b7 b0

0 0 0 1 0 DEST SRC (

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 150 of 263
REJ09B0001-0200

BAND

0 1 1 1 1 1 1 0 0 1 0 0 SRC

(1) BAND src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

dest

3/3

bit,base:8

[SB/FB]

3/23/2

bit,Rn bit,An

2/6

[An]
bit,base:16

[SB]
4/3

bit,base:16

4/33/6 4/6

BCLR

0 1 1 1 1 1 1 0 1 0 0 0 DEST

dest code

dsp8

dsp16)
(1) BCLR:G dest

DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An]
bit,base:16

[SB]
bit,base:16

4/7 4/4 4/4

[Number of Bytes/Number of Cycles]

src

SRCsrc
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

base:16

[An]

base:8

[An]

(

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 151 of 263
REJ09B0001-0200

(2) BCLR:S bit, base:11[SB]
BCLR

dsp8

dest code

[Number of Bytes/Number of Cycles]

2/3

b7 b0

0 1 0 0 0 BIT

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 152 of 263
REJ09B0001-0200

BMCnd

dest

4/7

bit,base:8

[SB/FB]

4/104/64/6

bit,Rn bit,An [An]
bit,base:16

[SB]
bit,base:16

5/10 5/7 5/7

DESTdest
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

(1) BMCnd dest

0 1 1 1 1 1 1 0 0 0 1 0 DEST
b7 b0 b7 b0

base:16

[An]

base:8

[An]

dest code

dsp16)(dsp8 CND

CndCND CNDCnd

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 0

LTU/NC

LEU

NE/NZ

PZ

GT

NO

LT

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 1

1 1 1 1 1 0 1 0

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

GEU/C

GTU

EQ/Z

N

LE

O

GE

[Number of Bytes/Number of Cycles]

3/10Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 153 of 263
REJ09B0001-0200

BMCnd

0 1 1 1 1 1 0 1 1 1 0 1 CND

2/1

BNAND
(1) BNAND src

src code

dsp8

dsp16

[Number of Bytes/Number of Cycles]

src
bit,base:8

[SB/FB]
bit,Rn bit,An [An] bit,base:16

4/4 4/43/42/73/33/3 3/7 4/7

)
SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

Cnd CND

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

GEU/C

GTU

EQ/Z

N

LTU/NC

LEU

NE/NZ

Cnd CND

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 0 1

1 1 1 0

PZ

LE

O

GE

GT

NO

LT

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

bit,base:16

[SB]

(0 1 1 1 1 1 1 0 0 1 0 1 SRC

Bytes/Cycles

Bytes/Cycles

(2) BMCnd C

[Number of Bytes/Number of Cycles]

• If the condition is true, the number of cycles indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 154 of 263
REJ09B0001-0200

BNOR

0 1 1 1 1 1 1 0 0 1 1 1 SRC

(1) BNOR src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An]
bit,base:16

[SB]
bit,base:16

4/7 4/4 4/4

BNOT
(1) BNOT:G dest

dest code

dsp8

dsp16)
DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

[Number of Bytes/Number of Cycles]

dest

3/3

bit,base:8

[SB/FB]

3/2

bit,Rn bit,An

2/6

[An]
bit,base:16

[SB]
bit,base:16

3/2 3/6 4/6 4/3 4/3

SRCsrc
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

base:8

[An]

base:16

[An]

(

(0 1 1 1 1 1 1 0 1 0 1 0 DEST

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 155 of 263
REJ09B0001-0200

BNOT
(2) BNOT:S bit, base:11[SB]

dest code

dsp8

[Number of Bytes/Number of Cycles]

2/3

BNTST

0 1 1 1 1 1 1 0 0 0 1 1 SRC

(1) BNTST src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An] bit,base:16

4/7 4/4 4/4

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0

0 1 0 1 0 BIT

b7 b0 b7 b0

bit,base:16

[SB]

base:8

[An]

base:16

[An]

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 156 of 263
REJ09B0001-0200

(1) BNXOR src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,base:8

[SB/FB]

3/33/3

bit,Rn bit,An

2/7

[An] bit,base:16

4/4 4/43/7 4/7

BOR

0 1 1 1 1 1 1 0 0 1 1 0 SRC

(1) BOR src

[Number of Bytes/Number of Cycles]

src

3/43/33/3

bit,Rn bit,An

2/7

[An] bit,base:16

4/73/7 4/4 4/4

SRCsrc
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An base:16[An]

SRC

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

BNXOR

src code

dsp8

dsp16)

b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 1 0 1 1 0 1 SRC

bit,base:8

[SB/FB]

bit,base:16

[SB]

base:16

[An]

base:8

[An]

bit,base:16

[SB]

bit,base:8

[SB/FB]

base:8

[An]

base:16

[An]

(

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 157 of 263
REJ09B0001-0200

BRK
(1) BRK

0 0 0 0 0 0 0 0

[Number of Bytes/Number of Cycles]

1/27

(1) BSET:G dest
dest code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

dest

3/3

bit,base:8

[SB/FB]

3/63/23/2

bit,Rn bit,An

2/6

[An]

4/6 4/3

bit,base:16

4/3

DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

BSET

0 1 1 1 1 1 1 0 1 0 0 1 DEST
b7 b0 b7 b0

b7 b0

bit,base:16

[SB]

base:16

[An]

base:8

[An]

(

Bytes/Cycles

Bytes/Cycles

• If the target address of the BRK interrupt is specified using the interrupt table register (INTB), the

number of cycles shown in the table increases by two. In this case, set FF16 in addresses FFFE416

through FFFE716.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 158 of 263
REJ09B0001-0200

(2) BSET:S bit, base:11[SB]

dsp8

dest code

0 1 0 0 1 BIT

[Number of Bytes/Number of Cycles]

2/3

BTST

0 1 1 1 1 1 1 0 1 0 1 1 SRC

(1) BTST:G src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/3

bit,base:8

[SB/FB]

3/2

bit,Rn bit,An

2/6

[An] bit,base:16

4/6 4/3 4/33/63/2

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

BSET

b7 b0

b7 b0 b7 b0

bit,base:16

[SB]

base:16

[An]

base:8

[An]

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 159 of 263
REJ09B0001-0200

dest code

dsp8

dsp16)

BTST
(2) BTST:S bit, base:11[SB]

0 1 0 1 1 BIT dsp8

src code

[Number of Bytes/Number of Cycles]

2/3

0 1 1 1 1 1 1 0 0 0 0 0 DEST

(1) BTSTC dest

[Number of Bytes/Number of Cycles]

dest

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An]

4/4

bit,base:16

4/44/7

DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

b7 b0

b7 b0 b7 b0

BTSTC

bit,base:16

[SB]

base:16

[An]

base:8

[An]

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 160 of 263
REJ09B0001-0200

BTSTS

0 1 1 1 1 1 1 0 0 0 0 1 DEST

(1) BTSTS dest
dest code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

dest

3/4

bit,base:8

[SB/FB]

3/3

bit,Rn bit,An

2/7

[An]

4/7 4/4 4/43/73/3

BXOR

0 1 1 1 1 1 1 0 1 1 0 0 SRC

(1) BXOR src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,Rn bit,An [An] bit,base:16

4/44/73/73/3 3/3 2/7 4/4

DESTdest
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

bit,base:16

[SB]
bit,base:16

bit,base:8

[SB/FB]

base:16

[An]

bit,base:16

[SB]

base:8

[An]

(

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 161 of 263
REJ09B0001-0200

CMP

0 1 1 1 0 1 1 SIZE 1 0 0 0 DEST

(1) CMP.size:G #IMM, dest
dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

b7 b0 b7 b0

(

Bytes/Cycles
• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 162 of 263
REJ09B0001-0200

CMP
(2) CMP.size:Q #IMM, dest

dest code

dsp8)dsp16/abs16

 0

+1

+2

+3

+4

+5

+6

+7

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

1 1 0 1 0 0 0 SIZE IMM4 DEST
b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

(

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 163 of 263
REJ09B0001-0200

CMP

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

dest code

dsp8)abs16

#IMM8

(3) CMP.B:S #IMM8, dest
b7 b0

1 1 1 0 0 DEST (

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 164 of 263
REJ09B0001-0200

CMP

1 1 0 0 0 0 0 SIZE SRC DEST

(4) CMP.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

((

dest
src

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 165 of 263
REJ09B0001-0200

(5) CMP.B:S src, R0L/R0H
CMP

src code

dsp8)abs16

DADC

0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0

(1) DADC.B #IMM8, R0L

#IMM8

[Number of Bytes/Number of Cycles]

3/5

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]Rn

1/2

abs16src

3/32/3

b7 b0

b7 b0 b7 b0

0 0 1 1 1 DEST SRC (

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 166 of 263
REJ09B0001-0200

DADC
(2) DADC.W #IMM16, R0

[Number of Bytes/Number of Cycles]

4/5

0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0

(3) DADC.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/5

#IMM16

DADC

0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0
b7 b0 b7 b0

b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 167 of 263
REJ09B0001-0200

DADC
(4) DADC.W R1, R0

[Number of Bytes/Number of Cycles]

2/5

DADD
(1) DADD.B #IMM8, R0L

#IMM8

[Number of Bytes/Number of Cycles]

3/5

0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 168 of 263
REJ09B0001-0200

DADD
(2) DADD.W #IMM16, R0

#IMM16

[Number of Bytes/Number of Cycles]

4/5

DADD
(3) DADD.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/5

0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0
b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 169 of 263
REJ09B0001-0200

DADD
(4) DADD.W R1, R0

[Number of Bytes/Number of Cycles]

2/5

DEC
(1) DEC.B dest

dest code

dsp8)abs16

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/1

abs16

3/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0
b7 b0 b7 b0

1 0 1 0 1 DEST
b7 b0

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 170 of 263
REJ09B0001-0200

DEC
(2) DEC.W dest

[Number of Bytes/Number of Cycles]

1/1

DIV
(1) DIV.size #IMM

.size

.B

.W

SIZE

0

1

3/22

[Number of Bytes/Number of Cycles]

DESTdest

A0

A1

0

1

b7 b0

1 1 1 1 DEST 0 1 0

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 0 1 #IMM8

#IMM16

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes and cycles indicated are increased by 1 and 6,

respectively.

• The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

 dividend.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 171 of 263
REJ09B0001-0200

DIV
(2) DIV.size src

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/24 4/24

abs16dsp:8[An]

3/24

dsp:16[An]dsp:8[SB/FB]

 3/24 4/24

An

2/242/22 2/22

[An]Rnsrc

DIVU
(1) DIVU.size #IMM

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

3/18

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 1 0 1 SRC

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 0 0

(

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of cycles indicated is increased by 6.

• The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

dividend.

• The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

dividend.

• If the size specifier (.size) is (.W), the number of bytes and cycles indicated are increased by 1 and 7,

respectively.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 172 of 263
REJ09B0001-0200

DIVU

0 1 1 1 0 1 1 SIZE 1 1 0 0 SRC

(2) DIVU.size src

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/20 4/20

abs16dsp:8[An]

3/20

dsp:16[An]dsp:8[SB/FB]

3/20 4/20

An

2/20 2/18

[An]Rnsrc

DIVX
(1) DIVX.size #IMM

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

3/22

b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 1 1

(

[Number of Bytes/Number of Cycles]

 2/18Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of cycles indicated is increased by 7.

• The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

dividend.

• The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

dividend.

• If the size specifier (.size) is (.W), the number of bytes and cycles indicated are increased by 1 and 6,

respectively.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 173 of 263
REJ09B0001-0200

DIVX
(2) DIVX.size src

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB] abs16dsp:8[An]

3/24

dsp:16[An]dsp:8[SB/FB]

3/24 4/24

An

2/242/222/22

[An]Rnsrc

DSBB
(1) DSBB.B #IMM8, R0L

#IMM8

3/4

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 0 0 1 SRC

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1

(

4/24 4/24

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of cycles indicated is increased by 6.

• The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

dividend.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 174 of 263
REJ09B0001-0200

DSBB
(2) DSBB.W #IMM16, R0

#IMM16

[Number of Bytes/Number of Cycles]

4/4

DSBB
(3) DSBB.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/4

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 175 of 263
REJ09B0001-0200

DSBB
(4) DSBB.W R1, R0

[Number of Bytes/Number of Cycles]

2/4

DSUB

[Number of Bytes/Number of Cycles]

3/4

(1) DSUB.B #IMM8, R0L

#IMM8

b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1

0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 176 of 263
REJ09B0001-0200

DSUB
(2) DSUB.W #IMM16, R0

#IMM16

[Number of Bytes/Number of Cycles]

4/4

DSUB
(3) DSUB.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/4

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 177 of 263
REJ09B0001-0200

DSUB
(4) DSUB.W R1, R0

[Number of Bytes/Number of Cycles]

2/4

(1) ENTER #IMM8

[Number of Bytes/Number of Cycles]

3/4

#IMM8

ENTER

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 178 of 263
REJ09B0001-0200

EXITD
(1) EXITD

[Number of Bytes/Number of Cycles]

2/9

EXTS
(1) EXTS.B dest

dest code

dsp8)dsp16/abs16

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/5 4/5

abs16dsp:16[An]dsp:8[SB/FB]

3/5 4/5

Rn [An] dsp:8[An]

3/5

dest

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L

R1L

[A0]

[A1]

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0

b7 b0 b7 b0

0 1 1 1 1 1 0 0 0 1 1 0 DEST (

2/3 2/5

Bytes/Cycles

Bytes/Cycles

• Items marked --- cannot be selected.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 179 of 263
REJ09B0001-0200

EXTS
(2) EXTS.W R0

[Number of Bytes/Number of Cycles]

2/3

[Number of Bytes/Number of Cycles]

2/2

FCLR
(1) FCLR dest

DEST

C

D

Z

S

B

O

I

U

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 1 0 1

dest

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 180 of 263
REJ09B0001-0200

FSET
(1) FSET dest

[Number of Bytes/Number of Cycles]

2/2

INC
(1) INC.B dest

dest code

dsp8)abs16

dest DEST

C

D

Z

S

B

O

I

U

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/1

abs16

3/3

dest

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 1 0 0

b7 b0

1 0 1 0 0 DEST (

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 181 of 263
REJ09B0001-0200

INC
(2) INC.W dest

INT
(1) INT #IMM

1 1

[Number of Bytes/Number of Cycles]

2/19

DESTdest

A0

A1

0

1

1 0 1 1 DEST 0 1 0
b7 b0

1/1

[Number of Bytes/Number of Cycles]

b7 b0
#IMM1 1 1 0 1 0 1 1

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 182 of 263
REJ09B0001-0200

INTO
(1) INTO

[Number of Bytes/Number of Cycles]

1/1

JCnd
(1) JCnd label

label code

Cnd CND

0 0 0

0 0 1

0 1 0

0 1 1

GEU/C

GTU

EQ/Z

N

Cnd CND

1 0 0

1 0 1

1 1 0

1 1 1

LTU/NC

LEU

NE/NZ

PZ

[Number of Bytes/Number of Cycles]

2/2

b7 b0

1 1 1 1 0 1 1 0

b7 b0

dsp8 = address indicated by label – (start address of instruction + 1)

dsp80 1 1 0 1 CND

Bytes/Cycles

Bytes/Cycles

• If the O flag = 1, the number of cycles indicated is increased by 19.

• If the program branches to a label, the number of cycles indicated is increased by 2.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 183 of 263
REJ09B0001-0200

JCnd
(2) JCnd label

dsp8

label code

3/2

[Number of Bytes/Number of Cycles]

JMP
(1) JMP.S label

1/5

[Number of Bytes/Number of Cycles]

Cnd CND

1 0 0 0

1 0 0 1

1 0 1 0

LE

O

GE

CND

1 1 0 0

1 1 0 1

1 1 1 0

b7 b0 b7 b0

dsp8 = address indicated by label – (start address of instruction + 2)

0 1 1 1 1 1 0 1 1 1 0 0 CND

GT

NO

LT

Cnd

b7 b0

dsp = address indicated by label – (start address of instruction + 2)

0 1 1 0 0 dsp

Bytes/Cycles

Bytes/Cycles

• If the program branches to a label, the number of cycles indicated is increased by 2.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 184 of 263
REJ09B0001-0200

JMP
(2) JMP.B label

label code

[Number of Bytes/Number of Cycles]

2/4

JMP
(3) JMP.W label

label code

[Number of Bytes/Number of Cycles]

3/4

b7 b0

dsp8 = address indicated by label – (start address of instruction + 1)

dsp81 1 1 1 1 1 1 0

b7 b0
dsp161 1 1 1 0 1 0 0

dsp16 = address indicated by label – (start address of instruction + 1)

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 185 of 263
REJ09B0001-0200

[Number of Bytes/Number of Cycles]

4/4

(1) JMPI.W src

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

R0

R1

R2

R3

A0

A1

[A0]

[A1]

An

SRC

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/11

abs16dsp:8[An]

3/11

dsp:20[An]dsp:8[SB/FB]

3/11 5/11

An

2/112/7

[An]Rnsrc

b7 b0

1 1 1 1 1 1 0 0

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 1 0 SRC

(4) JMP.A label
JMP

label code

abs20

JMPI
src code

dsp8

dsp16/abs16

dsp20

4/112/7

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 186 of 263
REJ09B0001-0200

JMPI
(2) JMPI.A src

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/10 4/10

abs16dsp:8[An]

3/10

dsp:20[An]dsp:8[SB/FB]

3/10 5/10

An

2/102/62/6

[An]Rn

Bytes/Cycles

src

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 0 0 SRC

R2R0

R3R1

A1A0

[A0]

[A1]

src code

dsp8

dsp16/abs16

dsp20

SRC

• Items marked --- cannot be selected.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 187 of 263
REJ09B0001-0200

JSR
(1) JSR.W label

dsp16 = address indicated by label – (start address of instruction + 1)

label code

3/8

(2) JSR.A label

[Number of Bytes/Number of Cycles]

4/9

dsp16
b7 b0

1 1 1 1 0 1 0 1

[Number of Bytes/Number of Cycles]

b7 b0

1 1 1 1 1 1 0 1

Bytes/Cycles

Bytes/Cycles

JSR

abs20

label code

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 188 of 263
REJ09B0001-0200

(1) JSRI.W src

(2) JSRI.A src

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

R0

R1

R2

R3

A0

A1

[A0]

[A1]

An

SRC

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/15 4/15

abs16dsp:8[An]

3/15

dsp:20[An]dsp:8[SB/FB]

3/15 5/15

An

2/152/112/11

[An]Rnsrc

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

An

SRC
R2R0

R3R1

A1A0

[A0]

[A1]

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/15 4/15

abs16dsp:8[An]

3/15

dsp:20[An]dsp:8[SB/FB]

3/15 5/15

An

2/152/112/11

[An]Rnsrc

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 1 1 SRC

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 0 1 SRC

src code

dsp8

dsp16/abs16

dsp20

JSRI

JSRI

src code

dsp8

dsp16/abs16

dsp20

Bytes/Cycles

Bytes/Cycles

• Items marked --- cannot be selected.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 189 of 263
REJ09B0001-0200

LDC
(1) LDC #IMM16, dest

#IMM16

[Number of Bytes/Number of Cycles]

4/2

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 0 0 0

INTBL

INTBH

FLG

ISP

SP

SB

FB

Bytes/Cycles

• Items marked --- cannot be selected.

LDC
(2) LDC src, dest

dsp8

src code

dsp16/abs16)

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rnsrc

Rn

[An]

An

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

R0

R1

R2

R3

A0

A1

[A0]

[A1]

src

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

SRC SRC

INTBL

INTBH

FLG

ISP

SP

SB

FB

dest

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

DEST

b7 b0 b7 b0

0 1 1 1 1 0 1 0 1 DEST SRC (

• Items marked --- cannot

be selected.

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 190 of 263
REJ09B0001-0200

LDCTX
(1) LDCTX abs16, abs20

abs16

7/11+2 m

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0

[Number of Bytes/Number of Cycles]

abs20

Bytes/Cycles

• m denotes the number of transfers to be performed.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 191 of 263
REJ09B0001-0200

LDE
(1) LDE.size abs20, dest

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/5 7/5

abs16dsp:8[An]

6/5

dsp:16[An]dsp:8[SB/FB]

6/5 7/5

An

5/55/45/4

[An]Rndest

LDE

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/5 7/5

abs16dsp:8[An]

6/5

dsp:16[An]dsp:8[SB/FB]

6/5 7/5

An

5/55/45/4

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 0 0 DEST

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 0 1 DEST

)dsp8

dest code

dsp16/abs16(

dsp8

dest code

dsp16/abs16)(
(2) LDE.size dsp:20[A0], dest

dsp20

src code

abs20

src code

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 192 of 263
REJ09B0001-0200

LDE
(3) LDE.size [A1A0], dest

dest code

dsp8)dsp16/abs16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/5 4/5

abs16dsp:8[An]

3/5

dsp:16[An]dsp:8[SB/FB]

3/5 4/5

An

2/52/42/4

[An]Rndest

8/4

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 1 0 DEST

(1) LDINTB #IMM

• #IMM1 indicates the 4 high-order bits of #IMM.

#IMM2 indicates the 16 low-order bits of #IMM.

(

b7 b0 b7 b0

LDINTB

1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0
0 0 0 0 #IMM1 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0

#IMM2

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 193 of 263
REJ09B0001-0200

(1) LDIPL #IMM

[Number of Bytes/Number of Cycles]

2/2

(1) MOV.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/3 5/3

abs16dsp:8[An]

4/3

dsp:16[An]dsp:8[SB/FB]

4/3 5/3

An

3/33/23/2

[An]Rndest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

LDIPL

MOV

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 1 0 0 #IMM

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 1 0 0 DEST (

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 194 of 263
REJ09B0001-0200

MOV

1 1 0 1 1 0 0 SIZE IMM4 DEST

(2) MOV.size:Q #IMM, dest
dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1
1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2 4/2

abs16dsp:8[An]

3/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

An

2/22/12/1

[An]Rndest

b7 b0 b7 b0

(

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 195 of 263
REJ09B0001-0200

MOV

dsp:8[SB/FB]

3/2

Rn

2/1

abs16

4/2

dest

[Number of Bytes/Number of Cycles]

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

#IMM8

(3) MOV.B:S #IMM8, dest
dest code

dsp8

abs16)
b7 b0

(1 1 0 0 0 DEST

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 196 of 263
REJ09B0001-0200

MOV
(4) MOV.size:S #IMM, dest

#IMM8

#IMM16

.size

.B

.W

SIZE

1

0

DESTdest

A0

A1

0

1

2/1

dest code

dsp8)abs16

(5) MOV.B:Z #0, dest

dsp:8[SB/FB]

2/2

Rn

1/1

abs16

3/2

dest

[Number of Bytes/Number of Cycles]

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

MOV

b7 b0

1 SIZE 1 0 DEST 0 1 0

[Number of Bytes/Number of Cycles]

b7 b0

1 0 1 1 0 DEST (

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes and cycles indicated are increased by 1 each.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 197 of 263
REJ09B0001-0200

(

MOV
(6) MOV.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2

4/2

4/3

5/3

5/3

6/3

6/3

6/3

4/2

4/2

4/3

5/3

5/3

6/3

6/3

6/3

abs16dsp:8[An]

3/2

3/2

3/3

4/3

4/3

5/3

5/3

5/3

dsp:16[An]dsp:8[SB/FB]

3/2

3/2

3/3

4/3

4/3

5/3

5/3

5/3

4/2

4/2

4/3

5/3

5/3

6/3

6/3

6/3

An

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

0 1 1 1 0 0 1 SIZE SRC DEST (

dest
src

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 198 of 263
REJ09B0001-0200

MOV
(7) MOV.B:S src, dest

src code

dsp8)abs16

DESTdest

A0

A1

0

1

MOV
(8) MOV.B:S R0L/R0H, dest

dest code

dsp8)abs16

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

R0L

R0H

0

1

SRCsrc dest DEST

dsp:8[SB]

dsp:8[FB]

abs16

0 1

1 0

1 1

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

dest

3/2

b7 b0

0 0 1 1 0 DEST SRC

b7 b0

0 0 0 0 0 SRC DEST

(

(
dsp:8[SB/FB]

abs16

dsp:8[SB/FB] abs16

2/2Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 199 of 263
REJ09B0001-0200

MOV
(9) MOV.B:S src, R0L/R0H

src code

dsp8)abs16

MOV
(10) MOV.size:G dsp:8[SP], dest

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/3 5/3

abs16dsp:8[An]

4/3

dsp:16[An]dsp:8[SB/FB]

4/3 5/3

An

3/33/23/2

[An]Rndest

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]Rn

1/2

abs16

3/3

src

b7 b0

0 0 0 0 1 DEST SRC

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 1 1 DEST

(

()dsp8

dest code

dsp16/abs16

src code

dsp8

2/3Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 200 of 263
REJ09B0001-0200

MOV

MOVA

(11) MOV.size:G src, dsp:8[SP]
dest code

dsp8)dsp8

src code

dsp16/abs16

src
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/33/3

[An]Rndest

(1) MOVA src, dest

dsp8

src code

dsp16)

3/2

dsp:16[SB]

4/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

dsp:8[An]

SRCsrc

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

R0

R1

R2

R3

A0

A1

dest DEST

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 1 1 SRC

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST SRC

[Number of Bytes/Number of Cycles]

src abs16

(

(

4/2Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 201 of 263
REJ09B0001-0200

MOVDir
(1) MOVDir R0L, dest

dest code

dsp8)dsp16/abs16

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 0 DIR DEST

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0H

R1L

R1H

[A0]

[A1]

An

dsp:16[SB] abs16dsp:16[An]dsp:8[SB/FB]Rn [An] dsp:8[An]dest

MOVHH,

MOVLL

[Number of Bytes/Number of Cycles]

MOVHL,

MOVLH

LL

LH

HL

HH

Dir DIR

0 0

1 0

0 1

1 1

4/8 4/83/8 4/8

3/53/5

3/8

2/52/4 4/5 4/5 4/5

2/82/7

(

• Items marked --- cannot be selected.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 202 of 263
REJ09B0001-0200

MOVDir
(2) MOVDir src, R0L

dest code

dsp8)dsp16/abs16

b7 b0 b7 b0

0 1 1 1 1 1 0 0 0 0 DIR SRC

SRCsrc

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L

R0H

R1L

R1H

[A0]

[A1]

An

dsp:16[SB] abs16dsp:16[An]dsp:8[SB/FB]Rn [An] dsp:8[An]

[Number of Bytes/Number of Cycles]

LL

LH

HL

HH

Dir DIR

0 0

1 0

0 1

1 1

src

MOVHH,

MOVLL

MOVHL,

MOVLH
4/8 4/83/8 4/8

3/53/5

3/8

2/52/3 4/5 4/5 4/5

2/82/6

(

• Items marked --- cannot be selected.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 203 of 263
REJ09B0001-0200

MUL
(1) MUL.size #IMM, dest

dest code

dsp8

dsp16/abs16) #IMM8

#IMM16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]dsp:8[SB/FB]

4/5 5/5

An

3/53/43/4

[An]Rndest

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 0 1 0 1 DEST (

Bytes/Cycles

• Items marked --- cannot be selected.

• If dest is Rn or An and the size specifier (.size) is (.W), the number of bytes and cycles indicated are

increased by 1 each.

• If dest is neither Rn nor An and the size specifier (.size) is (.W), the number of bytes and cycles

indicated are increased by 1 and 2, respectively.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 204 of 263
REJ09B0001-0200

(

MUL
(2) MUL.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

src
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

abs16dsp:8[An]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

dsp:16[An]dsp:8[SB/FB]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

An

2/5

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/4

2/6

3/6

3/6

4/6

4/6

4/6

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

0 1 1 1 1 0 0 SIZE SRC DEST (

dest
src

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

• Items marked --- cannot be selected.

• If src is An and dest is Rn and the size specifier (.size) is (.W), the number of cycles indicated is increased by 1.

• If src is not An and dest is Rn or An and the size specifier (.size) is (.W), the number of cycles indicated is

increased by 1.

• If dest is neither Rn nor An and the size specifier (.size) is (.W), the number of cycles indicated is increased by 2.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 205 of 263
REJ09B0001-0200

MULU
(1) MULU.size #IMM, dest

.size

.B

.W

SIZE

0

1

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

)
dest code

dsp8

dsp16/abs16

#IMM8

#IMM16

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]

4/5 5/5

An

3/53/43/4

[An]Rndest

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 0 1 0 0 DEST

[Numbera of Bytes/Number of Cycles]

(

dsp:8[SB/FB]

Bytes/Cycles

• Items marked --- cannot be selected.

• If dest is Rn or An and the size specifier (.size) is (.W), the number of bytes and cycles indicated are

increased by 1 each.

• If dest is neither Rn nor An and the size specifier (.size) is (.W), the number of bytes and cycles

indicated are increased by 1 and 2, respectively.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 206 of 263
REJ09B0001-0200

(

MULU
(2) MULU.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

src
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

dsp:16[SB]

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

abs16dsp:8[An]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

dsp:16[An]dsp:8[SB/FB]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

An

2/5

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/4

2/6

3/6

3/6

4/6

4/6

4/6

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 0 0 SIZE SRC DEST (

dest
src

• Items marked --- cannot be selected.

• If src is An and dest is Rn and the size specifier (.size) is (.W), the number of cycles indicated is increased by 1.

• If src is not An and dest is Rn or An and the size specifier (.size) is (.W), the number of cycles indicated is

increased by 1.

• If dest is neither Rn nor An and the size specifier (.size) is (.W), the number of cycles indicated is increased by 2.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 207 of 263
REJ09B0001-0200

NEG
(1) NEG.size dest

dest code

dsp8)dsp16/abs16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

NOP
(1) NOP

[Number of Bytes/Number of Cycles]

1/1

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 0 1 DEST

[Number of Bytes/Number of Cycles]

b7 b0

0 0 0 0 0 1 0 0

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 208 of 263
REJ09B0001-0200

(2) NOT.B:S dest
NOT

dest code

dsp8)abs16

NOT
(1) NOT.size:G dest

dest code

dsp8)dsp16/abs16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/1

abs16

3/3

dest

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 1 1 DEST

b7 b0

1 0 1 1 1 DEST

(

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 209 of 263
REJ09B0001-0200

OR
(1) OR.size:G #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

OR
(2) OR.B:S #IMM8, dest

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

#IMM8

dest code

dsp8)abs16

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 0 1 1 DEST

b7 b0

1 0 0 1 1 DEST

(

(

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 210 of 263
REJ09B0001-0200

(

OR
(3) OR.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 0 1 1 0 0 SIZE SRC DEST (

dest
src

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 211 of 263
REJ09B0001-0200

OR
(4) OR.B:S src, R0L/R0H

dest code

dsp8)abs16

POP
(1) POP.size:G dest

dest code

dsp8)dsp16/abs16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/4 4/4

abs16dsp:8[An]

3/4

dsp:16[An]dsp:8[SB/FB]

3/4 4/4

An

2/42/32/3

[An]Rndest

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

b7 b0

0 0 0 1 1 DEST SRC

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 1 0 1 DEST

(

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 212 of 263
REJ09B0001-0200

(2) POP.B:S dest

1/3

POP
(3) POP.W:S dest

1/3

[Number of Bytes/Number of Cycles]

DESTdest

R0L

R0H

0

1

DESTdest

A0

A1

0

1

POP

b7 b0

1 0 0 1 DEST 0 1 0

b7 b0

1 1 0 1 DEST 0 1 0

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 213 of 263
REJ09B0001-0200

POPC
(1) POPC dest

POPM
(1) POPM dest

DEST

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

INTBL

INTBH

FLG

dest DEST

1 0 0

1 0 1

1 1 0

1 1 1

ISP

SP

SB

FB

dest

FB SB R3 R2 R1 R0A1 A0

DEST*2

[Number of Bytes/Number of Cycles]

2/3

[Number of Bytes/Number of Cycles]

• The bit for a selected register is 1.

The bit for a non-selected register is 0.

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 0 1 1

b7 b0

1 1 1 0 1 1 0 1

2/3Bytes/Cycles

Bytes/Cycles

• Items marked --- cannot be selected.

• If two or more registers need to be restored, the number of required cycles is 2 x m (m: number of

registers to be restored).

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 214 of 263
REJ09B0001-0200

PUSH
(1) PUSH.size:G #IMM

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

3/2

(2) PUSH.size:G src

.size

.B

.W

SIZE

0

1

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/4 4/4

abs16dsp:8[An]

3/4

dsp:16[An]dsp:8[SB/FB]

3/4 4/4

An

2/42/22/2

[An]Rnsrc

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 1 0

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 0 0 SRC

PUSH

dsp8

src code

dsp16/abs16)(

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 215 of 263
REJ09B0001-0200

PUSH
(3) PUSH.B:S src

1/2

[Number of Bytes/Number of Cycles]

PUSH
(4) PUSH.W:S src

1/2

SRCsrc

R0L

R0H

0

1

SRCsrc

A0

A1

0

1

b7 b0

1 0 0 0 SRC 0 1 0

b7 b0

1 1 0 0 SRC 0 1 0

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 216 of 263
REJ09B0001-0200

PUSHA
(1) PUSHA src

dsp8

src code

dsp16/abs16)

[Number of Bytes/Number of Cycles]

3/2

dsp:16[SB]

4/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

dsp:8[An]src

PUSHC

2/2

[Number of Bytes/Number of Cycles]

SRCsrc
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

src SRC

0 0 0

0 0 1

0 1 0

0 1 1

INTBL

INTBH

FLG

src SRC

1 0 0

1 0 1

1 1 0

1 1 1

ISP

SP

SB

FB

• Items marked --- cannot be selected.

(1) PUSHC src

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 0 1 SRC

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 SRC 0 0 1 0

abs:16

(

4/2Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 217 of 263
REJ09B0001-0200

PUSHM

[Number of Bytes/Number of Cycles]

(1) PUSHM src

SRC

2/2 m

REIT
(1) REIT

1/6

[Number of Bytes/Number of Cycles]

src

R0 R1 A0 A1 SB FBR2 R3

SRC*1

b7 b0

1 1 1 0 1 1 0 0

b7 b0

1 1 1 1 1 0 1 1

• m denotes the number of registers to be saved.

Bytes/Cycles

Bytes/Cycles

• The bit for a selected register is 1.

The bit for a non-selected register is 0.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 218 of 263
REJ09B0001-0200

• m denotes the number of operations to be performed.

• If the size specifier (.size) is (.W), the number of cycles is (6+9 m).

RMPA
(1) RMPA.size

.size

.B

.W

SIZE

0

1

ROLC
(1) ROLC.size dest

dest code

dsp8)dsp16/abs16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 1 0 0 0 1

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 0 1 0 DEST (

2/4+7 m

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 219 of 263
REJ09B0001-0200

RORC
(1) RORC.size dest

dest code

dsp8)dsp16/abs16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 0 1 1 DEST (

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 220 of 263
REJ09B0001-0200

ROT
(1) ROT.size #IMM, dest

dest code

dsp8)dsp16/abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2+m 4/2+m

abs16dsp:8[An]

3/2+m

dsp:16[An]dsp:8[SB/FB]

3/2+m 4/2+m

An

2/2+m2/1+m2/1+m

[An]Rndest

b7 b0 b7 b0

1 1 1 0 0 0 0 SIZE IMM4 DEST

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

#IMM

• m denotes the number of bits to be rotated.

(

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 221 of 263
REJ09B0001-0200

ROT
(2) ROT.size R1H, dest

dest code

dsp8)dsp16/abs16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/---

R1L/R2

--- /R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3+m 4/3+m

abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB]

3/3+m

An

2/3+m2/2+m2/2+m

[An]Rndest

RTS
(1) RTS

1/6

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 1 0 DEST

b7 b0

1 1 1 1 0 0 1 1

(

[Number of Bytes/Number of Cycles]

3/3+m 4/3+mBytes/Cycles

Bytes/Cycles

• Items marked --- cannot be selected.

• m denotes the number of bits to be rotated.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 222 of 263
REJ09B0001-0200

SBB
(1) SBB.size #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 1 1 1 DEST (

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 223 of 263
REJ09B0001-0200

(

SBB
(2) SBB.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 1 1 1 0 0 SIZE SRC DEST (

dest
src

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 224 of 263
REJ09B0001-0200

SBJNZ
(1) SBJNZ.size #IMM, dest, label

1 1 1 1 1 0 0 SIZE IMM4 DEST

label codedest code

dsp8)dsp16/abs16

dsp8

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]dsp:8[SB/FB]

4/5 5/5

An

3/53/33/3

[An]Rndest

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

 0

–1

–2

–3

–4

–5

–6

–7

#IMM IMM4IMM4 #IMM

+8

+7

+6

+5

+4

+3

+2

+1

.size

.B

.W

SIZE

0

1

dsp8 (label code) = address indicated by label – (start address of instruction + 2)

b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

[Number of Bytes/Number of Cycles]

(

Bytes/Cycles

• If the program branches to a label, the number of cycles indicated is increased by 4.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 225 of 263
REJ09B0001-0200

SHA
(1) SHA.size #IMM, dest

1 1 1 1 0 0 0 SIZE IMM4 DEST

dest code

dsp8)dsp16/abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2+m 4/2+m

abs16dsp:8[An]

3/2+m

dsp:16[An]dsp:8[SB/FB]

3/2+m 4/2+m

An

2/2+m2/1+m2/1+m

[An]Rndest

b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

(

Bytes/Cycles

• m denotes the number of bits to be shifted.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 226 of 263
REJ09B0001-0200

SHA

0 1 1 1 0 1 0 SIZE 1 1 1 1 DEST

(2) SHA.size R1H, dest
dest code

dsp8)dsp16/abs16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/---

R1L/R2

--- /R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3+m 4/3+m

abs16dsp:8[An]

3/3+m

dsp:16[An]dsp:8[SB/FB]

3/3+m 4/3+m

An

2/3+m2/2+m2/2+m

[An]Rndest

SHA
(3) SHA.L #IMM, dest

2/3+m

[Number of Bytes/Number of Cycles]

• m denotes the number of bits to be shifted.

• Items marked --- cannot be selected.

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

DESTdest

0

1

b7 b0 b7 b0

b7 b0 b7 b0

1 1 1 0 1 0 1 1 1 0 1 DEST IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

R2R0

R3R1

• m denotes the number of bits to be shifted.

(

Bytes/Cycles

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 227 of 263
REJ09B0001-0200

SHA
(4) SHA.L R1H, dest

2/4+m

[Number of Bytes/Number of Cycles]

DESTdest

0

1

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 0 1 DEST 0 0 0 1

R2R0

R3R1

• m denotes the number of bits to be shifted.

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 228 of 263
REJ09B0001-0200

SHL
(1) SHL.size #IMM, dest

dest code

dsp8)dsp16/abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2+m 4/2+m

abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB]

3/2+m 4/2+m

An

2/2+m2/1+m2/1+m

[An]Rndest

b7 b0 b7 b0

1 1 1 0 1 0 0 SIZE IMM4 DEST

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

(

3/2+mBytes/Cycles
• m denotes the number of bits to be shifted.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 229 of 263
REJ09B0001-0200

SHL
(2) SHL.size R1H, dest

dest code

dsp8)dsp16/abs16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/---

R1L/R2

--- /R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

dsp:16[SB]

4/3+m

abs16dsp:8[An]

3/3+m

dsp:16[An]dsp:8[SB/FB]

3/3+m 4/3+m

An

2/3+m2/2+m2/2+m

[An]Rndest

[Number of Bytes/Number of Cycles]

SHL
(3) SHL.L #IMM, dest

[Number of Bytes/Number of Cycles]

2/3+m

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

DESTdest

R2R0

R3R1

0

1

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 1 1 0 DEST

b7 b0 b7 b0

1 1 1 0 1 0 1 1 1 0 0 DEST IMM4

(

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

4/3+mBytes/Cycles

Bytes/Cycles

• Items marked --- cannot be selected.

• m denotes the number of bits to be shifted.

• m denotes the number of bits to be shifted.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 230 of 263
REJ09B0001-0200

SHL
(4) SHL.L R1H, dest

2/4+m

[Number of Bytes/Number of Cycles]

SMOVB
(1) SMOVB.size

.size

.B

.W

SIZE

0

1

2/5+5 m

[Number of Bytes/Number of Cycles]

DESTdest

R2R0

R3R1

0

1

• m denotes the number of bits to be shifted.

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 0 0 DEST 0 0 0 1

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 0 1

Bytes/Cycles

Bytes/Cycles

• m denotes the number of transfers to be performed.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 231 of 263
REJ09B0001-0200

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 0 0

SMOVF

.size

.B

.W

SIZE

0

1

2/5+5 m

[Number of Bytes/Number of Cycles]

(1) SMOVF.size

SSTR

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 1 0

(1) SSTR.size

.size

.B

.W

SIZE

0

1

2/3+2 m

[Number of Bytes/Number of Cycles]

• m denotes the number of transfers to be performed.

b7 b0 b7 b0

b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

• m denotes the number of transfers to be performed.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 232 of 263
REJ09B0001-0200

STC

0 1 1 1 1 0 1 1 1 SRC DEST

(1) STC src, dest
dest Code

dsp8)dsp16/abs16

INTBL

INTBH

FLG

ISP

SP

SB

FB

src

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

SRC

Rn

[An]

An

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

R0

R1

R2

R3

A0

A1

[A0]

[A1]

dest

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

DEST DEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2 4/2

abs16dsp:8[An]

3/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

An

2/22/12/1

[An]Rndest

Bytes/Cycles

STC
(2) STC PC, dest

dest Code

dsp8)dsp16/abs16

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R2R0

R3R1

A1A0

[A0]

[A1]

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/22/2

[An]Rndest

Bytes/Cycles

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 0 0 DEST (

(
b7 b0 b7 b0

• Items marked --- cannot be selected.

• Items marked --- cannot be selected.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 233 of 263
REJ09B0001-0200

STCTX

abs16

[Number of Bytes/Number of Cycles]

7/11+2 m

STE
(1) STE.size src, abs20

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/4 7/4

abs16dsp:8[An]

6/4

dsp:16[An]dsp:8[SB/FB]

6/4 7/4

An

5/45/35/3

[An]Rnsrc

Bytes/Cycles

• m denotes the number of transfers to be performed.

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 0 0 SRC

Bytes/Cycles

(1) STCTX abs16, abs20

abs20

abs20

dest code

)dsp8

src code

dsp16/abs16(

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 234 of 263
REJ09B0001-0200

(2) STE.size src, dsp:20[A0]
STE

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/4 7/4

abs16dsp:8[An]

6/4

dsp:16[An]dsp:8[SB/FB]

6/4 7/4

An

5/45/35/3

[An]Rnsrc

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/4 4/4

abs16dsp:8[An]

3/4

dsp:16[An]dsp:8[SB/FB]

3/4 4/4

An

2/42/32/3

[An]Rnsrc

STE
(3) STE.size src, [A1A0]

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 0 1 SRC

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 1 0 SRC

(

(

Bytes/Cycles

Bytes/Cycles

dsp20

dest code

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 235 of 263
REJ09B0001-0200

STNZ
(1) STNZ #IMM8, dest

dsp:8[SB/FB]

3/2

Rn

2/1

abs16

4/2

dest

Bytes/Cycles

STZ

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

dsp:8[SB/FB]

3/2

Rn

2/1

abs16

4/2

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

(1) STZ #IMM8, dest
dest code

#IMM8

dest code

dsp8)abs16

b7 b0

1 1 0 1 0 DEST

#IMM8 dsp8)abs16

b7 b0

1 1 0 0 1 DEST

(

(

Bytes/Cycles

• If the Z flag = 0, the number of cycles indicated is increased by 1.

• If the Z flag = 1, the number of cycles indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 236 of 263
REJ09B0001-0200

STZX
(1) STZX #IMM81, #IMM82, dest

1 1 0 1 1 DEST

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

4/3

Rn

3/2

abs16

5/3

dest

Bytes/Cycles

SUB
(1) SUB.size:G #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

#IMM81

dest code

dsp8)abs16

#IMM82
b7 b0

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 1 0 1 DEST

(

(

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 237 of 263
REJ09B0001-0200

SUB
(2) SUB.B:S #IMM8, dest

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

b7 b0

1 0 0 0 1 DEST #IMM8)
dest code

dsp8

abs16(

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 238 of 263
REJ09B0001-0200

(

SUB
(3) SUB.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 1 0 1 0 0 SIZE SRC DEST (

src
dest

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 239 of 263
REJ09B0001-0200

SUB
(4) SUB.B:S src, R0L/R0H

dest code

dsp8)abs16

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

Bytes/Cycles

(1) TST.size #IMM, dest
dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

DESTdest

R0L

R0H

0

1

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

TST

b7 b0

0 0 1 0 1 DEST SRC

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 0 0 0 DEST

(

(

[Number of Bytes/Number of Cycles]

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 240 of 263
REJ09B0001-0200

TST
(2) TST.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 0 0 0 0 0 SIZE SRC DEST ((

dest
src

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 241 of 263
REJ09B0001-0200

(1) UND

UND

[Number of Bytes/Number of Cycles]

1/20Bytes/Cycles

(1) WAIT

[Number of Bytes/Number of Cycles]

2/3Bytes/Cycles

WAIT

b7 b0

1 1 1 1 1 1 1 1

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 242 of 263
REJ09B0001-0200

XCHG
(1) XCHG.size src, dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

SRCsrc

0 0

0 1

1 0

1 1

R0L/R0

R0H/R1

R1L/R2

R1H/R3

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

dsp:16[SB]

4/5 4/5

abs16dsp:8[An]

3/5

dsp:16[An]dsp:8[SB/FB]

3/5 4/5

An

2/52/42/4

[An]Rndest

Bytes/Cycles

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 1 0 1 SIZE 0 0 SRC DEST (

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 243 of 263
REJ09B0001-0200

XOR
(1) XOR.size #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 0 0 1 DEST (

Bytes/Cycles

• If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Chapter 4 Instruction Codes/Number of Cycles
4.2 Instruction Codes/Number of Cycles

Rev.2.00 Oct 17, 2005 page 244 of 263
REJ09B0001-0200

XOR
(2) XOR.size src, dest

1 0 0 0 1 0 0 SIZE SRC DEST dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

((

src
dest

Chapter 5

Interrupts

5.1 Outline of Interrupts

5.2 Interrupt Control

5.3 Interrupt Sequence

5.4 Returning from Interrupt Routines

5.5 Interrupt Priority

5.6 Multiple Interrupts

5.7 Notes on Interrupts

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 246 of 263
REJ09B0001-0200

Hardware

Special
(nonmaskable interrupt)

Peripheral I/O1

(maskable interrupt)

Undefined instruction (UND instruction)
Overflow (INTO instruction)
BRK instruction
INT instruction

Software
(nonmaskable interrupt)

 Interrupt
Watchdog timer
Oscillation stop detection
Single-step2

Address match

Notes 1: Peripheral function interrupts are generated by the peripheral functions built into the
microcomputer system.

2: This is a dedicated interrupt for development support tools. Do not use this interrupt.

5.1 Outline of Interrupts
When an interrupt request is acknowledged, control branches to the interrupt routine that is set in an inter-

rupt vector table. Each interrupt vector table must have had the start address of its corresponding interrupt

routine set. For details about interrupt vector tables, refer to section 1.10, “Vector Tables”.

5.1.1 Types of Interrupts
Figure 5.1.1 lists the types of interrupts. Table 5.1.1 lists the source of interrupts (nonmaskable) and the

fixed vector tables.

 •Maskable interrupt: This type of interrupt can be controlled by using the I flag to enable (or

disable) the interrupts or by changing the interrupt priority level.

 •Nonmaskable interrupt: This type of interrupt cannot be controlled by using the I flag to enable (or disable)

the interrupts or by changing the interrupt priority level.

5.1 Outline of Interrupts

Figure 5.1.1 Classification of Interrupts

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 247 of 263
REJ09B0001-0200

5.1.2 Software Interrupts
Software interrupts are generated by an instruction that generates an interrupt request when executed.

Software interrupts are nonmaskable.

● Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

● Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is set to 1 (arithmetic result is

overflow).

The instructions that cause the O flag to change are as follows: ABS, ADC, ADCF, ADD, CMP, DIV,

DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB.

● BRK interrupt

This interrupt occurs when the BRK instruction is executed.

● INT instruction interrupt

This interrupt occurs when the INT instruction is executed. The software interrupt numbers which can be

specified by the INT instruction are 0 to 63. Note that software interrupt numbers 4 to 31 are assigned to

peripheral function interrupts. This means that it is possible to execute the same interrupt routines used

by peripheral function interrupts by executing the INT instruction.

For software interrupt numbers 0 to 31, the U flag is saved when the INT instruction is executed and the

U flag is cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence.

The U flag before the interrupt occurred is restored when control returns from the interrupt routine. For

software interrupt numbers 32 to 63, when the instruction is executed, the U flag does not change and the

SP selected at the time is used.

5.1 Outline of Interrupts

Description

Interrupt generated by the UND instruction.
Interrupt generated by the INTO instruction.
Executed beginning from address indicated by vector in
variable vector table if 0FFE716 address contents are

FF16.
Can be controlled by an interrupt enable bit.
Do not use this interrupt.

Note 1: This is a dedicated interrupt used by development support tools. Do not use this interrupt.

Vector Table Addresses
Address (L) to Address (H)

Interrupt Source

(Reserved)
(Reserved)
Reset

Address Match

Undefined Instruction
Overflow

BRK Instruction

Single Step1

Watchdog Timer•Oscil-
lation Stop Detection

0FFDC16 to 0FFDF16

0FFE016 to 0FFE316

0FFE416 to 0FFE716

0FFE816 to 0FFEB16

0FFEC16 to 0FFEF16

0FFF016 to 0FFF316

0FFF416 to 0FFF716

0FFF816 to 0FFFB16

0FFFC16 to 0FFFF16

Table 5.1.1 Interrupt Sources (Nonmaskable) and Fixed Vector Tables

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 248 of 263
REJ09B0001-0200

5.1.3 Hardware Interrupts
There are two types in hardware interrupts: special interrupts and peripheral function interrupts.

● Special interrupts

Special interrupts are nonmaskable.

(1) Watchdog timer interrupt

This interrupt is caused by the watchdog timer. Initialize the watchdog timer after the watchdog timer

interrupt is generated. For details about the watchdog timer, refer to the R8C’s hardware manual.

(2) Oscillation stop detection interrupt

This interrupt is caused by the oscillation stop detection function. For details about the oscillation stop

detection function, refer to the R8C’s hardware manual.

(3) Single-step interrupt

This interrupt is used exclusively by development support tools. Do not use this interrupt.

(4) Address-match interrupt

When the AIER0 or AIER1 bit in the AIER register is set to 1 (address-match interrupt enabled), the

address-match interrupt is generated just before executing the instruction of the address indicated by

the corresponding RMAD0 to RMAD1 register.

● Peripheral function interrupts

These interrupts are generated by the peripheral functions built into the microcomputer. Peripheral func-

tion interrupts are maskable.

The types of built-in peripheral functions vary with each R8C model, as do the interrupt sources. For

details about peripheral function interrupts, refer to the R8C’s hardware manual.

5.1 Outline of Interrupt

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 249 of 263
REJ09B0001-0200

FSET I

Time

5.2 Interrupt Control
This section explains how to enable/disable maskable interrupts and set acknowledge priority. The expla-

nation here does not apply to non-maskable interrupts.

Maskable interrupts are enabled and disabled by using the I flag, IPL, and bits ILVL2 to ILVL0 in each

interrupt control register. Whether or not an interrupt is requested is indicated by the IR bit in each interrupt

control register.

For details about the memory allocation and the configuration of interrupt control registers, refer to the

R8C’s hardware manual.

5.2.1 I Flag
The I flag is used to disable/enable maskable interrupts. When the I flag is set to 1 (enabled), all

maskable interrupts are enabled; when the I flag is cleared to 0 (disabled), they are disabled.

When the I flag is changed, the altered flag status is reflected in determining whether or not to accept an

interrupt request with the following timing:

• If the flag is changed by an REIT instruction, the changed status takes effect beginning with the

 REIT instruction.

• If the flag is changed by an FCLR, FSET, POPC, or LDC instruction, the changed status takes

 effect beginning with the next instruction.

Previous
instruction

Interrupt sequenceREIT

Interrupt sequence Next instruction
Previous
instruction

Time

Figure 5.2.1 Timing with Which Changes of I Flag are Reflected in Interrupt Handling

Interrupt request generated

Interrupt request generated

5.2 Interrupt Control

When changed by REIT instruction

Determination whether or not to
accept interrupt request

Determination whether or not to
accept interrupt request

When changed by FCLR, FSET, POPC, or LDC instruction

(If I flag is changed from 0 to 1 by REIT instruction)

 (If I flag is changed from 0 to 1 by FSET instruction)

5.2.2 IR Bit
The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. The IR bit is cleared to

0 (interrupt not requested) after the interrupt request is acknowledged and the program branches to the

corresponding interrupt vector.

The IR bit can be cleared to 0 by a program. Do not set it to 1.

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 250 of 263
REJ09B0001-0200

When the IPL or the interrupt priority level of an interrupt is changed, the altered level is reflected in

interrupt handling with the following timing:

• If the IPL is changed by an REIT instruction, the new level takes effect beginning with the instruction

that is executed two clock cycles after the last clock cycle of the REIT instruction.

• If the IPL is changed by a POPC, LDC, or LDIPL instruction, the new level takes effect beginning with

the instruction that is executed three clock cycles after the last clock cycle of the instruction used.

• If the interrupt priority level of a particular interrupt is changed by an instruction such as MOV, the

 new level takes effect beginning with the instruction that is executed two or three clock cycles after the

last clock cycle of the instruction used.

5.2.3 ILVL2 to ILVL0 bis, IPL
Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 5.2.1 shows how interrupt priority levels are set. Table 5.2.2 shows interrupt enable levels in

relation to IPL.

The following lists the conditions under which an interrupt request is acknowledged:

• I flag = 1

• IR bit = 1

• Interrupt priority level > IPL

The I flag, bits ILVL2 to ILVL0, and IPL are independent of each other, and they do not affect each other.

0102

0112

1102

1112

0012

0002

Low

High

Table 5.2.2 Interrupt Priority Levels Enabled by IPLTable 5.2.1 Interrupt Priority Levels

ILVL2–ILVL0
Interrupt Priority

Level

Priority

1002

1012

IPL
 Enabled interrupt priority

levels

Interrupt levels 1 and above are enabled.

Interrupt levels 2 and above are enabled.

Interrupt levels 3 and above are enabled.

Interrupt levels 4 and above are enabled.

Interrupt levels 5 and above are enabled.

Interrupt levels 6 and above are enabled.

Interrupt levels 7 and above are enabled.

All maskable interrupts are disabled.

Level 0 (interrupt disabled)

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

5.2 Interrupt Control

0102

0112

1102

1112

0012

0002

1002

1012

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 251 of 263
REJ09B0001-0200

5.2 Interrupt Control

5.2.4 Changing Interrupt Control Registers
(1) Individual interrupt control registers can only be modified while no interrupt requests corresponding

to that register are generated. If interrupt requests managed by the interrupt control register are

likely to occur, disable interrupts before changing the contents of the interrupt control register.

(2) When modifying an interrupt control register after disabling interrupts, care must be taken when

selecting the instructions to be used.

Changing Bits Other Than IR Bit

If an interrupt request corresponding to the register is generated while executing the instruction, the IR

bit may not be set to 1 (interrupt requested), with the result that the interrupt request is ignored. To get

around this problem, use the following instructions to modify the register: AND, OR, BCLR, BSET.

Changing IR Bit

Even when the IR bit is cleared to 0 (interrupt not requested), it may not actually be cleared to 0 depend-

ing on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(3) When disabling interrupts using the I flag, refer to the following sample programs. (Refer to (2) above

regarding changing interrupt control registers in the sample programs.)

Sample programs 1 to 3 are to prevent the I flag from being set to 1 (interrupt enabled) before writing to

the interrupt control registers depending on the state of the internal bus or the instruction queue buffer.

Example 1: Use NOP instruction to prevent I flag being set to 1
 before interrupt control register is changed

INT_SWITCH1:
FCLR I ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016

NOP
NOP
FSET I ; Enable interrupts

Example 2: Use dummy read to delay FSET instruction
INT_SWITCH2:

FCLR I ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016

MOV.W MEM, R0 ; Dummy read
FSET I ; Enable interrupts

Example 3: Use POPC instruction to change I flag
INT_SWITCH3:

PUSHC FLG
FCLR I ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016

POPC FLG ; Enable interrupts

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 252 of 263
REJ09B0001-0200

5.3 Interrupt Sequence
The interrupt sequence — the operations performed from the instant an interrupt is accepted to the instant

the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the

execution of the instruction is completed and transfers control to the interrupt sequence from the next cycle.

If an interrupt occurs during execution of the SMOVB, SMOVF, SSTR, or RMPA instruction, the processor

temporarily suspends the instruction being executed and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the operations listed below. Figure 5.3.1 shows the

interrupt sequence execution time.

(1) The CPU obtains the interrupt information (the interrupt number and interrupt request level) by reading

address 0000016. Then, the IR bit corresponding to the interrupt is set to 0 (interrupt not requested

issued).

(2) The FLG register is saved as it was immediately before the start of the interrupt sequence in a tempo-

rary register1 within the CPU.

(3) The I flag, the D flag, and the U flag in the FLG register are set as follows:

• The I flag is cleared to 0 (interrupts disabled)

• The D flag is cleared to 0 (single-step interrupt disabled)

•The U flag is cleared to 0 (ISP specified)

However, the U flag status does not change when the INT instruction for software interrupt numbers 32 to

63 is executed.

(4) The contents of the temporary register1 are saved within the CPU in the stack area.

(5) The PC is saved in the stack area.

(6) The interrupt priority level of the accepted instruction is set in IPL.

(7) The first address of the interrupt routine set to the interrupt vector is set in the PC.

After the interrupt sequence is completed, the processor resumes executing instructions from the starting

address of the interrupt routine.

Note 1: This register cannot be accessed by the user.

5.3 Interrupt Sequence

 Figure 5.3.1 Interrupt Sequence Executing Time

1 2 3 4 5 6 7 8 9 1

0 11

A

d

d

r

e

s

s
0

0

0

0

01

6
U

n

d

e

f

i

n

e

d S

P

-

2

UndefinedI

n

t

e

r

r

u

p

t
i

n

f

o

r

m

a

t

i

o

n

U

n

d

e

f

i

n

e

d

1

2 13 1

4 15 1

6 1

7 1

8

C

P

U

c

l

o

c

k

A

d

d

r

e

s

s

b

u

s

D

a

t

a

b

u

s

W

R

R

D

S

P

-

1 SP-4 SP-3

S

P

-

2
c

o

n

t

e

n

t

s
SP-1

contents
S

P

-

4

c

o

n

t

e

n

t

s
SP-3

contents

V

E

C V

E

C

+

1 V

E

C

+

2

1

9 2

0

PC

V

E

C
c

o

n

t

e

n

t

s
V

E

C

+

1

c

o

n

t

e

n

t

s
V

E

C

+

2

c

o

n

t

e

n

t

s

N

o

t

e

:

U

n

d

e

f

i

n

e

d

p

a

r

t

s

d

i

f

f

e

r

a

c

c

o

r

d

i

n

g

t

o

t

h

e

s

t

a

t

e

s

o

f

t

h

e

q

u

e

u

e

b

u

f

f

e

r

.
I

f

t

h

e

q

u

e

u

e

b

u

f

f

e

r

i

s

i

n

a

s

t

a

t

e

w

h

e

r

e

a

n

i

n

s

t

r

u

c

t

i

o

n

c

a

n

b

e

a

c

c

e

p

t

e

d

,

a

r

e

a

d

c

y

c

l

e

i

s

g

e

n

e

r

a

t

e

d

.

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 253 of 263
REJ09B0001-0200

5.3.1 Interrupt Response Time
Figure 5.3.2 shows the interrupt response time. The interrupt response time is the period from when an

interrupt request is generated until the first instruction of the interrupt routine is executed. This period

consists of the time ((a) in Figure 5.3.1) from when the interrupt request is generated to when the

instruction then under way is completed and the time (20 cycles (b)) in which the interrupt sequence is

executed.

Figure 5.3.2 Interrupt Response Time

(a) 20 cycles (b)

Time

Instruction

Interrupt response time

Instruction in interrupt
routine

Interrupt sequence

Interrupt request acknowledgedInterrupt request generated

(a) Time from when interrupt request is generated to when the instruction then under execution is

completed. Time (a) varies with the instruction being executed. The DIVX instruction requires a

maximum time of 30 cycles (cycle number: no wait states, divisor is stored in a register).

(b) The address-match interrupt and the single-step interrupt are each 21 cycles.

5.3 Interrupt Sequence

Value that is set to IPL

7

Not changed

5.3.2 Changes of IPL when Interrupt Request Acknowledged
When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the

acknowledged interrupt is set in IPL.

When a software interrupt request or a special interrupt request is acknowledged, the value shown in

Table 5.3.1 is set in IPL. Table 5.3.1 shows the value of IPL when software interrupts and special

interrupt requests are acknowledged.

Table 5.3.1 Value of IPL when Software Interrupt and Special Interrupt Request Acknowledged

Interrupt Sources Without Interrupt Priority Levels

Watchdog timer, oscillation stop detection

Software, address-match, single-step

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 254 of 263
REJ09B0001-0200

The register save operations performed as part of an interrupt sequence are executed in four parts 8 bits

at a time. Figure 5.3.4 shows the operations when saving register contents.

Note 1: When the INT instruction for software interrupt numbers 32 to 63 is executed, SP is indicated by

the U flag. It is indicated by ISP in all other cases.

Figure 5.3.4 Operations when Saving Register Contents

5.3.3 Saving Register Contents
In an interrupt sequence, the contents of the FLG register and the PC are saved to the stack area.

The order in which these are saved is as follows. First, the 4 high-order bits of the PC and 4 high-order

bits (IPL) and 8 low-order bits of the FLG register, a total of 16 bits, are saved to the stack area. Next,

the 16 low-order bits of the PC are saved. Figure 5.3.3 shows the stack status before an interrupt

request is acknowledged.

If there are any other registers to be saved, use a program to save them at the beginning of the interrupt

routine. The PUSHM instruction can be used to save all registers, except SP, by a single instruction.

5.3 Interrupt Sequence

Figure 5.3.3 Stack Status Before and After an Interrupt Request is Acknowledged

[

S

P

]

[

S

P

]

–

1

[

S

P

]

–

2

[

S

P

]

–

3

[

S

P

]

–

4

[

S

P

]

–

5

A

d

d

r

e

s

s S

e

q

u

e

n

c

e

i

n

w

h

i

c

h

o

r

d

e

r

r

e

g

i

s

t

e

r

s

a

r

e

s

a

v

e

d

(

2

)

(

1

)

F

i

n

i

s

h

e

d

s

a

v

i

n

g

r

e

g

i

s

t

e

r

s

i

n

f

o

u

r

p

a

r

t

s

.

(

3

)

(

4

)P

CM

S

t

a

c

k

a

r

e

a

FLGL

PCL

S

a

v

e

d

s

e

p

a

r

a

t

e

l

y

,

8

b

i

t

s

a

t

a

t

i

m

e

F

L

G

H PCH

N

o

t

e

1

:

[

S

P

]

d

e

n

o

t

e

s

t

h

e

i

n

i

t

i

a

l

v

a

l

u

e

o

f

t

h

e

s

t

a

c

k

p

o

i

n

t

e

r

(

S

P

)

w

h

e

n

a

n

i

n

t

e

r

r

u

p

t

r

e

q

u

e

s

t

i

s

a

c

k

n

o

w

l

e

d

g

e

d

.

A

f

t

e

r

t

h

e

m

i

c

r

o

c

o

m

p

u

t

e

r

f

i

n

i

s

h

e

s

s

a

v

i

n

g

r

e

g

i

s

t

e

r

c

o

n

t

e

n

t

s

,

t

h

e

S

P

c

o

n

t

e

n

t

i

s

[

S

P

]

m

i

n

u

s

4

.

A

d

d

r

e

s

s

Content of previous stack

Stack area

[

S

P

]
S

P

v

a

l

u

e

b

e

f

o

r

e

i

n

t

e

r

r

u

p

t

r

e

q

u

e

s

t

i

s

a

c

k

n

o

w

l

e

d

g

e

d

m

m

–

1

m

–

2

m

–

3

m–4

Stack status before interrupt request is
acknowledged

Stack status after interrupt request is acknowledged

C

o

n

t

e

n

t

o

f

p

r

e

v

i

o

u

s

s

t

a

c

km+1

MSB LSB

m

m

–

1

m

–

2

m

–

3

m–4

A

d

d

r

e

s

s

F

L

GL

Content of previous stack

Stack area

F

L

G

H P

CH

[SP]
New SP value

C

o

n

t

e

n

t

o

f

p

r

e

v

i

o

u

s

s

t

a

c

km+1

MSB L

S

B

P

CL

P

CM

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 255 of 263
REJ09B0001-0200

5.4 Returning from Interrupt Routines
When the REIT instruction is executed at the end of the interrupt routine, the contents of the FLG register

and PC that have been saved to the stack area immediately preceding the interrupt sequence are automati-

cally restored. Then control returns to the routine that was under execution before the interrupt request was

acknowledged.

If any registers were saved in the interrupt routine using a program, be sure to restore them using an

instruction (e.g., the POPM instruction) before executing the REIT instruction.

5.4 Returning from Interrupt Routines

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 256 of 263
REJ09B0001-0200

5.5 Interrupt Priority
If two or more interrupt requests occur while a single instruction is being executed, the interrupt request that

has higher priority is acknowledged.

The priority level of maskable interrupts (peripheral functions) can be selected arbitrarily by setting bits

ILVL2 to ILVL0. If multiple maskable interrupts are assigned the same priority level, the priority that is set in

hardware determines which is acknowledged.

Special interrupts such as the watchdog timer interrupt have their priority levels set in hardware. Figure

5.5.1 lists the interrupt priority levels of hardware interrupts.

Software interrupts are not affected by interrupt priority. They always cause control to branch to an interrupt

routine when the relevant instruction is executed.

5.5 Interrupt Priority

Figure 5.5.1 Interrupt Priority Levels of Hardware Interrupts

Reset

Watchdog timer
Oscillation stop detection

Peripheral function

Single-step

Address match

High

Low

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 257 of 263
REJ09B0001-0200

5.6 Multiple Interrupts
The internal bit states when control has branched to an interrupt routine are as follows:

• The interrupt enable flag (I flag) is cleared to 0 (interrupts disabled).

• The interrupt request bit for the acknowledged interrupt is cleared to 0.

• The processor interrupt priority level (IPL) equals the interrupt priority level of the acknowledged interrupt.

By setting the interrupt enable flag (I flag) to 1 in the interrupt routine, interrupts can be reenabled so that an

interrupt request that has higher priority than the processor interrupt priority level (IPL) can be acknowl-

edged. Figure 5.6.1 shows how multiple interrupts are handled.

Interrupt requests that have not been acknowledged due to low interrupt priority level are kept pending.

When the IPL is restored by an REIT instruction and the interrupt priority is determined based on the IPL

contents, the pending interrupt request is acknowledged if the following condition is met:

Interrupt priority level of

pending interrupt request

Restored processor interrupt

priority level (IPL)
>

5.6 Multiple interrupts

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 258 of 263
REJ09B0001-0200

I = 0

IPL = 0

I = 1

I = 0

IPL = 3

I = 1

I = 0

IPL = 5

REIT

I = 1

IPL = 3

REIT

I = 1

IPL = 0

I = 0

IPL = 2

REIT

I = 1

IPL = 0

Interrupt priority level = 3

Interrupt priority level = 5

Interrupt 3

Interrupt priority level = 2

Not acknowledged because

of low interrupt priority

Main routine instructions

are not executed.

Interrupt request
generated Nesting

 Main routineReset
Time

Interrupt 1

Interrupt 1

Interrupt 2

Figure 5.6.1 Multiple Interrupts

: Automatically executed.
: Set in software.

 I : Interrupt enable flag
IPL : Processor interrupt priority level

REIT

Interrupt 3

Interrupt 3

REIT

Interrupt 2

Multiple interrupts

5.6 Multiple interrupts

REIT

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 259 of 263
REJ09B0001-0200

5.7 Notes on Interrupts

5.7 Note on Interrupts
5.7.1 Reading Address 0000016

Avoid reading address 0000016 in a program. When a maskable interrupt request is accepted, the CPU

reads interrupt information (interrupt number and interrupt request priority level) from address 0000016

during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to 0.

If address 0000016 is read in a program, the IR bit for the interrupt which has the highest priority among

the enabled interrupts is set to 0. This may cause the interrupt to be canceled or an unexpected interrupt

to be generated.

5.7.2 SP Setting
Set a value in SP before accepting an interrupt. SP is set to 000016 after reset. Therefore, if an interrupt

is accepted before setting a value in SP, the program may go out of control.

5.7.3 Changing Interrupt Control Register
(1) Individual interrupt control registers can only be modified while no interrupt requests corresponding

to that register are generated. If interrupt requests managed by an interrupt control register are likely

to occur, disable interrupts before changing the contents of the interrupt control register.

(2) When modifying an interrupt control register after disabling interrupts, care must be taken when

selecting the instructions to be used.

Changing Bits Other Than IR Bit

If an interrupt request corresponding to the register is generated while executing the instruction, the IR

bit may not be set to 1 (interrupt requested), with the result that the interrupt request is ignored. To get

around this problem, use the following instructions to modify the register: AND, OR, BCLR, BSET.

When Changing IR Bit

Even when the IR bit is cleared to 0 (interrupt not requested), it may not actually be cleared to 0 depend-

ing on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(3) When disabling interrupts using the I flag, refer to the following sample programs. (Refer to (2) above

regarding changing interrupt control registers in the sample programs.)

Sample programs 1 to 3 are to prevent the I flag from being set to 1 (interrupt enabled) before writing to

the interrupt control registers depending on the state of the internal bus or the instruction queue buffer.

Chapter 5 Interrupts

Rev.2.00 Oct 17, 2005 page 260 of 263
REJ09B0001-0200

Example 1: Use NOP instruction to prevent I flag being set to 1
 before interrupt control register is changed

INT_SWITCH1:
FCLR I ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016

NOP
NOP
FSET I ; Enable interrupts

Example 2: Use dummy read to delay FSET instruction
INT_SWITCH2:

FCLR I ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016

MOV.W MEM, R0 ; Dummy read
FSET I ; Enable interrupts

Example 3: Use POPC instruction to change I flag
INT_SWITCH3:

PUSHC FLG
FCLR I ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016

POPC FLG ; Enable interrupts

Chapter 6

Calculating the Number of Cycles

6.1 Instruction Queue Buffer

Chapter 6 Calculating the Number of Cycles
6.1 Instruction Queue Buffer

Rev.2.00 Oct 17, 2005 page 262 of 263
REJ09B0001-0200

6.1 Instruction Queue Buffer
R8C/Tiny Series microcomputers have 4-stage (4-byte) instruction queue buffers. If the instruction queue

buffer has free space when the CPU can use the bus, instruction codes are taken into the instruction queue

buffer. This is referred to as “prefetching”. The CPU reads (fetches) the instruction codes from the instruc-

tion queue buffer as it executes a program.

The explanation of the number of cycles in chapter 4 assumes that all the necessary instruction codes are

placed in the instruction queue buffer, and that 8-bit data is read or written to the memory without software

wait states. In the following cases, more cycles may be needed than the number of cycles indicated in this

manual:

• If not all of the instruction codes needed by the CPU have been placed in the instruction queue buffer.

Instruction codes are read in until all of the instruction codes required for program execution are avail-

able. Furthermore, the number of read cycles increases in the following case:

(1) The number of read cycles increases to match the number of wait cycles incurred when reading

instruction codes from an area in which software wait cycles exist.

• When reading or writing data to an area in which software wait cycles exist.

The number of read or write cycles increases to match the number of wait cycles incurred.

• When reading or writing 16-bit data from/to the SFR or the internal memory.

The memory is accessed twice to read or write one 16-bit data item. Therefore, the number of read or

write cycles increases by one for each 16-bit data item read or written.

Note that if prefetch and data access occur at the same time, data access has priority. Also, if more than

three bytes of instruction codes exist in the instruction queue buffer, the CPU assumes there is no free

space and, therefore, does not prefetch instruction code.

Figure 6.1.1 shows an example of starting a read instruction (without software wait).

Chapter 6 Calculating the Number of Cycles
6.1 Instruction Queue Buffer

Rev.2.00 Oct 17, 2005 page 263 of 263
REJ09B0001-0200

Figure 6.1.1 Starting a Read Instruction (without Software Wait States)

S

a

m

p

l

e

p

r

o

g

r

a

m

s
A

d

d

r

e

s

s C

o

d

e I

n

s

t

r

u

c

t

i

o

n
0

C

0

6

2 6

4 J

M

P T

E

S

T

_

1

1
0

C

0

6

3 0

4 N

O

P
0

C

0

6

4 0

4 N

O

P
0

C

0

6

5 0

4 N

O

P
0

C

0

6

6 0

4 N

O

P
0

C

0

6

7 0

4 N

O

P
0

C

0

6

8 T

E

S

T

_

1

1

:
0

C

0

6

8 7

3

F

1

0

0

4

0 M

O

V

.

W

 0

4

0

0

0

h

,

R

1
0

C

0

6

C 6

4 J

M

P T

E

S

T

_

1

2
0

C

0

6

D 0

4 N

O

P
0

C

0

6

E 0

4 N

O

P
0

C

0

6

F 0

4 N

O

P
0

C

0

7

0 0

4 N

O

P
0

C

0

7

1 0

4 N

O

P
0

C

0

7

2 T

E

S

T

_

1

2

:

6

4 7

3

F

1 6

4

JMP TEST_11 MOV.W JMP TEST_12

0

4 04 7

3 7

3 64 0

40

4 0

4

0

4 04 0

4 F

1 0

4 0

4 04

040

0040

4 0

4 0

40

4

7

373

F

F

P P P

0

C

0

6

5 0

C

0

6

8 0

C

0

6

B

7

3 F

1

0

C

0

6

9

0

0

0040

04

04

04

0

C

0

6

A

DR

64

0

4

PP

4

0 0

4

0

0

40

64

6

4

04

D

R

0

C

0

6

C

64

73

F

1

0

0

4

0

64

0

0

4

0

0

4

73

FF

0

0

0

C

0

6

D 0400104000 0C06F0

C

0

6

E 0

C

0

7

30C072 0

C

0

7

4

AA AA 0

4

P P P P P P

04 73 F

F 0

0

Content at jump address is prefetched
at the same time the instruction queue
buffer is cleared.

F

e

t

c

h

c

o

d

e

I

n

s

t

r

u

c

t

i

o

n

s

u

n

d

e

r

e

x

e

c

u

t

i

o

n

I

n

s

t

r

u

c

t

i

o

n

q

u

e

u

e

b

u

f

f

e

r

WR

A

d

d

r

e

s

s

b

u

s

D

a

t

a

b

u

s

R

D

B

C

L

K

C

o

n

t

e

n

t

a

t

j

u

m

p

a

d

d

r

e

s

s

i

s

p

r

e

f

e

t

c

h

e

d

a

t

t

h

e

s

a

m

e

t

i

m

e

t

h

e

i

n

s

t

r

u

c

t

i

o

n

q

u

e

u

e

b

u

f

f

e

r

i

s

c

l

e

a

r

e

d

.

J

u

m

p

a

d

d

r

e

s

s Low-order address from

which to read data
H

i

g

h

-

o

r

d

e

r

a

d

d

r

e

s

s

f

r

o

m

w

h

i

c

h

t

o

r

e

a

d

d

a

t

a

Content at address 400116C

o

n

t

e

n

t

a

t

a

d

d

r

e

s

s

4

0

0

01

6

P

:

I

n

d

i

c

a

t

e

s

a

p

r

e

f

e

t

c

h

(

r

e

a

d

i

n

g

f

r

o

m

m

e

m

o

r

y

i

n

t

o

t

h

e

i

n

s

t

r

u

c

t

i

o

n

q

u

e

u

e

b

u

f

f

e

r

)

.

:

I

n

d

i

c

a

t

e

s

t

h

e

l

o

c

a

t

i

o

n

s

o

f

t

h

e

i

n

s

t

r

u

c

t

i

o

n

q

u

e

u

e

b

u

f

f

e

r

t

h

a

t

a

r

e

c

l

e

a

r

.

D

R

:

I

n

d

i

c

a

t

e

s

a

d

a

t

a

r

e

a

d

.

D

W

:

I

n

d

i

c

a

t

e

s

a

d

a

t

a

w

r

i

t

e

.

Fetch F

e

t

c

h F

e

t

c

h

Q&A-1

 Q & A
Information in Q&A form to help the user make the most of the R8C/Tiny Series is provided in this section.

In general, one question and its corresponding answer are given on one page; the upper section is used for

the question, the lower for the answer.

Functions closely connected with the issue being discussed are indicated in the upper-right corner.

Q&A-2

CPU

Q

A

SB and FB function in the same manner, so you can use them as you like when in programming in

assembly language. If you write a program in C, use FB as a stack frame base register.

How do I distinguish between the static base register (SB) and the frame base register (FB)?

Q&A-3

Interrupt

Q

A

Yes. But there is a possibility of program runaway if an interrupt request occurs while changing the

contents of INTB. It is therefore not recommended to frequently change the contents of INTB while

a program is being executed.

Is it possible to change the contents of the interrupt table register (INTB) while a program is being

executed?

Q&A-4

CPU

Q

A

What is the difference between the user stack pointer (USP) and the interrupt stack pointer (ISP)?

What are their roles?

USP is used when using the OS. When several tasks are run, the OS secures stack areas to save

the contents of registers for individual tasks. Also, stack areas have to be secured, task by task, to

be used for handling interrupts that occur while tasks are being executed. If you use USP and ISP

in such an instance, the stack for interrupts can be shared by these tasks. This allows efficient use

of stack areas.

Q&A-5

CPU

Q

A

What happens to the instruction code if I use a bit instruction in absolute addressing ?

This explanation takes BSET bit, base:16 as an example.

This instruction is a 4-byte instruction. The 2 higher-order bytes of the instruction code indicate the

operation code, and the 2 lower-order bytes make up the addressing mode to expresse bit,base:16.

The relation between the 2 lower-order bytes and bit,base:16 is as follows:

2 lower-order bytes = base:16 8 + bit

For example, in the case of BSET 2,0AH (setting bit 2 of address 000A16 to 1), the 2 lower-order

bytes become A 8 + 2 = 52H.

In the case of BSET 18,8H (setting the 18th bit from bit 0 of address 000816 to 1), the 2 lower-order

bytes become 8 8 + 18 = 52H, which is equivalent to BSET 2,AH.

The maximum value of base:16 8 + bit, FFFFH, indicates bit 7 of address 1FFF16. This is the

maximum bit you can specify when using a bit instruction in absolute addressing.

Q&A-6

CPU

Q

A

What is the difference between the DIV instruction and the DIVX instruction?

The DIV instruction and the DIVX instruction are both instructions for signed division, but the sign of

the remainder is different.

The sign of the remainder left after the DIV instruction is the same as that of the dividend, but the

sign of the remainder of the DIVX instruction is the same as that of the divisor.

In general, the following relation among quotient, divisor, dividend, and remainder holds:

dividend = divisor quotient + remainder

Since the sign of the remainder is different between these instructions, the quotient obtained either

by dividing a positive integer by a negative integer or by dividing a negative integer by a positive

integer using the DIV instruction is different from that obtained using the DIVX instruction.

For example, dividing 10 by –3 using the DIV instruction yields –3 and leaves a remainder of +1,

while doing the same using the DIVX instruction yields –4 and leaves a remainder of –2.

Dividing –10 by +3 using the DIV instruction yields –3 and leaves a remainder of –1, while doing the

same using the DIVX instruction yields –4 and leaves a remainder of +2.

Glossary-1

Glossary
Technical terms used in this software manual are explained in this section. They apply to in this manual

only.

Glossary-2

borrow To move a digit to the next lower position. carry

carry To move a digit to the next higher position. borrow

context Registers that a program uses.

decimal addition Addition using decimal values.

displacement The difference between the initial position and a later

position.

effective address The address actually used after modification.

extension area For the R8C/Tiny Series, the area

from 1000016 through FFFFF16.

LSB Abbreviation for Least Significant Bit MSB

The bit occupying the lowest-order position in a data item.

Term Meaning Related word

Glossary-3

Term Meaning Related word

macro instruction

MSB

operand

operation

operation code

overflow

pack

SFR area

An instruction, written in a source language, to be

expressed in a number of machine instructions when

compiled into a machine code program.

Abbreviation for Most Significant Bit.

The bit occupying the highest-order position in a

data item.

A part of instruction code that indicates the object of

an operation.

A generic term for move, comparison, bit processing,

shift, rotation, arithmetic, logic, and branch.

A part of an instruction code that indicates what sort

of operation the instruction performs.

To exceed the maximum expressible value as a result

of an operation.

To join data items.

Used to mean to form two 4-bit data items into one 8-

bit data item, to form two 8-bit data items into one 16-

bit data item, etc.

Abbreviation for Special Function Register area. An

area in which control bits for the on-chip peripheral

circuits of the microcomputer and control registers are

located.

LSB

operation code

operand

unpack

Glossary-4

Term Meaning Related word

shift out

sign bit

sign extension

stack frame

string

unpack

zero extension

To move the content of a register either to the right or

left until fully overflowed.

A bit that indicates either a positive or a negative (the

highest-order bit).

To extend a data length in which the higher-order bits

to be extended are made to have the same sign as the

sign bit. For example, sign-extending FF16 results in

FFFF16, and sign-extending 0F16 results in 000F16.

An automatic conversion area used by C language

functions.

A sequence of characters.

To restore combined items or packed information to

its original form. Used to mean to separate 8-bit

information into two parts — 4 lower-order bits and 4

higher-order bits, to separate 16-bit information into

two parts — 8 lower-order bits and 8 higher-order bits,

and the like.

To extend a data length by turning higher-order bits to

0's. For example, zero-extending FF16 to 16 bits

results in 00FF16.

pack

Symbol-1

Table of Symbols
The symbols used in this software manual are explained in the following table. They apply to this manual

only.

Symbol-2

Symbol Meaning

Transposition from the right side to the left side

Interchange between the right side and the left side

Addition

Subtraction

Multiplication

Division

Logical conjunction

Logical disjunction

Exclusive disjunction

Logical negation

dsp16 16-bit displacement

dsp20 20-bit displacement

dsp8 8-bit displacement

EVA() An effective address indicated by what is enclosed in ()

EXT() Sign extension

(H) Higher-order byte of a register or memory

H4: 4 higher-order bits of an 8-bit register or 8-bit memory

Absolute value

(L) Lower-order byte of a register or memory

L4: 4 lower-order bits of an 8-bit register or 8-bit memory

LSB Least Significant Bit

M() Content of memory indicated by what is enclosed in ()

(M) Middle-order byte of a register or memory

MSB Most Significant Bit

PCH Higher-order byte of the program counter

PCML Middle-order byte and lower-order byte of the program counter

FLGH 4 higher-order bits of the flag register

FLGL 8 lower-order bits of the flag register

<

<

 A

Index-1

Index
A

A0 and A1 ••• 5

A1A0 ••• 5

Address register ••• 5

Address space ••• 3

Addressing mode ••• 22

B

B flag ••• 6

Byte (8-bit) data ••• 16

C

C flag ••• 6

Carry flag ••• 6

Cycles ••• 138

D

D flag ••• 6

Data arrangement in memory ••• 17

Data arrangement in Register ••• 16

Data register ••• 4

Data type ••• 10

Debug flag ••• 6

Description example ••• 37

dest ••• 18

F

FB ••• 5

Fixed vector table ••• 19

Flag change ••• 37

Flag register ••• 5

FLG ••• 5

Frame base register ••• 5

Function ••• 37

I

Interrupt table register ••• 5

I flag ••• 6

Instruction code ••• 138

Instruction Format ••• 18

Instruction format specifier ••• 35

INTB ••• 5

Integer ••• 10

Interrupt enable flag ••• 6

Interrupt stack pointer ••• 5

Interrupt vector table ••• 19

IPL ••• 7

ISP ••• 5

L

Long word (32-bit) data ••• 16

M

Maskable interrupt ••• 246

Memory bit ••• 12

Mnemonic ••• 35, 38

N

Nibble (4-bit) data ••• 16

Nonmaskable interrupt ••• 246

O

O flag ••• 6

Operand ••• 35, 38

Index-2

Operation ••• 37

Overflow flag ••• 6

P

PC ••• 5

Processor interrupt priority level ••• 7

Program counter ••• 5

R

R0, R1, R2, and R3 ••• 4

R0H, R1H ••• 4

R0L, R1L ••• 4

R2R0 ••• 4

R3R1 ••• 4

Register bank ••• 8

Register bank select flag ••• 6

Register bit ••• 12

Related instruction ••• 37

Reset ••• 9

S

S flag ••• 6

SB ••• 5

Selectable src / dest (label) ••• 37

Sign flag ••• 6

Size specifier ••• 35

Software interrupt number ••• 20

src ••• 18

Stack pointer ••• 5

Stack pointer select flag ••• 6

Static base register ••• 5

String ••• 15

Syntax ••• 35, 38

U

U flag ••• 6

User stack pointer ••• 5

USP ••• 5

V

Variable vector table ••• 20

W

Word (16-bit) data ••• 16

Z

Z flag ••• 6

Zero flag ••• 6

REVISION HISTORY

Rev. Date Description

Page Summary

R8C/Tiny Series Software Manual

1.00 Jun 19, 2003 – First edition issued

2.00 Oct 17, 2005 All pages Featuring improved English
2 “1.1.2 Speed Performance” revised

R8C/Tiny Series SOFTWARE MANUAL

Publication Data : Rev.1.00 Jun 19, 2003
Rev.2.00 Oct 17, 2005

Published by : Sales Strategic Planning Div.
Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

R8C/Tiny Series

REJ09B0001-0200Z

Software Manual

	Using This Manual
	Table of Contents
	Quick Reference in Alphabetic Order
	Quick Reference by Function
	Quick Reference by Addressing Mode (General Instruction Addressing)
	Quick Reference by Addressing Mode (Special Instruction Addressing)
	Quick Reference by Addressing Mode (Bit Instruction Addressing)
	Section 1 Overview
	1.1 Features of R8C/Tiny Series
	1.2 Address Space
	1.3 Register Configuration
	1.4 Flag Register (FLG)
	1.5 Register Banks
	1.6 Internal State after Reset is Cleared
	1.7 Data Types
	1.8 Data Arrangement
	1.9 Instruction Formats
	1.10 Vector Tables

	Section 2 Addressing Modes
	2.1 Addressing Modes
	2.2 Guide to This Section
	2.3 General Instruction Addressing
	2.4 Special Instruction Addressing
	2.5 Bit Instruction Addressing

	Section 3 Functions
	3.1 Guide to This Section

	Section 4 Instruction Codes/Number of Cycles
	4.1 Guide to This Section

	Section 5 Interrupts
	5.1 Outline of Interrupts
	5.2 Interrupt Control
	5.3 Interrupt Sequence
	5.4 Return from Interrupt Routines
	5.5 Interrupt Priority
	5.6 Multiple Interrupts
	5.7 Note on Interrupts

	Section 6 Calculating Number of Cycles
	6.1 Instruction Queue Buffer

	Q & A
	Glossary
	Table of symbols
	Index
	REVISION HISTORY

