ISL8024DEMO2Z
A Power Module for Xilinx RFSoC Applications
Demonstration Board

Industrial Analog and Power
1. Overview
The ISL8024DEMO2Z is a low-noise power module to power the high-speed data converters on Xilinx RFSoCs. It is used as a power module that plugs into an application board.

1.1 Key Features
• Three input voltage sources: 5.0V, 3.3V, and 1.8V
• Five output voltages: ADC_AVCC, ADC_AVCCAUX, DAC_AVCC, DAC_AVTT, and DAC_AVCCAUX
• PMBus interface that can digitally control the voltage set-point and margining of the DAC_AVTT rail
• All rails have differential point-of-load voltage sensing
• Additional low-pass filter to reduce output voltage ripple related to the switching regulator while maintaining high efficiency

1.2 Specifications

<table>
<thead>
<tr>
<th>Rail</th>
<th>Typical Voltage (V)</th>
<th>Voltage Set-Point Accuracy (%)</th>
<th>Adjustment Range (V)</th>
<th>Maximum Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC_AVCC</td>
<td>0.925</td>
<td>±1</td>
<td>0.70 to 1.16</td>
<td>2.0</td>
</tr>
<tr>
<td>ADC_AVCCAUX</td>
<td>1.8</td>
<td>±1</td>
<td>1.35 to 2.25</td>
<td>2.0</td>
</tr>
<tr>
<td>DAC_AVCC</td>
<td>0.925</td>
<td>±1</td>
<td>0.70 to 1.16</td>
<td>3.5</td>
</tr>
<tr>
<td>DAC_AVCCAUX</td>
<td>1.8</td>
<td>±1</td>
<td>1.35 to 2.25</td>
<td>2.0</td>
</tr>
<tr>
<td>DAC_AVTT</td>
<td>2.5 and 3.0</td>
<td>±1</td>
<td>1.88 to 3.75</td>
<td>2.0</td>
</tr>
</tbody>
</table>

1.3 Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISL8024DEMO2Z</td>
<td>ISL8024 demonstration board</td>
</tr>
</tbody>
</table>

1.4 Related Literature
For a full list of related documents, visit our website:
• [ISL8024](#), [ISL28191](#) device pages
2. Functional Description

Overall system power blocks are shown in Figure 1. The 1.8V and 2.5V output voltage is derived from 5V, and the 0.925V rails are derived from 3.3V. Each rail is followed by an additional LC filter to reduce output voltage ripple.

![Figure 1. Simplified Block Diagram of the ISL8024DEMO2Z Power Module Board](image)

Based on the specification, the ISL8024 is used as the DC/DC converter solution and as the main component. The ISL8024 has ±0.8% VFB tolerance across the temperature range of -40°C to +85°C. It has a programmable switching frequency up to 2MHz to reduce the size of the LC filters. To further reduce the output voltage ripple, a 2nd stage LC filter is used after the LC filter for the buck regulators. To reduce the conductor trace voltage drop related to the board connectors and to achieve the best load point voltage regulation, a remote sense scheme is used with the ISL28191 as a differential amplifier. Reduce the EMI to the upstream converters, a dedicated LC filter is also used as the input filter for each rail. An example power block and its related schematics is shown in Figure 2, demonstrating the device components.

![Figure 2. Single Rail Power Block](image)
Low-pass filter design requires a balance between phase loss and V_{OUT} ripple attenuation. The LC filter used in Figure 2 has about 40dB noise attenuation at 2MHz and a phase drop of 20° at 100kHz as shown in Figure 3. The compensation design of the ISL8024 regulator has been tuned to accommodate this phase loss.

2. Functional Description

![Figure 3. 2nd Stage LC Filter Characteristics](image)

2.1 Quick Start Guide

The ISL8024DEMO2Z board can be powered on or off with external connectors, or plugged into Xilinx application boards.
3. PCB Layout Guidelines

3.1 ISL8024DEMO2Z Demonstration Board

Figure 4. ISL8024DEMO2Z Demonstration Board (Bottom)

Figure 5. ISL8024DEMO2Z Demonstration Board (Top)
3.2 ISL8024DEMO2Z Circuit Schematic

Figure 6. ISL8024DEMO2Z Schematics, Page 1
Figure 7. ISL8024DEMO2Z Schematics, Page 2
Figure 8. ISL8024DEMO2Z Schematics, Page 3
Figure 9. ISL8024DEMO2Z Schematics, Page 4
3.3 Bill of Materials

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference Designator</th>
<th>Description</th>
<th>PCB Footprint</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>C1, C4, C5, C12, C13, C27, C30, C34, C38, C50, C53, C54, C62, C64, C66, C67, C79, C80, C87, C88, C100, C103, C104, C110</td>
<td>22µF</td>
<td>SMC0805, X5R, 10V</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C2, C7, C11, C28, C32, C36, C51, C57, C60, C77, C82, C85, C101, C105, C109, C126</td>
<td>1µF</td>
<td>SMC0603, X5R, 10V</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>C3, C19, C25, C29, C43, C48, C52, C68, C69, C74, C78, C93, C98, C102, C115, C120, C122, C123, C124, C125, C26, C49, C75, C99, DNP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C6, C10, C31, C55, C56, C81, C108</td>
<td>10µF</td>
<td>SMC0805, X5R, 10V</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C8, C14, C18, C33, C37, C58, C61, C83, C86, C106, C111</td>
<td>0.1µF</td>
<td>SMC0603, X7R, 10V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C9, C35, C59, C84, C107</td>
<td>180pF</td>
<td>SMC0402, COG, 10V</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C15, C16, C40, C63, C65, C90, C112</td>
<td>47µF</td>
<td>SMC1206, X5R, 10V</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C17, C41, C113, C91</td>
<td>10PF</td>
<td>SMC0402, COG, 10V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C21, C70</td>
<td>10nF</td>
<td>SMC0402, X7R, 10V</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C42, C67, C92, C114, C117, C118, C119</td>
<td>100nF</td>
<td>SMC0402, X5R, 10V</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C22, C23, C24, C45, C46, C47, C71, C72, C73, C95, C96, C97, C66, DNP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C121</td>
<td>4.7µF</td>
<td>SMC0603, X5R, 10V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C44, C94</td>
<td>2.7nF</td>
<td>SMC0402, X7R, 10V</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C116</td>
<td>1.8nF</td>
<td>SMC0402, X7R, 10V</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C39</td>
<td>DNP</td>
<td>SMC0805</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>R3, R6, R26, R28, R31, R47, R52, R56, R76, R78, R82, R103, R106</td>
<td>0</td>
<td>SMR0402</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>CON70A</td>
<td>ERM8_035_08_LDV_K_TR ERM8_036_08_LDV_K_TR</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J2, J3</td>
<td>CON10A</td>
<td>IPBS-105-01-T-D IPBS-105-01-T-D</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>J4</td>
<td>CON8A</td>
<td>Jumper8 5-146256-4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>L4, L5, L12, L15, L7, L10, L14, L17</td>
<td>50nH</td>
<td>L805 74479978105</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L2, L11</td>
<td>0Ω</td>
<td>SMR0805</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L3, L6, L9, L13</td>
<td>680nH</td>
<td>IND_WE743335XXXX 744383560068</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L1, L8</td>
<td>110nH</td>
<td>WE7447997XXX 74479899111</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>L16</td>
<td>1µH</td>
<td>IND_WE743335XXXX 74438356010</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>R1, R8, R9, R10, R23, R24, R27, R33, R34, R48, R50, R51, R58, R59, R61, R73, R74, R77, R80, R84, R85, R96, R102, R108, R109, R71, R75, R72, R98, R100</td>
<td>DNP</td>
<td>SMR0402</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R2, R79</td>
<td>97.6k</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R4, R5, R30, R54, R55, R81, R105</td>
<td>100mΩ</td>
<td>SMR0603, 1% RL0816S-R10-F</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R7, R32, R83, R107</td>
<td>24.9k</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R11, R17, R35, R41, R60, R67, R86, R92, R110, R116</td>
<td>100</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>R12, R13, R15, R18, R36, R37, R38, R39, R42, R62, R64, R65, R68, R87, R88, R89, R90, R93, R101, R111, R112, R114</td>
<td>2k</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R14, R63</td>
<td>536</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Board Layout

![Figure 10. Top Layer](image.png)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference Designator</th>
<th>Description</th>
<th>PCB Footprint</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R57</td>
<td>32.4k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R16, R40, R66, R97, R115, R91</td>
<td></td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R98</td>
<td>1k</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R29</td>
<td>133k</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R20, R44, R69, R70, R95, R19, R43, R21, R25, R45, R46, R49, R94</td>
<td></td>
<td>DNP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R22, R117</td>
<td>DNP</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R53, R104</td>
<td>110k</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R113</td>
<td>3.09k</td>
<td>SMR0402, 1%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>U1, U4, U7, U10, U13</td>
<td></td>
<td>QFN16_118X118_197_EP</td>
<td>ISL8024IRTAJZ</td>
</tr>
<tr>
<td>5</td>
<td>U2, U5, U8, U11, U14</td>
<td></td>
<td>SOT23-6</td>
<td>ISL28191FHZ</td>
</tr>
<tr>
<td>1</td>
<td>U15</td>
<td></td>
<td>QFN24_157X157_197_EP</td>
<td>ISL28023FR12Z</td>
</tr>
<tr>
<td>3</td>
<td>U3, U6, U9, U12</td>
<td>DNP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 11. Bottom Layer
4. Typical Performance Curves

Efficiency was tested on these boards.

Figure 12. ADC_AVCC Rail, Peak Efficiency = 84%

Figure 13. DAC_AVCC Rail, Peak Efficiency = 85%

Figure 14. ADC_ACCAUX Rail, Peak Efficiency = 90%

Figure 15. DAC_AVCCAUX Rail, Peak Efficiency = 90%

Figure 16. DAC_AVTT Rail, Peak Efficiency = 92%
5. Summary

The ISL8024DEMO2Z demonstration board integrates five output voltage rails into a high-density plug-in power module. It offers a very low output voltage ripple with dual LC filters. It has very tight load-point voltage regulation with remote voltage sense to compensate for board copper loss and interconnection voltage drop. Digital programmability is also available as an option. LC filters at each input rail alleviate the EMI interactions between different rails.
6. Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Mar 5, 2019</td>
<td>The Typical Performance Curves heading was modified: “output voltage ripple” was deleted. Typical Performance Curves 13, 15, 17, 19, and 21 were deleted, and the remaining figures were renumbered.</td>
</tr>
<tr>
<td>0.00</td>
<td>Oct 10, 2018</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.