LENESAS

Jas

7
<
W)
S
-
)

RX72N Group

Renesas Starter Kit+ for RX72N
Smart Configurator Tutorial Manual
For e? studio

W
N

RENESAS 32-Bit MCU
RX Family / RX700 Series

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWww.renesas.com Rev. 1.00 Nov 2019

Notice

1.

10.

11.
12.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:

www.renesas.com

Www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be
touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in
a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level
at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an 1/0O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.
Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced
with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V. (Max.)
and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level
is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vis (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of
internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Disclaimer

By using this Renesas Starter Kit+ (RSK+), the user accepts the following terms:

The RSK+ is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK+ is
assumed by the User. The RSK+ is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK+. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK+,
even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK+ product:

This Renesas Starter Kit+ is only intended for use in a laboratory environment under ambient temperature and
humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use
outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection
requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 10m of the product when in use.
e The useris advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit+ does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Smart Configurator for RX
together with the e? studio IDE to create a working project for the RSK+ platform. It is intended for users
designing sample code on the RSK+ platform, using the many different incorporated peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into e? studio, but does not
intend to be a complete guide to software development on the RSK+ platform. Further details regarding
operating the RX72N microcontroller may be found in ‘RX72N Group User’s Manual: Hardware’ and within the
provided sample code. The setup procedure for the RSK+ Web installer is described in the Quick Start Guide.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

In this manual, the display may differ slightly from screen shots. There is no problem in reading this manual.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX72N Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User’s Manual Describes the technical details of the RSK+ Renesas Starter Kit+ for R20UT4443EG
hardware. RX72N User’s Manual
Tutorial Manual Provides a guide to setting up RSK+ environment, Renesas Starter Kit+ for R20UT4440EG
running sample code and debugging programs. RX72N Tutorial Manual
Quick Start Guide Provides simple instructions to setup the RSK+ and | Renesas Starter Kit+ for R20UT4441EG

run the first sample. RX72N Quick Start Guide
Smart Configurator Provides a guide to code generation and importing Renesas Starter Kit+ for R20UT4442EG
Tutorial into the e? studio IDE. RX72N Smart Configurator
Tutorial Manual
Schematics Full detail circuit schematics of the RSK+. Renesas Starter Kit+ for R20UT4435EG
RX72N Schematics
Hardware Manual Provides technical details of the RX72N RX72N Group User’s RO1UH0824EJ
microcontroller. Manual: Hardware

2. List of Abbreviations and Acronyms

Abbreviation

Full Form

ADC

Analog-to-Digital Converter

API Application Programming Interface

bps bits per second

CMT Compare Match Timer

COM COMmunications port referring to PC serial port

CPU Central Processing Unit

E1/E2 Lite Renesas On-chip Debugging Emulator

GUI Graphical User Interface

IDE Integrated Development Environment

IRQ Interrupt Request

LCD Liquid Crystal Display

LED Light Emitting Diode

LSB Least Significant Bit

LVD Low Voltage Detect

MCU Micro-controller Unit

MSB Most Significant Bit

PC Personal Computer

PLL Phase-locked Loop

Prmod™ This is a Digilent Pmod™ Compatible connector. Pmod™ is registered to Digilent Inc.
Digilent-Pmod_Interface Specification

PSU Power Supply Unit

RAM Random Access Memory

ROM Read Only Memory

RSK+ Renesas Starter Kit+

RTC Real Time Clock

SCI Serial Communications Interface

SPI Serial Peripheral Interface

TFT Thin Film Transistor

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WDT Watchdog Timer

All trademarks and registered trademarks are the property of their respective owners.

https://reference.digilentinc.com/reference/pmod/specification?redirect=1

Table of Contents

IO AV =T V= PP 8
1.1 0o o T RSO 8
22 Y- 1 18] =SSR 8
12 | 11 'o T 13 o () o U 9
3. Project Creation With €2 StUAIO............ccueiiuiiiiicciicee e 10
1 20t B [o1 1o o [V o] o IR PP POTPPPPPPP 10
3.2 Creating the PrOJECEooi ettt e et e et e e e et e e e e bt e e e nnae e e e ente e e e ennees 10
4. Smart Configurator Using the €2 StUdIOccoueeiiiiie e 13
4.1 110 T [T 4o) o SRR 13
4.2 Project Configuration using Smart Configuratorcoooiiiii i 14
N I o T- T = T Y= T o R =1 o] o1 =To I o= o 1= TR PRSPPI 15
4.3.1 Board configuration PAgEeeii i e 15
4.4 The ‘CIOCKS’ tabbed PAgEooiiiiiiii e e s 16
441 (@] oTed [l eToTal i e [U L= 11 T0] o PRSP 16
4.5 The ‘Components’ tabbed Pageo e e 17
451 Add a software component into the Project...........ceeiiiiiiiiiie e 17
45.2 (070] gl oT= LIV F= (o o T T 01T S EERR 18
45.3 [0 (=5 U] o1 o] o] (o =Y SRR 22
454 0 SRS 24
45.5 SCI/SCIF ASYNChroN0OUS MOGEo.eiiiiiiiiiie e e 28
45.6 SPI Clock SYNChronOUS MOGEco.uiiiiiiiiiii e 31
457 Single SCan MOAE ST2AD et a e e e e s e e e e e e e e e e e e e e aaaaaraes 34
4.6 The 'PiNS’ tabbed PAgecoooiiiiiiie e 37
4.6.1 Change pin assignment of a software COMPONENt............coiiiiiiiiiiiie e 37
4.7 BUIldING the PrOJECLot e e e bt e e et e e s e bb e e e eanes 40
5. User Code INtegration.... ..o 41
LTt B o o 1= T ot Ao Y=Y] o TS RRP 41
Lo W 01 Bl @7 o (-3 1] (=T =1 To] o IO REPR 42
5.2.1 ST I 0o o [SRR 43
522 (O 1Y I 07 oo = PRSP 44
5.3 Additional INCIUAE PANSueiiiii et e e e et s tetaessssstssssssnsssnsssnsnsnnnnnnnnns 45
L AV V1 (o] T @7 To =N [(=T = 1T0] o USSP 46
541 a1 (=5 U]) G o Yo [SR 46
5.4.2 De-bOUNCE TIMEE COUEoiiiiiiieeiitiiie ettt ettt ettt e e ettt e e e sttt e e e sbe e e e e snteeeeeanbeeeesanreeeeanns 49
54.3 Main SWitCh @nd ADC COGE......cciiuiiiieiiiiie ettt et e e et e e e st e e e e steeeessnteeeeeanseeeeaans 50
5.5 Debug Code INtEgration..........cooi i e 55
5.6 UART COde INTEGration.........eiiiiiiiiieee ettt s e e e ebee e e e ennes 55
5.6.1 T 0 107 0o [SRR 55
5.6.2 MAIN UART COUE ...ttt ettt e e e e e st e et e e e e e s e bbb e e et e e e e e s s nnnreeeeeaeeas 56
I A I 1D @7 o [[o1 (Yo r= 111] I PSP UP PSP 59
6. Debugging the Project ... 61

7. AdditioNal INfOMMEALION ..o e e 63

LENESAS

1. Overview

1.1 Purpose

This RSK+ is an evaluation tool for Renesas microcontrollers. This manual describes how to use the e? studio
IDE Smart Configurator plug-in to create a working project for the RSK+ platform.

1.2 Features

This RSK+ provides an evaluation of the following features:
« Project Creation with e2 studio.

« Code generation using the Smart Configurator plug-in.
o User circuitry such as switches, LEDs and a potentiometer.

The RSK+ board contains all the circuitry required for microcontroller operation.

R20UT4442EG0100 Rev. 1.00 Page 8 of 66
Nov.29.19 RENESAS

Renesas Starter Kit+ for RX72N 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the Smart Configurator plug-in for the RX
family together with the e? studio IDE to create a working project for the RSK+ platform. The tutorials help
explain the following:

Project generation using e? studio

Detailed use of the Smart Configurator plug-in for e2 studio
Integration with custom code

Building the project in €2 studio

The project generator will create a tutorial project with two selectable build configurations:
e ‘HardwareDebug’ is a project built with the debugger support included. Optimisation is set to zero.

e ‘Release’ is a project with optimised compile options (level two) and ‘Outputs debugging information’
option not selected, producing code suitable for release in a product.

The tutorial examples in this manual assume that installation procedures described in the RSK+ Quick Start
Guide have been completed. Please refer to the Quick Start Guide for details of preparing the configuration.

These tutorials are designed to show you how to use the RSK+ and are not intended as a comprehensive introduction to
the e? studio debugger, compiler toolchains or the E2 emulator Lite. Please refer to the relevant user manuals for more
in-depth information.

R20UT4442EG0100 Rev. 1.00 NS Page 9 of 66
Nov.29.19 RENES

Renesas Starter Kit+ for RX72N 3. Project Creation with e? studio

3. Project Creation with e? studio

3.1 Introduction

In this section, the user will be guided through the steps required to create a new C project for the RX72N
MCU, ready to generate peripheral driver code using Smart Configurator. This project generation step is
necessary to create the MCU-specific source, project and debug files.

3.2 Creating the Project

e Start e? studio and select a suitable location | [EEEEEEEE
for the project workspace. Select a directory as workspace

€ studio uses the workspace directory to store its preferences and development artifacts.

Workspace: | C\Workspace v|E Browse... i

[Use this as the default and do not ask again

e In the Welcome page, click ‘Create a new
C/C++ project’.

(The Welcome page can also be opened
from 'Help'-> 'Welcome'.)

Get an overview of the features

mport existing e2 studio projects from the flesystem or archive ! Go through tutorials

Review the IDE's m

contested preferences Try out the samples

Open 3 fil from the filesystem Find out what is new

7 Atways show Welcome a statup

e In the ‘Templates for New C/C++ Project’ e New C/C++ Project
dialog, selecting ‘Renesas RX' -> ‘Renesas
CC-RX C/C++ Executable Project’.

Templates for New C/C++ Project

e Click ‘Next’.
All GCC for Renesas RX C/C++ Executable Project
Make = A C/C++ Executable Project for Renesas RX using
Renesas DEbUi the GCC for Renesas RX Toolchain.
GCC for Renesas RX C/C++ Library Project
FE===8~ A C/C++ Library Project for Renesas RX using
the GCC for Renesas RX Toolchain.
| Renesas CC-RX C/C++ Executable Project
fE\ A C/C++ Project for Renesas RX using the
Renesas CCRX toolchain.
Renesas CC-RX C/C++ Library Project
= A C/C++ Library Project for Renesas RX using
the Renesas CCRX toolchain.
?) < Back Next » Finish Cancel
R20UT4442EG0100 Rev. 1.00 RENESAS Page 10 of 66

Nov.29.19

Renesas Starter Kit+ for RX72N 3. Project Creation with e? studio

* Enter the project name ‘SC_Tutorial’. Click | |

‘ ’
Next'. New Renesas CC-RX Executable Project —>
MNew Renesas CC-RX Executable Project |

Project name: |5C_Tutorial

Use default location
Location: C:\Workspace\SC_Tutorial Browse...
Create Directory for Project

Choose file systern: | default

Weorking sets
[[] Add project to working sets New.
Working sets: Select...
® < Back Next > Einish Cancel
* In the ‘Select toolchain, device & debug | [N
settings’ dialog, select the options as ShOWN | | New Renesas CC-RX Executable Project —
in the Screenshot Oppos|te Select toolchain, device & debug settings |L 4
e In ‘Toolchains’ choose ‘Renesas CCRX'. Toslchain Settings
. Language: ®C OC++
e The R5F572NNDxBD MCU is found under || “°™ = -~ -
RX?OO - RX72N - Toolchain Version: |w3.02.00 ~

RX72N - 224 p|n Manage Toolchains...

. RTOS: MNone ~
e Select 'E2 Lite (RX)' from the pulldown and I
check 'Create Release Configuration' check '
bOX - Device Settings Configurations
) Click ‘NeXt’ Target Device: | RSF572NNDxBD [Create Hardware Debug Configuraticn
Unlock Devices... IEZ Lite (RX) VI
Endian: | Little e [] Create Debug Configuration
Project Type: | Default RX Simulator -
Create Release Configuration
@ <Back || Net> |[Ensh || Cancel
e In the ‘Select Coding Assistant settings’
dialog, select ‘Smart Configurator’. New Renesas CC-X Execttable Project =<

Select Coding Assistant settings |

e Click ‘Next’. ==
[Smart Configurator

Use Peripheral Code Generator

Use FIT Medule Download FIT Modules

Smart Confiqurater is single User Interface that combines the functionalities of Code Generator and FIT Cenfigurator which
imperts, configures and generates different types of drivers and middleware modules.

Smart Configurater encompasses unified clock configuration view, interrupt configuration view and pin configuratien view.

Hardware resources conflict in peripheral modules, interrupts and pins occurred in different types of drivers and middleware
modules will be notified.

(Smart Configurator is available only for the supported devices)

User Application

Driver and Middleware

Driver Code FIT Modules
Configured in GUI Selected in GUI
and Generated and Imported

MCU Ha re

103e1N81jU0) JewWsS

laaaaaaaaaaanaaanas s e nyyy)

@ < Back Next > e

R20UT4442EG0100 Rev. 1.00 RENESAS Page 11 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 3. Project Creation with e? studio

o Click ‘Next. e

New Renesas CC-RX Executable Project

Settings The Contents of Files to be Generated

‘What kind of initialization routine would you like to create?

[] Use Renesas Debug Virtual Console
Size of /0 Strearn Buffer
3 E

@ < Back Next Gl

e A summary dialog will appear, click ‘Finish’ to I

New Renesas CC-RX Executable Project

complete the project generation. ‘ : |
Summary of project "SC_Tutorial”

TOOLCHAIN NAME : Renesas CCRX
TOOLCHAIN VERSION : v3.02.00

GENERATION FILES :

@ = Back Next > Cancel

Information

e Wait for file generation to start.

@l Smart Configurator operation in progress

Preparing startup code...

Cancel

e In future, to skip the pop-up message on the ? Open Associated Perspective?
rlght' check the Rerr']ember my de.CIS'IOI‘l oY This kind of project is associated with the Smart Configurator perspective. Do you
check box and click on 'Open Perspective'. &P vant to open this perspective now?

e The perspective changes automatically when

the Smart Configurator starts up.
__Qpen Perspective No

R20UT4442EG0100 Rev. 1.00 RENESAS Page 12 of 66

Nov.29.19

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

4. Smart Configurator Using the e? studio

4.1 Introduction

The Smart Configurator plug-in for the RX72N has been used to generate the sample code discussed in this
document. Smart Configurator for e? studio is a plug-in tool for generating template ‘C’ source code and
project settings for the RX72N. When using Smart Configurator, it provides the user with a visual way of
configuring the target device, clocks, software components, hardware resources and interrupts for the project;
thereby bypassing the need, in most cases, to refer to sections of the Hardware Manual.

Once the user has configured the project, the ‘Generate Code’ function is used to generate three code
modules for each specific MCU feature selected. These code modules are named ‘Config_xxx.h’,
‘Config_xxx.c’, and ‘Config_xxx_user.c’, where xxx’ is an acronym for the relevant MCU feature, for example
‘S12AD’. Within these code modules, the user is then free to add custom code to meet their specific
requirement. However, these files require custom code to be added between the following comment
delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Smart Configurator will locate these comment delimiters, and preserve any custom code inside the delimiters
on subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-
visit Smart Configurator to change any MCU operating parameters.

Note: If code is added outside the above user code area, it will be lost if code generation is executed again
with Smart Configurator.

By following the steps detailed in this Tutorial, the user will generate an e? studio project called SC_Tutorial.
The fully completed Tutorial project is contained in the RSK+ Web Installer
(https://www.renesas.com/rskrx72n/install/e2) and may be imported into e2 studio by following the steps in the
Quick Start Guide. This Tutorial is intended as a learning exercise for users who wish to use the Smart
Configurator to generate their own custom projects for e2 studio.

The SC_Tutorial project uses interrupts for switch inputs, the ADC module, the Compare Match Timer (CMT),
the Serial Communications Interface (SCI) and uses these modules to perform A/D conversion. Results are
displayed via the virtual COM port in a terminal program and also on the PMOD display connected to the
RSK+.

Following a tour of the key user interface features of Smart Configurator in the tabbed pages (board, clocks,
components and pins), as well as a demonstration of building a project, the reader is guided through each of
the peripheral function configuration pages and familiarised with the structure of the template code, including
the process of adding their own code to the user code areas provided by the Smart Configurator

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 13 of 66
Nov.29.19

https://www.renesas.com/rskrx72n/install/e2

Renesas Starter

Kit+ for RX72N

4. Smart Configurator Using the e? studio

4.2

Project Configuration using Smart Configurator

In this section, a brief tour of Smart Configurator is presented. For further details of the Smart Configurator
paradigm and reference, refer to the RX Smart Configurator User's Guide: e? studio.
You can download the latest document from: https://www.renesas.com/smart-configurator.

The Smart Configurator initial view is displayed as illustrated in Figure 4-1.

e Workspace - SC_TutorialySC_Tutorial scfg - & studio

File Edit Navigate Search Project RenesasViews Run Window Help
4 Debug ~ || E% 5¢_Tutorial HardwareDebug ~ [| B~/ ~ @ik~ i Fe - Quvig il Gl MR
| o | B [ERCORRUaRa] 4 ebug
[Project Explorer 52 = 8 { SC_Tutorialscfg 52 = B &IMCUPackage 51 = a
G v PO . -
E= Overview information & & E =1 FoMIvC,] B >
v (5 SC_Tuterial
) Includes - General Information @ .
v 2 sre
(= smc_gen This editor allows you to modify the settings stared in configuration file (scfg)
[£) 5C_Tutorial.c
2] SC_Tutorial HardwareDebut Board
£ SC Tutorial.scfg Allow bosrd and device selection
Application under
Clocks development
Allow clock configuration
= Components
[Middlewara]
Components Device -
driver ‘ RTOS ‘
Allow software component selection and configuration
T - Fis
Pins
Allow general pin configuration and pin configuration for selected software component
Interrupt
Allow general interrupt configuration and interrupt configuration for selected software component
v
< > Overview | Board | Clocks| Components | Pins | Interrupts. » Legend
) Console 1% S biE*BE-8~=0 s G Debugger Conscle @ Smart Browser 52 =g
Smart Configurator Output & & -
M@4000001: File generated:srcsmc gen\general\r cg macrodriver.h Device: -
Mpaopeeel: File generated en\general\r cg userdefine.h evices:
MB40DEERL: File generated en\generallr sme entry.h Context Help User's Manual Technical Update Application Notes Tool News Notifications
M@4000001: File generated en\general\r cg hardware setup.c
MB5eeea12: File generated gen\r pincfg\Pin.h Total: 1
MD5600012: File generated smc_gen\r pincfg\Pin.c T
MA6RRAAR2: File generated smc_gen\general\r sme_interrupt.c e
MOGBBAAE2 : smc_gen\general\r smc interrupt.h a >
MB680BBE2: Fi smc_gen\r_config\r bsp interrupt config.h
MB@BORAE2: Code generation is successful
M03000004: File modified:src\smc gem\r confighr bsp config.h
v < >
8
Al

Smart Configurator provides GUI features for configuration of MCU sub systems.

Figure 4-1 Overview page

Once the user has

configured all required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button,
resulting in a fully configured e? studio project that builds and runs without error.

R20UT4442EG0100 Rev. 1.00

Nov.29.19

RRENESAS

Page 14 of 66

https://www.renesas.com/smart-configurator

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

4.3 The ‘Board’ tabbed page

On the ‘Board’ tabbed page, set the board type and device type.
Click the 'Board' tab and it will be displayed as shown in Figure 4-2.

48t SC_Tutorial.scfg &2 = 0
Device selection ol &
Device selection By 2y

Board: | Customn User Board ~

Device: | RSF572ZNMDxED

Download more boards..,

Owverview | Board] Clocks| Compeonents | Pins | Interrupts

Figure 4-2 Board configuration page

431 Board configuration page

Make sure that ‘Custom User Board’ is selected for the ‘board:’.

8% SC_Tutorial.scfg 53

Device selection

Device selection

Board: |iCustom User Board i

Device: | RSF372NNDxBD

Download more boards...

Figure 4-3 Select board

R20UT4442EG0100 Rev. 1.00 :{EN ESNS Page 15 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

4.4 The ‘Clocks’ tabbed page

The ‘Clocks’ tabbed page configures clocks of the device selected. Clock source, frequency, PLL settings and
clock divider settings can be configured for the output clocks. Clock configurations will be reflected in the
r_bsp_config.h file in \src\smc_gen\r_config.

441 Clocks configuration

Figure 4-4 shows a screenshot of Smart Configurator with the Clocks configurations. Click on the ‘Clocks’ tab.
Configure the system clocks as shown in the figure. In this tutorial, we are using the on board 24 MHz crystal
resonator for our main clock oscillation source and the PLL circuit is in operation. The PLL output is used as

the main system clock and the divisors should be set as shown in Figure 4-4.

{55 *SC_Tutorial.scfg 52

= 8
Clocks configuration & &
VeS| 33)
PLL circuit n y
Frequency Division: PLKCR (FULKE FlashiF clack (FCLK)
aueney - x4 - €0.0 (MHz)
x1 -
SCKCR (ICLE[Z:00 System clock (ICLK)
¥ Main clock Frequency Multiplication: 1 . ystem dock _:'
Oscillation source: | Rescmator = S . *— 2400 (L57E]
SCKCR (PCLKA[3:0) - .
Frequency: 24 (MHzZ) | o - (30D Peripheral madule clock (PCLKA)
—ley e—x2 - 1200 (MHz)
Oscillation wait time: ; -
9980 (u5) 3ctusl value: 10300000 SCKCR (PCLKBEZ:0D) Peripheral module clock (PCLKE)
) actuial vale: L | o xid - 0.0 (MHzZ)
SCKCR [PCLKCI3D]) Peripheral module clock (PCLKC)
— x4 ~? 60.0 (MHz)
Su-cl " 2,
uo-clock SCRCR (PCLKDIS]) Peripheral module clock (PCLKD)
— x4 - 60.0 (MHz)
| 4 SCKCR (BCK[3:0) External bus clock (BCLK)
— X153 i 80,0 (MHz)
BCKCR (BCLKDIV)
> —
V| SCKCR2 (UCK3:0]) SDRAM clock {SDCLK)
PPLL circuit L— x1/5 -
HOCO dlock ‘ Freguency Division: R USE clack (UCLK}CACUCLK
x1/3 > FRACED 480 (MHz)
x1/2 |
Freguency Muitiplication:
250 -
LOCO clodk
CLKOUT25M/CACCLKOUT25M
x1/8 v 250 (MHz)
.
L~
. CKOCR {CKODIV[2:0]) AET
— %1 ~
IWDT-dedicated dock
CANMCLE/CACMCLK
24 (MHz)

Overview BnardCﬂrﬂpnnent; Pins | Interrupts
Figure 4-4 The ‘Clocks’ tabbed page

R20UT4442EG0100 Rev. 1.00

ENESAS
Nov.29.19 R

Page 16 of 66

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

4.5 The ‘Components’ tabbed page

Drivers and middleware are handled as software components in Smart Configurator. The ‘Components’ page
allows the user to select and configure software components.

48k *SC_Tutorial.scfg &1

Software component configuration

Components = 2 -
W
type filter text
w2 Startup
v [= Generic
& rbsp

Overview | Board CIocksPins Interrupts
Figure 4-5 Components page

451 Add a software component into the project

Smart Configurator supports five types of software components: Startup, Drivers, Middleware, Application and
RTOS. In the following sub-sections, the reader is guided through the steps to configure the MCU for a simple
project containing interrupts for switch inputs, timers, ADC and a SCI by component of Drivers.

Click the ‘Add component’ W icon.

8% SC_Tutorial.scfg 52
Software component configuration

Components =] = -

type filter text

v [= Startup
w [= Generic
& rbsp

Figure 4-6 Add a Software component (1)

In ‘Software Component Selection’ dialog -> Type, select ‘Drivers’.

e’ New Component

Software Component Selection |

Select component from those available in list

Type All ~
Function AE !
Filter :
Middleware
Application
Compor RTOS

Figure 4-7 Add a Software component (2)

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 17 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

452 Compare Match Timer

CMTO will be used as an interval timer for generation of accurate delays. CMT1 and CMT2 will be used as
timers in de-bouncing of switch interrupts.

Select ‘Compare Match Timer’ as shown in Figure 4-8 below then click ‘Next’.

e’ MNew Component

Software Component Selection

Select component from those available in list

Type Drivers

Function |All
Fiter |
Components Type Version
8 8-Bit Timer Code Generator 17.0
8 Buses Code Generator 180
8 Clock Frequency Accuracy Me... Code Generator 1.8.0
IE] Compare Match Timer Code Generator 2.0.0 |
EComp\ementary PWM Mode Ti... Code Generator 1.8.0
H# Continuous Scan Mode S$12AD Code Generator 1.8.0
8 CRC Calculator Code Generator 180
8 D/A Converter Code Generator 180
Data Operation Circuit Code Generator 180
ma . - Pa— PR . ann
< >
Show only latest version
Description
This software compeonent provides configurations for 16-bit/32-bit timer with
maedule CMT/CMTW and can generate interrupts at set intervals.

Download more software components

Configure general settings...

@ < Back I Mext = I | Einish | Cancel

Figure 4-8 Select Compare Match Timer

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RRENESAS

Page 18 of 66

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘CMTO0’ as shown in Figure 4-9
below.

e’ New Component

Compare Match Timer
Configuration name: | Config_CMTWO |
Resource: CMTWO ~
CMTWO
CRWTW1
CMT1
CMT2
CMT3
® < Back Next > Cancel

Figure 4-9 Select Resource - CMT0

Ensure that the ‘Configuration name’ updates to ‘Config_CMTO’ as shown in Figure 4-10 below then click
‘Finish’.

e’ Mew Component

Add new config ion for sel d P
Compare Match Timer
Configuration name: IConﬁg_CMTD I
Resource: CMTo v
@ | Conc

Figure 4-10 Ensure Configuration name - CMTO0

In ‘Config_ CMTQ’, configure CMTO as shown in Figure 4-11. This timer is configured to generate a high

priority interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high
accuracy delays required in our application.

Components = :’.f:a ~ Configure
% = Count clock setting
- @ PCLK/S (O PCLEE2 O PCLEM28 O PCLE/512
type filter text
v (= Startup ~ Compare match setting
w [= Generic Interval value I'I I Ims VI (Actual value: 1)
- & rbsp Register value (CMCOR) (7499 |
v rivers
v [= Timers Compare match interrupt (CMID)
= Config_CMTD
& Sonmhg. Priority [Leverio -]
Figure 4-11 Config_CMTO setting

R20UT4442EG0100 Rev. 1.00 RRENESAS
Nov.29.19

Page 19 of 66

Renesas Starter Kit+ for RX

72N

4. Smart Configurator Using the e? studio

Click the ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Drivers’
Select ‘Compare Match Timer’ then click ‘Next’. In ‘Add new configuration for selected component’ dialog ->

Resource, select ‘CMT1’ as

shown in Figure 4-12 below.

e’ MNew Component

Add new config for d p
Compare Match Timer
Configuration name: | Config_CMTWO |
Resource: CMT1 ~
CMTWO
CMTW1
CMTO

@ < Back Mext >

Cancel

Figure 4-12 Select Resource — CMT1

Ensure that the ‘Configuration name’ updates to ‘Config_CMT1’ as shown in Figure 4-13 below then click

‘Finish’.

e’ Mew Component

Add new configuration for selected component

Compare Match Timer

Configuration name: IConﬂg,CMﬁ I
Resource: LMT1 w

Figure 4-13 Ensure Configuration name — CMT1

Navigate to the ‘Config_ CMT1’ and configure CMT1 as shown in Figure 4-14. This timer is configured to
generate a high priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in

this tutorial.
Components o @ 2 » Configure
= Count clock setting

type filter text Opcikse Orpcikze OPcLKsst2
wv [Startup o Compare match setting

v & Genenic Interval value I‘-'10 I II'HS VI (Actual value: 20)
v = Dn\:;s bsp Register value (CMCOR) ‘ 37499 |

w = Timers Compare match interrupt (CMIT)

:‘ f:i::ijf:m? Priority |Level 10 -]

Figure 4-14 Config_CMT1 setting

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RRENESAS

Page 20 of 66

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

Click the ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Drivers’

Select ‘Compare Match Timer’ then click ‘Next’. In ‘Add new configuration for selected component’ dialog ->
Resource, select ‘CMT2’ as shown in Figure 4-15 below.

e’ MNew Component

Add new confi ion for sel d

Compare Match Timer

Configuration name: | Config_CMTWO |

Resource: CMTWO

CMTWO
CMTW1
CMTD

CMT3 '

@ < Back Next > Cancel
Figure 4-15 Select Resource — CMT2

Ensure that the ‘Configuration name’ updates to ‘Config_CMT2’ as shown in Figure 4-16 below then click
‘Finish’.

e’ MNew Component

Add new configuration for selected p t
Compare Match Timer
Configuration name: IConf\q_CMTZ I
Resource: LMT2 ~

Figure 4-16 Ensure Configuration name — CMT2

Navigate to the ‘Config_ CMT2’ and configure CMT2 as shown in Figure 4-17. This timer is configured to

generate a high priority interrupt after 200ms. This timer is used as our long switch de-bounce timer later in
this tutorial.

Components = E g Configure
%+ & Count clock setting
a (O PCLK/S (OPCLK/32 (O PCLK/128 (@ PCLK/512
type filter text
v (& Startup " Compare match setting
w [= Generic Interval value IZOD I Im; VI (Actual value: 200.00426T)
- & rbsp Register value (CMCOR) [23437 |
v rivers
v = Timers Compare match interrupt (CMI2)
= Config_CMTD
:.. cz:f::_wm Priority [Leverto -]
& Config_CMT2

Figure 4-17 Config_CMT2 setting

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 21 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

4.5.3 Interrupt Controller

Referring to the RSK+ schematic, SW1 is connected to IRQ13(P45) and SW2 is connected to IRQ12(P44).
SW3 is connected to IRQ15(P07) and ADTRGON. This tutorial uses ADTRGOnN, which will be configured later
in §4.5.7.

Click the ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Drivers’
Select ‘Interrupt Controller’ as shown in Figure 4-18 then click ‘Next'.

e’ Mew Component

Software Component Selection
Select cemponent from those available in list tlj
Type IDriver; VI
Function | All ~
Filter | |
I
Components Type Version 2
Event Link Controller Code Generator 160
General PWM Timer Code Generator 151
mGroup Scan Mode 512AD Code Generator 1.8.0
8 12C Master Mode Code Generator 1.80
8 12C Slave Mode Code Generator 1.8.0
1 Interrupt Controller Code Generator 2.0.0 |
Low Power Consumption Code Generator 200
Normal Mode Timer Code Generator 1.80
Phase Counting Mode Timer Code Generator 2.00 v
e AL e E . 4 nn
< >
Show only latest version
Description
Interrupt Controller configures the interrupt requests generated by ICU: Software
interrupt, NMI pin interrupt and IRQ Bxternal pin interrupts.

Download more software components

Configure general settings...

@ <tk [near [Enisn | Cancel

Figure 4-18 Select Interrupt Controller

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘ICU’ as shown in Figure 4-19
below then click ‘Finish’.

e’ Mew Component

Add new configuration for selected p t |

Interrupt Controller

Configuration name: Config_ICU |

Resource: ICU ~

@ < Back Next > Tomzm
Figure 4-19 Select Resource — ICU

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 22 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

Navigate to the ‘Config_ICU’, configure these two interrupts as falling edge triggered as shown in Figure 4-20
below.

Components =] 2 - Configure
%= Software interrupt setting
Software interrupt
p
type filter text
[Software interrupt 2
v [= Startup rs
v [Generic Priority Level 15 (highest)
" r_bs,
v BDri\:rs_ ! MM pin interrupt setting
v (= Interrupt [MMI pin interrupt Detection type |Falling edge Digital filter |Nofilter 0 fhiHz)
& Config_ICU
v (= Timers IRQO setting
@ Config CMTO irao Detection type | Low level Digital filter | Nofilter 0 {hHz)
& Config_CMT1
& Config_CMT2 Priority |Level 15 (highest)
IRQ setting
[iran Detection type |Low level Digitsl filter |Nofilter 0 [MHz)
Prinrity | Level 15 (highest)
IRQ2 setting
CirRQ2 Detection type | Low level Digital filter [Nofilter 0 (MiHz)
Priority |Level 15 (highest)
IRQ3 setting
[IrQ3 Detection type | Low level Digital filter |Nofilter 0 (MHz)
Prinrity | Level 15 (highest)
IRQ4 setting
irRQd Detection type | Low level Digital filter [Nofilter 0 (MHz)
Priority |Level 15 (highest)
IRQS setting
[JIrQs Detection type | Low level Digital filter |Nofilter 0 (MHz)
Prinrity | Level 15 (highest)
he IRQE setting
CIrRQE Detection type | Low level Digital filter [Nofilter 0 (MHz)
Priority |Level 15 (highest)
IRQT setting
[JirQ7 Detection type | Low level Digital filter |Nofilter 0 (MHz)
Priority |Level 15 (highest)
IRQ8 setting
CirRQs Detection type | Low level Digital filter [Nofilter 0 (MHz)
Priority |Level 15 (highest)
IRQ setting
[JirQe Detection type |Low level Digital filter [Nofilter 0 (MHz)
Priority |Level 15 (highest)
IRQ10 setting
Oraio Detection type | Low level Digital filter |No filter 0 (Hz)
Priority |Level 15 (highest)
IRQ11 setting
iran Detection type |Low level Digital filter [Nofilter 0 (MHz)
Priority |Level 15 (highest)
IRQ12 setting
\RCNZ Detection type | Falling edge ~| Digital filter |Nofilter ~ 0 (Hz)
Priority |Level 15 (highest) ~
IRQ13 setting
\RQH Detection type | Falling edge ~| Digital filter |Nofilter ~ 0 (MHz)
Priority | Level 15 (highest) -
IRQ14 setting
[JirQ14 Detection type | Low level Digital filter |No filter 0 (MHz)
Priority |Level 15 (highest)
IRQ13 setting
[IrQ15 Detection type |Low level Digital filter [Nofilter 0 (MHz)
Priority |Lewel 15 (highest)
Figure 4-20 Config_ICU setting
R20UT4442EG0100 Rev. 1.00 RENESAS Page 23 of 66

Nov.29.19

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

454 Ports

Referring to the RSK+ schematic, LEDO is connected to P71, LED1 is connected to PH6, LED2 is connected
to PL7 and LEDS is connected to PL6. PH3 is used as one of the LCD control lines, together with P02, PK7
and PLO.

Click the ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Drivers’
Select ‘Ports’ as shown in Figure 4-21 then click ‘Next'.

e’ Mew Component

Software Component Selection
Select component from those available in list .dj‘
Type IDrlvers VI
Function Al ~
Fitter | |
~
Components Type Version 2
R 12C Master Mode Code Generator 180
8 12C Slave Mode Code Generator 180
8 Interrupt Controller Code Generator 2.00
B Low Power Consumption Code Generator 2.00
B Normal Mode Timer Code Generator 180
8 Phase Counting Mode Timer Code Generator 2.00
8 Port Output Enable Code Generator 1.8.0
B Ports Code Generator 2.0.0 |
mPrngrammah\e Pulse Generator Code Generator 140 v
B rimans o e P . ann
< >
Show only latest version
Description
This software component provides configurations for General Purpose Input/Qutput.
Common features such as reading, writing, and setting the direction of ports and
pins can be configured. Enabling features such as open-drain outputs and internal
pull-ups are also supported.

Download mere software components

Configure general settings...

@ < Back I MNext > I | Finish | Cancel

Figure 4-21 Select Ports

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘PORT’ as shown in Figure 4-22
below then click ‘Finish’.

e’ Mew Component

Add new config ion for sel d p tlj-

Ports

Configuration name: | Config_PORT ‘

Resource: PORT ~

@ < Back Mext > Cancel
Figure 4-22 Select Resource — PORT

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 24 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

Tick the tickboxes for ‘PORTQ’, ‘PORT7’, ‘PORTH’, PORTK’ and ‘PORTL’ as shown in Figure 4-23 below.

Components = ::: ~ Configure
% = Port selection PORTO PORT7 PORTH PORTK PORTL
type filter text
w @;ar(t}up . o [/ PORTO [JpaorT1
W ENErc
v = Dri\:rsr_bsp [Jporr2 [porrs
v B.':_FEEWP: - []PORT4 []PORTS
onfig_
v Eb.l;[{lzort: - [JPORTE [PORTT
onfig_

v @ Timers [JrorTE [JrorTe

& Config_CMTD
.f Config_CMT1 []PORTA [PORTS

@ Config_CMT2
[JPORTC [JPORTD
[1PORTE [1PORTF
[1PORTG 1 PORTH
[JrorT [PORTK
[~ PORTL [1PORTM
[1PORTM [JroRTQ

Figure 4-23 Select Port selection

Navigate through each of the 'PORTX' tabs, configuring these four I/O lines and LCD control lines as shown in
Figure 4-24, Figure 4-25, Figure 4-26, Figure 4-27 and Figure 4-28 below. Tick the tickboxes for ‘Out’ and

tick ‘Output 1’ the tickboxes except for PLO under the ‘PORTL’ tab. Start with the 'PORTO' tab.

& Config_CMTO
& Config_CMT1
& Config_CMT2

Components El }:;) ~ Configure
- Port selection | PORTO | PORT? PORTH PORTK PORTL
type filter text
v [Startup ~ [apply to all
v & Generic Unused GPIO In Out Pull-up |CMOS output
W rbsp
v = Drivers OO
v [= Interrupt
* Config_ICU ®Unused GPIO Oin (O Out DPull-up CMOS output
~ [= IO Ports
& Config_PORT P01
v [= Timers

@®Unused GPI0 Oin O 0wt OPull-up | CMOS sutput

Po2

O Unused GPIO O Pull-up CMOS output

P03
®Unused GPIO OIn (O Out DPull-up CMOS output

P03
@ Unused GPIO Olin O 0wt [JPull-up CMOS output

PO7
@ Unused GPIO Olin O 0ut [JPull-up CMOS output

Fib
@ Unused GPIO O'in O 0ut [JPull-up CMOS output
P77

@ Unused GPIO O'in O 0ut [JPull-up CMOS output

Output 1

Output 1

CQutput 1

Qutput 1

Qutput 1

Qutput 1

OQutput 1

Output 1

Figure 4-24 Select PORTO tab

R20UT4442EG0100 Rev. 1.00

Nov.29.19

RRENESAS

Page 25 of 66

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

Select ‘PORT7’ tab.

Components az =] }:g) Configure
% Port selection PORTO PORTH PORTK PORTL
type filter text
~ [= Startup ~ [apply to all
v (& Generic Unused GPIO (in (0wt [JPull-up [CMIOS output Output 1
W rbsp
~ [= Drivers P70
v [= Interrupt
& Config_ICU @ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 High-drive output
w [= |f/O Ports
& Config_PORT P71
v (& Timers Ounused GPIG Din Pull-up | CMOS output v
& Config_CMTO
.{ Config_CMT1 P72
o Config_CMT2
@ Unused GPI0 O'in O 0ut [JPull-up CMOS output Output 1 Normal drive output
P73
@®Unused GPI0 Oin O 0wt OPull-up | CMOS sutput Output 1 |High-drive output
P74
@ Unused GPI0 O'in O 0ut [JPull-up CMOS output Cutput 1 Normal drive output
P75
@Unused GPI0 Oln O 0wt Pull-up | CMOS output Output 1 |Normal drive output
P76
@ Unused GPIO O'In O 0ut [JPull-up CMOS output OQutput 1 Normal drive output
P77
@ Unused GPIO Olin O 0ut []Pull-up CMOS output OQutput 1 Mormal drive output
v
Figure 4-25 Select PORT7 tab
13 b
Select ‘PORTH' tab.
Components az =] :: Configure
% . Port selection PORTO PORT7 | PORTH | PORTK PORTL
type filter text
v (= Startup ~ [Apply to all
v & aneric Unused GPIO In Out Pull-up CMOS output OQutput 1 Normal drive output
o rbsp
v (= Drivers PHO
v [Interrupt
* Config_ICU @ Unused GPIO Olin O 0ut [JPull-up CMOS output OQutput 1 Normal drive output
v [= IO Ports
& Config_PORT PH1
v = T.irmars @ Unused GPIO O'in O 0ut [JPull-up CMOS output OQutput 1 MNeormal drive output
& Config CMTO
-» Config_CMT1 PH2
o Config_CMT2
@ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 Meormal drive output
PH3
O Unused GPIO Olin Pull-up CMOS output w | |iAOutput 1 MNormal drive output ~
PH4
@ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 Normal drive output
PHS
@ Unused GPI0 O'in O 0ut [JPull-up CMOS output Output 1 Normal drive output
PHE
O Unused GPI0 - O Pull-up CMOS output ~ Normal drive output ~
PHT
®UnusedGPIO. OIn O 0ut [JPull-up CMOS output OQutput 1 Normal drive output
v
Figure 4-26 Select PORTH tab

R20UT4442EG0100 Rev. 1.00

Nov.29.19 RENES

Page 26 of 66

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

Select ‘PORTK’ tab.

Components az = }:5 ~ Configure
% . Port selection PORTO PORT7 PORTH | PORTK | PORTL
type filter text
v (= Startup ~ [Apply to all
v & anenc Unused GPIO In Out Pull-up CMOS output OQutput 1 Normal drive output
& rbsp
v (= Drivers PKO
v [Interrupt
‘, Config_ICU @ Unused GPIO Olin O 0ut [JPull-up CMOS output Qutput 1 Normal drive output
v [= IO Ports
& Config_PORT PK1
v BT_{'_””E“ @ Unused GPIO OIn O0ut [JPull-up | CMOS output Output 1 Normal drive output
o Config CMTO
-» Config_CMT1 K2
o Config_CMT2
@ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 Meormal drive output
PK3
@ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 Mormal drive output
PK4
@ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 Normal drive output
PK5
@ Unused GPI0 O'in O 0ut [JPull-up CMOS output Output 1 Normal drive output
PKG
@ Unused GPI0 O'in O 0ut [JPull-up CMOS output Cutput 1 Normal drive output
PK7
OUnused GPIO. Oln Pull-up CMOS cutput v | |1 Output 1 Normal drive output w
v
Figure 4-27 Select PORTK tab
13 ’
Select ‘PORTL tab.
Components 2 [2 - Configure
% . Port selection PORTO PORT7 PORTH PORTK-
type filter text
v (= Startup ~ [Apply to all
v & anenc Unused GPIO In Out Pull-up CMOS output OQutput 1 Normal drive output
W rbsp
" % é:vl::errupt PLD
‘, Config_ICU O Unused GPIO OIn Pull-up CMOS output ~| [Output1 MNormal drive output ~
v [= IO Ports
& Config_PORT PL1
A BT_{'_””E“ @ Unused GPIO O'in O 0ut [JPull-up CMOS output OQutput 1 MNeormal drive output
o Config CMTO
-» Config_CMT1 pL2
o Config_CMT2
@ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 Meormal drive output
PL3
@ Unused GPIO O'in O 0ut [JPull-up CMOS output Output 1 Mormal drive output
pLA
@ Unused GPI0 O'in O 0ut [JPull-up CMOS output Output 1 Normal drive output
PL5
@ Unused GPI0 O'in O 0ut [JPull-up CMOS output Cutput 1 Normal drive output
PLE
(O Unused GPIO Pull-up CMOS cutput ~ Mormal drive output ~
PL7
(O Unused GPIO Pull-up CMOS cutput ~ Normal drive output ~
v

Figure 4-28 Select PORTL tab

R20UT4442EG0100 Rev. 1.00

Nov.29.19 RENES

Page 27 of 66

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

4.5.5

SCI/SCIF Asynchronous Mode

In the RSK+RX72N, SCI9 is connected via a Renesas RL78/G1C to provide a USB virtual COM port as

shown in the schematic.

Click the ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Drivers’. Select
‘SCI/SCIF Asynchronous Mode’ as shown in Figure 4-29 then click ‘Next'.

e’ New Component

Software Component Selection
Select component from those available in list .dj
Type I Drivers VI
Function | All ~
Fitter | |
Components Type Version =
8 Real Time Clock Code Generator 1.5.0
1 5CI/SCIF Asynchronous Mode Code Generator 1.8.0 |
8 SCI/SCIF Clock Synchronous M. Code Generator 180
ESmgIe Scan Mode 5124D Code Generator 200
8 Smart Card Interface Mode Code Generator 180
2 SPI Clock Synchronous Mode Code Generator 180
8 5Pl Operation Mode Code Generator 170
E\u‘oltage Detection Circuit Code Generator 1.8.0
Watchdog Timer Code Generator 180 v
< >
Show only latest version
Description
This software compeonent provides configurations for SCI{SCIF) single{multi-
processor) asynchronous mode.
Download more software components
Configure general settings...
@ < Back I Mext = I | FEinish | Cancel

Figure 4-29 Select SCI/SCIF Asynchronous Mode

In ‘Add new configuration for selected component’ dialog -> Work mode, select ‘Transmission/Reception’ as

shown in Figure 4-30 below.

e? Mew Component

Configuration name:
Work mode:

Resource:

@

SCI/SCIF Asynchronous Mode

Config_SCI0

Transmission

Transmission

Reception

n/Reception
Multi-processor Transmission
Multi-processor Reception
Multi-processor Transmission/Reception

< Back

Next >

Cancel

Figure 4-30 Select Work mode — Transmission/Reception

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RRENESAS

Page 28 of 66

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

In ‘Resource’, select ‘SCI9” as shown in Figure 4-31 below.

e’ Mew Component

Add new configuration for selected component -E-

SCI/SCIF Asynchronous Mode

Configuration name: | Config_SCI0D |

Work mode: Transmission/Reception ~

Resource: SClo ~

SCI0
s5CH
SCI12
sCI3
SCI4
SCIs
s5Cle
SCI7
S5CI8
SCHO
SCI
SCN2

® < Back MNext = Cancel

Figure 4-31 Select Resource — SCI9

Ensure that the ‘Configuration name’ updates to ‘Config_SCI9’" as shown in Figure 4-32 below then click

‘Finish’.

e’ New Component

Add new configuration for selected component -E-

SCI/SCIF Asynchronous Mode

Configuration name: IConﬁg_SC 19 I
Work mode: Transmission/Reception ~
Resource: 5CI9 P

)

< Back MNext = Cancel

Figure 4-32

Ensure Configuration name - Config_SCI9

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RRENESAS

Page 29 of 66

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

Configure SCI9 as shown in Figure 4-33. Ensure the ‘Start bit edge detection’ is set as ‘Falling edge on

RXD9 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings remain at their defaults.

Components =

=]

type filter text

~ [= Startup
v [= Generic
& rhsp
w [= Drivers
v [= Interrupt
@ Config_ICU
w = /0 Ports
& Config_PORT
w = Communications
& Config_SCI9
w = Timers
& Config_CMTO
& Config CMT1
& Config_CMT2

>

Configure

FIFO mode setting
(® Men-FIFO mode

Start bit edge detection setting
(O Low level on RXDS pin

Data length setting

() 9 bits

Parity setting

(® Mone

Stop bit length setting
® 1 bit

Transfer direction setting
(®) LSB-first

Transfer rate setting

Transfer clock

Bit rate
[[]Enable modulation duty correction

SCKS pin function

Moise filter setting
[Enable noise filter

Hardware flow control setting

(® Mone

FIFO data setting

Data match detection setting
[Enable data match detection

Data handling setting

Transmit data handling
Receive data handling
Interrupt setting

TXIG priority

RXI9 pricrity
Enable reception error interrupt (ERIS)
TEI9, ERI9 priority (Group ALD)

Receive data ready interrupt

(O FIFO mode
@ 8 bits
O Even
()2 bits

() MSB-first

Internal clock

16 cycles for 1-bit peried

()7 bits

O 0dd

| 19200

<

SCK9 is not used

Clock signal divided by 1

O CTsez
15

0x00

Data handled in interrupt service routine

Data handled in interrupt service routine

Level 15 (highest)

Level 15 (highest)

Level 15 (highest)

Receive data full interrupt (RXI)

I (bps) (Actual value: 18230.769, Error: 0.16%)

Figure 4-33

Config_SCI9 setting

R20UT4442EG0100 Rev. 1.00

Nov.29.19

RRENESAS

Page 30 of 66

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

4.5.6 SPI Clock Synchronous Mode

In the RSK+RX72N, SCI7 is used as an SPI master for the Pmod LCD on the PMOD1 connector as shown in

the schematic. Click the ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select

‘Drivers’ . Select ‘SPI Clock Synchronous Mode’ as shown in Figure 4-34 then click ‘Next'.

e’ MNew Component

Software Component Selection
Select component from those available in list .dj
Type I Drivers VI
Function | All ~
Fitter | |
Components Type Version =
8 Real Time Clock Code Generator 150
8 SCI/SCIF Asynchronous Mode Code Generator 180
H8 SCI/SCIF Clock Synchronous M. Code Generator 1.80
ESmgIe Scan Mode 5124D Code Generator 200
8 Smart Card Interface Mode Code Generator 1.8.0
£ 5Pl Clock Synchronous Mode Code Generator 1.8.0 I
8 5Pl Operation Mode Code Generator 170
E\u’oltage Detection Circuit Code Generator 1.8.0
H# Watchdog Timer Code Generator 1.8.0 v
< >
Show only latest version
Description
This component provides clock synchronous operatien of RSPI or SCI (Simple SPI
bus). It includes 4 transfer modes: Slave transmit/receive, Slave transmit, Master
transmit/receive and Master transmit.
Download more software components
Configure general settings...
@ < Back Mext = I | FEinish | Cancel

Figure 4-34 Select SPI Clock Synchronous Mode

In ‘Add new configuration for selected component’ dialog -> Operation, select ‘Master transmit only’ as shown

in Figure 4-35 below.

Figure 4-35 Select Operation — Master transmit only

e’ MNew Component

Add new confii ion for sel

SPI Cleck Synchrenous Mode

Cenfiguration name: |Canig_RSP\O

Operation: Slave transmit/receive

-

Slave transmit/receive
Resource:

Slave transmit only

Master transrit/receive

® < Back

Next »

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RRENESAS

Page 31 of 66

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

In ‘Resource’, select ‘SCI7’ as shown in Figure 4-36 below.

e’ Mew Component

Add new configuration for selected component -E-

5PI Clock Synchronous Mode

Configuration name: Config_RSPID |

Operation: Master transmit only v

Resource: RSPID ~

RSPID
RSPI1
RSPI2
SCI0
s5CH
SCI12
sCI3
SCI4
SCI5
5CI6
SCI8
SCI9
SCHo
SCI
SC12

® < Back Next > Cancel
Figure 4-36 Select Resource — SCI7

Ensure that the ‘Configuration name’ updates to ‘Config_SCI7’ as shown in Figure 4-37 below then click
‘Finish’.

e’ New Component

Add new configuration for selected component -E-

5PI Clock Synchronous Mode

Configuration name: IConfig_SCI? I
Operation: Master transmit only ~
Resource: SCI7 Pv

® < Back MNext = Cancel

Figure 4-37 Ensure Configuration name - Config_SCI7

R20UT4442EG0100 Rev. 1.00 RENESAS Page 32 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

Configure SCI7 as shown in Figure 4-38. Ensure the ‘Transfer direction’ is set as ‘MSB-first’ and the ‘Bit rate’
is set to 15000 kbps. All other settings remain at their defaults.

Components =] :: » Configure
v = Transfer direction setting
type filter text () LSB-first (®) MSB-first
w (= Startup - Data inversion setting
G
vE Enene (® Mormal O Inverted
& r_bsp
v & Drivers Transfer speed setting
v [= Interrupt
& Config_ICU Transfer clock Internal clock (SCK7 pin functions as clock output pin) ~
v [= /O Ports ~ N
*-- Config_PORT Bit rate (kbps) (Actual value: 15000, Error: 0%)
+ [Communications [C]Enable modulation duty correction
& Config_SCI7
& Config_5CI9 Clock setting
v & T.I_mers [JEnable clock delay [JEnable clock polarity inversion
& Config_CMTD
f_- Config_CMT1 Data handling setting
& Config_CMT2
Transmit data handling Data handled in interrupt service routine ~
Interrupt setting
TXIT pricrity Level 15 (highest) ~
TEI7 priority (Group ALD) Level 15 (highest) v
Callback function setting
[Transmission end
v
Figure 4-38 Config_SCI7 setting
R20UT4442EG0100 Rev. 1.00 RENESAS Page 33 of 66

Nov.29.19

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

4.5.7 Single Scan Mode S12AD

We will be using the S12AD in Single Scan Mode on the ANO0OO input, which is connected to the RV1
potentiometer output on the RSK+. The conversion start trigger will be via the pin connected to SW3. Click

the ‘Add component’ % icon. In ‘Software Component Selection’ dialog -> Type, select ‘Drivers’ . Select
‘Single Scan Mode S12AD’ as shown in Figure 4-39 then click ‘Next'.

e* New Component

Software Component Selection
Select component from those available in list .d:r
Type IDrivers VI
Function |All ~
Filter | |
s
Components Type Version 2
H# Real Time Clock Code Generator 150
H# 5CI/SCIF Asynchronous Mode Code Generator 180
B]SCVSCIFCIO:I(Syn(hronousM... Code Generator 1.8.0
H Single Scan Mode S12AD Code Generator 2.0.0 |
B Smart Card Interface Mode Code Generator 180
5Pl Clock Synchronous Mode Code Generator 1.80
5PI Operation Mode Code Generator 170
$‘u’ultage Detection Circuit Code Generator 1.80
$Watchdng Timer Code Generator 180 v
< >
Show only latest version
Description
This software component provides single scan mode configurations for 12-Bit A/D
Converter which the analog inputs arbitrarily selected are converted for only once in
ascending channel order.

Download mere software components

Configure general settings...

@ <Back | MNet> |[Einish | Cancel

Figure 4-39 Select Single Scan Mode S12AD

Ensure that the 'Configuration name' is'Config_S12AD0' as shown in Figure 4-40 below then click ‘Finish’.

e* New Component

Add new configuration for selected component |

Single Scan Mode 51240
Configuration name: | Config_512AD0 |

Resource: 512AD0 ~

@ < Back Mext = Cancel

Figure 4-40 Ensure Configuration name - S12AD0

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RRENESAS

Page 34 of 66

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

Configure S12ADO0 as shown in Figure 4-41 and Figure 4-42. Ensure the ‘Analog input channel’ tick box for
ANO0O0O is checked and the ‘Start trigger source’ is set to ‘A/D conversion start trigger pin’. All other settings

remain at their defaults.

i
S0

Components =]

==

-

type filter text

w [Startup -~
v [Generic
& rbsp
~ [Drivers
v [= Interrupt
& Config_ICU
~ [AfD Converter
& Config_$124D0
v = I/0Ports
& Config_PORT
w = Communications
& Config_SCI7
& Config_SCI9
v = Timers
& Config_CMTO
& Config_CMT1
@ Config_CMT2

- Configure

~ Basic setting

Note

When using the 12-bit A/D converter unit 0, do not use the P40 to P47, P03, P03, and P07 pins as output pins.
We also recommend net using the POD to P02, P30 te P33, PDO to PD7, and PEOD to PET pins as cutput pins.

Analog input mode setting
[]Double trigger mode

Analog input channel setting

| = P [ANoO1T [l AND02] ANDD3
[ANOS [AN00S [An007

Conversion start trigger setting

Start trigger source IA}'D conversion start trigger pin I

Interrupt setting

Enable AD conversion end interrupt (S12AD1) Priority

* Advance setting

Add/Average AD value setting

[aN000 ANODT ANOD3 ANDD
ANDD3 AMNDDG

Self diagnosis setting

Mode Unused ~
ov

Disconnection detection assist setting

Charge setting Unused ~
2 ADCLK

Dedicated sample held circuit channel setting

[JaNoC00 AMNDD AN0D2

Data registers setting

Data placement Right-alignment ~

Automatic clearing Disable autematic clearing ~

Cenversion resclution 12-bit accuracy ~

Addition/Average mode select Addition mode ~

Additicn count 1-time ~

Window function setting

(® Disable (O Enable

Window A/B operation setting

[[]Enable comparison window A

Window A comparisen condition matched OR window B comparison condition matched

Level 15 (highest)

[[] Enable comparison window B

[Jano04

Figure 4-41

Config_S12ADO0 setting (1)

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RRENESAS

Page 35 of 66

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

AfD comparison A setting
Reference data O for cormparison 0

Reference data 1 for cormparison 0

Use comparator for ANODD
Use comparator for ANDD1
Use comparator for ANDD2
Use comparator for ANOD3
Use comparator for ANDD4
Use comparator for ANDDS

Use comparator for ANDDG

Use comparator for ANDDT

Reference data 0 » A/D-converted value
Reference data 0 » A/D-converted value
Reference data 0 » A/D-converted value
Reference data 0 » A/D-converted value
Reference data 0 » A/D-converted value
Reference data 0 » A/D-converted value
Reference data 0 » A/D-converted value

Reference data 0 » A/D-converted value

A/D comparison B setting

Reference data O for cormparison 0
Reference data 1 for cormparison 0
Comparison B channel Unused

Reference data 0 » A/D-converted value

Input sampling time setting

Dedicated sample and hold circuit 0.4 (ps) (Actual value: 0.4000
AMODO/Self-diagnosis 0.183 | (ps) (Actual value: 0.183)
AR 0.183 fps) (Actualvalue 0.183)
AM002 0.183 fps) (Actualvalue 0.183)
AM003 0.183 (TR {Actual value: 0.183)
AM00 0.183 (TR {Actual value: 0.183)
ARO0S 0.183 (ps) (Actualvalue 0.183)
ANO0E 0.183 (ps) (Actualvalue 0.183)
ANOOT 0.183 (ps) (Actual value: 0.183)

(Total conversion time: 0,367us)

Interrupt setting
Enable AD conversion compare interrupt A (S12CMPAI) Enable AD conversion compare interrupt B (S12CMPBI)
Group BL1 priority Level 15 (highest)

Figure 4-42 Config_S12AD0 setting (2)

R20UT4442EG0100 Rev. 1.00
Nov.29.19

RENESAS Page 36 of 66

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

4.6 The ‘Pins’ tabbed page

Smart Configurator assigns pins to the software components that are added to the project. Assignment of the
pins can be changed using the Pins page.

{56 *SC_Tutorial.scfg 53

Pin configuration

Hardware Resource = laz 6%
Type filter text
Al ~

#F Clock generator
'1??, Clock frequency accuracy measurement ¢

#f Operating mode control
ﬁ; System control

#F Interrupt controller unit
W tia, Multi-function timer pulse unit 3
MTUD
MTU1
MTU2
MTU3
MTU4
MTUS
MTUE
MTU7
n MTUB
i%_ Port output enable 3 v

< >

Pin Function Pin Number

Overview | Board | Clocks | Components Interrupts

Figure 4-43 The ‘Pins’ tabbed page

461 Change pin assignment of a software component

To change the pin assignment of a software component in the Pin Function list, click 52 to change view to
show by Software Components.

ﬂi}} *5C_Tutornial.scfg 23
Pin configuration
Software Components = laz

Type filter text
Figure 4-44 Change view to show by Hardware Resource

R20UT4442EG0100 Rev. 1.00 :{EN ESNS Page 37 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

Select the Config_ICU of Software Components. In the Pin Function list -> Assignment column, change the
pin assignment IRQ12 to P44, IRQ13 to P45. Ensure the ‘Enable’ tick box of IRQ12 and IRQ13 are checked,
as shown in Figure 4-45.

Software Components =1 laz s Pin Function Ll | | -g‘;” By e
Type filter text type filter text (* = any string, ¥ = any character) All ~
v ‘#'- r_bspb Enabled Functicn Assignment Pin Number Direction Remarks

W' r_bsp .
& »
v % Compare Match Timer O IRCO Not assigned Mot assfgned None
e & Confia CMTO O IR # Not assigned # Mot assigned None
. cmf‘g_cwm 0 rae2 # Not assigned # Notassigned None
. CDnF‘g_CMTE 0O IRa3 7 Not assigned # Notassigned None
onta- 0 I1ros 7 Not assigned # Not assigned None
v . Interrupt Controller
Config ICU O IRQS # Not assigned # Mot assigned Mone
" !*-P*'orts = O IRQE # Not assigned # Mot assigned Mone
- Config PORT O IRQ7 # Not assigned # Mot assigned MNone
s B 9- O IRQ2 # Not assigned # Mot assigned MNone
v 2 SCI/SCIF Asynchronous Mode
b \.Cum’\ sclo O IRQS # Not assigned # Mot assigned MNone
& g- O IRQ10 # Not assigned # Mot assigned MNone
v 2 5P| Cleck Synchronous Mode .
w— Config SCIT O IRQ11 # Mot assigned # Mot assigned None
- - ;ﬂ IeScag; Mo‘de S12AD IRQ12 & PAY/IRQT2/ANDN | e |
b ‘gCanﬁ S12AD0 IRC13 L#_P45/IRQ13/ANODS | |
* 9- O IRQ14 # Not assigned # Mot assigned Mone
O IRC135 # Not assigned ¥ Mot assigned None
O MM # Not assigned ¥ Mot assigned None
£ >
Pin Function Pin Number
Overview | Board | Clocks Compoenents | Pins | Interrupts

Figure 4-45 Configure pin assignment - Config_ICU

Select the Config_SCI9 of Software Components. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of RXD9 and TXD9 are checked and Assignment column of RXD9 is PL1 and TXD9 is PL2
as shown in Figure 4-46.

Software Components =Y s Pin Function -‘al | -gﬂ‘ By e

Type filter texst type filter text (* = any string, ¥ = any character) All o

v i#'- r_bsp Enabled Function Assignment Pin Mumber Directicn Rerarks
v & .Cor;_::i Match Timer CTs8 # Mot assigned # Mot assigned None
. W' Config_CMTO RTSo# # Mot assigned # Mot assigned None
- Cnnﬁg_CMﬂ RXD% L#_PL1/TOC2/GTETRGE/SMISO3/55CLY/RXDI/MOSIC...] # J10 1
- SCK9 # Not assigned # Mot assigned None

Config_CMT2
. I.t ”"t‘gc- o T*D9 [7 P/ GTETRGC SMOSI8/S5DAL T DG/ MISOC/ETD o] # P12 0
w g Interrupt Controller

& Config_ICU

v }-_ Ports
& Config_PORT

v SCI/SCIF Asynchronous Mode
& Config_SCI9

[ﬁ 5P| Clock Synchronous Mode
& Config SCI7

v /% Single Scan Mode S12AD
& Config_S124D0

8 [m] e [

Pin Function Pin Number

Overview | Board | Clocks Compoenents | Pins | Interrupts

Figure 4-46 Configure pin assignment - Config_SCI9

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 38 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N

4. Smart Configurator Using the e? studio

Select the Config_SCI7 of Software Components. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of SCK7 and SMOSI7 are checked and Assignment column of SCK7 is PHO, SMOSI7 is PH2

as shown in Figure 4-47.

w' Config_CMT2

v ‘#-. Interrupt Contraller
& Config_ICU

v }-_ Ports
& Config_PORT

v }; SCI/SCIF Asynchronous Mode
& Config_SCI9

v } 5P| Clock Synchronous Mode
i’ Config_SCI7

v i Single Scan Mode 512AD
& Config_512AD0

Pin Function Pin Number

Overview | Board | Clocks Compenents | Pins | Interrupts

Software Components £l /&, &% PinFunction
Type filter text type filter text (* = any string, ¥ = any character)
v i#'- r_bsph Enabled Function Assignment Pin Number
o P SCKT [7 RO/ TICO/GTETRG A/ SCKT/RSPLRA] 7 n2
w2 Compare Match Timer - .
w' Config_CMTO D SMISO7 7 NUtESS\gﬂEd F Mot ESSIgﬂEd
& C Fg_CMﬂ SMOSIT L#_PH2/GTETRGC/SMOSIT/SSDAT/ TXDT/MISOA 1716
onfig_ [557 # Not assigned # Mot assigned

2|
All

Directicn Rerarks
10

None

10

Nene

| B | 2 e

B

Figure 4-47 Configure pin assignment - Config_SCI7

Select the Config_S12AD0 of software components. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of ADTRGO#, AN00OO, AVCCO, AVSS0, VREFHO and VREFLO are checked and Assignment

column of ANOOQO is P40, ADTRGO# is PO7 as shown in Figure 4-48.

Pin Function Pin Number

Overview | Board | Clocks Compoenents | Pins | Interrupts

Software Components =] lﬂz 6% Pin Function
Type filter text type filter text (* = any string, ¥ = any character)
v i#‘- r_bsph Enabled Function Assignment Pin Number
Wl r_bsp -
ADTRGO# L#_PO7/IRQ15/ADTRGOS]7 E5
& C Match Ti
e ANOOO [Z_PA0/ROE7AND0D] 7 D4
. Can‘g_CMﬂ O AMODDT # Not assigned # Mot assigned
. Can‘g_CMTZ 0 ANoo2 # Not assigned # Not assigned
o ”"t‘gc- o O] ANo3 # Not assigned # Not assigned
v
- O Anod # Not assigned 7 Mot assigned
ontl
- :oﬁs 9- O AMNDD3 # Mot assigned # Mot assigned
- Config PORT O AMDDB # Not assigned # Mot assigned
- 2 gCI'SC\Fi_s nchronous Mode O AMNDO7 # Not assigned ¥ Mot assigned
S ot gog AVCCO 7_AVCCO 782
Pt Mo AVSSD 7_AVSSD]
e e ese VREFHO 7_VREFHD ’p2
& Config_SCI7
~ VREFLO 4 VREFLO ¥ A3
v % Single Scan Mode 5124D
& Config_512AD0
<

|
All

Directicn Rerarks

| B | & e

B

Figure 4-48 Configure pin assignment - Config_S12AD0

R20UT4442EG0100 Rev. 1.00 RRENESAS
Nov.29.19

Page 39 of 66

Renesas Starter Kit+ for RX72N 4. Smart Configurator Using the e? studio

Peripheral function configuration is now complete. Save the project using the File -> Save, then click
‘®elGenerate Code’ at location of Figure 4-49.

{8 *SC_Tutorialscfg 52 = 0

Pin configuration

Figure 4-49 Generate Code Button

The Console pane should report ‘Code generation is successful’, as shown Figure 4-50 below.

E Console i3 =% Bf = ‘ ™~ ~f>= 0
Smart Configurator Output

Me4000001: File generated:src)
Me4e00001: File generated:srclsm
Me4ge@eal: File generated:s
Mp4@@EAA1: File generated:s

“Wonfig Siz2ape\Config 512AD@.h A
WConfig Si2ape\Config 512AD@.c

MConfig s12#DB\Config 512ADB user.c

M\general\r cg macrodriver.h

Me4e@eeal: File generated:s ‘generalhr cg userdefine.h
Me4ee000l: File generated:srch ‘\generalhr smc entry.h
Me48e0001: File generated:srchs ‘generalhr cg hardware setup.c
MB48BBEAL: File generated:srchs ‘\general\r cg cmt.h

Me4ee0001: File generated:srclsm ‘generalir cg cmiw.h
Me4e00001: File generated:srclsm ‘generalhr cg icu.h

Me4ee@eal: File generated:src \general\r cg port.h
Mp4@@EAA1: File generated:s ‘\general\r cg si12ad.h
Me4e@eeal: File generated:s ‘generalhr cg sci.h

M@4800001: File generated::s
M@5eee012: File generated:s
MB5@08812: File generated Wr pincfghPin.c

MP6@00002: File generated:srclsm ‘\generalir smc_interrupt.c
MP6000002: File generated:srchsmc gen\generalhr smc interrupt.h
MPE@Beea2: File generated:srchsmc gen'r confighr bsp interrupt cenfig.h
M@BERaaa2: Code generation is successful

Me3eeenn4: File modified:src\sme gen\r confighr bsp config.h

\general\r cg rspi.h
\r pincfghPin.h

Figure 4-50 Smart Configurator console

4.7 Building the Project

The project template created by Smart Configurator can now be built. In the Project Explorer pane expand the
‘src’ folder then smc_gen folder.

¥ Project Explorer i3 % ¥ = O
v 2= SC_Tutorial [HardwareDebug]
[t Includes
v [src

v (= smc_gen
= Config_CMTO
= Config_CMT1
= Config_CMT2
= Config_ICU
= Config_PORT
(7= Config_5124D0
= Config_SCI7
= Config_5CI9
= general
= r_bsp
= r_config
= r_pincfg

[£) SC_Tutorial.c
(= trash
=| 5C_Tutorial HardwareDebug.launch

{5k SC_Tutorial.scfg

Figure 4-51 Generated folder structure

FE

Switch back to the ‘C/C++’ perspective using the button on the top right of the e? studio workspace.

Select SC_Tutorial in the Project Explorer pane, then use ‘Build Project’ from the ‘Project’ menu or the
button to build the tutorial. The project will build with no errors.
R20UT4442EG0100 Rev. 1.00 :{EN ESNS Page 40 of 66

Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

5. User Code Integration

In this section, the remaining application code is added to the project. Source files found in the RSK+ Web
Installer are copied into the workspace and the user is directed to add code in the user areas of the code
generator files.

Code must be inserted into the user code area within many Smart Configurator-generated files in this project,
these user code areas are delimited by comments as follows:

/* Start user code for xxxxx . Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Smart Configurator, if the user subsequently needs to use Smart Configurator to regenerate any of the Smart

Configurator-generated code.

5.1 Project Settings

e Change the optimization level of the i Project Explorer 12 2% 7= 8
. . . = .
build configuration 'HardwareDebug' B e
before building the project. With the v @8 s Openin New Window
SC_Tutorial project selected, right- T o oo Carkec
click and select [Properties], or use & Confiy o
the shortcut keys [Alt] + [Enter] to &] souee ,
open the Properties window. & Config. Move..
(= Config_ Rename... F2
== Config_
(&= Config_ i1 Import...
(= general 5 Export..
= r_bsp
(= r_config Build Project
&= r_pincfg Clean Project
|| SC_Tutorial ; Refresh F5
& trash Close Project
=| SC_Tutorial Ha : X
£ SC_Tutorial.sch Close Unrelated Projects
#7 Run C/C++ Code Analysis
B System Explorer
B Command Prompt
Configure >
Properties Alt+Enter
e Navigate to ‘C/C++ Build -> Settings | settings G
->Compiler -> Optimization.
Configuration: | HardwareDebug [Active] ~ | | Manage Configurations...
e Select 'Level 0: Do not perform - . sesontout
optimization' from the Optimization . _ ,
i3 Tool Settings Toolchain Device Build Steps Build Artifact [ar} Binary Parsers @ Error Parsers
level pull-down.
w B Common Optimization level Level 2 Performs whele module optimization
g ;?'mn [] Outputs additional information for inte rf pn
(# Miscellaneous Optimization type Level 2: Performs whole module optimization
v B Compiler Pertorm loop aptimizstion Level max: Perform all applicable optimizations
~ (Source
(5 Advanced
gﬁgﬂt Performs inline expansion automatically | Depends on the optimization option ~
~ (2 Optimization 100
2 Advanced
@ﬁtput
e Press the ‘Apply and Close’ button to
close Properties window. Apply and Close Cancel
R20UT4442EG0100 Rev. 1.00 RENESAS Page 41 of 66

Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

5.2 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK+. Refer to the Tutorial project folder
created according to the Quick Start Guide procedure. Check that the following files are in the src folder:
-ascii.c
-ascii.h
-r_okaya_lcd.c
-r_okaya_lcd.h

Copy these files in to the src folder below the workspace. These files will be automatically added to the
project as shown in Figure 5-1.

I{ Project Explorer 53 0% ¥ = 8
w 1% SC_Tutorial [HardwareDebug]
[Includes
w [src

= smc_gen
lg| ascii.c

[n] ascii.h
le| r_okaya_lcd.c

r_okaya_lcd.h
L] SC_Tutorial.c

Figure 5-1 Adding files to the project

In the e? studio Project Tree, expand the ‘src\smc_gen\general’ folder and open the file ‘r_cg_userdefine.h’ by
double-clicking on it. Insert the following #defines in between the user code delimiter comments as shown
below.

/* Start user code for macro define. Do not edit comment generated here */

#define TRUE (1)
#define FALSE

/* End user code. Do not edit comment generated here */

In the e? studio Project Tree, expand the ‘src’ folder and open the file ‘SC_Tutorial.c’ by double-clicking on it.
Add header files near the declaration #include r_smc_entry.h’.

#include "r smc entry.h"
#include "r okaya lcd.h"
#include "r cg userdefine.h"

Scroll down to the ‘main’ function and insert the highlighted code as shown below into the beginning of the
‘main’ function:

void main (void)

{
/* Initialize the debug LCD */
R _LCD Init();

/* Displays the application name on the debug LCD */
R LCD Display (0, (uint8 t *)" RSK+RX72N ");

R LCD Display(l, (uint8 t *)" Tutorial ");

R LCD Display (2, (uint8 t *)" Press Any Switch ");
while (10U)

{

}

Indentation is lost when the code described in this manual is pasted into the e? studio source file. Also check that
the pasted code is correct.

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 42 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

5.21 SPI Code

The Okaya LCD display is driven by the SPI Master that was configured using Smart Configurator in §4.5.6. In
the e? studio Project Tree, expand the ‘src\smc_gen\Config_SCI7’ folder and open the file ‘Config_SCI7.h’ by
double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD STATUS R SCI7 SPIMasterTransmit (uint8 t * const tx buf, const uintl6 t tx num);

/* End user code. Do not edit comment generated here */
Now, open the Config_SCI7_user.c file and insert the following code in the user area for global:

/* Start user code for global. Do not edit comment generated here */

/* Flag used locally to detect transmission complete */
static volatile uint8 t s sci7_ txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmit end call-back function for SCI7:

static void r Config SCI7 callback transmitend(void)
{
/* Start user code for r Config SCI7_callback transmitend. Do not edit comment generated here */

s_sci7 txdone = TRUE;

/* End user code. Do not edit comment generated here */

}

Now insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

R e

* Function Name: R_SCI7_ SPIMasterTransmit

* Description : This function sends SPI7 data to slave device.
* Arguments : tx buf -

* transfer buffer pointer

* tx num -

* buffer size

* Return Value : status -

* MD_OK or MD_ARGERROR

***/
MD STATUS R _SCI7 SPIMasterTransmit (uint8 t * const tx buf,
const uintl6 t tx num)

{
MD_STATUS status = MD_OK;

/* Clear the flag before initiating a new transmission */
s _sci7 txdone = FALSE;

/* Send the data using the API */
status = R Config SCI7 SPI Master Send(tx buf, tx num);

/* Wait for the transmit end flag */
while (FALSE == s sci7 txdone)
{
/* Wait */
}

return (status);

}

KKK KKk KK K K K K K K K K K K K R R R K K K R R R K K R R R kK R R R kK R R R kR R R R Rk K R kR kK K R R Rk kK

* End of function R SCI7 SPIMasterTransmit

B R R R T R R R R]

This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD and is used as the main API call in the LCD code module.

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 43 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

5.2.2 CMT Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Smart Configurator in §4.5.2. Open the file
‘src\smc_gen\Config_ CMTO0\Config_ CMTO0.h’ and insert the following code in the user area for function at the
end of the file:

/* Start user code for function. Do not edit comment generated here */
void R_CMT MsDelay(const uintl6_t millisec);

/* End user code. Do not edit comment generated here */

Open the file ‘Config_ CMTO_user.c’ and insert the following code in the user area for global at the beginning
of the file:

/* Start user code for global. Do not edit comment generated here */
static volatile uint8 t gs one ms delay complete = FALSE;

/* End user code. Do not edit comment generated here */

Scroll down to the r_Config CMTO0_cmiO_interrupt function and insert the following line in the user code area:

static void r Config CMTO cmiO_ interrupt (void)
{
/* Start user code for r Config CMTO cmiO_interrupt. Do not edit comment generated here */

gs_one ms_delay complete = TRUE;

/* End user code. Do not edit comment generated here */

Then insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

KKk ok ok ok ok kA A A K K K Kk ko ok ok ok ok kR A A A A K Kk Kk ko k ok ok ok kR A A A A A K Kk ko ok ok ok ok ok kA A A A K Kk ok ko ko ok ok ok ok ok

* Function Name: R_CMT MsDelay

* Description : Uses CMTO to wait for a specified number of milliseconds

* Arguments : uintl6 t millisecs, number of milliseconds to wait

* Return Value : None
***/
void R CMT MsDelay (const uintlé t millisec)

{

uintlé_t ms_count = 0;

do

{
R Config CMTO Start();
while (FALSE == gs_one ms_delay complete)
{

/* Wait */

}
R Config CMTO Stop();
gs_one _ms_delay complete = FALSE;
ms_count++;

} while (ms_count < millisec);

1

/***

End of function R CMT MsDelay
~)<~)<~)<******************~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<******************~)<~)<~)<~)<~)<~)<~)<***********************/

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 44 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

5.3 Additional include paths
Before the project can be built the compiler needs some additional include paths added. Select the
SC_Tutorial project in the Project Explorer pane. Right click in the Project Explorer window and select

'Properties’. Navigate to ‘C/C++ Build -> Settings ->Compiler -> Source and click the £ button as shown in
Figure 5-2.

e? Properties for SC_Tutorial

type filter text Settings =14 - -
Resource
Builders «
~ C/C++ Build Configuration: HardwareDebug [Active] ~ | | Manage Configurations..

Build Variables
Environment

Legging B Tool Settings Toolchain Device #° Build Steps Build Artifact Binary Parsers 3 Ern| *

Settings

Tool Chain Editor v & Common Include file directories & 8 8 &
C/C++ General & CPu
Pf .++ R::Em g PIC/PID "Sfworkspace_loc/${ProjNamel/srcisme_gen/r_bsp}’
roject References % ! "Slworkspace_loc/S{ProjMame}/src/sme_gen/r_config}"
Renesas OF (52 Miscellaneous “§{workspace_loc/${ProjNamel/src/sme_gen/Config_CMTO}"
Run/Debug Settings ~ &) Compiler "S{workspace_loc:/S{ProjName}/src/sme_gen/Config_CMT1}"

w @ Source "Slworkspace_loc/S{ProjMame)/src/sme_gen/Config_CMT2}"

@ Advanced "Slworkspace, \oc:f’S{ProJ:Name}«'src.a’sm(_gene’can\g_ICU}"
“§{workspace_loc/${ProjNamel/src/sme_gen/Config_PORT"
@ Object
r4 "S{workspace_loc:/${ProjMame}/src/smec_gen/Config_SCI9}"
(22 List "${workspace_loc/${ProjNamel/src/sme_gen/Config_5CI7}"
~ (& Optimization "Sworkspace_loc/${ProjMamel/src/sme_gen/Config_5124D0}1"
(8 Advanced "Stworkspace_loc:/${ProjName}/src/smc_gen/general}"

“Chmnrenare lncdUDrnilamellercleme nenfr nincfnl®

2 Output
(MISRA C Rule Check Pre-include files £
% Miscellaneous . I

@ Cancel
Figure 5-2 Adding additional search paths

In the ‘Add directory path’ dialog, click the ‘Workspace...” button and in the ‘Folder selection’ dialog browse to
the ‘SC_Tutorial/src’ folder and click ‘OK’. e? studio formats the path as shown in Figure 5-3 below.

e* Add directery path

Directory:

‘ Hworkspace_loc:/${ProjName}}

[] Add subdirectories

OK Cancel File system...
Figure 5-3 Adding workspace search path

Close the property by clicking the 'Apply and Close' button shown in Figure 5-2, and when the 'Settings'
dialog shown in Figure 5-4 is appeared, click 'Yes' to finish the setting.

I-"'_"\-.I Changes made will not be reflected in the index until it is rebuilt. Do you wish to
LW rebuild it now?

O

mber my decision;

Yes No

Figure 5-4 Settings dialog

-

Select ‘Build Project’ from the ‘Project’ menu or use the button. e? studio will build the project with no
errors.

The project may now be run using the debugger as described in §6. The program will display ‘RSK+RX72N
Tutorial Press Any Switch’ on three lines in the LCD display.

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 45 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

54 Switch Code Integration

API functions for user switch control are provided with the RSK+. Refer to the Tutorial project folder created
according to the Quick Start Guide procedure. Check that the following files are in the src folder:
-rskrx72ndef.h
-r_rsk_switch.c
-r_rsk_switch.h

Copy these files in to the src folder below the workspace.

The switch code uses interrupt code in the files Config_ICU.h, Config_ICU.c and Config_ICU_user.c and timer
code in the files Config_ CMT1.h, Config_ CMT1.c, Config_ CMT1_user.c, Config_ CMT2.h, Config CMT2.c and
Config_ CMT2_user.c as described in §4.5.2. and §4.5.3 It is necessary to provide additional user code in
these files to implement the switch press/release detection and de-bouncing required by the API functions in
r_rsk_switch.c.

5.4.1 Interrupt Code

In the e? studio Project Tree, expand the ‘src\smc_gen\Config_ICU’ folder and open the file ‘Config_ICU.h’ by
double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU IRQ */

uint8 t R ICU IRQIsFallingEdge (const uint8 t irqg no);

void R_ICU IRQSetFallingEdge (const uint8 t irg no, const uint8 t set f edge);

void R _ICU IRQSetRisingEdge (const uint8 t irqg no, const uint8 t set r edge);

/* End user code. Do not edit comment generated here */

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 46 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

Now, open the Config_ICU.c file and insert the following code in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/***

* Function Name: R_ICU IRQIsFallingEdge

Description : This function returns 1 if the specified ICU IRQ is set to
* falling edge triggered, otherwise 0.
* Arguments : uint8 t irqg no

* Return Value : 1 if falling edge triggered, 0 if not

***/
uint8 t R ICU IRQIsFallingEdge (const uint8 t irqg no)
{ uint8 t falling edge trig = 0x0;

if (ICU.IRQCR[irg no].BYTE & 04 ICU IRQ EDGE_FALLING)

{ falling edge trig = 1;

}

return (falling edge trig);

VARREEEEEE SRR EEE e AR EE Rt EEE Rt EE Rt

* End of function R_ICU IRQIsFallingEdge

***/

VARREEEEEE S SRR EEE St EEE Rt EEE Rt EE Rt

* Function Name: R ICU IRQSetFallingEdge

* Description : This function sets/clears the falling edge trigger for the

* specified ICU_IRQ.

* Arguments : uint8 t irg no

* uint8 t set f edge, 1 if setting falling edge triggered, 0 if

* clearing

* Return Value : None
***/

void R _ICU IRQSetFallingEdge (const uint8 t irg no, const uint8 t set f edge)
{

if (1 == set_f edge)

{

ICU.IRQCR[irg no].BYTE |= 04 ICU IRQ EDGE FALLING;

}

else

{
ICU.IRQCR[irg no] .BYTE &= (uint8_t) ~ 04 ICU IRQ EDGE_FALLING;

/**

* End of function R ICU IRQSetFallingEdge

***/

VARREEEEEE SRR EEE AR Rt EEEE Rt EE Rt

* Function Name: R_ICU_ IRQSetRisingEdge

* Description : This function sets/clear the rising edge trigger for the

* specified ICU_IRQ.

* Arguments : uint8 t irg no

* uint8 t set r edge, 1 if setting rising edge triggered, 0 if
* clearing

* Return Value : None
***/

void R_ICU IRQSetRisingEdge (const uint8 t irg no, const uint8 t set r edge)
{
if (1 == set r edge)
{
ICU.IRQCR[irg no] .BYTE |= 08 ICU IRQ EDGE RISING;

}

else

{
ICU.IRQCR[irg no] .BYTE &= (uint8 t) ~ 08 ICU IRQ EDGE RISING;

/**

* End of function R ICU IRQSetRisingEdge

LR EEE RS SRR EE SRR EE AR EEE RSt EEE Rt

/* End user code. Do not edit comment generated here */

R20UT4442EG0100 Rev. 1.00 RRENESAS
Nov.29.19

Page 47 of 66

Renesas Starter Kit+ for RX72N 5. User Code Integration

Open the Config_ICU_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r rsk switch.h"

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function
r_Config_ICU_irqg13_interrupt:

/* Start user code for r Config ICU irqgl3 interrupt. Do not edit comment generated here */

/* Switch 1 callback handler */
R_SWITCH IsrCallbackl();

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function
r_Config_ICU_irg12_interrupt:

/* Start user code for r Config ICU irgl2 interrupt. Do not edit comment generated here */

/* Switch 2 callback handler */
R SWITCH IsrCallback2();

/* End user code. Do not edit comment generated here */

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 48 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

5.4.2 De-bounce Timer Code

In the e? studio Project Tree, expand the ‘src\smc_gen\Config CMT1 folder and open the
‘Config_CMT1_user.c’ file and insert the following code in the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r_ rsk switch.h"

/* End user code. Do not edit comment generated here */

In the Config CMT1_user.c’ file, insert the following code in the user code area inside the function
r_Config_ CMT1_cmi1_interrupt:

/* Start user code for r Config CMT1 cmil interrupt. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R Config CMT1 Stop();

/* Call the de-bounce call back routine */
R_SWITCH_ DebouncelIsrCallback();

/* End user code. Do not edit comment generated here */

In the e? studio Project Tree, expand the ‘src\smc_gen\Config CMT2' folder and open the file
‘Config CMT2_user.c’ file and insert the following code in the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r_ rsk switch.h"

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function
r_Config_ CMT2_cmi2_interrupt:

/* Start user code for r Config CMT2 cmi2 interrupt. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R Config CMT2 Stop();

/* Call the de-bounce call back routine */
R_SWITCH DebouncelIsrCallback();

/* End user code. Do not edit comment generated here */

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 49 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

543 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In §4.5.7 we configured the ADC to be triggered from the ADTRGO# pin, SW3. In this
code, we also perform software triggered A/D conversion from the user switches SW1 and SW2, by
reconfiguring the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the e2 studio Project Tree, expand the ‘src\smc_gen\general’ folder and open the file r_cg_userdefine.h’.
Insert the following code the user code area, resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

extern volatile uint8_t g_adc_trigger;

/* End user code. Do not edit comment generated here */

In the e2 studio Project Tree, expand the ‘src’ folder and Open the file ‘SC_Tutorial.c’ and add the highlighted
code, resulting in the code shown below:

#include "r smc entry.h"
finclude "r okaya lcd.h"
#include "r cg userdefine.h"

#include "Config S12ADO.h"
#include "r rsk switch.h"

/* Variable for flagging user requested ADC conversion */
volatile uint8 t g adc_trigger = FALSE;

/* Prototype declaration for cb switch press */
static void cb_switch press (void);

/* Prototype declaration for get adc */
static uintl6 t get adc(void);

/* Prototype declaration for lcd display adc */
static void lcd display adc (const uintl6 t adc result);

R20UT4442EG0100 Rev. 1.00 :{EN ESNS Page 50 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

Next add the highlighted code below in the main function and the code inside the while loop, resulting in the
code shown below:

void main (void)

{
/* Initialize the switch module */
R_SWITCH Init();

/* Set the call back function when SWl1 or SW2 is pressed */
R_SWITCH SetPressCallback(cb switch press);

/* Initialize the debug LCD */
R LCD Init ();

/* Displays the application name on the debug LCD */
R _LCD Display (0, (uint8 t *)" RSK+RX72N ");

R _LCD Display(l, (uint8 t *)" Tutorial ");

R_LCD Display(2, (uint8 t *)" Press Any Switch ");

/* Start the A/D converter */
R Config S12AD0_Start();

while (10U)
{

uintl6é t adc result;

/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g adc_ trigger)
{

/* Call the function to perform an A/D conversion */

adc_result = get adc();

/* Display the result on the LCD */
lcd display adc(adc result);

/* Reset the flag */
g_adc_trigger = FALSE;
}
/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g adc complete)
{
/* Get the result of the A/D conversion */
R_Config S12AD0_Get_ ValueResult (ADCHANNELO, &adc_result);

/* Display the result on the LCD */
lcd display adc(adc_result);

/* Reset the flag */
g_adc_complete = FALSE;
}
else
{
/* do nothing */
}

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 51 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

Then add the definition for the switch call-back, get adc and lcd_display_adc functions below the main

function, as shown below:

R e

* Function Name : cb switch press

* Description : Switch press callback function. Sets g_adc trigger flag.
* Argument : none
* Return value : none

**/

static void cb_switch press (void)

{
/* Check if switch 1 or 2 was pressed */
if (g switch flag & (SWITCHPRESS 1 | SWITCHPRESS 2))
{

/* set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;

/* Clear flag */
g_switch flag = 0x0;
}
}

/‘k************************

* End of function cb switch press
**/

/**

* Function Name : get adc

* Description : Reads the ADC result, converts it to a string and displays
* it on the LCD panel.

* Argument : none

* Return value : uintl6é t adc value

**/
static uintl6 t get adc (void)
{

/* A variable to retrieve the adc result */

uintl6é t adc result;

/* Stop the A/D converter being triggered from the pin ADTRGOn */
R Config S12AD0 Stop();

/* Start a conversion */
R S12AD0 SWTriggerStart();

/* Wait for the A/D conversion to complete */
while (FALSE == g adc_complete)
{
/* Wait */
nop () ;
}

/* Stop conversion */
R_S12AD0_SWTriggerStop () ;

/* Clear ADC flag */
g_adc_complete = FALSE;

R Config S12AD0_Get ValueResult (ADCHANNELO, &adc_result);

/* Set AD conversion start trigger source back to ADTRGOn pin */
R Config S12AD0 Start();

return (adc_result);

}

R KK KK K K K K K K K R K K Kk K K K ok K R K R K R R ok K kK R R ok K R ok ok ok K K R ok R kK Rk Rk kK Rk R Rk K

* End of function get adc
Ak hkhkhkhkkhkhkhhkhkkhkhkhkhkhhhkhkhkhhhhkhkhhkhhkhkhhkhhkhkhhkhhkhkhkhkhhkhkhkhkhkhkhkhkhkhhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkx

R20UT4442EG0100 Rev. 1.00 RRENESAS
Nov.29.19

Page 52 of 66

Renesas Starter Kit+ for RX72N 5. User Code Integration

/**

* Function Name : lcd display adc

* Description : Converts adc result to a string and displays
* it on the LCD panel.

* Argument : uintl6_t adc result

* Return value : none

**/

static void lcd display adc (const uintlé_t adc_result)
{

/* Declare a temporary variable */
char t a;

/* Declare temporary character string */
char_t lcd buffer[11] = " ADC: XXXH";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char_t) ((adc_result & 0x0F00) >> 8);

lcd buffer[6] = (a < 0x0A) ? (a + 0x30) : (a + 0x37);
a = (char t) ((adc_result & 0xO00FO0) >> 4);

lcd buffer[7] = (a < 0xOA) 2 (a + 0x30) : (a + 0x37);
a = (char t) (adc_result & 0x000F);

lcd buffer[8] = (a < 0x0A) ? (a + 0x30) : (a + 0x37);

/* Display the contents of the local string lcd buffer */
R _LCD Display (3, (uint8 t *)lcd buffer);
}

/'k***

* End of function lcd display adc
**/

In the e? studio Project Tree, expand the ‘src\smc_gen\general’ folder and open the file ‘r_cg_userdefine.h’ by
double-clicking on it. Insert the following type define in between the user code delimiter comments as shown
below.

/* Start user code for type define. Do not edit comment generated here */

typedef char char t;

/* End user code. Do not edit comment generated here */

In the e? studio Project Tree, expand the ‘src\smc_gen\Config S12ADOQ’ folder and open the file
‘Config_S12ADO0.h’ by double-clicking on it. Insert the following code in the user code area for function,
resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8 t g adc complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R _S12AD0_SWTriggerStart (void);
void R S12AD0 SWTriggerStop (void) ;

/* End user code. Do not edit comment generated here */

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 53 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

Open the file ‘Config_S12ADO0.c’ by double-clicking on it. Insert the following code in the user code area for
adding at the end of the file, as shown below:

/* Start user code for adding. Do not edit comment generated here */

/***
* Function Name: R S12AD0 SWTriggerStart

* Description : This function starts the ADO converter.

* Arguments : None

* Return Value : None
***/

void R _S12AD0_SWTriggerStart (void)
{
IR (PERIB, INTB186) = 0U;
IEN (PERIB, INTB186) = 1U;
S12AD.ADCSR.BIT.ADST = 1U;
}

VAREEEEEEE Rt SRR R EE Rt e R R R EE Rttt EREEE e EEE Rt

End of function R S12AD0_SWTriggerStart

‘k**************************/

VAREEEEEEE R SRR R R EE Rt e R R R EE Rt EREEE Rttt EEE Rt

* Function Name: R S12AD0 SWTriggerStop
* Description : This function stops the ADO converter.
* Arguments : None

* Return Value : None
***/

void R S12AD0_SWTriggerStop (void)

{
S12AD.ADCSR.BIT.ADST = 0U;
IEN (PERIB, INTB186) = 0U;
IR(PERIB, INTB186) = 0U;

}

VAREEEEEEE Rt SRR R R EE e R R R EE R Rt EREEE Rttt EEE Rt

End of function R S12AD0 SWTriggerStop

‘k**************************/

/* End user code. Do not edit comment generated here */

Open the file Config_S12ADO0_user.c and insert the following code in the user code area for global, resulting in
the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
volatile uint8 t g adc complete;

/* End user code. Do not edit comment generated here */
Insert the following code in the user code area of the r_Config_S12ADO0_interrupt function, resulting in the
code shown below:

static void r Config S12AD0 interrupt (void)
{

/* Start user code for r Config S12AD0 interrupt. Do not edit comment generated here */
g_adc_complete = TRUE;

/* End user code. Do not edit comment generated here */

-

Select ‘Build Project’ from the ‘Project’ menu or use the % button. e? studio will build the project with no
errors.

The project may now be run using the debugger as described in §6. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the RV1 potentiometer line and display the
result on the LCD panel. Return to this point in the Tutorial to add the UART user code.

R20UT4442EG0100 Rev. 1.00 :{EN ESNS Page 54 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

5.5 Debug Code Integration

API functions for trace debugging via the RSK+ serial port are provided with the RSK+. Refer to the Tutorial
project folder created according to the Quick Start Guide procedure. Check that the following files are in the
src folder:

r_rsk_debug.c

r_rsk_debug.h

Copy these files in to the src folder below the workspace.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SERIAL_ DEBUG WRITE (R _SCI9 AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

5.6 UART Code Integration

5.6.1 SCI Code

In the e? studio Project Tree, expand the ‘src\smc_gen\Config_SCI9’ folder and open the file ‘Config_SCI9.h’
by double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD STATUS R _SCI9 AsyncTransmit (uint8 t * const tx buf, const uintl6 t tx num);

/* Character is used to receive key presses from PC terminal */
extern uint8 t g rx char;

/* End user code. Do not edit comment generated here */

Open the file ‘Config_SCI9_user.c’. Insert the following code in the user area for global near the beginning of
the file:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8 t g_rx char;

/* Flag used locally to detect transmission complete */
static volatile uint8 t s sci9 txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the
r_Config_SCI9_callback_transmitend function:
static void r Config SCIS callback transmitend (void)
{
/* Start user code for r Config SCI9 callback transmitend. Do not edit comment generated here */

s_sci9 txdone = TRUE;

/* End user code. Do not edit comment generated here */

R20UT4442EG0100 Rev. 1.00 :{EN ESNS Page 55 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

In the same file, insert the following code in the user code area inside the
r_Config_SCI9_callback_receiveend function:

static void r Config SCIS callback receiveend(void)

{

/* Start user code for r Config SCI9 callback receiveend. Do not edit comment generated here */

/* Check the contents of g rx char */
if (('c' == g rx char) || ('C' == g rx char))
{
g_adc_trigger = TRUE;
}

/* Set up SCI9 receive buffer and callback function again */
R Config SCI9 Serial Receive((uint8 t *)&g rx char, 1);

/* End user code. Do not edit comment generated here */

At the end of the file, in the user code area for adding, add the following function definition:

/***‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k************************

* Function Name: R SCI9 AsyncTransmit

* Description : This function sends SCI9 data and waits for the transmit end flag.
* Arguments : tx buf -

* transfer buffer pointer

* tx num -

* buffer size

* Return Value : status -

* MD OK or MD ARGERROR

***********************:********:********‘k*‘k******‘k****************************/
MD_STATUS R_SCIS AsyncTransmit (uint8 t * const tx buf, const uintl6_t tx_ num)

{
MD_STATUS status = MD_OK;

/* Clear the flag before initiating a new transmission */
s _sci9 txdone = FALSE;

/* Send the data using the API */
status = R Config SCI9 Serial Send(tx buf, tx num);

/* Wait for the transmit end flag */
while (FALSE == s_sci9 txdone)
{
/* Wait */
}

return (status);

}

/***

* End of function R SCI9 AsyncTransmit

KKK KK KKK KKK KKK KKK KKK K K K KR KK K K K KR KKK K R A A A KKK KA R KKK KA XA KK KA AXAK KKK AXA KKK KA XK KKK/

5.6.2 Main UART code

Open the file ‘SC_Tutorial.c’. Add the following declaration to near the top of the file:

#include "r smc _entry.h"
#include "r okaya lcd.h"
#include "r cg userdefine.h"
#include "Config S12AD0.h"
#include "r rsk switch.h"
#include "r rsk debug.h"
#include "Config SCI9.h"

/* Variable for flagging user requested ADC conversion */
volatile uint8 t g adc_trigger = FALSE;

/* Prototype declaration for cb_switch press */
static void cb_switch press (void);

/* Prototype declaration for get adc */
static uintl6 t get adc(void);

R20UT4442EG0100 Rev. 1.00 RRENESAS
Nov.29.19

Page 56 of 66

Renesas Starter Kit+ for RX72N

5. User Code Integration

/* Prototype declaration for lcd display adc */
static void lcd display adc (const uintlé_t adc_result);

/* Prototype declaration for uart display adc */

static void uart display adc(const uint8 t adc count, const uintl6é t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8 t s_adc count = 0;

Add the following highlighted code in the main function:

void main (void)

{
/* Initialize the switch module */
R SWITCH Tnit();

/* Set the call back function when SW1l or SW2 is pressed */
R_SWITCH_SetPressCallback(cb_switch_press);

/* Initialize the debug LCD */
R _LCD Init();

/* Displays the application name on the debug LCD */
R _LCD Display (0, (uint8 t *)'" RSK+RX72N ");

R_LCD Display(l, (uint8 t *)" Tutorial ");

R_LCD Display(2, (uint8 t *)" Press Any Switch ");

/* Start the A/D converter */
R _Config S12AD0_Start();

/* Set up SCI9 receive buffer and callback function */
R Config SCI9 Serial Receive((uint8 t *)&g rx char, 1);

/* Enable SCI9 operations */
R Config SCI9 Start():;

while (10)
{

uintlé_t adc_result;

/* Wait for user requested A/D conversion flag to be set (SWl1 or SW2)
if (TRUE == g_adc_trigger)
{

/* Call the function to perform an A/D conversion */

adc_result = get_adc();

/* Display the result on the LCD */
lcd display_adc(adc_result);

/* Increment the s_adc_count */
if (16 == (++s_adc_count))
{

s_adc_count = 0;

}

/* Send the result to the UART */
uart display adc(s_adc_count, adc result);

/* Reset the flag */
g _adc_trigger = FALSE;
}
/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g adc complete)
{
/* Get the result of the A/D conversion */
R Config S12AD0O_Get ValueResult (ADCHANNELO, &adc_result);

/* Display the result on the LCD */
lcd display_adc(adc_result);

/* Increment the s_adc_count */
if (16 == (++s_adc _count))
{

s_adc_count = 0;

}

/* Send the result to the UART */
uart display adc(s_adc_count, adc result);

*/

R20UT4442EG0100 Rev. 1.00 RRENESAS
Nov.29.19

Page 57 of 66

Renesas Starter Kit+ for RX72N

5. User Code Integration

/* Reset the flag */
g_adc_complete = FALSE;
}

else

{
/* do nothing */
}

Then, add the following function definition in the end of the file:

VAR AR AR EEEEE RS E R e E R R e

* Function Name : uart display adc

* Description : Converts adc result to a string and sends it to the UART.
* Argument : uint8 t : adc count

* uintlé t: adc result

* Return value : none

‘k***********************/

static void uart display adc (const uint8 t adc_count, const uintlé_t adc_result)

{

/* Declare a temporary variable */
char_t a;

/* Declare temporary character string */
char t uart buffer[] = "ADC xH Value: xxxH\r\n";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char t) (adc_count & 0x000F);

uart buffer[4] = (a < 0x0A) ? (a + 0x30) : (a + 0x37);
a = (char_t) ((adc_result & 0x0F00) >> 8);

uart buffer[14] = (a < 0x0A) ? (a + 0x30) : (a + 0x37);
a = (char t) ((adc_result & 0xO00FO0) >> 4);

uart buffer[15] = (a < 0x0A) ? (a + 0x30) : (a + 0x37);
a = (char_t) (adc_result & 0xO000F);

uart buffer[l6] = (a < 0x0A) ? (a + 0x30) : (a + 0x37);

/* Send the string to the UART */
r debug print (uart buffer);
}

/‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k********************************‘k‘k‘k‘k************************

* End of function uart display adc

LR EEE SRR E R AR R R R R R R

Select ‘Build Project’ from the ‘Project’ menu. e? studio will build the project with no errors.

The project may now be run using the debugger as described in §6. Connect the RSK+ G1CUSBO port to a
USB port on a PC. If this is the first time the RSK+ has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will be appeared under 'Port (COM &

LPT) as 'RSK+ USB Serial Port (COMx)", where x is a number.

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI9 (Baudrate:

19200, Data Length: 8, Parity Bit: None, Stop Bit: 1, Flow Control: None).

When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the RV1 potentiometer line and display the result on the LCD panel and send the result

to the PC terminal program via the SCI9.

R20UT4442EG0100 Rev. 1.00 RRENESAS
Nov.29.19

Page 58 of 66

Renesas Starter Kit+ for RX72N 5. User Code Integration

5.7 LED Code Integration

Open the file ‘SC_Tutorial.c’. Add the following declaration to the near the top of the file:

#include "r smc _entry.h"
#include "r okaya lcd.h"
#include "r cg userdefine.h"
#include "Config S12ADO.h"
#include "r rsk switch.h"
#include "r rsk debug.h"
#include "Config SCI9.h"
#include "rskrx72ndef.h"

/* Variable for flagging user requested ADC conversion */
volatile uint8 t g adc_trigger = FALSE;

/* Prototype declaration for cb_switch press */
static void cb switch press (void);

/* Prototype declaration for get adc */
static uintl6_t get adc(void);

/* Prototype declaration for lcd display adc */
static void lcd display adc (const uintlé_t adc_result);

/* Prototype declaration for uart display adc */
static void uart display adc(const uint8 t adc count, const uintl6 t adc result);

/* Variable to store the A/D conversion count for user display */
static uint8 t s_adc_count = 0;

/* Prototype declaration for led display count */
static void led display count (const uint8 t count);

Add the following highlighted code in the main function:

void main (void)

{
/* Initialize the switch module */
R SWITCH Tnit();

/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH SetPressCallback(cb_switch press);

/* Initialize the debug LCD */
R _LCD_Init();

/* Displays the application name on the debug LCD */
R _LCD Display(0, (uint8 t *)" RSK+RX72N ");

R_LCD Display(l, (uint8 t *)" Tutorial ");

R_LCD Display(2, (uint8 t *)" Press Any Switch ");

/* Start the A/D converter */
R Config S12AD0O Start();

/* Set up SCI9 receive buffer and callback function */
R _Config SCI9 Serial Receive((uint8_ t *)&g_rx char, 1);

/* Enable SCI9 operations */
R _Config SCI9 Start();

while (10)
{

uintl6_t adc_result;

/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g_adc trigger)
{

/* Call the function to perform an A/D conversion */

adc_result = get adc();

/* Display the result on the LCD */
lcd display adc(adc result);

R20UT4442EG0100 Rev. 1.00 RENESAS Page 59 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 5. User Code Integration

/* Increment the s _adc_count and display using the LEDs */
if (16 == (++s_adc_count))
{
s_adc_count = 0;
}

led display count (s_adc count);

/* Send the result to the UART */
uart display adc(s_adc_count, adc result);
/* Reset the flag */
g _adc_trigger = FALSE;
}
/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g adc complete)
{
/* Get the result of the A/D conversion */
R Config S12AD0_Get ValueResult (ADCHANNELO, &adc_result);

/* Display the result on the LCD */
lcd display_adc(adc_result);

/* Increment the s_adc_count and display using the LEDs */
if (16 == (++s_adc_count))
{
s_adc_count = 0;
}

led display count (s_adc count);

/* Send the result to the UART */
uart display adc(s_adc count, adc result);
/* Reset the flag */
g_adc_complete = FALSE;
}

else

{
/* do nothing */
}

Then, add the following function definition at the end of the file:

KKk ko k ok ok kK A A K K Kk ko ok ok ok ok kR A A A K K K Kk ko ko k ok ok ok R A AR K K K Kk ko k ok ok ok ok kA A A K K Kk ok ko k ok ok ok ok

* Function Name : led display count

* Description : Converts count to binary and displays on 4 LEDSO0-3
* Argument : uint8 t count

* Return value : none

**/
static void led display count (const uint8 t count)

{

/* Set LEDs according to lower nibble of count parameter */

LEDO = (uint8 t) ((count & 0x01) ? LED ON : LED OFF);
LEDL = (uint8 t) ((count & 0x02) ? LED ON : LED OFF);
LED2 = (uint8_t) ((count & 0x04) ? LED ON : LED OFF);
LED3 = (uint8 t) ((count & 0x08) ? LED ON : LED OFF);

}

/**

* End of function led display count
Kk hkkhkhkhkhkhkhkhhk Ak hkhkhhkhhk bk hhkhdk bk hhk bk hkhkh ok bk hkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkkhkhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkkkkkx

|

Select ‘Build Project’ from the ‘Project’ menu or use the " ® ~ button. e? studio will build the project with no

errors.

The project may now be run using the debugger as described in §6. The code will perform the same but now
the LEDs will display the s_adc_count in binary form.

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 60 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 6. Debugging the Project

6. Debugging the Project

In the Project Explorer pane, ensure that the ‘SC_Tutorial’ project is selected. To enter the configurations,

click upon the arrow next to the debug button: #E and select ‘Debug Configuration’.

e’ Debug Configurations

Create, manage, and run configurations

CExX B2~ Mame: [SC_Tutorial HardwareDebug |

type filter text Main . %# Debugger| b= Startup| B~ Source|] Common
[T] €/C+~+ Application
[T] C/C++ Remote Application
] EASE Script |5C_Tutor|a\ Browse...
[] GDB Hardware Debugging
[£7] GDB Simulator Debugging (RHE50)
Java Applet
Java Application Variables... Search Project... Browse...
& Launch Group
[Launch Group (Deprecated)

Project:

C/C++ Application:

| HardwareDebug/SC_Tutorial.x

Build (if required) before launching

Remote Java Application Build Configuration: | Select Automatically 7
v [£7] Renesas GDB Hardware Debugging
7 SC_Tutorial HardwareDebug (O) Enable auto build () Disable auto build
[£*] Renesas Simulator Debugging (RX, RL78) (8) Use workspace settings Configure Workspace Settings...

Revert Appl
Filter matched 13 of 15 items cyel pply

Figure 6-1 Debug Configurations

In order to execute the project, it is necessary to change the following settings in ‘Renesas GDB Hardware
Debugging’ -> ‘SC_Tutorial HardwareDebug’ -> ‘Debugger’ -> ‘Connection Settings’.

Set ‘Power Target From The Emulator (MAX 200mA)’ to ‘No’, set ‘Extal Frequency [MHz]' and 'Operating
Frequency [MHz] to the correct frequency. (They should not use the 'Enter' key after typing in values.)

These can be found from the device schematics (in the case of RSK+RX72N set the EXTAL Frequency:
24.0000, Operating Frequency: 240.000).

For more information on powering the RSK+RX72N please refer to the User's Manual.

e’ Debug Configurations

Create, manage, and run configurations

CEX B3~ Name: [SC_Tutorial HardwareDebug
type filter text [E] Main | %% Debugger = Startup| %+ Source|] Common
[T] C/C++ Application
(5] C/Ce+ Remote Application Debug hardware: | E2 Lite (RX) ~ | Target Device: | RSFS72NN
=/ EASE Script
[E] GDB Hardware Debugging GDB SEttings Debug Tool Settings
[£7] GDB Simulator Debugging (RH350) v Clock ~
Java Applet Main Clock Source [ETEC] v
Java Application Extal Frequency[MHz] m
g Launch Group Operating Frequency [MHz] @
B Launch Group (Deprecated) Permit Clock Source Change On Writing Interna Ves v
Remote Java Application + Connection with Target Board
v [t Renesas GDB Hardware Debugging Emulator (Auto)
[£7] SC_Tutorial HardwareDebug Connection Type ITag v
[E7] Renesas Simulator Debugging (RX, RL78) ITag Clock Frequency[MHz] 6.00 v
Fine Baud Rate[Mbps] 150
Hot Plug Ne ©
v Power
Power Target From The Emulator (MAX EDDmA)E v
Supply Voltage (V) 33
~ CPU Operating Mode
Register Setting Single Chip i

Figure 6-2 Connection Settings

When the setting is complete, press the 'Apply' button followed by the "Close" button to close the debug
configuration window.

R20UT4442EG0100 Rev. 1.00 REN ESNS Page 61 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 6. Debugging the Project

Connect the E2 Lite to the PC and the RSK+ E1/E2 Lite connector. Connect the Pmod LCD to the PMOD1
connector. Connect the center positive +5V PSU to the PWR connector on the RSK+ and apply power.
In the Project Explorer pane, ensure that the ‘SC_Tutorial’ project is selected. To debug the project, click the

button. The dialog shown in Figure 6-3 will be displayed.

e? Confirm Perspective Switch

This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Do you want to open this perspective now?

Yes No

Figure 6-3 Perspective Switch Dialog

Click ‘Remember my decision’ to skip this dialog later. Click ‘Yes’ to confirm that the debug window
perspective will be used. The debugger will start up and the code will stop at the Smart Configurator function
‘PowerOn_Reset PC’ as shown in Figure 6-4.

e? Workspace - 5C_Tutorial/src/smec_gen/r_bsp/meu/all/resetprg.c - € studio

File Edit Source Refactor Mavigate Search Project Renesas Views Run Window Help

45 Debug v | | &9 SC_Tutorial HardwareDebug w A | o & \
3 3 - - to oo -
4 Debug 52 |i={>|6><9 =0
w [E7 SC_Tutorial HardwareDebug [Renesas GDB Hardware Debugging]
w E SC_Tutorialx [1] [cores: 0]
~ f® Thread #1 1 (single core) [core: 0] (Suspended : Signal : SIGTRAP:Trace/breakpoint trap)
= PowerOM_Reset_PC() at resetprg.c:188 Oxffc02831
s ne-elf-gdb -me-force-isa=v3 -ne-force-double-fpu (7.8.2)
s | Renesas GDB server (Host)

[resetprg.c B2 = 8

188 fce2831 - R_BSP_POR_FUNCTION(R_BSP_STARTUP_FUNCTION) ~
189 {

198 /* Stack peinters are setup prior to calling this function - see comments at
191

192 = /* You can use auto variables in this funcion but such variables other than
193 * will be unavailable after you change the stack from the I stack to the U
194

195 = /* The bss sections have not been cleared and the data sections have not bee
196 * and constructors of C++ objects have not been executed until the _INITSCT
197 - #if defined(_ GNUC_)

198 = #if BSP_CFG_USER_STACK_ENABLE ==

199 INTERMNAL_NOT_USED(ustack_area);

200 #endif

281 INTERNAL_NOT_USED(istack_area);

202 #endif

283

284 = #if defined(__CCRX_) || defined({__GNUC_)

285

286 /* Initialize the Interrupt Table Register */

207 ffc@283f R_BSP_SET_INTB(R_BSP_SECTOP_INTVECTTBL);

288

289 = #ifdef BSP_MCU_EXCEPTION_TABLE

218 /* Initialize the Exception Table Register */

211 ffce2848 R_BSP_SET_EXTB(R_BSP_SECTOP_EXCEPTVECTTBEL);

212 #endif W

Figure 6-4 Debugger start up screen

For more information on the e? studio debugger refer to the Tutorial manual. To run the code click the L
button. The debugger will stop again at the beginning of the main function. Press lF again to run the code.

R20UT4442EG0100 Rev. 1.00 RRENESAS Page 62 of 66
Nov.29.19

Renesas Starter Kit+ for RX72N 7. Additional Information

7. Additional Information

Technical Support

the help file by opening e? studio, then Window | Help
selecting Help > Help Contents from the T
menu bar. i [q@ Welcome

(7) Help Contents

|- !

4" Search

Show Contextual Help

For information about the RX72N group microcontroller refer to ‘RX72N Group User’s Manual: Hardware’.
For information about the RX assembly language, refer to ‘RX Family User’s Manual: Software’.
Technical Contact Details

Please refer to the contact details listed in section 8 of the “Quick Start Guide”.

General information on Renesas microcontrollers can be found on the Renesas website at:
https://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe GmbH.

© 2019 Renesas Electronics Europe GmbH. All rights reserved.
© 2019 Renesas Electronics Corporation. All rights reserved.

R20UT4442EG0100 Rev. 1.00 RENESAS Page 63 of 66
Nov.29.19

https://www.renesas.com/

REVISION HISTORY

RX72N Group
Renesas Starter Kit+ for RX72N
Smart Configurator Tutorial Manual For e? studio

Rev.

Date

Description

Page

Summary

1.00

Nov.29.19

First Edition issued

C-1

RX72N Group
Renesas Starter Kit+ for RX72N
Smart Configurator Tutorial Manual For e? studio

Publication Date: Rev. 1.00 Nov.29.19

Published by: Renesas Electronics Corporation

RX72N Group

LENESAS

Renesas Electronics Corporation R20UT4442EG0100

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with e2 studio
	3.1 Introduction
	3.2 Creating the Project

	4. Smart Configurator Using the e2 studio
	4.1 Introduction
	4.2 Project Configuration using Smart Configurator
	4.3 The ‘Board’ tabbed page
	4.3.1 Board configuration page

	4.4 The ‘Clocks’ tabbed page
	4.4.1 Clocks configuration

	4.5 The ‘Components’ tabbed page
	4.5.1 Add a software component into the project
	4.5.2 Compare Match Timer
	4.5.3 Interrupt Controller
	4.5.4 Ports
	4.5.5 SCI/SCIF Asynchronous Mode
	4.5.6 SPI Clock Synchronous Mode
	4.5.7 Single Scan Mode S12AD

	4.6 The ‘Pins’ tabbed page
	4.6.1 Change pin assignment of a software component

	4.7 Building the Project

	5. User Code Integration
	5.1 Project Settings
	5.2 LCD Code Integration
	5.2.1 SPI Code
	5.2.2 CMT Code

	5.3 Additional include paths
	5.4 Switch Code Integration
	5.4.1 Interrupt Code
	5.4.2 De-bounce Timer Code
	5.4.3 Main Switch and ADC Code

	5.5 Debug Code Integration
	5.6 UART Code Integration
	5.6.1 SCI Code
	5.6.2 Main UART code

	5.7 LED Code Integration

	6. Debugging the Project
	7. Additional Information

