LENESAS

-
0
@
ﬁ\l
7
<
Q
5
-
Q

CC-RH

Compiler
User's Manual

Applicable Revision
V1.00.00 to V2.06.00

Target Device
RH850 Family

Target CPU Cores:
G3M, G3K, G3MH, G3KH, G4MH

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.11 2023.12



Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact Information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

© 2023 Renesas Electronics Corporation. All rights reserved.



How to Use This Manual

This manual describes the role of the CC-RH compiler for developing applications and systems for RH850 family, and
provides an outline of its features.

Readers This manual is intended for users who wish to understand the functions of the CC-RH and
design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the CC-RH to
use for reference in developing the hardware or software of systems using these devices.

Organization This manual can be broadly divided into the following units.
1.GENERAL
2.COMMAND REFERENCE
3.0UTPUT FILES
4.COMPILER LANGUAGE SPECIFICATIONS
5.ASSEMBLY LANGUAGE SPECIFICATIONS
6.SECTION SPECIFICATIONS
7.LIBRARY FUNCTIONAL SPECIFICATIONS
8.STARTUP
9.FUNCTION CALL INTERFACE SPECIFICATIONS
10.MESSAGE
11.CAUTIONS
A.QUICK GUIDE

How to Read This Manual Itis assumed that the readers of this manual have general knowledge of electricity, logic
circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remarks: Supplementary information
Numeric representation: Decimal ... XXXX

Hexadecimal ... OxXXXX



TABLE OF CONTENTS

1. GENERAL . .. e 10
11 OULIINE .« . o 10
1.2 Special FeatUreS . . . . . o 10
13 COPYIIgNS .« o ot 10
1.4 T 10
15 Standard and Professional EQIitioNS. . . . ... ... 10
1.6 Free Evaluation EdIitioNS . . . ... ..o 11

2. COMMAND REFERENCE . . . . ... . e 12
2.1 OVBIVIBW .« . oottt e e e e e e e 12
2.2 O RIS o 13
2.3 Environment Variable. . . ... .. 15
2.4 Method for Manipulating . . . .. ... 16

241 Command liNe OPeration. . . . . . ..ot e 16
2.4.2 Subcommand file USage . . .. ...t e e 18
25 ODtION o et e 19
251 Compile OPLIONS . . .o e 20
252 ASSEMDIE OPHIONS . . . o o 132
253 LINK OPHIONS. o .ttt 170
2.6 Specifying Multiple OptioNS . . . ... oo e 249
26.1 PNy .« o o 249
2.6.2 Incompatible features . . ... . e 249
2.6.3 DEPENAENCIES. . . .ot 249
26.4 Relationship with #pragma direCtives . . . . ... .. 250

3. OUTPUT FILES . . . . e 251

3.1 Assemble LISt File . ... ... 251
311 Structure of the assemble liSt . . .. ... .. 251
31.2 ASSEMDBIE lISt. . . o o 251
3.13 SBCHION ISt . . oo 252
3.14 Command line information . . . . ... ... . 252

3.2 LINK Map File . . . .o e 253
3.2.1 Structure Of INK Map. . . ... e e e e 253
3.2.2 Option INFOrMALION . . . . . e 253
3.23 Error information. . . . ... . 254
3.24 Link map information . . ... ... . 254
3.25 Total SECHON SIZE . . ..o 255
3.2.6 Symbol information. . . . ... . 255



3.2.7 Contents of the FUNCLION LISt . . . ... ... . . e e e e 258

3.2.8 Cross reference information . . ... ... . . 258
3.2.9 CRCINfOIMALION . . . . .ot e 259
3.3 Link Map File (When Objects Are Combined) . . . ... ..ot e 260
331 Structure of INK Map. . . . ..o e 260
3.3.2 Header information . . . ... ... 260
3.3.3 OptioN INfOrMaAtioN . . .. e 260
3.34 Error information. . .. ... o 261
3.35 ENtry INfOrmation. . . . ... 261
3.3.6 Combined address information. . . . ... ... 261
3.37 Address overlap information. . . ... ... 262
3.4 Library List File. . ..o 263
34.1 Structure of the library liSt. . . . ... e 263
3.4.2 OPtioN INfOrMaAtioN . ... . e 263
3.4.3 Error iINformation. . . . ... 264
3.4.4 Library information . . ... ... 264
345 Module, section, and symbol information withinthe library ... ....... ... ... ... . . . . . . . . ... 265
35 Intel HEX File. .o e 266
351 Structure of the Intel HEX file . . . . ..o 266
352 Start linear addreSS reCOrd . . . . . ..ot 267
3,53 Expanded linear address reCord. . . . ... ..ot 267
354 Start addreSS rECOIA . . . . ..ot 268
3.55 Expanded addresSs reCord. . . ... ..ot 268
3.5.6 DAt FECOIT. . . . ottt 269
3.5.7 ENO r8CONd . . ..o 269
3.6 Motorola S-record File . . . .. ..o 271
36.1 Structure of the Motorola S-record file . ... ... . 271
3.6.2 SO TECOIA . . .ot 272
3.6.3 SLTECOMA . . ottt 272
3.6.4 S2 TBCOIA . . oot 273
3.6.5 S MBCON . et 273
3.6.6 ST TBCOIA . . oot 273
3.6.7 SBIIECONA . . ottt 274
3.6.8 SO TECOIA . . oot 274
COMPILER LANGUAGE SPECIFICATIONS. . ... ... e 275

4.1 Basic Language SpecCifications . .. .. ... e 275
41.1 Implementation-defined behavior of C90 . ... ... ... . . 275
41.2 Implementation-defined behavior of C99 . . . . .. .. . ... L 283
4.1.3 Internal representation and value areaofdata. . .. ... . 298
41.4 REgIStEr MO . . .o e 305

4.2 Extended Language SpecCifiCations . . . . ... ..ot 307



421 RESEIVEA WOIS . . . . ot e e 307
42.2 VIO . . 307
4.2.3 C99 language specifications supported in conjunctionwithC90 ... ................. ... .. ..... 308
424 Compiler generated Symbols . . .. ... 309
425 Hpragma direCtiVe . . . . . o 310
4.2.6 Using extended language Specifications . ... ..... ... .ttt 311
4.26.1 Allocation of function and data to SECtion . . .......... .ttt 312
4.2.6.2 Describing assembler inStruction. . . .. .. ..o 319
4.2.6.3 INlINE EXPANSION. . . . o e 321
4.2.6.4 Controlling interrupt leVel. . . ... . 324
4.2.6.5 Interrupt/Exception processing handler. . . ... 325
4.2.6.6 Disabling or enabling maskable interrupts. . . . ... .. 333
4.2.6.7 INtriNSIC fUNCHONS. . . . . o e e 335
4.2.6.8 Structure type PacCKiNg. . . . ..ot 337
4.2.6.9 Bit field assignment . . . ... 346
4.2.6.10 Core number specification (for a multi-core device) . .......... .. . i 348
426.11 Specifying alignment value for branch destination addresses. .. .............. ... ... ..... 351
4.2.6.12 Detection of stack smashing [Professional Editiononly]............. ... .. ... .. ....... 352
4.2.6.13 Half-precision floating-point type [Professional Edition only] [V1.05.00 or later]............... 354
4.2.6.14 Detection of writing to control registers or insertion of synchronization processing [Professional Edi-
tion only] [V1.06.00 or later]356
4.2.7 Modification Of C SOUICE . . . ...ttt e e 359
ASSEMBLY LANGUAGE SPECIFICATIONS. .. ... ... . 360
5.1 DESCrPtioN Of SOUICE. . . . .t oo e 360
511 DESCIIPHON o ottt e e 360
5.1.2 EXPressions and OPeratorS. . . . . ...ttt e e 365
5.1.3 ArtNMELIC OPEIatOrS . . . . . o 367
5.1.4 [ Yo (o3 o] 0 1= = L (o ) £ 375
515 Relational Operators . . . .. .. o 380
5.1.6 Shift OPEIAIOrS . . . . 389
5.1.7 Byte separation OPErators. . . . . ..ottt 392
5.1.8 2-byte separation OPEratorS . . . ...ttt e e e 395
5.1.9 SECHON OPEIALOIS . . . . o e ettt e e e et e e e e e 399
5.1.10 (0110 T=T o] o= = | (o 402
5.1.11 REStrCtioNS 0N OPEratioNS . . . . ..ttt 404
5.1.12 [0 1= o1 (1= 6 405
52 DT S . . o ottt 406
5.2.1 OULIINE .o 406
522 Section definition direCtiVES . . . . ... o 407
5.2.3 Symbol definition direCtives . . .. ... 416
5.24 Compiler output dirECLIVES . . . . ..ot e 419
5.25 Data definition/Area reservation direCtives . . ... ... ... 426



5.2.6 External definition/External reference directives. . . . ... . . 436
5.2.7 MACTO dIFECHIVES . . . . oot e e 440
5.3 CoNtrol INSIIUCHIONS . . . o .ot e e e e e e e 449
53.1 OULIINE .o 449
5.3.2 Assembler control INStrUCLIONS . . . . . . .. 450
5.3.3 File input control iNSITUCHIONS . . . . .ot e e e e e 458
5.3.4 Conditional assembly control iNStruCtions. . . . ... ... i e 461
5.4 /= Lo o 470
5.4.1 OULIINE . .o e 470
5.4.2 USAgE OF MACTO . . .o ittt e e e e e e e e 470
543 MaCIO OPEIALON . . . . . e e e e 470
55 ReESEIVEd WOIAS . . . ..o 471
5.6 Predefined Macro NamMes . . ... ... . 472
5.7 Assembler Generated SymbOIS . . . .. ... 472
5.8 INSIIUCHION Set . . .o 473
5.9 Extension of Assembly LanQUAagE . . . . . ..ottt 481
6. SECTION SPECIFICATIONS. . . ... e 525
6.1 S CHIONS . . . oot 525
6.1.1 Section CONCAtENALION . . . . .. ...t 525
6.2 Special SYymbOl . . ... e e 527
7. LIBRARY FUNCTIONAL SPECIFICATIONS . . ... ... 529
7.1 Supplied LIBraries . .. ... 529
7.2 Header Files. . ... 532
7.3 RN T ANCY. . . .t e 533
7.4 Library FUNCHON . . . . 533
7.4.1 Program diagnostic fuNCHioNS . . . . . . ... e 533
7.4.2 Functions with variable arguments . . . ... .. ... 535
7.4.3 Character string fuNCtiONS. . . ... ... 539
7.4.4 Memory management fUNCliONS . . . ... ... 555
7.4.5 Character conversion fUNCHIONS . . . . .. ..t e e 561
7.4.6 Character classification fUNCHIONS . . . . ... ... e 564
747 Standard /O FUNCLIONS . . . . ..o e e e 577
7.4.8 Standard utility UNCHONS. . . .. . 611
7.4.9 Non-local jump fUNCLIONS . . .. ... 635
7.4.10 Mathematical fUNCLIONS. . . . . . ... e 638
74.11 RAM section initialization function . . ... ... . 667
7.4.12 Peripheral device initialization function. . ... ... . 670
7.4.13 Operation runtime fUNCLiONS . . . . . ... 672
7.4.14 Checks for indirect function calls function. . . .. ... . 675
7.4.15 Dynamic memory management funCtions . . ... ... ... it e e e 676

7.5

Usage of Data Sections and List Of Reentrancy . . ........... e 682



8. STARTUP . . 691

8.1 OULINE o 691
8.2 StartUP ROULINE . . o 691
8.2.1 Initialization routine for hardware . . ... ... ... . 691
8.2.2 Initialization routines Of USEr ProgramsS. . . . . .. ...ttt e 694
8.2.3 Passing information between projects . . ... .ot 697
8.3 Coding EXamIple. . . .o 698
8.4 SYMDOIS . . . . 704
8.4.1 OP_dala. . . o 704
8.4.2 (= L= L= 705
8.4.3 Lo = - P 705
8.5 Creating ROM IMagesS . . . . . oot e e e e e e e 706
8.6 PICIPID FaCility . . . ottt e e e e e e e e e e e 707
8.6.1 P o 707
8.6.2 PIR O DD . . 707
8.6.3 P . 707
8.6.4 Referencing from a position-independent program to a position-dependent program .. ............ 707
8.6.5 Restrictions on PIC/PID faCility . . . . .. .o o 709
8.6.6 SEAItUP FOULINE . . . o 710
9. FUNCTION CALL INTERFACE SPECIFICATIONS . . . .. ... ... . 718
9.1 Function Call Interface. . . .. ... 718
9.11 General-purpose registers guaranteed before and after functioncalls. . . ....................... 718
9.1.2 Setting and referencing arguments and returnvalues . . ...t 718
9.1.3 Address indicating Stack POINTEr. . . ... . .o 720
9.14 StaCK frAMIE. . . o o 721
9.2 Calling of Assembly Language Routine from C Language . . .. .......u ittt 723
9.3 Calling of C Language Routine from Assembly Language . .............. i 724
9.4 Reference of Argument Defined by Other Language. . . . ... ...ttt 725
9.5 General-purpoSe RegiSIErS . . . . oo e 725
10.  MESSAGE . .. 726
10.1 GBNEral . . 726
10.2 MESSAgE FOIMALS . . . .ottt e 726
10.3 MESSaAgE TY PO .« . o oottt 726
10.4 MBS S aAgES. . . .t ettt e 726
10.4.1 INterNal BITOTS . . o o 727
10.4.2 ErTOrS 729
10.4.3 Fatal BITOrS . . o 750
10.4.4 INTOrMaAtiION . . . .o e 756
10.4.5 VNG S . .« o ottt e ettt e 757

11, CAUTIONS . . o e 767



11.1 Volatile QuUalifier. . . ... e e e 767

11.2 -Xcpu Option Specification for Assembler . . . ... .. 768
11.3 Controlling the Output of Bit Manipulation Instructions [V1.05.00orlater] ................ ... .. ..... 768
11.4 Tool for Confirming SYNCP Instruction Insertion at the Beginning of Exception Handler ... ............ 769
115 Version of Compiler Package. . . .. .. ... 769
A. QUICK GUIDE . . . . e 770
Al Variables (C LanQUAaOE) . . . . . oottt et et e e e e e e e 770
Al1l Allocating to sections accessible with shortinstructions. . . ......... .. ... .. ... . ... 770
Al11 GP relative @CCESS. . . . oottt 770
Al1.12 EP relative aCCess. . . . .o 771
Al2 Changing allocated SECHiON. . . .. .. .. e 772
Al21 Changing the area to be allocated using the #pragma section directive. .................... 772
Al22 Changing the area to be allocated using the -Xsection option .. ........... ... ... ... ...... 773
A.l1.23 Change the allocated area using the -Xpreinclude option. . .. ......... ... ... ... .. ... ..... 773
Al3 Defining variables for use during standard and interrupt processing . . ... ... ... 774
Al4 Defining CONSt CONStant POINTEr . . .. . ...t e 775
A2 FUNCHONS . . o e 776
A2.1 Changing areato be allocated to . . . . ... ..o 776
A2.2 Calling away fUNCHON . . .. .. e e e e e 776
A.2.3 Embedding assembler inStruCtions. . . . .. ... 776
A2.4 Executing a specific routine from RAM. . . . ... 777
A3 Variables (Assembler) . ... .. 777
A3.1 Defining variables with noinitial values . . ... ... ... . . . . 777
A3.2 Defining variable with initial values. . . . .. ... . 778
A.3.3 Defining CONSt CONSIANTS. . . . . . . e e 778

RevVvISION RECOId . . . . . .o Cc-1



CC-RH 1. GENERAL

1. GENERAL

This document is the user's manual for the RH850 family's C compiler CC-RH V1.00 to V2.06.
This chapter provides a general outline of CC-RH.

1.1 Outline

CC-RH is a program that converts programs described in C language or assembly language into machine language.

1.2 Special Features

CC-RH is equipped with the following special features.

(1) Language specifications in accordance with standards
The C language specifications conform to the C90 and C99 standards.

(2) Advanced optimization
Advanced optimization is used, applying global program optimization as well as conventional optimization.
This yields smaller, faster code, and also reduces build times.

(3) High portability
The program supports porting programs from the existing SuperH RISC engine C/C++ compiler.
In addition, the industry-standard DWARF2 and DWARF3 format is used for debugging information.

(4) Multifunctional
Static analysis and other functionality is provided via linking between CS+.

1.3 Copyrights

This software uses LLVM and Protocol Buffers.
- LLVM is copyright of University of lllinois at Urbana-Champaign.

- Protocol Buffers is copyright of Google Inc.

Other software components are copyright of Renesas Electronics Corporation.

1.4 License

A license manager manages licenses to the compilers.

If you have a license, the compiler will operate as the Standard or Professional edition depending on the license you are
using.

Refer to section 1.5, Standard and Professional Editions, for more on the Standard and Professional editions.

If the license manager is not able to recognize a Standard or Professional license, the compiler operates as the free
evaluation edition.

Refer to section 1.6, Free Evaluation Editions, for more on the free evaluation edition.

For details of the licenses and the license manager, refer to the User's Manual of the License Manager.

Use V2.00 or later versions of the license manager for V1.05 and later versions of CC-RH.

Use a license for V2 or later versions of CC-RH in development for the RH850 G4 core.

1.5 Standard and Professional Editions

There are two editions of the compilers, the Standard and the Professional editions.

The Standard editions support an C90 and C99 standards C-language specification, and also provide the essential fea-
tures for writing programs for embedded systems.

As well as the features of the Standard editions, the Professional editions have additional features which help to
improve the quality of the customer's programs and shorten development periods.

The additional features of Professional editions are available through compiler options, #pragma directives and libraries.

For descriptions of the options only available for the Professional editions, refer to Table 2.2, Compile Options, or the
descriptions of the individual options.

For descriptions of the #pragma directives that only the Professional editions support, refer to Table 4.10, List of Sup-
ported #pragma Directive.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 10 of 795
Dec 01, 2023



CC-RH 1. GENERAL

For the libraries supported only in the Professional Edition, see "7.1 Supplied Libraries".

1.6 Free Evaluation Editions

The free evaluation editions have a trial period of 60 days from the day of the first building by the compiler over which
you can use features equivalent to those of the Professional editions.
After that period, the additional features of the Professional editions are no longer available, and a restriction becomes

applicable to the sizes produced by linkage.

- The restriction on the section sizes which can be allocated to the ROM area is up to 256 Kbytes in total. A linker error
occurs when the size exceeds 256 Kbytes.

The version number of the optimizing linkage editor is prefixed by W while a compiler is operating as an evaluation edi-
tion and by V when it is operating as a commercial edition.
Examples are given below.

- Version of a free evaluation edition:
Renesas Optimizing Linker W1.01.01 [25 Apr 2014]

- Version of a commercial edition:
Renesas Optimizing Linker V1.01.01 [25 Apr 2014]
We do not supply the following services for the evaluation editions.Consider purchasing a commercial edition if you
require them.
- Technical support

- E-mail delivery of items such as information on revisions

R20UT3516EJ0111 Rev.1.11 RENESAS Page 11 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

2. COMMAND REFERENCE

This section describes the detailed specifications of each command included in the build tool (CC-RH).

2.1 Overview

CC-RH generates files executable on the target system from source programs described in C language or assembly
language.
CC-RH consists of the following commands. A single driver (ccrh) controls all phases from compilation to linking.
ccrh: Compilation driver start command
asrh: Assembler start command
rlink: Optimizing linker start command

Processing of each command is shown below.

(1) Compiler (ccrh)
Performs processing of preprocess directives, comment processing, and optimization for a C source program and
then generates an assembly source file.

(2) Assembler (asrh)
Converts an assembly source program into machine language instructions and then generates a relocatable
object file.

(3) Optimizing linker (rlink)
Links an object file and library file, and then generates an executable object file (load module file) on the target
system.
Links object files and library files to generate object files (load module files) that are executable on the target sys-
tem. It also handles the creation of ROM images for use in embedded applications, optimization during the linking
of relocatable files, the creation and editing of library files, and conversion to Intel HEX files and Motorola S-record
files.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 12 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Figure 2.1  Operation Flow of ccrh

C source file
(user-created file)

(ccrh) > Compiler (ccrh)
\ Preprocessed file

i
: Compile driver
i
t
i
i

Assembler (asrh)

i i
Assembly source file : . Assembly source file
j + (user-created file)

Optimizing linker (rlink)

Object file Library file

Stack information file Load module file Relocatable file

Motorola S-record file Intel HEX file Binary file

2.2 1/O Files

The I/O files of the ccrh command are shown below.

Table 2.1 1/0 Files of ccrh Command

File Type Extension I/0 Description

C source file .c | Source file described in C language
This is created by the user.

Preprocessed file jNote 1 O | File which the execution result of preprocess processing for the
input file is output

This is an ASCII image file.

This file is output when the -P option is specified.

Assembly source file .asmhoe 1 O | Assembly language file generated from C source file by compila-
tion
This file is output when the -S option is specified.

.asm I Source file described in assembly language
.S This is created by the user.
R20UT3516EJ0111 Rev.1.11 RENESAS Page 13 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

File Type Extension 1/0 Description

Header file free | File referred by source files

This file is described in C language or assembly language.
This is created by the user.

The extension is free, but the following is recommended.

- #include directive: .h

- $include control instruction: .inc

Obiject file .oijOte 1 1/0 | ELF-format file including machine-language information, reloca-
tion information relating to machine-language allocation
addresses, and symbol information

Note 2 prnNote 1 O | List file which has information from the assemble result

This file is output when the -Xasm_option=-Xprn_path option is
specified.

Assemble list file

Library file Jliphote 1 1/0 | ELF-format file in which two or more object files are included
This file is output when the -XIk_option=-form=library option is
specified.

Load module file .apsNoe ! /0 | ELF-format file of the object code of the link result

This is the input file when a hex file is output.

This file is output when the -XIk_option=-form=absolute option is
specified.

If you specify the -XIk_option option but not the -form option, the
command assumes that the above option has been specified.

Relocatable file re(Note 1 O | Relocatable object file
This file is output when the -XIk_option=-form=relocate option is
specified.

Intel HEX fileNote 2 -hexNote 1 I/0 | Load module file converted into the Intel HEX format
This file is output when the -XIk_option=-form=hexadecimal
option is specified.

Motorola S-record fileNot 2 | motNote 1 I/0 | Load module file converted into the Motorola S-record
This file is output when the -Xlk_option=-form=stype option is
specified.

Binary file .binNote 1 O | Load module file converted into the binary format
This file is output when the -XlIk_option=-form=binary option is
specified.

Symbol address file fsy 1/10 | Assembly source file where external defined symbols are
described in assembler directives

This file is output when the -Xlk_option=-fsymbol option is speci-
fied.

Note 2 .mapN°€l | o | Listfile which has information from the link result

This file is output when the -XIk_option=-list option is specified.

Link map file

Library list fileNote 2 IppNote 1 O | List file which has information from the library creation result
This file is output when the -XIk_option=-list option is specified.

Stack information file .sni O | Listfile which has information of the stack capacity
This file is output when the -XIk_option=-stack option is specified.

External symbol allocation bisNoe 1 O | External variable allocation information file used by the compiler
information file in optimizing access to external variables
This file is output when the -Omap option is specified.

Static analysis information free I/0 | Information file which this product uses
file The extension is free, but ".cref" is recommended.
This file is output when the -Xcref option is specified.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 14 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

File Type Extension /0 Description

Error message file free O | File which contains error messages
The extension is free, but ".err" is recommended.
This file is output when the -Xerror_file option is specified.

Subcommand file free | File which contains the parameters of the execution program
This is created by the user.

The exclusive control check | free | This is the file input from CS+.
setting file

Tool usage information file .ud O | File which is output for collecting tool usage information
.udm

Note 1. The extension can be changed by specifying the option.
Note 2. See "3. OUTPUT FILES" for details about each file.

2.3 Environment Variable

This section explains the environment variables.
The environment variables of the optimizing linker and the examples when specifying them on the command line are
shown below.

- HLNK_LIBRARY1, HLNK_LIBRARY2, HLNK_LIBRARY3
Specify the default library that the optimizing linker uses.
The library specified by the -library option has the precedence for linking.
After that, if unresolved symbols remain, default libraries HLNK_LIBRARY1, HLNK_LIBRARY2, and
HLNK_LIBRARY3 are searched in that order.

Example

>set HLNK_LIBRARY1l=usrl.lib
>set HLNK_LIBRARY2=usr2.lib
>set HLNK_LIBRARY3=usr3.lib

- HLNK_TMP
Specify the folder where the optimizing linker creates temporary files.
If this environment variable is not specified, the files are created in the current folder.

Example

>set HLNK_TMP=D:\workspace\tmp

- HLNK_DIR
Specify the folder where the input files for the optimizing linker are stored.
The files specified by the -input and -library options are searched from the current folder and the folder specified by
HLNK_DIR in that order.
However, the files specified with wildcard characters are searched in the current folder.

Example

>set HLNK_DIR=D:\workspace\obj1;D:\workspace\obj?2

R20UT3516EJ0111 Rev.1.11 RENESAS Page 15 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

2.4 Method for Manipulating

This section explains how to manipulate each command.
- Command line operation

- Subcommand file usage

2.4.1 Command line operation

You can launch the ccrh command (the compilation driver) to perform compilation, assembly, linking, and other actions.
The assembler (asrh) and optimizing linker (rlink) can also start by itself.

(1) Specification format
Enter the following on the command line.

>ccrh[Aoption]. . _Afile[Afile|Aoption]...

>asrh[Aoption]. . .Afile[Afile]Aoption]...

>rlink[{Afile]Aoption}...]

option: Option name

file: File name

[]: Can be omitted

... Pattern in preceding [ ] can be repeated

{}: Select from items delimited by the pipe symbol ("|")

A: One or more spaces

[, ...]: The preceding pattern can be repeated by delimiting each with a comma.
[: ...]: The preceding pattern can be repeated by delimiting each with a colon.
string:= A: string is replaced with A.

string:= A | B | C: string is replaced with any one of A, B, or C.

The following points should be noted when entering a command.

- The specification formats of options depend on the command that is used.
See "2.5.1 Compile options", "2.5.2 Assemble options"and "2.5.3 Link options" for cautions about options of
each command.

A file name supported by the OS can be specified.

To specify a file name, specify a relative path or an absolute path beginning with a drive name.

However, "@" cannot be used at the beginning of a file name because it is regarded as the subcommand file
specification.

"-" cannot be also used at the beginning of a file name because it is regarded as the option specification.
"("and ")" cannot be also used for a file hame because they are regarded as the part of link options.

In addition, there are cautions on using characters in file names and path names of subcommand files used for
internal processing.

Also refer to "2.4.2 Subcommand file usage".

The length that can be specified for a file name depends on the OS (up to 259 characters in Windows).

Alphabetical file names are not case sensitive in Windows.

Two or more files can be specified as input.

Files which have different types (C source file and assembly source file or object file, and the like) can be mixed.
Note that two or more files having the same source file name except for the extension cannot be specified (even
when they are stored in separate folders).

In this case, even if there is an error in one file, processing of the remaining files will continue if processing is
possible.

The generated object file is not deleted after linking.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 16 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

(2) Example of operations
The examples of operations on the command line are shown below.

Remark See "2.5 Option" for details about each option.

(@) Performing compilation, assembly, and linking by one command
C source file "filel.c" is compiled by ccrh, and then assembly source file "filel.asm" is generated.
Next, assembly source file "filel.asm" and "file2.asm" are assembled by asrh, and then object file "filel.obj" and
"file2.0bj" are generated.
In addition, the assemble list file is output to the current folder.
Finally, object file "filel.obj", "file2.0bj", and "file3.obj" are linked by rlink, and then link map file "sample.map"
and load module file "sample.abs" are generated.

>ccrh filel.c file2.asm File3.obj -Xasm_option=-Xprn_path -XIk_option=-list -
osample.abs -Xcommon=rh850

Remark In the ccrh command line, use the -Xasm_option option to specify an option dedicated to asrh; to
specify an option dedicated to rlink, use the -XIk_option option.

(b) Performing compilation and assembly by one command, and linking separately
C source file "filel.c" is compiled by ccrh, and then assembly source file "filel.asm" is generated.
Next, assembly source file "filel.asm" and "file2.asm" are assembled by asrh, and then object file "file1l.obj" and
"file2.0bj" are generated.
In addition, the assemble list file is output to the current folder.

>ccrh -c Filel.c file2.asm -Xasm_option=-Xprn_path -Xcommon=rh850

Remark In the ccrh command line, use the -Xasm_option option to specify an option dedicated to asrh.

Object file "filel.obj", "file2.0bj", and "file3.0bj" are linked by rlink, and then link map file "sample.map" and load
module file "sample.abs" are generated.

>rlink filel.obj file2.obj file3.obj -output=sample.abs -list

(c) Performing compilation, assembly, and linking separately
C source file "filel.c" is compiled by ccrh, and then assembly source file "filel.asm" is generated.

>ccrh -S filel.c -Xcommon=rh850

Assembly source file "filel.asm" and "file2.asm" are assembled by asrh, and then object file "filel.obj" and
"file2.0bj" are generated.
In addition, the assembile list file is output to the current folder.

>asrh filel.asm -Xprn_path -Xcommon=rh850
>asrh file2.asm -Xprn_path -Xcommon=rh850

Object file "filel.obj", "file2.o0bj", and "file3.obj" are linked by rlink, and then link map file "sample.map" and load
module file "sample.abs" are generated.

>rlink filel.obj file2.obj file3.obj -output=sample.abs -list

R20UT3516EJ0111 Rev.1.11 RENESAS Page 17 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

2.4.2 Subcommand file usage

A subcommand file is a file that options and file names specified for a command are described.
The command treats the contents of a subcommand file as if they were command-line arguments.

Use a subcommand file when the arguments will not fit on the command line, or when same options are specified
repeatedly each time the command is executed.

(1) Using a subcommand file for the compiler and assembler
(@) Cautions about description of a subcommand file

- The arguments to be specified can be coded over several lines.
However, you cannot start a new line within the name of the option or file.

- When the subcommand option is specified in a subcommand file, the same file name as the current subcom-
mand file cannot be specified in the subcommand option.

- The character code contents of a subcommand file cannot be specified by using the -Xcharacter_set option.
If you use characters other than ASCII in the subcommand file, use the UTF-8 file with BOM.

- The following characters are treated as special characters.
These special characters themselves are not included in the command line of the ccrh command and deleted.

" (double quotation mark) The character string until the next double quotation mark is treated as a con-
tiguous character string.

# (sharp) If this is specified at the beginning of a line, the characters on that line before
the end of the line are interpreted as a comment.

A (circumflex) The character immediately following this is not treated as a special character.

(b) Example of subcommand file specification
Create subcommand file "sub.txt" using an editor.

-Xcommon=rh850
-Cc

-Dtest

-Idir

-Osize

Specify sub.txt by subcommand file specification option "@" on the command line.

>ccrh @sub.txt -ofile.obj file.c

The command line is expanded as follows.

>ccrh -Xcommon=rh850 -c -Dtest -ldir -Osize -ofile.obj file.c

(2) Using a subcommand file for the optimizing linker
(&) Cautions about description of a subcommand file
- The leading hyphen ("-") on option names can be omitted.

- A space can be used in place of the equals sign ("=") as the delimiter between the option and parameter.

- Specify one option per one line.
If the command line cannot fit on a single line, you can use the ampersand ("&") to span multiple lines.

- The subcommand option cannot be specified in a subcommand file. [V1.04.00 or earlier]

- When the subcommand option is specified in a subcommand file, the same file name as the current subcom-
mand file cannot be specified in the subcommand option. [V1.05.00 or later]

- The following characters are treated as special characters.
These special characters themselves are not included in the command line of the rlink command and deleted.

& (and) The following line will be treated as a continuation.
R20UT3516EJ0111 Rev.1.11 RENESAS Page 18 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

; (semicolon) The characters on that line before the end of the line are interpreted as a
comment.

(b) Example of subcommand file specification
Create subcommand file "sub.txt" using an editor.

input file2.obj file3.obj ; This is a comment.
library libl.lib, & ; This is a line continued.
lib2_lib

Specify sub.txt by subcommand file specification option "-subcommand" on the command line.

>rlink filel.obj -subcommand=sub.txt file4.obj

The command line is expanded as follows.

>rlink filel.obj file2.obj file3.obj -library=libl.lib,lib2.1ib file4._obj

2.5 Option

This section explains ccrh options for each phase.
Compile phase -> See "2.5.1 Compile options"
Assemble phase -> See "2.5.2 Assemble options"
Link phase -> See "2.5.3 Link options"

R20UT3516EJ0111 Rev.1.11 RENESAS Page 19 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

2.5.1 Compile options

This section explains options for the compile phase.

Caution about options are shown below.

- Uppercase characters and lowercase characters are distinguished for options.

- When numerical values are specified as parameters, decimal or hexadecimal numbers which starts with "0x" ("0X")

can be specified.

Uppercase characters and lowercase characters are not distinguished for the alphabet of hexadecimal numbers.

- When a file name is specified as a parameter, it can include the path (absolute path or relative path).
When a file name without the path or a relative path is specified, the reference point of the path is the current folder.

- When a parameter includes a space (such as a path name), enclose the parameter in a pair of double quotation

marks ().

The types and explanations for options are shown below.

Table 2.2 Compile Options
Classification Option Description
Version/help display | -V This option displays the version information of ccrh.
specification - - ) — )
-h This option displays the descriptions of ccrh options.
Output file specifica- | -0 This option specifies the output file name.
tion
-Xobj_path This option specifies the folder to save an object file generated
during compilation.
-Xasm_path This option specifies the folder to save an assembly source file
generated during compilation.
-Xprep_path This option specifies the folder to save the preprocessed file.
Source debugging -g This option outputs information for source debugging.

control

-g_line [V1.05.00 or later]

This option enhances information for source debugging at opti-
mization.

Device specification | -Xcommon This option specifies that an object file common to the various
devices is generated.
-Xcpu This option specifies that an object for the specified core is
generated.
Processing interrupt | -P This option is used to execute only preprocessing for the input
specification C source file.
-S This option does not execute processing after assembling.
-C This option does not execute processing after linking.
Preprocessor control | -D This option defines preprocessor macros and assembler sym-
bols.
-U This option deletes the definition of the preprocessor macro or
assembler symbol by the -D option.
-1 This option specifies the folder to search include files.
-Xpreinclude This option specifies the file that is included at the top of the
compilation unit.
-Xpreprocess This option controls outputting the result of preprocessing.

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 20 of 795



CC-RH

2. COMMAND REFERENCE

Classification

Option

Description

C language control

-lang [V1.07.00 or later]

This option specifies the language standard.

-strict_std [V1.07.00 or
later]

This option processes the C source program in strict accor-
dance with the language standard.

-Xenum_type This option specifies which integer type the enumeration type
handles.

-Xvolatile This option specifies external variables as volatile.

-Xcheck This option checks the compatibility of a C source file.

-Xmisra2004 [Professional
Edition only]

This option checks source code against the MISRA-C: 2004
rules.

-Xmisra2012 [Professional
Edition only]

This option checks source code against the MISRA-C: 2012
rules.

-Xignore_files_misra [Pro-
fessional Edition only]

This option specifies files that will not be checked against the
MISRA-C: 2004 rules or MISRA-C: 2012 rules.

-Xcheck_language_extensi
on [Professional Edition
only]

This option enables the source-code checking of the
MISRA-C: 2004 rules or MISRA-C: 2012 rules, which are par-
tially suppressed by the extended language specifications.

-misra_intermodule [Profes-
sional Edition only]
[V2.01.00 or later]

This option checks source code in multiple files against the
MISRA-C:2012 rules.

-Xuse_fpl16 [Professional
Edition only] [V1.05.00 or
later]

This option selects the use of the half-precision floating-point
type.

Japanese/Chinese
character control

-Xcharacter_set

This option specifies the Japanese/Chinese character code.

Optimization specifi-
cation

-O

This option specifies the optimization level or the details of
each optimization items.

-Xintermodule

This option performs inter-module optimization.

-Xinline_strcpy

This option performs inline expansion of standard library func-

tions "strcpy”, "strcmp”, "memcpy”, and "memset" calls.

-Xmerge_string

This option merges string literals.

-Xalias

This option performs optimization with consideration for the
type of the data indicated by the pointer.

-Xmerge_files

This option merges two or more C source files and compiles
them.

-Xwhole_program

This option performs optimization assuming that the files to be
compiled comprise the entire program.

-library [V2.00.00 or later]

This option performs inline expansion for calling the standard
library functions.

-goptimize [V2.01.00 or
later]

This option generates information for link-time optimization.

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 21 of 795



CC-RH

2. COMMAND REFERENCE

Classification

Option

Description

Generated code
control

-Xpack

This option performs the structure packing.

-misalign [V2.04.00 or later]

This option generates an instruction string that performs a mis-
aligned memory access.

-Xbit_order

This option specifies the order of bit-field members.

-Xpass_source

This option outputs a C source program as a comment to the
assembly source file.

-Xswitch This option specifies a mode in which the code of a switch
statement is to be output.
-Xreg_mode This option specifies the register mode.

-Xreserve_r2

This option reserves the r2 register.

-r4 [V1.07.00 or later]

This option specifies how to handle the r4 register.

-Xep

This option specifies how to handle the ep register.

-Xfloat

This option controls generating floating-point calculation
instructions.

-Xfxu [V2.00.00 or later]

This option controls usage of FXU instructions.

-Xcall_jump This option controls generating function-call branch instruc-
tions.

-Xfar_jump This option controls outputting far jump.

-Xdiv This option generates the div and divu instructions for division.

-Xcheck_div_ov

This option checks the OV flag at division.

-relaxed_math [V2.00.00 or
later]

This option generates a floating-point calculation code with
efficiency given precedence over strictness.

-Xuse_fmaf

This option generates product-sum operation instructions.

-use_recipf [V2.00.00 or
later]

This option generates the recipf instructions.

-approximate [V2.02.00 or
later]

This option replaces floating-point calculations with equivalent
approximate calculations.

-Xunordered_cmpf

This option detects invalid operation exceptions in float-
ing-point comparison.

-Xmulti_level This option specifies the generation of a multi-core program.

-Xpatch This option applies a patch.

-Xdbl_size This option specifies the data size of double and long double
type.

-Xround This option specifies the mode for rounding floating-point con-
stants.

-Xalign4 This option specifies the alignment value for branch destina-

tion addresses.

-Xstack_protector/
-Xstack_protector_all [Pro-
fessional Edition only]

This option generates a code for detection of stack smashing.

-Xsection

This option specifies the default sections for data.

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 22 of 795



CC-RH

2. COMMAND REFERENCE

Classification

Option

Description

Generated code
control

-stuff [V2.03.00 or later]

This option allocates variables to sections separated according
to the number of alignment.

-Xcheck_exclusion_control
[V1.04.00 or later]

This option enables checking of exclusive control.

-Xresbank_mode [V2.00.00
or later]

This option specifies the operating mode of the resbank
instruction.

-insert_dbtag_with_label
[V1.06.00 or later]

This option controls insertion of the dbtag instruction.

-store_reg [Professional
Edition only] [V1.06.00 or
later]

This option controls detection of writing to control registers or
insertion of synchronization processing between registers.

-control_flow_integrity [Pro-
fessional Edition only]
[V1.07.00 or later]

This option generates code for the detection of illegal indirect
function calls.

-pic [V1.07.00 or later]

This option enables the PIC facility.

-pirod [V1.07.00 or later]

This option enables the PIROD facility.

-pid [V1.07.00 or later]

This option enables the PID facility.

Information file out- | -Xcref This option outputs the static analysis information file.
put control
Error output control -Xerror_file This option outputs error messages to a file.

Warning message
output control

-Xno_warning

This option suppresses outputting warning messages of the
specified number.

-change_message
[V1.07.00 or later]

This option changes specified warning messages into error
messages.

Phase individual
option specification

-Xasm_option

This option specifies assemble options.

-Xlk_option

This option specifies link options.

Subcommand file
specification

@

This option specifies a subcommand file.

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 23 of 795



CC-RH 2. COMMAND REFERENCE

Version/help display specification

The version/help display specification options are as follows.
-V
- -h

R20UT3516EJ0111 Rev.1.11 RENESAS Page 24 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-V

This option displays the version information of ccrh.

[Specification format]

-V

- Interpretation when omitted
Compilation is performed without displaying the version information of ccrh.

[Detailed description]

- This option outputs the version information of ccrh to the standard error output.
It does not execute compilation.

[Example of use]

- To output the version information of ccrh to the standard error output, describe as:

>ccrh -V -Xcommon=rh850

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 25 of 795



CC-RH

2. COMMAND REFERENCE

-h

This option displays the descriptions of ccrh options.

[Specification format]

-h

- Interpretation when omitted
The descriptions of ccrh options are not displayed.

[Detailed description]

- This option outputs the descriptions of ccrh options to the standard error output.
It does not execute compilation.

[Example of use]

- To output the descriptions of ccrh options to the standard error output, describe as:

>ccrh -h -Xcommon=rh850

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 26 of 795



CC-RH 2. COMMAND REFERENCE

Output file specification

The output file specification options are as follows.

- -0

- -Xobj_path
- -Xasm_path
- -Xprep_path
R20UT3516EJ0111 Rev.1.11 RENESAS Page 27 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-0

This option specifies the output file name.

[Specification format]

-ofile

- Interpretation when omitted
The output file name differs depending on the specificated option.
The file is output to the current folder.

- When the -P option is specified
The output file name will be the input file name with the extension replaced by ".i".

- When the -S option is specified
The output assembly source file name will be the source file name with the extension replaced by ".asm".

- When the -c option is specified
The output object file name will be the source file name with the extension replaced by ".obj".

- Other than above
The output load module file name will be the first input file name with the extension replaced by ".abs".

[Detailed description]

- This option specifies the output file name as file.
- If file already exists, it will be overwritten.
- This option is valid when processing is interrupted by specifying the -P, -S, or -c option.

- If this option is specified with the -P option
It is assumed that is the name of the file containing the results of preprocessing performed on the input file has
been specified as file.

- If this option is specified with the -S option
It is assumed that an assembly source file name has been specified as file.

- If this option is specified with the -c option
It is assumed that an object file name has been specified as file.

- Other than above
It is assumed that a load module file name has been specified as file.

- An error will occur if two or more files are output.

- An error will occur if file is omitted.

[Example of use]

- To output the load module file with "sample.abs" as the file name, describe as:

>ccrh -osample.abs -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 28 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xobj_path

This option specifies the folder to save an object file generated during compilation.

[Specification format]

-Xobj_path[=path]

- Interpretation when omitted
The object file is saved under the source file name with the extension replaced by ".obj" to the current folder.

[Detailed description]

- This option specifies the folder to save an object file generated during compilation as path.

- If an existing folder is specified as path, the object file is saved under the source file name with the extension replaced
by ".obj" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one object file is output, it will be saved with path as the file name.
If two or more object files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the object file is saved under the C source file name with the extension replaced by ".obj".

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and an object file is only saved for the last source file to be specified.

[Example of use]

- To save the object file generated during compilation to folder "D:\sample”, describe as:

>ccrh -Xobj_path=D:\sample -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 29 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xasm_path

This option specifies the folder to save an assembly source file generated during compilation.

[Specification format]

-Xasm_path[=path]

- Interpretation when omitted
An assembly source file will not be output (except when specifying the -S option).

[Detailed description]

- This option specifies the folder to save an assembly source file generated during compilation as path.

- If an existing folder is specified as path, the assembly source file is saved under the C source file name with the
extension replaced by ".asm" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one assembly source file is output, it will be saved with path as the file name.
If two or more assembly source files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the assembly source file is saved under the C source file name with the extension replaced by
".asm".

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and an assembly source file is only saved for the last source file to be specified.

[Example of use]

- To save the assembly source file generated during compilation to folder "D:\sample", describe as:

>ccrh -Xasm_path=D:\sample -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 30 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xprep_path

This option specifies the folder to save the preprocessed file.

[Specification format]

-Xprep_path[=path]

- Interpretation when omitted
A preprocessed file will not be output (except when specifying the -P option).

[Detailed description]

- This option specifies the folder to save a preprocessed file as path.

- If an existing folder is specified as path, the preprocessed file is saved under the C source file name with the exten-
sion replaced by ".i" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one preprocessed file is output, it will be saved with path as the file name.
If two or more preprocessed files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and a preprocessed file is only saved for the last source file to be specified.

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and a preprocessed file is only saved for the last source file to be specified.

[Example of use]

- To save the preprocessed file to folder "D:\sample"”, describe as:

>ccrh -Xprep_path=D:\sample -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 31 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Source debugging control

The source debugging control option is as follows.

-9
- -g_line [V1.05.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 32 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-9

This option outputs information for source debugging.

[Specification format]

-9

- Interpretation when omitted
Information for source debugging will not be output.

[Detailed description]

- This option outputs information for source debugging to the output file.
- Source debugging can be performed by specifying this option.

- If this option and an optimization option are specified at the same time, the ease of debugging could be affected.

[Example of use]

- To output information for source debugging to the output file, describe as:

>ccrh -g -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 33 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-g_line [V1.05.00 or later]

This option enhances information for source debugging at optimization.

[Specification format]

-g_line

- Interpretation when omitted
This option does not enhance information for source debugging at optimization.

[Detailed description]

- This option is valid only when the -g option is specified simultaneously.

- This option enhances debugging information so that step execution in the source level can be conducted more pre-
cisely at debugging when optimization has been performed.

- The amount of debugging information may increase and cause step execution to slow down.

[Example of use]

- To enhance the information for source debugging in the output file and then output it, describe as:

>ccrh -g -g_line main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 34 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Device specification

The device specification options are as follows.

- -Xcommon
- -Xcpu
R20UT3516EJ0111 Rev.1.11 RENESAS Page 35 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcommon

This option specifies that an object file common to the various devices is generated.

[Specification format]

-Xcommon=series

- Interpretation when omitted
None

[Detailed description]

- This option specifies that an object file common to the various devices is generated.

- This option is invalid in V2.00.00 or later versions. If this option is specified, it will be ignored but no error will occur
due to the compatibility with conventional versions. No warning is output in this case.

- v850e3v5 or rh850 can be specified for series.
- An error will occur in any of the following cases.
- When series is omitted
- When a parameter that is not specifiable is specified for series

- When this option is omitted [V1.01.00 or earlier]

[Remark]

This option does not affect the output code.
When selecting the instruction set to be used, specify the -Xcpu option.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 36 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xcpu

This option specifies that an object for the specified core is generated.

[Specification format]

-Xcpu=core

- Interpretation when omitted
An object for G3M is generated.

[Detailed description]

- This option specifies that an object for core core is generated.

- The items that can be specified as core are shown below.

g3m Generates an object for G3M.
g3k Generates an object for G3K.
g3mh Generates an object for G3MH. [V1.02.00 or later]
g3kh Generates an object for G3KH. [V1.03.00 or later]
g4mh Generates an object for G4MH. [V2.00.00 or later]

- If this option is specified more than once, the last specification is valid.

- An error will occur in any of the following cases.
- When the parameter is omitted

- When a parameter that is not specifiable is specified

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 37 of 795



CC-RH 2. COMMAND REFERENCE

Processing interrupt specification

The processing interrupt specification options are as follows.

--P
--S
- C

R20UT3516EJ0111 Rev.1.11 RENESAS Page 38 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

P

This option is used to execute only preprocessing for the input C source file.

[Specification format]

-P

- Interpretation when omitted
Processing is continued after preprocessing.
The preprocessed file are not output.

[Detailed description]

- This option is used to execute only preprocessing for the input C source file and output the results to a file.
- The output file name will be the input file name with the extension replaced by ".i".
- The output file name can be specified by specifying this option and the -o option.

- The contents of the output file can be controlled by specifying the -Xpreprocess option.

[Example of use]

- To execute only preprocessing for the input C source file and output the results to file "main.i*, describe as:

>ccrh -P -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 39 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-S

This option does not execute processing after assembling.

[Specification format]

-S

- Interpretation when omitted
Processing is continued after assembling.

[Detailed description]

- This option does not execute processing after assembling.
- The assembly source file is output under the source file name with the extension replaced by ".asm".

- The output file name can be specified by specifying this option and the -o option.

[Example of use]

- To output assembly source file "main.asm" without executing any processing after the assembling, describe as:

>ccrh -S -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 40 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-C

This option does not execute processing after linking.

[Specification format]

-C

- Interpretation when omitted
Processing is continued after linking.

[Detailed description]

- This option does not execute processing after linking.
- The object file is output under the source file name with the extension replaced by ".obj".

- The output file name can be specified by specifying this option and the -o option.

[Example of use]

- To output object file "main.obj" without executing any processing after the linking, describe as:

>ccrh -c -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 41 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Preprocessor control

The preprocessor control options are as follows.

--D
--U
- -l
- -Xpreinclude
- -Xpreprocess
R20UT3516EJ0111 Rev.1.11 RENESAS Page 42 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-D

This option defines preprocessor macros and assembler symbols.

[Specification format]

-Dname[=def][,name[=def]]- ..

- Interpretation when omitted
None

[Detailed description]

- This option defines name as a preprocessor macro or user-defined symbol of the assembler.

- This is equivalent to adding "#define name def" or "SET name def" (only assembly source program) at the beginning
of the source program.

- If name contains characters that are allowed in an assembler symbol, but which cannot be used in a preprocessor
macro ("@", ".", and "~"), a warning will be output, and it is defined as an assembler symbol only.

- This option can be used to redefine C language macros that have been defined already: _ LINE__, _ FILE_,
__DATE__, TIME__,and __CCRH__ (except for -D__CCRH__[=1]).
An error will occur if these are redefined when the input file is a C source file.

- An error will occur if name is omitted.
- If "=def" is omitted, def is regarded as 1.
- This option can be specified more than once.

- If both this option and -U option are specified for the same preprocessor macro and assembler symbol, the option
specified last will be valid.

[Example of use]

- To define "sample=256" as a preprocessor macro, describe as:

>ccrh -Dsample=256 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 43 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-U

This option deletes the definition of the preprocessor macro or assembler symbol by the -D option.

[Specification format]

-Uname[,name].- ..

- Interpretation when omitted
None

[Detailed description]

- This option deletes the definition of the preprocessor macro or user-defined symbol of the assembler name by the -D
option.

- This is equivalent to adding "#undef name" at the beginning of the source program.
- An error will occur if name is omitted.

- This option cannot delete the definition by describing "#define name def" and ".SET name def" (only assembly source
program).

- This option can be used to undefine C language macros that have been defined already, but it cannot undefine the
following macros: __ LINE__, FILE_, DATE_, TIME__, CCRH__,or__ CCRH.
An error will occur if these are specified for name.

- This option can be specified more than once.

- If both this option and -D option are specified for the same preprocessor macro and assembler symbol, the option
specified last will be valid.

[Example of use]

- To delete the definition of preprocessor macro "test" by the -D option, describe as:

>ccrh -Utest -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 44 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

This option specifies the folder to search include files.

[Specification format]

-Ipath[,path].-..

- Interpretation when omitted
The include file is searched from the standard include file folder.

[Detailed description]

- This option specifies the folder to search include files which are read by preprocessor directive "#include" or assem-
bler control instruction "$INCLUDE/$BINCLUDE" as path.
Include files are searched according to the following sequence.

(1) #include
(a) Folder with source files (When files are specified by using " ")

(b) Path specified by the -1 option (If multiple paths are specified, they are searched in the order in which they were
specified on the command line (that is, from left to right).)

(c) Standard include file folder
(2) $INCLUDE/$BINCLUDE

(a) Path specified by the -1 option (If multiple paths are specified, they are searched in the order in which they were
specified on the command line (that is, from left to right).)

(b) Folder with source file

(c) Current folder

- If path does not exist, a warning will be output.

- An error will occur if path is omitted.

[Example of use]

- To search include files from the current folder, folder D:\include, the standard folder in that order, describe as:

>ccrh -ID:\include -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 45 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xpreinclude

This option specifies the file that is included at the top of the compilation unit.

[Specification format]

-Xpreinclude=File[,file]...

- Interpretation when omitted
It is assumed that the file that is included at the top of the compilation unit does not exist.

[Detailed description]

- This option specifies the file that is included at the top of the compilation unit as file.

- This option starts searching from the folder that started the complier if the file is specified by its relative path.

[Example of use]

- To include file "sample.h" at the top of the compilation unit, describe as:

>ccrh main.c -Xpreinclude=sample._h -Xcommon=rh850

R20UT3516EJ0111 Rev.1.11 RENESAS Page 46 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xpreprocess

This option controls outputting the result of preprocessing.

[Specification format]

-Xpreprocess=string[,string]

- Interpretation when omitted
The comments and line number information of the C source are not output to the preprocessed file.

[Detailed description]
- This option outputs the comments and line number information of the C source to the preprocessed file.

- This option is valid only when the -P option is specified.
If the -P option is not specified, this option will be ignored.

- The items that can be specified as string are shown below.
An error will occur if any other item is specified.

comment Outputs the comments of the C source.

line Outputs line number informationN°.

<Format of line number information>

#line line-number "file-name"

- line-number is a decimal number, and the maximum value is the maximum number of unsigned int.

- In the full path of file-name, "\\" is converted to "\", and " to "\"".
Other than printable characters (including spaces) are output as "\3-digit octal number " (e.g. "\\%030").
Line feed characters are converted to "\\n".

- If an input source file contains the preprocessor directive '#number "string™ or '#line number "string™, then
number is used as line-number, and string as file-name.

- An error will occur if string is omitted.

- Itis output in the standard character encoding of the OS.

[Example of use]

- To output the comments and line number information of the C source to the preprocessed file, describe as:

>ccrh -Xpreprocess=comment,line -P -Xcommon=rh850 main.c

The following example is equivalent to the example above.

>ccrh -Xpreprocess=comment -Xpreprocess=line -P -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 47 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

C language control

The C language control options are as follows.

- -lang [V1.07.00 or later]

- -strict_std [V1.07.00 or later]

- -Xenum_type

- -Xvolatile

- -Xcheck

- -Xmisra2004 [Professional Edition only]

- -Xmisra2012 [Professional Edition only]

- -Xignore_files_misra [Professional Edition only]

- -Xcheck_language_extension [Professional Edition only]
- -misra_intermodule [Professional Edition only] [V2.01.00 or later]

- -Xuse_fp16 [Professional Edition only] [V1.05.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 48 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-lang [V1.07.00 or later]

This option specifies the language standard.

[Specification format]

-lang={c|c99}

- Interpretation when omitted

Compilation is performed according to the C90 standard.

[Detailed description]

- This option specifies the language standard of the C source file.

- If the -lang=c option is specified or this option is omitted, compilation is performed according to the C90 standard.

- If the -lang=c99 option is specified, compilation is performed according to the C99 standard.

- If a value other than ¢ or c99 is specified, an error will occur.

[Remark]

- This compiler does not support a part of language standards.

- Some standard library functions in the C90/C99 language standard

- Complex number types in the C99 language standard

- Variable-length arrays in the C99 language standard

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 49 of 795



CC-RH 2. COMMAND REFERENCE

-strict_std [V1.07.00 or later]

This option processes the C source program in strict accordance with the language standard.

[Specification format]

-strict_std [V1.07.00 or later]
-Xansi [Compatible use with V1.06.00 and earlier versions]

- Interpretation when omitted
Compatibility with the conventional C language specifications is conferred and processing continues after warning is
output. Even if -lang=c99 option is not specified, some of the specifications added by C99 are accepted.

[Detailed description]

- This option processes the C source program in strict accordance with the language standard specified by the -lang
option and outputs an error or warning for a specification that violates the standard.

- For the predefined macros that are valid when this option is specified or not specified, see "4.2.2 Macro".
- Processing when compiling in strict adherence to the language standard is as follows.
- When conforming to C90

- Bit fields

An error will occur if a type other than an int, signed int, or unsigned int type is specified in a bit field.

If this option is not specified, specifying a type other than an int type will be enabled (A warning will not be out-
put).

#line-number

An error will occur.

If this option is not specified, "#line-number" will be handled in the same way as "#line line-number".

Argument of function for which #pragma inline is specified

If the type of the return value or parameter is different but type conversion is possible between the specified
function call and definition, an error will occur.

If this option is not specified, the type of the return value is converted to the type at the call side, the parame-
ters are converted to the type of the function definition, and inline expansion is performed.

Basic type
An error will occur if a _Bool, long long, unsigned long long, or __fp16 type is specified.

Structure and union specifiers
If the member declaration list does not include named members, then an error message will be output indicat-
ing that the list has no effect.

- When conforming to C99

- #line-number
An error will occur.
When this option is not specified, it is treated in the same manner as "#line line-number".

- Parameters of functions declared with #pragma inline
If the type of a return value or parameter is different but type conversion is possible between the specified
function call and definition, then an error will occur.
When this option is not specified, the type of the return value is converted to the type at the calling site, the
parameters are converted to the type of the function definition, and inline expansion is performed.

- Basic type
An error will occur if a __fpl16 type is specified.

- Structure and union specifiers
If the member declaration list does not include named members, then an error will occur.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 50 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xenum_type

This option specifies which integer type the enumeration type handles.

[Specification format]

-Xenum_type=string

- Interpretation when omitted
The enumeration type is handled as signed int.

[Detailed description]

- This option specifies which integer type the enumeration type handles.

- The items that can be specified as string are shown below.
An error will occur if any other item is specified.

auto Each enumerated type is handled as the smallest integer type capable of expressing all the
enumerators in that type.

- An error will occur if string is omitted.

[Example of use]

- To handle each enumerated type as the smallest integer type capable of expressing all the enumerators in that type,
describe as:

>ccrh -Xenum_type=auto -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 51 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xvolatile

This option specifies external variables as volatile.

[Specification format]

-Xvolatile

- Interpretation when omitted
Only the volatile-qualified variables are handled as if they were volatile-declared.

[Detailed description]

- This option handles all external variables as if they were volatile-declared.
The access count and access order for external variables are exactly the same as those described in the C source
file.

[Example of use]

- To handle all external variables as if they were volatile-declared, describe as:

>ccrh -Xvolatile -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 52 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcheck

This option checks the compatibility of a C source file.

[Specification format]

-Xcheck=comp

- Interpretation when omitted
The compatibility of a C source file is not checked.

[Detailed description]

- This option checks the C source file coded for the compiler specified as comp. It checks for option specifications and
source code that will impact compatibility when compiled with this compiler, and outputs warnings or errors about any
impacts found.

- The items that can be specified as comp are shown below.
An error will occur if any other item is specified.

shc Checks the C source file that has been coded for the SH compiler.

- An error will occur if comp is omitted.
- The main check items are shown below.

- Options: -Xbit_order=pos
The settings which are not defined in the language specification and depend on implementation differ in each
compiler.
Confirm the selections of the options which were output in the message.

Extended functions: #pragma section, #pragma entry#pragma stacksize, #pragma address, #pragma
global_register

There is a possibility that extended specifications will affect program operation.

Confirm the descriptions on the extended specifications which were output in the message.

volatile qualified variables

The sizes of reads and writes may differ between compilers.

This compiler may access bit fields with a volatile decorator as a smaller size than the declared type, but the SH
compiler will access them as the size of the declared type.

Integer promotion of binary operations

The result of binary operation (such as addition, subtraction, multiplication, division, or comparison) using
unsigned int-type and long-type operands may differ from that obtained by using the SH compiler.

The SH compiler calculates this operation in signed long if the -strict_ansi option is not specified.

This compiler calculates this operation after converting the operands to the unsigned int type.

Types of integer constants exceeding type signed long

The SH compiler makes values in the range that can be expressed as type unsigned long into type signed long
long.

This compiler makes values in the range that can be expressed as type unsigned long into type unsigned long.

Bit field allocation

The SH compiler does not allocate bits to contiguous areas when the type of a bit field differs from that of the
previous bit field.

This compiler may allocate bits to contiguous areas according to the -Xpack option setting.

- No message will be output for structure and bit field member allocation.
See "4.1.3 Internal representation and value area of data" about declarations that take assignment into account.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 53 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

[Example of use]

- To check the C source file that has been coded for the SH compiler, describe as:

>ccrh -Xcheck=shc -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 54 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xmisra2004 [Professional Edition only]

This option checks source code against the MISRA-C:2004 rules.

[Specification format]

-Xmisra2004=item[=value]

- Interpretation when omitted
The source code is not checked against the MISRA-C:2004 rules.

[Detailed description]

- This option checks source code against the MISRA-C:2004 rules.
A message is output if the item specified for the check is item.

- This option cannot be specified simultaneously with the -Xmisra2012 option.

- If this option is specified simultaneously with the -lang=c99 option, this option is ignored. At this time, a warning will be

output.

- The items that can be specified as item are shown below.
An error will occur if any other item is specified.

Check Item Parameter
(item) (value)

all None The source code is checked against all of the rules which are supported.

apply num[,num]... The source code is checked against the rules with the numbers specified by
num among the rules which are supported.

ignore num[,num]... The source code is checked against the rules with the numbers that are not
specified by num among the rules which are supported.

required None The source code is checked against the rules of the "required” type among

the rules which are supported.

required_add num[,num]... The source code is checked against the rules of the "required"” type and the
rules with the numbers specified by num among the rules which are sup-
ported.

required_remove | num[,num]... The source code is checked against the rules of the "required"” type except

for the rules with the numbers specified by num among the rules which are
supported.

file

The source code is checked against the rules with the numbers described in
specified file file among the rules which are supported.
Specify one rule number per one line in the file.

- The items that can be specified as hum are shown below.
An error will occur if any other item is specified.

22 23
4.1 4.2

5.2 53 54 55 5.6
6.1 6.2 6.3 6.4 6.5

7.1

8.1 8.2 8.3 85 8.6 8.7 8.11 8.12

9.1 9.2 9.3

10.1 10.2 10.3 10.4 10.5 10.6

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 55 of 795



CC-RH

2. COMMAND REFERENCE

111
121
13.1
14.2
151
16.1
175
18.1
19.3
20.4

11.2 11.3 11.4 115

12.3 12.4
13.2 13.3
143 14.4
153 154
16.3 16.5

18.4
19.6 19.7
20.5 20.6

125 12.6 12.7 12.8 129 12.10 12.11 12.12 12.13
13.4

145 14.6 14.7 148 149 14.10

155

16.6 16.9

19.8 19.11 19.13 19.14 19.15
20.7 20.8 20.9 20.10 20.11 20.12

- An error will occur if item is omitted.

- The __fp16 type is handled as the float type during the check. For the effects of this handling, see the description of
the -Xcheck_language_extension [Professional Edition only] option.

[Example of use]

- To check the source code against MISRA-C:2004 rule number: 5.2, 5.3, and 5.4, describe as:

>ccrh -Xmisra2004=apply=5.2,5.3,5.4 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS

Dec 01, 2023

Page 56 of 795



CC-RH

2. COMMAND REFERENCE

-Xmisra2012 [Professional Edition only]

This option checks source code against the MISRA-C:2012 rules.

[Specification format]

-Xmisra2012=item[=value]

- Interpretation when omitted
The source code is not checked against the MISRA-C:2012 rules.

[Detailed description]

- This option checks source code against the MISRA-C:2012 rules.
A message is output if the item specified for the check is item.

- This option cannot be specified simultaneously with the -Xmisra2004 option.

- The items that can be specified as item are shown below.
An error will occur if any other item is specified.

The source code is always checked against the rules of the "mandatory” type regardless of the following specification.

Check Iltem
(item)

Parameter
(value)

Description

all

None

The source code is checked against all of the rules which are supported.

apply

num[,num]...

The source code is checked against the rules with the numbers specified by
num among the rules which are supported.

ignore

num[,num]...

The source code is checked against the rules with the numbers that are not
specified by num among the rules which are supported.

required

None

The source code is checked against the rules of the "mandatory" and
"required" types among the rules which are supported.

required_add

num[,num]...

The source code is checked against the rules of the "mandatory" and
"required"” types and the rules with the numbers specified by num among
the rules which are supported.

required_remove

num[,num]...

The source code is checked against the rules of the "required"” type except
for the rules with the numbers specified by num among the rules which are
supported.

file

The source code is checked against the rules with the numbers described in
specified file file among the rules which are supported.
Specify one rule number per one line in the file.

- The items that can be specified as num are shown below. [V2.02.00 or later]
An error will occur if any other item is specified.

22 26 27
3.1 32
41 4.2

5.1 52 53 545556575859

6.1 6.2

71727374
8.1 82 83 84 85 8.6 8.8 89 811 8.12 8.13 8.14
9.1 9.2 93 94 95
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

111 11.2 11.3 11.4 115 11.6 11.7 11.8 11.9

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 57 of 795



CC-RH

2. COMMAND REFERENCE

12.1
13.1
14.2
151
16.1
171
18.4
19.2
20.1
211

12.2
13.2
14.3
15.2
16.2
17.3
18.5

20.2
21.2

12.3
13.3
14.4
15.3
16.3
17.4
18.7

20.3
213

12.4 12,5
13.4 13.5 13.6

15.4 155 15.6
16.4 16.5 16.6
175 17.6 17.7

20.4 20.5 20.6
21.4 215 216

- An error will occur if item is omitted.

15.7
16.7
17.8

20.7 20.8 20.9 20.10 20.11 20.12 20.13 20.14
21.7 21.8 219 21.10 21.11 21.12 21.13 21.15 21.16

- The __fp16 type is handled as the float type during the check. For the effects of this handling, see the description of
the -Xcheck_language_extension [Professional Edition only] option.

[Example of use]

- To check the source code against MISRA-C:2012 rule number: 5.2, 5.3, and 5.4, describe as:

>ccrh -Xmisra2012=apply=5.2,5.3,5.4 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 58 of 795



CC-RH 2. COMMAND REFERENCE

-Xignore_files_misra [Professional Edition only]

This option specifies files that will not be checked against the MISRA-C:2004 or MISRA-C:2012 rules.

[Specification format]

-Xignore_files_misra=Ffile[,file]...

- Interpretation when omitted
All C source files are checked.

[Detailed description]

- This option does not check the source code of the file specified by file against the MISRA-C:2004 or MISRA-C:2012
rules.

- This option is valid only when the -Xmisra2004 or -Xmisra2012 option is specified.
If the -Xmisra2004 or -Xmisra2012 option is not specified, this option will be ignored (A warning will not be output).

[Example of use]

- Not to check sample.c against the MISRA-C:2004 rules, describe as:

>ccrh -Xmisra2004=all -Xignore_files_misra=sample.c -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 59 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcheck_language_extension [Professional Edition only]

This option enables the source-code checking of the MISRA-C:2004 or MISRA-C:2012 rules, which are partially sup-
pressed by the extended language specifications.

[Specification format]

-Xcheck_language_extension

- Interpretation when omitted
The source-code checking of the MISRA-C:2004 rules or MISRA-C:2012 rules is disabled, which are partially sup-
pressed by the extended language specifications.

[Detailed description]

- This option enables the source-code checking of the MISRA-C:2004 or MISRA-C:2012 rules in the following cases
where they are suppressed by the unique language specifications extended from the C language standard.

- When the function has no prototype declaration (MISRA-C:2004 rule 8.1, MISRA-C:2012 rule 8.4) and #pragma
interrupt is specified for it.

- This option is valid only when the -Xmisra2004 option or -Xmisra2012 option is specified.
If the -Xmisra2004 option or -Xmisra2012 option is not specified, this option will be ignored (A warning will not be out-

put).
The __fpl6 type is handled as the float type during the check. This affects the following rules.

- MISRA-C:2004 rule 10.2
- MISRA-C:2004 rule 10.3
- MISRA-C:2004 rule 10.4

[Example of use]

- To enable the source-code checking of the MISRA-C:2004 rules, which are partially suppressed by the extended lan-
guage specifications, describe as:

>ccrh -Xmisra2004=all -Xcheck_language_extension -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 60 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-misra_intermodule [Professional Edition only] [V2.01.00 or later]

This option checks source code in multiple files against the MISRA-C:2012 rules.

[Specification format]

-misra_intermodule=file

- Interpretation when omitted
None

[Detailed description]

- This option saves symbol information of multiple files in file and checks source code in these files against the
MISRA-C:2012 rules.
If file does not exist, a new file will be created. If file exists, symbol information will be added to the file.

- This option is applied to rules classified as "System" in the analysis scope of MISRA-C:2012. Source code will be
checked against the following MISRA-C:2012 rules.
5.1 5.6 5.7 5.8 5.9
8.3 85 8.6

- {c|a|f} cannot be specified as the extension of file. If specified, an error will occur.
- Correct operation is not guaranteed if file overlaps with another input or output file.
- If this option is specified more than once, the last specification is valid. At this time, a warning will be output.

- This option will be ignored unless the -Xmisra2012 option is specified at the same time. At this time, a warning will be
output.

- An error will occur in the following case.

- When the parameter is omitted

[Remark]

- If any of the source files is modified after file was created, recompilation will update the information of file.
If any of the source files is deleted from a project or its file name is changed, delete file and recheck source code
against the MISRA-C:2012 rules.

- If there are many files to be checked and the symbol information to be stored in file is huge, the compilation speed
gets slower.

- This option cannot correctly check the source code when files are compiled in parallel by using, for example, parallel
builds. Specify this option without performing parallel compilation.

[Example of use]

- To check source code in al.c, a2.c, and a3.c, describe as:

>ccrh -Xmisra2012=all -misra_intermodule=info.mi al.c a2.c a3.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 61 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xuse_fp16 [Professional Edition only] [V1.05.00 or later]

This option enables the half-precision floating-point type.

[Specification format]

-Xuse_fpl6[=value]

- Interpretation when omitted
The half-precision floating-point type is disabled.

[Detailed description]

- This option enables the half-precision floating-point type, which is a unique type extended from the C language stan-
dard.

- Specify "on" or "off" in value. If value is omitted, it is assumed that "on" has been specified.
- In the following cases, a warning will be output and this option will be ignored.

- This option is specified simultaneously with the -strict_std.

- This option is specified simultaneously with the -Xcpu=g3k option.

- This option is specified simultaneously with the -Xfloat=soft option.

- This option is specified simultaneously with the -Xround=zero option.

[Example of use]

- To enable the __ fp16 type, describe as:

>ccrh -Xuse_fpl6 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 62 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Japanese/Chinese character control

The Japanese/Chinese character control option is as follows.

- -Xcharacter_set

R20UT3516EJ0111 Rev.1.11 RENESAS Page 63 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcharacter_set

This option specifies the Japanese/Chinese character code.

[Specification format]

-Xcharacter_set=code

- Interpretation when omitted
Processing of Japanese/Chinese character encoding is not performed.

[Detailed description]

- This option specifies the character code to be used for Japanese/Chinese comments and character strings in the
source file.

- The items that can be specified as code are shown below.
An error will occur if any other item is specified.
Operation is not guaranteed if the specified character code differs from the character code of the source file.

none Does not process the Japanese and Chinese character code
euc_jp EUC (Japanese)

sjis SJIS

utf8 UTF-8

big5 Traditional Chinese

gb2312 Simplified Chinese

- An error will occur if code is omitted.

[Example of use]

- To specify EUC as the character code to be used for Japanese comments and character strings in the input file,
describe as:

>ccrh -Xcharacter_set=euc_jp -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 64 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Optimization specification

The optimization specification options are as follows.
- -0

- -Xintermodule

- -Xinline_strcpy

- -Xmerge_string

- -Xalias

- -Xmerge_files

- -Xwhole_program

- -library [V2.00.00 or later]

-goptimize [V2.01.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 65 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-O

This option specifies the optimization level or the details of each optimization items.

[Specification format]

-O[level]
-O[item[=value][, item[=valuel]---1

- Interpretation when omitted
Optimization that debugging is not affected is performed (It is the same result as when -Odefault option is specified).

[Detailed description]

- This option specifies the optimization level or the details of each optimization items.

- The items that can be specified as level are shown below.
An error will occur if any other item is specified.

nothing Optimization with debugging precedence
Regards debugging as important and suppresses all optimization including default optimization.

default Default
Performs optimization that debugging is not affected (optimization of expressions and register allo-
cation, and the like).

size Optimization with the object size precedence
Regards reducing the ROM/RAM capacity as important and performs the maximum optimization
that is effective for general programs.

speed Optimization with the execution speed precedence
Regards shortening the execution speed as important and performs the maximum optimization
that is effective for general programs.

- If level and item are omitted, it is assumed that "size" has been specified.

- The items that can be specified as item and value are shown below.
An error will occur if any other item is specified.

Optimization Item Parameter Description
(item) (value)
unroll Oto Loop expansion
4294967295 The loop statements (for, while, and do-while) are expanded.
(Integer value) Use value to specify the maximum rate of increase in code size after loop
expansion.

A value of 0 set as value has the same meaning as a value of 1.

If value is omitted, it is assumed that 4 has been specified.

If the -Ospeed option is specified, this item is assumed that the -Ounroll=4
option is specified.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 66 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Optimization Item Parameter Description
(item) (value)
inline Oto3 Inline expansion for functions

(Integer value) value signifies the level of the expansion.
0: Suppresses all inline expansion including the function for which
"#pragma inline" is specified.
1: Performs inline expansion for only a function for which "#pragma
inline" is specified.
2: Distinguishes a function that is the target of expansion automatically
and expands it.
3: Distinguishes the function that is the target of expansion automati-
cally and expands it, while minimizing the increase in code size.
However, if 1 to 3 is specified, the function that is specified by "#pragma
inline” may not be expanded according to the content of the function and
the status of compilation.
If value is omitted, it is assumed that 2 has been specified.
This item is valid when the -Osize or -Ospeed option is specified (when
the -Osize option is specified, it is assumed that the -Oinline=3 option has
been specified. When the -Ospeed option is specified, it is assumed that
the -Oinline=2 option has been specified).
If any of the -Osize, -Ospeed or -Oinline option is not specified, this item is
assumed that the -Oinline=1 option is specified.
If the -Onothing option is specified, this item is assumed that the -Oin-
line=0 option is specified.

inline_size 0 to 65535 Size for inline expansion

(Integer value) Specify the maximum increasing rate (%) of the code size up to which
inline expansion is performed.

If value is omitted, it is assumed that 100 has been specified.

This item is valid when the -Oinline=2 option is specified (including when
the -Ospped option is specified).

inline_init on or off Using immediate value as initializer of auto variables

[V1.07.00 or later] If "on" is specified, auto variables are always initialized by assigning an
immediate value.

If "off" is specified, the compiler automatically selects to perform initializa-
tion by copying a value between memories or assigning an immediate
value.

If value is omitted, it is assumed that "on" has been specified.

delete_static_func | on or off Deleting unused static functions
If value is omitted, it is assumed that "on" has been specified.
This item is valid when the -Onothing option is not specified.

pipeline on or off Pipeline optimization
If value is omitted, it is assumed that "on" has been specified.

tail_call on or off End call optimization

When "on" is specified, if there is a function call at the end of a function
and certain conditions are met, a function call for that call is converted to
an unconditional branch. The Ip store/restore code will be removed, reduc-
ing the code size. However, some debug functions cannot be used.

If value is omitted, it is assumed that "on" has been specified.

This item is valid when the -Ospeed or -Osize option is specified.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 67 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

Optimization Item
(item)

Parameter
(value)

Description

map

file name

External variable access optimization

Base addresses are set in accordance with the external symbol allocation
information generated by the linker, and code for accessing external and
static variables relative to the base addresses is generated.

When symbol "__gp_data" is defined and a value is specified in gp in the
code of the startup routine, code for accessing variables relative to gp
when possible is generated in accordance with the external symbol alloca-
tion information.

Specify the external symbol allocation information file generated by the
optimizing linker as file name.

If file name is omitted, it performs linking once, and then after creating the
external symbol allocation information file, repeats the process from com-
pilation to linking.

smap

None

Optimization of access to external variables defined in the compilation unit
Base address is set for external and static variables defined in the file to
be compiled, and code that accesses these relative to the base address is
generated.

align
[V2.03.00 or later]

on or off

Optimization by changing the alignment condition

The number of generated instructions is decreased, the code size is
reduced and the execution speed is increased by changing the variable
alignment condition and then combining multiple accesses into one when,
for example, accessing contiguous areas in a structure-type variable.

As a result of changing the alignment condition, padding data is filled in
and the amount of consumption may increase in the data storage area.

If value is omitted, it is assumed that on has been specified.

This item is valid when the -Osize or -Ospeed option is specified.

If the -stuff option is specified at the same time, this item is invalid and the
operation is the same as that when "off" is specified.

- If this option is specified more than once for the same item, the option specified last will be valid.

- If -Olevel is specified following -Oitem, -Oitem which was specified first will be invalid. Note, however, that -Omap or

-Osmap will not be affected by -Olevel.

- When -Oitem is not specified, the optimization items are interpreted as follows according to the -Olevel setting.

Optimization Item Optimization Level (level)
(item)
nothing default size speed
unroll 1 1 1 4
inline 0 1 3 2
inline_size - - - 100
inline_init off off off on
delete_static_func off on on on
pipeline off off off on
tail_call off off on on
map - - - -
smap - - - -
align off off onNote on
Note If the -misalign option is specified at the same time, "off" is assumed.
R20UT3516EJ0111 Rev.1.11 RENESAS Page 68 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

This table does not ensure that the optimization result is the same between the case where an optimization level is
selected and then each optimization item setting is changed to the value shown for another level in this table and the
case where the latter level is specified from the beginning. For example, the code output by specifying "-Ospeed" may
not be the same as that output by specifying "-Osize -Ounroll=4 -Oinline=2 -Oinline_size=100 -Opipeline=on".

[Example of use]

- To perform optimization with the object size precedence, describe as:

>ccrh -Osize -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 69 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xintermodule

This option performs inter-module optimization.

[Specification format]

-Xintermodule

- Interpretation when omitted
Inter-module optimization is not performed.

[Detailed description]

- This option performs inter-module optimization
- The main optimization contents are shown below.

- Optimization using inter-procedural alias analysis
The example of the output code is shown below.

[C source]
extern int x[2];
static int funcl(int *a, int *b) {

*a=0;
*p=1;
return *a;
¥
int func2() {
return funcl(&x[0], &x[1]);
}
[Output assembler source]
_funcl.1:
.stack _funcl.1 =0
mov # X, r2
st.w rO, 0x00000000[r2]
mov 0x00000001, r5
st.w r5, 0x00000004[r2]
different addresses.
Jmp [r31]
_Ffunc2:
.stack _func2 = 0
mov # X, r6
addi 0x00000004, r6, r7
br9o _funcl.1

mov 0x00000000, rio ; 0 is directly assigned because a and b point to

- Constant propagation of parameters and return values

The example of the output code is shown below.

R20UT3516EJ0111 Rev.1.11 RENESAS

Dec 01, 2023

Page 70 of 795



CC-RH 2. COMMAND REFERENCE

[C source]
static int func(int x, int y, int z) {
return x-y+z;
}
int func2() {
return func(3,4,5);
}
[Output assembler source]
_func.1:
.stack _func.1 =0
mov 0x00000000, ri10 ; "4(=3-445)" 1s assigned directly.
Jmp [r3i]
_func2:
.stack _func2 = 0
mov 0x00000005, r8
mov 0x00000004, r7
mov 0x00000003, r6
br9 _func.1

[Example of use]

- To perform inter-module optimization on source files "main.c" and "sub.c", describe as:

>ccrh -Xintermodule -0Osize -Xcommon=rh850 main.c sub.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 71 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xinline_strcpy

This option performs inline expansion of standard library functions "strcpy", "strcmp", "memcpy", and "memset" calls.

[Specification format]

-Xinline_strcpy

- Interpretation when omitted
Inline expansion of standard library functions "strcpy”, "strcmp", "memcpy", and "memset" calls is not performed.

[Detailed description]

- This option performs inline expansion of standard library functions "strcpy”, "strcmp", "memcpy", and "memset" calls.
- This option can not be specified together with the -Xpack option.

- Inline expansion of strcpy is performed only when the second argument is a character string.

- If this option is specified, arrays and character strings are allocated automatically to 4-byte boundary area.

- This improves the execution speed of the program to be generated, but it increases the code size.

[Example of use]

- To perform inline expansion of standard library functions "strcpy", "strcmp”, "memcpy", and "memset" calls, describe
as:

>ccrh -Xinline_strcpy -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 72 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xmerge_string

This option merges string literals.

[Specification format]

-Xmerge_string

- Interpretation when omitted
If the same string literals are included multiple times in the source file, each will be allocated to a separate area.

[Detailed description]

- When the same string literals exist in the source file, this option merges them and allocates to the one area.

- The same string literals are allocated to the same area, regardless of whether #pragma section is specified.
However, if a different section is specified, the section to which the string literal is allocated will depend on the order of
appearance in the source.

[Example of use]

- When the same string literals exist in the source file, to merge them and allocate to the one area, describe as:

>ccrh -Xmerge_string -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 73 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xalias

This option performs optimization with consideration for the type of the data indicated by the pointer.

[Specification format]

-Xalias=value

- Interpretation when omitted
Optimization with consideration for the type of the data indicated by the pointer, based on the ANSI standard is not
performed.

[Detailed description]

- This option specifies whether to perform optimization with consideration for the type of the data indicated by the
pointer, based on the ANSI standard.

- The items that can be specified as value are shown below.
An error will occur if any other item is specified.

ansi Optimization with consideration for the type of the data indicated by the pointer, based on the ANSI
standard is performed.

noansi Optimization with consideration for the type of the data indicated by the pointer, based on the ANSI
standard is not performed.

- An error will occur if value is omitted.

[Example of use]

- To perform optimization with consideration for the type of the data indicated by the pointer, based on the ANSI stan-
dard, describe as:

>ccrh -Xalias=ansi -Xcommon=rh850 -0Osize main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 74 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xmerge_files

This option merges two or more C source files and compiles them.

[Specification format]

-Xmerge_files

- Interpretation when omitted
Compilation is performed at the input-file level, without merging.

[Detailed description]

- This option merges two or more C source files and compiles them. And then it outputs one file.

- If the -0 option is specified, then the specified file name is used for the output file. If the -0 option is not specified, then
the file name is in accordance with the interpretation of the -o option being omitted for the initially specified C source
file.

If one C source file is input and if this option is specified together with the -P option, this option will be invalid.

If this option is specified at the same time as the -S or -c option, then for the 2nd and subsequent C source files that
are specified, an empty file is output in accordance with the interpretation that the -0 option was omitted.

If this option is specified at the same time with the -Oinline option, inline expansion is performed between files.

- Operation is not guaranteed if an object file is generated with this option specified and any of link options -delete,
-rename, and -replace is specified at linkage of the object file.

[Example of use]

- To merge main.c and sub.c, compile them, and output one file, describe as:

>ccrh -Xmerge_files -Xwhole_program -Xcommon=rh850 -Osize main.c sub.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 75 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xwhole_program

This option performs optimization assuming that the files to be compiled comprise the entire program.

[Specification format]

-Xwhole_program

- Interpretation when omitted
It is not assumed that the files to be compiled comprise the entire program.

[Detailed description]

- This option performs optimization assuming that the files to be compiled comprise the entire program.

- The compilation is performed assuming that the following conditions are met. Operation is not guaranteed if these
conditions are not met.

- The values and addresses of extern variables defined in the files to be compiled will not be modified or refer-
enced from outside those files.

- Even if a file to be compiled calls a function defined outside the files to be compiled, the called function will
never call a function in the files to be compiled.

- If this option is specified, it is assumed that the -Xintermodule option is specified.
If two or more C source files are input, it is assumed that the -Xmerge_files option is specified.

[Example of use]

- To perform optimization assuming that the files to be compiled comprise the entire program, describe as:

>ccrh -Xwhole_program -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 76 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-library [V2.00.00 or later]

This option performs inline expansion for calling the standard library functions.

[Specification format]

-library={function]intrinsic}

- Interpretation when omitted
It has the same meaning as when function is specified.

[Detailed description]

- This option controls whether to perform function call or inline expansion for the following standard library functions.
- abs(), labs(), llabs()
- fabs(), fabsf()
- sqrt(), sqrtf()
- fmax(), fmaxf()
- fmin(), fminf()
- copysign(), copysignf()
If function is specified, a code to always call the target functions is generated.

If intrinsic is specified, inline expansion is performed for calling the target functions if possible.
- The parameter must be specified in lowercase characters.

- If this option is specified more than once, the last specification is valid.

- An error will occur in any of the following cases.

- When the parameter is omitted

- When a parameter other than function or intrinsic is specified as the parameter

- If inline expansion is performed for calling the target library functions because of this option, the expanded code will
not update variable errno. The operation for the following inputs differs from that when a function was called.

- sqrt or sgrtf: -0.0, negative number, or not-a-number

- fmax, fmaxf, fmin, or fminf: +0.0, -0.0, or not-a-number

R20UT3516EJ0111 Rev.1.11 RENESAS Page 77 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-goptimize [V2.01.00 or later]

This option generates information for link-time optimization.

[Specification format]

—-goptimize

- Interpretation when omitted
None

[Detailed description]

- This option generates additional information used at link-time optimization in the output file.

- When this option is specified for a file, link-time optimization will be applied at linkage of the file.
For details on link-time optimization, see the description of the link option -OPtimize.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 78 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Generated code control

The generated code control options are as follows.
- -Xpack

- -misalign [V2.04.00 or later]

- -Xbit_order

- -Xpass_source

- -Xswitch

- -Xreg_mode

- -Xreserve_r2

- -r4 [V1.07.00 or later]

- -Xep

- -Xfloat

- -Xfxu [V2.00.00 or later]

- -Xcall_jump

- -Xfar_jump

- -Xdiv

- -Xcheck_div_ov

- -relaxed_math [\V2.00.00 or later]

- -Xuse_fmaf

- -use_recipf [V2.00.00 or later]

- -approximate [V2.02.00 or later]

- -Xunordered_cmpf

- -Xmulti_level

- -Xpatch

- -Xdbl_size

- -Xround

- -Xalign4

- -Xstack_protector/-Xstack_protector_all [Professional Edition only]
- -Xsection

- -stuff [V2.03.00 or later]

- -Xcheck_exclusion_control [V1.04.00 or later]

- -Xresbank_mode [V2.00.00 or later]

- -insert_dbtag_with_label [V1.06.00 or later]

- -store_reg [Professional Edition only] [V1.06.00 or later]
- -control_flow_integrity [Professional Edition only] [V1.07.00 or later]
- -pic [V1.07.00 or later]

- -pirod [V1.07.00 or later]

- -pid [V1.07.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 79 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xpack

This option performs the structure packing.

[Specification format]

-Xpack=num

- Interpretation when omitted
The structure packing is not performed.

[Detailed description]

- This option performs the structure packing.

- If this option is specified, struct members will not be aligned by their member types, but rather code will be generated
with alignment packed to the specified num bytes.

- 1, 2, or 4 can be specified as num.
An error will occur if any other item is specified.

- This option can not be specified together with the -Xinline_strcpy option.

- If this option is specified when the structure packing is specified by the #pragma directive in the C source, the value
specified by this option is applied to all structures until the first #pragma directive appears.
After that, the value of the #pragma directive is applied.
Even after the #pragma directive has appeared, however, the value specified by the option is applied if the default
value is specified (if the value of the packing by the #pragma directive).

[Example of use]

- To generate code with struct member alignment packed to 1 byte, describe as:

>ccrh -Xpack=1 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 80 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-misalign [V2.04.00 or later]

This option generates an instruction string that performs a misaligned memory access.

[Specification format]

-misalign

[Detailed description]

- For memory accesses, this option generates a more effective instruction string assuming that the device supports
access to unaligned addresses.

- Specifying this option more than once has the same effect as specifying it once only. No warning is output in this case.

[Remark]

- To specify this option, enable the misaligned memory access function of the device. For details, see the user's manual
of the device.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 81 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xbit_order

This option specifies the order of bit-field members.

[Specification format]

-Xbit_order=pos

- Interpretation when omitted
The bit-field members are allocated from the lower bit.

[Detailed description]

- This option specifies the order of bit-field members.

- The items that can be specified as pos are shown below.
An error will occur if any other item is specified.

left The members are allocated from the upper bit.

right The members are allocated from the lower bit.

- An error will occur if pos is omitted.

- If this option is specified when the order of bit-field members is specified by the #pragma directive in the C source, the
value specified by this option is applied to all members until the first #pragma bit_order directive appears.
After that, the value of the #pragma directive is applied.

[Example of use]

- To allocate the bit-field members from the upper bit, describe as:

>ccrh -Xbit_order=left -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 82 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xpass_source

This option outputs a C source program as a comment to the assembly source file.

[Specification format]

-Xpass_source

- Interpretation when omitted
The C source program is not output as a comment to the assembly source file.

[Detailed description]

- This option outputs a C source program as a comment to the assembly source file.

- The output comments are for reference only and may not correspond exactly to the code.
Additionally, non-executed lines may not be output as comments (e.g. type declarations and labels).

For example, comments concerning global variables, local variables, function declarations, etc., may be output to
incorrect positions.

By specifying the optimization options, the code may be deleted and only the comment may remain.

[Example of use]

- To output a C source program as a comment to the assembly source file, describe as:

>ccrh -Xpass_source -S -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 83 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xswitch

This option specifies the format in which the code of switch statements is to be output.

[Specification format]

-Xswitch=type

- Interpretation when omitted
ccrh selects the optimum output format for each switch statement.

[Detailed description]

- This option specifies the format in which the code of switch statements is to be output.

- The items that can be specified as type are shown below.
An error will occur if any other item is specified.

ifelse Outputs the code in a format in which the case labels are compared one by one. This item should be
specified when there are not so many case statements.

binary Outputs the code in the binary search format.

Searches for a matching case statement by using a binary search algorithm.

If this item is selected when many labels are used, any case statement can be found at almost the
same speed.

table Outputs the code in a table jump format.

References a table indexed on the values in the case statements, and selects and processes case
labels from the switch statement values.

The code will branch to all the case statements with about the same speed.

However, if case values are not used in succession, an unnecessary area will be created.

If the difference between the maximum and minimum values of the case labels exceeds 8192, then this
option is ignored, and the optimum output format for each switch statement is selected automatically.

- An error will occur if type is omitted.

[Example of use]

- To output a code for the switch statement in the binary search format, describe as:

>ccrh -Xswitch=binary -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 84 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xreg_mode

This option specifies the register mode.

[Specification format]

-Xreg_mode=mode

- Interpretation when omitted
The 32-register mode object file is generated.

[Detailed description]

- This option generates the object file for the specified register mode.

- This option limits the number of registers used by ccrh to 32 (the 32-register mode) or 22 (the 22-register mode or

register mode "common") and embeds the magic number into the object file.

- Use register mode "common" to generate the object file that does not depend on register modes.

- The items that can be specified as mode are shown below.
An error will occur if any other item is specified.

Register Mode (mode)

Working Registers

Registers for Register Variables

common ril0torl4d r25to r29
22 rl0torl4d r25 to r29
32 r10to rl9 r20 to r29

- An error will occur if mode is omitted.

- This option generates the code using the register that can be used for a C source file.

- If 32-register mode object files and 22-register mode object files are mixed, an error will occur at linkage.

[Example of use]

- To generate the 22-register mode object file, describe as:

>ccrh -Xreg_mode=22 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 85 of 795



CC-RH 2. COMMAND REFERENCE

-Xreserve_r2

This option reserves the r2 register.

[Specification format]

-Xreserve_r2

- Interpretation when omitted
The compiler uses the r2 register without reserving it.

[Detailed description]

- This option reserves the r2 register and generates code that does not use this register by the compiler.

[Example of use]

- To reserve the r2 register and generates code that does not use this register by the compiler, describe as:

>ccrh -Xreserve_r2 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 86 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-r4 [V1.07.00 or later]

This option specifies how to handle the r4 register.

[Specification format]

-r4=mode

- Interpretation when omitted
The value of the r4 register is fixed for the entire project.

[Detailed description]

- This option specifies how to handle the r4 register.

- The items that can be specified as mode are shown below.
An error will occur if any other item is specified.

fix Fixes the value of the r4 register for the entire project. Specify this parameter when GP-relative
sectionsN°® are used.
none The compiler does not use the r4 register.
Note See "4.2.6.1 Allocation of function and data to section” for details about GP-relative sections.
R20UT3516EJ0111 Rev.1.11 .ZENESAS Page 87 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xep

This option specifies how to handle the ep register.

[Specification format]

-Xep=mode

- Interpretation when omitted
The ep register is treated as a register guaranteeing the value before and after the function call.

[Detailed description]

- This option specifies how to handle the ep register.

- The items that can be specified as mode are shown below.
An error will occur if any other item is specified.

fix Fixes the value of the ep register for the entire project.
Specify this parameter when EP-relative sectionsN°® are used.

callee Treats the ep register as a register guaranteeing the value before and after the function call.
Specify this parameter when the -Omap or -Osmap option is specified.

Note See "4.2.6.1 Allocation of function and data to section" for details about GP-relative sections.

- An error will occur if mode is omitted.

- The same specification must be made for all source files.
A different specification cannot be made for each source file.
If there are object files with different specifications, an error will occur at linkage.

[Example of use]

- To fix the value of the ep register for the entire project, describe as:

>ccrh -Xep=fix -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 88 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xfloat

This option controls generating floating-point calculation instructions.

[Specification format]

-XFloat=type

- Interpretation when omitted
If the-Xcpu=g3k option is specified, -Xfloat=soft is assumed.
In any other case, -Xfloat=fpu is assumed.

[Detailed description]

- This option controls generating floating-point calculation instructions.

- The items that can be specified as type are shown below.
An error will occur if any other item is specified.

soft Generates runtime function call instructions for floating-point calculations.
fpu Generates floating-point calculation instructions of FPU (floating-point unit) for floating-point calcula-
tions.

However, if -Xcpu=g3kh is specified, runtime function call instructions for double-precision calculations
will be generated.

If this option is specified together with the -Xcpu=g3k option, this option is invalid and -Xfloat=soft is
assumed.

- An error will occur if type is omitted.

- If this option is specified together with the -Xcpu=g3k option, this option will be invalid and runtime function call
instructions will always be generated.

- If soft is specified as type, the -Xround=zero option will be invalid and -Xround=nearest will always be valid.

[Example of use]

- To generate the jarl32 and jr32 instructions for function-call branches, describe as:

>ccrh -XFloat=soft -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 89 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xfxu [V2.00.00 or later]

This option controls usage of FXU instructions.

[Specification format]

—Xfxu[={on]ofF}]

- Interpretation when omitted
If -Xcpu=g4mh is specified, it is regarded that -Xfxu=on is specified.
If an option other than -Xcpu=g4mbh is specified, it is regarded that -Xfxu=off is specified.

[Detailed description]

- This option controls how to handle the system registers for FXU in exception handlers.

- If on is specified, FXU instructions are regarded to be used in the program.
If off is specified, FXU instructions are regarded not to be used in the program.

- If the parameter is omitted, it has the same meaning as when on is specified.
- If this option is specified more than once, the last specification is valid.

- If the specification of this option is changed for each source file, registers may not be correctly managed in exception
handlers. The specification must be the same for all source files.

- If an option other than -Xcpu=g4mh is specified, this option is ignored. A warning is output in this case.
- An error will occur in the following case.

- When a parameter other than on or off is specified

[Remark]

In V2.00.00, FXU instructions are not generated even if this option is specified. Only codes generated by exception han-
dlers will be affected by this option.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 90 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xcall_jump

This option controls generating function-call branch instructions.

[Specification format]

-Xcall_jump=num

- Interpretation when omitted
The jarl and jr instructions are generated for function-call branches.

[Detailed description]

- This option controls generating function-call branch instructions.

- The items that can be specified as num are shown below.
An error will occur if any other item is specified.

22 Generates the jarl and jr instructions for the branch to the function.

32 Generates the jarl32 and jr32 instructions for the branch to the function.

- An error will occur if num is omitted.

[Example of use]

- To generate the jarl32 and jr32 instructions for the branch to the function, describe as:

>ccrh -Xcall_jump=32 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 91 of 795



CC-RH 2. COMMAND REFERENCE

-Xfar_jump

This option controls outputting far jump.

[Specification format]

-Xfar_jump=File

- Interpretation when omitted
The instructions in accordance with the -Xcall_jump option are generated.

[Detailed description]

- This option generates the code that uses instructions with a branch distance of 32 bits for the branch to functions
specified in far jump calling function list file file.

- "fjp" is recommended as the extension of file.
- An error will occur if file does not exist.
- An error will occur if file is omitted.

- An error will occur at linkage if the distance between a branch instruction and a branch destination function exceeds
22 bits (2 Mbytes) when the -Xcall_jump=22 option is specified. In this case, recompile by using this option.

- If this option is specified more than once, the option specified last will be valid.
- The example of the output code is shown below.

- C source

far_func(Q); /* "jarl _far_func, Ip" is output by default. */

- Output assembly source

jarl32 _far_func, Ip

Remark Cautions about are the format of the far jump calling function list file as follows.

- Describe with one function name per line.
If two or more function name is described, the first name will be valid.

- Describe the function name (label name in an assembly source) by prefixing "_" to that in C language.
However, the following formats can be specified instead of function names.

Format Meaning

{all_function} All functions are called.

- Not only functions that are called from a C source file, but operation runtime functions can also be
specified.
When specifying an operation runtime function, instead of prefixing "_" to the function name, specify
the function name as it is in Table 7.16 in "7.4.13 Operation runtime functions".

- A space and tab can be inserted before and after function names.

- Only ASCII characters can be used.
After the space characters at the beginning of a line, a non-space character string until the next space
character or the end of the line is treated as a function name, and the rest of the line (from the space
character to the end of the line) is ignored.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 92 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

- Comments cannot be inserted.

- Up to 1023 characters can be specified per line (including a space and tab).

The example when specifying functions is shown below.

_func_led
_func_beep
_func_motor

_func_switch
_COM_div64

[Example of use]

- To generate the code that uses an instruction with a branch distance of 32 bits for the branch to the function specified
in func.fjp, code as:

>ccrh -Xfar_jump=func.fjp -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 93 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xdiv

This option generates the div and divu instructions for division.

[Specification format]

-Xdiv

- Interpretation when omitted
The divg and divqu instructions are generated for division.

[Detailed description]

- This option generates the div and divu instructions instead of the divg and divqu instructions for division.

- Although the divg and divqu instructions are fast, the number of execution cycles will differ depending on the values of
the operands.
For this reason, specify this option if it is necessary to maintain a constant number of execution cycles at all times
(e.g. in order to guarantee real-time performance).

[Example of use]

- To generate the div and divu instructions for division, describe as:

>ccrh -Xdiv -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 94 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcheck_div_ov

This option checks the OV flag at division.

[Specification format]

-Xcheck_div_ov=num

- Interpretation when omitted
Code that does not check the OV flag at division is generated.

[Detailed description]

- This option generates code (fetrap instruction) that checks the OV flag after division instructions and generate an FE
level software exception when the OV flag is 1.

- The value that can be specified for num is 1 to 15 (a value that can be specified for the operand of the fetrap instruc-
tion).
An error will occur if any other item is specified.

- An error will occur if num is omitted.

[Example of use]

- To check the OV flag at division, describe as:

>ccrh -Xcheck_div_ov=1 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 95 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-relaxed_math [V2.00.00 or later]

This option generates a floating-point calculation code with efficiency given precedence over strictness.

[Specification format]

-relaxed_math

- Interpretation when omitted
None

[Detailed description]

- For floating-point calculations, this option generates a calculation code that is not in strict accordance with the C-lan-
guage standard or IEEE754, but is efficient with respect to the code size and execution speed.

- The following options are assumed to be simultaneously specified.
- -Xuse_fmaf
- -use_recipf
- -approximate [V2.02.00 or later]

- If this option is specified more than once, it has the same meaning as when this option is specified once. No warning
is output in this case.

[Remark]

When this option is specified, floating-point calculations are performed in the following manner and sometimes the oper-
ation result will differ from that obtained by calculations strictly in accordance with the C-language standard or IEEE754.

- The meaning of the sign of 0.0 is ignored.

- Expressions are deformed by using algebraic characteristics, assuming that an exception or precision error is not
generated by calculations.

- Itis assumed that a calculation does not result in I/O of a NaN or infinity in a comparison calculation or other calcula-
tions.
A program that handles these values might cause an unexpected execution result. Therefore, care must be taken
when using this option.

Example:

Generally, if x or y is a NaN, this program does not call function func2.

However, if this option is specified, an efficient codeNot js generated instead of assuming NaN input. As a result,
function func2 may be called.

Note The performance remarkably changes when the -Xfloat=soft option is specified.

void funcl(double x, double y) {
if x<y){
func2();
}

}

R20UT3516EJ0111 Rev.1.11 RENESAS Page 96 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xuse_fmaf

This option generates product-sum operation instructions.

[Specification format]

-Xuse_fmaf

- Interpretation when omitted
Product-sum operation instructions are not generated.

[Detailed description]

- This option generates product-sum operation instructions (fmaf.s, fmsf.s, fnmaf.s, and fnmsf.s) for single-precision
floating-point product-sum operations.

- Specifying this option will accelerate the execution speed but change the operation precision.

[Example of use]

- To generate product-sum operation instructions for single-precision floating-point product-sum operations, describe
as:

>ccrh -Xuse_fmaf -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 97 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-use_recipf [V2.00.00 or later]

This option generates the recipf instructions.

[Specification format]

-use_recipf

- Interpretation when omitted
None

[Detailed description]

- This option generates the recipf.d and recipf.s instructions.

- If this option is specified more than once, it has the same meaning as when this option is specified once. No warning

is output in this case.

- If usage of the FPU is not enabled by the -Xcpu option or -Xfloat option, this option is ignored. No warning is output in

this case.

[Remark]

If the recipf instructions are generated by this option, the operation result may differ from that when this option is not

specified.

Since a recipf instruction always triggers an incorrect operation exception of the FPU, FPU exception processing should

be set appropriately.

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 98 of 795



CC-RH 2. COMMAND REFERENCE

-approximate [V2.02.00 or later]

This option replaces floating-point calculations with equivalent approximate calculations.

[Specification format]

—approximate

- Interpretation when omitted
None

[Detailed description]

- This option replaces floating-point calculations with equivalent approximate calculations.
This replacement generates a calculation code that is efficient with respect to the code size and execution speed.

[Remark]

When this option is specified, floating-point calculations are performed in the following manner and sometimes the oper-
ation result will differ from that obtained by calculations strictly in accordance with the C-language standard or IEEE754.

- The meaning of the sign of 0.0 is ignored. Expressions are deformed by using algebraic characteristics, assuming
that an exception or precision error is not generated by calculations.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 99 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xunordered_cmpf

This option detects invalid operation exceptions in floating-point comparison.

[Specification format]

-Xunordered_cmpf

- Interpretation when omitted
In floating-point comparison, invalid operation exceptions are not detected when gNaN is included.

[Detailed description]

- This option generates code by using the comparison condition for generating an invalid operation exception when any
of the comparison values is a gNaN in floating-point comparison.

- This option is valid only for floating-point comparison using instructions of FPU (floating-point unit).

[Example of use]

- To detect invalid operation exceptions in floating-point comparison, describe as:

>ccrh -Xunordered_cmpf -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 100 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xmulti_level

This option specifies the generation of a multi-core program.

[Specification format]

-Xmulti_level=level

- Interpretation when omitted
A single-core program is generated.

[Detailed description]

- This option generates a program for the specified core.

- The items that can be specified as level are shown below.
An error will occur if any other item is specified.

0 Generates a single-core program.
The #pragma pmodule directives in the program are ignored.
1 Generates a multi-core program.

The #pragma pmodule directives in the program become valid.

[Example of use]

- To generate a multi-core program, describe as:

>ccrh -Xmulti_level=1 -Xcommon=rh850 filel.c file2.c

R20UT3516EJ0111 Rev.1.11 RENESAS

Dec 01, 2023

Page 101 of 795



CC-RH 2. COMMAND REFERENCE

-Xpatch

This option applies a patch.

[Specification format]

-Xpatch=string[,string].-..

- Interpretation when omitted
The default patch is applied.

[Detailed description]

One of the following can be specified as string. An error will occur if any other item is specified.

- dw_access
A code is generated without using the Id.dw and st.dw instructions.

- switch [V1.03.00 or later]
If -Xcpu=g3m is specified without specifying this option, generation of the switch instruction is suppressed. Specifying
this option cancels the suppression and generates the switch instruction.

syncp [V1.03.00 or later]

If -Xcpu=g3m is specified simultaneously, syncp instruction is inserted at the entry of each interrupt function defined
with the #pragma interrupt directive in which priority=SYSERR/FPI/FENMI/FEINT/EIINT_PRIORITYX (X: 0 to 15) is
specified or neither priority nor channel is specified.

If an option other than -Xcpu=g3m is specified, this option is ignored.

br [V2.04.00 or later]

If -Xcpu=g3m is specified without specifying this option, generation of br disp9 instructions that satisfy specific condi-
tions is suppressed. Specifying this option cancels the suppression and generates the br disp9 instruction.

If an option other than -Xcpu=g3m is specified, generation of the br disp9 instruction is not suppressed regardless of
the specification of this option.

br_jr [V2.04.01 or later]
If -Xcpu=g3kh is specified at the same time, generation of br disp9, jr disp22, and jr disp32 instructions is suppressed.
If an option other than -Xcpu=g3kh is specified, this option is ignored.

The following shows the default patch that is applied when this option is not specified.
- When -Xcpu=g3m is specified, the following patch is applied:
- Suppressing generation of the switch instruction

- Suppressing generation of br disp9 instructions that satisfy specific conditions

[Example of use]

- To generate a code without using the Id.dw and st.dw instructions, describe as:

>ccrh -Xpatch=dw_access -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 102 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xdbl_size

This option specifies the data size of double and long double type.

[Specification format]

-Xdbl_size=num

- Interpretation when omitted
double and long double type are 8 bytes (this is the same result as when -Xdbl_size=8 is specified).

[Detailed description]

- This option specifies the data size of double and long double type.
- One of the following can be specified as num. An error will occur if any other item is specified.
-4
double and long double type are 4 bytes.
-8
double and long double type are 8 bytes.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 103 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xround

This option specifies the mode for rounding floating-point constants.

[Specification format]

-Xround=mode

- Interpretation when omitted

Floating-point constants are rounded to the nearest representable values (this is the same result as when
-Xround=nearest is specified).

[Detailed description]

- This option specifies the mode for rounding floating-point constants.
- One of the following can be specified as mode. An error will occur if any other item is specified.

- nearest
Floating-point constants are rounded to the nearest representable values.

- zero
Floating-point constants are rounded toward zero.

- If this option is specified together with the -Xfloat=soft option, this option will be invalid and floating-point constants will
always be rounded to the nearest representable values.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 104 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xalign4

This option specifies the alignment value for branch destination addresses.

[Specification format]

-Xalign4[=mode]

- Interpretation when omitted
The alignment value for branch destination addresses is set to 2.

[Detailed description]

- This option sets the alignment value for branch destination addresses specified by mode to 4.
- One of the following can be specified as mode. An error will occur if any other item is specified.

- function
The alignment value for function start addresses is set to 4.
- loop
The alignment value for function start addresses and the start addresses of all loops is set to 4.

- innermostloop
The alignment value for function start addresses and the start address of the innermost loop is set to 4.

- all
The alignment value for function start addresses and all branch destination addresses is set to 4.

- When =mode is omitted
The alignment value for function start addresses is set to 4 (same as function).

- If an object module file or a standard library that has been generated through compilation without using this option is
specified for linkage, the warning W0561322 will be output at linkage but program execution will have no problem.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 105 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xstack_protector/-Xstack protector_all [Professional Edition only]

This option specifies generation of a code for detection of stack smashing.

[Specification format]

-Xstack_protector[=num]
-Xstack_protector_all[=num]

- Interpretation when omitted
A code for detection of stack smashing is not generated.

[Detailed description]

- This option generates a code for detection of stack smashing at the entry and end of a function. A code for detection
of stack smashing indicates the instructions for executing the three processes shown below.
(1) A 4-byte area is allocated just before the local variable area (in the direction towards address OxFFFFFFFF) at the
entry to a function, and the value specified by num is stored in the allocated area.
(2) At the end of the function, whether the 4-byte area in which hum was stored has been rewritten is checked.
(3) If the value has been rewritten in (2), the __stack_chk_fail function is called as the stack has been smashed.

- A decimal number from 0 to 4294967295 should be specified in num. If the specification of num is omitted, the com-
piler automatically specifies the number.

- The __stack_chk_fail function needs to be defined by the user and the processing to be executed upon detection of
stack smashing should be written. Note the following items when defining the __stack_chk_fail function.

- The only possible type of return value is void and the __stack_chk_fail function does not have formal parame-
ters.

- Do not define the function as static.
- Itis prohibited to call the __stack_chk_fail function as a normal function.

- The __stack_chk_fail function is not subject to generating a code for detection of stack smashing due to the
-Xstack_protector and -Xstack_protector_all options and #pragma stack_protector.

Prevent returning to the caller, that is, the function where stack smashing was detected by taking measures
such as calling abort() in the __stack_chk_fail function to terminate the program.

- When calling another function in the __stack_chk_fail function, note that stack smashing is not detected recur-
sively in the function that was called.

- When this facility is used for a function for which PIC (see "8.6 PIC/PID Facility") is performed, PIC should also
be performed for the __stack_chk_fail function.

- If -Xstack_protector is specified, this option generates a code for detection of stack smashing for only functions hav-
ing a structure, union, or array that exceeds eight bytes as a local variable. If -Xstack_protector_all is specified, this
option generates a code for detection of stack smashing for all functions.

- If these options are used simultaneously with #pragma stack_protector, the specification by #pragma stack_protector
becomes valid.

- Even though this option is specified, a code for detection of stack smashing is not generated for the functions for
which one of the following #pragma directives is specified.
#pragma inline, inline keyword, #pragma inline_asm, #pragma no_stack_protector

R20UT3516EJ0111 Rev.1.11 RENESAS Page 106 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

[Example of use]

- C source

#include <stdio.h>
#include <stdlib.h>

{
volatile char str[10];

int i;
for (i =

str[i]
}

0; 1 <= 10; i++){
= 1; // Stack is smashed when i=10

}

void __stack_chk_fail(void)

{
printf('stack is broken!');
abort();

void 1) // Sample program in which the stack is smashed

- Output codes

When compilation is performed with -Xstack_protector=1234 specified.

_f1:
.stack _f1 = 16
add OxFFFFFFFO, r3

area.

st.w r1, 0x0000000C[r3]

mov 0x00000000, r2

br9 _BB.LABEL.1_2
_BB_LABEL.1_1: ; bb

movea 0x00000002, r3, r5

add r2, r5

st.b r2, 0x00000000[r5]

add 0x00000001, r2
_BB_.LABEL.1 2: ; bb7

cmp 0x0000000B, r2

blt9 .BB.LABEL.1 1
.BB.LABEL.1 3: ; return

.BB.LABEL.1 4: ; return
dispose 0x00000010, 0x00000000, [r31]
.BB.LABEL.1_5: ; return

____stack_chk_fail:
.stack ___ stack_chk_fail = 4
prepare 0x00000001, 0x00000000
mov #.STR.1, r6
jarl _printf, r31
jarl _abort, r31
dispose 0x00000000, 0x00000001, [r31]

movea 0x000004D2, rO, rl ; The specified <number> 1234 is stored in the stack

Id.w 0x0000000C[r3], ril1 ; Data is loaded from the location where <number>
movea 0x000004D2, rO, rl12 ; was stored at the entry to a function and
cmp r12, rl ; It Is compared with the specified <number> 1234.

bnz9 _BB.LABEL.1_5 ; 1T they do not match, a branch occurs.

br9 __ stack chk_fail ; __stack _chk_fail is called.

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 107 of 795



CC-RH 2. COMMAND REFERENCE

-Xsection

This option specifies the default sections for data.

[Specification format]

-Xsection=string=value[,string=value]

- Interpretation when omitted
The default section is set to .bss for uninitialized data, .data for initialized data, or .const for constant data.

[Detailed description]

- This option specifies the default section attributes for data.

- The following shows the character strings that can be specified for string and value, and the default sections for each
setting. An error will occur if any other item is specified for string and value.

string value Default Section
Uninitialized Data Initialized Data Constant Data

data rO_disp16 .zbss .zdata -
r0_disp23 .zbss23 .zdata23 -
ep_displ6 .ebss .edata -
ep_disp23 .ebss23 .edata23 -
gp_displ6 .Sbss .sdata -
gp_disp23 .Sbss23 .sdata23 -

const zconst - - .zconst
zconst23 - - .zconst23
pcconst1l6 - - .pcconst16
[V1.07.00 or later]
pcconst23 - - .pconst23
[V1.07.00 or later]

- When the attribute is changed by #pragma section, the attribute specified by #pragma section will be valid.

Combinations of this option and other options which will cause an error are shown below.

-Xsection=data=ep_disp16 An error will occur when specified simultaneously with -Omap.
-Xsection=data=ep_disp23 An error will occur when specified simultaneously with -Osmap.
-Xsection=data=gp_disp16 An error will occur when specified simultaneously with -r4=none.

-Xsection=data=gp_disp23

-Xsection=data=r0_disp16 An error will occur when specified simultaneously with -pid.
-Xsection=data=r0_disp23

-Xsection=const=zconst An error will occur when specified simultaneously with -pirod.
-Xsection=const=zconst23

-Xsection=const=pcconst16 An error will occur when not specified simultaneously with -pirod.
-Xsection=const=pcconst23

R20UT3516EJ0111 Rev.1.11 RENESAS Page 108 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-stuff [V2.03.00 or later]

This option allocates variables to sections separated according to the number of alignment.

[Specification format]

-stuff[=<variable-type>[,...11
<variable-type>:{bss|data]const}

- Interpretation when omitted
Variables are allocated without separating sections.

[Detailed description]

- This option allocates the variables belonging to the specified <variable-type> to sections separated according to the
number of alignment.

- bss specifies uninitialized variables, data specifies initialized variables, and const specifies const variables.

- If <variable-type> is omitted, all types of variables are applicable.

If this option is specified multiple times, all specified types of variables are applicable.

- If the same variable type is specified multiple times, the compiler handles this as one specification. For this, no warn-
ing is issued.

If anything other than bss, data, and const is specified for <variable-type>, an error occurs.

Variables are output to a section whose section name has <number-of-alignment>.
However, if the number of alignment is 4, "_4" is not added to a section name.
Examples:
When the number of alignment of variables is 4: .bss
When the number of alignment of variables is 2: .bss_2
When the number of alignment of variables is 1: .bss_1

[Example of use]

const char c=1;
const short s=2;
const long 1=3;

Default -stuff specification
.section .const, const -section .const_1, const, align=1
_c _c:
.db 0x01 .db 0x01
.align 2
_s: .section .const_2, const, align=2
-.dhw 0x0002 .align 2
.align 4 _s:
1: -dhw 0x0002

.dw 0x00000003
.section .const, const
.align 4

.dw 0x00000003

[Remark]

- Each section name reflects the following options or specification in #pragma section:
-Xsection, -Xmulti_level

R20UT3516EJ0111 Rev.1.11 RENESAS Page 109 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcheck_exclusion_control [V1.04.00 or later]

This option is used to select checking of exclusive control.

[Specification format]

-Xcheck_exclusion_control=<filename>

- Interpretation when omitted
Checking of exclusive control is disabled.

[Detailed description]

- This option loads the setting file and inserts the dbtag instruction at the specified location.

- This function assumes usage via CS+ and it should not be used directly by the user.

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 110 of 795



CC-RH 2. COMMAND REFERENCE

-Xresbank_mode [V2.00.00 or later]

This option specifies the operating mode of the resbank instruction.

[Specification format]

-Xresbank_mode=num

- Interpretation when omitted
It has the same meaning as when -Xresbank_mode=0 is specified.

[Detailed description]

- This option generates a code assuming that the resbank instruction will operate with the value specified in num being
set in RBCRO.MD (register for specifying the save mode of the register bank).

- 0 or 1 can be specified for num. Specify the same value as that set in RBCRO0.MD.
- If this option is specified more than once, the last specification is valid.

- If the specification of this option is changed for each source file, registers may not be correctly managed in exception
handlers. The specification must be the same for all source files.

- This option is valid only in an exception handler in which resbank was specified by the #pragma interrupt directive.
- An error will occur in any of the following cases.

- When num is omitted

- When a value other than 0 or 1 is specified

- When a parameter other than g4mbh is specified in the -Xcpu option

[Remark]

Even though this option is specified, a code for setting a value to RBCR0.MD is not generated. The value must be
directly set with the user program.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 111 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-insert_dbtag_with_label [V1.06.00 or later]

This option controls insertion of the dbtag instruction.

[Specification format]

—-insert_dbtag_with_label=File, line, label, tagid

- Interpretation when omitted
The dbtag instruction is not inserted.

[Detailed description]

- This option inserts a local label and dbtag instruction at the specified location, based on the information for source
debugging.

- When this option is specified, the -g option also becomes valid at the same time.

- This function is assumed to be used via CS+ and it should not be used directly by the user.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 112 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-store_reg [Professional Edition only] [V1.06.00 or later]

This option controls detection of writing to control registers or insertion of synchronization processing between registers.

[Specification format]

-store_reg[=mode]

- Interpretation when omitted
If #pragma register_group is written, the operation is the same as that when -store_reg=list is specified.

[Detailed description]

- This option recognizes #pragma register_group as a valid #pragma directive and carries out the operation specified
by mode.
See "4.2.6.14 Detection of writing to control registers or insertion of synchronization processing [Professional Edition
only] [V1.06.00 or later]" for details on #pragma register_group.

- Specify either one of the following as mode. An error will occur if any other item is specified.

- list
This option allows the compiler to detect writing to the control registers defined as #pragma register_group and
display the source line number of the write instructions to the standard error output, except where the succeed-
ing instruction will clearly be for writing to the same group, in which case the compiler does not display the
source line number.

list_all

This option allows the compiler to detect writing to the control registers defined as #pragma register_group and
display the source line number of the write instructions to the standard error output. The source line number are
displayed regardless of whether the succeeding instruction will clearly be for writing to the same group.

- sync
This option allows the compiler to detect writing to the control registers defined as #pragma register_group and
inserts synchronization processing after write instructions for these registers, except where the succeeding
instruction will clearly be for writing to the same group, in which case the compiler does not insert a synchroniza-
tion processing.

- ignore
#pragma register_group is ignored but a warning is not output.

- When =mode is omitted
The operation is the same as that when -store_reg=list is specified.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 113 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-control_flow_integrity [Professional Edition only] [V1.07.00 or later]

This option generates code for the detection of illegal indirect function calls.

[Specification format]

-control_flow_integrity

- Interpretation when omitted
Code for the detection of illegal indirect function calls is not generated.

[Detailed description]

- This option generates code for the detection of illegal indirect function calls.
When this option is specified, code for the following processing is generated in the C source program.

(1) The __control_flow_integrity checking function is called with an indirect calling address as an argument immedi-
ately before indirect function calls.

(2) Within the checking function, the address given as the argument is checked against a list of the addresses of func-
tions (hereafter referred to as the function list) which may be indirectly called. If the list does not include the
address, the __control_flow_chk_fail function will be called since this is regarded as an illegal indirect function call.

The correctness of processing to change the flow of the program, such as through indirect function calls, is referred to
as control flow integrity (CFI), and CFI techniques are used to verify this.

- A checking function is defined as follows and provided as library functions.
void __control_flow_integrity(void *addr);
Calling the checking function in the same way as normal functions is prohibited.

- The compiler automatically extracts the information on the functions which may be indirectly called from the C source
program. The linker consolidates that information in creating the function list. For the linker to create a function list, the
-CFl link option must be specified.

For details, refer to section 2.5.3 Link options.

- The __control_flow_chk_fail function contains code for the processing which is to be executed when an illegal indirect
function call is detected. The user must define this function.
Note the following when defining the __control_flow_chk_fail function.

- Specify void as the type of the return value and parameter.

- Do not define the function as static.

- Calling the __control_flow_chk_fail function in the same way as a normal function is prohibited.

- The __control_flow_chk_fail function is not for the creation of code for detecting illegal indirect function calls.

- In the __control_flow_chk_fail function, note that execution must not be returned to the checking function, for
example, by calling abort() to terminate the program.

- If the -pic option is specified at the same time, an error will occur.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 114 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Example:

- <C source code>

#include <stdlib.h>

int glb;
void __ control_flow_chk_fail(void)
{
abort();
}
void funcl(void) // Added to the function list.
{
++glb;
}
void func2(void) // Not added to the function list.
{
--glb;
}

void (*pf)(void) = funcl;

void main(void)

{
pfQ; 7/ Indirect call of the function funcl.
func2();
s
R20UT3516EJ0111 Rev.1.11 RENESAS Page 115 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

- <Qutput code>
When -S -control_flow_integrity is specified for compilation

____control_flow_chk_fail:
.stack ___ control_flow_chk_fail = 4
prepare 0x00000001, 0x00000000
jarl _abort, r31
dispose 0x00000000, 0x00000001, [r31]
_Ffuncl:
.stack _funcl =0
movhi HIGHW1(# _glb), r0, r2
Id.w LOWW(#_glb)[r2], r5
add 0x00000001, r5
st.w r5, LOWW(#_glb)[r2]
Jmp [r31]
_func2:
.stack _func2 = 0
movhi HIGHW1(#_glb), r0, r2
Id.w LOWN(#_glb)[r2], r5
add OxXFFFFFFFF, r5
st.w r5, LOWW(#_glb)[r2]
Jmp [r31]
_main:
.stack _main = 8
prepare 0x00000041, 0x00000000
movhi HIGHW1(#_pf), r0, r20
Id.w LOWN(#_pF)[r20], r20
mov r20, r6

jarl [r20], r31 ; Indirect call of the function funcl.
jJarl _func2, r31 ; Direct call of the function func2.
dispose 0x00000000, 0x00000041, [r31]
.section .bss, bss
.align 4
_glb:
.ds (4
.section .data, data
.align 4
_pf:
.dw # funcl
.section .const, const

jarl control_flow_integrity, r31 ; Call the checking function.

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 116 of 795



CC-RH 2. COMMAND REFERENCE

-pic [V1.07.00 or later]

This option enables the PIC facility.

[Specification format]

-pic

- Interpretation when omitted
The PIC facility is disabled.

[Detailed description]

- The PIC facility makes the section to which functions are allocated position-independent.
See "4.2.6.1 Allocation of function and data to section " and "8.6 PIC/PID Facility" for details about the PIC facility.

- When this option is specified, the section to which the function code is output is changed from the text attribute sec-
tion to the pctext attribute section.

- Referencing a function allocated to the pctext attribute section is always performed in PC-relative mode. This allows
the pctext attribute section to be allocated at a desired address after linkage.

- When this option is specified, the predefined macro __PIC will be valid.

- If this option is not specified simultaneously with the -pirod option, an error will occur.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 117 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-pirod [V1.07.00 or later]

This option enables the PIROD facility.

[Specification format]

-pirod

- Interpretation when omitted
The PIROD facility is disabled.

[Detailed description]

- The PIROD facility makes the section to which constant data, such as const variables or string literal, is allocated
position-independent.
See "4.2.6.1 Allocation of function and data to section" and "8.6 PIC/PID Facility" for details about the PIROD facility.

- When this option is specified, the section to which constant data is output is changed from the const attribute section
to the pcconst32 attribute section.

Referencing constant data allocated to the pcconst32 attribute section is always performed in PC-relative mode. This
allows the pcconst32 attribute section to be allocated at a desired address after linkage.

When this option is specified, the predefined macro __PIROD will be valid.

If this option is not specified simultaneously with the -pic option, an error will occur.

If this option is specified simultaneously with the -Omap or -Osmap option, an error will occur.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 118 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-pid [V1.07.00 or later]

This option enables the PID facility.

[Specification format]

-pid

- Interpretation when omitted
The PID facility is disabled.

[Detailed description]

- The PID facility makes the section to which variable data is allocated position-independent.
See "4.2.6.1 Allocation of function and data to section” and "8.6 PIC/PID Facility" for details about the PID facility.

- When this option is specified, the section to which variable data is output is changed from the data or bss attribute
section to the sdata32 or sbss32 attribute section, respectively.

Referencing variable data allocated to the sdata32 or sbss32 attribute section is always performed in GP-relative
mode. This allows the sdata32 or shss32 attribute section to be allocated at a desired address after linkage.

When this option is specified, the predefined macro __PID will be valid.

If this option is specified simultaneously with the -r4=none option, an error will occur.

If this option is specified simultaneously with the -Omap or -Osmap option, an error will occur.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 119 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Information file output control

The information file output control option is as follows.

- -Xcref

R20UT3516EJ0111 Rev.1.11 RENESAS Page 120 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcref

This option outputs the static analysis information file.

[Specification format]

-Xcref=path

- Interpretation when omitted
The static analysis information file is not output.

[Detailed description]

- This option specifies the location where the static analysis information file to be generated during compilation as path.

- If an existing folder is specified as path, the static analysis information file is saved under the C source file name with
the extension replaced by ".cref" to path.

- If an existing file name is specified or a non-existing folder or file name is specified, the static analysis information file
is output with path as the file name when one static analysis information file is output.
If two or more static analysis information files are output, an error will occur.

- An error will occur if "=path” is omitted.

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and a static analysis information file is only saved for the last source file to be specified.

[Example of use]

- To output the static analysis information file as file name "info.cref", describe as:

>ccrh -Xcref=info.cref -Xcommon=rh850 main.cs

R20UT3516EJ0111 Rev.1.11 RENESAS Page 121 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Error output control

The error output control options are as follows.

- -Xerror_file

R20UT3516EJ0111 Rev.1.11 RENESAS Page 122 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xerror_file

This option outputs error messages to a file.

[Specification format]

-Xerror_file=File

- Interpretation when omitted
Error messages are output to only the standard error output.

[Detailed description]

- This option outputs error messages to the standard error output and file file.
- If file already exists, it will be overwritten.

- An error will occur if file is omitted.

[Example of use]

- To output error messages to the standard error output and file "err", describe as:

>ccrh -Xerror_file=err -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 123 of 795



CC-RH 2. COMMAND REFERENCE

Warning message output control

The warning message output control options are as follows.
- -Xno_warning

- -change_message [V1.07.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 124 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xno_warning

This option suppresses outputting warning messages of the specified number.

[Specification format]

-Xno_warning={num|numl-num2}[, ..-.1]

- Interpretation when omitted
All warning messages are output.

[Detailed description]

- This option suppresses outputting warning messages of the specified number.

- Specify the error numbers as num, numl, and num2.
If the error number that does not exist, it will be ignored.

- An error will occur if num, num1, or numz2 is omitted.
- If numl1-num2 is specified, it is assumed that error numbers within the range have been specified.
- When this option is specified more than once, all specifications will be valid.

- The error number specified by this option is the rightmost 5 digits of the 7-digit number following the "W".
See "10. MESSAGE" for error numbers.

- A message whose type was changed to error level by the -change_message option cannot be controlled by this
option.

- The message numbers that can be controlled by this option are as follows:
- W0520000 to W0529999 and W0550000 to W0559999 [V1.06.00 or earlier]
- W0510000 to W0559999 [V1.07.00 or later]

[Example of use]

- To suppress outputting warning message "W0520111" describe as:

>ccrh -Xno_warning=20111 -Xcommon=rh850 main.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 125 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-change_message [V1.07.00 or later]

This option changes specified warning messages into error messages.

[Specification format]

-change_message=error={num|numl-num2}[, --..]

[Detailed description]

- This option changes specified warning messages into error messages.
The message numbers that are targeted by this option are W0510000 to W0549999.

- Specify the rightmost 5 digits of the message number as num, num1, and num2.
If num1-numz2 is specified, it is assumed that error numbers within the range have been specified.

- If num or num1-num2 is omitted, all target warning messages are changed into error messages.
- When this option is specified more than once, all specifications will be valid.

- If a message number that does not exist is specified, the specification is ignored.
For message numbers, see "10. MESSAGE".

[Example of use]

- To change W0520000 to W0549999 into error messages, describe as:

>ccrh -change_message=error=20000-49999 a.c

R20UT3516EJ0111 Rev.1.11 RENESAS Page 126 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Phase individual option specification

The phase individual option specification options are as follows.
- -Xasm_option

- -XIk_option

R20UT3516EJ0111 Rev.1.11 RENESAS Page 127 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xasm_option

This option specifies assemble options.

[Specification format]

-Xasm_option=arg

- Interpretation when omitted
The ccrh driver interprets all specified options.

[Detailed description]

- This option passes arg to the assembler as the assemble option.
- An error will occur if arg is a non-existent assemble option.

- An error will occur if arg is omitted.

[Example of use]

- To pass the -Xprn_path option to the assembler, describe as:

>ccrh -Xasm_option=-Xprn_path -Xcommon=rh850 main.c

The example above has the same meaning as the following.

>ccrh -S -Xcommon=rh850 main.c
>asrh -Xprn_path -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 128 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-XIk_option

This option specifies link options.

[Specification format]

-X1k_option=arg

- Interpretation when omitted
The ccrh driver interprets all specified options.

[Detailed description]

- This option passes arg to the linker as the link option.

- Use this option to pass a file to the linker containing an identifier that the ccrh driver does not recognize as input to the

linker.
- An error will occur if arg is a non-existent link option.

- An error will occur if arg is omitted.

[Example of use]

- To pass the -form=relocate option to the linker, describe as:

>ccrh -Xl1k_option=-form=relocate -Xcommon=rh850 main.c

The example above has the same meaning as the following.

>ccrh -c -Xcommon=rh850 main.c
>rlink -form=relocate main.obj

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 129 of 795



CC-RH 2. COMMAND REFERENCE

Subcommand file specification

The subcommand file specification option is as follows.
-@

R20UT3516EJ0111 Rev.1.11 RENESAS Page 130 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

@

This option specifies a subcommand file.

[Specification format]

@file

- Interpretation when omitted

Only the options and file names specified on the command line are recognized.

[Detailed description]

- This option handles file as a subcommand file.
- An error will occur if file does not exist.
- An error will occur if file is omitted.

- See "2.4.2 Subcommand file usage" for details about a subcommand file.

[Example of use]

- To handle "command.txt" as a subcommand file, describe as:

>ccrh @command.txt -Xcommon=rh850

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 131 of 795



CC-RH 2. COMMAND REFERENCE

2.5.2 Assemble options

This section explains options for the assemble phase.

Caution about options are shown below.
- Uppercase characters and lowercase characters are distinguished for options.

- When numerical values are specified as parameters, decimal or hexadecimal numbers which starts with "0x" ("0X")
can be specified.
Uppercase characters and lowercase characters are not distinguished for the alphabet of hexadecimal numbers.

- When a file name is specified as a parameter, it can include the path (absolute path or relative path).
When a file name without the path or a relative path is specified, the reference point of the path is the current folder.

- When a parameter includes a space (such as a path name), enclose the parameter in a pair of double quotation
marks ().

- When the -Xprn_path or -Xasm_far_jump option is specified for ccrh command, the -Xasm_option option must be
used.

The types and explanations for options are shown below.

Table 2.3 Assemble Options

Classification Option Description
Version/help display specifi- | -V This option displays the version information of asrh.
cation
-h This option displays the descriptions of asrh options.
Output file specification -0 This option specifies the output file name.
-Xobj_path This option specifies the folder to save an object file generated
during assembling.
-Xprn_path This option specifies the folder to save the assemble list file.
Source debugging control -g This option outputs information for source debugging.
Device specification -Xcommon This option specifies that an object file common to the various
devices is generated.
-Xcpu This option specifies that an object for the specified core is gen-
erated.
Optimization -goptimize This option generates information for link-time optimization.
[V2.01.00 or later]
Symbol definition specifica- | -D This option defines assembler symbols.
tion
-U This option deletes the assembler symbol definition by the -D
option.
Include file reading path - This option specifies the folder to search include files.
specification
Japanese/Chinese charac- | -Xcharacter_set This option specifies the Japanese/Chinese character code.
ter control
R20UT3516EJ0111 Rev.1.11 RENESAS Page 132 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Classification Option Description
Generated code control -Xreg_mode This option specifies the register mode.
-Xreserve_r2 This option reserves the r2 register.
-Xep This option specifies how to handle the ep register.

-pic [V1.07.00 or This option enables the PIC facility.
later]

-pirod [V1.07.00 or | This option enables the PIROD facility.
later]

-pid [V1.07.00 or This option enables the PID facility.

later]
Assembler control specifi- -Xasm_far_jump This option controls outputting far jump for an assembly source
cation file.
Error output control -Xerror_file This option outputs error messages to a file.
Warning message output -Xno_warning This option suppresses outputting warning messages of the
control specified number.
Subcommand file specifica- | @ This option specifies a subcommand file.
tion
R20UT3516EJ0111 Rev.1.11 .IENESAS Page 133 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Version/help display specification

The version/help display specification options are as follows.
-V
- -h

R20UT3516EJ0111 Rev.1.11 RENESAS Page 134 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-V

This option displays the version information of asrh.

[Specification format]

-V

- Interpretation when omitted
Assembling is performed without displaying the version information of asrh.

[Detailed description]

- This option outputs the version information of asrh to the standard error output.
It does not execute assembling.

[Example of use]

- To output the version information of asrh to the standard error output, describe as:

>asrh -V -Xcommon=rh850

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 135 of 795



CC-RH

2. COMMAND REFERENCE

-h

This option displays the descriptions of asrh options.

[Specification format]

-h

- Interpretation when omitted
The descriptions of asrh options are not displayed.

[Detailed description]

- This option outputs the descriptions of asrh options to the standard error output.
It does not execute assembling.

[Example of use]

- To output the descriptions of asrh options to the standard error output, describe as:

>asrh -h -Xcommon=rh850

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 136 of 795



CC-RH 2. COMMAND REFERENCE

Output file specification

The output file specification options are as follows.

- -0

- -Xobj_path
- -Xprn_path
R20UT3516EJ0111 Rev.1.11 RENESAS Page 137 of 795

Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-0

This option specifies the output file name.

[Specification format]

-ofile

- Interpretation when omitted
The file is output to the current folder.
The output object file name will be the source file name with the extension replaced by

[Detailed description]

- This option specifies the object file name as file.

- If file already exists, it will be overwritten.

- Even if this option is specified, when a error occurs, the object file cannot be output.
- An error will occur if two or more files are output.

- An error will occur if file is omitted.

[Example of use]

- To output the object file with "sample.obj" as the file name, describe as:

".obj".

>asrh -osample.obj -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 138 of 795



CC-RH 2. COMMAND REFERENCE

-Xobj_path

This option specifies the folder to save an object file generated during assembling.

[Specification format]

-Xobj_path[=path]

- Interpretation when omitted
The object file is saved under the source file name with the extension replaced by ".obj" to the current folder.

[Detailed description]

- This option specifies the folder to save an object file generated during assembling as path.

- If an existing folder is specified as path, the object file is saved under the source file name with the extension replaced
by ".obj" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.
If one object file is output, it will be saved with path as the file name.
If two or more object files are output, an error will occur.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the object file is saved under the C source file name with the extension replaced by ".obj".

- If two or more files with the same name (even if they are in different folders) are specified as source files, then a warn-
ing is output, and an object file is only saved for the last source file to be specified.

[Example of use]

- To save the object file generated during assembling to folder "D:\sample”, describe as:

>asrh -Xobj_path=D:\sample -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 139 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xprn_path

This option specifies the folder to save the assembile list file.

[Specification format]

-Xprn_path[=path]

- Interpretation when omitted
An assemble list file will not be output.

[Detailed description]

- This option specifies the folder to save the assembile list file output during assembling as path.

- If an existing folder is specified as path, the assemble list file is saved under the source file name with the extension
replaced by ".prn" to path.
An error will occur if a nonexistent folder is specified.

- An existing file can be specified as path.

- The assemble list file is saved with path as the file name.
An error will occur if a nonexistent file is specified.

- If "=path" is omitted, the assemble list file is saved to the current folder under the source file name with the extension
replaced by ".prn".

[Example of use]

- To save the assemble list file output during assembling to folder "D:\sample", describe as:

>asrh -Xprn_path=D:\sample -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 140 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Source debugging control

The source debugging control options are as follows.

-9

R20UT3516EJ0111 Rev.1.11 RENESAS Page 141 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-9

This option outputs information for source debugging.

[Specification format]

-9

- Interpretation when omitted
Information for source debugging will not be output.

[Detailed description]

- This option outputs information for source debugging to the output file.

- Source debugging can be performed by specifying this option.

[Example of use]

- To output information for source debugging to the output file, describe as:

>asrh -g -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 142 of 795



CC-RH 2. COMMAND REFERENCE

Device specification

The device specification options are as follows.

- -Xcommon
- -Xcpu
R20UT3516EJ0111 Rev.1.11 RENESAS Page 143 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcommon

This option specifies that an object file common to the various devices is generated.

[Specification format]

-Xcommon=series

- Interpretation when omitted
None

[Detailed description]

- This option specifies that an object file common to the various devices is generated.

- This option is invalid in V2.00.00 or later versions. If this option is specified, it will be ignored but no error will occur
due to the compatibility with conventional versions. No warning is output in this case.

- v850e3v5 or rh850 can be specified for series.
- An error will occur in any of the following cases.
- When series is omitted
- When a parameter that is not specifiable is specified for series

- When this option is omitted [V1.01.00 or earlier]

[Remark]

This option does not affect the output code.
When selecting the instruction set to be used, specify the -Xcpu option.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 144 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xcpu

This option specifies that an object for the specified core is generated.

[Specification format]

-Xcpu=core

- Interpretation when omitted
An object for G3M is generated.

[Detailed description]

- This option specifies that an object for core core is generated.

- The items that can be specified as core are shown below.

g3m Generates an object for G3M.
g3k Generates an object for G3K.
g3mh Generates an object for G3MH. [V1.02.00 or later]
g3kh Generates an object for G3KH. [V1.03.00 or later]
g4mh Generates an object for G4MH. [V2.00.00 or later]

- If this option is specified more than once, the last specification is valid.

- An error will occur in any of the following cases.
- When the parameter is omitted

- When a parameter that is not specifiable is specified

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 145 of 795



CC-RH 2. COMMAND REFERENCE

Optimization

The Optimization options are as follows.

- -goptimize [V2.01.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 146 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-goptimize [V2.01.00 or later]

This option generates information for link-time optimization.

[Specification format]

—-goptimize

- Interpretation when omitted
None

[Detailed description]

- This option generates additional information used at link-time optimization in the output file.

- When this option is specified for a file, link-time optimization will be applied at linkage of the file.
For details on link-time optimization, see the description of the link option -OPtimize.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 147 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Symbol definition specification

The symbol definition specification options are as follows.

--D
--U
R20UT3516EJ0111 Rev.1.11 RENESAS Page 148 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-D

This option defines assembler symbols.

[Specification format]

-Dname[=def] [name[=def]]- - .

- Interpretation when omitted
None

[Detailed description]

- This option defines name as an assembler symbol.
- Specification of def is as follows.
- Only integer values can be specified.
- If a value other than an integer is specified, 0 is assumed.

- Integer values can be specified in decimal notation, octal notation with the prefix method (0 ...), and
hexadecimal notation (0x ...).

- Only a negative (-) sign (not a positive (+) sign) can be specified at the beginning of the value.
- A negative number is converted to a two's complement value.

- This is equivalent to adding "name .SET def" at the beginning of the assembly source program.

- An error will occur if name is omitted.

- If "=def" is omitted, def is regarded as 1.

- This option can be specified more than once.

- If both this option and -U option are specified for the same assembler symbol, the option specified last will be valid.

[Example of use]

- To define "sample=256" as an assembler symbol, describe as:

>asrh -Dsample=256 -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 149 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-U

This option deletes the assembler symbol definition by the -D option.

[Specification format]

-Uname[,name].- ..

- Interpretation when omitted
None

[Detailed description]
- This option deletes the definition of assembler symbol hame by the -D option.
- An error will occur if name is omitted.
- This option cannot delete the definition by describing "name .SET def".
- This option can be specified more than once.

- If both this option and -D option are specified for the same assembler symbol, the option specified last will be valid.

[Example of use]

- To delete the definition of assembler symbol "test" by the -D option, describe as:

>asrh -Utest -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 150 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Include file reading path specification

The include file reading path specification options are as follows.
- -l

R20UT3516EJ0111 Rev.1.11 RENESAS Page 151 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

This option specifies the folder to search include files.

[Specification format]

-Ipath[,path].-..

- Interpretation when omitted
The include file is searched from the standard include file folder.

[Detailed description]

- This option specifies the folder to search include files that are read by assembler control instruction "$INCLUDE/
$BINCLUDE" as path.

Include files are searched according to the following sequence.

(1) Path specified by the -1 option (If multiple paths are specified, they are searched in the order in which they were
specified on the command line (that is, from left to right).)

(2) Folder with source file

(3) Current folder

- If path does not exist, a warning will be output.

- An error will occur if path is omitted.

[Example of use]

- To search include files from folder "D:\include", "D:\src", and the current folder in that order, describe as:

>asrh -ID:\include -Xcommon=rh850 D:\src\main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 152 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Japanese/Chinese character control

The Japanese/Chinese character control option is as follows.

- -Xcharacter_set

R20UT3516EJ0111 Rev.1.11 RENESAS Page 153 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xcharacter_set

This option specifies the Japanese/Chinese character code.

[Specification format]

-Xcharacter_set=code

- Interpretation when omitted
Processing of Japanese/Chinese character encoding is not performed.

[Detailed description]

- This option specifies the character code to be used for Japanese/Chinese comments and character strings in the
source file.

- The items that can be specified as code are shown below.
An error will occur if any other item is specified.
Operation is not guaranteed if the specified character code differs from the character code of the source file.

none Does not process the Japanese and Chinese character code
euc_jp EUC (Japanese)

sjis SJIS

utf8 UTF-8

big5 Traditional Chinese

gb2312 Simplified Chinese

- An error will occur if code is omitted.

[Example of use]

- To specify EUC as the character code to be used for Japanese comments and character strings in the input file,
describe as:

>asrh -Xcharacter_set=euc_jp -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 154 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Generated code control

The generated code control options are as follows.
- -Xreg_mode

- -Xreserve_r2

- -Xep

- -pic [V1.07.00 or later]

- -pirod [V1.07.00 or later]

- -pid [V1.07.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 155 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xreg_mode

This option specifies the register mode.

[Specification format]

-Xreg_mode=mode

- Interpretation when omitted
The 32-register mode object file is generated.

[Detailed description]

- This option generates the object file for the specified register mode.

- This option limits the number of registers used by ccrh to 32 (the 32-register mode) or 22 (the 22-register mode or

register mode "common") and embeds the magic number into the object file.

- Use register mode "common" to generate the object file that does not depend on register modes.

- The items that can be specified as mode are shown below.
An error will occur if any other item is specified.

Register Mode (mode)

Working Registers

Registers for Register Variables

common ri10torl4 r25to r29
22 ri10torl4 r25 to r29
32 r10to r19 r20 to r29

- An error will occur if mode is omitted.

- If 32-register mode object files and 22-register mode object files are mixed, an error will occur at linkage.

[Example of use]

- To generate the 22-register mode object file, describe as:

>asrh -Xreg_mode=22 -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 156 of 795



CC-RH 2. COMMAND REFERENCE

-Xreserve_r2

This option reserves the r2 register.

[Specification format]

-Xreserve_r2

- Interpretation when omitted
The compiler uses the r2 register without reserving it.

[Detailed description]

- This option reserves the r2 register and generates code that does not use this register by the compiler.

[Example of use]

- To reserve the r2 register and generates code that does not use this register by the compiler, describe as:

>asrh -Xreserve_r2 -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 157 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xep

This option specifies how to handle the ep register.

[Specification format]

-Xep=mode

- Interpretation when omitted
The ep register is treated as a register guaranteeing the value before and after the function call.

[Detailed description]

- This option specifies how to handle the ep register.

- The items that can be specified as mode are shown below.
An error will occur if any other item is specified.

fix Fixes the value of the ep register for the entire project.
Specify this parameter when EP-relative sections in the project are used.

callee Treats the ep register as a register guaranteeing the value before and after the function call.
Specify this parameter when the -Omap or -Osmap option is specified.

- An error will occur if mode is omitted.

- The same specification must be made for all source files. A different specification cannot be made for each source
file. If there are object files with different specifications, an error will occur at linkage.

[Example of use]

- To fix the value of the ep register for the entire project, describe as:

>asrh -Xep=Ffix main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 158 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-pic [V1.07.00 or later]

This option enables the PIC facility.

[Specification format]

-pic

- Interpretation when omitted
The PIC facility is disabled.

[Detailed description]

- When this option is specified, the relocation attribute that can be specified in the .cseg or .section directive is
changed.
If a relocation attribute shown below is specified, an error will occur.
When this option is specified: TEXT
When this option is not specified: PCTEXT

- When this option is specified, the predefined macro __PIC will be valid.
- If this option is not specified simultaneously with the -pirod option, an error will occur.

- This option only controls the relocation attribute that can be specified. The processing for determining whether there
is an error in the code for referencing functions is not performed.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 159 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-pirod [V1.07.00 or later]

This option enables the PIROD facility.

[Specification format]

-pirod

- Interpretation when omitted
The PIROD facility is disabled.

[Detailed description]

- When this option is specified, the relocation attribute that can be specified in the .cseg or .section directive is
changed.
If a relocation attribute shown below is specified, an error will occur.
When this option is specified: CONST, ZCONST, or ZCONST23
When this option is not specified: PCCONST16, PCCONST23, or PCCONST32

- When this option is specified, the predefined macro __PIROD will be valid.
- If this option is not specified simultaneously with the -pic option, an error will occur.

- This option only controls the relocation attribute that can be specified. The processing for determining whether there
is an error in the code for referencing constant data is not performed.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 160 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-pid [V1.07.00 or later]

This option enables the PID facility.

[Specification format]

-pid

- Interpretation when omitted
The PID facility is disabled.

[Detailed description]

- When this option is specified, the relocation attribute that can be specified in the .dseg or .section directive is

changed.

If a relocation attribute shown below is specified, an error will occur.

When this option is specified: DATA, ZDATA, ZDATA23, BSS, ZBSS, or ZBSS23
When this option is not specified: SDATA32, SBSS32, EDATA32, or EBSS32

- When this option is specified, the predefined macro __PID will be valid.

- This option only controls the relocation attribute that can be specified. The processing for determining whether there
is an error in the code for referencing data is not performed.

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 161 of 795



CC-RH 2. COMMAND REFERENCE

Assembler control specification

The assembler control specification option is as follows.

- -Xasm_far_jump

R20UT3516EJ0111 Rev.1.11 RENESAS Page 162 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xasm_far_jump

This option controls outputting far jump for an assembly source file.

[Specification format]

-Xasm_far_jump

- Interpretation when omitted
Assembly is performed as a jarl or jr instruction.

[Detailed description]

- For an assembly source file, this option assumes that all jarl and jr instructions described in the source are jarl32 and
jr32 instructions, and assembling is performed.

- If you wish to control individual instructions, add jarl22/jarl32 or jr22/jarl32 to the source.
- This option does not affect the jump instruction.

- If this option is specified for a C source file, that will be ignored without outputting a warning.

[Example of use]

- To assume that all jarl and jr instructions described in the source are jarl32 and jr32 instructions, and perform assem-
bling, describe as:

>asrh -Xasm_far_jump -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 163 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Error output control

The error output control option is as follows.

- -Xerror_file

R20UT3516EJ0111 Rev.1.11 RENESAS Page 164 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-Xerror_file

This option outputs error messages to a file.

[Specification format]

-Xerror_file=File

- Interpretation when omitted
Error messages are output to only the standard error output.

[Detailed description]

- This option outputs error messages to the standard error output and file file.
- If file already exists, it will be overwritten.

- An error will occur if file is omitted.

[Example of use]

- To output error messages to the standard error output and file "err", describe as:

>asrh -Xerror_file=err -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 165 of 795



CC-RH 2. COMMAND REFERENCE

Warning message output control

The warning message output control options are as follows.

- -Xno_warning

R20UT3516EJ0111 Rev.1.11 RENESAS Page 166 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Xno_warning

This option suppresses outputting warning messages of the specified number.

[Specification format]

-Xno_warning={num|numl-num2}[, ..-.1]

- Interpretation when omitted
All warning messages are output.

[Detailed description]

- This option suppresses outputting warning messages of the specified number.

- Specify the error numbers as num, numl, and num2.
If the error number that does not exist, it will be ignored.

- An error will occur if num, num1, or numz2 is omitted.
- If numl1-num2 is specified, it is assumed that error numbers within the range have been specified.

- The error number specified by this option is the rightmost 5 digits of the 7-digit number following the "W".
See "CS+ Integrated Development Environment User's Manual: Message" for error numbers.

- This option controls the warning messages of the compiler and assembler and does not control the messages of the
optimizing linker.

- This option can only control output for warning messages with message numbers (here written with the component
number) in the range from 0550000 to 0559999.

[Example of use]

- To suppress outputting warning message "W0550002" and "W0550003", describe as:

>asrh -Xno_waning=50002,50003 -Xcommon=rh850 main.asm

R20UT3516EJ0111 Rev.1.11 RENESAS Page 167 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Subcommand file specification

The subcommand file specification option is as follows.
-@

R20UT3516EJ0111 Rev.1.11 RENESAS Page 168 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

@

This option specifies a subcommand file.

[Specification format]

@file

- Interpretation when omitted

Only the options and file names specified on the command line are recognized.

[Detailed description]

- This option handles file as a subcommand file.
- An error will occur if file does not exist.
- An error will occur if file is omitted.

- See "2.4.2 Subcommand file usage" for details about a subcommand file.

[Example of use]

- To handle "command.txt" as a subcommand file, describe as:

>asrh @command.txt -Xcommon=rh850

R20UT3516EJ0111 Rev.1.11 RENESAS
Dec 01, 2023

Page 169 of 795



CC-RH

2. COMMAND REFERENCE

2.5.3 Link options

This section explains options for the link phase.

Caution about options are shown below.

- Uppercase characters and lowercase characters are not distinguished for options.

- Uppercase characters in options and parameters indicate that they can be specified as abbreviations for options and

parameters.

The characters after the uppercase characters can be omitted.

Example

- When a file name is specified as a parameter, "(" and ")" cannot be used.

- When link options are specified for the ccrh command, the -XIk_option option must be used.

For example, -FOrm=Absolute can be specified as follows.
-fo=a
-fo=abs
-for=absolu

The types and explanations for options are shown below.

Table 2.4 Link Options

Classification Option
Input control -Input This option specifies the input file.
-LIBrary This option specifies the input library file.
-Binary This option specifies the input binary file.
-DEFine This option defines an undefined symbol forcedly.
-ENTry This option specifies the execution start address.

-ALLOW_DUPLICATE
_MODULE_NAME
[V2.02.00 or later]

This option allows multiple same module names to be specified.

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 170 of 795



CC-RH

2. COMMAND REFERENCE

[V1.06.00 or later]

Classification Option Description
Output control -FOrm This option specifies the output format.
-DEBug This option outputs debug information to the output file.
-NODEBug This option does not output the debug information.
-RECord This option specifies the size of the data record to be output.
-END_RECORD This option specifies the end record.

-ROm This option specifies the section that maps symbols from ROM to
RAM.

-OUtput This option specifies the output file.

-MAp This option outputs the external variable allocation information file.

-SPace This option fills the vacant area of the output range.

-Message This option output information messages.

-NOMessage This option suppresses the output of information messages.

-MSg_unused This option notifies the user of the external defined symbol that is
not referenced.

-BYte_count This option specifies the maximum byte count for a data record.

-FIX_RECORD_LEN
GTH_AND_ALIGN
[V1.07.00 or later]

Fixes the format of data records to be output.

-PADDING

This option fills in data at the end of a section.

-OVERRUN_FETCH

This option prevents reading of vacant areas due to overrun fetch.

-RESERVE_PREFET
CH_AREA [V2.04.01
or later]

This option generates and reserves a section in an area that can be
prefetched.

-CRc

This option outputs the CRC code.

-CFI [Professional
Edition only]
[V1.07.00 or later]

Generates the function list for use in detecting illegal indirect func-
tion calls.

-CFI_ADD_Func [Pro-
fessional Edition only]
[V1.07.00 or later]

Specifies the symbol or address of a function to be added to the
function list for use in detecting illegal indirect function calls.

-CFI_IGNORE_Modul
e [Professional Edition
only] [V1.07.00 or
later]

Specifies modules which are to be exempted from the function list
for use in detecting illegal indirect function calls.

List output

-LISt

This option outputs the list file.

-SHow

This option specifies information that is output to the list file.

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 171 of 795



CC-RH

2. COMMAND REFERENCE

Classification

Option

Description

Optimization

-OPtimize / -NOOPti-
mize [V2.01.00 or
later]

This option specifies whether link-time optimization is to be exe-
cuted.

-SEction_forbid
[V2.01.00 or later]

This option suppresses link-time optimization of specific sections.

-Absolute_forbid
[V2.01.00 or later]

This option suppresses link-time optimization in a specific address
range.

-SYmbol_forbid
[V2.01.00 or later]

This option suppresses link-time optimization of specific symbols.

-ALLOW_OPTIMIZE_
ENTRY_BLOCK
[V2.06.00 or later]

This option performs optimization on the areas that are allocated
before the execution start symbol.

Section specification

-STARt

This option specifies the start address of the section.

-FSymbol

This option outputs external defined symbols to the symbol address file.

-ALIGNED_SECTION

This option changes the number of alignment of the section to 16 bytes.

Verify specification -CPu This option checks the consistency of the address to which the sec-
tion is allocated.
Subcommand file -SUbcommand This option specifies options with a subcommand file.

specification

R20UT3516EJ0111 Rev.1.11
Dec 01, 2023

RENESAS

Page 172 of 795



CC-RH

2. COMMAND REFERENCE

[V2.01.00 or later]

Classification Option Description

Other -S9 This option outputs the S9 record at the end.
-STACk This option outputs the stack information file.
-COmpress This option compresses the debug information.
-NOCOmpress This option does not compress the debug information.
-MEMory This option specifies the memory size occupied during linking.
-REName This option changes an external symbol name or a section name.
-LIB_REName This option changes a symbol name or section name that was input

from a library.

-DELete This option deletes an external symbol name or a library module.
-REPlace This option replaces library modules.

-EXTract This option extracts library modules.

-STRip This option deletes debug information in the load module file or

library file.

-CHange_message

This option changes the type of information, warning, and error messages.

-Hide

This option deletes local symbol name information from the output file.

-Total_size

This option displays the total size of sections after the linking to the
standard error output.

-VERBOSE [V2.03.00
or later]

This option displays detailed information in the standard error out-
put.

-LOgo This option outputs the copyright notice.

-NOLOgo This option suppresses the output of the copyright notice.
-END This option executes option strings specified before this option.
-EXIt This option specifies the end of option specifications.

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 173 of 795



CC-RH 2. COMMAND REFERENCE

Input control

The input control options are as follows.

- -Input

- -LIBrary

- -Binary

- -DEFine

- -ENTry

- -ALLOW_DUPLICATE_MODULE_NAME [V2.02.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 174 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Input

This option specifies the input file.

[Specification format]

—-Input=suboption [{,] A } --.1]
suboption := file
| file ( module [, -..1)

- Interpretation when omitted
None

[Detailed description]

- This option specifies input file file.
If multiple files are specified, delimit them with a comma (,) or space.

- Wildcard characters (*, ?) can also be used.
The character strings specified with wildcard characters are expanded in alphabetical order.
Expansion of numerical values precedes that of alphabetic characters. Uppercase characters are expanded before
lowercase characters.

- Files that can be specified as input files are object files output from the compiler or the assembler and relocatable
files, load module files, Intel HEX files, and Motorola S-record files output from the optimizing linker.
In addition, a module in a library can be specified using the format of "library(module)".
Specify the module name without the extension.

- If no extension is specified for the input filename, then if no module name is specified, it is assumed to be ".obj"; if a
module name is specified, it is assumed to be ".lib".

[Caution]

- This option can be used only in a subcommand file.
An error will occur if this option is specified on the command line.
When input files are specified on the command line, specify them without the -input option.

[Example of use]

- To input a.obj and module "e" in lib1.lib, describe as:
<Command line>

>rlink -subcommand=sub.txt

<Subcommand file "sub.txt">

—-input=a.obj libl(e)

- To input all ".obj" files beginning with "c", describe as:
<Command line>

>rlink -subcommand=sub.txt

R20UT3516EJ0111 Rev.1.11 RENESAS Page 175 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

<Subcommand file "sub.txt">

—-input=c*.obj

[Remark]

- If the -form=0bject or -extract option is specified, this option will be invalid.

- If an Intel HEX file is specified as an input file, only the -form=hexadecimal option can be specified. If a Motorola

S-record file is specified, only the -form=stype option can be specified.
If the output file name is not specified, it will be "first input file name_combine.extension” (If the input file is "a.mot", the

output file will be "a_combine.mot").

R20UT3516EJ0111 Rev.1.11 RENESAS Page 176 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-LIBrary

This option specifies the input library file.

[Specification format]

-LIBrary=File[,file]...

- Interpretation when omitted
None

[Detailed description]
- This option specifies input library file file.
If multiple files are specified, delimit them with a comma (,).

- Wildcard characters (*, ?) can also be used.
The character strings specified with wildcard characters are expanded in alphabetical order.
Expansion of numerical values precedes that of alphabetic characters. Uppercase characters are expanded before
lowercase characters.

- If the extension is omitted from the input file specification, it is assumed that ".lib" has been specified.

- If this option and the -form=library or -extract option are specified at the same time, the specified library file is input as
the target library to be edited.
Otherwise, undefined symbols are searched in the library file after the link processing between files specified as the
input files are executed.

- The symbols are searched in the library file in the following sequence:
- User library files specified by this option (in the specified order)
- System library files specified by this option (in the specified order)

- Default library (environment variables "HLNK_LIBRARY1", "HLNK_LIBRARY?2", and "HLNK_LIBRARYIB"NOte in
that order)

Note See "2.3 Environment Variable" for details about environment variables.

[Example of use]

- To input a.lib and b.lib, describe as:

rlink main.obj -library=a.lib,b

- To input all ".lib" files beginning with "c", describe as:

rlink main.obj -library=c*_lib

R20UT3516EJ0111 Rev.1.11 RENESAS Page 177 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-Binary

This option specifies the input binary file.

[Specification format]

-Binary=suboption[, ...]
suboption := File( section[:alignment][/attribute][,symbol] )

- Interpretation when omitted
None

[Detailed description]

- This option specifies input binary file file.
If multiple files are specified, delimit them with a comma (,).

- If the extension is omitted from the input file specification, it is assumed that ".bin" has been specified.

- Input binary data is allocated as the data of specified section section.
Specify the section address by the -start option.
An error will occur if section is omitted.

- When symbol symbol is specified, it can be linked as a defined symbol.
For a variable name referenced by a C program, add "_" at the head of the reference name in the program.

- The section specified by this option can have its section attribute and number of alignment specified.

- CODE or DATA can be specified as section attribute attribute.
If attribute is omitted, the write, read, and execute attributes will be all valid by default.

- The value that can be specified for number of alignment alignment is a power of 2 (1, 2, 4, 8, 16, or 32).
Other value cannot be specified.
If alignment is omitted, "1" will be valid by default.

[Example of use]

- b.bin is allocated from 0x200 as the D1bin section.
c.bin is allocated after D1bin as the D2bin section (with the number of alignment = 4).
The c.bin data is linked as defined symbol "_datab".
To perform the above operations, describe as:

>rlink a.obj -start=D*/200 -binary=b.bin(Dlbin),c.bin(D2bin:4,_datab)

[Remark]
- If the -form={object|library} option or -strip option is specified, this option will be invalid.

- If input object file is not specified, this option cannot be specified.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 178 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-DEFine

This option defines an undefined symbol forcedly.

[Specification format]

-DEFine=suboption[, ...]
suboption := symboll=symbol2
| symboll=value

- Interpretation when omitted
None

[Detailed description]

- This option defines undefined symbol symboll forcedly as external defined symbol symbol2 or numerical value value.

- Specify value in hexadecimal.
If the specified value starts with a character from A to F, symbols are searched first, and if corresponding symbol is
not found, the value is interpreted as a numerical value.
Values starting with 0 are always interpreted as numerical values.

- If the specified symbol name is a C variable name, add "_" at the head of the definition name in the program.

[Example of use]

- To define "_sym1" as the same value as external defined symbol "data", describe as:

>rlink -define=_syml=data a.obj b.obj

- To define "_sym2" as 0x4000, describe as:

>rlink -define=_sym2=4000 a.obj b.obj

[Remark]

- If the -form={object|relocate|library} option is specified, this option will be invalid.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 179 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-ENTry

This option specifies the execution start address.

[Specification format]

-ENTry={symbol Jaddress}

- Interpretation when omitted
None

[Detailed description]

- This option defines execution start address with external defined symbol symbol or address address.

- Specify address in hexadecimal.
If the specified value starts with a character from A to F, defined symbols are searched first, and if corresponding sym-
bol is not found, the value is interpreted as an address.
Values starting with 0 are always interpreted as addresses.

- If the specified symbol name is a C variable name, add "_" at the head of the definition name in the program.

[Example of use]

- To specify main function in C as the execution start address, describe as:

>rlink -entry=_main a.obj b.obj

- To specify 0x100 as the execution start address, describe as:

>rlink -entry=100 a.obj b.obj

[Remark]
- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

- Be sure to specify symbol if you intend to enable link-time optimization (-optimize[=symbol_delete]). If address is
specified with this option, link-time optimization will be disabled.

- If the address specified by the -entry option is included in any of the sections allocated by the -start option, optimiza-
tion in the range from the first address of the section up to the address specified by the -entry option will be sup-
pressed.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 180 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-ALLOW_DUPLICATE_MODULE_NAME [V2.02.00 or later]

This option allows a library to be generated from multiple same module names.

[Specification format]

—allow_duplicate_module_name

- Interpretation when omitted
None

[Detailed description]

- This option allows multiple input files with the same module name to be specified to generate a library.

- If the library already contains a module having the same name with other modules to be registered in the library, the
other modules are renamed by adding a postfix number ".<N>".

- <N> is assigned a nhumber as a unique module hame in the generating library. If can't assigned a unique number, The
linker will output the error message and quit.

[Example of use]

- To generate a library a.lib from multiple input files having the same module name (mod), describe as:

> rlink -allow_duplicate_module_name -form=lib -output=a.lib b\mod.obj c\mod.obj
d\mod.obj

The command line above leads to generate a library a.lib containing the following modules:
- mod (originally b\mod.obj)
- mod.1 (originally c\mod.obj)
- mod.2 (originally d\mod.obj)

[Remark]
- If the -form={ object|absolute|relocate|hexadecimal|stype|binary }, -strip, or -extract option is specified, this option will
be invalid.
R20UT3516EJ0111 Rev.1.11 RENESAS Page 181 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

Output control

The output control options are as follows.

- -FOrm

- -DEBug

- -NODEBug

- -RECord

- -END_RECORD [V1.06.00 or later]

- -ROm

- -OUtput

- -MAp

- -SPace

- -Message

- -NOMessage

- -MSg_unused

- -BYte_count

- -FIX_RECORD_LENGTH_AND_ALIGN [V1.07.00 or later]
- -PADDING

- -OVERRUN_FETCH

- -RESERVE_PREFETCH_AREA [V2.04.01 or later]

- -CRc

- -CFI [Professional Edition only] [V1.07.00 or later]

- -CFI_ADD_Func [Professional Edition only] [V1.07.00 or later]
- -CFI_IGNORE_Module [Professional Edition only] [V1.07.00 or later]

R20UT3516EJ0111 Rev.1.11 RENESAS Page 182 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-FOrm

This option specifies the output format.

[Specification format]

-FOrm=format

- Interpretation when omitted
A load module file is output (It is the same result as when the -form=absolute option is specified).

[Detailed description]

- This option specifies output format format.

- The items that can be specified as format are shown below.

Absolute Outputs a load module file.
Relocate Outputs a relocatable file.
Object Outputs an object file.

Use this when a module is extracted as an object file from a library by the -extract option.

Library[={S|U}] | Outputs a library file.

When "library=s" is specified, a system library file is output.

When "library=u" is specified, a user library file is output.

If only "library" is specified, it is assumed that "library=u" has been specified.

Hexadecimal Outputs an Intel HEX file.
See "3.5 Intel HEX File" for details.

Stype Outputs a Motorola S-record file.
See "3.6 Motorola S-record File" for details.
Binary Outputs a binary file.
[Remark]

- The relations between output formats and input files or other options are shown below.

Table 2.5 Relations Between Output Formats And Input Files Or Other Options

Output | Specified Option | File Format That Specifiable Option Note 1
Format Can Be Input
Absolute -strip specified Load module file -input, -output
Other than above | Object file -input, -library, -binary, -debug, -nodebug, -cpu, -start, -rom,
Relocatable file -entry, -output, -map, -padding, -hide, -optimize/-nooptimize,
Binary file -absolute_forbid, -symbol_forbid, -section_forbid, -com-
Library file press, -nocompress, -rename, -lib_rename, -delete, -define,
-fsymbol, -stack, -memory, -msg_unused,
-show={all|symbol|reference|xrefer-
enceltotal_size|struct|relocation_attribute|cfi},
-aligned_section, -overrun_fetch, -cfi, -cfi_add_func,
-cfi_ignore_module
R20UT3516EJ0111 Rev.1.11 .ZENESAS Page 183 of 795

Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

Output Specified Option | File Format That Specifiable Option Note 1
Format Can Be Input
Relocate | -extract specified | Library file -library, -output
Other than above | Object file -input, -library, -binary, -debug, -nodebug, -output, -hide,
Relocatable file -rename, -lib_rename, -delete,
Binary file -show={all|symbol|xreference|total_size}
Library file
Object -extract specified | Library file -library, -output
Hexadecimal Obiject file -input, -library, -binary, -cpu, -start, -rom, -entry, -output,
Stype Relocatable file -map, -space, -optimize/-nooptimize, -absolute_forbid,
Binary Binary file -symbol_forbid, -section_forbid, -rename, -lib_rename,
Library file -delete, -define, -fsymbol, -stack, -recordNot 2,
-end_recordNo€ 2 _sgNote 2 _pyte countNote 3,
-fix_record_length_and_alignN°®”, -padding, -memory,
-msg_unused,
-show={all|symbol|reference|xrefer-
enceltotal_size|struct|relocation_attribute|cfi},
-aligned_section, -overrun_fetchN°® 4 _crc, -cfi,
-cfi_add_func, -cfi_ignore_module
Load module file | -input, -output, -recordN°® 2, -end_recordNote 2, .sgNote 2,
-byte_countN°® 3, fix_record_length_and_alignN°t 7,
-show={all|symbol|reference|xreference}, -crc
Intel HEX fileN°® 5 | input, -output
Motorola S-record | -input, -output, -s9Note 2
ﬁleNOte 5
Library -strip specified Library file -library, -output, -memoryNOte 6 _show
-extract specified | Library file -library, -output
Other than above | Object file -input, -library, -output, -hide, -rename, -delete, -replace,
Relocatable file -memoryN°te 6 -show={all|symbol|section},
-allow_duplicate_module_name
Note 1. The following options can always be specified.
-message, -nomessage, -change_message, -logo, -nologo, -form, -list, -subcommand
Note 2. Valid only when the -form=stype option is specified.
Note 3. The -byte_count option is valid only when the -form=hexadecimal or -form=stype option is specified.
Note 4. The -overrun_fetch option is valid only when the -form=hexadecimal or -form=stype option is specified.
Note 5. If an Intel HEX file is specified as an input file, only the -form=hexadecimal option can be specified. If a
Motorola S-record file is specified, only the -form=stype option can be specified.
Note 6. The -memory option cannot be specified when the -hide option is specified.
Note 7. The -fix_record_length_and_align option is valid only when the -form=hexadecimal or -form=stype option

is specified.

[Example of use]

- To output relocatable file c.rel from a.obj and b.obj, describe as:

>rlink a.obj b.obj -form=relocate -output=c.rel

To extract module "a" from lib.lib and output as an object file, describe as:

>rlink -library=lib.lib -extract=a -form=object

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 184 of 795



CC-RH 2. COMMAND REFERENCE

- To extract module "a" from lib.lib and output library file exta.lib, describe as:

>rlink -library=lib_lib -extract=a -form=library -output=exta

To extract module "a" from lib.lib and output relocatable file a.rel, describe as:

>rlink -library=lib.lib -extract=a -form=relocate

R20UT3516EJ0111 Rev.1.11 RENESAS Page 185 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-DEBug

This option outputs debug information to the output file.

[Specification format]

-DEBug

- Interpretation when omitted
The debug information is output to the output file (It is the same result as when the -debug option is specified).

[Detailed description]

- This option outputs debug information to the output file.

[Example of use]

- To output debug information to the output file, describe as:

>rlink a.obj b.obj -debug -output=c.abs

[Remark]

- If the -form={object|library|hexadecimal|stype|binary}, -strip option or -extract option is specified, this option will be
invalid.

- If two or more output file names are specified using the -form=absolute option and -output option, the debug informa-
tion will not be output.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 186 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-NODEBug

This option does not output the debug information.

[Specification format]

-NODEBug

- Interpretation when omitted
The debug information is output to the output file (It is the same result as when the -debug option is specified).

[Detailed description]

- This option does not output the debug information.

[Example of use]

- Not to output the debug information, describe as:

>rlink a.obj b.obj -nodebug -output=c.abs

[Remark]
- If the -form={object|library|hexadecimal|stype|binary}, -strip option or -extract option is specified, this option will be
invalid.
R20UT3516EJ0111 Rev.1.11 RENESAS Page 187 of 795

Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-RECord

This option specifies the size of the data record to be output.

[Specification format]

-RECord=record

- Interpretation when omitted
Various data records are output according to each address.

[Detailed description]

- This option outputs data with data record record regardless of the address range.

- The items that can be specified as record are shown below.

H16 HEX record

H20 Expanded HEX record
H32 32-bit HEX record

S1 S1 record

S2 S2 record

S3 S3 record

- If there is an address that is larger than the specified data record, the appropriate data record is selected for the
address.

[Example of use]

- To output 32-bit HEX record regardless of the address range:

>rlink a.obj b.obj -record=H32 -form=hexadecimal -output=c.hex

[Remark]

- If the -form={hexadecimal|stype} option is not specified, this option will be invalid.

- An error will occur if the -record={S1|S2|S3} option is specified when the -form=hexadecimal option is specified, or if
the -record={H16|H20|H32} option is specified when the -form=stype option is specified.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 188 of 795
Dec 01, 2023



CC-RH

2. COMMAND REFERENCE

-END_RECORD [V1.06.00 or later]

This option specifies the end record.

[Specification format]

-END_RECORD=record

- Interpretation when omitted

The end record is output to suit the address of the entry point.

[Detailed description]

- This option specifies the type of end record for a Motorola S-record file.

- The following can be specified for record.

S7 S7 record
S8 S8 record
S9 S9 record

- When the entry point address is larger than the specified address field, select an end record to suit the address of the

entry point.

[Example of use]

- To output a 32-bit S-type end record regardless of the address range, write this as:

> rlink a.obj b.obj -end_record=S7 -form=stype -output=c.mot

[Remark]

- When -form={stype} is not specified, this option outputs an error message and terminates execution.

R20UT3516EJ0111 Rev.1.11

Dec 01, 2023

RENESAS

Page 189 of 795



CC-RH 2. COMMAND REFERENCE

-ROm

This option specifies the section that maps symbols from ROM to RAM.

[Specification format]

-ROm=ROMsection=RAMsection[,ROMsection=RAMsection]. ..

- Interpretation when omitted
None

[Detailed description]

- This option reserves ROM and RAM areas in the initialized data area and relocates defined symbols in the ROM sec-
tion with the address in the RAM section.

- Specify a relocatable section including the initial value for ROM section ROMsection.
- Specify a nonexistent section or relocatable section whose size is 0 for RAM section RAMsection.
- A wildcard symbol (*) can be used in ROMsection and RAMsection. [V2.06.00 or later]

- If the name of a relocatable ROM section with the initial value matches the wildcard expression of ROMsection,
the name is processed as a RAM section name. At this time, a wildcard symbol (*) in RAMsection is replaced
with the part that matches the wildcard symbol (*) in the ROM section name.

Example When there are four ROM sections (.data, .data_1, .sdata, and .sdata_1) and
-rom=*data*=*data*_R is specified, four RAM sections (.data_R, .data_1_R, .sdata_R, and
.sdata_1_R) are generated.

Note The RAM section names after replacement must be handled appropriately by using,
for example, the -start option.

- Multiple wildcard symbols (*) can be specified. The number of wildcard symbols must match between ROMsec-
tion and RAMsection.

Example
-rom=_data*=_data*_R # No problem
-rom=_data*=_data*_R_* # Error due to too many wildcard symbols in
RAMsection

- If a section having the same name as the one generated by replacement already exists, an error occurs.

[Example of use]

- To reserve the .data.R section with the same size as the .data section and relocate defined symbols in the .data sec-
tion with address in the .data.R section, describe as:

>rlink a.obj b.obj -rom=.data=.data.R -start=.data/100, .data.R/8000

[Remark]

- If the -form={object|relocate|library} option or -strip option is specified, this option will be invalid.

R20UT3516EJ0111 Rev.1.11 RENESAS Page 190 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-OUtput

This option specifies the output file.

[Specification format]

-OUtput=suboption[, ...]
suboption := file
| Tfile=range
| file=/load-address
| file=range/load-address
range := addressl-address?2
| section[: ...]

- Interpretation when omitted
The output file name is "first-input-file-name.default-extension".
The default extensions are shown below.
When the -form=absolute option is specified: abs
When the -form=relocate option is specified: rel
When the -form=object option is specified: obj
When the -form=library option is specified: lib
When the -form=hexadecimal option is specified: hex
When the -form=stype option is specified: mot
When the -form=binary option is specified: bin

[Detailed description]

- This option specifies output file file.

- Specify the start address and end address of the output range in hexadecimal as address1 and address2.
The output range including "-" is always interpreted as addresses.

- Specify the section to be output as section.
If multiple files are specified, delimit them with a colon (:).

- If load-address is specified, the first load address in the output file will be changed to the value specified with
load-address when an Intel Hex file or Motorola S-record file is output. [V2.00.00 or later]

- If this option and the -form={absolute|hexadecimal|stype|binary} option are specified at the same time, two or more
files can be specified.

[Example of use]

- To output the range from 0 to 0xffff to filel.abs and the range from 0x10000 to 0x1ffff to file2.abs, describe as:

>rlink a.obj b.obj -output=Ffilel._abs=0-ffff,file2_abs=10000-1ffff

To output the secl and sec2 sections to filel.abs and the sec3 section to file2.abs, describe as:

>rlink a.obj b.obj -output=Filel.abs=secl:sec2,file2.abs=sec3

[Remark]

- load-address can be specified when form={hexadecimal|stype} has been specified.

- If ainput file is an Intel Hex file or Motorola S-record file, two or more output files cannot be specified by this option.
If this option is omitted, the output file name will be "first input file name_combine.extension” (If the input file is
"a.mot", the output file will be "a_combine.mot").

R20UT3516EJ0111 Rev.1.11 RENESAS Page 191 of 795
Dec 01, 2023



CC-RH 2. COMMAND REFERENCE

-MAp

This option outputs the external variable allocation information file.

[Specification format]

-MAp[=File]

- Interpretation when omitted
None

[Detailed description]

- This option outputs external variable allocation information file file that is used by the compiler in optimizing access to
external variables.

- If the specification of the file name is omitted, the file name is the one specified by the -output option or "first-input
file-name.bls".

- If the order of the declaration of variables in the external variable allocation information file is not the same as the
order of the declaration of variables found when the object was read after recompilation, an error will occur.

- In the following case, the linker outputs the external variable allocation information file and, when the —LIst option is
specified, outputs the list file. After that, the linker terminates operation normally. Note that the linker does not output
a load module file in this case. [V1.05.00 or later]

- When the section allocation address exceeds the allowable address range:

In the external variable allocation information file, information regarding only the symbols and sections allocated
within the allowable areas are output.

[Example of use]

- To output external variable allocation information file file.bls, describe as:

>rlink a.obj b.obj -output=c.abs -map=file.bls

[Remark]

- This option is va