

Bluetooth® Low Energy Protocol Stack

User’s Manual

Rev.1.19 Jan 2022

Renesas MCU
Target Device
RL78/G1D

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http : //www.renesas.com).

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical
information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and
application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification,
copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;

home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication

equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious
property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military
equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising
from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other
Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the
ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of
the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless
designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing
safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.
Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of
the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate
the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or
losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control
laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or
otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this
document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly
controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
¾ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

How to Use This Manual

1. Purpose and Target Readers
This manual describes setup method, organization, and features of the Bluetooth Low Energy protocol stack (BLE

software), which is used to develop Bluetooth applications that incorporate the Renesas Bluetooth low energy
microcontroller RL78/G1D. It is intended for users designing application systems incorporating this software. A basic
knowledge of microcontrollers and Bluetooth low energy is necessary in order to use this manual.

Related documents
The related documents indicated in this publication may include preliminary versions. However, preliminary versions are
not marked as such.

Document Name Document No.

Bluetooth Low Energy Protocol Stack

 User's Manual This manual

API Reference Manual : Basics R01UW0088E

API Reference Manual : FMP (Obsolete) R01UW0089E

API Reference Manual : PXP (Obsolete) R01UW0090E

API Reference Manual : HTP (Obsolete) R01UW0091E

API Reference Manual : BLP (Obsolete) R01UW0092E

API Reference Manual : HOGP (Obsolete) R01UW0093E

API Reference Manual : ScPP (Obsolete) R01UW0094E

API Reference Manual : HRP (Obsolete) R01UW0097E

API Reference Manual : CSCP (Obsolete) R01UW0098E

API Reference Manual : CPP (Obsolete) R01UW0099E

API Reference Manual : GLP (Obsolete) R01UW0103E

API Reference Manual : TIP (Obsolete) R01UW0106E

API Reference Manual : RSCP (Obsolete) R01UW0107E

API Reference Manual : ANP (Obsolete) R01UW0108E

API Reference Manual : PASP (Obsolete) R01UW0109E

API Reference Manual : LNP (Obsolete) R01UW0113E

Application Note : Sample Program R01AN1375E

Application Note : rBLE Command Specification R01AN1376E

List of Abbreviations and Acronyms

Abbreviation Full Form Remark

ANP Alert Notification Profile

ANS Alert Notification Service

API Application Programming Interface

ATT Attribute Protocol

BAS Battery Service

BB Base Band

BD_ADDR Bluetooth Device Address

BLE Bluetooth low energy

BLP Blood Pressure Profile

BLS Blood Pressure Service

CPP Cycling Power Profile

CPS Cycling Power Service

CSCP Cycling Speed and Cadence Profile

CSCS Cycling Speed and Cadence Service

CSRK Connection Signature Resolving Key

CTS Current Time Service

DIS Device Information Service

EDIV Encrypted Diversifier

FMP Find Me Profile

GAP Generic Access Profile

GATT Generic Attribute Profile

GLP Glucose Profile

GLS Glucose Service

HCI Host Controller Interface

HID Human Interface Device

HIDS HID Service

HOGP HID over GATT Profile

HRP Heart Rate Profile

HRS Heart Rate Service

HTP Health Thermometer Profile

HTS Health Thermometer Service

IAS Immediate Alert Service

IRK Identity Resolving Key

L2CAP Logical Link Control and Adaptation Protocol

LE Low Energy

LL Link Layer

Abbreviation Full Form Remark

LLS Link Loss Service

LNP Location and Navigation Profile

LNS Location and Navigation Service

LTK Long Term Key

MCU Micro Controller Unit

MITM Man-in-the-middle

MTU Maximum Transmission Unit

OOB Out of Band

OS Operating System

PASP Phone Alert Status Profile

PASS Phone Alert Status Service

PXP Proximity Profile

RF Radio Frequency

RSCP Running Speed and Cadence Profile

RSCS Running Speed and Cadence Service

RSSI Received Signal Strength Indication

ScPP Scan Parameters Profile

ScPS Scan Parameters Service

SM Security Manager

SMP Security Manager Protocol

STK Short Term Key

TK Temporary Key

TPS Tx Power Service

UART Universal Asynchronous Receiver Transmitter

UUID Universal Unique Identifier

Abbreviation Full Form Remark

APP Application

CSI Clocked Serial Interface

IIC Inter-Integrated Circuit

RSCIP Renesas Serial Communication Interface Protocol

VS Vendor Specific

These commodities, technology or software, must be exported in accordance with the export administration regulations
of the exporting country. Diversion contrary to the law of that country is prohibited.

All trademarks and registered trademarks are the property of their respective owners.
Bluetooth is a registered trademark of Bluetooth SIG, Inc. U.S.A.
EEPROM is a trademark of Renesas Electronics Corporation.
Windows, Windows NT and Windows XP are registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.
PC/AT is a trademark of International Business Machines Corporation.

 Index-1

Contents

1. Overview .. 1

2. Applicability .. 2

3. Restrictions .. 3

4. Installing BLE Software ... 4

4.1 Components Included ... 4
4.2 BLE software build environment .. 4
4.3 Installation Procedure ... 5
4.4 Folder Organization .. 5

4.4.1 \Renesas\BLE_Software_Ver_X_XX\Manual\ ... 5
4.4.2 \Renesas\BLE_Software_Ver_X_XX\RL78_G1D .. 5
4.4.3 \Renesas\BLE_Software_Ver_X_XX\BLE_Sample\ .. 8

5. BLE Software Configuration .. 9

5.1 Configuration .. 9
5.2 rBLE API .. 11
5.3 RL78/G1D Hardware Resources used by the BLE Software ... 12
5.4 Serial Communication in Modem Configuration .. 13

5.4.1 UART 2-wire Connection .. 14
5.4.2 UART 3-wire Connection .. 16
5.4.3 UART 2-wire with Branch Connection ... 20
5.4.4 CSI 4-wire Connection .. 22
5.4.5 CSI 5-wire Connection .. 26
5.4.6 IIC 3-wire Connection ... 30

5.5 Customer-specific information ... 34
5.6 Selection of own Bluetooth Device address ... 34

6. Creating Executable Files.. 35

6.1 Changing the Configuration Parameters ... 35
6.1.1 Maximum Number of Simultaneous Connections ... 36
6.1.2 Allocating the Heap Area .. 36
6.1.3 Changing the Operating Frequency ... 36
6.1.4 Setting MCU part initialization .. 38
6.1.5 Setting RF part initialization .. 38

 Index-2

6.1.6 Selecting the serial communication method .. 40
6.1.7 Setting the UART baud rate ... 42
6.1.8 Setting the CSI baud rate ... 47
6.1.9 Setting the IIC transfer clock ... 47
6.1.10 Wait for the time Sub Clock is stabled .. 47
6.1.11 Setting the Profile Service ... 47

6.2 Building a Project ... 52
6.3 Additional Note .. 53

7. Description of Features ... 54

7.1 Controller Stack .. 54
7.1.1 Advertising .. 54
7.1.2 Scanning .. 55
7.1.3 Initiating ... 56
7.1.4 White List .. 56

7.2 Generic Access Profile .. 58
7.2.1 GAP roles .. 58
7.2.2 GAP modes and procedures ... 58
7.2.3 Security .. 61
7.2.4 Bluetooth Device Address ... 62
7.2.5 Advertising and Scan response data formats ... 63

7.3 Security Manager .. 67
7.3.1 Pairing feature exchange .. 68
7.3.2 STK generation .. 69
7.3.3 Key distribution ... 71

7.4 Generic Attribute Profile .. 73
7.4.1 GATT Database ... 74
7.4.2 Creating a User Profile .. 79

7.5 Find Me Profile (Obsolete) ... 82
7.6 Proximity Profile (Obsolete) ... 82
7.7 Health Thermometer Profile (Obsolete) ... 82
7.8 Blood Pressure Profile (Obsolete) .. 82
7.9 HID over GATT Profile (Obsolete) .. 82
7.10 Scan Parameters Profile (Obsolete) .. 82
7.11 Heart Rete Profile (Obsolete).. 82
7.12 Cycling Speed and Cadence Profile (Obsolete) .. 82
7.13 Cycling Power Profile (Obsolete) ... 82
7.14 Glucose Profile (Obsolete) .. 82

 Index-3

7.15 Time Profile (Obsolete) .. 82
7.16 Running Speed and Cadence Profile (Obsolete) ... 83
7.17 Alert Notification Profile (Obsolete) .. 83
7.18 Phone Alert Status Profile (Obsolete) ... 83
7.19 Location and Navigation Profile (Obsolete) ... 83
7.20 Vendor Specific .. 84

7.20.1 Peak current consumption notification .. 84
7.20.2 Sleep .. 86
7.20.3 Reset processing .. 86
7.20.4 Original features provided by rBLE API ... 87

8. EEPEOM Emulation Library .. 91

8.1 About the EEPROM Emulation Library ... 91
8.2 About setting for the EEPROM emulation library .. 91
8.3 Notes on using the EEPROM emulation library ... 91

9. Code Flash Library .. 92

9.1 About the Code Flash Library... 92
9.2 About setting for the Code Flash library ... 92
9.3 Notes on using the Code Flash library .. 92

10. Note on Writing User Application .. 93

10.1 Note on RWKE Timer Management Function ... 93
10.2 Interrupt disabled time of the task and the interrupt handler .. 93
10.3 Data transmission of large size data .. 93
10.4 Performance of BLE MCU ... 93

10.4.1 Modem Configuration .. 93

11. Implementation of FW Update Feature ... 95

11.1 The FW Update Feature .. 95
11.2 Function required for FW Update ... 95

11.2.1 Writing function to the code flash ... 95
11.2.2 Data transmission and reception profile ... 95
11.2.3 Application for update control (for Receiver device) .. 97
11.2.4 Application for update control (for Sender device) ... 98

11.3 Limitation and Special Processing .. 99
11.3.1 Area switching control ... 99
11.3.2 Limitation for FW Update feature implementation ... 100
11.3.3 Update target area and User RAM area ... 101

 Index-4

12. HCI Packet Monitoring Feature ... 102

12.1 Functional Composition of the HCI Packet Monitoring ... 102
12.2 Enabling the HCI Packet Monitoring Feature ... 103
12.3 How to Use the HCI Packet Monitoring Feature .. 103

12.3.1 Preparations ... 103
12.3.2 How to Use .. 104

12.4 HCI Packet Monitoring Screen ... 105

Appendix A Referenced Documents ... 106

Appendix B Terminology.. 107

R01UW0095EJ0119 Rev.1.19 Page 1 of 108
Jan 31, 2022

Bluetooth Low Energy Protocol Stack
User’s Manual

R01UW0095EJ0119
Rev.1.19

Jan 31, 2022

1. Overview
This manual describes the API (Application Program Interface) of the basic features of the Bluetooth Low Energy

protocol stack (BLE software), which is used to develop Bluetooth applications that incorporate Renesas Bluetooth low
energy microcontroller RL78/G1D.

For details about the BLE software APIs, see Bluetooth Low Energy Protocol Stack API Reference Manual.

 2. Applicability

R01UW0095EJ0119 Rev.1.19 Page 2 of 108
Jan 31, 2022

2. Applicability
The descriptions in this manual apply to Bluetooth Low Energy protocol stack Version 1.11 or later.

 3. Restrictions

R01UW0095EJ0119 Rev.1.19 Page 3 of 108
Jan 31, 2022

3. Restrictions
This section describes the restrictions that apply to BLE software.

 4. Installing BLE Software

R01UW0095EJ0119 Rev.1.19 Page 4 of 108
Jan 31, 2022

4. Installing BLE Software

4.1 Components Included
The BLE software CD includes the followings:

• Documents

- Bluetooth Low Energy Protocol Stack User's Manual (this document)

- Bluetooth Low Energy Protocol Stack API Reference Manual

- Bluetooth Low Energy Protocol Stack Sample Program Application Note

- rBLE command specifications

• Project files used for creating the executable file

- Executable file

- BLE software library

- Sample source code

- Source code that configures parameters

- e2 studio project file

- CS+ for CC project file

- CS+ for CA,CX project file

• Sample applications for computer

- Executable file

- Source code

- Microsoft Visual Studio Express 2013 project file

• HCI packet monitor application for computer

- Executable file

- INI file

4.2 BLE software build environment
The environment in which BLE software was built is shown below.

• Hardware environment

- Host

• PC/AT™-compatible computer

• Processor : At least 1.6 GHz

• Main memory : At least 1 GB

• Display : 1024 x 768 or higher resolution and 65,536 colors

• Interface : USB 2.0 (E1 and USB-serial conversion cable)

• Tools used

• Renesas on-chip debugging emulator E1

• Software environment

• Windows 7

• Microsoft Visual Studio Express 2013 for Windows Desktop Update4

• Microsoft .NET Framework 4 + language pack

 4. Installing BLE Software

R01UW0095EJ0119 Rev.1.19 Page 5 of 108
Jan 31, 2022

• Renesas CS+ for CC V3.03.00/ RL78 Compiler CC-RL V1.02.00

or e² studio 4.2.0.012/RL78 Family C Compiler Package V1 (without IDE) V1.02.00

or Renesas CS+ for CA, CX V3.01.00/Renesas CA78K0R V1.71

• Renesas Flash Programmer v3.00.00
(available from http://am.renesas.com/products/tools/flash_prom_programming/rfp/index.jsp)
[Note] If you want to use the unique code embedding function for customer-specific

information area, please use the Renesas Flash Programmer v2.05.02.

For details about the environment in which to run the sample application for computers, see Bluetooth Low Energy
Protocol Stack Sample Program Application Note.

4.3 Installation Procedure
Copy the CD contents to any folder in your computer.
Also, download the EEPROM Emulation Library and Code Flash Library corresponding to your development

Environment from Renesas website and copy to the following folder. The EEPROM Emulation Library and Code Flash
Library are provided by Renesas Electronics Corporation. Refer to 4.4.2(5) and 4.4.2(6) in details.

Note: If using the e2 studio, cannot be include multi-byte characters and blank in the BLE software installation folder path.

・EEPROM Emulation Library(CS+ for CC/e2 studio (CC-RL))
\Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\dataflash\cc_rl

・EEPROM Emulation Library(CS+ for CA,CX)
\Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\dataflash\cs

・Code Flash Library(CS+ for CC/e2 studio)
\Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\codeflash\cc_rl

・Code Flash Library(CS+ for CA,CX)
\Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\codeflash\cs

4.4 Folder Organization
The detail of file and folder after installation is shown below.

4.4.1 \Renesas\BLE_Software_Ver_X_XX\Manual\
This folder includes the manuals. Please read them before using the product.

4.4.2 \Renesas\BLE_Software_Ver_X_XX\RL78_G1D

(1) \ROM_File\

This folder contains the executable files (hex files) of the BLE software programs that run on the RL78/G1D. Write these
programs to the RL78/G1D on-chip flash memory.

For how to write to the on-chip flash memory, see the Renesas Flash Programmer flash memory programming software
User's Manual.

http://am.renesas.com/products/tools/flash_prom_programming/rfp/index.jsp

 4. Installing BLE Software

R01UW0095EJ0119 Rev.1.19 Page 6 of 108
Jan 31, 2022

Also, if you have already written the BD address into on-chip data flash memory, change the operation mode of the RFP
software configuration information list to "block (code flash)". If you don't, the written BD address might be erased.

 The contents of the executable file that is stored in this folder are shown in Table 4-1. See a section 6 Creating
Executable Files about Sample Custom profile. See Bluetooth Low Energy Protocol Stack Application Note: Sample
Program about how to create an executable file.

Table 4-1 Overview of the executable file

Folder name Name of the executable file Content
\ca78k0r Folder for CS+ for CA,CX
 \Embedded Folder for Embedded configuration

 RL78_G1D_CE(SCP).hex Executable file that corresponds to the
Sample Custom Profile

\Modem Folder for Modem configuration
 RL78_G1D_CM(SCP).hex Executable file that corresponds to the

Sample Custom Profile
RL78_G1D_CM(DTM_2WIRE).hex Executable file that corresponds to

2-Wire UART Direct Test Mode
\ccrl Folder for CC-RL
 \Embedded Folder for Embedded configuration

 RL78_G1D_CE(SCP).hex Executable file that corresponds to the
Sample Custom Profile

\Modem Folder for Modem configuration
 RL78_G1D_CM(SCP).hex Executable file that corresponds to the

Sample Custom Profile

(2) \Project_Source\

This folder contains the BLE software library and sample source code required for building the executable files (hex
files) of the software programs that run on the RL78/G1D.

(3) \Project_Source\renesas\tools\project\

This folder contains the project/workspace files for each development environment which are required for building the
executable files (hex files) of the software programs that run on the RL78/G1D. In addition, projects/workspaces in the
Embedded configuration and Modem configuration for each development environment are contained. Build the program
by using these project/workspace files in your development environment to generate executable files.

For how to build the program, see 6.2.

(4) \Project_Source\renesas\src\

This folder contains the files for configuring the parameters that can be changed by the user (source code). Change the
parameter settings as required before building the program.

For details about the configurable parameters and how to change the settings, see 6.1.

(5) \Project_Source\renesas\src\driver\dataflash\cc_rl\ or \cs\

Copy the EEPROM Emulation Library corresponding to your development environment to this folder. The EEPROM

 4. Installing BLE Software

R01UW0095EJ0119 Rev.1.19 Page 7 of 108
Jan 31, 2022

Emulation Library is downloaded from Renesas website. For reference, shows how to obtain a tested version by the BLE
software from Renesas website of the North America area. In addition, operating procedures might be changed without a
notice by the renewals of the website.

Open the Renesas website (http://www.renesas.com) and select [Americas]. Select [Development Tools]-[Flash and
PROM Programming]-[Flash Libraries]-[Data Flash Libraries]-[Download]. Set the following filter.

• Promotion Type – current tools
• μC Series – RL78
• Tool type – SW-Tool

Select [EEPROM_EMULATION_RL78]. Get the following two files and execute files for unzip the EEPROM

Emulation Library.
• RENESAS_EEL_RL78_T01E_V1.20.zip / RENESAS_FDL_RL78_T01E_V1.20.zip (CS+ for CA,CX)
• RENESAS_EEL_RL78_T02E_V1.20.zip / RENESAS_FDL_RL78_T02E_V1.30.zip (CC-RL)

The files to be copied are shown below.

CS+ for CC or e2 studio (CC-RL) version:

- RENESAS_EEL_RL78_T02E_V1.20.zip / RENESAS_FDL_RL78_T02E_V1.30.zip
• eel.h
• eel.lib
• eel_types.h
• fdl.h
• fdl.lib
• fdl_types.h

CS+ for CA, CX version:

- RENESAS_EEL_RL78_T01E_V1.20.zip / RENESAS_FDL_RL78_T01E_V1.20.zip
• eel.h
• eel.lib
• eel_types.h
• fdl.h
• fdl.lib
• fdl_types.h

(6) \Project_Source\renesas\src\driver\codeflash\cc_rl\ or cs\

Copy the Code Flash Library corresponding to your development environment to this folder. The Code Flash Library is
downloaded from Renesas website. For reference, shows how to obtain a tested version by the BLE software from Renesas
website of the North America area. In addition, operating procedures might be changed without a notice by the renewals of
the website.

Open the Renesas website (http://www.renesas.com) and select [Americas]. Select [Development Tools]-[Flash and
PROM Programming]-[Flash Libraries]-[Flash Self Programing Libraries]-[Download]. Set the following filter.

• Promotion Type – current tools
• μC Series – RL78
• Tool type – SW-Tool

Select [SelfFlib_RL78]. Get the following file and execute file for unzip the Code Flash Library.

http://www.renesas.com/
http://www.renesas.com/

 4. Installing BLE Software

R01UW0095EJ0119 Rev.1.19 Page 8 of 108
Jan 31, 2022

• RENESAS_FSL_RL78_T01E_V1.20.zip (CS+ for CA,CX or CC-RL)

The files to be copied are shown below.

CS+ for CC or e2 studio (CC-RL) version
• fsl.h
• fsl.lib
• fsl_types.h

CS+ for CA, CX version
• fsl.h
• fsl.lib
• fsl_types.h

4.4.3 \Renesas\BLE_Software_Ver_X_XX\BLE_Sample\
This folder contains the executable files of the BLE software sample program that runs on a computer when BLE

software is used in the Modem configuration. About the detail of the sample program, see Bluetooth Low Energy Protocol
Stack Application Note: Sample Program.

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 9 of 108
Jan 31, 2022

5. BLE Software Configuration
BLE software refers to the set of software that includes BLE stacks compliant with the Bluetooth Low Energy protocol

(Bluetooth v4.2). The following section describes the BLE software configuration in detail.

5.1 Configuration
Figure 5-1 shows the BLE software configuration.
BLE software runs in a configuration in which the application is mounted on the RL78/G1D (hereafter referred to as the

Embedded configuration) and in a configuration in which the application is mounted on another MCU (hereafter referred to
as the Modem configuration). BLE software provides APIs which can use the same application in both configurations.

Figure 5-1 BLE Software Configuration

BLE software in the Modem configuration runs on two chips, the APP MCU and the BLE MCU (RL78/G1D). BLE

software is configured of an rBLE_Host block that runs on the APP MCU (block in the figure), and software that runs
on the BLE MCU (blocks in the figure).

The software to be prepared by the user (blocks in the figure) consists of the APP MCU’s application block, serial

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 10 of 108
Jan 31, 2022

communication driver block, and OS block. However, if there is no OS in the APP MCU, software for the OS block does
not have to be prepared because the rBLE_Host block does not use resources of the OS.

The application that runs on the APP MCU executes communication between the BLE MCU and BLE services via
rBLE_Host. The APP MCU and BLE MCU are physically connected via UART or CSI or IIC, and communication is
executed using RSCIP (Renesas Serial Communication Interface Protocol) under the control of rBLE_Host.

BLE software in the Embedded configuration runs on only a single chip, the BLE MCU (RL78/G1D). The software to be
prepared by the user is only the application block and it should be implemented on the BLE MCU.

Table 5-1 gives an overview of the software blocks.

Table 5-1 Overview of Software Blocks

Block Name Description
Application Software the user needs to prepare
OS Operating system the user needs to prepare
rBLE_Host Builds command packets for MDM_APPL and analyzes

event packets from MDM_APPL, enabling the issuance of
rBLE APIs from the application.

Serial Communication driver
(APP MCU)

Performs communication with the BLE MCU through
UART or CSI or IIC. RSCIP is used as the communication
protocol.
Note: The user needs to prepare this driver.

Serial Communication driver
(BLE MCU)

Performs communication with the APP MCU through
UART or CSI or IIC. RSCIP is used as the communication
protocol.

MDM APPL Analyzes command packets from rBLE_Host and builds
event packets for rBLE_Host, enabling the use of BLE
stack services via rBLE_Core.

rBLE_Core Provides an interface with the upstream modules for
using the services of the main BLE stack (the part from
the profile layer to the RF driver).

Profile layer Main BLE stack
Host stack : SM, L2CAP, GAP, and GATT
Controller stack : LL and HCI

Host stack

Controller stack

RWKE (Renesas Wireless
Kernel Extension)

Provides the basic functionality used commonly with the
other modules and manages the entire BLE MCU.

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 11 of 108
Jan 31, 2022

5.2 rBLE API
The BLE software provides an API (rBLE API) that allows the application to use the services of the BLE stack on the

BLE MCU from the application.
The Bluetooth layers that can be accessed by the APIs provided by the rBLE API are shown in the figure below.

SM

FMPGAP PXP HTP BLP HOGP ScPP

GATT

ATT

rBLE API

ANP LNPHRP CSCP CPP GLP TIP RSCP PASP

Figure 5-2 rBLE API and BLE Stack

Due to the deprecation and withdrawal plan of the profile version by Bluetooth SIG, each profile has been obsoleted

because product registration using the profile (Note) supported by the BLE protocol stack is no longer possible.
For product registration, refer to "Bluetooth LE microcomputer/module Bluetooth qualification acquisition application

note" (R01AN3177).

Note: FMP(Find Me), PXP(Proximity), HTP(Health Thermometer), BLP(Blood Pressure), HOGP(HID Over GATT),

ScPP(Scan Parameters), HRP(Heart Rate), CSCP(Cycling Speed and Cadence), CPP(Cycling Power), GLP(Glucose), TIP
(Time Profile), RSCP(Running Speed and Cadence), ANP(Alert Notification), PASP(Phone Alert Status), LNP(Location
and Navigation)

The features supported by the various layers are listed in Table 5-2. For details about the various features, see 7

Description of Features.
Table 5-2 Bluetooth Features Supported by the rBLE API

Layer Description Supported Features
GAP
(Generic Access
Profile)

Executes access procedures
according to the link
management and security
requirements for processes
such as device discovery and
peer device connection and
disconnection.

• Four GAP roles
(Central, Peripheral, Broadcaster, and Observer)

• Broadcast and Scan
• Discovery, Connection, and Bonding modes, and

procedures
• Security mode
• Connection and disconnection of a link
• Changing the connection parameters
• Random and static addresses
• Privacy feature

SM
(Security Manager)

Executes pairing between two
devices, communication
encryption, and data signing to
ensure security. Also executes
information exchange between
devices as needed for the
above.

• Pairing procedure
• Pairing algorithms

(Passkey Entry, Just Works, OOB)
• Pairing and key generation
• Key distribution
• Security implemented by authentication,

encryption, and data signing

The rBLE API includes an interface for Direct Test Mode for performing RF evaluation of the BLE MCU, allowing

transmission testing and reception testing.

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 12 of 108
Jan 31, 2022

5.3 RL78/G1D Hardware Resources used by the BLE Software
The BLE software uses the following RL78/G1D hardware resources. Therefor user program cannot use these hardware

resources.

Table 5-3 Hardware Resources used by BLE Software

H/W Resources Configuration Purpose / Usage
Modem Embedded

Data Flash Memory Used Used Used to store the BD address.
12-bit Interval Timer Used Used Used by Peak current consumption notification function, or

Used by monitoring for RF slow clock for internal oscillation
circuit Note (3)

Timer Array Unit TI07/TO07 Not Used Used by CSI or IIC Driver (Unit0 Channel7)
Clock Output/Buzzer
Output

PCLBUZ0 PCLBUZ0 Used for clock output to RF transceiver
(When not using RF slow clock for internal oscillation circuit.)
Note (4)

Port Function P21(output)
P30(input)

Not Used P21: Used by CSI or IIC Driver (SDIR or REQ signal)
P30: Used by WAKEUP Driver for UART or CSI

Serial Interface
(Serial Array Unit)

UART0
UART1

Not Used Used by UART Driver

CSI00
CSI20
CSI21

CSI21

CSI00 or CSI20: Note (1)

CSI21 : Note (2)

Serial Interface IICA IICA0 Not Used Used by IIC Driver

Multiplier,
Divider/Multiply
Accumulator

Used Used Used by the C Compiler
Set the compiler option to use this hardware
(CS+ for CA,CX and e2 studio/CS+ for CC)

DMA Controller DMA0, DMA1
DMA2, DMA3

DMA2, DMA3

DMA0, DMA1 : Note (1)
DMA2, DMA3 : Note (2)

Interrupt External Pin INTRF
INTP3

INTRF

INTRF : Note (2)
INTP3 : Note (1), used for WAKEUP signal

DMA INTDMA0
INTDMA1
INTDMA2
INTDMA3

INTDMA2
INTDMA3

INTDMA0, INTDMA1 : Note (1)
INTDAM2, INTDMA3 : Note (2)

Serial Array
Unit

INTCSImn
INTSTm
INTSRm

INTSREm

Not Used

INTCSImn : Note (1), for CSI (mn=00, 20)
INTSTm, INTSRm, INTSREm : Note (1), for UART
(m=0, 1)

Serial
Interface IICA

INTIICA0 Not Used INTIICA0: Used by IIC Driver

12-bit Interval
Timer

INTIT INTIT Used by Peak current consumption notification function, or
Used by monitoring for RF slow clock for internal oscillation
circuit.
Note (3)

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 13 of 108
Jan 31, 2022

Note (1): This hardware resource is used for communication interface between APP-MCU and BLE-MCU
through UART0, UART1 or CSI00, CSI20 (in modem configuration)

Note (2): This hardware resource is used for communication interface between MCU and RF Transceiver
Note (3): User application can use the 12-bit interval timer when not using the Peak current consumption notification

function and RF slow clock for internal oscillation circuit.
Note (4): User application can use the Clock Output/Buzzer Output when using RF slow clock for internal oscillation circuit.

5.4 Serial Communication in Modem Configuration
APP-MCU and BLE-MCU communicates through serial interface (UART or CSI or IIC), using the RSCIP (Renesas

Serial Communication Interface Protocol) as the protocol.
The RSCIP is based on the SLIP (Serial Line Internet Protocol) defined in RFC 1055, and is extended. The RSCIP

ensures the reliability of data communication using error recovery capabilities by retransmission.
The RSCIP driver, which is a part of rBLE_Host, performs protocol processing and control of the serial driver. The

RSCIP driver provides packet based communication.
Refer to the Application Note: rBLE Command Specification for more details.

Serial communication provides communication through UART or CSI or IIC interface, and the following connection

methods are available.
In addition, there is a connection method that cannot be selected in UART1 and CSI20.

Table 5-4 Connection methods for serial communication

Serial Interface Connection method Possible channel
UART 2-wire UART0

3-wire UART0, UART1
2-wire with branch UART0, UART1

CSI 4-wire CSI00
5-wire CSI00, CSI20

IIC 3-wire IICA0

UART communication operates in the following settings.

Table 5-5 Settings of UART

Setting Setting value
Baud rate (2-wire) 4,800bps ~ 250kbps (*1)

(3-wire, 2-wire with branch) 4,800bps ~ 250kbps
Data length 8bit

Parity None
Stop bit 1bit

Flow control None
(*1) If you select the 2-wire connection method and set the baud rate greater than 4,800 bps, the Sleep function is disabled.

The Sleep function is always enabled in other connection method. The Sleep function realizes the low current
consumption of BLE MCU.

CSI communication operates in the following settings.

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 14 of 108
Jan 31, 2022

Table 5-6 Setting of CSI

Setting Setting value
Communication peer-to-peer, master-slave

half-duplex, synchronous clock, master clock supply
Role APP MCU : master

BLE MCU : slave
Baud rate 4800bps ~ 250kbps (4-wire, 5-wire)

Data Length 8bit
Data clock phase RL78/G1D phase mode type 1

IIC communication operates in the following settings.

Table 5-7 Setting of IIC

Setting Setting value
Communication IIC bus mode

half-duplex, synchronous clock, master clock supply
Role APP MCU : master

BLE MCU : slave
Transfer clock 100kbps ~ 400kbps

Data Length 8bit
Communication

format
IIC Bus Serial Data Transfer format

Note
* The serial communication driver on the APP MCU needs to be prepared by customer.
* With the requirements of the serial communication driver, refer to the Bluetooth Low Energy Protocol Stack Application

Note: Sample Program.

5.4.1 UART 2-wire Connection
In this connection method, the APP MCU and the BLE MCU communicate using two signal lines (TxD and RxD).
If the baud rate greater than 4,800 bps is used, the Sleep function to reduce power consumption is disabled.
There is no handshake operation.

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 15 of 108
Jan 31, 2022

Figure 5-3 UART 2-wire connection method

BLE MCU Pin Name Direction Function

TxD0 BLE -> APP Serial Output Data Signal
RxD0 APP -> BLE serial input data signal

- In the timing chart described from now on, the terminal name of the BLE MCU side is described.

(1) Transmit Operation of APP MCU

This section shows the transmission sequence including rBLE_Host and serial communication driver function calls.

[At the start of transmission]
When the rBLE_Host calls the transmit function, the serial communication driver starts the transmission operation of
the RSCIP packet.

[At the end of transmission]
The serial communications driver notifies rBLE_Host the transmission completion by calling the transmission
completion notification function when the RSCIP packet transmission is completed.

Figure 5-4 Transmit Sequence (APP MCU)

(2) APP MCU Receive Operation

The reception sequence including rBLE_Host and serial communications driver's function calls is shown. When one
RSCIP packet is received, rBLE_Host calls the reception function two or more times because the RSCIP packet is
variable-length.

[When beginning to receive it] RBLE_Host calls the reception function. As a result, the serial communications driver

begins the reception operation of the RSCIP packet, and waits for the data reception.

BLE MCU APP MCU

rBLE Host Serial

Tx Func.

Tx Comp Func. Packet

APP MCU BLE MCU

RxD0
TxD0 RxD

TxD

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 16 of 108
Jan 31, 2022

[When the reception ends the packet on the way] The serial communications driver notifies rBLE_Host the reception
completion by calling the reception completion notification function after the reception ends. RBLE_Host calls the
reception function again, and the serial communications driver restarts the reception.

[When the reception of the entire packet ends] The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after the reception ends. RBLE_Host calls the
reception function again, and waits for the following RSCIP packet reception.

 Figure 5-5 Receive Sequence (APP MCU)

5.4.2 UART 3-wire Connection
In this connected method, APP MCU and BLE MCU communicate by using control signal line WAKEUP to make BLE

MCU get up when APP MCU in addition to TxD that is the data signal line of UART as shown in the following and RxD
transmits data.

When transmitting from APP MCU, it is necessary to do handshaking though the full duplex transmission is possible.
This is operation necessary to confirm BLE MCU completes the preparation for the reception. Moreover, please observe by
the time-out to do a reliable communication at handshaking, and execute handshaking again when you generate the
time-out.

Figure 5-6 UART 3-wire connection

BLE MCU Pin Name Direction Function

TxDm (m=0,1) BLE MCU->
APP MCU

Serial Output Data Signal

RxDm (m=0,1) APP MCU->
BLE MCU

Serial Input Data Signal

WAKEUP(P30/INTP3)
 - Low Active

APP MCU->
BLE MCU

External Trigger Input Signal for Wakeup
APP MCU is set at an active level at the transmission request.
ACK byte (0x88) reception or data reception from BLE MCU is waited for,
and it returns it to an inactive level.

BLE MCU APP MCU

rBLE Host Serial

Rx Func.

Rx Comp Func.
Packet(1/2)

Rx Func Packet(2/2)
Rx Comp Func.

Rx Func.

APP MCU BLE MCU

TxD
RxD
 RxDm

TxDm

WAKEUP WAKEUP

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 17 of 108
Jan 31, 2022

- In the timing chart described from now on, the terminal name of the BLE MCU side is described.

(1) Transmit Operation (APP MCU)

The handshaking procedure when APP MCU transmits the RSCIP packet to BLE MCU is following T3.

T1: APP MCU makes the WAKEUP signal an active level for the transmission request.
T2: APP MCU detects ACK byte (0x88) from BLE MCU or the RSCIP packet by one byte.
T3: APP MCU makes the WAKEUP signal an inactive level.
T4: APP MCU transmits the RSCIP packet.

Figure 5-7 Transmit timing chart (APP MCU)

 Figure 5-8 Transmit timing chart (APP MCU) (while BLE MCU transmitting）

After the transmission request, the serial communications driver begins the time-out watch. When the time-out is

generated, the serial communications driver is T1 that returns the WAKEUP signal to an inactive level for the
re-transmission demand once, and makes to an active level again. The recommended value at the timeout period is assumed
to be 5msec.

RxDm

TxDm

[T1]

1st byte Last byte

[T4]

WAKEUP

ACK(0x88)

[T2] [T3]

RxDm

TxDm

[A1T

1st byte

last byte

[AT44

WAKEUP

 N byte

[AT14

last byte 1st byte

[A1T

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 18 of 108
Jan 31, 2022

Figure 5-9 Transmit timing chart (APP MCU) (timeout occurs）

The transmission sequence including rBLE_Host and serial communications driver's function calls is shown.

[When beginning to transmit]: The serial communications driver is T1 according to the call of rBLE_Host of the

transmission function that begins the transmission operation of the RSCIP packet, and makes the WAKEUP signal an
active level for the transmission request.

[When the transmission ends]: The serial communications driver notifies rBLE_Host the transmission completion by

calling the transmission completion notification function when RSCIP packet transmission T1- T4 is completed.

 Figure 5-10 Transmit Sequence (APP MCU)

(2) Receive Operation (APP MCU)

The reception sequence including rBLE_Host and serial communications driver's function calls is shown. When one
RSCIP packet is received, rBLE_Host calls the reception function two or more times because the RSCIP packet is
variable-length.

[When beginning to receive it] RBLE_Host calls the reception function. As a result, the serial communications driver

begins the reception operation of the RSCIP packet, and waits for the data reception.

[When the reception ends the packet on the way] The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after the reception ends. RBLE_Host calls the
reception function again, and the serial communications driver restarts the reception.

[When the reception of the entire packet ends] The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after the reception ends. RBLE_Host calls the

RxDm

TxDm

[T1]

1st byte last byte

[T4]

WAKEUP

ACK(0x88)

[T2] [T1]

[T3]

BLE MCU APP MCU

[T2] ACK or Data

rBLE Host Serial

Tx Func

Tx Comp Func

[T1]WAKEUP Signal (Active)

[T3] WAKEUP Signal (Inactive)
[T4] Packet

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 19 of 108
Jan 31, 2022

reception function again, and waits for the following RSCIP packet reception.

Figure 5-11 Receive Sequence (APP MCU)

BLE MCU APP MCU

rBLE Host Serial

Rx Func

Rx Comp Func
Packet (1/2)

Rx Func Packet (2/2)
Rx Comp Func

Rx Func

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 20 of 108
Jan 31, 2022

5.4.3 UART 2-wire with Branch Connection
TxD of APP MCU diverges, is connected with WAKEUP of BLE MCU so that APP MCU and BLE MCU may make

BLE MCU get up when APP MCU in addition to TxD that is the data signal line of UART as shown in the following and
RxD transmits data in this connected method, and it communicates.

When transmitting from APP MCU, it is necessary to do handshaking though the full duplex transmission is possible.
This is operation necessary to confirm BLE MCU completes the preparation for the reception. Moreover, please observe by
the time-out to do a reliable communication at handshaking, and execute handshaking again when you generate the
time-out.

Figure 5-12 UART 2-wire with branch connection

BLE MCU Pin Name Direction Function

TxDm (m=0,1) BLE MCU->
APP MCU

Serial Output Data Signal

RxDm (m=0,1) APP MCU->
BLE MCU

Serial Input Data Signal

WAKEUP(P30/INTP3)
 - Low Active

APP MCU->
BLE MCU

External Trigger Input Signal for Wakeup
APP MCU is set at an active level at the transmission request.
ACK byte (0x88) reception or data reception from BLE MCU is waited for,
and it returns it to an inactive level.

- In the timing chart described from now on, the terminal name of the BLE MCU side is described.

(1) Transmit Operation (APP MCU)

The handshaking procedure when APP MCU transmits the RSCIP packet to BLE MCU is following T3.

T1: APP MCU transmits REQ byte (0xC0) for the transmission request.
T2: APP MCU detects ACK byte (0x88) from BLE MCU or the RSCIP packet by one byte.
T3: APP MCU transmits the RSCIP packet.

Figure 5-13 Transmit timing chart (APP MCU)

APP MCU BLE MCU

TxD
RxD
 RxDm

TxDm

WAKEUP

RxDm

TxDm

1st byte last byte

[T3]

ACK(0x88)

[T2]

REQ(0xC0)

[T1]

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 21 of 108
Jan 31, 2022

 Figure 5-14 Transmit timing chart (APP MCU) (While BLE MCU transmitting)

After the transmission request, the serial communications driver begins the time-out watch. When the time-out is
generated, the serial communications driver is T1 that transmits the REQ byte for the re-transmission demand. The
recommended value at the timeout period is assumed to be 5msec.

 Figure 5-15 Transmit timing chart (APP MCU) (Timeout occurs)

The transmission sequence including rBLE_Host and serial communications driver's function calls is shown.

[When beginning to transmit]: The serial communications driver is T1 according to the call of rBLE_Host of the

transmission function that begins the transmission operation of the RSCIP packet, and transmits the REQ byte for the
transmission request.

[When the transmission ends]: The serial communications driver notifies rBLE_Host the transmission completion by

calling the transmission completion notification function when RSCIP packet transmission T1- T3 is completed.

 Figure 5-16 Transmit Sequence (APP MCU)

RxDm

TxDm

1st byte last byte

[T3]

N byte

[T2]

last byte 1st byte

REQ(0xC0)

[T1]

RxDm

TxDm

1st byte last byte

[AT43

[AT14

ACK(0x88)

1st byte

[AT14

1st byte

[AT24

BLE MCU APP MCU

[T2] ACK

rBLE Host Serial

Tx Func

Tx Comp Func

[T1] REQ

[T3] Packet

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 22 of 108
Jan 31, 2022

(2) Receive Operation (APP MCU)

The reception sequence including rBLE_Host and serial communications driver's function calls is shown. When one
RSCIP packet is received, rBLE_Host calls the reception function two or more times because the RSCIP packet is
variable-length.

[When beginning to receive it] RBLE_Host calls the reception function. As a result, the serial communications driver

begins the reception operation of the RSCIP packet, and waits for the data reception.

[When the reception ends the packet on the way] The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after the reception ends. RBLE_Host calls the
reception function again, and the serial communications driver restarts the reception.

[When the reception of the entire packet ends] The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after the reception ends. RBLE_Host calls the
reception function again, and waits for the following RSCIP packet reception.

Figure 5-17 Receive Sequence (APP MCU)

5.4.4 CSI 4-wire Connection
In this connected method, APP MCU and BLE MCU communicate by using control signal line SDIR to control the

direction of the communication and the communication timing of APP MCU and BLE MCU in addition to SO that is the
data signal line of CSI as shown in the following, SI, and SCK.

The communication is half duplex, and when transmitting or receiving it, it is necessary to do handshaking. It is
operation because it notifies APP MCU the transmission request from BLE MCU so that this may confirm BLE MCU
completes the preparation for the reception or the transmission necessary to fix the direction of the communication in the
half duplex transmission. Moreover, please observe by the time-out to do a reliable communication at handshaking, and
execute handshaking again when you generate the time-out.

Time-out of reply from APP MCU is prepared on BLE MCU. For time-out, Timer Array Unit is used.

BLE MCU APP MCU

rBLE Host Serial

Rx Func

Rx Comp Func
Packet (1/2)

Rx Func Packet (2/2)
Rx Comp Func

Rx Func

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 23 of 108
Jan 31, 2022

Figure 5-18 CSI 4-wire connection

BLE MCU Pin Name Direction Function
SO00 BLE MCU->

APP MCU
Serial Output Data Signal (MISO : Master-Input-Slave-Output)

SI00 APP MCU->
BLE MCU

Serial Input Data Signal (MOSI : Master-Output-Slave-Input)

SCK00 APP MCU->
BLE MCU

Data Communication Timing Clock Signal

SDIR(P21) BLE MCU->
APP MCU

Communication Direction Control Signal / Response Control Signal
Low: The direction where data is forwarded is BLE MCU->APP MCU
High: The direction where data is forwarded is APP MCU->BLE MCU
Pulse (High->Low->High): The pulse width is time of the BLE MCU operation clock ×4
The transmission request from communication permission response BLE MCU (From
APP MCU, except for the transmission completion of one Packet head byte) from BLE
MCU.
(At Packet head one byte completion of transmission from APP MCU) Communication
permission response from BLE MCU
(From APP MCU, except for the transmission completion of one Packet head byte)
Transmission request from BLE MCU

- In the timing chart described from now on, the terminal name of the BLE MCU side is described.

(1) Transmit Operation (APP MCU)

The handshaking procedure when APP MCU transmits the RSCIP packet to BLE MCU is following T3.

T1: APP MCU transmits one RSCIP packet head byte for the transmission request, and waits for the pulse of the SDIR

signal.
- When the time-out is generated by the pulse waiting about the SDIR signal, it is necessary to retransmit one head byte.
T2: APP MCU detects the pulse of the SDIR signal of the communication permission response.
T3: APP MCU continuously transmits everything from the 2nd byte to the final byte of the RSCIP packet.

APP MCU
(Master)

BLE MCU
(Slave)

SO
SI
 SI00

SO00

SCK SCK00

SDIR SDIR

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 24 of 108
Jan 31, 2022

 Figure 5-19 Transmit timing chart (APP MCU)

After the transmission request, the serial communications driver begins the time-out watch. When the time-out is
generated, the serial communications driver is T1 that transmits one head byte of the RSCIP packet again for the
re-transmission demand. The recommended value at the timeout period is assumed to be 5msec.

 Figure 5-20 Transmit timing chart (APP MCU) (Timeout occurs)

The transmission sequence including rBLE_Host and serial communications driver's function calls is shown.

[When beginning to transmit]: The serial communications driver is T1 according to the call of rBLE_Host of the

transmission function that begins the transmission operation of the RSCIP packet.

[When the transmission ends]: The serial communications driver notifies rBLE_Host the transmission completion by

calling the transmission completion notification function when RSCIP packet transmission T1- T3 is completed.

 Figure 5-21 Transmit Sequence (APP MCU)

SI00

SDIR

SO00

1st byte

SCK00

[T1]

2nd byte last byte

[T3] [T2]

SI00

SDIR

SO00

1st byte

SCK00

[T1]

2nd byte last byte

[T3] [T2]

1st byte

[T1]

BLE MCU APP MCU

[T2] SDIR Signal (Pulse)

rBLE Host Serial

Tx Func

Tx Comp Func

[T1] Packet (1st 1byte)

[T3] Packet (2nd byte and later)

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 25 of 108
Jan 31, 2022

(2) Receive Operation (APP MCU)

The handshaking procedure when APP MCU receives the RSCIP packet from BLE MCU is following R5.
When R1 - R5 is executed, the transmission from APP MCU is assumed to be a prohibition for the half duplex

transmission.

R1: APP MCU waits for the pulse of the SDIR signal of the transmission request.
R2: APP MCU transmits ACK byte (0x88) when the pulse of the SDIR signal is detected, and waits for Low of the SDIR

signal.
R3: APP MCU detects Low of the SDIR signal.
R4: APP MCU supplies the clock, and receives the RSCIP packet.
R5: APP MCU detects High of the SDIR signal.

 Figure 5-22 Receive timing chart (APP MCU)

When the transmission request of APP MCU collides with the transmission request of BLE MCU, BLE MCU postpones

transmitting, and receives the RSCIP packet of APP MCU. After completing the RSCIP packet reception, BLE MCU
outputs the pulse again by the SDIR signal.

Figure 5-23 Transmit requested collision timing chart (APP MCU and BLE MCU)

The reception sequence including rBLE_Host and serial communications driver's function calls is shown. When one

RSCIP packet is received, rBLE_Host calls the reception function two or more times because the RSCIP packet is
variable-length.

[When beginning to receive it]: RBLE_Host calls the reception function. As a result, the serial communications driver is

R1 that begins the reception operation of the RSCIP packet, and waits for the pulse of the SDIR signal.

[When the reception ends the packet on the way]: The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after ending R1 - R4, and rBLE_Host calls the

SI00

SDIR

SO00

ACK(0x88)

SCK00

[R2]

[R4] [R1]

1st byte last byte

[R3] [R5]

SI00

SDIR

SCK00

1byte目 最終byte

ACK(0x88) 2byte目 最終byte

[T3]

1byte目

[T1]

[T2]

SO00

[R4] [R1]

[R1] [R2] [R3] [R5]

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 26 of 108
Jan 31, 2022

reception function again. The serial communications driver is R4 that confirms the reception state acquisition function,
supplies the clock again while receiving the packet, and restarts the reception.

[When the reception of the entire packet ends]: The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after ending R4, and rBLE_Host calls the reception
function again. The reception state acquisition function is confirmed, and if he or she is packet reception completion, the
serial communications driver is R5 that waits for the SDIR signal to become High.

Figure 5-24 Receive Sequence (APP MCU)

5.4.5 CSI 5-wire Connection
In this connected method, APP MCU and BLE MCU communicate by using control signal line WAKEUP to make BLE

MCU get up when control signal line SDIR and APP MCU to control the direction of the communication and the
communication timing of APP MCU and BLE MCU in addition to SO that is the data signal line of CSI as shown in the
following, SI, and SCK transmit data.

The communication is half duplex, and when transmitting or receiving it, it is necessary to do handshaking. It is
operation because it notifies APP MCU the transmission request from BLE MCU so that this may confirm BLE MCU
completes the preparation for the reception or the transmission necessary to fix the direction of the communication in the
half duplex transmission. Moreover, please observe by the time-out to do a reliable communication at handshaking, and
execute handshaking again when you generate the time-out.

Time-out of reply from APP MCU is prepared on BLE MCU. For time-out, Timer Array Unit is used.

BLE MCU APP MCU

[R1] SDIR Signal (Pulse)
[R2] ACK

rBLE Host Serial

Rx Func

Rx Comp Func

[R3] SDIR Signal (Low)

[R4] Packet (1/2)

Rx Func
Rx Status Func

[R4] Packet (2/2)
[R5] SDIR Signal (High)

Rx Comp Func
Rx Func

Rx Status Func

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 27 of 108
Jan 31, 2022

Figure 5-25 CSI 5-wire connection

BLE MCU Pin Name Direction Function

SOmn (mn=00,20) BLE MCU->
APP MCU

Serial Output Data Signal (MISO : Master-Input-Slave-Output)

SImn (mn=00,20) APP MCU->
BLE MCU

Serial Input Data Signal (MOSI : Master-Output-Slave-Input)

SCKmn (mn=00,20) APP MCU->
BLE MCU

Data Communication Timing Clock Signal

SDIR(P21) BLE MCU->
APP MCU

Communication Direction Control Signal / Response Control Signal
Low : Data Direction is BLE MCU -> APP MCU
High : Data Direction is APP MCU -> BLE MCU
Pulse (High -> Low -> High) : pulse width = BLE MCU CPU clock x 4
(While WAKEUP signal is active) Clear-To-Send from BLE MCU
(while WAKEUP signal is inactive) Request-To-Send from BLE MCU

WAKEUP(P30/INTP3)
 – Low Active

APP MCU->
BLE MCU

External Trigger Input Signal for Wakeup
It sets it at an active level at the transmission request from APP MCU.
 - The response of SDIR from BLE MCU is waited for, and it returns it to an inactive
level.

- In the timing chart described from now on, the terminal name of the BLE MCU side is described.

(1) Transmit Operation (APP MCU)

The handshaking procedure when APP MCU transmits the RSCIP packet to BLE MCU is following T4.

T1: APP MCU makes the WAKEUP signal an active level for the transmission request, and waits for the pulse of the

SDIR signal.
- It is necessary to return the WAKEUP signal to an inactive level once when the time-out is generated by the pulse

waiting about the SDIR signal, and to make it to an active level again.
T2: APP MCU detects the pulse of the SDIR signal of the communication permission response.
T3: The WAKEUP signal is returned to an inactive level.
T4: APP MCU continuously transmits everything from the first byte to the final byte of the RSCIP packet.

APP MCU
(Master)

BLE MCU
(Slave) SO

SI
 SImn

SOmn

SCK SCKmn

SDIR SDIR
WAKEUP WAKEUP

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 28 of 108
Jan 31, 2022

 Figure 5-26 Transmit timing chart (APP MCU)

After the transmission request, the serial communications driver begins the time-out watch. When the time-out is
generated, the serial communications driver is T1 that returns the WAKEUP signal to an inactive level for the
re-transmission demand once, and outputs an active level again. The recommended value at the timeout period is assumed
to be 5msec.

Figure 5-27 Transmit timing chart (APP MCU, timeout occurs)

The transmission sequence including rBLE_Host and serial communications driver's function calls is shown.

[When beginning to transmit]: The serial communications driver is T1 that begins because rBLE_Host calls the

transmission function the transmission of the RSCIP packet, and makes the WAKEUP signal an active level.

[When the transmission ends]: The serial communications driver notifies the transmission completion by calling the

transmission completion notification function of rBLE_Host when RSCIP packet transmission T1- T4 is completed.

 Figure 5-28 Transmit Sequence (APP MCU)

SI00

SDIR

SO00

SCK00

[T1]

1st byte Last byte

[A4]

WAKEUP

[T2] [T3]

SI00

SDIR

SO00

SCK00

1st byte last byte

[T4]

WAKEUP

[T2] [T3] [T1]

[T1]

BLE MCU APP MCU

[T2] SDIR Signal (Pulse)

rBLE Host Serial

Tx Func.

Tx Comp Func

[T1]WAKEUP Signal (Active)

[T3] WAKEUP Signal (Inactive)
[T4] Packet

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 29 of 108
Jan 31, 2022

(2) Receive Operation (APP MCU)

The handshaking procedure when APP MCU receives the RSCIP packet from BLE MCU is following R5.
When R1 - R5 is executed, the transmission from APP MCU is assumed to be a prohibition for the half duplex

transmission.

R1: APP MCU waits for the pulse of the SDIR signal of the transmission request.
R2: APP MCU transmits ACK byte (0x88) when the pulse of the SDIR signal is detected, and waits for Low of the SDIR

signal.
R3: APP MCU detects Low of the SDIR signal.
R4: APP MCU supplies the clock, and receives the RSCIP packet.
R5: APP MCU detects High of the SDIR signal.

 Figure 5-29 Receive timing chart (APP MCU)

When the transmission request of APP MCU collides with the transmission request of BLE MCU, BLE MCU postpones
transmitting, and receives the RSCIP packet of APP MCU. After completing the RSCIP packet reception, BLE MCU
outputs the pulse again by the SDIR signal.

 Figure 5-30 Transmit requested collision timing chart (APP MCU and BLE MCU)

The reception sequence including rBLE_Host and serial communications driver's function calls is shown. When one

SI00

SDIR

SO00

SCK00

[R4]

WAKEUP

[R1] [R3]

1st byte last byte

ACK(0x88)

[R2] [R5]

SI00

SDIR

SO00

SCK00

[R4]

WAKEUP

1st byte last byte

ACK(0x88) 1st byte last byte

[T4]
[R1]

[T1] [T3] [T2]
[R1] [R2] [R3] [R5]

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 30 of 108
Jan 31, 2022

RSCIP packet is received, rBLE_Host calls the reception function two or more times because the RSCIP packet is
variable-length.

[When beginning to receive it]: RBLE_Host calls the reception function. As a result, the serial communications driver is

R1 that begins the reception operation of the RSCIP packet, and waits for the pulse of the SDIR signal.

[When the reception ends the packet on the way]: The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after ending R1 - R4, and rBLE_Host calls the
reception function again. The serial communications driver is R4 that confirms the reception state acquisition function,
supplies the clock again while receiving the packet, and restarts the reception.

[When the reception of the entire packet ends]: The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after ending R4, and rBLE_Host calls the reception
function again. The reception state acquisition function is confirmed, and if he or she is packet reception completion, the
serial communications driver is R5 that waits for the SDIR signal to become High.

 Figure 5-31 Receive Sequence (APP MCU)

5.4.6 IIC 3-wire Connection
In this connection method, APP MCU and BLE MCU use SDA and SCL signal line of the IIC as shown in the following.

And IIC slave (BLE MCU) use the control signal line REQ for controlling the transmission request.
Since the SCL and SDA pins are used for open drain outputs, serial interface IIC requires pull-up resistors for the serial

clock line and the serial data bus line.
The communication is half duplex. The transmission and reception by sending an IIC slave address of BLE MCU to

identify the target. Moreover, please observe by the time-out to do a reliable communication, and execute communication
again when you generate the time-out.

Time-out of reply from APP MCU is prepared on BLE MCU. For time-out, Timer Array Unit is used.

BLE MCU APP MCU

[R1] SDIR Signal (Pulse)
[R2] ACK

rBLE Host Serial

Rx Func.

Rx Comp Func

[R3] SDIR Signal (Low)

[R4] Packet (1/2)

Rx State Func

[R4] Packet (2/2)
[R5] SDIR Signal (High)

Rx Comp Func
Rx Func..

Rx State Func.

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 31 of 108
Jan 31, 2022

Figure 5-32 IIC 3-wire connection

BLE MCU Pin Name Direction Function
SDAA0 BLE MCU <->

APP MCU
IIC serial data bus

SCLA APP MCU ->
BLE MCU

IIC serial clock line

REQ(P21) BLE MCU ->
APP MCU

IIC slave data transmit request signal
Low: data transmission request active
High: data transmission request inactive

- In the timing chart described from now on, the terminal name of the BLE MCU side is described.

(1) Transmit Operation (APP MCU)

The communication procedure when APP MCU transmits the RSCIP packet to BLE MCU is following T4.

T1: APP MCU generates a start condition.
T2: APP MCU sends the slave address of BLE MCU (7 bits) and transfer direction Write (1 bit), detects the ACK of BLE

MCU.
T3: APP MCU continuously transmits from the first byte to the last byte of the RSCIP packet.
T4: APP MCU generates stop condition and terminates communication.

Figure 5-33 Transmit timing chart (APP MCU)

The transmission sequence including rBLE_Host and serial communications driver's function calls is shown.

[When beginning to transmit]: The serial communications driver is T1 according to the call of rBLE_Host of the

transmission function that begins the transmission operation of the RSCIP packet.

[When the transmission ends]: The serial communications driver notifies rBLE_Host the transmission completion by

APP MCU
(Master)

BLE MCU
(Slave) SCL

SDA
 SCLA0

SDAA0

REQ REQ

VDD

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 32 of 108
Jan 31, 2022

calling the transmission completion notification function when RSCIP packet transmission T1- T4 is completed.

Figure 5-34 Transmit Sequence (APP MCU)

(2) Receive Operation (APP MCU)

The communication procedure when APP MCU receives the RSCIP packet from BLE MCU is following R7.
When R1 - R7 is executed, the transmission from APP MCU is assumed to be a prohibition for the half duplex

transmission.

R1: APP MCU waits for the Low level of the REQ signal of the transmission request.
R2: APP MCU generates a start condition after detected falling edge of REQ signal.
R3: APP MCU sends the slave address of BLE MCU (7 bits) and transfer direction Read (1 bit), detects the ACK of BLE

MCU.
R4: APP MCU generates the clock, receives the RSCIP packet, responds the ACK.
R5: BLE MCU change the REQ signal to High level before the last byte transmit.
R6: APP MCU responds a NACK indicating the last byte when detected High of the REQ signal.
R7: APP MCU generates stop condition and terminates communication.

Figure 5-35 Receive timing chart (APP MCU)

When the transmission request of APP MCU collides with the transmission request of BLE MCU, BLE MCU postponed

transmission by the REQ signal to High level [R8], and receives the RSCIP packet of APP MCU. After completing the
RSCIP packet reception, BLE MCU outputs High level again by the REQ signal.

BLE MCU APP MCU

[T2] Address and direction (Write)

rBLE Host Serial

Tx Func

Tx Comp Func

[T1] Start Condition

[T3] Packet (1st byte to last byte)

[T4] Stop Condition

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 33 of 108
Jan 31, 2022

 Figure 5-36 Transmit requested collision timing chart (APP MCU and BLE MCU)

The reception sequence including rBLE_Host and serial communications driver's function calls is shown. When one
RSCIP packet is received, rBLE_Host calls the reception function two or more times because the RSCIP packet is
variable-length.

[When beginning to receive it]: RBLE_Host calls the reception function. As a result, the serial communications driver is

R1 that begins the reception operation of the RSCIP packet, and waits for the Low level of the SDIR signal.

[When the reception ends the packet on the way]: The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function during R4 when receive buffer full, and rBLE_Host
calls the reception function again. The serial communications driver restarts the reception.

[When the reception of the entire packet ends]: The serial communications driver notifies rBLE_Host the reception

completion by calling the reception completion notification function after ending R7, and rBLE_Host calls the reception
function again. The serial communications driver waits the next Low level of REQ signal.

Figure 5-37 Receive Sequence (APP MCU)

BLE MCU APP MCU

[R1] REQ signal (Low level)

[R2] Start Condition

rBLE Host Serial

Rx Func

Rx Comp Func

[R3] Address and direction (Read)

[R4] Packet (first byte)

Rx Func

[R4] Packet (last byte)

[R6] NACK

Rx Comp Func

Rx Func

[R5] REQ signal (High level)

[R7] Stop Condition

 5. BLE Software Configuration

R01UW0095EJ0119 Rev.1.19 Page 34 of 108
Jan 31, 2022

5.5 Customer-specific information
BLE software to use the first 512 bytes of Code Flash last block as customer-specific information area.

Customer-specific information to be referenced in the BLE software is shown in Table 5-8.
The BD address by writing to the area, it is possible to set different BD address for each BLE MCU. This BD address,

since lower priority than BD address on the Data Flash, BD address changes after customer-specific information writing is
possible.

Device name written in this area, it will be exposed to the peer device as the device name characteristic values of the
GAP. When the valid device name isn't written in this area, the default value of the GATT database is used as GAP device
name characteristic value.

Table 5-8 Customer-specific information to be referenced in the BLE software

Information address size Notes

BD address 0x3FC00

Note (1)

6 bytes Bluetooth Device Address

- Address for identifying the devices

Device Name 0x3FC06

Note (1)

66 bytes Bluetooth Device Name

- User-friendly name for identifying the devices

0x3FC06: Length of Device Name (1 to 65)

0x3FC07 to 0x3FC48: Device Name (string of UTF-8)

Note (1): This address is the value of Code Flash 256KB. Address of the last block depends on the size of Code Flash.

Customer-specific information and BLE software executable file, it is necessary to write separately Code Flash. For how
to write to the on-chip flash memory, see the Renesas Flash Programmer flash memory programming software User's
Manual (R20UT2906EJ0202).

Figure 5-38 Write area of BLE software and customer-specific information

5.6 Selection of own Bluetooth Device address
The BLE software, search for the three types of BD address setting area in the following order, to determine its own BD

address. When the BD address not 0xFF values are set even one, to determine a valid BD address.
1. Data Flash area (refer to 7.20.4.1)
2. Customer-specific information on Code Flash area (refer to 5.5)
3. CFG_TEST_BDADDR defined values of config.h

Selection of the BD address is performed BLE software startup.When writing the BD address on the Data Flash, it is

necessary to restart the BLE MCU.

0x0000

BLE software
area

0x3FE00
0x40000

CodeFlash

Customer-specific
information Files

BLE software
Executable Files

write

 write

Customer-specific

information 0x3FC00

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 35 of 108
Jan 31, 2022

6. Creating Executable Files
This section describes how to create the executable files (hex files) of the BLE software programs that run on the

RL78/G1D.

6.1 Changing the Configuration Parameters
The items that can be configured by the user when creating an executable file are listed in Table 6-1, and the

configuration method is described from 6.1.2.

Table 6-1 Changing the Configuration Parameters
User-Configurable Items Specifiable Value

Maximum number of simultaneous connections 1 to 8

Heap area size The size to be used by the user application can
be added

Operating frequency setting Main System Clock
In case of high-speed on-chip oscillator :
4MHz, 8MHz, 16 MHz, 32 MHz

In case of X1 oscillator (X1,X2):
 4MHz, 8MHz, 16MHz
In case of external clock(RF part or APP MCU)
 4MHz, 8MHz, 16MHz

Subsystem Clock
XT1 clock oscillator (XT1,XT2)
external clock (EXCLKS)

MCU part initialization setting clock output setting

RF part initialization setting

RF part user options
- external power amplifier setting
- on-chip DC-DC converter setting
- RF slow clock setting
- hi-speed clock output setting
- hi-speed clock setting
- Sleep Clock Accuracy setting

(20ppm to 500ppm)
Baud rate or Transfer clock of serial
communication

UART 4,800 bps to 250 kbps

CSI 4,800 bps to 250 kbps

IIC 100 kbps to 400 kbps

Peak current consumption notification*1 Enable/disable Enabled or disabled

Notification start time 1 ms before, 2 ms before, 4 ms before

Peak notification Processing following peak notification

Peak end notification Processing following peak end notification

HCI packet monitoring feature *2 Enable or disable

Whether to enable/disable of each profile *3 Enable or disable

GAP parameters Device Search parameters Search time
Scan interval
Scan window

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 36 of 108
Jan 31, 2022

User-Configurable Items Specifiable Value

Limited Discoverable mode
parameters

Discoverable time

Auto / Selective connection
parameters

Scan interval
Scan window
Connection interval
Slave latency
Supervision timeout

Privacy parameters Private address change interval

GAP characteristics Device Name UTF-8 String

Appearance Category value

Peripheral Preferred
Connection Parameters

Connection interval
Slave latency
Supervision timeout

GATT characteristics Service Changed Start of Affected Attribute Handle Range
End of Affected Attribute Handle Range

Note:
*1: For details about peak current consumption notification, see 7.20.1.
*2: For details about HCI packet monitoring feature, see 12.
*3: For details about how to create custom profile, see 7.4.2.

6.1.1 Maximum Number of Simultaneous Connections
When operating as Master device, the number of Slave devices that can be connected at the same time can be specified in

the range of 1-8.
Since allocating memory from the Heap area required for the connection, the amount of required RAM can be reduced by

limiting the number of simultaneous connections.
When operating as Slave device only, set 1 to the number of simultaneous connections.
The maximum number of simultaneous connections can be changed by the value of following macro.
Macro name: CFG_CON

Note: In all of the connection parameters, connections up to a maximum number of simultaneous connections are not

guaranteed. The maximum number of simultaneous connections might be limited by the Heap size.

6.1.2 Allocating the Heap Area
The heap area used by BLE software is allocated by the ke_mem_heap array. The current setting (BLE_HEAP_SIZE) is

the minimum memory capacity for BLE software to run. When the user program runs on the BLE MCU and ke_malloc is
used in the Embedded configuration, for example, memory for the amount required by the user program should be added.

The heap memory size can be changed in the following source file.
Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\arch\rl78
File name: config.h

6.1.3 Changing the Operating Frequency
In the BLE software, some processing depends on the operating frequency of the BLE MCU. Therefore, when changing

the operating frequency of the BLE MCU, define the corresponding macro listed below to inform the operating frequency

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 37 of 108
Jan 31, 2022

to the BLE software. Define one of the following macros as the compiler option in your project setting.
When select the high-speed on-chip oscillator, the available operating frequencies are 4MHz, 8MHz, 16MHz and

32MHz. When select the X1 oscillator or external clock, the available operation frequencies are 4MHz, 8MHz and 16MHz.

Table 6-2 Macro names to specify operating frequency
Macro name Corresponding operating frequency

CLK_HOCO_4MHZ 4 MHz using high-speed on-chip oscillator

CLK_HOCO_8MHZ 8 MHz using high-speed on-chip oscillator (default)

CLK_HOCO_16MHZ 16 MHz using high-speed on-chip oscillator

CLK_HOCO_32MHZ 32 MHz using high-speed on-chip oscillator

CLK_X1_4MHZ 4 MHz using X1 oscillator

CLK_X1_8MHZ 8 MHz using X1 oscillator

CLK_X1_16MHZ 16 MHz using X1 oscillator

CLK_EX_RF_4MHZ 4 MHz using external clock of RF part

CLK_EX_RF_8MHZ 8 MHz using external clock of RF part

CLK_EX_RF_16MHZ 16 MHz using external clock of RF part

CLK_EX_4MHZ 4 MHz using external clock of APP MCU

CLK_EX_8MHZ 8 MHz using external clock of APP MCU

CLK_EX_16MHZ 16 MHz using external clock of APP MCU

In addition, use the same operating frequency as that is specified by the user option byte.
To specify the operating frequency to the user option byte, set in the following way. Refer to the documentation of your

development environment. By default, CLK_HOCO_8MHZ is used.
- For CS+(CS+ for CA, CX and CS+ for CC common)

Click the right mouse button on "CA78K0R (build tool)" (If CS+ for CC is “CC-RL (build tool)”) in the "Project Tree",
then select "Properties", and change the "User Option Byte Value" in the "device" of the "Link Options" tab. Refer to
about the setting of user option byte that corresponds to the operating frequency.

Table 6-3 Setting of User Option Byte
Setting of user option byte Operating frequency Operating mode

000C0 000C1 000C2

(arbitrary) (arbitrary)

2B 4MHz LV (low voltage main) mode
AA 8MHz LS (low speed main) mode
E9 16MHz HS (high speed main) mode E8 32MHz

- For e2 studio

Click the right mouse button in the “Project Explorer”, and select the “Renesas Tool Settings”. Change the “User Option
Byte Value” in the “C/C++ Build” -> “Settings” and” Tool Settings” -> “Linker” -> “Device”.

When changing the subsystem clock of the BLE MCU and RF part, define the corresponding macro listed below to

inform the subsystem clock to the BLE software. Define one of the following macros as the compiler option in your project
setting.

Table 6-4 Macro names to specify subsystem clock

Macro name Corresponding subsystem clock

CLK_SUB_XT1 MCU part: 32.768kHz using XT1 clock oscillator input (XT1,XT2)

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 38 of 108
Jan 31, 2022

RF part: 16.384kHz using PCLBUZ0 input (default)

CLK_SUB_EX_OT MCU part: 32.768kHz using external clock input (EXCLKS)
RF part: 32.768kHz using RF slow clock for internal oscillation circuit

No defined MCU part: 15kHz using MCU Low-speed On-chip oscillator
RF part: 32.768kHz using RF slow clock for internal oscillation circuit

6.1.4 Setting MCU part initialization
MCU part of RL78/G1D is initialized by executing plf_init() function in arch_main.c. It is possible to change below

setting by plf_init() function. When not using RF slow clock for internal oscillation circuit, it is necessary to supply
clock(16.384kHz) from MCU part to RF part. Clock output setting is specified by argument "plf_flg" of plf_init() function.
Also, it is possible to use the macro shown in Table 6-5 for the clock output setting.

- clock output setting(whether to output 16.384kHz or 32.768kHz clock from PCLBUZ0 or not)

Note: For details about output clock (PCLBUZ0) of MCU part, see RL78/G1D User's Manual: Hardware.

Table 6-5 MCU part initialization setting macros

Macro name Value Setting Item Description

PLF_PCLBUZ_NONE 0x00 clock output
(select one)

Clock(16.384kHz/32.768kHz) is not output.
PLF_PCLBUZ_16KHZ 0x01 Clock(16.384kHz) is output. (default)
PLF_PCLBUZ_32KHZ 0x02 Clock(32.768kHz) is output.

Table 6-6 MCU part initialization function

Function name void plf_init(const uint8_t plf_flg);
Overview Initializes MCU part of RL78/G1D

Description
This function initializes hi-speed on-chip oscillator, port s, interrupt registers related to RF
part. In addition, if argument plf_flg is PLF_PCLBUZ_16KHZ or PLF_PCLBUZ_32KHz,
initializes MCU to output 16.384kHz or 32.768kHz clock from PCLBUZ0.

Parameters const uint8_t plf_flg
MCU part initialization setting
Refer to Table 6-5 "MCU part initialization setting macros".

Return value none

You can select one of the settings shown in Table 6-7 by specifying the compile option of the BLE Software as the

argument of plf_init function. If you use the other settings, specify one of the macros in Table 6-5 as the argument.
Table 6-7 RF slow clock output

Compile options Selected arguments
RF slow clock output
 CLK_SUB_XT1 (default) PLF_PCLBUZ_16KHZ

CLK_SUB_EX_OT PLF_PCLBUZ_NONE
None specified PLF_PCLBUZ_NONE

6.1.5 Setting RF part initialization
RF part of RL78/G1D is initialized by executing rf_init() and rwble_init() function of arch_main.c.
It is possible to change below settings by rf_init() function. Below settings are specified by argument "rf_flg" of rf_init()

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 39 of 108
Jan 31, 2022

function. Also, it is possible to use the macro shown in Table 6-8 for the settings.

- external power amplifier setting (whether to output control signal from TXSELH_RF,TXSELL_RF or not)
- on-chip DC-DC converter setting(whether to use on-chip DC-DC converter or not)
- RF slow clock setting(whether to use RF slow clock for internal oscillation circuit or not, when not using it, it is

necessary to be supplied clock from MCU to EXSLK_RF)
- hi-speed clock setting(selecting clock from Not output/16MHz/8MHz/4MHz)

It is possible to change below settings by rwble_init() function.

- Sleep Clock Accuracy setting (20ppm to 500ppm)

Note: For details about user options of RF part, see RL78/G1D User's Manual: Hardware.

Table 6-8 RF part initialization setting macros

Macro name Value Setting Item Description

RF_EXPA_OFF 0x0000 external power
amplifier
(select one)

External power amplifier is not used. (default)
RF_EXPA_ON 0x0001 External power amplifier is used.

RF_DCDC_ON 0x0000 DC-DC converter
(select one)

On-chip DC-DC converter is used. (default)
RF_DCDC_OFF 0x0002 On-chip DC-DC converter is not used.
RF_INT_32KHZ 0x0000 RF slow clock

(select one)
Internal oscillation circuit is used.

RF_EXT_32KHZ 0x0020 EXSLK_RF 32kHz is used.
RF_EXT_16KHZ 0x0040 EXSLK_RF 16kHz is used. (default)
RF_CLK_NONE 0x0000 high-speed clock

output
(select one)

Hi-speed clock from RF part is not output. (default)
RF_CLK_16MHZ 0x0300 16MHz
RF_CLK_8MHZ 0x0400 8MHz
RF_CLK_4MHZ 0x0500 4MHz

Table 6-9 RF part initialization function

Function name bool rf_init(const uint16_t rf_flg);
Overview Initializes RF part of RL78/G1D

Description
This function initializes RF part in accordance with the setting of argument rf_flg. By
executing this function, the operation mode of RF part is changed from POWEROFF to
STANDBY_RF.

Parameters const uint16_t rf_flg
RF part initialization setting
Refer to Table 6-8 "RF part initialization setting macros" and
set OR operation value of each setting value.

Return value
true initialization succeeds
false initialization fails

Table 6-10 Sleep Clock Accuracy setting macros

Macro name Value Description

SCA_500PPM 0 500ppm
SCA_250PPM 1 250ppm
SCA_150PPM 2 150ppm
SCA_100PPM 3 100ppm

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 40 of 108
Jan 31, 2022

SCA_75PPM 4 75ppm
SCA_50PPM 5 50ppm (default)
SCA_30PPM 6 30ppm
SCA_20PPM 7 20ppm

Table 6-11 Sleep Clock Accuracy setting function

Function name void rwble_init(const struct bd_addr *bd_addr, const uint8_t sca);
Overview Bluetooth Device Address and SCA setting

Description
This function sets the Bluetooth Device Address and Sleep Clock Accuracy (SCA) to BLE
software.

Parameters

const struct bd_addr
*bd_addr

Bluetooth Device Address setting
Refer to section 5.6 Selection of own Bluetooth Device address
and section 7.20.4.1 Bluetooth device address write.

const uint8_t sca
Sleep Clock Accuracy setting
Refer to Table 6-10 Sleep Clock Accuracy setting macros”.

Return value None

You can select one of the settings shown in Table 6-12 by specifying the compile option of the BLE Software as the
arguments of rf_init or rwble_init function. If you use the other settings, specify one of the macros in Table 6-8 or Table
6-10 as the arguments.

Table 6-12 Clock setting combination

Compile options Selected arguments
RF slow clock
 CLK_SUB_XT1 (default) RF_EXT_16KHZ / SCA_50PPM

CLK_SUB_EX_OT RF_INT_32KHZ / SCA_250PPM
None specified RF_INT_32KHZ / SCA_250PPM

High-speed clock output
 CLK_EX_RF_4MHZ RF_CLK_4MHZ

CLK_EX_RF_8MHZ RF_CLK_8MHZ
CLK_EX_RF_16MHZ RF_CLK_16MHZ
None specified (default) RF_CLK_NONE

6.1.6 Selecting the serial communication method
When using the Modem configuration, Communication hardware and connection method is selectable.
To select communication hardware, refer to 1 below. To select connection method, refer to 2 below.

1. Communication Hardware
・ To select the UART

Add the following files in the following folder to your development environment project.
If the files csi.h and csi.c and iic_slave.c and iic_slave.h have been added to your project, remove them.
By default, the following files have been added to your project.

Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\uart
Files: uart.c, uart.h

UART channel is defined by the following macro in uart.c.

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 41 of 108
Jan 31, 2022

 Table 6-13 UART channel setting macro

Macro name Value Description

UART_CHANNEL 0 UART0 (default)
1 UART1

・ To select the CSI

Add the following files in the following folder to your development environment project.
If the files uart.h and uart.c and iic_slave.c and iic_slave.h have been added to your project, remove them.

Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\csi
Files: csi.c, csi.h

CSI channel is defined by the following macro in csi.c.
 Table 6-14 CSI channel setting macro

Macro name Value Description

CSI_CHANNEL 0 CSI00 (default)
1 CSI20

・ To select the IIC

Add the following files in the following folder to your development environment project.
If the files uart.h and uart.c and csi.c and csi.h have been added to your project, remove them.

Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\iic
Files: iic_slave.c, iic_slave.h

IIC slave address is defined by the following macro in iic_slave.h.
 Table 6-15 IIC slave address setting macro

Macro name Range Default Value

IIC_SLAVE_ADDRESS 0x00 to 0x7F 0x50

2. Connection Method

By changing the constant value of the macro that is defined in the file serial.h, you can select the connection method.
If you choose UART above, you can select the 2-wire, 3-wire or 2-wire with branch connection method. If you
choose to CSI above, you can select the 4-wire and 5-wire connection method. If you choose to IIC above, you can
select the 3-wire connection method.
With reference to Table 6-16, change the value of macro corresponding to communication hardware and connection
method, which you want to use, from to (1). Also change the values of other macros to (0).

* By default, UART and 2-wire connection method is selected.

Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\serial
File: serial.h

Table 6-16 Connection method of serial communication

Hardware Connection Method Corresponding Macros

UART 2-wire SERIAL_U_2WIRE

3-wire SERIAL_U_3WIRE

2-wire with branch SERIAL_U_DIV_2WIRE

CSI 4-wire SERIAL_C_4WIRE

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 42 of 108
Jan 31, 2022

5-wire SERIAL_C_5WIRE

IIC 3-wire SERIAL_I_3WIRE

Figure 6-1 Sample Code for Selecting the serial communication method

3. Setting the use or non-use of the WAKEUP signal

With reference to Table 6-16, change the value of macro USE_WAKEUP_SIGNAL_PORT corresponding to
connection method, which you want to use.

Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\wakeup
File: wakeup.c

Table 6-17 Connection method

Serial Connection Method USE_WAKEUP_SIGNAL_PORT
UART 2-wire 0

3-wire 1
2-wire with branch 1

CSI 4-wire 0
5-wire 1

IIC 3-wire 0

Figure 6-2 Sample code for Setting the use or non-use of the WAKEUP signal

6.1.7 Setting the UART baud rate
The UART0 baud rate can be specified by using the following source file:

Folder : \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\uart

22 : #ifndef CONFIG_EMBEDDED

23 : #define USE_WAKEUP_SIGNAL_PORT (0) /* Modem Setting */

24 : #else

25 : #define USE_WAKEUP_SIGNAL_PORT (0) /* Embedded Setting */

26 : #endif

39 : /*

40 : * DEFINES

41 : ***

42 : */

43 : #define SERIAL_U_2WIRE (1)

44 : #define SERIAL_U_3WIRE (0)

45 : #define SERIAL_U_DIV_2WIRE (0)

46 : #define SERIAL_C_4WIRE (0)

47 : #define SERIAL_C_5WIRE (0)

48 : #define SERIAL_I_3WIRE (0)

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 43 of 108
Jan 31, 2022

File: uart.c
Function: void serial_init(void)

To change the baud rate, change the values of the registers below that are specified by the UART0 initialization function

(serial_init). The MCU operating clock divided by the factor specified in serial clock selection register 0 (SPS0) is used as
the UART0 operating clock. The baud rate can be changed by setting the values calculated based on the UART0 operating
clock and the desired baud rate to the serial data registers (SDR00 and SDR01).

For details about the values to set to each register, see 6.1.7.1 Selecting the Serial Clock and 6.1.7.2 Calculating the
baud rate.

Table 6-18 Baud Rate Setting Register

Register Symbol Register Name Description
SPS0 Serial clock selection register 0 UART0 operating clock setting
SDR00 Serial data register 00 UART0 transmission baud rate setting
SDR01 Serial data register 01 UART0 reception baud rate setting

Note: For details about the baud rate settings, see RL78/G1D User's Manual: Hardware.

6.1.7.1 Selecting the Serial Clock
The UART0 operating clock (fmck) can be specified by using the PRS00[3 : 0] bits of serial clock selection register 0

(SPS0).

Table 6-19 Values Set to Serial Clock Selection Register
PRS
003

PRS
002

PRS
001

PRS
000

 Selection of Operating Clock (CK00)

fclk =
8MHz

fclk =
12MHz

fclk =
16MHz

fclk =
24MHz

fclk =
32MHz

0 0 0 0 fclk 8MHz 12MHz 16MHz 24MHz 32MHz

0 0 0 1 fclk/2 4MHz 6MHz 8MHz 12MHz 16MHz

0 0 1 0 fclk/22 2MHz 3MHz 4MHz 6MHz 8MHz

0 0 1 1 fclk/23 1MHz 1.5MHz 2MHz 3MHz 4MHz

0 1 0 0 fclk/24 500kHz 750kHz 1MHz 1.5MHz 2MHz

0 1 0 1 fclk/25 250kHz 375kHz 500kHz 750kHz 1MHz

0 1 1 0 fclk/26 125kHz 188kHz 250kHz 375kHz 500kHz

0 1 1 1 fclk/27 62.5kHz 93.8kHz 125kHz 188kHz 250kHz

1 0 0 0 fclk/28 31.25kHz 46.9kHz 62.5kHz 93.8kHz 125kHz

1 0 0 1 fclk/29 15.62kHz 23.4kHz 31.3kHz 46.9kHz 62.5kHz

1 0 1 0 fclk/210 7.81kHz 11.7kHz 15.6kHz 23.4kHz 31.3kHz

1 0 1 1 fclk/211 3.91kHz 5.86kHz 7.81kHz 11.7kHz 15.6kHz

1 1 0 0 fclk/212 1.95kHz 2.93kHz 3.91kHz 5.86kHz 7.81kHz
1 1 0 1 fclk/213 977Hz 1.46kHz 1.95kHz 2.93kHz 3.91kHz
1 1 1 0 fclk/214 488Hz 732Hz 977Hz 1.46kHz 1.95kHz
1 1 1 1 fclk/215 244Hz 366Hz 488Hz 732Hz 977Hz

Other than above Setting prohibited

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 44 of 108
Jan 31, 2022

6.1.7.2 Calculating the baud rate
The value to be set to bits 15 to 9 of the serial data registers (SDR00 and SDR01) can be obtained by using the formula

below.

• SDRmn[15 : 9] = (UART0 operating clock (fmck) ÷ 2 ÷ baud rate) − 1

To set 4800bps, when fclk = 8MHz and SPS0 = 0x0003, SDR01 and SDR00 is 0xCE00.
To set 250kbps, when fclk = 8MHz and SPS0 = 0x0002, SDR01 and SDR00 is 0x0600.

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 45 of 108
Jan 31, 2022

6.1.7.3 Sample code for changing the baud rate
The source code includes a sample code that changes the baud rate to 250 kbps. The default baud rate in Modem

configuration is 4800 bps. This baud rate can be changed to 250 kbps by setting the constant for the #if statement in the
387th line in the source code to 0.

Figure 6-3 Sample Code for Changing the Baud Rate

If and only if you select the 2-wire connection method, you need to set the STOP-enable-flag that switches

enable/disable of the Sleep function. The Sleep function realizes the low current consumption of BLE MCU.
If you want to set the baud rate to 4800bps, set the operand of "# if"-statement to (0). As the result, the STOP enable flag

is set to true. If you want to set the baud rate to a value larger than 4800bps, set the operand of "# if"-statement to (0). As the
result, the STOP enable flag is set to false.

387: #if (1)

388: #ifndef CONFIG_EMBEDDED

389: /* MCK = fclk/n = 1MHz */

390: write_sfr(SPS0L, (uint8_t)((read_sfr(SPS0L) | UART_VAL_SPS_1MHZ)));

391:

392: /* baudrate 4800bps(when MCK = 1MHz) */

393: write_sfrp(UART_TXD_SDR, (uint16_t)0xCE00U);

394: write_sfrp(UART_RXD_SDR, (uint16_t)0xCE00U);

395: #else /*CONFIG_EMBEDDED*/

396: /* MCK = fclk/n = 2MHz */

397: write_sfr(SPS0L, (uint8_t)((read_sfr(SPS0L) | UART_VAL_SPS_2MHZ)));

398:

399: /* baudrate 250000bps(when MCK = 2MHz) */

400: write_sfrp(UART_TXD_SDR, (uint16_t)0x0600U);

401: write_sfrp(UART_RXD_SDR, (uint16_t)0x0600U);

402: #endif /*CONFIG_EMBEDDED*/

403: #else

404: /* MCK = fclk/n = 2MHz */

405: write_sfr(SPS0L, (uint8_t)((read_sfr(SPS0L) | UART_VAL_SPS_2MHZ)));

406: /* baudrate 250000bps(when MCK = 2MHz) */

407: write_sfrp(UART_TXD_SDR, (uint16_t)0x0600U);

408: write_sfrp(UART_RXD_SDR, (uint16_t)0x0600U);

409: #endif

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 46 of 108
Jan 31, 2022

Figure 6-4 Sample Code for Changing the Baud Rate

414: /* set stop permission */

415: #if SERIAL_U_2WIRE

416: #if (1)

417: #ifndef CONFIG_EMBEDDED

418: /* if baudrate is 4800bps, set enable */

419: stop_flg = true;

420: #else /*CONFIG_EMBEDDED*/

421: /* if baudrate is over than 4800bps, set disable */

422: stop_flg = false;

423: #endif /*CONFIG_EMBEDDED*/

424: #else

425: /* if baudrate is over than 4800bps, set disable */

426: stop_flg = false;

427: #endif

428: #else

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 47 of 108
Jan 31, 2022

6.1.8 Setting the CSI baud rate
In the modem configuration, if you select the CSI as the communication hardware between APP MCU and BLE MCU,

the baud rate is determined by the APP MCU. Therefore, you need to do nothing.

6.1.9 Setting the IIC transfer clock
In the modem configuration, if you select the IIC as the communication hardware between APP MCU and BLE MCU,

the transfer clock is determined by the APP MCU. Therefore, you need to do nothing.

6.1.10 Wait for the time Sub Clock is stabled
The user need to change the waiting time for Sub Clock is stabled for matching the system. Change the number of times

for execution of clk_waitfunc(). Initial setting is 1 second by 1000 times execution.
Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\driver\plf
File: plf.c
Function: plf_init()

6.1.11 Setting the Profile Service
The user configurable parameters for the profiles and services, you can change them by using variables and macros in the

following source file.
Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\arch\rl78
File: prf_config.c, prf_config.h
Folder: \ Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\arch\rl78
File: prf_sel.h

Note: GATT database structure of existing profiles that are defined in the above file shall not be changed. Therefore it isn't

possible to changes order or add/delete elements. If you do not want to expose the optional characteristics, please use
the RBLE_GATT_PERM_HIDE permission.

6.1.11.1 Profile Enable / Disable Setting
Due to the deprecation and withdrawal plan of the profile version by the Bluetooth SIG, product registration using this

profile is no longer possible, so this section has been obsoleted.
For product registration, refer to "Bluetooth LE microcomputer/module Bluetooth qualification acquisition application

note" (R01AN3177).

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 48 of 108
Jan 31, 2022

6.1.11.2 GAP Parameters Setting
Parameters related to the GAP modes/procedures can be set by the value of the defined macros in Table 6-20. These

macros are defined in source file.

Table 6-20 Macro name for GAP parameters

Macro name Description Note
GAP_DEV_SEARCH_TIME Device Search time Parameters for device search

(Limited / General discovery
procedure).

GAP_DEV_SEARCH_SCAN_INTV Scan interval
GAP_DEV_SEARCH_SCAN_WINDOW Scan window

GAP_LIM_ADV_TIMEOUT Discoverable time
Parameters for limited
discoverable mode.

GAP_SCAN_FAST_INTV Scan interval

Parameters for Auto / Selective
connection procedure.

GAP_SCAN_FAST_WINDOW Scan window
GAP_INIT_CONN_MIN_INTV Max connection interval
GAP_INIT_CONN_MAX_INTV Min connection interval
GAP_CONN_SLAVE_LATENCY Slave latency
GAP_DEV_SUPERVISION_TIMEOUT Supervision timeout
GAP_RESOLVABLE_PRIVATE_ADDR_IN
TV

Private address change
interval

Set the favorite value
according to the product use.

6.1.11.3 GAP Characteristic Setting
The following GAP characteristic value can be set.

• Device Name

• Appearance

• Peripheral Preferred Connection Parameters

It is possible to set the initial value of the Device Name characteristic value, which indicates a user-friendly name to

identify a device, can be set by the macro definitions shown in Table 6-21.
Table 6-21 Device Name setting macro

Macro name Description Note

GAP_DEV_NAME
Initial value of the Device
Name characteristic value

Set the device name as an UTF-8
string.

Note: Device name that was written in the Code Flash last block (see 5.5) is priority than this definition value. Also, it is
possible to change the device name using API after a BLE software start-up.

It is possible to set the Appearance characteristic value, which indicates outward appearance of device, can be set by the

variables shown in Table 6-22.

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 49 of 108
Jan 31, 2022

Table 6-22 Appearance setting variable

Variable name Description Note

static const uint16_t iconval
Externals setting variable of
device

Set it according to the product,
referring to the following.
http://developer.bluetooth.org/gatt/cha
racteristics/Pages/CharacteristicViewe
r.aspx?u=org.bluetooth.characteristic.
gap.appearance.xml

For more information about the GAP Appearance characteristic, refer to Bluetooth Core Specification v4.2 [Vol. 3], the

Part C Section 12.2.

The Peripheral Preferred Connection Parameters characteristic value, which is desired by the peripheral device

connection parameters, can be set by the macro shown in Table 6-23.
These macros are defined in source file.

Table 6-23 Peripheral Preferred Connection Parameters setting macro

Macro name Description Note
GAP_PPCP_CONN_INTV_MAX Maximum connection interval

Set the favorite value
according to the product use.

GAP_PPCP_CONN_INTV_MIN Minimum connection interval
GAP_PPCP_SLAVE_LATENCY Slave latency
GAP_PPCP_STO_MULT Supervision timeout

For more information about the GAP Peripheral Preferred Connection Parameters characteristic, please refer to

Bluetooth Core Specification v4.2 [Vol. 3], the Part C Section 12.3.

6.1.11.4 GATT Characteristic Setting
It is possible to set handle range of the Service Changed characteristic value, which indicates that services have changed,

can be set by the macro definitions shown in Table 6-24.
Table 6-24 Service Changed setting macro

Macro name Description Note

GATT_SERVICE_CHANGED_START_HDL
Start of Affected Attribute
Handle Range By default, Service Changed

characteristic does not expose.
GATT_SERVICE_CHANGED_END_HDL

End of Affected Attribute
Handle Range

Note: If there is a possibility to change the GATT database structure, please expose the Service Changed characteristic. And,
if the client has enabled indication of this characteristic, please indicate using the rBLE API when you have changed the
GATT database structure.

For more information about the GATT Service Changed characteristic, refer to Bluetooth Core Specification v4.2 [Vol.

3], the Part G Section 7.1.

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 50 of 108
Jan 31, 2022

6.1.11.5 Blood Pressure Service Characteristic Setting
Due to the deprecation and withdrawal plan of the profile version by the Bluetooth SIG, product registration using this

profile is no longer possible, so this section has been obsoleted.
For product registration, refer to "Bluetooth LE microcomputer/module Bluetooth qualification acquisition application

note" (R01AN3177).

6.1.11.6 HID Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.7 Battery Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.8 Specifying Device Information service product information
Refer to "6.1.11.5".

6.1.11.9 Heart Rate Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.10 Cycling Speed and Cadence Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.11 Cycling Power Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.12 Glucose Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.13 Current Time Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.14 Running Speed and Cadence Service Characteristic Setting
Refer to "6.1.11.5".

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 51 of 108
Jan 31, 2022

6.1.11.15 Alert Notification Service Characteristic Setting
Refer to "6.1.11.5".

6.1.11.16 Location and Navigation Service Characteristic Setting
Refer to "6.1.11.5".

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 52 of 108
Jan 31, 2022

6.2 Building a Project
Follow the procedure below to build a project for creating an executable file.

1. See 6.1 for how to change the parameters to accord with your environment.
2. To open a file in each environment, double-click in the following folder a project file or workspace file which is

shown in Table 6-25 and matches the development environment and BLE software configuration in use.
\Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\tools\project\

3. For CS+, click the Build menu and then select Build Project. For e2 studio, click the Project menu and then select
Build Project.

4. When build is finished, an executable file is output to the executable file creation folder shown in Table 6-25.

Table 6-25 Correspondence between Development Environment and Build Environment

Development
Environment

Configu-
ration

Project File or Workspace File
Executable File
Creation Folder

CS+ for CA, CX
(CA78K0R)

Modem CubeSuite\BLE_Modem\BLE_Modem.mtpj rBLE_emb\DefaultBuild
Embedded CubeSuite\BLE_Embedded\BLE_Embedded.mtpj BLE_Emb\DefaultBuild

CS+ for CC
(CC-RL)

Modem CS_CCRL\BLE_Modem\BLE_Modem.mtpj rBLE_Mdm\DefaultBuild
Embedded CS_CCRL\BLE_Embedded\BLE_Embedded.mtpj rBLE_Emb\DefaultBuild

e2 studio
(CC-RL)

Modem e2studio\BLE_Modem\rBLE_Mdm\ (*1) rBLE_Mdm\DefaultBuild
Embedded e2studio\BLE_Embedded\rBLE_Emb\ (*1) rBLE_Emb\DefaultBuild

 *1 : e2 studio project need to import for workspace in e2 studio.

 6. Creating Executable Files

R01UW0095EJ0119 Rev.1.19 Page 53 of 108
Jan 31, 2022

6.3 Additional Note
BLE software provides multiple libraries, so it is possible that the BLE software does not work properly due to the wrong

combination of library even if the build succeeds. To avoid this situation, the BLE software has a function to check the
combination of the library and to notify by the completion status of the GAP reset show in in Table 6-26 Library
Management Status.

Also, for example, if the profile of the prototype has been added to the BLE software, there is a case to provide a version
of the library for evaluation. Also in this case, it is can be determined by the status of the in Table 6-26 Library Management
Status at the completion of GAP reset.

Note that if you have the evaluation version, do not apply to your product and please wait for the official release.

Table 6-26 Library Management Status

Status Value Description
RBLE_VERSION_FAIL 0xF7 Library combination error
RBLE_TEST_VERSION 0xF8 BLE software is test version

In addition, BLE software requires the stack size shown in Table 6-27.

Table 6-27 BLE software stack size

Required stack size 824bytes

The stack size of the caller of API and callback function of the application which BLE software calls are not contained in

the above stack size. Please ensure enough stack size, when developing application.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 54 of 108
Jan 31, 2022

7. Description of Features
This section describes the features of the BLE software.

7.1 Controller Stack
The controller stack includes the Host Controller Interface (HCI) and Link Layer (LL), and is used to control the RF/BB

according to requests from the Host stack, and perform packet processing such as advertising and scanning.

7.1.1 Advertising
Advertising is used to establish a connection or periodically provide user data to the scanning device. During advertising,

packets are transmitted on the advertising channel and the response from the scanning device is received and responded to.
A device in this state is called an Advertiser.

When an Advertiser receives a connection request from another device and connects to that device, it operates as a slave
device.

There are four types of advertising, and the relationships between the allowable responses for each advertising type are
indicated in the following table.

Table 7-1 Advertising Event Types

Advertising Event Type Allowable Response
SCAN_REQ CONNECT_REQ

Connectable Undirected Event ADV_IND YES YES
Connectable Directed Event ADV_DIRECT_IND NO YES
Non-connectable Undirected Event ADV_NONCONN_IND NO NO
Scannable Undirected Event ADV_SCAN_IND YES NO

SCAN_REQ: Requests additional information.
CONNECT_REQ: Starts connection establishment.

Advertising uses any channel out of the advertising channels (channels 37, 38, or 39). The period during which

advertising data is transmitted is called an advertising event, and the interval between advertising events is calculated as
follows as T_advEvent.

T_advEvent = advInterval + advDelay

• advInterval : An integral multiple of 0.625 ms in the range of 20 ms to 10.24 s
(In the case of a scannable undirected event type or non-connectable undirected event type, this interval is not
less than 100 ms. In the case of a connectable undirected event type, this interval is 20 ms or greater.)

• advDelay : Pseudorandom value in the range of 0 ms to 10 ms

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 55 of 108
Jan 31, 2022

Figure 7-1 Advertising Event (ADV_IND)

For details about Advertising, see Bluetooth Core Specification v4.2 [Vol. 6], Part B Section 4.4.2.

7.1.2 Scanning
Scanning is used to receive data broadcasts from an Advertiser. A device that waits for packets from an Advertiser on an

advertising channel is called a scanner. There two types of scanning : passive scanning and active scanning.

7.1.2.1 Passive Scanning
During passive scanning, the scanner only receives packets and does not transmit any packets.

7.1.2.2 Active Scanning
During active scanning, the scanner waits for advertising packets from the Advertiser and responds according to the

advertising event type. Upon receiving an ADV_IND packet or ADV_SCAN_IND packet, the scanner can obtain
additional information by sending a SCAN_REQ packet to the Advertiser.

An example of the operation of a scanner that receives an ADV_IND packet on channel 38 during active scanning is
shown below.

Figure 7-2 Active Scanning (ADV_IND)

For details about Scanning, see Bluetooth Core Specification v4.2 [Vol. 6], Part B Section 4.4.3.

TX
Advertiser

TX TX

≤10 ms ≤10 ms

TX TX TX

≤10 ms ≤10 ms

T_advEvent

advInterval advDelay

ADV_IND
37ch

ADV_IND
38ch

ADV_IND
39ch

ADV_IND
37ch

ADV_IND
38ch

ADV_IND
39ch

Event starts Event closes

TX Advertiser TX

≤10 ms

TX

ADV_IND
37ch

ADV_IND
38ch

ADV_IND
39ch

Scanner

RX TX

TX

SCAN_RSP

SCAN_REQ

RX

T_IFS

SCAN_REQ
SCAN_RSP

T_IFS

≤10 ms

RX

ADV_IND

T_IFS

T_IFS

* T_IFS = 150 us

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 56 of 108
Jan 31, 2022

7.1.3 Initiating
Initiating is used to establish a connection with another device. A device that waits for an advertising packet on an

advertising channel in order to connect to another device is called an Initiator. An Initiator that receives an ADV_IND
packet or ADV_DIRECT_IND packet operates as a master upon the end of initiation triggered by sending a
CONNECT_REQ packet.

The first packet following transmission of a CONNECT_REQ packet is transmitted within transmitWindowSize that
starts after 1.25ms + transmitWindowOffset.

• transmitWindowOffset : A multiple of 1.25 ms in the range of 0 ms to connInterval

• transmitWindowSize : A multiple of 1.25 ms in the range of 1.25 ms to 10 ms

While connected, the master and slave send and receive packets to each other alternately using connInterval.

• connInterval : A multiple of 1.25 ms in the range of 7.5 ms to 4.0 s

An example of the operation from when the initiator receives an ADV_IND packet from the Advertiser until it becomes

the master device is shown below.

Figure 7-3 Connection Setup

For details about Initiating, see Bluetooth Core Specification v4.2 [Vol. 6], Part B Section 4.4.4.

7.1.4 White List
The White List is used to filter devices from which advertising packets, scan packets, and connection requests are

allowed to be received. This list includes device addresses and address types (public address or random address).
The White List is managed in the Link Layer block of the Controller stack. In the Reset state, the White List is empty and

is set by the application.
For details about the White List, see Bluetooth Core Specification v4.2 [Vol. 6], Part B Section 4.3.1.

Advertiser
TX

ADV_IND
38ch

Initiator
RX

RX

TX

CONNECT_REQ
ADV_IND

connInterval

T_IFS

CONNECT_REQ

1.25ms
transmitWindowOffset

transmitWindowSize

TX RX

T_IFS

RX TX

T_IFS

RX TX

TX RX

T_IFS

Slave device

Master device
* T_IFS = 150 us

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 57 of 108
Jan 31, 2022

7.1.4.1 Advertising filter policy
The advertising filter policy determines how scan and connection requests are processed. When connectable directed

advertising is used, the advertising filter policy is ignored. At all other times, one of the following advertising filter policies
set by the application is used.

• The White List is not used and scan and connection requests from all devices are processed (default state).

• Only scan and connection requests from devices registered to the White List are processed.

• Scan requests from all devices are processed, but only connection requests from devices on the White List are
processed.

• Connection requests from all devices are processed, but only scan requests from devices on the White List are
processed.

For details about the Advertising filter policy, see Bluetooth Core Specification v4.2 [Vol. 6], Part B Section 4.3.2.

7.1.4.2 Scanner filter policy
The scanner filter policy determines how advertising packets are processed. One of the following scanner filter policies

set by the Host stack is used.

• The White List is not used and advertising packets from all devices are processed (default state).

• Only advertising packets from devices registered to the White List are processed.

For details about the Scanner filter policy, see Bluetooth Core Specification v4.2 [Vol. 6], Part B Section 4.3.3.

7.1.4.3 Initiator filter policy
The initiator filter policy determines how advertising packets are processed. One of the following initiator filter policies

set by the application is used.

• Connectable advertising packets from all devices registered to the White List are processed.

• The White List is ignored and the connectable advertising packets from a single device that is specified are processed.

For details about the Initiator filter policy, see Bluetooth Core Specification v4.2 [Vol. 6], Part B Section 4.3.4.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 58 of 108
Jan 31, 2022

7.2 Generic Access Profile
The Generic Access Profile (GAP) executes access procedures according to the link management and security

requirements for processes such as device discovery and peer device connection and disconnection.

7.2.1 GAP roles
The BLE software supports all four of the roles prescribed in the GAP listed in Table 7-2.

Table 7-2 GAP Roles

GAP Roles Description
Broadcaster Transmits advertising events.

In the Link Layer, it is called the Advertiser.
Observer Receives advertising events.

In the Link Layer, it is called the Scanner.
Central Establishes a physical link.

In the Link Layer, it is called the Master.
Peripheral Accepts the establishment of a physical link.

In the Link Layer, it is called the Slave.
For details about the GAP roles, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 9.

7.2.2 GAP modes and procedures
This section describes the GAP modes and the GAP procedures supported by the BLE software.
Advertising event types are used according to each mode and procedure, as shown in Table 7-3.

Table 7-3 Advertising Event Type

Advertising Event Type Description
Connectable Undirected Can respond to CONNECT_REQ or SCAN_REQ

(connectable).
Connectable Directed Only connectable with specified device.
Scannable Undirected Can respond to SCAN_REQ (non-connectable).
Non-connectable Undirected Only information sent from Advertiser (non-connectable)

7.2.2.1 Broadcast mode and Observation procedure
The broadcast mode and observation procedure allow two devices to communicate with each other without establishing

connection between them.
A device in the broadcast mode is called the Broadcaster. It broadcasts data during advertising events. All data sent by a

device in the broadcast mode is considered unreliable since there is no acknowledgment from any device that may have
received the data. The advertising event types that can be transmitted are non-connectable undirected events and scannable
undirected events. The AD type flag of the advertising data must be set to 0 both for the LE General Discoverable Mode and
LE Limited Discoverable Mode.

The device executing the observation procedure is called the Observer. It receives advertising events.
The rBLE API provides APIs for executing the broadcast mode and observation procedure. The advertising data in the

broadcast mode can be set freely by the user.
For details about the Broadcast mode and Observation procedure, see Bluetooth Core Specification v4.2 [Vol. 3], Part C

Section 9.1.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 59 of 108
Jan 31, 2022

7.2.2.2 Discovery mode and procedure
Peripheral device discovery is possible in the discovery modes and by using the discovery procedures. The discovery

modes are modes that allow discovery from remote devices by transmitting advertising data. The discovery procedures are
procedures for receiving advertising data from scanning and discovering peripheral devices. They are executed by a central
device.

Table 7-4 lists the relationships between the discovery modes, transmittable advertising event types, and AD type flag
setting values of the advertising data.

Table 7-4 Discovery Modes

Discovery Mode
Transmittable

Advertising Event
Types

Flags AD Type

Description
LE General

Discoverable
Mode

LE Limited
Discoverable

Mode
Non-Discoverable • Non-connectable

Undirected
• Scannable

Undirected
• Do not transmit

0 0

Not discoverable by any
device performing either
the general discovery
procedure or the limited
discovery procedure.

Limited Discoverable • Non-connectable
Undirected

• Scannable
Undirected

• Connectable
Undirected

0 1

Discoverable for a limited
period of time by other
devices performing the
limited or general device
discovery procedure.

General Discoverable • Non-connectable
Undirected

• Scannable
Undirected

• Connectable
Undirected

1 0

Discoverable by devices
performing the general
discovery procedure.

The discovery procedures are outlined in Table 7-5 below.

Table 7-5 Discovery Procedure

Discovery Procedure Description
Limited Discovery Only devices in limited discoverable mode can be discovered.
General Discovery Devices in general or limited discoverable mode can be

discovered.
Name Discovery The device names of connectable remote devices are

retrieved by using GATT.

The rBLE API provides APIs for executing discovery mode, peripheral device discovery, and device name retrieval. It is

also possible to discover only existing devices by using peripheral device discovery. Any advertising data can be set by the
user in discovery mode. The AD type flag of the advertising data must be set according to the mode to be executed.

For details about each mode and procedures, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 9.2.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 60 of 108
Jan 31, 2022

7.2.2.3 Connection mode and procedure
The connection modes and procedures can be used to establish connections with other devices. The connection modes

are modes that allow connection from remote devices by sending advertising data. These modes are executed by peripheral
devices. The connection procedures are procedures for establishing a connection with a peripheral device. They are
executed by a central device. (The terminate connection procedure, which cuts off a link can be executed from both a
central and peripheral devices.)

Table 7-6 shows the relationships among the connection modes and transmittable advertising event types that can be
sent.

Table 7-6 Connection Modes

Connection Mode
Transmittable Advertising

Event Types
Description

Non-connectable • Non-connectable
Undirected

• Scannable Undirected

Connection not allowed.

Directed connectable • Connectable Directed Connection is possible only from known
devices that execute the auto
connection establishment procedure or
general connection establishment
procedure.

Undirected connectable • Connectable Undirected Connection is possible from devices that
execute the auto connection
establishment procedure or general
connection establishment procedure.

The connection procedures are outlined in Table 7-7 below.

Table 7-7 Connection Procedure

Connection Procedure Description
Auto connection establishment Automatically establishes a connection with devices in the

directed connectable mode or undirected connectable mode,
using the White List of the Initiator.

General connection establishment Establishes a connection with known devices in the directed
connectable mode or undirected connectable mode.

Selective connection establishment Establishes a connection with devices on the White List using
the connection configuration parameters selected by the host.

Direct connection establishment Establishes a connection with one known device using the
connection configuration parameters selected by the host.

Connection parameter update Changes the connection parameters of an established
connection.

Terminate connection Terminates the connection with a peer device.

The rBLE API provides APIs for executing the connection modes and connection procedures. In a connection mode,

advertising data can be set freely by the user. A connection mode can be executed in combination with a discovery mode.
For details about each mode and procedures, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 9.3.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 61 of 108
Jan 31, 2022

7.2.2.4 Bonding mode and procedure
Bonding allows two connected devices to exchange and store security and identity information to create a trusting

relationship. Security and identity information is called bonding information. When devices store bonding information,
they are said to have bonded.

There are two bonding modes, as shown in Table 7-8 below.

Table 7-8 Bonding Modes

Bonding Mode Description
Non-Bondable Bonding with peer devices is not allowed.
Bondable Bonding with peer devices is allowed in the bondable mode.

The bonding procedure is executed when a device that is not bonded accesses a service that requires bonding. Pairing is

used for bonding.
The rBLE API provides APIs for executing bonding and responding to bonding requests.
For details about bonding, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 9.4.

7.2.3 Security
This section describes BLE security as defined in the GAP.

7.2.3.1 Security mode
The security requirements of a device, a service, or a service request are expressed in terms of a security mode and

security level. Each service or service request may have its own security requirement. The device may also have a security
requirement. Pairing is required in order to satisfy the various security requirements. There are two types of pairing,
authenticated pairing in which the paired devices are protected from MITM (man-in-the-middle) attacks, and
unauthenticated pairing in which the paired devices are not protected from MITM. The security mode level is determined
by device pairing, encryption, and the use or non-use of data signing. Table 7-9 lists the security modes and security levels
defined in the BLE standard.

Table 7-9 Security Modes and Levels

Security Mode Security Level Description
LE Security Mode 1 1 No security (no authentication and no encryption)

2 Unauthenticated pairing with encryption
3 Authenticated pairing with encryption
4 Authenticated LE Secure Connections pairing with

encryption
LE Security Mode 2 1 Unauthenticated pairing with data signing

2 Authenticated pairing with data signing

Note: BLE software is not supported LE security mode 1 level 4 (LE Secure Connections).

LE security mode 1 level 2 satisfies the security requirements for LE security mode 1 level 1.
LE security mode 1 level 3 satisfies the security requirements for LE security mode 1 level 2. LE security mode 1 level 3

satisfies the security requirements for LE security mode 2.
If LE security mode 1 and LE security mode 2 level 2 are required for a given physical link, then LE security mode 1

level 3 is used.
If LE security mode 1 level 3 and LE security mode 2 are required for a given physical link, then LE security mode 1

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 62 of 108
Jan 31, 2022

level 3 is used.
If LE security mode 1 level 2 and LE security mode 2 level 1 are required for a given physical link, then LE security

mode 1 level 2 is used.

The rBLE API provides an API for setting the security mode. The security mode can be set for each profile.
For details about the security modes, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 10.2.

7.2.3.2 Authentication procedure
The authentication procedure describes how the required security is established when a device initiates a service request

to a remote device and when a device receives a service request from a remote device. The authentication procedure covers
both LE security mode 1 and LE security mode 2. The authentication procedure is only initiated after a connection has been
established.

If security is not required, or the security requirements are already satisfied, service requests will continue. If security is
required, pairing will be necessary.

The rBLE API allows the execution of pairing by executing bonding.
For details about the Authentication procedure, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 10.3.

7.2.3.3 Data Signing
Data signing is used for transferring authenticated data between two devices in an unencrypted connection. The data

signing method is used by services that require fast connection setup and fast data transfer.
If a service request specifies LE security mode 2, the connection data signing procedure is used.
In the BLE software, data signing is used when sending the Signed Write command of ATT (Bluetooth Core

Specification v4.2[Vol. 3], Part F Section 3.4.5.4). The CSRK key for data signing must be set in advance to the rBLE API.
The validity of the received signed data is verified internally by the BLE software. The CSRK of the remote device that is
required at that time is requested from the application by the rBLE API. Management of the CSRK distributed from remote
devices and generation of the CSRK of the local device must be performed by the application.

For details about the data signature, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 10.4.

7.2.3.4 Privacy features
The privacy feature is possible to prevent to be tracked and identified from an attacker by using random address.
The rBLE API provides an API that enables the privacy feature, and random addresses are generated according to the

role by setting IRK in advance. The IRK must be generated and managed by the application.
For details about the privacy features, see Bluetooth Core Specification v4.1 [Vol. 3], Part C Section 10.7.

7.2.4 Bluetooth Device Address
Each Bluetooth device shall be allocated a unique 48-bit Bluetooth device address (BD_ADDR) to identify the Bluetooth

devices. The BLE specification, two types of public address and a random address has been defined as a Bluetooth device
address.

7.2.4.1 Public address
Public address shall be created in accordance with IEEE 802-2001 standard, and using 24bit OUI (Organizationally

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 63 of 108
Jan 31, 2022

Unique Identifier). Public address is uniquely given to each of the device. A device shall not change its public address value
during the lifetime of the device.

This address shall be obtained from the IEEE Registration Authority.

7.2.4.2 Random address
Random addresses may be of the sub-types listed in Table 7-10 below.

Table 7-10 Random Address

Type Description
Static address When not needing registration to IEEE Registration

Authority, it's possible to use as substitution of the public
address.
A device may choose to initialize its static address to a
new value after each power cycle. It’s also possible to
use the same address during the lifetime.
A device shall not change its static address value once
initialized until the device is power cycled.

Private address Private addresses are used for privacy, it is possible to
make it difficult to track and identify from an attacker by
periodically changing the address.

 Non-resolvable private address Bluetooth Core Specification v4.1 or later, this address
shall not use for the connection.

Resolvable private address This type of address is generated from an IRK and a
24-bit random number. Only devices which is shared
IRK can identify the device by Resolvable Private
Address Resolution procedure.

Note: Bluetooth Specification does not support random device address collision avoidance or detection. And
therefore, random addresses have a very small chance of being in conflict. When using private address,
reconnection takes time because Resolvable Private Address Resolution procedure is required.

• Interpretation of resolvable private address

Using the Resolvable Private Address Resolution procedure, the host can resolve the resolvable private addresses of
all peer devices that have an IRK. Once a resolvable private address is resolved, the host can link this address to the
peer device. If the host stores multiple IRKs, this procedure is repeated for each stored IRK until the corresponding
address is successfully resolved.

The BLE software can use the address type other than Non-resolvable. Private addresses are generated automatically by

enabling the privacy feature using the IRK specified from the application. Resolvable private addresses are resolved
internally by the BLE software. The IRK of the remote device required at that time is requested from the application by the
rBLE API. The IRKs of remote devices must be managed by the application.

For details about the random address, see Bluetooth Core Specification v4.2 [Vol. 3], Part C Section 10.8.

7.2.5 Advertising and Scan response data formats
Advertising and Scan Response data are created in the format shown in Figure 7-4.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 64 of 108
Jan 31, 2022

Figure 7-4 Advertising and Scan Response Data Formats

The Advertising and Scan Response data has the following characteristics:

• Total data size of 31 octets

• Consists of multiple AD structures

• Each AD structure consists of 1 octet of length information and the data of the length octet.

• The data of the length octet consists of an AD type of n octets and AD data of length – n octets.

• If the total size of all the AD structures is less than 31 octets, it is padded with 0s.

• Data consisting of all 0s is used only to allow early termination of Advertising or Scan Response.

• Only the significant part of the Advertising or Scan Response data is transmitted over the air.

• The Advertising and Scan Response data is transmitted in advertising events.

• Advertising data is placed in the AdvData field of the ADV_IND, ADV_NONCONN_IND, and ADV_SCAN_IND
packets.

• The Scan Response data is transmitted in the ScanRspData field of the SCAN_RSP packet.

The definitions of the AD types that can be used for AD structures and the AD data format are shown in Table 7-11.

Table 7-11 AD Type Definitions and AD Data Format
AD Type AD Type

Value
AD Data Description

Flags 0x01 Flags are configured of the following bits :
Bit Description
0 LE Limited Discoverable Mode
1 LE General Discoverable Mode
2 BR/EDR not supported
3 Simultaneous LE and BR/EDR operation supported

(Controller)
4 Simultaneous LE and BR/EDR operation supported

(Host)
• The Flags AD type must not include Scan Response data.
• Advertising data can include only one Flags AD type.

Service 0x02 Usable 16-bit service UUID
0x03 Usable 16-bit service UUID (complete list)

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 65 of 108
Jan 31, 2022

AD Type AD Type
Value

AD Data Description

0x06 Usable 128-bit service UUID
0x07 Usable 128-bit service UUID (complete list)

Local Name 0x08 Short local device name
0x09 Complete local device name

TX Power Level 0x0A Advertising packet transmission power level (1 byte)
0xXX : −127 to +127 dBm

OOB Data 0x0D Class of device (3 bytes)
0x0E Simple Pairing Hash C (16 bytes)
0x0F Simple Pairing Randomizer R (16 bytes)

TK Value 0x10 TK (Temporary Key) used for pairing (128 bits)
OOB Flags 0x11 The OOB Flags field consists of the following bits :

Bit Description
0 OOB Flags field

(0 = OOB data not present, 1 = OOB data present)
1 LE supported by host
2 Simultaneous LE and BR/EDR operation supported (Host)
3 Address type

(0 = public address, 1 = random address)

Slave Connection
Interval Range

0x12 Includes the connection interval requested by a Peripheral for all the logical
links. A Central should use the data of this AD type in the Peripheral.
The first 2 bytes indicate the minimum connection interval.
N = 0x0006 to 0x0C80 (Time = N * 1.25 ms)
The next 2 bytes indicate the maximum connection interval.
N = 0x0006 to 0x0C80 (Time = N * 1.25 ms)
0xFFFF : don’t care

Service
Solicitation

0x14 16-bit service UUID list
0x15 128-bit service UUID list

Service Data 0x16 Additional service data that follows the 16-bit service UUID
Manufacturer
Specific Data

0xFF Manufacturer specific data
The company ID is included in the first 2 bytes.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 66 of 108
Jan 31, 2022

Table 7-12 shows an advertising data setting example. In this example, Flags is set as the AD type, along with the
complete device name and 16-bit UUID.

Table 7-12 Advertising Data Example

Value Description
0x02 Data length of this AD structure (2 octets)
0x01 AD type = Flags
0x06 LE Limited Discoverable Flag bit and BR/EDR not supported bit set
0x08 Data length of this AD structure (8 octets)
0x09 AD type = Complete local device name
0x52 ‘R’
0x65 ‘e’
0x6E ‘n’
0x65 ‘e’
0x73 ‘s’
0x61 ‘a’
0x73 ‘s’
0x07 Data length of this AD structure (7 octets)
0x03 AD type = Usable 16-bit service UUID (complete list)
0x02

Immediate Alert service (UUID : 0x1802)
0x18
0x03

Link Loss service (UUID : 0x1803)
0x18
0x04

Tx Power service (UUID : 0x1804)
0x18

The Advertising and Scan Response data can be set freely by the user. This data must be set as appropriate for the use

case according to the above format.
For details about the Advertising Scan Response data formats, see Bluetooth Core Specification v4.2 [Vol. 3], Part C

Section 11. For details about the AD Type, see Supplement to the Bluetooth Core Specification v5, Part A.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 67 of 108
Jan 31, 2022

7.3 Security Manager
The Security Manager (SM) is in charge of ensuring secure BLE communication, including pairing, encryption, private

address resolution and data signing.
Pairing is performed to generate the key used for link encryption and data signing. The device that initiates pairing is

called the Initiator, and the device that responds is called the Responder. Pairing is executed in the phases listed below and
shown in Figure 7-5.

• Phase 1: Pairing feature exchange

• Phase 2: STK generation. The STK generation method is based on the information that was exchanged during phase
1.

• Phase 3: Distribution of the generated key. This is done via a link encrypted by using the key generated in phase 2.

Figure 7-5 LE Pairing Phases

The keys used for pairing, encryption, private address resolution, and data signing are shown in the table below.

Table 7-13 Key Definitions

Key Type Description Generated by
IRK
(Identity Resolving Key)

128-bit key used to generate and resolve random
addresses

The application

CSRK
(Connection Signature
Resolving Key)

128-bit key used to create signatures and verify
the signatures of received data

The application

LTK
(Long Term Key)

128-bit key used to generate the session key for
encryption (partially used according to the agreed
upon key size)

The application

EDIV
(Encrypted Diversifier)

16-bit key used to identify the LTK. A new EDIV is
generated each time an LTK is distributed.

The application

STK generation

Initiator Responder

Connection establishment

Encryption using key generated in phase 2

Pairing Request

Pairing Response

Key distribution

Phase 1

Phase 2

Phase 3
Key distribution

Key distribution

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 68 of 108
Jan 31, 2022

Key Type Description Generated by
Rand
(Random Number)

64-bit key used to identify the LTK. A new Rand is
generated each time an LTK is distributed.

The application

STK
(Short Term Key)

128-bit key generated in pairing phase 2 by using
TK and used to encrypt the link after phase 2

The BLE software by using the
TK passed from the application

TK
(Temporary Key)

128-bit key used in pairing phase 2 to generate
the STK

The application

For details about generating each key, see Bluetooth Core Specification v4.2 [Vol. 3], Part H Section 2.4.1 and 2.4.2.

7.3.1 Pairing feature exchange
In pairing phase 1, the Initiator and Responder perform a pairing feature exchange. The fields of the features that are

exchanged are described below. The pairing method used in phase 2 is determined based on the information that is
exchanged here.

• IO Capability
This field indicates the input and output capabilities of the device. IO Capability (Table 7-16) is the combination of the
Input Capability (Table 7-14) and Output Capability (Table 7-15).

Table 7-14 Input Capability
Input Capability Description

No input The device does not have the capability to indicate ‘yes’ or
‘no’.

Yes / No The device has at least two buttons that can indicate ‘yes’ and
‘no’, or a mechanism that allows ‘yes’ or ‘no’ indication.
(Example : ‘yes’ is indicated by pressing a button within the
time limit, and ‘no’ is displayed upon timeout.)

Keyboard The device has a numeric keyboard that can be used to input
numbers ‘0’ through ‘9’. The device also has at least two
buttons that can indicate ‘yes’ and ‘no’, or a mechanism that
allows ‘yes’ or ‘no’ indication.

Table 7-15 Output Capability

Output Capability Description
No output The device does not have the capability to display or

communicate a 6-digit number.
Numeric output The device has the capability to display or communicate a

6-digit number.

The input capability (Table 7-14) and output capability (Table 7-15) are mapped to a single IO capability shown in
Table 7-16, which is used for the pairing feature exchange.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 69 of 108
Jan 31, 2022

Table 7-16 IO Capability Mapping

Output
Input

No output Numeric output

No input NoInputNoOutput DisplayOnly
Yes / No NoInputNoOutput1 DisplayYesNo
Keyboard KeyboardOnly KeyboardDisplay

 Note: The combination of Yes/No and No Output is regarded as NoInputNoOutput.

• Validity of OOB authentication data
The data required for authentication of a remote device that is using a communication method other than Bluetooth is
called OOB (Out Of Band) data. This field indicates the presence/non-presence of the OOB authentication data
required for remote device authentication.

• Authentication requirement
This field indicates the following security properties used for authentication :

- Protection from MITM (man-in-the-middle) attacks required/not required

- Perform/don’t perform bonding

• Encryption key size
This field indicates the size of the key to be used for link encryption. The smaller of the key sizes indicated by the two
devices is used for encryption. The size can be specified in 1-byte units from 7 bytes (56 bits) to 16 bytes (128 bits).

• Key distribution
This field indicates the keys whose distribution in phase 3 is requested by the pairing Initiator and Responder. The
distribution of multiple keys can be requested.

- EncKey (LTK, EDIV, and Rand)

- IdKey (IRK)

- Sign (CSRK)

The rBLE API allows the above-described pairing features to be freely set during bonding execution or in the response

API. Set the appropriate pairing feature according to the functions and/or purpose of the local device.
For details about each feature, see Bluetooth Core Specification v4.2 [Vol. 3], Part H Section 2.3.1 to 2.3.4.

7.3.2 STK generation
In phase 2, the pairing method (STK generation method) is determined using the information exchanged between the

devices in phase 1. The TK required for STK generation is determined by pairing. The BLE pairing methods and
characteristics are shown below.

• Just Works
This method provides no protection against eavesdroppers or man-in-the-middle attacks during the pairing process. If
no eavesdropping or MITM attack occurs during the pairing process, security is ensured by encryption during future
connections.
No action on the user’s part is required during the pairing process.
The TK used by both devices is 0x00000000000000000000000000000000.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 70 of 108
Jan 31, 2022

• Passkey Entry
This is a method whereby a six-digit number is input by each device to the other, or a six-digit (random) number is
displayed by one of the devices and that number is input to the other device.
This 6-digit number (decimal: 000,000 to 999,999) is used as the TK.
This method provides protection against man-in-the-middle attacks. (The success rate of MITM attacks is just
0.000001.) Since the TK range is limited, protection from eavesdropping during the pairing process is limited. If there
is no eavesdropping during the pairing process, security is ensured by encryption during future connections.

• Out of Band
This is a method whereby a 128-bit random number exchanged prior to the pairing process is used as the TK value. If
the method used for TK exchange is robust against man-in-the-middle attacks, pairing using OOB is also protected
against such attacks.
No restrictions apply as long as the value of the TK is within 128 bits, so this method can be said to be more secure
than Just Works and Passkey Entry. However, both devices need to have interfaces that allow TK exchange.

If both devices have OOB data, pairing via OOB is performed. If neither of the devices requires protection against MITM
attacks, pairing is performed by using the Just Works method. Other pairing methods are determined from the mutual IO
capability indicated by the information exchanged in phase 1. If the key generated as the result of the pairing process does
not satisfy the authentication requirements, pairing fails.

Table 7-17 shows the pairing methods determined from the IO capability of the Initiator and Responder, the Passkey
Entry roles and the keys generated during the pairing process.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 71 of 108
Jan 31, 2022

Table 7-17 Mapping of Pairing Methods According to IO Capability

Initiator
Responder

DisplayOnly DisplayYesNo KeyboardOnly NoInput
NoOutput

Keyboard
Display

DisplayOnly Just Works

Unauthenticated

Just Works

Unauthenticated

Passkey Entry
Initiator inputs
and Responder
displays
Authenticated

Just Works

Unauthenticated

Passkey Entry
Initiator inputs
and Responder
displays
Authenticated

DisplayYesNo Just Works

Unauthenticated

Just Works

Unauthenticated

Passkey Entry
Initiator inputs
and Responder
displays
Authenticated

Just Works

Unauthenticated

Passkey Entry
Initiator inputs
and Responder
displays
Authenticated

KeyboardOnly Passkey Entry
Initiator displays
and responder
inputs
Authenticated

Passkey Entry
Initiator displays
and responder
inputs
Authenticated

Passkey Entry
Initiator and
Responder input
Authenticated

Just Works

Unauthenticated

Passkey Entry
Initiator displays
and Responder
inputs
Authenticated

NoInputNoOutput Just Works

Unauthenticated

Just Works

Unauthenticated

Just Works

Unauthenticated

Just Works

Unauthenticated

Just Works

Unauthenticated

KeyboardDisplay Passkey Entry
Initiator displays
and Responder
inputs
Authenticated

Passkey Entry
Initiator displays
and Responder
inputs
Authenticated

Passkey Entry
Initiator inputs
and Responder
displays
Authenticated

Just Works

Unauthenticated

Passkey Entry
Initiator displays
and Responder
inputs
Authenticated

Authenticated: Keys protected from MITM attacks are generated.
Unauthenticated: Keys not protected from MITM attacks are generated.

An STK is generated in the BLE software by determining the pairing method from the pairing features passed from the

application and remote device. For pairing implemented by Passkey Entry and OOB, the TK required for STK generation is
requested from the application.

For details about each pairing method, see Bluetooth Core Specification v4.2 [Vol. 3], Part H Section 2.3.5.

7.3.3 Key distribution
In phase 3, key distribution is performed as needed. The key distribution method is the same regardless of the pairing

method in phase 2.
The following keys may be distributed from the slave to the master :

• LTK, EDIV, and Rand

• IRK

• CSRK

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 72 of 108
Jan 31, 2022

The following keys may be distributed from the master to the slave :

• LTK, EDIV, and Rand

• IRK

• CSRK

Before all the keys are distributed, the links must be encrypted by using the STK generated in phase 2. (Link encryption

using the STK is performed automatically by the BLE software.)
The BLE software carries out key distribution based on the pairing feature passed from the application and remote device.

In the case of IRK or CSRK distribution, distribution is performed automatically using the key specified from the
application beforehand. In the case of LTK distribution, an LTK request is issued to the application and the LTK passed
from the application is distributed. All the keys distributed from a remote device are reported to the application.

Execute link encryption from the application by using the LTK after pairing.

Note: Key management (recording keys, linking with devices) is not performed by the BLE software. Execute these
actions from the application.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 73 of 108
Jan 31, 2022

7.4 Generic Attribute Profile
The Generic Attribute Profile (GATT) specifies the service framework using the Attribute Protocol (ATT). This

framework defines the format of the services and service characteristics and the procedures.
GATT has server and client roles. A server exposes data called data called characteristics that are grouped within a

service as shown in Figure 7-6. The exposed services or characteristics are identified by an identifier called UUID. On the
server, data are managed with attribute handles, which are the basis of ATT.

Figure 7-6 Generic Attribute Profile

The properties listed in the following table are set for characteristics exposed on the GATT server. The set properties are

prescribed for each service.
Table 7-18 Properties of Characteristics

Property Value Description
Broadcast 0x01

(RBLE_GATT_CHAR_PROP_BCAST)
The server broadcasts characteristic
values using the characteristic
configuration descriptor

Read 0x02
(RBLE_GATT_CHAR_PROP_RD)

Permits reading of characteristic values
from the client

Write Without
Response

0x04
(RBLE_GATT_CHAR_PROP_WR_NO_RESP)

Permits writing of characteristic values
from the client
(no server response in relation to write
operation)

Write 0x08
(RBLE_GATT_CHAR_PROP_WR)

Permits characteristic values can be
written from the client
(server response in relation to write
operation)

Notify 0x10
(RBLE_GATT_CHAR_PROP_NTF)

Permits notification about characteristic
values issued from the server to the client
(no verification of reception from the client
to the server)

Indicate 0x20
(RBLE_GATT_CHAR_PROP_IND)

Permits indication of characteristic values
from the server to the client
(verification of reception from the client to
the server)

Authenticated Signed 0x40 Permits signed writing of characteristic

GATT Server

GATT Client

Service

Characteristic

Service

Characteristic

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 74 of 108
Jan 31, 2022

Property Value Description
Writes (RBLE_GATT_CHAR_PROP_AUTH) values from the client
Extended Properties 0x80

(RBLE_GATT_CHAR_PROP_EXT_PROP)
Extended properties

In GATT, the following procedures are defined for exchanging data exposed on the server.

• Discover services exposed by the server from a client

• Discover characteristics exposed by the server from a client

• Discover characteristic descriptors exposed by the server from a client

• Read characteristic values exposed by the server from a client (Read)

• Write characteristic values exposed by the server from a client (Write)

• Read the characteristic configuration descriptor exposed on the server from a client (Read)

• Write the characteristic configuration descriptor on the server from a client (Write)

• Indicate characteristic values from the server to a client (Indication) (with verification of reception from the client to
the server)

• Notification of characteristic values from the server to a client (Notification)

In the rBLE API, the APIs are available to perform above procedures. You can add a new profile using these APIs.
In each profile, the services/characteristics discovery is performed automatically and the APIs to read/write

characteristic values are provided.
Each profile is based on the GATT, and its functions are implemented using the mechanism described above.

For details about the GATT, see Bluetooth Core Specification v4.2 [Vol. 3], Part G.

7.4.1 GATT Database
The data exposed by the GATT Server is called GATT database. Each profile implements the use case by exchanging

data in the GATT database. The data registered in the GATT database is defined by each service.

7.4.1.1 Database structure
The database consists of "elements", that are "services" or "properties" used in the profile. All of the "elements" are

included in "attributes". The "attributes" are used as a container for carrying the data of the profile service by the ATT. The
"Attributes" are managed by "attribute handles".

In order to realize the use cases, the profile which is located on top of the GATT requires one or more "services". The
"services" consists of references to the "characteristics" or other "services". Each characteristic includes "characteristic
values" or "characteristic descriptors", which contain the service data.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 75 of 108
Jan 31, 2022

Figure 7-7 GATT database structure

In the BLE software, the GATT database is built by the following variables in the source file.

Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\arch\rl78
File Name: prf_config_host.c, prf_config.c
Variable Name: struct atts_desc atts_desc_list_host [], struct atts_desc atts_desc_list_prf []

The GATT database is expanded to the RAM of the RL78/G1D. The database structure when built is not changed during
operation.

Each element of the array atts_desc_list corresponds to "attribute". In the BLE software, the index of the array is

managed as an "attribute handle". Each attribute consist of the following items.

Table 7-19 Component of attribute

Member name Description
type Attribute type UUID
maxlength Maximum length of attribute value
length Current length of attribute value
taskid The most significant 6 bits : Profile task ID that attribute belongs to

The least significant 10 bits : Index to identify attribute
perm Permission of attribute
*value Pointer to the storage of attribute value

7.4.1.2 Attribute Type
The attribute consists of service definition, include definition and characteristic definition shown in Figure 7-8 below.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 76 of 108
Jan 31, 2022

Figure 7-8 Attribute structure

Permissions shown in Table 7-20 are set for each attribute, the access from GATT client can be restricted based on

reading, writing, security requirements and so on.

Table 7-20 Attribute permission
Permission value Description

RBLE_GATT_PERM_NONE No permission

RBLE_GATT_PERM_RD Readable

RBLE_GATT_PERM_RD_UNAUTH Unauthenticated pairing required to read

RBLE_GATT_PERM_RD_AUTH Authenticated pairing required to read

RBLE_GATT_PERM_RD_AUTZ Authorization requited to read

RBLE_GATT_PERM_WR Writable

RBLE_GATT_PERM_WR_UNAUTH Unauthenticated pairing required to write
RBLE_GATT_PERM_WR_AUTH Authenticated pairing required to write

RBLE_GATT_PERM_WR_AUTZ Authorization required to write

RBLE_GATT_PERM_NI Able to be notified / indicated

RBLE_GATT_PERM_NI_UNAUTH Unauthenticated pairing required for notification /
indication

RBLE_GATT_PERM_NI_AUTH Authenticated pairing required for notification /
indication

RBLE_GATT_PERM_NI_AUTZ Authorization required for notification / indication

RBLE_GATT_PERM_EKS Encryption by key of sufficient length Required
RBLE_GATT_PERM_HIDE Unexposed (hidden)

RBLE_GATT_PERM_ENC Encryption required

RBLE_GATT_PERM_NOTIFY_COMP_EN Indicate the notification completion event

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 77 of 108
Jan 31, 2022

(1) Service Definition

The Service definition begins with the service declarations and contains include definitions and characteristic definitions.
The service definition ends when the next service definition starts or when the attribute handles have reached the maximum.
Include definitions and characteristic definitions placed in the service definition are considered as a part of the service
definition.

The following table shows the attribute structure in the service declaration.

Table 7-21 Service declaration

Attribute type UUID Attribute values Permissions
0x2800 : Primary Service
(RBLE_DECL_PRIMARY_SERVICE)
or
0x2801: Secondary Service
(RBLE_DECL_SECONDARY_SERVICE)

16bit or 128bit service UUID
Read Only
(RBLE_GATT_PERM_RD)

For more information on service definition and service declaration, see Bluetooth Core Specification v4.2 [Vol. 3], the

Part G Section 3.1.

(2) Include Definition

The include definition is defined when referring other service, and contains only one include declaration.
The following table shows the attribute structure in the include definition.

Table 7-22 Include declaration

Attribute type UUID Attribute values Permissions

0x2802 : Include
(RBLE_DECL_INCLUDE)

• Included Service attribute handle
• group end handle
• service UUID

Read Only
(RBLE_GATT_PERM_RD)

For more information on include definition and include declaration, see Bluetooth Core Specification v4.2 [Vol. 3], the

Part G Section 3.2.

(3) Characteristic Definition

The characteristic definition begins with the characteristic declaration, and contains characteristic value declarations and
characteristic descriptor declarations. The characteristic definition ends when the next service declaration or next
characteristic declaration starts or when the attribute handles have reached the maximum. Each declaration is contained in
individual attribute.

The characteristic definition requires both characteristic declarations and characteristic value declarations. The
characteristic value declarations should be placed immediate after the characteristics declarations. The optional
characteristics descriptor declarations are placed after the characteristic value declarations.

The following table shows the attribute structure in the characteristic definition.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 78 of 108
Jan 31, 2022

Table 7-23 Characteristic Declaration

Attribute type UUID Attribute values Permissions

0x2803 : Characteristic
(RBLE_DECL_CHARACTERISTIC)

• characteristic property (defined by
higher profile. Refer to Table 7-18.)

• characteristic value handle
• characteristic UUID

Read Only
(RBLE_GATT_PERM_RD)

 Table 7-24 shows attribute structure of characteristic value declaration. All of the characteristic definitions contain

characteristic value declarations.

Table 7-24 Characteristic value declaration

Attribute type UUID Attribute values Permissions

Characteristic UUID Characteristic value
Defined by higher profile,
or implementation dependent

The characteristic descriptor declaration is defined to include information corresponding to the characteristic value.

GATT defines standard characteristic descriptors shown in Table 7-25, that may be used in the upper layers.

Table 7-25 Characteristic descriptor
Characteristic descriptor name Description

Characteristic Extended Properties Defines additional characteristic properties.

Characteristic User Description Defines a user textual description of the characteristic
value.

Client Characteristic Configuration Defines how the characteristic may be configured by a
specific client.

Server Characteristic Configuration Defines how the characteristic may be configured for the
server.

Characteristic Presentation Format Defines characteristic value format

Characteristic Aggregate Format List of presentation format

Table 7-26 shows attribute structure of characteristic descriptor declaration.

Table 7-26 Characteristic descriptor declaration

Attribute type UUID Attribute values Permissions
0x2900 : Characteristic Extended Properties
(RBLE_DESC_CHAR_EXT_PROPERTIES)

Extended Property Bit
Read Only
(RBLE_GATT_PERM_RD)

0x2901 : Characteristic User Description
(RBLE_DESC_CHAR_USER_DESCRIPTION)

(UTF-8)

Defined by higher profile,
 or implementation dependent

0x2902 : Client Characteristic Configuration
(RBLE_DESC_CLIENT_CHAR_CONF)

Characteristic
Configuration Bit

Read (RBLE_GATT_PERM_RD)
Write(RBLE_GATT_PERM_WR)
Requirement of authentication /
Authorization depends on higher
layer.

0x2903 : Server Characteristic Configuration
(RBLE_DESC_SERVER_CHAR_CONF)

Characteristic
Configuration Bit

0x2904 : Characteristic Format
(RBLE_DESC_CHAR_PRESENTATION_FMT)

• Format
• Index
• Unit
• Namespace

Read Only
(RBLE_GATT_PERM_RD)

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 79 of 108
Jan 31, 2022

Attribute type UUID Attribute values Permissions
• Description

0x2905 : Characteristic Aggregate Format
(RBLE_DESC_CHAR_AGGREGATE_FMT)

Handle List of
Presentation Format
Declaration Handle

Read Only
(RBLE_GATT_PERM_RD)

For more information on characteristic definition, see Bluetooth Core Specification v4.2 [Vol. 3], the Part G Section 3.3.

7.4.1.3 Example of Database Construction
From the first to the third elements in the GATT database array atts_desc_list_host[] (prf_config_host.c) construct the

device name characteristic of the GAP service.
In addition to the contents defined in the specification, the current length of attribute value, the maximum length of

attribute value, the task ID and so on are added to the database array.

Table 7-27 Device Name Characteristic of GAP service

Handle Attribute type Attribute UUID Permissions Attribute value
0x0001 Service

declaration
0x2800
(Primary
Service)

Read Only 0x1800 (Generic Access)

0x0002 Characteristic
declaration

0x2803
(Characteristic)

Read Only

Property Read, Write
Characteristic
handle

0x0003

Characteristic
UUID

0x2A00

0x0003 Characteristic

value declaration
0x2A00
(Device Name)

Read
Write
(Unauthenticated
pairing required)

Device name
(Renesas-BLE)

7.4.2 Creating a User Profile
In the BLE software, creating user profiles is possible. This section describes how to create a user profile.

7.4.2.1 GATT Client Role
The profile role that is the GATT client can discover services or characteristics and can read or write characteristic values

or characteristic descriptors using rBLE API. In addition, the indications or notifications from the server are notified to the
registered callback function as events. The response to the indication from the server is performed by the BLE software
automatically.

Procedures and requirements, such as service discovery or characteristic discovery, refer to the specifications for each
profile.

7.4.2.2 GATT Server Role
The profile role that is the GATT server can be realized by constructing the GATT database. The BLE software refers the

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 80 of 108
Jan 31, 2022

GATT database and sends response automatically according to permissions and properties for the service/characteristic
discovery or read characteristic value request from the remote GATT client.

For the write characteristic value request, the BLE software checks permissions and properties of the corresponding
characteristic value, and notifies to the application if it is writable through rBLE API.

The BLE software doesn't update the attribute value in the database. Confirm the validity of the write request value by
the application, and update the database by the application. Also, the response to the write request is required, send it by the
application. The rBLE API can send the notification and/or indication of characteristic value.

How to build GATT database is described below. Refer to 7.4.1 about the construction of the database.
It should be noted that the attributes and characteristics of the service to be registered in the database, refer to the

specifications for each service profile.

(1) Definition of Attribute Identification Number

Add the index of the attributes "XXXX_IDX_XXXX" that are required by the user profile at the end of the attribute
index enumeration declarations in the file prf_config.h. This index is used to identify the database elements by the BLE
software.

Note
* Don't change the value of predefined enumerations in the file prf_config.h. The BLE software doesn't work correctly due

to the inconsistency between the database and the BLE software.

(2) Definition of Attribute Handle

Add the handle of the attributes "XXXX_HDL_XXXX" that are required by the user profile at the end of the attribute
handle enumeration declarations in the file db_handle.h. This enumeration should be equal to the index of database array.

Application can identify attributes using this enumeration. Also, if attribute handle is required to define attribute value,
e.g., in the characteristic declarations, this enumeration can be used.

Note that the attribute handle enumeration should be equal to the index of database array.

(3) Constructing Database Array

Add the service definition (7.4.1.2(1)), include definition (7.4.1.2(2)) and characteristic definition (7.4.1.2(3)) required
by the user profile at the end of the GATT database array atts_desc_list[] in the file prf_config.c.

The index of each array element should be equal to the enumerated value defined in (2). Each member of the database
structure is explained below.

• type

Set the UUID of attribute type. Refer to 7.4.1.2.
If the attribute type is 128bit UUID, use DB_TYPE_128BIT_UUID macro for definition (defined in prf_config.h).
(The *value below contains 128bit UUID.)

• length and maxlength
Set the current length and maximum length of the attribute value.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 81 of 108
Jan 31, 2022

• taskid
Set the calculated value using "TASK_ATTID" macro defined in the file prf_config.c, with the task ID
"TASK_RBLE" and enumerated value of attribute defined in (1).

• perm
Set the appropriate permissions of attribute depending on the service specification. The BLE software restricts the
access to the corresponding attribute from the remote GATT client according to these permissions.

• *value
In case that attribute type is 16bit UUID:
Set the pointer to the attribute value. For attribute value, set proper value according to the service specification.
To set the attribute value of include declaration, the "ATTS_INCL" macro defined in the file prf_config.c is
available. To set the attribute value of characteristic declaration, the "ATTS_CHAR" macro defined in the file
prf_config.c is available.
 In the characteristic declaration, if the attribute to be declared is 16bit UUID, use struct atts_char_desc type for the
attribute value (character declaration structure for 16bit UUID). If the attribute to be declared is 128bit UUID, use
struct atts_char128_desc type for the attribute value (character declaration structure for 128bit UUID).

In case that attribute type is 128bit UUID:
Set the pointer to the structure whose type is struct atts_elmt_128.
Set the UUID, UUID length and pointer to the attribute value to the members of this structure.

Note:
1. To remove unused existing profile role, use macro definition (6.1.11.1).
2. Don't change the attribute configuration of GAP and GATT.
3. Use TASK_RBLE as a task ID for user profile.
4. Set the attribute permissions and attribute value properly according to the service specification
5. Depending on the future version up, the attribute identification number, enumerations for handles and database

array may increase or decrease its elements.
6. Set 128bit UUID in the least significant byte first and left justify.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 82 of 108
Jan 31, 2022

7.5 Find Me Profile (Obsolete)
Due to the deprecation and withdrawal plan of the profile version by the Bluetooth SIG, product registration using this

profile is no longer possible, so this section has been obsoleted.
For product registration, refer to "Bluetooth LE microcomputer/module Bluetooth qualification acquisition application

note" (R01AN3177).

7.6 Proximity Profile (Obsolete)
Refer to "7.5".

7.7 Health Thermometer Profile (Obsolete)
Refer to "7.5".

7.8 Blood Pressure Profile (Obsolete)
Refer to "7.5".

7.9 HID over GATT Profile (Obsolete)
Refer to "7.5".

7.10 Scan Parameters Profile (Obsolete)
Refer to "7.5".

7.11 Heart Rete Profile (Obsolete)
Refer to "7.5".

7.12 Cycling Speed and Cadence Profile (Obsolete)
Refer to "7.5".

7.13 Cycling Power Profile (Obsolete)
Refer to "7.5".

7.14 Glucose Profile (Obsolete)
Refer to "7.5".

7.15 Time Profile (Obsolete)
Refer to "7.5".

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 83 of 108
Jan 31, 2022

7.16 Running Speed and Cadence Profile (Obsolete)
Refer to "7.5".

7.17 Alert Notification Profile (Obsolete)
Refer to "7.5".

7.18 Phone Alert Status Profile (Obsolete)
Refer to "7.5".

7.19 Location and Navigation Profile (Obsolete)
Refer to "7.5".

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 84 of 108
Jan 31, 2022

7.20 Vendor Specific
Vendor Specific (VS) provides the original extended features offered by Renesas.

7.20.1 Peak current consumption notification

7.20.1.1 Overview
The BLE MCU’s current consumption increases during data transmission and reception. The peak current consumption

notification feature provides functionality to report in advance when the current consumption increases in a system that
includes the BLE software. Using this feature, other processing can be stopped momentarily in situations when the BLE
MCU’s current consumption rises to a high level, preventing multiple loads on the system.

Note: When using the RF slow clock (32kHz) for internal oscillation circuit, cannot be use this function.

7.20.1.2 Specifications
The peak current consumption notification feature is implemented by calling the peak current consumption notification

and peak current consumption notification end callback functions from the BLE software. This feature can be enabled and
disabled. If this feature is enabled, setting the value of following macro to 1.

Macro name: CFG_USE_PEAK

Specify the settings for this feature before the end of BLE initialization within the main function of arch_main.c, which is

the main function of the BLE software. The times that can be set are 1 ms before, 2 ms before, and 4 ms before the current
consumption reaches its peak. This feature uses a 12-bit interval timer for managing the set time. When using this feature,
do not use the 12-bit interval timer with other features. If, in the case of multiple connections, data transmission and
reception overlaps, callback functions might be called multiple times. As an example, callback functions might be called in
the sequence of peak_start, peak_start, peak_end, and peak_end.

Also, when this feature is enabled, the power consumption of the entire system may increase.

7.20.1.3 Function specifications
The peak current consumption notification feature uses the following three functions:

(1) Peak current consumption notification setting function

This function is used to specify the settings for the peak current consumption notification feature. The notification
feature can be enabled and disabled, and the notification time can be specified. Notification is not performed if this function
is not called.

Settings cannot be made if this function is called after BLE initialization, and PEAK_ERROR_STATE is returned.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 85 of 108
Jan 31, 2022

Table 7-28 Peak current consumption notification setting function
Function name uint8_t peak_init (uint16_t peak_time)

Overview Peak current consumption notification setting function

Description Specifies the settings for the peak current consumption notification feature.

Parameters uint16_t peak_time

PEAK_TIME_OFF Don’t execute notification.

PEAK_TIME_1 Start notification 1 ms before peak.

PEAK_TIME_2 Start notification 2 ms before peak.

PEAK_TIME_4 Start notification 4 ms before peak.

Return values

PEAK_OK Success

PEAK_ERROR_PARM Parameter error

PEAK_ERROR_STATE Setting not possible

(2) Peak current consumption notification function

This function is called from the BLE software at the time set by the peak current consumption notification setting
function. The processing of this function must be defined by the user. Other MCUs can be notified by executing external
port output from within this function. However, a limitation of the BLE software requires that the least possible amount of
processing be executed within this function. If not using The peak current consumption notification, make this function
empty.

Table 7-29 Peak current consumption notification function

Function name void peak_start (void)

Overview Peak current consumption notification function

Description This function is called from the BLE software at the time set by the peak current
consumption notification setting function. (Callback function)

Parameters None

Return values None

(3) Peak current consumption end notification function

This function is called from the BLE software upon completion of the transmission/reception that corresponds to the
current consumption peak. The processing of this function must be defined by the user. Use this function to perform actions
such as stopping the output started by the peak current consumption notification function. However, like the peak current
consumption notification function, a limitation of the BLE software requires that the least possible amount of processing be
executed within this function. If not using the peak current consumption notification, make this function empty.

Table 7-30 Peak current consumption end notification function

Function name void peak_end (void)
Overview Peak current consumption end notification function

Description
This function is called from the BLE software when the current consumption peak is
exceeded. (Callback function)

Parameters None
Return values None

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 86 of 108
Jan 31, 2022

7.20.2 Sleep

7.20.2.1 Overview
The sleep feature is used to place the BLE MCU in a low power consumption state when the BLE MCU is idle, such as

during breaks between sending and receiving data, for the purpose of lowering the power consumption. There are two states
of lowered power consumption, the Sleep state, during which the MCU block and RF block in the BLE MCU are placed in
STOP mode and HALT mode, respectively, and the DeepSleep state, during which both the MCU block and RF block are
placed in the STOP mode.

7.20.2.2 Operation overview
In a state in which operations such as data transmission and reception are not being performed, the MCU and RF modules

both enter an idle state. In this state, unnecessary power gets consumed, so the MCU and RF modules are placed in a low
power consumption state. This transition to a low power consumption state is made on the judgment of the BLE software.
Whether the Sleep mode or DeepSleep mode is selected is determined based on the BLE MCU’s idle time information.
Therefore, state transition processing does not need to be executed by the user application.

However, in order to operate the user application, you do not want the BLE MCU to enter into Sleep or DeepSleep state,
return false in the Check sleep OK function. This Check sleep OK function is called immediately before the BLE software
entering into Sleep state. If this function returns false, the BLE software stops entering into Sleep state.

 The specification of this function is shown below.

Table 7-31 Check sleep OK function

Function name bool sleep_check_enable (void)
Overview Checks if state transition to Sleep state is allowed
Description Checks if state transition to Sleep state is allowed
Parameters None

Return values
true State transition to Sleep state is allowed
false State transition to Sleep state is not allowed

7.20.2.3 Cautions on application implementation
The BLE software calculates idle time based on the data transmission and reception frequency and the frequency of

communications to establish connections. Therefore, when data is transmitted and received or connections are established
frequently, the BLE MCU is not placed in the Sleep state or the DeepSleep state. As a result, the system’s power
consumption may increase in some cases.

The sleep_cont functions in arch_main.c should be used without change. Since these functions are important for
operating the Sleep function, the Sleep function may not operate normally when they are altered.

7.20.3 Reset processing

If there is a memory shortage or a hardware error occurs, the BLE software executes a hardware reset.
If the reset cause occurs, the function indicated below is called. Currently, this function forcibly resets the hardware by

executing an illegal instruction.
Folder: \Renesas\BLE_Software_Ver_X_XX\RL78_G1D\Project_Source\renesas\src\arch\rl78
File: arch_main.c
Function: void platform_reset(uint32_t error)

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 87 of 108
Jan 31, 2022

7.20.4 Original features provided by rBLE API
This section describes the original Renesas features offered in the rBLE API.

7.20.4.1 Bluetooth device address write
The Bluetooth device address (BD address) write feature allows BD addresses to be written by accessing the non-volatile

data flash area. BD addresses refers to addresses used to uniquely identify Bluetooth devices. The BD addresses used in
BLE consist of public addresses and random addresses, but this feature has been designed with public addresses in mind.

Access to the data flash requires a data flash driver. The data flash driver is provided as sample code.
The operation during BD address writing is described below.

1. Set access start to the data flash by the rBLE API.

2. Set the BD address to be written by the rBLE API.

3. The BLE stack calls the BD address write feature.

4. The BD address write feature writes the BD address to the data flash.

5. Set access stop to the data flash by the rBLE API

7.20.4.2 Direct Test Mode
The Direct Test Mode is a feature prescribed in the BLE standard and provides functionality for testing the

transmission/reception capacity of the BLE MCU. It has the following main features:

• A reception/transmission Direct Test Mode start command and Direct Test Mode stop command are provided by the
rBLE API.

• When launched, the reception Direct Test Mode executes packet reception in all 625 us slots.

• When launched, the transmission Direct Test Mode executes packet transmission in all 625 us slots.

• The reception/transmission Direct Test Mode continues operating until the Direct Test Mode stop command is
received.

• Upon reception of the stop command, Direct Test Mode is terminated and completion is reported by an event.

• If a reception Direct Test Mode operation was in progress when the stop command was received, the number of
receive packets is returned by an event parameter.

For details about Direct Test Mode, see Bluetooth Core Specification v4.2 [Vol. 6], Part F.

7.20.4.3 Extended Direct Test Mode
The extended Direct Test Mode offers functionality for the smooth operation of Direct Test Mode. It has the following

main features:

• A parameter setting command that defines the Direct Test Mode operation is provided by the rBLE API.

• The number of packets received/sent in Direct Test Mode can be specified by using a parameter of the parameter
setting command.

• Following the start of Direct Test Mode, Direct Test Mode terminates automatically when the specified number of
packets is reached, and completion is reported by an event

• If the specified number of packets is 0, reception/transmission continues until a command to stop Direct Test Mode is
received, per the BLE standard.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 88 of 108
Jan 31, 2022

• Even if the specified number of packets is other than 0, the operation can be aborted by using the Direct Test Mode end
command.

• The number of packets to be received or sent specified by using the parameter setting command is held even after
Direct Test Mode execution ends.

* In the DirectTestMode operation, it is possible to report a little bit more number of received packets than specified,

because it is possible to receive extra packets while processing received packets.

7.20.4.4 Burst transfer
Burst transfer provides functionality to continuously receive/send data for devices that are designed with current

consumption measurement in mind. It has the following main features:

• The command for specifying burst transfer is the same as the extended Direct Test Mode’s parameter setting
command.

• During the execution of reception burst transfer, the Direct Test Mode’s standby time becomes infinite and thus the
device receives data continuously.

• During the execution of transmission burst transfer, the packet payload length of Direct Test Mode becomes infinite
and thus the device transmits continuously.

• Reception/transmission burst transfer is started by execution of the reception/transmission Direct Test Mode start
command.

• Burst transfer continues until the Direct Test Mode stop command is received.

• Even if the specified number of packets in Direct Test Mode is other than 0, burst transfer continues until the Direct
Test Mode stop command is received.

7.20.4.5 Continuous carrier wave (CW) output
Continuous carrier wave (CW) output provides functionality to output continuous carrier waves (CWs) in accord with

the test items of the technology conformance inspection based on the Radio Law. It has the following main features:

• The command for specifying continuous carrier wave (CW) output is the same as the extended Direct Test Mode’s
parameter setting command.

• During the execution of continuous carrier wave (CW) output, the packet payload length of Direct Test Mode becomes
infinite and thus the device transmits continuously.

• Continuous carrier wave (CW) output is started by execution of the transmission Direct Test Mode start command.

• Continuous carrier wave (CW) output continues until the Direct Test Mode stop command is received.

• Even if the specified number of packets in Direct Test Mode is other than 0, continuous carrier wave (CW) output
continues until the Direct Test Mode stop command is received.

7.20.4.6 RSSI reading in reception Direct Test Mode
RSSI reading in reception Direct Test Mode allows the RSSI value to be acquired while reception Direct Test Mode is

being executed. It has the following main features:

• The RSSI acquisition command for use in reception Direct Test Mode is provided by the rBLE API.

• The RSSI value acquired during reception Direct Test Mode is reported by an event.

• The RSSI value can be acquired in the period from when reception Direct Test Mode starts to immediately before a

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 89 of 108
Jan 31, 2022

normal packet is received after exiting Direct Test Mode.

7.20.4.7 Tx power selection
Tx power selection allows the Tx power setting to be changed. The Tx power can be set separately for the

advertising/scanning/initiating handle or connection handle. It has the following main features:

• The Tx power setting command is provided by the rBLE API.

• The Tx power can be set separately for each connection handle when connected or during
advertising/scanning/initiating.

The initial setting is RBLE_VS_TXPW_HIGH (0dBm). It is possible to change Tx power in

Advertising/Scanning/Initiating before execution. And it is possible to change Tx power in Master/Slave connection after a
connection.

Refer to Bluetooth Low Energy protocol stack API reference manual: Basics.

7.20.4.8 GPIO of RF part
The GPIO[3:0] pins of RF part can be accessed as General Purpose Input/Output.
When the RF part has changed in Deep Sleep mode, GPIO[2:0] is reset to the input, and GPIO[3] is reset to alternate

function output, the output value cannot be maintained. When the RF part to wake-up from Deep Sleep mode, recover the
output value set in this function.

Note: GPIO[3] pin is reset to the output when the RF part is change to the Deep Sleep mode. Please be careful if you
want to use the GPIO[3] pin as the input port.

7.20.4.9 Adaptable mode
The signal strength measured at the packet reception, and changes to the optimal power mode. This feature is only

available in the Slave-Role.
 This feature has three modes of the RF low-power mode (signal strength is large) and the RF normal mode (signal

strength is medium) and the RF high-performance mode (signal strength is small). If this feature is enabled each mode will
automatically change state

• RF low-power mode: When the signal strength of reception packet is large, reduces the peak current consumption.
The distance between the master and slave is near-range or middle-range, this mode is suitable for applications
such as maintain a high level signal strength.

• RF normal mode: When the signal strength of reception packet is medium, well-balanced operation mode between
the RF low-power and the RF high-performance. The distance between the master and slave is near-range or
middle-range, this mode is suitable for applications such as maintain a certain level signal strength. When
adaptable feature is disabled, will operate in this mode.

• RF high-performance mode: When the signal strength of reception packet is small, operation to maximize the RF
characteristics. The distance between the master and slave is middle-range or far-range, this mode is suitable for
applications such as a low level signal strength.

You can control enabling or disabling the adaptable mode feature by BLE Software. Also, you can select inform the

mode change or not when the adaptable mode feature is set enabling.

 7. Description of Features

R01UW0095EJ0119 Rev.1.19 Page 90 of 108
Jan 31, 2022

The default setting of the adaptable mode feature is disabled. If you want to use, please enable this feature. However, this
feature shall disabled in the Master-Role.

For more setting information, refer to the Bluetooth Low Energy protocol stack API reference manual: Basics.

7.20.4.10 Power Control of RF part
The power supplied in RF part can be controlled. The power control commend is as follows.

• RF power supply OFF: The power supply to RF part will be stopped. If the clock output of 16.384 kHz or 32.768
kHz from PCLBUZ0 is enable, the clock output will be stopped during RF power-off.

• RF power supply ON (DC-DC enable): The on-chip DC-DC converter will be enable. Then, the power supply to
RF part will be started.

• RF power supply ON (DC-DC disable): The on-chip DC-DC converter will be disable. Then, the power supply to
RF part will be started.

Note: In use of this command, please note the following points.

• If the power control command is executed regardless of the ON / OFF setting, kernel events, messages and timer
queue of RWKE are initialized.

• The following features cannot be used during RF power-off.

 The high-speed clock output from RF part

 GPIO of RF part

 The timer management functionality of RWKE

 The error recovery capabilities of RSCIP

• GAP reset is needed after RF power-on. In addition, only GAP reset is acceptable during RF power-off. The
previous RF power-on setting for the use of the on-chip DC-DC converter will be inherited.

 8. EEPROM Emulation Library

R01UW0095EJ0119 Rev.1.19 Page 91 of 108
Jan 31, 2022

8. EEPEOM Emulation Library

8.1 About the EEPROM Emulation Library
The BLE software uses the EEPROM Emulation Library in order to store the BLE-MCU BD address into the data flash.

BLE software does not guarantee behaviors of all functions and all versions of the EEPROM Emulation Library. Following
version is used for the BLE software test. When another version of the EEPROM Emulation Library used or user function
added, you may change the data flash driver.

Version: EEPROM Emulation Library RL78 EEL-T01 V1.13(CS+ for CA,CX)/ RL78 EEL-T02 V1.01(CC-RL)

This Version of the EEPROM Emulation Library is made from the following two files.
Note: Different file to be downloaded by the development environment and compiler.

• RENESAS_EEL_RL78_T01E_V1.20.zip / RENESAS_FDL_RL78_T01E_V1.20.zip (CS+ for CA,CX)
• RENESAS_EEL_RL78_T02E_V1.20.zip / RENESAS_FDL_RL78_T02E_V1.30.zip (CC-RL)

The EEPROM Emulation Library is not part of the BLE software and is a separate product. Please check the supplied

conditions before use.

8.2 About setting for the EEPROM emulation library
In case of using the EEPROM Emulation Library, this library restricts to the RAM area. You must set for the RAM area

with the linker file. Refer to User Manual: EEPROM Emulation Library EEL-T01(R01US0128ED0101) and User Manual:
Data Flash Access Library FDL-T01(R01US0034ED0101) for more information. When using the RL78 EEL-T02, refer to
User Manual: EEPROM Emulation Library Type T02 (Tiny) (R01US0070ED0105) and User Manual: Data Flash Access
Library Type T02 (Tiny) (R01US0061ED0120) for more information.

8.3 Notes on using the EEPROM emulation library
The user application can use the data flash area, using the EEPROM emulation library. To learn how to use it, refer to the

application note of EEPROM emulation library.
Because writing to or reading from the data flash using EEPROM emulation library occupies the long processing time, it

is possible to affect other processes. Thus, design your system to do the process using EEPROM emulation library in the
period in which communication is not performed (e.g., immediate after the power on)..

 9. Code Flash Library

R01UW0095EJ0119 Rev.1.19 Page 92 of 108
Jan 31, 2022

9. Code Flash Library

9.1 About the Code Flash Library
The BLE software uses the Code Flash Library in order to write the software code into the code flash for FW update

function. BLE software does not guarantee behaviors of all functions and all versions of the Code Flash Library. Following
version is used for the BLE software test. When another version of the Code Flash Library used or user function added, you
may change the code flash driver.

Version: Selfprog Library RL78 T01 V1.20

This Version of the Code Flash Library is made from the following file.

• RENESAS_FSL_RL78_T01E_V1.20.zip

The Code Flash Library is not part of the BLE software and is a separate product. Please check the supplied conditions
before use.

[Note] For FW update, please refer to Bluetooth Low Energy Protocol Stack Sample Program Application Note.

9.2 About setting for the Code Flash library
In case of using the Code Flash Library, this library restricts to the RAM area. You must set for the RAM area with the

linker file. Refer to Application Note: Flash Self-programming Library Type T01(R01US0016ED0105) for more
information.

9.3 Notes on using the Code Flash library
To learn how to use it, refer to the application note of Code Flash library.

 10. Note on Writing User Application

R01UW0095EJ0119 Rev.1.19 Page 93 of 108
Jan 31, 2022

10. Note on Writing User Application

10.1 Note on RWKE Timer Management Function
RWKE is the basic software that is designed to operate a BLE protocol stack. When a user creates an application on the

BLE-MCU, you can use the features of RWKE. However, if you want to use the RWKE timer management function, use
on the RWKE task. If you want to use from interrupt service routine, etc., the operation is not guaranteed. For more
information, refer to the chapter of RWKE in the Bluetooth Low Energy Protocol Stack API Reference Manual: Basic.

10.2 Interrupt disabled time of the task and the interrupt handler
Please shorten the processing time of the task and the interrupt handler because the communications processing of BLE

may be affected. The recommended value is within 1msec.

10.3 Data transmission of large size data
When BLE software is required transmission of multiple data in an interval, it performs two or more transmission in one

event. When two or more transmission and reception are performed in 1 time of an event, connection of other devices is
influenced and it may become impossible to maintain connection. Therefore, please do not make two or more transfer
requests within an interval.

When two or more transmission and reception are performed in 1 time of an event, set up the interval value different
from other connection devices. For example when the interval of connection which does not perform two or more
transmission and reception is set to 500 ms, the interval of the connection which may transmit two or more times is set as
520 ms. Please set it so that a common multiple with 500ms becomes the big value. In this way, it is possible to reduce the
number of communication failure.

10.4 Performance of BLE MCU
If data is received between a master device and a slave device, a memory will be dynamically allocated using the

memory control function of RWKE. In order to prevent memory shortage, please design to complete processing by the next
interval.

10.4.1 Modem Configuration
In the case of the Modem Configuration, bottleneck of data processing is serial communication. When a transfer rate is

4800bps and the operating frequency of BLE-MCU is 8MHz, the processing performance of BLE-MCU is about 100 bytes
in 1 second. Therefore, the total data volume between a Master device and Slave devices are less than 100 bytes in 1 second.
The example of a setting of an interval is shown below.

 10. Note on Writing User Application

R01UW0095EJ0119 Rev.1.19 Page 94 of 108
Jan 31, 2022

図 10-1 In case of the interval time where 5 connections of everything is same.

図 10-2 In case of the interval time where 3 connections of everything is different.

APP-MCU BLE-MCU

Slave

Slave

Slave
4800bps

Master

Interval time: 1000ms

Data size: 20byte

Interval time: 1000ms

Data size: 20byte

Interval time: 1000ms

Data size: 20byte

Slave Interval time: 1000ms

Data size: 20byte

Slave Interval time: 1000ms

Data size: 20byte

APP-MCU BLE-MCU

Slave

Slave

Slave
4800bps

Master

Interval time: 500ms

Data size: 10byte

Interval time: 250ms

Data size: 5byte

Interval time: 125ms

Data size: 5byte

The total size is 100bytes
in 1 second.

The total size is 80bytes in
1 second.

 11. Implementation of FW Update Feature

R01UW0095EJ0119 Rev.1.19 Page 95 of 108
Jan 31, 2022

11. Implementation of FW Update Feature

11.1 The FW Update Feature
The FW Update feature can be updated a firmware of the following layer through the BLE radio.
・ GATT based Profile
・ User application

Considerations for implementation of the FW update feature is described hereinafter.
Note: The following descriptions are used in this chapter.
Receiver device: A device that receives updated data
Sender device: A device that sends update data

11.2 Function required for FW Update
The FW Update feature requires implementation of the following functions.

 For Receiver device
・ Writing function to the code flash
・ Data transmission and reception profile
・ Application for update control

 For Sender device
・ Data transmission and reception profile
・ Application for update control

The detail and implementation example are described in the following.

11.2.1 Writing function to the code flash
This function is required on the Receiver device. This controls the code flash in order to write the update data that has

been received from the Sender device.
The control of the code flash requires the code flash library. Please obtain according to ‘9.Code Flash Library’.

Update the firmware by repeating the erasing and writing in one block (1024byte) unit according to the code flash

specifications.

11.2.2 Data transmission and reception profile
This is a custom profile for sending update data from Sender device to Receiver device.
Please implement the functions required for product system with reference to the examples and sample source code

shown in Figure 11-1.
Data transmission and reception profile cannot be updated by the FW Update feature unlike GATT based profiles. Also

cannot be updated the functions that operate during the update.

 11. Implementation of FW Update Feature

R01UW0095EJ0119 Rev.1.19 Page 96 of 108
Jan 31, 2022

Call

Event

Service Discovery

Characteristic Discovery

Set block number and data size

Block Number and Data Size Set Event

Data Set

Data Set Event

Data Set Completion

Data Set Completion Event

Data Write Confirmation

Data Write Confirmation Event

Last Data Write Confirmation

Last Data Write Confirmation Event

Write Response (OK or NG)
Data write result

Write a Characteristic

Write Response (OK or NG)
Last data write result

Write a Characteristic

Write Response (OK or NG)
Whether the specified size has been received

Write a Characteristic

Write a Characteristic

Write Response

Write a Characteristic

Sender Receiver

L2CAP Connection Established

Service Discovery

Characteristic Discovery

Only the first time

L2CAP Disconnection

L2CAP Connection Established

Repeat until receiving specified size

Except the last data

Repeat at 1 block unit until reaching the
number of updating blocks

Figure 11-1 Example of update data transmission and reception sequence

 11. Implementation of FW Update Feature

R01UW0095EJ0119 Rev.1.19 Page 97 of 108
Jan 31, 2022

11.2.3 Application for update control (for Receiver device)
This function is required on the Receiver device. This controls the receiving update data and writing to code flash.
This application cannot be updated by the FW Update feature as is the case with the data transmission and reception

profile.

The FW Update feature uses the boot swap function of RL78/G1D.
Refer to the User’s Manual: Hardware (R01UH0515) for this function.

The implemented processing is described in the following.

(1). Erase the code flash block 4 to 7 (0x01000 to 0x01FFF) when starting the update.
(2). Reset the RL78/G1D by a reset function (FSL_ForceReset) in the code flash library.
(3). When writing data to the block 7, write to 0x01FFE by adding 1 to the value of 0x00FFE. The number of updates

are managed by using the 0x00FFE and 0x01FFE.
(4). The block 42 (0x0A800 ~ 0x0ABFF) and block 43 (0x0AC00 ~ 0x0AFFF) is used to switch the area, depending on

the number of updates. Refer to 11.3.1 for details.
(5). Run the boot flag switching function (FSL_InvertBootFlag) and reset function (FSL_ForceReset) after writing all

the update data in order to switch the boot cluster.

 An example of the FW Update outline processing flow and data writing flow in the Receiver device are shown in Figure
11-2 and Figure 11-3.

Figure 11-2 Example of the FW Update outline processing flow

 11. Implementation of FW Update Feature

R01UW0095EJ0119 Rev.1.19 Page 98 of 108
Jan 31, 2022

Figure 11-3 Example of the data writing flow

11.2.4 Application for update control (for Sender device)
This function is required on the Sender device. This controls the transmitting update data.
To fit into the system of Sender device, please implement the creation of the update data, the controlling the data

transmission and reception profile and the management of the update data.

 11. Implementation of FW Update Feature

R01UW0095EJ0119 Rev.1.19 Page 99 of 108
Jan 31, 2022

11.3 Limitation and Special Processing
The limitation and special processing to implement the FW Update feature are described in this section.

11.3.1 Area switching control
Part of the memory area is used while switching by FW update feature.
There is the target memory area and the non-target memory area for updating.
Though the area that is stored the code to run during update is the non-target memory area basically, there are target areas

to be updated despite running during update. In this target area, it is necessary to reserve the memory space for updating
aside from the area running for the FW Update feature.

Switching of these areas are managed by using the information of the number of updates.
The overview of area switching control is shown in Figure 11-4.

Figure 11-4 Overview of area switching control

The separately reserved area is updated during the FW Update feature running. Then the program of the updated area will
be enabled after the update is complete.

 11. Implementation of FW Update Feature

R01UW0095EJ0119 Rev.1.19 Page 100 of 108
Jan 31, 2022

11.3.2 Limitation for FW Update feature implementation

Limit of when implementing the FW Update feature to the Receiver device is as follows.

(1). Do not run during updating except the following function.
・ Data transmission and reception profile
・ Application for update control
・ BLE protocol stack (except GATT based profile)
・ Code flash library

(2). Do not change the runtime library and standard library that are forced to link. For measures of forcibly link the

runtime library and the standard library, please refer to the Sample program application note (R01AN1375) ‘6.8.3.
Notes of making FW Update Environment’.

(3). Do not use the initialized variable in the application for update control and the data transmission and reception

profile.

 11. Implementation of FW Update Feature

R01UW0095EJ0119 Rev.1.19 Page 101 of 108
Jan 31, 2022

11.3.3 Update target area and User RAM area
A list of update target area and user RAM area is shown in Table 11-1.

Table 11-1 Update target area and user RAM area

Environment Configuration Area Usage

CS+ for CA,CX

(CA78K0R)

Embedded 0x00000 - 0x01FFF Boot cluster 0/1

0x04400 - 0x0A7FF Area for variables allocated in ROM

0x0B000 - 0x0DFFF Functions to be allocated in the NEAR area, Interrupt

function, Area for storing the initial value of initialized

variable

0x31400 - 0x3FBFF Area for the program code

0xFBD10 - 0xFFE1F Area for variables allocated in RAM

Including a stack memory

Modem 0x00000 - 0x01FFF Boot cluster 0/1

0x04400 - 0x0A7FF Area for variables allocated in ROM

0x0B000 - 0x0DFFF Functions to be allocated in the NEAR area, Interrupt

function, Area for storing the initial value of initialized

variable

0x33C00 - 0x3FBFF Area for the program code

0xFC210 - 0xFFE1F Area for variables allocated in RAM

Including a stack memory

e2 studio /

CS+ for CC

(CC-RL)

Embedded 0x00000 - 0x01FFF Boot cluster 0/1

0x04400 - 0x0A7FF Area for variables allocated in ROM

0x0B000 - 0x0DFFF Functions to be allocated in the NEAR area, Interrupt

function, Area for storing the initial value of initialized

variable

0x30000 - 0x3FBFF Area for the program code

0xFBD20 - 0xFFE1F Area for variables allocated in RAM

Including a stack memory

Modem 0x00000 - 0x01FFF Boot cluster 0/1

0x04400 - 0x0A7FF Area for variables allocated in ROM

0x0B000 - 0x0DFFF Functions to be allocated in the NEAR area, Interrupt

function, Area for storing the initial value of initialized

variable

0x30000 - 0x3FBFF Area for the program code

0xFC220 - 0xFFE1F Area for variables allocated in RAM

Including a stack memory

Note: The above values is the default setting when memory allocation is not changed.

 12. HCI Packet Monitoring Feature

R01UW0095EJ0119 Rev.1.19 Page 102 of 108
Jan 31, 2022

12. HCI Packet Monitoring Feature
HCI packet monitoring feature is used to display the internal information of BLE protocol stack as the data of HCI packet

format in virtually. By using this feature, you can easily confirm the Advertising parameters, connection parameters, and
sending and receiving data in real time.

12.1 Functional Composition of the HCI Packet Monitoring
Figure 12-1 shows functional composition of the HCI packet monitoring. In this feature, outputs the internal information

of BLE protocol stack from UART1. In the PC, internal information of received BLE protocol stack is converted to HCI
packet format and displayed on Wireshark.

Note: Wireshark is a network protocol analyzer for Unix/Linux, Mac OS X and Windows. It supports Bluetooth

packet analysis, this feature uses it.

Figure 12-1 HCI packet monitoring functional composition

The following hardware software is needed to use this function.

• Hardware

- UARTRS-232C(USB) converter cable

• baud rate : At least 1Mbps

• TTL level : 3.3V

• Software

- Wireshark (available from https://www.wireshark.org/)

Furthermore, the operation of this function was confirmed in the following environment.

• Hardware

- UARTRS-232C(USB) converter cable
TTL-232RG-VREG3V3-WE (http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm)

• Software

- Windows 7 Enterprise Service Pack1 (32-bit)

- Wireshark Version 1.12.7 (32-bit)

UART1

BLE protocol stack internal
information

PacketMonitor Wireshark

Receive, Convert Display

https://www.wireshark.org/
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm

 12. HCI Packet Monitoring Feature

R01UW0095EJ0119 Rev.1.19 Page 103 of 108
Jan 31, 2022

12.2 Enabling the HCI Packet Monitoring Feature
The HCI packet monitoring feature can be enabled by defining the following macro in the project compile options.

Macro name: CFG_PKTMON (default: noCFG_PKTMON)

Note1: This feature is intended to be used for debugging. This feature is not applicable to any other purposes.
Note2: When using UART1 as a communication interface with the APP MCU in the Modem configuration, or if

the user application uses UART1, it isn't possible to use this feature.

12.3 How to Use the HCI Packet Monitoring Feature
This section describes about the preparations for using and how to use the HCI packet monitoring feature.

12.3.1 Preparations
To use the HCI packet monitoring feature, it requires following preparations.

• RL78/G1D
Create a HEX file by enabling the HCI packet monitoring feature, and write it into RL78/G1D.
About enabling HCI packet monitoring feature, refer to Section 12.2.

• Evaluation board
Connect the UARTRS-232C(USB) converter cable to evaluation board. The connection signals of the
evaluation board and the converter cable are shown in Table 12-1.

Table 12-1 Evaluation board pins and Converter cable signals
Evaluation board Converter cable signal connector pin signal

CN4 4 GND GND
CN4 12 TXD1 RXD

• PC
Obtain the Wireshark from the following, and install.
https://www.wireshark.org/

https://www.wireshark.org/

 12. HCI Packet Monitoring Feature

R01UW0095EJ0119 Rev.1.19 Page 104 of 108
Jan 31, 2022

12.3.2 How to Use
By performing the procedures described below, you will be able to monitor the HCI packets.
(1) Launch the PaketMonitor

Launch the PacketMonitor of the executable file that is appropriate for your development environment.
 CS+ for CA, CX (CA78K0R) : PacketMonitor_for_CA.exe
 Other than the above : PacketMonitor.exe
Executable file of PacketMonitor has been stored in the following folder.
 \Renesas\BLE_Software_Ver_X_XX\PacketMonitor

(2) Select the Wireshark.exe
Once open the PacketMonitor application, the dialog window pop up as shown in Figure 12-2. Select the
Wireshark.exe that installed in advance. Then click [Run] button.

Figure 12-2 Select the Wireshark.exe

(3) Setting of serial port
When click the [Run] button, the Serial port settings dialog window pop up as shown in Figure 12-3.

Figure 12-3 Serial port settings dialog

Select the serial port which connected UARTRS-232C(USB) converter cable. Then, select one of the
following baud rate which according to operating frequency of the RL78/G1D. Next click [OK] button.
 4MHz : 500,000bps
 8, 16, 32MHz : 1,000,000bps
Note: Baud rate setting in the RL78/G1D is fixed internally. It can’t be changed.

(4) Launch the Wireshark
When setting of the serial port is completed by pressing the [OK] button, automatically Wireshark is launched.
Please wait until the Wireshark to fully boot.

(5) Power on of RL78/G1D
After booting the Wireshark, capture of a HCI packet starts by supplying power to the RL78/G1D. After supplying
power to the RL78/G1D, behavior of application is possible as usual.

 12. HCI Packet Monitoring Feature

R01UW0095EJ0119 Rev.1.19 Page 105 of 108
Jan 31, 2022

12.4 HCI Packet Monitoring Screen
Figure 12-4 shows Wireshark's window during HCI packet monitoring (default setting). In Wireshark, HCI packets are

color-coded for each type. It also supports the protocol analysis of ATT and SMP.
In upper pane, the packet exchanged between the Host-Controller is displayed in chronological order. In middle and

lower pane, details of the packet selected at the upper pane is displayed.

Figure 12-4 Wireshark’s window during HCI packet monitoring

For details about HCI Commands and Events, refer to Bluetooth Core Specification v4.2[Vol. 2], Part E Section 7. HCI

Commands and Events.
For details about packet format of ATT, refer to Bluetooth Core Specification v4.2[Vol. 3], Part F Section 3.3 Attribute

PDU.
For details about packet format of SM, refer to Bluetooth Core Specification v4.2[Vol. 3], Part H Section 3 Security

Manager Protocol.

Packet List

Packet Details

 Appendix A Referenced Documents

R01UW0095EJ0119 Rev.1.19 Page 106 of 108
Jan 31, 2022

Appendix A Referenced Documents

1. Bluetooth Core Specification v4.2, Bluetooth SIG
2. Find Me Profile Specification v1.0, Bluetooth SIG
3. Immediate Alert Service Specification v1.0, Bluetooth SIG
4. Proximity Profile Specification v1.0, Bluetooth SIG
5. Link Loss Service Specification v1.0, Bluetooth SIG
6. Tx Power Service Specification v1.0, Bluetooth SIG
7. Health Thermometer Profile Specification v1.0, Bluetooth SIG
8. Health Thermometer Service Specification v1.0, Bluetooth SIG
9. Device Information Service Specification v1.1, Bluetooth SIG

10. Blood Pressure Profile Specification v1.0, Bluetooth SIG
11. Blood Pressure Service Specification v1.0, Bluetooth SIG
12. HID over GATT Profile Specification v1.0, Bluetooth SIG
13. HID Service Specification v1.0, Bluetooth SIG
14. Battery Service Specification v1.0, Bluetooth SIG
15. Scan Parameters Profile Specification v1.0, Bluetooth SIG
16. Scan Parameters Service Specification v1.0, Bluetooth SIG
17. Heart Rate Profile Specification v1.0, Bluetooth SIG
18. Heart Rate Service Specification v1.0, Bluetooth SIG
19. Cycling Speed and Cadence Profile Specification v1.0, Bluetooth SIG
20. Cycling Speed and Cadence Service Specification v1.0, Bluetooth SIG
21. Cycling Power Profile Specification v1.0, Bluetooth SIG
22. Cycling Power Service Specification v1.0, Bluetooth SIG
23. Glucose Profile Specification v1.0, Bluetooth SIG
24. Glucose Service Specification v1.0, Bluetooth SIG
25. Time Profile Specification v1.0, Bluetooth SIG
26. Current Time Service Specification v1.0, Bluetooth SIG
27. Next DST Change Service Specification v1.0, Bluetooth SIG
28. Reference Time Update Service Specification v1.0, Bluetooth SIG
29. Alert Notification Service Specification v1.0, Bluetooth SIG
30. Alert Notification Profile Specification v1.0, Bluetooth SIG
31. Location and Navigation Service Specification v1.0, Bluetooth SIG
32. Location and Navigation Profile Specification v1.0, Bluetooth SIG
33. Phone Alert Status Service Specification v1.0, Bluetooth SIG
34. Phone Alert Status Profile Specification v1.0, Bluetooth SIG
35. Bluetooth SIG Assigned Numbers https://www.bluetooth.com/specifications/assigned-numbers
36. Services & Characteristics UUID http://developer.bluetooth.org/gatt/Pages/default.aspx
37. Personal Health Devices Transcoding White Paper v1.2, Bluetooth SIG

https://www.bluetooth.com/specifications/assigned-numbers
http://developer.bluetooth.org/gatt/Pages/default.aspx

 Appendix B Terminology

R01UW0095EJ0119 Rev.1.19 Page 107 of 108
Jan 31, 2022

Appendix B Terminology

Term Description

Service A service is provided from a GATT server to a GATT client. The GATT server
exposes some characteristics as the interface.
The service prescribes how to access the exposed characteristics.

Profile A profile enables implementation of a use case by using one or more services. The
services used are defined in the specifications of each profile.

Characteristic A characteristic is a value used to identify services. The characteristics to be
exposed and their formats are defined by each service.

Role Each device takes the role prescribed by the profile or service in order to implement
the specified use case.

Client Characteristic Configuration
Descriptor

A descriptor is used to control notifications or indications of characteristic values that
include the client characteristic configuration descriptor sent from the GATT server.

Connection Handle This is the handle determined by the controller stack and is used to identify
connection with a remote device. The valid handle range is between 0x0000 and
0x0EFF.

Universally Unique Identifier
(UUID)

This is an identifier for uniquely identifying an item. In the BLE standard, a 16-bit
UUID is defined for identifying services and their characteristics.

Bluetooth Device Address
(BD Address)

This is a 48-bit address for identifying a Bluetooth device. The BLE standard defines
both public and random addresses, and at least one or the other must be supported.

Public Address This is an address that includes an allocated 24-bit OUI (Organizationally Unique
Identifier) registered with the IEEE.

Random Address This is an address that contains a random number and belongs to one of the
following three categories :
• Static Address
• Non-Resolvable Private Address
• Resolvable Private Address

Static Address This is an address whose 2 most significant bits are both 1, and whose remaining 46
bits form a random number other than all 1’s or all 0’s. This static address cannot be
changed until the power is switched off.

Non-Resolvable Private Address This is an address whose 2 most significant bits are both 0, and whose remaining 46
bits form a random number other than all 1’s or all 0’s. Static addresses and public
addresses must not be equal.
This type of address is used to make tracking by an attacker difficult by changing the
address frequently.

Resolvable Private Address This is an address generated from an IRK and a 24-bit random number. Its 2 most
significant bits are 0 and 1, and the remaining higher 22 bits form a random number
other than all 1’s or all 0’s. The lower 24 bits are calculated based on an IRK and the
higher random number.
This type of address is used to make tracking by an attacker difficult by changing the
address frequently.
By allocating an IRK to the peer device, the peer device can identify the
communicating device by using that IRK.

Broadcaster This is one of the roles of GAP. It is used to transmit advertising data.

 Appendix B Terminology

R01UW0095EJ0119 Rev.1.19 Page 108 of 108
Jan 31, 2022

Term Description

Observer This is one of the roles of GAP. It is used to receive advertising data.

Central This is one of the roles of GAP. It is used to establish a physical link. In the link layer,
it is called Master.

Peripheral This is one of the roles of GAP. It is used to accept the establishment of a physical
link. In the link layer, it is called Slave.

Advertising Advertising is used to transmit data on a specific channel for the purpose of
establishing a connection or performing data transmission.

Scan Scans are used to receive advertising data. There are two types of scans : Passive
scan, in which data is simply received, and active scan, in which additional
information is requested by sending SCAN_REQ.

White List By registering known devices that are connected or bonded to a White List, it is
possible to filter devices that can accept advertising data or connection requests.

Device Name This is a user-friendly name freely assigned to a Bluetooth device to identify it.
In the BLE standard, the device name is exposed to the peer device by the GATT
server as a GAP characteristic.

Reconnection Address If a non-resolvable private address is used and the address is changed frequently,
not only attackers but also the peer device will have difficulty identifying the device.
Therefore, the address to be used at reconnection is reported by setting a new
reconnection address as the exposed reconnection address characteristic.

Scan Interval This is the interval for receiving advertising data.

Scan Window This is the period of time during which advertising data is received at the scan
interval.

Connection Interval This is the interval for transmitting and receiving data periodically following
connection establishment.

Connection Event This is the period of time during which data is transmitted and received at the
connection interval.

Slave Latency This is the period of time during which data is transmitted and received at the
connection interval.

Supervision Timeout This is the timeout interval after which the link is considered to have been lost when
no response is received from the peer device.

Passkey Entry This is a pairing method whereby a six-digit number is input by each device to the
other, or a six-digit number is displayed by one of the devices and that number is
input to the other device.

Just Works This is a pairing method that does not require user action.

OOB This is a pairing method whereby pairing is performed by using data obtained by a
communication method other than Bluetooth.

Identity Resolving Key (IRK) This is a 128-bit key used to generate and resolve resolvable private addresses.

Connection Signature Resolving
Key (CSRK)

This is a 128-bit key used to create data signatures and verify the signature of
incoming data.

Long Term Key (LTK) This is a 128-bit key used for encryption. The key size to be used is the size agreed
on during pairing.

Short Term Key (STK) This is a 128-bit key used for encryption during key exchange. It is generated using
TK.

 Appendix B Terminology

R01UW0095EJ0119 Rev.1.19 Page 109 of 108
Jan 31, 2022

Term Description

Temporary Key (TK) This is a 128-bit key required for STK generation. In the case of Just Works, the TK
value is 0. In the case of Passkey Entry, it is the 6-digit number that was input, and in
the case of OOB, it is the OOB data.

Bluetooth Low Energy Protocol Stack
User’s Manual

Publication Date : Rev.1.19 Jan 31, 2022

Published by : Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 5.1

Bluetooth Low Energy Protocol Stack

R01UW0095EJ0119

	1. Overview
	2. Applicability
	3. Restrictions
	4. Installing BLE Software
	4.1 Components Included
	4.2 BLE software build environment
	4.3 Installation Procedure
	4.4 Folder Organization
	4.4.1 \Renesas\BLE_Software_Ver_X_XX\Manual\
	4.4.2 \Renesas\BLE_Software_Ver_X_XX\RL78_G1D
	(1) \ROM_File\
	(2) \Project_Source\
	(3) \Project_Source\renesas\tools\project\
	(4) \Project_Source\renesas\src\
	(5) \Project_Source\renesas\src\driver\dataflash\cc_rl\ or \cs\
	(6) \Project_Source\renesas\src\driver\codeflash\cc_rl\ or cs\

	4.4.3 \Renesas\BLE_Software_Ver_X_XX\BLE_Sample\

	5. BLE Software Configuration
	5.1 Configuration
	5.2 rBLE API
	5.3 RL78/G1D Hardware Resources used by the BLE Software
	5.4 Serial Communication in Modem Configuration
	5.4.1 UART 2-wire Connection
	(1) Transmit Operation of APP MCU
	(2) APP MCU Receive Operation

	5.4.2 UART 3-wire Connection
	(1) Transmit Operation (APP MCU)
	(2) Receive Operation (APP MCU)

	5.4.3 UART 2-wire with Branch Connection
	(1) Transmit Operation (APP MCU)
	(2) Receive Operation (APP MCU)

	5.4.4 CSI 4-wire Connection
	(1) Transmit Operation (APP MCU)
	(2) Receive Operation (APP MCU)

	5.4.5 CSI 5-wire Connection
	(1) Transmit Operation (APP MCU)
	(2) Receive Operation (APP MCU)

	5.4.6 IIC 3-wire Connection
	(1) Transmit Operation (APP MCU)
	(2) Receive Operation (APP MCU)

	5.5 Customer-specific information
	5.6 Selection of own Bluetooth Device address

	6. Creating Executable Files
	6.1 Changing the Configuration Parameters
	6.1.1 Maximum Number of Simultaneous Connections
	6.1.2 Allocating the Heap Area
	6.1.3 Changing the Operating Frequency
	6.1.4 Setting MCU part initialization
	6.1.5 Setting RF part initialization
	6.1.6 Selecting the serial communication method
	6.1.7 Setting the UART baud rate
	6.1.7.1 Selecting the Serial Clock
	6.1.7.2 Calculating the baud rate
	6.1.7.3 Sample code for changing the baud rate

	6.1.8 Setting the CSI baud rate
	6.1.9 Setting the IIC transfer clock
	6.1.10 Wait for the time Sub Clock is stabled
	6.1.11 Setting the Profile Service
	6.1.11.1 Profile Enable / Disable Setting
	6.1.11.2 GAP Parameters Setting
	6.1.11.3 GAP Characteristic Setting
	6.1.11.4 GATT Characteristic Setting
	6.1.11.5 Blood Pressure Service Characteristic Setting
	6.1.11.6 HID Service Characteristic Setting
	6.1.11.7 Battery Service Characteristic Setting
	6.1.11.8 Specifying Device Information service product information
	6.1.11.9 Heart Rate Service Characteristic Setting
	6.1.11.10 Cycling Speed and Cadence Service Characteristic Setting
	6.1.11.11 Cycling Power Service Characteristic Setting
	6.1.11.12 Glucose Service Characteristic Setting
	6.1.11.13 Current Time Service Characteristic Setting
	6.1.11.14 Running Speed and Cadence Service Characteristic Setting
	6.1.11.15 Alert Notification Service Characteristic Setting
	6.1.11.16 Location and Navigation Service Characteristic Setting

	6.2 Building a Project
	6.3 Additional Note

	7. Description of Features
	7.1 Controller Stack
	7.1.1 Advertising
	7.1.2 Scanning
	7.1.2.1 Passive Scanning
	7.1.2.2 Active Scanning

	7.1.3 Initiating
	7.1.4 White List
	7.1.4.1 Advertising filter policy
	7.1.4.2 Scanner filter policy
	7.1.4.3 Initiator filter policy

	7.2 Generic Access Profile
	7.2.1 GAP roles
	7.2.2 GAP modes and procedures
	7.2.2.1 Broadcast mode and Observation procedure
	7.2.2.2 Discovery mode and procedure
	7.2.2.3 Connection mode and procedure
	7.2.2.4 Bonding mode and procedure

	7.2.3 Security
	7.2.3.1 Security mode
	7.2.3.2 Authentication procedure
	7.2.3.3 Data Signing
	7.2.3.4 Privacy features

	7.2.4 Bluetooth Device Address
	7.2.4.1 Public address
	7.2.4.2 Random address

	7.2.5 Advertising and Scan response data formats

	7.3 Security Manager
	7.3.1 Pairing feature exchange
	7.3.2 STK generation
	7.3.3 Key distribution

	7.4 Generic Attribute Profile
	7.4.1 GATT Database
	7.4.1.1 Database structure
	7.4.1.2 Attribute Type
	(1) Service Definition
	(2) Include Definition
	(3) Characteristic Definition

	7.4.1.3 Example of Database Construction

	7.4.2 Creating a User Profile
	7.4.2.1 GATT Client Role
	7.4.2.2 GATT Server Role
	(1) Definition of Attribute Identification Number
	(2) Definition of Attribute Handle
	(3) Constructing Database Array

	7.5 Find Me Profile (Obsolete)
	7.6 Proximity Profile (Obsolete)
	7.7 Health Thermometer Profile (Obsolete)
	7.8 Blood Pressure Profile (Obsolete)
	7.9 HID over GATT Profile (Obsolete)
	7.10 Scan Parameters Profile (Obsolete)
	7.11 Heart Rete Profile (Obsolete)
	7.12 Cycling Speed and Cadence Profile (Obsolete)
	7.13 Cycling Power Profile (Obsolete)
	7.14 Glucose Profile (Obsolete)
	7.15 Time Profile (Obsolete)
	7.16 Running Speed and Cadence Profile (Obsolete)
	7.17 Alert Notification Profile (Obsolete)
	7.18 Phone Alert Status Profile (Obsolete)
	7.19 Location and Navigation Profile (Obsolete)
	7.20 Vendor Specific
	7.20.1 Peak current consumption notification
	7.20.1.1 Overview
	7.20.1.2 Specifications
	7.20.1.3 Function specifications
	(1) Peak current consumption notification setting function
	(2) Peak current consumption notification function
	(3) Peak current consumption end notification function

	7.20.2 Sleep
	7.20.2.1 Overview
	7.20.2.2 Operation overview
	7.20.2.3 Cautions on application implementation

	7.20.3 Reset processing
	7.20.4 Original features provided by rBLE API
	7.20.4.1 Bluetooth device address write
	7.20.4.2 Direct Test Mode
	7.20.4.3 Extended Direct Test Mode
	7.20.4.4 Burst transfer
	7.20.4.5 Continuous carrier wave (CW) output
	7.20.4.6 RSSI reading in reception Direct Test Mode
	7.20.4.7 Tx power selection
	7.20.4.8 GPIO of RF part
	7.20.4.9 Adaptable mode
	7.20.4.10 Power Control of RF part

	8. EEPEOM Emulation Library
	8.1 About the EEPROM Emulation Library
	8.2 About setting for the EEPROM emulation library
	8.3 Notes on using the EEPROM emulation library

	9. Code Flash Library
	9.1 About the Code Flash Library
	9.2 About setting for the Code Flash library
	9.3 Notes on using the Code Flash library

	10. Note on Writing User Application
	10.1 Note on RWKE Timer Management Function
	10.2 Interrupt disabled time of the task and the interrupt handler
	10.3 Data transmission of large size data
	10.4 Performance of BLE MCU
	10.4.1 Modem Configuration

	11. Implementation of FW Update Feature
	11.1 The FW Update Feature
	11.2 Function required for FW Update
	11.2.1 Writing function to the code flash
	11.2.2 Data transmission and reception profile
	11.2.3 Application for update control (for Receiver device)
	11.2.4 Application for update control (for Sender device)

	11.3 Limitation and Special Processing
	11.3.1 Area switching control
	11.3.2 Limitation for FW Update feature implementation
	11.3.3 Update target area and User RAM area

	12. HCI Packet Monitoring Feature
	12.1 Functional Composition of the HCI Packet Monitoring
	12.2 Enabling the HCI Packet Monitoring Feature
	12.3 How to Use the HCI Packet Monitoring Feature
	12.3.1 Preparations
	12.3.2 How to Use

	12.4 HCI Packet Monitoring Screen

	Appendix A Referenced Documents
	Appendix B Terminology

