
Renesas Flexible Software Package (FSP)
v3.3.0

 User’s Manual

Renesas RA Family

 All information contained in these materials, including products and
product specifications, represents information on the product at the
time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published
by Renesas Electronics Corp. through various means, including the
Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Revision 2.30 Sep.10.2021
www.renesas.com

Table of Contents

Chapter 1 Introduction ... 9
1.1 Overview ... 9
1.2 Using this Manual ... 9
1.3 Documentation Standard .. 9
1.4 Introduction to FSP .. 9

1.4.1 Purpose .. 10
1.4.2 Quality ... 10
1.4.3 Ease of Use .. 10
1.4.4 Scalability ... 10
1.4.5 Build Time Configurations .. 10
1.4.6 e2 studio IDE ... 10

Chapter 2 Starting Development ... 11
2.1 Starting Development Introduction ... 11
2.2 e2 studio User Guide .. 12

2.2.1 What is e2 studio? .. 12
2.2.2 e2 studio Prerequisites .. 14

2.2.2.1 Obtaining an RA MCU Kit .. 14
2.2.2.2 PC Requirements .. 14
2.2.2.3 Installing e2 studio, platform installer and the FSP package .. 14
2.2.2.4 Choosing a Toolchain ... 14
2.2.2.5 Licensing .. 15

2.2.3 What is a Project? .. 15
2.2.4 Creating a Project .. 17

2.2.4.1 Creating a New Project ... 17
2.2.4.2 Selecting a Board and Toolchain .. 18
2.2.4.3 Selecting Flat or Arm® TrustZone® Project ... 19
2.2.4.4 Selecting a Project Template .. 20

2.2.5 Configuring a Project ... 23
2.2.5.1 Summary Tab ... 23
2.2.5.2 Configuring the BSP .. 24
2.2.5.3 Configuring Clocks ... 24
2.2.5.4 Configuring Pins .. 25
2.2.5.5 Configuring Interrupts from the Stacks Tab ... 27
2.2.5.6 Viewing Event Links .. 30

2.2.6 Adding Threads and Drivers ... 30
2.2.6.1 Adding and Configuring HAL Drivers .. 31
2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers .. 33
2.2.6.3 Configuring Threads .. 36

2.2.7 Reviewing and Adding Components .. 37
2.2.8 Writing the Application .. 38

2.2.8.1 Coding Features .. 38
2.2.8.2 HAL Modules in FSP: A Practical Description .. 44
2.2.8.3 RTOS-Independent Applications .. 45
2.2.8.4 RTOS Applications ... 46
2.2.8.5 Additional Resources for Application Development ... 48

2.2.9 Debugging the Project .. 49
2.2.10 Modifying Toolchain Settings ... 49
2.2.11 Creating RA project with ARM Compiler 6 in e2 studio ... 50
2.2.12 Importing an Existing Project into e2 studio ... 53

2.3 Tutorial: Your First RA MCU Project - Blinky ... 57
2.3.1 Tutorial Blinky ... 57

2.3.2 What Does Blinky Do? .. 58
2.3.3 Prerequisites ... 58
2.3.4 Create a New Project for Blinky ... 58

2.3.4.1 Details about the Blinky Configuration ... 61
2.3.4.2 Configuring the Blinky Clocks .. 62
2.3.4.3 Configuring the Blinky Pins ... 62
2.3.4.4 Configuring the Parameters for Blinky Components .. 62
2.3.4.5 Where is main()? .. 62
2.3.4.6 Blinky Example Code .. 62

2.3.5 Build the Blinky Project ... 62
2.3.6 Debug the Blinky Project ... 63

2.3.6.1 Debug prerequisites .. 63
2.3.6.2 Debug steps .. 64
2.3.6.3 Details about the Debug Process .. 65

2.3.7 Run the Blinky Project .. 66
2.4 Tutorial: Using HAL Drivers - Programming the WDT ... 66

2.4.1 Application WDT ... 66
2.4.2 Creating a WDT Application Using the RA MCU FSP and e2 studio 66

2.4.2.1 Using the FSP and e2 studio .. 66
2.4.2.2 The WDT Application .. 66
2.4.2.3 WDT Application flow .. 67

2.4.3 Creating the Project with e2 studio ... 67
2.4.4 Configuring the Project with e2 studio ... 70

2.4.4.1 BSP Tab .. 71
2.4.4.2 Clocks Tab ... 71
2.4.4.3 Interrupts Tab .. 72
2.4.4.4 Event Links Tab .. 72
2.4.4.5 Pins Tab .. 72
2.4.4.6 Stacks Tab ... 72
2.4.4.7 Components Tab .. 75

2.4.5 WDT Generated Project Files .. 76
2.4.5.1 WDT hal_data.h .. 78
2.4.5.2 WDT hal_data.c .. 79
2.4.5.3 WDT main.c .. 80
2.4.5.4 WDT hal_entry.c .. 80

2.4.6 Building and Testing the Project .. 83
2.5 Primer: ARM® TrustZone® Project Development ... 84

2.5.1 Renesas Implementation of ARM® TrustZone® Technology 85
2.5.1.1 Calling from Non-Secure to Secure ... 86
2.5.1.2 Calling from Secure to Non-Secure ... 86

2.5.2 Workflow .. 86
2.5.2.1 Secure Project ... 86
2.5.2.2 Non-Secure Project ... 87
2.5.2.3 Flat Project ... 87

2.5.3 RA Project Generator (PG) ... 87
2.5.3.1 Secure Project Set Up ... 89
2.5.3.2 RTOS Support in TZ Project .. 89
2.5.3.3 Peripheral Security Attribution ... 90
2.5.3.4 Non-Secure ... 91
2.5.3.5 Flat Project Type .. 91
2.5.3.6 Secure Connection to Non-Secure Project ... 91
2.5.3.7 Debug Configurations ... 92

2.5.4 Secure Projects .. 92
2.5.4.1 Secure Clock .. 93
2.5.4.2 Setting Drivers as NSC ... 93

2.5.4.3 Guard Functions .. 93
2.5.5 Non-Secure projects ... 94

2.5.5.1 Clock Set Up .. 94
2.5.5.2 Selecting NSC Drivers ... 95
2.5.5.3 Locked Resources ... 95
2.5.5.4 Locked Channels .. 96

2.5.6 IDAU registers .. 96
2.5.6.1 SCI Boot Mode ... 98
2.5.6.2 DLM States ... 98

2.5.7 Debug .. 100
2.5.7.1 Non-Secure Debug .. 100

2.5.8 Debugger support ... 101
2.5.9 Third-Party IDEs .. 101
2.5.10 Renesas Flash Programmer (RFP) ... 102
2.5.11 Glossary .. 103

2.5.11.1 Configurator Icon Glossary ... 104
2.6 RA SC User Guide for MDK and IAR .. 104

2.6.1 What is RA SC? .. 104
2.6.2 Using RA Smart Configurator with Keil MDK .. 104

2.6.2.1 Prerequisites ... 104
2.6.2.2 Create new RA project .. 105
2.6.2.3 Modify existing RA project .. 106
2.6.2.4 Build and Debug RA project ... 106
2.6.2.5 Notes and Restrictions .. 107

2.6.3 Using RA Smart Configurator with IAR EWARM .. 108
2.6.3.1 Prerequisites ... 108
2.6.3.2 Create new RA project .. 108
2.6.3.3 Notes and Restrictions .. 109

Chapter 3 FSP Architecture ... 111
3.1 FSP Architecture Overview ... 111

3.1.1 C99 Use ... 111
3.1.2 Doxygen ... 111
3.1.3 Weak Symbols ... 111
3.1.4 Memory Allocation ... 111
3.1.5 FSP Terms ... 111

3.2 FSP Modules .. 113
3.3 FSP Stacks ... 114
3.4 FSP Interfaces ... 115

3.4.1 FSP Interface Enumerations ... 115
3.4.2 FSP Interface Callback Functions .. 115
3.4.3 FSP Interface Data Structures .. 118

3.4.3.1 FSP Interface Configuration Structure .. 118
3.4.3.2 FSP Interface API Structure ... 118
3.4.3.3 FSP Interface Instance Structure ... 121

3.5 FSP Instances ... 122
3.5.1 FSP Instance Control Structure .. 122
3.5.2 FSP Interface Extensions ... 122

3.5.2.1 FSP Extended Configuration Structure .. 123
3.5.3 FSP Instance API .. 123

3.6 FSP API Standards .. 123
3.6.1 FSP Function Names ... 123
3.6.2 Use of const in API parameters .. 123
3.6.3 FSP Version Information .. 124

3.7 FSP Build Time Configurations .. 124

3.8 FSP File Structure ... 124
3.9 FSP TrustZone Support ... 125

3.9.1 FSP TrustZone Projects .. 125
3.9.2 Non-Secure Callable Guard Functions .. 125
3.9.3 Callbacks in Non-Secure from Non-Secure Callable Modules 125
3.9.4 Additional TrustZone Information ... 125

3.10 FSP Architecture in Practice ... 126
3.10.1 FSP Connecting Layers ... 126
3.10.2 Using FSP Modules in an Application ... 126

3.10.2.1 Create a Module Instance in the RA Configuration Editor .. 126
3.10.2.2 Use the Instance API in the Application ... 126

Chapter 4 API Reference .. 128
4.1 BSP .. 128

4.1.1 Common Error Codes ... 130
4.1.2 MCU Board Support Package ... 141

4.1.2.1 RA2A1 .. 171
4.1.2.2 RA2E1 .. 176
4.1.2.3 RA2L1 .. 181
4.1.2.4 RA4E1 .. 187
4.1.2.5 RA4M1 .. 194
4.1.2.6 RA4M2 .. 199
4.1.2.7 RA4M3 .. 205
4.1.2.8 RA4W1 .. 212
4.1.2.9 RA6E1 .. 217
4.1.2.10 RA6M1 ... 224
4.1.2.11 RA6M2 ... 229
4.1.2.12 RA6M3 ... 234
4.1.2.13 RA6M4 ... 240
4.1.2.14 RA6M5 ... 247
4.1.2.15 RA6T1 ... 254

4.1.3 BSP I/O access ... 259
4.2 Modules ... 271

4.2.1 High-Speed Analog Comparator (r_acmphs) .. 282
4.2.2 Low-Power Analog Comparator (r_acmplp) ... 289
4.2.3 Analog to Digital Converter (r_adc) .. 297
4.2.4 Asynchronous General Purpose Timer (r_agt) ... 326
4.2.5 Bluetooth Low Energy Library (r_ble) .. 352

4.2.5.1 GAP ... 358
4.2.5.2 GATT_COMMON ... 525
4.2.5.3 GATT_SERVER ... 526
4.2.5.4 GATT_CLIENT .. 562
4.2.5.5 L2CAP .. 613
4.2.5.6 VS .. 630

4.2.6 Clock Frequency Accuracy Measurement Circuit (r_cac) 660
4.2.7 Controller Area Network (r_can) ... 666
4.2.8 Controller Area Network - Flexible Data (r_canfd) ... 703
4.2.9 Consumer Electronics Control (r_cec) .. 730
4.2.10 Clock Generation Circuit (r_cgc) .. 741
4.2.11 Cyclic Redundancy Check (CRC) Calculator (r_crc) ... 762
4.2.12 Capacitive Touch Sensing Unit (r_ctsu) .. 768
4.2.13 Digital to Analog Converter (r_dac) ... 794
4.2.14 Digital to Analog Converter (r_dac8) .. 799
4.2.15 Direct Memory Access Controller (r_dmac) .. 805
4.2.16 Data Operation Circuit (r_doc) .. 819

4.2.17 D/AVE 2D Port Interface (r_drw) .. 825
4.2.18 Data Transfer Controller (r_dtc) ... 827
4.2.19 Event Link Controller (r_elc) ... 839
4.2.20 Ethernet (r_ether) ... 847
4.2.21 Ethernet PHY (r_ether_phy) ... 868
4.2.22 High-Performance Flash Driver (r_flash_hp) .. 875
4.2.23 Low-Power Flash Driver (r_flash_lp) .. 894
4.2.24 Graphics LCD Controller (r_glcdc) ... 911
4.2.25 General PWM Timer (r_gpt) ... 945
4.2.26 General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase) 985
4.2.27 Interrupt Controller Unit (r_icu) ... 994
4.2.28 I2C Master on IIC (r_iic_master) ... 1001
4.2.29 I2C Slave on IIC (r_iic_slave) ... 1014
4.2.30 I/O Ports (r_ioport) ... 1025
4.2.31 Independent Watchdog Timer (r_iwdt) .. 1046
4.2.32 JPEG Codec (r_jpeg) .. 1055
4.2.33 Key Interrupt (r_kint) .. 1082
4.2.34 Low Power Modes (r_lpm) ... 1086
4.2.35 Low Voltage Detection (r_lvd) ... 1095
4.2.36 Operational Amplifier (r_opamp) ... 1103
4.2.37 Octa Serial Peripheral Interface Flash (r_ospi) ... 1121
4.2.38 Parallel Data Capture (r_pdc) ... 1139
4.2.39 Port Output Enable for GPT (r_poeg) ... 1146
4.2.40 Precision Time Protocol (r_ptp) .. 1154
4.2.41 Quad Serial Peripheral Interface Flash (r_qspi) ... 1175
4.2.42 Realtime Clock (r_rtc) ... 1193
4.2.43 Secure Crypto Engine (r_sce_protected) ... 1205
4.2.44 Serial Communications Interface (SCI) I2C (r_sci_i2c) 1346
4.2.45 Serial Communications Interface (SCI) SPI (r_sci_spi) 1358
4.2.46 Serial Communications Interface (SCI) UART (r_sci_uart) 1370
4.2.47 Sigma Delta Analog to Digital Converter (r_sdadc) ... 1388
4.2.48 SD/MMC Host Interface (r_sdhi) ... 1409
4.2.49 Segment LCD Controller (r_slcdc) .. 1425
4.2.50 Serial Peripheral Interface (r_spi) ... 1433
4.2.51 Serial Sound Interface (r_ssi) ... 1452
4.2.52 USB (r_usb_basic) ... 1467
4.2.53 USB Composite Class (r_usb_composite) .. 1494
4.2.54 USB Host Communications Device Class Driver (r_usb_hcdc) 1504
4.2.55 USB Host Human Interface Device Class Driver (r_usb_hhid) 1513
4.2.56 USB Host Mass Storage Class Driver (r_usb_hmsc) .. 1522
4.2.57 USB Host Vendor Class (r_usb_hvnd) .. 1532
4.2.58 USB Peripheral Communications Device Class (r_usb_pcdc) 1546
4.2.59 USB Peripheral Human Interface Device Class (r_usb_phid) 1553
4.2.60 USB Peripheral Mass Storage Class (r_usb_pmsc) .. 1569
4.2.61 USB Peripheral Vendor Class (r_usb_pvnd) ... 1575
4.2.62 Watchdog Timer (r_wdt) .. 1587
4.2.63 ADPCM Decoder (rm_adpcm_decoder) ... 1599
4.2.64 Audio Playback with PWM (rm_audio_playback_pwm) 1603
4.2.65 AWS PKCS11 PAL (rm_aws_pkcs11_pal) .. 1614
4.2.66 AWS PKCS11 PAL LITTLEFS (rm_aws_pkcs11_pal_littlefs) 1615
4.2.67 Bluetooth Low Energy Abstraction (rm_ble_abs) .. 1616
4.2.68 SD/MMC Block Media Implementation (rm_block_media_sdmmc) 1646
4.2.69 SPI Block Media Implementation (rm_block_media_spi) 1653
4.2.70 USB HMSC Block Media Implementation (rm_block_media_usb) 1662

4.2.71 User Block Media Implementation (rm_block_media_user) 1669
4.2.72 I2C Communicatons Middleware (rm_comms_i2c) ... 1671
4.2.73 SEGGER emWin Port (rm_emwin_port) ... 1677
4.2.74 Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media) 1685
4.2.75 Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor) 1702
4.2.76 FreeRTOS+FAT Port (rm_freertos_plus_fat) .. 1716
4.2.77 FreeRTOS Plus TCP (rm_freertos_plus_tcp) .. 1729
4.2.78 FreeRTOS Port (rm_freertos_port) .. 1736
4.2.79 RTOS Context Management (rm_tz_context) .. 1765
4.2.80 FS2012 Sensor Middleware (rm_fs2012) .. 1766
4.2.81 Azure RTOS GUIX Port (rm_guix_port) ... 1771
4.2.82 HS300X Sensor Middleware (rm_hs300x) .. 1779
4.2.83 Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi) 1790
4.2.84 LittleFS Flash Port (rm_littlefs_flash) ... 1803
4.2.85 MCUboot Port (rm_mcuboot_port) .. 1810
4.2.86 Motor Current (rm_motor_current) .. 1820
4.2.87 Motor Driver (rm_motor_driver) .. 1830
4.2.88 Motor encoder vector control (rm_motor_encoder) ... 1837
4.2.89 Motor Angle and Speed Estimation (rm_motor_estimate) 1848
4.2.90 Motor Position (rm_motor_position) .. 1857
4.2.91 Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder) 1867
4.2.92 Motor Sensorless Vector Control (rm_motor_sensorless) 1877
4.2.93 Motor Speed (rm_motor_speed) ... 1887
4.2.94 Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto) 1899
4.2.95 Azure RTOS NetX Duo Ether Driver (rm_netxduo_ether) 1937
4.2.96 Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi) 1940
4.2.97 Crypto Middleware (rm_psa_crypto) ... 1946
4.2.98 Azure RTOS ThreadX Port (rm_threadx_port) ... 1988
4.2.99 Intel TinyCrypt (rm_tinycrypt_port) .. 1997
4.2.100 Capacitive Touch Middleware (rm_touch) ... 2006
4.2.101 USBX Porting Layer (rm_usbx_port) .. 2025
4.2.102 Virtual EEPROM (rm_vee_flash) .. 2050
4.2.103 AWS Device Provisioning ... 2064
4.2.104 AWS HTTPS .. 2068
4.2.105 AWS MQTT .. 2073
4.2.106 Wifi Middleware (rm_wifi_onchip_silex) ... 2076
4.2.107 AWS Secure Sockets ... 2089
4.2.108 ZMOD4XXX Sensor Middleware (rm_zmod4xxx) ... 2095

4.3 Interfaces ... 2112
4.3.1 ADC Interface ... 2118
4.3.2 BLE Interface ... 2132
4.3.3 CAC Interface ... 2134
4.3.4 CAN Interface ... 2143
4.3.5 CEC Interface ... 2153
4.3.6 CGC Interface ... 2162
4.3.7 Comparator Interface ... 2176
4.3.8 CRC Interface ... 2184
4.3.9 CTSU Interface .. 2191
4.3.10 DAC Interface .. 2204
4.3.11 Display Interface .. 2209
4.3.12 DOC Interface .. 2226
4.3.13 ELC Interface .. 2231
4.3.14 Ethernet Interface .. 2236
4.3.15 Ethernet PHY Interface ... 2246

4.3.16 External IRQ Interface ... 2251
4.3.17 Flash Interface .. 2258
4.3.18 I2C Master Interface .. 2273
4.3.19 I2C Slave Interface ... 2282
4.3.20 I2S Interface ... 2291
4.3.21 I/O Port Interface .. 2303
4.3.22 JPEG Codec Interface ... 2316
4.3.23 Key Matrix Interface ... 2330
4.3.24 Low Power Modes Interface .. 2335
4.3.25 Low Voltage Detection Interface ... 2348
4.3.26 OPAMP Interface .. 2358
4.3.27 PDC Interface .. 2364
4.3.28 POEG Interface ... 2371
4.3.29 PTP Interface .. 2379
4.3.30 RTC Interface .. 2404
4.3.31 SD/MMC Interface ... 2415
4.3.32 SLCDC Interface .. 2432
4.3.33 SPI Interface ... 2443
4.3.34 SPI Flash Interface ... 2455
4.3.35 Three-Phase Interface ... 2468
4.3.36 Timer Interface ... 2474
4.3.37 Transfer Interface .. 2487
4.3.38 UART Interface ... 2499
4.3.39 USB Interface .. 2510
4.3.40 USB HCDC Interface .. 2539
4.3.41 USB HHID Interface .. 2544
4.3.42 USB HMSC Interface .. 2546
4.3.43 USB PCDC Interface .. 2552
4.3.44 USB PHID Interface ... 2554
4.3.45 USB PMSC Interface .. 2554
4.3.46 WDT Interface .. 2555
4.3.47 ADPCM Decoder Interface ... 2565
4.3.48 AUDIO PLAYBACK Interface ... 2568
4.3.49 BLE ABS Interface ... 2573
4.3.50 Block Media Interface .. 2609
4.3.51 Communicatons Middleware Interface .. 2618
4.3.52 FileX Block Media Port Interface ... 2623
4.3.53 FreeRTOS+FAT Port Interface .. 2626
4.3.54 FSXXXX Middleware Interface .. 2631
4.3.55 HS300X Middleware Interface ... 2635
4.3.56 LittleFS Interface .. 2642
4.3.57 Motor angle Interface .. 2645
4.3.58 Motor Interface ... 2653
4.3.59 Motor current Interface ... 2659
4.3.60 Motor driver Interface .. 2668
4.3.61 Motor position Interface .. 2674
4.3.62 Motor speed Interface ... 2681
4.3.63 Touch Middleware Interface .. 2688
4.3.64 Virtual EEPROM Interface ... 2697
4.3.65 ZMOD4XXX Middleware Interface .. 2705
4.3.66 SCE Interface .. 2716

Chapter 5 Copyright .. 2792

Flexible Software Package

User’s Manual
Introduction

Chapter 1 Introduction

1.1 Overview
This manual describes how to use the Renesas Flexible Software Package (FSP) for writing
applications for the RA microcontroller series.

1.2 Using this Manual
This manual provides a wide variety of information, so it can be helpful to know where to start. Here
is a short description of each main section and how they can be used.

Starting Development - Provides a step by step guide on how to use e2 studio and FSP to develop a
project for RA MCUs. This is a good place to start to get up to speed quickly and efficiently.

FSP Architecture - Provides useful background material on key FSP concepts such as Modules,
Stacks, and API standards. Reference this section to extend or refresh your knowledge of FSP
concepts.

API Reference - Provides detailed information on each module and interface including features, API
functions, configuration settings, usage notes, function prototypes and code examples. Board
Support Package (BSP) related API functions are also included.

Note
Much of the information in the API Reference section is available from within the e2 studio tool via the Developer
Assistance feature. The information here can be referenced for additional details on API features.

1.3 Documentation Standard
Each Modules section user guide outlines the following:

Features: A bullet list of high level features provided by the module.
Configuration: A description of module specific configurations available in the RA
Configuration editor.
Usage Notes: Module specific documentation and limitations.
Examples: Example code provided to help the user get started.
API Reference: Usage notes for each API in the module, including the function prototype and
hyperlinks to the interface documentation for parameter definitions.

Each Interfaces section user guide outlines the following:

Detailed Description: A short description and summary of the interface functionality.
Data Structures: A list and definition of each data structure used by the interface including
the structure of the pointers that define the API and are shared by all modules that
implement the interface.
Typedefs: A list and description of the typedefs used by the interface.
Enumerations: A list and description of the enumerations used by the interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 9 / 2,794

Flexible Software Package

User’s Manual
Introduction > Introduction to FSP

1.4 Introduction to FSP
1.4.1 Purpose

The Renesas Flexible Software Package (FSP) is an optimized software package designed to provide
easy to use, scalable, high quality software for embedded system design. The primary goal is to
provide lightweight, efficient drivers that meet common use cases in embedded systems.

1.4.2 Quality

FSP code quality is enforced by peer reviews, automated requirements-based testing, and
automated static analysis.

1.4.3 Ease of Use

FSP provides uniform and intuitive APIs that are well documented. Each module is supported with
detailed user documentation including example code.

1.4.4 Scalability

FSP modules can be used on any MCU in the RA family, provided the MCU has any peripherals
required by the module.

1.4.5 Build Time Configurations

FSP modules also have build time configurations that can be used to optimize the size of the module
for the feature set required by the application.

1.4.6 e2 studio IDE

FSP provides a host of efficiency enhancing tools for developing projects targeting the Renesas RA
series of MCU devices. The e2 studio IDE provides a familiar development cockpit from which the key
steps of project creation, module selection and configuration, code development, code generation,
and debugging are all managed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 10 / 2,794

Flexible Software Package

User’s Manual
Starting Development

Chapter 2 Starting Development

2.1 Starting Development Introduction
The wealth of resources available to learn about and use e2 studio and FSP can be overwhelming on
first inspection, so this section provides a Starting Development Guide with a list of the most
important initial steps. Following these highly recommended first 11 steps will bring you up to speed
on the development environment in record time. Even experienced developers can benefit from the
use of this guide, to learn the terminology that might be unfamiliar or different from previous
environments.

1. Read the section What is e2 studio?, up to but not including e2 studio Prerequisites. This
will provide a description of the various windows and views to use e2 studio to create a
project, add modules and threads, configure module properties, add code, and debug a
project. It also describes how to use key coding 'accelerators' like Developer Assist (to drag
and drop parameter populated API function calls right into your code), a context aware
Autocomplete (to easily find and select from suggested enumerations, functions, types, and
many other coding elements), and many other similar productivity enhancers.

2. Read the FSP Architecture, FSP Modules and FSP Stacks sections. These provide the basic
background on how FSP modules and stacks are used to construct your application.
Understanding their definitions and the theory behind how they combine will make it easier
to develop with FSP.

3. Read a few Modules sections to see how to use API function calls, structures, enumerations,
types and callbacks. These module guides provide the information you will use to
implement your project code.

4. After you have a Kit and you have downloaded and installed e2 studio and FSP, you can
build and debug a simple project to test your installation, tool flow, and the kit. (If you do
not have a Kit or have not yet installed the development software, use the links included in
the e2 studio Prerequisites for more information.) The simple Tutorial: Your First RA MCU
Project - Blinky will Blink an LED on and off. Follow the instructions for importing and
running this project in section Create a New Project for Blinky. It will use some of the key
steps for managing projects within e2 studio and is a good way to learn the basics.

5. Once you have successfully run Blinky you have a good starting point for using FSP for more
complex projects. The Using HAL Drivers Tutorial, available at Tutorial: Using HAL Drivers -
Programming the WDT, shows how to create a project from scratch, using FSP API functions.
Do this next.

6. Several Hands-on Quick FSP Labs are available that cover key development topics with
short 15-minute Do it Yourself (DiY) activities targeting the EK-RA6M3. Topics covered
include code development accelerators like Developer Assistance, Autocomplete, Help,
Visual Expressions and using Example Projects. The complete list of available Quick FSP
Labs can be found here: https://en-
support.renesas.com/knowledgeBase/category/31087/subcategory/31090. Doing a couple
of these labs provides further details on using FSP, and is also good practice. Running these
labs is highly recommended.

7. The balance of the FSP Architecture sections (that is, those not called out in step 2 above)
contain additional reference material that may be helpful in the future. Scan them so you
know what they contain, in case you need them.

8. The balance of the e2 studio User Guide, starting with the What is a Project? section up to,
but not including, Writing the Application section, provides a detailed description of each of

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 11 / 2,794

https://en-support.renesas.com/knowledgeBase/category/31087/subcategory/31090
https://en-support.renesas.com/knowledgeBase/category/31087/subcategory/31090

Flexible Software Package

User’s Manual
Starting Development > Starting Development Introduction

the key steps, windows, and entries used to create, manage, configure, build and debug a
project. Much of this may be familiar after running through the tutorials and Quick Labs.
However, it is important to have a good grasp of what each of the configuration tabs are
used for as that is where the bulk of the project preparation work takes place prior to
writing code. Skim over this section as it may help with any questions in the future.

9. Read the Writing the Application section to get a short introduction to the steps used when
creating application code with FSP. It covers both RTOS-independent and RTOS-dependent
applications. It also includes a short description for several of the code accelerators you
should be familiar with by now. Using additional Quick FSP Labs is a good way to become
familiar with the application development process and links to them are included in the
appropriate places in this section. You can find the complete list of available Quick FSP Labs
here: https://en-support.renesas.com/knowledgeBase/19308277.

10. Scan the Debugging the Project section to see the steps required to download and start a
debug session.

11. Explore the additional material available on the following web pages and bookmark the
resources that look most valuable to you:

a. RA Landing Page: https://www.renesas.com/ra
b. FSP Landing Page: https://www.renesas.com/fsp
c. Example Projects on GitHub: https://github.com/renesas/ra-fsp-examples
d. Quick FSP Labs Listing: https://en-support.renesas.com/knowledgeBase/19308277
e. RA and FSP Knowledge Base (with articles of interest on RA and FSP): https://en-

support.renesas.com/knowledgeBase/category/31087
f. RA and FSP Renesas Rulz site (Community posted and answered questions):

https://renesasrulz.com/ra/
g. FSP Releases: https://github.com/renesas/fsp/releases
h. FSP Documentation: https://renesas.github.io/fsp
i. Online Technical Support: https://www.renesas.com/us/en/support/contact.html

2.2 e2 studio User Guide
2.2.1 What is e2 studio?

Renesas e2 studio is a development tool encompassing code development, build, and debug. e2
studio is based on the open-source Eclipse IDE and the associated C/C++ Development Tooling
(CDT).

When developing for RA MCUs, e2 studio hosts the Renesas Flexible Software Package (FSP). FSP
provides a wide range of time saving tools to simplify the selection, configuration, and management
of modules and threads, to easily implement complex applications. The time saving tools available in
e2 studio and FSP include the following:

A Graphical User Interface (GUI) (see Adding Threads and Drivers) with numerous wizards
for configuring and auto-generating code
A context sensitive Autocomplete (see Tutorial: Using HAL Drivers - Programming the WDT)
feature that provides intelligent options for completing a programming element
A Developer Assistance tool for selection of and drag and drop placement of API functions
directly in application code
A Welcome Window with links to example projects, application notes and a variety of other
self-help support resources
An Information Icon from each module is provided in the graphic configuration viewer that
links to specific design resources, including code 'cheat sheets' that provide useful starting
points for common application implementations.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 12 / 2,794

https://en-support.renesas.com/knowledgeBase/19308277
https://www.renesas.com/ra
https://www.renesas.com/fsp
https://github.com/renesas/ra-fsp-examples
https://en-support.renesas.com/knowledgeBase/19308277
https://en-support.renesas.com/knowledgeBase/category/31087
https://en-support.renesas.com/knowledgeBase/category/31087
https://renesasrulz.com/ra/
https://github.com/renesas/fsp/releases
https://renesas.github.io/fsp
https://www.renesas.com/us/en/support/contact.html

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > What is e2 studio?

Figure 1: e2 studio Splash Screen

 e2 studio organizes project work based on Perspectives, Views, Windows, Panes, and Pages
(sometimes called Tabs). A window is a section of the e2 studio GUI that presents information on a
key topic. Windows often use tabs to select sub-topics. For example, an editor window might have a
tab available for each open file, so it is easy to switch back and forth between them. A window Pane
is a section of a window. Within a window, multiple Panes can be opened and viewed simultaneously,
as opposed to a tabbed window, where only individual content is displayed. A memory-display
Window, for example, might have multiple Panes that allow the data to be displayed in different
formats, simultaneously. A Perspective is a collection of Views and Windows typical for a specific
stage of development. The default perspectives are a C/C++ Perspective, an FSP Configuration
Perspective and a Debug Perspective. These provide specific Views, Windows, Tabs, and Panes
tailored for the common tasks needed during the specific development stage.

Figure 2: Default Perspective

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 13 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > What is e2 studio?

 In addition to managing project development, selecting modules, configuring them and simplifying
code development, e2 studio also hosts the engine for automatically generating code based on
module selections and configurations. The engine continually checks for dependencies and
automatically adds any needed lower level modules to the module stack. It also identifies any lower
level modules that require configuration (for example, an interrupt that needs to have a priority
assigned). It also provides a guide for selecting between multiple choices or options to make it easy
to complete a fully functional module stack.

The Generate Project Content function takes the selected and configured modules and automatically
generates the complete and correct configuration code. The code is added to the folders visible in
the Project Explorer window in e2 studio. The configuration.xml file in the project folder holds all
the generated configuration settings. This file can be opened in the GUI-based RA Configuration
editor to make further edits and changes. Once a project has been generated, you can go back and
reconfigure any of the modules and settings if required using this editor.

Figure 3: Project Explorer Window showing generated folders and configuration.xml file

2.2.2 e2 studio Prerequisites

2.2.2.1 Obtaining an RA MCU Kit

To develop applications with FSP, start with one of the Renesas RA MCU Evaluation Kits. The Renesas
RA MCU Evaluation Kits are designed to seamlessly integrate with the e2 studio.

Ordering information, Quick Start Guides, User Manuals, and other related documents for all RA MCU
Evaluation Kits are available at https://www.renesas.com/ra.

2.2.2.2 PC Requirements

The following are the minimum PC requirements to use e2 studio:

Windows 10 with Intel i5 or i7, or AMD A10-7850K or FX
Memory: 8-GB DDR3 or DDR4 DRAM (16-GB DDR4/2400-MHz RAM is preferred)
Minimum 250-GB hard disk

2.2.2.3 Installing e2 studio, platform installer and the FSP package

Detailed installation instructions for the e2 studio and the FSP are available on the Renesas website
https://www.renesas.com/fsp. Review the release notes for e2 studio to ensure that the e2 studio
version supports the selected FSP version. The starting version of the installer includes all features of
the RA MCUs.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 14 / 2,794

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > e2 studio Prerequisites > Choosing a Toolchain

2.2.2.4 Choosing a Toolchain

e2 studio can work with several toolchains and toolchain versions such as the GNU Arm compiler and
Arm AC6. A version of the GNU Arm compiler is included in the e2 studio installer and has been
verified to run with the FSP version.

2.2.2.5 Licensing

FSP licensing includes full source code, limited to Renesas hardware only.

2.2.3 What is a Project?

In e2 studio, all FSP applications are organized in RA MCU projects. Setting up an RA MCU project
involves:

1. Creating a Project
2. Configuring a Project

These steps are described in detail in the next two sections. When you have existing projects
already, after you launch e2 studio and select a workspace, all projects previously saved in the
selected workspace are loaded and displayed in the Project Explorer window. Each project has an
associated configuration file named configuration.xml, which is located in the project's root directory.

Figure 4: e2 studio Project Configuration file

Double-click on the configuration.xml file to open the RA MCU Project Editor. To edit the project
configuration, make sure that the FSP Configuration perspective is selected in the upper right
hand corner of the e2 studio window. Once selected, you can use the editor to view or modify the
configuration settings associated with this project.

Figure 5: e2 studio FSP Configuration Perspective

Note
Whenever the RA project configuration (that is, the configuration.xml file) is saved, a verbose RA Project Report
file (ra_cfg.txt) with all the project settings is generated. The format allows differences to be easily viewed using a
text comparison tool. The generated file is located in the project root directory.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 15 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > What is a Project?

Figure 6: RA Project Report

 The RA Project Editor has a number of tabs. The configuration steps and options for individual tabs
are discussed in the following sections.

Note
The tabs available in the RA Project Editor depend on the e2 studio version and the layout may vary slightly,
however the functionality should be easy to follow..

Figure 7: RA Project Editor tabs

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 16 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > What is a Project?

Click on the YouTube icon to visit the Renesas FSP playlist on YouTube
Click on the Support icon to visit RA support pages at Renesas.com
Click on the user manual (owl) icon to open the RA software package User's Manual

2.2.4 Creating a Project

During project creation, you specify the type of project, give it a project name and location, and
configure the project settings for version, target board, whether an RTOS is included, the toolchain
version, and the beginning template. This section includes easy-to-follow step-by-step instructions
for all of the project creation tasks. Once you have created the project, you can move to configuring
the project hardware (clocks, pins, interrupts) and the parameters of all the modules that are part of
your application.

2.2.4.1 Creating a New Project

For RA MCU applications, generate a new project using the following steps:

1. Click on File > New > RA C/C++ Project.

Figure 8: New RA MCU Project

 Then click on the type of template for the type of project you are creating.

Figure 9: New Project Templates

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 17 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating a Project > Creating a New Project

2. Select a project name and location.

Figure 10: RA MCU Project Generator (Screen 1)

3. Click Next.

2.2.4.2 Selecting a Board and Toolchain

In the Project Configuration window select the hardware and software environment:

1. Select the FSP version.
2. Select the Board for your application. You can select an existing RA MCU Evaluation Kit or

select Custom User Board for any of the RA MCU devices with your own BSP definition.
3. Select the Device. The Device is automatically populated based on the Board selection.

Only change the Device when using the Custom User Board (Any Device) board
selection.

4. To add threads, select RTOS, or No RTOS if an RTOS is not being used.
5. The Toolchain selection defaults to GCC Arm Embedded.
6. Select the Toolchain version. This should default to the installed toolchain version.
7. Select the Debugger. The J-Link Arm Debugger is preselected.

8. Click Next.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 18 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating a Project > Selecting a Board and Toolchain

Figure 11: RA MCU Project Generator (Screen 2)

Note
Click on the Help icon (?) for user guides, RA contents, and other documents.

2.2.4.3 Selecting Flat or Arm® TrustZone® Project

If you selected a device or tool based on an Arm® Cortex®-M33, you next select whether to use
Arm® TrustZone® in your project. For normal, non-TrustZone projects, select "Flat".

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 19 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating a Project > Selecting Flat or Arm® TrustZone® Project

Figure 12: Flat, Secure, or Non-Secure Project

 For more information on Arm® TrustZone®, see Primer: ARM® TrustZone® Project Development.

2.2.4.4 Selecting a Project Template

In the next window, select the buiild artifact and RTOS.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 20 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating a Project > Selecting a Project Template

Figure 13: RA MCU Project Generator (Screen 3)

 In the next window, select a project template from the list of available templates. By default, this
screen shows the templates that are included in your current RA MCU pack. Once you have selected
the appropriate template, click Finish.

Note
If you want to develop your own application, select the basic template for your board, Bare Metal - Minimal.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 21 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating a Project > Selecting a Project Template

Figure 14: RA MCU Project Generator (Screen 4)

 When the project is created, e2 studio displays a summary of the current project configuration in the
RA MCU Project Editor.

Figure 15: RA MCU Project Editor and available editor tabs

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 22 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating a Project > Selecting a Project Template

 On the bottom of the RA MCU Project Editor view, you can find the tabs for configuring multiple
aspects of your project:

With the Summary tab, you can see all they key characteristics of the project: board,
device, toolchain, and more.
With the BSP tab, you can change board specific parameters from the initial project
selection.
With the Clocks tab, you can configure the MCU clock settings for your project.
With the Pins tab, you can configure the electrical characteristics and functions of each
port pin.
With the Interrupts tab, you can add new user events/interrupts.
With the Event Links tab, you can configure events used by the Event Link Controller.
With the Stacks tab, you can add and configure FSP modules. For each module selected in
this tab, the Properties window provides access to the configuration parameters, interrupt
priorities, and pin selections.
The Components tab provides an overview of the selected modules. Although you can also
add drivers for specific FSP releases and application sample code here, this tab is normally
only used for reference.

The functions and use of each of these tabs is explained in detail in the next section.

2.2.5 Configuring a Project

Each of the configurable elements in an FSP project can be edited using the appropriate tab in the
RA Configuration editor window. Importantly, the initial configuration of the MCU after reset and
before any user code is executed is set by the configuration settings in the BSP, Clocks and Pins
tabs. When you select a project template during project creation, e2 studio configures default values
that are appropriate for the associated board. You can change those default values as needed. The
following sections detail the process of configuring each of the project elements for each of the
associated tabs.

2.2.5.1 Summary Tab

Figure 16: Configuration Summary tab

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 23 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Configuring a Project > Summary Tab

 The Summary tab, seen in the above figure, identifies all the key elements and components of a
project. It shows the target board, the device, toolchain and FSP version. Additionally, it provides a
list of all the selected software components and modules used by the project. This is a more
convenient summary view when compared to the Components tab.

The summary tab also includes handy icons with links to the Renesas YouTube channel, the Renesas
support page and to the RA FSP User Manual that was downloaded during the installation process.

2.2.5.2 Configuring the BSP

The BSP tab shows the currently selected board (if any) and device. The Properties view is located in
the lower left of the Project Configurations view as shown below.

Note
If the Properties view is not visible, click Window > Show View > Properties in the top menu bar.

Figure 17: Configuration BSP tab

 The Properties view shows the configurable options available for the BSP. These can be changed
as required. The BSP is the FSP layer above the MCU hardware. e2 studio checks the entry fields to
flag invalid entries. For example, only valid numeric values can be entered for the stack size.

When you click the Generate Project Content button, the BSP configuration contents are written
to ra_cfg/fsp_cfg/bsp/bsp_cfg.h

This file is created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.3 Configuring Clocks

The Clocks tab presents a graphical view of the MCU's clock tree, allowing the various clock dividers
and sources to be modified. If a clock setting is invalid, the offending clock value is highlighted in
red. It is still possible to generate code with this setting, but correct operation cannot be guaranteed.
In the figure below, the USB clock UCLK has been changed so the resulting clock frequency is 60 MHz

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 24 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Configuring a Project > Configuring Clocks

instead of the required 48 MHz. This parameter is colored red.

Figure 18: Configuration Clocks tab

 When you click the Generate Project Content button, the clock configuration contents are written
to: ra_gen/bsp_clock_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.4 Configuring Pins

The Pins tab provides flexible configuration of the MCU's pins. As many pins are able to provide
multiple functions, they can be configured on a peripheral basis. For example, selecting a serial
channel via the SCI peripheral offers multiple options for the location of the receive and transmit pins
for that module and channel. Once a pin is configured, it is shown as green in the Package view.

Note
If the Package view window is not open in e2 studio, select Window > Show View > Pin Configurator > Package
from the top menu bar to open it.

The Pins tab simplifies the configuration of large packages with highly multiplexed pins by
highlighting errors and presenting the options for each pin or for each peripheral. If you selected a
project template for a specific board such as the EK-RA6M3, some peripherals connected on the
board are preselected.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 25 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Configuring a Project > Configuring Pins

Figure 19: Pins Configuration

 The pin configurator includes a built-in conflict checker, so if the same pin is allocated to another
peripheral or I/O function the pin will be shown as red in the package view and also with white cross
in a red square in the Pin Selection pane and Pin Configuration pane in the main Pins tab. The
Pin Conflicts view provides a list of conflicts, so conflicts can be quickly identified and fixed.

In the example shown below, port P611 is already used by the CAC, and the attempt to connect this
port to the Serial Communications Interface (SCI) results in a dangling connection error. To fix this
error, select another port from the pin drop-down list or disable the CAC in the Pin Selection pane
on the left side of the tab.

Figure 20: e2 studio Pin configurator

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 26 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Configuring a Project > Configuring Pins

The pin configurator also shows a package view and the selected electrical or functional
characteristics of each pin.

Figure 21: e2 studio Pin configurator package view

 When you click the Generate Project Content button, the pin configuration contents are written
to: ra_gen\bsp_pin_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

To make it easy to share pinning information for your project, e2 studio exports your pin
configuration settings to a csv format and copies the csv file to ra_gen/<MCU package>.csv.

2.2.5.5 Configuring Interrupts from the Stacks Tab

You can use the Properties view in the Stacks tab to enable interrupts by setting the interrupt
priority. Select the driver in the Stacks pane to view and edit its properties.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 27 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Configuring a Project > Configuring Interrupts from the Stacks Tab

Figure 22: Configuring Interrupts in the Stacks tab

Creating Interrupts from the Interrupts Tab

On the Interrupts tab, the user can bypass a peripheral interrupt set by the FSP by setting a user-
defined ISR. This can be done by adding a new event via the New User Event button.

Figure 23: Configuring interrupt in Interrupt Tab

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 28 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Configuring a Project > Configuring Interrupts from the Stacks Tab

Figure 24: Adding user-defined event

 Enter the name of ISR for the new user event.

Figure 25: User-defined event ISR

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 29 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Configuring a Project > Configuring Interrupts from the Stacks Tab

Figure 26: Using a user-defined event

2.2.5.6 Viewing Event Links

The Event Links tab can be used to view the Event Link Controller events. The events are sorted by
peripheral to make it easy to find and verify them.

Figure 27: Viewing Event Links

 Like the Interrupts tab, user-defined event sources and destinations (producers and consumers) can
be defined by clicking the relevant New User Event button. Once a consumer is linked to a
producer the link will appear in the Allocations section at the bottom.

Note
When selecting an ELC event to receive for a module (or when manually defining an event link), only the events
that are made available by the modules configured in the project will be shown.

2.2.6 Adding Threads and Drivers

Every RTOS-based RA Project includes at least one RTOS Thread and a stack of FSP modules running

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 30 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Adding Threads and Drivers

in that thread. The Stacks tab is a graphical user interface which helps you to add the right modules
to a thread and configure the properties of both the threads and the modules associated with each
thread. Once you have configured the thread, e2 studio automatically generates the code reflecting
your configuration choices.

For any driver, or, more generally, any module that you add to a thread, e2 studio automatically
resolves all dependencies with other modules and creates the appropriate stack. This stack is
displayed in the Stacks pane, which e2 studio populates with the selected modules and module
options for the selected thread.

The default view of the Stacks tab includes a Common Thread called HAL/Common. This thread
includes the driver for I/O control (IOPORT). The default stack is shown in the HAL/Common Stacks
pane. The default modules added to the HAL/Common driver are special in that the FSP only requires
a single instance of each, which e2 studio then includes in every user-defined thread by default.

In applications that do not use an RTOS or run outside of the RTOS, the HAL/Common thread
becomes the default location where you can add additional drivers to your application.

For a detailed description on how to add and configure modules and stacks, see the following
sections:

Adding and Configuring HAL Drivers
Adding Drivers to a Thread and Configuring the Drivers

Once you have added a module either to HAL/Common or to a new thread, you can access the
driver's configuration options in the Properties view. If you added thread objects, you can access
the objects configuration options in the Properties view in the same way.

You can find details about how to configure threads here: Configuring Threads

Note
Driver and module selections and configuration options are defined in the FSP pack and can therefore change
when the FSP version changes.

2.2.6.1 Adding and Configuring HAL Drivers

For applications that run outside or without the RTOS, you can add additional HAL drivers to your
application using the HAL/Common thread. To add drivers, follow these steps:

1. Click on the HAL/Common icon in the Stacks pane. The Modules pane changes to
HAL/Common Stacks.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 31 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

Figure 28: e2 studio Project configurator - Adding drivers

2. Click New Stack to see a drop-down list of HAL level drivers available in the FSP.

3. Select a driver from the menu New Stack > Driver.

Figure 29: Select a driver

4. Select the driver module in the HAL/Common Modules pane and configure the driver
properties in the Properties view.

e2 studio adds the following files when you click the Generate Project Content button:

The selected driver module and its files to the ra/fsp directory
The main() function and configuration structures and header files for your application as
shown in the table below.

File Contents Overwritten by Generate
Project Content?

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 32 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

ra_gen/main.c Contains main() calling
generated and user code. When
called, the BSP already has
Initialized the MCU.

Yes

ra_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

ra_gen/hal_data.h Header file for HAL driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

The configuration header files for all included modules are created or overwritten in this folder:
ra_cfg/fsp_cfg

2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers

For an application that uses the RTOS, you can add one or more threads, and for each thread at least
one module that runs in the thread. You can select modules from the Driver dropdown menu. To add
modules to a thread, follow these steps:

1. In the Threads pane, click New Thread to add a Thread.

Figure 30: Adding a new RTOS Thread on the Stacks tab

2. In the Properties view, click on the Name and Symbol entries and enter a distinctive
name and symbol for the new thread.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 33 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Note
e2 studio updates the name of the thread stacks pane to My Thread Stacks.

3. In the My Thread Stacks pane, click on New Stack to see a list of modules and drivers.
HAL-level drivers can be added here.

Figure 31: Adding Modules and Drivers to a thread

4. Select a module or driver from the list.

5. Click on the added driver and configure the driver as required by the application by
updating the configuration parameters in the Properties view. To see the selected module
or driver and be able to edit its properties, make sure the Thread containing the driver is
highlighted in the Threads pane.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 34 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Figure 32: Configuring Module or Driver properties

6. If needed, add another thread by clicking New Thread in the Threads pane.

When you press the Generate Project Content button for the example above, e2 studio creates
the files as shown in the following table:

File Contents Overwritten by Generate
Project Content?

ra_gen/main.c Contains main() calling
generated and user code. When
called the BSP will have
initialized the MCU.

Yes

ra_gen/my_thread.c Generated thread "my_thread"
and configuration structures for
modules added to this thread.

Yes

ra_gen/my_thread.h Header file for thread
"my_thread"

Yes

ra_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

ra_gen/hal_data.h Header file for HAL Driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 35 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

src/my_thread_entry.c User entry point for thread
"my_thread". Add your code
here.

No

The configuration header files for all included modules and drivers are created or overwritten in the
following folders: ra_cfg/fsp_cfg/<header files>

2.2.6.3 Configuring Threads

If the application uses an RTOS, the Stacks tab can be used to simplify the creation of RTOS
threads, semaphores, mutexes, and event flags.

The components of each thread can be configured from the Properties view as shown below.

Figure 33: New Thread Properties

 The Properties view contains settings common for all Threads (Common) and settings for this
particular thread (Thread).

For this thread instance, the thread's name and properties (such as priority level or stack size) can
be easily configured. e2 studio checks that the entries in the property field are valid. For example, it
will verify that the field Priority, which requires an integer value, only contains numeric values
between 0 and 9.

To add RTOS resources to a Thread, select a thread and click on New Object in the Thread Objects
pane. The pane takes on the name of the selected thread, in this case My Thread Objects.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 36 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Adding Threads and Drivers > Configuring Threads

Figure 34: Configuring Thread Object Properties

 Make sure to give each thread object a unique name and symbol by updating the Name and
Symbol entries in the Properties view.

2.2.7 Reviewing and Adding Components

The Components tab enables the individual modules required by the application to be included or
excluded. Modules common to all RA MCU projects are preselected (for example: BSP > BSP >
Board-specific BSP and HAL Drivers > all > r_cgc). All modules that are necessary for the
modules selected in the Stacks tab are included automatically. You can include or exclude
additional modules by ticking the box next to the required component.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 37 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Reviewing and Adding Components

Figure 35: Components Tab

 Clicking the Generate Project Content button copies the .c and .h files for each selected
component into the following folders:

ra/fsp/inc/api
ra/fsp/inc/instances
ra/fsp/src/bsp
ra/fsp/src/<Driver_Name>

e2 studio also creates configuration files in the ra_cfg/fsp_cfg folder with configuration options set in
the Stacks tab.

2.2.8 Writing the Application

Once you have added Modules and drivers and set their configuration parameters in the Stacks tab,
you can add the application code that calls the Modules and drivers.

Note
To check your configuration, build the project once without errors before adding any of your own application code.

2.2.8.1 Coding Features

e2 studio provides several efficiency improving features that help write code. Review these features
prior to digging into the code development step-by-step sections that follow.

Autocomplete

Autocomplete is a context aware coding accelerator that suggests possible completions for partially

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 38 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > Coding Features

typed-in code elements. If you can 'guess' the first part of a macro, for example, the Autocomplete
function can suggest options for completing the rest of the macro.

In the following example, a macro related to a BSP_IO setting needs to be found. After typing
BSP_IO_ in a source code file, pressing Ctrl + Space opens the Autocomplete list. This list shows a
selection of context aware options for completing the macro. Scroll through the window to find the
desired macro (in this case BSP_IO_LEVEL_HIGH) and click on it to add it to your code.

Figure 36: Autocomplete example

 Other code elements can use autocomplete too. Some of the more common uses for Autocomplete
include Enumerations, Types, and API functions - but try it in any situation you think the tool may
have enough context to determine what you might be looking for.

For a hands-on experience using Autocomplete use the Quick FSP Labs for Creating Blinky from
Scratch and Creating an RTC Blinky from Scratch. These 15-minute Do it Yourself labs take you
through the step-by-step process of using Autocomplete, Developer Assistance, and the Help
system.

Welcome Window

The e2 studio Welcome window displays useful information and common links to assist in
development. Check out these resources to see what is available. They are updated with each
release, so check back to see what has been added after a new release.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 39 / 2,794

https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > Coding Features

Figure 37: Welcome window

Cheat Sheets

Cheat sheets are macro driven illustrations of some common tasks. They show, step-by-step, what
commands and menus are used. These will be populated with more examples on each release.
Cheat Sheets are available from the Help menu.

Figure 38: Cheat Sheets

Developer Assistance

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 40 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > Coding Features

FSP Developer Assistance provides developers with module and Application Programming Interface
(API) reference documentation in e2 studio. After configuring the threads and software stacks for an
FSP project with the RA Configuration editor, Developer Assistance quickly helps you get started
writing C/C++ application code for the project using the configured stack modules.

1. Expand the project explorer to view Developer Assistance

Figure 39: Developer Assistance

2. Expand a stack module to show its APIs

Figure 40: Developer Assistance APIs

3. Dragging and dropping an API from Develop Assistance to a source file helps to write source

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 41 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > Coding Features

code quickly.

Figure 41: Dragging and Dropping an API in Developer Assistance

 For a hands-on experience using Developer Assistance use the Quick FSP Labs for An Introduction to
Developer Assistance, Creating Blinky from Scratch and Creating an RTC Blinky from Scratch. These
15-minute Do it Yourself labs take you through the step-by-step process of using Autocomplete,
Developer Assistance, and the Help system.

Information Icon

Information icons are available on each module in the thread stack. Clicking on these icons opens a
module folder on GitHub that contains additional information on the module. An example information
Icon is shown below:

Figure 42: Information icon

IDE Help

A good source of additional information for many FSP topics is the Help system. To get to the Help
system, click on Help and then select Help Contents as seen below.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 42 / 2,794

https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > Coding Features

Figure 43: Opening the Help System

 Once the Help system is open, select the RA Contents entry in the left side Guide-bar. Expand it to
see the main RA Topics.

Figure 44: RA Content Help

 You can also search for help topics by using the Search bar. Below is an example searching for
Visual Expressions, a helpful feature in the e2 studio debugger.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 43 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > Coding Features

Figure 45: e2 studio Help from the Search Bar

 For a hands-on experience using the Help system use the Quick FSP Labs for An Introduction to
Developer Assistance, Creating Blinky from Scratch and Creating an RTC Blinky from Scratch. These
15-minute Do it Yourself labs take you through the step-by-step process of using Autocomplete,
Developer Assistance, and the Help system.

2.2.8.2 HAL Modules in FSP: A Practical Description

The FSP Architecture section describes FSP stacks, modules and interfaces in significant detail,
providing an understanding of the theory behind them. The following sections provides a quick and
practical introduction on how to use API functions when writing code and where in the API reference
sections you can find useful API related information.

Introduction to HAL Modules

In FSP, HAL module drivers provide convenient API functions that access RA processor peripheral
features. Module properties are defined in the RA GUI configurator, eliminating the tedious and error
prone process of setting peripheral control registers. When configuration is complete, the generator
automatically creates the code needed to implement the associated API functions. API functions are
the main way a developer interacts with the target processor and peripherals.

HAL Driver API Function Call Formats

HAL driver API functions all have a similar format. They all start with "R_" to indicate they are HAL
related functions. Next comes the module name followed by the function and any parameters. This
format is illustrated below:

R_<module>_<function>(<parameters>);

Here are some examples:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 44 / 2,794

https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110786
https://en-support.renesas.com/knowledgeBase/19110690
https://en-support.renesas.com/knowledgeBase/19110690

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > HAL Modules in FSP: A Practical Description

status = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

status = R_GPT_Start(&g_timer0_ctrl);

status = R_GPT_PeriodSet(&g_timer0_ctrl, period);

status = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

status = R_ADC_InfoGet(&g_adc0_ctrl, &adc_info);

HAL Driver API Call Reference Information

Each HAL module has a useful API Reference section that includes key details on each function. The
function prototype is presented first, showing the return type (usually fsp_status_t for HAL functions)
and the function parameters. A short description and any warnings or notes follow the function
definition. In some cases, a code snippet is included to illustrate use of the function. Finally, all
possible return values are provided to assist in debugging and error management.

Figure 46: Module Api Reference Section Example

2.2.8.3 RTOS-Independent Applications

To write application code:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 45 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > RTOS-Independent Applications

1. Add all drivers and modules in the Stacks tab and resolve all dependencies flagged by e2
studio such as missing interrupts or drivers.

2. Configure the drivers in the Properties view.
3. In the Project Configuration view, click the Generate Project Content button.

4. In the Project Explorer view, double-click on the src/hal_entry.c file to edit the source file.

Note
All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/hal_data.c.

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

5. Add your application code here:

Figure 47: Adding user code to hal_entry.c

6. Build the project without errors by clicking on Project > Build Project.

The following tutorial shows how execute the steps above and add application code: Tutorial: Using
HAL Drivers - Programming the WDT.

The WDT example is a HAL level application which does not use an RTOS. The user guides for each
module also include basic application code that you can add to hal_entry.c.

2.2.8.4 RTOS Applications

To write RTOS-aware application code using RTOS, follow these steps:

1. Add a thread using the Stacks tab.
2. Provide a unique name for the thread in the Properties view for this thread.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 46 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > RTOS Applications

3. Configure all drivers and resources for this thread and resolve all dependencies flagged by
e2 studio such as missing interrupts or drivers.

4. Configure the thread objects.
5. Provide unique names for each thread object in the Properties view for each object.
6. Add more threads if needed and repeat steps 1 to 5.
7. In the RA Project Editor, click the Generate Project Content button.

8. In the Project Explorer view, double-click on the src/my_thread_1_entry.c file to edit the
source file.

Figure 48: Generated files for an RTOS application

Note
All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/my_thread_1.c and my_thread_2.c

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

9. Add your application code here:

Figure 49: Adding user code to my_thread_1.entry

10. Repeat steps 1 to 9 for the next thread.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 47 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > RTOS Applications

11. Build your project without errors by clicking on Project > Build Project.

2.2.8.5 Additional Resources for Application Development

Example Projects

A wide variety of Example Projects for FSP and RA MCUs is available on the GitHub site here:
https://github.com/renesas/ra-fsp-examples. Example projects are organized by target kit so it is
easy to find all the examples for your kit of choice.

Figure 50: FSP Example Projects Organized by Kit

 Projects are available as both downloadable zip files and as project source files. Typically, there is a
project for each module. New example projects are being added periodically, so check back if a
particular module isn't yet available.

Figure 51: A Selection of Example Projects Available on GitHub

Quick Labs

A variety of Hands-on Do It Yourself labs are available on the Renesas RA and FSP Knowledge Base.
Quick FSP Labs target the EK-RA6M3 kit and typically require only 15 minutes to complete. Each lab
covers a couple related development tools and techniques like Autocomplete, Developer Assistance,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 48 / 2,794

https://github.com/renesas/ra-fsp-examples

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Writing the Application > Additional Resources for Application Development

console I/O over RTT, and Visual Expressions, that can speed up the development process. A list of
all available Quick Labs can be found here: https://en-
support.renesas.com/knowledgeBase/19450948

2.2.9 Debugging the Project

Once your project builds without errors, you can use the Debugger to download your application to
the board and execute it.

To debug an application follow these steps:

1. On the drop-down list next to the debug icon, select Debug Configurations.

2. In the Debug Configurations view, click on your project listed as MyProject Debug.

3. Connect the board to your PC via either a standalone Segger J-Link debugger, a Segger J-
Link On-Board (included on all RA EKs), or an E2 or E2 Lite and click Debug.

Note
For details on using J-Link and connecting the board to the PC, see the Quick Start Guide included in the RA MCU
Kit.

2.2.10 Modifying Toolchain Settings

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 49 / 2,794

https://en-support.renesas.com/knowledgeBase/19450948
https://en-support.renesas.com/knowledgeBase/19450948

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Modifying Toolchain Settings

There are instances where it may be necessary to make changes to the toolchain being used (for
example, to change optimization level of the compiler or add a library to the linker). Such
modifications can be made from within e2 studio through the menu Project > Properties >
Settings when the project is selected. The following screenshot shows the settings dialog for the
GNU Arm toolchain. This dialog will look slightly different depending upon the toolchain being used.

Figure 52: e2 studio Project toolchain settings

 The scope for the settings is project scope which means that the settings are valid only for the
project being modified.

The settings for the linker which control the location of the various memory sections are contained in
a script file specific for the device being used. This script file is included in the project when it is
created and is found in the script folder (for example, /script/a6m3.ld).

2.2.11 Creating RA project with ARM Compiler 6 in e2 studio

e2 studio does not include the ARM Compiler 6 (AC6) toolchain by default. Follow the steps below to
integrate AC6 into e2 studio and create an AC6 RA project.

Note
It is assumed that the user is already familiar with RA project creation in e2 studio. e2 studio does not include ARM
Compiler 6 (AC6) toolchain by default.

Steps 1 through 8 describe the process for integrating ARM Compiler 6 into e2 studio.

1. Download, install, and configure license for the AC6 toolchain
(https://developer.arm.com/tools-and-software/embedded/arm-
compiler/downloads/version-6).

2. Launch e2 studio.
3. Go to Window > Preferences > Toolchains.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 50 / 2,794

https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6
https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating RA project with ARM Compiler 6 in e2 studio

4. Click Add.

Figure 53: Add Toolchain

5. Browse to the path where AC6 toolchain is installed and select the \bin folder. Click Next.

Figure 54: Browse to AC6 Compiler

6. Toolchain information in displayed. Click Finish.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 51 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating RA project with ARM Compiler 6 in e2 studio

Figure 55: Toolchain Information

7. Click Apply and Close.

Figure 56: Apply and Close

8. Click Restart Eclipse when prompted.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 52 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Creating RA project with ARM Compiler 6 in e2 studio

Figure 57: Restart Eclipse

9. When creating a new RA C/C++ project, select ARM Compiler 6 included in the Toolchains
section.

Figure 58: Select Arm Compiler

2.2.12 Importing an Existing Project into e2 studio

1. Start by opening e2 studio.
2. Open an existing Workspace to import the project and skip to step d. If the workspace

doesn't exist, proceed with the following steps:

a. At the end of e2 studio startup, you will see the Workspace Launcher Dialog box as
shown in the following figure.

Figure 59: Workspace Launcher dialog

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 53 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Importing an Existing Project into e2 studio

b. Enter a new workspace name in the Workspace Launcher Dialog as shown in the
following figure. e2 studio creates a new workspace with this name.

Figure 60: Workspace Launcher dialog - Select Workspace

c. Click Launch.

d. When the workspace is opened, you may see the Welcome Window. Click on the
Workbench arrow button to proceed past the Welcome Screen as seen in the
following figure.

Figure 61: Workbench arrow button

3. You are now in the workspace that you want to import the project into. Click the File menu
in the menu bar, as shown in the following figure.

Figure 62: Menu and tool bar

4. Click Import on the File menu or in the menu bar, as shown in the following figure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 54 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Importing an Existing Project into e2 studio

Figure 63: File drop-down menu

5. In the Import dialog box, as shown in the following figure, choose the General option, then
Existing Projects into Workspace, to import the project into the current workspace.

Figure 64: Project Import dialog with "Existing Projects into Workspace" option selected

6. Click Next.
7. To import the project, use either Select archive file or Select root directory.

a. Click Select archive file as shown in the following figure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 55 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Importing an Existing Project into e2 studio

Figure 65: Import Existing Project dialog 1 - Select archive file

b. Click Select root directory as shown in the following figure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 56 / 2,794

Flexible Software Package

User’s Manual
Starting Development > e2 studio User Guide > Importing an Existing Project into e2 studio

Figure 66: Import Existing Project dialog 1 - Select root directory

8. Click Browse.
9. For Select archive file, browse to the folder where the zip file for the project you want to

import is located. For Select root directory, browse to the project folder that you want to
import.

10. Select the file for import. In our example, it is CAN_HAL_MG_AP.zip or CAN_HAL_MG_AP.
11. Click Open.

12. Select the project to import from the list of Projects, as shown in the following figure.

Figure 67: Import Existing Project dialog 2

13. Click Finish to import the project.

2.3 Tutorial: Your First RA MCU Project - Blinky
2.3.1 Tutorial Blinky

The goal of this tutorial is to quickly get acquainted with the Flexible Platform by moving through the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 57 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Tutorial Blinky

steps of creating a simple application using e2 studio and running that application on an RA MCU
board.

2.3.2 What Does Blinky Do?

The application used in this tutorial is Blinky, traditionally the first program run in a new embedded
development environment.

Blinky is the "Hello World" of microcontrollers. If the LED blinks you know that:

The toolchain is setup correctly and builds a working executable image for your chip.
The debugger has installed with working drivers and is properly connected to the board.
The board is powered up and its jumper and switch settings are probably correct.
The microcontroller is alive, the clocks are running, and the memory is initialized.

The Blinky example application used in this tutorial is designed to run the same way on all boards
offered by Renesas that hold the RA microcontroller. The code in Blinky is completely board
independent. It does the work by calling into the BSP (board support package) for the particular
board it is running on. This works because:

Every board has at least one LED connected to a GPIO pin.
That one LED is always labelled LED1 on the silk screen.
Every BSP supports an API that returns a list of LEDs on a board, and their port and pin
assignments.

2.3.3 Prerequisites

To follow this tutorial, you need:

Windows based PC
e2 studio
Flexible Software Package
An RA MCU board kit

2.3.4 Create a New Project for Blinky

The creation and configuration of an RA MCU project is the first step in the creation of an application.
The base RA MCU pack includes a pre-written Blinky example application that is simple and works on
all Renesas RA MCU boards.

Follow these steps to create an RA MCU project:

1. In e2 studio, click File > New > C/C++ Project and select Renesas RA and Renesas RA
C/C++ Project.

2. Assign a name to this new project. Blinky is a good name to use for this tutorial.

3. Click Next. The Project Configuration window shows your selection.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 58 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

Figure 68: e2 studio Project Configuration window (part 1)

4. Select the board support package by selecting the name of your board from the Device
Selection drop-down list and click Next.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 59 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

Figure 69: e2 studio Project Configuration window (part 2)

5. Select the build artifact and RTOS.

Figure 70: e2 studio Project Configuration window (part 3)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 60 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

6. Select the Blinky template for your board and click Finish.

Figure 71: e2 studio Project Configuration window (part 4)

 Once the project has been created, the name of the project will show up in the Project
Explorer window of e2 studio. Now click the Generate Project Content button in the top
right corner of the Project Configuration window to generate your board specific files.

Figure 72: e2 studio Project Configuration tab

 Your new project is now created, configured, and ready to build.

2.3.4.1 Details about the Blinky Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 61 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky > Details about the Blinky Configuration

The Generate Project Content button creates configuration header files, copies source files from
templates, and generally configures the project based on the state of the Project Configuration
screen.

For example, if you check a box next to a module in the Components tab and click the Generate
Project Content button, all the files necessary for the inclusion of that module into the project will
be copied or created. If that same check box is then unchecked those files will be deleted.

2.3.4.2 Configuring the Blinky Clocks

By selecting the Blinky template, the clocks are configured by e2 studio for the Blinky application.
The clock configuration tab (see Configuring Clocks) shows the Blinky clock configuration. The Blinky
clock configuration is stored in the BSP clock configuration file (see BSP Clock Configuration).

2.3.4.3 Configuring the Blinky Pins

By selecting the Blinky template, the GPIO pins used to toggle the LED1 are configured by e2 studio
for the Blinky application. The pin configuration tab shows the pin configuration for the Blinky
application (see Configuring Pins). The Blinky pin configuration is stored in the BSP configuration file
(see BSP Pin Configuration).

2.3.4.4 Configuring the Parameters for Blinky Components

The Blinky project automatically selects the following HAL components in the Components tab:

r_ioport

To see the configuration parameters for any of the components, check the Properties tab in the
HAL window for the respective driver (see Adding and Configuring HAL Drivers).

2.3.4.5 Where is main()?

The main function is located in < project >/ra_gen/main.c. It is one of the files that are generated
during the project creation stage and only contains a call to hal_entry(). For more information on
generated files, see Adding and Configuring HAL Drivers.

2.3.4.6 Blinky Example Code

The blinky application is stored in the hal_entry.c file. This file is generated by e2 studio when you
select the Blinky Project template and is located in the project's src/ folder.

The application performs the following steps:

1. Get the LED information for the selected board by bsp_leds_t structure.
2. Define the output level HIGH for the GPIO pins controlling the LEDs for the selected board.
3. Get the selected system clock speed and scale down the clock, so the LED toggling can be

observed.
4. Toggle the LED by writing to the GPIO pin with R_BSP_PinWrite((bsp_io_port_pin_t) pin,

pin_level);

2.3.5 Build the Blinky Project

Highlight the new project in the Project Explorer window by clicking on it and build it.

There are three ways to build a project:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 62 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Build the Blinky Project

1. Click on Project in the menu bar and select Build Project.
2. Click on the hammer icon.
3. Right-click on the project and select Build Project.

Figure 73: e2 studio Project Explorer window

 Once the build is complete a message is displayed in the build Console window that displays the
final image file name and section sizes in that image.

Figure 74: e2 studio Project Build console

2.3.6 Debug the Blinky Project

2.3.6.1 Debug prerequisites

To debug the project on a board, you need

The board to be connected to e2 studio
The debugger to be configured to talk to the board
The application to be programmed to the microcontroller

Applications run from the internal flash of your microcontroller. To run or debug the application, the
application must first be programmed to the microcontroller's flash. There are two ways to do this:

JTAG debugger
Built-in boot-loader via UART or USB

Some boards have an on-board JTAG debugger and others require an external JTAG debugger
connected to a header on the board.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 63 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Debug prerequisites

Refer to your board's user manual to learn how to connect the JTAG debugger to e2 studio.

2.3.6.2 Debug steps

To debug the Blinky application, follow these steps:

1. Configure the debugger for your project by clicking Run > Debugger Configurations ...

Figure 75: e2 studio Debug icon

 or by selecting the drop-down menu next to the bug icon and selecting Debugger
Configurations ...

Figure 76: e2 studio Debugger Configurations selection option

2. Select your debugger configuration in the window. If it is not visible then it must be created
by clicking the New icon in the top left corner of the window. Once selected, the Debug
Configuration window displays the Debug configuration for your Blinky project.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 64 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Debug steps

Figure 77: e2 studio Debugger Configurations window with Blinky project

3. Click Debug to begin debugging the application.

4. Extracting RA Debug.

2.3.6.3 Details about the Debug Process

In debug mode, e2 studio executes the following tasks:

1. Downloading the application image to the microcontroller and programming the image to
the internal flash memory.

2. Setting a breakpoint at main().
3. Setting the stack pointer register to the stack.
4. Loading the program counter register with the address of the reset vector.
5. Displaying the startup code where the program counter points to.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 65 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Details about the Debug Process

Figure 78: e2 studio Debugger memory window

2.3.7 Run the Blinky Project

While in Debug mode, click Run > Resume or click on the Play icon twice.

Figure 79: e2 studio Debugger Play icon

 The LEDs on the board marked LED1, LED2, and LED3 should now be blinking.

2.4 Tutorial: Using HAL Drivers - Programming the WDT
2.4.1 Application WDT

This tutorial illustrates the creation of a simple application that uses the Watchdog Timer module to
monitor program operation. The tutorial shows each step in the development process and in
particular identifies the auto-generated files and project structure created when using FSP and its
GUI based configurator. The level of detail provided here is more than is normally needed during
development but can be helpful in explaining how FSP works behind the scenes to simplify your
work.

This application makes use of the following FSP modules:

MCU Board Support Package
Watchdog Timer (r_wdt)
I/O Ports (r_ioport)

2.4.2 Creating a WDT Application Using the RA MCU FSP and e2 studio

2.4.2.1 Using the FSP and e2 studio

The Flexible Software Package (FSP) from Renesas provides a complete driver library for developing
RA MCU applications. The FSP provides Hardware Abstraction Layer (HAL) drivers, Board Support
Package (BSP) drivers for the developer to use to create applications. The FSP is integrated into
Renesas e2 studio based on eclipse providing build (editor, compiler and linker) and debug phases
with an extended GNU Debug (GDB) interface.

2.4.2.2 The WDT Application

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 66 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the RA MCU FSP and e2 studio > The WDT Application

The flowchart for the WDT application is shown below.

Figure 80: WDT Application flow diagram

2.4.2.3 WDT Application flow

The main sections of the WDT application are:

1. The BSP initializes the clocks, pins and other elements of the MCU readying the application
to run.

2. main() calls hal_entry(). The function hal_entry() is created by the FSP with a placeholder for
user code. The code for the WDT is added to this function.

3. Initialize the WDT, but do not start it.
4. Start the WDT by refreshing it.
5. In the first loop the red LED flashes 30 times and refreshes the watchdog each time the LED

state is changed.
6. In the second loop, the green LED flashes, but the program DOES NOT refresh the

watchdog. After the watchdog timeout period the device will reset which can be observed
by the red LED flashing again as the sequence repeats.

2.4.3 Creating the Project with e2 studio

Start e2 studio and choose a workspace folder in the Workspace Launcher. Configure a new RA MCU
project as follows.

1. Select File > New > RA C/C++ Project. Then select the template for the project.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 67 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with e2 studio

Figure 81: Creating a new project

2. In the e2 studio Project Configuration (RA Project) window enter a project name, for
example, WDT_Application. In addition, select the toolchain. If you want to choose new
locations for the project unselect Use default location. Click Next.

Figure 82: Project configuration (part 1)

3. This application runs on the EK-RA6M3 board. So, for the Board select EK-RA6M3.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 68 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with e2 studio

This will automatically populate the Device drop-down with the correct device used on this
board. Select the Toolchain version. Select J-Link ARM as the Debugger. Click Next to
configure the project.

Figure 83: Project configuration (part 2)

 The project template is now selected. As no RTOS is required select Bare Metal - Blinky.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 69 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with e2 studio

Figure 84: Project configuration (part 3)

4. Click Finish.

e2 studio creates the project and opens the Project Explorer and Project Configuration
Settings views with the Summary page showing a summary of the project configuration.

2.4.4 Configuring the Project with e2 studio

e2 studio simplifies and accelerates the project configuration process by providing a GUI interface for
selecting the options to configure the project.

e2 studio offers a selection of perspectives presenting different windows to the user depending on
the operation in progress. The default perspectives are C/C++, FSP Configuration and Debug. The
perspective can be changed by selecting a new one from the buttons at the top right.

Figure 85: Selecting a perspective

 The C/C++ perspective provides a layout selected for code editing. The FSP Configuration
perspective provides elements for configuring a RA MCU project, and the Debug perspective
provides a view suited for debugging.

1. In order to configure the project settings ensure the FSP Configuration perspective is
selected.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 70 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e2 studio

2. Ensure the Project Configuration [WDT Application] is open. It is already open if the
Summary information is visible. To open the Project Configuration now or at any time make
sure the RA Configuration perspective is selected and double-click on the
configuration.xml file in the Project Explorer pane on the right side of e2 studio.

Figure 86: RA MCU Project Configuration Settings

 At the base of the Project Configuration view there are several tabs for configuring the project. A
project may require changes to some or all of these tabs. The tabs are shown below.

Figure 87: Project Configuration Tabs

2.4.4.1 BSP Tab

The BSP tab allows the Board Support Package (BSP) options to be modified from their defaults. For
this particular WDT project no changes are required. However, if you want to use the WDT in auto-
start mode, you can configure the settings of the OFS0 (Option Function Select Register 0) register in
the BSP tab. See the RA Hardware User's Manual for details on the WDT autostart mode.

2.4.4.2 Clocks Tab

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 71 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e2 studio > Clocks Tab

The Clocks tab presents a graphical view of the clock tree of the device. The drop-down boxes in the
GUI enables configuration of the various clocks. The WDT uses PCLCKB. The default output frequency
for this clock is 60 MHz. Ensure this clock is outputting this value.

Figure 88: Clock configuration

2.4.4.3 Interrupts Tab

The Interrupts tab is used to add new user events or interrupts. No new interrupts or events are
needed by the application, so no edits in this tab are required.

2.4.4.4 Event Links Tab

The Event Links tab is used to configure events used by the Event Link Controller (ELC). This
project doesn't use the ELC, so no edits in this tab are required.

2.4.4.5 Pins Tab

The Pins tab provides a graphical tool for configuring the functionality of the pins of the device. For
the WDT project no pin configuration is required. Although the project uses two LEDs connected to
pins on the device, these pins are pre-configured as output GPIO pins by the BSP.

2.4.4.6 Stacks Tab

You can add any driver to the project using the Stacks tab. The HAL driver IO port pins are added
automatically by e2 studio when the project is configured. The WDT application uses no RTOS
Resources, so you only need to add the HAL WDT driver.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 72 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e2 studio > Stacks Tab

Figure 89: Stacks tab

1. Click on the HAL/Common Panel in the Threads Window as indicated in the figure above.

The Stacks Panel becomes a HAL/Common Stacks panel and is populated with the
modules preselected by e2 studio.

2. Click on New Stack to find a pop-up window with the available HAL level drivers.
3. Select WATCHDOG Driver on r_wdt.

Figure 90: Module Selection

 The selected HAL WDT driver is added to the HAL/Common Stacks Panel and the Property
Window shows all configuration options for the selected module. The Property tab for the WDT
should be visible at the bottom left of the screen. If it is not visible, check that the FSP
Configuration perspective is selected.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 73 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e2 studio > Stacks Tab

Figure 91: Module Properties

 All parameters can be left with their default values.

Figure 92: g_wdt WATCHDOG Driver on WDT properties

 With PCLKB running at 60 MHz the WDT will reset the device 2.23 seconds after the last refresh.

WDT clock = 60 MHz / 8192 = 7.32 kHz

Cycle time = 1 / 7.324 kHz = 136.53 us

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 74 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e2 studio > Stacks Tab

Timeout = 136.53 us x 16384 = 2.23 seconds

Save the Project Configuration file and click the Generate Project Content button in the top
right corner of the Project Configuration pane.

Figure 93: Generate Project Content button

 e2 studio generates the project files.

2.4.4.7 Components Tab

The components tab is included for reference to see which modules are included in the project.
Modules are selected automatically in the Components view after they are added in the Stacks Tab.

For the WDT project ensure that the following modules are selected:

1. HAL_Drivers -> r_ioport
2. HAL_Drivers -> r_wdt

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 75 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with e2 studio > Components Tab

Figure 94: Component Selection

Note
The list of modules displayed in the Components tab depends on the installed FSP version.

2.4.5 WDT Generated Project Files

Clicking the Generate Project Content button performs the following tasks.

r_wdt folder and WDT driver contents created at:

ra/fsp/src

r_wdt_api.h created in:

ra/fsp/inc/api

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 76 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

r_wdt.h created in:

ra/fsp/inc/instances

The above files are the standard files for the WDT HAL module. They contain no specific project
contents. They are the driver files for the WDT. Further information on the contents of these files can
be found in the documentation for the WDT HAL module.

Configuration information for the WDT HAL module in the WDT project is found in:

ra_cfg/fsp_cfg/r_wdt_cfg.h

The above file's contents are based upon the Common settings in the g_wdt WATCHDOG Driver
on WDT Properties pane.

Figure 95: r_wdt_cfg.h contents

Warning
Do not edit any of these files as they are recreated every time the Generate Project Content
button is clicked and so any changes will be overwritten.

The r_ioport folder is not created at ra/fsp/src as this module is required by the BSP and so already
exists. It is included in the WDT project in order to include the correct header file in
ra_gen/hal_data.c–see later in this document for further details. For the same reason the other
IOPORT header files– ra/fsp/inc/api/r_ioport_api.handra/fsp/inc/instances/r_ioport.h–are not created as
they already exist.

In addition to generating the HAL driver files for the WDT and IOPORT files e2 studio also generates
files containing configuration data for the WDT and a file where user code can safely be added.
These files are shown below.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 77 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

Figure 96: WDT project files

2.4.5.1 WDT hal_data.h

The contents of hal_data.h are shown below.

/* generated HAL header file - do not edit */

#ifndef HAL_DATA_H_

 #define HAL_DATA_H_

 #include <stdint.h>

 #include "bsp_api.h"

 #include "common_data.h"

 #include "r_wdt.h"

 #include "r_wdt_api.h"

 #ifdef __cplusplus

extern "C"

{

 #endif

extern const wdt_instance_t g_wdt0;

 #ifndef NULL

void NULL(wdt_callback_args_t * p_args);

 #endif

extern wdt_instance_ctrl_t g_wdt0_ctrl;

extern const wdt_cfg_t g_wdt0_cfg;

void hal_entry(void);

void g_hal_init(void);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 78 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.h

 #ifdef __cplusplus

} /* extern "C" */

 #endif

#endif /* HAL_DATA_H_ */

 hal_data.h contains the header files required by the generated project. In addition this file includes
external references to the g_wdt0 instance structure which contains pointers to the configuration,
control, api structures used for WDT HAL driver.

Warning
This file is regenerated each time Generate Project Content is clicked and must not be
edited.

2.4.5.2 WDT hal_data.c

The contents of hal_data.c are shown below.

/* generated HAL source file - do not edit */

#include "hal_data.h"

wdt_instance_ctrl_t g_wdt0_ctrl;

const wdt_cfg_t g_wdt0_cfg =

{

 .timeout = WDT_TIMEOUT_16384,

 .clock_division = WDT_CLOCK_DIVISION_8192,

 .window_start = WDT_WINDOW_START_100,

 .window_end = WDT_WINDOW_END_0,

 .reset_control = WDT_RESET_CONTROL_RESET,

 .stop_control = WDT_STOP_CONTROL_ENABLE,

 .p_callback = NULL,

};

/* Instance structure to use this module. */

const wdt_instance_t g_wdt0 =

{.p_ctrl = &g_wdt0_ctrl, .p_cfg = &g_wdt0_cfg, .p_api = &g_wdt_on_wdt};

void g_hal_init (void)

{

 g_common_init();

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 79 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.c

 hal_data.c contains g_wdt0_ctrl which is the control structure for this instance of the WDT HAL
driver. This structure should not be initialized as this is done by the driver when it is opened.

The contents of g_wdt0_cfg are populated in this file using the Watchdog Driver on g_wdt0 pane
in the Project Configuration Stacks tab. If the contents of this structure do not reflect the settings
made in the IDE, ensure the Project Configuration settings are saved before clicking the
Generate Project Content button.

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.3 WDT main.c

Contains main() called by the BSP start-up code. main() calls hal_entry() which contains user
developed code (see next file). Here are the contents of main.c.

/* generated main source file - do not edit*/

#include "hal_data.h"

int main (void)

{

 hal_entry();

 return 0;

}

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.4 WDT hal_entry.c

This file contains the function hal_entry() called from main(). User developed code should be placed
in this file and function.

For the WDT project edit the contents of this file to contain the code below. This code implements
the flowchart in overview section of this document.

#include "hal_data.h"

#include "bsp_pin_cfg.h"

#include "r_ioport.h"

#define RED_LED_NO_OF_FLASHES 30

#define RED_LED_PIN BSP_IO_PORT_01_PIN_00

#define GREEN_LED_PIN BSP_IO_PORT_04_PIN_00

#define RED_LED_DELAY_MS 125

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 80 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

#define GREEN_LED_DELAY_MS 250

volatile uint32_t delay_counter;

volatile uint16_t loop_counter;

void R_BSP_WarmStart(bsp_warm_start_event_t event);

/**

*******************************/

void hal_entry (void)

{

 /* Allow the WDT to run when the debugger is connected */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_WDT = 0;

 /* Open the WDT */

 R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 /* Start the WDT by refreshing it */

 R_WDT_Refresh(&g_wdt0_ctrl);

 /* Flash the red LED and feed the WDT for a few seconds */

 for (loop_counter = 0; loop_counter < RED_LED_NO_OF_FLASHES; loop_counter++)

 {

 /* Turn red LED on */

 R_IOPORT_PinWrite(&g_ioport_ctrl, RED_LED_PIN, BSP_IO_LEVEL_LOW);

 /* Delay */

 R_BSP_SoftwareDelay(RED_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 /* Refresh WDT */

 R_WDT_Refresh(&g_wdt0_ctrl);

 R_IOPORT_PinWrite(&g_ioport_ctrl, RED_LED_PIN, BSP_IO_LEVEL_HIGH);

 /* Delay */

 R_BSP_SoftwareDelay(RED_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 /* Refresh WDT */

 R_WDT_Refresh(&g_wdt0_ctrl);

 }

 /* Flash green LED but STOP feeding the WDT. WDT should reset the

 * device */

 while (1)

 {

 /* Turn green LED on */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 81 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

 R_IOPORT_PinWrite(&g_ioport_ctrl, GREEN_LED_PIN, BSP_IO_LEVEL_LOW);

 /* Delay */

 R_BSP_SoftwareDelay(GREEN_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 /* Turn green off */

 R_IOPORT_PinWrite(&g_ioport_ctrl, GREEN_LED_PIN, BSP_IO_LEVEL_HIGH);

 /* Delay */

 R_BSP_SoftwareDelay(GREEN_LED_DELAY_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

}

/**

*******************************/

void R_BSP_WarmStart (bsp_warm_start_event_t event)

{

 if (BSP_WARM_START_RESET == event)

 {

#if BSP_FEATURE_FLASH_LP_VERSION != 0

 /* Enable reading from data flash. */

 R_FACI_LP->DFLCTL = 1U;

 /* Would normally have to wait for tDSTOP(6us) for data flash recovery. Placing the

enable here, before clock and

 * C runtime initialization, should negate the need for a delay since the

initialization will typically take more than 6us. */

#endif

 }

 if (BSP_WARM_START_POST_C == event)

 {

 /* C runtime environment and system clocks are setup. */

 /* Configure pins. */

 R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 }

}

 The WDT HAL driver API functions are defined in r_wdt.h. The WDT HAL driver is opened through the
open API call using the instance structure defined in r_wdt_api.h:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 82 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

 /* Open the WDT */

 R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 The first passed parameter is the pointer to the control structure g_wdt0_ctrl instantiated in
hal_data.c. The second parameter is the pointer to the configuration data g_wdto_cfg instantiated in
the same hal_data.c file.

The WDT is started and refreshed through the API call:

 /* Start the WDT by refreshing it */

 R_WDT_Refresh(&g_wdt0_ctrl);

 Again the first (and only in this case) parameter passed to this API is the pointer to the control
structure of this instance of the driver.

2.4.6 Building and Testing the Project

Build the project in e2 studio by clicking Build > Build Project or by clicking the build icon. The
project should build without errors.

To debug the project

1. Connect the USB cable between the target board debug port and host PC.
2. In the Project Explorer pane on the left side of e2 studio, right-click on the WDT project

WDT_Application and select Debug As > Debug Configurations.

3. Under Renesas GDB Hardware Debugging select WDT_Application Debug as shown
below.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 83 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

Figure 97: Debug configuration

4. Click the Debug button. Click Yes to the debug perspective if asked.

5. The code should run the Reset_Handler() function.
6. Resume execution via Run > Resume. Execution will stop in main() at the call to

hal_entry().
7. Resume execution again.

The red LED should start flashing. After 30 flashes the green LED will start flashing and the red LED
will stop flashing.

While the green LED is flashing the WDT will underflow and reset the device resulting in the red LED
to flash again as the sequence repeats.

1. Stop the debugger in e2 studio via Run > Terminate.
2. Click the reset button on the target board. The LEDs begin flashing.

2.5 Primer: ARM® TrustZone® Project Development
This section will introduce the user to the tools supporting ARM® TrustZone® configuration for the
RA Family of microcontrollers. It is intended to be read by development engineers implementing RA
ARM® TrustZone® projects for the first time. It will introduce basic concepts followed by workflow

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 84 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development

and tooling functions designed to simplify and accelerate their first ARM® TrustZone® development.
A background knowledge of e2 studio and RA device hardware is expected.

Target Device

RA Cortex®-M33 or Cortex®-M23 devices with ARM® TrustZone® security extension.

2.5.1 Renesas Implementation of ARM® TrustZone® Technology

For brevity, ARM® TrustZone® will be abbreviated to TZ in this document.

The following section is supplied for reference only. For full details of TZ implementation, refer to
Arm documentation (https://developer.arm.com/ip-products/security-ip/trustzone) and the RA6M4
device manual.

Arm TZ technology divides the MCU and therefore the application into Secure and Non-Secure
partitions. Secure applications can access both Secure and Non-Secure memory and resources. Non-
Secure code can access Non-Secure memory and resources as well as Secure resources through a
set of so-called veneers located in the Non-Secure Callable (NSC) region. This ensures a single
access point for Secure code when called from the Non-Secure partition. The MCU starts up in the
Secure partition by default. The security state of the CPU can be either Secure or Non-Secure.

The MCU code flash, data flash, and SRAM are divided into Secure (S) and Non-Secure (NS) regions.
Code flash and SRAM include a further region known as Non-Secure Callable (NSC). These memory
security attributes are set into the non-volatile memory via SCI or USB boot mode commands when
the device lifecycle is Secure Software Debug (SSD) state. The memory security attributes are
loaded into the Implementation Defined Attribution Unit (IDAU) peripheral and the memory controller
before application execution and cannot be updated by application code.

Figure 98: Secure and Non-Secure Regions

 Note: All external memory accesses are considered to be Non-Secure.

Code Flash and SRAM can be divided into Secure, Non-Secure, and Non-Secure Callable. All secure
memory accesses from the Non-Secure region MUST go through the Non-Secure Callable gateway
and target a specific Secure Gateway (SG) assembler instruction. This forces access to Secure APIs
at a fixed location and prevents calls to sub-functions and so on. Failing to target an SG instruction
will generate a TZ exception.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 85 / 2,794

https://developer.arm.com/ip-products/security-ip/trustzone

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Renesas Implementation of ARM® TrustZone® Technology

TZ enabled compilers will manage generation of the NSC veneer automatically using CMSE
extensions.

2.5.1.1 Calling from Non-Secure to Secure

A new instruction SG (Secure Gateway) has been added to the Armv8-M architecture. This MUST be
the destination instruction for any branch within the Non-Secure Callable region. If an attempt is
made to branch to any other instruction from the Non-Secure partition, a TZ exception will be
thrown.

Figure 99: Calling from Non-Secure to Secure Functions

2.5.1.2 Calling from Secure to Non-Secure

Secure code uses B(L)XNS instructions to make direct calls to Non-Secure functions. While this is
certainly possible, it can create a security vulnerability in the application. It is also challenging for
the Secure application to determine the address of the non-secure function during build phase. From
the RA Tools and FSP point view, calling directly from Secure to Non-Secure via FSP API is not
supported.

Preference is for the Secure code to initialise as necessary from reset, then pass control to the Non-
Secure partition. It will manage any data transfers and so forth via FSP call-backs as security checks.
For example, secure data can be copied to Non-Secure RAM.

Figure 100: Calling from Secure to Non-Secure Functions

2.5.2 Workflow

ARM® TrustZone® MCU development normally consists of two projects within a workspace, Secure
and Non-Secure. General project workflows are described in the following sections. The Renesas
project generator also supports development with "Flat project" model with no ARM® TrustZone®
awareness.

2.5.2.1 Secure Project

1. Start a new Secure project in e2 studio.
2. Select and configure pins and drivers/stacks that need to be initialized and used in Secure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 86 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Workflow > Secure Project

mode. This should be kept to a minimum to reduce the security attack surface.
3. Expose top of stacks as Non-Secure Callable (NSC) if they need to be accessed from Non-

Secure partition. Again, this should be kept to a minimum.
4. Generate project content and write Secure code such as key handling and opening drives as

needed.
5. Modify/remove any unnecessary "Guard" functions as needed to control access via NSC.
6. Build project.
7. A Non-Secure project will be needed before debugging. If necessary, prepare a "dummy"

Non-Secure project or replace R_BSP_NonSecureEnter(); with while(1); in hal_entry.c.

2.5.2.2 Non-Secure Project

1. Start a new Non-Secure project.
2. If you have access to the Secure project, choose this option. However, if you only have

access to a device with pre-programmed Secure code (commonly referred to as provisioned
device) choose "Secure Bundle".

3. Select and configure pins and drivers/stacks that need to be initialized and used in Non-
Secure mode.

4. Note that you can add NSC drivers and stacks as needed.
5. Generate project content and write Non-Secure code as needed
6. Access NSC drivers and Stacks via Guard functions.
7. Build and debug project.

2.5.2.3 Flat Project

A flat project does not technically use ARM® TrustZone® as the developer has made a decision to
place the entire application in Secure partition from restart.

Notes:

Any code placed in external memory (such as OSPI or QSPI) will be Non-Secure.
The Ethernet EDMAC is designed to be a Non-Secure bus master so associated Ethernet
RAM buffers will be placed in Non-Secure RAM. The tooling will automatically manage this.

The workflow is as follows:

1. Start a new Flat project.
2. Select and configure pins and drivers/stacks as needed.
3. Generate project content and write code as needed.
4. Build and debug project.

2.5.3 RA Project Generator (PG)

The RA project generators have been created to help users through setting up new TZ enabled
projects. User will be prompted for project settings such as Project Type (Secure, Non-Secure, or
Flat), compiler, RTOS and debugger. Care is needed when setting up a TZ project to ensure that the
connection between Secure and Non-Secure partitions are managed correctly.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 87 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > RA Project Generator (PG)

Figure 101: Secure Project (following Arm notation as green)

Figure 102: Non-Secure Project (following Arm notation as red)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 88 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > RA Project Generator (PG)

Figure 103: Flat Project

2.5.3.1 Secure Project Set Up

All code, data, and peripherals in this project will be configured as Secure using the device Peripheral
Security Attribution (PSA) registers. Although it is very application specific, we recommend keeping
the Secure project code as small as possible to reduce the attack surface. For example, secure key
handling may be the only application code in the secure project.

Necessary values to set up the TZ memory partition (IDAU registers) will be automatically calculated
after the project is built to ensure they match the code and data size, keeping the attack surface as
small as possible.

Typically, ANSI C start up code (clearing of RAM, variable initialisation, etc) , clock, and secure
peripheral initialisation will occur in this project.

At the end of the Secure code, a call will be made to R_BSP_NonSecureEnter(); to pass control to the
Non-Secure partition.

Non-Secure Callable (NSC) "Guard" functions are added to the project and expose selected modules
to Non-Secure projects. User can add application-specific access checks as needed in these
functions.

Output of this project type will be an elf file that must be either pre-programmed (provisioned) into a
device or referenced by a Non-Secure project (via Secure bundle *.SBD) to build a final image.

This project type will NOT typically be debugged in isolation and will normally require a Non-Secure
project such as a call to a R_BSP_NonSecureEnter() to be made. This can be replaced with while(1); if
needed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 89 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > RA Project Generator (PG) > RTOS Support in TZ Project

2.5.3.2 RTOS Support in TZ Project

Although the RTOS kernel and user tasks will reside in the Non-Secure partition, the Secure partition
needs to allocate stack space and so on. It is essential when starting a new RTOS project that the
TrustZone Secure RTOS-Minimal template is selected. This will add the Arm TrustZone Context RA
Port as below.

Figure 104: Secure RTOS-Minimal Template

2.5.3.3 Peripheral Security Attribution

Each peripheral can be configured to be Secure or Non-Secure. Peripherals are divided into two
types.

Type-1 peripherals have one security attribute. Access to all registers is controlled by one security
attribute. The Type-1 peripheral security attribute is set in the PSARx (x = B to E) register by the
secure application.

Type-2 peripherals have the security attribute for each register or for each bit. Access to each
register or bit field is controlled according to these security attributes. The Type-2 peripheral security
attribute is set in the Security Attribution register in each module by the Secure application. For
more information about the Security Attribution register, see sections in the Appropriate MCU’s
User’s Manual for each peripheral.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 90 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > RA Project Generator (PG) > Peripheral Security Attribution

Table 1. Secure and Non-Secure Peripherals

Type Peripheral

Type 1 SCI, SPI, USBFS, CAN, IIC, SCE9, DOC, SDHI,
SSIE, CTSU, CRC, CAC, TSN, ADC12, DAC12,
POEG, AGT, GPT, RTC, IWDT, WDT

Type 2 System control (Resets, LVD, Clock Generation
Circuit, Low Power Modes, Battery Backup
Function), FLASH CACHE, SRAM controller, CPU
CACHE, DMAC, DTC, ICU, MPU, BUS, Security
setting, ELC, I/O ports

Always Non-Secure CS Area Controller, QSPI, OSPI, ETHERC, EDMAC

FSP will initialise the arbitration registers during Secure project BSP start up. User code may also be
written to set or clear further arbitration. However care must be taken not to undermine FSP.

2.5.3.4 Non-Secure

All code, data, and peripherals in this project will be configured as Non-Secure. This project type
must be associated with a Secure project to enable access to secure code, peripherals, linker scripts
and others.

2.5.3.5 Flat Project Type

All code, data, and peripherals are configured in a Secure single partition except for the EDMAC RAM
buffers that will remain in the Non-Secure partition. Effectively, TZ is disabled.

2.5.3.6 Secure Connection to Non-Secure Project

When starting a new Non-Secure Project, the user will be prompted for either a Secure Project or
Secure Bundle. In each case, details of the linker settings, Non-Secure Callable functions, and Secure
peripherals will be read to enable the Non-Secure project setup.

Should the Secure project or bundle be rebuilt, the Non-Secure editor will detect this and prompt
user to regenerate the Non-Secure project configuration.

Figure 105: Secure Project or Bundle Selection

Secure Project (Combined)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 91 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > RA Project Generator (PG) > Secure Connection to Non-Secure Project

A Secure project must reside in the same Workspace as the Non-Secure project and will typically be
used when a design engineer has access to both the Secure and Non-Secure project sources. This is
sometimes known as "Combined model".

A Secure .elf file will be referenced and included in the debug configuration for download to the
target device. The development engineer will have visibility of Secure and Non-Secure project source
code and configuration.

Secure Bundle (Split)

A Secure Bundle will ONLY include linker memory ranges, symbol references, and details of locked
Secure peripheral configuration settings but no access to Secure source code (API header files will be
included as necessary).

The Secure bundle file (*.SBD) must be supplied to the Non-Secure developer by the Secure project
developer.

The development engineer will typically not have access to the Secure project or .elf file which MUST
be pre-programmed or provisioned into the target MCU.

The DLM state of target device should then be switched to NSECSD (see section 6.2) before the
device is provided to the non-secure developer.

This is often referred to as "Split model" where a basic security set up is developed by a Secure team
and then passed to the Non-Secure team in the same facility or at a third party. The Non-Secure
team has no access to the Secure source code and cannot directly access Secure peripherals, data,
or APIs.

2.5.3.7 Debug Configurations

After each project type has been selected, a suitable debug configuration will be generated.

Non-Secure with Secure Project (Combined)

Both Secure and Non-Secure .elf files will be downloaded.

A debug configuration called <project name>_SSD will be generated.

Non-Secure with Secure Bundle (Split)

Only a Non-Secure elf will be downloaded. This configuration must be used with a pre-provisioned
device (Secure project pre-programmed into MCU Flash).

A debug configuration called <project name>_NSECSD will be generated.

Flat Debug

A single .elf file will be downloaded.

A debug configuration called <project name>_FLAT will be generated.

2.5.4 Secure Projects

As mentioned, Secure code will be called immediately after device reset and run ANSI C start up,
clock, interrupt vector table, and secure peripheral initialization before starting user code. All

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 92 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Secure Projects

selected peripheral configuration settings will be automatically initialised as Secure.

2.5.4.1 Secure Clock

Device clock settings are the possible exception in that they will be initialised in the Secure project
(to enable faster start up from reset) but can be set as Secure or Non-Secure as user application may
need to change settings during execution (for low-power mode and so on). The Secure and Non-
Secure FSP BSPs can both change the clock settings.

However, clock settings can be locked as Secure should the developer choose to do so.

Figure 106: Secure Clock Setting

2.5.4.2 Setting Drivers as NSC

Some driver and middleware stacks in the Secure project may need to be accessed by the Non-
Secure partition. To enable generation of NSC veneers, set "Non-Secure Callable" from the right-click
context menu for the selected modules in the Configurator.

Note: It is only possible to "expose" top of stacks as NSC.

Figure 107: Generate NSC Veneers

 The top of the stack will be marked with a new icon and tool tip to signify NSC access.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 93 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Secure Projects > Guard Functions

2.5.4.3 Guard Functions

Access to NSC drivers from a Non-Secure project is possible through the Guard APIs. FSP will
automatically generate Guard functions for all the top of stack/driver APIs added to the project as
Non-Secure Callable.

User can choose to add further levels of access control or delete guard function if they wish to only
expose a limited range of APIs to a Non-Secure developer.

BSP_CMSE_NONSECURE_ENTRY fsp_err_t g_uart0_open_guard(

 uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg) {

 /* TODO: add your own security checks here */

 FSP_PARAMETER_NOT_USED(p_api_ctrl);

 FSP_PARAMETER_NOT_USED(p_cfg);

 return R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);

}

For example, an SCI channel may be opened and configured for a desired baud rate by the Secure
developer, but only enable the Write API to the Non-Secure developer. In which case, all but
g_uart0_write_guard() could be deleted. CTRL structures are not required as they will be added on
the Secure side.

For example, the call from the Non-Secure partition would be as follows:

err = g_uart0_open_guard(0,0);

2.5.5 Non-Secure projects

Configuration of the project can continue as for other RA devices, but certain resources will be locked
if they have been previously set up as Secure.

The Non-Secure project will be called from the Secure project via R_BSP_NonSecureEnter();

2.5.5.1 Clock Set Up

You may recall that clocks can be set as Secure or Non-Secure. If they are set as Secure, settings will
only be available to view, and user will not be able to change them. The Override button will be
greyed. This is useful to preserve CGC sync with secure project by not overriding unless necessary. If
it is NOT set as Secure, user can choose to override the initial Secure settings

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 94 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Non-Secure projects > Clock Set Up

Figure 108: Clock Setting as Non-Secure

Figure 109: Clock Setting as Secure

2.5.5.2 Selecting NSC Drivers

Drivers declared as NSC in a Secure project can be selected and added to Non-Secure project and
will be decorated as before.

Figure 110: Selecting NSC Drivers

2.5.5.3 Locked Resources

When a NSC Secure driver is added to a Non-Secure project, the configuration settings are locked
and are available for information only. A padlock is added for indication.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 95 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Non-Secure projects > Locked Resources

Figure 111: Locked Resources

2.5.5.4 Locked Channels

In a peripheral with multiple channels, for example, DMA, if a Non-Secure developer tries to select a
channel that has already been defined as Secure, the following error message type will be displayed.

Figure 112: Error Message when Selecting a Secure Channel

2.5.6 IDAU registers

Renesas RA TZ-enabled devices include a set of registers known as Implementation Defined
Attribution Unit (IDAU) that are used to set up partitions between Secure, Non-Secure Callable, and
Non-Secure regions. The IDAU registers can only be programmed during MCU boot mode and NOT
through the debug interfaces. Because of this, special debugger firmware has been developed to
manage bringing the device up in SCI boot mode to set up the IDAU registers (automatically drives
MD pin) and then switch back to debug mode as needed.

Note: Please be aware of the extra signal connection (MD pin) needed on the debug interface
connector. The Renesas Evaluation Kit (EK) for your selected device is a good reference.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 96 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > IDAU registers

 The e2 studio build phase automatically extracts the IDAU partition register settings from the Secure
.elf file and programs them into the device during debug connection, which can be observed in the
console.

This is an important phase of TZ development as the Secure partitions should be set as small as
possible to ensure that the security attack surface is as small as possible.

However, should the developer wish to make these partitions larger to accommodate, for example
during field firmware updates, const or data arrays should be placed in the Secure project as
needed.

Figure 113: RA TrustZone Device Current Status

 It is also possible to manually set up the partition registers through the Renesas Device Partition
Manager.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 97 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > IDAU registers

Figure 114: Renesas Device Partition Manager

2.5.6.1 SCI Boot Mode

Example of MD mode pin connection to debugger connector (from EK schematic).

Figure 115: Example of MD Mode Pin Connection to Debugger Connector (from EK schematic

2.5.6.2 DLM States

Device lifecycle defines the current phase of the device and controls the capabilities of the debug
interface, the serial programming interface and Renesas test mode. The following illustration shows
the lifecycle definitions and capability in each lifecycle.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 98 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > IDAU registers > DLM States

Figure 116: Lifecycle Stages

 Note: All authentication key exchange and transitioning to LCK_DBG, LCK_BOOT, RMA_REQ is only
managed by Renesas Flash Programmer (RFP) and NOT within e2 studio.

Figure 117: Lifecycle Stages and Debug Levels

 There are three debug access levels. The debug access level changes according to the lifecycle
state.

DBG2: The debugger connection is allowed, and no restriction to access memories and
peripherals

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 99 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > IDAU registers > DLM States

DBG1: The debugger connection is allowed, and restricted to access only Non-Secure
memory regions and peripherals
DBG0: The debugger connection is not allowed

Transitions for one state to another can be performed using the Renesas Flash Programmer (RFP,
see section below) or using the Renesas Device Partition Manager (limited number of states
possible). It is possible to secure transitions between states using authentication keys. For more
information on DLM states and transitions (device specific), please refer to device user manual.

2.5.7 Debug

By default, the device will be in SSD mode and so allow access to Secure and Non-Secure partitions.
In this mode both Secure and Non-Secure .elf files will be downloaded.

The current debugger status is displayed in the lower left corner and includes the DLM state (SSD or
NSECSD) and current partition (Secure, Non-Secure, or Non-Secure Callable) when the debugger is
stopped, for example.

Figure 118: Current Debugger Status

2.5.7.1 Non-Secure Debug

Once the device is transitioned to NSECSD mode, only Non-Secure Flash, RAM and Peripherals can
be accessed. In this mode, a Secure .elf must be pre-programmed (provisioned) into the device, and
only a Non-Secure .elf file will be downloaded.

When in NSECSD mode access to Secure elements will be blocked and data displayed as ????????.

In NSECSD mode, it is not possible to set breakpoints on Secure code or data.

It is not possible to step into Secure code; the debugger will perform a step-over of any Secure
function calls. Should the user press the Suspend button during execution, the debugger will stop at
the next Non-Secure code access.

Assuming Secure memory region finishes at 32K (0x8000) in NSECSD debug mode (colour coding
added for indication only), memory will be displayed as shown in the following figure.

Figure 119: Memory Display in NSECSD Debug Mode

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 100 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Debug > Non-Secure Debug

 Disassembly will be displayed as shown in the following figure.

Figure 120: Disassembly Display in NSECSD Debug Mode

2.5.8 Debugger support

Renesas E2, E2 Lite, and SEGGER J-Link are supported in e2 studio for TZ projects.

Debugger Support for TZ Projects

Feature E2 Lite E2 J-Link J-Link OB ULINK IAR i-Jet

JTAG Yes Yes Yes No Yes Yes

SWD Yes Yes Yes Yes Yes Yes

ETB trace Yes Yes Yes Yes Yes Yes

ETM trace No Yes Yes No Yes Yes

TZ partition
programmin
g

Yes Yes Yes Yes No No

Non secure
debug

Yes Yes Yes Yes Yes Yes

e2 studio Yes Yes Yes Yes No TBC

IAR EW Arm Under
consideratio
n

Under
consideratio
n

Yes Yes No Yes

Keil MDK Under
consideratio
n

Under
consideratio
n

Yes Yes Yes No

2.5.9 Third-Party IDEs

Third-party IDEs such as IAR Systems EWARM and Keil MDK (uVision) are supported by the RA Smart
Configurator (RA SC).

In general, RA SC offers the same configurator functionality as e2 studio documented above. Project

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 101 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Third-Party IDEs

generators are available to initialise workspaces in the target IDEs as well as setting up debug
configurations and so forth. However, there are some limitations that need to be noted especially
with regards to IDAU TZ partition register programming. See the specific RA SC documentation for
usage details.

2.5.10 Renesas Flash Programmer (RFP)

Updated versions of Renesas Flash Programmer (RFP) are available to support setting of partitions,
DLM state and Authentication keys.

RFP can be downloaded free of charge on the Renesas web site.

A new mode has been added to Program Flash Options as shown in the following graphics.

Figure 121: RFP Program Flash Options

 Options to set partition boundaries are shown in the following figure.

Figure 122: RFP Partition Boundaries

 Options to set DLM state, Authentication keys, and Security settings are shown in the following
figure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 102 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Renesas Flash Programmer (RFP)

Figure 123: RFP DLM State, Authentication Keys, and Security Settings

 Great care is needed here as some DLM states can **permanently** turn off debug and boot mode
on the devices. Equally programming a security access authentication key can lead to permanently
locked devices if the key is lost.

2.5.11 Glossary

IDAU

Implementation Defined Attribute Unit. Used to program TZ partitions in SCI book mode.

NSECSD

Non-Secure Software Development mode

SSD

Secure Software Development mode

NSC

Non-Secure Callable. Special Secure memory region used for Veneer to allow access to Secure APIs
from Non-Secure code.

Provisioned

Device with Secure code pre-programmed and DLM state set to NSECSD

Flat project

All code, data and peripherals are configured as secure with the exception of the EDMAC RAM buffer
which are placed in Non-Secure RAM due to the configuration of the internal bus masters.

Veneer

Code that resides in Non-Secure Callable region

Combined model

Development engineer has access to both Secure and Non-Secure project and source code

Split model

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 103 / 2,794

Flexible Software Package

User’s Manual
Starting Development > Primer: ARM® TrustZone® Project Development > Glossary

Development Engineer has access to only the Non-Secure partition. No visibility of Secure source
code. Secure code will be provisioned into device.

2.5.11.1 Configurator Icon Glossary

Figure 124: Configurator Icons

2.6 RA SC User Guide for MDK and IAR
2.6.1 What is RA SC?

The Renesas RA Smart Configurator (RA SC) is a desktop application designed to configure device
hardware such as clock set up and pin assignment as well as initialization of FSP software
components for a Renesas RA microcontroller project when using a 3rd-party IDE and toolchain.

The RA Smart Configurator can currently be used with

1. Keil MDK and the Arm compiler toolchain.
2. IAR EWARM with IAR toolchain for Arm

Projects can be configured and the project content generated in the same way as in e2 studio.
Please refer to Configuring a Project section for more details.

2.6.2 Using RA Smart Configurator with Keil MDK

2.6.2.1 Prerequisites

Keil MDK and Arm compiler are installed and licensed. Please refer to the RASC Release
notes for the version to be installed.
Import the RA device pack. Download the RA device pack archive file (ex:
MDK_Device_Packs_2.x.x.zip) from the FSP GitHub release page. Extract the archive file to
locate the RA device pack. To import the RA device pack, launch the PackInstaller.exe from
<keil_mdk_install_dir>\UV4. Select the menu item File > Import... and browse to the
extracted .pack file.
Verify that the latest updates for RA devices are included in Keil MDK. To verify, select the
menu "Packs" in Pack Installer and verify that the menu item Check for Updates on
Launch is selected. If not, select Check for Updates on Launch and relaunch Pack

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 104 / 2,794

https://github.com/renesas/fsp/releases

Flexible Software Package

User’s Manual
Starting Development > RA SC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Prerequisites

Installer.
For flashing and debugging, the latest Segger J-Link DLL is installed into Keil MDK.
Install RA SC and FSP using the Platform Installer from the GitHub release page.

2.6.2.2 Create new RA project

The following steps are required to create an RA project using Keil MDK, RA SC and FSP:

1. Start the RA Smart Configurator.

2. Enter a project folder and project name.

Figure 125: RA SC project settings

3. Select the target device and IDE.

Figure 126: Target device and IDE selection

4. The rest of the project generator and FSP configuration is the same as e2 studio. Please

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 105 / 2,794

Flexible Software Package

User’s Manual
Starting Development > RA SC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Create new RA project

refer to the previous sections for details.
5. On completion of the FSP configuration, press "Generate Project Content"

6. A new Keil MDK project file will be generated in the project path. Double click this file to
open MDK and continue development as usual.

Figure 127: uVision project workspace with imported project data

2.6.2.3 Modify existing RA project

Once an initial project has been generated and configured, it is also possible to make changes using
RA SC as follows.

Note
This setup only needs to be done once per project.

Set up the following links to RA SC:

1. In Keil MDK uVision, select Tools > Customize Tools Menu....
2. Select the new icon and fill in the fields as follows for each tool:

a. RA Smart Configurator:
Menu item name: Enter: RA Smart Configurator
Command: Select "..." and navigate to rasc.exe
Initial Folder: Enter: $P
Arguments: Enter: --device $D –-compiler ARMv6 configuration.xml

b. Device Partition Manager:
Menu item name: Enter: Device Partition Manager
Command: Select "..." and navigate to rasc.exe
Initial Folder: Enter: $P
Arguments: Enter: -application
com.renesas.cdt.ddsc.dpm.ui.dpmapplication configuration.xml "SL%L"

To reconfigure an existing project select Tools > RA Smart Configurator

To reconfigure the TrustZone partitions select Tools > Device Partition Manager

2.6.2.4 Build and Debug RA project

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 106 / 2,794

Flexible Software Package

User’s Manual
Starting Development > RA SC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Build and Debug RA project

The project can be built by selecting the menu item Project > Build Target or tool bar item
Rebuild or the keyboard shortcut F7.

Assembler, Compiler, Linker and Debugger settings can be changed in Options for Target dialog,
which can be launched using the menu item Project > Options for Target, the tool bar item
Options for Target or the keyboard shortcut Alt+F7.

Figure 128: Options for Target

 RA SC will set up the uVision project to debug the selected device using J-Link or J-Link OB debugger
by default.

A Debug session can be started or stopped by selecting the menu item Debug > Start/Stop Debug
Session or keyboard shortcut CTRL+F5. When debugging for the first time, J-Link firmware update
may be needed if requested by the tool.

Refer to the documentation from Keil to get more information on the debug features in uVision. Note
that not all features supported by uVision debugger are implemented in the J-Link interface. Consult
SEGGER J-Link documentation for more information.

2.6.2.5 Notes and Restrictions

1. When debugging a TrustZone based project, the Secure project image MUST be
downloaded before the Non Secure project.

2. For TrustZone enabled devices, the user will need to manually set up the memory partitions
using the "Renesas Device Partition Manager" from inside RA SC before downloading.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 107 / 2,794

Flexible Software Package

User’s Manual
Starting Development > RA SC User Guide for MDK and IAR > Using RA Smart Configurator with Keil MDK > Notes and Restrictions

Figure 129: Renesas Device partition Manager

3. RA FSP contains a full set of drivers and middleware and may not be compatible with other
CMSIS packs from Keil, Arm or third parties.

4. Flash programming is currently only supported through the debugger connection.

2.6.3 Using RA Smart Configurator with IAR EWARM

IAR Systems Embedded Workbench for Arm (EWARM) includes support for Renesas RA devices.
These can be set up as bare metal designs within EWARM. However, most RA developers will want to
integrate RA FSP drivers and middleware into their designs. RA SC will facilitate this.

RA SC generates a "Project Connection" file that can be loaded directly into EWARM to update
project files.

2.6.3.1 Prerequisites

IAR EWARM installed and licensed. Pleae refer to the Release notes for the version to be
installed.
RA SC and FSP Installed

2.6.3.2 Create new RA project

The following steps are required to create an RA project using IAR EWARM, RA SC and FSP:

1. Start the RA Smart Configurator.

2. Enter a project folder and project name.

Figure 130: RA SC project settings

3. Select the target device and IDE.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 108 / 2,794

Flexible Software Package

User’s Manual
Starting Development > RA SC User Guide for MDK and IAR > Using RA Smart Configurator with IAR EWARM > Create new RA project

Figure 131: Target device and IDE selection

4. The rest of the project generator and FSP configuration operates the same as e2 studio.
Refer to the previous sections for details.

5. On completion of the FSP configuration, press Generate Project Content.
6. A new IAR EWARM project file will be generated in the project path. Double click this file to

open IAR EWARM and continue development as usual.
7. To Use RA SC with EWARM, RA SC needs to configured as a tool in EWARM by selecting the

menu item Tools > Configure Tools.... Select New to create a new tool in the dialog
shown and add the following information:

Menu Text: RA Smart Configurator
a. Command: Select Browse... and navigate to rasc.exe in the installed RA

SC
b. Argument: –compiler IAR configuration.xml
c. Initial Directory: $PROJ_DIR$
d. Tool Available: Always

Menu Text: Device Partition Manager
a. Command: Select Browse... and navigate to rasc.exe in the installed RA

SC
b. Argument: -application com.renesas.cdt.ddsc.dpm.ui.dpmapplication

configuration.xml "$TARGET_PATH$"
c. Initial Directory: $PROJ_DIR$
d. Tool Available: Always

8. RA SC can now be re-launched from EWARM using the menu item Tools > RA Smart
Configurator.

9. A Project connection needs to be set up in EWARM to build the project. Select Project >
Add Project Connection in EWARM and select IAR Project Connection. Navigate to the
project folder and select buildinfo.ipcf and click Open. The project can now build in EWARM.

2.6.3.3 Notes and Restrictions

When starting a TrustZone enabled debug session Partition sizes are checked automatically.

If partition sizes are set correctly, the debug session will launch as normal.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 109 / 2,794

Flexible Software Package

User’s Manual
Starting Development > RA SC User Guide for MDK and IAR > Using RA Smart Configurator with IAR EWARM > Notes and Restrictions

If partition sizes need to be changed, IAR EWARM will prompt to run the Renesas Device
Partition Manager. Select Yes. The Device Partition Manager will start with the required
partition sizes prefilled.
Select Set TrustZone secure / non-secure boundaries as the only action.
Enter debugger details, if required.
Select Run to program the partitions.
Return to the IDE and relaunch the debug session

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 110 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture

Chapter 3 FSP Architecture

3.1 FSP Architecture Overview
This guide describes the Renesas Flexible Software Package (FSP) architecture and how to use the
FSP Application Programming Interface (API).

3.1.1 C99 Use

The FSP uses the ISO/IEC 9899:1999 (C99) C programming language standard. Specific features
introduced in C99 that are used include standard integer types (stdint.h), booleans (stdbool.h),
designated initializers, and the ability to intermingle declarations and code.

3.1.2 Doxygen

Doxygen is the default documentation tool used by FSP. You can find Doxygen comments throughout
the FSP source.

3.1.3 Weak Symbols

Weak symbols are used occasionally in the FSP. They are used to ensure that a project builds even
when the user has not defined an optional function.

3.1.4 Memory Allocation

Dynamic memory allocation through use of the malloc() and free() functions are not used in FSP
modules; all memory required by FSP modules is allocated in the application and passed to the
module in a pointer. Exceptions are considered only for ports of 3rd party code that require dynamic
memory.

3.1.5 FSP Terms

Term Description Reference

BSP Short for Board Support
Package. In the FSP the BSP
provides just enough
foundation to allow other FSP
modules to work together
without issue.

MCU Board Support Package

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 111 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture Overview > FSP Terms

Module Modules can be peripheral
drivers, purely software, or
anything in between. Each
module consists of a folder with
source code, documentation,
and anything else that the
customer needs to use the code
effectively. Modules are
independent units, but they
may depend on other modules.
Applications can be built by
combining multiple modules to
provide the user with the
features they need.

FSP Modules

Driver A driver is a specific kind of
module that directly modifies
registers on the MCU.

-

Interface An interface contains API
definitions that can be shared
by modules with similar
features. Interfaces are
definitions only and do not add
to code size.

FSP Interfaces

Stacks The FSP architecture is
designed such that modules
work together to form a stack.
A stack consists of a top level
module and all its
dependencies.

FSP Stacks

Module Instance Single and independent
instantiation of a module. An
application may require two
GPT timers. Each of these
timers is a module instance of
the r_gpt module.

-

Application Code that is owned and
maintained by the user.
Application code may be based
on sample application code
provided by Renesas, but it is
the responsibility of the user to
maintain as necessary.

-

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 112 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture Overview > FSP Terms

Callback Function This term refers to a function
that is called when an event
occurs. As an example, suppose
the user would like to be
notified every second based on
the RTC. As part of the RTC
configuration, a callback
function can be supplied that
will be jumped to during each
RTC interrupt. When a single
callback services multiple
events, the arguments contain
the triggering event. Callback
functions for interrupts should
be kept short and handled
carefully because when they
are called the MCU is still inside
of an interrupt, delaying any
pending interrupts.

-

3.2 FSP Modules
Modules are the core building block of FSP. Modules can do many different things, but all modules
share the basic concept of providing functionality upwards and requiring functionality from below.

Figure 132: Modules

 The amount of functionality provided by a module is determined based on functional use cases.
Common functionality required by multiple modules is often placed into a self-contained submodule
so it can be reused. Code size, speed and complexity are also considered when defining a module.

The simplest FSP application consists of one module with the Board Support Package (BSP) and the
user application on top.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 113 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Modules

Figure 133: Module with application

 The Board Support Package (BSP) is the foundation for FSP modules, providing functionality to
determine the MCU used as well as configuring clocks, interrupts and pins. For the sake of clarity,
the BSP will be omitted from further diagrams.

3.3 FSP Stacks
When modules are layered atop one another, an FSP stack is formed. The stacking process is
performed by matching what one module provides with what another module requires. For example,
the SPI module (Serial Peripheral Interface (r_spi)) requires a module that provides the transfer
interface (Transfer Interface) to send or receive data without a CPU interrupt. The transfer interface
requirement can be fulfilled by the DTC driver module (Data Transfer Controller (r_dtc)).

Through this methodology the same code can be shared by several modules simultaneously. The
example below illustrates how the same DTC module can be used with SPI (Serial Peripheral
Interface (r_spi)), UART (Serial Communications Interface (SCI) UART (r_sci_uart)) and SDHI (SD/MMC
Host Interface (r_sdhi)).

Figure 134: Stacks -- Shared DTC Module

 The ability to stack modules ensures the flexibility of the architecture as a whole. If multiple
modules include the same functionality issues arise when application features must work across
different user designs. To ensure that modules are reusable, any dependent modules must be
capable of being swapped out for other modules that provide the same features. The FSP

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 114 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Stacks

architecture provides this flexibility to swap modules in and out through the use of FSP interfaces.

3.4 FSP Interfaces
At the architecture level, interfaces are the way that modules provide common features. This
commonality allows modules that adhere to the same interface to be used interchangeably.
Interfaces can be thought of as a contract between two modules - the modules agree to work
together using the information that was established in the contract.

On RA hardware there is occasionally an overlap of features between different peripherals. For
example, I2C communications can be achieved through use of the IIC peripheral or the SCI
peripheral. However, there is a difference in the level of features provided by both peripherals; in I2C
mode the SCI peripheral will only support a subset of the capabilities of the fully-featured IIC.

Interfaces aim to provide support for the common features that most users would expect. This
means that some of the advanced features of a peripheral (such as IIC) might not be available in the
interface. In most cases these features are still available through interface extensions.

In FSP design, interfaces are defined in header files. All interface header files are located in the folder
ra/fsp/inc/api and end with *_api.h. Interface extensions are defined in header files in the folder
ra/fsp/inc/instances. The following sections detail what makes up an interface.

3.4.1 FSP Interface Enumerations

Whenever possible, interfaces use typed enumerations for function parameters and structure
members.

typedef enum e_i2c_master_addr_mode

{

 I2C_MASTER_ADDR_MODE_7BIT = 1, ///< Use 7-bit addressing mode

 I2C_MASTER_ADDR_MODE_10BIT = 2, ///< Use 10-bit addressing mode

} i2c_master_addr_mode_t;

Enumerations remove uncertainty when deciding what values are available for a parameter. FSP
enumeration options follow a strict naming convention where the name of the type is prefixed on the
available options. Combining the naming convention with the autocomplete feature available in e2
studio (Ctrl + Space) provides the benefits of rapid coding while maintaining high readability.

3.4.2 FSP Interface Callback Functions

Callback functions allow modules to asynchronously alert the user application when an event has
occurred, such as when a byte has been received over a UART channel or an IRQ pin is toggled. FSP
driver modules define and handle the interrupt service routines for RA MCU peripherals to ensure
any required hardware procedures are implemented. The interrupt service routines in FSP modules
then call the user-defined callbacks to allow the application to respond.

Callback functions must be defined in the user application. They always return void and take a
structure for their one parameter. The structure is defined in the interface for the module and is
named <interface>_callback_args_t. The contents of the structure may vary depending on the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 115 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

interface, but two members are common: event and p_context.

The event member is an enumeration defined in the interface used by the application to determine
why the callback was called. Using the UART example, the callback could be triggered for many
different reasons, including when a byte is received, all bytes have been transmitted, or a framing
error has occurred. The event member allows the application to determine which of these three
events has occurred and handle it appropriately.

The p_context member is used for providing user-specified data to the callback function. In many
cases a callback function is shared between multiple channels or module instances; when the
callback occurs, the code handling the callback needs context information so that it can determine
which module instance the callback is for. For example, if the callback wanted to make an FSP API
call in the callback, then at a minimum the callback will need a reference to the relevant control
structure. To make this easy, the user can provide a pointer to the control structure as the
p_context. When the callback occurs, the control structure is passed in the p_context element of the
callback structure.

Callback functions are called from within an interrupt service routine. For this reason callback
functions should be kept as short as possible so they do not affect the real time performance of the
user's system. An example skeleton function for the flash interface callback is shown below.

void flash_callback (flash_callback_args_t * p_args)

{

 /* See what event caused this callback. */

 switch (p_args->event)

 {

 case FLASH_EVENT_ERASE_COMPLETE:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_WRITE_COMPLETE:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_BLANK:

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_NOT_BLANK:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 116 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

 {

 /* Handle event. */

 break;

 }

 case FLASH_EVENT_ERR_DF_ACCESS:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_CF_ACCESS:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_CMD_LOCKED:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_FAILURE:

 {

 /* Handle error. */

 break;

 }

 case FLASH_EVENT_ERR_ONE_BIT:

 {

 /* Handle error. */

 break;

 }

 }

}

 When a module is not directly used in the user application (that is, it is not the top layer of the
stack), its callback function will be handled by the module above. For example, if a module requires

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 117 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

a UART interface module the upper layer module will control and use the UART's callback function. In
this case the user would not need to create a callback function for the UART module in their
application code.

3.4.3 FSP Interface Data Structures

At a minimum, all FSP interfaces include three data structures: a configuration structure, an API
structure, and an instance structure.

3.4.3.1 FSP Interface Configuration Structure

The configuration structure is used for the initial configuration of a module during the
<MODULE>_Open() call. The structure consists of members such as channel number, bitrate, and
operating mode.

The configuration structure is used purely as an input into the module. It may be stored and
referenced by the module, so the configuration structure and anything it references must persist as
long as the module is open.

The configuration structure is allocated for each module instance in files generated by the RA
Configuration editor.

When FSP stacks are used, it is also important to understand that configuration structures only have
members that apply to the current interface. If multiple layers in the same stack define the same
configuration parameters then it becomes difficult to know where to modify the option. For example,
the baud rate for a UART is only defined in the UART module instance. Any modules that use the
UART interface rely on the baud rate being provided in the UART module instance and do not offer it
in their own configuration structures.

3.4.3.2 FSP Interface API Structure

All interfaces include an API structure which contains function pointers for all the supported interface
functions. An example structure for the Digital to Analog Converter (r_dac) is shown below.

typedef struct st_dac_api

{

 /** Initial configuration.

 * @par Implemented as

 * - @ref R_DAC_Open()

 * - @ref R_DAC8_Open()

 *

 * @param[in] p_ctrl Pointer to control block. Must be declared by user. Elements

set here.

 * @param[in] p_cfg Pointer to configuration structure. All elements of this

structure must be set by user.

 */

 fsp_err_t (* open)(dac_ctrl_t * const p_ctrl, dac_cfg_t const * const p_cfg);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 118 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

 /** Close the D/A Converter.

 * @par Implemented as

 * - @ref R_DAC_Close()

 * - @ref R_DAC8_Close()

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

timer.

 */

 fsp_err_t (* close)(dac_ctrl_t * const p_ctrl);

 /** Write sample value to the D/A Converter.

 * @par Implemented as

 * - @ref R_DAC_Write()

 * - @ref R_DAC8_Write()

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

timer.

 * @param[in] value Sample value to be written to the D/A Converter.

 */

 fsp_err_t (* write)(dac_ctrl_t * const p_ctrl, uint16_t value);

 /** Start the D/A Converter if it has not been started yet.

 * @par Implemented as

 * - @ref R_DAC_Start()

 * - @ref R_DAC8_Start()

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

timer.

 */

 fsp_err_t (* start)(dac_ctrl_t * const p_ctrl);

 /** Stop the D/A Converter if the converter is running.

 * @par Implemented as

 * - @ref R_DAC_Stop()

 * - @ref R_DAC8_Stop()

 *

 * @param[in] p_ctrl Control block set in @ref dac_api_t::open call for this

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 119 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

timer.

 */

 fsp_err_t (* stop)(dac_ctrl_t * const p_ctrl);

} dac_api_t;

The API structure is what allows for modules to easily be swapped in and out for other modules that
are instances of the same interface. Let's look at an example application using the DAC interface
above.

RA MCUs have an internal DAC peripheral. If the DAC API structure in the DAC interface is not used
the application can make calls directly into the module. In the example below the application is
making calls to the R_DAC_Write() function which is provided in the r_dac module.

Figure 135: DAC Write example

 Now let's assume that the user needs more DAC channels than are available on the MCU and
decides to add an external DAC module named dac_external using I2C for communications. The
application must now distinguish between the two modules, adding complexity and further
dependencies to the application.

Figure 136: DAC Write with two write modules

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 120 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

 The use of interfaces and the API structure allows for the use of an abstracted DAC. This means that
no extra logic is needed if the user's dac_external module implements the FSP DAC interface, so the
application no longer depends upon hard-coded module function names. Instead the application now
depends on the DAC interface API which can be implemented by any number of modules.

Figure 137: DAC Interface

3.4.3.3 FSP Interface Instance Structure

Every FSP interface also has an instance structure. The instance structure encapsulates everything
required to use the module:

A pointer to the instance API structure (FSP Instance API)
A pointer to the configuration structure
A pointer to the control structure

The instance structure is not required at the application layer. It is used to connect modules to their
dependencies (other than the BSP).

Instance structures have a standardized name of <interface>_instance_t. An example from the
Transfer Interface is shown below.

typedef struct st_transfer_instance

{

 transfer_ctrl_t * p_ctrl; ///< Pointer to the control structure for this

instance

 transfer_cfg_t const * p_cfg; ///< Pointer to the configuration structure

for this instance

 transfer_api_t const * p_api; ///< Pointer to the API structure for this

instance

} transfer_instance_t;

Note that when an instance structure variable is declared, the API is the only thing that is instance
specific, not module instance specific. This is because all module instances of the same module
share the same underlying module source code. If SPI is being used on SCI channels 0 and 2 then

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 121 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface Instance Structure

both module instances use the same API while the configuration and control structures are typically
different.

3.5 FSP Instances
While interfaces dictate the features that are provided, instances actually implement those features.
Each instance is tied to a specific interface. Instances use the enumerations, data structures, and API
prototypes from the interface. This allows an application that uses an interface to swap out the
instance when needed.

On RA MCUs some peripherals are used to implement multiple interfaces. In the example below the
IIC and SPI peripherals map to only one interface each while the SCI peripheral implements three
interfaces.

Figure 138: Instances

 In FSP design, instances consist of the interface extension and API defined in the instance header
file located in the folder ra/fsp/inc/instances and the module source ra/fsp/src/<module>.

3.5.1 FSP Instance Control Structure

The control structure is used as a unique identifier for the module instance and contains memory
required by the module. Elements in the control structure are owned by the module and must not be
modified by the application. The user allocates storage for a control structure, often as a global
variable, then sends a pointer to it into the <MODULE>_Open() call for a module. At this point, the
module initializes the structure as needed. The user must then send in a pointer to the control
structure for all subsequent module calls.

3.5.2 FSP Interface Extensions

In some cases, instances require more information than is provided in the interface. This situation
can occur in the following cases:

An instance offers extra features that are not common to most instances of the interface.
An example of this is the start source selection of the GPT (General PWM Timer (r_gpt)). The
GPT can be configured to start based on hardware events such as a falling edge on a trigger
pin. This feature is not common to all timers, so it is included in the GPT instance.
An interface must be very generic out of necessity. As an interface becomes more generic,
the number of possible instances increases. An example of an interface that must be
generic is a block media interface that abstracts functions required by a file system.
Possible instances include SD card, SPI Flash, SDRAM, USB, and many more.

The p_extend member provides this extension function.

Use of interface extensions is not always necessary. Some instances do not offer an extension since

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 122 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP Instances > FSP Interface Extensions

all functionality is provided in the interface. In these cases the p_extend member can be set to NULL.
The documentation for each instance indicates whether an interface extension is available and
whether it is mandatory or optional.

3.5.2.1 FSP Extended Configuration Structure

When extended configuration is required it can be supplied through the p_extend parameter of the
interface configuration structure.

The extended configuration structure is part of the instance, but it is also still considered to be part
of the configuration structure. All usage notes about the configuration structure described in FSP
Interface Configuration Structure apply to the extended configuration structure as well.

The extended configuration structure and all typed structures and enumerations required to define it
make up the interface extension.

3.5.3 FSP Instance API

Each instance includes a constant global variable tying the interface API functions to the functions
provided by the module. The name of this structure is standardized as
g_<interface>_on_<instance>. Examples include g_spi_on_spi, g_transfer_on_dtc, and
g_adc_on_adc. This structure is available to be used through an extern in the instance header file
(r_spi.h, r_dtc.h, and r_adc.h respectively).

3.6 FSP API Standards
3.6.1 FSP Function Names

FSP functions start with the uppercase module name (<MODULE>). All modules have
<MODULE>_Open() and <MODULE>_Close() functions. The <MODULE>_Open() function must be
called before any of the other functions.

Other functions that will commonly be found are <MODULE>_Read(), <MODULE>_Write(),
<MODULE>_InfoGet(), and <MODULE>_StatusGet(). The <MODULE>_StatusGet() function provides
a status that could change asynchronously, while <MODULE>_InfoGet() provides information that
cannot change after open or can only be updated by API calls. Example function names include:

R_SPI_Read(), R_SPI_Write(), R_SPI_WriteRead()
R_SDHI_StatusGet()
R_RTC_CalendarAlarmSet(), R_RTC_CalendarAlarmGet()
R_FLASH_HP_AccessWindowSet(), R_FLASH_HP_AccessWindowClear()

3.6.2 Use of const in API parameters

The const qualifier is used with API parameters whenever possible. An example case is shown below.

fsp_err_t R_FLASH_HP_Open(flash_ctrl_t * const p_api_ctrl, flash_cfg_t const * const

p_cfg);

In this example, flash_cfg_t is a structure of configuration parameters for the r_flash_hp module. The
parameter p_cfg is a pointer to this structure. The first const qualifier on p_cfg ensures the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 123 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP API Standards > Use of const in API parameters

flash_cfg_t structure cannot be modified by R_FLASH_HP_Open(). This allows the structure to be
allocated as a const variable and stored in ROM instead of RAM.

The const qualifier after the pointer star for both p_ctrl and p_cfg ensures the FSP function does not
modify the input pointer addresses. While not fool-proof by any means this does provide some extra
checking inside the FSP code to ensure that arguments that should not be altered are treated as
such.

3.6.3 FSP Version Information

The BSP provides a function R_FSP_VersionGet() which fills in a structure of type fsp_pack_version_t.
This can be used to determine the FSP version at runtime.

There are also FSP_VERSION_* macros in fsp_version.h that can be used to determine the FSP
version at build time.

3.7 FSP Build Time Configurations
All modules have a build-time configuration header file. Most configuration options are supplied at
run time, though options that are rarely used or apply to all instances of a module may be moved to
build time. The advantage of using a build-time configuration option is to potentially reduce code
size reduction by removing an unused feature.

All modules have a build time option to enable or disable parameter checking for the module. FSP
modules check function arguments for validity when possible, though this feature is disabled by
default to reduce code size. Enabling it can help catch parameter errors during development and
debugging. By default, each module's parameter checking configuration inherits the BSP parameter
checking setting (set on the BSP tab of the RA Configuration editor). Leaving each module's
parameter checking configuration set to Default (BSP) allows parameter checking to be enabled or
disabled globally in all FSP code through the parameter checking setting on the BSP tab.

If an error condition can reasonably be avoided it is only checked in a section of code that can be
disabled by disabling parameter checking. Most FSP APIs can only return FSP_SUCCESS if parameter
checking is disabled. An example of an error that cannot be reasonably avoided is the "bus busy"
error that occurs when another master is using an I2C bus. This type of error can be returned even if
parameter checking is disabled.

3.8 FSP File Structure
The high-level file structure of an FSP project is shown below.

ra_gen

ra

+---fsp

 +---inc

 | +---api

 | \---instances

 \---src

 +---bsp

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 124 / 2,794

Flexible Software Package

User’s Manual
FSP Architecture > FSP File Structure

 \---r_module

ra_cfg

+---fsp_cfg

 +---bsp

 +---driver

Directly underneath the base ra folder the folders are split into the source and include folders.
Include folders are kept separate from the source for easy browsing and easy setup of include paths.

The ra_gen folder contains code generated by the RA Configuration editor. This includes global
variables for the control structure and configuration structure for each module.

The ra_cfg folder is where configuration header files are stored for each module. See FSP Build Time
Configurations for information on what is provided in these header files.

3.9 FSP TrustZone Support
TrustZone support for FSP is primarily handled in the RA Configuration Tool.

3.9.1 FSP TrustZone Projects

During development of a TrustZone project, users create an RA TrustZone Secure Project first,
followed by an RA TrustZone Non-secure Project that is linked to the RA TrustZone Secure Project.
Allocation of secure memory is handled automatically within the tooling. The non-secure project
starts at the required alignment boundary beyond the memory taken by the secure project.

3.9.2 Non-Secure Callable Guard Functions

The tooling generates guard functions for any module marked as Non-secure Callable. These guard
functions are owned by the application once generated, so they can be modified as necessary by the
secure application developer.

The default non-secure callable guard functions limit the configuration and control structure to the
structures generated in the secure project. They also check any input pointers to ensure the caller
does not overwrite secure memory.

3.9.3 Callbacks in Non-Secure from Non-Secure Callable Modules

If the non-secure project needs a callback function from a non-secure callable module, the callback
can be registered after the module is opened using the callback_set() guard function.

3.9.4 Additional TrustZone Information

The following resources provide technical background, application notes and example projects that
demonstrate key TrustZone concepts and implementation procedures.

The Benefits of Using Arm® TrustZone® in Your Design (Brochure)
RA Arm® TrustZone® Tooling Primer (Application Note)
Renesas RA Family Security Design with Arm® TrustZone® - IP Protection (Application

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 125 / 2,794

https://www.renesas.com/us/en/document/whp/benefits-using-arm-trustzone-your-design
https://www.renesas.com/us/en/document/apn/ra-arm-trustzone-tooling-primer
https://www.renesas.com/us/en/document/scd/renesas-ra-family-security-design-arm-trustzone-ip-protection

Flexible Software Package

User’s Manual
FSP Architecture > FSP TrustZone Support > Additional TrustZone Information

Note)
Renesas RA Family Securing Data at Rest Using the Arm® TrustZone® (Application Note)

3.10 FSP Architecture in Practice
3.10.1 FSP Connecting Layers

FSP modules are meant to be both reusable and stackable. It is important to remember that modules
are not dependent upon other modules, but upon other interfaces. The user is then free to fulfill the
interface using the instance that best fits their needs.

Figure 139: Connecting layers

 In the image above interface Y is a dependency of interface X and has its own dependency on
interface Z. Interface X only has a dependency on interface Y. Interface X has no knowledge of
interface Z. This is a requirement for ensuring that layers can easily be swapped out.

3.10.2 Using FSP Modules in an Application

The typical use of an FSP module involves generating required module data then using the API in the
application.

3.10.2.1 Create a Module Instance in the RA Configuration Editor

The RA Configuration editor (available both in the Renesas e2 studio IDE as well as through the
standalone RA Smart Configurator) provides a graphical user interface for setting the parameters of
the interface and instance configuration structures. It also automatically includes those structures
(once they are configured in the GUI) in application-specific header files that can be included in
application code.

The RA Configuration editor allocates storage for the control structures, all required configuration
structures, and the instance structure in generated files in the ra_gen folder. Use the Properties
window to set the values for the members of the configuration structures as needed. Refer to the
Configuration section of the module usage notes for documentation about the configuration options.

If the interface has a callback function option then the application must declare and define the
function. The return value is always of type void and the parameter to the function is a typed
structure of name <interface>_callback_args_t. Once the function has been defined, assign its name
to the p_callback member of the configuration structure. Callback function names can be assigned
through the Properties window for the selected module.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 126 / 2,794

https://www.renesas.com/us/en/document/scd/renesas-ra-family-securing-data-rest-using-arm-trustzone

Flexible Software Package

User’s Manual
FSP Architecture > FSP Architecture in Practice > Using FSP Modules in an Application > Use the Instance API in the Application

3.10.2.2 Use the Instance API in the Application

Call the module's <MODULE>_Open() function. Pass pointers to the generated control structure and
configuration structure. The names of these structures are based on the 'Name' field provided in the
configuration editor. The control structure is <Name>_ctrl and the configuration structure is
<Name>_cfg. An example <MODULE>_Open() call for an r_rtc module instance named g_clock is:

 R_RTC_Open(&g_clock_ctrl, &g_clock_cfg);

Note
Each layer in the FSP Stack is responsible for calling the API functions of its dependencies. This means that users
are only responsible for calling the API functions at the layer at which they are interfacing. Using the example
above of a SPI module with a DTC dependency, the application uses only SPI APIs. The application starts by
calling R_SPI_Open(). Internally, the SPI module opens the DTC. It locates R_DTC_Open() by accessing the
dependent transfer interface function pointers from the pointers DTC instances (spi_cfg_t::p_transfer_tx and
spi_cfg_t::p_transfer_rx) to open the DTC.

Refer to the module usage notes for example code to help get started with any particular module.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 127 / 2,794

Flexible Software Package

User’s Manual
API Reference

Chapter 4 API Reference
This section includes the FSP API Reference for the Module and Interface level functions.

 ►BSP Common code shared by FSP drivers

 ►Modules Modules are the smallest unit of software
available in the FSP. Each module implements
one interface

 ►Interfaces The FSP interfaces provide APIs for common
functionality. They can be implemented by one
or more modules. Modules can use other
modules as dependencies using this interface
layer

4.1 BSP

Detailed Description

Common code shared by FSP drivers.

Modules

Common Error Codes

MCU Board Support Package

 The BSP is responsible for getting the MCU from reset to the user's
application. Before reaching the user's application, the BSP sets up
the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP I/O access

 This module provides basic read/write access to port pins.

Data Structures

union fsp_pack_version_t

struct fsp_pack_version_t.__unnamed__

Macros

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 128 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP

#define FSP_VERSION_MAJOR

#define FSP_VERSION_MINOR

#define FSP_VERSION_PATCH

#define FSP_VERSION_BUILD

#define FSP_VERSION_STRING

#define FSP_VERSION_BUILD_STRING

Data Structure Documentation

◆ fsp_pack_version_t

union fsp_pack_version_t

FSP Pack version structure

Data Fields

uint32_t version_id Version id

struct fsp_pack_version_t __unnamed__ Code version parameters, little
endian order.

◆ fsp_pack_version_t.__unnamed__

struct fsp_pack_version_t.__unnamed__

Code version parameters, little endian order.

Data Fields

uint8_t build Build version of FSP Pack.

uint8_t patch Patch version of FSP Pack.

uint8_t minor Minor version of FSP Pack.

uint8_t major Major version of FSP Pack.

Macro Definition Documentation

◆ FSP_VERSION_MAJOR

#define FSP_VERSION_MAJOR

FSP pack major version.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 129 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP

◆ FSP_VERSION_MINOR

#define FSP_VERSION_MINOR

FSP pack minor version.

◆ FSP_VERSION_PATCH

#define FSP_VERSION_PATCH

FSP pack patch version.

◆ FSP_VERSION_BUILD

#define FSP_VERSION_BUILD

FSP pack version build number (currently unused).

◆ FSP_VERSION_STRING

#define FSP_VERSION_STRING

Public FSP version name.

◆ FSP_VERSION_BUILD_STRING

#define FSP_VERSION_BUILD_STRING

Unique FSP version ID.

4.1.1 Common Error Codes
BSP

Detailed Description

All FSP modules share these common error codes.

Macros

#define FSP_PARAMETER_NOT_USED(p)

#define FSP_CPP_HEADER

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 130 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

#define FSP_HEADER

#define FSP_SECURE_ARGUMENT

Enumerations

enum fsp_err_t

Macro Definition Documentation

◆ FSP_PARAMETER_NOT_USED

#define FSP_PARAMETER_NOT_USED (p)

This macro is used to suppress compiler messages about a parameter not being used in a function.
The nice thing about using this implementation is that it does not take any extra RAM or ROM.

◆ FSP_CPP_HEADER

#define FSP_CPP_HEADER

Determine if a C++ compiler is being used. If so, ensure that standard C is used to process the API
information.

◆ FSP_HEADER

#define FSP_HEADER

FSP Header and Footer definitions

◆ FSP_SECURE_ARGUMENT

#define FSP_SECURE_ARGUMENT

Macro to be used when argument to function is ignored since function call is NSC and the
parameter is statically defined on the Secure side.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 131 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

◆ fsp_err_t

enum fsp_err_t

Common error codes

Enumerator

FSP_ERR_ASSERTION A critical assertion has failed.

FSP_ERR_INVALID_POINTER Pointer points to invalid memory location.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

FSP_ERR_INVALID_CHANNEL Selected channel does not exist.

FSP_ERR_INVALID_MODE Unsupported or incorrect mode.

FSP_ERR_UNSUPPORTED Selected mode not supported by this API.

FSP_ERR_NOT_OPEN Requested channel is not configured or API not
open.

FSP_ERR_IN_USE Channel/peripheral is running/busy.

FSP_ERR_OUT_OF_MEMORY Allocate more memory in the driver's cfg.h.

FSP_ERR_HW_LOCKED Hardware is locked.

FSP_ERR_IRQ_BSP_DISABLED IRQ not enabled in BSP.

FSP_ERR_OVERFLOW Hardware overflow.

FSP_ERR_UNDERFLOW Hardware underflow.

FSP_ERR_ALREADY_OPEN Requested channel is already open in a
different configuration.

FSP_ERR_APPROXIMATION Could not set value to exact result.

FSP_ERR_CLAMPED Value had to be limited for some reason.

FSP_ERR_INVALID_RATE Selected rate could not be met.

FSP_ERR_ABORTED An operation was aborted.

FSP_ERR_NOT_ENABLED Requested operation is not enabled.

FSP_ERR_TIMEOUT Timeout error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 132 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_INVALID_BLOCKS Invalid number of blocks supplied.

FSP_ERR_INVALID_ADDRESS Invalid address supplied.

FSP_ERR_INVALID_SIZE Invalid size/length supplied for operation.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_ERASE_FAILED Erase operation failed.

FSP_ERR_INVALID_CALL Invalid function call is made.

FSP_ERR_INVALID_HW_CONDITION Detected hardware is in invalid condition.

FSP_ERR_INVALID_FACTORY_FLASH Factory flash is not available on this MCU.

FSP_ERR_INVALID_STATE API or command not valid in the current state.

FSP_ERR_NOT_ERASED Erase verification failed.

FSP_ERR_SECTOR_RELEASE_FAILED Sector release failed.

FSP_ERR_NOT_INITIALIZED Required initialization not complete.

FSP_ERR_NOT_FOUND The requested item could not be found.

FSP_ERR_NO_CALLBACK_MEMORY Non-secure callback memory not provided for
non-secure callback.

FSP_ERR_BUFFER_EMPTY No data available in buffer.

FSP_ERR_INTERNAL Internal error.

FSP_ERR_WAIT_ABORTED Wait aborted.

FSP_ERR_FRAMING Framing error occurs.

FSP_ERR_BREAK_DETECT Break signal detects.

FSP_ERR_PARITY Parity error occurs.

FSP_ERR_RXBUF_OVERFLOW Receive queue overflow.

FSP_ERR_QUEUE_UNAVAILABLE Can't open s/w queue.

FSP_ERR_INSUFFICIENT_SPACE Not enough space in transmission circular
buffer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 133 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_INSUFFICIENT_DATA Not enough data in receive circular buffer.

FSP_ERR_TRANSFER_ABORTED The data transfer was aborted.

FSP_ERR_MODE_FAULT Mode fault error.

FSP_ERR_READ_OVERFLOW Read overflow.

FSP_ERR_SPI_PARITY Parity error.

FSP_ERR_OVERRUN Overrun error.

FSP_ERR_CLOCK_INACTIVE Inactive clock specified as system clock.

FSP_ERR_CLOCK_ACTIVE Active clock source cannot be modified without
stopping first.

FSP_ERR_NOT_STABILIZED Clock has not stabilized after its been turned
on/off.

FSP_ERR_PLL_SRC_INACTIVE PLL initialization attempted when PLL source is
turned off.

FSP_ERR_OSC_STOP_DET_ENABLED Illegal attempt to stop LOCO when Oscillation
stop is enabled.

FSP_ERR_OSC_STOP_DETECTED The Oscillation stop detection status flag is
set.

FSP_ERR_OSC_STOP_CLOCK_ACTIVE Attempt to clear Oscillation Stop Detect Status
with PLL/MAIN_OSC active.

FSP_ERR_CLKOUT_EXCEEDED Output on target output clock pin exceeds
maximum supported limit.

FSP_ERR_USB_MODULE_ENABLED USB clock configure request with USB Module
enabled.

FSP_ERR_HARDWARE_TIMEOUT A register read or write timed out.

FSP_ERR_LOW_VOLTAGE_MODE Invalid clock setting attempted in low voltage
mode.

FSP_ERR_PE_FAILURE Unable to enter Programming mode.

FSP_ERR_CMD_LOCKED Peripheral in command locked state.

FSP_ERR_FCLK FCLK must be >= 4 MHz.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 134 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_INVALID_LINKED_ADDRESS Function or data are linked at an invalid region
of memory.

FSP_ERR_BLANK_CHECK_FAILED Blank check operation failed.

FSP_ERR_INVALID_CAC_REF_CLOCK Measured clock rate < reference clock rate.

FSP_ERR_CLOCK_GENERATION Clock cannot be specified as system clock.

FSP_ERR_INVALID_TIMING_SETTING Invalid timing parameter.

FSP_ERR_INVALID_LAYER_SETTING Invalid layer parameter.

FSP_ERR_INVALID_ALIGNMENT Invalid memory alignment found.

FSP_ERR_INVALID_GAMMA_SETTING Invalid gamma correction parameter.

FSP_ERR_INVALID_LAYER_FORMAT Invalid color format in layer.

FSP_ERR_INVALID_UPDATE_TIMING Invalid timing for register update.

FSP_ERR_INVALID_CLUT_ACCESS Invalid access to CLUT entry.

FSP_ERR_INVALID_FADE_SETTING Invalid fade-in/fade-out setting.

FSP_ERR_INVALID_BRIGHTNESS_SETTING Invalid gamma correction parameter.

FSP_ERR_JPEG_ERR JPEG error.

FSP_ERR_JPEG_SOI_NOT_DETECTED SOI not detected until EOI detected.

FSP_ERR_JPEG_SOF1_TO_SOFF_DETECTED SOF1 to SOFF detected.

FSP_ERR_JPEG_UNSUPPORTED_PIXEL_FORMAT Unprovided pixel format detected.

FSP_ERR_JPEG_SOF_ACCURACY_ERROR SOF accuracy error: other than 8 detected.

FSP_ERR_JPEG_DQT_ACCURACY_ERROR DQT accuracy error: other than 0 detected.

FSP_ERR_JPEG_COMPONENT_ERROR1 Component error 1: the number of SOF0
header components detected is other than 1,
3, or 4.

FSP_ERR_JPEG_COMPONENT_ERROR2 Component error 2: the number of components
differs between SOF0 header and SOS.

FSP_ERR_JPEG_SOF0_DQT_DHT_NOT_DETECTED SOF0, DQT, and DHT not detected when SOS
detected.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 135 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_JPEG_SOS_NOT_DETECTED SOS not detected: SOS not detected until EOI
detected.

FSP_ERR_JPEG_EOI_NOT_DETECTED EOI not detected (default)

FSP_ERR_JPEG_RESTART_INTERVAL_DATA_NUMB
ER_ERROR

Restart interval data number error detected.

FSP_ERR_JPEG_IMAGE_SIZE_ERROR Image size error detected.

FSP_ERR_JPEG_LAST_MCU_DATA_NUMBER_ERRO
R

Last MCU data number error detected.

FSP_ERR_JPEG_BLOCK_DATA_NUMBER_ERROR Block data number error detected.

FSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH User provided buffer size not enough.

FSP_ERR_JPEG_UNSUPPORTED_IMAGE_SIZE JPEG Image size is not aligned with MCU.

FSP_ERR_CALIBRATE_FAILED Calibration failed.

FSP_ERR_IP_HARDWARE_NOT_PRESENT Requested IP does not exist on this device.

FSP_ERR_IP_UNIT_NOT_PRESENT Requested unit does not exist on this device.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this
device.

FSP_ERR_NO_MORE_BUFFER No more buffer found in the memory block
pool.

FSP_ERR_ILLEGAL_BUFFER_ADDRESS Buffer address is out of block memory pool.

FSP_ERR_INVALID_WORKBUFFER_SIZE Work buffer size is invalid.

FSP_ERR_INVALID_MSG_BUFFER_SIZE Message buffer size is invalid.

FSP_ERR_TOO_MANY_BUFFERS Number of buffer is too many.

FSP_ERR_NO_SUBSCRIBER_FOUND No message subscriber found.

FSP_ERR_MESSAGE_QUEUE_EMPTY No message found in the message queue.

FSP_ERR_MESSAGE_QUEUE_FULL No room for new message in the message
queue.

FSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.

FSP_ERR_BUFFER_RELEASED Buffer has been released.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 136 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_D2D_ERROR_INIT D/AVE 2D has an error in the initialization.

FSP_ERR_D2D_ERROR_DEINIT D/AVE 2D has an error in the initialization.

FSP_ERR_D2D_ERROR_RENDERING D/AVE 2D has an error in the rendering.

FSP_ERR_D2D_ERROR_SIZE D/AVE 2D has an error in the rendering.

FSP_ERR_ETHER_ERROR_NO_DATA No Data in Receive buffer.

FSP_ERR_ETHER_ERROR_LINK ETHERC/EDMAC has an error in the Auto-
negotiation.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_MODE As a Magic Packet is being detected, and
transmission/reception is not enabled.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER_FUL
L

Transmit buffer is not empty.

FSP_ERR_ETHER_ERROR_FILTERING Detect multicast frame when multicast frame
filtering enable.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATION ETHERC/EDMAC has an error in the phy
communication.

FSP_ERR_ETHER_RECEIVE_BUFFER_ACTIVE Receive buffer is active.

FSP_ERR_ETHER_PHY_ERROR_LINK PHY is not link up.

FSP_ERR_ETHER_PHY_NOT_READY PHY has an error in the Auto-negotiation.

FSP_ERR_QUEUE_FULL Queue is full, cannot queue another data.

FSP_ERR_QUEUE_EMPTY Queue is empty, no data to dequeue.

FSP_ERR_CTSU_SCANNING Scanning.

FSP_ERR_CTSU_NOT_GET_DATA Not processed previous scan data.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

FSP_ERR_CTSU_DIAG_NOT_YET Diagnosis of data collected no yet.

FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE Diagnosis of LDO over voltage failed.

FSP_ERR_CTSU_DIAG_CCO_HIGH Diagnosis of CCO into 19.2uA failed.

FSP_ERR_CTSU_DIAG_CCO_LOW Diagnosis of CCO into 2.4uA failed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 137 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_CTSU_DIAG_SSCG Diagnosis of SSCG frequency failed.

FSP_ERR_CTSU_DIAG_DAC Diagnosis of non-touch count value failed.

FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE Diagnosis of LDO output voltage failed.

FSP_ERR_CTSU_DIAG_OVER_VOLTAGE Diagnosis of over voltage detection circuit
failed.

FSP_ERR_CTSU_DIAG_OVER_CURRENT Diagnosis of over current detection circuit
failed.

FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE Diagnosis of LDO internal resistance value
failed.

FSP_ERR_CTSU_DIAG_CURRENT_SOURCE Diagnosis of Current source value failed.

FSP_ERR_CTSU_DIAG_SENSCLK_GAIN Diagnosis of SENSCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_SUCLK_GAIN Diagnosis of SUCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY Diagnosis of SUCLK clock recovery function
failed.

FSP_ERR_CTSU_DIAG_CFC_GAIN Diagnosis of CFC oscillator gain failed.

FSP_ERR_CARD_INIT_FAILED SD card or eMMC device failed to initialize.

FSP_ERR_CARD_NOT_INSERTED SD card not installed.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low or another
operation is ongoing.

FSP_ERR_CARD_NOT_INITIALIZED SD card was removed.

FSP_ERR_CARD_WRITE_PROTECTED Media is write protected.

FSP_ERR_TRANSFER_BUSY Transfer in progress.

FSP_ERR_RESPONSE Card did not respond or responded with an
error.

FSP_ERR_MEDIA_FORMAT_FAILED Media format failed.

FSP_ERR_MEDIA_OPEN_FAILED Media open failed.

FSP_ERR_CAN_DATA_UNAVAILABLE No data available.

FSP_ERR_CAN_MODE_SWITCH_FAILED Switching operation modes failed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 138 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_CAN_INIT_FAILED Hardware initialization failed.

FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress.

FSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup as a receive mailbox.

FSP_ERR_CAN_TRANSMIT_MAILBOX Mailbox is setup as a transmit mailbox.

FSP_ERR_CAN_MESSAGE_LOST Receive message has been overwritten or
overrun.

FSP_ERR_CAN_TRANSMIT_FIFO_FULL Transmit FIFO is full.

FSP_ERR_WIFI_CONFIG_FAILED WiFi module Configuration failed.

FSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed.

FSP_ERR_WIFI_TRANSMIT_FAILED Transmission failed.

FSP_ERR_WIFI_INVALID_MODE API called when provisioned in client mode.

FSP_ERR_WIFI_FAILED WiFi Failed.

FSP_ERR_WIFI_SCAN_COMPLETE Wifi scan has completed.

FSP_ERR_CELLULAR_CONFIG_FAILED Cellular module Configuration failed.

FSP_ERR_CELLULAR_INIT_FAILED Cellular module initialization failed.

FSP_ERR_CELLULAR_TRANSMIT_FAILED Transmission failed.

FSP_ERR_CELLULAR_FW_UPTODATE Firmware is uptodate.

FSP_ERR_CELLULAR_FW_UPGRADE_FAILED Firmware upgrade failed.

FSP_ERR_CELLULAR_FAILED Cellular Failed.

FSP_ERR_CELLULAR_INVALID_STATE API Called in invalid state.

FSP_ERR_CELLULAR_REGISTRATION_FAILED Cellular Network registration failed.

FSP_ERR_BLE_FAILED BLE operation failed.

FSP_ERR_BLE_INIT_FAILED BLE device initialization failed.

FSP_ERR_BLE_CONFIG_FAILED BLE device configuration failed.

FSP_ERR_BLE_PRF_ALREADY_ENABLED BLE device Profile already enabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 139 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_BLE_PRF_NOT_ENABLED BLE device not enabled.

FSP_ERR_BLE_ABS_INVALID_OPERATION Invalid operation is executed.

FSP_ERR_BLE_ABS_NOT_FOUND Valid data or free space is not found.

FSP_ERR_CRYPTO_CONTINUE Continue executing function.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT Hardware resource busy.

FSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

FSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Invalid index.

FSP_ERR_CRYPTO_SCE_RETRY Retry.

FSP_ERR_CRYPTO_SCE_VERIFY_FAIL Verify is failed.

FSP_ERR_CRYPTO_SCE_ALREADY_OPEN HW SCE module is already opened.

FSP_ERR_CRYPTO_NOT_OPEN Hardware module is not initialized.

FSP_ERR_CRYPTO_UNKNOWN Some unknown error occurred.

FSP_ERR_CRYPTO_NULL_POINTER Null pointer input as a parameter.

FSP_ERR_CRYPTO_NOT_IMPLEMENTED Algorithm/size not implemented.

FSP_ERR_CRYPTO_RNG_INVALID_PARAM An invalid parameter is specified.

FSP_ERR_CRYPTO_RNG_FATAL_ERROR A fatal error occurred.

FSP_ERR_CRYPTO_INVALID_SIZE Size specified is invalid.

FSP_ERR_CRYPTO_INVALID_STATE Function used in an valid state.

FSP_ERR_CRYPTO_ALREADY_OPEN control block is already opened

FSP_ERR_CRYPTO_INSTALL_KEY_FAILED Specified input key is invalid.

FSP_ERR_CRYPTO_AUTHENTICATION_FAILED Authentication failed.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Failure to Init Cipher.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input date is illegal.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 140 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > Common Error Codes

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function call occurred.

FSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common is not opened.

FSP_ERR_CRYPTO_HAL_ERROR Cryoto HAL module returned an error.

FSP_ERR_CRYPTO_KEY_BUF_NOT_ENOUGH Key buffer size is not enough to generate a
key.

FSP_ERR_CRYPTO_BUF_OVERFLOW Attempt to write data larger than what the
buffer can hold.

FSP_ERR_CRYPTO_INVALID_OPERATION_MODE Invalid operation mode.

FSP_ERR_MESSAGE_TOO_LONG Message for RSA encryption is too long.

FSP_ERR_RSA_DECRYPTION_ERROR RSA Decryption error.

FSP_ERR_SENSOR_INVALID_DATA Data is invalid.

Note
SF_CRYPTO APIs may return an error code
starting from 0x10000 which is of Crypto module.
Refer to sf_cryoto_err.h for Crypto error codes.

FSP_ERR_SENSOR_IN_STABILIZATION Sensor is stabilizing.

FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHE
D

Measurement is not finished.

FSP_ERR_COMMS_BUS_NOT_OPEN Bus is not open.

4.1.2 MCU Board Support Package
BSP

Functions

fsp_err_t R_FSP_VersionGet (fsp_pack_version_t *const p_version)

void Reset_Handler (void)

void Default_Handler (void)

void NMI_Handler (void)

void SystemInit (void)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 141 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

void R_BSP_WarmStart (bsp_warm_start_event_t event)

__STATIC_INLINE IRQn_Type R_FSP_CurrentIrqGet (void)

__STATIC_INLINE uint32_t R_FSP_SystemClockHzGet (fsp_priv_clock_t clock)

__STATIC_INLINE
bsp_unique_id_t const *

R_BSP_UniqueIdGet ()

__STATIC_INLINE void R_BSP_FlashCacheDisable ()

__STATIC_INLINE void R_BSP_FlashCacheEnable ()

void R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

fsp_err_t R_BSP_GroupIrqWrite (bsp_grp_irq_t irq,
void(*p_callback)(bsp_grp_irq_t irq))

void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect)

void R_BSP_RegisterProtectDisable (bsp_reg_protect_t regs_to_unprotect)

Detailed Description

The BSP is responsible for getting the MCU from reset to the user's application. Before reaching the
user's application, the BSP sets up the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP Features
BSP Clock Configuration
System Interrupts
Group Interrupts
External and Peripheral Interrupts
Error Logging
BSP Weak Symbols
Warm Start Callbacks
C Runtime Initialization
Register Protection
ID Codes
Software Delay
Octal-SPI Clock Update
Board Specific Features
Configuration

Overview
BSP Features

BSP Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 142 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

All system clocks are set up during BSP initialization based on the settings in bsp_clock_cfg.h. These
settings are derived from clock configuration information provided from the RA Configuration editor
Clocks tab.

Clock configuration is performed prior to initializing the C runtime environment to speed up
the startup process, as it is possible to start up on a relatively slow (that is, 32 kHz) clock.
The BSP implements the required delays to allow the selected clock to stabilize.
The BSP will configure the CMSIS SystemCoreClock variable after clock initialization with the
current system clock frequency.

System Interrupts

As RA MCUs are based on the Cortex-M ARM architecture, the NVIC Nested Vectored Interrupt
Controller (NVIC) handles exceptions and interrupt configuration, prioritization and interrupt
masking. In the ARM architecture, the NVIC handles exceptions. Some exceptions are known as
System Exceptions. System exceptions are statically located at the "top" of the vector table and
occupy vector numbers 1 to 15. Vector zero is reserved for the MSP Main Stack Pointer (MSP). The
remaining 15 system exceptions are shown below:

Reset
NMI
Cortex-M4 Hard Fault Handler
Cortex-M4 MPU Fault Handler
Cortex-M4 Bus Fault Handler
Cortex-M4 Usage Fault Handler
Reserved
Reserved
Reserved
Reserved
Cortex-M4 SVCall Handler
Cortex-M4 Debug Monitor Handler
Reserved
Cortex-M4 PendSV Handler
Cortex-M4 SysTick Handler

NMI and Hard Fault exceptions are enabled out of reset and have fixed priorities. Other exceptions
have configurable priorities and some can be disabled.

Group Interrupts

Group interrupt is the term used to describe the 12 sources that can trigger the Non-Maskable
Interrupt (NMI). When an NMI occurs the NMI Handler examines the NMISR (status register) to
determine the source of the interrupt. NMI interrupts take precedence over all interrupts, are usable
only as CPU interrupts, and cannot activate the RA peripherals Data Transfer Controller (DTC) or
Direct Memory Access Controller (DMAC).

Possible group interrupt sources include:

IWDT Underflow/Refresh Error
WDT Underflow/Refresh Error
Voltage-Monitoring 1 Interrupt
Voltage-Monitoring 2 Interrupt
VBATT monitor Interrupt
Oscillation Stop is detected
NMI pin

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 143 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

RAM Parity Error
RAM ECC Error
MPU Bus Slave Error
MPU Bus Master Error
MPU Stack Error
TrustZone Filter Error A user may enable notification for one or more group interrupts by
registering a callback using the BSP API function R_BSP_GroupIrqWrite(). When an NMI
interrupt occurs, the NMI handler checks to see if there is a callback registered for the
cause of the interrupt and if so calls the registered callback function.

External and Peripheral Interrupts

User configurable interrupts begin with slot 16. These may be external, or peripheral generated
interrupts.

Although the number of available slots for the NVIC interrupt vector table may seem small, the BSP
defines up to 512 events that are capable of generating an interrupt. By using Event Mapping, the
BSP maps user-enabled events to NVIC interrupts. For an RA6M3 MCU, only 96 of these events may
be active at any one time, but the user has flexibility by choosing which events generate the active
event.

By allowing the user to select only the events they are interested in as interrupt sources, we are able
to provide an interrupt service routine that is fast and event specific.

For example, on other microcontrollers a standard NVIC interrupt vector table might contain a single
vector entry for the SCI0 (Serial Communications Interface) peripheral. The interrupt service routine
for this would have to check a status register for the 'real' source of the interrupt. In the RA
implementation there is a vector entry for each of the SCI0 events that we are interested in.

BSP Weak Symbols

You might wonder how the BSP is able to place ISR addresses in the NVIC table without the user
having explicitly defined one. All that is required by the BSP is that the interrupt event be given a
priority.

This is accomplished through the use of the 'weak' attribute. The weak attribute causes the
declaration to be emitted as a weak symbol rather than a global. A weak symbol is one that can be
overridden by an accompanying strong reference with the same name. When the BSP declares a
function as weak, user code can define the same function and it will be used in place of the BSP
function. By defining all possible interrupt sources as weak, the vector table can be built at compile
time and any user declarations (strong references) will be used at runtime.

Weak symbols are supported for ELF targets and also for a.out targets when using the GNU
assembler and linker.

Note that in CMSIS system.c, there is also a weak definition (and a function body) for the Warm Start
callback function R_BSP_WarmStart(). Because this function is defined in the same file as the weak
declaration, it will be called as the 'default' implementation. The function may be overridden by the
user by copying the body into their user application and modifying it as necessary. The linker
identifies this as the 'strong' reference and uses it.

Warm Start Callbacks

As the BSP is in the process of bringing up the board out of reset, there are three points where the
user can request a callback. These are defined as the 'Pre Clock Init', 'Post Clock Init' and 'Post C'

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 144 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

warm start callbacks.

As described above, this function is already weakly defined as R_BSP_WarmStart(), so it is a simple
matter of redefining the function or copying the existing body from CMSIS system.c into the
application code to get a callback. R_BSP_WarmStart() takes an event parameter of type
bsp_warm_start_event_t which describes the type of warm start callback being made.

This function is not enabled/disabled and is always called for both events as part of the BSP startup.
Therefore it needs a function body, which will not be called if the user is overriding it. The function
body is located in system.c. To use this function just copy this function into your own code and
modify it to meet your needs.

C Runtime Initialization

This BSP configuration allows the user to skip the FSP C runtime initialization code by setting the "C
Runtime Initialization" to "Disabled" on the BSP tab of the RA Configuration editor. Disabling this
option is useful in cases where a non-standard linker script is being used or other modifications to
the runtime initialization are desired. If this macro is disabled, the user must use the 'Post Clock Init'
event from the warm start (described above) to run their own runtime initialization code.

Heap Allocation

The relatively low amount of on-chip SRAM available and lack of memory protection in an MCU
means that heap use must be very carefully controlled to avoid memory leaks, overruns and
attempted overallocation. Further, many RTOSes provide their own dynamic memory allocation
system. For these reasons the default heap size is set at 0 bytes, effectively disabling dynamic
memory. If it is required for an application setting a positive value to the "Heap size (bytes)" option
in the RA Common configurations on the BSP tab will allocate a heap.

Note
When using printf/sprintf (and other variants) to output floating point numbers a heap is required. A minimum size
of 0x1000 (4096) bytes is recommended when starting development in this case.

Error Logging

When error logging is enabled, the error logging function can be redefined on the command line by
defining FSP_ERROR_LOG(err) to the desired function call. The default function implementation is
FSP_ERROR_LOG(err)=fsp_error_log(err, FILE, LINE). This implementation uses the predefined
macros FILE and LINE to help identify the location where the error occurred. Removing the line from
the function call can reduce code size when error logging is enabled. Some compilers may support
other predefined macros like FUNCTION, which could be helpful for customizing the error logger.

Register Protection

The BSP register protection functions utilize reference counters to ensure that an application which
has specified a certain register and subsequently calls another function doesn't have its register
protection settings inadvertently modified.

Each time R_BSP_RegisterProtectDisable() is called, the respective reference counter is incremented.

Each time R_BSP_RegisterProtectEnable() is called, the respective reference counter is decremented.

Both functions will only modify the protection state if their reference counter is zero.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 145 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

 /* Enable writing to protected CGC registers */

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);

 /* Insert code to modify protected CGC registers. */

 /* Disable writing to protected CGC registers */

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);

ID Codes

The ID code is a 16-byte value that can be used to protect the MCU from being connected to a
debugger or from connecting in Serial Boot Mode. There are different settings that can be set for the
ID code; please refer to the hardware manual for your device for available options.

Software Delay

Implements a blocking software delay. A delay can be specified in microseconds, milliseconds or
seconds. The delay is implemented based on the system clock rate.

 /* Delay at least 1 second. Depending on the number of wait states required for the

region of memory

 * that the software_delay_loop has been linked in this could take longer. The

default is 4 cycles per loop.

 * This can be modified by redefining DELAY_LOOP_CYCLES. BSP_DELAY_UNITS_SECONDS,

BSP_DELAY_UNITS_MILLISECONDS,

 * and BSP_DELAY_UNITS_MICROSECONDS can all be used with R_BSP_SoftwareDelay. */

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

Critical Section Macros

Implements a critical section. Some MCUs (MCUs with the BASEPRI register) support allowing high
priority interrupts to execute during critical sections. On these MCUs, interrupts with priority less
than or equal to BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION are not serviced in critical
sections. Interrupts with higher priority than BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION still
execute in critical sections.

 FSP_CRITICAL_SECTION_DEFINE;

 /* Store the current interrupt posture. */

 FSP_CRITICAL_SECTION_ENTER;

 /* Interrupts cannot run in this section unless their priority is less than

BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION. */

 /* Restore saved interrupt posture. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 146 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

 FSP_CRITICAL_SECTION_EXIT;

OctaClock Update

Supports changing the Octal-SPI Clock (OCTACLK) during runtime if supported by the MCU. The
OCTACLK source and clock divisor can be updated. It is user's responsibility to ensure the selected
clock source is running before attempting to update OCTACLK.

Sealing the Main Stack (TrustZone Secure Projects)

In TrustZone secure projects, the BSP seals the main stack by placing the value 0xFEF5EDA5 above
the stack top. For more information, refer to section 3.5 "Sealing a Stack" in "Secure software
guidelines for ARMv8-M": https://developer.arm.com/documentation/100720/0300.

Board Specific Features
The BSP will call the board's initialization function (bsp_init) which can initialize board specific
features. Possible board features are listed below.

Board Feature Description

SDRAM Support The BSP will initialize SDRAM if the board
supports it

QSPI Support The BSP will initialize QSPI if the board supports
it and put it into ROM mode. Use the R_QSPI
module to write and erase the QSPI chip.

Configuration
The BSP is heavily data driven with most features and functionality being configured based on the
content from configuration files. Configuration files represent the settings specified by the user and
are generated when the project is built and/or when the Generate Project Content button is clicked in
the RA Configuration editor.

Build Time Configurations for fsp_common

The following build time configurations are defined in fsp_cfg/bsp/bsp_cfg.h:

Configuration Options Default Description

Main stack size (bytes) Value must be an
integer multiple of 8
and between 8 and
0xFFFFFFFF

0x400 Set the size of the main
program stack.

NOTE: This entry is for
the main stack. When
using an RTOS, thread
stacks can be
configured in the
properties for each

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 147 / 2,794

https://developer.arm.com/documentation/100720/0300

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

thread.

Heap size (bytes) Value must be 0 or an
integer multiple of 8
between 8 and
0xFFFFFFFF.

0 The main heap is
disabled by default. Set
the heap size to a
positive integer
divisible by 8 to enable
it.

A minimum of 4K
(0x1000) is
recommended if
standard library
functions are to be
used.

MCU Vcc (mV) Value must between 0
and 5500 (5.5V)

3300 Some peripherals
require different
settings based on the
supplied voltage.
Entering Vcc here (in
mV) allows the relevant
driver modules to
configure the
associated peripherals
accordingly.

Parameter checking Enabled
Disabled

Disabled When enabled,
parameter checking for
the BSP is turned on. In
addition, any modules
whose parameter
checking configuration
is set to 'Default (BSP)'
will perform parameter
checking as well.

Assert Failures Return FSP_ERR
_ASSERTION
Call
fsp_error_log
then Return FSP
_ERR_ASSERTIO
N
Use assert() to
Halt Execution
Disable checks
that would
return FSP_ERR
_ASSERTION

Return
FSP_ERR_ASSERTION

Define the behavior of
the FSP_ASSERT()
macro.

Error Log No Error Log
Errors Logged
via
fsp_error_log

No Error Log Specify error logging
behavior.

Soft Reset Disabled Disabled Support for soft reset.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 148 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

Enabled If disabled, registers
are assumed to be set
to their default value
during startup.

Main Oscillator
Populated

Populated
Not Populated

Populated Select whether or not
there is a main
oscillator (XTAL) on the
board. This setting can
be overridden in
board_cfg.h.

PFS Protect Disabled
Enabled

Enabled Keep the PFS registers
locked when they are
not being modified. If
disabled they will be
unlocked during
startup.

C Runtime Initialization Enabled
Disabled

Enabled Select if the C runtime
initialization in the BSP
is to be used. If
disabled, use the BSP_
WARM_START_POST_CL
OCK event to run user
defined equivalent.

Main Oscillator Clock
Source

External
Oscillator
Crystal or
Resonator

Crystal or Resonator Select the main
oscillator clock source.
This setting can be
overridden in
board_cfg.h

Subclock Populated Populated
Not Populated

Populated Select whether or not
there is a subclock
crystal on the board.
This setting can be
overridden in
board_cfg.h.

Subclock Drive (Drive
capacitance availability
varies by MCU)

Standard/Norm
al mode
Low/Low power
mode 1
Low power
mode 2
Low power
mode 3

Standard/Normal mode Select the subclock
oscillator drive
capacitance. This
setting can be
overridden in
board_cfg.h

Subclock Stabilization
Time (ms)

Value must between 0
and 10000

1000 Select the subclock
oscillator stabilization
time. This is only used
in the startup code if
the subclock is
selected as the system
clock on the Clocks tab
or if the HOCO FLL
function is enabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 149 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

This setting can be
overridden in
board_cfg.h

Modules

RA2A1

RA2E1

RA2L1

RA4E1

RA4M1

RA4M2

RA4M3

RA4W1

RA6E1

RA6M1

RA6M2

RA6M3

RA6M4

RA6M5

RA6T1

Macros

#define BSP_IRQ_DISABLED

#define FSP_LOG_PRINT(X)

#define FSP_RETURN(err)

#define FSP_ERROR_LOG(err)

#define FSP_ASSERT(a)

#define FSP_ERROR_RETURN(a, err)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 150 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

#define FSP_CRITICAL_SECTION_ENTER

#define FSP_CRITICAL_SECTION_EXIT

#define FSP_INVALID_VECTOR

#define BSP_CFG_HANDLE_UNRECOVERABLE_ERROR(x)

#define BSP_STACK_ALIGNMENT

#define R_BSP_MODULE_START(ip, channel)

#define R_BSP_MODULE_STOP(ip, channel)

Enumerations

enum fsp_ip_t

enum fsp_signal_t

enum bsp_warm_start_event_t

enum bsp_delay_units_t

enum bsp_grp_irq_t

enum bsp_reg_protect_t

Variables

uint32_t SystemCoreClock

Macro Definition Documentation

◆ BSP_IRQ_DISABLED

#define BSP_IRQ_DISABLED

Used to signify that an ELC event is not able to be used as an interrupt.

◆ FSP_LOG_PRINT

#define FSP_LOG_PRINT (X)

Macro that can be defined in order to enable logging in FSP modules.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 151 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ FSP_RETURN

#define FSP_RETURN (err)

Macro to log and return error without an assertion.

◆ FSP_ERROR_LOG

#define FSP_ERROR_LOG (err)

This function is called before returning an error code. To stop on a runtime error, define
fsp_error_log in user code and do required debugging (breakpoints, stack dump, etc) in this
function.

◆ FSP_ASSERT

#define FSP_ASSERT (a)

Default assertion calls FSP_ERROR_RETURN if condition "a" is false. Used to identify incorrect use of
API's in FSP functions.

◆ FSP_ERROR_RETURN

#define FSP_ERROR_RETURN (a, err)

All FSP error codes are returned using this macro. Calls FSP_ERROR_LOG function if condition "a" is
false. Used to identify runtime errors in FSP functions.

◆ FSP_CRITICAL_SECTION_ENTER

#define FSP_CRITICAL_SECTION_ENTER

This macro temporarily saves the current interrupt state and disables interrupts.

◆ FSP_CRITICAL_SECTION_EXIT

#define FSP_CRITICAL_SECTION_EXIT

This macro restores the previously saved interrupt state, reenabling interrupts.

◆ FSP_INVALID_VECTOR

#define FSP_INVALID_VECTOR

Used to signify that the requested IRQ vector is not defined in this system.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 152 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ BSP_CFG_HANDLE_UNRECOVERABLE_ERROR

#define BSP_CFG_HANDLE_UNRECOVERABLE_ERROR (x)

In the event of an unrecoverable error the BSP will by default call the __BKPT() intrinsic function
which will alert the user of the error. The user can override this default behavior by defining their
own BSP_CFG_HANDLE_UNRECOVERABLE_ERROR macro.

◆ BSP_STACK_ALIGNMENT

#define BSP_STACK_ALIGNMENT

Stacks (and heap) must be sized and aligned to an integer multiple of this number.

◆ R_BSP_MODULE_START

#define R_BSP_MODULE_START (ip, channel)

Cancels the module stop state.

Parameters
ip fsp_ip_t enum value for the module to be

stopped

channel The channel. Use channel 0 for modules
without channels.

◆ R_BSP_MODULE_STOP

#define R_BSP_MODULE_STOP (ip, channel)

Enables the module stop state.

Parameters
ip fsp_ip_t enum value for the module to be

stopped

channel The channel. Use channel 0 for modules
without channels.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 153 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ fsp_ip_t

enum fsp_ip_t

Available modules.

Enumerator

FSP_IP_CFLASH Code Flash.

FSP_IP_DFLASH Data Flash.

FSP_IP_RAM RAM.

FSP_IP_LVD Low Voltage Detection.

FSP_IP_CGC Clock Generation Circuit.

FSP_IP_LPM Low Power Modes.

FSP_IP_FCU Flash Control Unit.

FSP_IP_ICU Interrupt Control Unit.

FSP_IP_DMAC DMA Controller.

FSP_IP_DTC Data Transfer Controller.

FSP_IP_IOPORT I/O Ports.

FSP_IP_PFS Pin Function Select.

FSP_IP_ELC Event Link Controller.

FSP_IP_MPU Memory Protection Unit.

FSP_IP_MSTP Module Stop.

FSP_IP_MMF Memory Mirror Function.

FSP_IP_KEY Key Interrupt Function.

FSP_IP_CAC Clock Frequency Accuracy Measurement
Circuit.

FSP_IP_DOC Data Operation Circuit.

FSP_IP_CRC Cyclic Redundancy Check Calculator.

FSP_IP_SCI Serial Communications Interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 154 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_IP_IIC I2C Bus Interface.

FSP_IP_SPI Serial Peripheral Interface.

FSP_IP_CTSU Capacitive Touch Sensing Unit.

FSP_IP_SCE Secure Cryptographic Engine.

FSP_IP_SLCDC Segment LCD Controller.

FSP_IP_AES Advanced Encryption Standard.

FSP_IP_TRNG True Random Number Generator.

FSP_IP_FCACHE Flash Cache.

FSP_IP_SRAM SRAM.

FSP_IP_ADC A/D Converter.

FSP_IP_DAC 12-Bit D/A Converter

FSP_IP_TSN Temperature Sensor.

FSP_IP_DAAD D/A A/D Synchronous Unit.

FSP_IP_ACMPHS High Speed Analog Comparator.

FSP_IP_ACMPLP Low Power Analog Comparator.

FSP_IP_OPAMP Operational Amplifier.

FSP_IP_SDADC Sigma Delta A/D Converter.

FSP_IP_RTC Real Time Clock.

FSP_IP_WDT Watch Dog Timer.

FSP_IP_IWDT Independent Watch Dog Timer.

FSP_IP_GPT General PWM Timer.

FSP_IP_POEG Port Output Enable for GPT.

FSP_IP_OPS Output Phase Switch.

FSP_IP_AGT Asynchronous General-Purpose Timer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 155 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_IP_CAN Controller Area Network.

FSP_IP_IRDA Infrared Data Association.

FSP_IP_QSPI Quad Serial Peripheral Interface.

FSP_IP_USBFS USB Full Speed.

FSP_IP_SDHI SD/MMC Host Interface.

FSP_IP_SRC Sampling Rate Converter.

FSP_IP_SSI Serial Sound Interface.

FSP_IP_DALI Digital Addressable Lighting Interface.

FSP_IP_ETHER Ethernet MAC Controller.

FSP_IP_EDMAC Ethernet DMA Controller.

FSP_IP_EPTPC Ethernet PTP Controller.

FSP_IP_PDC Parallel Data Capture Unit.

FSP_IP_GLCDC Graphics LCD Controller.

FSP_IP_DRW 2D Drawing Engine

FSP_IP_JPEG JPEG.

FSP_IP_DAC8 8-Bit D/A Converter

FSP_IP_USBHS USB High Speed.

FSP_IP_OSPI Octa Serial Peripheral Interface.

FSP_IP_CEC HDMI CEC.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 156 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ fsp_signal_t

enum fsp_signal_t

Signals that can be mapped to an interrupt.

Enumerator

FSP_SIGNAL_ADC_COMPARE_MATCH ADC COMPARE MATCH.

FSP_SIGNAL_ADC_COMPARE_MISMATCH ADC COMPARE MISMATCH.

FSP_SIGNAL_ADC_SCAN_END ADC SCAN END.

FSP_SIGNAL_ADC_SCAN_END_B ADC SCAN END B.

FSP_SIGNAL_ADC_WINDOW_A ADC WINDOW A.

FSP_SIGNAL_ADC_WINDOW_B ADC WINDOW B.

FSP_SIGNAL_AES_RDREQ AES RDREQ.

FSP_SIGNAL_AES_WRREQ AES WRREQ.

FSP_SIGNAL_AGT_COMPARE_A AGT COMPARE A.

FSP_SIGNAL_AGT_COMPARE_B AGT COMPARE B.

FSP_SIGNAL_AGT_INT AGT INT.

FSP_SIGNAL_CAC_FREQUENCY_ERROR CAC FREQUENCY ERROR.

FSP_SIGNAL_CAC_MEASUREMENT_END CAC MEASUREMENT END.

FSP_SIGNAL_CAC_OVERFLOW CAC OVERFLOW.

FSP_SIGNAL_CAN_ERROR CAN ERROR.

FSP_SIGNAL_CAN_FIFO_RX CAN FIFO RX.

FSP_SIGNAL_CAN_FIFO_TX CAN FIFO TX.

FSP_SIGNAL_CAN_MAILBOX_RX CAN MAILBOX RX.

FSP_SIGNAL_CAN_MAILBOX_TX CAN MAILBOX TX.

FSP_SIGNAL_CGC_MOSC_STOP CGC MOSC STOP.

FSP_SIGNAL_LPM_SNOOZE_REQUEST LPM SNOOZE REQUEST.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 157 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_LVD_LVD1 LVD LVD1.

FSP_SIGNAL_LVD_LVD2 LVD LVD2.

FSP_SIGNAL_VBATT_LVD VBATT LVD.

FSP_SIGNAL_LVD_VBATT LVD VBATT.

FSP_SIGNAL_ACMPHS_INT ACMPHS INT.

FSP_SIGNAL_ACMPLP_INT ACMPLP INT.

FSP_SIGNAL_CTSU_END CTSU END.

FSP_SIGNAL_CTSU_READ CTSU READ.

FSP_SIGNAL_CTSU_WRITE CTSU WRITE.

FSP_SIGNAL_DALI_DEI DALI DEI.

FSP_SIGNAL_DALI_CLI DALI CLI.

FSP_SIGNAL_DALI_SDI DALI SDI.

FSP_SIGNAL_DALI_BPI DALI BPI.

FSP_SIGNAL_DALI_FEI DALI FEI.

FSP_SIGNAL_DALI_SDI_OR_BPI DALI SDI OR BPI.

FSP_SIGNAL_DMAC_INT DMAC INT.

FSP_SIGNAL_DOC_INT DOC INT.

FSP_SIGNAL_DRW_INT DRW INT.

FSP_SIGNAL_DTC_COMPLETE DTC COMPLETE.

FSP_SIGNAL_DTC_END DTC END.

FSP_SIGNAL_EDMAC_EINT EDMAC EINT.

FSP_SIGNAL_ELC_SOFTWARE_EVENT_0 ELC SOFTWARE EVENT 0.

FSP_SIGNAL_ELC_SOFTWARE_EVENT_1 ELC SOFTWARE EVENT 1.

FSP_SIGNAL_EPTPC_IPLS EPTPC IPLS.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 158 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_EPTPC_MINT EPTPC MINT.

FSP_SIGNAL_EPTPC_PINT EPTPC PINT.

FSP_SIGNAL_EPTPC_TIMER0_FALL EPTPC TIMER0 FALL.

FSP_SIGNAL_EPTPC_TIMER0_RISE EPTPC TIMER0 RISE.

FSP_SIGNAL_EPTPC_TIMER1_FALL EPTPC TIMER1 FALL.

FSP_SIGNAL_EPTPC_TIMER1_RISE EPTPC TIMER1 RISE.

FSP_SIGNAL_EPTPC_TIMER2_FALL EPTPC TIMER2 FALL.

FSP_SIGNAL_EPTPC_TIMER2_RISE EPTPC TIMER2 RISE.

FSP_SIGNAL_EPTPC_TIMER3_FALL EPTPC TIMER3 FALL.

FSP_SIGNAL_EPTPC_TIMER3_RISE EPTPC TIMER3 RISE.

FSP_SIGNAL_EPTPC_TIMER4_FALL EPTPC TIMER4 FALL.

FSP_SIGNAL_EPTPC_TIMER4_RISE EPTPC TIMER4 RISE.

FSP_SIGNAL_EPTPC_TIMER5_FALL EPTPC TIMER5 FALL.

FSP_SIGNAL_EPTPC_TIMER5_RISE EPTPC TIMER5 RISE.

FSP_SIGNAL_FCU_FIFERR FCU FIFERR.

FSP_SIGNAL_FCU_FRDYI FCU FRDYI.

FSP_SIGNAL_GLCDC_LINE_DETECT GLCDC LINE DETECT.

FSP_SIGNAL_GLCDC_UNDERFLOW_1 GLCDC UNDERFLOW 1.

FSP_SIGNAL_GLCDC_UNDERFLOW_2 GLCDC UNDERFLOW 2.

FSP_SIGNAL_GPT_CAPTURE_COMPARE_A GPT CAPTURE COMPARE A.

FSP_SIGNAL_GPT_CAPTURE_COMPARE_B GPT CAPTURE COMPARE B.

FSP_SIGNAL_GPT_COMPARE_C GPT COMPARE C.

FSP_SIGNAL_GPT_COMPARE_D GPT COMPARE D.

FSP_SIGNAL_GPT_COMPARE_E GPT COMPARE E.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 159 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_GPT_COMPARE_F GPT COMPARE F.

FSP_SIGNAL_GPT_COUNTER_OVERFLOW GPT COUNTER OVERFLOW.

FSP_SIGNAL_GPT_COUNTER_UNDERFLOW GPT COUNTER UNDERFLOW.

FSP_SIGNAL_GPT_AD_TRIG_A GPT AD TRIG A.

FSP_SIGNAL_GPT_AD_TRIG_B GPT AD TRIG B.

FSP_SIGNAL_OPS_UVW_EDGE OPS UVW EDGE.

FSP_SIGNAL_ICU_IRQ0 ICU IRQ0.

FSP_SIGNAL_ICU_IRQ1 ICU IRQ1.

FSP_SIGNAL_ICU_IRQ2 ICU IRQ2.

FSP_SIGNAL_ICU_IRQ3 ICU IRQ3.

FSP_SIGNAL_ICU_IRQ4 ICU IRQ4.

FSP_SIGNAL_ICU_IRQ5 ICU IRQ5.

FSP_SIGNAL_ICU_IRQ6 ICU IRQ6.

FSP_SIGNAL_ICU_IRQ7 ICU IRQ7.

FSP_SIGNAL_ICU_IRQ8 ICU IRQ8.

FSP_SIGNAL_ICU_IRQ9 ICU IRQ9.

FSP_SIGNAL_ICU_IRQ10 ICU IRQ10.

FSP_SIGNAL_ICU_IRQ11 ICU IRQ11.

FSP_SIGNAL_ICU_IRQ12 ICU IRQ12.

FSP_SIGNAL_ICU_IRQ13 ICU IRQ13.

FSP_SIGNAL_ICU_IRQ14 ICU IRQ14.

FSP_SIGNAL_ICU_IRQ15 ICU IRQ15.

FSP_SIGNAL_ICU_SNOOZE_CANCEL ICU SNOOZE CANCEL.

FSP_SIGNAL_IIC_ERI IIC ERI.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 160 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_IIC_RXI IIC RXI.

FSP_SIGNAL_IIC_TEI IIC TEI.

FSP_SIGNAL_IIC_TXI IIC TXI.

FSP_SIGNAL_IIC_WUI IIC WUI.

FSP_SIGNAL_IOPORT_EVENT_1 IOPORT EVENT 1.

FSP_SIGNAL_IOPORT_EVENT_2 IOPORT EVENT 2.

FSP_SIGNAL_IOPORT_EVENT_3 IOPORT EVENT 3.

FSP_SIGNAL_IOPORT_EVENT_4 IOPORT EVENT 4.

FSP_SIGNAL_IWDT_UNDERFLOW IWDT UNDERFLOW.

FSP_SIGNAL_JPEG_JDTI JPEG JDTI.

FSP_SIGNAL_JPEG_JEDI JPEG JEDI.

FSP_SIGNAL_KEY_INT KEY INT.

FSP_SIGNAL_PDC_FRAME_END PDC FRAME END.

FSP_SIGNAL_PDC_INT PDC INT.

FSP_SIGNAL_PDC_RECEIVE_DATA_READY PDC RECEIVE DATA READY.

FSP_SIGNAL_POEG_EVENT POEG EVENT.

FSP_SIGNAL_QSPI_INT QSPI INT.

FSP_SIGNAL_RTC_ALARM RTC ALARM.

FSP_SIGNAL_RTC_PERIOD RTC PERIOD.

FSP_SIGNAL_RTC_CARRY RTC CARRY.

FSP_SIGNAL_SCE_INTEGRATE_RDRDY SCE INTEGRATE RDRDY.

FSP_SIGNAL_SCE_INTEGRATE_WRRDY SCE INTEGRATE WRRDY.

FSP_SIGNAL_SCE_LONG_PLG SCE LONG PLG.

FSP_SIGNAL_SCE_PROC_BUSY SCE PROC BUSY.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 161 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_SCE_RDRDY_0 SCE RDRDY 0.

FSP_SIGNAL_SCE_RDRDY_1 SCE RDRDY 1.

FSP_SIGNAL_SCE_ROMOK SCE ROMOK.

FSP_SIGNAL_SCE_TEST_BUSY SCE TEST BUSY.

FSP_SIGNAL_SCE_WRRDY_0 SCE WRRDY 0.

FSP_SIGNAL_SCE_WRRDY_1 SCE WRRDY 1.

FSP_SIGNAL_SCE_WRRDY_4 SCE WRRDY 4.

FSP_SIGNAL_SCI_AM SCI AM.

FSP_SIGNAL_SCI_ERI SCI ERI.

FSP_SIGNAL_SCI_RXI SCI RXI.

FSP_SIGNAL_SCI_RXI_OR_ERI SCI RXI OR ERI.

FSP_SIGNAL_SCI_TEI SCI TEI.

FSP_SIGNAL_SCI_TXI SCI TXI.

FSP_SIGNAL_SDADC_ADI SDADC ADI.

FSP_SIGNAL_SDADC_SCANEND SDADC SCANEND.

FSP_SIGNAL_SDADC_CALIEND SDADC CALIEND.

FSP_SIGNAL_SDHIMMC_ACCS SDHIMMC ACCS.

FSP_SIGNAL_SDHIMMC_CARD SDHIMMC CARD.

FSP_SIGNAL_SDHIMMC_DMA_REQ SDHIMMC DMA REQ.

FSP_SIGNAL_SDHIMMC_SDIO SDHIMMC SDIO.

FSP_SIGNAL_SPI_ERI SPI ERI.

FSP_SIGNAL_SPI_IDLE SPI IDLE.

FSP_SIGNAL_SPI_RXI SPI RXI.

FSP_SIGNAL_SPI_TEI SPI TEI.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 162 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

FSP_SIGNAL_SPI_TXI SPI TXI.

FSP_SIGNAL_SRC_CONVERSION_END SRC CONVERSION END.

FSP_SIGNAL_SRC_INPUT_FIFO_EMPTY SRC INPUT FIFO EMPTY.

FSP_SIGNAL_SRC_OUTPUT_FIFO_FULL SRC OUTPUT FIFO FULL.

FSP_SIGNAL_SRC_OUTPUT_FIFO_OVERFLOW SRC OUTPUT FIFO OVERFLOW.

FSP_SIGNAL_SRC_OUTPUT_FIFO_UNDERFLOW SRC OUTPUT FIFO UNDERFLOW.

FSP_SIGNAL_SSI_INT SSI INT.

FSP_SIGNAL_SSI_RXI SSI RXI.

FSP_SIGNAL_SSI_TXI SSI TXI.

FSP_SIGNAL_SSI_TXI_RXI SSI TXI RXI.

FSP_SIGNAL_TRNG_RDREQ TRNG RDREQ.

FSP_SIGNAL_USB_FIFO_0 USB FIFO 0.

FSP_SIGNAL_USB_FIFO_1 USB FIFO 1.

FSP_SIGNAL_USB_INT USB INT.

FSP_SIGNAL_USB_RESUME USB RESUME.

FSP_SIGNAL_USB_USB_INT_RESUME USB USB INT RESUME.

FSP_SIGNAL_WDT_UNDERFLOW WDT UNDERFLOW.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 163 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ bsp_warm_start_event_t

enum bsp_warm_start_event_t

Different warm start entry locations in the BSP.

Enumerator

BSP_WARM_START_RESET Called almost immediately after reset. No C
runtime environment, clocks, or IRQs.

BSP_WARM_START_POST_CLOCK Called after clock initialization. No C runtime
environment or IRQs.

BSP_WARM_START_POST_C Called after clocks and C runtime environment
have been set up.

◆ bsp_delay_units_t

enum bsp_delay_units_t

Available delay units for R_BSP_SoftwareDelay(). These are ultimately used to calculate a total # of
microseconds

Enumerator

BSP_DELAY_UNITS_SECONDS Requested delay amount is in seconds.

BSP_DELAY_UNITS_MILLISECONDS Requested delay amount is in milliseconds.

BSP_DELAY_UNITS_MICROSECONDS Requested delay amount is in microseconds.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 164 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ bsp_grp_irq_t

enum bsp_grp_irq_t

Which interrupts can have callbacks registered.

Enumerator

BSP_GRP_IRQ_IWDT_ERROR IWDT underflow/refresh error has occurred.

BSP_GRP_IRQ_WDT_ERROR WDT underflow/refresh error has occurred.

BSP_GRP_IRQ_LVD1 Voltage monitoring 1 interrupt.

BSP_GRP_IRQ_LVD2 Voltage monitoring 2 interrupt.

BSP_GRP_IRQ_VBATT VBATT monitor interrupt.

BSP_GRP_IRQ_OSC_STOP_DETECT Oscillation stop is detected.

BSP_GRP_IRQ_NMI_PIN NMI Pin interrupt.

BSP_GRP_IRQ_RAM_PARITY RAM Parity Error.

BSP_GRP_IRQ_RAM_ECC RAM ECC Error.

BSP_GRP_IRQ_MPU_BUS_SLAVE MPU Bus Slave Error.

BSP_GRP_IRQ_MPU_BUS_MASTER MPU Bus Master Error.

BSP_GRP_IRQ_MPU_STACK MPU Stack Error.

BSP_GRP_IRQ_TRUSTZONE MPU Stack Error.

BSP_GRP_IRQ_CACHE_PARITY MPU Stack Error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 165 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ bsp_reg_protect_t

enum bsp_reg_protect_t

The different types of registers that can be protected.

Enumerator

BSP_REG_PROTECT_CGC Enables writing to the registers related to the
clock generation circuit.

BSP_REG_PROTECT_OM_LPC_BATT Enables writing to the registers related to
operating modes, low power consumption, and
battery backup function.

BSP_REG_PROTECT_LVD Enables writing to the registers related to the
LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1,
LVD1SR, LVD2CR0, LVD2CR1, LVD2SR.

BSP_REG_PROTECT_SAR Enables writing to the registers related to the
security function.

Function Documentation

◆ R_FSP_VersionGet()

fsp_err_t R_FSP_VersionGet (fsp_pack_version_t *const p_version)

Get the FSP version based on compile time macros.

Parameters
[out] p_version Memory address to return

version information to.

Return values
FSP_SUCCESS Version information stored.

FSP_ERR_ASSERTION The parameter p_version is NULL.

◆ Reset_Handler()

void Reset_Handler (void)

MCU starts executing here out of reset. Main stack pointer is set up already.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 166 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ Default_Handler()

void Default_Handler (void)

Default exception handler.

◆ NMI_Handler()

void NMI_Handler (void)

Non-maskable interrupt handler. This exception is defined by the BSP, unlike other system
exceptions, because there are many sources that map to the NMI exception.

◆ SystemInit()

void SystemInit (void)

Initialize the MCU and the runtime environment.

◆ R_BSP_WarmStart()

void R_BSP_WarmStart (bsp_warm_start_event_t event)

This function is called at various points during the startup process. This function is declared as a
weak symbol higher up in this file because it is meant to be overridden by a user implemented
version. One of the main uses for this function is to call functional safety code during the startup
process. To use this function just copy this function into your own code and modify it to meet your
needs.

Parameters
[in] event Where the code currently is

in the start up process

◆ R_FSP_CurrentIrqGet()

__STATIC_INLINE IRQn_Type R_FSP_CurrentIrqGet (void)

Return active interrupt vector number value

Returns
Active interrupt vector number value

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 167 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_FSP_SystemClockHzGet()

__STATIC_INLINE uint32_t R_FSP_SystemClockHzGet (fsp_priv_clock_t clock)

Gets the frequency of a system clock.

Returns
Frequency of requested clock in Hertz.

◆ R_BSP_UniqueIdGet()

__STATIC_INLINE bsp_unique_id_t const* R_BSP_UniqueIdGet ()

Get unique ID for this device.

Returns
A pointer to the unique identifier structure

◆ R_BSP_FlashCacheDisable()

__STATIC_INLINE void R_BSP_FlashCacheDisable ()

Disables the flash cache.

◆ R_BSP_FlashCacheEnable()

__STATIC_INLINE void R_BSP_FlashCacheEnable ()

Enables the flash cache.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 168 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_BSP_SoftwareDelay()

void R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

Delay for at least the specified duration in units and return.

Parameters
[in] delay The number of 'units' to

delay.

[in] units The 'base'
(bsp_delay_units_t) for the
units specified. Valid values
are:
BSP_DELAY_UNITS_SECONDS
, BSP_DELAY_UNITS_MILLISE
CONDS, BSP_DELAY_UNITS_
MICROSECONDS.
For example:
At 1 MHz one cycle takes 1
microsecond (.000001
seconds).
At 12 MHz one cycle takes
1/12 microsecond or 83
nanoseconds.
Therefore one run through b
sp_prv_software_delay_loop(
) takes: ~ (83 *
BSP_DELAY_LOOP_CYCLES)
or 332 ns. A delay of 2 us
therefore requires
2000ns/332ns or 6 loops.

The 'theoretical' maximum delay that may be obtained is determined by a full 32 bit loop count
and the system clock rate. @120MHz: ((0xFFFFFFFF loops * 4 cycles /loop) / 120000000) = 143
seconds. @32MHz: ((0xFFFFFFFF loops * 4 cycles /loop) / 32000000) = 536 seconds

Note that requests for very large delays will be affected by rounding in the calculations and the
actual delay achieved may be slightly longer. @32 MHz, for example, a request for 532 seconds will
be closer to 536 seconds.

Note also that if the calculations result in a loop_cnt of zero, the bsp_prv_software_delay_loop()
function is not called at all. In this case the requested delay is too small (nanoseconds) to be
carried out by the loop itself, and the overhead associated with executing the code to just get to
this point has certainly satisfied the requested delay.

Note
This function calls bsp_cpu_clock_get() which ultimately calls R_CGC_SystemClockFreqGet() and therefore
requires that the BSP has already initialized the CGC (which it does as part of the Sysinit). Care should be taken to
ensure this remains the case if in the future this function were to be called as part of the BSP initialization.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 169 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ R_BSP_GroupIrqWrite()

fsp_err_t R_BSP_GroupIrqWrite (bsp_grp_irq_t irq, void(*)(bsp_grp_irq_t irq) p_callback)

Register a callback function for supported interrupts. If NULL is passed for the callback argument
then any previously registered callbacks are unregistered.

Parameters
[in] irq Interrupt for which to

register a callback.

[in] p_callback Pointer to function to call
when interrupt occurs.

Return values
FSP_SUCCESS Callback registered

FSP_ERR_ASSERTION Callback pointer is NULL

◆ R_BSP_RegisterProtectEnable()

void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect)

Enable register protection. Registers that are protected cannot be written to. Register protection is
enabled by using the Protect Register (PRCR) and the MPC's Write-Protect Register (PWPR).

Parameters
[in] regs_to_protect Registers which have write

protection enabled.

◆ R_BSP_RegisterProtectDisable()

void R_BSP_RegisterProtectDisable (bsp_reg_protect_t regs_to_unprotect)

Disable register protection. Registers that are protected cannot be written to. Register protection is
disabled by using the Protect Register (PRCR) and the MPC's Write-Protect Register (PWPR).

Parameters
[in] regs_to_unprotect Registers which have write

protection disabled.

Variable Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 170 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package

◆ SystemCoreClock

uint32_t SystemCoreClock

System Clock Frequency (Core Clock)

4.1.2.1 RA2A1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2a1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings NMI request or Reset is enabled

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 171 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

> Independent WDT >
Reset Interrupt
Request Select

interrupt
request is
enabled
Reset is
enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 172 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO oscillation is
enabled after reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

MPU > PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 173 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 174 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

Use Low Voltage Mode Enabled
Disabled

Disabled Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 175 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2A1

4.1.2.2 RA2E1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2e1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings Counting Stop counting when in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 176 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

> Independent WDT >
Stop Control

continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Internal Clock Supply
Architecture Type

Type B
Type A

Type A

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after

Voltage monitor 0 reset
is disabled after reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 177 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

reset
Voltage monitor
0 reset is
disabled after
reset

OFS1 register settings
> Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

MPU > PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

MPU > Memory Region
0 Start

Value must be an
integer between 0 and

0x000FFFFC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 178 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

0x000FFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 179 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

enum icu_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 180 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2E1

◆ icu_event_t

enum icu_event_t

Events to be used with the IELSR register to link interrupt events to the NVIC

Note
This list is device specific.

4.1.2.3 RA2L1
BSP » MCU Board Support Package

Functions

bsp_power_mode_t R_BSP_PowerModeSet (bsp_power_mode_t mode)

Detailed Description

Build Time Configurations for ra2l1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 181 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset

NMI
Reset

Reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 182 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

Interrupt Request

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Internal Clock Supply
Architecture Type

Type B
Type A

Type A

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x000FFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0x000FFFFC (ROM) or
between 0x1FF00000

0x000FFFFC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 183 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

and 0x200FFFFC (RAM)

MPU > PC1 End Value must be an
integer between
0x00000003 and
0x000FFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x000FFFFF

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x000FFFFC

0x000FFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x000FFFFF

0x000FFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region Value must be an 0x400DFFFC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 184 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

3 Start integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Power > DC-DC
Regulator

Disabled
Enabled
Enabled at
startup

Disabled To use the DCDC
regulator an external
inductor and capacitor
must be connected as
specified in chapter 40
of the RA2L1 manual.
In addition the supply
voltage must be above
2.4V and ICLK must be
2 MHz or higher.

When set to 'Enabled
at startup' the BSP will
switch to the DCDC
regulator during
startup using the
voltage range specified
below.

Power > DC-DC Supply
Range

2.4V to 2.7V
2.7V to 3.6V
3.6V to 4.5V
4.5V to 5.5V

2.7V to 3.6V Set this to the
expected MCU supply
voltage (Vcc) at startup
when using the DCDC
regulator.

Use Low Voltage Mode Not Supported config.bsp.low_voltage_
mode.disabled

Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least 4
when oscillation stop
detection is used.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 185 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end of
this file.

Enumerations

enum elc_event_t

enum icu_event_t

enum bsp_power_mode_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

◆ icu_event_t

enum icu_event_t

Events to be used with the IELSR register to link interrupt events to the NVIC

Note
This list is device specific.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 186 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA2L1

◆ bsp_power_mode_t

enum bsp_power_mode_t

Voltage regulator mode

Enumerator

BSP_POWER_MODE_DCDC_2V4_TO_2V7 DCDC mode; 2.4V to 2.7V supply.

BSP_POWER_MODE_DCDC_2V7_TO_3V6 DCDC mode; 2.7V to 3.6V supply.

BSP_POWER_MODE_DCDC_3V6_TO_4V5 DCDC mode; 3.6V to 4.5V supply.

BSP_POWER_MODE_DCDC_4V5_TO_5V5 DCDC mode; 4.5V to 5.5V supply.

BSP_POWER_MODE_LDO LDO mode.

Function Documentation

◆ R_BSP_PowerModeSet()

bsp_power_mode_t R_BSP_PowerModeSet (bsp_power_mode_t mode)

Select either the LDO or DCDC regulator and/or update the MCU supply voltage range. Returns the
previously selected mode.

Note
DCDC mode has the following limitations:

Supply voltage must be 2.4V or greater
Low- and Subosc-speed modes are not available
Software Standby is not available Ensure these limitations are respected before entering DCDC mode.
If supply voltage may drop below 2.4V during operation, configure a LVD channel to interrupt or reset
the MCU near this threshold to switch back to the LDO.

Switching to DCDC mode temporarily disables all interrupts and blocks for 22 microseconds; switching to LDO
from DCDC temporarily disables all peripherals and interrupts and blocks for 60 microseconds.
If the supply voltage falls outside the range originally specified when starting the DCDC regulator, call this
function again with the updated supply voltage.

Returns
The previously selected power mode.

4.1.2.4 RA4E1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4e1_fsp

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 187 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security > Exceptions
> Exception Response

Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
Protection

Both Secure
and Non-Secure
State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 188 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

Secure State secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
ECC

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > Standby
RAM

Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 189 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Security > System
Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Security > System
Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > Battery
Backup Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 190 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

projects with
TrustZone.

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software

Stop counting when in
Sleep, Snooze mode, or
Software Standby

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 191 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 192 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

Block Protection
Settings (BPS) > BPS

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register

Permanent Block
Protection Settings
(PBPS) > PBPS

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

Enumerations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 193 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4E1

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

4.1.2.5 RA4M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4m1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings 25% 100% (no window start

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 194 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

> Independent WDT >
Window Start Position

50%
75%
100% (no
window start
position)

position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 195 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

3.84 V
2.82 V
2.51 V
1.90 V
1.70 V

1.90 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO oscillation is
enabled after reset

HOCO oscillation is
enabled after reset

HOCO must be enabled
out of reset because
the MCU starts up in
low voltage mode and
the HOCO must be
operating in low
voltage mode.

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x00FFFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

MPU > PC1 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or

0x00FFFFFF

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 196 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

between 0x1FF00003
and 0x200FFFFF (RAM)

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 197 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Use Low Voltage Mode Enabled
Disabled

Disabled Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least
4.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 198 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M1

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

4.1.2.6 RA4M2
BSP » MCU Board Support Package

Build Time Configurations for ra4m2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security > Exceptions
> Exception Response

Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 199 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
ECC

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > Standby
RAM

Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 200 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

Security > BUS
Accessibility > Bus
Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Security > System
Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Security > Cache
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 201 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

valid when building
protjects with
TrustZone.

Security > System
Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > Battery
Backup Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%

0% (no window end
position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 202 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

0% (no window
end position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window

0% (no window end
position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 203 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

end position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection
Settings (BPS) > BPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Permanent Block
Protection Settings
(PBPS) > PBPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 204 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M2

requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

4.1.2.7 RA4M3
BSP » MCU Board Support Package

Build Time Configurations for ra4m3_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security > Exceptions
> Exception Response

Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 205 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
ECC

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 206 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > Standby
RAM

Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 207 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

This setting is only
valid when building
projects with
TrustZone.

Security > System
Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Security > Cache
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

Security > System
Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > Battery
Backup Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 208 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings Automatically Stop WDT after a reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 209 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

> WDT > Start Mode
Select

activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation

HOCO
oscillation is

HOCO oscillation is
disabled after reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 210 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

Enable enabled after
reset
HOCO
oscillation is
disabled after
reset

Block Protection
Settings (BPS) > BPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Block Protection
Settings (BPS) > BPS1

Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

Permanent Block
Protection Settings
(PBPS) > PBPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Permanent Block
Protection Settings
(PBPS) > PBPS1

Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Permanent
Block Protection
Register 1

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 211 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4M3

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

4.1.2.8 RA4W1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra4w1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 212 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset

NMI
Reset

Reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 213 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

Interrupt Request

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.82 V
2.51 V
1.90 V

1.90 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO oscillation is
enabled after reset

config.bsp.fsp.OFS1.ho
co_osc.disabled

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x00FFFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0x00FFFFFC (ROM) or
between 0x1FF00000
and 0x200FFFFC (RAM)

0x00FFFFFC

MPU > PC1 End Value must be an
integer between
0x00000003 and
0x00FFFFFF (ROM) or
between 0x1FF00003
and 0x200FFFFF (RAM)

0x00FFFFFF

MPU > Enable or
disable Memory Region

Enabled
Disabled

Disabled

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 214 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

0

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003

0x400DFFFF

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 215 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

and 0x407FFFFF

Use Low Voltage Mode Enabled
Disabled

Disabled Use the low voltage
mode. This limits the
ICLK operating
frequency to 4 MHz
and requires all clock
dividers to be at least
4.

Main Oscillator Wait
Time

2 cycles
1024 cycles
2048 cycles
4096 cycles
8192 cycles
16384 cycles
32768 cycles
65536 cycles
131072 cycles
262144 cycles

262144 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU1

Note
This list may change based on device. This list is for RA4W1.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 216 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA4W1

4.1.2.9 RA6E1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6e1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security > Exceptions
> Exception Response

Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when a the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 217 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
ECC

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > Standby
RAM

Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 218 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

Security > BUS
Accessibility > Bus
Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Security > System
Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Security > Cache
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

Security > System
Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 219 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

This setting is only
valid when building
projects with
TrustZone.

Security > Battery
Backup Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 220 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings NMI Reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 221 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

> WDT > Reset
Interrupt Request

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
enabled after reset

Block Protection
Settings (BPS) > BPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Block Protection
Settings (BPS) > BPS1

Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

Block Protection
Settings (BPS) > BPS2

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

Permanent Block
Protection Settings
(PBPS) > PBPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Permanent Block
Protection Settings
(PBPS) > PBPS1

Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Permanent
Block Protection
Register 1

Permanent Block
Protection Settings

Refer to the RA
Configuration tool for

0U Configure Permanent
Block Protection

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 222 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

(PBPS) > PBPS2 available options. Register 2

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles

8163 cycles Number of cycles to
wait for the main

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 223 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6E1

67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

oscillator clock to
stabilize.

Enumerations

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

4.1.2.10 RA6M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock

1
16
32

128

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 224 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

Frequency Divisor 64
128
256

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512

128

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 225 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

2048
8192

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 226 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC1 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region

Enabled
Disabled

Disabled

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 227 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

3

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Main Oscillator Wait
Time

35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize. Drive
capability automatic
switching function is by
default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 228 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M1

Erase support
Locked

set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

4.1.2.11 RA6M2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset

IWDT is Disabled

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 229 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

(Autostart
mode)

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-

Stop WDT after a reset
(register-start mode)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 230 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 231 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC1 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000

0x407FFFFC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 232 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

and 0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Main Oscillator Wait
Time

35 cycles
67 cycles

8163 cycles Number of cycles to
wait for the main

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 233 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M2

131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

oscillator clock to
stabilize. Drive
capability automatic
switching function is by
default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

4.1.2.12 RA6M3
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m3_fsp

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 234 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,

Stop counting when in
Sleep, Snooze mode, or
Software Standby

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 235 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

Snooze mode,
or Software
Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings 2.94 V 2.80 V

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 236 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

> Voltage Detection 0
Level

2.87 V
2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC1 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between

0x200FFFFF

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 237 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

0x1FF00003 and
0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 238 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Main Oscillator Wait
Time

35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize. Drive
capability automatic
switching function is by
default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug
access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 239 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M3

4.1.2.13 RA6M4
BSP » MCU Board Support Package

Build Time Configurations for ra6m4_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security > Exceptions
> Exception Response

Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then
setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 240 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
ECC

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > Standby
RAM

Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are
Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 241 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

Regions 7-0 are
all Non-secure.

Security > BUS
Accessibility > Bus
Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Security > System
Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Security > Cache
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

Security > System
Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 242 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

valid when building
projects with
TrustZone.

Security > Battery
Backup Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >

NMI request or
interrupt

Reset is enabled

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 243 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

Reset Interrupt
Request Select

request is
enabled
Reset is
enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start
Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 244 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection
Settings (BPS) > BPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Block Protection
Settings (BPS) > BPS1

Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

Block Protection
Settings (BPS) > BPS2

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

Permanent Block
Protection Settings
(PBPS) > PBPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Permanent Block
Protection Settings
(PBPS) > PBPS1

Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Permanent
Block Protection
Register 1

Permanent Block
Protection Settings
(PBPS) > PBPS2

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 245 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup
Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 246 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M4

259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

4.1.2.14 RA6M5
BSP » MCU Board Support Package

Build Time Configurations for ra6m5_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

Security > Exceptions
> Exception Response

Non-Maskable
Interrupt
Reset

Non-Maskable Interrupt Configure the result of
a TrustZone Filter
exception. This
exception is generated
when the TrustZone
Filter detects access to
a protected region.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> BusFault, HardFault,
and NMI Target

Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
BFHFNMINS. Defines
whether BusFault and
NMI exceptions are Non-
secure, and whether
exceptions target the
Non-secure HardFault
exception.

This setting is only
valid when building
projects with
TrustZone.

Security > Exceptions
> Prioritize Secure
Exceptions

Enabled
Disabled

Disabled Value for SCB->AIRCR
register bit PRIS. When
enabled, all Non-secure
interrupt priorities are
automatically demoted
by right shifting their
priority by one then

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 247 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

setting the most
significant bit. As there
is effectively one less
bit care must be taken
to ensure the
prioritization of non-
secure interrupts is
correct.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
Protection

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether
SRAMPRCR is write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > SRAM
ECC

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether SRAM
ECC registers are write
accessible for the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > SRAM
Accessibility > Standby
RAM

Regions 7-0 are
all Secure.
Region 7 is Non-
secure. Regions
6-0 are Secure.
Regions 7-6 are
Non-secure.
Regions 5-0 are
Secure.
Regions 7-5 are
Non-secure.
Regions 4-0 are
Secure.
Regions 7-4 are
Non-secure.
Regions 3-0 are
Secure.
Regions 7-3 are
Non-secure.
Regions 2-0 are
Secure.
Regions 7-2 are

config.bsp.fsp.tz.stbra
msar.both

Defines whether
Standby RAM registers
are accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 248 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Non-secure.
Regions 1-0 are
Secure.
Regions 7-1 are
Non-secure.
Region 0 is
Secure.
Regions 7-0 are
all Non-secure.

Security > BUS
Accessibility > Bus
Security Attribution
Register A

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Slave Bus Control
Registers
(BUSSCNT<slave>) are
write accessible for the
Non-secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > BUS
Accessibility > Bus
Security Attribution
Register B

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Bus and DMAC/DTC
Error Clear Registers
are write accessible for
the Non-secure
application.

This setting is only
valid when building
projects with
TrustZone.

Security > System
Reset Request
Accessibility

Both Secure
and Non-Secure
State
Secure State

Secure State Value for SCB->AIRCR
register bit
SYSRESETREQS.
Defines whether the
SYSRESETREQ bit is
functional for Non-
secure use.

This setting is only
valid when building
projects with
TrustZone.

Security > Cache
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
Cache registers are
write accessible for the
Non-secure application.

This setting is only
valid when building
protjects with
TrustZone.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 249 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Security > System
Reset Status
Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
reset status registers
(RSTSRn) can be
cleared from the Non-
secure application.

This setting is only
valid when building
projects with
TrustZone.

Security > Battery
Backup Accessibility

Both Secure
and Non-Secure
State
Secure State

Both Secure and Non-
Secure State

Defines whether the
battery backup
registers are accessible
for the Non-secure
application. If Secure
State is selected, all
battery backup
registers are read only
except for VBTBKRn
registers which are
both read and write
protected.

This setting is only
valid when building
projects with
TrustZone.

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings 25% 100% (no window start

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 250 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

> Independent WDT >
Window Start Position

50%
75%
100% (no
window start
position)

position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings
> WDT > Window Start

25%
50%

100% (no window start
position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 251 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Position 75%
100% (no
window start
position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

Block Protection
Settings (BPS) > BPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 0

Block Protection
Settings (BPS) > BPS1

Flash Block 32
Flash Block 33
Flash Block 34
Flash Block 35
Flash Block 36
Flash Block 37

0U Configure Block
Protection Register 1

Block Protection
Settings (BPS) > BPS2

Refer to the RA
Configuration tool for
available options.

0U Configure Block
Protection Register 2

Permanent Block
Protection Settings
(PBPS) > PBPS0

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 0

Permanent Block
Protection Settings
(PBPS) > PBPS1

Flash Block 32
Flash Block 33
Flash Block 34

0U Configure Permanent
Block Protection
Register 1

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 252 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Flash Block 35
Flash Block 36
Flash Block 37

Permanent Block
Protection Settings
(PBPS) > PBPS2

Refer to the RA
Configuration tool for
available options.

0U Configure Permanent
Block Protection
Register 2

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Startup C-Cache Line
Size

32 Bytes
64 Bytes

32 Bytes Set the C-Cache line
size configured during
startup.

Dual Bank Mode Enabled
Disabled

Disabled Enabling dual bank
mode splits the flash
into two banks that can
be swapped by
programming the
BANKSEL non-volatile
register. When
enabled, one bank will
start at address 0x0
and the other will start
at 0x200000. Each
bank contains exactly
half the capacity of the
entire code flash. When
Dual Bank mode is
enabled, Startup

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 253 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6M5

Program Protection and
Block Swap functions
cannot be used.

Main Oscillator Wait
Time

3 cycles
35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize.

4.1.2.15 RA6T1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6t1_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Default Description

OFS0 register settings
> Independent WDT >
Start Mode

IWDT is
Disabled
IWDT is
automatically
activated after
a reset
(Autostart
mode)

IWDT is Disabled

OFS0 register settings
> Independent WDT >
Timeout Period

128 cycles
512 cycles
1024 cycles
2048 cycles

2048 cycles

OFS0 register settings
> Independent WDT >
Dedicated Clock
Frequency Divisor

1
16
32
64
128
256

128

OFS0 register settings
> Independent WDT >
Window End Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 254 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

OFS0 register settings
> Independent WDT >
Window Start Position

25%
50%
75%
100% (no
window start
position)

100% (no window start
position)

OFS0 register settings
> Independent WDT >
Reset Interrupt
Request Select

NMI request or
interrupt
request is
enabled
Reset is
enabled

Reset is enabled

OFS0 register settings
> Independent WDT >
Stop Control

Counting
continues
(Note: Device
will not enter
Deep Standby
Mode when
selected.
Device will
enter Software
Standby Mode)
Stop counting
when in Sleep,
Snooze mode,
or Software
Standby

Stop counting when in
Sleep, Snooze mode, or
Software Standby

OFS0 register settings
> WDT > Start Mode
Select

Automatically
activate WDT
after a reset
(auto-start
mode)
Stop WDT after
a reset (register-
start mode)

Stop WDT after a reset
(register-start mode)

OFS0 register settings
> WDT > Timeout
Period

1024 cycles
4096 cycles
8192 cycles
16384 cycles

16384 cycles

OFS0 register settings
> WDT > Clock
Frequency Division
Ratio

4
64
128
512
2048
8192

128

OFS0 register settings
> WDT > Window End
Position

75%
50%
25%
0% (no window
end position)

0% (no window end
position)

OFS0 register settings 25% 100% (no window start

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 255 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

> WDT > Window Start
Position

50%
75%
100% (no
window start
position)

position)

OFS0 register settings
> WDT > Reset
Interrupt Request

NMI
Reset

Reset

OFS0 register settings
> WDT > Stop Control

Counting
continues
Stop counting
when entering
Sleep mode

Stop counting when
entering Sleep mode

OFS1 register settings
> Voltage Detection 0
Circuit Start

Voltage monitor
0 reset is
enabled after
reset
Voltage monitor
0 reset is
disabled after
reset

Voltage monitor 0 reset
is disabled after reset

OFS1 register settings
> Voltage Detection 0
Level

2.94 V
2.87 V
2.80 V

2.80 V

OFS1 register settings
> HOCO Oscillation
Enable

HOCO
oscillation is
enabled after
reset
HOCO
oscillation is
disabled after
reset

HOCO oscillation is
disabled after reset

MPU > Enable or
disable PC Region 0

Enabled
Disabled

Disabled

MPU > PC0 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC0 End Value must be an
integer between
0x00000003 and
0xFFFFFFFF

0xFFFFFFFF

MPU > Enable or
disable PC Region 1

Enabled
Disabled

Disabled

MPU > PC1 Start Value must be an
integer between 0 and
0xFFFFFFFC

0xFFFFFFFC

MPU > PC1 End Value must be an
integer between

0xFFFFFFFF

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 256 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

0x00000003 and
0xFFFFFFFF

MPU > Enable or
disable Memory Region
0

Enabled
Disabled

Disabled

MPU > Memory Region
0 Start

Value must be an
integer between 0 and
0x00FFFFFC

0x00FFFFFC

MPU > Memory Region
0 End

Value must be an
integer between
0x00000003 and
0x00FFFFFF

0x00FFFFFF

MPU > Enable or
disable Memory Region
1

Enabled
Disabled

Disabled

MPU > Memory Region
1 Start

Value must be an
integer between
0x1FF00000 and
0x200FFFFC

0x200FFFFC

MPU > Memory Region
1 End

Value must be an
integer between
0x1FF00003 and
0x200FFFFF

0x200FFFFF

MPU > Enable or
disable Memory Region
2

Enabled
Disabled

Disabled

MPU > Memory Region
2 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x407FFFFC

MPU > Memory Region
2 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x407FFFFF

MPU > Enable or
disable Memory Region
3

Enabled
Disabled

Disabled

MPU > Memory Region
3 Start

Value must be an
integer between
0x400C0000 and
0x400DFFFC or
between 0x40100000
and 0x407FFFFC

0x400DFFFC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 257 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

MPU > Memory Region
3 End

Value must be an
integer between
0x400C0003 and
0x400DFFFF or
between 0x40100003
and 0x407FFFFF

0x400DFFFF

Clocks > HOCO FLL
Function

Enabled
Disabled

Disabled Setting this option to
Enabled improves
HOCO accuracy
significantly by using
the subclock, but
incurs certain
restrictions.

The FLL function
requires the subclock
oscillator to be running
and stabilized. When
enabled and running
the PLL or system clock
from HOCO, the BSP
will wait for both the
Subclock Stabilization
Time as well as the FLL
Stabilization Time
when setting up clocks
at startup.

When FLL is enabled
Software Standby and
Deep Software Standby
modes are not
available.

Main Oscillator Wait
Time

35 cycles
67 cycles
131 cycles
259 cycles
547 cycles
1059 cycles
2147 cycles
4291 cycles
8163 cycles

8163 cycles Number of cycles to
wait for the main
oscillator clock to
stabilize. Drive
capability automatic
switching function is by
default disabled.

ID Code Mode Unlocked
(Ignore ID)
Locked with All
Erase support
Locked

Unlocked (Ignore ID) When set to 'Locked
with All Erase support',
the ID Code must be
set in the debugger to
read or write data to
the MCU, but the All
Erase command is still
accepted regardless.
When set to 'Locked',
all
erase/download/debug

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 258 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > MCU Board Support Package > RA6T1

access is disabled
unless the ID Code is
provided.

ID Code (32 Hex
Characters)

Value must be a 32
character long hex
string

FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFF

Set the ID Code for
locking debug access.
This setting is only
used when the ID Code
Mode is not set to
Unlocked.

Enumerations

enum elc_event_t

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU

Note
This list may change based on based on the device.

4.1.3 BSP I/O access
BSP

Functions

__STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)

__STATIC_INLINE void R_BSP_PinWrite (bsp_io_port_pin_t pin, bsp_io_level_t level)

__STATIC_INLINE void R_BSP_PinCfg (bsp_io_port_pin_t pin, uint32_t cfg)

__STATIC_INLINE void R_BSP_PinAccessEnable (void)

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Detailed Description

This module provides basic read/write access to port pins.

Enumerations

enum bsp_io_level_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 259 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

enum bsp_io_direction_t

enum bsp_io_port_t

enum bsp_io_port_pin_t

Enumeration Type Documentation

◆ bsp_io_level_t

enum bsp_io_level_t

Levels that can be set and read for individual pins

Enumerator

BSP_IO_LEVEL_LOW Low.

BSP_IO_LEVEL_HIGH High.

◆ bsp_io_direction_t

enum bsp_io_direction_t

Direction of individual pins

Enumerator

BSP_IO_DIRECTION_INPUT Input.

BSP_IO_DIRECTION_OUTPUT Output.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 260 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ bsp_io_port_t

enum bsp_io_port_t

Superset list of all possible IO ports.

Enumerator

BSP_IO_PORT_00 IO port 0.

BSP_IO_PORT_01 IO port 1.

BSP_IO_PORT_02 IO port 2.

BSP_IO_PORT_03 IO port 3.

BSP_IO_PORT_04 IO port 4.

BSP_IO_PORT_05 IO port 5.

BSP_IO_PORT_06 IO port 6.

BSP_IO_PORT_07 IO port 7.

BSP_IO_PORT_08 IO port 8.

BSP_IO_PORT_09 IO port 9.

BSP_IO_PORT_10 IO port 10.

BSP_IO_PORT_11 IO port 11.

◆ bsp_io_port_pin_t

enum bsp_io_port_pin_t

Superset list of all possible IO port pins.

Enumerator

BSP_IO_PORT_00_PIN_00 IO port 0 pin 0.

BSP_IO_PORT_00_PIN_01 IO port 0 pin 1.

BSP_IO_PORT_00_PIN_02 IO port 0 pin 2.

BSP_IO_PORT_00_PIN_03 IO port 0 pin 3.

BSP_IO_PORT_00_PIN_04 IO port 0 pin 4.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 261 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_00_PIN_05 IO port 0 pin 5.

BSP_IO_PORT_00_PIN_06 IO port 0 pin 6.

BSP_IO_PORT_00_PIN_07 IO port 0 pin 7.

BSP_IO_PORT_00_PIN_08 IO port 0 pin 8.

BSP_IO_PORT_00_PIN_09 IO port 0 pin 9.

BSP_IO_PORT_00_PIN_10 IO port 0 pin 10.

BSP_IO_PORT_00_PIN_11 IO port 0 pin 11.

BSP_IO_PORT_00_PIN_12 IO port 0 pin 12.

BSP_IO_PORT_00_PIN_13 IO port 0 pin 13.

BSP_IO_PORT_00_PIN_14 IO port 0 pin 14.

BSP_IO_PORT_00_PIN_15 IO port 0 pin 15.

BSP_IO_PORT_01_PIN_00 IO port 1 pin 0.

BSP_IO_PORT_01_PIN_01 IO port 1 pin 1.

BSP_IO_PORT_01_PIN_02 IO port 1 pin 2.

BSP_IO_PORT_01_PIN_03 IO port 1 pin 3.

BSP_IO_PORT_01_PIN_04 IO port 1 pin 4.

BSP_IO_PORT_01_PIN_05 IO port 1 pin 5.

BSP_IO_PORT_01_PIN_06 IO port 1 pin 6.

BSP_IO_PORT_01_PIN_07 IO port 1 pin 7.

BSP_IO_PORT_01_PIN_08 IO port 1 pin 8.

BSP_IO_PORT_01_PIN_09 IO port 1 pin 9.

BSP_IO_PORT_01_PIN_10 IO port 1 pin 10.

BSP_IO_PORT_01_PIN_11 IO port 1 pin 11.

BSP_IO_PORT_01_PIN_12 IO port 1 pin 12.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 262 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_01_PIN_13 IO port 1 pin 13.

BSP_IO_PORT_01_PIN_14 IO port 1 pin 14.

BSP_IO_PORT_01_PIN_15 IO port 1 pin 15.

BSP_IO_PORT_02_PIN_00 IO port 2 pin 0.

BSP_IO_PORT_02_PIN_01 IO port 2 pin 1.

BSP_IO_PORT_02_PIN_02 IO port 2 pin 2.

BSP_IO_PORT_02_PIN_03 IO port 2 pin 3.

BSP_IO_PORT_02_PIN_04 IO port 2 pin 4.

BSP_IO_PORT_02_PIN_05 IO port 2 pin 5.

BSP_IO_PORT_02_PIN_06 IO port 2 pin 6.

BSP_IO_PORT_02_PIN_07 IO port 2 pin 7.

BSP_IO_PORT_02_PIN_08 IO port 2 pin 8.

BSP_IO_PORT_02_PIN_09 IO port 2 pin 9.

BSP_IO_PORT_02_PIN_10 IO port 2 pin 10.

BSP_IO_PORT_02_PIN_11 IO port 2 pin 11.

BSP_IO_PORT_02_PIN_12 IO port 2 pin 12.

BSP_IO_PORT_02_PIN_13 IO port 2 pin 13.

BSP_IO_PORT_02_PIN_14 IO port 2 pin 14.

BSP_IO_PORT_02_PIN_15 IO port 2 pin 15.

BSP_IO_PORT_03_PIN_00 IO port 3 pin 0.

BSP_IO_PORT_03_PIN_01 IO port 3 pin 1.

BSP_IO_PORT_03_PIN_02 IO port 3 pin 2.

BSP_IO_PORT_03_PIN_03 IO port 3 pin 3.

BSP_IO_PORT_03_PIN_04 IO port 3 pin 4.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 263 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_03_PIN_05 IO port 3 pin 5.

BSP_IO_PORT_03_PIN_06 IO port 3 pin 6.

BSP_IO_PORT_03_PIN_07 IO port 3 pin 7.

BSP_IO_PORT_03_PIN_08 IO port 3 pin 8.

BSP_IO_PORT_03_PIN_09 IO port 3 pin 9.

BSP_IO_PORT_03_PIN_10 IO port 3 pin 10.

BSP_IO_PORT_03_PIN_11 IO port 3 pin 11.

BSP_IO_PORT_03_PIN_12 IO port 3 pin 12.

BSP_IO_PORT_03_PIN_13 IO port 3 pin 13.

BSP_IO_PORT_03_PIN_14 IO port 3 pin 14.

BSP_IO_PORT_03_PIN_15 IO port 3 pin 15.

BSP_IO_PORT_04_PIN_00 IO port 4 pin 0.

BSP_IO_PORT_04_PIN_01 IO port 4 pin 1.

BSP_IO_PORT_04_PIN_02 IO port 4 pin 2.

BSP_IO_PORT_04_PIN_03 IO port 4 pin 3.

BSP_IO_PORT_04_PIN_04 IO port 4 pin 4.

BSP_IO_PORT_04_PIN_05 IO port 4 pin 5.

BSP_IO_PORT_04_PIN_06 IO port 4 pin 6.

BSP_IO_PORT_04_PIN_07 IO port 4 pin 7.

BSP_IO_PORT_04_PIN_08 IO port 4 pin 8.

BSP_IO_PORT_04_PIN_09 IO port 4 pin 9.

BSP_IO_PORT_04_PIN_10 IO port 4 pin 10.

BSP_IO_PORT_04_PIN_11 IO port 4 pin 11.

BSP_IO_PORT_04_PIN_12 IO port 4 pin 12.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 264 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_04_PIN_13 IO port 4 pin 13.

BSP_IO_PORT_04_PIN_14 IO port 4 pin 14.

BSP_IO_PORT_04_PIN_15 IO port 4 pin 15.

BSP_IO_PORT_05_PIN_00 IO port 5 pin 0.

BSP_IO_PORT_05_PIN_01 IO port 5 pin 1.

BSP_IO_PORT_05_PIN_02 IO port 5 pin 2.

BSP_IO_PORT_05_PIN_03 IO port 5 pin 3.

BSP_IO_PORT_05_PIN_04 IO port 5 pin 4.

BSP_IO_PORT_05_PIN_05 IO port 5 pin 5.

BSP_IO_PORT_05_PIN_06 IO port 5 pin 6.

BSP_IO_PORT_05_PIN_07 IO port 5 pin 7.

BSP_IO_PORT_05_PIN_08 IO port 5 pin 8.

BSP_IO_PORT_05_PIN_09 IO port 5 pin 9.

BSP_IO_PORT_05_PIN_10 IO port 5 pin 10.

BSP_IO_PORT_05_PIN_11 IO port 5 pin 11.

BSP_IO_PORT_05_PIN_12 IO port 5 pin 12.

BSP_IO_PORT_05_PIN_13 IO port 5 pin 13.

BSP_IO_PORT_05_PIN_14 IO port 5 pin 14.

BSP_IO_PORT_05_PIN_15 IO port 5 pin 15.

BSP_IO_PORT_06_PIN_00 IO port 6 pin 0.

BSP_IO_PORT_06_PIN_01 IO port 6 pin 1.

BSP_IO_PORT_06_PIN_02 IO port 6 pin 2.

BSP_IO_PORT_06_PIN_03 IO port 6 pin 3.

BSP_IO_PORT_06_PIN_04 IO port 6 pin 4.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 265 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_06_PIN_05 IO port 6 pin 5.

BSP_IO_PORT_06_PIN_06 IO port 6 pin 6.

BSP_IO_PORT_06_PIN_07 IO port 6 pin 7.

BSP_IO_PORT_06_PIN_08 IO port 6 pin 8.

BSP_IO_PORT_06_PIN_09 IO port 6 pin 9.

BSP_IO_PORT_06_PIN_10 IO port 6 pin 10.

BSP_IO_PORT_06_PIN_11 IO port 6 pin 11.

BSP_IO_PORT_06_PIN_12 IO port 6 pin 12.

BSP_IO_PORT_06_PIN_13 IO port 6 pin 13.

BSP_IO_PORT_06_PIN_14 IO port 6 pin 14.

BSP_IO_PORT_06_PIN_15 IO port 6 pin 15.

BSP_IO_PORT_07_PIN_00 IO port 7 pin 0.

BSP_IO_PORT_07_PIN_01 IO port 7 pin 1.

BSP_IO_PORT_07_PIN_02 IO port 7 pin 2.

BSP_IO_PORT_07_PIN_03 IO port 7 pin 3.

BSP_IO_PORT_07_PIN_04 IO port 7 pin 4.

BSP_IO_PORT_07_PIN_05 IO port 7 pin 5.

BSP_IO_PORT_07_PIN_06 IO port 7 pin 6.

BSP_IO_PORT_07_PIN_07 IO port 7 pin 7.

BSP_IO_PORT_07_PIN_08 IO port 7 pin 8.

BSP_IO_PORT_07_PIN_09 IO port 7 pin 9.

BSP_IO_PORT_07_PIN_10 IO port 7 pin 10.

BSP_IO_PORT_07_PIN_11 IO port 7 pin 11.

BSP_IO_PORT_07_PIN_12 IO port 7 pin 12.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 266 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_07_PIN_13 IO port 7 pin 13.

BSP_IO_PORT_07_PIN_14 IO port 7 pin 14.

BSP_IO_PORT_07_PIN_15 IO port 7 pin 15.

BSP_IO_PORT_08_PIN_00 IO port 8 pin 0.

BSP_IO_PORT_08_PIN_01 IO port 8 pin 1.

BSP_IO_PORT_08_PIN_02 IO port 8 pin 2.

BSP_IO_PORT_08_PIN_03 IO port 8 pin 3.

BSP_IO_PORT_08_PIN_04 IO port 8 pin 4.

BSP_IO_PORT_08_PIN_05 IO port 8 pin 5.

BSP_IO_PORT_08_PIN_06 IO port 8 pin 6.

BSP_IO_PORT_08_PIN_07 IO port 8 pin 7.

BSP_IO_PORT_08_PIN_08 IO port 8 pin 8.

BSP_IO_PORT_08_PIN_09 IO port 8 pin 9.

BSP_IO_PORT_08_PIN_10 IO port 8 pin 10.

BSP_IO_PORT_08_PIN_11 IO port 8 pin 11.

BSP_IO_PORT_08_PIN_12 IO port 8 pin 12.

BSP_IO_PORT_08_PIN_13 IO port 8 pin 13.

BSP_IO_PORT_08_PIN_14 IO port 8 pin 14.

BSP_IO_PORT_08_PIN_15 IO port 8 pin 15.

BSP_IO_PORT_09_PIN_00 IO port 9 pin 0.

BSP_IO_PORT_09_PIN_01 IO port 9 pin 1.

BSP_IO_PORT_09_PIN_02 IO port 9 pin 2.

BSP_IO_PORT_09_PIN_03 IO port 9 pin 3.

BSP_IO_PORT_09_PIN_04 IO port 9 pin 4.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 267 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_09_PIN_05 IO port 9 pin 5.

BSP_IO_PORT_09_PIN_06 IO port 9 pin 6.

BSP_IO_PORT_09_PIN_07 IO port 9 pin 7.

BSP_IO_PORT_09_PIN_08 IO port 9 pin 8.

BSP_IO_PORT_09_PIN_09 IO port 9 pin 9.

BSP_IO_PORT_09_PIN_10 IO port 9 pin 10.

BSP_IO_PORT_09_PIN_11 IO port 9 pin 11.

BSP_IO_PORT_09_PIN_12 IO port 9 pin 12.

BSP_IO_PORT_09_PIN_13 IO port 9 pin 13.

BSP_IO_PORT_09_PIN_14 IO port 9 pin 14.

BSP_IO_PORT_09_PIN_15 IO port 9 pin 15.

BSP_IO_PORT_10_PIN_00 IO port 10 pin 0.

BSP_IO_PORT_10_PIN_01 IO port 10 pin 1.

BSP_IO_PORT_10_PIN_02 IO port 10 pin 2.

BSP_IO_PORT_10_PIN_03 IO port 10 pin 3.

BSP_IO_PORT_10_PIN_04 IO port 10 pin 4.

BSP_IO_PORT_10_PIN_05 IO port 10 pin 5.

BSP_IO_PORT_10_PIN_06 IO port 10 pin 6.

BSP_IO_PORT_10_PIN_07 IO port 10 pin 7.

BSP_IO_PORT_10_PIN_08 IO port 10 pin 8.

BSP_IO_PORT_10_PIN_09 IO port 10 pin 9.

BSP_IO_PORT_10_PIN_10 IO port 10 pin 10.

BSP_IO_PORT_10_PIN_11 IO port 10 pin 11.

BSP_IO_PORT_10_PIN_12 IO port 10 pin 12.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 268 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

BSP_IO_PORT_10_PIN_13 IO port 10 pin 13.

BSP_IO_PORT_10_PIN_14 IO port 10 pin 14.

BSP_IO_PORT_10_PIN_15 IO port 10 pin 15.

BSP_IO_PORT_11_PIN_00 IO port 11 pin 0.

BSP_IO_PORT_11_PIN_01 IO port 11 pin 1.

BSP_IO_PORT_11_PIN_02 IO port 11 pin 2.

BSP_IO_PORT_11_PIN_03 IO port 11 pin 3.

BSP_IO_PORT_11_PIN_04 IO port 11 pin 4.

BSP_IO_PORT_11_PIN_05 IO port 11 pin 5.

BSP_IO_PORT_11_PIN_06 IO port 11 pin 6.

BSP_IO_PORT_11_PIN_07 IO port 11 pin 7.

BSP_IO_PORT_11_PIN_08 IO port 11 pin 8.

BSP_IO_PORT_11_PIN_09 IO port 11 pin 9.

BSP_IO_PORT_11_PIN_10 IO port 11 pin 10.

BSP_IO_PORT_11_PIN_11 IO port 11 pin 11.

BSP_IO_PORT_11_PIN_12 IO port 11 pin 12.

BSP_IO_PORT_11_PIN_13 IO port 11 pin 13.

BSP_IO_PORT_11_PIN_14 IO port 11 pin 14.

BSP_IO_PORT_11_PIN_15 IO port 11 pin 15.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 269 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ R_BSP_PinRead()

__STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)

Read the current input level of the pin.

Parameters
[in] pin The pin

Return values
Current input level

◆ R_BSP_PinWrite()

__STATIC_INLINE void R_BSP_PinWrite (bsp_io_port_pin_t pin, bsp_io_level_t level)

Set a pin to output and set the output level to the level provided. If PFS protection is enabled,
disable PFS protection using R_BSP_PinAccessEnable() before calling this function.

Parameters
[in] pin The pin

[in] level The level

◆ R_BSP_PinCfg()

__STATIC_INLINE void R_BSP_PinCfg (bsp_io_port_pin_t pin, uint32_t cfg)

Configure a pin. If PFS protection is enabled, disable PFS protection using R_BSP_PinAccessEnable()
before calling this function.

Parameters
[in] pin The pin

[in] cfg Configuration for the pin
(PmnPFS register setting)

◆ R_BSP_PinAccessEnable()

__STATIC_INLINE void R_BSP_PinAccessEnable (void)

Enable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 270 / 2,794

Flexible Software Package

User’s Manual
API Reference > BSP > BSP I/O access

◆ R_BSP_PinAccessDisable()

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Disable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

4.2 Modules

Detailed Description

Modules are the smallest unit of software available in the FSP. Each module implements one
interface.

For more information on FSP Modules and Interfaces review FSP Modules, FSP Stacks and FSP
Interfaces in the FSP Architecutre section of this manual.

Note
Not all modules are available for all MCUs. For more information, see the User's Manual for the specific MCU.

Organization of Module Sections

Each module within FSP has a detailed Users' Guide listed below. Each guide typically includes the
following content:

Functions: A list of all the API functions associated with the module
Detailed Description: A short description of the module and the peripherals used
Overview: An operational summary and a list of high level features provided by the module
Configuration: A description of module specific settings available in the configuration tool
including clock and pin configurations
Usage Notes: Module specific documentation and limitations
Examples: Illustrative code snippets that help the user better understand API use and
operation
Data Structure and Enumeration: Definitions for data structures, enumerations and similar
elements used by the module API
Function Documentation: Details on each API function, including the function prototype, a
function summary, a simple use example, list of return values and links to documentation
for any needed parameter definitions

Modules

High-Speed Analog Comparator (r_acmphs)

 Driver for the ACMPHS peripheral on RA MCUs. This module
implements the Comparator Interface.

Low-Power Analog Comparator (r_acmplp)

 Driver for the ACMPLP peripheral on RA MCUs. This module

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 271 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

implements the Comparator Interface.

Analog to Digital Converter (r_adc)

 Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs.
This module implements the ADC Interface.

Asynchronous General Purpose Timer (r_agt)

 Driver for the AGT peripheral on RA MCUs. This module implements
the Timer Interface.

Bluetooth Low Energy Library (r_ble)

 Driver for the Radio peripheral on RA MCUs. This module implements
the BLE Interface.

Clock Frequency Accuracy Measurement Circuit (r_cac)

 Driver for the CAC peripheral on RA MCUs. This module implements
the CAC Interface.

Controller Area Network (r_can)

 Driver for the CAN peripheral on RA MCUs. This module implements
the CAN Interface.

Controller Area Network - Flexible Data (r_canfd)

 Driver for the CANFD peripheral on RA MCUs. This module
implements the CAN Interface.

Consumer Electronics Control (r_cec)

 Driver for the CEC peripheral on RA MCUs. This module implements
the CEC Interface.

Clock Generation Circuit (r_cgc)

 Driver for the CGC peripheral on RA MCUs. This module implements
the CGC Interface.

Cyclic Redundancy Check (CRC) Calculator (r_crc)

 Driver for the CRC peripheral on RA MCUs. This module implements
the CRC Interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 272 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

Capacitive Touch Sensing Unit (r_ctsu)

 This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It
implements the CTSU Interface.

Digital to Analog Converter (r_dac)

 Driver for the DAC12 peripheral on RA MCUs. This module
implements the DAC Interface.

Digital to Analog Converter (r_dac8)

 Driver for the DAC8 peripheral on RA MCUs. This module implements
the DAC Interface.

Direct Memory Access Controller (r_dmac)

 Driver for the DMAC peripheral on RA MCUs. This module implements
the Transfer Interface.

Data Operation Circuit (r_doc)

 Driver for the DOC peripheral on RA MCUs. This module implements
the DOC Interface.

D/AVE 2D Port Interface (r_drw)

 Driver for the DRW peripheral on RA MCUs. This module is a port of
D/AVE 2D.

Data Transfer Controller (r_dtc)

 Driver for the DTC peripheral on RA MCUs. This module implements
the Transfer Interface.

Event Link Controller (r_elc)

 Driver for the ELC peripheral on RA MCUs. This module implements
the ELC Interface.

Ethernet (r_ether)

 Driver for the Ethernet peripheral on RA MCUs. This module
implements the Ethernet Interface.

Ethernet PHY (r_ether_phy)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 273 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

 The Ethernet PHY module (r_ether_phy) provides an API for standard
Ethernet PHY communications applications that use the ETHERC
peripheral. It implements the Ethernet PHY Interface.

High-Performance Flash Driver (r_flash_hp)

 Driver for the flash memory on RA high-performance MCUs. This
module implements the Flash Interface.

Low-Power Flash Driver (r_flash_lp)

 Driver for the flash memory on RA low-power MCUs. This module
implements the Flash Interface.

Graphics LCD Controller (r_glcdc)

 Driver for the GLCDC peripheral on RA MCUs. This module
implements the Display Interface.

General PWM Timer (r_gpt)

 Driver for the GPT32 and GPT16 peripherals on RA MCUs. This
module implements the Timer Interface.

General PWM Timer Three-Phase Motor Control Driver
(r_gpt_three_phase)

 Driver for 3-phase motor control using the GPT peripheral on RA
MCUs. This module implements the Three-Phase Interface.

Interrupt Controller Unit (r_icu)

 Driver for the ICU peripheral on RA MCUs. This module implements
the External IRQ Interface.

I2C Master on IIC (r_iic_master)

 Driver for the IIC peripheral on RA MCUs. This module implements
the I2C Master Interface.

I2C Slave on IIC (r_iic_slave)

 Driver for the IIC peripheral on RA MCUs. This module implements
the I2C Slave Interface.

I/O Ports (r_ioport)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 274 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

 Driver for the I/O Ports peripheral on RA MCUs. This module
implements the I/O Port Interface.

Independent Watchdog Timer (r_iwdt)

 Driver for the IWDT peripheral on RA MCUs. This module implements
the WDT Interface.

JPEG Codec (r_jpeg)

 Driver for the JPEG peripheral on RA MCUs. This module implements
the JPEG Codec Interface.

Key Interrupt (r_kint)

 Driver for the KINT peripheral on RA MCUs. This module implements
the Key Matrix Interface.

Low Power Modes (r_lpm)

 Driver for the LPM peripheral on RA MCUs. This module implements
the Low Power Modes Interface.

Low Voltage Detection (r_lvd)

 Driver for the LVD peripheral on RA MCUs. This module implements
the Low Voltage Detection Interface.

Operational Amplifier (r_opamp)

 Driver for the OPAMP peripheral on RA MCUs. This module
implements the OPAMP Interface.

Octa Serial Peripheral Interface Flash (r_ospi)

 Driver for the OSPI peripheral on RA MCUs. This module implements
the SPI Flash Interface.

Parallel Data Capture (r_pdc)

 Driver for the PDC peripheral on RA MCUs. This module implements
the PDC Interface.

Port Output Enable for GPT (r_poeg)

 Driver for the POEG peripheral on RA MCUs. This module implements

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 275 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

the POEG Interface.

Precision Time Protocol (r_ptp)

 Driver for the PTP peripheral on RA MCUs. This module implements
the PTP Interface.

Quad Serial Peripheral Interface Flash (r_qspi)

 Driver for the QSPI peripheral on RA MCUs. This module implements
the SPI Flash Interface.

Realtime Clock (r_rtc)

 Driver for the RTC peripheral on RA MCUs. This module implements
the RTC Interface.

Secure Crypto Engine (r_sce_protected)

 Driver for the Secure Crypto Engine (SCE) on RA MCUs.

Serial Communications Interface (SCI) I2C (r_sci_i2c)

 Driver for the SCI peripheral on RA MCUs. This module implements
the I2C Master Interface.

Serial Communications Interface (SCI) SPI (r_sci_spi)

 Driver for the SCI peripheral on RA MCUs. This module implements
the SPI Interface.

Serial Communications Interface (SCI) UART (r_sci_uart)

 Driver for the SCI peripheral on RA MCUs. This module implements
the UART Interface.

Sigma Delta Analog to Digital Converter (r_sdadc)

 Driver for the SDADC24 peripheral on RA MCUs. This module
implements the ADC Interface.

SD/MMC Host Interface (r_sdhi)

 Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs.
This module implements the SD/MMC Interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 276 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

Segment LCD Controller (r_slcdc)

 Driver for the SLCDC peripheral on RA MCUs. This module
implements the SLCDC Interface.

Serial Peripheral Interface (r_spi)

 Driver for the SPI peripheral on RA MCUs. This module implements
the SPI Interface.

Serial Sound Interface (r_ssi)

 Driver for the SSIE peripheral on RA MCUs. This module implements
the I2S Interface.

USB (r_usb_basic)

 Driver for the USB peripheral on RA MCUs. This module implements
the USB Interface.

USB Composite Class (r_usb_composite)

USB Host Communications Device Class Driver (r_usb_hcdc)

 This module provides a USB Host Communications Device Class
(HCDC) driver. It implements the USB HCDC Interface.

USB Host Human Interface Device Class Driver (r_usb_hhid)

 This module provides a USB Host Human Interface Device Class
Driver (HHID). It implements the USB HHID Interface.

USB Host Mass Storage Class Driver (r_usb_hmsc)

 This module provides a USB Host Mass Storage Class (HMSC) driver.
It implements the USB HMSC Interface.

USB Host Vendor Class (r_usb_hvnd)

USB Peripheral Communications Device Class (r_usb_pcdc)

 This module provides a USB Peripheral Communications Device Class
Driver (PCDC). It implements the USB PCDC Interface.

USB Peripheral Human Interface Device Class (r_usb_phid)

 This module is USB Peripheral Human Interface Device Class Driver

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 277 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

(PHID). It implements the USB PHID Interface.

USB Peripheral Mass Storage Class (r_usb_pmsc)

 This module provides a USB Peripheral Mass Storage Class (PMSC)
driver. It implements the USB PMSC Interface.

USB Peripheral Vendor Class (r_usb_pvnd)

Watchdog Timer (r_wdt)

 Driver for the WDT peripheral on RA MCUs. This module implements
the WDT Interface.

ADPCM Decoder (rm_adpcm_decoder)

 Middleware to implement the ADPCM Audio Decoder. This module
implements the ADPCM Decoder Interface.

Audio Playback with PWM (rm_audio_playback_pwm)

 Driver for the Audio Playback middleware on RA MCUs. This module
implements the AUDIO PLAYBACK Interface.

AWS PKCS11 PAL (rm_aws_pkcs11_pal)

 PKCS#11 PAL layer implementation for use by FreeRTOS TLS.

AWS PKCS11 PAL LITTLEFS (rm_aws_pkcs11_pal_littlefs)

 PKCS#11 PAL LittleFS layer implementation for use by FreeRTOS
TLS.

Bluetooth Low Energy Abstraction (rm_ble_abs)

 Middleware for the Bluetooth peripheral on RA MCUs. This module
implements the BLE ABS Interface.

SD/MMC Block Media Implementation (rm_block_media_sdmmc)

 Middleware to implement the block media interface on SD cards.
This module implements the Block Media Interface.

SPI Block Media Implementation (rm_block_media_spi)

 Middleware to implement the block media interface on SPI flash

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 278 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

memory. This module implements the Block Media Interface.

USB HMSC Block Media Implementation (rm_block_media_usb)

 Middleware to implement the block media interface on USB mass
storage devices. This module implements the Block Media Interface.

User Block Media Implementation (rm_block_media_user)

 Middleware that implements a block media interface on the media of
your choice. This module implements the Block Media Interface.

I2C Communicatons Middleware (rm_comms_i2c)

 Middleware to implement the I2C communications interface. This
module implements the Communicatons Middleware Interface.

SEGGER emWin Port (rm_emwin_port)

 SEGGER emWin port for RA MCUs.

Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

 Middleware for the Azure RTOS FileX File System control using Block
Media on RA MCUs.

Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

 Middleware for the Azure RTOS FileX File System control using
LevelX NOR on RA MCUs.

FreeRTOS+FAT Port (rm_freertos_plus_fat)

 Middleware for the FAT File System control on RA MCUs.

FreeRTOS Plus TCP (rm_freertos_plus_tcp)

 Middleware for using TCP on RA MCUs.

FreeRTOS Port (rm_freertos_port)

 FreeRTOS port for RA MCUs.

RTOS Context Management (rm_tz_context)

 RTOS Context Management for RA MCUs.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 279 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

FS2012 Sensor Middleware (rm_fs2012)

 Middleware to implement the FS2012 sensor interface. This module
implements the FSXXXX Middleware Interface.

Azure RTOS GUIX Port (rm_guix_port)

HS300X Sensor Middleware (rm_hs300x)

 Middleware to implement the HS300X sensor interface. This module
implements the HS300X Middleware Interface.

Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

 Middleware for using Azure RTOS LevelX on NOR SPI memory.

LittleFS Flash Port (rm_littlefs_flash)

 Middleware for the LittleFS File System control on RA MCUs.

MCUboot Port (rm_mcuboot_port)

 MCUboot Port for RA MCUs.

Motor Current (rm_motor_current)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor current Interface.

Motor Driver (rm_motor_driver)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor driver Interface.

Motor encoder vector control (rm_motor_encoder)

 Control a SPM motor on RA MCUs. This module implements the Motor
encoder vector control (rm_motor_encoder).

Motor Angle and Speed Estimation (rm_motor_estimate)

 Calculation proccess for the motor control on RA MCUs. This module
implements the Motor angle Interface.

Motor Position (rm_motor_position)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 280 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

 Calculation process for the motor control on RA MCUs. This module
implements the Motor position Interface.

Motor Angle and Speed Calculation with an Encoder
(rm_motor_sense_encoder)

 Calculation proccess for the motor control on RA MCUs. This module
implements the Motor angle Interface.

Motor Sensorless Vector Control (rm_motor_sensorless)

 Usual control of a SPM motor on RA MCUs. This module implements
the Motor Sensorless Vector Control (rm_motor_sensorless).

Motor Speed (rm_motor_speed)

 Calculation process for the motor control on RA MCUs. This module
implements the Motor speed Interface.

Azure RTOS NetX Secure Crypto Hardware Acceleration
(rm_netx_secure_crypto)

 Hardware acceleration for the Netx Crypto implementation of the
Microsoft Azure RTOS NetX Crypto API.

Azure RTOS NetX Duo Ether Driver (rm_netxduo_ether)

Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)

Crypto Middleware (rm_psa_crypto)

 Hardware acceleration for the mbedCrypto implementation of the
ARM PSA Crypto API.

Azure RTOS ThreadX Port (rm_threadx_port)

 ThreadX port for RA MCUs.

Intel TinyCrypt (rm_tinycrypt_port)

 AES128 Hardware acceleration for TinyCrypt on the RA2 family.

Capacitive Touch Middleware (rm_touch)

 This module supports the Capacitive Touch Sensing Unit (CTSU). It
implements the Touch Middleware Interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 281 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules

USBX Porting Layer (rm_usbx_port)

Virtual EEPROM (rm_vee_flash)

 Virtual EEPROM on RA MCUs. This module implements the Virtual
EEPROM Interface.

AWS Device Provisioning

 AWS Device Provisioning example software.

AWS HTTPS

 This module provides the AWS HTTPS integration documentation.

AWS MQTT

 This module provides the AWS MQTT integration documentation.

Wifi Middleware (rm_wifi_onchip_silex)

 Wifi and Socket implementation using the Silex SX-ULPGN WiFi
module on RA MCUs.

AWS Secure Sockets

 This module provides the AWS Secure Sockets implementation.

ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

 Middleware to implement the ZMOD4XXX sensor interface. This
module implements the ZMOD4XXX Middleware Interface.

4.2.1 High-Speed Analog Comparator (r_acmphs)
Modules

Functions

fsp_err_t R_ACMPHS_Open (comparator_ctrl_t *p_ctrl, comparator_cfg_t const
*const p_cfg)

fsp_err_t R_ACMPHS_OutputEnable (comparator_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 282 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

fsp_err_t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err_t R_ACMPHS_StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err_t R_ACMPHS_Close (comparator_ctrl_t *const p_ctrl)

Detailed Description

Driver for the ACMPHS peripheral on RA MCUs. This module implements the Comparator Interface.

Overview
Features

The ACMPHS HAL module supports the following features:

Callback on rising edge, falling edge or both
Configurable debounce filter
Option for comparator output on VCOUT pin
ELC event output

Configuration
Build Time Configurations for r_acmphs

The following build time configurations are defined in fsp_cfg/r_acmphs_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Analog > Comparator Driver on r_acmphs

This module can be added to the Stacks tab via New Stack > Driver > Analog > Comparator Driver
on r_acmphs.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_comparator0 Module name.

Channel Value must be a non-
negative integer

0 Select the hardware
channel.

Trigger Edge Selector Rising
Falling
Both Edge

Both Edge The trigger specifies
when a comparator
callback event should

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 283 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

occur. Unused if the
interrupt priority is
disabled or the callback
is NULL.

Noise Filter No Filter
8
16
32

No Filter Select the PCLK divisor
for the hardware digital
debounce filter. Larger
divisors provide a
longer debounce and
take longer for the
output to update.

Maximum status retries
(CMPMON)

Must be a valid non-
negative integer
between 2 and 32-bit
maximum value

1024 Maximum number of
status retries.

Output Polarity Not Inverted
Inverted

Not Inverted When enabled
comparator output is
inverted. This affects
the output read from
R_ACMPHS_StatusGet()
, the pin output level,
and the edge trigger.

Pin Output(VCOUT) Disabled
Enabled

Disabled Turn this on to include
the output from this
comparator on VCOUT.
The comparator output
on VCOUT is OR'd with
output from all other
ACMPHS and ACMPLP
comparators.

Callback Name must be a valid
C symbol

NULL Define this function in
the application. It is
called when the Trigger
event occurs.

Comparator Interrupt
Priority

MCU Specific Options Select the interrupt
priority for the
comparator interrupt.

Analog Input Voltage
Source (IVCMP)

MCU Specific Options Select the Analog input
voltage source.
Channel mentioned in
the options represents
channel in ACMPHS

Reference Voltage
Input Source (IVREF)

MCU Specific Options Select the Analog
reference voltage
source. Channel
mentioned in the
options represents
channel in ACMPHS

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 284 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

The ACMPHS peripheral is clocked from PCLKB. You can set the PCLKB frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

Comparator output can be enabled or disabled on each channel individually. The VCOUT pin is a
logical OR of all comparator outputs.

The IVCMPn pins are used as comparator inputs. The IVREFn pins are used as comparator reference
values.

Usage Notes
Noise Filter

When the noise filter is enabled, the ACMPHP0/ACMPHP1 signal is sampled three times based on the
sampling clock selected. The filter clock frequency is determined by PCLKB and the
comparator_filter_t setting.

Output Polarity

If output polarity is configured as "Inverted" then the VCOUT signal will be inverted and the
R_ACMPHS_StatusGet() will return an inverted status.

Limitations

Once the analog comparator is configured, the program must wait for the stabilization time
to elapse before using the comparator.
When the noise filter is not enabled the hardware requires software debouncing of the
output (two consecutive equal values). This is automatically managed in
R_ACMPHS_StatusGet but may result in delay or an API error in rare edge cases.
Constraints apply on the simultaneous use of ACMPHS analog input and ADC analog input.
Refer to the "Usage Notes" section in your MCU's User's Manual for the ADC unit(s) for more
details.
To allow ACMPHS0 to cancel Software Standby mode or enter Snooze, set the CSTEN bit to
1 and the CDFS bits to 00 in the CMPCTL0 register.

Examples
Basic Example

The following is a basic example of minimal use of the ACMPHS. The comparator is configured to
trigger a callback when the input rises above the internal reference voltage (VREF). A GPIO output
acts as the comparator input and is externally connected to the IVCMP input of the ACMPHS.

/* Connect this control pin to the VCMP input of the comparator. This can be any GPIO

pin

 * that is not input only. */

#define ACMPHS_EXAMPLE_CONTROL_PIN (BSP_IO_PORT_05_PIN_03)

#define ADC_PGA_BYPASS_VALUE (0x9999)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 285 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

volatile uint32_t g_comparator_events = 0U;

/* This callback is called when a comparator event occurs. */

void acmphs_example_callback (comparator_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 g_comparator_events++;

}

void acmphs_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Disable pin register write protection, if enabled */

 R_BSP_PinAccessEnable();

 /* Start with the VCMP pin low. This example assumes the comparator is configured to

trigger

 * when VCMP rises above VREF. */

 (void) R_BSP_PinWrite(ACMPHS_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_LOW);

 /* Initialize the ACMPHS module */

 err = R_ACMPHS_Open(&g_comparator_ctrl, &g_comparator_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Bypass PGA on ADC unit 0.

 * (See Table 50.2 "Input source configuration of the ACMPHS" in the RA6M3 User's

Manual (R01UH0886EJ0100)) */

 R_BSP_MODULE_START(FSP_IP_ADC, 0);

 R_ADC0->ADPGACR = ADC_PGA_BYPASS_VALUE;

 R_ADC0->ADPGADCR0 = 0;

 /* Wait for the minimum stabilization wait time before enabling output. */

 comparator_info_t info;

 R_ACMPHS_InfoGet(&g_comparator_ctrl, &info);

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

 /* Enable the comparator output */

 (void) R_ACMPHS_OutputEnable(&g_comparator_ctrl);

 /* Set the VCMP pin high. */

 (void) R_BSP_PinWrite(ACMPHS_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_HIGH);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 286 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

 while (0 == g_comparator_events)

 {

 /* Wait for interrupt. */

 }

 comparator_status_t status;

 /* Check status of comparator, Status will be COMPARATOR_STATE_OUTPUT_HIGH */

 (void) R_ACMPHS_StatusGet(&g_comparator_ctrl, &status);

}

Function Documentation

◆ R_ACMPHS_Open()

fsp_err_t R_ACMPHS_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const p_cfg
)

Configures the comparator and starts operation. Callbacks and pin output are not active until
outputEnable() is called. comparator_api_t::outputEnable() should be called after the output has
stabilized. Implements comparator_api_t::open().

Comparator inputs must be configured in the application code prior to calling this function.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An input pointer is NULL

FSP_ERR_INVALID_ARGUMENT An argument is invalid. Window mode
(COMPARATOR_MODE_WINDOW) and filter
of 1 (COMPARATOR_FILTER_1) are not
supported in this implementation.

FSP_ERR_ALREADY_OPEN The control block is already open or the
hardware lock is taken.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 287 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

◆ R_ACMPHS_OutputEnable()

fsp_err_t R_ACMPHS_OutputEnable (comparator_ctrl_t *const p_ctrl)

Enables the comparator output, which can be polled using comparator_api_t::statusGet(). Also
enables pin output and interrupts as configured during comparator_api_t::open(). Implements
comparator_api_t::outputEnable().

Return values
FSP_SUCCESS Comparator output is enabled.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_ACMPHS_InfoGet()

fsp_err_t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_ctrl, comparator_info_t *const p_info)

Provides the minimum stabilization wait time in microseconds. Implements
comparator_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_ACMPHS_StatusGet()

fsp_err_t R_ACMPHS_StatusGet (comparator_ctrl_t *const p_ctrl, comparator_status_t *const
p_status)

Provides the operating status of the comparator. Implements comparator_api_t::statusGet().

Return values
FSP_SUCCESS Operating status of the comparator is

provided in p_status.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_TIMEOUT The debounce filter is off and 2 consecutive
matching values were not read within 1024
attempts.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 288 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Speed Analog Comparator (r_acmphs)

◆ R_ACMPHS_Close()

fsp_err_t R_ACMPHS_Close (comparator_ctrl_t * p_ctrl)

Stops the comparator. Implements comparator_api_t::close().

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

4.2.2 Low-Power Analog Comparator (r_acmplp)
Modules

Functions

fsp_err_t R_ACMPLP_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t
const *const p_cfg)

fsp_err_t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_ctrl)

fsp_err_t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err_t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err_t R_ACMPLP_Close (comparator_ctrl_t *const p_ctrl)

Detailed Description

Driver for the ACMPLP peripheral on RA MCUs. This module implements the Comparator Interface.

Overview
Features

The ACMPLP HAL module supports the following features:

Normal mode or window mode
Callback on rising edge, falling edge or both
Configurable debounce filter
Option for comparator output on VCOUT pin
ELC event output

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 289 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

Configuration
Build Time Configurations for r_acmplp

The following build time configurations are defined in fsp_cfg/r_acmplp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Reference Voltage
Selection for ACMPLP1
(Standard mode only)

IVREF0
IVREF1

IVREF1 ACMPLP1 may
optionally be
configured to use
IVREF0 as a reference
input instead of
IVREF1. Note that if
IVREF0 is selected,
ACMPLP0 and ACMPLP1
must use the same
setting for IVREF.

Configurations for Driver > Analog > Comparator Driver on r_acmplp

This module can be added to the Stacks tab via New Stack > Driver > Analog > Comparator Driver
on r_acmplp.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_comparator0 Module name.

Channel Value must be a non-
negative integer

0 Select the hardware
channel.

Mode Standard
Window

Standard In standard mode,
comparator output is
high if VCMP > VREF. In
window mode,
comparator output is
high if VCMP is outside
the range of VREF0 to
VREF1.

Trigger Rising
Falling
Both Edge

Both Edge The trigger specifies
when a comparator
callback event should
occur. Unused if the
interrupt priority is
disabled or the callback
is NULL.

Filter No sampling No sampling (bypass) Select the PCLK divisor

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 290 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

(bypass)
Sampling at
PCLKB
Sampling at
PCLKB/8
Sampling at
PCLKB/32

for the hardware digital
debounce filter. Larger
divisors provide a
longer debounce and
take longer for the
output to update.

Output Polarity Not Inverted
Inverted

Not Inverted When enabled
comparator output is
inverted. This affects
the output read from
R_ACMPLP_StatusGet(),
the pin output level,
and the edge trigger.

Pin Output (VCOUT) Disabled
Enabled

Disabled Turn this on to include
the output from this
comparator on VCOUT.
The comparator output
on VCOUT is OR'd with
output from all other
ACMPHS and ACMPLP
comparators.

Vref (Standard mode
only)

Enabled
Disabled

Disabled If reference voltage
selection is enabled
then internal reference
voltage is used as
comparator input

Callback Name must be a valid
C symbol

NULL Define this function in
the application. It is
called when the Trigger
event occurs.

Comparator Interrupt
Priority

MCU Specific Options Select the interrupt
priority for the
comparator interrupt.

Analog Input Voltage
Source (IVCMP)

MCU Specific Options Select the comparator
input source. Only
options for the
configured channel are
valid.

Reference Voltage
Input Source (IVREF)

MCU Specific Options Select the comparator
reference voltage
source.

If channel 1 is
seleected and the
'Reference Voltage
Selection (ACMPLP1)'
config option is set to
IVREF0, select one of
the Channel 0 options.
In all other cases, only

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 291 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

options for the
configured channel are
valid.

Clock Configuration

The ACMPLP peripheral is clocked from PCLKB. You can set the PCLKB frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

Comparator output can be enabled or disabled on each channel individually. The VCOUT pin is a
logical OR of all comparator outputs.

The CMPINn pins are used as comparator inputs. The CMPREFn pins are used as comparator
reference values.

Usage Notes

Figure 140: ACMPLP Standard Mode Operation

Noise Filter

When the noise filter is enabled, the ACMPLP0/ACMPLP1 signal is sampled three times based on the
sampling clock selected. The filter clock frequency is determined by PCLKB and the
comparator_filter_t setting.

Output Polarity

If output polarity is configured as "Inverted" then the VCOUT signal will be inverted and the
R_ACMPLP_StatusGet() will return an inverted status.

Window Mode

In window mode, the comparator indicates if the analog input voltage falls within the window (low
and high reference voltage) or is outside the window.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 292 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

Figure 141: ACMPLP Window Mode Operation

Limitations

Once the analog comparator is configured, the program must wait for the stabilization time
to elapse before using the comparator.
Low speed is not supported by the ACMPLP driver.

Examples
Basic Example

The following is a basic example of minimal use of the ACMPLP. The comparator is configured to
trigger a callback when the input rises above the internal reference voltage (VREF). A GPIO output
acts as the comparator input and is externally connected to the CMPIN input of the ACMPLP.

/* Connect this control pin to the VCMP input of the comparator. This can be any GPIO

pin

 * that is not input only. */

#define ACMPLP_EXAMPLE_CONTROL_PIN (BSP_IO_PORT_04_PIN_08)

volatile uint32_t g_comparator_events = 0U;

/* This callback is called when a comparator event occurs. */

void acmplp_example_callback (comparator_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 g_comparator_events++;

}

void acmplp_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Disable pin register write protection, if enabled */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 293 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

 R_BSP_PinAccessEnable();

 /* Start with the VCMP pin low. This example assumes the comparator is configured to

trigger

 * when VCMP rises above VREF. */

 (void) R_BSP_PinWrite(ACMPLP_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_LOW);

 /* Initialize the ACMPLP module */

 err = R_ACMPLP_Open(&g_comparator_ctrl, &g_comparator_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for the minimum stabilization wait time before enabling output. */

 comparator_info_t info;

 R_ACMPLP_InfoGet(&g_comparator_ctrl, &info);

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

 /* Enable the comparator output */

 (void) R_ACMPLP_OutputEnable(&g_comparator_ctrl);

 /* Set VCMP low. */

 (void) R_BSP_PinWrite(ACMPLP_EXAMPLE_CONTROL_PIN, BSP_IO_LEVEL_HIGH);

 while (0 == g_comparator_events)

 {

 /* Wait for interrupt. */

 }

 comparator_status_t status;

 /* Check status of comparator, Status will be COMPARATOR_STATE_OUTPUT_HIGH */

 (void) R_ACMPLP_StatusGet(&g_comparator_ctrl, &status);

}

Enumerations

enum acmplp_input_t

enum acmplp_reference_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 294 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

◆ acmplp_input_t

enum acmplp_input_t

Enumerator

ACMPLP_INPUT_AMPO Not available on all MCUs.

ACMPLP_INPUT_CMPIN_1 Not available on all MCUs.

◆ acmplp_reference_t

enum acmplp_reference_t

Enumerator

ACMPLP_REFERENCE_CMPREF_1 Not available on all MCUs.

Function Documentation

◆ R_ACMPLP_Open()

fsp_err_t R_ACMPLP_Open (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const p_cfg)

Configures the comparator and starts operation. Callbacks and pin output are not active until
outputEnable() is called. comparator_api_t::outputEnable() should be called after the output has
stabilized. Implements comparator_api_t::open().

Comparator inputs must be configured in the application code prior to calling this function.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION An input pointer is NULL

FSP_ERR_INVALID_ARGUMENT An argument is invalid. Window mode
(COMPARATOR_MODE_WINDOW) and filter
of 1 (COMPARATOR_FILTER_1) are not
supported in this implementation.
p_cfg->p_callback is not NULL, but ISR is not
enabled. ISR must be enabled to use
callback function.

FSP_ERR_ALREADY_OPEN The control block is already open or the
hardware lock is taken.

FSP_ERR_IN_USE The channel is already in use.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 295 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

◆ R_ACMPLP_OutputEnable()

fsp_err_t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_ctrl)

Enables the comparator output, which can be polled using comparator_api_t::statusGet(). Also
enables pin output and interrupts as configured during comparator_api_t::open(). Implements
comparator_api_t::outputEnable().

Return values
FSP_SUCCESS Comparator output is enabled.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_ACMPLP_InfoGet()

fsp_err_t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_ctrl, comparator_info_t *const p_info)

Provides the minimum stabilization wait time in microseconds. Implements
comparator_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_ACMPLP_StatusGet()

fsp_err_t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_ctrl, comparator_status_t *const
p_status)

Provides the operating status of the comparator. Implements comparator_api_t::statusGet().

Return values
FSP_SUCCESS Operating status of the comparator is

provided in p_status.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 296 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Analog Comparator (r_acmplp)

◆ R_ACMPLP_Close()

fsp_err_t R_ACMPLP_Close (comparator_ctrl_t * p_ctrl)

Stops the comparator. Implements comparator_api_t::close().

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

4.2.3 Analog to Digital Converter (r_adc)
Modules

Functions

fsp_err_t R_ADC_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t R_ADC_ScanCfg (adc_ctrl_t *p_ctrl, void const *const p_channel_cfg)

fsp_err_t R_ADC_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

fsp_err_t R_ADC_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_ADC_Read (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id, uint16_t
*const p_data)

fsp_err_t R_ADC_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t R_ADC_SampleStateCountSet (adc_ctrl_t *p_ctrl, adc_sample_state_t
*p_sample)

fsp_err_t R_ADC_Close (adc_ctrl_t *p_ctrl)

fsp_err_t R_ADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t offset)

fsp_err_t R_ADC_Calibrate (adc_ctrl_t *const p_ctrl, void *const p_extend)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 297 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

fsp_err_t R_ADC_CallbackSet (adc_ctrl_t *const p_api_ctrl,
void(*p_callback)(adc_callback_args_t *), void const *const
p_context, adc_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs. This module implements the ADC
Interface.

Overview
Features

The ADC module supports the following features:

12, 14, or 16 bit maximum resolution depending on the MCU
Configure scans to include:

Multiple analog channels
Temperature sensor channel
Voltage sensor channel

Configurable scan start trigger:
Software scan triggers
Hardware scan triggers (timer expiration, for example)
External scan triggers from the ADTRGn port pins

Configurable scan mode:
Single scan mode, where each trigger starts a single scan
Continuous scan mode, where all channels are scanned continuously
Group scan mode, where channels are grouped into group A and group B. The
groups can be assigned different start triggers, and group A can be given priority
over group B. When group A has priority over group B, a group A trigger suspends
an ongoing group B scan.

Supports adding and averaging converted samples
Optional callback when scan completes
Supports reading converted data
Sample and hold support
Double-trigger support

Configuration

Build Time Configurations for r_adc

The following build time configurations are defined in fsp_cfg/r_adc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Analog > ADC Driver on r_adc

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 298 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

This module can be added to the Stacks tab via New Stack > Driver > Analog > ADC Driver on r_adc.
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_adc0 Module name

General > Unit Unit must be a non-
negative integer

0 Specifies the ADC Unit
to be used.

General > Resolution MCU Specific Options Specifies the
conversion resolution
for this unit.

General > Alignment MCU Specific Options Specifies the
conversion result
alignment.

General > Clear after
read

Off
On

On Specifies if the result
register will be
automatically cleared
after the conversion
result is read.

General > Mode Single Scan
Continuous
Scan
Group Scan

Single Scan Specifies the mode that
this ADC unit is used in.

General > Double-
trigger

Disabled
Enabled
Enabled
(extended
mode)

Disabled When enabled, the
scan-end interrupt for
Group A is only thrown
on every second scan.
Extended double-
trigger mode (single-
scan only) triggers on
both ELC events,
allowing (for example)
a scan on two different
timer compare match
values.

In group mode Group B
is unaffected.

Input > Sample and
Hold > Sample and
Hold Channels
(Available only on
selected MCUs)

Channel 0
Channel 1
Channel 2

Specifies if this channel
is included in the
Sample and Hold Mask.

Input > Sample and
Hold > Sample Hold
States (Applies only to

Must be a valid non-
negative integer with
configurable value 4 to

24 Specifies the updated
sample-and-hold count
for the channel

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 299 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

channels 0, 1, 2) 255 dedicated sample-and-
hold circuit

Input > Channel Scan
Mask (channel
availability varies by
MCU)

Refer to the RA
Configuration tool for
available options.

In Normal mode of
operation, this bitmask
field specifies the
channels that are
enabled in that ADC
unit. In group mode,
this field specifies
which channels belong
to group A.

Input > Group B Scan
Mask (channel
availability varies by
MCU)

Refer to the RA
Configuration tool for
available options.

In group mode, this
field specifies which
channels belong to
group B.

Input > Add/Average
Count

MCU Specific Options Specifies if addition or
averaging needs to be
done for any of the
channels in this unit.

Input > Reference
Voltage control

MCU Specific Options Specify
VREFH/VREFADC
output voltage control.

Input >
Addition/Averaging
Mask (channel
availability varies by
MCU and unit)

Refer to the RA
Configuration tool for
available options.

Select channels to
include in the
Addition/Averaging
Mask

Interrupts >
Normal/Group A
Trigger

MCU Specific Options Specifies the trigger
type to be used for this
unit.

Interrupts > Group B
Trigger

MCU Specific Options Specifies the trigger for
Group B scanning in
group scanning mode.
This event is also used
to trigger Group A in
extended double-
trigger mode.

Interrupts > Group
Priority (Valid only in
Group Scan Mode)

Group A cannot
interrupt Group
B
Group A can
interrupt Group
B; Group B scan
restarts at next
trigger
Group A can
interrupt Group
B; Group B scan
restarts
immediately

Group A cannot
interrupt Group B

Determines whether an
ongoing group B scan
can be interrupted by a
group A trigger,
whether it should abort
on a group A trigger, or
if it should pause to
allow group A scan and
restart immediately
after group A scan is
complete.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 300 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

Group A can
interrupt Group
B; Group B scan
restarts
immediately
and scans
continuously

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the ADC scan
completes.

Interrupts > Scan End
Interrupt Priority

MCU Specific Options Select scan end
interrupt priority.

Interrupts > Scan End
Group B Interrupt
Priority

MCU Specific Options Select group B scan
end interrupt priority.

Extra > ADC Ring
Buffer

MCU Specific Options ADC Ring Buffer to be
used only with DMAC
transfers, keep this
property disabled for
normal ADC operations.
When enabled, ADC
converted data is
stored in ADBUF
registers in place of
ADDR registers. The
read API will not read
from this location for
normal ADC operations.

Clock Configuration

The ADC clock is PCLKC if the MCU has PCLKC, or PCLKD otherwise.

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKD

RA2E1 PCLKD

RA2L1 PCLKD

RA4E1 PCLKC

RA4M1 PCLKC

RA4M2 PCLKC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 301 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

RA4M3 PCLKC

RA4W1 PCLKC

RA6E1 PCLKC

RA6M1 PCLKC

RA6M2 PCLKC

RA6M3 PCLKC

RA6M4 PCLKC

RA6M5 PCLKC

RA6T1 PCLKC

The ADC clock must be at least 1 MHz when the ADC is used. Many MCUs also have PCLK ratio
restrictions when the ADC is used. For details on PCLK ratio restrictions, reference the footnotes in
the second table of the Clock Generation Circuit chapter of the MCU User's Manual (for example,
Table 9.2 "Specifications of the clock generation circuit for the internal clocks" in the RA6M3 manual
R01UH0886EJ0100).

Pin Configuration

The ANxxx pins are analog input channels that can be used with the ADC.

ADTRG0 and ADTRG1 can be used to start scans with an external trigger for unit 0 and 1
respectively. When external triggers are used, ADC scans begin on the falling edge of the ADTRG
pin.

Usage Notes
Sample Hold

Enabling the sample and hold functionality reduces the maximum scan frequency because the
sample and hold time is added to each scan. Refer to the hardware manual for details on the sample
and hold time.

ADC Operational Modes

The driver supports three operation modes: single-scan, continuous-scan, and group-scan modes. In
each mode, analog channels are converted in ascending order of channel number, followed by scans
of the temperature sensor and voltage sensor if they are included in the mask of channels to scan.

Single-scan Mode

In single scan mode, one or more specified channels are scanned once per trigger.

Continuous-scan Mode

In continuous scan mode, a single trigger is required to start the scan. Scans continue until
R_ADC_ScanStop() is called.

Group-scan Mode

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 302 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

Group-scan mode allows the application to allocate channels to one of two groups (A and B).
Conversion begins when the specified ELC start trigger for that group is received.

With the priority configuration parameter, you can optionally give group A priority over group B. If
group A has priority over group B, a group B scan is interrupted when a group A scan trigger occurs.
The following options exist for group B when group A has priority:

To restart the interrupted group B scan after the group A scan completes.
To wait for another group B trigger and forget the interrupted scan.
To continuously scan group B and suspend scanning group B only when a group A trigger is
received.
Note

If this option is selected, group B scanning begins immediately after R_ADC_ScanCfg(). Group A scan
triggers must be enabled by R_ADC_ScanStart() and can be disabled by R_ADC_ScanStop(). Group B
scans can only be disabled by reconfiguring the group A priority to a different mode.

Double-triggering

When double-triggering is enabled a single channel is selected to be scanned twice before an
interrupt is thrown. The first scan result when using double-triggering is always saved to the selected
channel's data register. The second result is saved to the data duplexing register
(ADC_CHANNEL_DUPLEX).

Double-triggering uses Group A; only one channel can be selected when enabled. No other scanning
is possible on Group A while double-trigger mode is selected. In addition, any special ADC channels
(such as temperature sensors or voltage references) are not valid double-trigger channels.

When extended double-triggering is enabled both ADC input events are routed to Group A. The
interrupt is still thrown after every two scans regardless of the triggering event(s). While the first and
second scan are saved to the selected ADC data register and the ADC duplexing register as before,
scans associated with event A and B are additionally copied into duplexing register A and B,
respectively (ADC_CHANNEL_DUPLEX_A and ADC_CHANNEL_DUPLEX_B).

When Interrupts Are Not Enabled

If interrupts are not enabled, the R_ADC_StatusGet API can be used to poll the ADC to determine
when the scan has completed. The read API function is used to access the converted ADC result. This
applies to both normal scans and calibration scans for MCUs that support calibration.

Sample-State Count Setting

The application program can modify the setting of the sample-state count for analog channels by
calling the R_ADC_SampleStateCountSet() API function. The application program only needs to
modify the sample-state count settings from their default values to increase the sampling time. This
can be either because the impedance of the input signal is too high to secure sufficient sampling
time under the default setting or if the ADCLK is too slow. To modify the sample-state count for a
given channel, set the channel number and the number of states when calling the
R_ADC_SampleStateCountSet() API function. Valid sample state counts are 7-255.

Note
Although the hardware supports a minimum number of sample states of 5, some MCUs require 7 states, so the
minimum is set to 7. At the lowest supported ADC conversion clock rate (1 MHz), these extra states will lead to, at
worst case, a 2 microsecond increase in conversion time. At 60 MHz the extra states will add 33.4 ns to the
conversion time.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 303 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

If the sample state count needs to be changed for multiple channels, the application program must
call the R_ADC_SampleStateCountSet() API function repeatedly, with appropriately modified
arguments for each channel.

If the ADCLK frequency changes, the sample states may need to be updated.

Sample States for Temperature Sensor and Internal Voltage Reference

Sample states for the temperature sensor and the internal reference voltage are calculated during
R_ADC_ScanCfg() based on the ADCLK frequency at the time. The sample states for the temperature
sensor and internal voltage reference cannot be updated with R_ADC_SampleStateCountSet(). If the
ADCLK frequency changes, call R_ADC_ScanCfg() before using the temperature sensor or internal
reference voltage again to ensure the sampling time for the temperature sensor and internal voltage
reference is optimal.

Selecting Reference Voltage

The ADC16 can select VREFH0 or VREFADC as the high-potential reference voltage on selected
MCU's. When using VREFADC stabilization time of 1500us is required after call for R_ADC_Open().

Using the Temperature Sensor with the ADC

The ADC HAL module supports reading the data from the on-chip temperature sensor. The value
returned from the sensor can be converted into degrees Celsius or Fahrenheit in the application
program using the following formula, T = (Vs - V1)/slope + T1, where:

T: Measured temperature (degrees C)
Vs: Voltage output by the temperature sensor at the time of temperature measurement
(Volts)
T1: Temperature experimentally measured at one point (degrees C)
V1: Voltage output by the temperature sensor at the time of measurement of T1 (Volts)
T2: Temperature at the experimental measurement of another point (degrees C)
V2: Voltage output by the temperature sensor at the time of measurement of T2 (Volts)
Slope: Temperature gradient of the temperature sensor (V/degrees C); slope = (V2 - V1)/
(T2 - T1)

Note
The slope value can be obtained from the hardware manual for each device in the Electrical Characteristics
Chapter - TSN Characteristics Table, Temperature slope entry.

Reading CTSU TSCAP with ADC

Some MCUs support reading CTSU TSCAP with ADC. CTSU TSCAP is connected to ADC0 channel 16.
Use existing enums for channel 16 to set sample states for the sensor connected to CTSU TSCAP,
enable scanning of CTSU TSCAP, and read results for CTSU TSCAP.

Usage Notes for ADC16

Calibration

Calibration is required to use the ADC16 peripheral. When using this driver on an MCU that has
ADC16, call R_ADC_Calibrate() after open, and prior to any other function.

Range of ADC16 Results

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 304 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

The range of the ADC16 is from 0 (lowest) to 0x7FFF (highest) when used in single-ended mode. This
driver only supports single ended mode.

Examples
Basic Example

This is a basic example of minimal use of the ADC in an application.

/* A channel configuration is generated by the RA Configuration editor based on the

options selected. If additional

 * configurations are desired additional adc_channel_cfg_t elements can be defined

and passed to R_ADC_ScanCfg. */

const adc_channel_cfg_t g_adc0_channel_cfg =

{

 .scan_mask = ADC_MASK_CHANNEL_0 | ADC_MASK_CHANNEL_1,

 .scan_mask_group_b = 0,

 .priority_group_a = (adc_group_a_t) 0,

 .add_mask = 0,

 .sample_hold_mask = 0,

 .sample_hold_states = 0,

};

void adc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable channels. */

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* In software trigger mode, start a scan by calling R_ADC_ScanStart(). In other

modes, enable external

 * triggers by calling R_ADC_ScanStart(). */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 305 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 (void) R_ADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* Read converted data. */

 uint16_t channel1_conversion_result;

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_1, &channel1_conversion_result);

 assert(FSP_SUCCESS == err);

}

Temperature Sensor Example

This example shows how to calculate the MCU temperature using the ADC and the temperature
sensor.

#define ADC_EXAMPLE_CALIBRATION_DATA_RA6M1 (0x7D5)

#define ADC_EXAMPLE_VCC_MICROVOLT (3300000)

#define ADC_EXAMPLE_TEMPERATURE_RESOLUTION (12U)

#define ADC_EXAMPLE_REFERENCE_CALIBRATION_TEMPERATURE (127)

void adc_temperature_example (void)

{

 /* The following example calculates the temperature on an RA6M1 device using the

data provided in the section

 * 44.3.1 "Preparation for Using the Temperature Sensor" of the RA6M1 manual

R01UH0884EJ0100. */

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable temperature sensor. */

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 306 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

 /* In software trigger mode, start a scan by calling R_ADC_ScanStart(). In other

modes, enable external

 * triggers by calling R_ADC_ScanStart(). */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 (void) R_ADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* Read converted data. */

 uint16_t temperature_conversion_result;

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_TEMPERATURE,

&temperature_conversion_result);

 assert(FSP_SUCCESS == err);

 /* If the MCU does not provide calibration data, use the value in the hardware

manual or determine it

 * experimentally. */

 /* Get Calibration data from the MCU if available. */

 int32_t reference_calibration_data;

 adc_info_t adc_info;

 (void) R_ADC_InfoGet(&g_adc0_ctrl, &adc_info);

 reference_calibration_data = (int32_t) adc_info.calibration_data;

 /* NOTE: The slope of the temperature sensor varies from sensor to sensor. Renesas

recommends calculating

 * the slope of the temperature sensor experimentally.

 *

 * This example uses the typical slope provided in Table 52.38 "TSN characteristics"

in the RA6M1 manual

 * R01UM0011EU0050. */

 int32_t slope_uv_per_c = BSP_FEATURE_ADC_TSN_SLOPE;

 /* Formula for calculating temperature copied from section 44.3.1 "Preparation for

Using the Temperature Sensor"

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 307 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

 * of the RA6M1 manual R01UH0884EJ0100:

 *

 * In this MCU, the TSCDR register stores the temperature value (CAL127) of the

temperature sensor measured

 * under the condition Ta = Tj = 127 C and AVCC0 = 3.3 V. By using this value as the

sample measurement result

 * at the first point, preparation before using the temperature sensor can be

omitted.

 *

 * If V1 is calculated from CAL127,

 * V1 = 3.3 * CAL127 / 4096 [V]

 *

 * Using this, the measured temperature can be calculated according to the following

formula.

 *

 * T = (Vs - V1) / Slope + 127 [C]

 * T: Measured temperature (C)

 * Vs: Voltage output by the temperature sensor when the temperature is measured (V)

 * V1: Voltage output by the temperature sensor when Ta = Tj = 127 C and AVCC0 = 3.3

V (V)

 * Slope: Temperature slope given in Table 52.38 / 1000 (V/C)

 */

 int32_t v1_uv = (ADC_EXAMPLE_VCC_MICROVOLT >> ADC_EXAMPLE_TEMPERATURE_RESOLUTION)

*

 reference_calibration_data;

 int32_t vs_uv = (ADC_EXAMPLE_VCC_MICROVOLT >> ADC_EXAMPLE_TEMPERATURE_RESOLUTION)

*

 temperature_conversion_result;

 int32_t temperature_c = (vs_uv - v1_uv) / slope_uv_per_c +

ADC_EXAMPLE_REFERENCE_CALIBRATION_TEMPERATURE;

 /* Expect room temperature, break if temperature is outside the range of 20 C to 25

C. */

 if ((temperature_c < 20) || (temperature_c > 25))

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 308 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

 __BKPT(0);

 }

}

Double-Trigger Example

This example demonstrates reading data from a double-trigger scan. A flag is used to wait for a
callback event. Two scans must occur before the callback is called. These results are read via
R_ADC_Read using the selected channel enum value as well as ADC_CHANNEL_DUPLEX.

volatile bool scan_complete_flag = false;

void adc_callback (adc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 scan_complete_flag = true;

}

void adc_double_trigger_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the module. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable double-trigger channel. */

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* Enable scan triggering from ELC events. */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. Two scans must be triggered before a callback

occurs. */

 scan_complete_flag = false;

 while (!scan_complete_flag)

 {

 /* Wait for callback to set flag. */

 }

 /* Read converted data from both scans. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 309 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

 uint16_t channel1_conversion_result_0;

 uint16_t channel1_conversion_result_1;

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_1, &channel1_conversion_result_0);

 assert(FSP_SUCCESS == err);

 err = R_ADC_Read(&g_adc0_ctrl, ADC_CHANNEL_DUPLEX,

&channel1_conversion_result_1);

 assert(FSP_SUCCESS == err);

}

ADC-DMAC Repeat-Block Transfer Example

This example demonstrates writing multiple data from DAC peripheral to ADC channels and storing
the data in memory through DMAC using Repeat-Block Transfer mode. It creates single block to
multiple ring buffer type of transfer topology. Ping-Pong mechanism is used to read the data from
memory in between the transfers. This example is valid only for MCUs that have ADBUF.

 #define ADC_DMAC_EXAMPLE_DATA_LOW (0U)

 #define ADC_DMAC_EXAMPLE_DATA_HIGH (0x000FU)

 #define ADC_DMAC_EXAMPLE_DELAY_1000_MS (1000U)

 #define ADC_DMAC_EXAMPLE_NUM_PING_PONG_BUFFERS (2)

static uint16_t g_adc_dmac_example_buffer[ADC_DMAC_EXAMPLE_NUM_PING_PONG_BUFFERS][

 ADC_DMAC_EXAMPLE_ADC_CHANNELS_PER_BLOCK][ADC_DMAC_EXAMPLE_SAMPLES_PER_CHANNEL];

// Destination buffer for DMAC transfers

static volatile uint16_t g_adc_dmac_example_ping_pong_index = 0U;

static volatile void * gp_read_data;

/* DMAC callback */

void adc_dmac_callback (dmac_callback_args_t * p_args)

{

 (void) p_args;

 /* Store the pointer to the last buffer that was written

 * An array of data for the first enabled channel is at

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0],

 * an array of data for the next channel is at

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][1][0], etc.

 */

 gp_read_data =

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 310 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0];

 /* Select the other ping-pong buffer which is free for writing */

 g_adc_dmac_example_ping_pong_index = !g_adc_dmac_example_ping_pong_index;

 /* Reset the destination pointer and DMAC peripheral */

 R_DMAC_Reset(&g_transfer0_ctrl,

 NULL,

 (void *)

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0],

 ADC_DMAC_EXAMPLE_SAMPLES_PER_CHANNEL);

 FSP_PARAMETER_NOT_USED(gp_read_data);

}

void adc_dmac_repeat_block_transfer_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open ADC Module and configure the channels */

 /* Enable the ADBUF property from configurations */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

 assert(FSP_SUCCESS == err);

 /* Open DMAC channel for repeat-block transfer with following configurations

 * (1) Destination address as

&g_adc_dmac_example_buffer[g_adc_dmac_example_ping_pong_index][0][0]

 * (2) Enable end of transfer interrupt

 * (3) Configure source address mode as incremented and destination address mode as

offset addition,

 * fixed to address of ADBUF register by configurator with ADC-DMAC module

 * (4) Configure source buffer size as total size of source buffer - Refer RA6M4

Hardware Manual R01UH0890EJ0110,

 * section 16.2.15 for source buffer size limitations

 * (5) Configure transfer mode as Repeat-Block mode

 * (6) Refer RA6M4 Hardware Manual R01UH0890EJ0110,

 * section 16.2.16 for total number of blocks which decides destination buffer size

 * (7) Number of blocks is determined by the samples per channel property for ADC-

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 311 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

DMAC module

 * (8) Size of block is determined using the enabled ADC channels in the

configurator when using ADC-DMAC-module

 * (9) Configure DMAC activation source as A/D scan end interrupt

 */

 err = R_DMAC_Open(&g_transfer0_ctrl, &g_transfer0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_DMAC_Enable(&g_transfer0_ctrl);

 assert(FSP_SUCCESS == err);

 uint16_t count = ADC_DMAC_EXAMPLE_DATA_LOW;

 adc_status_t adc_status;

 /* Trigger the ADC scan for "count" times, this can be replaced by triggering the

ADC using a timer */

 while (count <= (uint16_t) ADC_DMAC_EXAMPLE_DATA_HIGH)

 {

 /* Scan the data with ADC channels*/

 err = R_ADC_ScanStart(&g_adc0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Wait for conversion to complete */

 uint16_t timeout = UINT16_MAX;

 adc_status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while ((ADC_STATE_SCAN_IN_PROGRESS == adc_status.state) && (timeout > 0U))

 {

 timeout--;

 R_ADC_StatusGet(&g_adc0_ctrl, &adc_status);

 }

 R_BSP_SoftwareDelay(ADC_DMAC_EXAMPLE_DELAY_1000_MS, BSP_DELAY_UNITS_MICROSECONDS);

 count++;

 }

}

Data Structures

struct adc_sample_state_t

struct adc_extended_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 312 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

struct adc_channel_cfg_t

struct adc_instance_ctrl_t

Enumerations

enum adc_mask_t

enum adc_add_t

enum adc_clear_t

enum adc_vref_control_t

enum adc_sample_state_reg_t

enum adc_group_a_t

enum adc_double_trigger_t

Data Structure Documentation

◆ adc_sample_state_t

struct adc_sample_state_t

ADC sample state configuration

Data Fields

adc_sample_state_reg_t reg_id Sample state register ID.

uint8_t num_states Number of sampling states for
conversion. Ch16-20/21 use the
same value.

◆ adc_extended_cfg_t

struct adc_extended_cfg_t

Extended configuration structure for ADC.

Data Fields

adc_add_t add_average_count Add or average samples.

adc_clear_t clearing Clear after read.

adc_trigger_t trigger_group_b Group B trigger source; valid
only for group mode.

adc_double_trigger_t double_trigger_mode Double-trigger mode setting.

adc_vref_control_t adc_vref_control VREFADC output voltage
control.

uint8_t enable_adbuf Enable ADC Ring Buffer, Valid

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 313 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

only to use along with DMAC
transfer.

◆ adc_channel_cfg_t

struct adc_channel_cfg_t

ADC channel(s) configuration

Data Fields

uint32_t scan_mask Channels/bits: bit 0 is ch0; bit
15 is ch15.

uint32_t scan_mask_group_b Valid for group modes.

uint32_t add_mask Valid if add enabled in Open().

adc_group_a_t priority_group_a Valid for group modes.

uint8_t sample_hold_mask Channels/bits 0-2.

uint8_t sample_hold_states Number of states to be used for
sample and hold. Affects
channels 0-2.

◆ adc_instance_ctrl_t

struct adc_instance_ctrl_t

ADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 314 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ adc_mask_t

enum adc_mask_t

For ADC Scan configuration adc_channel_cfg_t::scan_mask, adc_channel_cfg_t::scan_mask_group_b
, adc_channel_cfg_t::add_mask and adc_channel_cfg_t::sample_hold_mask. Use bitwise OR to
combine these masks for desired channels and sensors.

Enumerator

ADC_MASK_OFF No channels selected.

ADC_MASK_CHANNEL_0 Channel 0 mask.

ADC_MASK_CHANNEL_1 Channel 1 mask.

ADC_MASK_CHANNEL_2 Channel 2 mask.

ADC_MASK_CHANNEL_3 Channel 3 mask.

ADC_MASK_CHANNEL_4 Channel 4 mask.

ADC_MASK_CHANNEL_5 Channel 5 mask.

ADC_MASK_CHANNEL_6 Channel 6 mask.

ADC_MASK_CHANNEL_7 Channel 7 mask.

ADC_MASK_CHANNEL_8 Channel 8 mask.

ADC_MASK_CHANNEL_9 Channel 9 mask.

ADC_MASK_CHANNEL_10 Channel 10 mask.

ADC_MASK_CHANNEL_11 Channel 11 mask.

ADC_MASK_CHANNEL_12 Channel 12 mask.

ADC_MASK_CHANNEL_13 Channel 13 mask.

ADC_MASK_CHANNEL_14 Channel 14 mask.

ADC_MASK_CHANNEL_15 Channel 15 mask.

ADC_MASK_CHANNEL_16 Channel 16 mask.

ADC_MASK_CHANNEL_17 Channel 17 mask.

ADC_MASK_CHANNEL_18 Channel 18 mask.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 315 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

ADC_MASK_CHANNEL_19 Channel 19 mask.

ADC_MASK_CHANNEL_20 Channel 20 mask.

ADC_MASK_CHANNEL_21 Channel 21 mask.

ADC_MASK_CHANNEL_22 Channel 22 mask.

ADC_MASK_CHANNEL_23 Channel 23 mask.

ADC_MASK_CHANNEL_24 Channel 24 mask.

ADC_MASK_CHANNEL_25 Channel 25 mask.

ADC_MASK_CHANNEL_26 Channel 26 mask.

ADC_MASK_CHANNEL_27 Channel 27 mask.

ADC_MASK_TEMPERATURE Temperature sensor channel mask.

ADC_MASK_VOLT Voltage reference channel mask.

ADC_MASK_SENSORS All sensor channel mask.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 316 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ adc_add_t

enum adc_add_t

ADC data sample addition and averaging options

Enumerator

ADC_ADD_OFF Addition turned off for channels/sensors.

ADC_ADD_TWO Add two samples.

ADC_ADD_THREE Add three samples.

ADC_ADD_FOUR Add four samples.

ADC_ADD_SIXTEEN Add sixteen samples.

ADC_ADD_AVERAGE_TWO Average two samples.

ADC_ADD_AVERAGE_FOUR Average four samples.

ADC_ADD_AVERAGE_EIGHT Average eight samples.

ADC_ADD_AVERAGE_SIXTEEN Add sixteen samples.

◆ adc_clear_t

enum adc_clear_t

ADC clear after read definitions

Enumerator

ADC_CLEAR_AFTER_READ_OFF Clear after read off.

ADC_CLEAR_AFTER_READ_ON Clear after read on.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 317 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ adc_vref_control_t

enum adc_vref_control_t

Enumerator

ADC_VREF_CONTROL_VREFH VREFAMPCNT reset value. VREFADC Output
voltage is Hi-Z.

ADC_VREF_CONTROL_1_5V_OUTPUT BGR turn ON. VREFADC Output voltage is 1.5
V.

ADC_VREF_CONTROL_2_0V_OUTPUT BGR turn ON. VREFADC Output voltage is 2.0
V.

ADC_VREF_CONTROL_2_5V_OUTPUT BGR turn ON. VREFADC Output voltage is 2.5
V.

ADC_VREF_CONTROL_AVCC0_AVSS0 High potential is AVCC0, low potential is
AVSS0.

ADC_VREF_CONTROL_VREFH0_AVSS0 High potential is VREFH0, low potential is
AVSS0.

ADC_VREF_CONTROL_IVREF_AVSS0 High potential is internal reference voltage, low
potential is AVSS0. When the high potential is
set to the internal reference voltage, wait 5 us
after R_ADC_Open() to start an ADC
measurement.

ADC_VREF_CONTROL_AVCC0_VREFL0 High potential is AVCC0, low potential is
VREFL0.

ADC_VREF_CONTROL_VREFH0_VREFL0 High potential is VREFH0, low potential is
VREFL0.

ADC_VREF_CONTROL_IVREF_VREFL0 High potential is internal reference voltage, low
potential is VREFL0. When the high potential is
set to the internal reference voltage, wait 5 us
after R_ADC_Open() to start an ADC
measurement.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 318 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ adc_sample_state_reg_t

enum adc_sample_state_reg_t

ADC sample state registers

Enumerator

ADC_SAMPLE_STATE_CHANNEL_0 Sample state register channel 0.

ADC_SAMPLE_STATE_CHANNEL_1 Sample state register channel 1.

ADC_SAMPLE_STATE_CHANNEL_2 Sample state register channel 2.

ADC_SAMPLE_STATE_CHANNEL_3 Sample state register channel 3.

ADC_SAMPLE_STATE_CHANNEL_4 Sample state register channel 4.

ADC_SAMPLE_STATE_CHANNEL_5 Sample state register channel 5.

ADC_SAMPLE_STATE_CHANNEL_6 Sample state register channel 6.

ADC_SAMPLE_STATE_CHANNEL_7 Sample state register channel 7.

ADC_SAMPLE_STATE_CHANNEL_8 Sample state register channel 8.

ADC_SAMPLE_STATE_CHANNEL_9 Sample state register channel 9.

ADC_SAMPLE_STATE_CHANNEL_10 Sample state register channel 10.

ADC_SAMPLE_STATE_CHANNEL_11 Sample state register channel 11.

ADC_SAMPLE_STATE_CHANNEL_12 Sample state register channel 12.

ADC_SAMPLE_STATE_CHANNEL_13 Sample state register channel 13.

ADC_SAMPLE_STATE_CHANNEL_14 Sample state register channel 14.

ADC_SAMPLE_STATE_CHANNEL_15 Sample state register channel 15.

ADC_SAMPLE_STATE_CHANNEL_16_TO_31 Sample state register channel 16 to 31.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 319 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ adc_group_a_t

enum adc_group_a_t

ADC action for group A interrupts group B scan. This enumeration is used to specify the priority
between Group A and B in group mode.

Enumerator

ADC_GROUP_A_PRIORITY_OFF Group A ignored and does not interrupt
ongoing group B scan.

ADC_GROUP_A_GROUP_B_WAIT_FOR_TRIGGER Group A interrupts Group B(single scan) which
restarts at next Group B trigger.

ADC_GROUP_A_GROUP_B_RESTART_SCAN Group A interrupts Group B(single scan) which
restarts immediately after Group A scan is
complete.

ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN Group A interrupts Group B(continuous scan)
which continues scanning without a new Group
B trigger.

◆ adc_double_trigger_t

enum adc_double_trigger_t

ADC double-trigger mode definitions

Enumerator

ADC_DOUBLE_TRIGGER_DISABLED Double-triggering disabled.

ADC_DOUBLE_TRIGGER_ENABLED Double-triggering enabled.

ADC_DOUBLE_TRIGGER_ENABLED_EXTENDED Double-triggering enabled on both ADC ELC
events.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 320 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ R_ADC_Open()

fsp_err_t R_ADC_Open (adc_ctrl_t * p_ctrl, adc_cfg_t const *const p_cfg)

Sets the operational mode, trigger sources, interrupt priority, and configurations for the peripheral
as a whole. If interrupt is enabled, the function registers a callback function pointer for notifying the
user whenever a scan has completed.

Return values
FSP_SUCCESS Module is ready for use.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

FSP_ERR_IRQ_BSP_DISABLED A callback is provided, but the interrupt is
not enabled.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested unit does not exist on this
MCU.

FSP_ERR_INVALID_HW_CONDITION The ADC clock must be at least 1 MHz

◆ R_ADC_ScanCfg()

fsp_err_t R_ADC_ScanCfg (adc_ctrl_t * p_ctrl, void const *const p_channel_cfg)

Configures the ADC scan parameters. Channel specific settings are set in this function. Pass a
pointer to adc_channel_cfg_t to p_channel_cfg.

Note
This starts group B scans if adc_channel_cfg_t::priority_group_a is set to
ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN.

Return values
FSP_SUCCESS Channel specific settings applied.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 321 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ R_ADC_InfoGet()

fsp_err_t R_ADC_InfoGet (adc_ctrl_t * p_ctrl, adc_info_t * p_adc_info)

Returns the address of the lowest number configured channel and the total number of bytes to be
read in order to read the results of the configured channels and return the ELC Event name. If no
channels are configured, then a length of 0 is returned.

Also provides the temperature sensor slope and the calibration data for the sensor if available on
this MCU. Otherwise, invalid calibration data of 0xFFFFFFFF will be returned.

Note
In group mode, information is returned for group A only. Calculating information for group B is not currently
supported.

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_ScanStart()

fsp_err_t R_ADC_ScanStart (adc_ctrl_t * p_ctrl)

Starts a software scan or enables the hardware trigger for a scan depending on how the triggers
were configured in the R_ADC_Open call. If the unit was configured for ELC or external hardware
triggering, then this function allows the trigger signal to get to the ADC unit. The function is not
able to control the generation of the trigger itself. If the unit was configured for software triggering,
then this function starts the software triggered scan.

Precondition
Call R_ADC_ScanCfg after R_ADC_Open before starting a scan.
On MCUs that support calibration, call R_ADC_Calibrate and wait for calibration to complete
before starting a scan.

Return values
FSP_SUCCESS Scan started (software trigger) or hardware

triggers enabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

FSP_ERR_IN_USE Another scan is still in progress (software
trigger).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 322 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ R_ADC_ScanStop()

fsp_err_t R_ADC_ScanStop (adc_ctrl_t * p_ctrl)

Stops the software scan or disables the unit from being triggered by the hardware trigger (ELC or
external) based on what type of trigger the unit was configured for in the R_ADC_Open function.
Stopping a hardware triggered scan via this function does not abort an ongoing scan, but prevents
the next scan from occurring. Stopping a software triggered scan aborts an ongoing scan.

Return values
FSP_SUCCESS Scan stopped (software trigger) or hardware

triggers disabled.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_StatusGet()

fsp_err_t R_ADC_StatusGet (adc_ctrl_t * p_ctrl, adc_status_t * p_status)

Provides the status of any scan process that was started, including scans started by ELC or external
triggers and calibration scans on MCUs that support calibration.

Return values
FSP_SUCCESS Module status stored in the provided pointer

p_status

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_Read()

fsp_err_t R_ADC_Read (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint16_t *const p_data)

Reads conversion results from a single channel or sensor.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 323 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ R_ADC_Read32()

fsp_err_t R_ADC_Read32 (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint32_t *const p_data
)

Reads conversion results from a single channel or sensor register into a 32-bit result.

Return values
FSP_SUCCESS Data read into provided p_data.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_SampleStateCountSet()

fsp_err_t R_ADC_SampleStateCountSet (adc_ctrl_t * p_ctrl, adc_sample_state_t * p_sample)

Sets the sample state count for individual channels. This only needs to be set for special use cases.
Normally, use the default values out of reset.

Note
The sample states for the temperature and voltage sensor are set in R_ADC_ScanCfg.

Return values
FSP_SUCCESS Sample state count updated.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ R_ADC_Close()

fsp_err_t R_ADC_Close (adc_ctrl_t * p_ctrl)

This function ends any scan in progress, disables interrupts, and removes power to the A/D
peripheral.

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 324 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ R_ADC_OffsetSet()

fsp_err_t R_ADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t offset)

adc_api_t::offsetSet is not supported on the ADC.

Return values
FSP_ERR_UNSUPPORTED Function not supported in this

implementation.

◆ R_ADC_Calibrate()

fsp_err_t R_ADC_Calibrate (adc_ctrl_t *const p_ctrl, void *const p_extend)

Initiates calibration of the ADC on MCUs that require calibration. This function must be called
before starting a scan on MCUs that require calibration.

Calibration is complete when the callback is called with ADC_EVENT_CALIBRATION_COMPLETE or
when R_ADC_StatusGet returns ADC_STATUS_IDLE. Reference Figure 32.35 "Software flow and
operation example of calibration operation." in the RA2A1 manual R01UH0888EJ0100.

ADC calibration time: 12 PCLKB + 774,930 ADCLK. (Reference Table 32.16 "Required calibration
time (shown as the number of ADCLK and PCLKB cycles)" in the RA2A1 manual R01UH0888EJ0100.
The lowest supported ADCLK is 1MHz.

Calibration will take a minimum of 24 milliseconds at 32 MHz PCLKB and ADCLK. This wait could
take up to 780 milliseconds for a 1 MHz PCLKD (ADCLK).

Parameters
[in] p_ctrl Pointer to the instance

control structure

[in] p_extend Unused argument. Pass
NULL.

Return values
FSP_SUCCESS Calibration successfully initiated.

FSP_ERR_INVALID_HW_CONDITION A scan is in progress or hardware triggers
are enabled.

FSP_ERR_UNSUPPORTED Calibration not supported on this MCU.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 325 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Analog to Digital Converter (r_adc)

◆ R_ADC_CallbackSet()

fsp_err_t R_ADC_CallbackSet (adc_ctrl_t *const p_api_ctrl, void(*)(adc_callback_args_t *)
p_callback, void const *const p_context, adc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
adc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.4 Asynchronous General Purpose Timer (r_agt)
Modules

Functions

fsp_err_t R_AGT_Close (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_AGT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_AGT_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_Start (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_Disable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t R_AGT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 326 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

fsp_err_t R_AGT_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_AGT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const
p_cfg)

fsp_err_t R_AGT_CallbackSet (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the AGT peripheral on RA MCUs. This module implements the Timer Interface.

Overview
Features

The AGT module has the following features:

Supports periodic mode, one-shot mode, and PWM mode.
Signal can be output to a pin.
Configurable period (counts per timer cycle).
Configurable duty cycle in PWM mode.
Configurable clock source, including PCLKB, LOCO, SUBCLK, and external sources input to
AGTIO.
Supports runtime reconfiguration of period.
Supports runtime reconfiguration of duty cycle in PWM mode.
Supports counting based on an external clock input to AGTIO.
Supports debounce filter on AGTIO pins.
Supports measuring pulse width or pulse period.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.

Selecting a Timer

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT

Low Power Modes The GPT can operate in sleep
mode.

The AGT can operate in all low
power modes (when count
source is LOCO or subclock).

Available Channels The number of GPT channels is
device specific. All currently
supported MCUs have at least 7
GPT channels.

All MCUs have 2 AGT channels.

Timer Resolution All MCUs have at least one
32-bit GPT timer.

The AGT timers are 16-bit
timers.

Clock Source The GPT runs off PCLKD with a The AGT runs off PCLKB, LOCO,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 327 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

configurable divider up to 1024.
It can also be configured to
count ELC events or external
pulses.

or subclock with a configurable
divider up to 8 for PCLKB or up
to 128 for LOCO or subclock.

Configuration

Build Time Configurations for r_agt

The following build time configurations are defined in fsp_cfg/r_agt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Pin Output Support Disabled
Enabled

Disabled If selected code for
outputting a waveform
to a pin is included in
the build.

Pin Input Support Disabled
Enabled

Disabled Enable input support to
use pulse width
measurement mode,
pulse period
measurement mode, or
input from P402, P402,
or AGTIO.

Configurations for Driver > Timers > Timer Driver on r_agt

This module can be added to the Stacks tab via New Stack > Driver > Timers > Timer Driver on
r_agt. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_timer0 Module name.

General > Channel Channel number does
not exist

0 Physical hardware
channel.

General > Mode Periodic
One-Shot
PWM

Periodic Mode selection. Note:
One-shot mode is
implemented in
software. ISR's must be
enabled for one shot
even if callback is
unused.

General > Period Value must be non-
negative

0x10000 Specify the timer
period based on the
selected unit.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 328 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

When the unit is set to
'Raw Counts', setting
the period to 0x10000
results in the maximum
period at the lowest
divisor (fastest timer
tick). Set the period to
0x10000 for a free
running timer, pulse
width measurement or
pulse period
measurement. Setting
the period higher will
automatically select a
higher divider; the
period can be set up to
0x80000 when
counting from PCLKB or
0x800000 when
counting from
LOCO/subclock, which
will use a divider of 8
or 128 respectively
with the maximum
period.

If the requested period
cannot be achieved,
the settings with the
largest possible period
that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
timer_cfg_t structure.

General > Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

General > Count
Source

PCLKB
LOCO
SUBCLOCK
AGT Underflow
P402 Input
P403 Input
AGTIO Input

PCLKB AGT counter clock
source. NOTE: The
divisor is calculated
automatically based on
the selected period.
See agt_count_source_t
documentation for
details.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 329 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Output > Duty Cycle
Percent (only
applicable in PWM
mode)

Value must be between
0 and 100

50 Specify the timer duty
cycle percent. Only
used in PWM mode.

Output > AGTOA
Output

Disabled
Start Level Low
Start Level High

Disabled Configure AGTOA
output.

Output > AGTOB
Output

Disabled
Start Level Low
Start Level High

Disabled Configure AGTOB
output.

Output > AGTO Output Disabled
Start Level Low
Start Level High

Disabled Configure AGTO
output.

Input > Measurement
Mode

Measure
Disabled
Measure Low
Level Pulse
Width
Measure High
Level Pulse
Width
Measure Pulse
Period

Measure Disabled Select if the AGT
should be used to
measure pulse width or
pulse period. In high
level pulse width
measurement mode,
the AGT counts when
AGTIO is high and
starts counting
immediately in the
middle of a pulse if
AGTIO is high when
R_AGT_Start() is called.
In low level pulse width
measurement mode,
the AGT counts when
AGTIO is low and could
start counting in the
middle of a pulse if
AGTIO is low when
R_AGT_Start() is called.

Input > Input Filter No Filter
Filter sampled
at PCLKB
Filter sampled
at PCLKB / 8
Filter sampled
at PCLKB / 32

No Filter Input filter, applies
AGTIO in pulse period
measurement, pulse
width measurement, or
event counter mode.
The filter requires the
signal to be at the
same level for 3
successive reads at the
specified filter
frequency.

Input > Enable Pin Enable Pin Not
Used
Enable Pin
Active Low
Enable Pin
Active High

Enable Pin Not Used Select active edge for
the AGTEE pin if used.
Only applies if the
count source is P402,
P403 or AGTIO.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 330 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Input > Trigger Edge Trigger Edge
Rising
Trigger Edge
Falling
Trigger Edge
Both

Trigger Edge Rising Select the trigger edge.
Applies if measurement
mode is pulse period,
or if the count source is
P402, P403, or AGTIO.
Do not select Trigger
Edge Both with pulse
period measurement.

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the timer period
elapses.

Interrupts > Underflow
Interrupt Priority

MCU Specific Options Timer interrupt priority.

Clock Configuration

The AGT clock is based on the PCLKB, LOCO, or Subclock frequency. You can set the clock frequency
using the Clocks tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

This module can use the AGTOA and AGTOB pins as output pins for periodic, one-shot, or PWM
signals.

For input capture, the input signal must be applied to the AGTIOn pin.

For event counting, the AGTEEn enable pin is optional.

Timer Period

The RA Configuration editor will automatically calculate the period count value and source clock
divider based on the selected period time, units, and clock speed.

When the selected unit is "Raw counts", the maximum allowed period setting varies depending on
the selected clock source:

Clock source Maximum period (counts)

LOCO/Subclock 0x800000

PCLKB 0x80000

All other sources 0x10000

Note
Though the AGT is a 16-bit timer, because the period interrupt occurs when the counter underflows, setting the
period register to 0 results in an effective period of 1 count. For this reason all user-provided raw count values
reflect the actual number of period counts (not the raw register values).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 331 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Usage Notes
Starting and Stopping the AGT

After starting or stopping the timer, AGT registers cannot be accessed until the AGT state is updated
after 3 AGTCLK cycles. If another AGT function is called before the 3 AGTCLK period elapses, the
function spins waiting for the AGT state to update. The required wait time after starting or stopping
the timer can be determined using the frequency of AGTCLK, which is derived from
timer_cfg_t::source_div and agt_extended_cfg_t::count_source.

The application is responsible for ensuring required clocks are started and stable before accessing
MCU peripheral registers.

Warning
The subclock can take seconds to stabilize. The RA startup code does not wait for subclock
stabilization unless the subclock is the main clock source. When running AGT or RTC off the
subclock, the application must ensure the subclock is stable before starting operation.

Low Power Modes

The AGT1 (channel 1 only) can be used to enter snooze mode or to wake the MCU from snooze,
software standby, or deep software standby modes when a counter underflow occurs. The compare
match A and B events can also be used to wake from software standby or snooze modes.

One-Shot Mode

The AGT timer does not support one-shot mode natively. One-shot mode is achieved by stopping the
timer in the interrupt service routine before the callback is called. If the interrupt is not serviced
before the timer period expires again, the timer generates more than one event. The callback is only
called once in this case, but multiple events may be generated if the timer is linked to the Data
Transfer Controller (r_dtc).

One-Shot Mode Output

The output waveform in one-shot mode is one AGT clock cycle less than the configured period. The
configured period must be at least 2 counts to generate an output pulse.

Examples of one-shot signals that can be generated by this module are shown below:

Figure 142: AGT One-Shot Output

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 332 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Periodic Output

The AGTOA or AGTOB pin toggles twice each time the timer expires in periodic mode. This is
achieved by defining a PWM wave at a 50 percent duty cycle so that the period of the resulting
square (from rising edge to rising edge) matches the period of the AGT timer. Since the periodic
output is actually a PWM output, the time at the stop level is one cycle shorter than the time
opposite the stop level for odd period values.

Examples of periodic signals that can be generated by this module are shown below:

Figure 143: AGT Periodic Output

PWM Output

This module does not support in phase PWM output. The PWM output signal is low at the beginning
of the cycle and high at the end of the cycle.

Examples of PWM signals that can be generated by this module are shown below:

Figure 144: AGT PWM Output

Triggering ELC Events with AGT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 333 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

The AGT timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Examples
AGT Basic Example

This is a basic example of minimal use of the AGT in an application.

void agt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

}

AGT Callback Example

This is an example of a timer callback.

/* Example callback called when timer expires. */

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

AGT Free Running Counter Example

To use the AGT as a free running counter, select periodic mode and set the the Period to 0xFFFF.

void agt_counter_example (void)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 334 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_AGT_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_AGT_StatusGet(&g_timer0_ctrl, &status);

}

AGT Input Capture Example

This is an example of using the AGT to capture pulse width or pulse period measurements.

/* Example callback called when a capture occurs. */

uint64_t g_captured_time = 0U;

uint32_t g_capture_overflows = 0U;

void timer_capture_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CAPTURE_A == p_args->event)

 {

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t period = info.period_counts;

 /* Process capture from AGTIO. */

 g_captured_time = ((uint64_t) period * g_capture_overflows) +

p_args->capture;

 g_capture_overflows = 0U;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 335 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* An overflow occurred during capture. This must be accounted for at the

application layer. */

 g_capture_overflows++;

 }

}

void agt_capture_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_AGT_Enable(&g_timer0_ctrl);

 /* (Optional) Disable captures. */

 (void) R_AGT_Disable(&g_timer0_ctrl);

}

AGT Period Update Example

This an example of updating the period.

#define AGT_EXAMPLE_MSEC_PER_SEC (1000)

#define AGT_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void agt_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 336 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

 (void) R_AGT_Start(&g_timer0_ctrl);

 /* Get the source clock frequency (in Hz). There are several ways to do this in FSP:

 * - If LOCO or subclock is chosen in agt_extended_cfg_t::clock_source

 * - The source clock frequency is BSP_LOCO_HZ >> timer_cfg_t::source_div

 * - If PCLKB is chosen in agt_extended_cfg_t::clock_source and the PCLKB frequency

has not changed since reset,

 * - The source clock frequency is BSP_STARTUP_PCLKB_HZ >> timer_cfg_t::source_div

 * - Use the R_AGT_InfoGet function (it accounts for the clock source and divider).

 * - Calculate the current PCLKB frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) and right shift

 * by timer_cfg_t::source_div.

 *

 * This example uses the last option (R_FSP_SystemClockHzGet).

 */

 uint32_t timer_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) >>

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkb_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) timer_freq_hz * AGT_EXAMPLE_DESIRED_PERIOD_MSEC) /

AGT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_AGT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

}

AGT Duty Cycle Update Example

This an example of updating the duty cycle.

#define AGT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT (25)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 337 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

#define AGT_EXAMPLE_MAX_PERCENT (100)

/* This example shows how to calculate a new duty cycle value at runtime. */

void agt_duty_cycle_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. */

 uint32_t duty_cycle_counts = (current_period_counts *

AGT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 AGT_EXAMPLE_MAX_PERCENT;

 /* Set the calculated duty cycle. */

 err = R_AGT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, AGT_OUTPUT_PIN_AGTOA

);

 assert(FSP_SUCCESS == err);

}

AGT Cascaded Timers Example

This an example of using underflow from an even AGT channel as the count source for the next
channel (in this case, AGT0 and AGT1).

/* This example shows how use cascaded timers. The count source for AGT channel 1 is

set to AGT0 underflow. */

void agt_cascaded_timers_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 338 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

 /* Initialize the timers in any order. */

 err = R_AGT_Open(&g_timer_channel0_ctrl, &g_timer_channel0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_AGT_Open(&g_timer_channel1_ctrl, &g_timer_channel1_cfg);

 assert(FSP_SUCCESS == err);

 /* Start AGT channel 1 first. */

 (void) R_AGT_Start(&g_timer_channel1_ctrl);

 (void) R_AGT_Start(&g_timer_channel0_ctrl);

 /* (Optional) Stop AGT channel 0 first. */

 (void) R_AGT_Stop(&g_timer_channel0_ctrl);

 (void) R_AGT_Stop(&g_timer_channel1_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_AGT_StatusGet(&g_timer_channel1_ctrl, &status);

}

Data Structures

struct agt_instance_ctrl_t

struct agt_extended_cfg_t

Enumerations

enum agt_clock_t

enum agt_measure_t

enum agt_agtio_filter_t

enum agt_enable_pin_t

enum agt_trigger_edge_t

enum agt_output_pin_t

enum agt_pin_cfg_t

Data Structure Documentation

◆ agt_instance_ctrl_t

struct agt_instance_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 339 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

◆ agt_extended_cfg_t

struct agt_extended_cfg_t

Optional AGT extension data structure.

Data Fields

agt_clock_t count_source AGT channel clock source. Valid
values are: AGT_CLOCK_PCLKB,
AGT_CLOCK_LOCO,
AGT_CLOCK_FSUB.

union agt_extended_cfg_t __unnamed__

agt_pin_cfg_t agto: 3 Configure AGTO pin.

Note
AGTIO polarity is opposite
AGTO

agt_measure_t measurement_mode Measurement mode.

agt_agtio_filter_t agtio_filter Input filter for AGTIO.

agt_enable_pin_t enable_pin Enable pin (event counting
only)

agt_trigger_edge_t trigger_edge Trigger edge to start pulse
period measurement or count
external event.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 340 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ agt_clock_t

enum agt_clock_t

Count source

Enumerator

AGT_CLOCK_PCLKB PCLKB count source, division by 1, 2, or 8
allowed.

AGT_CLOCK_LOCO LOCO count source, division by 1, 2, 4, 8, 16,
32, 64, or 128 allowed.

AGT_CLOCK_AGT_UNDERFLOW Underflow event signal from next lowest AGT
channel, division must be 1.

AGT_CLOCK_SUBCLOCK Subclock count source, division by 1, 2, 4, 8,
16, 32, 64, or 128 allowed.

AGT_CLOCK_P402 Counts events on P402, events are counted in
deep software standby mode.

AGT_CLOCK_P403 Counts events on P403, events are counted in
deep software standby mode.

AGT_CLOCK_AGTIO Counts events on AGTIOn, events are not
counted in software standby modes.

◆ agt_measure_t

enum agt_measure_t

Enable pin for event counting mode.

Enumerator

AGT_MEASURE_DISABLED AGT used as a counter.

AGT_MEASURE_PULSE_WIDTH_LOW_LEVEL AGT used to measure low level pulse width.

AGT_MEASURE_PULSE_WIDTH_HIGH_LEVEL AGT used to measure high level pulse width.

AGT_MEASURE_PULSE_PERIOD AGT used to measure pulse period.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 341 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ agt_agtio_filter_t

enum agt_agtio_filter_t

Input filter, applies AGTIO in pulse period measurement, pulse width measurement, or event
counter mode. The filter requires the signal to be at the same level for 3 successive reads at the
specified filter frequency.

Enumerator

AGT_AGTIO_FILTER_NONE No filter.

AGT_AGTIO_FILTER_PCLKB Filter at PCLKB.

AGT_AGTIO_FILTER_PCLKB_DIV_8 Filter at PCLKB / 8.

AGT_AGTIO_FILTER_PCLKB_DIV_32 Filter at PCLKB / 32.

◆ agt_enable_pin_t

enum agt_enable_pin_t

Enable pin for event counting mode.

Enumerator

AGT_ENABLE_PIN_NOT_USED AGTEE/AGTWEE is not used.

AGT_ENABLE_PIN_ACTIVE_LOW Events are only counted when AGTEE/AGTWEE
is low.

AGT_ENABLE_PIN_ACTIVE_HIGH Events are only counted when AGTEE/AGTWEE
is high.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 342 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ agt_trigger_edge_t

enum agt_trigger_edge_t

Trigger edge for pulse period measurement mode and event counting mode.

Enumerator

AGT_TRIGGER_EDGE_RISING Measurement starts or events are counted on
rising edge.

AGT_TRIGGER_EDGE_FALLING Measurement starts or events are counted on
falling edge.

AGT_TRIGGER_EDGE_BOTH Events are counted on both edges (n/a for
pulse period mode)

◆ agt_output_pin_t

enum agt_output_pin_t

Output pins, used to select which duty cycle to update in R_AGT_DutyCycleSet().

Enumerator

AGT_OUTPUT_PIN_AGTOA AGTOA.

AGT_OUTPUT_PIN_AGTOB AGTOB.

◆ agt_pin_cfg_t

enum agt_pin_cfg_t

Level of AGT pin

Enumerator

AGT_PIN_CFG_DISABLED Not used as output pin.

AGT_PIN_CFG_START_LEVEL_LOW Pin level low.

AGT_PIN_CFG_START_LEVEL_HIGH Pin level high.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 343 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_Close()

fsp_err_t R_AGT_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables interrupts, disables output pins, and clears internal driver data. Implements
timer_api_t::close.

Return values
FSP_SUCCESS Timer closed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_AGT_PeriodSet()

fsp_err_t R_AGT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Updates period. The new period is updated immediately and the counter is reset to the maximum
value. Implements timer_api_t::periodSet.

Warning
If periodic output is used, the duty cycle buffer registers are updated after the period buffer
register. If this function is called while the timer is running and an AGT underflow occurs
during processing, the duty cycle will not be the desired 50% duty cycle until the counter
underflow after processing completes.
Stop the timer before calling this function if one-shot output is used.

Example:

 /* Get the source clock frequency (in Hz). There are several ways to do this in FSP:

 * - If LOCO or subclock is chosen in agt_extended_cfg_t::clock_source

 * - The source clock frequency is BSP_LOCO_HZ >> timer_cfg_t::source_div

 * - If PCLKB is chosen in agt_extended_cfg_t::clock_source and the PCLKB frequency

has not changed since reset,

 * - The source clock frequency is BSP_STARTUP_PCLKB_HZ >> timer_cfg_t::source_div

 * - Use the R_AGT_InfoGet function (it accounts for the clock source and divider).

 * - Calculate the current PCLKB frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) and right shift

 * by timer_cfg_t::source_div.

 *

 * This example uses the last option (R_FSP_SystemClockHzGet).

 */

 uint32_t timer_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKB) >>

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 344 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkb_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) timer_freq_hz * AGT_EXAMPLE_DESIRED_PERIOD_MSEC) /

AGT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. This will return an error if parameter checking is

enabled and the calculated

 * period is larger than UINT16_MAX. */

 err = R_AGT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value updated.

FSP_ERR_ASSERTION A required pointer was NULL, or the period
was not in the valid range of 1 to 0xFFFF.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 345 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_DutyCycleSet()

fsp_err_t R_AGT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Updates duty cycle. If the timer is counting, the new duty cycle is reflected after the next counter
underflow. Implements timer_api_t::dutyCycleSet.

Example:

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. */

 uint32_t duty_cycle_counts = (current_period_counts *

AGT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 AGT_EXAMPLE_MAX_PERCENT;

 /* Set the calculated duty cycle. */

 err = R_AGT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, AGT_OUTPUT_PIN_AGTOA

);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Duty cycle updated.

FSP_ERR_ASSERTION A required pointer was NULL, or the pin was
not AGT_AGTO_AGTOA or
AGT_AGTO_AGTOB.

FSP_ERR_INVALID_ARGUMENT Duty cycle was not in the valid range of 0 to
period (counts) - 1

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

FSP_ERR_UNSUPPORTED AGT_CFG_OUTPUT_SUPPORT_ENABLE is 0.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 346 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_Reset()

fsp_err_t R_AGT_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to the period minus one. Implements timer_api_t::reset.

Return values
FSP_SUCCESS Counter reset.

FSP_ERR_ASSERTION p_ctrl is NULL

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_AGT_Start()

fsp_err_t R_AGT_Start (timer_ctrl_t *const p_ctrl)

Starts timer. Implements timer_api_t::start.

Example:

 /* Start the timer. */

 (void) R_AGT_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer started.

FSP_ERR_ASSERTION p_ctrl is null.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 347 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_Enable()

fsp_err_t R_AGT_Enable (timer_ctrl_t *const p_ctrl)

Enables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::enable.

Example:

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_AGT_Enable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_AGT_Disable()

fsp_err_t R_AGT_Disable (timer_ctrl_t *const p_ctrl)

Disables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::disable.

Example:

 /* (Optional) Disable captures. */

 (void) R_AGT_Disable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 348 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_InfoGet()

fsp_err_t R_AGT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Gets timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Example:

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_AGT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t period = info.period_counts;

Return values
FSP_SUCCESS Period, count direction, and frequency

stored in p_info.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

◆ R_AGT_StatusGet()

fsp_err_t R_AGT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Retrieves the current state and counter value stores them in p_status. Implements
timer_api_t::statusGet.

Example:

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_AGT_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current status and counter value provided

in p_status.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 349 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_Stop()

fsp_err_t R_AGT_Stop (timer_ctrl_t *const p_ctrl)

Stops the timer. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. */

 (void) R_AGT_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance control structure is not
opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 350 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_Open()

fsp_err_t R_AGT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the AGT module instance. Implements timer_api_t::open.

The AGT hardware does not support one-shot functionality natively. The one-shot feature is
therefore implemented in the AGT HAL layer. For a timer configured as a one-shot timer, the timer
is stopped upon the first timer expiration.

The AGT implementation of the general timer can accept an optional agt_extended_cfg_t extension
parameter. For AGT, the extension specifies the clock to be used as timer source and the output
pin configurations. If the extension parameter is not specified (NULL), the default clock PCLKB is
used and the output pins are disabled.

Example:

 /* Initializes the module. */

 err = R_AGT_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION A required input pointer is NULL or the
period is not in the valid range of 1 to
0xFFFF.

FSP_ERR_ALREADY_OPEN R_AGT_Open has already been called for
this p_ctrl.

FSP_ERR_IRQ_BSP_DISABLED A required interrupt has not been enabled in
the vector table.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel number is not available
on AGT.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 351 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Asynchronous General Purpose Timer (r_agt)

◆ R_AGT_CallbackSet()

fsp_err_t R_AGT_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.5 Bluetooth Low Energy Library (r_ble)
Modules

Functions

ble_status_t R_BLE_Open (void)

 Open the BLE protocol stack. More...

ble_status_t R_BLE_Close (void)

 Close the BLE protocol stack. More...

ble_status_t R_BLE_Execute (void)

 Execute the BLE task. More...

uint32_t R_BLE_IsTaskFree (void)

 Check the BLE task queue is free or not. More...

ble_status_t R_BLE_SetEvent (ble_event_cb_t cb)

 Set event. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 352 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble)

uint32_t R_BLE_GetVersion (void)

 Get the BLE FIT module version. More...

uint32_t R_BLE_GetLibType (void)

 Get the type of BLE protocol stack library. More...

Detailed Description

Driver for the Radio peripheral on RA MCUs. This module implements the BLE Interface.

Overview
The bluetooth low energy library (r_ble) provides an API to control the Radio peripheral. This module
is configured via the QE for BLE. QE for BLE provides standard services defined by standardization
organization and custom services defined by user. Bluetooth LE Profile API Document User's Manual
describes the APIs for standard services.

Features

Common
Open/Close the BLE protocol stack.
Execute the BLE job.
Add an event in the BLE protocol stack internal queue.

GAP
Initialization of the Host stack.
Start/Stop Advertising.
Start/Stop Scan.
Connect/Disconnect a link.
Initiate/Respond a pairing request.

GATT Common
Get MTU size.

GATT Server
Initialization of GATT Server.
Notification/Indication.

GATT Client
Discovery services, characteristics.
Read/Write characteristic.

L2CAP
Credit-based flow control transaction.

Vendor Specific
DTM.
Set/Get transmit power.
Set/Get BD_ADDR.

Target Devices

The Renesas Bluetooth Low Energy Library supports the following devices.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 353 / 2,794

https://www.renesas.com/qe-ble
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble)

RA4W1

Configuration
Clock Configuration

Note
System clock (ICLK): 8 MHz or more
Peripheral module clock A (PCLKA): 8MHz or more
The BLE Protocol Stack is optimized for ICLK and PCLKA frequencies of 32 MHz.
It is recommended that the clock be set so that the ICLK and PCLKA frequencies are 32MHz in order to get the
best performance from the BLE.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Figure shows the software structure of the BLE FSP module.

Figure 145: BLE software structure

 The BLE FSP module consists of the BLE library.
The BLE Application uses the BLE functions via the R_BLE API provided by the BLE Library.
The QE for BLE generates the source codes (BLE base skeleton program) as a base for the BLE
Application and the BLE Profile codes including the Profile API.

Limitations

Developers should be aware of the following limitations when using the ble:

Modules

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 354 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble)

GAP

GATT_COMMON

GATT_SERVER

GATT_CLIENT

L2CAP

VS

Typedefs

typedef void(* ble_event_cb_t) (void)

 ble_event_cb_t is the callback function type for R_BLE_SetEvent().
More...

Typedef Documentation

◆ ble_event_cb_t

ble_event_cb_t

ble_event_cb_t is the callback function type for R_BLE_SetEvent().

Parameters
[in] void

Returns
none

Function Documentation

◆ R_BLE_Open()

ble_status_t R_BLE_Open (void)

Open the BLE protocol stack.

This function should be called once before using the BLE protocol stack.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 355 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble)

◆ R_BLE_Close()

ble_status_t R_BLE_Close (void)

Close the BLE protocol stack.

This function should be called once to close the BLE protocol stack.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_Execute()

ble_status_t R_BLE_Execute (void)

Execute the BLE task.

This handles all the task queued in the BLE protocol stack internal task queue and return. This
function should be called repeatedly in the main loop.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_IsTaskFree()

uint32_t R_BLE_IsTaskFree (void)

Check the BLE task queue is free or not.

This function returns the BLE task queue free status. When this function returns 0x0, call
R_BLE_Execute() to execute the BLE task.

Return values
0x0 BLE task queue is not free

0x1 BLE task queue is free

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 356 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble)

◆ R_BLE_SetEvent()

ble_status_t R_BLE_SetEvent (ble_event_cb_t cb)

Set event.

This function add an event in the BLE protocol stack internal queue. The event is handled in
R_BLE_Execute just like Bluetooth event. This function is intended to be called in hardware
interrupt context. Even if calling this function with the same cb before the cb is invoked, only one
event is registered. The maximum number of the events can be registered at a time is eight.

Parameters
cb The callback for the event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_ALREADY_IN_PROGRESS(0x000A) The event already registered with the
callback.

BLE_ERR_CONTEXT_FULL(0x000B) No free slot for the event.

◆ R_BLE_GetVersion()

uint32_t R_BLE_GetVersion (void)

Get the BLE FIT module version.

This function returns the BLE FIT module version.
The major version(BLE_VERSION_MAJOR) is contained in the two most significant bytes, and the
minor version(BLE_VERSION_MINOR) occupies the remaining two bytes.

Return values
BLE_VERSION_MAJOR | BLE_VERSION_MINOR

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 357 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble)

◆ R_BLE_GetLibType()

uint32_t R_BLE_GetLibType (void)

Get the type of BLE protocol stack library.

This function returns the type of BLE protocol stack library.

Return values
BLE_LIB_EXTENDED(0x00) Extended

BLE_LIB_BALANCE(0x01) Balance

BLE_LIB_COMPACT(0x02) Compact

4.2.5.1 GAP
Modules » Bluetooth Low Energy Library (r_ble)

Functions

ble_status_t R_BLE_GAP_Init (ble_gap_app_cb_t gap_cb)

 Initialize the Host Stack. More...

ble_status_t R_BLE_GAP_Terminate (void)

 Terminate the Host Stack. More...

ble_status_t R_BLE_GAP_UpdConn (uint16_t conn_hdl, uint8_t mode, uint16_t
accept, st_ble_gap_conn_param_t *p_conn_updt_param)

 Update the connection parameters. More...

ble_status_t R_BLE_GAP_SetDataLen (uint16_t conn_hdl, uint16_t tx_octets,
uint16_t tx_time)

 Update the packet size and the packet transmit time. More...

ble_status_t R_BLE_GAP_Disconnect (uint16_t conn_hdl, uint8_t reason)

 Disconnect the link. More...

ble_status_t R_BLE_GAP_SetPhy (uint16_t conn_hdl, st_ble_gap_set_phy_param_t
*p_phy_param)

 Set the phy for connection. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 358 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

ble_status_t R_BLE_GAP_SetDefPhy (st_ble_gap_set_def_phy_param_t
*p_def_phy_param)

 Set the default phy which allows remote device to change. More...

ble_status_t R_BLE_GAP_SetPrivMode (st_ble_dev_addr_t *p_addr, uint8_t
*p_privacy_mode, uint8_t device_num)

 Set the privacy mode. More...

ble_status_t R_BLE_GAP_ConfWhiteList (uint8_t op_code, st_ble_dev_addr_t
*p_addr, uint8_t device_num)

 Set White List. More...

ble_status_t R_BLE_GAP_GetVerInfo (void)

 Get the version number of the Controller and the host stack. More...

ble_status_t R_BLE_GAP_ReadPhy (uint16_t conn_hdl)

 Get the phy settings. More...

ble_status_t R_BLE_GAP_ConfRslvList (uint8_t op_code, st_ble_dev_addr_t
*p_addr, st_ble_gap_rslv_list_key_set_t *p_peer_irk, uint8_t
device_num)

 Set Resolving List. More...

ble_status_t R_BLE_GAP_EnableRpa (uint8_t enable)

 Enable/Disable address resolution and generation of a resolvable
private address. More...

ble_status_t R_BLE_GAP_SetRpaTo (uint16_t rpa_timeout)

 Set the update time of resolvable private address. More...

ble_status_t R_BLE_GAP_ReadRpa (st_ble_dev_addr_t *p_addr)

 Get the resolvable private address of local device. More...

ble_status_t R_BLE_GAP_ReadRssi (uint16_t conn_hdl)

 Get RSSI. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 359 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

ble_status_t R_BLE_GAP_ReadChMap (uint16_t conn_hdl)

 Get the Channel Map. More...

ble_status_t R_BLE_GAP_SetRandAddr (uint8_t *p_random_addr)

 Set a random address. More...

ble_status_t R_BLE_GAP_SetAdvParam (st_ble_gap_adv_param_t *p_adv_param)

 Set advertising parameters. More...

ble_status_t R_BLE_GAP_SetAdvSresData (st_ble_gap_adv_data_t
*p_adv_srsp_data)

 Set advertising data/scan response data/periodic advertising data.
More...

ble_status_t R_BLE_GAP_StartAdv (uint8_t adv_hdl, uint16_t duration, uint8_t
max_extd_adv_evts)

 Start advertising. More...

ble_status_t R_BLE_GAP_StopAdv (uint8_t adv_hdl)

 Stop advertising. More...

ble_status_t R_BLE_GAP_SetPerdAdvParam (st_ble_gap_perd_adv_param_t
*p_perd_adv_param)

 Set periodic advertising parameters. More...

ble_status_t R_BLE_GAP_StartPerdAdv (uint8_t adv_hdl)

 Start periodic advertising. More...

ble_status_t R_BLE_GAP_StopPerdAdv (uint8_t adv_hdl)

 Stop periodic advertising. More...

ble_status_t R_BLE_GAP_GetRemainAdvBufSize (uint16_t
*p_remain_adv_data_size, uint16_t *p_remain_perd_adv_data_size)

 Get buffer size for advertising data/scan response data/periodic
advertising data in the Controller. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 360 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

ble_status_t R_BLE_GAP_RemoveAdvSet (uint8_t op_code, uint8_t adv_hdl)

 Delete advertising set. More...

ble_status_t R_BLE_GAP_CreateConn (st_ble_gap_create_conn_param_t
*p_param)

 Request for a link establishment. More...

ble_status_t R_BLE_GAP_CancelCreateConn (void)

 Cancel the request for a link establishment. More...

ble_status_t R_BLE_GAP_SetChMap (uint8_t *p_channel_map)

 Set the Channel Map. More...

ble_status_t R_BLE_GAP_StartScan (st_ble_gap_scan_param_t *p_scan_param,
st_ble_gap_scan_on_t *p_scan_enable)

 Set scan parameter and start scan. More...

ble_status_t R_BLE_GAP_StopScan (void)

 Stop scan. More...

ble_status_t R_BLE_GAP_CreateSync (st_ble_dev_addr_t *p_addr, uint8_t adv_sid,
uint16_t skip, uint16_t sync_to)

 Request for a periodic sync establishment. More...

ble_status_t R_BLE_GAP_CancelCreateSync (void)

 Cancel the request for a periodic sync establishment. More...

ble_status_t R_BLE_GAP_TerminateSync (uint16_t sync_hdl)

 Terminate the periodic sync. More...

ble_status_t R_BLE_GAP_ConfPerdAdvList (uint8_t op_code, st_ble_dev_addr_t
*p_addr, uint8_t *p_adv_sid_set, uint8_t device_num)

 Set Periodic Advertiser List. More...

ble_status_t R_BLE_GAP_AuthorizeDev (uint16_t conn_hdl, uint8_t author_flag)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 361 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

 Authorize a remote device. More...

ble_status_t R_BLE_GAP_GetRemDevInfo (uint16_t conn_hdl)

 Get the information about remote device. More...

ble_status_t R_BLE_GAP_SetPairingParams (st_ble_gap_pairing_param_t
*p_pair_param)

 Set the parameters using pairing. More...

ble_status_t R_BLE_GAP_SetLocIdInfo (st_ble_dev_addr_t *p_lc_id_addr, uint8_t
*p_lc_irk)

 Set the IRK and the identity address distributed to a remote device.
More...

ble_status_t R_BLE_GAP_SetLocCsrk (uint8_t *p_local_csrk)

 Set the CSRK distributed to a remote device. More...

ble_status_t R_BLE_GAP_StartPairing (uint16_t conn_hdl)

 Start pairing. More...

ble_status_t R_BLE_GAP_ReplyPairing (uint16_t conn_hdl, uint8_t response)

 Reply the pairing request from a remote device. More...

ble_status_t R_BLE_GAP_StartEnc (uint16_t conn_hdl)

 Encryption the link. More...

ble_status_t R_BLE_GAP_ReplyPasskeyEntry (uint16_t conn_hdl, uint32_t passkey,
uint8_t response)

 Reply the passkey entry request. More...

ble_status_t R_BLE_GAP_ReplyNumComp (uint16_t conn_hdl, uint8_t response)

 Reply the numeric comparison request. More...

ble_status_t R_BLE_GAP_NotifyKeyPress (uint16_t conn_hdl, uint8_t key_press)

 Notify the input key type which a remote device inputs in the
passkey entry. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 362 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

ble_status_t R_BLE_GAP_GetDevSecInfo (uint16_t conn_hdl,
st_ble_gap_auth_info_t *p_sec_info)

 Get the security information about the remote device. More...

ble_status_t R_BLE_GAP_ReplyExKeyInfoReq (uint16_t conn_hdl)

 Distribute the keys of local device. More...

ble_status_t R_BLE_GAP_SetRemOobData (st_ble_dev_addr_t *p_addr, uint8_t
oob_data_flag, st_ble_gap_oob_data_t *p_oob)

 Set the oob data from a remote device. More...

ble_status_t R_BLE_GAP_CreateScOobData (void)

 Create data for oob in secure connection. More...

ble_status_t R_BLE_GAP_SetBondInfo (st_ble_gap_bond_info_t *p_bond_info,
uint8_t device_num, uint8_t *p_set_num)

 Set the bonding information stored in non-volatile memory to the
host stack. More...

void R_BLE_GAP_DeleteBondInfo (int32_t local, int32_t remote,
st_ble_dev_addr_t *p_addr, ble_gap_del_bond_cb_t gap_del_bond_cb)

 This function deletes the bonding information in Host Stack.
When a function for deleting the bonding information stored in non-
volatile area is registered by the gap_del_bond_cb parameter, it is
deleted as well as the bonding information in Host Stack. More...

ble_status_t R_BLE_GAP_ReplyLtkReq (uint16_t conn_hdl, uint16_t ediv, uint8_t
*p_peer_rand, uint8_t response)

 Reply the LTK request from a remote device. More...

Detailed Description

(end addtogroup BLE_API)

Data Structures

struct st_ble_evt_data_t

 st_ble_evt_data_t is the type of the data notified in a GAP Event.
More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 363 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

struct st_ble_dev_addr_t

 st_ble_dev_addr_t is the type of bluetooth device address(BD_ADDR).
More...

struct st_ble_gap_ext_adv_param_t

 Advertising parameters. More...

struct st_ble_gap_adv_data_t

 Advertising data/scan response data/periodic advertising data.
More...

struct st_ble_gap_perd_adv_param_t

 Periodic advertising parameter. More...

struct st_ble_gap_scan_phy_param_t

 Scan parameters per scan PHY. More...

struct st_ble_gap_ext_scan_param_t

 Scan parameters. More...

struct st_ble_gap_scan_on_t

 Parameters configured when scanning starts. More...

struct st_ble_gap_conn_param_t

 Connection parameters included in connection interval, slave
latency, supervision timeout, ce length. More...

struct st_ble_gap_conn_phy_param_t

 Connection parameters per PHY. More...

struct st_ble_gap_create_conn_param_t

 Connection parameters used in R_BLE_GAP_CreateConn(). More...

struct st_ble_gap_rslv_list_key_set_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 364 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

 IRK of a remote device and IRK type of local device used in
R_BLE_GAP_ConfRslvList(). More...

struct st_ble_gap_set_phy_param_t

 PHY configuration parameters used in R_BLE_GAP_SetPhy(). More...

struct st_ble_gap_set_def_phy_param_t

 PHY preferences which allows a remote device to set used in
R_BLE_GAP_SetDefPhy(). More...

struct st_ble_gap_auth_info_t

 Pairing parameters required from a remote device or information
about keys distributed from a remote device. More...

struct st_ble_gap_key_dist_t

 Keys distributed from a remote device. More...

struct st_ble_gap_key_ex_param_t

 This structure includes the distributed keys and negotiated LTK size.
More...

struct st_ble_gap_pairing_param_t

 Pairing parameters used in R_BLE_GAP_SetPairingParams(). More...

struct st_ble_gap_oob_data_t

 Oob data received from the remote device. This is used in
R_BLE_GAP_SetRemOobData(). More...

struct st_ble_gap_ver_num_t

 Version number of host stack. More...

struct st_ble_gap_loc_ver_info_t

 Version number of Controller. More...

struct st_ble_gap_loc_dev_info_evt_t

 Version information of local device. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 365 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

struct st_ble_gap_hw_err_evt_t

 Hardware error that is notified from Controller. More...

struct st_ble_gap_cmd_err_evt_t

 HCI Command error. More...

struct st_ble_gap_adv_rept_t

 Advertising Report. More...

struct st_ble_gap_ext_adv_rept_t

 Extended Advertising Report. More...

struct st_ble_gap_perd_adv_rept_t

 Periodic Advertising Report. More...

struct st_ble_gap_adv_rept_evt_t

 Advertising report. More...

union st_ble_gap_adv_rept_evt_t.param

 Advertising Report. More...

struct st_ble_gap_adv_set_evt_t

 Advertising handle. More...

struct st_ble_gap_adv_off_evt_t

 Information about the advertising set which stops advertising.
More...

struct st_ble_gap_adv_data_evt_t

 This structure notifies that advertising data has been set to
Controller by R_BLE_GAP_SetAdvSresData(). More...

struct st_ble_gap_rem_adv_set_evt_t

 This structure notifies that an advertising set has been removed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 366 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

More...

struct st_ble_gap_conn_evt_t

 This structure notifies that a link has been established. More...

struct st_ble_gap_disconn_evt_t

 This structure notifies that a link has been disconnected. More...

struct st_ble_gap_rd_ch_map_evt_t

 This structure notifies that Channel Map has been retrieved by
R_BLE_GAP_ReadChMap(). More...

struct st_ble_gap_rd_rssi_evt_t

 This structure notifies that RSSI has been retrieved by
R_BLE_GAP_ReadRssi(). More...

struct st_ble_gap_dev_info_evt_t

 This structure notifies that information about remote device has
been retrieved by R_BLE_GAP_GetRemDevInfo(). More...

struct st_ble_gap_conn_upd_evt_t

 This structure notifies that connection parameters has been updated.
More...

struct st_ble_gap_conn_upd_req_evt_t

 This structure notifies that a request for connection parameters
update has been received. More...

struct st_ble_gap_conn_hdl_evt_t

 This structure notifies that a GAP Event that includes only connection
handle has occurred. More...

struct st_ble_gap_data_len_chg_evt_t

 This structure notifies that the packet data length has been updated.
More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 367 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

struct st_ble_gap_rd_rpa_evt_t

 This structure notifies that the local resolvable private address has
been retrieved by R_BLE_GAP_ReadRpa(). More...

struct st_ble_gap_phy_upd_evt_t

 This structure notifies that PHY for a connection has been updated.
More...

struct st_ble_gap_phy_rd_evt_t

 This structure notifies that the PHY settings has been retrieved by
R_BLE_GAP_ReadPhy(). More...

struct st_ble_gap_scan_req_recv_evt_t

 This structure notifies that a Scan Request packet has been received
from a Scanner. More...

struct st_ble_gap_sync_est_evt_t

 This structure notifies that a Periodic sync has been established.
More...

struct st_ble_gap_sync_hdl_evt_t

 This structure notifies that a GAP Event that includes only sync
handle has occurred. More...

struct st_ble_gap_white_list_conf_evt_t

 This structure notifies that White List has been configured. More...

struct st_ble_gap_rslv_list_conf_evt_t

 This structure notifies that Resolving List has been configured.
More...

struct st_ble_gap_perd_list_conf_evt_t

 This structure notifies that Periodic Advertiser List has been
configured. More...

struct st_ble_gap_set_priv_mode_evt_t

 This structure notifies that Privacy Mode has been configured.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 368 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

More...

struct st_ble_gap_pairing_req_evt_t

 This structure notifies that a pairing request from a remote device
has been received. More...

struct st_ble_gap_passkey_display_evt_t

 This structure notifies that a request for Passkey display in pairing
has been received. More...

struct st_ble_gap_num_comp_evt_t

 This structure notifies that a request for Numeric Comparison in
pairing has been received. More...

struct st_ble_gap_key_press_ntf_evt_t

 This structure notifies that the remote device has input a key in
Passkey Entry. More...

struct st_ble_gap_pairing_info_evt_t

 This structure notifies that the pairing has completed. More...

struct st_ble_gap_enc_chg_evt_t

 This structure notifies that the encryption status of a link has been
changed. More...

struct st_ble_gap_peer_key_info_evt_t

 This structure notifies that the remote device has distributed the
keys. More...

struct st_ble_gap_ltk_req_evt_t

 This structure notifies that a LTK request from a remote device has
been received. More...

struct st_ble_gap_ltk_rsp_evt_t

 This structure notifies that local device has replied to the LTK
request from the remote device. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 369 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

struct st_ble_gap_sc_oob_data_evt_t

 This structure notifies that OOB data for Secure Connections has
been generated by R_BLE_GAP_CreateScOobData(). More...

struct st_ble_gap_bond_info_t

 Bonding information used in R_BLE_GAP_SetBondInfo(). More...

Macros

#define BLE_BD_ADDR_LEN

#define BLE_MASTER

#define BLE_SLAVE

#define BLE_GAP_ADDR_PUBLIC

#define BLE_GAP_ADDR_RAND

#define BLE_GAP_ADDR_RPA_ID_PUBLIC

 Resolvable Private Address. More...

#define BLE_GAP_ADDR_RPA_ID_RANDOM

 Resolvable Private Address. More...

#define BLE_GAP_AD_FLAGS_LE_LIM_DISC_MODE

 LE Limited Discoverable Mode flag used in AD type.

#define BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE

 LE General Discoverable Mode flag used in AD type.

#define BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED

 BR/EDR Not Supported flag used in AD type.

#define BLE_GAP_ADV_DATA_MODE

 Advertising data.

#define BLE_GAP_SCAN_RSP_DATA_MODE

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 370 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

 Scan response data.

#define BLE_GAP_PERD_ADV_DATA_MODE

 Periodic advertising data.

#define BLE_GAP_ADV_CH_37

 Use 37 CH.

#define BLE_GAP_ADV_CH_38

 Use 38 CH.

#define BLE_GAP_ADV_CH_39

 Use 39 CH.

#define BLE_GAP_ADV_CH_ALL

 Use 37 - 39 CH.

#define BLE_GAP_SCAN_PASSIVE

 Passive Scan.

#define BLE_GAP_SCAN_ACTIVE

 Active Scan.

#define BLE_GAP_SCAN_INTV_MIN

 Active Scan.

#define BLE_GAP_SCAN_FILT_DUPLIC_DISABLE

 Duplicate filter disabled.

#define BLE_GAP_SCAN_FILT_DUPLIC_ENABLE

 Duplicate filter enabled.

#define BLE_GAP_SCAN_FILT_DUPLIC_ENABLE_FOR_PERIOD

 Duplicate filtering enabled, reset for each scan period.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 371 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

#define BLE_GAP_SCAN_ALLOW_ADV_ALL

 Accept all advertising and scan response PDUs except directed
advertising PDUs not addressed to local device.

#define BLE_GAP_SCAN_ALLOW_ADV_WLST

 Accept only advertising and scan response PDUs from remote
devices whose address is registered in the White List. Directed
advertising PDUs which are not addressed to local device is ignored.

#define BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED

 Accept all advertising and scan response PDUs except directed
advertising PDUs whose the target address is identity address but
doesn't address local device. However directed advertising PDUs
whose the target address is the local resolvable private address are
accepted.

#define BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST

 Accept all advertising and scan response PDUs.
The following are excluded. More...

#define BLE_GAP_INIT_FILT_USE_ADDR

 White List is not used.

#define BLE_GAP_INIT_FILT_USE_WLST

 White List is used.

#define BLE_GAP_DATA_0_CLEAR

 Clear the advertising data/scan response data/periodic advertising
data in the advertising set.

#define BLE_GAP_DATA_0_DID_UPD

 Update Advertising DID without changing advertising data.

#define BLE_GAP_NET_PRIV_MODE

 Network Privacy Mode.

#define BLE_GAP_DEV_PRIV_MODE

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 372 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

 Device Privacy Mode.

#define BLE_GAP_REM_FEATURE_SIZE

 The length of the features supported by a remote device.

#define BLE_GAP_NOT_AUTHORIZED

 Not authorize the remote device.

#define BLE_GAP_AUTHORIZED

 Authorize the remote device.

#define BLE_GAP_RMV_ADV_SET_REM_OP

 Delete an advertising set.

#define BLE_GAP_RMV_ADV_SET_CLR_OP

 Delete all the advertising sets.

#define BLE_GAP_SC_PROC_GEN

 General Discovery Procedure.

#define BLE_GAP_SC_PROC_LIM

 Limited Discovery Procedure.

#define BLE_GAP_SC_PROC_OBS

 Observation Procedure.

#define BLE_GAP_LIST_ADD_DEV

 Add the device to the list.

#define BLE_GAP_LIST_REM_DEV

 Delete the device from the list.

#define BLE_GAP_LIST_CLR

 Clear the list.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 373 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

#define BLE_GAP_WHITE_LIST_MAX_ENTRY

 The maximum entry number of White List.

#define BLE_GAP_RSLV_LIST_MAX_ENTRY

 The maximum entry number of Resolving List.

#define BLE_GAP_PERD_LIST_MAX_ENTRY

 The maximum entry number of Periodic Advertiser List.

#define BLE_GAP_RPA_DISABLED

 Disable RPA generation/resolution.

#define BLE_GAP_RPA_ENABLED

 Enable RPA generation/resolution.

#define BLE_GAP_RL_LOC_KEY_ALL_ZERO

 All-zero IRK.

#define BLE_GAP_RL_LOC_KEY_REGISTERED

 The IRK registered by R_BLE_GAP_SetLocIdInfo().

#define BLE_MAX_NO_OF_ADV_SETS_SUPPORTED

 The maximum number of advertising set for the Abstraction API.

#define BLE_GAP_LEGACY_PROP_ADV_IND

 Connectable and scannable undirected Legacy Advertising Packet.

#define BLE_GAP_LEGACY_PROP_ADV_DIRECT_IND

 Connectable directed (low duty cycle) Legacy Advertising Packet.

#define BLE_GAP_LEGACY_PROP_ADV_HDC_DIRECT_IND

 Connectable directed (high duty cycle) Legacy Advertising Packet.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 374 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

#define BLE_GAP_LEGACY_PROP_ADV_SCAN_IND

 Scannable undirected Legacy Advertising Packet.

#define BLE_GAP_LEGACY_PROP_ADV_NONCONN_IND

 Non-connectable and non-scannable undirected Legacy Advertising
Packet.

#define BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_UNDIRECT

 Connectable and non-scannable undirected Extended Advertising
Packet.

#define BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_DIRECT

 Connectable and non-scannable directed (low duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_HDC_DIRECT

 Connectable and non-scannable directed (high duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT

 Non-connectable and scannable undirected Extended Advertising
Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT

 Non-connectable and scannable directed (low duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT

 Non-connectable and scannable directed (high duty cycle) Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT

 Non-connectable and non-scannable undirected Extended
Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_DIRECT

 Non-connectable and non-scannable directed (low duty cycle)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 375 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Extended Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_HDC_DIRECT

 Non-connectable and non-scannable directed (high duty cycle)
Extended Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_ANONYMOUS

 Omit the advertiser address from Extended Advertising Packet.

#define BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER

 Indicate that the advertising data includes TX Power.

#define BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_ANY

 Process scan and connection requests from all devices.

#define BLE_GAP_ADV_ALLOW_SCAN_WLST_CONN_ANY

 Process connection requests from all devices and scan requests from
only devices that are in the White List.

#define BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_WLST

 Process scan requests from all devices and connection requests from
only devices that are in the White List.

#define BLE_GAP_ADV_ALLOW_SCAN_WLST_CONN_WLST

 Process scan and connection requests from only devices in the White
List.

#define BLE_GAP_ADV_PHY_1M

 Use 1M PHY.

#define BLE_GAP_ADV_PHY_2M

 Use 2M PHY.

#define BLE_GAP_ADV_PHY_CD

 Use Coded PHY.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 376 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

#define BLE_GAP_SCAN_REQ_NTF_DISABLE

 Disable Scan Request Notification.

#define BLE_GAP_SCAN_REQ_NTF_ENABLE

 Enable Scan Request Notification.

#define BLE_GAP_PERD_PROP_TX_POWER

 Indicate that periodic advertising data includes Tx Power.

#define BLE_GAP_INVALID_ADV_HDL

 Invalid advertising handle.

#define BLE_GAP_SET_PHYS_HOST_PREF_1M

 Use 1M PHY.

#define BLE_GAP_SET_PHYS_HOST_PREF_2M

 Use 2M PHY.

#define BLE_GAP_SET_PHYS_HOST_PREF_CD

 Use Coded PHY.

#define BLE_GAP_SET_PHYS_OP_HOST_NO_PREF

 No preferred coding.

#define BLE_GAP_SET_PHYS_OP_HOST_PREF_S_2

 Use S=2 coding.

#define BLE_GAP_SET_PHYS_OP_HOST_PREF_S_8

 Use S=8 coding.

#define BLE_GAP_CONN_UPD_MODE_REQ

 Request for updating the connection parameters.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 377 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

#define BLE_GAP_CONN_UPD_MODE_RSP

 Reply a connection parameter update request.

#define BLE_GAP_CONN_UPD_ACCEPT

 Accept the update request.

#define BLE_GAP_CONN_UPD_REJECT

 Reject the update request.

#define BLE_GAP_CH_MAP_SIZE

 The size of channel map.

#define BLE_GAP_INVALID_CONN_HDL

 Invalid Connection handle.

#define BLE_GAP_NOT_USE_CONN_HDL

 This macro indicates that connection handle is not used.

#define BLE_GAP_INIT_CONN_HDL

 Initial Connection handle.

#define BLE_GAP_PAIRING_ACCEPT

 Accept a request regarding pairing.

#define BLE_GAP_PAIRING_REJECT

 Reject a request regarding pairing.

#define BLE_GAP_LTK_REQ_ACCEPT

 Reply for the LTK request.

#define BLE_GAP_LTK_REQ_DENY

 Reject the LTK request.

#define BLE_GAP_LESC_PASSKEY_ENTRY_STARTED

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 378 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

 Notify that passkey entry started.

#define BLE_GAP_LESC_PASSKEY_DIGIT_ENTERED

 Notify that passkey digit entered.

#define BLE_GAP_LESC_PASSKEY_DIGIT_ERASED

 Notify that passkey digit erased.

#define BLE_GAP_LESC_PASSKEY_CLEARED

 Notify that passkey cleared.

#define BLE_GAP_LESC_PASSKEY_ENTRY_COMPLETED

 Notify that passkey entry completed.

#define BLE_GAP_SEC_MITM_BEST_EFFORT

 MITM Protection not required.

#define BLE_GAP_SEC_MITM_STRICT

 MITM Protection required.

#define BLE_GAP_KEY_DIST_ENCKEY

 LTK.

#define BLE_GAP_KEY_DIST_IDKEY

 IRK and Identity Address.

#define BLE_GAP_KEY_DIST_SIGNKEY

 CSRK.

#define BLE_GAP_ID_ADDR_SIZE

 The size of identity address.

#define BLE_GAP_IRK_SIZE

 The size of IRK.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 379 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

#define BLE_GAP_CSRK_SIZE

 The size of CSRK.

#define BLE_GAP_LTK_SIZE

 The size of LTK.

#define BLE_GAP_EDIV_SIZE

 The size of EDIV.

#define BLE_GAP_RAND_64_BIT_SIZE

 The size of Rand.

#define BLE_GAP_UNAUTH_PAIRING

 Unauthenticated pairing.

#define BLE_GAP_AUTH_PAIRING

 Authenticated pairing.

#define BLE_GAP_LEGACY_PAIRING

 Legacy pairing.

#define BLE_GAP_LESC_PAIRING

 Secure Connections.

#define BLE_GAP_BONDING_NONE

 The device doesn't support Bonding.

#define BLE_GAP_BONDING

 The device supports Bonding.

#define BLE_GAP_IOCAP_DISPLAY_ONLY

 Display Only iocapability. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 380 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

#define BLE_GAP_IOCAP_DISPLAY_YESNO

 Display Yes/No iocapability. More...

#define BLE_GAP_IOCAP_KEYBOARD_ONLY

 Keyboard Only iocapability. More...

#define BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

 No Input No Output iocapability. More...

#define BLE_GAP_IOCAP_KEYBOARD_DISPLAY

 Keyboard Display iocapability. More...

#define BLE_GAP_OOB_DATA_NOT_PRESENT

 Reply that No OOB data has been received when pairing.

#define BLE_GAP_OOB_DATA_PRESENT

 Reply that the OOB data has been received when pairing.

#define BLE_GAP_SC_BEST_EFFORT

 Accept Legacy pairing and Secure Connections.

#define BLE_GAP_SC_STRICT

 Accept only Secure Connections.

#define BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT

 Not support for Key Press Notification.

#define BLE_GAP_SC_KEY_PRESS_NTF_SPRT

 Support for Key Press Notification.

#define BLE_GAP_LEGACY_OOB_SIZE

 The size of Temporary Key for OOB in legacy pairing.

#define BLE_GAP_OOB_CONFIRM_VAL_SIZE

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 381 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

 The size of Confirmation Value for OOB in Secure Connections.

#define BLE_GAP_OOB_RANDOM_VAL_SIZE

 The size of Rand for OOB in Secure Connections.

#define BLE_GAP_SEC_DEL_LOC_NONE

 Delete no local keys.

#define BLE_GAP_SEC_DEL_LOC_IRK

 Delete local IRK.

#define BLE_GAP_SEC_DEL_LOC_CSRK

 Delete local CSRK.

#define BLE_GAP_SEC_DEL_LOC_ALL

 Delete all local keys.

#define BLE_GAP_SEC_DEL_REM_NONE

 Delete no remote device keys.

#define BLE_GAP_SEC_DEL_REM_SA

 Delete a key specified by the p_addr parameter.

#define BLE_GAP_SEC_DEL_REM_NOT_CONN

 Delete keys of not connected remote devices.

#define BLE_GAP_SEC_DEL_REM_ALL

 Delete all remote device keys.

Typedefs

typedef void(* ble_gap_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_evt_data_t *p_event_data)

 ble_gap_app_cb_t is the GAP Event callback function type. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 382 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

typedef void(* ble_gap_del_bond_cb_t) (st_ble_dev_addr_t *p_addr)

 ble_gap_del_bond_cb_t is the type of the callback function for delete
bonding information stored in non-volatile area.
This type is used in R_BLE_GAP_DeleteBondInfo(). More...

typedef
st_ble_gap_ext_adv_param_t

st_ble_gap_adv_param_t

 Advertising parameters. More...

typedef
st_ble_gap_ext_scan_param_

t

st_ble_gap_scan_param_t

 Scan parameters. More...

Enumerations

enum e_ble_gap_evt_t

 GAP Event Identifier. More...

Data Structure Documentation

◆ st_ble_evt_data_t

struct st_ble_evt_data_t

st_ble_evt_data_t is the type of the data notified in a GAP Event.

Data Fields

uint16_t param_len The size of GAP Event
parameters.

void * p_param GAP Event parameters. This
parameter differs in each GAP
Event.

◆ st_ble_dev_addr_t

struct st_ble_dev_addr_t

st_ble_dev_addr_t is the type of bluetooth device address(BD_ADDR).

Note
The BD address setting format is little endian.
If the address is "AA:BB:CC:DD:EE:FF", set the byte array in the order {0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0xAA}.

Data Fields

uint8_t addr[BLE_BD_ADDR_LEN] BD_ADDR.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 383 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

uint8_t type Bluetooth address type.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address.

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address.

◆ st_ble_gap_ext_adv_param_t

struct st_ble_gap_ext_adv_param_t

Advertising parameters.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to be set the
advertising parameters.

Valid range is 0x00 - 0x03.
In the first advertising
parameters setting, the
advertising set specified by
adv_hdl is generated.
The Advertising Set
ID(Advertising SID) of the
advertising set is same as
adv_hdl.

uint16_t adv_prop_type Advertising packet type.

Legacy advertising PDU type, or
bitwise or of Extended
advertising PDU type and
Extended advertising option.

category macro descripti
on

Legacy A
dvertisin
g PDU
type

BLE_GAP
_LEGACY
_PROP_A
DV_IND(
0x0013)

Connect
able and
scannabl
e undire
cted
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_DIRE
CT_IND(

Connect
able
directed
(low
duty

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 384 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

0x0015) cycle)
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_HDC
_DIRECT
_IND(0x0
01D)

Connect
able
directed
(high
duty
cycle)
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_SCA
N_IND(0
x0012)

Scannabl
e undire
cted
Legacy A
dvertisin
g Packet

BLE_GAP
_LEGACY
_PROP_A
DV_NON
CONN_IN
D(0x001
0)

Non-con
nectable
and non-
scannabl
e undire
cted
Legacy A
dvertisin
g Packet

Extende
d Adverti
sing PDU
type

BLE_GAP
_EXT_PR
OP_ADV_
CONN_N
OSCAN_
UNDIREC
T(0x000
1)

Connect
able and
non-scan
nable un
directed
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
CONN_N
OSCAN_
DIRECT(
0x0005)

Connect
able and
non-scan
nable
directed
(low
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR

Connect
able and

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 385 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

OP_ADV_
CONN_N
OSCAN_
HDC_DIR
ECT(0x0
00D)

non-scan
nable
directed
(high
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_SCAN_U
NDIRECT
(0x0002)

Non-con
nectable
and scan
nable un
directed
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_SCAN_D
IRECT(0x
0006)

Non-con
nectable
and scan
nable
directed
(low
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_SCAN_H
DC_DIRE
CT(0x00
0E)

Non-con
nectable
and scan
nable
directed
(high
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_NOSCA
N_UNDIR
ECT(0x0
000)

Non-con
nectable
and non-
scannabl
e undire
cted
Extende
d Adverti
sing

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 386 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_NOSCA
N_DIREC
T(0x000
4)

Non-con
nectable
and non-
scannabl
e
directed
(low
duty
cycle)
Extende
d Adverti
sing
Packet

BLE_GAP
_EXT_PR
OP_ADV_
NOCONN
_NOSCA
N_HDC_
DIRECT(
0x000C)

Non-con
nectable
and non-
scannabl
e
directed
(high
duty
cycle)
Extende
d Adverti
sing
Packet

Extende
d Adverti
sing
Option

BLE_GAP
_EXT_PR
OP_ADV_
ANONYM
OUS(0x0
020)

Omit the
advertis
er
address
from
Extende
d Adverti
sing
Packet.

BLE_GAP
_EXT_PR
OP_ADV_
INCLUDE
_TX_PO
WER(0x0
040)

Indicate
that the
advertisi
ng data
includes
TX
Power.

uint32_t adv_intv_min Minimum advertising interval.

Time(ms) = adv_intv_min *
0.625.
Valid range is 0x00000020 -
0x00FFFFFF.

uint32_t adv_intv_max Maximum Advertising interval.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 387 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Time(ms) = adv_intv_max *
0.625.
Valid range is 0x00000020 -
0x00FFFFFF.

uint8_t adv_ch_map The adv_ch_map is channels
used in advertising with
primary advertising channels.

It is a bitwise OR of the
following values.

macro description

BLE_GAP_ADV
_CH_37(0x01)

Use 37 CH.

BLE_GAP_ADV
_CH_38(0x02)

Use 38 CH.

BLE_GAP_ADV
_CH_39(0x04)

Use 39 CH.

BLE_GAP_ADV
_CH_ALL(0x07
)

Use 37 - 39
CH.

uint8_t o_addr_type Own BD Address Type.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

BLE_GAP_ADD
R_RPA_ID_RA
NDOM(0x03)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
the random

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 388 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

address
specified by
the o_addr
field is used.

uint8_t o_addr[BLE_BD_ADDR_LEN] Random address set to the
advertising set, when the
o_addr_type field is
BLE_GAP_ADDR_RAND.

When the o_addr_type field is
other than
BLE_GAP_ADDR_RAND, this field
is ignored.

Note
The BD address setting format
is little endian.
If the address is
"AA:BB:CC:DD:EE:FF", set
the byte array in the order
{0xFF, 0xEE, 0xDD, 0xCC,
0xBB, 0xAA}.

uint8_t p_addr_type Peer address type.

When the Advertising PDU type
is other than directed or the
o_addr_type is
BLE_GAP_ADDR_PUBLIC or
BLE_GAP_ADDR_RAND,this field
is ignored.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

uint8_t p_addr[BLE_BD_ADDR_LEN] Peer address.

When the Advertising PDU type
is other than directed or the
o_addr_type is
BLE_GAP_ADDR_PUBLIC or
BLE_GAP_ADDR_RAND,this field
is ignored.

Note
The BD address setting format
is little endian.
If the address is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 389 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

"AA:BB:CC:DD:EE:FF", set
the byte array in the order
{0xFF, 0xEE, 0xDD, 0xCC,
0xBB, 0xAA}.

uint8_t filter_policy Advertising Filter Policy.
macro description

BLE_GAP_ADV
_ALLOW_SCA
N_ANY_CONN_
ANY(0x00)

Process scan
and
connection
requests from
all devices.

BLE_GAP_ADV
_ALLOW_SCA
N_WLST_CON
N_ANY(0x01)

Process
connection
requests from
all devices
and scan
requests from
only devices
that are in the
White List.

BLE_GAP_ADV
_ALLOW_SCA
N_ANY_CONN_
WLST(0x02)

Process scan
requests from
all devices
and
connection
requests from
only devices
that are in the
White List.

BLE_GAP_ADV
_ALLOW_SCA
N_WLST_CON
N_WLST(0x03
)

Process scan
and
connection
requests from
only devices
in the White
List.

uint8_t adv_phy Primary ADV PHY.

In this parameter, only 1M PHY
and Coded PHY can be
specified, and 2M PHY cannot
be specified.

macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Primary
Advertising
PHY.
When the
adv_prop_typ

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 390 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

e field is
Legacy
Advertising
PDU type,
this field shall
be set to BLE_
GAP_ADV_PHY
_1M.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY(S=8) as
Primary
Advertising
PHY. Coding
scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t sec_adv_max_skip Secondary ADV Max Skip.

Valid range is 0x00 - 0xFF.
When this field is 0x00,
AUX_ADV_IND is sent before the
next advertising event.
When the adv_prop_type field is
Legacy Advertising PDU, this
field is ignored.

uint8_t sec_adv_phy Secondary ADV Phy.

When the adv_prop_type is
Legacy Advertising PDU, this
field is ignored.

macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Secondary
Advertising
PHY.

BLE_GAP_ADV
_PHY_2M(0x0
2)

Use 2M PHY
as Secondary
Advertising
PHY.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY(S=8) as
Secondary
Advertising
PHY.

Coding scheme is configured by
R_BLE_VS_SetCodingScheme().

uint8_t scan_req_ntf_flag Scan Request Notifications Flag.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 391 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

When the adv_prop_type field is
non-scannable Advertising PDU,
this field is ignored.

macro description

BLE_GAP_SCA
N_REQ_NTF_D
ISABLE(0x00)

Disable Scan
Request
Notification.

BLE_GAP_SCA
N_REQ_NTF_E
NABLE(0x01)

Enable Scan
Request
Notification.
When a Scan
Request
Packet from
Scanner has
been
received, the
BLE_GAP_EVE
NT_SCAN_REQ
_RECV event
is notified.

◆ st_ble_gap_adv_data_t

struct st_ble_gap_adv_data_t

Advertising data/scan response data/periodic advertising data.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to be set
advertising data/scan
response/periodic advertising
data.

Valid range is 0x00 - 0x03.

uint8_t data_type Data type.
macro description

BLE_GAP_ADV
_DATA_MODE
(0x00)

Advertising
data.

BLE_GAP_SCA
N_RSP_DATA_
MODE(0x01)

Scan
response
data.

BLE_GAP_PER
D_ADV_DATA_
MODE(0x02)

Periodic
advertising
data.

uint16_t data_length The length of advertising

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 392 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

data/scan response
data/periodic advertising data
(in bytes).

In case of Legacy Advertising
PDU, the length is 0 - 31 bytes.
In case of Extended Advertising
PDU, the length is 0 - 1650
bytes.
Note that the length of the
advertising data/scan response
data in the BLE_MAX_NO_OF_A
DV_SETS_SUPPORTED number
of the advertising sets may not
exceed the buffer size(4250
bytes) in Controller.

In case of periodic advertising
data, the length is 0 - 1650
bytes.
Note that the length of the
periodic advertising data in the
BLE_MAX_NO_OF_ADV_SETS_SU
PPORTED number of the
advertising sets may not
exceed the buffer size(4306
bytes) in Controller.

When this field is 0, the
operations specified by the
zero_length_flag is executed.

uint8_t * p_data Advertising data/scan response
data/periodic advertising data.

When the data_length field is 0,
this field is ignored.

uint8_t zero_length_flag Operation when the
data_length field is 0.

If the data_length is other than
0, this field is ignored.

macro description

BLE_GAP_DAT
A_0_CLEAR(0x
01)

Clear the
advertising
data/scan
response
data/periodic
advertising
data in the
advertising
set.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 393 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_GAP_DAT
A_0_DID_UPD(
0x02)

Update
Advertising
DID without
changing
advertising
data. If the
data_type
field is BLE_G
AP_ADV_DATA
_MODE, this
value is
allowed.

◆ st_ble_gap_perd_adv_param_t

struct st_ble_gap_perd_adv_param_t

Periodic advertising parameter.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to be set
periodic advertising parameter.

Valid range is 0x00 - 0x03.

uint16_t prop_type Periodic ADV Properties.

The prop_type field is set to the
following values.
If the type of the periodic
advertising data cannot be
applied from the following, set
0x0000.

macro description

BLE_GAP_PER
D_PROP_TX_P
OWER(0x0040
)

Indicate that
periodic
advertising
data includes
Tx Power.

uint16_t perd_intv_min Minimum Periodic Advertising
Interval.

Time(ms) = perd_intv_min *
1.25.
Valid range is 0x0006 - 0xFFFF.

uint16_t perd_intv_max Maximum Periodic Advertising
Interval.

Time(ms) = perd_intv_max *
1.25.
Valid range is 0x0006 - 0xFFFF.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 394 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ st_ble_gap_scan_phy_param_t

struct st_ble_gap_scan_phy_param_t

Scan parameters per scan PHY.

In case of start scanning with both 1M PHY and Coded PHY, adjust scan windows and scan intervals
according to the following.
p_phy_param_1M->scan_window / p_phy_param_1M->scan_intv +
p_phy_param_coded->scan_window / p_phy_param_coded->scan_intv <= 1

Data Fields

uint8_t scan_type Scan type.
macro description

BLE_GAP_SCA
N_PASSIVE(0x
00)

Passive Scan.

BLE_GAP_SCA
N_ACTIVE(0x0
1)

Active Scan.

uint16_t scan_intv Scan interval.

interval(ms) = scan_intv *
0.625.
Valid range is 0x0000 and
0x0004 - 0xFFFF.

uint16_t scan_window Scan window.

window(ms) = scan_window *
0.625.
Valid range is 0x0000 and
0x0004 - 0xFFFF.

◆ st_ble_gap_ext_scan_param_t

struct st_ble_gap_ext_scan_param_t

Scan parameters.

Data Fields

uint8_t o_addr_type Own BD Address Type.

In case of passive scan, this
field is ignored.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 395 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

BLE_GAP_ADD
R_RPA_ID_RA
NDOM(0x03)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
the random
address set
by
R_BLE_GAP_S
etRandAddr()
is used.

uint8_t filter_policy Scan Filter Policy.
macro description

BLE_GAP_SCA
N_ALLOW_AD
V_ALL(0x00)

Accept all
advertising
and scan
response
PDUs except
directed
advertising
PDUs not
addressed to
local device.

BLE_GAP_SCA
N_ALLOW_AD
V_WLST(0x01)

Accept only
advertising
and scan
response
PDUs from
remote
devices
whose
address is
registered in
the White List.
Directed
advertising
PDUs which
are not
addressed to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 396 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

local device is
ignored.

BLE_GAP_SCA
N_ALLOW_AD
V_EXCEPT_DI
RECTED(0x02
)

Accept all
advertising
and scan
response
PDUs except
directed
advertising
PDUs whose
the target
address is
identity
address but
doesn't
address local
device.
However
directed
advertising
PDUs whose
the target
address is the
local
resolvable
private
address are
accepted.

BLE_GAP_SCA
N_ALLOW_AD
V_EXCEPT_DI
RECTED_WLS
T(0x03)

Accept all
advertising
and scan
response
PDUs.
The following
are excluded.

Advert
ising
and
scan r
espon
se
PDUs
where
the ad
vertise
r's
identit
y addr
ess is
not in
the
White

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 397 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

List.
Direct
ed adv
ertisin
g
PDUs
whose
the
target
addres
s is
identit
y addr
ess
but
doesn'
t addr
ess
local
device
. Howe
ver dir
ected
advert
ising
PDUs
whose
the
target
addres
s is
the
local r
esolva
ble
privat
e addr
ess
are ac
cepted
.

st_ble_gap_scan_phy_param_t * p_phy_param_1M Scan parameters 1M PHY.

When this field is NULL,
Controller doesn't set the scan
parameters for 1M PHY.

st_ble_gap_scan_phy_param_t * p_phy_param_coded Scan parameters Coded PHY.

When this field is NULL,
Controller doesn't set the scan
parameters for Coded PHY.

◆ st_ble_gap_scan_on_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 398 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

struct st_ble_gap_scan_on_t

Parameters configured when scanning starts.

Data Fields

uint8_t proc_type Procedure type.
macro description

BLE_GAP_SC_
PROC_OBS(0x
00)

Observation
Procedure.
Notify all
advertising
PDUs.

BLE_GAP_SC_
PROC_LIM(0x0
1)

Limited
Discovery
Procedure.
Notify
advertising
PDUs from
only devices
in the limited
discoverable
mode.

BLE_GAP_SC_
PROC_GEN(0x
02)

General
Discovery
Procedure.
Notify
advertising
PDUs from
devices in the
limited
discoverable
mode and the
general
discoverable
mode.

uint8_t filter_dups Filter duplicates.
macro description

BLE_GAP_SCA
N_FILT_DUPLI
C_DISABLE(0x
00)

Duplicate
filter disabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE(0x
01)

Duplicate
filter enabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE_FO
R_PERIOD(0x0
2)

Duplicate
filtering
enabled, reset
for each scan
period

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 399 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

uint16_t duration Scan duration.

Time(ms) = duration * 10.
Valid range is 0x0000 - 0xFFFF.
If this field is set to 0x0000,
scanning is continued until
R_BLE_GAP_StopScan() is
called.
When the period field is zero
and the time specified the
duration field expires,
BLE_GAP_EVENT_SCAN_TO
event notifies the application
layer that scanning stops.

uint16_t period Scan period.

Time(s) = N * 1.28.
Valid range is 0x0000 - 0xFFFF.
If the duration field is set to
0x0000, this field is ignored.

◆ st_ble_gap_conn_param_t

struct st_ble_gap_conn_param_t

Connection parameters included in connection interval, slave latency, supervision timeout, ce
length.

This structure is used in R_BLE_GAP_CreateConn() and R_BLE_GAP_UpdConn().

Set the fields in this structure to match the following condition.

Supervision_timeout(ms) >= (1 + conn_latency) * conn_intv_max_Time(ms)

conn_intv_max_Time(ms) = conn_intv_max * 1.25 Supervision_timeout(ms) = sup_to * 10

Data Fields

uint16_t conn_intv_min Minimum connection interval.

Time(ms) = conn_intv_min *
1.25.
Valid range is 0x0006 -
0x0C80.

uint16_t conn_intv_max Maximum connection interval.

Time(ms) = conn_intv_max *
1.25.
Valid range is 0x0006 -
0x0C80.

uint16_t conn_latency Slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Supervision timeout.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 400 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Time(ms) = sup_to * 10.
Valid range is 0x000A -
0x0C80.

uint16_t min_ce_length Minimum CE Length.

Valid range is 0x0000 - 0xFFFF.

uint16_t max_ce_length Maximum CE Length.

Valid range is 0x0000 - 0xFFFF.

◆ st_ble_gap_conn_phy_param_t

struct st_ble_gap_conn_phy_param_t

Connection parameters per PHY.

Data Fields

uint16_t scan_intv Scan interval.

Time(ms) = scan_intv * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t scan_window Scan window.

Time(ms) = scan_window *
0.625.
Valid range is 0x0004 - 0xFFFF.

st_ble_gap_conn_param_t * p_conn_param Connection interval, slave
latency, supervision timeout,
and CE length.

◆ st_ble_gap_create_conn_param_t

struct st_ble_gap_create_conn_param_t

Connection parameters used in R_BLE_GAP_CreateConn().

Data Fields

uint8_t init_filter_policy This field specifies whether the
White List is used or not, when
connecting with a remote
device.

macro description

BLE_GAP_INIT
_FILT_USE_AD
DR(0x00)

White List is
not used.
The remote
device to be
connected is
specified by
the
remote_bd_ad
dr field and
the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 401 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

remote_bd_ad
dr_type field
is used.

BLE_GAP_INIT
_FILT_USE_WL
ST(0x01)

White List is
used.
The remote
device
registered in
White List is
connected
with local
device.
The
remote_bd_ad
dr field and
the
remote_bd_ad
dr_type field
are ignored.

uint8_t remote_bd_ad
dr[BLE_BD_ADDR_LEN]

Address of the device to be
connected.

Note
The BD address setting format
is little endian.
If the address is
"AA:BB:CC:DD:EE:FF", set
the byte array in the order
{0xFF, 0xEE, 0xDD, 0xCC,
0xBB, 0xAA}.

uint8_t remote_bd_addr_type Address type of the device to
be connected.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address or
Public Identity
Address

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address or
Random
(Static)
Identity
Address

uint8_t own_addr_type Address type which local device
uses in creating a link with the
remote device.

macro description

BLE_GAP_ADD
R_PUBLIC(0x0

Public
Address

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 402 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

0)

BLE_GAP_ADD
R_RAND(0x01
)

Random
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

BLE_GAP_ADD
R_RPA_ID_RA
NDOM(0x03)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
the random
address set
by
R_BLE_GAP_S
etRandAddr().

st_ble_gap_conn_phy_param_t * p_conn_param_1M Connection parameters for 1M
PHY.

If this field is set to NULL, 1M
PHY is not used in connecting.

st_ble_gap_conn_phy_param_t * p_conn_param_2M Connection parameters for 2M
PHY.

If this field is set to NULL, 2M
PHY is not used in connecting.

st_ble_gap_conn_phy_param_t * p_conn_param_coded Connection parameters for
Coded PHY.

If this field is set to NULL,
Coded PHY is not used in
connecting.

◆ st_ble_gap_rslv_list_key_set_t

struct st_ble_gap_rslv_list_key_set_t

IRK of a remote device and IRK type of local device used in R_BLE_GAP_ConfRslvList().

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 403 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

uint8_t remote_irk[BLE_GAP_IRK_SIZE] IRK of a remote device to be
registered in the Resolving List.

uint8_t local_irk_type IRK type of the local device to
be registered in the Resolving
List.
macro description

BLE_GAP_RL_L
OC_KEY_ALL_
ZERO(0x00)

All-zero IRK.

BLE_GAP_RL_L
OC_KEY_REGI
STERED(0x01)

The IRK
registered by
R_BLE_GAP_S
etLocIdInfo().

◆ st_ble_gap_set_phy_param_t

struct st_ble_gap_set_phy_param_t

PHY configuration parameters used in R_BLE_GAP_SetPhy().

Data Fields

uint8_t tx_phys Transmitter PHY preference.

The tx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Use 1M PHY
for
Transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Use 2M PHY
for
Transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Use Coded
PHY for
Transmitter
PHY.

uint8_t rx_phys Receiver PHY preference.

The rx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 404 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Use 1M PHY
for Receiver
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Use 2M PHY
for Receiver
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Use Coded
PHY for
Receiver PHY.

uint16_t phy_options Coding scheme used in Coded
PHY.

Select one of the following.

macro description

BLE_GAP_SET
_PHYS_OP_HO
ST_NO_PREF(
0x00)

No preferred
coding.

BLE_GAP_SET
_PHYS_OP_HO
ST_PREF_S_2(
0x01)

Use S=2
coding.

BLE_GAP_SET
_PHYS_OP_HO
ST_PREF_S_8(
0x02)

Use S=8
coding.

◆ st_ble_gap_set_def_phy_param_t

struct st_ble_gap_set_def_phy_param_t

PHY preferences which allows a remote device to set used in R_BLE_GAP_SetDefPhy().

Data Fields

uint8_t tx_phys Transmitter PHY preferences
which a remote device may
change.

The tx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

BLE_GAP_SET
_PHYS_HOST_

Allow a
remote device

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 405 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

PREF_1M(0x0
1)

to set 1M PHY
for
transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Allow a
remote device
to set 2M PHY
for
transmitter
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Allow a
remote device
to set Coded
PHY for
transmitter
PHY.

uint8_t rx_phys Receiver PHY preferences which
a remote device may change.

The rx_phys field is set to a
bitwise OR of the following
values. All other values are
ignored.

macro description

BLE_GAP_SET
_PHYS_HOST_
PREF_1M(0x0
1)

Allow a
remote device
to set 1M PHY
for receiver
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_2M(0x0
2)

Allow a
remote device
to set 2M PHY
for receiver
PHY.

BLE_GAP_SET
_PHYS_HOST_
PREF_CD(0x0
4)

Allow a
remote device
to set Coded
PHY for
receiver PHY.

◆ st_ble_gap_auth_info_t

struct st_ble_gap_auth_info_t

Pairing parameters required from a remote device or information about keys distributed from a
remote device.

Data Fields

uint8_t security Security level.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 406 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

value description

0x01 The remote
device
requests Unau
thenticated
pairing.

0x02 The remote
device
requests
Authenticated
pairing.

uint8_t pair_mode Pairing mode.
value description

0x01 The remote
device
requests
Legacy
pairing.

0x02 The remote
device
requests
Secure
Connections.

uint8_t bonding Bonding policy.
value description

0x00 The remote
device does
not store the
Bonding
information.

0x01 The remote
device stores
the Bonding
information.

uint8_t ekey_size Encryption key size.

◆ st_ble_gap_key_dist_t

struct st_ble_gap_key_dist_t

Keys distributed from a remote device.

Data Fields

uint8_t enc_info[BLE_GAP_LTK_SIZE] LTK.

uint8_t mid_info[BLE_GAP_EDIV_SIZE
+BLE_GAP_RAND_64_BIT_SIZE]

Ediv and rand. The first two
bytes is ediv, the remaining
bytes are rand.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 407 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

uint8_t id_info[BLE_GAP_IRK_SIZE] IRK.

uint8_t id_addr_info[
BLE_GAP_ID_ADDR_SIZE]

Identity address. The first byte
is address type. The remaining
bytes are device address.

uint8_t sign_info[BLE_GAP_CSRK_SIZE] CSRK.

◆ st_ble_gap_key_ex_param_t

struct st_ble_gap_key_ex_param_t

This structure includes the distributed keys and negotiated LTK size.

Data Fields

st_ble_gap_key_dist_t * p_keys_info Key information.

uint8_t keys Type of the distributed keys.

This field is a bitwise OR of the
following values.

Bit Number description

0 LTK and
Master
Identification.
LTK is
distributed in
Secure
Connections,
even if the bit
is 1.

1 IRK and
Identity
Address
Information.

2 CSRK

uint8_t ekey_size The negotiated LTK size.

◆ st_ble_gap_pairing_param_t

struct st_ble_gap_pairing_param_t

Pairing parameters used in R_BLE_GAP_SetPairingParams().

Data Fields

uint8_t iocap IO capabilities of local device.

Select one of the following.

macro description

BLE_GAP_IOC Output

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 408 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

AP_DISPLAY_O
NLY(0x00)

function :
Local device
has the ability
to display a 6
digit decimal
number.
Input function
: None

BLE_GAP_IOC
AP_DISPLAY_Y
ESNO(0x01)

Output
function :
Output
function :
Local device
has the ability
to display a 6
digit decimal
number.
Input function
: Local device
has the ability
to indicate
'yes' or 'no'

BLE_GAP_IOC
AP_KEYBOAR
D_ONLY(0x02)

Output
function :
None
Input function
: Local device
has the ability
to input the
number '0' -
'9'.

BLE_GAP_IOC
AP_NOINPUT_
NOOUTPUT(0x
03)

Output
function :
None
Input function
: None

BLE_GAP_IOC
AP_KEYBOAR
D_DISPLAY(0x
04)

Output
function :
Output
function :
Local device
has the ability
to display a 6
digit decimal
number.
Input function
: Local device
has the ability

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 409 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

to input the
number '0' -
'9'.

uint8_t mitm MITM protection policy.

Select one of the following.

macro description

BLE_GAP_SEC
_MITM_BEST_
EFFORT(0x00)

MITM
Protection not
required.

BLE_GAP_SEC
_MITM_STRICT
(0x01)

MITM
Protection
required.

uint8_t bonding Bonding policy.
macro description

BLE_GAP_BON
DING_NONE(0
x00)

Local device
doesn't stores
Bonding
information.

BLE_GAP_BON
DING (0x01)

Local device
stores
Bonding
information.

uint8_t max_key_size Maximum LTK size(in bytes).

Valid range is 7 - 16.
This field shall be set to a value
not less than the min_key_size
field.

uint8_t min_key_size Minimum LTK size(in bytes).

Valid range is 7 - 16.
This field shall be set to a value
not more than the
max_key_size field.

uint8_t loc_key_dist Type of keys to be distributed
from local device.

The loc_key_dist field is set to a
bitwise OR of the following
values.

macro description

BLE_GAP_KEY
_DIST_ENCKEY

LTK

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 410 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

(0x01)

BLE_GAP_KEY
_DIST_IDKEY(0
x02)

IRK and
Identity
Address.

BLE_GAP_KEY
_DIST_SIGNKE
Y(0x04)

CSRK

uint8_t rem_key_dist Type of keys which local device
requests a remote device to
distribute.

The rem_key_dist field is set to
a bitwise OR of the following
values.

macro description

BLE_GAP_KEY
_DIST_ENCKEY
(0x01)

LTK. In case of
Secure
Connections,
LTK is notified
even if this bit
is not set.

BLE_GAP_KEY
_DIST_IDKEY(0
x02)

IRK and
Identity
Address.

BLE_GAP_KEY
_DIST_SIGNKE
Y(0x04)

CSRK

uint8_t key_notf Support for Key Press
Notification in Passkey Entry.
macro description

BLE_GAP_SC_
KEY_PRESS_N
TF_NOT_SPRT(
0x00)

Not support
for Key Press
Notification.

BLE_GAP_SC_
KEY_PRESS_N
TF_SPRT(0x01
)

Support for
Key Press
Notification.

uint8_t sec_conn_only Determine whether to accept
only Secure Connections or not.
macro description

BLE_GAP_SC_
BEST_EFFORT
(0x00)

Accept
Legacy
pairing and
Secure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 411 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Connections.

BLE_GAP_SC_
STRICT(0x01)

Accept only
Secure
Connections.

◆ st_ble_gap_oob_data_t

struct st_ble_gap_oob_data_t

Oob data received from the remote device. This is used in R_BLE_GAP_SetRemOobData().

Data Fields

uint8_t legacy_oob[
BLE_GAP_LEGACY_OOB_SIZE]

OOB data used in Legacy
Pairing.

uint8_t sc_cnf_val[
BLE_GAP_OOB_CONFIRM_VAL_S
IZE]

OOB confirmation value used in
Secure Connections.

uint8_t sc_rand[
BLE_GAP_OOB_RANDOM_VAL_SI
ZE]

OOB rand used in Secure
Connections.

◆ st_ble_gap_ver_num_t

struct st_ble_gap_ver_num_t

Version number of host stack.

Data Fields

uint8_t major Major version number.

uint8_t minor Minor version number.

uint8_t subminor Subminor version number.

◆ st_ble_gap_loc_ver_info_t

struct st_ble_gap_loc_ver_info_t

Version number of Controller.

Refer Bluetooth SIG Assigned
Number(https://www.bluetooth.com/specifications/assigned-numbers).

Data Fields

uint8_t hci_ver Bluetooth HCI version.

uint16_t hci_rev Bluetooth HCI revision.

uint8_t lmp_ver Link Layer revision.

uint16_t mnf_name Manufacturer ID.

uint16_t lmp_sub_ver Link Layer subversion.

◆ st_ble_gap_loc_dev_info_evt_t

struct st_ble_gap_loc_dev_info_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 412 / 2,794

https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Version information of local device.

Data Fields

st_ble_dev_addr_t l_dev_addr Bluetooth Device Address.

st_ble_gap_ver_num_t l_ver_num Version number of host stack in
local device.

st_ble_gap_loc_ver_info_t l_bt_info Version number of Controller in
local device.

◆ st_ble_gap_hw_err_evt_t

struct st_ble_gap_hw_err_evt_t

Hardware error that is notified from Controller.

Data Fields

uint8_t hw_code The hw_code field indicates the
cause of the hardware error.

◆ st_ble_gap_cmd_err_evt_t

struct st_ble_gap_cmd_err_evt_t

HCI Command error.

Data Fields

uint16_t op_code The opcode of HCI Command
which caused the error.

uint32_t module_id Module ID which caused the
error.

◆ st_ble_gap_adv_rept_t

struct st_ble_gap_adv_rept_t

Advertising Report.

Data Fields

uint8_t num The number of Advertising
Reports received.

uint8_t adv_type Type of Advertising Packet.
valuer description

0x00 Connectable
and scannable
undirected ad
vertising(ADV
_IND).

0x01 Connectable
directed adve
rtising(ADV_DI
RECT_IND).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 413 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

0x02 Scannable
undirected ad
vertising(ADV
_SCAN_IND).

0x03 Non-
connectable
undirected ad
vertising(ADV
_NONCONN_I
ND).

0x04 Scan respons
e(SCAN_RSP).

uint8_t addr_type Address type of the advertiser.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

uint8_t * p_addr Address of the advertiser.

Note
The BD address setting format
is little endian.

uint8_t len Length of Advertising data(in
bytes).

Valid range is 0 - 31.

int8_t rssi RSSI(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If the tx_pwr is 127, it means
that RSSI could not be
retrieved.

uint8_t * p_data Advertising data/Scan Response
Data.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 414 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ st_ble_gap_ext_adv_rept_t

struct st_ble_gap_ext_adv_rept_t

Extended Advertising Report.

Data Fields

uint8_t num The number of Advertising
Reports received.

uint16_t adv_type Type of Advertising Packet.
Bit Number description

0 Connectable
advertising.

1 Scannable
advertising.

2 Directed
advertising.

3 Scan
response.

4 Legacy
advertising
PDU.

5-6 The status of
Advertising
Data/Scan
Response
Data.
Data Status:
00b =
Complete
01b =
Incomplete,
more data
come
10b =
Incomplete,
data
truncated, no
more to come

All other bits Reserved for
future use

uint8_t addr_type Address type of the advertiser.
value description

0x00 Public
Address.

0x01 Random

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 415 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Address.

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

0xFF Anonymous
advertisement
.

uint8_t * p_addr Address of the advertiser.

Note
The BD address setting format
is little endian.

uint8_t adv_phy The primary PHY configuration
of the advertiser.

The primary PHY configuration
of the advertiser.

value description

0x01 1M PHY

0x03 Coded PHY

uint8_t sec_adv_phy The secondary PHY
configuration of the advertiser.
value description

0x00 Nothing has
been received
with
Secondary
Advertising
Channel.

0x01 The
Secondary
Advertising
PHY
configuration
was 1M PHY.

0x02 The
Secondary
Advertising

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 416 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

PHY
configuration
was 2M PHY.

0x03 The
Secondary
Advertising
PHY
configuration
was Coded
PHY.

uint8_t adv_sid Advertising SID included in the
received Advertising Report.

Valid range is 0 <= adv_sid <=
0x0F and 0xFF.
If the adv_sid is 0xFF, there is
no field which includes SID.

int8_t tx_pwr TX power(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If the tx_pwr is 127, it means
that Tx power could not be
retrieved.

int8_t rssi RSSI(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If the tx_pwr is 127, it means
that RSSI could not be
retrieved.

uint16_t perd_adv_intv Periodic Advertising interval.

If the perd_adv_intv is 0x0000,
it means that this advertising is
not periodic advertising.
If the perd_adv_intv is 0x0006 -
0xFFFF, it means that this field
is the Periodic Advertising
interval.
Periodic Advertising interval =
per_adv_intr * 1.25ms.

uint8_t dir_addr_type The address type of Direct
Advertising PDU.
value description

0x00 Public
Address.

0x01 Random
Address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 417 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

0xFE Resolvable
Privacy
Address which
could not be
resolved in
Controller.

uint8_t * p_dir_addr Address of Direct Advertising
PDU.

Note
The BD address setting format
is little endian.

uint8_t len Length of Advertising data(in
bytes).

Valid range is 0 - 229.

uint8_t * p_data Advertising data/Scan Response
Data.

◆ st_ble_gap_perd_adv_rept_t

struct st_ble_gap_perd_adv_rept_t

Periodic Advertising Report.

Data Fields

uint16_t sync_hdl Sync handle.

Valid range is 0x0000 - 0x0EFF.

int8_t tx_pwr TX power(in dBm).

Valid range is -127 <= tx_pwr
<= 20 and 127.
If tx_pwr is 127, it means that
Tx power could not be
retrieved.

int8_t rssi RSSI(in dBm).

Valid range is -127 <= rssi <=

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 418 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

20 and 127.
If rssi is 127, it means that RSSI
could not be retrieved.

uint8_t rfu Reserved for future use.

uint8_t data_status Reserved for future use.
value description

0x00 Data
Complete.

0x01 Data
incomplete,
more data to
come.

0x02 Data
incomplete,
data
truncated, no
more to
come.

uint8_t len Length of Periodic Advertising
data(in bytes).

Valid range is 0 - 247.

uint8_t * p_data Periodic Advertising data.

◆ st_ble_gap_adv_rept_evt_t

struct st_ble_gap_adv_rept_evt_t

Advertising report.

Data Fields

uint8_t adv_rpt_type Data type.
value description

0x00 Advertising
Report.

0x01 Extended
Advertising
Report.

0x02 Periodic
Advertising
Report.

If the BLE Protocol Stack library
type is "extended", the
adv_rpt_type field in a Legacy
Advertising Report event is
0x01.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 419 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

union
st_ble_gap_adv_rept_evt_t

param Advertising Report.

◆ st_ble_gap_adv_rept_evt_t.param

union st_ble_gap_adv_rept_evt_t.param

Advertising Report.

Data Fields

st_ble_gap_adv_rept_t * p_adv_rpt Advertising Report.

st_ble_gap_ext_adv_rept_t * p_ext_adv_rpt Extended Advertising Report.

st_ble_gap_perd_adv_rept_t * p_per_adv_rpt Periodic Advertising Report.

◆ st_ble_gap_adv_set_evt_t

struct st_ble_gap_adv_set_evt_t

Advertising handle.

Data Fields

uint8_t adv_hdl Advertising handle specifying
the advertising set configured
advertising parameters.

◆ st_ble_gap_adv_off_evt_t

struct st_ble_gap_adv_off_evt_t

Information about the advertising set which stops advertising.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set which has
stopped advertising.

Valid range is 0x00 - 0x03.

uint8_t reason The reason for stopping
advertising.

value description

0x01 Advertising
has been
stopped by
R_BLE_GAP_St
opAdv().

0x02 Because the
duration
specified by
R_BLE_GAP_St
artAdv() was
expired,
advertising

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 420 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

has
terminated.

0x03 Because the
max_extd_adv
_evts
parameter
specified by
R_BLE_GAP_St
artAdv() was
reached,
advertising
has
terminated.

0x04 Because the
connection
was
established
with the
remote
device,
advertising
has
terminated.

uint16_t conn_hdl Connection handle.

If the reason field is 0x04, this
field indicates connection
handle identifying the remote
device connected with local
device. If other reasons, ignore
this field.

uint8_t num_comp_ext_adv_evts The number of the advertising
event that has been received
until advertising has
terminated.

If max_extd_adv_evts by
R_BLE_GAP_StartAdv() is not 0,
this parameter is valid.

◆ st_ble_gap_adv_data_evt_t

struct st_ble_gap_adv_data_evt_t

This structure notifies that advertising data has been set to Controller by
R_BLE_GAP_SetAdvSresData().

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set to which
advertising data/scan response
data/periodic advertising data
is set.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 421 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

uint8_t data_type Type of the data set to the
advertising set.
value description

BLE_GAP_ADV
_DATA_MODE(
0x00)

Advertising
data

BLE_GAP_SCA
N_RSP_DATA_
MODE(0x01)

Scan
response data

BLE_GAP_PER
D_ADV_DATA_
MODE(0x02)

Periodic
advertising
data

◆ st_ble_gap_rem_adv_set_evt_t

struct st_ble_gap_rem_adv_set_evt_t

This structure notifies that an advertising set has been removed.

Data Fields

uint8_t remove_op This field indicates that the
advertising set has been
removed or cleared.
value description

0x01 The
advertising
set has been
removed.

0x02 The
advertising
set has been
cleared.

uint8_t adv_hdl Advertising handle identifying
the advertising set which has
been removed.

If the advertising set has been
cleared, this field is ignored.

◆ st_ble_gap_conn_evt_t

struct st_ble_gap_conn_evt_t

This structure notifies that a link has been established.

Data Fields

uint16_t conn_hdl Connection handle identifying
the created link.

uint8_t role The role of the link.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 422 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

value description

0x00 Master

0x01 Slave

uint8_t remote_addr_type Address type of the remote
device.

value description

0x00 Public
Address

0x01 Random
Address

0x02 Public Identity
Address.
It indicates
that the
Controller
could resolve
the resolvable
private
address of the
remote
device.

0x03 Random
Identity
Address.
It indicates
that the
Controller
could resolve
the resolvable
private
address of the
remote
device.

uint8_t remote_addr[
BLE_BD_ADDR_LEN]

Address of the remote device.

Note
The BD address setting format
is little endian.

uint8_t local_rpa[BLE_BD_ADDR_LEN] Resolvable private address that
local device used in connection
procedure.

The local device address used
in creating the link when the
address type was set to
BLE_GAP_ADDR_RPA_ID_PUBLIC
or BLE_GAP_ADDR_RPA_ID_RAN
DOM by

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 423 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

R_BLE_GAP_SetAdvParam() or
R_BLE_GAP_CreateConn(). If the
address type was set to other
than
BLE_GAP_ADDR_RPA_ID_PUBLIC
and BLE_GAP_ADDR_RPA_ID_RA
NDOM, this field is set to all-
zero.

Note
The BD address setting format
is little endian.

uint8_t remote_rpa[BLE_BD_ADDR_LEN
]

Resolvable private address that
the remote device used in
connection procedure.

This field indicates the remote
resolvable private address
when remote_addr_type is 0x02
or 0x03. If remote_addr_type is
other than 0x02 and 0x03, this
field is set to all-zero.

Note
The BD address setting format
is little endian.

uint16_t conn_intv Connection interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv * 1.25.

uint16_t conn_latency Slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Supervision timeout.

Valid range is 0x000A -
0x0C80.Time(ms) = sup_to *
10.

uint8_t clk_acc Master_Clock_Accuracy.
value description

0x00 500ppm

0x01 250ppm

0x02 150ppm

0x03 100ppm

0x04 75ppm

0x05 50ppm

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 424 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

0x06 30ppm

0x07 20ppm

◆ st_ble_gap_disconn_evt_t

struct st_ble_gap_disconn_evt_t

This structure notifies that a link has been disconnected.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link disconnected.

uint8_t reason The reason for disconnection.

Refer Core Specification Vol.2
Part D ,"2 Error Code
Descriptions".

◆ st_ble_gap_rd_ch_map_evt_t

struct st_ble_gap_rd_ch_map_evt_t

This structure notifies that Channel Map has been retrieved by R_BLE_GAP_ReadChMap().

Data Fields

uint16_t conn_hdl Connection handle identifying
the link whose Channel Map
was retrieved.

uint8_t ch_map[BLE_GAP_CH_MAP_SIZE
]

Channel Map.

◆ st_ble_gap_rd_rssi_evt_t

struct st_ble_gap_rd_rssi_evt_t

This structure notifies that RSSI has been retrieved by R_BLE_GAP_ReadRssi().

Data Fields

uint16_t conn_hdl Connection handle identifying
the link whose RSSI was
retrieved.

int8_t rssi RSSI(in dBm).

Valid range is -127 < rssi < 20
and 127.
If this field is 127, it indicates
that RSSI could not be
retrieved.

◆ st_ble_gap_dev_info_evt_t

struct st_ble_gap_dev_info_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 425 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

This structure notifies that information about remote device has been retrieved by
R_BLE_GAP_GetRemDevInfo().

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device whose
information has been retrieved.

uint8_t get_status Information about the remote
device. This field is a bitwise OR
of the following values.
Bit Number description

bit0 Address

bit1 Version,
company_id,
subversion

bit2 Feature

All other bits Reserved for
future use

st_ble_dev_addr_t addr Address of the remote device.

uint8_t version The version of Link Layer of the
remote device.

Refer to Bluetooth SIG Assigned
Number
(
https://www.bluetooth.com/spe
cifications/assigned-numbers)
regarding defined number.

uint16_t company_id The manufacturer ID of the
remote device.

Refer to Bluetooth SIG Assigned
Number
(
https://www.bluetooth.com/spe
cifications/assigned-numbers)
regarding defined number.

uint16_t subversion The subversion of Link Layer.

uint8_t features[
BLE_GAP_REM_FEATURE_SIZE]

LE feature supported in the
remote device.

Refer to Core Spec Vol 6, Part B
4.6 FEATURE SUPPORT.

◆ st_ble_gap_conn_upd_evt_t

struct st_ble_gap_conn_upd_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 426 / 2,794

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

This structure notifies that connection parameters has been updated.

Data Fields

uint16_t conn_hdl Connection handle identifying
the connection whose
parameters has been updated.

uint16_t conn_intv Updated Connection Interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv * 1.25.

uint16_t conn_latency Updated slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Updated supervision timeout.

Valid range is 0x000A - 0x0C80.
Time(ms) = sup_to * 10.

◆ st_ble_gap_conn_upd_req_evt_t

struct st_ble_gap_conn_upd_req_evt_t

This structure notifies that a request for connection parameters update has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that was requested to
update connection parameters.

uint16_t conn_intv_min Minimum connection interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv_min *
1.25.

uint16_t conn_intv_max Maximum connection interval.

Valid range is 0x0006 - 0x0C80.
Time(ms) = conn_intv_max *
1.25.

uint16_t conn_latency Slave latency.

Valid range is 0x0000 -
0x01F3.

uint16_t sup_to Supervision timeout.

Valid range is 0x000A - 0x0C80.
Time(ms) = sup_to * 10

◆ st_ble_gap_conn_hdl_evt_t

struct st_ble_gap_conn_hdl_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 427 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

This structure notifies that a GAP Event that includes only connection handle has occurred.

Data Fields

uint16_t conn_hdl Connection handle.

◆ st_ble_gap_data_len_chg_evt_t

struct st_ble_gap_data_len_chg_evt_t

This structure notifies that the packet data length has been updated.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that updated Data
Length.

uint16_t tx_octets Updated transmission packet
size(in bytes).

Valid range is 0x001B -
0x00FB.

uint16_t tx_time Updated transmission time(us).

Valid range is 0x0148 -
0x4290.

uint16_t rx_octets Updated receive packet size(in
bytes).

Valid range is 0x001B -
0x00FB.

uint16_t rx_time Updated receive time(us).

Valid range is 0x0148 -
0x4290.

◆ st_ble_gap_rd_rpa_evt_t

struct st_ble_gap_rd_rpa_evt_t

This structure notifies that the local resolvable private address has been retrieved by
R_BLE_GAP_ReadRpa().

Data Fields

st_ble_dev_addr_t addr The resolvable private address
of local device.

◆ st_ble_gap_phy_upd_evt_t

struct st_ble_gap_phy_upd_evt_t

This structure notifies that PHY for a connection has been updated.

Data Fields

uint16_t conn_hdl Connection handle identifying

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 428 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

the link that has been updated.

uint8_t tx_phy Transmitter PHY.
value description

0x01 The
transmitter
PHY has been
updated to 1M
PHY.

0x02 The
transmitter
PHY has been
updated to 2M
PHY.

0x03 The
transmitter
PHY has been
updated to
Coded PHY.

uint8_t rx_phy Receiver PHY.
value description

0x01 The receiver
PHY has been
updated to 1M
PHY.

0x02 The receiver
PHY has been
updated to 2M
PHY.

0x03 The receiver
PHY has been
updated to
Coded PHY.

◆ st_ble_gap_phy_rd_evt_t

struct st_ble_gap_phy_rd_evt_t

This structure notifies that the PHY settings has been retrieved by R_BLE_GAP_ReadPhy().

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that has been retrieved
the PHY settings.

uint8_t tx_phy Transmitter PHY.
value description

0x01 The
transmitter

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 429 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

PHY has been
updated to 1M
PHY.

0x02 The
transmitter
PHY has been
updated to 2M
PHY.

0x03 The
transmitter
PHY has been
updated to
Coded PHY.

uint8_t rx_phy Receiver PHY.
value description

0x01 The receiver
PHY has been
updated to 1M
PHY.

0x02 The receiver
PHY has been
updated to 2M
PHY.

0x03 The receiver
PHY has been
updated to
Coded PHY.

◆ st_ble_gap_scan_req_recv_evt_t

struct st_ble_gap_scan_req_recv_evt_t

This structure notifies that a Scan Request packet has been received from a Scanner.

Data Fields

uint8_t adv_hdl Advertising handle identifying
the advertising set that has
received the Scan Request.

uint8_t scanner_addr_type Address type of the Scanner.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 430 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

uint8_t scanner_addr[
BLE_BD_ADDR_LEN]

Address of the Scanner.

Note
The BD address setting format
is little endian.

◆ st_ble_gap_sync_est_evt_t

struct st_ble_gap_sync_est_evt_t

This structure notifies that a Periodic sync has been established.

Data Fields

uint16_t sync_hdl Sync handle identifying the
Periodic Sync that has been
established.

uint8_t adv_sid Advertising SID identifying the
advertising set that has
established the Periodic Sync.

uint8_t adv_addr_type Address type of the advertiser.
value description

0x00 Public
Address.

0x01 Random
Address.

0x02 Public Identity
Address which
could be
resolved in
Controller.

0x03 Random
Identity
Address which
could be
resolved in
Controller.

uint8_t * p_adv_addr Address of the advertiser.

Note
The BD address setting format
is little endian.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 431 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

uint8_t adv_phy Advertising PHY.
value description

0x01 Advertiser
PHY is 1M
PHY.

0x02 Advertiser
PHY is 2M
PHY.

0x03 Advertiser
PHY is Coded
PHY.

uint16_t perd_adv_intv Periodic Advertising Interval.

Valid range is 0x0006 - 0xFFFF.
Time(ms) = perd_adv_intv *
1.25.

uint8_t adv_clk_acc Advertiser Clock Accuracy.
value description

0x00 500ppm

0x01 250ppm

0x02 150ppm

0x03 100ppm

0x04 75ppm

0x05 50ppm

0x06 30ppm

0x07 20ppm

◆ st_ble_gap_sync_hdl_evt_t

struct st_ble_gap_sync_hdl_evt_t

This structure notifies that a GAP Event that includes only sync handle has occurred.

Data Fields

uint16_t sync_hdl Sync handle.

◆ st_ble_gap_white_list_conf_evt_t

struct st_ble_gap_white_list_conf_evt_t

This structure notifies that White List has been configured.

Data Fields

uint8_t op_code The operation for White List.
value description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 432 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

0x01 A device was
added to
White List.

0x02 A device was
deleted from
White List.

0x03 White List was
cleared.

uint8_t num The number or devices which
have been added to or deleted
from White List.

◆ st_ble_gap_rslv_list_conf_evt_t

struct st_ble_gap_rslv_list_conf_evt_t

This structure notifies that Resolving List has been configured.

Data Fields

uint8_t op_code The operation for Resolving
List.
value description

0x01 A device was
added to
Resolving List.

0x02 A device was
deleted from
Resolving List.

0x03 Resolving List
was cleared.

uint8_t num The number or devices which
have been added to or deleted
from Resolving List.

◆ st_ble_gap_perd_list_conf_evt_t

struct st_ble_gap_perd_list_conf_evt_t

This structure notifies that Periodic Advertiser List has been configured.

Data Fields

uint8_t op_code The operation for Periodic
Advertiser List.
value description

0x01 A device was
added to
Periodic
Advertiser
List.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 433 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

0x02 A device was
deleted from
Periodic
Advertiser
List.

0x03 Periodic
Advertiser List
was cleared.

uint8_t num The number or devices which
have been added to or deleted
from Periodic Advertiser List.

◆ st_ble_gap_set_priv_mode_evt_t

struct st_ble_gap_set_priv_mode_evt_t

This structure notifies that Privacy Mode has been configured.

Data Fields

uint8_t num The number or devices which
have been set privacy mode.

◆ st_ble_gap_pairing_req_evt_t

struct st_ble_gap_pairing_req_evt_t

This structure notifies that a pairing request from a remote device has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that sent the
pairing request.

st_ble_dev_addr_t bd_addr The address of the remote
device.

st_ble_gap_auth_info_t auth_info The Pairing parameters of the
remote device.

◆ st_ble_gap_passkey_display_evt_t

struct st_ble_gap_passkey_display_evt_t

This structure notifies that a request for Passkey display in pairing has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that
requested Passkey display.

uint32_t passkey Passkey.

This field is a 6 digit decimal
number(000000-999999).

◆ st_ble_gap_num_comp_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 434 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

struct st_ble_gap_num_comp_evt_t

This structure notifies that a request for Numeric Comparison in pairing has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that
requested Numeric
Comparison.

uint32_t numeric The number to be confirmed in
Numeric Comparison.

This field is a 6 digit decimal
number(000000-999999).

◆ st_ble_gap_key_press_ntf_evt_t

struct st_ble_gap_key_press_ntf_evt_t

This structure notifies that the remote device has input a key in Passkey Entry.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that input a
key.

uint8_t key_type Type of the key that the remote
device input.
value description

0x00 Passkey entry
started.

0x01 Passkey digit
entered.

0x02 Passkey digit
erased.

0x03 Passkey
cleared.

0x04 Passkey entry
completed.

◆ st_ble_gap_pairing_info_evt_t

struct st_ble_gap_pairing_info_evt_t

This structure notifies that the pairing has completed.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that the
pairing has been done with.

st_ble_dev_addr_t bd_addr Address of the remote device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 435 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

st_ble_gap_auth_info_t auth_info Key information exchanged in
pairing.

If local device supports
bonding, store the information
in non-volatile memory in order
to set it to host stack after
power re-supply.

◆ st_ble_gap_enc_chg_evt_t

struct st_ble_gap_enc_chg_evt_t

This structure notifies that the encryption status of a link has been changed.

Data Fields

uint16_t conn_hdl Connection handle identifying
the link that has been changed.

uint8_t enc_status Encryption Status.
value description

0x00 Encryption
OFF.

0x01 Encryption
ON.

0x03 Encryption
updated by
Encryption
Key Refresh
Completed.

◆ st_ble_gap_peer_key_info_evt_t

struct st_ble_gap_peer_key_info_evt_t

This structure notifies that the remote device has distributed the keys.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device that has
distributed the keys.

st_ble_dev_addr_t bd_addr Address of the remote device.

st_ble_gap_key_ex_param_t key_ex_param Distributed keys.

If local device supports
bonding, store the keys in non-
volatile memory and at power
re-supply set to the host stack
by R_BLE_GAP_SetBondInfo().

◆ st_ble_gap_ltk_req_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 436 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

struct st_ble_gap_ltk_req_evt_t

This structure notifies that a LTK request from a remote device has been received.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device which
requests for the LTK.

uint16_t ediv Ediv.

uint8_t * p_peer_rand Rand.

◆ st_ble_gap_ltk_rsp_evt_t

struct st_ble_gap_ltk_rsp_evt_t

This structure notifies that local device has replied to the LTK request from the remote device.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device to be sent
the response to the LTK
request.

uint8_t response The response to the LTK
request.
value description

0x00 Local device
replied with
the stored
LTK.

0x01 Local device
rejected the
LTK request,
because the
LTK was not
found.

◆ st_ble_gap_sc_oob_data_evt_t

struct st_ble_gap_sc_oob_data_evt_t

This structure notifies that OOB data for Secure Connections has been generated by
R_BLE_GAP_CreateScOobData().

Data Fields

uint8_t * p_sc_oob_conf Confirmation value(16 bytes) of
OOB Data.

uint8_t * p_sc_oob_rand Rand(16bytes) of OOB Data.

◆ st_ble_gap_bond_info_t

struct st_ble_gap_bond_info_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 437 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Bonding information used in R_BLE_GAP_SetBondInfo().

Data Fields

st_ble_dev_addr_t * p_addr Address of the device which
exchanged the keys.

st_ble_gap_auth_info_t * p_auth_info Information about the keys.

st_ble_gap_key_ex_param_t * p_keys Keys distributed from the
remote device in paring.

Macro Definition Documentation

◆ BLE_BD_ADDR_LEN

#define BLE_BD_ADDR_LEN

Bluetooth Device Address Size

◆ BLE_MASTER

#define BLE_MASTER

Master Role.

◆ BLE_SLAVE

#define BLE_SLAVE

Slave Role.

◆ BLE_GAP_ADDR_PUBLIC

#define BLE_GAP_ADDR_PUBLIC

Public Address.

◆ BLE_GAP_ADDR_RAND

#define BLE_GAP_ADDR_RAND

Random Address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 438 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ BLE_GAP_ADDR_RPA_ID_PUBLIC

#define BLE_GAP_ADDR_RPA_ID_PUBLIC

Resolvable Private Address.

If the IRK of local device has not been registered in Resolving List, public address is used.

◆ BLE_GAP_ADDR_RPA_ID_RANDOM

#define BLE_GAP_ADDR_RPA_ID_RANDOM

Resolvable Private Address.

If the IRK of local device has not been registered in Resolving List, random address is used.

◆ BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST

#define BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST

Accept all advertising and scan response PDUs.
The following are excluded.

Advertising and scan response PDUs where the advertiser's identity address is not in the
White List.
Directed advertising PDUs whose the target address is identity address but doesn't address
local device. However directed advertising PDUs whose the target address is the local
resolvable private address are accepted.

◆ BLE_GAP_IOCAP_DISPLAY_ONLY

#define BLE_GAP_IOCAP_DISPLAY_ONLY

Display Only iocapability.

Output function : Local device has the ability to display a 6 digit decimal number.
Input function : None

◆ BLE_GAP_IOCAP_DISPLAY_YESNO

#define BLE_GAP_IOCAP_DISPLAY_YESNO

Display Yes/No iocapability.

Output function : Output function : Local device has the ability to display a 6 digit decimal number.
Input function : Local device has the ability to indicate 'yes' or 'no'

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 439 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ BLE_GAP_IOCAP_KEYBOARD_ONLY

#define BLE_GAP_IOCAP_KEYBOARD_ONLY

Keyboard Only iocapability.

Output function : None
Input function : Local device has the ability to input the number '0' - '9'.

◆ BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

#define BLE_GAP_IOCAP_NOINPUT_NOOUTPUT

No Input No Output iocapability.

Output function : None
Input function : None

◆ BLE_GAP_IOCAP_KEYBOARD_DISPLAY

#define BLE_GAP_IOCAP_KEYBOARD_DISPLAY

Keyboard Display iocapability.

Output function : Output function : Local device has the ability to display a 6 digit decimal number.
Input function : Local device has the ability to input the number '0' - '9'.

Typedef Documentation

◆ ble_gap_app_cb_t

ble_gap_app_cb_t

ble_gap_app_cb_t is the GAP Event callback function type.

Parameters
[in] event_type The type of GAP Event.

[in] event_result The result of API call which
generates the GAP Event.

[in] p_event_data Data notified in the GAP
Event.

Returns
none

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 440 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ ble_gap_del_bond_cb_t

ble_gap_del_bond_cb_t

ble_gap_del_bond_cb_t is the type of the callback function for delete bonding information stored in
non-volatile area.
This type is used in R_BLE_GAP_DeleteBondInfo().

Parameters
[in] p_addr The parameter returns the

address of the remote
device whose keys are
deleted by
R_BLE_GAP_DeleteBondInfo()
.
If
R_BLE_GAP_DeleteBondInfo()
deletes the keys of all
remote devices, the
parameter returns NULL.

Returns
none

◆ st_ble_gap_adv_param_t

typedef st_ble_gap_ext_adv_param_t st_ble_gap_adv_param_t

Advertising parameters.

See also
st_ble_gap_ext_adv_param_t

◆ st_ble_gap_scan_param_t

typedef st_ble_gap_ext_scan_param_t st_ble_gap_scan_param_t

Scan parameters.

See also
st_ble_gap_ext_scan_param_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 441 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ e_ble_gap_evt_t

enum e_ble_gap_evt_t

GAP Event Identifier.

Enumerator

BLE_GAP_EVENT_INVALID Invalid GAP Event.

Event Code: 0x1001

Event Data:

none

BLE_GAP_EVENT_STACK_ON Host Stack has been initialized.

When initializing host stack by
R_BLE_GAP_Init() has been completed,
BLE_GAP_EVENT_STACK_ON event is notified.

Event Code: 0x1002

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_STACK_OFF Host Stack has been terminated.

When terminating host stack by
R_BLE_GAP_Terminate() has been completed,
BLE_GAP_EVENT_STACK_OFF event is notified.

Event Code: 0x1003

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
STATE(0x0008)

When function was
called, host stack
has not yet been
initialized.

Event Data:

none

BLE_GAP_EVENT_LOC_VER_INFO Version information of local device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 442 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

When version information of local device has
been retrieved by R_BLE_GAP_GetVerInfo(),
BLE_GAP_EVENT_LOC_VER_INFO event is
notified.

Event Code: 0x1004

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_loc_dev_info_evt_t

BLE_GAP_EVENT_HW_ERR Hardware Error.

When hardware error has been received from
Controller, BLE_GAP_EVENT_HW_ERR event is
notified.

Event Code: 0x1005

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_hw_err_evt_t

BLE_GAP_EVENT_CMD_ERR Command Status Error.

When the error of HCI Command has occurred
after a R_BLE GAP API call,
BLE_GAP_EVENT_CMD_ERR event is notified.

Event Code: 0x1101

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_cmd_err_evt_t

BLE_GAP_EVENT_ADV_REPT_IND Advertising Report.

When advertising PDUs has been received
after scanning was started by
R_BLE_GAP_StartScan().

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 443 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Event Code: 0x1102

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_adv_rept_evt_t

BLE_GAP_EVENT_ADV_PARAM_SET_COMP Advertising parameters have been set.

Advertising parameters have been configured
by R_BLE_GAP_SetAdvParam().

Event Code: 0x1103

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The advertising
type that doesn't
support
advertising
data/scan
response data was
specified to the
advertising set
which has already
set advertising
data/scan
response data.

BLE_ERR_INVALID_
OPERATION(0x000
9)

The reason for this
error is as follows.

Advertising
parameters
were
configured
to the
advertising
set in
advertising
.

The sec_ad
v_phy field
in
adv_paran
was not

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 444 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

specified
when
Periodic
Advertising
was
started.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_ADV_DATA_UPD_COMP Advertising data has been set.

This event notifies that Advertising Data/Scan
Response Data/Periodic Advertising Data has
been set to the advertising set by
R_BLE_GAP_SetAdvSresData().

Event Code: 0x1104

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

The reason for this
error is as follows.

The
advertising
set that
doesn't
support
advertising
data/scan
response
data was
set to the
data.

The
advertising
set that
supports
legacy
advertising
was set to
advertising
data/scan
response
data larger
than 31
bytes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 445 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

The
advertising
set that
has
advertising
data/scan
response
data
greater
than or
equal to
252 bytes
was set the
data in
advertising
.

The
advertising
set that
has
periodic
advertising
data
greater
than or
equal to
253 bytes
was set the
data in
advertising
.

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Length exceeded
the length that the
advertising set
could be set.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_SetAd
vSresData() has
not been created.

Event Data:

st_ble_gap_adv_data_evt_t

BLE_GAP_EVENT_ADV_ON Advertising has started.

When advertising has been started by
R_BLE_GAP_StartAdv(), this event is notified to
the application layer.

Event Code: 0x1105

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 446 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The reason for this
error is as follows.

The
advertising
data length
set to the
advertising
set for
connectabl
e extended
advertising
was
invalid.

If
o_addr_typ
e field in
adv_param
used in
R_BLE_GAP
_SetAdvPar
am() is
0x03, the
address
which is
set in
o_addr
field of
adv_param
has not
been
registered
in
Resolving
List.

BLE_ERR_INVALID_
OPERATION(0x000
9)

Setting of
advertising
data/scan
response data has
not been
completed.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StartA
dv() has not been
created.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 447 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_ERR_LIMIT_EX
CEEDED(0x0010)

When the
maximum
connections are
established, a new
connectable
advertising tried
starting.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_ADV_OFF Advertising has stopped.

This event notifies the application layer that
advertising has stopped.

Event Code: 0x1106

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StopA
dv() has not been
created.

Event Data:

st_ble_gap_adv_off_evt_t

BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP Periodic advertising parameters have been
set.

This event notifies the application layer that
Periodic Advertising Parameters has been
configured by R_BLE_GAP_SetPerdAdvParam().

Event Code: 0x1107

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The advertising set
was the setting for
anonymous
advertising.

BLE_ERR_INVALID_
OPERATION(0x000
9)

The advertising set
was configured to
the parameters in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 448 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

periodic
advertising.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_SetPer
dAdvParam() has
not been created.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_PERD_ADV_ON Periodic advertising has started.

When Periodic Advertising has been started by
R_BLE_GAP_StartPerdAdv(), this event is
notified to the application layer.

Event Code: 0x1108

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

The periodic
advertising data
set in the
advertising set has
not been
completed.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StartP
erdAdv() has not
been created.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_PERD_ADV_OFF Periodic advertising has stopped.

When Periodic Advertising has terminated by
R_BLE_GAP_StopPerdAdv(), this event is
notified to the application layer.

Event Code: 0x1109

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 449 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_StopPe
rdAdv() has not
been created.

Event Data:

st_ble_gap_adv_set_evt_t

BLE_GAP_EVENT_ADV_SET_REMOVE_COMP Advertising set has been deleted.

When the advertising set has been removed by
R_BLE_GAP_RemoveAdvSet(), this event is
notified to the application layer.

Event Code: 0x110A

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When the
advertising set
was in advertising,
R_BLE_GAP_Remov
eAdvSet() was
called.

BLE_ERR_INVALID_
HDL(0x000E)

The advertising set
specified by
R_BLE_GAP_Remov
eAdvSet() has not
been created.

Event Data:

st_ble_gap_rem_adv_set_evt_t

BLE_GAP_EVENT_SCAN_ON Scanning has started.

When scanning has started by
R_BLE_GAP_StartScan(), this event is notified
to the application layer.

Event Code: 0x110B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The reason for this
error is as follows:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 450 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Scan
interval or
scan
window
was
invalid.
When
filter_dup
field in
scan_enabl
e was
BLE_GAP_S
CAN_FILT_
DUPLIC_EN
ABLE_FOR_
PERIOD(0x
02), period
field in
scan_enabl
e was 0.
duration
field in
scan_enabl
e was
larger than
period in sc
an_enable.

BLE_ERR_INVALID_
OPERATION(0x000
9)

In scanning,
R_BLE_GAP_StartS
can() was called.

Event Data:

none

BLE_GAP_EVENT_SCAN_OFF Scanning has stopped.

When scanning has been stopped by
R_BLE_GAP_StopScan(), this event is notified to
the application layer.

Event Code: 0x110C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_SCAN_TO Scanning has stopped, because duration
specified by API expired.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 451 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

When the scan duration specified by
R_BLE_GAP_StartScan() has expired, this event
notifies scanning has stopped.

Event Code: 0x110D

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_CREATE_CONN_COMP Connection Request has been sent to
Controller.

This event notifies a request for a connection
has been sent to Controller.

Event Code: 0x110E

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The reason for this
error is as follows:

Scan
interval or
scan
windows
specified
by
R_BLE_GAP
_CreateCon
n() is
invalid.
Although
the own_ad
dr_type
field in
p_param
was set to
0x03,
random
address
had not
been
registered
in
Resolving

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 452 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

List.

BLE_ERR_INVALID_
OPERATION(0x000
9)

R_BLE_GAP_Create
Conn() was called
while creating a
link by previous
R_BLE_GAP_Create
Conn() call .

BLE_ERR_LIMIT_EX
CEEDED(0x0010)

When the
maximum
connections are
established,
R_BLE_GAP_Create
Conn() was called.

Event Data:

none

BLE_GAP_EVENT_CONN_IND Link has been established.

This event notifies a link has been established.

Event Code: 0x110F

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The request for a
connection has
been cancelled by
R_BLE_GAP_Cancel
CreateConn().

Event Data:

st_ble_gap_conn_evt_t

BLE_GAP_EVENT_DISCONN_IND Link has been disconnected.

This event notifies a link has been
disconnected.

Event Code: 0x1110

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_disconn_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 453 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_GAP_EVENT_CONN_CANCEL_COMP Connection Cancel Request has been sent to
Controller.

This event notifies the request for a connection
has been cancelled by
R_BLE_GAP_CancelCreateConn().

Event Code: 0x1111

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When a request for
a connection has
not been sent to
Controller,
R_BLE_GAP_Cancel
CreateConn() was
called.

Event Data:

none

BLE_GAP_EVENT_WHITE_LIST_CONF_COMP The White List has been configured.

When White List has been configured, this
event is notified to the application layer.

Event Code: 0x1112

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
STATE(0x0008)

The add or delete
operation was
called, before the
previous clear
operation has
been completed.

BLE_ERR_INVALID_
OPERATION(0x000
9)

While doing
advertising or
scanning or
creating a link with
the White List,
R_BLE_GAP_ConfW
hiteList() was
called.

BLE_ERR_MEM_ALL
OC_FAILED(0x000

White List has
already registered

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 454 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

C) the maximum
number of devices.

Event Data:

st_ble_gap_white_list_conf_evt_t

BLE_GAP_EVENT_RAND_ADDR_SET_COMP Random address has been set to Controller.

This event notifies Controller has been set the
random address by R_BLE_GAP_SetRandAddr().

Event Code: 0x1113

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When local device
was in legacy
advertising,
R_BLE_GAP_SetRa
ndAddr() was
called.

Event Data:

none

BLE_GAP_EVENT_CH_MAP_RD_COMP Channel Map has been retrieved.

This event notifies Channel Map has been
retrieved by R_BLE_GAP_ReadChMap().

Event Code: 0x1114

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The remote device
specified by
R_BLE_GAP_ReadC
hMap() was not
found.

Event Data:

st_ble_gap_rd_ch_map_evt_t

BLE_GAP_EVENT_CH_MAP_SET_COMP Channel Map has set.

This event notifies Channel Map has been
configured by R_BLE_GAP_SetChMap().

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 455 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Event Code: 0x1115

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The channel map
specified by
R_BLE_GAP_SetCh
Map() was all-zero.

Event Data:

none

BLE_GAP_EVENT_RSSI_RD_COMP RSSl has been retrieved.

This event notifies RSSI has been retrieved by
R_BLE_GAP_ReadRssi().

Event Code: 0x1116

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The remote device
specified by
R_BLE_GAP_ReadR
ssi() was not
found.

Event Data:

st_ble_gap_rd_rssi_evt_t

BLE_GAP_EVENT_GET_REM_DEV_INFO Information about the remote device has been
retrieved.

This event notifies information about the
remote device has been retrieved by
R_BLE_GAP_GetRemDevInfo().

Event Code: 0x1117

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_dev_info_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 456 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_GAP_EVENT_CONN_PARAM_UPD_COMP Connection parameters has been configured.

This event notifies the connection parameters
has been updated.

Event Code: 0x1118

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
DATA(0x0002)

Local device
rejected the
request for
updating
connection
parameters.

BLE_ERR_INVALID_
ARG(0x0003)

The remote device
rejected the
connection
parameters
suggested from
local device.

BLE_ERR_UNSUPP
ORTED(0x0007)

The remote device
doesn't support
connection
parameters update
feature.

Event Data:

st_ble_gap_conn_upd_evt_t

BLE_GAP_EVENT_CONN_PARAM_UPD_REQ Local device has received the request for
configuration of connection parameters.

This event notifies the request for connection
parameters update has been received.

Event Code: 0x1119

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_conn_upd_req_evt_t

BLE_GAP_EVENT_AUTH_PL_TO_EXPIRED Authenticated Payload Timeout.

This event notifies Authenticated Payload

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 457 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Timeout has occurred.

Event Code: 0x111A

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_SET_DATA_LEN_COMP The request for update transmission packet
size and transmission time have been sent to
Controller.

This event notifies a request for updating
packet data length and transmission timer has
been sent to Controller.

Event Code: 0x111B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The tx_octets or
tx_time parameter
specified by
R_BLE_GAP_SetDat
aLen() is invalid.

BLE_ERR_UNSUPP
ORTED(0x0007)

The remote device
does not support
updating packet
data length and
transmission time.

BLE_ERR_INVALID_
HDL(0x000E)

When
R_BLE_GAP_SetDat
aLen() was called,
the connection
was not
established.

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_DATA_LEN_CHG Transmission packet size and transmission
time have been changed.

This event notifies packet data length and
transmission time have been updated.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 458 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Event Code: 0x111C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_data_len_chg_evt_t

BLE_GAP_EVENT_RSLV_LIST_CONF_COMP The Resolving List has been configured.

When Resolving List has been configured by
R_BLE_GAP_ConfRslvList(), this event is notified
to the application layer.

Event Code: 0x111D

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
STATE(0x0008)

The add or delete
operation was
called, before the
previous clear
operation has
been completed.

BLE_ERR_INVALID_
OPERATION(0x000
9)

While doing
advertising or
scanning or
creating a link with
resolvable private
address,
R_BLE_GAP_ConfRs
lvList() was called.

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Resolving List has
already registered
the maximum
number of devices.

BLE_ERR_INVALID_
HDL(0x000E)

The specified
Identity Address
was not found in
Resolving List.

Event Data:

st_ble_gap_rslv_list_conf_evt_t

BLE_GAP_EVENT_RPA_EN_COMP Resolvable private address function has been

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 459 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

enabled or disabled.

When Resolvable Private Address function in
Controller has been enabled by
R_BLE_GAP_EnableRpa(), this event is notified
to the application layer.

Event Code: 0x111E

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

While advertising,
scanning, or
establishing a link
with resolvable
private address,
R_BLE_GAP_Enable
Rpa() was called.

Event Data:

none

BLE_GAP_EVENT_SET_RPA_TO_COMP The update time of resolvable private address
has been changed.

When Resolvable Private Address Timeout in
Controller has been updated by
R_BLE_GAP_SetRpaTo(), this event is notified to
the application layer.

Event Code: 0x111F

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The rpa_timeout
parameter
specified by
R_BLE_GAP_SetRp
aTo() is out of
range.

Event Data:

none

BLE_GAP_EVENT_RD_RPA_COMP The resolvable private address of local device
has been retrieved.

When the resolvable private address of local

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 460 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

device has been retrieved by
R_BLE_GAP_ReadRpa(), this event is notified to
the application layer.

Event Code: 0x1120

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The identity
address specified
by
R_BLE_GAP_ReadR
pa() was not
registered in
Resolving List.

Event Data:

st_ble_gap_rd_rpa_evt_t

BLE_GAP_EVENT_PHY_UPD PHY for connection has been changed.

This event notifies the application layer that
PHY for a connection has been updated.

Event Code: 0x1121

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_phy_upd_evt_t

BLE_GAP_EVENT_PHY_SET_COMP The request for updating PHY for connection
has been sent to Controller.

When Controller has received a request for
updating PHY for a connection by
R_BLE_GAP_SetPhy(), this event is notified to
the application layer.

Event Code: 0x1122

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The remote device
specified by

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 461 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

R_BLE_GAP_SetPhy
() was not found.

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_DEF_PHY_SET_COMP The request for setting default PHY has been
sent to Controller.

When the PHY preferences which a remote
device may change has been configured by
R_BLE_GAP_SetDefPhy(), this event is notified
to the application layer.

Event Code: 0x1123

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_GAP_EVENT_PHY_RD_COMP PHY configuration has been retrieved.

When the PHY settings has been retrieved by
R_BLE_GAP_ReadPhy(), this event is notified to
the application layer.

Event Code: 0x1124

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The link specified
by
R_BLE_GAP_ReadP
hy() was not
found.

Event Data:

st_ble_gap_phy_rd_evt_t

BLE_GAP_EVENT_SCAN_REQ_RECV Scan Request has been received.

This event notifies the application layer that a
Scan Request packet has been received from a
Scanner.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 462 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Event Code: 0x1125

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_scan_req_recv_evt_t

BLE_GAP_EVENT_CREATE_SYNC_COMP The request for establishing a periodic sync
has been sent to Controller.

This event notifies the application layer that
Controller has received a request for a Periodic
Sync establishment.

Event Code: 0x1126

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When
R_BLE_GAP_Create
Sync() was called,
this event for
previous the API
call has not been
received.

BLE_ERR_ALREADY
_IN_PROGRESS(0x
000A)

The advertising set
specified by
R_BLE_GAP_Create
Sync() has already
established a
periodic sync.

Event Data:

none

BLE_GAP_EVENT_SYNC_EST The periodic advertising sync has been
established.

This event notifies the application layer that a
Periodic sync has been established.

Event Code: 0x1127

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 463 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_ERR_NOT_YET
_READY(0x0012)

The request for a
Periodic Sync
establishment was
cancelled by
R_BLE_GAP_Cancel
CreateSync().

Event Data:

st_ble_gap_sync_est_evt_t

BLE_GAP_EVENT_SYNC_TERM The periodic advertising sync has been
terminated.

This event notifies the application layer that
the Periodic Sync has been terminated by
R_BLE_GAP_TerminateSync().

Event Code: 0x1128

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

While establishing
a Periodic Sync by
R_BLE_GAP_Create
Sync(),
R_BLE_GAP_Termi
nateSync() was
called.

BLE_ERR_INVALID_
HDL(0x000E)

The sync handle
specified by
R_BLE_GAP_Termi
nateSync() was
not found.

Event Data:

st_ble_gap_sync_hdl_evt_t

BLE_GAP_EVENT_SYNC_LOST The periodic advertising sync has been lost.

This event notifies the application layer that
the Periodic Sync has been lost.

Event Code: 0x1129

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 464 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Event Data:

st_ble_gap_sync_hdl_evt_t

BLE_GAP_EVENT_SYNC_CREATE_CANCEL_COMP The request for cancel of establishing a
periodic advertising sync has been sent to
Controller.

This event notifies the request for a Periodic
Sync establishment has been cancelled by
R_BLE_GAP_CancelCreateSync().

Event Code: 0x112A

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
OPERATION(0x000
9)

When
R_BLE_GAP_Cancel
CreateSync() was
called, a request
for a Periodic Sync
establishment by
R_BLE_GAP_Create
Sync() has not
been sent to
Controller.

Event Data:

none

BLE_GAP_EVENT_PERD_LIST_CONF_COMP The Periodic Advertiser list has been
configured.

When Periodic Advertiser List has been
configured by R_BLE_GAP_ConfPerdAdvList(),
this event is notified to the application layer.

Event Code: 0x112B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The advertiser has
already been
registered in
Periodic Advertiser
List.

BLE_ERR_INVALID_
STATE(0x0008)

The add or delete
operation was

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 465 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

called, before the
previous clear
operation has
been completed.

BLE_ERR_INVALID_
OPERATION(0x000
9)

When establishing
a periodic sync by
R_BLE_GAP_Create
Sync(),
R_BLE_GAP_ConfPe
rdAdvList() was
called.

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Periodic Advertiser
List has already
registered the
maximum number
of devices.

BLE_ERR_INVALID_
HDL(0x000E)

The device
specified by
R_BLE_GAP_ConfPe
rdAdvList() was
not found.

Event Data:

st_ble_gap_perd_list_conf_evt_t

BLE_GAP_EVENT_PRIV_MODE_SET_COMP Privacy Mode has been configured.

This event notifies the application layer that
the Privacy Mode has been configured by
R_BLE_GAP_SetPrivMode().

Event Code: 0x112B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

Address type or
privacy mode is
out of range.

BLE_ERR_INVALID_
OPERATION(0x000
9)

While advertising,
scanning, or
establishing a link
with resolvable
private address,
R_BLE_GAP_SetPri
vMode() was
called.

BLE_ERR_INVALID_
HDL(0x000E)

The address
specified by

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 466 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

R_BLE_GAP_SetPri
vMode() has not
been registered in
Resolving List.

Event Data:

none

BLE_GAP_EVENT_PAIRING_REQ The pairing request from a remote device has
been received.

This event notifies the application layer that a
pairing request from a remote device has been
received.

Event Code: 0x1401

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_pairing_info_evt_t

BLE_GAP_EVENT_PASSKEY_ENTRY_REQ The request for input passkey has been
received.

This event notifies that a request for Passkey
input in pairing has been received.

Event Code: 0x1402

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_conn_hdl_evt_t

BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ The request for displaying a passkey has been
received.

This event notifies that a request for Passkey
display in pairing has been received.

Event Code: 0x1403

result:

BLE_SUCCESS(0x0 Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 467 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

000)

Event Data:

st_ble_gap_passkey_display_evt_t

BLE_GAP_EVENT_NUM_COMP_REQ The request for confirmation with Numeric
Comparison has received.

This event notifies that a request for Numeric
Comparison in pairing has been received.

Event Code: 0x1404

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_num_comp_evt_t

BLE_GAP_EVENT_KEY_PRESS_NTF Key Notification from a remote device has
been received.

This event notifies the application layer that
the remote device has input a key in Passkey
Entry.

Event Code: 0x1405

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_key_press_ntf_evt_t

BLE_GAP_EVENT_PAIRING_COMP Pairing has been completed.

This event notifies the application layer that
the pairing has completed.

Event Code: 0x1406

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_SMP_LE_
PASSKEY_ENTRY_F

PassKey Entry is
failed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 468 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

AIL(0x2001)

BLE_ERR_SMP_LE_
OOB_DATA_NOT_A
VAILABLE(0x2002)

OOB Data is not
available.

BLE_ERR_SMP_LE_
AUTH_REQ_NOT_M
ET(0x2003)

The requested
pairing can not be
performed
because of IO
Capability.

BLE_ERR_SMP_LE_
CONFIRM_VAL_NO
T_MATCH(0x2004)

Confirmation value
does not match.

BLE_ERR_SMP_LE_
PAIRING_NOT_SPR
T(0x2005)

Pairing is not
supported.

BLE_ERR_SMP_LE_I
NSUFFICIENT_ENC_
KEY_SIZE(0x2006)

Encryption Key
Size is insufficient.

BLE_ERR_SMP_LE_
CMD_NOT_SPRT(0x
2007)

The pairing
command received
is not supported.

BLE_ERR_SMP_LE_
UNSPECIFIED_REA
SON(0x2008)

Pairing failed with
an unspecified
reason.

BLE_ERR_SMP_LE_
REPEATED_ATTEM
PTS(0x2009)

The number of
repetition
exceeded the
upper limit.

BLE_ERR_SMP_LE_I
NVALID_PARAM(0x
200A)

Invalid parameter
is set.

BLE_ERR_SMP_LE_
DHKEY_CHECK_FAI
L(0x200B)

DHKey Check
error.

BLE_ERR_SMP_LE_
NUM_COMP_FAIL(0
x200C)

Numeric
Comparison
failure.

BLE_ERR_SMP_LE_
DISCONNECTED(0x
200F)

Disconnection in
pairing.

BLE_ERR_SMP_LE_
TO(0x2011)

Failure due to
timeout.

BLE_ERR_SMP_LE_
LOC_KEY_MISSING(
0x2014)

Pairing/Encryption
failure because
local device lost
the LTK.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 469 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Event Data:

st_ble_gap_pairing_info_evt_t

BLE_GAP_EVENT_ENC_CHG Key Notification from a remote device has
been received.

This event notifies the application layer that
the encryption status of a link has been
changed.

Event Code: 0x1407

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_enc_chg_evt_t

BLE_GAP_EVENT_PEER_KEY_INFO Keys has been received from a remote device.

This event notifies the application layer that
the remote device has distributed the keys.

Event Code: 0x1408

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_peer_key_info_evt_t

BLE_GAP_EVENT_EX_KEY_REQ The request for key distribution has been
received.

When local device has been received a request
for key distribution to remote device, this
event is notified to the application layer.

Event Code: 0x1409

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_conn_hdl_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 470 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_GAP_EVENT_LTK_REQ LTK has been request from a remote device.

When local device has been received a LTK
request from a remote device, this event is
notified to the application layer.

Event Code: 0x140A

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_ltk_req_evt_t

BLE_GAP_EVENT_LTK_RSP_COMP LTK reply has been sent to Controller.

When local device has replied to the LTK
request from the remote device, this event is
notified to the application layer.

Event Code: 0x140B

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_ltk_rsp_evt_t

BLE_GAP_EVENT_SC_OOB_CREATE_COMP The authentication data to be used in Secure
Connections OOB has been created.

This event notifies OOB data for Secure
Connections has been generated by
R_BLE_GAP_CreateScOobData().

Event Code: 0x140C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gap_sc_oob_data_evt_t

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 471 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_Init()

ble_status_t R_BLE_GAP_Init (ble_gap_app_cb_t gap_cb)

Initialize the Host Stack.

Host stack is initialized with this function. Before using All the R_BLE APIs, it's necessary to call this
function. A callback function is registered with this function. In order to receive the GAP event, it's
necessary to register a callback function. The result of this API call is notified in
BLE_GAP_EVENT_STACK_ON event.

Parameters
[in] gap_cb A callback function

registered with this function.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) gap_cb is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

Host Stack was already initialized.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_Terminate()

ble_status_t R_BLE_GAP_Terminate (void)

Terminate the Host Stack.

Host stack is terminated with this function. In order to reset all the Bluetooth functions, it's
necessary to call this function. The result of this API call is notified in BLE_GAP_EVENT_STACK_OFF
event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) Host stack hasn't been initialized.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 472 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_UpdConn()

ble_status_t R_BLE_GAP_UpdConn (uint16_t conn_hdl, uint8_t mode, uint16_t accept,
st_ble_gap_conn_param_t * p_conn_updt_param)

Update the connection parameters.

This function updates the connection parameters or replies a request for updating connection
parameters notified by BLE_GAP_EVENT_CONN_PARAM_UPD_REQ event. When the connection
parameters has been updated, BLE_GAP_EVENT_CONN_PARAM_UPD_COMP event is notified to the
application layer.

Parameters
[in] conn_hdl Connection handle

identifying the link to be
updated.

[in] mode Connection parameter
update request or response.
macro description

BLE_GAP_CO
NN_UPD_MO
DE_REQ
(0x01)

Request for
updating the
connection
parameters.

BLE_GAP_CO
NN_UPD_MO
DE_RSP
(0x02)

Reply a
connection
parameter
update
request.

[in] accept When mode is BLE_GAP_CON
N_UPD_MODE_RSP, accept or
reject the connection
parameters update request.
If mode is BLE_GAP_CONN_U
PD_MODE_REQ, accept is
ignored.
macro description

BLE_GAP_CO
NN_UPD_AC
CEPT
(0x0000)

Accept the
update
request.

BLE_GAP_CO
NN_UPD_REJ
ECT
(0x0001)

Reject the
update
request.

[in] p_conn_updt_param Connection parameters to be
updated. When mode is BLE_
GAP_CONN_UPD_MODE_RSP
and accept is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 473 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_GAP_CONN_UPD_REJECT
, p_conn_updt_param is
ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) When accept is
BLE_GAP_CONN_UPD_ACCEPT,
p_conn_updt_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following is out of range.

mode
accept
conn_intv_min field in
p_conn_updt_param
conn_intv_max field in
p_conn_updt_param
conn_latency in p_conn_updt_param
sup_to in p_conn_updt_param
conn_hdl

BLE_ERR_INVALID_STATE(0x0008) Not connected with the remote device.

BLE_ERR_CONTEXT_FULL(0x000B) Sending a L2CAP command, an error
occurred.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 474 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetDataLen()

ble_status_t R_BLE_GAP_SetDataLen (uint16_t conn_hdl, uint16_t tx_octets, uint16_t tx_time)

Update the packet size and the packet transmit time.

This function requests for changing the maximum transmission packet size and the maximum
packet transmission time. When Controller has received the request from host stack,
BLE_GAP_EVENT_SET_DATA_LEN_COMP event is notified to the application layer. When the
transmission packet size or the transmission time has been changed,
BLE_GAP_EVENT_DATA_LEN_CHG event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
the transmission packet size
or the transmission time to
be changed.

[in] tx_octets Maximum transmission
packet size. Valid range is
0x001B - 0x00FB.

[in] tx_time Maximum transmission
time(us). Valid range is
0x0148 - 0x4290.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 475 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_Disconnect()

ble_status_t R_BLE_GAP_Disconnect (uint16_t conn_hdl, uint8_t reason)

Disconnect the link.

This function disconnects a link. When the link has disconnected, BLE_GAP_EVENT_DISCONN_IND
event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the link to be
disconnected.

[in] reason The reason for
disconnection. Usually, set
0x13 which indicates that a
user disconnects the link. If
setting other than 0x13,
refer the error code
described in Core
Specification Vol.2 Part D ,"2
Error Code Descriptions".

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 476 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetPhy()

ble_status_t R_BLE_GAP_SetPhy (uint16_t conn_hdl, st_ble_gap_set_phy_param_t * p_phy_param
)

Set the phy for connection.

This function sets the PHY preferences for the connection. The result of this API call is notified in
BLE_GAP_EVENT_PHY_SET_COMP event. When the PHY has been updated,
BLE_GAP_EVENT_PHY_UPD event is notified to the application layer.

After PHY update, the PHY accept configuration of local device is the same as the values in
BLE_GAP_EVENT_PHY_UPD event.
For example, after calling R_BLE_GAP_SetPhy(), if tx_phy, rx_phy by BLE_GAP_EVENT_PHY_UPD
event are updated to 2M PHY, the PHY accept configuration is 2M PHY only.
Therefore after receiving BLE_GAP_EVENT_PHY_UPD event, if local device wants to accept the other
PHY configuration, it needs to call R_BLE_GAP_SetPhy() with the desired PHY accept configuration.

Because the maximum transmission packet size or the maximum transmission time might be
updated by PHY update, if the same packet size or transmission time as the previous one is
desired, change the maximum transmission packet size or the maximum transmission time by
R_BLE_GAP_SetDataLen().

Parameters
[in] conn_hdl Connection handle

identifying the link whose
PHY to be updated.

[in] p_phy_param PHY preferences.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_phy_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) conn_hdl or option field in p_phy_param is
out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 477 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetDefPhy()

ble_status_t R_BLE_GAP_SetDefPhy (st_ble_gap_set_def_phy_param_t * p_def_phy_param)

Set the default phy which allows remote device to change.

This function sets the PHY preferences which a remote device may change. The result of this API
call is notified in BLE_GAP_EVENT_DEF_PHY_SET_COMP event.

Parameters
[in] p_def_phy_param The PHY preference which a

remote device may change.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_def_phy_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) tx_phys or tx_phys field in p_def_phy_param
is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetPrivMode()

ble_status_t R_BLE_GAP_SetPrivMode (st_ble_dev_addr_t * p_addr, uint8_t * p_privacy_mode,
uint8_t device_num)

Set the privacy mode.

This function sets privacy mode for the remote device registered in Resolving List. By default,
Network Privacy Mode is set.
The result of this API call is notified in BLE_GAP_EVENT_PRIV_MODE_SET_COMP event.

Parameters
[in] p_addr An array of identity address

of the remote device to set
privacy mode. The number
of elements is specified by
device_num.

[in] p_privacy_mode An array of privacy mode to
set to remote device. The
number of elements is
specified by device_num.
The following value is set as

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 478 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

the privacy mode.
macro description

BLE_GAP_NE
T_PRIV_MOD
E (0x00)

Network
Privacy
Mode.

BLE_GAP_DE
V_PRIV_MOD
E (0x01)

Device
Privacy
Mode.

[in] device_num The number of devices to set
privacy mode. Valid range is
1-BLE_GAP_RSLV_LIST_MAX_
ENTRY.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_addr or p_privacy_mode is specified as
NULL.

BLE_ERR_INVALID_ARG(0x0003) The following parameter is out of range.

The address type in p_addr.
The privacy mode specified by
p_privacy_mode.
device_num

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While configuring privacy mode, this
function was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 479 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ConfWhiteList()

ble_status_t R_BLE_GAP_ConfWhiteList (uint8_t op_code, st_ble_dev_addr_t * p_addr, uint8_t
device_num)

Set White List.

This function supports the following operations regarding White List.

Add the device to White List.
Delete the device from White List.

Clear White List.

The total number of White List entries is defined as BLE_GAP_WHITE_LIST_MAX_ENTRY. The
result of this API call is notified in BLE_GAP_EVENT_WHITE_LIST_CONF_COMP event.

Parameters
[in] op_code The operation for White

List.
macro description

BLE_GAP_L
IST_ADD_D
EV(0x01)

Add the
device to
the list.

BLE_GAP_L
IST_REM_D
EV(0x02)

Delete the
device
from the
list.

BLE_GAP_L
IST_CLR(0x
03)

Clear the
list.

[in] p_addr An array of device
address to add / delete to
the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_addr is ignored.

[in] device_num The number of devices
add / delete to the list.
Valid range is 1-BLE_GAP_
WHITE_LIST_MAX_ENTRY.
If op_code is
BLE_GAP_LIST_CLR,
device_num is ignored.

Return values
BLE_SUCCESS(0x0000) Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 480 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

BLE_ERR_INVALID_PTR(0x0001) When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV, p_addr is
specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) op_code or address type field in p_addr
is out of range.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While operating White List, this
function was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for operating
the White List.

◆ R_BLE_GAP_GetVerInfo()

ble_status_t R_BLE_GAP_GetVerInfo (void)

Get the version number of the Controller and the host stack.

This function retrieves the version information of local device. The result of this API call is notified
in BLE_GAP_EVENT_LOC_VER_INFO event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 481 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ReadPhy()

ble_status_t R_BLE_GAP_ReadPhy (uint16_t conn_hdl)

Get the phy settings.

This function gets the PHY settings for the connection. The result of this API call is notified in
BLE_GAP_EVENT_PHY_RD_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
PHY settings to be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 482 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ConfRslvList()

ble_status_t R_BLE_GAP_ConfRslvList (uint8_t op_code, st_ble_dev_addr_t * p_addr,
st_ble_gap_rslv_list_key_set_t * p_peer_irk, uint8_t device_num)

Set Resolving List.

This function supports the following operations regarding Resolving List.

Add the device to Resolving List.
Delete the device from Resolving List.

Clear Resolving List.

In order to generate a resolvable private address, a local IRK needs to be registered by
R_BLE_GAP_SetLocIdInfo(). If communicating with the identity address, register all-zero IRK
as local IRK. In order to resolve resolvable private address of the remote device, the IRK
distributed from the remote device needs to be added to Resolving List. The total number of
Resolving List entries is defined as BLE_GAP_RESOLV_LIST_MAX_ENTRY. The result of this
API call is notified in BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event.

Parameters
[in] op_code The operation for

Resolving List.
macro description

BLE_GAP_L
IST_ADD_D
EV(0x01)

Add the
device to
the list.

BLE_GAP_L
IST_REM_D
EV(0x02)

Delete the
device
from the
list.

BLE_GAP_L
IST_CLR(0x
03)

Clear the
list.

[in] p_addr An array of Identity
Addresses to add / delete
to the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_addr is ignored.

[in] p_peer_irk The remote IRK and the
type of local IRK added to
Resolving List. If op_code
is other than
BLE_GAP_LIST_ADD_DEV,
p_peer_irk is ignored. The
number of elements is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 483 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

specified by device_num.

[in] device_num The number of devices
add / delete to the list.
Valid range is 1-BLE_GAP_
RSLV_LIST_MAX_ENTRY. If
op_code is
BLE_GAP_LIST_CLR,
device_num is ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

When added to or deleted from
the list, p_addr is specified as
NULL.
When added to the list,
p_peer_irk is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

op_code is out of range.
When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV,
device_num is out of range.
When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV,
address type field in p_addr is
out of range.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While operating Resolving List,
this function was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for operating
the Resolving List.

BLE_ERR_INVALID_HDL(0x000E) The specified Identity Address was not
found in Resolving List.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 484 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_EnableRpa()

ble_status_t R_BLE_GAP_EnableRpa (uint8_t enable)

Enable/Disable address resolution and generation of a resolvable private address.

This function enables or disables RPA functionality. The RPA functionality includes the following.

Generation of local resolvable private address
Resolution of remote resolvable private address

In order to do advertising, scanning or creating a link with local resolvable private address, the RPA
functionality needs to be enabled. After enabling the RPA functionality and the identity address of
remote device and the IRKs of local/remote device is registered, local device can generate own
resolvable private address in the time interval set by R_BLE_GAP_SetRpaTo(), and can resolve a
resolvable private address of a remote device. It is recommended that the RPA functionality is
called immediately after the initialization by R_BLE_GAP_Init(). The result of this API call is notified
in BLE_GAP_EVENT_RPA_EN_COMP event.

Parameters
[in] enable Enable or disable address

resolution function.
macro description

BLE_GAP_RP
A_DISABLED
(0x00)

Disable RPA
generation/r
esolution.

BLE_GAP_RP
A_ENABLED(
0x01)

Enable RPA
generation/r
esolution.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) enable is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 485 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetRpaTo()

ble_status_t R_BLE_GAP_SetRpaTo (uint16_t rpa_timeout)

Set the update time of resolvable private address.

This function sets the time interval to update the resolvable private address. The result of this API
call is notified in BLE_GAP_EVENT_SET_RPA_TO_COMP event.

Parameters
[in] rpa_timeout Time interval to update

resolvable private address in
seconds. Valid range is
0x003C - 0xA1B8. Default is
900s.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 486 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ReadRpa()

ble_status_t R_BLE_GAP_ReadRpa (st_ble_dev_addr_t * p_addr)

Get the resolvable private address of local device.

This function retrieves the local resolvable private address. Before getting the address, enable the
resolvable private address function by R_BLE_GAP_EnableRpa(). The result of this API call is notified
in BLE_GAP_EVENT_RD_RPA_COMP event.

Parameters
[in] p_addr Identity address registered

in Resolving List.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_addr is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) Address type in p_addr is out of range.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows.

When retrieving the local resolvable
private address, this function was
called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 487 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ReadRssi()

ble_status_t R_BLE_GAP_ReadRssi (uint16_t conn_hdl)

Get RSSI.

This function retrieves RSSI. The result of this API call is notified in BLE_GAP_EVENT_RSSI_RD_COMP
event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
RSSI to be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_ReadChMap()

ble_status_t R_BLE_GAP_ReadChMap (uint16_t conn_hdl)

Get the Channel Map.

This function retrieves the channel map. The result of this API call is notified in
BLE_GAP_EVENT_CH_MAP_RD_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
channel map to be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) conn_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 488 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetRandAddr()

ble_status_t R_BLE_GAP_SetRandAddr (uint8_t * p_random_addr)

Set a random address.

This function sets static address or non-resolvable private address to Controller. Refer to Core
Specification Vol 6, PartB, "1.3.2 Random Device Address" regarding the format of the random
address. Resolvable private address cannot set by this API. The result of this API call is notified in
BLE_GAP_EVENT_RAND_ADDR_SET_COMP event.

Parameters
[in] p_random_addr Static address or non-

resolvable private address.
The BD address setting
format is little endian.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_random_addr is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 489 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetAdvParam()

ble_status_t R_BLE_GAP_SetAdvParam (st_ble_gap_adv_param_t * p_adv_param)

Set advertising parameters.

This function sets advertising parameters. It's possible to do advertising where the advertising
parameters are different every each advertising set. The number of advertising set in the Controller
is defined as BLE_MAX_NO_OF_ADV_SETS_SUPPORTED. Each advertising set is identified with
advertising handle (0x00-0x03). Create an advertising set with this function before start
advertising, setting periodic advertising parameters, start periodic advertising, setting advertising
data/scan response data/periodic advertising data. The result of this API call is notified in
BLE_GAP_EVENT_ADV_PARAM_SET_COMP event.

Parameters
[in] p_adv_param Advertising parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_adv_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The below p_adv_param field value is out of
range.

adv_handle
adv_intv_min/adv_intv_max
adv_ch_map
o_addr_type
p_addr_type
adv_phy
sec_adv_phy
scan_req_ntf_flag

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetAdvSresData()

ble_status_t R_BLE_GAP_SetAdvSresData (st_ble_gap_adv_data_t * p_adv_srsp_data)

Set advertising data/scan response data/periodic advertising data.

This function sets advertising data/scan response data/periodic advertising data to the advertising
set. It is necessary to create an advertising set by R_BLE_GAP_SetAdvParam(), before calling this
function. Set advertising data/scan response data/periodic advertising data, after allocating the
memory for the data. The following shall be applied regarding the adv_prop_type field and the
data_type field in st_ble_gap_adv_param_t parameter specified in R_BLE_GAP_SetAdvParam().

The following shall be applied regarding the adv_prop_type field and the data_type field in
st_ble_gap_adv_param_t parameter specified in R_BLE_GAP_SetAdvParam().

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 490 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

When adv_prop_type is Legacy Advertising PDU type,
it's possible to set advertising data/scan response data up to 31 bytes.
advertising data/scan response data can be updated by this function in
advertising.

When adv_prop_type is Extended Advertising PDU type,
it's possible to set at most 1650 bytes of data as advertising data/scan response
data per 1 advertising set.
the total buffer size in Controller for advertising data/scan response data is 4250
bytes. Therefore please note that more than 4250 bytes of advertising data/scan
response data can not be set to all the advertising sets. Please refer to Figure 1.1
and Figure 1.2 about examples of setting advertising data/scan response data.
it's possible to update advertising data/scan response data in advertising, if the
data_length field in st_ble_gap_adv_data_t parameter is up to 251 bytes.

Figure 146: Figure 1.1

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 491 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Figure 147: Figure 1.2

When periodic advertising data is set,
At most 1650 bytes of data can be set to 1 advertising set.
The total buffer size in Controller for periodic advertising data is 4306 bytes.
Therefore please note that more than 4306 bytes of periodic advertising data can
not be set to all the advertising sets.
it's possible to update periodic advertising data in advertising, if the data_length
field in st_ble_gap_adv_data_t parameter is up to 252 bytes.

The result of this API call is notified in BLE_GAP_EVENT_ADV_DATA_UPD_COMP event.

Parameters
[in] p_adv_srsp_data Advertising data/scan

response data/periodic
advertising data.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

p_adv_srsp_data is specified as
NULL.
data_length field in p_adv_srsp_data
parameter is not 0 and p_data field
is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following field in p_adv_srsp_data
parameter is out of range.

adv_hdl
data_type
data_length
zero_length_flag

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 492 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_StartAdv()

ble_status_t R_BLE_GAP_StartAdv (uint8_t adv_hdl, uint16_t duration, uint8_t
max_extd_adv_evts)

Start advertising.

This function starts advertising. Create the advertising set specified with adv_hdl by
R_BLE_GAP_SetAdvParam(), before calling this function. The result of this API call is notified in
BLE_GAP_EVENT_ADV_ON event.

Parameters
[in] adv_hdl The advertising handle

pointing to the advertising
set which starts advertising.
The valid range is 0x00 -
0x03.

[in] duration The duration for which the
advertising set identified by
adv_hdl is enabled. Time =
duration * 10ms. When the
duration expires,
BLE_GAP_EVENT_ADV_OFF
event notifies that
advertising is stopped. The
valid range is 0x0000 -
0xFFFF. The duration
parameter is ignored when
the value is set to 0x0000.

[in] max_extd_adv_evts The maximum number of
advertising events that be
sent during advertising.
When all the advertising
events(max_extd_adv_evts)
have been sent,
BLE_GAP_EVENT_ADV_OFF
event notifies that
advertising is stopped. The
max_extd_adv_evts
parameter is ignored when
the value is set to 0x00.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 493 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_StopAdv()

ble_status_t R_BLE_GAP_StopAdv (uint8_t adv_hdl)

Stop advertising.

This function stops advertising. The result of this API call is notified in BLE_GAP_EVENT_ADV_OFF
event.

Parameters
[in] adv_hdl The advertising handle

pointing to the advertising
set which stops advertising.
The valid range is 0x00 -
0x03.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 494 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetPerdAdvParam()

ble_status_t R_BLE_GAP_SetPerdAdvParam (st_ble_gap_perd_adv_param_t * p_perd_adv_param)

Set periodic advertising parameters.

This function sets periodic advertising parameters. Create the advertising set which supports Non-
Connectable, Non-Scannable advertising by R_BLE_GAP_SetAdvParam() before setting periodic
advertising parameters. The result of this API call is notified in
BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP event.

Parameters
[in] p_perd_adv_param Periodic advertising

parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_perd_adv_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following field in the p_perd_adv_param
parameter is out of range.

adv_hdl
perd_intv_min or perd_intv_max
prop_type is neither 0x0000 nor 0x0
040(BLE_GAP_PERD_PROP_TX_POWE
R)

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 495 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_StartPerdAdv()

ble_status_t R_BLE_GAP_StartPerdAdv (uint8_t adv_hdl)

Start periodic advertising.

This function starts periodic advertising. Set periodic advertising parameters to the advertising set,
before starting periodic advertising. The result of this API call is notified in
BLE_GAP_EVENT_PERD_ADV_ON event.

Parameters
[in] adv_hdl Advertising handle

identifying the advertising
set which starts periodic
advertising.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 496 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_StopPerdAdv()

ble_status_t R_BLE_GAP_StopPerdAdv (uint8_t adv_hdl)

Stop periodic advertising.

This function stops periodic advertising. If the return value of this API is BLE_SUCCESS, the result is
notified in BLE_GAP_EVENT_PERD_ADV_OFF event.

Parameters
[in] adv_hdl Specify the handle of

Advertising Set to stop
Periodic Advertising.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) adv_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 497 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_GetRemainAdvBufSize()

ble_status_t R_BLE_GAP_GetRemainAdvBufSize (uint16_t * p_remain_adv_data_size, uint16_t *
p_remain_perd_adv_data_size)

Get buffer size for advertising data/scan response data/periodic advertising data in the Controller.

This function gets the total size of advertising data/scan response data/periodic advertising data
which can be currently set to Controller(all of the advertising sets). The application layer gets the
data sizes via the parameters. By this API function call, no events occur.

Parameters
[out] p_remain_adv_data_size The free buffer size of

Controller to which
advertising data/scan
response data can be
currently set.

[out] p_remain_perd_adv_data_siz
e

The free buffer size of
Controller to which periodic
advertising data can be
currently set.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_remain_adv_data_size or
p_remain_perd_adv_data_size is specified as
NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 498 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_RemoveAdvSet()

ble_status_t R_BLE_GAP_RemoveAdvSet (uint8_t op_code, uint8_t adv_hdl)

Delete advertising set.

This function deletes an advertising set or deletes all the advertising sets. The result of this API call
is notified in BLE_GAP_EVENT_ADV_SET_REMOVE_COMP event.

Parameters
[in] op_code The operation for delete or

clear.
macro description

BLE_GAP_RM
V_ADV_SET_
REM_OP(0x0
1)

Delete an
advertising
set.

BLE_GAP_RM
V_ADV_SET_
CLR_OP(0x0
2)

Delete all
the
advertising
sets.

[in] adv_hdl Advertising handle
identifying the advertising
set deleted. If op_code is BL
E_GAP_RMV_ADV_SET_CLR_
OP, adv_hdl is ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

op_code is out of range.
When op_code is
BLE_GAP_RMV_ADV_SET_REM_OP(0x
01), adv_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 499 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_CreateConn()

ble_status_t R_BLE_GAP_CreateConn (st_ble_gap_create_conn_param_t * p_param)

Request for a link establishment.

This function sends a connection request to a remote device to create a link. When Controller has
received a request for establishment of a link from host stack,
BLE_GAP_EVENT_CREATE_CONN_COMP event is notified to the application layer. When the link is
established, BLE_GAP_EVENT_CONN_IND event is notified to the application layer.

Parameters
[in] p_param Connection parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

p_param is specified as NULL.
p_conn_param_1M field and
p_conn_param_2M and
p_conn_param_coded field in
p_param are specified as NULL.
When creating a link with 1M PHY,
p_conn_param in p_conn_param_1M
field in p_param is specified as
NULL.
When creating a link with 2M PHY,
p_conn_param in p_conn_param_2M
field in p_param is specified as
NULL.
When creating a link with coded
MPHY, p_conn_param in
p_conn_param_coded field in
p_param is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

init_filter_policy in p_param is out of
range.
remote_bd_addr_type field or
own_addr_type address field in
p_param is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 500 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_CancelCreateConn()

ble_status_t R_BLE_GAP_CancelCreateConn (void)

Cancel the request for a link establishment.

This function cancels a request for establishing a link. When Controller has received the cancel
request from host stack, BLE_GAP_EVENT_CONN_CANCEL_COMP event is notified to the application
layer. When the cancel procedure has completed, BLE_GAP_EVENT_CONN_IND event is notified to
the application layer.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetChMap()

ble_status_t R_BLE_GAP_SetChMap (uint8_t * p_channel_map)

Set the Channel Map.

This function sets the channel map. The result of this API call is notified in
BLE_GAP_EVENT_CH_MAP_SET_COMP event.

Parameters
[in] p_channel_map Channel map.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_channel_map is specified as NULL.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_StartScan()

ble_status_t R_BLE_GAP_StartScan (st_ble_gap_scan_param_t * p_scan_param,
st_ble_gap_scan_on_t * p_scan_enable)

Set scan parameter and start scan.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 501 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

This function starts scanning. When scanning for the first time, set the p_scan_param. Setting scan
parameters can be omitted by specifying p_scan_param as NULL after next time. The result of this
API call is notified in BLE_GAP_EVENT_SCAN_ON event. Advertising report is notified in
BLE_GAP_EVENT_ADV_REPT_IND event. Figure 1.3 shows the relationship between scan period,
scan duration, scan interval and scan window.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 502 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Figure 148: Figure 1.3

 When scan duration is non-zero, scan period is zero and scan duration expires,
BLE_GAP_EVENT_SCAN_TO event is notified to the application layer.

Parameters
[in] p_scan_param Scan parameter. When

p_scan_param is specified as
NULL, host stack doesn't set
scan parameters and start
scanning with the previous
parameters.

[in] p_scan_enable Scan period, scan duration,
duplicate filter and
procedure type.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

p_scan_enable is specified as NULL.
p_phy_param_1M field and
p_phy_param_coded field in
p_scan_param are specified as
NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

proc_type field in p_scan_enable is
out of range.
filter_dups in p_scan_enable is out of
range.
o_addr_type in p_scan_param is out
of range.
filter_policy in p_scan_param is out
of range.
scan_type of p_scan_param's
p_phy_param_1M or
p_phy_param_coded is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 503 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_StopScan()

ble_status_t R_BLE_GAP_StopScan (void)

Stop scan.

This function stops scanning. The result of this API call is notified in BLE_GAP_EVENT_SCAN_OFF
event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_CreateSync()

ble_status_t R_BLE_GAP_CreateSync (st_ble_dev_addr_t * p_addr, uint8_t adv_sid, uint16_t skip,
uint16_t sync_to)

Request for a periodic sync establishment.

This function sends a request for establishment of a periodic sync to a advertiser. In order to create
a periodic sync, scan needs to be starting by R_BLE_GAP_StartScan(). When Controller has received
the request from host stack, BLE_GAP_EVENT_CREATE_SYNC_COMP event is notified to the
application layer. When the periodic sync is established, BLE_GAP_EVENT_SYNC_EST event is
notified to the application layer.

Parameters
[in] p_addr The address of periodic

advertiser.When p_addr is
specified as NULL, local
device creates a periodic
sync with the advertiser
registered in Periodic
Advertiser List.

[in] adv_sid Advertising SID. When
p_addr is specified as NULL,
adv_sid is ignored. Valid
range is 0x00 - 0x0F.

[in] skip The number of consecutive
periodic advertising packets
that local device may skip
after receiving a periodic
advertising packet. Valid
range is 0x0000 - 0x01F3.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 504 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

[in] sync_to The maximum permitted
time between successful
receives.When sync_to
expires, the periodic sync is
lost. Time(ms) = sync_to *
10. Valid range is 0x000A -
0x4000.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_addr is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The following parameter is out of range.

address type in p_addr
adv_sid
skip
sync_to

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_CancelCreateSync()

ble_status_t R_BLE_GAP_CancelCreateSync (void)

Cancel the request for a periodic sync establishment.

This function cancels a request for establishing a periodic sync. The result of this API call is notified
in BLE_GAP_EVENT_SYNC_CREATE_CANCEL_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 505 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_TerminateSync()

ble_status_t R_BLE_GAP_TerminateSync (uint16_t sync_hdl)

Terminate the periodic sync.

This function terminates a periodic sync. The result of this API call is notified in
BLE_GAP_EVENT_SYNC_TERM event.

Parameters
[in] sync_hdl Sync handle identifying the

periodic sync to be
terminated.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) sync_hdl is out of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 506 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ConfPerdAdvList()

ble_status_t R_BLE_GAP_ConfPerdAdvList (uint8_t op_code, st_ble_dev_addr_t * p_addr, uint8_t *
p_adv_sid_set, uint8_t device_num)

Set Periodic Advertiser List.

This function supports the following operations regarding Periodic Advertiser List.

Add the device to Periodic Advertiser List.
Delete the device from Periodic Advertiser List.

Clear Periodic Advertiser List.

The total number of Periodic Advertiser List entries is defined as
BLE_GAP_PERD_LIST_MAX_ENTRY. The result of this API call is notified in
BLE_GAP_EVENT_PERD_LIST_CONF_COMP event.

Parameters
[in] op_code The operation for Periodic

Advertiser List.
macro description

BLE_GAP_L
IST_ADD_D
EV(0x01)

Add the
device to
the list.

BLE_GAP_L
IST_REM_D
EV(0x02)

Delete the
device
from the
list.

BLE_GAP_L
IST_CLR(0x
03)

Clear the
list.

[in] p_addr An array of device
address to add / delete to
the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_addr is ignored.

[in] p_adv_sid_set An array of SID of the
advertiser to add / delete
to the list. The number of
elements is specified by
device_num. If op_code is
BLE_GAP_LIST_CLR,
p_adv_sid_set is ignored.

[in] device_num The number of devices
add / delete to the list.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 507 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

Valid range is 1-BLE_GAP_
PERD_LIST_MAX_ENTRY. If
op_code is
BLE_GAP_LIST_CLR,
device_num is ignored.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) When op_code is
BLE_GAP_LIST_ADD_DEV or
BLE_GAP_LIST_REM_DEV, p_addr or
p_adv_sid_set is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) op_code or address type field in p_addr
or p_adv_sid_set or device_num is out
of range.

BLE_ERR_UNSUPPORTED(0x0007) Not supported.

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

While operating Periodic
Advertiser List, this function
was called.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for operating
periodic advertiser.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 508 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_AuthorizeDev()

ble_status_t R_BLE_GAP_AuthorizeDev (uint16_t conn_hdl, uint8_t author_flag)

Authorize a remote device.

User authorizes a remote device by this function. This function is used when a remote device
accesses a GATT Characteristic in local device which requests user authorization. The result of this
API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be authorized or
not by user.

[in] author_flag Authorize or not the remote
device.
macro description

BLE_GAP_NO
T_AUTHORIZ
ED(0x00)

Not
authorize
the remote
device.

BLE_GAP_AU
THORIZED(0
x01)

Authorize
the remote
device.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) author_flag is out of range.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 509 / 2,794

Flexible Software Package User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_GetRemDevInfo()

ble_status_t R_BLE_GAP_GetRemDevInfo (uint16_t conn_hdl)

Get the information about remote device.

This function retrieves information about the remote device. The information includes BD_ADDR,
the version number and LE features. The result of this API call is notified in
BLE_GAP_EVENT_GET_REM_DEV_INFO event.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device whose information to
be retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

◆ R_BLE_GAP_SetPairingParams()

ble_status_t R_BLE_GAP_SetPairingParams (st_ble_gap_pairing_param_t * p_pair_param)

Set the parameters using pairing.

This function sets the parameters used in pairing. The parameters set by this API are sent to the
remote device when pairing occurred. The result of this API call is returned by a return value.

Parameters
[in] p_pair_param Pairing parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The following field in p_pair_param is out of
range.

iocap
max_key_size
mitm
bonding
key_notf
sec_conn_only

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 510 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetLocIdInfo()

ble_status_t R_BLE_GAP_SetLocIdInfo (st_ble_dev_addr_t * p_lc_id_addr, uint8_t * p_lc_irk)

Set the IRK and the identity address distributed to a remote device.

This function registers local IRK and identity address of local device in host stack. The IRK and the
identity address are distributed to a remote device in pairing. The result of this API call is returned
by a return value.

Parameters
[in] p_lc_id_addr Identity address to be

registered in host stack.

[in] p_lc_irk IRK to be registered in host
stack.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_lc_id_addr or p_lc_irk is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) Address type field in p_lc_id_addr is out of
range.

◆ R_BLE_GAP_SetLocCsrk()

ble_status_t R_BLE_GAP_SetLocCsrk (uint8_t * p_local_csrk)

Set the CSRK distributed to a remote device.

This function registers local CSRK in host stack. The CSRK is distributed to a remote device in
pairing. The result of this API call is returned by a return value.

Parameters
[in] p_local_csrk CSRK to be registered in

host stack.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_local_csrk is specified as NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 511 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_StartPairing()

ble_status_t R_BLE_GAP_StartPairing (uint16_t conn_hdl)

Start pairing.

This function starts pairing with a remote device. The result of this API call is returned by a return
value. The result of pairing is notified in BLE_GAP_EVENT_PAIRING_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which local device
starts pairing with.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) While generating OOB data, this function
was called.

BLE_ERR_CONTEXT_FULL(0x000B) While pairing, this function was called.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 512 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ReplyPairing()

ble_status_t R_BLE_GAP_ReplyPairing (uint16_t conn_hdl, uint8_t response)

Reply the pairing request from a remote device.

This function replies to the pairing request from the remote device. The pairing request from the
remote device is notified in BLE_GAP_EVENT_PAIRING_REQ event. The result of this API call is
returned by a return value. The result of pairing is notified in BLE_GAP_EVENT_PAIRING_COMP
event.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which local device
starts pairing with.

[in] response Accept or reject the pairing
request from the remote
device.
macro description

BLE_GAP_PAI
RING_ACCEP
T(0x00)

Accept the
pairing
request.

BLE_GAP_PAI
RING_REJEC
T(0x01)

Reject the
pairing
request.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) response is out of range.

BLE_ERR_INVALID_STATE(0x0008) While generating OOB data, this function
was called.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, host stack
has not yet received
BLE_GAP_EVENT_PAIRING_REQ event.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 513 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_StartEnc()

ble_status_t R_BLE_GAP_StartEnc (uint16_t conn_hdl)

Encryption the link.

This function starts encryption of the link. In case of master device, the local device requests for
the encryption to a remote device. In case of slave device, the local device sends a Security
Request to a remote device. After receiving the Security Request, the remote device requests for
the encryption to the local device. The result of the encryption is returned in
BLE_GAP_EVENT_ENC_CHG event.

Parameters
[in] conn_hdl Connection handle

identifying the link which is
encrypted.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

Pairing has not been completed.
The task for host stack is not
running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 514 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ReplyPasskeyEntry()

ble_status_t R_BLE_GAP_ReplyPasskeyEntry (uint16_t conn_hdl, uint32_t passkey, uint8_t
response)

Reply the passkey entry request.

When BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event is notified, the response to passkey entry is
sent by this function. The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which the reply to
passkey entry is sent.

[in] passkey Passkey. The valid range is
000000 - 999999 in decimal.

[in] response Active or negative reply to
passkey entry.
macro description

BLE_GAP_PAI
RING_ACCEP
T(0x00)

Accept the
passkey
entry
pairing.

BLE_GAP_PAI
RING_REJEC
T(0x01)

Reject the
passkey
entry
pairing.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) passkey or response is out of range.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 515 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ReplyNumComp()

ble_status_t R_BLE_GAP_ReplyNumComp (uint16_t conn_hdl, uint8_t response)

Reply the numeric comparison request.

When BLE_GAP_EVENT_NUM_COMP_REQ event is notified, the response to Numeric Comparison is
sent by this function. The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which the reply to
Numeric Comparison is sent.

[in] response Active or negative reply in
Numeric Comparison.
macro description

BLE_GAP_PAI
RING_ACCEP
T(0x00)

The number
displayed in
the local is
the same as
the one of
the remote.

BLE_GAP_PAI
RING_REJEC
T(0x01)

The number
displayed in
the local is
differs from
the one of
the remote.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) response is out of range.

BLE_ERR_INVALID_STATE(0x0008) When this function was called, host stack
has not yet received
BLE_GAP_EVENT_NUM_COMP_REQ event.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 516 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_NotifyKeyPress()

ble_status_t R_BLE_GAP_NotifyKeyPress (uint16_t conn_hdl, uint8_t key_press)

Notify the input key type which a remote device inputs in the passkey entry.

This function notifies the input key type to the remote device in passkey entry. The result is
returned from this API.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to which the key
notification is sent.

[in] key_press Input key type.
macro description

BLE_GAP_LE
SC_PASSKEY
_ENTRY_STA
RTED(0x00)

Notify that
passkey
entry
started.

BLE_GAP_LE
SC_PASSKEY
_DIGIT_ENTE
RED(0x01)

Notify that
passkey
digit
entered.

BLE_GAP_LE
SC_PASSKEY
_DIGIT_ERAS
ED(0x02)

Notify that
passkey
digit erased.

BLE_GAP_LE
SC_PASSKEY
_CLEARED(0
x03)

Notify that
passkey
cleared.

BLE_GAP_LE
SC_PASSKEY
_ENTRY_CO
MPLETED(0x
04)

Notify that
passkey
entry
completed.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) key_press parameter is out of range.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 517 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_GetDevSecInfo()

ble_status_t R_BLE_GAP_GetDevSecInfo (uint16_t conn_hdl, st_ble_gap_auth_info_t * p_sec_info)

Get the security information about the remote device.

This function gets the parameters which has been negotiated with the remote device in pairing.
The parameters can be retrieved after pairing. The result is returned by p_sec_info.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device whose bonding
information is retrieved.

[in] p_sec_info Return the security
information which has been
negotiated in pairing.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_sec_info is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The remote device bonding information has
not been set to host stack.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 518 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_ReplyExKeyInfoReq()

ble_status_t R_BLE_GAP_ReplyExKeyInfoReq (uint16_t conn_hdl)

Distribute the keys of local device.

When key exchange request is notified by BLE_GAP_EVENT_EX_KEY_REQ event at pairing, keys of
the local device are distributed. The result is returned from this API.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to which the key is
distributed.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) When this function was called, pairing has
not yet started.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 519 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetRemOobData()

ble_status_t R_BLE_GAP_SetRemOobData (st_ble_dev_addr_t * p_addr, uint8_t oob_data_flag,
st_ble_gap_oob_data_t * p_oob)

Set the oob data from a remote device.

This function registers the OOB data received from a remote device. When oob_data_flag indicates
that the OOB data has been received, the setting regarding OOB data is reflected in pairing. In
order to do OOB pairing, set the OOB data received from the remote device before pairing. The
result is returned from this API.

Parameters
[in] p_addr The remote device address.

[in] oob_data_flag This parameter indicates
whether the local device has
received the OOB data from
the remote device or not.
macro description

BLE_GAP_OO
B_DATA_NO
T_PRESENT(
0x00)

Reply that
No OOB data
has been
received
when
pairing.

BLE_GAP_OO
B_DATA_PRE
SENT(0x01)

Reply that
the OOB
data has
been
received
when
pairing.

[in] p_oob The OOB data received from
the remote device.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows.

p_addr is specified as NULL.
oob_data_flag is
BLE_GAP_OOB_DATA_PRESENT and
p_oob is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) oob_data_flag is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) There is no room to register the OOB data
received from a remote device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 520 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_CreateScOobData()

ble_status_t R_BLE_GAP_CreateScOobData (void)

Create data for oob in secure connection.

This function generates the OOB data distributed to a remote device in Secure Connections. The
result of this API call is notified in BLE_GAP_EVENT_SC_OOB_CREATE_COMP event.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The reason for this error is as follows:

This function was called in pairing.
The task for host stack is not
running.

BLE_ERR_ALREADY_IN_PROGRESS(0x000A) This function was called in creating OOB
data.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 521 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_SetBondInfo()

ble_status_t R_BLE_GAP_SetBondInfo (st_ble_gap_bond_info_t * p_bond_info, uint8_t device_num,
uint8_t * p_set_num)

Set the bonding information stored in non-volatile memory to the host stack.

Set the bonding information of the remote device in the host stack. After power re-supply, when
the remote device bonding information stored in non-volatile memory is set to host stack, this
function is used. Host stack can be set the number specified by the device_num parameter of
bonding information.

Parameters
[in] p_bond_info An array of bonding

information. The number of
elements is specified by
device_num.

[in] device_num The number of the devices
of which host stack registers
bonding information.

[in] p_set_num The number of the devices
whose bonding information
was registered in host stack.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_bond_info or p_set_num is specified as
NULL.

BLE_ERR_INVALID_ARG(0x0003) device_num is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack already has the maximum
number of bonding information.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 522 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

◆ R_BLE_GAP_DeleteBondInfo()

void R_BLE_GAP_DeleteBondInfo (int32_t local, int32_t remote, st_ble_dev_addr_t * p_addr,
ble_gap_del_bond_cb_t gap_del_bond_cb)

This function deletes the bonding information in Host Stack.
When a function for deleting the bonding information stored in non-volatile area is registered by
the gap_del_bond_cb parameter, it is deleted as well as the bonding information in Host Stack.

Parameters
[in] local The type of the local

bonding information to be
deleted.
macro description

BLE_GAP_SE
C_DEL_LOC_
NONE(0x00)

Delete no
local keys.

BLE_GAP_SE
C_DEL_LOC_I
RK(0x01)

Delete local
IRK and
identity
address.

BLE_GAP_SE
C_DEL_LOC_
CSRK(0x02)

Delete local
CSRK.

BLE_GAP_SE
C_DEL_LOC_
ALL(0x03)

Delete all
local keys.

[in] remote The type of the remote
bonding information to be
deleted.
macro description

BLE_GAP_SE
C_DEL_REM_
NONE(0x00)

Delete no
remote
device keys.

BLE_GAP_SE
C_DEL_REM_
SA(0x01)

Delete the
keys
specified by
the p_addr
parameter.

BLE_GAP_SE
C_DEL_REM_
NOT_CONN(
0x02)

Delete keys
of not
connected
remote
devices.

BLE_GAP_SE
C_DEL_REM_
ALL(0x03)

Delete all
remote
device keys.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 523 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

[in] p_addr p_addr is specified as the
address of the remote
device whose keys are
deleted when the rem_info
parameter is set to
BLE_GAP_SEC_DEL_REM_SA(
0x01).

[in] gap_del_bond_cb This parameter is a callback
function which deletes the
bonding information stored
in non-volatile area.
After deleting the bonding
information stored in Host
Stack, the callback function
is called. If no bonding
information is stored in non-
volatile area, specify the
parameter as NULL.

Return values
none

◆ R_BLE_GAP_ReplyLtkReq()

ble_status_t R_BLE_GAP_ReplyLtkReq (uint16_t conn_hdl, uint16_t ediv, uint8_t * p_peer_rand,
uint8_t response)

Reply the LTK request from a remote device.

This function replies to the LTK request in BLE_GAP_EVENT_LTK_REQ event from a remote device.
The result of the LTK reply is returned in BLE_GAP_EVENT_LTK_RSP_COMP event. When the link
encryption has completed, BLE_GAP_EVENT_ENC_CHG event is notified.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device which sent the LTK
request.

[in] ediv Ediv notified in
BLE_GAP_EVENT_LTK_REQ
event.

[in] p_peer_rand Rand notified in
BLE_GAP_EVENT_LTK_REQ
event.

[in] response Response to the LTK
request. If

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 524 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GAP

"BLE_GAP_LTK_REQ_ACCEPT
" is specified, when no LTK
has been exchanged in
pairing, reject the LTK
request.
macro description

BLE_GAP_LT
K_REQ_ACCE
PT(0x00)

Reply for the
LTK request.

BLE_GAP_LT
K_REQ_DENY
(0x01)

Reject the
LTK request.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) p_peer_rand is specified as NULL in case of
legacy pairing.

BLE_ERR_INVALID_ARG(0x0003) response is out of range.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

4.2.5.2 GATT_COMMON
Modules » Bluetooth Low Energy Library (r_ble)

Functions

ble_status_t R_BLE_GATT_GetMtu (uint16_t conn_hdl, uint16_t *p_mtu)

 This function gets the current MTU used in GATT communication.
More...

Detailed Description

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 525 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_COMMON

◆ R_BLE_GATT_GetMtu()

ble_status_t R_BLE_GATT_GetMtu (uint16_t conn_hdl, uint16_t * p_mtu)

This function gets the current MTU used in GATT communication.

Both GATT server and GATT Client can use this function.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
or the GATT Client.

[in] p_mtu The Current MTU. Before
MTU exchange, this
parameter is 23 bytes.
After MTU exchange, this
parameter is the negotiated
MTU.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The mtu parameter is NULL.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server or the GATT Client
specified by conn_hdl was not found.

4.2.5.3 GATT_SERVER
Modules » Bluetooth Low Energy Library (r_ble)

Functions

ble_status_t R_BLE_GATTS_Init (uint8_t cb_num)

 This function initializes the GATT Server and registers the number of
the callbacks for GATT Server event. More...

ble_status_t R_BLE_GATTS_SetDbInst (st_ble_gatts_db_cfg_t *p_db_inst)

 This function sets GATT Database to host stack. More...

ble_status_t R_BLE_GATTS_RegisterCb (ble_gatts_app_cb_t cb, uint8_t priority)

 This function registers a callback for GATT Server event. More...

ble_status_t R_BLE_GATTS_DeregisterCb (ble_gatts_app_cb_t cb)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 526 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

 This function deregisters the callback function for GATT Server
event. More...

ble_status_t R_BLE_GATTS_Notification (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_ntf_data)

 This function sends a notification of an attribute's value. More...

ble_status_t R_BLE_GATTS_Indication (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_ind_data)

 This function sends a indication of an attribute's value. More...

ble_status_t R_BLE_GATTS_GetAttr (uint16_t conn_hdl, uint16_t attr_hdl,
st_ble_gatt_value_t *p_value)

 This function gets a attribute value from the GATT Database. More...

ble_status_t R_BLE_GATTS_SetAttr (uint16_t conn_hdl, uint16_t attr_hdl,
st_ble_gatt_value_t *p_value)

 This function sets an attribute value to the GATT Database. More...

ble_status_t R_BLE_GATTS_SendErrRsp (uint16_t error_code)

 This function sends an error response to a remote device. More...

ble_status_t R_BLE_GATTS_RspExMtu (uint16_t conn_hdl, uint16_t mtu)

 This function replies to a MTU Exchange Request from a remote
device. More...

ble_status_t R_BLE_GATTS_SetPrepareQueue (st_ble_gatt_pre_queue_t
*p_pre_queues, uint8_t queue_num)

 Register prepare queue and buffer in Host Stack. More...

Detailed Description

Data Structures

struct st_ble_gatt_value_t

 Attribute Value. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 527 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

struct st_ble_gatt_hdl_value_pair_t

 Attribute handle and attribute Value. More...

struct st_ble_gatt_queue_att_val_t

 Queued writes Attribute Value. More...

struct st_ble_gatt_queue_pair_t

 Queued writes Attribute Value. More...

struct st_ble_gatt_queue_elm_t

 Prepare Write Queue element for long chracteristic. More...

struct st_ble_gatt_pre_queue_t

 Prepare Write Queue for long chracteristic. More...

struct st_ble_gatts_db_params_t

 Attribute value to be set to or retrieved from the GATT Database and
the access type from the GATT Client. More...

struct st_ble_gatts_db_conn_hdl_t

 Information about the service or the characteristic that the attribute
belongs to. More...

struct st_ble_gatts_db_access_evt_t

 This structure notifies that the GATT Database has been accessed
from a GATT Client. More...

struct st_ble_gatts_conn_evt_t

 This structure notifies that the link with the GATT Client has been
established. More...

struct st_ble_gatts_disconn_evt_t

 This structure notifies that the link with the GATT Client has been
disconnected. More...

struct st_ble_gatts_ex_mtu_req_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 528 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

 This structure notifies that a MTU Exchange Request PDU has been
received from a GATT Client. More...

struct st_ble_gatts_cfm_evt_t

 This structure notifies that a Confirmation PDU has been received
from a GATT Client. More...

struct st_ble_gatts_read_by_type_rsp_evt_t

 This structure notifies that a Read By Type Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_read_rsp_evt_t

 This structure notifies that a Read Response PDU has been sent from
GATT Server. More...

struct st_ble_gatts_read_blob_rsp_evt_t

 This structure notifies that a Read Blob Response PDU has been sent
from GATT Server. More...

struct st_ble_gatts_read_multi_rsp_evt_t

 This structure notifies that a Read Multiple Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_write_rsp_evt_t

 This structure notifies that a Write Response PDU has been sent from
GATT Server. More...

struct st_ble_gatts_prepare_write_rsp_evt_t

 This structure notifies that a Prepare Write Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_exe_write_rsp_evt_t

 This structure notifies that a Execute Write Response PDU has been
sent from GATT Server. More...

struct st_ble_gatts_db_uuid_cfg_t

 A structure that defines the information on the position where UUIDs

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 529 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

are used. More...

struct st_ble_gatts_db_attr_cfg_t

 A structure that defines the detailed information of the attributes.
More...

struct st_ble_gatts_db_attr_list_t

 The number of attributes are stored. More...

struct st_ble_gatts_db_char_cfg_t

 A structure that defines the detailed information of the
characteristics. More...

struct st_ble_gatts_db_serv_cfg_t

 A structure that defines the detailed information of the
characteristics. More...

struct st_ble_gatts_db_cfg_t

 This is the structure of GATT Database that is specified in
R_BLE_GATTS_SetDbInst(). More...

struct st_ble_gatts_evt_data_t

 st_ble_gatts_evt_data_t is the type of the data notified in a GATT
Server Event. More...

Macros

#define BLE_GATT_DEFAULT_MTU

 GATT Default MTU.

#define BLE_GATT_16_BIT_UUID_FORMAT

 GATT Identification for 16-bit UUID Format.

#define BLE_GATT_128_BIT_UUID_FORMAT

 GATT Identification for 128-bit UUID Format.

#define BLE_GATT_16_BIT_UUID_SIZE

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 530 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

 GATT 16-bit UUID Size.

#define BLE_GATT_128_BIT_UUID_SIZE

 GATT 128-bit UUID Size.

#define BLE_GATT_INVALID_ATTR_HDL_VAL

 GATT Invalid Attribute Handle Value.

#define BLE_GATT_ATTR_HDL_START_RANGE

 GATT Attribute Handle Start Range.

#define BLE_GATT_ATTR_HDL_END_RANGE

 GATT Attribute Handle End Range.

#define BLE_GATTS_CLI_CNFG_NOTIFICATION

 GATT Client Configuration values. Enable Notification.

#define BLE_GATTS_CLI_CNFG_INDICATION

 GATT Client Configuration values. Enable Indication.

#define BLE_GATTS_CLI_CNFG_DEFAULT

 GATT Client Configuration values. Default value or disable
notification/indication.

#define BLE_GATTS_SER_CNFG_BROADCAST

 GATT Server Configuration values. Enable broadcast.

#define BLE_GATTS_SER_CNFG_DEFAULT

 GATT Server Configuration values. Default value.

#define BLE_GATTS_MAX_CB

 GATT Server Callback Number.

#define BLE_GATTS_OP_CHAR_VALUE_READ_REQ

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 531 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

 Characteristic Value Local Read Operation.

#define BLE_GATTS_OP_CHAR_VALUE_WRITE_REQ

 Characteristic Value Local Write Operation.

#define BLE_GATTS_OP_CHAR_VALUE_WRITE_WITHOUT_REQ

 Characteristic Value Local Write Without Response Operation.

#define BLE_GATTS_OP_CHAR_CLI_CNFG_READ_REQ

 Characteristic Client Configuration Local Read Operation.

#define BLE_GATTS_OP_CHAR_CLI_CNFG_WRITE_REQ

 Characteristic Client Configuration Local Write Operation.

#define BLE_GATTS_OP_CHAR_SER_CNFG_READ_REQ

 Characteristic Server Configuration Local Read Operation.

#define BLE_GATTS_OP_CHAR_SER_CNFG_WRITE_REQ

 Characteristic Server Configuration Local Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_READ_REQ

 Characteristic Value Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_WRITE_REQ

 Characteristic Value Peer Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_WRITE_CMD

 Characteristic Value Peer Write Command.

#define BLE_GATTS_OP_CHAR_PEER_CLI_CNFG_READ_REQ

 Characteristic Client Configuration Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_CLI_CNFG_WRITE_REQ

 Characteristic Client Configuration Peer Write Operation.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 532 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

#define BLE_GATTS_OP_CHAR_PEER_SER_CNFG_READ_REQ

 Characteristic Server Configuration Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_SER_CNFG_WRITE_REQ

 Characteristic Server Configuration Peer Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_USR_DESC_READ_REQ

 Characteristic User Description Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_USR_DESC_WRITE_REQ

 Characteristic User Description Peer Write Operation.

#define BLE_GATTS_OP_CHAR_PEER_HLD_DESC_READ_REQ

 Characteristic Higher Layer Defined Descriptor Peer Read Operation.

#define BLE_GATTS_OP_CHAR_PEER_HLD_DESC_WRITE_REQ

 Characteristic Higher Layer Defined Descriptor Peer Write Operation.

#define BLE_GATTS_OP_CHAR_REQ_AUTHOR

 Operation Required Authorization.

#define BLE_GATT_DB_READ

 Allow clients to read.

#define BLE_GATT_DB_WRITE

 Allow clients to write.

#define BLE_GATT_DB_WRITE_WITHOUT_RSP

 Allow clients to write without response.

#define BLE_GATT_DB_READ_WRITE

 Allow clients to access of all.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 533 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

#define BLE_GATT_DB_NO_AUXILIARY_PROPERTY

 No auxiliary properties.

#define BLE_GATT_DB_FIXED_LENGTH_PROPERTY

 Fixed length attribute value.

#define BLE_GATT_DB_AUTHORIZATION_PROPERTY

 Attributes requiring authorization.

#define BLE_GATT_DB_ATTR_DISABLED

 The attribute is disabled. If this value is set, the attribute cannot be
found and accessed by a GATT Client.

#define BLE_GATT_DB_128_BIT_UUID_FORMAT

 Attribute with 128 bit UUID.

#define BLE_GATT_DB_PEER_SPECIFIC_VAL_PROPERTY

 Attribute managed by each GATT Client.

#define BLE_GATT_DB_CONST_ATTR_VAL_PROPERTY

 Fixed attribute value.

#define BLE_GATT_DB_SER_SECURITY_UNAUTH

 Unauthenticated pairing(Security Mode1 Security Level 2, Security
Mode 2 Security Level 1). Unauthenticated pairing is required to
access the service.

#define BLE_GATT_DB_SER_SECURITY_AUTH

 Authenticated pairing(Security Mode1 Security Level 3, Security
Mode 2 Security Level 2). Authenticated pairing is required to access
the service.

#define BLE_GATT_DB_SER_SECURITY_SECONN

 Authenticated LE secure connections that generates 16bytes
LTK(Security Mode1 Security Level 4). Authenticated LE secure
connections pairing that generates 16bytes LTK is required to access
the service. If this bit is set, bit24-27 are ignored.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 534 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

#define BLE_GATT_DB_SER_SECURITY_ENC

 Encryption. Encryption by the LTK exchanged in pairing is required to
access.

#define BLE_GATT_DB_SER_NO_SECURITY_PROPERTY

 No Security(Security Mode1 Security Level 1).

#define BLE_GATT_DB_SER_ENC_KEY_SIZE_DONT_CARE

 7-byte or larger encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_7

 7-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_8

 8-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_9

 9-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_10

 10-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_11

 11-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_12

 12-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_13

 13-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_14

 14-byte encryption key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 535 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_15

 15-byte encryption key.

#define BLE_GATT_DB_SER_ENCRYPT_KEY_SIZE_16

 16-byte encryption key.

Typedefs

typedef void(* ble_gatts_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_gatts_evt_data_t *p_event_data)

 ble_gatts_app_cb_t is the GATT Server Event callback function type.
More...

Enumerations

enum e_r_ble_gatts_evt_t

 GATT Server Event Identifier. More...

Data Structure Documentation

◆ st_ble_gatt_value_t

struct st_ble_gatt_value_t

Attribute Value.

Data Fields

uint16_t value_len Length of the attribute value.

uint8_t * p_value Attribute Value.

◆ st_ble_gatt_hdl_value_pair_t

struct st_ble_gatt_hdl_value_pair_t

Attribute handle and attribute Value.

Data Fields

uint16_t attr_hdl Attribute Handle.

st_ble_gatt_value_t value Attribute Value.

◆ st_ble_gatt_queue_att_val_t

struct st_ble_gatt_queue_att_val_t

Queued writes Attribute Value.

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 536 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

uint8_t * p_value Attribute Value for Queued
Write .

uint16_t value_len Length of the attribute value.

uint16_t padding padding.

◆ st_ble_gatt_queue_pair_t

struct st_ble_gatt_queue_pair_t

Queued writes Attribute Value.

Data Fields

st_ble_gatt_queue_att_val_t queue_value Attribute Value for Queued
Write.

uint16_t attr_hdl Attribute Handle.

◆ st_ble_gatt_queue_elm_t

struct st_ble_gatt_queue_elm_t

Prepare Write Queue element for long chracteristic.

Data Fields

st_ble_gatt_queue_pair_t queue_value_pair Part of Long Characteristic
Value and Characteristic Value
Handle.

uint16_t offset Offset that indicates the
location to be written.

◆ st_ble_gatt_pre_queue_t

struct st_ble_gatt_pre_queue_t

Prepare Write Queue for long chracteristic.

Data Fields

uint8_t * p_buf_start Buffer start address for Write
Long Characteristic Request.

st_ble_gatt_queue_elm_t * p_queue Prepare Write Queue for Long
Characteristic Value.

uint16_t buffer_len Buffer length.

uint16_t conn_hdl Connection Handle.

uint16_t buf_offset Current buffer offset.

uint8_t queue_size Number of elements in the
prepare write queue.

uint8_t queue_idx Index of Prepare Write Queue.

◆ st_ble_gatts_db_params_t

struct st_ble_gatts_db_params_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 537 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

Attribute value to be set to or retrieved from the GATT Database and the access type from the
GATT Client.

Data Fields

st_ble_gatt_value_t value Attribute value to be set to or
retrieved from the GATT
Database. Note that the
address of the value field in the
value field is invalid in case of
read access.

uint16_t attr_hdl Attribute handle identifying the
attribute to be set or retrieved.

uint8_t db_op Type of the access to GATT
Database from the GATT Client.

See also
access_type_to_gatt_dat
abase

◆ st_ble_gatts_db_conn_hdl_t

struct st_ble_gatts_db_conn_hdl_t

Information about the service or the characteristic that the attribute belongs to.

Data Fields

uint16_t conn_hdl Connection handle identifying
the GATT Client that accesses
to the GATT DataBase.

uint8_t service_id ID of the service that the
attribute belongs to.

uint8_t char_id ID of the Characteristic that the
attribute belongs to.

◆ st_ble_gatts_db_access_evt_t

struct st_ble_gatts_db_access_evt_t

This structure notifies that the GATT Database has been accessed from a GATT Client.

Data Fields

st_ble_gatts_db_conn_hdl_t * p_handle Information about the service
or the characteristic that the
attribute belongs to.

st_ble_gatts_db_params_t * p_params Attribute value to be set to or
retrieved from the GATT
Database and the access type
from the GATT Client.

◆ st_ble_gatts_conn_evt_t

struct st_ble_gatts_conn_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 538 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

This structure notifies that the link with the GATT Client has been established.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Client.

◆ st_ble_gatts_disconn_evt_t

struct st_ble_gatts_disconn_evt_t

This structure notifies that the link with the GATT Client has been disconnected.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Client.

◆ st_ble_gatts_ex_mtu_req_evt_t

struct st_ble_gatts_ex_mtu_req_evt_t

This structure notifies that a MTU Exchange Request PDU has been received from a GATT Client.

Data Fields

uint16_t mtu Maximum receive MTU size by
GATT Client.

◆ st_ble_gatts_cfm_evt_t

struct st_ble_gatts_cfm_evt_t

This structure notifies that a Confirmation PDU has been received from a GATT Client.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic sent by the
Indication PDU.

◆ st_ble_gatts_read_by_type_rsp_evt_t

struct st_ble_gatts_read_by_type_rsp_evt_t

This structure notifies that a Read By Type Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic read by the Read
By Type Request PDU.

◆ st_ble_gatts_read_rsp_evt_t

struct st_ble_gatts_read_rsp_evt_t

This structure notifies that a Read Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic read by the Read
Request PDU.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 539 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ st_ble_gatts_read_blob_rsp_evt_t

struct st_ble_gatts_read_blob_rsp_evt_t

This structure notifies that a Read Blob Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic read by the Read
Blob Request PDU.

◆ st_ble_gatts_read_multi_rsp_evt_t

struct st_ble_gatts_read_multi_rsp_evt_t

This structure notifies that a Read Multiple Response PDU has been sent from GATT Server.

Data Fields

uint8_t count The number of attribute read by
the Read Multiple Request PDU.

uint16_t * p_attr_hdl_list The list of attribute read by the
Read Multiple Request PDU.

◆ st_ble_gatts_write_rsp_evt_t

struct st_ble_gatts_write_rsp_evt_t

This structure notifies that a Write Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic written by the
Write Request PDU.

◆ st_ble_gatts_prepare_write_rsp_evt_t

struct st_ble_gatts_prepare_write_rsp_evt_t

This structure notifies that a Prepare Write Response PDU has been sent from GATT Server.

Data Fields

uint16_t attr_hdl Attribute handle identifying the
Characteristic written by the
Prepare Write Request PDU.

uint16_t length The length of written bytes by
the Prepare Write Request PDU.

uint16_t offset The offset of the first octet to
be written.

◆ st_ble_gatts_exe_write_rsp_evt_t

struct st_ble_gatts_exe_write_rsp_evt_t

This structure notifies that a Execute Write Response PDU has been sent from GATT Server.

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 540 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

uint8_t exe_flag The flag that indicates whether
execution or cancellation.
value description

0x00 Cancellation.

0x01 Execution.

◆ st_ble_gatts_db_uuid_cfg_t

struct st_ble_gatts_db_uuid_cfg_t

A structure that defines the information on the position where UUIDs are used.

Data Fields

uint16_t offset The position of the defined
UUID is specified by offset value
in uuid_table of
st_ble_gatts_db_cfg_t.

uint16_t first The attribute handle that
indicates the first position in
st_ble_gatts_db_attr_cfg_t for
the defined UUID is specified.

uint16_t last The attribute handle that
indicates the last position in
st_ble_gatts_db_attr_cfg_t for
the defined UUID is specified.

◆ st_ble_gatts_db_attr_cfg_t

struct st_ble_gatts_db_attr_cfg_t

A structure that defines the detailed information of the attributes.

Data Fields

uint8_t desc_prop The properties of attribute are
specified.

Set the following properties by
a bitwise OR.

macro description

BLE_GATT_DB
_READ(0x01)

Allow clients
to read.

BLE_GATT_DB
_WRITE(0x02)

Allow clients
to write.

BLE_GATT_DB
_WRITE_WITH
OUT_RSP(0x0
4)

Allow clients
to write.

BLE_GATT_DB Allow clients

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 541 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

_READ_WRITE
(0x07)

to access of
all.

uint8_t aux_prop The auxiliary properties of
attribute are specified.

Set the following properties by
a bitwise OR.

macro description

BLE_GATT_DB
_NO_AUXILIAR
Y_PROPERTY(
0x00)

No auxiliary
properties.
It is invalid
when used
with other
properties at
the same
time.

BLE_GATT_DB
_FIXED_LENGT
H_PROPERTY(
0x01)

Fixed length
attribute
value.

BLE_GATT_DB
_AUTHORIZAT
ION_PROPERT
Y(0x02)

Attributes
requiring
authorization.

BLE_GATT_DB
_ATTR_DISABL
ED(0x10)

The attribute
is disabled. If
this value is
set, the
attribute
cannot be
found and
accessed by a
GATT Client. It
is invalid
when used
with other
properties at
the same
time.

BLE_GATT_DB
_128_BIT_UUI
D_FORMAT(0x
20)

Attribute with
128 bit UUID.
If this macro
is not set, the
attribute
value is
16-bits UUID.

BLE_GATT_DB
_PEER_SPECIFI
C_VAL_PROPE

Attribute
managed by
each GATT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 542 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

RTY(0x40) Client.

BLE_GATT_DB
_CONST_ATTR
_VAL_PROPER
TY(0x80)

Fixed
attribute
value.
Writing from
Client and
setting from
Server are
prohibited.

uint16_t length The length of the attribute
value is specified.

uint16_t next The position of the next
attribute with the same UUID as
the defined attribute is
specified by an attribute
handle.

uint16_t uuid_offset The storage area of attribute
value.

UUID of the defined attribute is
set by specifying the position of
the UUID registered in
uuid_table of
st_ble_gatts_db_cfg_t with the
array offset value.

uint8_t * p_data_offset Storage area of attribute value.

The address in the array
registered in No.1-No.4 is
specified to set the attribute
value storage area of the
defined attribute.

◆ st_ble_gatts_db_attr_list_t

struct st_ble_gatts_db_attr_list_t

The number of attributes are stored.

Data Fields

uint8_t count The number of the services or
the characteristics.

◆ st_ble_gatts_db_char_cfg_t

struct st_ble_gatts_db_char_cfg_t

A structure that defines the detailed information of the characteristics.

Data Fields

st_ble_gatts_db_attr_list_t list The total number of attributes
in the defined characteristic is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 543 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

specified.

uint16_t start_hdl The first attribute handle of the
characteristic is specified.

uint8_t service_id The index of service to which
the characteristic belongs is
specified.

◆ st_ble_gatts_db_serv_cfg_t

struct st_ble_gatts_db_serv_cfg_t

A structure that defines the detailed information of the characteristics.

Data Fields

st_ble_gatts_db_attr_list_t list The total number of service
declarations in the defined
service is specified.

uint32_t desc The properties of the defined
service are specified.

Set the security level, the
security mode and the key size
with a bitwise OR. The bit0-bit3
are specified as the security
level. Select one of the
following.

macro description

BLE_GATT_DB
_SER_SECURIT
Y_UNAUTH(0x
00000001)

Unauthenticat
ed pairing(Sec
urity Mode1
Security Level
2, Security
Mode 2
Security Level
1)
Unauthenticat
ed pairing is
required to
access the
service.

BLE_GATT_DB
_SER_SECURIT
Y_AUTH(0x00
000002)

Authenticated
pairing(Securi
ty Mode1
Security Level
3, Security
Mode 2
Security Level
2)
Authenticated
pairing is
required to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 544 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

access the
service.

BLE_GATT_DB
_SER_SECURIT
Y_SECONN(0x
00000004)

Authenticated
LE secure
connections
that
generates
16bytes
LTK(Security
Mode1
Security Level
4)
Authenticated
LE secure
connections
pairing that
generates
16bytes LTK is
required to
access the
service. If this
bit is set,
bit24-27 are
ignored.

The bit4 is specified as the
security mode.

macro description

BLE_GATT_DB
_SER_SECURIT
Y_ENC(0x000
00010)

Encryption
Encryption by
the LTK
exchanged in
pairing is
required to
access.

If the security requirement of
the service is not needed,
specify the bit0-bit4 to
BLE_GATT_DB_SER_NO_SECURI
TY_PROPERTY(0x00000000)
.(Security Mode1 Security Level
1)
The bit24-bit27 are specified as
the key size required by the
defined service.
Select one of the following.

macro description

BLE_GATT_DB
_SER_ENCRYP

7-byte
encryption

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 545 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

T_KEY_SIZE_7(
0x01000000)

key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_8(
0x02000000)

8-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_9(
0x03000000)

9-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
0(0x0400000
0)

10-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
1(0x0500000
0)

11-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
2(0x0600000
0)

12-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
3(0x0700000
0)

13-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
4(0x0800000
0)

14-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
5(0x0900000
0)

15-byte
encryption
key.

BLE_GATT_DB
_SER_ENCRYP
T_KEY_SIZE_1
6(0x0A00000
0)

16-byte
encryption
key.

BLE_GATT_DB
_SER_ENC_KE
Y_SIZE_DONT_
CARE(0x0000

7-byte or
larger
encryption
key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 546 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

0000)
Other bits are reserved.

uint16_t start_hdl The start attribute handle of the
defined service is specified.

uint16_t end_hdl The end attribute handle of the
defined service is specified.

uint8_t char_start_idx The start index of the
characteristic that belongs to
the defined service is specified.

uint8_t char_end_idx The end index of the
characteristic that belongs to
the defined service is specified.

◆ st_ble_gatts_db_cfg_t

struct st_ble_gatts_db_cfg_t

This is the structure of GATT Database that is specified in R_BLE_GATTS_SetDbInst().

Data Fields

const uint8_t * p_uuid_table The array to register the UUID
to be used.

uint8_t * p_attr_val_table The array to register variable
attribute values.

const uint8_t * p_const_attr_val_table The array to register fixed
attribute values.

uint8_t * p_rem_spec_val_table The array to manage the
attribute values handled for
each GATT client.

const uint8_t * p_const_rem_spec_val_table The array to register the default
of the attribute value handled
by each GATT client.

const
st_ble_gatts_db_uuid_cfg_t *

p_uuid_cfg The array to register
information on the position
where UUIDs are used.

const st_ble_gatts_db_attr_cfg_t
*

p_attr_cfg The array to register the
detailed information of
attributes.

const
st_ble_gatts_db_char_cfg_t *

p_char_cfg The array to register the
detailed information of
characteristics.

const
st_ble_gatts_db_serv_cfg_t *

p_serv_cfg The array to register the
detailed information of services.

uint8_t serv_cnt The number of services
included in the GATT Database.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 547 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

uint8_t char_cnt The number of characteristics
included in the GATT Database.

uint8_t uuid_type_cnt The number of UUIDs included
in the GATT Database.

uint8_t peer_spec_val_cnt The total size of attribute value
that needs to be managed for
each GATT client.

◆ st_ble_gatts_evt_data_t

struct st_ble_gatts_evt_data_t

st_ble_gatts_evt_data_t is the type of the data notified in a GATT Server Event.

Data Fields

uint16_t conn_hdl Connection handle identifying
the GATT Client.

uint16_t param_len The size of GATT Server Event
parameters.

void * p_param GATT Server Event parameters.
This parameter differs in each
GATT Server Event.

Typedef Documentation

◆ ble_gatts_app_cb_t

ble_gatts_app_cb_t

ble_gatts_app_cb_t is the GATT Server Event callback function type.

Parameters
[in] event_type The type of GATT Server

Event.

[in] event_result The result of GATT Server
Event

[in] p_event_data Data notified by GATT Server
Event.

Returns
none

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 548 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ e_r_ble_gatts_evt_t

enum e_r_ble_gatts_evt_t

GATT Server Event Identifier.

Enumerator

BLE_GATTS_EVENT_EX_MTU_REQ MTU Exchange Request has been received.

This event notifies the application layer that a
MTU Exchange Request PDU has been received
from a GATT Client. Need to reply to the
request by R_BLE_GATTS_RspExMtu().

Event Code: 0x3002

Event Data:

st_ble_gatts_ex_mtu_req_evt_tBLE_GATTS_EVE
NT_EX_MTU_REQ

BLE_GATTS_EVENT_READ_BY_TYPE_RSP_COMP Read By Type Response has been sent.

This event notifies the application layer that a
Read By Type Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x3009

Event Data:

st_ble_gatts_read_by_type_rsp_evt_tBLE_GATT
S_EVENT_READ_BY_TYPE_RSP_COMP

BLE_GATTS_EVENT_READ_RSP_COMP Read Response has been sent.

This event notifies the application layer that a
Read Response PDU has been sent from GATT
Server to the GATT Client.

Event Code: 0x300B

Event Data:

st_ble_gatts_read_rsp_evt_tBLE_GATTS_EVENT_
READ_RSP_COMP

BLE_GATTS_EVENT_READ_BLOB_RSP_COMP Read Blob Response has been sent.

This event notifies the application layer that a
Read Blob Response PDU has been sent from
GATT Server to the GATT Client.

Event Code: 0x300D

Event Data:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 549 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

st_ble_gatts_read_blob_rsp_evt_tBLE_GATTS_E
VENT_READ_BLOB_RSP_COMP

BLE_GATTS_EVENT_READ_MULTI_RSP_COMP Read Multiple Response has been sent.

This event notifies the application layer that a
Read Multiple Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x300F

Event Data:

st_ble_gatts_read_multi_rsp_evt_tBLE_GATTS_E
VENT_READ_MULTI_RSP_COMP

BLE_GATTS_EVENT_WRITE_RSP_COMP Write Response has been sent.

This event notifies the application layer that a
Write Response PDU has been sent from GATT
Server to the GATT Client.

Event Code: 0x3013

Event Data:

st_ble_gatts_write_rsp_evt_tBLE_GATTS_EVENT
_WRITE_RSP_COMP

BLE_GATTS_EVENT_PREPARE_WRITE_RSP_COMP Prepare Write Response has been sent.

This event notifies the application layer that a
Prepare Write Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x3017

Event Data:

st_ble_gatts_prepare_write_rsp_evt_tBLE_GATT
S_EVENT_PREPARE_WRITE_RSP_COMP

BLE_GATTS_EVENT_EXE_WRITE_RSP_COMP Execute Write Response has been sent.

This event notifies the application layer that a
Execute Write Response PDU has been sent
from GATT Server to the GATT Client.

Event Code: 0x3019

Event Data:

st_ble_gatts_exe_write_rsp_evt_tBLE_GATTS_EV
ENT_EXE_WRITE_RSP_COMP

BLE_GATTS_EVENT_HDL_VAL_CNF Confirmation has been received.

This event notifies the application layer that a

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 550 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

Confirmation PDU has been received from a
GATT Client.

Event Code: 0x301E

Event Data:

st_ble_gatts_cfm_evt_tBLE_GATTS_EVENT_HDL
_VAL_CNF

BLE_GATTS_EVENT_DB_ACCESS_IND The GATT Database has been accessed from a
GATT Client.

This event notifies the application layer that
the GATT Database has been accessed from a
GATT Client.

Event Code: 0x3040

Event Data:

st_ble_gatts_db_access_evt_tBLE_GATTS_EVEN
T_DB_ACCESS_IND

BLE_GATTS_EVENT_CONN_IND A connection has been established.

This event notifies the application layer that
the link with the GATT Client has been
established.

Event Code: 0x3081

Event Data:

st_ble_gatts_conn_evt_tBLE_GATTS_EVENT_CO
NN_IND

BLE_GATTS_EVENT_DISCONN_IND A connection has been disconnected.

This event notifies the application layer that
the link with the GATT Client has been
disconnected.

Event Code: 0x3082

Event Data:

st_ble_gatts_disconn_evt_tBLE_GATTS_EVENT_
DISCONN_IND

BLE_GATTS_EVENT_INVALID Invalid GATT Server Event.

Event Code: 0x30FF

Event Data:

noneBLE_GATTS_EVENT_INVALID

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 551 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

Function Documentation

◆ R_BLE_GATTS_Init()

ble_status_t R_BLE_GATTS_Init (uint8_t cb_num)

This function initializes the GATT Server and registers the number of the callbacks for GATT Server
event.

Specify the cb_num parameter to a value between 1 and BLE_GATTS_MAX_CB.
R_BLE_GATTS_RegisterCb() registers the callback.
The result of this API call is returned by a return value.

Parameters
[in] cb_num The number of callbacks to

be registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The cb_num parameter is out of range.

◆ R_BLE_GATTS_SetDbInst()

ble_status_t R_BLE_GATTS_SetDbInst (st_ble_gatts_db_cfg_t * p_db_inst)

This function sets GATT Database to host stack.

The result of this API call is returned by a return value.

Parameters
[in] p_db_inst GATT Database to be set.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows.

The db_inst parameter is specified
as NULL.
The array in the db_inst is specified
as NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 552 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ R_BLE_GATTS_RegisterCb()

ble_status_t R_BLE_GATTS_RegisterCb (ble_gatts_app_cb_t cb, uint8_t priority)

This function registers a callback for GATT Server event.

The number of the callback that may be registered by this function is the value specified by
R_BLE_GATTS_Init().
The result of this API call is returned by a return value.

Parameters
[in] cb Callback function for GATT

Server event.

[in] priority The priority of the callback
function.
Valid range is 1 <= priority
<= BLE_GATTS_MAX_CB.
A lower priority number
means a higher priority
level.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The priority parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack has already registered the
maximum number of callbacks.

◆ R_BLE_GATTS_DeregisterCb()

ble_status_t R_BLE_GATTS_DeregisterCb (ble_gatts_app_cb_t cb)

This function deregisters the callback function for GATT Server event.

The result of this API call is returned by a return value.

Parameters
[in] cb The callback function to be

deregistered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) The callback has not been registered.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 553 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ R_BLE_GATTS_Notification()

ble_status_t R_BLE_GATTS_Notification (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_ntf_data)

This function sends a notification of an attribute's value.

The maximum length of the attribute value that can be sent with notification is MTU-3.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent the
notification.

[in] p_ntf_data The attribute value to send.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_ntf_data parameter or the value field
in the value field in the p_ntf_data
parameter is NULL.

BLE_ERR_INVALID_ARG(0x0003) The value_len field in the value field in the
p_ntf_data parameter is 0 or the attr_hdl
field in the p_ntf_data parameters is 0.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl
was not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 554 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ R_BLE_GATTS_Indication()

ble_status_t R_BLE_GATTS_Indication (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_ind_data)

This function sends a indication of an attribute's value.

The maximum length of the attribute value that can be sent with indication is MTU-3.
The result of this API call is returned by a return value.
The remote device that receives a indication sends a confirmation.
BLE_GATTS_EVENT_HDL_VAL_CNF event notifies the application layer that the confirmation has
been received.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent the
indication.

[in] p_ind_data The attribute value to send.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_ind_data parameter or the value field
in the value field in the p_ind_data
parameter is NULL.

BLE_ERR_INVALID_ARG(0x0003) The value_len field in the value field in the
p_ind_data parameter is 0 or the attr_hdl
field in the p_ind_data parameters is 0.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl
was not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 555 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ R_BLE_GATTS_GetAttr()

ble_status_t R_BLE_GATTS_GetAttr (uint16_t conn_hdl, uint16_t attr_hdl, st_ble_gatt_value_t *
p_value)

This function gets a attribute value from the GATT Database.

The result of this API call is returned by a return value.

Parameters
[in] conn_hdl If the attribute value that

has information about the
remote device is retrieved,
specify the remote device
with the conn_hdl
parameter. When
information about the
remote device is not
required, set the conn_hdl
parameter to BLE_GAP_INVA
LID_CONN_HDL.

[in] attr_hdl The attribute handle of the
attribute value to be
retrieved.

[out] p_value The attribute value to be
retrieved.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_value parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The attr_hdl parameter is 0 or larger than
the last attribute handle of GATT Database.

BLE_ERR_INVALID_STATE(0x0008) The attribute is not in a state to be read.

BLE_ERR_INVALID_OPERATION(0x0009) The attribute cannot be read.

BLE_ERR_NOT_FOUND(0x000D) The attribute specified by the attr_hdl
parameter is not belonging to any services
or characteristics.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the
conn_hdl parameter was not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 556 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ R_BLE_GATTS_SetAttr()

ble_status_t R_BLE_GATTS_SetAttr (uint16_t conn_hdl, uint16_t attr_hdl, st_ble_gatt_value_t *
p_value)

This function sets an attribute value to the GATT Database.

The result of this API call is returned by a return value.

Parameters
[in] conn_hdl If the attribute value that

has information about the
remote device is retrieved,
specify the remote device
with the conn_hdl
parameter. When
information about the
remote device is not
required, set the conn_hdl
parameter to BLE_GAP_INVA
LID_CONN_HDL.

[in] attr_hdl The attribute handle of the
attribute value to be set.

[in] p_value The attribute value to be set.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_value parameter is specified as NULL.

BLE_ERR_INVALID_DATA(0x0002) The write size is larger than the length of
the attribute value.

BLE_ERR_INVALID_ARG(0x0003) The attr_hdl parameter is 0 or larger than
the last attribute handle of GATT Database.

BLE_ERR_INVALID_STATE(0x0008) The attribute is not in a state to be written.

BLE_ERR_INVALID_OPERATION(0x0009) The attribute cannot be written.

BLE_ERR_NOT_FOUND(0x000D) The attribute specified by the attr_hdl
parameter is not belonging to any services
or characteristics.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the
conn_hdl parameter was not found.

◆ R_BLE_GATTS_SendErrRsp()

ble_status_t R_BLE_GATTS_SendErrRsp (uint16_t error_code)

This function sends an error response to a remote device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 557 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

The result is returned from the API.
The error code specified in the callback is notified as Error Response to the remote device.
The result of this API call is returned by a return value.

Parameters
[in] error_code The error codes to be

notified the client.
It is a bitwise OR of GATT
Error Group ID : 0x3000 and
the following error codes
defined in Core Spec and
Core Spec Supplement.

Error Code description

BLE_ERR_GA
TT_INVALID_
HANDLE(0x3
001)

Invalid
attribute
handle

BLE_ERR_GA
TT_READ_NO
T_PERMITTE
D(0x3002)

The attribute
cannot be
read.

BLE_ERR_GA
TT_WRITE_N
OT_PERMITT
ED(0x3003)

The attribute
cannot be
written.

BLE_ERR_GA
TT_INVALID_
PDU(0x3004
)

Invalid PDU.

BLE_ERR_GA
TT_INSUFFIC
IENT_AUTHE
NTICATION(0
x3005)

The authenti
cation to
access the
attribute is
insufficient.

BLE_ERR_GA
TT_REQUEST
_NOT_SUPPO
RTED(0x300
6)

The request
is not
supported.

BLE_ERR_GA
TT_INVALID_
OFFSET(0x3
007)

The
specified
offset is
larger than
the length of
the attribute
value.

BLE_ERR_GA
TT_INSUFFIC
IENT_AUTHO

Authorizatio
n is required
to access

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 558 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

RIZATION(0x
3008)

the
attribute.

BLE_ERR_GA
TT_PREPARE
_WRITE_QUE
UE_FULL(0x3
009)

The Write
Queue in the
GATT Server
is full.

BLE_ERR_GA
TT_ATTRIBU
TE_NOT_FOU
ND(0x300A)

The
specified
attribute is
not found.

BLE_ERR_GA
TT_ATTRIBU
TE_NOT_LON
G(0x300B)

The attribute
cannot be
read by
Read Blob
Request.

BLE_ERR_GA
TT_INSUFFIC
IENT_ENC_K
EY_SIZE(0x3
00C)

The
Encryption
Key Size is
insufficient.

BLE_ERR_GA
TT_INVALID_
ATTRIBUTE_
LEN(0x300D
)

The length
of the
specified
attribute is
invalid.

BLE_ERR_GA
TT_UNLIKELY
_ERROR(0x3
00E)

Because an
error has
occurred,
the process
cannot be
advanced.

BLE_ERR_GA
TT_INSUFFIC
IENT_ENCRY
PTION(0x30
0F)

Encryption is
required to
access the
attribute.

BLE_ERR_GA
TT_UNSUPP
ORTED_GRO
UP_TYPE(0x
3010)

The type of
the specified
attribute is
not
supported.

BLE_ERR_GA
TT_INSUFFIC
IENT_RESOU
RCES(0x301
1)

The
resource to
complete
the request
is
insufficient.

0x3080 - Application

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 559 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

0x309F Error. The
upper layer
defines the
error codes.

0x30E0 -
0x30FF

The error
code defined
in Common
Profile and
Service Error
Core
Specification
Supplement(
CSS).
CSS ver.7
defines the
error codes
from 0x30FC
to 0x30FF.

BLE_ERR_GA
TT_WRITE_R
EQ_REJECTE
D(0x30FC)

The Write
Request has
not been
completed
due to the
reason other
than
Permission.

BLE_ERR_GA
TT_CCCD_IM
PROPERLY_C
FG(0x30FD)

The CCCD is
set to be
invalid.

BLE_ERR_GA
TT_PROC_AL
READY_IN_P
ROGRESS(0x
30FE)

The request
is now in
progress.

BLE_ERR_GA
TT_OUT_OF_
RANGE(0x30
FF)

The attribute
value is out
of range.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The Group ID of the error_code parameter is
not 0x3000, or it is 0x3000.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other error response,this
function was called.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 560 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ R_BLE_GATTS_RspExMtu()

ble_status_t R_BLE_GATTS_RspExMtu (uint16_t conn_hdl, uint16_t mtu)

This function replies to a MTU Exchange Request from a remote device.

BLE_GATTS_EVENT_EX_MTU_REQ event notifies the application layer that a MTU Exchange Request
has been received. Therefore when the callback has received the event, call this function.
The new MTU is the minimum of the mtu parameter specified by this function and the mtu field in
BLE_GATTS_EVENT_EX_MTU_REQ event.
Default MTU size is 23 bytes.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent MTU
Exchange Response.

[in] mtu The maximum size(in bytes)
of the GATT PDU that GATT
Server can receive.
Valid range is 23 <= mtu
<= 247.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl
was not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 561 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_SERVER

◆ R_BLE_GATTS_SetPrepareQueue()

ble_status_t R_BLE_GATTS_SetPrepareQueue (st_ble_gatt_pre_queue_t * p_pre_queues, uint8_t
queue_num)

Register prepare queue and buffer in Host Stack.

This function registers the prepare queue and buffer for long chracteristic write and reliable writes.
The result of this API call is returned by a return value.

Parameters
[in] p_pre_queues The prepare write queues to

be registered.

[in] queue_num The number of prepare write
queues to be registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_pre_queue parameter is specified as
NULL.

4.2.5.4 GATT_CLIENT
Modules » Bluetooth Low Energy Library (r_ble)

Functions

ble_status_t R_BLE_GATTC_Init (uint8_t cb_num)

 This function initializes the GATT Client and registers the number of
the callbacks for GATT Client event. More...

ble_status_t R_BLE_GATTC_RegisterCb (ble_gattc_app_cb_t cb, uint8_t priority)

 This function registers a callback function for GATT Client event.
More...

ble_status_t R_BLE_GATTC_DeregisterCb (ble_gattc_app_cb_t cb)

 This function deregisters the callback function for GATT Client event.
More...

ble_status_t R_BLE_GATTC_ReqExMtu (uint16_t conn_hdl, uint16_t mtu)

 This function sends a MTU Exchange Request PDU to a GATT Server

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 562 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

in order to change the current MTU. More...

ble_status_t R_BLE_GATTC_DiscAllPrimServ (uint16_t conn_hdl)

 This function discovers all Primary Services in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscPrimServ (uint16_t conn_hdl, uint8_t *p_uuid,
uint8_t uuid_type)

 This function discovers Primary Service specified by p_uuid in a GATT
Server. More...

ble_status_t R_BLE_GATTC_DiscAllSecondServ (uint16_t conn_hdl)

 This function discovers all Secondary Services in a GATT Server.
More...

ble_status_t R_BLE_GATTC_DiscIncServ (uint16_t conn_hdl,
st_ble_gatt_hdl_range_t *p_range)

 This function discovers Included Services within the specified
attribute handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscAllChar (uint16_t conn_hdl,
st_ble_gatt_hdl_range_t *p_range)

 This function discovers Characteristic within the specified attribute
handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscCharByUuid (uint16_t conn_hdl, uint8_t *p_uuid,
uint8_t uuid_type, st_ble_gatt_hdl_range_t *p_range)

 This function discovers Characteristic specified by uuid within the
specified attribute handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_DiscAllCharDesc (uint16_t conn_hdl,
st_ble_gatt_hdl_range_t *p_range)

 This function discovers Characteristic Descriptor within the specified
attribute handle range in a GATT Server. More...

ble_status_t R_BLE_GATTC_ReadChar (uint16_t conn_hdl, uint16_t value_hdl)

 This function reads a Characteristic/Characteristic Descriptor in a
GATT Server. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 563 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

ble_status_t R_BLE_GATTC_ReadCharUsingUuid (uint16_t conn_hdl, uint8_t
*p_uuid, uint8_t uuid_type, st_ble_gatt_hdl_range_t *p_range)

 This function reads a Characteristic in a GATT Server using a
specified UUID. More...

ble_status_t R_BLE_GATTC_ReadLongChar (uint16_t conn_hdl, uint16_t value_hdl,
uint16_t offset)

 This function reads a Long Characteristic in a GATT Server. More...

ble_status_t R_BLE_GATTC_ReadMultiChar (uint16_t conn_hdl,
st_ble_gattc_rd_multi_req_param_t *p_list)

 This function reads multiple Characteristics in a GATT Server. More...

ble_status_t R_BLE_GATTC_WriteCharWithoutRsp (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data)

 This function writes a Characteristic in a GATT Server without
response. More...

ble_status_t R_BLE_GATTC_SignedWriteChar (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data)

 This function writes Signed Data to a Characteristic in a GATT Server
without response. More...

ble_status_t R_BLE_GATTC_WriteChar (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data)

 This function writes a Characteristic in a GATT Server. More...

ble_status_t R_BLE_GATTC_WriteLongChar (uint16_t conn_hdl,
st_ble_gatt_hdl_value_pair_t *p_write_data, uint16_t offset)

 This function writes a Long Characteristic in a GATT Server. More...

ble_status_t R_BLE_GATTC_ReliableWrites (uint16_t conn_hdl,
st_ble_gattc_reliable_writes_char_pair_t *p_char_pair, uint8_t
pair_num, uint8_t auto_flag)

 This function performs the Reliable Writes procedure described in
GATT Specification. More...

ble_status_t R_BLE_GATTC_ExecWrite (uint16_t conn_hdl, uint8_t exe_flag)

 If the auto execute of Reliable Writes is not specified by

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 564 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

R_BLE_GATTC_ReliableWrites(), this function is used to execute a
write to Characteristic. More...

Detailed Description

Data Structures

struct st_ble_gatt_hdl_range_t

 Attribute handle range. More...

struct st_ble_gattc_reliable_writes_char_pair_t

 This is used in R_BLE_GATTC_ReliableWrites() to specify the pair of
Characteristic Value and Characteristic Value Handle. More...

struct st_ble_gattc_conn_evt_t

 This structure notifies that the link with the GATT Server has been
established. More...

struct st_ble_gattc_disconn_evt_t

 This structure notifies that the link with the GATT Server has been
disconnected. More...

struct st_ble_gattc_ex_mtu_rsp_evt_t

 This structure notifies that a MTU Exchange Response PDU has been
received from a GATT Server. More...

struct st_ble_gattc_serv_16_evt_t

 This structure notifies that a 16-bit UUID Service has been
discovered. More...

struct st_ble_gattc_serv_128_evt_t

 This structure notifies that a 128-bit UUID Service has been
discovered. More...

struct st_ble_gattc_inc_serv_16_evt_t

 This structure notifies that a 16-bit UUID Included Service has been
discovered. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 565 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

struct st_ble_gattc_inc_serv_128_evt_t

 This structure notifies that a 128-bit UUID Included Service has been
discovered. More...

struct st_ble_gattc_char_16_evt_t

 This structure notifies that a 16-bit UUID Characteristic has been
discovered. More...

struct st_ble_gattc_char_128_evt_t

 This structure notifies that a 128-bit UUID Characteristic has been
discovered. More...

struct st_ble_gattc_char_desc_16_evt_t

 This structure notifies that a 16-bit UUID Characteristic Descriptor
has been discovered. More...

struct st_ble_gattc_char_desc_128_evt_t

 This structure notifies that a 128-bit UUID Characteristic Descriptor
has been discovered. More...

struct st_ble_gattc_err_rsp_evt_t

 This structure notifies that a Error Response PDU has been received
from a GATT Server. More...

struct st_ble_gattc_ntf_evt_t

 This structure notifies that a Notification PDU has been received from
a GATT Server. More...

struct st_ble_gattc_ind_evt_t

 This structure notifies that a Indication PDU has been received from
a GATT Server. More...

struct st_ble_gattc_rd_char_evt_t

 This structure notifies that read response to
R_BLE_GATTC_ReadChar() or R_BLE_GATTC_ReadCharUsingUuid()
has been received from a GATT Server. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 566 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

struct st_ble_gattc_wr_char_evt_t

 This structure notifies that write response to
R_BLE_GATTC_WriteChar() has been received from a GATT Server.
More...

struct st_ble_gattc_rd_multi_char_evt_t

 This structure notifies that read response to
R_BLE_GATTC_ReadMultiChar() has been received from a GATT
Server. More...

struct st_ble_gattc_char_part_wr_evt_t

 This structure notifies that write response to
R_BLE_GATTC_WriteLongChar() or R_BLE_GATTC_ReliableWrites() has
been received from a GATT Server. More...

struct st_ble_gattc_reliable_writes_comp_evt_t

 This structure notifies that a response to R_BLE_GATTC_ExecWrite()
has been received from a GATT Server. More...

struct st_ble_gattc_rd_multi_req_param_t

 This is used in R_BLE_GATTC_ReadMultiChar() to specify multiple
Characteristics to be read. More...

struct st_ble_gattc_evt_data_t

 st_ble_gattc_evt_data_t is the type of the data notified in a GATT
Client Event. More...

struct st_ble_gatt_value_t

 Attribute Value. More...

struct st_ble_gatt_hdl_value_pair_t

 Attribute handle and attribute Value. More...

Macros

#define BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG

#define BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG

#define BLE_GATTC_MAX_CB

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 567 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

 GATT Client Callback Number.

#define BLE_GATTC_EXEC_AUTO

 Auto execution.

#define BLE_GATTC_EXEC_NOT_AUTO

 Not auto execution.

#define BLE_GATTC_RELIABLE_WRITES_MAX_CHAR_PAIR

 Length of the Queue used with Prepare Write procedure to write a
characteristic whose size is larger than MTU.

Typedefs

typedef void(* ble_gattc_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_gattc_evt_data_t *p_event_data)

 ble_gattc_app_cb_t is the GATT Client Event callback function type.
More...

Enumerations

enum e_r_ble_gattc_evt_t /td>

 GATT Client Event Identifier. More...
<

Data Structure Documentation

◆ st_ble_gatt_hdl_range_t

struct st_ble_gatt_hdl_range_t

Attribute handle range.

Data Fields

uint16_t start_hdl Start Attribute Handle.

uint16_t end_hdl End Attribute Handle.

◆ st_ble_gattc_reliable_writes_char_pair_t

struct st_ble_gattc_reliable_writes_char_pair_t

This is used in R_BLE_GATTC_ReliableWrites() to specify the pair of Characteristic Value and
Characteristic Value Handle.

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 568 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

st_ble_gatt_hdl_value_pair_t write_data Pair of Characteristic Value and
Characteristic Value Handle.

uint16_t offset Offset that indicates the
location to be written.

Normally, set 0 to this
parameter.
If this parameter sets to a value
other than 0,Adjust the offset
parameter and the length of the
value to be written not to
exceed the length of the
Characteristic.

◆ st_ble_gattc_conn_evt_t

struct st_ble_gattc_conn_evt_t

This structure notifies that the link with the GATT Server has been established.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Server.

◆ st_ble_gattc_disconn_evt_t

struct st_ble_gattc_disconn_evt_t

This structure notifies that the link with the GATT Server has been disconnected.

Data Fields

st_ble_dev_addr_t * p_addr Address of the GATT Server.

◆ st_ble_gattc_ex_mtu_rsp_evt_t

struct st_ble_gattc_ex_mtu_rsp_evt_t

This structure notifies that a MTU Exchange Response PDU has been received from a GATT Server.

Data Fields

uint16_t mtu MTU size(in bytes) that GATT
Server can receive.

◆ st_ble_gattc_serv_16_evt_t

struct st_ble_gattc_serv_16_evt_t

This structure notifies that a 16-bit UUID Service has been discovered.

Data Fields

st_ble_gatt_hdl_range_t range Attribute handle range of the
16-bit UUID service.

uint16_t uuid_16 Service UUID.

◆ st_ble_gattc_serv_128_evt_t

struct st_ble_gattc_serv_128_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 569 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

This structure notifies that a 128-bit UUID Service has been discovered.

Data Fields

st_ble_gatt_hdl_range_t range Attribute handle range of the
128-bit UUID service.

uint8_t uuid_128[
BLE_GATT_128_BIT_UUID_SIZE]

Service UUID.

◆ st_ble_gattc_inc_serv_16_evt_t

struct st_ble_gattc_inc_serv_16_evt_t

This structure notifies that a 16-bit UUID Included Service has been discovered.

Data Fields

uint16_t decl_hdl Service Declaration handle of
the 16-bit UUID Included
Service.

st_ble_gattc_serv_16_evt_t service The contents of the Included
Service.

◆ st_ble_gattc_inc_serv_128_evt_t

struct st_ble_gattc_inc_serv_128_evt_t

This structure notifies that a 128-bit UUID Included Service has been discovered.

Data Fields

uint16_t decl_hdl Service Declaration handle of
the 128-bit UUID Included
Service.

st_ble_gattc_serv_128_evt_t service The contents of the Included
Service.

◆ st_ble_gattc_char_16_evt_t

struct st_ble_gattc_char_16_evt_t

This structure notifies that a 16-bit UUID Characteristic has been discovered.

Data Fields

uint16_t decl_hdl Attribute handle of
Characteristic Declaration.

uint8_t cproperty Characteristic Properties.

It is a bitwise OR of the
following values.
Refer to Core Spec [Vol.3]
Generic Attribute Profile(GATT)
"3.3.1.1 Characteristic
Properties" regarding the
details of the Characteristic
Properties.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 570 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

value description

0x01 Broadcast
property

0x02 Read property

0x04 Write Without
Response
property

0x08 Write
property

0x10 Notify
property

0x20 Indicate
property

0x40 Authenticated
Signed Writes
property

0x80 Extended
Properties
property

uint16_t value_hdl Value Handle of the
Characteristic.

uint16_t uuid_16 Characteristic UUID.

◆ st_ble_gattc_char_128_evt_t

struct st_ble_gattc_char_128_evt_t

This structure notifies that a 128-bit UUID Characteristic has been discovered.

Data Fields

uint16_t decl_hdl Attribute Handle of
Characteristic Declaration.

uint8_t cproperty Characteristic Properties.

It is a bitwise OR of the
following values.
Refer to Core Spec [Vol.3]
Generic Attribute Profile(GATT)
"3.3.1.1 Characteristic
Properties" regarding the
details of the Characteristic
Properties.

value description

0x01 Broadcast
property

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 571 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

0x02 Read property

0x04 Write Without
Response
property

0x08 Write
property

0x10 Notify
property

0x20 Indicate
property

0x40 Authenticated
Signed Writes
property

0x80 Extended
Properties
property

uint16_t value_hdl Value Handle of the
Characteristic.

uint8_t uuid_128[
BLE_GATT_128_BIT_UUID_SIZE]

Characteristic UUID.

◆ st_ble_gattc_char_desc_16_evt_t

struct st_ble_gattc_char_desc_16_evt_t

This structure notifies that a 16-bit UUID Characteristic Descriptor has been discovered.

Data Fields

uint16_t desc_hdl Attribute Handle of
Characteristic Descriptor.

uint16_t uuid_16 Characteristic Descriptor UUID.

◆ st_ble_gattc_char_desc_128_evt_t

struct st_ble_gattc_char_desc_128_evt_t

This structure notifies that a 128-bit UUID Characteristic Descriptor has been discovered.

Data Fields

uint16_t desc_hdl Attribute Handle of
Characteristic Descriptor.

uint8_t uuid_128[
BLE_GATT_128_BIT_UUID_SIZE]

Characteristic Descriptor UUID.

◆ st_ble_gattc_err_rsp_evt_t

struct st_ble_gattc_err_rsp_evt_t

This structure notifies that a Error Response PDU has been received from a GATT Server.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 572 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Data Fields

uint8_t op_code The op code of the ATT Request
that causes the Error Response.
op_code

Exchange MTU Request(0x02)

Find Information
Request(0x04)

Find By Type Value
Request(0x06)

Read By Type Request(0x08)

Read Request(0x0A)

Read Blob Request(0x0C)

Read Multiple Request(0x0E)

Read by Group Type
Request(0x10)

Write Request(0x12)

Prepare Write Request(0x16)

Execute Write Request(0x18)

uint16_t attr_hdl Attribute handle that is target
for the request.

uint16_t rsp_code The error codes notified from
the GATT Server.

It is a bitwise OR of GATT Error
Group ID : 0x3000 and the
following error codes defined in
Core Spec and Core Spec
Supplement.

Error Code description

BLE_ERR_GAT
T_INVALID_HA
NDLE(0x3001)

Invalid
attribute
handle

BLE_ERR_GAT
T_READ_NOT_
PERMITTED(0
x3002)

The attribute
cannot be
read.

BLE_ERR_GAT
T_WRITE_NOT
_PERMITTED(0
x3003)

The attribute
cannot be
written.

BLE_ERR_GAT Invalid PDU.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 573 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

T_INVALID_PD
U(0x3004)

BLE_ERR_GAT
T_INSUFFICIE
NT_AUTHENTI
CATION(0x30
05)

The
authentication
to access the
attribute is
insufficient.

BLE_ERR_GAT
T_REQUEST_N
OT_SUPPORTE
D(0x3006)

The request is
not
supported.

BLE_ERR_GAT
T_INVALID_OF
FSET(0x3007)

The specified
offset is larger
than the
length of the
attribute
value.

BLE_ERR_GAT
T_INSUFFICIE
NT_AUTHORIZ
ATION(0x3008
)

Authorization
is required to
access the
attribute.

BLE_ERR_GAT
T_PREPARE_W
RITE_QUEUE_
FULL(0x3009)

The Write
Queue in the
GATT Server
is full.

BLE_ERR_GAT
T_ATTRIBUTE_
NOT_FOUND(0
x300A)

The specified
attribute is
not found.

BLE_ERR_GAT
T_ATTRIBUTE_
NOT_LONG(0x
300B)

The attribute
cannot be
read by Read
Blob Request.

BLE_ERR_GAT
T_INSUFFICIE
NT_ENC_KEY_
SIZE(0x300C)

The
Encryption
Key Size is
insufficient.

BLE_ERR_GAT
T_INVALID_AT
TRIBUTE_LEN(
0x300D)

The length of
the specified
attribute is
invalid.

BLE_ERR_GAT
T_UNLIKELY_E
RROR(0x300E
)

Because an
error has
occurred, the
process
cannot be
advanced.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 574 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

BLE_ERR_GAT
T_INSUFFICIE
NT_ENCRYPTI
ON(0x300F)

Encryption is
required to
access the
attribute.

BLE_ERR_GAT
T_UNSUPPORT
ED_GROUP_TY
PE(0x3010)

The type of
the specified
attribute is
not
supported.

BLE_ERR_GAT
T_INSUFFICIE
NT_RESOURC
ES(0x3011)

The resource
to complete
the request is
insufficient.

0x3080 -
0x309F

Application
Error. The
upper layer
defines the
error codes.

0x30E0 -
0x30FF

The error
code defined
in Common
Profile and
Service Error
Core
Specification
Supplement(C
SS).
CSS ver.7
defines the
error codes
from 0x30FC
to 0x30FF.

BLE_ERR_GAT
T_WRITE_REQ
_REJECTED(0x
30FC)

The Write
Request has
not been
completed
due to the
reason other
than
Permission.

BLE_ERR_GAT
T_CCCD_IMPR
OPERLY_CFG(
0x30FD)

The CCCD is
set to be
invalid.

BLE_ERR_GAT
T_PROC_ALRE
ADY_IN_PROG
RESS(0x30FE)

The request is
now in
progress.

BLE_ERR_GAT
T_OUT_OF_RA

The attribute
value is out of

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 575 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

NGE(0x30FF) range.

◆ st_ble_gattc_ntf_evt_t

struct st_ble_gattc_ntf_evt_t

This structure notifies that a Notification PDU has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t data Characteristic that causes the
Notification.

◆ st_ble_gattc_ind_evt_t

struct st_ble_gattc_ind_evt_t

This structure notifies that a Indication PDU has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t data Characteristic that causes the
Indication.

◆ st_ble_gattc_rd_char_evt_t

struct st_ble_gattc_rd_char_evt_t

This structure notifies that read response to R_BLE_GATTC_ReadChar() or
R_BLE_GATTC_ReadCharUsingUuid() has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t read_data The contents of the
Characteristic that has been
read.

◆ st_ble_gattc_wr_char_evt_t

struct st_ble_gattc_wr_char_evt_t

This structure notifies that write response to R_BLE_GATTC_WriteChar() has been received from a
GATT Server.

Data Fields

uint16_t value_hdl Value Handle of the
Characteristic/Characteristic
Descriptor that has been
written.

◆ st_ble_gattc_rd_multi_char_evt_t

struct st_ble_gattc_rd_multi_char_evt_t

This structure notifies that read response to R_BLE_GATTC_ReadMultiChar() has been received from
a GATT Server.

Data Fields

uint16_t value_hdl_num The number of Value Handles of
the Characteristics that has

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 576 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

been read.

st_ble_gatt_value_t multi_char_val The contents of multiple
Characteristics that have been
read.

◆ st_ble_gattc_char_part_wr_evt_t

struct st_ble_gattc_char_part_wr_evt_t

This structure notifies that write response to R_BLE_GATTC_WriteLongChar() or
R_BLE_GATTC_ReliableWrites() has been received from a GATT Server.

Data Fields

st_ble_gatt_hdl_value_pair_t write_data The data to be written to the
Characteristic/Long
Characteristic/Long
Characteristic Descriptor.

uint16_t offset Offset that indicates the
location to be written.

◆ st_ble_gattc_reliable_writes_comp_evt_t

struct st_ble_gattc_reliable_writes_comp_evt_t

This structure notifies that a response to R_BLE_GATTC_ExecWrite() has been received from a GATT
Server.

Data Fields

uint8_t exe_flag This field indicates the
command of the Execute Write
that has been done.
value description

0x00 Cancel the
write.

0x01 Execute the
write.

◆ st_ble_gattc_rd_multi_req_param_t

struct st_ble_gattc_rd_multi_req_param_t

This is used in R_BLE_GATTC_ReadMultiChar() to specify multiple Characteristics to be read.

Data Fields

uint16_t * p_hdl_list List of Value Handles that point
the Characteristics to be read.

uint16_t list_count The number of Value Handles
included in the hdl_list
parameter.

◆ st_ble_gattc_evt_data_t

struct st_ble_gattc_evt_data_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 577 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

st_ble_gattc_evt_data_t is the type of the data notified in a GATT Client Event.

Data Fields

uint16_t conn_hdl Connection handle identifying
the GATT Server.

uint16_t param_len The size of GATT Client Event
parameters.

void * p_param GATT Client Event parameters.
This parameter differs in each
GATT Client Event.

◆ st_ble_gatt_value_t

struct st_ble_gatt_value_t

Attribute Value.

Data Fields

uint16_t value_len Length of the attribute value.

uint8_t * p_value Attribute Value.

◆ st_ble_gatt_hdl_value_pair_t

struct st_ble_gatt_hdl_value_pair_t

Attribute handle and attribute Value.

Data Fields

uint16_t attr_hdl Attribute Handle.

st_ble_gatt_value_t value Attribute Value.

Macro Definition Documentation

◆ BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG

#define BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG

GATT Execute Write Cancel Flag.

◆ BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG

#define BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG

GATT Execute Write Execute Flag.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 578 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ ble_gattc_app_cb_t

ble_gattc_app_cb_t

ble_gattc_app_cb_t is the GATT Client Event callback function type.

Parameters
[in] event_type The type of GATT Client

Event.

[in] event_result The result of GATT Client
Event

[in] p_event_data Data notified by GATT Client
Event.

Returns
none

Enumeration Type Documentation

◆ e_r_ble_gattc_evt_t

enum e_r_ble_gattc_evt_t

GATT Client Event Identifier.

Enumerator

BLE_GATTC_EVENT_ERROR_RSP This event notifies the application layer that a
problem has occurred in the GATT Server while
processing a request from GATT Client.

When GATT Client has received a Error
Response PDU from a GATT Server,
BLE_GATTC_EVENT_ERROR_RSP event is
notified the application layer.

Event Code: 0x4001

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_err_rsp_evt_tBLE_GATTC_EVENT_E
RROR_RSP

BLE_GATTC_EVENT_EX_MTU_RSP This event notifies the application layer that a
MTU Exchange Response PDU has been
received from a GATT Server.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 579 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Event Code: 0x4003

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
Exchange MTU
Response since
GATT Client sent a
Exchange MTU
Request PDU to
the GATT Server.

Event Data:

st_ble_gattc_ex_mtu_rsp_evt_tBLE_GATTC_EVE
NT_EX_MTU_RSP

BLE_GATTC_EVENT_CHAR_READ_BY_UUID_RSP When the read of Characteristic specified by
UUID has been completed, this event is
notified to the application layer.

Event Code: 0x4009

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
Exchange MTU
Response since
GATT Client sent a
Exchange MTU
Request PDU to
the GATT Server.

Event Data:

st_ble_gattc_rd_char_evt_tBLE_GATTC_EVENT_
CHAR_READ_BY_UUID_RSP

BLE_GATTC_EVENT_CHAR_READ_RSP When the read of Characteristic/Characteristic
Descriptor has been completed, this event is
notified to the application layer.

Event Code: 0x400B

result:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 580 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
read response
since GATT Client
sent a request for
read by
R_BLE_GATTC_Rea
dCharUsingUuid()
to the GATT
Server.

Event Data:

st_ble_gattc_rd_char_evt_tBLE_GATTC_EVENT_
CHAR_READ_RSP

BLE_GATTC_EVENT_CHAR_PART_READ_RSP After calling R_BLE_GATTC_ReadLongChar(),
this event notifies the application layer that
the partial contents of Long
Characteristic/Long Characteristic Descriptor
has been received from the GATT Server.

Event Code: 0x400D

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
read response
since GATT Client
sent a request for
read by
R_BLE_GATTC_Rea
dLongChar() to the
GATT Server.

Event Data:

st_ble_gattc_rd_char_evt_tBLE_GATTC_EVENT_
CHAR_PART_READ_RSP

BLE_GATTC_EVENT_MULTI_CHAR_READ_RSP This event notifies the application layer that
the read of multiple Characteristics has been
completed.

Event Code: 0x400F

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 581 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
read response
since GATT Client
sent a request for
read by
R_BLE_GATTC_Rea
dMultiChar() to the
GATT Server.

Event Data:

st_ble_gattc_rd_multi_char_evt_tBLE_GATTC_EV
ENT_MULTI_CHAR_READ_RSP

BLE_GATTC_EVENT_CHAR_WRITE_RSP This event notifies the application layer that
the write of Characteristic/Characteristic
Descriptor has been completed.

Event Code: 0x4013

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
write response
since GATT Client
sent a request for
write by
R_BLE_GATTC_Writ
eChar() to the
GATT Server.

Event Data:

st_ble_gattc_wr_char_evt_tBLE_GATTC_EVENT_
CHAR_WRITE_RSP

BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP This event notifies the application layer of the
one of the following.

A segmentation to be written to Long
Characteristic/Long Characteristic
Descriptor has been sent to the GATT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 582 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Server.
The data written to one Characteristic by
Reliable Writes has been sent to the
GATT Server.

Event Code: 0x4017

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
response since
GATT Client sent a
request for
segmentation
write by
R_BLE_GATTC_Writ
eLongChar(), or 1
Characteristic
write by
R_BLE_GATTC_Reli
ableWrites() to the
GATT Server.

Event Data:

st_ble_gattc_char_part_wr_evt_tBLE_GATTC_EV
ENT_CHAR_PART_WRITE_RSP

BLE_GATTC_EVENT_HDL_VAL_NTF This event notifies the application layer that a
Notification has been received from a GATT
Server.

Event Code: 0x401B

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_ntf_evt_tBLE_GATTC_EVENT_HDL_
VAL_NTF

BLE_GATTC_EVENT_HDL_VAL_IND This event notifies the application layer that a
Indication has been received from a GATT
Server.

When the GATT Client has received a
Indication, host stack automatically sends a

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 583 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Confirmation to the GATT Server.

Event Code: 0x401D

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_MEM_ALL
OC_FAILED(0x000
C)

Insufficient
resource is needed
to generate the
confirmation
packet.

Event Data:

st_ble_gattc_ind_evt_tBLE_GATTC_EVENT_HDL_
VAL_IND

BLE_GATTC_EVENT_CONN_IND This event notifies the application layer that
the link with the GATT Server has been
established.

Event Code: 0x4081

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_conn_evt_tBLE_GATTC_EVENT_CO
NN_IND

BLE_GATTC_EVENT_DISCONN_IND This event notifies the application layer that
the link with the GATT Server has been
disconnected.

Event Code: 0x4082

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_disconn_evt_tBLE_GATTC_EVENT_
DISCONN_IND

BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND This event notifies the application layer that
16-bit UUID Primary Service has been

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 584 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

discovered.

Event Code: 0x40E0

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_16_evt_tBLE_GATTC_EVENT_
PRIM_SERV_16_DISC_IND

BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND This event notifies the application layer that
128-bit UUID Primary Service has been
discovered.

Event Code: 0x40E1

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_128_evt_tBLE_GATTC_EVENT
_PRIM_SERV_128_DISC_IND

BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP When the Primary Service discovery by
R_BLE_GATTC_DiscAllPrimServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E2

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_
COMP

BLE_GATTC_EVENT_PRIM_SERV_DISC_COMP When the Primary Service discovery by
R_BLE_GATTC_DiscPrimServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E3

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 585 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_PRIM_SERV_DISC_COM
P

BLE_GATTC_EVENT_SECOND_SERV_16_DISC_IND

This event notifies the application layer that
16-bit UUID Secondary Service has been
discovered.

Event Code: 0x40E4

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_16_evt_tBLE_GATTC_EVENT_
SECOND_SERV_16_DISC_IND

BLE_GATTC_EVENT_SECOND_SERV_128_DISC_IN
D

This event notifies the application layer that
128-bit UUID Secondary Service has been
discovered.

Event Code: 0x40E5

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_serv_128_evt_tBLE_GATTC_EVENT
_SECOND_SERV_128_DISC_IND

BLE_GATTC_EVENT_ALL_SECOND_SERV_DISC_CO
MP

When the Primary Service discovery by
R_BLE_GATTC_DiscAllSecondServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E6

result:

BLE_SUCCESS(0x0
000)

Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 586 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Event Data:

noneBLE_GATTC_EVENT_ALL_SECOND_SERV_DI
SC_COMP

BLE_GATTC_EVENT_INC_SERV_16_DISC_IND This event notifies the application layer that
Included Service that includes 16-bit UUID
Service has been discovered.

Event Code: 0x40E7

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_inc_serv_16_evt_tBLE_GATTC_EVE
NT_INC_SERV_16_DISC_IND

BLE_GATTC_EVENT_INC_SERV_128_DISC_IND This event notifies the application layer that
Included Service that includes 128-bit UUID
Service has been discovered.

Event Code: 0x40E8

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_inc_serv_128_evt_tBLE_GATTC_EV
ENT_INC_SERV_128_DISC_IND

BLE_GATTC_EVENT_INC_SERV_DISC_COMP When the Included Service discovery by
R_BLE_GATTC_DiscIncServ() has been
completed, this event is notified to the
application layer.

Event Code: 0x40E9

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_INC_SERV_DISC_COMP

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 587 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

BLE_GATTC_EVENT_CHAR_16_DISC_IND This event notifies the application layer that
16-bit UUID Characteristic has been
discovered.

Event Code: 0x40EA

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_16_evt_tBLE_GATTC_EVENT_
CHAR_16_DISC_IND

BLE_GATTC_EVENT_CHAR_128_DISC_IND This event notifies the application layer that
128-bit UUID Characteristic has been
discovered.

Event Code: 0x40EB

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_128_evt_tBLE_GATTC_EVENT
_CHAR_128_DISC_IND

BLE_GATTC_EVENT_ALL_CHAR_DISC_COMP When the Characteristic discovery by
R_BLE_GATTC_DiscAllChar() has been
completed, this event is notified to the
application layer.

Event Code: 0x40EC

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_ALL_CHAR_DISC_COM
P

BLE_GATTC_EVENT_CHAR_DISC_COMP When the Characteristic discovery by
R_BLE_GATTC_DiscCharByUuid() has been
completed, this event is notified to the
application layer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 588 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Event Code: 0x40ED

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_CHAR_DISC_COMP

BLE_GATTC_EVENT_CHAR_DESC_16_DISC_IND This event notifies the application layer that
16-bit UUID Characteristic Descriptor has been
discovered.

Event Code: 0x40EE

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_desc_16_evt_tBLE_GATTC_EV
ENT_CHAR_DESC_16_DISC_IND

BLE_GATTC_EVENT_CHAR_DESC_128_DISC_IND This event notifies the application layer that
128-bit UUID Characteristic Descriptor has
been discovered.

Event Code: 0x40EF

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_gattc_char_desc_128_evt_tBLE_GATTC_E
VENT_CHAR_DESC_128_DISC_IND

BLE_GATTC_EVENT_ALL_CHAR_DESC_DISC_COM
P

When the Characteristic Descriptor discovery
by R_BLE_GATTC_DiscAllCharDesc() has been
completed, this event is notified to the
application layer.

Event Code: 0x40F0

result:

BLE_SUCCESS(0x0 Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 589 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

000)

Event Data:

noneBLE_GATTC_EVENT_ALL_CHAR_DESC_DISC
_COMP

BLE_GATTC_EVENT_LONG_CHAR_READ_COMP After calling R_BLE_GATTC_ReadLongChar(),
this event notifies the application layer that all
of the contents of the Characteristic/Long
Characteristic Descriptor has been received
from the GATT Server.

Event Code: 0x40F1

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_LONG_CHAR_READ_C
OMP

BLE_GATTC_EVENT_LONG_CHAR_WRITE_COMP This event notifies that the application layer
that the write of Long Characteristic/Long
Characteristic Descriptor has been completed.

Event Code: 0x40F2

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
response since
GATT Client sent a
request for write
by
R_BLE_GATTC_Writ
eLongChar() to the
GATT Server.

Event Data:

noneBLE_GATTC_EVENT_LONG_CHAR_WRITE_C
OMP

BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP

This event notifies that the application layer
that the GATT Server has received the data to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 590 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

be written to the Characteristics.

Event Code: 0x40F3

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_RELIABLE_WRITES_TX
_COMP

BLE_GATTC_EVENT_RELIABLE_WRITES_COMP This event notifies the application layer that
the Reliable Writes has been completed.

Event Code: 0x40F4

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

30 seconds or
more have passed
without receiving a
response since
GATT Client sent a
request for
execute write by
R_BLE_GATTC_Reli
ableWrites() or
R_BLE_GATTC_Exe
cWrite() to the
GATT Server.

Event Data:

st_ble_gattc_reliable_writes_comp_evt_tBLE_GA
TTC_EVENT_RELIABLE_WRITES_COMP

BLE_GATTC_EVENT_INVALID Invalid GATT Client Event.

Event Code: 0x40FF

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

noneBLE_GATTC_EVENT_INVALID

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 591 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Function Documentation

◆ R_BLE_GATTC_Init()

ble_status_t R_BLE_GATTC_Init (uint8_t cb_num)

This function initializes the GATT Client and registers the number of the callbacks for GATT Client
event.

Specify the cb_num parameter to a value between 1 and BLE_GATTC_MAX_CB.
R_BLE_GATTC_RegisterCb() registers the callback.
The result of this API call is returned by a return value.

Parameters
[in] cb_num The number of callbacks to

be registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The cb_num parameter is out of range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 592 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_RegisterCb()

ble_status_t R_BLE_GATTC_RegisterCb (ble_gattc_app_cb_t cb, uint8_t priority)

This function registers a callback function for GATT Client event.

The number of the callback that may be registered by this function is the value specified by
R_BLE_GATTC_Init().
The result of this API call is returned by a return value.

Parameters
[in] cb Callback function for GATT

Client event.

[in] priority The priority of the callback
function.
Valid range is 1 <= priority
<= BLE_GATTC_MAX_CB.
A lower priority number
means a higher priority
level.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The priority parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) Host stack has already registered the
maximum number of callbacks.

◆ R_BLE_GATTC_DeregisterCb()

ble_status_t R_BLE_GATTC_DeregisterCb (ble_gattc_app_cb_t cb)

This function deregisters the callback function for GATT Client event.

The result of this API call is returned by a return value.

Parameters
[in] cb The callback function to be

deregistered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) The callback has not been registered.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 593 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_ReqExMtu()

ble_status_t R_BLE_GATTC_ReqExMtu (uint16_t conn_hdl, uint16_t mtu)

This function sends a MTU Exchange Request PDU to a GATT Server in order to change the current
MTU.

MTU Exchange Response is notified by BLE_GATTC_EVENT_EX_MTU_RSP event.
The new MTU is the minimum value of the mtu parameter specified by this function and the mtu
field in BLE_GATTC_EVENT_EX_MTU_RSP event. Default MTU size is 23 bytes.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be sent.

[in] mtu The maximum size(in bytes)
of the GATT PDU that GATT
Client can receive.
Valid range is 23 <= mtu
<= 247.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 594 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllPrimServ()

ble_status_t R_BLE_GATTC_DiscAllPrimServ (uint16_t conn_hdl)

This function discovers all Primary Services in a GATT Server.

When 16-bit UUID Primary Service has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND event is notified to the application layer.
When 128-bit UUID Primary Service has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND event is notified to the application layer.
When the Primary Service discovery has been completed,
BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) This function was called while processing
other request.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 595 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_DiscPrimServ()

ble_status_t R_BLE_GATTC_DiscPrimServ (uint16_t conn_hdl, uint8_t * p_uuid, uint8_t uuid_type)

This function discovers Primary Service specified by p_uuid in a GATT Server.

When Primary Service whose uuid is the same as the specified uuid has been discovered,
BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND event or
BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND event is notified to the application layer.
When the Primary Service discovery has been completed,
BLE_GATTC_EVENT_PRIM_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_uuid UUID of Primary Service to
be discovered.

[in] uuid_type UUID type(16-bit or 128-bit).
macro description

BLE_GATT_1
6_BIT_UUID_
FORMAT(0x0
1)

16-bit UUID

BLE_GATT_1
28_BIT_UUID
_FORMAT(0x
02)

128-bit UUID

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 596 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllSecondServ()

ble_status_t R_BLE_GATTC_DiscAllSecondServ (uint16_t conn_hdl)

This function discovers all Secondary Services in a GATT Server.

When a 16-bit UUID Secondary Service has been discovered,
BLE_GATTC_EVENT_SECOND_SERV_16_DISC_IND event is notified to the application layer.
When a 128-bit UUID Secondary Service has been discovered,
BLE_GATTC_EVENT_SECOND_SERV_128_DISC_IND event is notified to the application layer.
When the Secondary Service discovery has been completed,
BLE_GATTC_EVENT_ALL_SECOND_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 597 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_DiscIncServ()

ble_status_t R_BLE_GATTC_DiscIncServ (uint16_t conn_hdl, st_ble_gatt_hdl_range_t * p_range)

This function discovers Included Services within the specified attribute handle range in a GATT
Server.

When Included Service that includes 16-bit UUID Service has been discovered,
BLE_GATTC_EVENT_INC_SERV_16_DISC_IND event is notified to the application layer.
When Included Service that includes 128-bit UUID Service has been discovered,
BLE_GATTC_EVENT_INC_SERV_128_DISC_IND event is notified to the application layer.
When the Included Service discovery has been completed,
BLE_GATTC_EVENT_INC_SERV_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_range Retrieval range of Included
Service.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 598 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllChar()

ble_status_t R_BLE_GATTC_DiscAllChar (uint16_t conn_hdl, st_ble_gatt_hdl_range_t * p_range)

This function discovers Characteristic within the specified attribute handle range in a GATT Server.

When 16-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_16_DISC_IND
event is notified to the application layer.
When 128-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_128_DISC_IND
event is notified to the application layer.
When the Characteristic discovery has been completed, BLE_GATTC_EVENT_ALL_CHAR_DISC_COMP
event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_range Retrieval range of
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

◆ R_BLE_GATTC_DiscCharByUuid()

ble_status_t R_BLE_GATTC_DiscCharByUuid (uint16_t conn_hdl, uint8_t * p_uuid, uint8_t
uuid_type, st_ble_gatt_hdl_range_t * p_range)

This function discovers Characteristic specified by uuid within the specified attribute handle range
in a GATT Server.

When 16-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_16_DISC_IND
event is notified to the application layer.
When 128-bit UUID Characteristic has been discovered, BLE_GATTC_EVENT_CHAR_128_DISC_IND
event is notified to the application layer.
When the Characteristic discovery has been completed, BLE_GATTC_EVENT_CHAR_DISC_COMP
event is notified to the application layer.

Parameters

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 599 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

[in] conn_hdl Connection handle
identifying the GATT Server
to be discovered.

[in] p_uuid UUID of Characteristic to be
discovered.

[in] uuid_type UUID type of Characteristic
to be discovered.
macro description

BLE_GATT_1
6_BIT_UUID_
FORMAT(0x0
1)

The p_uuid
parameter is
16-bit UUID.

BLE_GATT_1
28_BIT_UUID
_FORMAT(0x
02)

The p_uuid
parameter is
128-bit
UUID.

[in] p_range Retrieval range of
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter or the p_range
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 600 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_DiscAllCharDesc()

ble_status_t R_BLE_GATTC_DiscAllCharDesc (uint16_t conn_hdl, st_ble_gatt_hdl_range_t *
p_range)

This function discovers Characteristic Descriptor within the specified attribute handle range in a
GATT Server.

When 16-bit UUID Characteristic Descriptor has been discovered,
BLE_GATTC_EVENT_CHAR_DESC_16_DISC_IND event is notified to the application layer. When
128-bit UUID Characteristic Descriptor has been discovered,
BLE_GATTC_EVENT_CHAR_DESC_128_DISC_IND event is notified to the application layer. When the
Characteristic Descriptor discovery has been completed,
BLE_GATTC_EVENT_ALL_CHAR_DESC_DISC_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be discovered.

[in] p_range Retrieval range of
Characteristic Descriptor.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_range parameter is specified as NULL.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 601 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_ReadChar()

ble_status_t R_BLE_GATTC_ReadChar (uint16_t conn_hdl, uint16_t value_hdl)

This function reads a Characteristic/Characteristic Descriptor in a GATT Server.

The result of the read is notified in BLE_GATTC_EVENT_CHAR_READ_RSP event.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be read.

[in] value_hdl Value handle of the
Characteristic/Characteristic
Descriptor to be read.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the value_hdl parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 602 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_ReadCharUsingUuid()

ble_status_t R_BLE_GATTC_ReadCharUsingUuid (uint16_t conn_hdl, uint8_t * p_uuid, uint8_t
uuid_type, st_ble_gatt_hdl_range_t * p_range)

This function reads a Characteristic in a GATT Server using a specified UUID.

The result of the read is notified in BLE_GATTC_EVENT_CHAR_READ_BY_UUID_RSP event.

Parameters
[in] conn_hdl Connection handle that

identifies Characteristic to
be read to GATT Server.

[in] p_uuid UUID of the Characteristic to
be read.

[in] uuid_type UUID type of the
Characteristic to be read.
macro description

BLE_GATT_1
6_BIT_UUID_
FORMAT(0x0
1)

The p_uuid
parameter is
16-bit UUID.

BLE_GATT_1
28_BIT_UUID
_FORMAT(0x
02)

The p_uuid
parameter is
128-bit
UUID.

[in] p_range Retrieval range of
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_uuid parameter or the p_range
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The uuid_type parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 603 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_ReadLongChar()

ble_status_t R_BLE_GATTC_ReadLongChar (uint16_t conn_hdl, uint16_t value_hdl, uint16_t offset
)

This function reads a Long Characteristic in a GATT Server.

The contents of the Long Characteristic that has been read is notified every MTU-1 bytes to the
application layer by BLE_GATTC_EVENT_CHAR_READ_RSP event.
When all of the contents has been received in GATT Client,
BLE_GATTC_EVENT_LONG_CHAR_READ_COMP event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be read.

[in] value_hdl Value handle of the Long
Characteristic to be read.

[in] offset Offset that indicates the
location to be read.
Normally, set 0 to this
parameter.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the value_hdl parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 604 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_ReadMultiChar()

ble_status_t R_BLE_GATTC_ReadMultiChar (uint16_t conn_hdl, st_ble_gattc_rd_multi_req_param_t
* p_list)

This function reads multiple Characteristics in a GATT Server.

The contents of the multiple Characteristics that has been read is notified to the application layer
by BLE_GATTC_EVENT_MULTI_CHAR_READ_RSP event.

Parameters
[in] conn_hdl Connection handle that

identifies Characteristic to
be read to GATT Server.

[in] p_list List of Value Handles that
point the Characteristics to
be read.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_list parameter or the p_hdl_list field in
the p_list parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) 0 is specified in the list_count field in the
p_list parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 605 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_WriteCharWithoutRsp()

ble_status_t R_BLE_GATTC_WriteCharWithoutRsp (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t
* p_write_data)

This function writes a Characteristic in a GATT Server without response.

The result is returned from the API.

Parameters
[in] conn_hdl Connection handle that

identifies Characteristic to
be read to GATT Server.

[in] p_write_data Value to be written to the
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

0 is specified in the value_len field in
the p_value field in the p_write_data
parameter.
0 is specified in the attr_hdl field in
the p_write_data parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 606 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_SignedWriteChar()

ble_status_t R_BLE_GATTC_SignedWriteChar (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_write_data)

This function writes Signed Data to a Characteristic in a GATT Server without response.

The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_write_data Signed Data to be written to
the Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

0 is specified in the value_len field in
the value field in the p_write_data
parameter.
0 is specified in the attr_hdl field in
the p_write_data parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function or Signed Data.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 607 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_WriteChar()

ble_status_t R_BLE_GATTC_WriteChar (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_write_data)

This function writes a Characteristic in a GATT Server.

The result of the write is notified in BLE_GATTC_EVENT_CHAR_WRITE_RSP event.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_write_data Value to be written to the
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

0 is specified in the value_len field in
the value field in the p_write_data
parameter.
0 is specified in the attr_hdl field in
the p_write_data parameter.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

◆ R_BLE_GATTC_WriteLongChar()

ble_status_t R_BLE_GATTC_WriteLongChar (uint16_t conn_hdl, st_ble_gatt_hdl_value_pair_t *
p_write_data, uint16_t offset)

This function writes a Long Characteristic in a GATT Server.

The result of a write that has been done every segmentation is notified to the application layer in
BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP event.
The maximum writable size to a Long Characteristic with this function is 512 bytes.
When all of the contents has been written to the Long Characteristic,
BLE_GATTC_EVENT_LONG_CHAR_WRITE_COMP event is notified to the application layer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 608 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_write_data Value to be written to the
Long Characteristic.

[in] offset Offset that indicates the
location to be written.
Normally, set 0 to this
parameter.
If this parameter sets to a
value other than 0, adjust
the offset parameter and the
length of the value to be
written not to exceed the
length of the Long
Characteristic.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_write_data parameter or the p_value
field in the value field in the p_write_data
parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

The value_len field in the value field
in the p_write_data parameter is 0.
The sum of the value_len field in the
value field in the p_write_data
parameter and the offset parameter
larger than 512.
The attr_hdl field in the p_write_data
parameter is 0.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 609 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_ReliableWrites()

ble_status_t R_BLE_GATTC_ReliableWrites (uint16_t conn_hdl,
st_ble_gattc_reliable_writes_char_pair_t * p_char_pair, uint8_t pair_num, uint8_t auto_flag)

This function performs the Reliable Writes procedure described in GATT Specification.

When the data written to the Characteristic has been transmitted,
BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP event is notified to the application layer.
If the data included in the event is different from the data that GATT Client has sent, host stack
automatically cancels the Reliable Writes.
After all of the contents has been sent to the GATT Server, if the auto_flag parameter has been set
to BLE_GATTC_EXEC_AUTO, the GATT Server automatically writes the data to the Characteristic.
If the auto_flag parameter has been set to BLE_GATTC_EXEC_NOT_AUTO,
BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP event notifies the application layer in GATT Client
that all of the contents has been sent to the GATT Server. Then GATT Client requests for writing the
data to the Characteristic to the GATT Server with R_BLE_GATTC_ExecWrite().
When the write has been done, BLE_GATTC_EVENT_RELIABLE_WRITES_COMP event is notified to
the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the GATT Server
to be written.

[in] p_char_pair Pair of Characteristic Value
and Characteristic Value
Handle identifying the
Characteristic to be written
by Reliable Writes.

[in] pair_num The number of the pairs
specified by the p_char_pair
parameter.
Valid range is 0 < pair_num
<= BLE_GATTC_RELIABLE_W
RITES_MAX_CHAR_PAIR.

[in] auto_flag The flag that indicates
whether auto execution or
not.
macro description

BLE_GATTC_
EXEC_AUTO(
0x01)

Auto
execution.

BLE_GATTC_
EXEC_NOT_A
UTO (0x02)

Not auto
execution.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The reason for this error is as follows:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 610 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

The p_char_pair parameter is
specified as NULL.
The p_value field in the value field in
the write_data field in the
p_char_pair parameter is specified
as NULL.

BLE_ERR_INVALID_ARG(0x0003) The reason for this error is as follows:

The pair_num parameter or the
auto_flag parameter is out of range.
The value_len field in the value field
in the write_data field in the
p_char_pair parameter is 0.

BLE_ERR_INVALID_OPERATION(0x0009) While processing other request, this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function or to store the temporary write
data.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 611 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

◆ R_BLE_GATTC_ExecWrite()

ble_status_t R_BLE_GATTC_ExecWrite (uint16_t conn_hdl, uint8_t exe_flag)

If the auto execute of Reliable Writes is not specified by R_BLE_GATTC_ReliableWrites(), this
function is used to execute a write to Characteristic.

When all of the contents has been sent to the GATT Server,
BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP event notifies the application layer.
After this event has been received, execute the write by this function.
The result of the write is notified by BLE_GATTC_EVENT_RELIABLE_WRITES_COMP event.

Parameters
[in] conn_hdl Connection handle

identifying the target GATT
Server.

[in] exe_flag The flag that indicates
whether execution or
cancellation.
macro description

BLE_GATTC_
EXECUTE_W
RITE_CANCE
L_FLAG(0x00
)

Execute the
write.

BLE_GATTC_
EXECUTE_W
RITE_EXEC_F
LAG(0x01)

Cancel the
write.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The exe_flag parameter is out of range.

BLE_ERR_INVALID_OPERATION(0x0009) The reason for this error is as follows:

GATT Client has not requested for
Reliable Writes by
R_BLE_GATTC_ReliableWrites().
Although auto execution has been
specified by
R_BLE_GATTC_ReliableWrites(), this
function was called.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The GATT Server specified by conn_hdl was
not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 612 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > GATT_CLIENT

4.2.5.5 L2CAP
Modules » Bluetooth Low Energy Library (r_ble)

Functions

ble_status_t R_BLE_L2CAP_RegisterCfPsm (ble_l2cap_cf_app_cb_t cb, uint16_t
psm, uint16_t lwm)

 This function registers PSM that uses L2CAP CBFC Channel and a
callback for L2CAP event. More...

ble_status_t R_BLE_L2CAP_DeregisterCfPsm (uint16_t psm)

 This function stops the use of the L2CAP CBFC Channel specified by
the psm parameter and deregisters the callback function for L2CAP
event. More...

ble_status_t R_BLE_L2CAP_ReqCfConn (uint16_t conn_hdl,
st_ble_l2cap_conn_req_param_t *p_conn_req_param)

 This function sends a connection request for L2CAP CBFC Channel.
More...

ble_status_t R_BLE_L2CAP_RspCfConn (st_ble_l2cap_conn_rsp_param_t
*p_conn_rsp_param)

 This function replies to the connection request for L2CAP CBFC
Channel from the remote device. More...

ble_status_t R_BLE_L2CAP_DisconnectCf (uint16_t lcid)

 This function sends a disconnection request for L2CAP CBFC
Channel. More...

ble_status_t R_BLE_L2CAP_SendCfCredit (uint16_t lcid, uint16_t credit)

 This function sends credit to a remote device. More...

ble_status_t R_BLE_L2CAP_SendCfData (uint16_t conn_hdl, uint16_t lcid, uint16_t
data_len, uint8_t *p_sdu)

 This function sends the data to a remote device via L2CAP CBFC
Channel. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 613 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

Detailed Description

Data Structures

struct st_ble_l2cap_conn_req_param_t

 L2CAP CBFC Channel connection request parameters. More...

struct st_ble_l2cap_conn_rsp_param_t

 L2CAP CBFC Channel connection response parameters. More...

struct st_ble_l2cap_cf_conn_evt_t

 L2CAP CBFC Channel connection parameters. More...

struct st_ble_l2cap_cf_data_evt_t

 Sent/Received Data parameters. More...

struct st_ble_l2cap_cf_credit_evt_t

 Credit parameters of local or remote device. More...

struct st_ble_l2cap_cf_disconn_evt_t

 Disconnection parameters. More...

struct st_ble_l2cap_rej_evt_t

 Command Reject parameters. More...

struct st_ble_l2cap_cf_evt_data_t

 st_ble_l2cap_cf_evt_data_t is the type of the data notified in a L2CAP
Event. More...

Macros

#define BLE_L2CAP_MAX_CBFC_PSM

 The maximum number of callbacks that host stack can register.

#define BLE_L2CAP_CF_RSP_SUCCESS

 Notify the remote device that the connection can be established.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 614 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

#define BLE_L2CAP_CF_RSP_RFSD_INSF_AUTH

 Notify the remote device that the connection can not be established
because of insufficient authentication.

#define BLE_L2CAP_CF_RSP_RFSD_INSF_AUTRZ

 Notify the remote device that the connection can not be established
because of insufficient Authorization.

#define BLE_L2CAP_CF_RSP_RFSD_INSF_ENC_KEY

 Notify the remote device that the connection can not be established
because of Encryption Key Size.

#define BLE_L2CAP_CF_RSP_RFSD_INSF_ENC

 Notify the remote device that the connection can not be established
because of Encryption.

#define BLE_L2CAP_CF_RSP_RFSD_UNAC_PARAM

 Notify the remote device that the connection can not be established
because the parameters is unacceptable to local device.

Typedefs

typedef void(* ble_l2cap_cf_app_cb_t) (uint16_t event_type, ble_status_t
event_result, st_ble_l2cap_cf_evt_data_t *p_event_data)

 ble_l2cap_cf_app_cb_t is the L2CAP Event callback function type.
More...

Enumerations

enum e_r_ble_l2cap_cf_evt_t

 L2CAP Event Identifier. More...

Data Structure Documentation

◆ st_ble_l2cap_conn_req_param_t

struct st_ble_l2cap_conn_req_param_t

L2CAP CBFC Channel connection request parameters.

Data Fields

uint16_t local_psm Identifier indicating the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 615 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

protocol/profile that uses L2CAP
CBFC Channel on local device.

uint16_t remote_psm Identifier indicating the
protocol/profile that uses L2CAP
CBFC Channel on remote
device.

uint16_t mtu MTU size(byte) receivable on
L2CAP CBFC Channel.

uint16_t mps MPS size(byte) receivable on
L2CAP CBFC Channel.

uint16_t credit The number of LE-Frame that
local device can receive.

◆ st_ble_l2cap_conn_rsp_param_t

struct st_ble_l2cap_conn_rsp_param_t

L2CAP CBFC Channel connection response parameters.

Data Fields

uint16_t lcid CID identifying the L2CAP CBFC
Channel on local device. The
valid range is 0x40-0x40 +
BLE_L2CAP_MAX_CBFC_PSM - 1.

uint16_t response The response to the connection
request. Select one of the
following.

macro description

BLE_L2CAP_C
F_RSP_SUCCE
SS(0x0000)

Notify the
remote device
that the
connection
can be
established.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_AUTH(0x
0005)

Notify the
remote device
that the
connection
can not be
established
because of
insufficient
authentication
.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_AUTRZ(0
x0006)

Notify the
remote device
that the
connection
can not be
established

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 616 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

because of
insufficient
Authorization.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_ENC_KEY
(0x0007)

Notify the
remote device
that the
connection
can not be
established
because of
Encryption
Key Size.

BLE_L2CAP_C
F_RSP_RFSD_I
NSF_ENC(0x0
008)

Notify the
remote device
that the
connection
can not be
established
because of
Encryption.

BLE_L2CAP_C
F_RSP_RFSD_
UNAC_PARAM(
0x000B)

Notify the
remote device
that the
connection
can not be
established
because the
parameters is
unacceptable
to local
device.

uint16_t mtu MTU(byte) of packet that L2CAP
CBFC Channel on local device
can receive.

uint16_t mps MPS(byte) of packet that L2CAP
CBFC Channel on local device
can receive.

uint16_t credit The number of LE-Frame that
L2CAP CBFC Channel on local
device can receive.

◆ st_ble_l2cap_cf_conn_evt_t

struct st_ble_l2cap_cf_conn_evt_t

L2CAP CBFC Channel connection parameters.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC
Channel.

uint16_t psm PSM allocated by the cid field.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 617 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

uint16_t mtu MTU of local/remote device.

uint16_t mps MPS of local/remote device.

uint16_t credit Credit of local/remote device.

◆ st_ble_l2cap_cf_data_evt_t

struct st_ble_l2cap_cf_data_evt_t

Sent/Received Data parameters.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC
Channel that has sent or
received the data .

uint16_t psm PSM allocated by the cid field.

uint16_t data_len Data length.

uint8_t * p_data Sent/Received data.

◆ st_ble_l2cap_cf_credit_evt_t

struct st_ble_l2cap_cf_credit_evt_t

Credit parameters of local or remote device.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC
Channel.

uint16_t psm PSM allocated by the cid field.

uint16_t credit Current credit of local/remote
device.

◆ st_ble_l2cap_cf_disconn_evt_t

struct st_ble_l2cap_cf_disconn_evt_t

Disconnection parameters.

Data Fields

uint16_t cid CID identifying the L2CAP CBFC
Channel that has been
disconnected.

◆ st_ble_l2cap_rej_evt_t

struct st_ble_l2cap_rej_evt_t

Command Reject parameters.

Data Fields

uint16_t reason The reason that the remote
device has sent Command
Reject.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 618 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

uint16_t data_1 Optional information about the
reason that the remote device
has sent Command Reject.

uint16_t data_2 Optional information about the
reason that the remote device
has sent Command Reject.

◆ st_ble_l2cap_cf_evt_data_t

struct st_ble_l2cap_cf_evt_data_t

st_ble_l2cap_cf_evt_data_t is the type of the data notified in a L2CAP Event.

Data Fields

uint16_t conn_hdl Connection handle identifying
the remote device.

uint16_t param_len The size of L2CAP Event
parameters.

void * p_param L2CAP Event parameters. This
parameter differs in each
L2CAP Event.

Typedef Documentation

◆ ble_l2cap_cf_app_cb_t

ble_l2cap_cf_app_cb_t

ble_l2cap_cf_app_cb_t is the L2CAP Event callback function type.

Parameters
[in] event_type The type of L2CAP Event.

[in] event_result The result of L2CAP Event

[in] p_event_data Data notified by L2CAP
Event.

Returns
none

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 619 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

◆ e_r_ble_l2cap_cf_evt_t

enum e_r_ble_l2cap_cf_evt_t

L2CAP Event Identifier.

Enumerator

BLE_L2CAP_EVENT_CF_CONN_CNF After the connection request for L2CAP CBFC
Channel has been sent with
R_BLE_L2CAP_ReqCfConn(), when the L2CAP
CBFC Channel connection response has been
received, BLE_L2CAP_EVENT_CF_CONN_CNF
event occurs.

Event Code: 0x5001

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_RSP_TIM
EOUT(0x0011)

L2CAP Command
timeout.

BLE_ERR_L2CAP_P
SM_NOT_SUPPORT
ED(0x4002)

PSM specified by
R_BLE_L2CAP_Req
CfConn() is not
supported.

BLE_ERR_L2CAP_N
O_RESOURCE(0x4
004)

No resource for
connection.

BLE_ERR_L2CAP_IN
SUF_AUTHEN(0x40
05)

Insufficient
authentication.

BLE_ERR_L2CAP_IN
SUF_AUTHOR(0x40
06)

Insufficient
authorization.

BLE_ERR_L2CAP_IN
SUF_ENC_KEY_SIZ
E(0x4007)

Insufficient
encryption key
size.

BLE_ERR_L2CAP_R
EFUSE_INSUF_ENC
(0x4008)

Insufficient
encryption.

BLE_ERR_L2CAP_R
EFUSE_INVALID_SC
ID(0x4009)

Invalid Source CID.

BLE_ERR_L2CAP_R
EFUSE_SCID_ALRE
ADY_ALLOC(0x400
A)

Source CID already
allocated.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 620 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

BLE_ERR_L2CAP_R
EFUSE_UNACCEPT
ABLE_PARAM(0x40
0B)

Unacceptable
parameters.

Event Data:

st_ble_l2cap_cf_conn_evt_t

BLE_L2CAP_EVENT_CF_CONN_IND When a connection request for L2CPA CBFC
Channel has been received from a remote
device, BLE_L2CAP_EVENT_CF_CONN_IND
event occurs.

Event Code: 0x5002

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_NOT_FOU
ND(0x000D)

CF connection
request has not
been received or
lcid not found.

BLE_ERR_L2CAP_P
SM_NOT_SUPPORT
ED(0x4002)

PSM specified by
R_BLE_L2CAP_Req
CfConn() is not
supported.

Event Data:

st_ble_l2cap_cf_conn_evt_t

BLE_L2CAP_EVENT_CF_DISCONN_CNF After local device has sent a disconnection
request for L2CAP CBFC Channel by
R_BLE_L2CAP_DisconnectCf(), when the local
device has received the response,
BLE_L2CAP_EVENT_CF_DISCONN_CNF event
occurs.

Event Code: 0x5003

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_disconn_evt_t

BLE_L2CAP_EVENT_CF_DISCONN_IND When local device has received a
disconnection request for L2CAP CBFC Channel

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 621 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

from the remote device,
BLE_L2CAP_EVENT_CF_DISCONN_IND event
occurs.
Host stack automatically replies the to the
disconnection request.

Event Code: 0x5004

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_disconn_evt_t

BLE_L2CAP_EVENT_CF_RX_DATA_IND When local device has received data on L2CAP
CBFC Channel,
BLE_L2CAP_EVENT_CF_RX_DATA_IND event
occurs.

Event Code: 0x5005

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_data_evt_t

BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND When the credit of the L2CAP CBFC Channel
has reached the Low Water Mark,
BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND
event occurs.

Event Code: 0x5006

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_credit_evt_t

BLE_L2CAP_EVENT_CF_TX_CRD_IND When local device has received credit from a
remote device,
BLE_L2CAP_EVENT_CF_TX_CRD_IND event
occurs.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 622 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

Event Code: 0x5007

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_cf_credit_evt_t

BLE_L2CAP_EVENT_CF_TX_DATA_CNF When the data transmission has been
completed from host stack to Controller,
BLE_L2CAP_EVENT_CF_TX_DATA_CNF event
occurs.

Event Code: 0x5008

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_DISCONN
ECTED(0x000F)

While transmitting
data, L2CAP CBFC
Channel has been
disconnected.

Event Data:

st_ble_l2cap_cf_data_evt_t

BLE_L2CAP_EVENT_CMD_REJ When local device has received Command
Reject PDU, BLE_L2CAP_EVENT_CMD_REJ event
occurs.

Event Code: 0x5009

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_l2cap_rej_evt_t

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 623 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

◆ R_BLE_L2CAP_RegisterCfPsm()

ble_status_t R_BLE_L2CAP_RegisterCfPsm (ble_l2cap_cf_app_cb_t cb, uint16_t psm, uint16_t lwm
)

This function registers PSM that uses L2CAP CBFC Channel and a callback for L2CAP event.

Only one callback is available per PSM. Configure in each PSM the Low Water Mark of the LE-
Frames that the local device can receive.
When the number of the credit reaches the Low Water Mark,
BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND event is notified to the application layer.
The number of PSM is defined as BLE_L2CAP_MAX_CBFC_PSM.
The result of this API call is returned by a return value.

Parameters
[in] cb Callback function for L2CAP

event.

[in] psm Identifier indicating the
protocol/profile that uses
L2CAP CBFC Channel.

type range descript
ion

Fixed,
SIG
assigne
d

0x0001
-
0x007F

PSM
defined
by SIG.
For
more in
formati
on on
PSM,
refer Bl
uetooth
SIG Assi
gned
Number
(
https://
www.bl
uetooth
.com/sp
ecificati
ons/assi
gned-n
umbers
).

Dynami
c

0x0080
-
0x00FF

Staticall
y alloca
ted PSM
by
custom
protoco
l or dyn
amicall

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 624 / 2,794

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

y alloca
ted PSM
by
GATT
Service.

[in] lwm Low Water Mark that
indicates the LE-Frame
numbers that the local
device can receive.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The cb parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The psm parameter is out of range.

BLE_ERR_CONTEXT_FULL(0x000B) More than BLE_L2CAP_MAX_CBFC_PSM+1
PSMs, callbacks has been registered.

◆ R_BLE_L2CAP_DeregisterCfPsm()

ble_status_t R_BLE_L2CAP_DeregisterCfPsm (uint16_t psm)

This function stops the use of the L2CAP CBFC Channel specified by the psm parameter and
deregisters the callback function for L2CAP event.

The result of this API call is returned by a return value.

Parameters
[in] psm PSM that is to be stopped to

use the L2CAP CBFC
Channel.
Set the PSM registered by
R_BLE_L2CAP_RegisterCfPsm
().

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_NOT_FOUND(0x000D) The callback function allocated by the psm
parameter is not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 625 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

◆ R_BLE_L2CAP_ReqCfConn()

ble_status_t R_BLE_L2CAP_ReqCfConn (uint16_t conn_hdl, st_ble_l2cap_conn_req_param_t *
p_conn_req_param)

This function sends a connection request for L2CAP CBFC Channel.

The connection response is notified by BLE_L2CAP_EVENT_CF_CONN_CNF event.
The result of this API call is returned by a return value.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device that the connection
request is sent to.

[in] p_conn_req_param Connection request
parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_conn_req_param parameter is
specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The mtu parameter or the mps parameter is
out of range.

BLE_ERR_INVALID_STATE(0x0008) CF Channel connection has not been
established.

BLE_ERR_CONTEXT_FULL(0x000B) New CF Channel can not be registered or
other L2CAP Command is processing.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) Insufficient memory is needed to generate
this function.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by conn_hdl is
not found.

BLE_ERR_NOT_YET_READY(0x0012) The psm parameter is not registered.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 626 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

◆ R_BLE_L2CAP_RspCfConn()

ble_status_t R_BLE_L2CAP_RspCfConn (st_ble_l2cap_conn_rsp_param_t * p_conn_rsp_param)

This function replies to the connection request for L2CAP CBFC Channel from the remote device.

The connection request is notified by BLE_L2CAP_EVENT_CF_CONN_IND event. The result of this API
call is returned by a return value.

Parameters
[in] p_conn_rsp_param Connection response

parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_conn_rsp_param parameter is
specified as NULL.

BLE_ERR_NOT_FOUND(0x000D) A connection request for L2CAP CBFC
Channel has not been received, or CID
specified by the lcid field in the
p_conn_rsp_param parameter is not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 627 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

◆ R_BLE_L2CAP_DisconnectCf()

ble_status_t R_BLE_L2CAP_DisconnectCf (uint16_t lcid)

This function sends a disconnection request for L2CAP CBFC Channel.

When L2CAP CBFC Channel has been disconnected, BLE_L2CAP_EVENT_CF_DISCONN_CNF event is
notified to the application layer.

Parameters
[in] lcid CID identifying the L2CAP

CBFC Channel that has been
disconnected.
The valid range is 0x40 -
(0x40 +
BLE_L2CAP_MAX_CBFC_PSM
- 1).

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_OPERATION(0x0009) CF Channel connection has not been
established.

BLE_ERR_CONTEXT_FULL(0x000B) This function was called while processing
other L2CAP command.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP
Command.

BLE_ERR_NOT_FOUND(0x000D) CID specified the lcid parameter is not
found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 628 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

◆ R_BLE_L2CAP_SendCfCredit()

ble_status_t R_BLE_L2CAP_SendCfCredit (uint16_t lcid, uint16_t credit)

This function sends credit to a remote device.

In L2CAP CBFC communication, if credit is 0, the remote device stops data transmission.
Therefore when processing the received data has been completed and local device affords to
receive data, the remote device is notified of the number of LE-Frame that local device can receive
by this function and local device can continue to receive data from the remote device.
The result of this API call is returned by a return value.

Parameters
[in] lcid CID identifying the L2CAP

CBFC Channel on local
device that sends credit.

[in] credit Credit to be sent to the
remote device.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The credit parameter is set to 0.

BLE_ERR_CONTEXT_FULL(0x000B) This function was called while processing
other L2CAP command.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 629 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > L2CAP

◆ R_BLE_L2CAP_SendCfData()

ble_status_t R_BLE_L2CAP_SendCfData (uint16_t conn_hdl, uint16_t lcid, uint16_t data_len,
uint8_t * p_sdu)

This function sends the data to a remote device via L2CAP CBFC Channel.

When the data transmission to Controller has been completed,
BLE_L2CAP_EVENT_CF_TX_DATA_CNF event is notified to the application layer.

Parameters
[in] conn_hdl Connection handle

identifying the remote
device to be sent the data.

[in] lcid CID identifying the L2CAP
CBFC Channel on local
device used in the data
transmission.

[in] data_len Length of the data.

[in] p_sdu Service Data Unit.
Input the data length
specified by the data_len
parameter to the first 2
bytes (Little Endian).

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_data parameter is specified as NULL.

BLE_ERR_INVALID_ARG(0x0003) The length parameter is out of range.

BLE_ERR_INVALID_STATE(0x0008) CF Channel connection has not been
established or the data whose length
exceeds the MTU has been sent.

BLE_ERR_ALREADY_IN_PROGRESS(0x000A) Data transmission has been already started.

BLE_ERR_CONTEXT_FULL(0x000B) L2CAP task queue is full.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for L2CAP
Command.

BLE_ERR_NOT_FOUND(0x000D) CID specified the lcid parameter is not
found.

BLE_ERR_INVALID_HDL(0x000E) The remote device specified by the
conn_hdl parameter is not found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 630 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

4.2.5.6 VS
Modules » Bluetooth Low Energy Library (r_ble)

Functions

ble_status_t R_BLE_VS_Init (ble_vs_app_cb_t vs_cb)

 This function initializes Vendor Specific API and registers a callback
function for Vendor Specific Event. More...

ble_status_t R_BLE_VS_StartTxTest (st_ble_vs_tx_test_param_t *p_tx_test_param)

 This function starts extended Transmitter Test. More...

ble_status_t R_BLE_VS_StartRxTest (st_ble_vs_rx_test_param_t *p_rx_test_param)

 This function starts extended Receiver Test. More...

ble_status_t R_BLE_VS_EndTest (void)

 This function terminates the extended transmitter or receiver test.
More...

ble_status_t R_BLE_VS_SetTxPower (uint16_t conn_hdl, uint8_t tx_power)

 This function configures transmit power. More...

ble_status_t R_BLE_VS_GetTxPower (uint16_t conn_hdl)

 This function gets transmit power. More...

ble_status_t R_BLE_VS_SetCodingScheme (uint8_t coding_scheme)

 This function configure default Coding scheme(S=8 or S=2) that is
used in the case of selecting Coded PHY in Primary advertising PHY
or Secondary advertising PHY advertising or request for link
establishment. More...

ble_status_t R_BLE_VS_SetRfControl (st_ble_vs_set_rf_ctrl_param_t *p_rf_ctrl)

 This function performs power control on RF. More...

ble_status_t R_BLE_VS_SetBdAddr (uint8_t area, st_ble_dev_addr_t *p_addr)

 This function sets public/random address of local device to the area
specified by the parameter. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 631 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

ble_status_t R_BLE_VS_GetBdAddr (uint8_t area, uint8_t addr_type)

 This function gets currently configured public/random address.
More...

ble_status_t R_BLE_VS_GetRand (uint8_t rand_size)

 This function generates 4-16 bytes of random number used in
creating keys. More...

ble_status_t R_BLE_VS_StartTxFlowEvtNtf (void)

 This function starts the
notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow. More...

ble_status_t R_BLE_VS_StopTxFlowEvtNtf (void)

 This function stops the
notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow. More...

ble_status_t R_BLE_VS_GetTxBufferNum (uint32_t *p_buffer_num)

 This function retrieves the number of the available transmission
packet buffers. More...

ble_status_t R_BLE_VS_SetTxLimit (uint32_t tx_queue_lwm, uint32_t
tx_queue_hwm)

 This function sets the threshold for notifying the application layer of
the TxFlow state. More...

ble_status_t R_BLE_VS_SetScanChMap (uint16_t ch_map)

 This function sets the scan channel map. More...

ble_status_t R_BLE_VS_GetScanChMap (void)

 This function gets currently scan channel map. More...

Detailed Description

Data Structures

struct st_ble_vs_tx_test_param_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 632 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

 This is the extended transmitter test parameters used in
R_BLE_VS_StartTxTest(). More...

struct st_ble_vs_rx_test_param_t

 This is the extended receiver test parameters used in
R_BLE_VS_StartRxTest(). More...

struct st_ble_vs_set_rf_ctrl_param_t

 This is the RF parameters used in R_BLE_VS_SetRfControl(). More...

struct st_ble_vs_test_end_evt_t

 This structure notifies that the extended test has been terminated.
More...

struct st_ble_vs_set_tx_pwr_comp_evt_t

 This structure notifies that tx power has been set. More...

struct st_ble_vs_get_tx_pwr_comp_evt_t

 This structure notifies that tx power has been retrieved. More...

struct st_ble_vs_set_rf_ctrl_comp_evt_t

 This structure notifies that RF has been configured. More...

struct st_ble_vs_get_bd_addr_comp_evt_t

 This structure notifies that BD_ADDR has been retrieved. More...

struct st_ble_vs_get_rand_comp_evt_t

 This structure notifies that random number has been generated.
More...

struct st_ble_vs_tx_flow_chg_evt_t

 This structure notifies that the state transition of TxFlow has been
changed. More...

struct st_ble_vs_evt_data_t

 st_ble_vs_evt_data_t is the type of the data notified in a Vendor

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 633 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

Specific Event. More...

struct st_ble_vs_get_scan_ch_map_comp_evt_t

 This structure notifies that current scan channel map. More...

Macros

#define BLE_VS_TX_POWER_HIGH

 High power level.

#define BLE_VS_TX_POWER_MID

 Middle power level.

#define BLE_VS_TX_POWER_LOW

 Low power level.

#define BLE_VS_ADDR_AREA_REG

 Address in register is written or read.

#define BLE_VS_ADDR_AREA_DATA_FLASH

 Address in DataFlash is written or read.

#define BLE_VS_EH_TX_PL_PRBS9

 PRBS9 sequence '11111111100000111101..'.

#define BLE_VS_EH_TX_PL_11110000

 Repeated '11110000'.

#define BLE_VS_EH_TX_PL_10101010

 Repeated '10101010'.

#define BLE_VS_EH_TX_PL_PRBS15

 PRBS15 sequence.

#define BLE_VS_EH_TX_PL_11111111

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 634 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

 Repeated '11111111'.

#define BLE_VS_EH_TX_PL_00000000

 Repeated '00000000'.

#define BLE_VS_EH_TX_PL_00001111

 Repeated '00001111'.

#define BLE_VS_EH_TX_PL_01010101

 Repeated '01010101'.

#define BLE_VS_EH_TEST_PHY_1M

 1M PHY used in Transmitter/Receiver test.

#define BLE_VS_EH_TEST_PHY_2M

 2M PHY used in Transmitter/Receiver test.

#define BLE_VS_EH_TEST_PHY_CODED

 Coded PHY used in Receiver test.

#define BLE_VS_EH_TEST_PHY_CODED_S_8

 Coded PHY(S=8) used in Transmitter test.

#define BLE_VS_EH_TEST_PHY_CODED_S_2

 Coded PHY(S=2) used in Transmitter test.

#define BLE_VS_RF_OFF

 RF power off.

#define BLE_VS_RF_ON

 RF power on.

#define BLE_VS_RF_INIT_PARAM_NOT_CHG

 The parameters are not changed in RF power on.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 635 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

#define BLE_VS_RF_INIT_PARAM_CHG

 The parameters are changed in RF power on.

#define BLE_VS_CS_PRIM_ADV_S_8

 Coding scheme for Primary Advertising PHY(S=8).

#define BLE_VS_CS_PRIM_ADV_S_2

 Coding scheme for Primary Advertising PHY(S=2).

#define BLE_VS_CS_SECOND_ADV_S_8

 Coding scheme for Secondary Advertising PHY(S=8).

#define BLE_VS_CS_SECOND_ADV_S_2

 Coding scheme for Secondary Advertising PHY(S=2).

#define BLE_VS_CS_CONN_S_8

 Coding scheme for request for link establishment(S=8).

#define BLE_VS_CS_CONN_S_2

 Coding scheme for request for link establishment(S=2).

#define BLE_VS_TX_FLOW_CTL_ON

 It means that the number of buffer has reached the High Water Mark
from flow off state.

#define BLE_VS_TX_FLOW_CTL_OFF

 It means that the number of buffer has reached the Low Water Mark
from flow on state.

Typedefs

typedef void(* ble_vs_app_cb_t) (uint16_t event_type, ble_status_t event_result,
st_ble_vs_evt_data_t *p_event_data)

 ble_vs_app_cb_t is the Vendor Specific Event callback function type.
More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 636 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

Enumerations

enum e_r_ble_vs_evt_t

 Vendor Specific Event Identifier. More...

Data Structure Documentation

◆ st_ble_vs_tx_test_param_t

struct st_ble_vs_tx_test_param_t

This is the extended transmitter test parameters used in R_BLE_VS_StartTxTest().

Data Fields

uint8_t ch Channel used in Tx test.

uint8_t test_data_len Length(in bytes) of the packet
used in Tx Test.

uint8_t packet_payload Packet Payload.

uint8_t phy Transmitter PHY used in test.

uint8_t tx_power Tx Power Level used in DTM Tx
Test.

uint8_t option Option.

uint16_t num_of_packet The number of packet to be
sent.

◆ st_ble_vs_rx_test_param_t

struct st_ble_vs_rx_test_param_t

This is the extended receiver test parameters used in R_BLE_VS_StartRxTest().

Data Fields

uint8_t ch Channel used in Rx test.

uint8_t phy Receiver PHY used in the test.

◆ st_ble_vs_set_rf_ctrl_param_t

struct st_ble_vs_set_rf_ctrl_param_t

This is the RF parameters used in R_BLE_VS_SetRfControl().

Data Fields

uint8_t power RF power on/off.

uint8_t option This field indicates whether the
parameters change in RF power
on.

uint8_t clval RF rapid clock frequency adjust
value(OSC internal CL adjust).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 637 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

uint8_t slow_clock RF slow clock configurations.

uint8_t tx_power Set tx power in power on.

uint8_t rf_option Set RF option.

◆ st_ble_vs_test_end_evt_t

struct st_ble_vs_test_end_evt_t

This structure notifies that the extended test has been terminated.

Data Fields

uint16_t num_of_packet The number of packet
successfully received in the
receiver test.

uint16_t num_of_crc_err_packet The number of CRC error
packets in the receiver test.

int8_t ave_rssi Average RSSI(dBm) in the
receiver test.

int8_t max_rssi Maximum RSSI(dBm) in the
receiver test.

int8_t min_rssi Minimum RSSI(dBm) in the
receiver test.

◆ st_ble_vs_set_tx_pwr_comp_evt_t

struct st_ble_vs_set_tx_pwr_comp_evt_t

This structure notifies that tx power has been set.

Data Fields

uint16_t conn_hdl Connection handle that
identifying the link whose tx
power has been set.

int8_t curr_tx_pwr Tx power that has been
set(dBm).

◆ st_ble_vs_get_tx_pwr_comp_evt_t

struct st_ble_vs_get_tx_pwr_comp_evt_t

This structure notifies that tx power has been retrieved.

Data Fields

uint16_t conn_hdl Connection handle that
identifying the link whose tx
power has been retrieved.

int8_t curr_tx_pwr Current tx power(dBm).

int8_t max_tx_pwr Maximum tx power(dBm).

◆ st_ble_vs_set_rf_ctrl_comp_evt_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 638 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

struct st_ble_vs_set_rf_ctrl_comp_evt_t

This structure notifies that RF has been configured.

Data Fields

uint8_t ctrl The result of RF power control.

◆ st_ble_vs_get_bd_addr_comp_evt_t

struct st_ble_vs_get_bd_addr_comp_evt_t

This structure notifies that BD_ADDR has been retrieved.

Data Fields

uint8_t area The area that public/random
address has been retrieved.
value description

BLE_VS_ADDR
_AREA_REG(0
x00)

Register.

BLE_VS_ADDR
_AREA_DATA_
FLASH(0x01)

Data Flash.

st_ble_dev_addr_t addr The address that has been
retrieved.

◆ st_ble_vs_get_rand_comp_evt_t

struct st_ble_vs_get_rand_comp_evt_t

This structure notifies that random number has been generated.

Data Fields

uint8_t rand_size Length of random number.

uint8_t * p_rand Random number.

◆ st_ble_vs_tx_flow_chg_evt_t

struct st_ble_vs_tx_flow_chg_evt_t

This structure notifies that the state transition of TxFlow has been changed.

Data Fields

uint8_t state The state of the flow control.
value description

BLE_VS_TX_FL
OW_CTL_ON(0
x00)

The number
of buffer has
reached the
High Water
Mark from
flow off state.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 639 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

BLE_VS_TX_FL
OW_CTL_OFF(
0x01)

The number
of buffer has
reached the
Low Water
Mark from
flow on state.

uint32_t buffer_num The number of the current
transmission buffers.

◆ st_ble_vs_evt_data_t

struct st_ble_vs_evt_data_t

st_ble_vs_evt_data_t is the type of the data notified in a Vendor Specific Event.

Data Fields

uint16_t param_len The size of Vendor Specific
Event parameters.

void * p_param Vendor Specific Event
parameters. This parameter
differs in each Vendor Specific
Event.

◆ st_ble_vs_get_scan_ch_map_comp_evt_t

struct st_ble_vs_get_scan_ch_map_comp_evt_t

This structure notifies that current scan channel map.

Data Fields

uint8_t ch_map The result of current scan
channel map.

Typedef Documentation

◆ ble_vs_app_cb_t

ble_vs_app_cb_t

ble_vs_app_cb_t is the Vendor Specific Event callback function type.

Parameters
[in] event_type The type of Vendor Specific

Event.

[in] event_result The result of API call which
generates the Vendor
Specific Event.

[in] p_event_data Data notified in the Vendor
Specific Event.

Returns
none

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 640 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

Enumeration Type Documentation

◆ e_r_ble_vs_evt_t

enum e_r_ble_vs_evt_t

Vendor Specific Event Identifier.

Enumerator

BLE_VS_EVENT_SET_TX_POWER This event notifies that the tx power has been
set by R_BLE_VS_SetTxPower().

Event Code: 0x8001

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The tx_power
parameter
specified by
R_BLE_VS_SetTxPo
wer() is out of
range.

BLE_ERR_INVALID_
HDL(0x000E)

The link identified
with the conn_hdl
specified by
R_BLE_VS_SetTxPo
wer() is not found.

Event Data:

st_ble_vs_set_tx_pwr_comp_evt_t

BLE_VS_EVENT_GET_TX_POWER This event notifies that the tx power has been
retrieved by R_BLE_VS_GetTxPower().

Event Code: 0x8002

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
HDL(0x000E)

The link identified
with the conn_hdl
specified by
R_BLE_VS_GetTxPo
wer() is not found.

Event Data:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 641 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

st_ble_vs_get_tx_pwr_comp_evt_t

BLE_VS_EVENT_TX_TEST_START This event notifies that the extended
transmitter test has been started by
R_BLE_VS_StartTxTest().

Event Code: 0x8003

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The parameter
specified by
R_BLE_VS_StartTxT
est() is out of
range.

Event Data:

none

BLE_VS_EVENT_TX_TEST_TERM This event notifies that the number specified
by R_BLE_VS_StartTxTest() of packets has been
sent.

Event Code: 0x8004

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

BLE_VS_EVENT_RX_TEST_START This event notifies that the extended receiver
test has been started by
R_BLE_VS_StartRxTest().

Event Code: 0x8005

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The parameter
specified by
R_BLE_VS_StartRx
Test() is out of
range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 642 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

Event Data:

none

BLE_VS_EVENT_TEST_END This event notifies that the extended test has
been terminated by R_BLE_VS_EndTest().

Event Code: 0x8006

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_vs_test_end_evt_t

BLE_VS_EVENT_SET_CODING_SCHEME_COMP This event notifies that the coding scheme has
been configured by
R_BLE_VS_SetCodingScheme().

Event Code: 0x8007

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The
coding_scheme
parameter
specified by
R_BLE_VS_SetCodi
ngScheme() is out
of range.

Event Data:

none

BLE_VS_EVENT_RF_CONTROL_COMP This event notifies that the RF has been
configured by R_BLE_VS_SetRfControl().

Event Code: 0x8008

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The parameter
specified by
R_BLE_VS_SetRfCo
ntrol() is out of

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 643 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

range.

BLE_ERR_INVALID_
OPERATION(0x000
9)

During the power
on or the power
off, the same
power state is
specified by
R_BLE_VS_SetRfCo
ntrol().

Event Data:

st_ble_vs_set_rf_ctrl_comp_evt_t

BLE_VS_EVENT_SET_ADDR_COMP This event notifies that public/random address
has been set by R_BLE_VS_SetBdAddr().

Event Code: 0x8009

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The area
parameter or the
type field in the
p_addr parameter
specified by
R_BLE_VS_SetBdA
ddr() is out of
range.

Event Data:

none

BLE_VS_EVENT_GET_ADDR_COMP This event notifies that public/random address
has been retrieved by R_BLE_VS_GetBdAddr().

Event Code: 0x800A

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The area
parameter or the
type field in the
p_addr parameter
specified by
R_BLE_VS_GetBdA
ddr() is out of
range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 644 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

Event Data:

st_ble_vs_get_bd_addr_comp_evt_t

BLE_VS_EVENT_GET_RAND This event notifies the application layer that
random number has been generated by
R_BLE_VS_GetRand().

Event Code: 0x800B

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The rand_size
parameter
specified by
R_BLE_VS_GetRan
d() is out of range.

Event Data:

st_ble_vs_get_rand_comp_evt_t

BLE_VS_EVENT_TX_FLOW_STATE_CHG This event notifies the application layer of the
state transition of TxFlow.

Event Code: 0x800C

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_vs_tx_flow_chg_evt_t

BLE_VS_EVENT_FAIL_DETECT This event notifies a failure occurs in RF. After
receiving the event, reset MCU or RF.

Event Code: 0x800D

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

None

BLE_VS_EVENT_SET_SCAN_CH_MAP This event notifies that scan channel map has

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 645 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

been set by R_BLE_VS_SetScanChMap().

Event Code: 0x800E

result:

BLE_SUCCESS(0x0
000)

Success

BLE_ERR_INVALID_
ARG(0x0003)

The ch_map
parameter
specified by
R_BLE_VS_SetScan
ChMap() is out of
range.

Event Data:

none

BLE_VS_EVENT_GET_SCAN_CH_MAP This event notifies that scan channel map has
been retrieved by R_BLE_VS_GetScanChMap().

Event Code: 0x800F

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

st_ble_vs_get_scan_ch_map_comp_evt_t

BLE_VS_EVENT_INVALID Invalid VS Event.

Event Code: 0x80FF

result:

BLE_SUCCESS(0x0
000)

Success

Event Data:

none

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 646 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_Init()

ble_status_t R_BLE_VS_Init (ble_vs_app_cb_t vs_cb)

This function initializes Vendor Specific API and registers a callback function for Vendor Specific
Event.

The result of this API call is returned by a return value.

Parameters
[in] vs_cb Callback function to be

registered.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The vs_cb parameter is specified as NULL.

BLE_ERR_CONTEXT_FULL(0x000B) Callback function has already been
registered.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 647 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_StartTxTest()

ble_status_t R_BLE_VS_StartTxTest (st_ble_vs_tx_test_param_t * p_tx_test_param)

This function starts extended Transmitter Test.

The following extended transmitter test functions of DTM Tx are supported by this function.

Tx Power
Tx Modulation Enable/Modulation Disable
Tx packet transmission/continuous transmission
Tx packets count

The result of this API call is notified in BLE_VS_EVENT_TX_TEST_START event.
If the num_of_packet field in the p_tx_test_param parameter is other than 0x0000,
BLE_VS_EVENT_TX_TEST_TERM event notifies the application layer that the number of packet has
been sent.
If R_BLE_VS_EndTest() is called before the specified number of packets completions,
BLE_VS_EVENT_TX_TEST_TERM event is not notified to the application layer.

The condition that phy field in the p_tx_test_param parameter is
BLE_VS_EH_TEST_PHY_CODED_S_8(0x03) and option field is modulation(bit0:0) & continuous
transmission(bit1:1) is not supported.

Parameters
[in] p_tx_test_param Tx Test parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_tx_test_param parameter is specified
as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 648 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_StartRxTest()

ble_status_t R_BLE_VS_StartRxTest (st_ble_vs_rx_test_param_t * p_rx_test_param)

This function starts extended Receiver Test.

The result of this API call is notified in BLE_VS_EVENT_RX_TEST_START event. The following
extended receiver test functions of DTM Rx are supported by this function.

Calculating the maximum, the minimum and the average of RSSI in the receiver test.
The number of CRC error packets in the receiver test.

The transmitter is configured to one of the following, the receiver can't receive the packets by this
function.

Tx Non-Modulation Enable
Tx continuous transmission
After R_BLE_VS_EndTest() has been called, the receiver test result value are notified in
BLE_VS_EVENT_TEST_END event.

Parameters
[in] p_rx_test_param The extended receiver test

parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_rx_test_param parameter is specified
as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

◆ R_BLE_VS_EndTest()

ble_status_t R_BLE_VS_EndTest (void)

This function terminates the extended transmitter or receiver test.

The result of this API call is notified in BLE_VS_EVENT_TEST_END event. In case of extended
receiver test, this event notifies the application layer of the result of the extended receiver test.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 649 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_SetTxPower()

ble_status_t R_BLE_VS_SetTxPower (uint16_t conn_hdl, uint8_t tx_power)

This function configures transmit power.

This function configures the following transmit power.

The transmit power used in sending advertising PDU, scan request PDU, connection request
PDU (in not connected state)
The transmit power used in sending PDU in connected state. When configuring the transmit
power used in not connected state, set the conn_hdl parameter to
BLE_GAP_INIT_CONN_HDL(0xFFFF).
When the transmit power used in connected state is configured, set the conn_hdl parameter
to the connection handle of the link.
Select one of the following transmit power levels.
High
Middle
Low

Max transmit power of "High" is dependent on the configuration of the firmware. The result of this
API call is notified in BLE_VS_EVENT_SET_TX_POWER event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
transmit power to be
configured. If non connected
state, set
BLE_GAP_INIT_CONN_HDL(0x
FFFF).

[in] tx_power Transmission power. Select
one of the following.

BLE_VS_TX_POWER_
HIGH(0x00)
BLE_VS_TX_POWER_
MID(0x01)
BLE_VS_TX_POWER_L
OW(0x02)

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 650 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_GetTxPower()

ble_status_t R_BLE_VS_GetTxPower (uint16_t conn_hdl)

This function gets transmit power.

This function gets the following transmit power.

The transmit power used in sending advertising PDU, scan request PDU, connection request
PDU (in not connected state)
The transmit power used in sending PDU in connected state. When getting the transmit
power used in not connected state, set the conn_hdl parameter to
BLE_GAP_INIT_CONN_HDL(0xFFFF).
When the transmit power used in connected state is retrieved, set the conn_hdl parameter
to the connection handle of the link. The result of this API call is notified in
BLE_VS_EVENT_GET_TX_POWER event.

Parameters
[in] conn_hdl Connection handle

identifying the link whose
transmit power to be
retrieved. If non connected
state, set
BLE_GAP_INIT_CONN_HDL(0x
FFFF).

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 651 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_SetCodingScheme()

ble_status_t R_BLE_VS_SetCodingScheme (uint8_t coding_scheme)

This function configure default Coding scheme(S=8 or S=2) that is used in the case of selecting
Coded PHY in Primary advertising PHY or Secondary advertising PHY advertising or request for link
establishment.

After setting the default Coding scheme by this function, configure the advertising parameters by
R_BLE_GAP_SetAdvParam() or send a request for link establishment.
The result of this API call is notified in BLE_VS_EVENT_SET_CODING_SCHEME_COMP event.

Parameters
[in] coding_scheme Coding scheme for Primary

advertising PHY, Secondary
advertising PHY, request for
link establishment.The
coding_scheme field is set to
a bitwise OR of the following
values.
bit description

bit0 Coding
scheme for
Primary
Advertising
PHY(0:S=8/1
:S=2).

bit1 Coding
scheme for
Secondary
Advertising
PHY(0:S=8/1
:S=2).

bit2 Coding
scheme for
request for
link establis
hment(0:S=
8/1:S=2).

All other bits Reserved for
future use.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 652 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_SetRfControl()

ble_status_t R_BLE_VS_SetRfControl (st_ble_vs_set_rf_ctrl_param_t * p_rf_ctrl)

This function performs power control on RF.

If BLE communication is not used for a long time, RF reduces the power consumption by moving to
the RF Power-Down Mode.
When RF power on, RF initialization processing is executed.
After RF power off by this function, API functions other than this are not available until RF power on
again.
The result of this API call is notified in BLE_VS_EVENT_RF_CONTROL_COMP event. After RF power on
again with this function, call R_BLE_GAP_Terminate(), R_BLE_GAP_Init() in order to restart the host
stack.

Parameters
[in] p_rf_ctrl RF parameters.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_rf_ctrl parameter is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 653 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_SetBdAddr()

ble_status_t R_BLE_VS_SetBdAddr (uint8_t area, st_ble_dev_addr_t * p_addr)

This function sets public/random address of local device to the area specified by the parameter.

If the address is written in non-volatile area, the address is used as default address on the next
MCU reset.
For more information on the random address, refer to Core Specification Vol 6, PartB, "1.3.2
Random Device Address".
The result of this API call is notified in BLE_VS_EVENT_SET_ADDR_COMP event.

Parameters
[in] area The area that the address is

to be written in.
Select one of the following.

macro description

BLE_VS_ADD
R_AREA_REG
(0x00)

Address
writing to
non-volatile
area is not
performed.
Only the
address in
register is
written.

BLE_VS_ADD
R_AREA_DAT
A_FLASH(0x
01)

Address
wiring to
DataFlash
area is
performed.

[in] p_addr The address to be set to the
area. Set
BLE_GAP_ADDR_PUBLIC(0x0
0) or
BLE_GAP_ADDR_RAND(0x01)
to the type field in the
p_addr parameter.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_addr parameter is specified as NULL.

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 654 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_GetBdAddr()

ble_status_t R_BLE_VS_GetBdAddr (uint8_t area, uint8_t addr_type)

This function gets currently configured public/random address.

The area parameter specifies the place where this function retrieves public/random address.
The result of this API call is notified in BLE_VS_EVENT_GET_ADDR_COMP event.

Parameters
[in] area The area that the address is

to be retrieved.
Select one of the following.

macro description

BLE_VS_ADD
R_AREA_REG
(0x00)

Retrieve the
address in
register.

BLE_VS_ADD
R_AREA_DAT
A_FLASH(0x
01)

Retrieve the
address in
DataFlash
area.

[in] addr_type The address type that is
type of the address to be
retrieved.
macro description

BLE_GAP_AD
DR_PUBLIC(
0x00)

Public
address.

BLE_GAP_AD
DR_RAND(0x
01)

Random
address.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 655 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_GetRand()

ble_status_t R_BLE_VS_GetRand (uint8_t rand_size)

This function generates 4-16 bytes of random number used in creating keys.

The result of this API call is notified in BLE_VS_EVENT_GET_RAND event.

Parameters
[in] rand_size Length of the random

number (byte).
The valid range is
4<=rand_size<=16.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_STATE(0x0008) The task for host stack is not running.

BLE_ERR_MEM_ALLOC_FAILED(0x000C) There are no memories for Vendor Specific
Command.

◆ R_BLE_VS_StartTxFlowEvtNtf()

ble_status_t R_BLE_VS_StartTxFlowEvtNtf (void)

This function starts the notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow.

If the number of the available transmission packet buffers is the following,
BLE_VS_EVENT_TX_FLOW_STATE_CHG event notifies the application layer of the state of the
TxFlow.

The number of the available transmission packet buffers is less than Low Water Mark.
The number of the available transmission packet buffers is more than High Water Mark. The
result of this API call is returned by a return value.
Return values

BLE_SUCCESS(0x0000) Success

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 656 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_StopTxFlowEvtNtf()

ble_status_t R_BLE_VS_StopTxFlowEvtNtf (void)

This function stops the notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) of the state
transition of TxFlow.

The result of this API call is returned by a return value.

Return values
BLE_SUCCESS(0x0000) Success

◆ R_BLE_VS_GetTxBufferNum()

ble_status_t R_BLE_VS_GetTxBufferNum (uint32_t * p_buffer_num)

This function retrieves the number of the available transmission packet buffers.

The maximum number of the available buffers is 10.
The result of this API call is returned by a return value.

Parameters
[out] p_buffer_num The number of the available

transmission packet buffers.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_PTR(0x0001) The p_buffer_num parameter is specified as
NULL.

◆ R_BLE_VS_SetTxLimit()

ble_status_t R_BLE_VS_SetTxLimit (uint32_t tx_queue_lwm, uint32_t tx_queue_hwm)

This function sets the threshold for notifying the application layer of the TxFlow state.

Call this function before the notification(BLE_VS_EVENT_TX_FLOW_STATE_CHG event) has been
started by R_BLE_VS_StartTxFlowEvtNtf().
The result is returned from this API.
Vendor Specific API supports the flow control function(TxFlow) for the transmission on L2CAP fixed
channel in Basic Mode such as GATT.
Host stack has 10 transmission packet buffers for the transmission.
When the number of the available transmission packet buffers has been less than Low Water Mark,
the state of TxFlow transmits into the TxFlow OFF state from the TxFlow ON state that is the initial
state and host stack notifies the application layer of timing to stop packet transmission.
When host stack has sent the transmission packets to Controller and the number of the available
transmission packet buffers has been more than High Water Mark, the state of TxFlow transmits
into the TxFlow ON state from the TxFlow OFF state and host stack notifies the application layer of

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 657 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

timing to restart packet transmission.
It is possible to perform flow control on a fixed channel by using the event notification.

Parameters
[in] tx_queue_lwm Low Water Mark. Set 0-9 less

than tx_queue_hwm to the
parameter. When the
number of the available
transmission packet buffers
has been less than the value
specified by the
tx_queue_lwm parameter,
host stack notifies the
application layer of the
timing to stop packet
transmission.

[in] tx_queue_hwm High Water Mark. Set 1-10
more than tx_queue_lwm to
the parameter. When the
number of the available
transmission packet buffers
has been more than the
value specified by the
tx_queue_hwm parameter,
host stack notifies the
application layer of the
timing to restart packet
transmission.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The tx_queue_lwm parameter or the
tx_queue_hwm parameter is out of range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 658 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_SetScanChMap()

ble_status_t R_BLE_VS_SetScanChMap (uint16_t ch_map)

This function sets the scan channel map.

Set specify the scan channel for use.
At least one channel must be enabled.

Note
Calling this API while Scan is already running will not change the channel map.

Parameters
[in] ch_map Specify the channel map for

use.
bit description

bit0 Enable
channel 37
for use
(0:disable,
1:enable)

bit1 Enable
channel 38
for use
(0:disable,
1:enable)

bit2 Enable
channel 39
for use
(0:disable,
1:enable)

All other bits Reserved for
future use.

Return values
BLE_SUCCESS(0x0000) Success

BLE_ERR_INVALID_ARG(0x0003) The ch_map parameter is out of range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 659 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Library (r_ble) > VS

◆ R_BLE_VS_GetScanChMap()

ble_status_t R_BLE_VS_GetScanChMap (void)

This function gets currently scan channel map.

The result of this API call is notified in BLE_VS_EVENT_GET_SCAN_CH_MAP event.

Return values
BLE_SUCCESS(0x0000) Success

4.2.6 Clock Frequency Accuracy Measurement Circuit (r_cac)
Modules

Functions

fsp_err_t R_CAC_Open (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

fsp_err_t R_CAC_StartMeasurement (cac_ctrl_t *const p_ctrl)

fsp_err_t R_CAC_StopMeasurement (cac_ctrl_t *const p_ctrl)

fsp_err_t R_CAC_Read (cac_ctrl_t *const p_ctrl, uint16_t *const p_counter)

fsp_err_t R_CAC_Close (cac_ctrl_t *const p_ctrl)

fsp_err_t R_CAC_CallbackSet (cac_ctrl_t *const p_ctrl,
void(*p_callback)(cac_callback_args_t *), void const *const
p_context, cac_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the CAC peripheral on RA MCUs. This module implements the CAC Interface.

Overview
The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of
measurement clock edges that occur between two edges of the reference clock.

Features

Supports clock frequency-measurement and monitoring based on a reference signal input
Reference can be either an externally supplied clock source or an internal clock source
An interrupt request may optionally be generated by a completed measurement, a detected

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 660 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

frequency error, or a counter overflow.
A digital filter is available for an externally supplied reference clock, and dividers are
available for both internally supplied measurement and reference clocks.
Edge-detection options for the reference clock are configurable as rising, falling, or both.

Configuration

Build Time Configurations for r_cac

The following build time configurations are defined in fsp_cfg/r_cac_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Monitoring > Clock Accuracy Circuit Driver on r_cac

This module can be added to the Stacks tab via New Stack > Driver > Monitoring > Clock Accuracy
Circuit Driver on r_cac. Non-secure callable guard functions can be generated for this module by
right clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_cac0 Module name.

Reference clock divider 32
128
1024
8192

32 Reference clock
divider.

Reference clock source Main Oscillator
Sub-clock
HOCO
MOCO
LOCO
PCLKB
IWDT
External

Main Oscillator Reference clock
source.

Reference clock digital
filter

Disabled
Sampling clock
=Measuring
freq
Sampling clock
=Measuring
freq/4
Sampling clock
=Measuring
freq/16

Disabled Reference clock digital
filter.

Reference clock edge Rising Rising Reference clock edge

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 661 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

detect Falling
Both

detection.

Measurement clock
divider

1
4
8
32

1 Measurement clock
divider.

Measurement clock
source

Main Oscillator
Sub-clock
HOCO
MOCO
LOCO
PCLKB
IWDT

HOCO Measurement clock
source.

Upper Limit Threshold Value must be a non-
negative integer,
between 0 to 65535

0 Top end of allowable
range for measurement
completion.

Lower Limit Threshold Value must be a non-
negative integer,
between 0 to 65535

0 Bottom end of
allowable range for
measurement
completion.

Frequency Error
Interrupt Priority

MCU Specific Options CAC frequency error
interrupt priority.

Measurement End
Interrupt Priority

MCU Specific Options CAC measurement end
interrupt priority.

Overflow Interrupt
Priority

MCU Specific Options CAC overflow interrupt
priority.

Callback Name must be a valid
C symbol

NULL Function name for
callback

Clock Configuration

The CAC measurement clock source can be configured as the following:

1. MAIN_OSC
2. SUBCLOCK
3. HOCO
4. MOCO
5. LOCO
6. PCLKB
7. IWDT

The CAC reference clock source can be configured as the following:

1. MAIN_OSC
2. SUBCLOCK
3. HOCO
4. MOCO
5. LOCO
6. PCLKB
7. IWDT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 662 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

8. External Clock Source (CACREF)

Pin Configuration

The CACREF pin can be configured to provide the reference clock for CAC measurements.

Usage Notes
Measurement Accuracy

The clock measurement result may be off by up to one pulse depending on the phase difference
between the edge detection circuit, digital filter, and CACREF pin signal, if applicable.

Frequency Error Interrupt

The frequency error interrupt is only triggered at the end of a CAC measurement. This means that
there will be a measurement complete interrupt in addition to the frequency error interrupt.

Examples
Basic Example

This is a basic example of minimal use of the CAC in an application.

volatile uint32_t g_callback_complete;

void cac_basic_example ()

{

 g_callback_complete = 0;

 fsp_err_t err = R_CAC_Open(&g_cac_ctrl, &g_cac_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 (void) R_CAC_StartMeasurement(&g_cac_ctrl);

 /* Wait for measurement to complete. */

 while (0 == g_callback_complete)

 {

 }

 uint16_t value;

 /* Read the CAC measurement. */

 (void) R_CAC_Read(&g_cac_ctrl, &value);

}

/* Called when measurement is completed. */

static void r_cac_callback (cac_callback_args_t * p_args)

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 663 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

 if (CAC_EVENT_MEASUREMENT_COMPLETE == p_args->event)

 {

 g_callback_complete = 1U;

 }

}

Data Structures

struct cac_instance_ctrl_t

Data Structure Documentation

◆ cac_instance_ctrl_t

struct cac_instance_ctrl_t

CAC instance control block. DO NOT INITIALIZE.

Function Documentation

◆ R_CAC_Open()

fsp_err_t R_CAC_Open (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

The Open function configures the CAC based on the provided user configuration settings.

Return values
FSP_SUCCESS CAC is available and available for

measurement(s).

FSP_ERR_ASSERTION An argument is invalid.

FSP_ERR_ALREADY_OPEN The CAC has already been opened.

Note
There is only a single CAC peripheral.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 664 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

◆ R_CAC_StartMeasurement()

fsp_err_t R_CAC_StartMeasurement (cac_ctrl_t *const p_ctrl)

Start the CAC measurement process.

Return values
FSP_SUCCESS CAC measurement started.

FSP_ERR_ASSERTION NULL provided for p_instance_ctrl or p_cfg.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

◆ R_CAC_StopMeasurement()

fsp_err_t R_CAC_StopMeasurement (cac_ctrl_t *const p_ctrl)

Stop the CAC measurement process.

Return values
FSP_SUCCESS CAC measuring has been stopped.

FSP_ERR_ASSERTION NULL provided for p_instance_ctrl or p_cfg.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

◆ R_CAC_Read()

fsp_err_t R_CAC_Read (cac_ctrl_t *const p_ctrl, uint16_t *const p_counter)

Read and return the CAC status and counter registers.

Return values
FSP_SUCCESS CAC read successful.

FSP_ERR_ASSERTION An argument is NULL.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 665 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

◆ R_CAC_Close()

fsp_err_t R_CAC_Close (cac_ctrl_t *const p_ctrl)

Release any resources that were allocated by the Open() or any subsequent CAC operations.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION NULL provided for p_instance_ctrl or p_cfg.

FSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

◆ R_CAC_CallbackSet()

fsp_err_t R_CAC_CallbackSet (cac_ctrl_t *const p_ctrl, void(*)(cac_callback_args_t *) p_callback,
void const *const p_context, cac_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements cac_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.7 Controller Area Network (r_can)
Modules

Functions

fsp_err_t R_CAN_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const
p_cfg)

fsp_err_t R_CAN_Close (can_ctrl_t *const p_api_ctrl)

fsp_err_t R_CAN_Write (can_ctrl_t *const p_api_ctrl, uint32_t const mailbox,
can_frame_t *const p_frame)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 666 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

fsp_err_t R_CAN_Read (can_ctrl_t *const p_api_ctrl, uint32_t mailbox,
can_frame_t *const p_frame)

fsp_err_t R_CAN_ModeTransition (can_ctrl_t *const p_api_ctrl,
can_operation_mode_t operation_mode, can_test_mode_t test_mode)

fsp_err_t R_CAN_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const p_info)

fsp_err_t R_CAN_CallbackSet (can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const
p_context, can_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the CAN peripheral on RA MCUs. This module implements the CAN Interface.

Overview
The Controller Area network (CAN) HAL module provides a high-level API for CAN applications and
supports the CAN peripherals available on RA microcontroller hardware. A user-callback function
must be defined that the driver will invoke when transmit, receive or error interrupts are received.
The callback is passed a parameter which indicates the channel, mailbox and event as well as the
received data (if available).

Features

Supports both standard (11-bit) and extended (29-bit) messaging formats
Supports speeds upto 1 Mbps
Support for bit timing configuration as defined in the CAN specification
Supports up to 32 transmit or receive mailboxes with standard or extended ID frames
Optional support for a 4-stage transmit and receive FIFO
Receive mailboxes can be configured to capture either data or remote CAN Frames
Receive mailboxes can be configured to receive a range of IDs using mailbox masks
Mailboxes can be configured with Overwrite or Overrun mode
Supports a user-callback function when transmit, receive, or error interrupts are received

Configuration
Build Time Configurations for r_can

The following build time configurations are defined in fsp_cfg/r_can_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

FIFO Support Disabled
Enabled

Disabled When FIFOs are
enabled, a transmit
FIFO replaces

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 667 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

mailboxes 24-27 and a
receive FIFO replaces
mailboxes 28-31.

Configurations for Driver > Connectivity > CAN Driver on r_can

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > CAN Driver on
r_can. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_can0 Module name.

General > Channel Channel should be 0 or
1

0 Specify the CAN
channel to use.

General > Clock Source MCU Specific Options Select the CAN clock
source.

General >
Overwrite/Overrrun
Mode

Overwrite Mode
Overrrun Mode

Overwrite Mode Select whether receive
mailbox will be
overwritten or overrun
if data is not read in
time.

General > Global ID
Mode

Standard ID
Mode
Extended ID
Mode
Mixed ID Mode

Standard ID Mode Select whether the
driver will use CAN
Standard IDs, Extended
IDs or a mix of both.

General > Number of
Mailboxes

4 Mailboxes
8 Mailboxes
16 Mailboxes
24 Mailboxes
32 Mailboxes

32 Mailboxes Select 4, 8, 16, 24 or
32 mailboxes. In FIFO
mailbox mode up to 24
mailboxes are
available.

Baud Rate Settings >
Auto-generated
Settings > Sample-
Point (%)

Must be a valid integer
between 0 and 100.
Ignore when Override
Baud Settings is
Enabled.

75 Sample-Point = (TSEG1
+ 1) / (TSEG1 + TSEG2
+ 1).

Baud Rate Settings >
Auto-generated
Settings > CAN Baud
Rate (Hz)

Must be a valid integer
configurable upto
maximum 1MHz.
Ignore when Override
Baud Settings is
Enabled.

500000 Specify baud rate in
Hz.

If the requested baud
rate cannot be
achieved, the settings
with the largest
possible baud rate that
is less than or equal to
the requested baud
rate is used. If multiple
combinations would
result in the best baud

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 668 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

rate, the combination
with the least absolute
error for the ratio is
chosen. The theoretical
calculated baud rate
and ratio are printed in
a comment in the
generated
can_bit_timing_cfg_t
structure.

Baud Rate Settings >
Override Auto-
generated Settings >
Override Baud Settings

Enabled
Disabled

Disabled Override calculated
baudrate parameters
and instead use the
ones specified below.
This option ignores the
parameters specified
under Sample-Point (%)
and CAN Baud Rate
(Hz)

Baud Rate Settings >
Override Auto-
generated Settings >
Baud Rate Prescaler

Value must be a non-
negative integer
between 1 and 1024.

1 Specify division value
of baud rate prescaler
(baud rate prescalar +
1).

Baud Rate Settings >
Override Auto-
generated Settings >
Time Segment 1

Refer to the RA
Configuration tool for
available options.

4 Time Quanta Select the time
segment 1 value.
(4-16). Check module
usage notes for how to
calculate this value.

Baud Rate Settings >
Override Auto-
generated Settings >
Time Segment 2

2 Time Quanta
3 Time Quanta
4 Time Quanta
5 Time Quanta
6 Time Quanta
7 Time Quanta
8 Time Quanta

2 Time Quanta Select the time
segment 2 value (2-8).
Check module usage
notes for how to
calculate this value.

Baud Rate Settings >
Override Auto-
generated Settings >
Synchronization Jump
Width

1 Time Quanta
2 Time Quanta
3 Time Quanta
4 Time Quanta

1 Time Quanta Select the
Synchronization Jump
Width value (1-4).
Check module usage
notes for how to
calculate this value.

Interrupts > Callback Name must be a valid
C symbol

can_callback A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
any interrupt occurs.

Interrupts > Interrupt
Priority Level

MCU Specific Options Transmit/Receive/Error
interrupt priority.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 669 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Interrupts > Transmit
FIFO Interrupt Mode

Every Message
Empty

Every Message Select whether the
receive FIFO should
throw an interrupt on
every received
message or when it
becomes empty.

Input > Receive FIFO >
Receive ID 1 > ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0 Select the first ID for
the receive FIFO,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs.

Input > Receive FIFO >
Receive ID 1 > ID Mode

Standard ID
Extended ID

Standard ID Select whether the
receive FIFO is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Receive FIFO >
Receive ID 1 > Frame
Type

Data Mailbox
Remote Mailbox

Remote Mailbox Select whether the
receive FIFO is used to
capture data frames or
remote frames.

Input > Receive FIFO >
Receive ID 1 > Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for the
receive FIFO. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Receive FIFO >
Receive ID 2 > ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0 Select the second ID
for the receive FIFO,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs.

Input > Receive FIFO >
Receive ID 2 > ID Mode

Standard ID
Extended ID

Standard ID Select whether the
receive FIFO is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Receive FIFO >
Receive ID 2 > Frame
Type

Data Mailbox
Remote Mailbox

Remote Mailbox Select whether the
receive FIFO is used to
capture data frames or
remote frames.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 670 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Input > Receive FIFO >
Receive ID 2 > Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for the
receive FIFO. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Mailbox 0-3
Group > Mailbox ID >
Mailbox 0 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0 Select the receive ID
for mailbox 0, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 0-3
Group > Mailbox ID >
Mailbox 1 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

1 Select the receive ID
for mailbox 1, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 0-3
Group > Mailbox ID >
Mailbox 2 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

2 Select the receive ID
for mailbox 2, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 0-3
Group > Mailbox ID >
Mailbox 3 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

3 Select the receive ID
for mailbox 3, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 0-3
Group > Mailbox ID
Mode > Mailbox 0 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 0-3 Standard ID Standard ID Select whether the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 671 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Group > Mailbox ID
Mode > Mailbox 1 ID
Mode

Extended ID mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 0-3
Group > Mailbox ID
Mode > Mailbox 2 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 0-3
Group > Mailbox ID
Mode > Mailbox 3 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 0-3
Group > Mailbox Type
> Mailbox 0 Type

Receive
Mailbox
Transmit
Mailbox

Transmit Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 0-3
Group > Mailbox Type
> Mailbox 1 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 0-3
Group > Mailbox Type
> Mailbox 2 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 0-3
Group > Mailbox Type
> Mailbox 3 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 0-3
Group > Mailbox Frame
Type > Mailbox 0
Frame Type

Data Mailbox
Remote Mailbox

Remote Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 0-3
Group > Mailbox Frame
Type > Mailbox 1
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 672 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

mailboxes).

Input > Mailbox 0-3
Group > Mailbox Frame
Type > Mailbox 2
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 0-3
Group > Mailbox Frame
Type > Mailbox 3
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 0-3
Group > Mailbox 0-3
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 0-3. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Mailbox 4-7
Group > Mailbox ID >
Mailbox 4 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

4 Select the receive ID
for mailbox 4, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 4-7
Group > Mailbox ID >
Mailbox 5 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

5 Select the receive ID
for mailbox 5, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 4-7
Group > Mailbox ID >
Mailbox 6 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

6 Select the receive ID
for mailbox 6, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 4-7
Group > Mailbox ID >
Mailbox 7 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

7 Select the receive ID
for mailbox 7, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 673 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 4-7
Group > Mailbox ID
Mode > Mailbox 4 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 4-7
Group > Mailbox ID
Mode > Mailbox 5 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 4-7
Group > Mailbox ID
Mode > Mailbox 6 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 4-7
Group > Mailbox ID
Mode > Mailbox 7 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 4-7
Group > Mailbox Type
> Mailbox 4 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 4-7
Group > Mailbox Type
> Mailbox 5 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 4-7
Group > Mailbox Type
> Mailbox 6 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 4-7
Group > Mailbox Type

Receive
Mailbox

Receive Mailbox Select whether the
mailbox is used for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 674 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

> Mailbox 7 Type Transmit
Mailbox

receive or transmit.

Input > Mailbox 4-7
Group > Mailbox Frame
Type > Mailbox 4
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 4-7
Group > Mailbox Frame
Type > Mailbox 5
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 4-7
Group > Mailbox Frame
Type > Mailbox 6
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 4-7
Group > Mailbox Frame
Type > Mailbox 7
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 4-7
Group > Mailbox 4-7
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF >Select the Mask for
mailboxes 4-7. In Mixed
ID Mode the Standard
ID mask is the upper
11 bits of the full 29-bit
mask value.

Input > Mailbox 8-11
Group > Mailbox ID >
Mailbox 8 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

8 Select the receive ID
for mailbox 8, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

Input > Mailbox 8-11
Group > Mailbox ID >
Mailbox 9 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

9 Select the receive ID
for mailbox 9, between
0 and 0x7ff when using
standard IDs, between
0 and 0x1FFFFFFF
when using extended
IDs. Value is not used
when the mailbox is set
as transmit type.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 675 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Input > Mailbox 8-11
Group > Mailbox ID >
Mailbox 10 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

10 Select the receive ID
for mailbox 10,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 8-11
Group > Mailbox ID >
Mailbox 11 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

11 Select the receive ID
for mailbox 11,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 8-11
Group > Mailbox ID
Mode > Mailbox 8 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 8-11
Group > Mailbox ID
Mode > Mailbox 9 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 8-11
Group > Mailbox ID
Mode > Mailbox 10 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 8-11
Group > Mailbox ID
Mode > Mailbox 11 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 676 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Input > Mailbox 8-11
Group > Mailbox Type
> Mailbox 8 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 8-11
Group > Mailbox Type
> Mailbox 9 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 8-11
Group > Mailbox Type
> Mailbox 10 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 8-11
Group > Mailbox Type
> Mailbox 11 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 8-11
Group > Mailbox Frame
Type > Mailbox 8
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 8-11
Group > Mailbox Frame
Type > Mailbox 9
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 8-11
Group > Mailbox Frame
Type > Mailbox 10
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 8-11
Group > Mailbox Frame
Type > Mailbox 11
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 8-11
Group > Mailbox 8-11
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 8-11. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 12-15
Group > Mailbox ID >
Mailbox 12 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

12 Select the receive ID
for mailbox 12,
between 0 and 0x7ff

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 677 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 12-15
Group > Mailbox ID >
Mailbox 13 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

13 Select the receive ID
for mailbox 13,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 12-15
Group > Mailbox ID >
Mailbox 14 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

14 Select the receive ID
for mailbox 14,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 12-15
Group > Mailbox ID >
Mailbox 15 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

15 Select the receive ID
for mailbox 15,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 12-15
Group > Mailbox ID
Mode > Mailbox 12 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 12-15
Group > Mailbox ID
Mode > Mailbox 13 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 678 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

ID Mode'.

Input > Mailbox 12-15
Group > Mailbox ID
Mode > Mailbox 14 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 12-15
Group > Mailbox ID
Mode > Mailbox 15 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 12-15
Group > Mailbox Type
> Mailbox 12 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 12-15
Group > Mailbox Type
> Mailbox 13 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 12-15
Group > Mailbox Type
> Mailbox 14 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 12-15
Group > Mailbox Type
> Mailbox 15 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 12-15
Group > Mailbox Frame
Type > Mailbox 12
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 12-15
Group > Mailbox Frame
Type > Mailbox 13
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 12-15
Group > Mailbox Frame
Type > Mailbox 14
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 679 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

for transmit
mailboxes).

Input > Mailbox 12-15
Group > Mailbox Frame
Type > Mailbox 15
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 12-15
Group > Mailbox 12-15
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 12-15. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 16-19
Group > Mailbox ID >
Mailbox 16 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

16 Select the receive ID
for mailbox 16,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 16-19
Group > Mailbox ID >
Mailbox 17 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

17 Select the receive ID
for mailbox 17,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 16-19
Group > Mailbox ID >
Mailbox 18 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

18 Select the receive ID
for mailbox 18,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 16-19
Group > Mailbox ID >
Mailbox 19 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

19 Select the receive ID
for mailbox 19,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 680 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

not used when the
mailbox is set as
transmit type.

Input > Mailbox 16-19
Group > Mailbox ID
Mode > Mailbox 16 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 16-19
Group > Mailbox ID
Mode > Mailbox 17 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 16-19
Group > Mailbox ID
Mode > Mailbox 18 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 16-19
Group > Mailbox ID
Mode > Mailbox 19 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 16-19
Group > Mailbox Type
> Mailbox 16 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 16-19
Group > Mailbox Type
> Mailbox 17 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 16-19
Group > Mailbox Type
> Mailbox 18 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 16-19
Group > Mailbox Type
> Mailbox 19 Type

Receive
Mailbox
Transmit

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 681 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Mailbox

Input > Mailbox 16-19
Group > Mailbox Frame
Type > Mailbox 16
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 16-19
Group > Mailbox Frame
Type > Mailbox 17
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 16-19
Group > Mailbox Frame
Type > Mailbox 18
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 16-19
Group > Mailbox Frame
Type > Mailbox 19
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 16-19
Group > Mailbox 16-19
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 16-19. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 20-23
Group > Mailbox ID >
Mailbox 20 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

20 Select the receive ID
for mailbox 20,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 20-23
Group > Mailbox ID >
Mailbox 21 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

21 Select the receive ID
for mailbox 21,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 682 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Input > Mailbox 20-23
Group > Mailbox ID >
Mailbox 22 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

22 Select the receive ID
for mailbox 22,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 20-23
Group > Mailbox ID >
Mailbox 23 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

23 Select the receive ID
for mailbox 23,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 20-23
Group > Mailbox ID
Mode > Mailbox 20 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 20-23
Group > Mailbox ID
Mode > Mailbox 21 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 20-23
Group > Mailbox ID
Mode > Mailbox 22 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 20-23
Group > Mailbox ID
Mode > Mailbox 23 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 683 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Input > Mailbox 20-23
Group > Mailbox Type
> Mailbox 20 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 20-23
Group > Mailbox Type
> Mailbox 21 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 20-23
Group > Mailbox Type
> Mailbox 22 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 20-23
Group > Mailbox Type
> Mailbox 23 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 20-23
Group > Mailbox Frame
Type > Mailbox 20
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 20-23
Group > Mailbox Frame
Type > Mailbox 21
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 20-23
Group > Mailbox Frame
Type > Mailbox 22
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 20-23
Group > Mailbox Frame
Type > Mailbox 23
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 20-23
Group > Mailbox 20-23
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 20-23. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 24-27
Group > Mailbox ID >
Mailbox 24 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

24 Select the receive ID
for mailbox 24,
between 0 and 0x7ff

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 684 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 24-27
Group > Mailbox ID >
Mailbox 25 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

25 Select the receive ID
for mailbox 25,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 24-27
Group > Mailbox ID >
Mailbox 26 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

26 Select the receive ID
for mailbox 26,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 24-27
Group > Mailbox ID >
Mailbox 27 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

27 Select the receive ID
for mailbox 27,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 24-27
Group > Mailbox ID
Mode > Mailbox 24 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 24-27
Group > Mailbox ID
Mode > Mailbox 25 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 685 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

ID Mode'.

Input > Mailbox 24-27
Group > Mailbox ID
Mode > Mailbox 26 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 24-27
Group > Mailbox ID
Mode > Mailbox 27 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 24-27
Group > Mailbox Type
> Mailbox 24 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 24-27
Group > Mailbox Type
> Mailbox 25 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 24-27
Group > Mailbox Type
> Mailbox 26 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 24-27
Group > Mailbox Type
> Mailbox 27 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 24-27
Group > Mailbox Frame
Type > Mailbox 24
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 24-27
Group > Mailbox Frame
Type > Mailbox 25
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 24-27
Group > Mailbox Frame
Type > Mailbox 26
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 686 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

for transmit
mailboxes).

Input > Mailbox 24-27
Group > Mailbox Frame
Type > Mailbox 27
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 24-27
Group > Mailbox 24-27
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 24-27. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Input > Mailbox 28-31
Group > Mailbox ID >
Mailbox 28 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

28 Select the receive ID
for mailbox 28,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 28-31
Group > Mailbox ID >
Mailbox 29 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

29 Select the receive ID
for mailbox 29,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 28-31
Group > Mailbox ID >
Mailbox 30 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

30 Select the receive ID
for mailbox 30,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is
not used when the
mailbox is set as
transmit type.

Input > Mailbox 28-31
Group > Mailbox ID >
Mailbox 31 ID

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

31 Select the receive ID
for mailbox 31,
between 0 and 0x7ff
when using standard
IDs, between 0 and
0x1FFFFFFF when using
extended IDs. Value is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 687 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

not used when the
mailbox is set as
transmit type.

Input > Mailbox 28-31
Group > Mailbox ID
Mode > Mailbox 28 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 28-31
Group > Mailbox ID
Mode > Mailbox 29 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 28-31
Group > Mailbox ID
Mode > Mailbox 30 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 28-31
Group > Mailbox ID
Mode > Mailbox 31 ID
Mode

Standard ID
Extended ID

Standard ID Select whether the
mailbox is used to
receive Standard or
Extended ID messages.
This setting is only
valid when Global ID
Mode is set to 'Mixed
ID Mode'.

Input > Mailbox 28-31
Group > Mailbox Type
> Mailbox 28 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 28-31
Group > Mailbox Type
> Mailbox 29 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 28-31
Group > Mailbox Type
> Mailbox 30 Type

Receive
Mailbox
Transmit
Mailbox

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

Input > Mailbox 28-31
Group > Mailbox Type
> Mailbox 31 Type

Receive
Mailbox
Transmit

Receive Mailbox Select whether the
mailbox is used for
receive or transmit.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 688 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

Mailbox

Input > Mailbox 28-31
Group > Mailbox Frame
Type > Mailbox 28
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 28-31
Group > Mailbox Frame
Type > Mailbox 29
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 28-31
Group > Mailbox Frame
Type > Mailbox 30
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 28-31
Group > Mailbox Frame
Type > Mailbox 31
Frame Type

Data Mailbox
Remote Mailbox

Data Mailbox Select whether the
mailbox is used to
capture data frames or
remote frames (ignored
for transmit
mailboxes).

Input > Mailbox 28-31
Group > Mailbox 28-31
Group Mask

Value must be decimal
or HEX integer of
0x1FFFFFFF or less.

0x1FFFFFFF Select the Mask for
mailboxes 28-31. In
Mixed ID Mode the
Standard ID mask is
the upper 11 bits of the
full 29-bit mask value.

Clock Configuration

The CAN peripheral uses the CANMCLK (main-clock oscillator) or PCLKB as its clock source (fCAN,
CAN System Clock.) The default CAN configuration will provide a CAN bit rate of 500 Kbit using
CANMCLK as the clock source. To set the PCLKB frequency, use the Clocks tab of the RA
Configuration editor. To change the clock frequency at run-time, use the CGC Interface. Refer to the
CGC module guide for more information on configuring clocks.

Clock Limitations

The following clock limitations apply when using the CAN peripheral:

When using the main oscillator (CANMCLK) as the clock source:
fPCLKB >= fCANCLK (fCANCLK = XTAL / Baud Rate Prescaler)
The user application must start the main-clock oscillator (XTAL) at run-time using
the CGC Interface if it has not already started (for example, if it is not used as the
MCU clock source.)

When using PCLKB as the clock source:
For RA6 and RA4 MCUs, the source of the peripheral module clocks must be PLL for
the CAN HAL module.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 689 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

For RA4M1 and RA4W1 MCUs, the clock frequency ratio of PCLKA and PCLKB must be 2:1
when using the CAN HAL module. Operation is not guaranteed for other settings.
For RA2 MCUs only CANMCLK (XTAL) may be used as a clock source. The clock frequency
ratio of ICLK and PCLKB must be 2:1 when using the CAN HAL module. Operation is not
guaranteed for other settings.
Note

When using CANMCLK (XTAL) as the CAN clock source while running at a reduced main clock speed
(under 2x XTAL) be sure to confirm that the XTAL frequency divided by the baud rate prescaler is equal
to or less than PCLKB.

Pin Configuration

The CAN peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. A CAN channel would consist of two
pins - CRX and CTX for data transmission/reception.

Usage Notes
Bit Rate Calculation

For convenience, the baudrate of the CAN peripheral is automatically set through the RA
Configuration editor using a best effort approach. If the auto-generated baud settings cause
deviation that is not tolerable by the application, the user can override the auto-generated settings
and put in manually calculated values through RA Configuration editor. For more details on how the
baudrate is set refer to section 37.4 "Data Transfer Rate Configuration" of the RA6M3 User's Manual
(R01UH0886EJ0100).

FIFO Support

When FIFO Support is enabled, mailboxes 24-27 form a 4-stage transmit FIFO and mailboxes 28-31
form a 4-stage receive FIFO. The receive FIFO supports two independent ID/mask settings for
acceptance filtering.

Note
Only the base mailbox of each FIFO may be accessed. When writing to the TX FIFO it is recommended to use
CAN_MAILBOX_ID_TX_FIFO.

Limitations

Developers should be aware of the following limitations when using CAN:

The can_frame_t::id_mode field is only used when Global ID Mode is set to Mixed ID. It is
ignored in all other modes.

Examples
Basic Example

This is a basic example of minimal use of the CAN in an application.

can_frame_t g_can_tx_frame;

can_frame_t g_can_rx_frame;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 690 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

volatile bool g_rx_flag = false;

volatile bool g_tx_flag = false;

volatile bool g_err_flag = false;

volatile uint32_t g_rx_id;

void can_callback (can_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case CAN_EVENT_RX_COMPLETE: /* Receive complete event. */

 {

 g_rx_flag = true;

 g_rx_id = p_args->frame.id;

 /* Read received frame */

 g_can_rx_frame = p_args->frame;

 break;

 }

 case CAN_EVENT_TX_COMPLETE: /* Transmit complete event. */

 {

 g_tx_flag = true;

 break;

 }

 case CAN_EVENT_ERR_BUS_OFF: /* Bus error event. (bus off) */

 case CAN_EVENT_ERR_PASSIVE: /* Bus error event. (error passive) */

 case CAN_EVENT_ERR_WARNING: /* Bus error event. (error warning) */

 case CAN_EVENT_BUS_RECOVERY: /* Bus error event. (bus recovery) */

 case CAN_EVENT_MAILBOX_MESSAGE_LOST: /* Overwrite/overrun error */

 {

 /* Set error flag */

 g_err_flag = true;

 break;

 }

 default:

 {

 break;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 691 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

 }

 }

}

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = CAN_BUSY_DELAY;

 /* Initialize the CAN module */

 err = R_CAN_Open(&g_can0_ctrl, &g_can0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 g_can_tx_frame.id = CAN_DESTINATION_DEVICE_MAILBOX_NUMBER; /* CAN

Destination Device ID */

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_FRAME_TRANSMIT_DATA_BYTES;

 /* Write some data to the transmit frame */

 for (i = 0; i < sizeof(g_can_tx_frame.data); i++)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

 }

 /* Send data on the bus */

 g_tx_flag = false;

 g_err_flag = false;

 err = R_CAN_Write(&g_can0_ctrl, CAN_MAILBOX_NUMBER_31, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((true != g_tx_flag) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if (true == g_err_flag)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 692 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

 __BKPT(0);

 }

}

External Loop-back Test

This example requires the CTX and CRX pins to be connected. If a CAN tranciever is onboard a 120
Ohm resistor should be connected across CANH and CANL instead. The mailbox numbers are
arbitrarily chosen.

void can_external_loopback_example (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = CAN_BUSY_DELAY;

 can_operation_mode_t operation_mode = CAN_OPERATION_MODE_NORMAL;

 can_test_mode_t test_mode = CAN_TEST_MODE_LOOPBACK_EXTERNAL;

 int diff = 0;

 uint32_t i = 0;

 err = R_CAN_Open(&g_can0_ctrl, &g_can0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 err = R_CAN_ModeTransition(&g_can0_ctrl, operation_mode, test_mode);

 assert(FSP_SUCCESS == err);

 /* Clear the data part of receive frame */

 memset(g_can_rx_frame.data, 0, CAN_FRAME_TRANSMIT_DATA_BYTES);

 /* CAN Destination Device ID, in this case it is the same device with another

mailbox */

 g_can_tx_frame.id = CAN_MAILBOX_NUMBER_4;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_FRAME_TRANSMIT_DATA_BYTES;

 /* Write some data to the transmit frame */

 for (i = 0; i < sizeof(g_can_tx_frame.data); i++)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

 }

 /* Send data on the bus */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 693 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

 g_rx_flag = false;

 g_err_flag = false;

 err = R_CAN_Write(&g_can0_ctrl, CAN_MAILBOX_NUMBER_31, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((true != g_rx_flag) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if (true == g_err_flag)

 {

 __BKPT(0);

 }

 /* Verify received data */

 diff = memcmp(&g_can_rx_frame.data[0], &g_can_tx_frame.data[0],

CAN_FRAME_TRANSMIT_DATA_BYTES);

 if (0 != diff)

 {

 __BKPT(0);

 }

}

Data Structures

struct can_mailbox_t

struct can_fifo_interrupt_cfg_t

struct can_rx_fifo_cfg_t

struct can_extended_cfg_t

Enumerations

enum can_status_t

enum can_error_t

enum can_mailbox_number_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 694 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

enum can_mailbox_send_receive_t

enum can_global_id_mode_t

enum can_message_mode_t

enum can_clock_source_t

enum can_fifo_interrupt_mode_t

Data Structure Documentation

◆ can_mailbox_t

struct can_mailbox_t

CAN Mailbox

Data Fields

uint32_t mailbox_id Mailbox ID.

can_id_mode_t id_mode Standard or Extended ID. Only
used in Mixed ID mode.

can_frame_type_t frame_type Frame type for receive mailbox.

can_mailbox_send_receive_t mailbox_type Receive or Transmit mailbox
type.

◆ can_fifo_interrupt_cfg_t

struct can_fifo_interrupt_cfg_t

CAN FIFO interrupt configuration

Data Fields

can_fifo_interrupt_mode_t fifo_int_mode FIFO interrupts mode (RX and
TX combined).

IRQn_Type tx_fifo_irq TX FIFO IRQ.

IRQn_Type rx_fifo_irq RX FIFO IRQ.

◆ can_rx_fifo_cfg_t

struct can_rx_fifo_cfg_t

CAN RX FIFO configuration

Data Fields

uint32_t rx_fifo_mask1 RX FIFO acceptance filter mask
1.

uint32_t rx_fifo_mask2 RX FIFO acceptance filter mask
1.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 695 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

can_mailbox_t rx_fifo_id1 RX FIFO acceptance filter ID 1.

can_mailbox_t rx_fifo_id2 RX FIFO acceptance filter ID 2.

◆ can_extended_cfg_t

struct can_extended_cfg_t

CAN extended configuration

Data Fields

can_clock_source_t clock_source Source of the CAN clock.

uint32_t * p_mailbox_mask Mailbox mask, one for every 4
mailboxes.

can_mailbox_t * p_mailbox Pointer to mailboxes.

can_global_id_mode_t global_id_mode Standard or Extended ID mode.

uint32_t mailbox_count Number of mailboxes.

can_message_mode_t message_mode Overwrite message or overrun.

can_fifo_interrupt_cfg_t const * p_fifo_int_cfg Pointer to FIFO interrupt
configuration.

can_rx_fifo_cfg_t * p_rx_fifo_cfg Pointer to RX FIFO
configuration.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 696 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

◆ can_status_t

enum can_status_t

CAN Status

Enumerator

CAN_STATUS_NEW_DATA New Data status flag.

CAN_STATUS_SENT_DATA Sent Data status flag.

CAN_STATUS_RECEIVE_FIFO Receive FIFO status flag.

CAN_STATUS_TRANSMIT_FIFO Transmit FIFO status flag.

CAN_STATUS_NORMAL_MBOX_MESSAGE_LOST Normal mailbox message lost status flag.

CAN_STATUS_FIFO_MBOX_MESSAGE_LOST FIFO mailbox message lost status flag.

CAN_STATUS_TRANSMISSION_ABORT Transmission abort status flag.

CAN_STATUS_ERROR Error status flag.

CAN_STATUS_RESET_MODE Reset mode status flag.

CAN_STATUS_HALT_MODE Halt mode status flag.

CAN_STATUS_SLEEP_MODE Sleep mode status flag.

CAN_STATUS_ERROR_PASSIVE Error-passive status flag.

CAN_STATUS_BUS_OFF Bus-off status flag.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 697 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

◆ can_error_t

enum can_error_t

CAN Error Code

Enumerator

CAN_ERROR_STUFF Stuff Error.

CAN_ERROR_FORM Form Error.

CAN_ERROR_ACK ACK Error.

CAN_ERROR_CRC CRC Error.

CAN_ERROR_BIT_RECESSIVE Bit Error (recessive) Error.

CAN_ERROR_BIT_DOMINANT Bit Error (dominant) Error.

CAN_ERROR_ACK_DELIMITER ACK Delimiter Error.

◆ can_mailbox_number_t

enum can_mailbox_number_t

CAN Mailbox IDs (MB + FIFO)

◆ can_mailbox_send_receive_t

enum can_mailbox_send_receive_t

CAN Mailbox type

Enumerator

CAN_MAILBOX_RECEIVE Mailbox is for receiving.

CAN_MAILBOX_TRANSMIT Mailbox is for sending.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 698 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

◆ can_global_id_mode_t

enum can_global_id_mode_t

Global CAN ID mode settings

Enumerator

CAN_GLOBAL_ID_MODE_STANDARD Standard IDs of 11 bits used.

CAN_GLOBAL_ID_MODE_EXTENDED Extended IDs of 29 bits used.

CAN_GLOBAL_ID_MODE_MIXED Both Standard and Extended IDs used.

◆ can_message_mode_t

enum can_message_mode_t

CAN Message Modes

Enumerator

CAN_MESSAGE_MODE_OVERWRITE Receive data will be overwritten if not read
before the next frame.

CAN_MESSAGE_MODE_OVERRUN Receive data will be retained until it is read.

◆ can_clock_source_t

enum can_clock_source_t

CAN Source Clock

Enumerator

CAN_CLOCK_SOURCE_PCLKB PCLKB is the source of the CAN Clock.

CAN_CLOCK_SOURCE_CANMCLK CANMCLK is the source of the CAN Clock.

◆ can_fifo_interrupt_mode_t

enum can_fifo_interrupt_mode_t

CAN FIFO Interrupt Modes

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 699 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

◆ R_CAN_Open()

fsp_err_t R_CAN_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const p_cfg)

Open and configure the CAN channel for operation.

Example:

 /* Initialize the CAN module */

 err = R_CAN_Open(&g_can0_ctrl, &g_can0_cfg);

Return values
FSP_SUCCESS Channel opened successfully

FSP_ERR_ALREADY_OPEN Driver already open.

FSP_ERR_CAN_INIT_FAILED Channel failed to initialize.

FSP_ERR_ASSERTION Null pointer presented.

◆ R_CAN_Close()

fsp_err_t R_CAN_Close (can_ctrl_t *const p_api_ctrl)

Close the CAN channel.

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 700 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

◆ R_CAN_Write()

fsp_err_t R_CAN_Write (can_ctrl_t *const p_api_ctrl, uint32_t mailbox, can_frame_t *const
p_frame)

Write data to the CAN channel. Write up to eight bytes to the channel mailbox.

Example:

 err = R_CAN_Write(&g_can0_ctrl, CAN_MAILBOX_NUMBER_31, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at
this time.

FSP_ERR_CAN_TRANSMIT_FIFO_FULL Transmit FIFO is full.

FSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup for receive and cannot
send.

FSP_ERR_INVALID_ARGUMENT Data length or frame type invalid.

FSP_ERR_ASSERTION Null pointer presented

◆ R_CAN_Read()

fsp_err_t R_CAN_Read (can_ctrl_t *const p_api_ctrl, uint32_t mailbox, can_frame_t *const
p_frame)

Read data from a mailbox or FIFO.

Note
This function is not supported.

Return values
FSP_ERR_UNSUPPORTED Function not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 701 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

◆ R_CAN_ModeTransition()

fsp_err_t R_CAN_ModeTransition (can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

CAN Mode Transition is used to change CAN driver state.

Example:

 err = R_CAN_ModeTransition(&g_can0_ctrl, operation_mode, test_mode);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

◆ R_CAN_InfoGet()

fsp_err_t R_CAN_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const p_info)

Get CAN state and status information for the channel.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 702 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network (r_can)

◆ R_CAN_CallbackSet()

fsp_err_t R_CAN_CallbackSet (can_ctrl_t *const p_api_ctrl, void(*)(can_callback_args_t *)
p_callback, void const *const p_context, can_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements can_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.8 Controller Area Network - Flexible Data (r_canfd)
Modules

Functions

fsp_err_t R_CANFD_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const
p_cfg)

fsp_err_t R_CANFD_Close (can_ctrl_t *const p_api_ctrl)

fsp_err_t R_CANFD_Write (can_ctrl_t *const p_api_ctrl, uint32_t const buffer,
can_frame_t *const p_frame)

fsp_err_t R_CANFD_Read (can_ctrl_t *const p_api_ctrl, uint32_t const buffer,
can_frame_t *const p_frame)

fsp_err_t R_CANFD_ModeTransition (can_ctrl_t *const p_api_ctrl,
can_operation_mode_t operation_mode, can_test_mode_t test_mode)

fsp_err_t R_CANFD_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const
p_info)

fsp_err_t R_CANFD_CallbackSet (can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const
p_context, can_callback_args_t *const p_callback_memory)

Detailed Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 703 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

Driver for the CANFD peripheral on RA MCUs. This module implements the CAN Interface.

Overview
The CANFD module can be used to communicate over CAN networks, optionally using Flexible Data
(CAN-FD) to accelerate the data phase. A variety of message filtering and buffer options are
available.

Features

Compatibility
Send and receive CAN 2.0 and CAN-FD frames on the same channel
Bitrate up to 1 Mbps with FD data phase speeds up to 8 Mbps
Supports both ISO 11898-1 and Bosch V1.0 CAN-FD specifications

Buffers
32 global receive Message Buffers (RX MBs)
8 global receive FIFOs (RX FIFOs)
16 transmit Message Buffers (TX MBs) per channel

Filtering
Up to 128 filter rules across both channels
Each rule can be individually configured to filter based on:

ID
Standard or Extended ID (IDE bit)
Data or Remote Frame (RTR bit)
ID/IDE/RTR mask
Minimum DLC (data length) value

Interrupts
Configurable Global RX FIFO Interrupt

Configurable per FIFO
Interrupt at a certain depth or on every received message

Channel TX Interrupt
Global Error

DLC Check
Message Lost
FD Payload Overflow

Channel Error
Bus Error
Error Warning
Error Passive
Bus-Off Entry
Bus-Off Recovery
Overload
Bus Lock
Arbitration Loss
Transmission Aborted

Configuration
Build Time Configurations for r_canfd

The following build time configurations are defined in fsp_cfg/r_canfd_cfg.h:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 704 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

Configuration Options Default Description

Global Error Interrupt >
Priority

MCU Specific Options This interrupt is fired
for each of the error
sources selected
below.

Global Error Interrupt >
Sources

DLC Check
Message Lost
FD Payload
Overflow

0U Select which errors
should trigger an
interrupt.

Global Error Interrupt >
Callback Channel

Channel 0
Channel 1

Channel 1 Specify which channel
callback should be
called to handle global
errors. When starting
the driver this channel
must be opened first.

Flexible Data (FD) > FD
Frame Format

ISO 11898-1
Bosch CAN FD
Specification
V1.0

ISO 11898-1 Select whether to use
the FD frame standard
provided by ISO or
Bosch.

Flexible Data (FD) >
Protocol Exceptions

Enabled (ISO
11898-1)
Disabled

Enabled (ISO 11898-1) Select whether to enter
the protocol exception
handling state when a
RES bit is sampled
recessive as defined in
ISO 11898-1.

Flexible Data (FD) >
Payload Overflow

Reject
Truncate

Reject Configure whether
received messages
larger than the
destination buffer
should be truncated or
rejected.

Reception > Message
Buffers > Number of
Buffers

RX Message Buffer
number must be an
integer between 0 and
32.

0 Number of message
buffers available for
reception.

As there is no interrupt
for message buffer
reception it is
recommended to use
RX FIFOs instead. Set
this value to 0 to
disable RX Message
Buffers.

Reception > Message
Buffers > Payload Size

8 bytes
12 bytes
16 bytes
20 bytes
24 bytes
32 bytes
48 bytes

8 bytes Payload size for all RX
Message Buffers.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 705 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

64 bytes

Reception > FIFOs >
FIFO 0 > Enable

Enabled
Disabled

Enabled Enable or disable RX
FIFO 0.

Reception > FIFOs >
FIFO 0 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 0.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Reception > FIFOs >
FIFO 0 > Interrupt
Threshold

MCU Specific Options Set the interrupt
threshold value for RX
FIFO 0. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 0 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 0.

Reception > FIFOs >
FIFO 0 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 0.

Reception > FIFOs >
FIFO 1 > Enable

Enabled
Disabled

Disabled Enable or disable RX
FIFO 1.

Reception > FIFOs >
FIFO 1 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 1.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Reception > FIFOs >
FIFO 1 > Interrupt
Threshold

MCU Specific Options Set the interrupt
threshold value for RX
FIFO 1. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 1 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 1.

Reception > FIFOs >
FIFO 1 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 1.

Reception > FIFOs >
FIFO 2 > Enable

Enabled
Disabled

Disabled Enable or disable RX
FIFO 2.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 706 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

Reception > FIFOs >
FIFO 2 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 2.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Reception > FIFOs >
FIFO 2 > Interrupt
Threshold

MCU Specific Options Set the interrupt
threshold value for RX
FIFO 2. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 2 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 2.

Reception > FIFOs >
FIFO 2 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 2.

Reception > FIFOs >
FIFO 3 > Enable

Enabled
Disabled

Disabled Enable or disable RX
FIFO 3.

Reception > FIFOs >
FIFO 3 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 3.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Reception > FIFOs >
FIFO 3 > Interrupt
Threshold

MCU Specific Options Set the interrupt
threshold value for RX
FIFO 3. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 3 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 3.

Reception > FIFOs >
FIFO 3 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 3.

Reception > FIFOs >
FIFO 4 > Enable

Enabled
Disabled

Disabled Enable or disable RX
FIFO 4.

Reception > FIFOs >
FIFO 4 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 4.
Threshold mode will
only fire an interrupt
each time an incoming

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 707 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

message crosses the
threshold value set
below.

Reception > FIFOs >
FIFO 4 > Interrupt
Threshold

MCU Specific Options Set the interrupt
threshold value for RX
FIFO 4. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 4 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 4.

Reception > FIFOs >
FIFO 4 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 4.

Reception > FIFOs >
FIFO 5 > Enable

Enabled
Disabled

Disabled Enable or disable RX
FIFO 5.

Reception > FIFOs >
FIFO 5 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 5.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Reception > FIFOs >
FIFO 5 > Interrupt
Threshold

MCU Specific Options Set the interrupt
threshold value for RX
FIFO 5. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 5 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 5.

Reception > FIFOs >
FIFO 5 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 5.

Reception > FIFOs >
FIFO 6 > Enable

Enabled
Disabled

Disabled Enable or disable RX
FIFO 6.

Reception > FIFOs >
FIFO 6 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 6.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Reception > FIFOs > MCU Specific Options Set the interrupt

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 708 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

FIFO 6 > Interrupt
Threshold

threshold value for RX
FIFO 6. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 6 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 6.

Reception > FIFOs >
FIFO 6 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 6.

Reception > FIFOs >
FIFO 7 > Enable

Enabled
Disabled

Disabled Enable or disable RX
FIFO 7.

Reception > FIFOs >
FIFO 7 > Interrupt
Mode

MCU Specific Options Set the interrupt mode
for RX FIFO 7.
Threshold mode will
only fire an interrupt
each time an incoming
message crosses the
threshold value set
below.

Reception > FIFOs >
FIFO 7 > Interrupt
Threshold

MCU Specific Options Set the interrupt
threshold value for RX
FIFO 7. This setting is
only applicable when
the Interrupt Mode is
set to 'At Threshold
Value'.

Reception > FIFOs >
FIFO 7 > Payload Size

MCU Specific Options Select the message
payload size for RX
FIFO 7.

Reception > FIFOs >
FIFO 7 > Depth

MCU Specific Options Select the number of
stages for RX FIFO 7.

Reception > FIFOs >
Interrupt Priority

MCU Specific Options This priority level will
apply to all FIFO
interrupts globally.

Reception >
Acceptance Filtering >
Channel 0 Rule Count

The number of AFL
rules must be an
integer between 0 and
128.

64 Number of acceptance
filter list rules
dedicated to Channel
0.

Reception >
Acceptance Filtering >
Channel 1 Rule Count

The number of AFL
rules must be an
integer between 0 and
128.

64 Number of acceptance
filter list rules
dedicated to Channel
1.

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 709 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

Transmission Priority Message ID
Buffer Number

Buffer Number Select how messages
should be prioritized
for transmission. In
either case, lower
numbers indicate
higher priority.

DLC Check Disabled
Enabled
Enabled
w/truncate

config.driver.canfd.dlc_
check.disabled

When enabled received
messages will be
rejected if their DLC
field is less than the
value configured in the
associated AFL rule. If
'Enabled w/truncate' is
selected and a
message passes the
DLC check the DLC
field is set to the value
in the associated AFL
rule and any excess
data is discarded.

Configurations for Driver > Connectivity > CANFD Driver on r_canfd

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > CANFD Driver
on r_canfd. Non-secure callable guard functions can be generated for this module by right clicking
the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_canfd0 Module name.

General > Channel Channel should be 0 or
1

0 Specify the CAN
channel to use.

Bitrate > Automatic >
Nominal Rate (bps)

Must be a valid integer
with a maximum of
1MHz.

500000 Specify nominal bitrate
in bits per second.

Bitrate > Automatic >
Data Rate (bps)

Must be a valid integer
with a maximum of
8MHz.

2000000 Specify data bitrate in
bits per second.

Bitrate > Automatic >
Sample Point (%)

Must be a valid integer
between 60 and 99.

75 Specify desired sample
point.

Bitrate > Manual >
Nominal > Prescaler
(divisor)

Value must be a non-
negative integer
between 1 and 1024.

1 Specify clock divisor for
nominal bitrate.

Bitrate > Manual >
Nominal > Time
Segment 1 (Tq)

Value must be a non-
negative integer
between 2 and 256.

29 Select the Time
Segment 1 value.
Check module usage
notes for how to
calculate this value.

Bitrate > Manual > Value must be a non- 10 Select the Time

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 710 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

Nominal > Time
Segment 2 (Tq)

negative integer
between 2 and 128.

Segment 2 value.
Check module usage
notes for how to
calculate this value.

Bitrate > Manual >
Nominal > Sync Jump
Width (Tq)

Value must be a non-
negative integer
between 1 and 128.

4 Select the
Synchronization Jump
Width value. Check
module usage notes for
how to calculate this
value.

Bitrate > Manual >
Data > Prescaler
(divisor)

Value must be a non-
negative integer
between 1 and 1024.

1 Specify clock divisor for
data bitrate.

Bitrate > Manual >
Data > Time Segment
1 (Tq)

Value must be a non-
negative integer
between 2 and 256.

2 Select the Time
Segment 1 value.
Check module usage
notes for how to
calculate this value.

Bitrate > Manual >
Data > Time Segment
2 (Tq)

Value must be a non-
negative integer
between 2 and 128.

2 Select the Time
Segment 2 value.
Check module usage
notes for how to
calculate this value.

Bitrate > Manual >
Data > Sync Jump
Width (Tq)

Value must be a non-
negative integer
between 1 and 128.

1 Select the
Synchronization Jump
Width value. Check
module usage notes for
how to calculate this
value.

Bitrate > Manual > Use
manual settings

Yes
No

No Select whether or not
to override automatic
baudrate generation
and instead use the
values specified here.

Bitrate > Delay
Compensation

Enable
Disable

Enable When enabled the
CANFD module will
automatically
compensate for any
transceiver or bus
delay between
transmitted and
received bits. When
manually supplying bit
timing values with
delay compensation
enabled be sure the
data prescaler is 2 or
smaller for correct
operation.

Interrupts > Callback Name must be a valid canfd0_callback A user callback

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 711 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

C symbol function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
any interrupt occurs.

Interrupts > Channel
Interrupt Priority Level

MCU Specific Options Channel Error/Transmit
interrupt priority.

Transmit Interrupts Refer to the RA
Configuration tool for
available options.

0ULL Select which TX
Message Buffers should
trigger an interrupt
when transmission is
complete.

Channel Error
Interrupts

Error Warning
Error Passive
Bus-Off Entry
Bus-Off
Recovery
Overload

0U Select which channel
error interrupt sources
to enable.

Filter List Array Name must be a valid
C symbol

p_canfd0_afl Acceptance Filter List
(AFL) rule array symbol
name.

Clock Configuration

The CANFD peripheral uses either PLL, PLL2 or the main oscillator as its clock source. The RA
Configuration editor will attempt to get as close as possible to the supplied bitrate with the
configured clock source. To achieve an exact bitrate the CANFD source clock or divisor may need to
be adjusted to meet the criteria in the formula below:

bitrate = canfd_clock_hz / ((time_segment_1 + time_segment_2 + 1) * prescalar)

For CANFD, the possible values for each element are as follows:

Element Min Max (Nominal) Max (Data)

Bitrate - 1 Mbps 8 Mbps

Time Segment 1 2 Tq 256 Tq 32 Tq

Time Segment 2 2 Tq 128 Tq 16 Tq

Sync Jump Width 1 Tq Time Segment 2 Time Segment 2

Prescalar 1 1024 256

Use the Clocks tab of the RA Configuration editor to configure the CANFD clock source/divisor as
well as to set the frequency of PLL or PLL2. To change the clock frequency at run-time, use the CGC
Interface. Refer to the CGC module guide for more information on configuring clocks.

Pin Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 712 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

CANFD channels each control two pins: CRX (receive) and CTX (transmit).

Usage Notes
Buffers

The CANFD driver provides three types of buffers: Transmit Message Buffers (TX MBs), Receive
Message Buffers (RX MBs) and Receive FIFOs (RX FIFOs).

TX Message Buffers

TX MBs are used for transmission only. Refer to the hardware manual for your device for information
on which TX MBs are available.

Note
The CANFD peripheral continually scans TX MBs for new data. Depending on the provided clock it may be
possible to write to multiple TX MBs before transmission begins. In this case, messages will be sent in the priority
specified by the Transmission Priority option in the RA Configuration editor.

RX Message Buffers

RX MBs are for reception only and may only hold one message at a time. 32 total RX MBs are
available and are shared across all channels.

No interrupts are provided for RX MBs. Use R_CANFD_InfoGet and R_CANFD_Read to poll and read
them, respectively.

RX FIFOs

RX FIFOs provide interrupt-driven queue functionality for receiving messages. 8 RX FIFOs are
available, shared across all channels. All FIFOs have the following capabilities:

Up to 64 byte payloads
Up to 128 message capacity
Interrupt events:

On every received frame OR when filled to a specified fraction of its capacity
When a message is overwritten (message received on full FIFO)

Once an interrupt is fired it will continue to fire until the FIFO is emptied and all messages have been
passed to user code via the callback. When using the threshold interrupt mode a FIFO can be
checked for data and read between interrupts by calling R_CANFD_InfoGet and R_CANFD_Read,
respectively.

RX Buffer Pool

The CANFD peripheral has a limited amount of buffer pool RAM available for allocating RX MBs and
FIFO stages. The RA Configuration editor will provide a warning when the limit is exceeded.

The number of bytes used by RX MBs and individual FIFOs can be calculated as follows:

Total RX MB bytes used = (number of RX MBs enabled) * (RX MB payload size + 12 bytes)

RX FIFO bytes used = (number of FIFO stages) * (FIFO payload size + 12 bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 713 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

Message Filtering (Acceptance Filter List)

To filter messages to the desired message buffer or FIFO the CANFD peripheral uses an Acceptance
Filter List (AFL). Each entry in the AFL provides a rule to check a message against along with
destination and other filtering information. When a message is received the CANFD peripheral
internally checks against every configured AFL rule for the channel. If a match is found the message
is transferred to the destination(s) specified in the rule. The default template with one entry is shown
below:

static const canfd_afl_entry_t p_canfd0_afl[CANFD_CFG_AFL_CH0_RULE_NUM] =

{

 {

 .id =

 {

 /* Specify the ID, ID type and frame type to accept. */

 .id = 0x00000000,

 .frame_type = CAN_FRAME_TYPE_DATA,

 .id_mode = CAN_ID_MODE_EXTENDED,

 },

 .mask =

 {

 /* These values mask which ID/mode bits to compare when filtering messages. */

 .mask_id = 0x1FFFFFFF,

 .mask_frame_type = 1,

 .mask_id_mode = 1,

 },

 .destination =

 {

 /* If DLC checking is enabled any messages shorter than the below setting will be

rejected. */

 .minimum_dlc = CANFD_MINIMUM_DLC_0,

 /* Optionally specify a Receive Message Buffer (RX MB) to store accepted frames. RX

MBs do not have an

 * interrupt or overwrite protection and must be checked with R_CANFD_InfoGet and

R_CANFD_Read. */

 .rx_buffer = CANFD_RX_MB_NONE,

 /* Specify which FIFO(s) to send filtered messages to. Multiple FIFOs can be OR'd

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 714 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

together. */

 .fifo_select_flags = CANFD_RX_FIFO_0,

 }

 }

};

AFL templates can be easily added to a project using the Developer Assistance feature in e2 studio.
Once the CANFD module is added to a project, drag and drop the elements circled below to build a
filter list:

Figure 149: CANFD Developer Assistance AFL Templates

 For an example configuration refer to the AFL Example below.

Flexible Data (FD)

Flexible Data is an extension of the CAN protocol allowing for messages up to 64 bytes and higher
data bitrates, among other features. The CANFD driver supports the following:

Sending and receiving FD messages
Bitrate switching for data phase (up to 8 MHz)
Manual and automatic setting of the error state (ESI) bit

To specify one or more of these options when transmitting set can_frame_t::options with combined
values from canfd_frame_options_t. Received messages will automatically have this field filled, if
applicable.

 /* Configure a frame to write 64 bytes with bitrate switching (BRS) enabled */

 g_can_tx_frame.id = CAN_EXAMPLE_ID;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 715 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

 g_can_tx_frame.id_mode = CAN_ID_MODE_STANDARD;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_EXAMPLE_64_BYTES;

 g_can_tx_frame.options = CANFD_FRAME_OPTION_FD | CANFD_FRAME_OPTION_BRS;

Note
When using bitrate switching be sure to configure the Data Bitrate as desired in the RA Configuration editor.

Bit Rate Calculation

For convenience, the baudrate of the CAN peripheral is automatically set through the RA
Configuration editor using a best effort approach. To increase compliance and reliability two extra
options are provided: Link Prescalers and Delay Compensation.

When Link Prescalers is enabled the prescalers for Nominal and Data bitrates will be kept the same,
improving clock tolerance in networks using FD frames. This option somewhat limits the available
options for bitrate settings, so be sure to check that the automatically generated values are
acceptable.

Enabling Delay Compensation instructs the CANFD peripheral to measure TX to RX tranceiver delay
and automatically adjust for it, improving the reliability of high-speed FD messages. This option may
severely limit available bitrate settings depending on the source clock; it is highly recommended to
check the generated values when enabled.

If the auto-generated baud settings cause deviation that is not tolerable by the application the user
can override the auto-generated settings and put in manually calculated values through the RA
Configuration editor. For more details on how the bitrate is calculated refer to the Clock
Configuration section above.

Sync Jump Width

The Sync Jump Width option specifies the maximum number of time quanta that the sample point
may be delayed by to account for differences in oscillators on the bus. It should be set to a value
between 1 and the configured Time Segment 2 value depending on the maximum permissible clock
error.

Error Handling

The CANFD peripheral provides two types of error interrupts: Channel and Global. As the names
imply, each channel has its own Channel Error interrupt but there is only one Global Error interrupt.
Only the configured channel will receive callbacks for Global Errors.

Error interrupt callbacks will pass either CAN_EVENT_ERR_CHANNEL or CAN_EVENT_ERR_GLOBAL in
the can_callback_args_t::event field. A second field, can_callback_args_t::error, provides the actual
error code as canfd_error_t. Cast to this enum to retrieve the error condition. See the callback in the
Basic Example below for a demonstration.

DLC Checking

When DLC Checking is enabled messages are checked against the destination.minimum_dlc value of
each AFL rule. If the data length of a message is less than this value the message will be rejected.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 716 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

When DLC checking is set to "Enabled w/truncate" in the RA Configuration editor any data in excess
of the minimum DLC setting will be truncated and the DLC value for the frame will be set to match.

FD Payload Overflow

When an FD message is received with a DLC larger than the destination buffer an FD Payload
Overflow interrupt is thrown (if configured). When Payload Overflow is set to "Truncate" the message
will still be accepted but only data up to the buffer capacity will be preserved. The DLC value is
unchanged in this case; any data beyond this value in the can_frame_t::data array should not be
used.

Test Modes

The CANFD peripheral provides three basic test modes: Listen Only, Internal Loopback and External
Loopback. Use R_CANFD_ModeTransition to switch to a test mode.

An additional "Internal Bus" test mode is available that allows connecting both CANFD channels
together on an internal bus, effectively creating an internal CAN network. See the Internal Bus
example below for details.

Limitations

Developers should be aware of the following limitations when using CANFD:

RX Message Buffers do not have an associated interrupt. To use them in an application one
of the following is recommended:

Use R_CANFD_InfoGet to determine if any RX MBs have received data, then use
R_CANFD_Read to obtain it
Select an RX FIFO as an additional destination for the relevant filter rules and
configure the FIFO interrupt/callback as desired

The CANFD peripheral has a limited amount of buffer pool RAM available for allocating RX
MBs and FIFO stages. See the RX Buffer Pool section above for more information.
When switching modes with R_CANFD_ModeTransition a delay of up to several CAN frames
may be incurred. Consult Section 32.3.4.2 "Timing of Channel Mode Change" in the RA6M5
User's Manual (R01UH0891EJ0100) for details.
Only one channel will receive callbacks for Global Errors. If a different channel is opened
first these error interrupts will be suppressed until the specified handler channel is opened.

Examples
AFL Example

The below is an example Acceptance Filter List (AFL) declaration with two rules.

const canfd_afl_entry_t p_canfd0_afl[CANFD_CFG_AFL_CH1_RULE_NUM] =

{

 /* Store all data frames with at least 4 bytes from Standard IDs 0x40-0x4F in RX

FIFO 0 and RX FIFO 1 */

 {

 .id =

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 717 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

 {

 .id = 0x40,

 .frame_type = CAN_FRAME_TYPE_DATA,

 .id_mode = CAN_ID_MODE_STANDARD

 },

 .mask =

 {

 .mask_id = 0x7F0,

 .mask_frame_type = 1,

 .mask_id_mode = 1

 },

 .destination =

 {

 .minimum_dlc = CANFD_MINIMUM_DLC_4,

 .rx_buffer = CANFD_RX_MB_NONE,

 .fifo_select_flags = (canfd_rx_fifo_t) (CANFD_RX_FIFO_0 |

CANFD_RX_FIFO_1)

 }

 },

 /* Store all frames from Extended ID 0x1100 in RX FIFO 2 and RX MB 0 */

 {

 .id =

 {

 .id = 0x1100,

 .frame_type = CAN_FRAME_TYPE_DATA, // This setting is ignored by the mask

 .id_mode = CAN_ID_MODE_EXTENDED

 },

 .mask =

 {

 .mask_id = 0x1FFFFFFF,

 .mask_frame_type = 0,

 .mask_id_mode = 1

 },

 .destination =

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 718 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

 {

 .minimum_dlc = CANFD_MINIMUM_DLC_0,

 .rx_buffer = CANFD_RX_MB_0,

 .fifo_select_flags = CANFD_RX_FIFO_2

 }

 }

};

Basic Example

This is a basic example of minimal use of the CANFD module in an application.

Note
It is recommended to use RX FIFOs for reception as there are no interrupts for RX message buffers.

#define CAN_EXAMPLE_ID (0x20)

can_frame_t g_can_tx_frame;

can_frame_t g_can_rx_frame;

volatile canfd_error_t g_err_status = (canfd_error_t) 0;

void canfd_callback (can_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case CAN_EVENT_RX_COMPLETE: /* Receive complete event. */

 {

 /* Read received frame */

 memcpy(&g_can_rx_frame, p_args->p_frame, sizeof(can_frame_t));

 /* Handle event */

 break;

 }

 case CAN_EVENT_TX_COMPLETE: /* Transmit complete event. */

 {

 /* Handle event */

 break;

 }

 case CAN_EVENT_ERR_GLOBAL: /* Global error. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 719 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

 case CAN_EVENT_ERR_CHANNEL: /* Channel error. */

 {

 /* Get error status */

 g_err_status = (canfd_error_t) p_args->error; /* Check error code with

canfd_error_t. */

 /* Handle event */

 break;

 }

 default:

 {

 break;

 }

 }

}

void canfd_basic_example (void)

{

 fsp_err_t err;

 /* Initialize the CAN module */

 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Setup frame to write to CAN ID 0x20 */

 g_can_tx_frame.id = CAN_EXAMPLE_ID;

 g_can_tx_frame.id_mode = CAN_ID_MODE_STANDARD;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = 8;

 g_can_tx_frame.options = 0;

 /* Write some data to the transmit frame */

 for (uint32_t i = 0; i < 8; i++)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

 }

 /* Send data on the bus */

 err = R_CANFD_Write(&g_canfd0_ctrl, CANFD_TX_MB_0, &g_can_tx_frame);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 720 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

 assert(FSP_SUCCESS == err);

 /* Wait for a transmit callback event */

}

Flexible Data

This example demonstrates sending an FD message with bitrate switching over external loopback.
The CTX and CRX pins must be connected when using external loopback, though if a CAN tranciever
is onboard a 120 Ohm resistor should be connected across CANH and CANL instead.

#define CAN_EXAMPLE_64_BYTES 64

void canfd_fd_loopback_example (void)

{

 fsp_err_t err;

 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Switch to external loopback mode */

 err = R_CANFD_ModeTransition(&g_canfd0_ctrl, CAN_OPERATION_MODE_NORMAL,

CAN_TEST_MODE_LOOPBACK_EXTERNAL);

 assert(FSP_SUCCESS == err);

 /* Configure a frame to write 64 bytes with bitrate switching (BRS) enabled */

 g_can_tx_frame.id = CAN_EXAMPLE_ID;

 g_can_tx_frame.id_mode = CAN_ID_MODE_STANDARD;

 g_can_tx_frame.type = CAN_FRAME_TYPE_DATA;

 g_can_tx_frame.data_length_code = CAN_EXAMPLE_64_BYTES;

 g_can_tx_frame.options = CANFD_FRAME_OPTION_FD | CANFD_FRAME_OPTION_BRS;

 /* Write some data to the transmit frame */

 for (uint32_t i = 0; i < CAN_DATA_BUFFER_LENGTH; i++)

 {

 g_can_tx_frame.data[i] = (uint8_t) i;

 }

 /* Send data on the bus */

 err = R_CANFD_Write(&g_canfd0_ctrl, CANFD_TX_MB_0, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

 /* Wait for a transmit and/or receive callback event */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 721 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

}

Internal Bus

In this example two CANFD channels are connected to the Internal Bus test mode. API error checking
has been omitted for clarity.

Note
Use of Global Modes for any other purpose is not recommended without consulting the device User's Manual.

Data Structures

struct canfd_afl_entry_t

struct canfd_global_cfg_t

struct canfd_extended_cfg_t

Enumerations

enum canfd_status_t

enum canfd_error_t

enum canfd_tx_mb_t

enum canfd_rx_buffer_t

enum canfd_rx_mb_t

enum canfd_rx_fifo_t

enum canfd_minimum_dlc_t

enum canfd_frame_options_t

Data Structure Documentation

◆ canfd_afl_entry_t

struct canfd_afl_entry_t

AFL Entry (based on R_CANFD_CFDGAFL_Type in renesas.h)

◆ canfd_global_cfg_t

struct canfd_global_cfg_t

CANFD Global Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 722 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

Data Fields

uint32_t global_interrupts Global control options
(CFDGCTR register setting)

uint32_t global_config Global configuration options
(CFDGCFG register setting)

uint32_t rx_fifo_config[8] RX FIFO configuration
(CFDRFCCn register settings)

uint32_t rx_mb_config Number and size of RX Message
Buffers (CFDRMNB register
setting)

uint8_t global_err_ipl Global Error interrupt priority.

uint8_t rx_fifo_ipl RX FIFO interrupt priority.

◆ canfd_extended_cfg_t

struct canfd_extended_cfg_t

CANFD Extended Configuration

Data Fields

canfd_afl_entry_t const * p_afl AFL rules list.

uint64_t txmb_txi_enable Array of TX Message Buffer
enable bits.

uint32_t error_interrupts Error interrupt enable bits.

can_bit_timing_cfg_t * p_data_timing FD Data Rate (when bitrate
switching is used)

uint8_t delay_compensation FD Transceiver Delay
Compensation (enable or
disable)

canfd_global_cfg_t * p_global_cfg Global configuration (global
error callback channel only)

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 723 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

◆ canfd_status_t

enum canfd_status_t

CANFD Status

Enumerator

CANFD_STATUS_RESET_MODE Channel in Reset mode.

CANFD_STATUS_HALT_MODE Channel in Halt mode.

CANFD_STATUS_SLEEP_MODE Channel in Sleep mode.

CANFD_STATUS_ERROR_PASSIVE Channel in error-passive state.

CANFD_STATUS_BUS_OFF Channel in bus-off state.

CANFD_STATUS_TRANSMITTING Channel is transmitting.

CANFD_STATUS_RECEIVING Channel is receiving.

CANFD_STATUS_READY Channel is ready for communication.

CANFD_STATUS_ESI At least one CAN-FD message was received
with the ESI flag set.

◆ canfd_error_t

enum canfd_error_t

CANFD Error Code

Enumerator

CANFD_ERROR_CHANNEL_BUS Bus Error.

CANFD_ERROR_CHANNEL_WARNING Error Warning (TX/RX error count over 0x5F)

CANFD_ERROR_CHANNEL_PASSIVE Error Passive (TX/RX error count over 0x7F)

CANFD_ERROR_CHANNEL_BUS_OFF_ENTRY Bus-Off State Entry.

CANFD_ERROR_CHANNEL_BUS_OFF_RECOVERY Recovery from Bus-Off State.

CANFD_ERROR_CHANNEL_OVERLOAD Overload.

CANFD_ERROR_CHANNEL_BUS_LOCK Bus Locked.

CANFD_ERROR_CHANNEL_ARBITRATION_LOSS Arbitration Lost.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 724 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

CANFD_ERROR_CHANNEL_STUFF Stuff Error.

CANFD_ERROR_CHANNEL_FORM Form Error.

CANFD_ERROR_CHANNEL_ACK ACK Error.

CANFD_ERROR_CHANNEL_CRC CRC Error.

CANFD_ERROR_CHANNEL_BIT_RECESSIVE Bit Error (recessive) Error.

CANFD_ERROR_CHANNEL_BIT_DOMINANT Bit Error (dominant) Error.

CANFD_ERROR_CHANNEL_ACK_DELIMITER ACK Delimiter Error.

CANFD_ERROR_GLOBAL_DLC DLC Error.

CANFD_ERROR_GLOBAL_MESSAGE_LOST Message Lost.

CANFD_ERROR_GLOBAL_PAYLOAD_OVERFLOW FD Payload Overflow.

CANFD_ERROR_GLOBAL_TXQ_OVERWRITE TX Queue Message Overwrite.

CANFD_ERROR_GLOBAL_TXQ_MESSAGE_LOST TX Queue Message Lost.

CANFD_ERROR_GLOBAL_CH0_SCAN_FAIL Channel 0 RX Scan Failure.

CANFD_ERROR_GLOBAL_CH1_SCAN_FAIL Channel 1 RX Scan Failure.

CANFD_ERROR_GLOBAL_CH0_ECC Channel 0 ECC Error.

CANFD_ERROR_GLOBAL_CH1_ECC Channel 1 ECC Error.

◆ canfd_tx_mb_t

enum canfd_tx_mb_t

CANFD Transmit Message Buffer (TX MB)

◆ canfd_rx_buffer_t

enum canfd_rx_buffer_t

CANFD Receive Buffer (MB + FIFO)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 725 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

◆ canfd_rx_mb_t

enum canfd_rx_mb_t

CANFD Receive Message Buffer (RX MB)

◆ canfd_rx_fifo_t

enum canfd_rx_fifo_t

CANFD Receive FIFO (RX FIFO)

◆ canfd_minimum_dlc_t

enum canfd_minimum_dlc_t

CANFD AFL Minimum DLC settings

◆ canfd_frame_options_t

enum canfd_frame_options_t

CANFD Frame Options

Enumerator

CANFD_FRAME_OPTION_ERROR Error state set (ESI).

CANFD_FRAME_OPTION_BRS Bit Rate Switching (BRS) enabled.

CANFD_FRAME_OPTION_FD Flexible Data frame (FDF).

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 726 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

◆ R_CANFD_Open()

fsp_err_t R_CANFD_Open (can_ctrl_t *const p_api_ctrl, can_cfg_t const *const p_cfg)

Open and configure the CANFD channel for operation.

Example:

 /* Initialize the CAN module */

 err = R_CANFD_Open(&g_canfd0_ctrl, &g_canfd0_cfg);

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ALREADY_OPEN Driver already open.

FSP_ERR_IN_USE Channel is already in use.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel does not exist on this MCU.

FSP_ERR_ASSERTION A required pointer was NULL.

FSP_ERR_CAN_INIT_FAILED The provided nominal or data bitrate is
invalid.

FSP_ERR_CLOCK_INACTIVE CANFD source clock is disabled (PLL or
PLL2).

◆ R_CANFD_Close()

fsp_err_t R_CANFD_Close (can_ctrl_t *const p_api_ctrl)

Close the CANFD channel.

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 727 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

◆ R_CANFD_Write()

fsp_err_t R_CANFD_Write (can_ctrl_t *const p_api_ctrl, uint32_t buffer, can_frame_t *const
p_frame)

Write data to the CANFD channel.

Example:

 /* Send data on the bus */

 err = R_CANFD_Write(&g_canfd0_ctrl, CANFD_TX_MB_0, &g_can_tx_frame);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at
this time.

FSP_ERR_INVALID_ARGUMENT Data length or buffer number invalid.

FSP_ERR_INVALID_MODE An FD option was set on a non-FD frame.

FSP_ERR_ASSERTION Null pointer presented

◆ R_CANFD_Read()

fsp_err_t R_CANFD_Read (can_ctrl_t *const p_api_ctrl, uint32_t buffer, can_frame_t *const
p_frame)

Read data from a CANFD Message Buffer or FIFO.

Example: snippet r_canfd_example.c R_CANFD_Read

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_ARGUMENT Buffer number invalid.

FSP_ERR_ASSERTION p_api_ctrl or p_frame is NULL.

FSP_ERR_BUFFER_EMPTY Buffer or FIFO is empty.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 728 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

◆ R_CANFD_ModeTransition()

fsp_err_t R_CANFD_ModeTransition (can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

Switch to a different channel, global or test mode.

Example:

 /* Switch to external loopback mode */

 err = R_CANFD_ModeTransition(&g_canfd0_ctrl, CAN_OPERATION_MODE_NORMAL,

CAN_TEST_MODE_LOOPBACK_EXTERNAL);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

FSP_ERR_INVALID_MODE Cannot change to the requested mode from
the current global mode.

◆ R_CANFD_InfoGet()

fsp_err_t R_CANFD_InfoGet (can_ctrl_t *const p_api_ctrl, can_info_t *const p_info)

Get CANFD state and status information for the channel.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION Null pointer presented

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 729 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Controller Area Network - Flexible Data (r_canfd)

◆ R_CANFD_CallbackSet()

fsp_err_t R_CANFD_CallbackSet (can_ctrl_t *const p_api_ctrl, void(*)(can_callback_args_t *)
p_callback, void const *const p_context, can_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements can_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.9 Consumer Electronics Control (r_cec)
Modules

Functions

fsp_err_t R_CEC_Open (cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

fsp_err_t R_CEC_MediaInit (cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

fsp_err_t R_CEC_Close (cec_ctrl_t *const p_ctrl)

fsp_err_t R_CEC_Write (cec_ctrl_t *const p_ctrl, cec_message_t const *const
p_message, uint32_t message_size)

fsp_err_t R_CEC_StatusGet (cec_ctrl_t *const p_ctrl, cec_status_t *const
p_status)

fsp_err_t R_CEC_CallbackSet (cec_ctrl_t *const p_ctrl,
void(*p_callback)(cec_callback_args_t *), void const *const
p_context, cec_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the CEC peripheral on RA MCUs. This module implements the CEC Interface.

Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 730 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

The HDMI CEC HAL module provides a high-level API for CEC applications and supports the CEC
peripheral available on RA microcontroller hardware. A user-callback function must be defined that
the driver will invoke when data received, transmission complete, or error interrupts are received.
The callback is passed a parameter which indicates the event as well as received data (if available).

Features

Conforms to High Definition Multimedia Interface (HDMI) Consumer Electronics Control
(CEC) standard Ver. 1.4b.
Full range of local address settings (TV, Recording Device, Playback Device, etc.)
Data filtering based on matching destination address and local address.
Supports a user-callback function (required), invoked when transmit, receive, or error
interrupts are received.

Configuration
Build Time Configurations for r_cec

The following build time configurations are defined in fsp_cfg/r_cec_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

CEC Message Max Data
Size

Manual Entry 14 Maximum Data Size for
CEC Message
Transmission/Receptio
n.

Configurations for Driver > Connectivity > CEC Driver on r_cec

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > CEC Driver on
r_cec. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_cec0 Module name

General > Callback
Function

Manual Entry g_rm_cec0_callback Callback function

Control Configuration >
Clock Select

PCLKB / 32
PCLKB / 64
PCLKB / 128
PCLKB / 256
PCLKB / 512
PCLKB / 1024

PCLKB / 1024 CEC Clock Select
Configuration

Control Configuration >
Ack Bit Timing Error
Enable

Disabled
Enabled

Enabled CEC Ack Bit Timing
Error Enable

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 731 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

Control Configuration >
Signal-Free Time Bit
Width

3-data bit width
5-data bit width
7-data bit width
Does not detect
signal-free
time.

7-data bit width Signal-Free Time Data
Bit Width Select

Control Configuration >
Start Bit Error
Detection Enable

Disabled
Enabled

Enabled Enable to detect timing
errors during start bit
reception.

Control Configuration >
Bus Lock Detection
Enable

Disabled
Enabled

Enabled Enable to detect
sticking of receive data
to high or low.

Control Configuration >
Digital Filter Enable

Disabled
Enabled

Enabled Enable to use a digital
filter.

Control Configuration >
Long Bit Width Error
Pulse Output Enable

Disabled
Enabled

Disabled Enable to output an
error handling pulse
when a long bit width
error is detected.

Control Configuration >
Start Detection
Reception Restart
Enable

Disabled
Enabled

Enabled Enable to restart
reception after a start
bit error is detected.

Bit Width Timing >
Transmit > Start Bit
Low Time

CEC transmission start
bit low width setting
must be a positive
integer.

180 CEC transmission start
bit low width setting
(CEC Clock Cycles).

Bit Width Timing >
Transmit > Start Bit
High Time

CEC transmission start
bit high width setting
must be a positive
integer.

220 CEC transmission start
bit high width setting
(CEC Clock Cycles).

Bit Width Timing >
Transmit > Logical
Zero Low Time

CEC transmission
logical zero low width
setting must be a
positive integer.

73 CEC transmission
logical zero low width
setting (CEC Clock
Cycles).

Bit Width Timing >
Transmit > Logical One
Low Time

CEC transmission
logical one low width
setting must be a
positive integer.

29 CEC transmission
logical one low width
setting (CEC Clock
Cycles).

Bit Width Timing >
Transmit > Overall Bit
Width Time

CEC transmission
overall data bit width
time setting must be a
positive integer.

117 CEC transmission
overall data bit width
time setting (CEC Clock
Cycles).

Bit Width Timing >
Receive > Data Sample
Time

CEC reception data
sampling time must be
a positive integer.

49 CEC reception data
sampling time setting
(CEC Clock Cycles).

Bit Width Timing >
Receive > Data Bit

CEC reception data
sampling time must be

117 CEC data bit reference
width setting (CEC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 732 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

Reference Width a positive integer. Clock Cycles).

Bit Width Timing >
Receive > Start Bit Low
Min Time

CEC reception start bit
minimum low width
setting must be a
positive integer.

171 CEC reception start bit
minimum low width
setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Bit Width Timing >
Receive > Start Bit Low
Max Time

CEC reception start bit
maximum low width
setting must be a
positive integer.

190 CEC reception start bit
maximum low width
setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Bit Width Timing >
Receive > Start Bit Min
Time

CEC start bit minimum
time setting must be a
positive integer.

210 CEC start bit minimum
time setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Bit Width Timing >
Receive > Start Bit Max
Time

CEC reception start bit
maximum time setting
must be a positive
integer.

229 CEC start bit maximum
time setting (CEC Clock
Cycles). Not used when
Start Bit Error
Detection and restart
Rx on Error are not
enabled.

Bit Width Timing >
Receive > Logical Zero
Low Min Time

CEC reception logical
zero minimum low
width setting must be a
positive integer.

64 CEC reception logical
zero minimum low
width setting (CEC
Clock Cycles).

Bit Width Timing >
Receive > Logical Zero
Low Max Time

CEC reception locical
zero maximum low
width setting must be a
positive integer.

83 CEC reception logical
zero maximum low
width setting (CEC
Clock Cycles).

Bit Width Timing >
Receive > Logical One
Low Min Time

CEC reception logical
one minimum low
width setting must be a
positive integer.

20 CEC reception logical
one minimum low
width setting (CEC
Clock Cycles).

Bit Width Timing >
Receive > Logical One
Low Max Time

CEC reception logical
one maximum low
width setting must be a
positive integer.

39 CEC reception logical
one maximum low
width (CEC Clock
Cycles).

Bit Width Timing >
Receive > Overall Bit

CEC reception overall
minimum bit width

100 CEC reception overall
minimum bit width

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 733 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

Width Min Time setting must be a
positive integer.

setting (CEC Clock
Cycles).

Bit Width Timing >
Receive > Overall Bit
Width Max Time

CEC reception overall
maximum bit width
setting must be a
positive integer.

134 CEC reception overall
maximum bit width
setting (CEC Clock
Cycles).

Interrupts > Interrupt
Priority Level

MCU Specific Options Error/Data/Message
interrupt priority level.

Interrupts >
Communication
Complete Interrupt
Timing

After Last
Frame and
Signal Free
Time
After Last
Frame
After Signal
Free Time

After Last Frame and
Signal Free Time

Communication
Complete Interrupt
(INTCE) Generation
Timing Select

Interrupts > Address
Mismatch Interrupt
Enable

Disabled
Enabled

Disabled Enable to generate an
interrupt when the
addresses do not
match.

Interrupts > Data
Interrupt Timing
Selection

EOM timing
(9th bit of data)
ACK Timing
(10th bit of
data)

EOM timing (9th bit of
data)

INTDA reception
interrupt timing
selection (EOM or ACK).

Clock Configuration

The CEC peripheral uses the CECCLK or PCLKB as its clock source. To set the PCLKB frequency, use
the Clocks tab of the RA Configuration editor.

Note
The selected clock and configured divider must be configured in the range of 23.4375 to 78.125 kHz.

Pin Configuration

A CEC channel uses one data pin - CECIO for data transmission and reception.

The output type for each pin should be set to n-ch open drain for most hardware designs. This can
be configured in Pins tab of the RA Configuration editor by selecting the pin under Pin
Selection->Ports.

Usage Notes
CEC Device Addresses

The CEC standard provides 13 device addresses that may be requested based on a device's primary
function. Use R_CEC_MediaInit to request a specific address before starting communication with
other devices.

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 734 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

Address 0 is always the primary display (TV). Do not attempt to allocate this address unless your device is intended
to function as a display.

Limitations

Developers should be aware of the following limitations when using the CEC module:

R_CEC_MediaInit may return FSP_ERR_IN_USE for up to 45 milliseconds after R_CEC_Open
while the hardware initializes.
The CECIO pin must be set to n-ch open drain mode.

Examples
Basic Example

This is a basic example of minimal use of the CEC in an application.

/**

 * Application defined callback

 * - May be assigned at compile-time via the e2 Studio configuration tool or set at

run-time via R_CEC_CallbackSet()

 **

**********************************/

void cec_callback (cec_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case CEC_EVENT_READY:

 {

 /* Application processing for address allocation success. */

 break;

 }

 case CEC_EVENT_TX_COMPLETE:

 {

 /* Any required processing after transmission has completed. */

 break;

 }

 case CEC_EVENT_ERR:

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 735 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

 /* Error processing. See cec_error_t for possible errors. */

 break;

 }

 case CEC_EVENT_RX_DATA:

 {

 /* Application to store and process received data bytes. */

 break;

 }

 case CEC_EVENT_RX_COMPLETE:

 {

 /* Application processing for message reception complete. */

 }

 }

}

/**

 * Basic example

 **

**********************************/

#define CEC_TIMEOUT_MS (50)

#define CEC_MSG_STANDBY (0X36) /* See CEC Specification for message definitions */

void basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the CEC module */

 err = R_CEC_Open(&g_cec0_ctrl, &g_cec0_cfg);

 assert(FSP_SUCCESS == err);

 /* Initialize the CEC module and allocate an address */

 uint32_t timeout_ms = CEC_TIMEOUT_MS;

 do

 {

 /* R_CEC_MediaInit may return FSP_ERR_IN_USE for up to 45 milliseconds after calling

R_CEC_Open */

 err = R_CEC_MediaInit(&g_cec0_ctrl, CEC_ADDR_TV);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 736 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 } while ((FSP_ERR_IN_USE == err) && --timeout_ms);

 assert(timeout_ms);

 assert(FSP_SUCCESS == err);

 /* Wait for local address allocation and CEC bus to be free */

 cec_status_t status;

 err = R_CEC_StatusGet(&g_cec0_ctrl, &status);

 while ((FSP_SUCCESS == err) && (CEC_STATE_READY != status.state))

 {

 err = R_CEC_StatusGet(&g_cec0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 cec_message_t cec_msg;

 uint8_t total_transmit_size;

 cec_msg.destination = CEC_ADDR_BROADCAST; /* For this example, send message

to all devices on the bus */

 cec_msg.opcode = CEC_MSG_STANDBY; /* Send Standby Request */

 memset(cec_msg.data, 0U, sizeof(cec_msg.data)); /* See CEC Specification for

other message data structures */

 total_transmit_size = 2U; /* Total message size, including

header, opcode, and data */

 /* Send asynchronous message.

 * - Application will then be free for other processing while message is being sent.

 * - Do not modify the message buffer until transmission has completed. */

 err = R_CEC_Write(&g_cec0_ctrl, &cec_msg, total_transmit_size);

 assert(FSP_SUCCESS == err);

}

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 737 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

◆ R_CEC_Open()

fsp_err_t R_CEC_Open (cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

Open and configure the CEC module for operation.

Example:

 /* Open the CEC module */

 err = R_CEC_Open(&g_cec0_ctrl, &g_cec0_cfg);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS CEC Module opened successfully.

FSP_ERR_ALREADY_OPEN Driver already open.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_IRQ_BSP_DISABLED Interrupts are not enabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 738 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

◆ R_CEC_MediaInit()

fsp_err_t R_CEC_MediaInit (cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

Allocate provided CEC Local Address and Initialize the CEC module for operation.

Note
After calling R_CEC_Open this function may return FSP_ERR_IN_USE for up to 45 milliseconds.

Example:

 /* Initialize the CEC module and allocate an address */

 uint32_t timeout_ms = CEC_TIMEOUT_MS;

 do

 {

 /* R_CEC_MediaInit may return FSP_ERR_IN_USE for up to 45 milliseconds after calling

R_CEC_Open */

 err = R_CEC_MediaInit(&g_cec0_ctrl, CEC_ADDR_TV);

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_MILLISECONDS);

 } while ((FSP_ERR_IN_USE == err) && --timeout_ms);

 assert(timeout_ms);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS CEC Module Initialized successfully.

FSP_ERR_ASSERTION An input argument is invalid or callback has
not been set.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_IN_USE HDMI CEC Bus is currently in use. Try again
later.

◆ R_CEC_Close()

fsp_err_t R_CEC_Close (cec_ctrl_t *const p_ctrl)

Close the CEC module.

Return values
FSP_SUCCESS CEC Module closed successfully.

FSP_ERR_ASSERTION An input argument is invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 739 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

◆ R_CEC_Write()

fsp_err_t R_CEC_Write (cec_ctrl_t *const p_ctrl, cec_message_t const *const p_message, uint32_t
message_size)

Write data to the CEC bus. Data transmission is asynchronous. Provided message buffer should not
be modified until transmission is complete.

Data Transmission follows the pattern defined be the HDMI CEC Specification:

Data Description Size

Start Bit Managed by Hardware, per
config

N/A

Header Block Source/Destination Identifier 1 Byte

Data Block 1 Opcode Value (Optional) 1 Byte

Data Block 2 Operands (Optional) Variable (0-14 Bytes Typical)

Example:

 cec_message_t cec_msg;

 uint8_t total_transmit_size;

 cec_msg.destination = CEC_ADDR_BROADCAST; /* For this example, send message

to all devices on the bus */

 cec_msg.opcode = CEC_MSG_STANDBY; /* Send Standby Request */

 memset(cec_msg.data, 0U, sizeof(cec_msg.data)); /* See CEC Specification for

other message data structures */

 total_transmit_size = 2U; /* Total message size, including

header, opcode, and data */

 /* Send asynchronous message.

 * - Application will then be free for other processing while message is being sent.

 * - Do not modify the message buffer until transmission has completed. */

 err = R_CEC_Write(&g_cec0_ctrl, &cec_msg, total_transmit_size);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_NOT_INITIALIZED Module has not been successfully initialized.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_INVALID_SIZE Invalid message size.

FSP_ERR_IN_USE HDMI CEC Bus is currently in use. Try again

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 740 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Consumer Electronics Control (r_cec)

later.

◆ R_CEC_StatusGet()

fsp_err_t R_CEC_StatusGet (cec_ctrl_t *const p_ctrl, cec_status_t *const p_status)

Provides the state and status information according to the provided CEC control instance.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_ASSERTION An input argument is invalid.

◆ R_CEC_CallbackSet()

fsp_err_t R_CEC_CallbackSet (cec_ctrl_t *const p_ctrl, void(*)(cec_callback_args_t *) p_callback,
void const *const p_context, cec_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements cec_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.10 Clock Generation Circuit (r_cgc)
Modules

Functions

fsp_err_t R_CGC_Open (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

fsp_err_t R_CGC_ClocksCfg (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const
*const p_clock_cfg)

fsp_err_t R_CGC_ClockStart (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 741 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

cgc_pll_cfg_t const *const p_pll_cfg)

fsp_err_t R_CGC_ClockStop (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t R_CGC_ClockCheck (cgc_ctrl_t *const p_ctrl, cgc_clock_t
clock_source)

fsp_err_t R_CGC_SystemClockSet (cgc_ctrl_t *const p_ctrl, cgc_clock_t
clock_source, cgc_divider_cfg_t const *const p_divider_cfg)

fsp_err_t R_CGC_SystemClockGet (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const
p_clock_source, cgc_divider_cfg_t *const p_divider_cfg)

fsp_err_t R_CGC_OscStopDetectEnable (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_OscStopDetectDisable (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_OscStopStatusClear (cgc_ctrl_t *const p_ctrl)

fsp_err_t R_CGC_CallbackSet (cgc_ctrl_t *const p_api_ctrl,
void(*p_callback)(cgc_callback_args_t *), void const *const
p_context, cgc_callback_args_t *const p_callback_memory)

fsp_err_t R_CGC_Close (cgc_ctrl_t *const p_ctrl)

Detailed Description

Driver for the CGC peripheral on RA MCUs. This module implements the CGC Interface.

Note
This module is not required for the initial clock configuration. Initial clock settings are configurable on the
**Clocks tab of the RA Configuration editor. The initial clock settings are applied by the BSP during the startup
process before main.**

Overview
Features

The CGC module supports runtime modifications of clock settings. Key features include the following:

Supports changing the system clock source to any of the following options (provided they
are supported on the MCU):

High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
Main oscillator (external resonator or external clock input frequency)
Sub-clock oscillator (external resonator)
PLL/PLL2 (not available on all MCUs)

When the system core clock frequency changes, the following things are updated:
The CMSIS standard global variable SystemCoreClock is updated to reflect the new
clock frequency.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 742 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

Wait states for ROM and RAM are adjusted to the minimum supported value for the
new clock frequency.
The operating power control mode is updated to the minimum supported value for
the new clock settings.

Supports starting or stopping any of the system clock sources
Supports changing dividers for the internal clocks
Supports the oscillation stop detection feature

Internal Clocks

The RA microcontrollers have up to seven internal clocks. Not all internal clocks exist on all MCUs.
Each clock domain has its own divider that can be updated in R_CGC_SystemClockSet(). The dividers
are subject to constraints described in the footnote of the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual.

The internal clocks include:

System clock (ICLK): core clock used for CPU, flash, internal SRAM, DTC, and DMAC
PCLKA/PCLKB/PCLKC/PCLKD: Peripheral clocks, refer to the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual to see which peripherals
are controlled by which clocks.
FCLK: Clock source for reading data flash and for programming/erasure of both code and
data flash.
BCLK: External bus clock

Configuration
Note

The initial clock settings are configurable on the Clocks tab of the RA Configuration editor.
There is a configuration to enable the HOCO on reset in the OFS1 settings on the BSP tab.
The following clock related settings are configurable in the RA Common section on the BSP tab:

Main Oscillator Wait Time
Main Oscillator Clock Source (external oscillator or crystal/resonator)
Subclock Populated
Subclock Drive
Subclock Stabilization Time (ms)

The default stabilization times are determined based on development boards provided by Renesas, but are
generally valid for most designs. Depending on the target board hardware configuration and requirements these
values may need to be adjusted for reliability or startup speed.

Build Time Configurations for r_cgc

The following build time configurations are defined in fsp_cfg/r_cgc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > System > CGC Driver on r_cgc

This module can be added to the Stacks tab via New Stack > Driver > System > CGC Driver on
r_cgc. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 743 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_cgc0 Module name.

NMI Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided if oscillation
stop detection is used.
If this callback function
is provided, it is called
from the NMI handler if
the main oscillator
stops.

Clock Configuration

This module is used to configure the system clocks. There are no module specific clock
configurations required to use it.

Pin Configuration

The CGC module controls the output of the CLOCKOUT signal.

If an external oscillator is used the XTAL and EXTAL pins must be configured accordingly. When
running from an on chip oscillator there is no requirement for the main clock external oscillator. In
this case, the XTAL and EXTAL pins can be set to a different function in the RA Configuration editor.

The functionality of the subclock external oscillator pins XCIN and XCOUT is fixed.

Usage Notes
NMI Interrupt

The CGC timer uses the NMI for oscillation stop detection of the main oscillator after
R_CGC_OscStopDetectEnable is called. The NMI is enabled by default. No special configuration is
required. When the NMI is triggered, the callback function registered during R_CGC_Open() is called.

Starting or Stopping the Subclock

If the Subclock Populated property is set to Populated on the BSP configuration tab, then the
subclock is started in the BSP startup routine. Otherwise, it is stopped in the BSP startup routine.
Starting and stopping the subclock at runtime is not recommended since the stabilization
requirements typically negate the negligible power savings.

The application is responsible for ensuring required clocks are started and stable before accessing
MCU peripheral registers.

Warning
The subclock can take up to several seconds to stabilize. RA startup code does not wait for
subclock stabilization unless the subclock is the main clock source. In this case the default
wait time is 1000ms (1 second). When running AGT or RTC off the subclock, the application
must ensure the subclock is stable before starting operation. Because there is no hardware
stabilization status bit for the subclock R_CGC_ClockCheck cannot be used to optimize this
wait.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 744 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

Changing the subclock state during R_CGC_ClocksCfg() is not supported.

Low Power Operation

If "Use Low Voltage Mode" is enabled in the BSP MCU specific properties (not available on all MCUs),
the MCU is always in low voltage mode and no other power modes are considered. The following
conditions must be met for the MCU to run in low voltage mode:

Requires HOCO to be running, so HOCO cannot be stopped in low voltage mode
Requires PLL to be stopped, so PLL APIs are not available in low voltage mode
Requires ICLK <= 4 MHz
If oscillation stop detection is used, dividers of 1 or 2 cannot be used for any clock

If "Use Low Voltage Mode" is not enabled, the MCU applies the lowest power mode by searching
through the following list in order and applying the first power mode that is supported under the
current conditions:

Subosc-speed mode (lowest power)
Requires system clock to be LOCO or subclock
Requires MOCO, HOCO, main oscillator, and PLL (if present) to be stopped
Requires ICLK and FCLK dividers to be 1

Low-speed mode
Requires PLL to be stopped
Requires ICLK <= 1 MHz
If oscillation stop detection is used, dividers of 1, 2, 4, or 8 cannot be used for any
clock

Middle-speed mode (not supported on all MCUs)
Requires ICLK <= 8 MHz

High-speed mode
Default mode if no other operating mode is supported

Refer to the section "Function for Lower Operating Power Consumption" in the "Low Power Modes"
chapter of the hardware manual for MCU specific information about operating power control modes.

Note
The DCDC regulator (if present) is only available in Middle- and High-speed modes. The BSP will automatically
switch between DCDC and LDO when switching between compatible and incompatible modes if the DCDC
regulator is in use. Switching to the LDO incurs a 60 microsecond critical section wherein all interrupts AND
peripherals are stopped. Switching back to DCDC from the LDO incurs an additional 22 microsecond critical
section (peripherals running).

When low voltage mode is not used, the following functions adjust the operating power control mode
to ensure it remains within the hardware specification and to ensure the MCU is running at the
optimal operating power control mode:

R_CGC_ClockStart()
R_CGC_ClockStop()
R_CGC_SystemClockSet()
R_CGC_OscStopDetectEnable()
R_CGC_OscStopDetectDisable()

Note
FSP APIs, including these APIs, are not thread safe. These APIs and any other user code that modifies the
operating power control mode must not be allowed to interrupt each other. Proper care must be taken during
application design if these APIs are used in threads or interrupts to ensure this constraint is met.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 745 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

No action is required by the user of these APIs. This section is provided for informational purposes
only.

Examples
Basic Example

This is a basic example of minimal use of the CGC in an application.

void cgc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the CGC module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Change the system clock to LOCO for power saving. */

 /* Start the LOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_LOCO, NULL);

 assert(FSP_SUCCESS == err);

 /* Wait for the LOCO stabilization wait time.

 *

 * NOTE: The MOCO, LOCO and subclock do not have stabilization status bits, so any

stabilization time must be

 * performed via a software wait when starting these oscillators. For all other

oscillators, R_CGC_ClockCheck can

 * be used to verify stabilization status.

 */

 R_BSP_SoftwareDelay(BSP_FEATURE_CGC_LOCO_STABILIZATION_MAX_US,

BSP_DELAY_UNITS_MICROSECONDS);

 /* Set divisors. Divisors for clocks that don't exist on the MCU are ignored. */

 cgc_divider_cfg_t dividers =

 {

 /* PCLKB is not used in this application, so select the maximum divisor for lowest

power. */

 .pclkb_div = CGC_SYS_CLOCK_DIV_64,

 /* PCLKD is not used in this application, so select the maximum divisor for lowest

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 746 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

power. */

 .pclkd_div = CGC_SYS_CLOCK_DIV_64,

 /* ICLK is the MCU clock, allow it to run as fast as the LOCO is capable. */

 .iclk_div = CGC_SYS_CLOCK_DIV_1,

 /* These clocks do not exist on some devices. If any clocks don't exist, set the

divider to 1. */

 .pclka_div = CGC_SYS_CLOCK_DIV_1,

 .pclkc_div = CGC_SYS_CLOCK_DIV_1,

 .fclk_div = CGC_SYS_CLOCK_DIV_1,

 .bclk_div = CGC_SYS_CLOCK_DIV_1,

 };

 /* Switch the system clock to LOCO. */

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_LOCO, ÷rs);

 assert(FSP_SUCCESS == err);

}

Configuring Multiple Clocks

This example demonstrates switching to a new source clock and stopping the previous source clock
in a single function call using R_CGC_ClocksCfg().

void cgc_clocks_cfg_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the CGC module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Change the system clock to PLL running from the main oscillator. */

 /* Assuming the system clock is MOCO, switch to HOCO. */

 cgc_clocks_cfg_t clocks_cfg;

 clocks_cfg.system_clock = CGC_CLOCK_PLL;

 clocks_cfg.pll_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.pll_cfg.source_clock = CGC_CLOCK_MAIN_OSC; // unused

 clocks_cfg.pll_cfg.multiplier = CGC_PLL_MUL_10_0; // unused

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 747 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

 clocks_cfg.pll_cfg.divider = CGC_PLL_DIV_2; // unused

 clocks_cfg.divider_cfg.iclk_div = CGC_SYS_CLOCK_DIV_1;

 clocks_cfg.divider_cfg.pclka_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkb_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkc_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkd_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.bclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.fclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.mainosc_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.hoco_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.moco_state = CGC_CLOCK_CHANGE_STOP;

 clocks_cfg.loco_state = CGC_CLOCK_CHANGE_NONE;

 err = R_CGC_ClocksCfg(&g_cgc0_ctrl, &clocks_cfg);

 assert(FSP_SUCCESS == err);

#if BSP_FEATURE_CGC_HAS_PLL

 /* Assuming the system clock is HOCO, switch to PLL running from main oscillator and

stop MOCO. */

 clocks_cfg.system_clock = CGC_CLOCK_PLL;

 clocks_cfg.pll_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.pll_cfg.source_clock = CGC_CLOCK_MAIN_OSC;

 clocks_cfg.pll_cfg.multiplier = (cgc_pll_mul_t) BSP_CFG_PLL_MUL;

 clocks_cfg.pll_cfg.divider = (cgc_pll_div_t) BSP_CFG_PLL_DIV;

 clocks_cfg.divider_cfg.iclk_div = CGC_SYS_CLOCK_DIV_1;

 clocks_cfg.divider_cfg.pclka_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkb_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkc_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkd_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.bclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.fclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.mainosc_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.hoco_state = CGC_CLOCK_CHANGE_STOP;

 clocks_cfg.moco_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.loco_state = CGC_CLOCK_CHANGE_NONE;

 err = R_CGC_ClocksCfg(&g_cgc0_ctrl, &clocks_cfg);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 748 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

 assert(FSP_SUCCESS == err);

#endif

}

Oscillation Stop Detection

This example demonstrates registering a callback for oscillation stop detection of the main oscillator.

/* Example callback called when oscillation stop is detected. */

void oscillation_stop_callback (cgc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) If the MCU was running on the main oscillator, the MCU is now running

on MOCO. Switch clocks if

 * desired. This example shows switching to HOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_HOCO, NULL);

 assert(FSP_SUCCESS == err);

 do

 {

 /* Wait for HOCO to stabilize. */

 err = R_CGC_ClockCheck(&g_cgc0_ctrl, CGC_CLOCK_HOCO);

 } while (FSP_SUCCESS != err);

 cgc_divider_cfg_t dividers =

 {

 .pclkb_div = CGC_SYS_CLOCK_DIV_4,

 .pclkd_div = CGC_SYS_CLOCK_DIV_4,

 .iclk_div = CGC_SYS_CLOCK_DIV_1,

 .pclka_div = CGC_SYS_CLOCK_DIV_4,

 .pclkc_div = CGC_SYS_CLOCK_DIV_4,

 .fclk_div = CGC_SYS_CLOCK_DIV_4,

 .bclk_div = CGC_SYS_CLOCK_DIV_4,

 };

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_HOCO, ÷rs);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 749 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

#if BSP_FEATURE_CGC_HAS_PLL

 /* (Optional) If the MCU was running on the PLL, the PLL is now in free-running

mode. Switch clocks if

 * desired. This example shows switching to the PLL running on HOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_HOCO, NULL);

 assert(FSP_SUCCESS == err);

 do

 {

 /* Wait for HOCO to stabilize. */

 err = R_CGC_ClockCheck(&g_cgc0_ctrl, CGC_CLOCK_HOCO);

 } while (FSP_SUCCESS != err);

 cgc_pll_cfg_t pll_cfg =

 {

 .source_clock = CGC_CLOCK_HOCO,

 .multiplier = (cgc_pll_mul_t) BSP_CFG_PLL_MUL,

 .divider = (cgc_pll_div_t) BSP_CFG_PLL_DIV,

 };

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_PLL, &pll_cfg);

 assert(FSP_SUCCESS == err);

 do

 {

 /* Wait for PLL to stabilize. */

 err = R_CGC_ClockCheck(&g_cgc0_ctrl, CGC_CLOCK_PLL);

 } while (FSP_SUCCESS != err);

 cgc_divider_cfg_t pll_dividers =

 {

 .pclkb_div = CGC_SYS_CLOCK_DIV_4,

 .pclkd_div = CGC_SYS_CLOCK_DIV_4,

 .iclk_div = CGC_SYS_CLOCK_DIV_1,

 .pclka_div = CGC_SYS_CLOCK_DIV_4,

 .pclkc_div = CGC_SYS_CLOCK_DIV_4,

 .fclk_div = CGC_SYS_CLOCK_DIV_4,

 .bclk_div = CGC_SYS_CLOCK_DIV_4,

 };

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 750 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_PLL, &pll_dividers);

 assert(FSP_SUCCESS == err);

#endif

 /* (Optional) Clear the error flag. Only clear this flag after switching the MCU

clock source away from the main

 * oscillator and if the main oscillator is stable again. */

 err = R_CGC_OscStopStatusClear(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

}

void cgc_osc_stop_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable oscillation stop detection. The main oscillator must be running at this

point. */

 err = R_CGC_OscStopDetectEnable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

 /* (Optional) Oscillation stop detection must be disabled before entering any low

power mode. */

 err = R_CGC_OscStopDetectDisable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

 __WFI();

 /* (Optional) Reenable oscillation stop detection after waking from low power mode.

*/

 err = R_CGC_OscStopDetectEnable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct cgc_instance_ctrl_t

Data Structure Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 751 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ cgc_instance_ctrl_t

struct cgc_instance_ctrl_t

CGC private control block. DO NOT MODIFY. Initialization occurs when R_CGC_Open() is called.

Data Fields

void const * p_context

Field Documentation

◆ p_context

void const* cgc_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in cgc_callback_args_t.

Function Documentation

◆ R_CGC_Open()

fsp_err_t R_CGC_Open (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

Initialize the CGC API. Implements cgc_api_t::open.

Example:

 /* Initializes the CGC module. */

 err = R_CGC_Open(&g_cgc0_ctrl, &g_cgc0_cfg);

Return values
FSP_SUCCESS CGC successfully initialized.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_ALREADY_OPEN Module is already open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 752 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_ClocksCfg()

fsp_err_t R_CGC_ClocksCfg (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const p_clock_cfg)

Reconfigures all main system clocks. This API can be used for any of the following purposes:

start or stop clocks
change the system clock source
configure the PLL/PLL2 multiplication and division ratios when starting the PLL
change the system dividers

If the requested system clock source has a stabilization flag, this function blocks waiting for the
stabilization flag of the requested system clock source to be set. If the requested system clock
source was just started and it has no stabilization flag, this function blocks for the stabilization time
required by the requested system clock source according to the Electrical Characteristics section of
the hardware manual. If the requested system clock source has no stabilization flag and it is
already running, it is assumed to be stable and this function will not block. If the requested system
clock is the subclock, the subclock must be stable prior to calling this function.

The internal dividers (cgc_clocks_cfg_t::divider_cfg) are subject to constraints described in
footnotes of the hardware manual table detailing specifications for the clock generation circuit for
the internal clocks for the MCU. For example:

RA6M3: see footnotes of Table 9.2 "Specifications of the clock generation circuit for the
internal clocks" in the RA6M3 manual R01UH0886EJ0100
RA2A1: see footnotes of Table 9.2 "Clock generation circuit specifications for the internal
clocks" in the RA2A1 manual R01UH0888EJ0100

Do not attempt to stop the requested clock source or the source of a PLL if the PLL will be running
after this operation completes.

Implements cgc_api_t::clocksCfg.

Example:

 /* Assuming the system clock is MOCO, switch to HOCO. */

 cgc_clocks_cfg_t clocks_cfg;

 clocks_cfg.system_clock = CGC_CLOCK_PLL;

 clocks_cfg.pll_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.pll_cfg.source_clock = CGC_CLOCK_MAIN_OSC; // unused

 clocks_cfg.pll_cfg.multiplier = CGC_PLL_MUL_10_0; // unused

 clocks_cfg.pll_cfg.divider = CGC_PLL_DIV_2; // unused

 clocks_cfg.divider_cfg.iclk_div = CGC_SYS_CLOCK_DIV_1;

 clocks_cfg.divider_cfg.pclka_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkb_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkc_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.pclkd_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.divider_cfg.bclk_div = CGC_SYS_CLOCK_DIV_4;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 753 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

 clocks_cfg.divider_cfg.fclk_div = CGC_SYS_CLOCK_DIV_4;

 clocks_cfg.mainosc_state = CGC_CLOCK_CHANGE_NONE;

 clocks_cfg.hoco_state = CGC_CLOCK_CHANGE_START;

 clocks_cfg.moco_state = CGC_CLOCK_CHANGE_STOP;

 clocks_cfg.loco_state = CGC_CLOCK_CHANGE_NONE;

 err = R_CGC_ClocksCfg(&g_cgc0_ctrl, &clocks_cfg);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Clock configuration applied successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_IN_USE Attempt to stop the current system clock or
the PLL source clock.

FSP_ERR_CLOCK_ACTIVE PLL configuration cannot be changed while
PLL is running.

FSP_ERR_OSC_STOP_DET_ENABLED PLL multiplier must be less than 20 if
oscillation stop detect is enabled and the
input frequency is less than 12.5 MHz.

FSP_ERR_NOT_STABILIZED PLL clock source is not stable.

FSP_ERR_PLL_SRC_INACTIVE PLL clock source is not running.

FSP_ERR_INVALID_STATE The subclock must be running before
activating HOCO with FLL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 754 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_ClockStart()

fsp_err_t R_CGC_ClockStart (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source, cgc_pll_cfg_t const
*const p_pll_cfg)

Start the specified clock if it is not currently active. The PLL configuration cannot be changed while
the PLL is running. Implements cgc_api_t::clockStart.

The PLL source clock must be operating and stable prior to starting the PLL.

Example:

 /* Start the LOCO. */

 err = R_CGC_ClockStart(&g_cgc0_ctrl, CGC_CLOCK_LOCO, NULL);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Clock initialized successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_STABILIZED The clock source is not stabilized after being
turned off or PLL clock source is not stable.

FSP_ERR_PLL_SRC_INACTIVE PLL clock source is not running.

FSP_ERR_CLOCK_ACTIVE PLL configuration cannot be changed while
PLL is running.

FSP_ERR_OSC_STOP_DET_ENABLED PLL multiplier must be less than 20 if
oscillation stop detect is enabled and the
input frequency is less than 12.5 MHz.

FSP_ERR_INVALID_STATE The subclock must be running before
activating HOCO with FLL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 755 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_ClockStop()

fsp_err_t R_CGC_ClockStop (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Stop the specified clock if it is active. Implements cgc_api_t::clockStop.

Do not attempt to stop the current system clock source. Do not attempt to stop the source clock of
a PLL if the PLL is running.

Return values
FSP_SUCCESS Clock stopped successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_IN_USE Attempt to stop the current system clock or
the PLL source clock.

FSP_ERR_OSC_STOP_DET_ENABLED Attempt to stop MOCO when Oscillation stop
is enabled.

FSP_ERR_NOT_STABILIZED Clock not stabilized after starting.

◆ R_CGC_ClockCheck()

fsp_err_t R_CGC_ClockCheck (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Check the specified clock for stability. Implements cgc_api_t::clockCheck.

Return values
FSP_SUCCESS Clock is running and stable.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_STABILIZED Clock not stabilized.

FSP_ERR_CLOCK_INACTIVE Clock not turned on.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 756 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_SystemClockSet()

fsp_err_t R_CGC_SystemClockSet (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

Set the specified clock as the system clock and configure the internal dividers for ICLK, PCLKA,
PCLKB, PCLKC, PCLKD, BCLK, and FCLK. Implements cgc_api_t::systemClockSet.

The requested clock source must be running and stable prior to calling this function. The internal
dividers are subject to constraints described in the hardware manual table "Specifications of the
Clock Generation Circuit for the internal clocks".

The internal dividers (p_divider_cfg) are subject to constraints described in footnotes of the
hardware manual table detailing specifications for the clock generation circuit for the internal
clocks for the MCU. For example:

RA6M3: see footnotes of Table 9.2 "Specifications of the clock generation circuit for the
internal clocks" in the RA6M3 manual R01UH0886EJ0100
RA2A1: see footnotes of Table 9.2 "Clock generation circuit specifications for the internal
clocks" in the RA2A1 manual R01UH0888EJ0100

This function also updates the RAM and ROM wait states, the operating power control mode, and
the SystemCoreClock CMSIS global variable.

Example:

 /* Set divisors. Divisors for clocks that don't exist on the MCU are ignored. */

 cgc_divider_cfg_t dividers =

 {

 /* PCLKB is not used in this application, so select the maximum divisor for lowest

power. */

 .pclkb_div = CGC_SYS_CLOCK_DIV_64,

 /* PCLKD is not used in this application, so select the maximum divisor for lowest

power. */

 .pclkd_div = CGC_SYS_CLOCK_DIV_64,

 /* ICLK is the MCU clock, allow it to run as fast as the LOCO is capable. */

 .iclk_div = CGC_SYS_CLOCK_DIV_1,

 /* These clocks do not exist on some devices. If any clocks don't exist, set the

divider to 1. */

 .pclka_div = CGC_SYS_CLOCK_DIV_1,

 .pclkc_div = CGC_SYS_CLOCK_DIV_1,

 .fclk_div = CGC_SYS_CLOCK_DIV_1,

 .bclk_div = CGC_SYS_CLOCK_DIV_1,

 };

 /* Switch the system clock to LOCO. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 757 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

 err = R_CGC_SystemClockSet(&g_cgc0_ctrl, CGC_CLOCK_LOCO, ÷rs);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CLOCK_INACTIVE The specified clock source is inactive.

FSP_ERR_NOT_STABILIZED The clock source has not stabilized

◆ R_CGC_SystemClockGet()

fsp_err_t R_CGC_SystemClockGet (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const p_clock_source,
cgc_divider_cfg_t *const p_divider_cfg)

Return the current system clock source and configuration. Implements cgc_api_t::systemClockGet.

Return values
FSP_SUCCESS Parameters returned successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 758 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_OscStopDetectEnable()

fsp_err_t R_CGC_OscStopDetectEnable (cgc_ctrl_t *const p_ctrl)

Enable the oscillation stop detection for the main clock. Implements
cgc_api_t::oscStopDetectEnable.

The MCU will automatically switch the system clock to MOCO when a stop is detected if Main Clock
is the system clock. If the system clock is the PLL, then the clock source will not be changed and
the PLL free running frequency will be the system clock frequency.

Example:

 /* Enable oscillation stop detection. The main oscillator must be running at this

point. */

 err = R_CGC_OscStopDetectEnable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_LOW_VOLTAGE_MODE Settings not allowed in low voltage mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 759 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_OscStopDetectDisable()

fsp_err_t R_CGC_OscStopDetectDisable (cgc_ctrl_t *const p_ctrl)

Disable the oscillation stop detection for the main clock. Implements
cgc_api_t::oscStopDetectDisable.

Example:

 /* (Optional) Oscillation stop detection must be disabled before entering any low

power mode. */

 err = R_CGC_OscStopDetectDisable(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

 __WFI();

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_OSC_STOP_DETECTED The Oscillation stop detect status flag is set.
Under this condition it is not possible to
disable the Oscillation stop detection
function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 760 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_OscStopStatusClear()

fsp_err_t R_CGC_OscStopStatusClear (cgc_ctrl_t *const p_ctrl)

Clear the Oscillation Stop Detection Status register. This register is not cleared automatically if the
stopped clock is restarted. Implements cgc_api_t::oscStopStatusClear.

After clearing the status, oscillation stop detection is no longer enabled.

This register cannot be cleared while the main oscillator is the system clock or the PLL source
clock.

Example:

 /* (Optional) Clear the error flag. Only clear this flag after switching the MCU

clock source away from the main

 * oscillator and if the main oscillator is stable again. */

 err = R_CGC_OscStopStatusClear(&g_cgc0_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Operation performed successfully.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CLOCK_INACTIVE Main oscillator must be running to clear the
oscillation stop detection flag.

FSP_ERR_OSC_STOP_CLOCK_ACTIVE The Oscillation Detect Status flag cannot be
cleared if the Main Osc or PLL is set as the
system clock. Change the system clock
before attempting to clear this bit.

FSP_ERR_INVALID_HW_CONDITION Oscillation stop status was not cleared.
Check preconditions and try again.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 761 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Clock Generation Circuit (r_cgc)

◆ R_CGC_CallbackSet()

fsp_err_t R_CGC_CallbackSet (cgc_ctrl_t *const p_api_ctrl, void(*)(cgc_callback_args_t *)
p_callback, void const *const p_context, cgc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
cgc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_CGC_Close()

fsp_err_t R_CGC_Close (cgc_ctrl_t *const p_ctrl)

Closes the CGC module. Implements cgc_api_t::close.

Return values
FSP_SUCCESS The module is successfully closed.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Module is not open.

4.2.11 Cyclic Redundancy Check (CRC) Calculator (r_crc)
Modules

Functions

fsp_err_t R_CRC_Open (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

fsp_err_t R_CRC_Close (crc_ctrl_t *const p_ctrl)

fsp_err_t R_CRC_Calculate (crc_ctrl_t *const p_ctrl, crc_input_t *const
p_crc_input, uint32_t *calculatedValue)

fsp_err_t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_ctrl, uint32_t
*calculatedValue)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 762 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

fsp_err_t R_CRC_SnoopEnable (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

fsp_err_t R_CRC_SnoopDisable (crc_ctrl_t *const p_ctrl)

Detailed Description

Driver for the CRC peripheral on RA MCUs. This module implements the CRC Interface.

Overview
The CRC module provides a API to calculate 8, 16 and 32-bit CRC values on a block of data in
memory or a stream of data over a Serial Communication Interface (SCI) channel using industry-
standard polynomials.

Features

CRC module supports the following 8 and 16 bit CRC polynomials which operates on 8-bit
data in parallel

X^8+X^2+X+1 (CRC-8)
X^16+X^15+X^2+1 (CRC-16)
X^16+X^12+X^5+1 (CRC-CCITT)

CRC module supports the following 32 bit CRC polynomials which operates on 32-bit data in
parallel

X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X
^2+X+ 1 (CRC-32)
X^32+ X^28+ X^27+ X^26+ X^25+ X^23+ X^22+ X^20+ X^19+
X^18+X^14+X^13+X^11+X^10+X^9+X^8+X^6+1 (CRC-32C)

CRC module can calculate CRC with LSB first or MSB first bit order.

Configuration
Build Time Configurations for r_crc

The following build time configurations are defined in fsp_cfg/r_crc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Monitoring > CRC Driver on r_crc

This module can be added to the Stacks tab via New Stack > Driver > Monitoring > CRC Driver on
r_crc. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 763 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

Name Name must be a valid
C symbol

g_crc0 Module name.

CRC Polynomial CRC-8
CRC-16
CRC-CCITT
CRC-32
CRC-32C

CRC-32C Select the CRC
polynomial.

Bit Order LSB
MSB

MSB Select the CRC bit
order.

Snoop Address Refer to the RA
Configuration tool for
available options.

NONE Select the SCI register
address CRC snoop

Clock Configuration

There is no clock configuration for the CRC module.

Pin Configuration

This module does not use I/O pins.

Usage Notes
CRC Snoop

The CRC snoop function monitors reads from and writes to a specified I/O register address and
performs CRC calculation on the data read from and written to the register address automatically.
Instead of calling R_CRC_Calculate on a block of data, R_CRC_SnoopEnable is called to start
monitoring reads/writes and R_CRC_CalculatedValueGet is used to obtain the current CRC.

Note
Snoop mode is available for transmit/receive operations on SCI only.

Limitations

When using CRC32 polynomial functions the CRC module produces the same results as popular
online CRC32 calculators, but it is important to remember a few important points.

Online CRC32 calculators allow the input to be any number of bytes. The FSP CRC32 API
function uses 32-bit words. This means the online calculations must be 'padded' to end on a
32-bit boundary.
Online CRC32 calculators usually invert the output prior to presenting it as a result. It is up
to the application program to include this step if needed.
The seed value of 0xFFFFFFFF needs to be used by both the online calculator and the
R_CRC module API (CRC32 polynomials)
Make sure the bit orientation of the R_CRC CRC32 is set for LSB and that you have CRC32
selected and not CRC32C.
Some online CRC tools XOR the final result with 0xFFFFFFFF.

Examples

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 764 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

Basic Example

This is a basic example of minimal use of the CRC module in an application.

void crc_example ()

{

 uint32_t length;

 uint32_t uint8_calculated_value;

 length = sizeof(g_data_8bit) / sizeof(g_data_8bit[0]);

 crc_input_t example_input =

 {

 .p_input_buffer = g_data_8bit,

 .num_bytes = length,

 .crc_seed = 0,

 };

 /* Open CRC module with 8 bit polynomial */

 R_CRC_Open(&crc_ctrl, &g_crc_test_cfg);

 /* 8-bit CRC calculation */

 R_CRC_Calculate(&crc_ctrl, &example_input, &uint8_calculated_value);

}

Snoop Example

This example demonstrates CRC snoop operation.

void crc_snoop_example ()

{

 /* Open CRC module with 8 bit polynomial */

 R_CRC_Open(&crc_ctrl, &g_crc_test_cfg);

 /* Open SCI Driver */

 /* Configure Snoop address and enable snoop mode */

 R_CRC_SnoopEnable(&crc_ctrl, 0);

 /* Perfrom SCI read/Write operation depending on the SCI snoop address configure */

 /* Read CRC value */

 R_CRC_CalculatedValueGet(&crc_ctrl, &g_crc_buff);

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 765 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

Data Structures

struct crc_instance_ctrl_t

Data Structure Documentation

◆ crc_instance_ctrl_t

struct crc_instance_ctrl_t

Driver instance control structure.

Function Documentation

◆ R_CRC_Open()

fsp_err_t R_CRC_Open (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

Open the CRC driver module

Implements crc_api_t::open

Open the CRC driver module and initialize the driver control block according to the passed-in
configuration structure.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_ctrl or p_cfg is NULL.

FSP_ERR_ALREADY_OPEN Module already open

◆ R_CRC_Close()

fsp_err_t R_CRC_Close (crc_ctrl_t *const p_ctrl)

Close the CRC module driver.

Implements crc_api_t::close

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN The driver is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 766 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

◆ R_CRC_Calculate()

fsp_err_t R_CRC_Calculate (crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input, uint32_t *
calculatedValue)

Perform a CRC calculation on a block of 8-bit/32-bit (for 32-bit polynomial) data.

Implements crc_api_t::calculate

This function performs a CRC calculation on an array of 8-bit/32-bit (for 32-bit polynomial) values
and returns an 8-bit/32-bit (for 32-bit polynomial) calculated value

Return values
FSP_SUCCESS Calculation successful.

FSP_ERR_ASSERTION Either p_ctrl, inputBuffer, or calculatedValue
is NULL.

FSP_ERR_INVALID_ARGUMENT length value is NULL.

FSP_ERR_NOT_OPEN The driver is not opened.

◆ R_CRC_CalculatedValueGet()

fsp_err_t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_ctrl, uint32_t * calculatedValue)

Return the current calculated value.

Implements crc_api_t::crcResultGet

CRC calculation operates on a running value. This function returns the current calculated value.

Return values
FSP_SUCCESS Return of calculated value successful.

FSP_ERR_ASSERTION Either p_ctrl or calculatedValue is NULL.

FSP_ERR_NOT_OPEN The driver is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 767 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

◆ R_CRC_SnoopEnable()

fsp_err_t R_CRC_SnoopEnable (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

Configure the snoop channel and set the CRC seed.

Implements crc_api_t::snoopEnable

The CRC calculator can operate on reads and writes over any of the first ten SCI channels. For
example, if set to channel 0, transmit, every byte written out SCI channel 0 is also sent to the CRC
calculator as if the value was explicitly written directly to the CRC calculator.

Return values
FSP_SUCCESS Snoop configured successfully.

FSP_ERR_ASSERTION Pointer to control stucture is NULL

FSP_ERR_NOT_OPEN The driver is not opened.

◆ R_CRC_SnoopDisable()

fsp_err_t R_CRC_SnoopDisable (crc_ctrl_t *const p_ctrl)

Disable snooping.

Implements crc_api_t::snoopDisable

Return values
FSP_SUCCESS Snoop disabled.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN The driver is not opened.

4.2.12 Capacitive Touch Sensing Unit (r_ctsu)
Modules

Functions

fsp_err_t R_CTSU_Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const
p_cfg)

 Opens and configures the CTSU driver module. Implements
ctsu_api_t::open. More...

fsp_err_t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 768 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

 This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Before starting the next scan, first get the
data with R_CTSU_DataGet(). If a different control block scan should
be run, check the scan is complete before executing. Implements
ctsu_api_t::scanStart. More...

fsp_err_t R_CTSU_DataGet (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

 This function gets the sensor values as scanned by the CTSU. If initial
offset tuning is enabled, The first several calls are used to tuning for
the sensors. Implements ctsu_api_t::dataGet. More...

fsp_err_t R_CTSU_ScanStop (ctsu_ctrl_t *const p_ctrl)

 This function scan stops the sensor as scanning by the CTSU.
Implements ctsu_api_t::scanStop. More...

fsp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const
p_context, ctsu_callback_args_t *const p_callback_memory)

fsp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t *const p_ctrl)

 Diagnosis the CTSU peripheral. Implements ctsu_api_t::diagnosis.
More...

fsp_err_t R_CTSU_Close (ctsu_ctrl_t *const p_ctrl)

 Disables specified CTSU control block. Implements ctsu_api_t::close.
More...

Detailed Description

This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It implements the CTSU Interface
.

Overview
The capacitive touch sensing unit HAL driver (r_ctsu) provides an API to control the CTSU peripheral.
This module performs capacitance measurement based on various settings defined by the
configuration. This module is configured via the QE for Capacitive Touch.

Features

Supports multiple scan modes
Self-capacitance multi scan mode (CTSU2 support active shield)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 769 / 2,794

https://www.renesas.com/qe-capacitive-touch

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

Mutual-capacitance full scan mode
Mutual-capacitance parallel scan mode (CTSU2)
Current Measurement mode (CTSU2)
Diagnosis scan mode

Scans may be started by software or an external trigger
Returns measured capacitance data on scan completion
Support DTC transfer of scanned data
Supports TrustZone
Corrects accuracy for temperature drift (CTSU2)

Configuration
Note

This module is configured via the QE for Capacitive Touch. For information on how to use the QE tool, once
the tool is installed click Help -> Help Contents in e2 studio and search for "QE".

Build Time Configurations for r_ctsu

The following build time configurations are defined in fsp_cfg/r_ctsu_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support for using DTC Enabled
Disabled

Disabled Enable DTC support for
the CTSU module.

Interrupt priority level MCU Specific Options Priority level of all
CTSU interrupt (CSTU_
WR,CTSU_RD,CTSU_FN)

Configurations for Driver > CapTouch > CTSU Driver on r_ctsu

This module can be added to the Stacks tab via New Stack > Driver > CapTouch > CTSU Driver on
r_ctsu. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Scan Start Trigger MCU Specific Options CTSU Scan Start
Trigger Select

Interrupt Configuration

The first R_CTSU_Open function call sets CTSU peripheral interrupts. The user should provide a
callback function to be invoked at the end of the CTSU scan sequence. The callback argument will
contain information about the scan status.

Clock Configuration

The CTSU peripheral module uses PCLKB as its clock source. You can set the PCLKB frequency using
the Clocks tab of the RA Configuration editor or by using the CGC Interface at run-time.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 770 / 2,794

https://www.renesas.com/qe-capacitive-touch

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

Note
The CTSU Drive pulse will be calculated and set by the tooling depending on the selected transfer rate.

Pin Configuration

The TSn pins are sensor pins for the CTSU.

The TSCAP pin is used for an internal low-pass filter and must be connected to an external
decoupling capacitor.

Usage Notes
The CTSU module is a CTSU driver for the Touch module. The CTSU module assumes the access from
the Touch middleware layer, and it is also accessible from an user application.
CTSU and CTSU2 are functionally different, so CTSU and CTSU2 are described in this application note
as below.
Common description for CTSU and CTSU2 -> CTSU
Description only for CTSU -> CTSU1
Description only for CTSU2 -> CTSU2
Without mention, it means the common description for CTSU and CTSU2.

Functions

The CTSU module supports the following functions.

Measurements and Obtaining Data

Measurements can be started by a software trigger or by an external event triggered by the Event
Link Controller (ELC).
As the measurement process is carried out by the CTSU2 peripheral, it does not use up main
processor processing time.
The CTSU module processes INTCTSUWR and INTCTSURD if generated during a measurement. The
data transfer controller (DTC) can also be used for these processes.
When the measurement complete interrupt (INTCTSUFN) process is complete, the application is
notified in a callback function. Make sure you obtain the measurement results before the next
measurement is started as internal processes are also executed when a measurement is completed.
Start the measurement with API function R_CTSU_ScanStart().
Obtain the measurement results with API function R_CTSU_DataGet().

Sensor ICO Correction function

The CTSU2 peripheral has a built-in correction circuit to handle the potential microvariations related
to the manufacturing process of the sensor ICO MCU.
The module temporarily transitions to the correction process during initialization after power is
turned on. In the correction process, the correction circuit is used to generate a correction coefficient
(factor) to ensure accurate sensor measurement values.
When temperature correction is enabled, an external resistor connected to a TS terminal is used to
periodically update the correction coefficient. By using an external resistor that is not dependent on
temperature, you can even correct the temperature drift of the sensor ICO.

Initial Offset Adjustment

The CTSU2 peripheral was designed with a built-in offset current circuit in consideration of the
amount of change in current due to touch. The offset current circuit cancels enough of the parasitic

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 771 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

capacitance for it to fit within the sensor ICO dynamic range.
This module automatically adjusts the offset current setting. As the adjustment uses the normal
measurement process, R_CTSU_ScanStart() and R_CTSU_DataGet() must be repeated several times
after startup. Because the ctsu_element_cfg_t member 'so' is the starting point for adjustments, you
can set the appropriate value for 'so' in order to reduce the number of times the two functions must
be run to complete the adjustment. Normally, the value used for 'so' is a value adjusted by QE for
Capacitive Touch.
For CTSU2, this feature can be turned off in the config.

Random Pulse Frequency Measurement (CTSU1)

The CTSU1 peripheral measures at one drive frequency.
The drive frequency determines the amperage to the electrode and generally uses the value tuned
with QE for Capacitive Touch.
The drive frequency is calculated as below.
It is determined by PCLK frequency input to CTSU, CTSU Count Source Select bit(CTSUCLK), and
CTSU Sensor Drive pulse Division Control bit(CTSUSDPA). For example, If it is set PCLK =32MHz,
CTSUCLK = PLCK/2, and CTSUSDPA = 1/16, then drive frequency is 0.5MHz. CTSUSDPA can change
for each TS port.

Figure 150: Drive Frequency Settings

 The actual drive pulse is phase-shifted and frequency-spread with respect to the clock based on the
drive frequency as a measure against external environmental noise. This module is fixed at
initialization and sets the following.
CTSUSOFF = 0,CTSUSSMOD = 0,CTSUSSCNT = 3

Multi-frequency Measurements (CTSU2)

The CTSU2 peripheral can measure in one of four drive frequencies to avoid synchronous noise.
With the default settings, the module takes measurements at three different frequencies. After
standardizing the results obtained at the three frequencies in accordance with the first frequency
reference value, the measured value is determined based on majority in a process referred to as
'normalization.'
When this normalization is turned off in the config settings, the user can use the results of these
three frequencies as noise filters. However, the three frequencies cannot be tied with the Touch
module.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 772 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

Figure 151: Multi-frequency Measurements

 Drive frequency is determined based on the config settings. The module sets registers according to
the config settings, and sets the three drive frequencies.
Drive frequency is calculated in the following equation:
(PCLKB frequency / CLK / STCLK) x SUMULTIn / 2 / SDPA : n = 0, 1, 2
The figure below shows the settings for generating a 2MHz drive frequency when the PCLKB
frequency is 32 MHz. SDPA can be set for each touch interface configuration.

Figure 152: Drive Frequency Settings

Shield Function(CTSU2)

The CTSU2 peripheral has a built-in function that outputs a shield signal in phase with the drive pulse
from the shield terminal and the non-measurement terminal in order to shield against external
influences while suppressing any increase in parasitic capacitance. This function can only be used
during self-capacitance measurements.
This module allows the user to set a shield for each touch interface configuration.
For example, for the electrode configuration shown in , the members of ctsu_cfg_t should be set as
follows. Other members have been omitted for the example.
.txvsel = CTSU_TXVSEL_INTERNAL_POWER,
.txvsel2 = CTSU_TXVSEL_MODE,
.md = CTSU_MODE_SELF_MULTI_SCAN,
.posel = CTSU_POSEL_SAME_PULSE,
.ctsuchac0 = 0x0F,
.ctsuchtrc0 = 0x08,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 773 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

Figure 153: Example of Shield Electrode Structure

Measurement Error Message

When the CTSU2 peripheral detects an abnormal measurement, it sets the status register bit to 1.
In the measurement complete interrupt process, the module reads ICOMP1, ICOMP0, and SENSOVF
of the status register and notifies the results in the callback function. The status register is reset
after the contents are read. For more details on abnormal measurements, refer to 'member event' in
the ctsu_callback_args_t callback function argument.

Moving Average

This function calculates the moving average of the measured results.
Set the number of times the moving average should be calculated in the config settings.

Diagnosis Function

The CTSU peripheral has a built-in function that diagnoses its own inner circuit. This diagnosis
function provides the API for diagnosing the inner circuit.
The diagnostic requirements are different for CTSU1 and CTSU2 providing 5 types of diagnosis for
CTSU1 and 9 types for CTSU2.
The diagnosis function is executed by calling the API function. This is executed independently from
the other measurements and does not affect them.
To enable the diagnosis function, set CTSU_CFG_DIAG_SUPPORT_ENABLE to 1.
For CTSU1, a 27pF condenser should be connected externally.
For CTSU2, use Analog to Digital Converter (r_adc).

Measurement Mode

This module supports all three modes offered by the CTSU2 peripheral: self-capacitance, mutual
capacitance, and current measurement modes. The temperature correction mode is also offered as a
mode for updating the correction coefficient.

Self-capacitance Mode

The self-capacitance mode is used to measure the capacitance of each terminal (TS).
The CTSU2 peripheral measures the terminals in ascending order according to the TS numbers, then
stores the data. For example, even if you want to use TS5, TS8, TS2, TS3 and TS6 in your application
in that order, they will still be measured and stored in the order of TS2, TS3, TS5, TS6, and TS8.
Therefore, you will need to reference buffer indexes [2], [4], [0], [1], and [3].

[CTSU1]
In default settings, the measurement period for each TS is wait-time plus approximately 526us.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 774 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

Figure 154: Self-capacitance Measurement Period (CTSU1)

 [CTSU2]
In default settings, the measurement period for each TS is approximately 576us.

Figure 155: Self-capacitance Measurement Period (CTSU2)

Mutual Capacitance Mode

The mutual capacitance mode is used to measure the capacitance generated between the receive
TS (Rx) and transmit TS (Tx), and therefore requires at least two terminals.
The CTSU2 peripheral measures all specified combinations of Rx and Tx. For example, when Rx is
TS1 and TS3, and Tx is TS2, TS7 and TS4, the combinations are measured in the following order and
the data is stored.
TS3-TS2, TS3-TS4, TS3-TS7, TS10-TS2, TS10-TS4, TS10-TS7
To measure the mutual capacitance generated between electrodes, the CTSU2 peripheral performs
the measurement process on the same electrode twice.
The mutual capacitance is obtained by inverting the phase relationship of the pulse output and
switched capacitor in the primary and secondary measurements, and calculating the difference
between the two measurements. This module does not calculate the difference, but outputs the
secondary measured result.
[CTSU1]
In default settings, the measurement period for each TS is twice of wait-time plus approximately
526us.
[CTSU2]
In default settings, the measurement period for each TS is approximately 1152us.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 775 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

Figure 156: Mutual-capacitance Measurement Period

Mutual-capacitance parallel scan mode(CTSU2)

This mode provides fast measurement time by parallel scanning the RX lines with a CFC circuit.
Operation is otherwise identical to normal CTSU mutual scanning.

Scan Order
The hardware scans all RX pins simultaneously for each TX pin.
For example, if sensors TS10, TS11, and TS03 are specified as RX sensors, and
sensors TS02, TS07, and TS04 are specified as TX sensors, the hardware will scan
them in the following sensor-pair order:
TS02-(TS03, TS10, TS11), TS04-(TS03, TS10, TS11), TS07-(TS03, TS10, TS11)

Element
An element refers to the index of a sensor-pair within the scan order. Using the
previous example, TS07-TS10 is element 7.

Scan Time
Because the RX lines are scanned in parallel, CFC mutual-capacitance scan is the
same amount of times faster than a basic mutual matrix scan as the number of RX
lines. In other words, on a matrix with N receive lines, CFC mutual scanning is N
times faster than basic mutual scanning. Set CTSU_MODE_MUTUAL_CFC_SCAN to
"md" of ctsu_cfg_t.
Also, add the number of matrix used for this measurement to
CTSU_CFG_NUM_MUTUAL_ELEMENTS. In addition, set the number of
CTSU_CFG_NUM_CFC and CTSU_CFG_NUM_CFC_TX.
For details, refer to the configuration and sample application output by QE for
Capacitive Touch.

Current Measurement Mode(CTSU2)

The current measurement mode is used to measure the minute current input to the TS terminal. The
order of measurement and data storage is the same as that of the self-capacitance mode. As this
does not involve the switched capacitor operation, the measurement is only performed once. The
measurement period for one TS under default settings is approximately 256us. The current
measurement mode requires a longer stable wait time than the other modes, so the SST is set to 63.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 776 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

Figure 157: Current Measurement Period

Temperature Correction Mode(CTSU2)

The temperature correction mode is used to periodically update the correction coefficient using an
external resistor connected to a TS terminal. This involves three processes as described below. Also
refer to the timing chart in Figure of Temperature Correction Measurement Timing Chart.

1. Measure the correction circuit. One set comprises twelve measurements.

2. Measure the current when TSCAP voltage is applied to the external resistor to create a
correction coefficient based on an external resistor that does not depend on temperature.
Execute the next measurement after the previous measurement set is completed (as
described in step 1).

3. Flow offset current to the external resistor and measure the voltage with the ADC. This will
adjust the RTRIM register and handle the temperature drift of the internal reference
resistor. In the config settings, set the number of times step 2 should be executed before
carrying out this measurement.

Figure 158: Temperature Correction Measurement Timing Chart

Diagnosis Mode

The diagnosis mode is a mode in which various internal measurement values are scanned by using
this diagnosis function R_CTSU_Diagnosis().

Measurement Timing

Measurements are initiated by a software trigger or an external event which is triggered by the
Event Link Controller (ELC).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 777 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

The most common method is using a timer to carry out periodic measurements. Make sure to set the
timer interval to allow the measurement and internal value update processes to complete before the
next measurement period. The measurement period differs according to touch interface
configuration and measurement mode.
The execution timing of software triggers and external triggers differ slightly.
Since a software trigger sets the start flag after setting the touch interface configuration with
R_CTSU_ScanStart(), there is a slight delay after the timer event occurrence. However, as the delay
is much smaller than the measurement period, a software trigger is recommended for most
instances as it is easy to set.
An external trigger is recommended for applications in which this slight delay is not acceptable or
that require low-power consumption operations. When using an external trigger with multiple touch
interface configurations, use R_CTSU_ScanStart() to set another touch interface configuration after
one measurement is completed.

TrustZone Support

In r_ctsu and rm_touch module, Non-Secure Callable Guard Functions are only generated from QE for
Capacitive Touch. QE can be used for tuning in secure or flat project, but not in non-secure project. If
you want to use in non-secure project, copy the output file from secure or flat project. Refer to QE
Help for more information.

Examples
Basic Example

This is a basic example of minimal use of the CTSU in an application.

volatile bool g_scan_flag = false;

void ctsu_callback (ctsu_callback_args_t * p_args)

{

 if (CTSU_EVENT_SCAN_COMPLETE == p_args->event)

 {

 g_scan_flag = true;

 }

}

void ctsu_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS];

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 778 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Multi-configuration Example

This is a optional example of using both Self-capacitance and Mutual-capacitance configurations in
the same project.

void ctsu_optional_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS + (CTSU_CFG_NUM_MUTUAL_ELEMENTS * 2)];

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 assert(FSP_SUCCESS == err);

 err = R_CTSU_Open(&g_ctsu_ctrl_mutual, &g_ctsu_cfg_mutual);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 779 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

 g_scan_flag = false;

 R_CTSU_ScanStart(&g_ctsu_ctrl_mutual);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 err = R_CTSU_DataGet(&g_ctsu_ctrl_mutual, data);

 assert(FSP_SUCCESS == err);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Data Structures

struct ctsu_ctsuwr_t

struct ctsu_self_buf_t

struct ctsu_mutual_buf_t

struct ctsu_correction_info_t

struct ctsu_instance_ctrl_t

Enumerations

enum ctsu_state_t

enum ctsu_tuning_t

enum ctsu_correction_status_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 780 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

enum ctsu_range_t

Data Structure Documentation

◆ ctsu_ctsuwr_t

struct ctsu_ctsuwr_t

CTSUWR write register value

Data Fields

uint16_t ctsussc Copy from (ssdiv << 8) by
Open API.

uint16_t ctsuso0 Copy from ((snum << 10) | so)
by Open API.

uint16_t ctsuso1 Copy from (sdpa << 8) by Open
API. ICOG and RICOA is set
recommend value.

◆ ctsu_self_buf_t

struct ctsu_self_buf_t

Scan buffer data formats (Self)

Data Fields

uint16_t sen Sensor counter data.

uint16_t ref Reference counter data (Not
used)

◆ ctsu_mutual_buf_t

struct ctsu_mutual_buf_t

Scan buffer data formats (Mutual)

Data Fields

uint16_t pri_sen Primary sensor data.

uint16_t pri_ref Primary reference data (Not
used)

uint16_t snd_sen Secondary sensor data.

uint16_t snd_ref Secondary reference data (Not
used)

◆ ctsu_correction_info_t

struct ctsu_correction_info_t

Correction information

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 781 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

ctsu_correction_status_t status Correction status.

ctsu_ctsuwr_t ctsuwr Correction scan parameter.

volatile ctsu_self_buf_t scanbuf Correction scan buffer.

uint16_t first_val 1st correction value

uint16_t second_val 2nd correction value

uint32_t first_coefficient 1st correction coefficient

uint32_t second_coefficient 2nd correction coefficient

uint32_t ctsu_clock CTSU clock [MHz].

◆ ctsu_instance_ctrl_t

struct ctsu_instance_ctrl_t

CTSU private control block. DO NOT MODIFY. Initialization occurs when R_CTSU_Open() is called.

Data Fields

uint32_t open

 Whether or not driver is open.

volatile ctsu_state_t state

 CTSU run state.

ctsu_cap_t cap

 CTSU Scan Start Trigger Select.

ctsu_md_t md

 CTSU Measurement Mode Select(copy to cfg)

ctsu_tuning_t tuning

 CTSU Initial offset tuning status.

uint16_t num_elements

 Number of elements to scan.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 782 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

uint16_t wr_index

 Word index into ctsuwr register array.

uint16_t rd_index

 Word index into scan data buffer.

uint8_t * p_tuning_count

 Pointer to tuning count of each element. g_ctsu_tuning_count[] is set
by Open API.

int32_t * p_tuning_diff

 Pointer to difference from base value of each element.
g_ctsu_tuning_diff[] is set by Open API.

uint16_t average

 CTSU Moving average counter.

uint16_t num_moving_average

 Copy from config by Open API.

uint8_t ctsucr1

 Copy from (atune1 << 3, md << 6) by Open API. CLK, ATUNE0, CSW,
and PON is set by HAL driver.

ctsu_ctsuwr_t * p_ctsuwr

 CTSUWR write register value. g_ctsu_ctsuwr[] is set by Open API.

ctsu_self_buf_t * p_self_raw

 Pointer to Self raw data. g_ctsu_self_raw[] is set by Open API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 783 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

uint16_t * p_self_corr

 Pointer to Self correction data. g_ctsu_self_corr[] is set by Open API.

uint16_t * p_self_data

 Pointer to Self moving average data. g_ctsu_self_data[] is set by
Open API.

ctsu_mutual_buf_t * p_mutual_raw

 Pointer to Mutual raw data. g_ctsu_mutual_raw[] is set by Open API.

uint16_t * p_mutual_pri_corr

 Pointer to Mutual primary correction data. g_ctsu_self_corr[] is set by
Open API.

uint16_t * p_mutual_snd_corr

 Pointer to Mutual secondary correction data. g_ctsu_self_corr[] is set
by Open API.

uint16_t * p_mutual_pri_data

 Pointer to Mutual primary moving average data.
g_ctsu_mutual_pri_data[] is set by Open API.

uint16_t * p_mutual_snd_data

 Pointer to Mutual secondary moving average data.
g_ctsu_mutual_snd_data[] is set by Open API.

ctsu_correction_info_t * p_correction_info

 Pointer to correction info.

ctsu_txvsel_t txvsel

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 784 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

 CTSU Transmission Power Supply Select.

ctsu_txvsel2_t txvsel2

 CTSU Transmission Power Supply Select 2 (CTSU2 Only)

uint8_t ctsuchac0

 TS00-TS07 enable mask.

uint8_t ctsuchac1

 TS08-TS15 enable mask.

uint8_t ctsuchac2

 TS16-TS23 enable mask.

uint8_t ctsuchac3

 TS24-TS31 enable mask.

uint8_t ctsuchac4

 TS32-TS39 enable mask.

uint8_t ctsuchtrc0

 TS00-TS07 mutual-tx mask.

uint8_t ctsuchtrc1

 TS08-TS15 mutual-tx mask.

uint8_t ctsuchtrc2

 TS16-TS23 mutual-tx mask.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 785 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

uint8_t ctsuchtrc3

 TS24-TS31 mutual-tx mask.

uint8_t ctsuchtrc4

 TS32-TS39 mutual-tx mask.

uint16_t self_elem_index

 self element index number for Current instance.

uint16_t mutual_elem_index

 mutual element index number for Current instance.

uint16_t ctsu_elem_index

 CTSU element index number for Current instance.

ctsu_cfg_t const * p_ctsu_cfg

 Pointer to initial configurations.

IRQn_Type write_irq

 Copy from config by Open API. CTSU_CTSUWR interrupt vector.

IRQn_Type read_irq

 Copy from config by Open API. CTSU_CTSURD interrupt vector.

IRQn_Type end_irq

 Copy from config by Open API. CTSU_CTSUFN interrupt vector.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 786 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

void(* p_callback)(ctsu_callback_args_t *)

 Callback provided when a CTSUFN occurs.

ctsu_event_t error_status

 error status variable to send to QE for serial tuning.

ctsu_callback_args_t * p_callback_memory

 Pointer to non-secure memory that can be used to pass arguments
to a callback in non-secure memory.

void const * p_context

 Placeholder for user data.

Enumeration Type Documentation

◆ ctsu_state_t

enum ctsu_state_t

CTSU run state

Enumerator

CTSU_STATE_INIT Not open.

CTSU_STATE_IDLE Opened.

CTSU_STATE_SCANNING Scanning now.

CTSU_STATE_SCANNED Scan end.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 787 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

◆ ctsu_tuning_t

enum ctsu_tuning_t

CTSU Initial offset tuning status

Enumerator

CTSU_TUNING_INCOMPLETE Initial offset tuning incomplete.

CTSU_TUNING_COMPLETE Initial offset tuning complete.

◆ ctsu_correction_status_t

enum ctsu_correction_status_t

CTSU Correction status

Enumerator

CTSU_CORRECTION_INIT Correction initial status.

CTSU_CORRECTION_RUN Correction scan running.

CTSU_CORRECTION_COMPLETE Correction complete.

CTSU_CORRECTION_ERROR Correction error.

◆ ctsu_range_t

enum ctsu_range_t

CTSU range definition

Enumerator

CTSU_RANGE_20UA 20uA mode

CTSU_RANGE_40UA 40uA mode

CTSU_RANGE_80UA 80uA mode

CTSU_RANGE_160UA 160uA mode

CTSU_RANGE_NUM number of range

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 788 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

◆ R_CTSU_Open()

fsp_err_t R_CTSU_Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

Opens and configures the CTSU driver module. Implements ctsu_api_t::open.

Example:

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note
In the first Open, measurement for correction works, and it takes several tens of milliseconds.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 789 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

◆ R_CTSU_ScanStart()

fsp_err_t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires. If initial offset tuning is enabled,
The first several calls are used to tuning for the sensors. Before starting the next scan, first get the
data with R_CTSU_DataGet(). If a different control block scan should be run, check the scan is
complete before executing. Implements ctsu_api_t::scanStart.

Example:

 while (true)

 {

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance or other.

FSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 790 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

◆ R_CTSU_DataGet()

fsp_err_t R_CTSU_DataGet (ctsu_ctrl_t *const p_ctrl, uint16_t * p_data)

This function gets the sensor values as scanned by the CTSU. If initial offset tuning is enabled, The
first several calls are used to tuning for the sensors. Implements ctsu_api_t::dataGet.

Example:

 while (true)

 {

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 assert(FSP_SUCCESS == err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

FSP_ERR_CTSU_DIAG_NOT_YET Diagnosis of data collected no yet.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 791 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

◆ R_CTSU_ScanStop()

fsp_err_t R_CTSU_ScanStop (ctsu_ctrl_t *const p_ctrl)

This function scan stops the sensor as scanning by the CTSU. Implements ctsu_api_t::scanStop.

Return values
FSP_SUCCESS CTSU successfully scan stop.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ R_CTSU_CallbackSet()

fsp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t *const p_api_ctrl, void(*)(ctsu_callback_args_t *)
p_callback, void const *const p_context, ctsu_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
ctsu_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 792 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

◆ R_CTSU_Diagnosis()

fsp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t *const p_ctrl)

Diagnosis the CTSU peripheral. Implements ctsu_api_t::diagnosis.

Example:

 err = R_CTSU_Diagnosis(&g_ctsu_ctrl_diagnosis);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

FSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE Diagnosis of LDO over voltage failed.

FSP_ERR_CTSU_DIAG_CCO_HIGH Diagnosis of CCO into 19.2uA failed.

FSP_ERR_CTSU_DIAG_CCO_LOW Diagnosis of CCO into 2.4uA failed.

FSP_ERR_CTSU_DIAG_SSCG Diagnosis of SSCG frequency failed.

FSP_ERR_CTSU_DIAG_DAC Diagnosis of non-touch count value failed.

FSP_ERR_CTSU_DIAG_OUTPUT_VOLTAGE Diagnosis of LDO output voltage failed.

FSP_ERR_CTSU_DIAG_OVER_VOLTAGE Diagnosis of over voltage detection circuit
failed.

FSP_ERR_CTSU_DIAG_OVER_CURRENT Diagnosis of over current detection circuit
failed.

FSP_ERR_CTSU_DIAG_LOAD_RESISTANCE Diagnosis of LDO internal resistance value
failed.

FSP_ERR_CTSU_DIAG_CURRENT_SOURCE Diagnosis of LDO internal resistance value
failed.

FSP_ERR_CTSU_DIAG_SENSCLK_GAIN Diagnosis of SENSCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_SUCLK_GAIN Diagnosis of SUCLK frequency gain failed.

FSP_ERR_CTSU_DIAG_CLOCK_RECOVERY Diagnosis of SUCLK clock recovery function
failed.

FSP_ERR_CTSU_DIAG_CFC_GAIN Diagnosis of CFC oscillator gain failed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 793 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

◆ R_CTSU_Close()

fsp_err_t R_CTSU_Close (ctsu_ctrl_t *const p_ctrl)

Disables specified CTSU control block. Implements ctsu_api_t::close.

Return values
FSP_SUCCESS CTSU successfully configured.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

4.2.13 Digital to Analog Converter (r_dac)
Modules

Functions

fsp_err_t R_DAC_Open (dac_ctrl_t *p_api_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t R_DAC_Write (dac_ctrl_t *p_api_ctrl, uint16_t value)

fsp_err_t R_DAC_Start (dac_ctrl_t *p_api_ctrl)

fsp_err_t R_DAC_Stop (dac_ctrl_t *p_api_ctrl)

fsp_err_t R_DAC_Close (dac_ctrl_t *p_api_ctrl)

Detailed Description

Driver for the DAC12 peripheral on RA MCUs. This module implements the DAC Interface.

Overview
Features

The DAC module outputs one of 4096 voltage levels between the positive and negative reference
voltages.

Supports setting left-justified or right-justified 12-bit value format for the 16-bit input data
registers
Supports output amplifiers on selected MCUs
Supports charge pump on selected MCUs
Supports synchronization with the Analog-to-Digital Converter (ADC) module

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 794 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac)

Configuration
Note

For MCUs supporting more than one channel, the following configuration options are shared by all the DAC
channels:

Synchronize with ADC
Data Format
Charge Pump

Build Time Configurations for r_dac

The following build time configurations are defined in fsp_cfg/r_dac_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Analog > DAC Driver on r_dac

This module can be added to the Stacks tab via New Stack > Driver > Analog > DAC Driver on r_dac.
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_dac0 Module name.

Channel Value must be an
integer greater than or
equal to 0

0 Specify the hardware
channel.

Synchronize with ADC Enabled
Disabled

Disabled Enable DA/AD
synchronization.

Data Format Right Justified
Left Justified

Right Justified Specify the DAC data
format.

Output Amplifier MCU Specific Options Enable the DAC output
amplifier.

Charge Pump (Requires
MOCO active)

MCU Specific Options Enable the DAC charge
pump.

ELC Trigger Source MCU Specific Options ELC event source that
will trigger the DAC to
start a conversion.

Clock Configuration

The DAC peripheral module uses PCLKB as its clock source.

Pin Configuration

The DAn pins are used as analog outputs. Each DAC channel has one output pin.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 795 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac)

The AVCC0 and AVSS0 pins are power and ground supply pins for the DAC and ADC.

The VREFH and VREFL pins are top and ground voltage reference pins for the DAC and ADC.

Usage Notes
Charge Pump

The charge pump must be enabled when using DAC pin output while operating at AVCC < 2.7V.

Note
The MOCO must be running to use the charge pump.
If the DAC output is to be routed to an internal signal, do not enable the charge pump.

Synchronization with ADC

When ADC synchronization is enabled and an ADC conversion is in progress, if a DAC conversion is
started it will automatically be delayed until after the ADC conversion is complete.

Limitations

For MCUs supporting ADC unit 1:
Once synchronization between DAC and ADC unit 1 is turned on during
R_DAC_Open synchronization cannot be turned off by the driver. In order to
desynchronize DAC with ADC unit 1, manually clear DAADSCR.DAADST to 0 when
the ADCSR.ADST bit is 0 and ADC unit 1 is halted.
The DAC module can only be synchronized with ADC unit 1.
For MCUs having more than 1 DAC channel, both channels are synchronized with
ADC unit 1 if synchronization is enabled.

Pin configuration does not support setting ASEL and PSEL bit fields for the same pin. In
order to set the PSEL when DAC pin is enabled, maually update the setting of the DAC pin
to .pin_cfg = ((uint32_t)IOPORT_CFG_ANALOG_ENABLE | IOPORT_CFG_PERIPHERAL_PIN |
IOPORT_PERIPHERAL_CAC_AD)}.

Examples
Basic Example

This is a basic example of minimal use of the R_DAC in an application. This example shows how this
driver can be used for basic Digital to Analog Conversion operations.

void basic_example (void)

{

 fsp_err_t err;

 uint16_t value;

 /* Pin configuration: Output enable DA0 as Analog. */

 /* Initialize the DAC channel */

 err = R_DAC_Open(&g_dac_ctrl, &g_dac_cfg);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 796 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac)

 assert(FSP_SUCCESS == err);

 value = (uint16_t) DAC_EXAMPLE_VALUE_ABC;

 err = R_DAC_Write(&g_dac_ctrl, value);

 assert(FSP_SUCCESS == err);

 err = R_DAC_Start(&g_dac_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct dac_instance_ctrl_t

struct dac_extended_cfg_t

Data Structure Documentation

◆ dac_instance_ctrl_t

struct dac_instance_ctrl_t

DAC instance control block.

◆ dac_extended_cfg_t

struct dac_extended_cfg_t

DAC extended configuration

Data Fields

bool enable_charge_pump Enable DAC charge pump
available on selected MCUs.

bool output_amplifier_enabled Output amplifier enable
available on selected MCUs.

dac_data_format_t data_format Data format.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 797 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac)

◆ R_DAC_Open()

fsp_err_t R_DAC_Open (dac_ctrl_t * p_api_ctrl, dac_cfg_t const *const p_cfg)

Perform required initialization described in hardware manual. Implements dac_api_t::open.
Configures a single DAC channel, starts the channel, and provides a handle for use with the DAC
API Write and Close functions. Must be called once prior to calling any other DAC API functions.
After a channel is opened, Open should not be called again for the same channel without calling
Close first.

Return values
FSP_SUCCESS The channel was successfully opened.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. One or both of the following
parameters may be NULL: p_api_ctrl
or p_cfg

2. data_format value in p_cfg is out of
range.

3. Extended configuration structure is
set to NULL for MCU supporting
charge pump.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel ID requested in p_cfg may not
available on the devices.

FSP_ERR_ALREADY_OPEN The control structure is already opened.

◆ R_DAC_Write()

fsp_err_t R_DAC_Write (dac_ctrl_t * p_api_ctrl, uint16_t value)

Write data to the D/A converter and enable the output if it has not been enabled.

Return values
FSP_SUCCESS Data is successfully written to the D/A

Converter.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 798 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac)

◆ R_DAC_Start()

fsp_err_t R_DAC_Start (dac_ctrl_t * p_api_ctrl)

Start the D/A conversion output if it has not been started.

Return values
FSP_SUCCESS The channel is started successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_IN_USE Attempt to re-start a channel.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

◆ R_DAC_Stop()

fsp_err_t R_DAC_Stop (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion and disable the output signal.

Return values
FSP_SUCCESS The control is successfully stopped.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

◆ R_DAC_Close()

fsp_err_t R_DAC_Close (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion, stop output, and close the DAC channel.

Return values
FSP_SUCCESS The channel is successfully closed.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

4.2.14 Digital to Analog Converter (r_dac8)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 799 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac8)

Modules

Functions

fsp_err_t R_DAC8_Open (dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t R_DAC8_Close (dac_ctrl_t *const p_ctrl)

fsp_err_t R_DAC8_Write (dac_ctrl_t *const p_ctrl, uint16_t value)

fsp_err_t R_DAC8_Start (dac_ctrl_t *const p_ctrl)

fsp_err_t R_DAC8_Stop (dac_ctrl_t *const p_ctrl)

Detailed Description

Driver for the DAC8 peripheral on RA MCUs. This module implements the DAC Interface.

Overview
Features

The DAC8 module outputs one of 256 voltage levels between the positive and negative reference
voltages. DAC8 on selected MCUs have below features

Charge pump control
Synchronization with the Analog-to-Digital Converter (ADC) module
Multiple Operation Modes

Normal
Real-Time (Event Link)

Configuration
Note

For MCUs supporting more than one channel, the following configuration options are shared by all the DAC8
channels:

Synchronize with ADC
Charge Pump

Build Time Configurations for r_dac8

The following build time configurations are defined in fsp_cfg/r_dac8_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 800 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac8)

Configurations for Driver > Analog > DAC8 Driver on r_dac8

This module can be added to the Stacks tab via New Stack > Driver > Analog > DAC8 Driver on
r_dac8.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_dac8_0 Module name.

Channel Value must be an
integer greater than or
equal to 0

0 Specify the hardware
channel.

D/A A/D Synchronous
Conversion

MCU Specific Options Synchronize the DAC8
update with the ADC to
reduce interference
with A/D conversions.

DAC Mode MCU Specific Options Select the DAC
operating mode

Real-time Trigger Event MCU Specific Options Specify the event used
to trigger conversion in
Real-time mode. This
setting is only valid
when Real-time mode
is enabled.

Charge Pump (Requires
MOCO active)

MCU Specific Options Enable the DAC charge
pump.

Clock Configuration

The DAC8 peripheral module uses the PCLKB as its clock source.

Pin Configuration

The DA8_n pins are used as analog outputs. Each DAC8 channel has one output pin.

The AVCC0 and AVSS0 pins are power and ground supply and reference pins for the DAC8.

Usage Notes
Charge Pump

The charge pump must be enabled when using DAC8 pin output while operating at AVCC < 2.7V.

Note
The MOCO must be running to use the charge pump.
If DAC8 output is to be routed to an internal signal, do not enable the charge pump.

Synchronization with ADC

When ADC synchronization is enabled and an ADC conversion is in progress, if a DAC8 conversion is
started it will automatically be delayed until after the ADC conversion is complete.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 801 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac8)

Real-time Mode

When Real-time mode is selected, the DAC8 will perform a conversion each time the selected ELC
event is received.

Limitations

Synchronization between DAC8 and ADC is activated when calling R_DAC8_Open. At this
point synchronization cannot be deactivated by the driver. In order to desynchronize DAC8
with ADC, manually clear DACADSCR.DACADST to 0 while the ADCSR.ADST bit is 0 and the
ADC is halted.
For MCUs having more than 1 DAC8 channel, both channels are synchronized with ADC if
synchronization is enabled.
Pin configuration does not support setting ASEL and PSEL bit fields for the same pin. In
order to set the PSEL when DAC pin is enabled, maually update the setting of the DAC pin
to .pin_cfg = ((uint32_t)IOPORT_CFG_ANALOG_ENABLE | IOPORT_CFG_PERIPHERAL_PIN |
IOPORT_PERIPHERAL_CAC_AD)).

Examples
Basic Example

This is a basic example of minimal use of the R_DAC8 in an application. This example shows how this
driver can be used for basic 8 bit Digital to Analog Conversion operations.

dac8_instance_ctrl_t g_dac8_ctrl;

dac_cfg_t g_dac8_cfg =

{

 .channel = 0U,

 .ad_da_synchronized = false,

 .p_extend = &g_dac8_cfg_extend

};

void basic_example (void)

{

 fsp_err_t err;

 uint16_t value;

 /* Pin configuration: Output enable DA8_0(RA2A1) as Analog. */

 /* Initialize the DAC8 channel */

 err = R_DAC8_Open(&g_dac8_ctrl, &g_dac8_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 value = (uint8_t) DAC8_EXAMPLE_VALUE_ABC;

 /* Write value to DAC module */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 802 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac8)

 err = R_DAC8_Write(&g_dac8_ctrl, value);

 assert(FSP_SUCCESS == err);

 /* Start DAC8 conversion */

 err = R_DAC8_Start(&g_dac8_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct dac8_instance_ctrl_t

struct dac8_extended_cfg_t

Enumerations

enum dac8_mode_t

Data Structure Documentation

◆ dac8_instance_ctrl_t

struct dac8_instance_ctrl_t

DAC8 instance control block. DO NOT INITIALIZE.

◆ dac8_extended_cfg_t

struct dac8_extended_cfg_t

DAC8 extended configuration

Data Fields

bool enable_charge_pump Enable DAC charge pump.

dac8_mode_t dac_mode DAC mode.

Enumeration Type Documentation

◆ dac8_mode_t

enum dac8_mode_t

Enumerator

DAC8_MODE_NORMAL DAC Normal mode.

DAC8_MODE_REAL_TIME DAC Real-time (event link) mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 803 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac8)

Function Documentation

◆ R_DAC8_Open()

fsp_err_t R_DAC8_Open (dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

Perform required initialization described in hardware manual.

Implements dac_api_t::open.

Configures a single DAC channel. Must be called once prior to calling any other DAC API functions.
After a channel is opened, Open should not be called again for the same channel without calling
Close first.

Return values
FSP_SUCCESS The channel was successfully opened.

FSP_ERR_ASSERTION One or both of the following parameters
may be NULL: p_ctrl or p_cfg

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT An invalid channel was requested.

FSP_ERR_NOT_ENABLED Setting DACADSCR is not enabled when
ADCSR.ADST = 0.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

◆ R_DAC8_Close()

fsp_err_t R_DAC8_Close (dac_ctrl_t *const p_ctrl)

Stop the D/A conversion, stop output, and close the DAC channel.

Return values
FSP_SUCCESS The channel is successfully closed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 804 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Digital to Analog Converter (r_dac8)

◆ R_DAC8_Write()

fsp_err_t R_DAC8_Write (dac_ctrl_t *const p_ctrl, uint16_t value)

Write data to the D/A converter.

Return values
FSP_SUCCESS Data is successfully written to the D/A

Converter.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

FSP_ERR_OVERFLOW Data overflow when data value exceeds
8-bit limit.

◆ R_DAC8_Start()

fsp_err_t R_DAC8_Start (dac_ctrl_t *const p_ctrl)

Start the D/A conversion output.

Return values
FSP_SUCCESS The channel is started successfully.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

FSP_ERR_IN_USE Attempt to re-start a channel.

◆ R_DAC8_Stop()

fsp_err_t R_DAC8_Stop (dac_ctrl_t *const p_ctrl)

Stop the D/A conversion and disable the output signal.

Return values
FSP_SUCCESS The control is successfully stopped.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Channel associated with p_instance_ctrl has
not been opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 805 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

4.2.15 Direct Memory Access Controller (r_dmac)
Modules

Functions

fsp_err_t R_DMAC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

fsp_err_t R_DMAC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
*p_info)

fsp_err_t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

fsp_err_t R_DMAC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start_mode_t mode)

fsp_err_t R_DMAC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_Enable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_Disable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DMAC_InfoGet (transfer_ctrl_t *const p_api_ctrl,
transfer_properties_t *const p_info)

fsp_err_t R_DMAC_Close (transfer_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the DMAC peripheral on RA MCUs. This module implements the Transfer Interface.

Overview
The Direct Memory Access Controller (DMAC) transfers data from one memory location to another
without using the CPU.

Features

Supports multiple transfer modes
Normal transfer
Repeat transfer
Block transfer
Repeat-Block transfer (Not available on all MCUs)

Address increment, decrement, fixed, or offset modes
Triggered by ELC events

Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 806 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

Supports 1, 2, and 4 byte data units

Configuration

Build Time Configurations for r_dmac

The following build time configurations are defined in fsp_cfg/r_dmac_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Transfer > Transfer Driver on r_dmac

This module can be added to the Stacks tab via New Stack > Driver > Transfer > Transfer Driver on
r_dmac .

Configuration Options Default Description

Name Name must be a valid
C symbol

g_transfer0 Module name.

Channel Value must be a non-
negative integer

0 Specify the hardware
channel.

Mode Normal
Repeat
Block
Repeat-Block

Normal Select the transfer
mode. Normal: One
transfer per activation,
transfer ends after
Number of Transfers;
Repeat: One transfer
per activation, Repeat
Area address reset
after Number of
Transfers, transfer
ends after Number of
Blocks; Block: Number
of Blocks per
activation, Repeat Area
address reset after
Number of Transfers,
transfer ends after
Number of Blocks.

Transfer Size 1 Byte
2 Bytes
4 Bytes

2 Bytes Select the transfer size.

Destination Address
Mode

Fixed
Offset addition
Incremented
Decremented

Fixed Select the address
mode for the
destination.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 807 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

Source Address Mode Fixed
Offset addition
Incremented
Decremented

Fixed Select the address
mode for the source.

Repeat Area (Unused in
Normal Mode)

Destination
Source

Source Select the repeat area.
Either the source or
destination address
resets to its initial
value after completing
Number of Transfers in
Repeat or Block mode.

Destination Pointer Manual Entry NULL Specify the transfer
destination pointer.

Source Pointer Manual Entry NULL Specify the transfer
source pointer.

Number of Transfers Value must be a non-
negative integer

1 Specify the number of
transfers for repeat
and normal mode or
block size for repeat-
block transfer mode.

Number of Blocks
(Valid only in
Repeat,Block or Repeat-
Block Mode)

Value must be a non-
negative integer

0 Specify the number of
blocks to transfer in
Repeat,Block or Repeat-
Block mode.

Activation Source MCU Specific Options Select the DMAC
transfer start event. If
no ELC event is chosen
then software start can
be used.

Callback Name must be a valid
C symbol

NULL A user callback that is
called at the end of the
transfer.

Context Manual Entry NULL Pointer to the context
structure passed
through the callback
argument.

Transfer End Interrupt
Priority

MCU Specific Options Select the transfer end
interrupt priority.

Interrupt Frequency Interrupt after
all transfers
have completed
Interrupt after
each block, or
repeat size is
transfered

Interrupt after all
transfers have
completed

Select to have interrupt
after each transfer or
after last transfer.

Offset value (Valid only
when address mode is
\'Offset\')

Value must be a 24 bit
signed integer.

1 Offset value is added
to the address after
each transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 808 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

Source Buffer Size Value must be a non-
negative integer

1 Specify the size of
whole source buffer
(valid only for Repeat-
Block transfer mode
with source address
update mode other
than offset addition).

Clock Configuration

The DMAC peripheral module uses ICLK as the clock source. The ICLK frequency is set by using the
Clocks tab of the RA Configuration editor prior to a build, or by using the CGC module at run-time.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Transfer Modes

The DMAC Module supports three modes of operation.

Normal Mode - In normal mode, a single data unit is transfered every time the configured
ELC event is received by the DMAC channel. A data unit can be 1-byte, 2-bytes, or 4-bytes.
The source and destination addresses can be fixed, increment, decrement, or add an offset
to the next data unit after each transfer. A 16-bit counter decrements after each transfer.
When the counter reaches 0, transfers will no longer be triggered by the ELC event and the
CPU can be interrupted to signal that all transfers have finished.
Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,1024]. When the transfer counter reaches 0, the
counter is reset to its configured value, the repeat area (source or destination address)
resets to its starting address and the block count remaining will decrement by 1. When the
block count reaches 0, transfers will no longer be triggered by the ELC event and the CPU
may be interrupted to signal that all transfers have finished.
Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,1024]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area (source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.
Repeat-Block Mode - In repeat-block mode, the amount of data units transfered by each
interrupt can be set to an integer in the range [1,1024]. The number of blocks to transfer
can be configured to a 16 bit number. If the destination address mode is offset mode,
maximum configurable number of blocks is 0xFFFF for block size(length) of one with data
transfer size as byte,0x7FFF for block size of one with data transfer size as half word and
0x3FFF for block size of one with data size as word. After each block transfer the source
address and the destination address will be incremented or decremented to the next block
address. In case of offset address mode for source address, the source address size is the
total size of source buffer after which the source area is rolled over, block size can be
smaller than the source buffer size.For source address mode as offset mode, the maximum
configurable source buffer size is 0xFFFF for transfer data size of a byte,0x7FFF for transfer
data size of half word and 0x3FFF for transfer data size of word. Repeat-block mode can be
used to implement single ring buffer to multiple ring buffer transfer type design.

Selecting the DTC or DMAC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 809 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

The Transfer API is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC

Repeat Mode Repeats forever
Max repeat size is 256 x
4 bytes

Configurable number of
repeats
Max repeat size is 1024
x 4 bytes

Block Mode Max block size is 256 x
4 bytes

Max block size is 1024 x
4 bytes

Channels One instance per
interrupt

MCU specific (8
channels or less)

Chained Transfers Supported Not Supported

Software Trigger Must use the software
ELC event

Has support for software
trigger without using
software ELC event
Supports TRANSFER_ST
ART_MODE_SINGLE and
TRANSFER_START_MOD
E_REPEAT

Offset Address Mode Not supported Supported

Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured IELSR event IRQ as
the interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

Normal Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer N/A

TRANSFER_IRQ_END Interrupt after last transfer Interrupt after last transfer

Repeat Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer Interrupt after each repeat

TRANSFER_IRQ_END Interrupt after each repeat Interrupt after last transfer

Block Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each block Interrupt after each block

TRANSFER_IRQ_END Interrupt after last block Interrupt after last block

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 810 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

Additional Considerations

The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR_TABLE_SIZE).
The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.
When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between
transfers.

Offset Address Mode

When the source or destination mode is configured to offset mode, a configurable offset is added to
the source or destination pointer after each transfer. The offset is a signed 24 bit number.

Examples
Basic Example

This is a basic example of minimal use of the DMAC in an application. In this case, one or more
events have been routed to the DMAC for handling so it only needs to be enabled to start accepting
transfers.

void dmac_minimal_example (void)

{

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DMAC_Open(&g_transfer_ctrl, &g_transfer_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the DMAC so that it responds to transfer requests. */

 err = R_DMAC_Enable(&g_transfer_ctrl);

 assert(FSP_SUCCESS == err);

}

CRC32 Example

In this example the DMAC is used to feed the CRC peripheral to perform a CRC32 operation.

volatile bool g_transfer_complete = false;

void dmac_callback (dmac_callback_args_t * cb_data)

{

 FSP_PARAMETER_NOT_USED(cb_data);

 g_transfer_complete = true;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 811 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

}

void dmac_crc_example (void)

{

 uint8_t p_src[TRANSFER_LENGTH];

 /* Initialize p_src to [ABC..OP] */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 p_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Set transfer source address to p_src */

 g_transfer_cfg.p_info->p_src = (void *) p_src;

 /* Set transfer destination address to the CRC data input register */

 g_transfer_cfg.p_info->p_dest = (void *) &R_CRC->CRCDIR;

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DMAC_Open(&g_transfer_ctrl, &g_transfer_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable DMAC transfers. */

 (void) R_DMAC_Enable(&g_transfer_ctrl);

 /* Open the CRC module. */

 err = R_CRC_Open(&g_crc_ctrl, &g_crc_cfg);

 assert(FSP_SUCCESS == err);

 /* Clear the transfer complete flag. */

 g_transfer_complete = false;

 /* Trigger the transfer using software. */

 err = R_DMAC_SoftwareStart(&g_transfer_ctrl, TRANSFER_START_MODE_SINGLE);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 /* Wait for transfer complete interrupt */

 }

 /* Get CRC result and perform final XOR. */

 uint32_t crc32;

 (void) R_CRC_CalculatedValueGet(&g_crc_ctrl, &crc32);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 812 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

 crc32 ^= CRC32_FINAL_XOR_VALUE;

 /* Verify that the CRC32 is calculated correctly. */

 /* CRC32("ABCD...NOP") = 0xE0E8FF4D. */

 const uint32_t expected_crc32 = 0xE0E8FF4D;

 if (expected_crc32 != crc32)

 {

 /* Handle any CRC errors. This function should be defined by the user. */

 handle_crc_error();

 }

}

Data Structures

struct dmac_instance_ctrl_t

struct dmac_callback_args_t

struct dmac_extended_cfg_t

Macros

#define DMAC_MAX_NORMAL_TRANSFER_LENGTH

#define DMAC_MAX_REPEAT_TRANSFER_LENGTH

#define DMAC_MAX_BLOCK_TRANSFER_LENGTH

#define DMAC_MAX_REPEAT_COUNT

#define DMAC_MAX_BLOCK_COUNT

Data Structure Documentation

◆ dmac_instance_ctrl_t

struct dmac_instance_ctrl_t

Control block used by driver. DO NOT INITIALIZE - this structure will be initialized in
transfer_api_t::open.

◆ dmac_callback_args_t

struct dmac_callback_args_t

Callback function parameter data.

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 813 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

void const * p_context Placeholder for user data. Set in
r_transfer_t::open function in
transfer_cfg_t.

◆ dmac_extended_cfg_t

struct dmac_extended_cfg_t

DMAC transfer configuration extension. This extension is required.

Data Fields

uint8_t channel

 Channel number, does not apply to all HAL drivers.

IRQn_Type irq

 DMAC interrupt number.

uint8_t ipl

 DMAC interrupt priority.

int32_t offset

 Offset value used with
transfer_addr_mode_t::TRANSFER_ADDR_MODE_OFFSET.

uint16_t src_buffer_size

elc_event_t activation_source

void(* p_callback)(dmac_callback_args_t *cb_data)

void const * p_context

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 814 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

◆ src_buffer_size

uint16_t dmac_extended_cfg_t::src_buffer_size

Source ring buffer size for TRANSFER_MODE_REPEAT_BLOCK.

◆ activation_source

elc_event_t dmac_extended_cfg_t::activation_source

Select which event will trigger the transfer.

Note
Select ELC_EVENT_NONE for software activation in order to use softwareStart and softwareStart to trigger
transfers.

◆ p_callback

void(* dmac_extended_cfg_t::p_callback) (dmac_callback_args_t *cb_data)

Callback for transfer end interrupt.

◆ p_context

void const* dmac_extended_cfg_t::p_context

Placeholder for user data. Passed to the user p_callback in dmac_callback_args_t.

Macro Definition Documentation

◆ DMAC_MAX_NORMAL_TRANSFER_LENGTH

#define DMAC_MAX_NORMAL_TRANSFER_LENGTH

Max configurable number of transfers in TRANSFER_MODE_NORMAL.

◆ DMAC_MAX_REPEAT_TRANSFER_LENGTH

#define DMAC_MAX_REPEAT_TRANSFER_LENGTH

Max number of transfers per repeat for TRANSFER_MODE_REPEAT.

◆ DMAC_MAX_BLOCK_TRANSFER_LENGTH

#define DMAC_MAX_BLOCK_TRANSFER_LENGTH

Max number of transfers per block in TRANSFER_MODE_BLOCK

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 815 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

◆ DMAC_MAX_REPEAT_COUNT

#define DMAC_MAX_REPEAT_COUNT

Max configurable number of repeats to trasnfer in TRANSFER_MODE_REPEAT

◆ DMAC_MAX_BLOCK_COUNT

#define DMAC_MAX_BLOCK_COUNT

Max configurable number of blocks to transfer in TRANSFER_MODE_BLOCK

Function Documentation

◆ R_DMAC_Open()

fsp_err_t R_DMAC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const *const p_cfg)

Configure a DMAC channel.

Return values
FSP_SUCCESS Successful open.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The configured channel is invalid.

FSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the activation
source is not enabled in the BSP.

FSP_ERR_ALREADY_OPEN The control structure is already opened.

◆ R_DMAC_Reconfigure()

fsp_err_t R_DMAC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t * p_info)

Reconfigure the transfer with new transfer info.

Return values
FSP_SUCCESS Transfer is configured and will start when

trigger occurs.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_ENABLED DMAC is not enabled. The current
configuration must not be valid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 816 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

◆ R_DMAC_Reset()

fsp_err_t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void *volatile
p_dest, uint16_t const num_transfers)

Reset transfer source, destination, and number of transfers.

Return values
FSP_SUCCESS Transfer reset successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_ENABLED DMAC is not enabled. The current
configuration must not be valid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

◆ R_DMAC_SoftwareStart()

fsp_err_t R_DMAC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl, transfer_start_mode_t mode)

If the mode is TRANSFER_START_MODE_SINGLE initiate a single transfer with software. If the mode
is TRANSFER_START_MODE_REPEAT continue triggering transfers until all of the transfers are
completed.

Return values
FSP_SUCCESS Transfer started written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

FSP_ERR_UNSUPPORTED Handle was not configured for software
activation.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 817 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

◆ R_DMAC_SoftwareStop()

fsp_err_t R_DMAC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

Stop software transfers if they were started with TRANSFER_START_MODE_REPEAT.

Return values
FSP_SUCCESS Transfer stopped written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

◆ R_DMAC_Enable()

fsp_err_t R_DMAC_Enable (transfer_ctrl_t *const p_api_ctrl)

Enable transfers for the configured activation source.

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

◆ R_DMAC_Disable()

fsp_err_t R_DMAC_Disable (transfer_ctrl_t *const p_api_ctrl)

Disable transfers so that they are no longer triggered by the activation source.

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 818 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Direct Memory Access Controller (r_dmac)

◆ R_DMAC_InfoGet()

fsp_err_t R_DMAC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t *const p_info)

Set driver specific information in provided pointer.

Return values
FSP_SUCCESS Information has been written to p_info.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

FSP_ERR_ASSERTION An input parameter is invalid.

◆ R_DMAC_Close()

fsp_err_t R_DMAC_Close (transfer_ctrl_t *const p_api_ctrl)

Disable transfer and clean up internal data. Implements transfer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

4.2.16 Data Operation Circuit (r_doc)
Modules

Functions

fsp_err_t R_DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const
p_cfg)

fsp_err_t R_DOC_Close (doc_ctrl_t *const p_api_ctrl)

fsp_err_t R_DOC_StatusGet (doc_ctrl_t *const p_api_ctrl, doc_status_t *const
p_status)

fsp_err_t R_DOC_Write (doc_ctrl_t *const p_api_ctrl, uint16_t data)

fsp_err_t R_DOC_CallbackSet (doc_ctrl_t *const p_api_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 819 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Operation Circuit (r_doc)

void(*p_callback)(doc_callback_args_t *), void const *const
p_context, doc_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the DOC peripheral on RA MCUs. This module implements the DOC Interface.

Overview
Features

The DOC HAL module peripheral is used to compare, add or subtract 16-bit data and can detect the
following events:

A match or mismatch between data values
Overflow of an addition operation
Underflow of a subtraction operation

A user-defined callback can be created to inform the CPU when any of above events occur.

Configuration

Build Time Configurations for r_doc

The following build time configurations are defined in fsp_cfg/r_doc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Monitoring > Data Operation Circuit Driver on r_doc

This module can be added to the Stacks tab via New Stack > Driver > Monitoring > Data Operation
Circuit Driver on r_doc. Non-secure callable guard functions can be generated for this module by
right clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_doc0 Module name.

Event Comparison
mismatch
Comparison
match
Addition
overflow
Subtraction
underflow

Comparison mismatch Select the event that
will trigger the DOC
interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 820 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Operation Circuit (r_doc)

Reference/Initial Data Value must be a 16 bit
integer between 0 and
65535

0 Enter Initial Value for
Addition/Subtraction or
enter reference value
for comparison.

Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) when the
configured DOC event
occurs.

DOC Interrupt Priority MCU Specific Options Select the DOC
interrupt priority.

Clock Configuration

The DOC HAL module does not require a specific clock configuration.

Pin Configuration

The DOC HAL module does not require and specific pin configurations.

Usage Notes
DMAC/DTC Integration

DOC can be used with Direct Memory Access Controller (r_dmac) or Data Transfer Controller (r_dtc)
to write to the input register without CPU intervention. DMAC is more useful for most DOC
applications because it can be started directly from software. To write DOC input data with
DTC/DMAC, set transfer_info_t::p_dest to R_DOC->DODIR.

Examples
Basic Example

This is a basic example of minimal use of the R_DOC in an application. This example shows how this
driver can be used for continuous 16 bit addition operation while reading the result at every overflow
event.

#define DOC_EXAMPLE_VALUE 0xF000

uint32_t g_callback_event_counter = 0;

/* This callback is called when DOC overflow event occurs. It is registered in

doc_cfg_t when R_DOC_Open is

 * called. */

void doc_callback (doc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 821 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Operation Circuit (r_doc)

 g_callback_event_counter++;

}

void basic_example (void)

{

 fsp_err_t err;

 doc_status_t result;

 /* Initialize the DOC module for addition with initial value specified in

doc_cfg_t::doc_data. */

 err = R_DOC_Open(&g_doc_ctrl, &g_doc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write data to the DOC Data Input Register and read the result of addition from

status register when an

 * interrupt occurs. */

 for (int i = 0; i < 5; i++)

 {

 err = R_DOC_Write(&g_doc_ctrl, DOC_EXAMPLE_VALUE);

 assert(FSP_SUCCESS == err);

 if (g_callback_event_counter >= 1)

 {

 /* Read the result of the operation */

 err = R_DOC_StatusGet(&g_doc_ctrl, &result);

 assert(FSP_SUCCESS == err);

 }

 }

}

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 822 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Operation Circuit (r_doc)

◆ R_DOC_Open()

fsp_err_t R_DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const p_cfg)

Opens and configures the Data Operation Circuit (DOC) in comparison, addition or subtraction
mode and sets initial data for addition or subtraction, or reference data for comparison.

Example:

 /* Initialize the DOC module for addition with initial value specified in

doc_cfg_t::doc_data. */

 err = R_DOC_Open(&g_doc_ctrl, &g_doc_cfg);

Return values
FSP_SUCCESS DOC successfully configured.

FSP_ERR_ALREADY_OPEN Module already open.

FSP_ERR_ASSERTION One or more pointers point to NULL or
callback is NULL or the interrupt vector is
invalid.

◆ R_DOC_Close()

fsp_err_t R_DOC_Close (doc_ctrl_t *const p_api_ctrl)

Closes the module driver. Enables module stop mode.

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION Pointer pointing to NULL.

Note
This function will disable the DOC interrupt in the NVIC.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 823 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Operation Circuit (r_doc)

◆ R_DOC_StatusGet()

fsp_err_t R_DOC_StatusGet (doc_ctrl_t *const p_api_ctrl, doc_status_t *const p_status)

Returns the result of addition/subtraction.

Example:

 /* Read the result of the operation */

 err = R_DOC_StatusGet(&g_doc_ctrl, &result);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Status successfully read.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION One or more pointers point to NULL.

◆ R_DOC_Write()

fsp_err_t R_DOC_Write (doc_ctrl_t *const p_api_ctrl, uint16_t data)

Writes to the DODIR - DOC Input Register.

Example:

 err = R_DOC_Write(&g_doc_ctrl, DOC_EXAMPLE_VALUE);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Values successfully written to the registers.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION One or more pointers point to NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 824 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Operation Circuit (r_doc)

◆ R_DOC_CallbackSet()

fsp_err_t R_DOC_CallbackSet (doc_ctrl_t *const p_api_ctrl, void(*)(doc_callback_args_t *)
p_callback, void const *const p_context, doc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
doc_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.17 D/AVE 2D Port Interface (r_drw)
Modules

Driver for the DRW peripheral on RA MCUs. This module is a port of D/AVE 2D.

Overview
Note

The D/AVE 2D Port Interface (D1 layer) is a HAL layer for the D/AVE D2 layer API and does not provide any
interfaces to the user. Consult the TES Dave2D Driver Documentation for further information on using the D2
API.
For cross-platform compatibility purposes the D1 and D2 APIs are not bound by the FSP coding guidelines for
function names and general module functionality.

Configuration
Build Time Configurations for r_drw

The following build time configurations are defined in fsp_cfg/r_drw_cfg.h:

Configuration Options Default Description

Allow Indirect Mode Enabled
Disabled

Enabled Enable indirect mode
to allow no-copy mode
for d2_adddlist (see the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 825 / 2,794

https://www.renesas.com/us/en/document/lbr/tes-dave2d-driver-documentation

Flexible Software Package

User’s Manual
API Reference > Modules > D/AVE 2D Port Interface (r_drw)

TES Dave2D Driver
Documentation for
details).

Memory Allocation Default
Custom

Default Set Memory Allocation
to Default to use built-
in dynamic memory
allocation for the D2
heap. This will use an
RTOS heap if
configured; otherwise,
standard C malloc and
free will be used.
Set to Custom to define
your own allocation
scheme for the D2
heap. In this case, the
developer will need to
define the following
functions:

void * d1_malloc(size_t
size)
void d1_free(void * ptr)

Configurations for Driver > Graphics > D/AVE 2D Port Interface on r_drw

This module can be added to the Stacks tab via New Stack > Driver > Graphics > D/AVE 2D Port
Interface on r_drw.

Configuration Options Default Description

D2 Device Handle
Name

Name must be a valid
C symbol

d2_handle0 Set the name for the
d2_device handle used
when calling D2 layer
functions.

DRW Interrupt Priority MCU Specific Options Select the DRW_INT
(display list
completion) interrupt
priority.

Heap Size

The D1 port layer allows the D2 driver to allocate memory as needed. There are three ways the
driver can accomplish this:

1. Allocate memory using the main heap
2. Allocate memory using a heap provided by an RTOS
3. Allocate memory via user-provided functions

When the "Memory Allocation" configuration option is set to "Default" the driver will use an RTOS
implementation if available and the main heap otherwise. Setting the option to "Custom" allows the
user to define their own scheme using the following prototypes:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 826 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > D/AVE 2D Port Interface (r_drw)

void * d1_malloc(size_t size);

void d1_free(void * ptr);

Warning
If there is no RTOS-based allocation scheme the main heap will be used. Be sure that it is
enabled by setting the "Heap size (bytes)" property under RA Common on the BSP tab of
the RA Configuration editor.

Note
It is recommended to add 32KB of additional heap space for the D2 driver until the actual usage can be determined
in your application.

Interrupt

The D1 port includes one interrupt to handle various events like display list completion or bus error.
This interrupt is managed internally by the D2 driver and no callback function is available.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the DRW engine:

The DRW module supports two additional interrupt types - bus error and render complete.
These interrupts are not needed for D2 layer operation and thus are not supported.
If the DRW module is stopped during rendering the render will continue once the module is
started again. If this behavior is undesirable in your application it is recommended to call
d2_flushframe before stopping the peripheral.

4.2.18 Data Transfer Controller (r_dtc)
Modules

Functions

fsp_err_t R_DTC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

fsp_err_t R_DTC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
*p_info)

fsp_err_t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

fsp_err_t R_DTC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start_mode_t mode)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 827 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

fsp_err_t R_DTC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_Enable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_Disable (transfer_ctrl_t *const p_api_ctrl)

fsp_err_t R_DTC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t
*const p_properties)

fsp_err_t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the DTC peripheral on RA MCUs. This module implements the Transfer Interface.

Overview
The Data Transfer Controller (DTC) transfers data from one memory location to another without
using the CPU.

The DTC uses a RAM based vector table. Each entry in the vector table corresponds to an entry in
the ISR vector table. When the DTC is triggered by an interrupt, it reads the DTC vector table,
fetches the transfer information, and then executes the transfer. After the transfer is executed, the
DTC writes the updated transfer info back to the location pointed to by the DTC vector table.

Features

Supports multiple transfer modes
Normal transfer
Repeat transfer
Block transfer

Chain transfers
Address increment, decrement or fixed modes
Can be triggered by any event that has reserved a slot in the interrupt vector table.

Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual

Supports 1, 2, and 4 byte data units

Configuration

Build Time Configurations for r_dtc

The following build time configurations are defined in fsp_cfg/r_dtc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 828 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Linker section to keep
DTC vector table

Manual Entry .fsp_dtc_vector_table Section to place the
DTC vector table.

Configurations for Driver > Transfer > Transfer Driver on r_dtc

This module can be added to the Stacks tab via New Stack > Driver > Transfer > Transfer Driver on
r_dtc .

Configuration Options Default Description

Name Name must be a valid
C symbol

g_transfer0 Module name.

Mode Normal
Repeat
Block

Normal Select the transfer
mode. Select the
transfer mode. Normal:
One transfer per
activation, transfer
ends after Number of
Transfers; Repeat: One
transfer per activation,
Repeat Area address
reset after Number of
Transfers, transfer
repeats until stopped;
Block: Number of
Blocks per activation,
Repeat Area address
reset after Number of
Transfers, transfer
ends after Number of
Blocks.

Transfer Size 1 Byte
2 Bytes
4 Bytes

2 Bytes Select the transfer size.

Destination Address
Mode

Fixed
Incremented
Decremented

Fixed Select the address
mode for the
destination.

Source Address Mode Fixed
Incremented
Decremented

Fixed Select the address
mode for the source.

Repeat Area (Unused in
Normal Mode)

Destination
Source

Source Select the repeat area.
Either the source or
destination address
resets to its initial
value after completing
Number of Transfers in
Repeat or Block mode.

Destination Pointer Manual Entry NULL Specify the transfer
destination pointer.

Source Pointer Manual Entry NULL Specify the transfer
source pointer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 829 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Interrupt Frequency After all
transfers have
completed
After each
transfer

After all transfers have
completed

Select to have interrupt
after each transfer or
after last transfer.

Number of Transfers Value must be a non-
negative integer

0 Specify the number of
transfers.

Number of Blocks
(Valid only in Block
Mode)

Must be a valid non-
negative integer with a
maximum configurable
value of 65536.
Applicable only in Block
Mode.

0 Specify the number of
blocks to transfer in
Block mode.

Activation Source MCU Specific Options Select the DTC transfer
start event.

Clock Configuration

The DTC peripheral module uses ICLK as the clock source. The ICLK frequency is set by using the
Clocks tab of the RA Configuration editor prior to a build or by using the CGC module at runtime.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Transfer Modes

The DTC Module supports three modes of operation.

Normal Mode - In normal mode, a single data unit is transfered every time an interrupt is
received by the DTC. A data unit can be 1-byte, 2-bytes, or 4-bytes. The source and
destination addresses can be fixed, increment or decrement to the next data unit after each
transfer. A 16-bit counter (length) decrements after each transfer. When the counter
reaches 0, transfers will no longer be triggered by the interrupt source and the CPU can be
interrupted to signal that all transfers have finished.
Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,256]. When the tranfer counter reaches 0, the counter
is reset to its configured value and the repeat area (source or destination address) resets to
its starting address and transfers will still be triggered by the interrupt.
Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,256]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area (source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.

Note
1. The source and destination address of the transfer must be aligned to the configured data unit.
2. In normal mode the length can be set to [0,65535]. When the length is set to 0, than the transaction will execute
65536 transfers not 0.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 830 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

3. In block mode, num_blocks can be set to [0,65535]. When the length is set to 0, than the transaction will execute
65536 transfers not 0.

Chaining Transfers

Multiple transfers can be configured for the same interrupt source by specifying an array of
transfer_info_t structs instead of just passing a pointer to one. In this configuration, every
transfer_info_t struct must be configured for a chain mode except for the last one. There are two
types of chain mode; CHAIN_MODE_EACH and CHAIN_MODE_END. If a transfer is configured in
CHAIN_MODE_EACH then it triggers the next transfer in the chain after it completes each transfer. If
a transfer is configured in CHAIN_MODE_END then it triggers the next transfer in the chain after it
completes its last transfer.

Figure 159: DTC Transfer Flowchart

Selecting the DTC or DMAC

The Transfer API is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 831 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Repeat Mode Repeats forever
Max repeat size is 256 x
4 bytes

Configurable number of
repeats
Max repeat size is 1024
x 4 bytes

Block Mode Max block size is 256 x
4 bytes

Max block size is 1024 x
4 bytes

Channels One instance per
interrupt

MCU specific (8
channels or less)

Chained Transfers Supported Not Supported

Software Trigger Must use the software
ELC event

Has support for software
trigger without using
software ELC event
Supports TRANSFER_ST
ART_MODE_SINGLE and
TRANSFER_START_MOD
E_REPEAT

Offset Address Mode Not supported Supported

Additional Considerations

The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR_TABLE_SIZE).
The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.
When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between
transfers.
The DTC interrupts the CPU using the activation source's IRQ. Each DMAC channel has its
own IRQ.

Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured IELSR event IRQ as
the interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

Normal Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer N/A

TRANSFER_IRQ_END Interrupt after last transfer Interrupt after last transfer

Repeat Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each transfer Interrupt after each repeat

TRANSFER_IRQ_END Interrupt after each repeat Interrupt after last transfer

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 832 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Block Mode

DTC DMAC

TRANSFER_IRQ_EACH Interrupt after each block Interrupt after each block

TRANSFER_IRQ_END Interrupt after last block Interrupt after last block

Note
DTC_VECTOR_TABLE_SIZE = (ICU_NVIC_IRQ_SOURCES x 4) Bytes

Peripheral Interrupts and DTC

When an interrupt is configured to trigger DTC transfers, the peripheral ISR will trigger on the
following conditions:

Each transfer completed (transfer_info_t::irq = TRANSFER_IRQ_EACH)
Last transfer completed (transfer_info_t::irq = TRANSFER_IRQ_END)

For example, if SCI1_RXI is configured to trigger DTC transfers and a SCI1_RXI event occurs, the
interrupt will not fire until the DTC transfer is completed. If the DTC transfer_info_t::irq is configured
to only interrupt on the last transfer, than no RXI interrupts will occur until the last transfer is
completed.

Note
1. The DTC activation source must be enabled in the NVIC in order to trigger DTC transfers (Modules that are
designed to integrate the R_DTC module will automatically handle this).
2. The DTC prioritizes activation sources by granting the smaller interrupt vector numbers higher priority. The
priority of interrupts to the CPU is determined by the NVIC priority.

Low Power Modes

DTCST must be set to 0 before transitioning to any of the following:

Module-stop state
Software Standby mode without Snooze mode transition
Deep Software Standby mode

Note
1. R_LPM Module stops the DTC before entering deep software standby mode and software standby without snooze
mode transition.
2. For more information see 18.9 and 18.10 in the RA6M3 manual R01UH0886EJ0100.

Limitations

Developers should be aware of the following limitations when using the DTC:

If the DTC is configured to service many different activation sources, the system could run
in to performance issues due to memory contention. To address this issue, it is
reccomended that the DTC vector table and transfer information be moved to their own
dedicated memory area (Ex: SRAM0, SRAM1, SRAMHS). This allows memory accesses from
different BUS Masters (CPU, DTC, DMAC, EDMAC and Graphics IPs) to occur in parallel.

Examples

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 833 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Basic Example

This is a basic example of minimal use of the DTC in an application.

void dtc_minimal_example (void)

{

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DTC_Open(&g_transfer_ctrl, &g_transfer_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the DTC to handle incoming transfer requests. */

 err = R_DTC_Enable(&g_transfer_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct dtc_extended_cfg_t

struct dtc_instance_ctrl_t

Macros

#define DTC_MAX_NORMAL_TRANSFER_LENGTH

#define DTC_MAX_REPEAT_TRANSFER_LENGTH

#define DTC_MAX_BLOCK_TRANSFER_LENGTH

#define DTC_MAX_BLOCK_COUNT

Data Structure Documentation

◆ dtc_extended_cfg_t

struct dtc_extended_cfg_t

DTC transfer configuration extension. This extension is required.

Data Fields

IRQn_Type activation_source Select which IRQ will trigger the
transfer.

◆ dtc_instance_ctrl_t

struct dtc_instance_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 834 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

Control block used by driver. DO NOT INITIALIZE - this structure will be initialized in
transfer_api_t::open.

Macro Definition Documentation

◆ DTC_MAX_NORMAL_TRANSFER_LENGTH

#define DTC_MAX_NORMAL_TRANSFER_LENGTH

Max configurable number of transfers in NORMAL MODE

◆ DTC_MAX_REPEAT_TRANSFER_LENGTH

#define DTC_MAX_REPEAT_TRANSFER_LENGTH

Max number of transfers per repeat for REPEAT MODE

◆ DTC_MAX_BLOCK_TRANSFER_LENGTH

#define DTC_MAX_BLOCK_TRANSFER_LENGTH

Max number of transfers per block in BLOCK MODE

◆ DTC_MAX_BLOCK_COUNT

#define DTC_MAX_BLOCK_COUNT

Max configurable number of blocks to transfer in BLOCK MODE

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 835 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

◆ R_DTC_Open()

fsp_err_t R_DTC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const *const p_cfg)

Configure the vector table if it hasn't been configured, enable the Module and copy the pointer to
the transfer info into the DTC vector table. Implements transfer_api_t::open.

Example:

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_DTC_Open(&g_transfer_ctrl, &g_transfer_cfg);

Return values
FSP_SUCCESS Successful open. Transfer transfer info

pointer copied to DTC Vector table. Module
started. DTC vector table configured.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_UNSUPPORTED Address Mode Offset is selected.

FSP_ERR_ALREADY_OPEN The control structure is already opened.

FSP_ERR_IN_USE The index for this IRQ in the DTC vector
table is already configured.

FSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the activation
source is not enabled in the BSP.

◆ R_DTC_Reconfigure()

fsp_err_t R_DTC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t * p_info)

Copy pointer to transfer info into the DTC vector table and enable transfer in ICU. Implements
transfer_api_t::reconfigure.

Return values
FSP_SUCCESS Transfer is configured and will start when

trigger occurs.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_NOT_ENABLED Transfer source address is NULL or is not
aligned corrrectly. Transfer destination
address is NULL or is not aligned corrrectly.

Note
p_info must persist until all transfers are completed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 836 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

◆ R_DTC_Reset()

fsp_err_t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void *volatile
p_dest, uint16_t const num_transfers)

Reset transfer source, destination, and number of transfers. Implements transfer_api_t::reset.

Return values
FSP_SUCCESS Transfer reset successfully (transfers are

enabled).

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_NOT_ENABLED Transfer source address is NULL or is not
aligned corrrectly. Transfer destination
address is NULL or is not aligned corrrectly.

◆ R_DTC_SoftwareStart()

fsp_err_t R_DTC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl, transfer_start_mode_t mode)

Placeholder for unsupported softwareStart function. Implements transfer_api_t::softwareStart.

Return values
FSP_ERR_UNSUPPORTED DTC software start is not supported.

◆ R_DTC_SoftwareStop()

fsp_err_t R_DTC_SoftwareStop (transfer_ctrl_t *const p_api_ctrl)

Placeholder for unsupported softwareStop function. Implements transfer_api_t::softwareStop.

Return values
FSP_ERR_UNSUPPORTED DTC software stop is not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 837 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

◆ R_DTC_Enable()

fsp_err_t R_DTC_Enable (transfer_ctrl_t *const p_api_ctrl)

Enable transfers on this activation source. Implements transfer_api_t::enable.

Example:

 /* Enable the DTC to handle incoming transfer requests. */

 err = R_DTC_Enable(&g_transfer_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Transfers will be triggered by the activation

source

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_UNSUPPORTED Address Mode Offset is selected.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

◆ R_DTC_Disable()

fsp_err_t R_DTC_Disable (transfer_ctrl_t *const p_api_ctrl)

Disable transfer on this activation source. Implements transfer_api_t::disable.

Return values
FSP_SUCCESS Transfers will not occur on activation

events.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_ASSERTION An input parameter is invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 838 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Data Transfer Controller (r_dtc)

◆ R_DTC_InfoGet()

fsp_err_t R_DTC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t *const
p_properties)

Provides information about this transfer. Implements transfer_api_t::infoGet.

Return values
FSP_SUCCESS p_info updated with current instance

information.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

FSP_ERR_ASSERTION An input parameter is invalid.

◆ R_DTC_Close()

fsp_err_t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

Disables DTC activation in the ICU, then clears transfer data from the DTC vector table. Implements
transfer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

4.2.19 Event Link Controller (r_elc)
Modules

Functions

fsp_err_t R_ELC_Open (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

fsp_err_t R_ELC_Close (elc_ctrl_t *const p_ctrl)

fsp_err_t R_ELC_SoftwareEventGenerate (elc_ctrl_t *const p_ctrl,
elc_software_event_t event_number)

fsp_err_t R_ELC_LinkSet (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 839 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

elc_event_t signal)

fsp_err_t R_ELC_LinkBreak (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

fsp_err_t R_ELC_Enable (elc_ctrl_t *const p_ctrl)

fsp_err_t R_ELC_Disable (elc_ctrl_t *const p_ctrl)

Detailed Description

Driver for the ELC peripheral on RA MCUs. This module implements the ELC Interface.

Overview
The event link controller (ELC) uses the event requests generated by various peripheral modules as
source signals to connect (link) them to different modules, allowing direct cooperation between the
modules without central processing unit (CPU) intervention. The conceptual diagram below illustrates
a potential setup where a pin interrupt triggers a timer which later triggers an ADC conversion and
CTSU scan, while at the same time a serial communication interrupt automatically starts a data
transfer. These tasks would be automatically handled without the need for polling or interrupt
management.

Figure 160: Event Link Controller Conceptual Diagram

In essence, the ELC is an array of multiplexers to route a wide variety of interrupt signals to a subset
of peripheral functions. Events are linked by setting the multiplexer for the desired function to the
desired signal (through R_ELC_LinkSet). The diagram below illustrates one peripheral output of the
ELC. In this example, a conversion start is triggered for ADC0 Group A when the GPT0 counter
overflows:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 840 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

Figure 161: ELC Example

Features

The ELC HAL module can perform the following functions:

Initialize the ELC to a pre-defined set of links
Create an event link between two blocks
Break an event link between two blocks
Generate one of two software events that interrupt the CPU
Globally enable or disable event links

A variety of functions can be activated via events, including:

General-purpose timer (GPT) control
ADC and DAC conversion start
Synchronized I/O port output (ports 1-4 only)
Capacitive touch unit (CTSU) measurement activation

Note
The available sources and peripherals may differ between devices. A full list of selectable peripherals and events is
available in the User's Manual for your device.
Some peripherals have specific settings related to ELC event generation and/or reception. Details on how to enable
event functionality for each peripheral are located in the usage notes for the related module(s) as well as in the
User's Manual for your device.

Configuration
Note

Event links will be automatically generated based on the selections made in module properties. To view the
currently linked events check the Event Links tab in the RA Configuration editor.
Calling R_ELC_Open followed by R_ELC_Enable will automatically link all events shown in the Event Links tab.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 841 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

To manually link an event to a peripheral at runtime perform the following steps:

1. Configure the operation of the destination peripheral (including any configuration necessary
to receive events)

2. Use R_ELC_LinkSet to set the desired event link to the peripheral
3. Use R_ELC_Enable to enable transmission of event signals
4. Configure the signaling module to output the desired event (typically an interrupt)

To disable the event, either use R_ELC_LinkBreak to clear the link for a specific event or
R_ELC_Disable to globally disable event linking.

Note
The ELC module needs no pin, clocking or interrupt configuration; it is merely a mechanism to connect signals
between peripherals. However, when linking I/O Ports via the ELC the relevant I/O pins need to be configured as
inputs or outputs.

Build Time Configurations for r_elc

The following build time configurations are defined in fsp_cfg/r_elc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > System > ELC Driver on r_elc

This module can be added to the Stacks tab via New Stack > Driver > System > ELC Driver on r_elc.
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name ELC instance name
must be g_elc to match
elc_cfg_t data structure
created in elc_data.c

g_elc Module name. Fixed to
g_elc.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the ELC:

To link events it is necessary for the ELC and the related modules to be enabled. The ELC
cannot operate if the related modules are in the module stop state or the MCU is in a low
power consumption mode for which the module is stopped.
If two modules are linked across clock domains there may be a 1 to 2 cycle delay between
event signaling and reception. The delay timing is based on the frequency of the slowest
clock.

Examples

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 842 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

Basic Example

Below is a basic example of minimal use of event linking in an application.

/* This struct is automatically generated based on the events configured by

peripherals in the RA Configuration editor. */

static const elc_cfg_t g_elc_cfg =

{

 .link[ELC_PERIPHERAL_GPT_A] = ELC_EVENT_ICU_IRQ0,

 .link[ELC_PERIPHERAL_IOPORT1] = ELC_EVENT_GPT4_COUNTER_OVERFLOW

};

void elc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the software and sets the links defined in the control structure. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Create or modify a link between a peripheral function and an event source. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0,

ELC_EVENT_GPT4_COUNTER_OVERFLOW);

 assert(FSP_SUCCESS == err);

 /* Globally enable event linking in the ELC. */

 err = R_ELC_Enable(&g_elc_ctrl);

 assert(FSP_SUCCESS == err);

}

Software-Generated Events

This example demonstrates how to use a software-generated event to signal a peripheral. This can
be useful when the desired event source is not supported by the ELC hardware.

/* Interrupt handler for peripheral event not supported by the ELC */

void peripheral_isr (void)

{

 fsp_err_t err;

 /* Generate an event signal through software to the linked peripheral. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 843 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

 err = R_ELC_SoftwareEventGenerate(&g_elc_ctrl, ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

}

void elc_software_event (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the module. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Link ADC0 conversion start to software event 0. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0,

ELC_EVENT_ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Application code here. */

 }

}

Data Structures

struct elc_instance_ctrl_t

Data Structure Documentation

◆ elc_instance_ctrl_t

struct elc_instance_ctrl_t

ELC private control block. DO NOT MODIFY. Initialization occurs when R_ELC_Open() is called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 844 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

◆ R_ELC_Open()

fsp_err_t R_ELC_Open (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

Initialize all the links in the Event Link Controller. Implements elc_api_t::open

The configuration structure passed in to this function includes links for every event source included
in the ELC and sets them all at once. To set or clear an individual link use R_ELC_LinkSet and
R_ELC_LinkBreak respectively.

Example:

 /* Initializes the software and sets the links defined in the control structure. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

Return values
FSP_SUCCESS Initialization was successful

FSP_ERR_ASSERTION p_ctrl or p_cfg was NULL

FSP_ERR_ALREADY_OPEN The module is currently open

◆ R_ELC_Close()

fsp_err_t R_ELC_Close (elc_ctrl_t *const p_ctrl)

Globally disable ELC linking. Implements elc_api_t::close

Return values
FSP_SUCCESS The ELC was successfully disabled

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 845 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

◆ R_ELC_SoftwareEventGenerate()

fsp_err_t R_ELC_SoftwareEventGenerate (elc_ctrl_t *const p_ctrl, elc_software_event_t
event_number)

Generate a software event in the Event Link Controller. Implements
elc_api_t::softwareEventGenerate

Example:

 /* Generate an event signal through software to the linked peripheral. */

 err = R_ELC_SoftwareEventGenerate(&g_elc_ctrl, ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Initialization was successful

FSP_ERR_ASSERTION Invalid event number or p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_ELC_LinkSet()

fsp_err_t R_ELC_LinkSet (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral, elc_event_t signal)

Create a single event link. Implements elc_api_t::linkSet

Example:

 /* Create or modify a link between a peripheral function and an event source. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0,

ELC_EVENT_GPT4_COUNTER_OVERFLOW);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Initialization was successful

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 846 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Event Link Controller (r_elc)

◆ R_ELC_LinkBreak()

fsp_err_t R_ELC_LinkBreak (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

Break an event link. Implements elc_api_t::linkBreak

Return values
FSP_SUCCESS Event link broken

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_ELC_Enable()

fsp_err_t R_ELC_Enable (elc_ctrl_t *const p_ctrl)

Enable the operation of the Event Link Controller. Implements elc_api_t::enable

Return values
FSP_SUCCESS ELC enabled.

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_ELC_Disable()

fsp_err_t R_ELC_Disable (elc_ctrl_t *const p_ctrl)

Disable the operation of the Event Link Controller. Implements elc_api_t::disable

Return values
FSP_SUCCESS ELC disabled.

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

4.2.20 Ethernet (r_ether)
Modules

Functions

fsp_err_t R_ETHER_Open (ether_ctrl_t *const p_ctrl, ether_cfg_t const *const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 847 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

p_cfg)

 After ETHERC, EDMAC and PHY-LSI are reset in software, an auto
negotiation of PHY-LSI is begun. Afterwards, the link signal change
interrupt is permitted. Implements ether_api_t::open. More...

fsp_err_t R_ETHER_Close (ether_ctrl_t *const p_ctrl)

 Disables interrupts. Removes power and releases hardware lock.
Implements ether_api_t::close. More...

fsp_err_t R_ETHER_Read (ether_ctrl_t *const p_ctrl, void *const p_buffer,
uint32_t *const length_bytes)

 Receive Ethernet frame. Receives data to the location specified by
the pointer to the receive buffer. In zero copy mode, the address of
the receive buffer is returned. In non zero copy mode, the received
data in the internal buffer is copied to the pointer passed by the
argument. Implements ether_api_t::read. More...

fsp_err_t R_ETHER_BufferRelease (ether_ctrl_t *const p_ctrl)

 Move to the next buffer in the circular receive buffer list. Implements
ether_api_t::bufferRelease. More...

fsp_err_t R_ETHER_RxBufferUpdate (ether_ctrl_t *const p_ctrl, void *const
p_buffer)

 Change the buffer pointer of the current rx buffer descriptor.
Implements ether_api_t::rxBufferUpdate. More...

fsp_err_t R_ETHER_Write (ether_ctrl_t *const p_ctrl, void *const p_buffer,
uint32_t const frame_length)

 Transmit Ethernet frame. Transmits data from the location specified
by the pointer to the transmit buffer, with the data size equal to the
specified frame length. In the non zero copy mode, transmits data
after being copied to the internal buffer. Implements
ether_api_t::write. More...

fsp_err_t R_ETHER_LinkProcess (ether_ctrl_t *const p_ctrl)

 The Link up processing, the Link down processing, and the magic
packet detection processing are executed. Implements
ether_api_t::linkProcess. More...

fsp_err_t R_ETHER_WakeOnLANEnable (ether_ctrl_t *const p_ctrl)

 The setting of ETHERC is changed from normal sending and

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 848 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

receiving mode to magic packet detection mode. Implements
ether_api_t::wakeOnLANEnable. More...

fsp_err_t R_ETHER_TxStatusGet (ether_ctrl_t *const p_ctrl, void *const
p_buffer_address)

Detailed Description

Driver for the Ethernet peripheral on RA MCUs. This module implements the Ethernet Interface.

Overview
This module performs Ethernet frame transmission and reception using an Ethernet controller and an
Ethernet DMA controller.

Features

The Ethernet module supports the following features:

Transmit/receive processing
Optional zero-copy buffering
Callback function with returned event code
Magic packet detection mode support
Auto negotiation support
Flow control support
Multicast filtering support
Broadcast filtering support
Promiscuous mode support

Configuration
Build Time Configurations for r_ether

The following build time configurations are defined in fsp_cfg/r_ether_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

ET0_LINKSTA Pin Status
Flag

Fall -> Rise
Rise -> Fall

Fall -> Rise Specify the polarity of
the link signal output
by the PHY-LSI. When 0
is specified, link-up and
link-down correspond
respectively to the fall
and rise of the LINKSTA
signal. When 1 is
specified, link-up and
link-down correspond
respectively to the rise

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 849 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

and fall of the LINKSTA
signal.

Link Signal Change
Flag

Unused
Used

Unused Use LINKSTA signal for
detect link status
changes 0 = unused
(use PHY-LSI status
register) 1 = use (use
LINKSTA signal)

Configurations for Driver > Network > Ethernet Driver on r_ether

This module can be added to the Stacks tab via New Stack > Driver > Network > Ethernet Driver on
r_ether.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_ether0 Module name.

General > Channel 0 0 Select the ether
channel number.

General > MAC address Must be a valid MAC
address

00:11:22:33:44:55 MAC address of this
channel.

General > Zero-copy
Mode

Disable
Enable

Disable Enable or disable zero-
copy mode.

General > Flow control
functionality

Disable
Enable

Disable Enable or disable flow
control.

Filters > Multicast
Mode

Disable
Enable

Enable Enable or disable
multicast frame
reception.

Filters > Promiscuous
Mode

Disable
Enable

Disable Enable this option to
receive packets
addressed to other
NICs.

Filters > Broadcast
filter

Must be a valid non-
negative integer with
maximum configurable
value of 65535.

0 Limit of the number of
broadcast frames
received continuously

Buffers > Number of
TX buffer

Must be an integer
from 1 to 8

1 Number of transmit
buffers

Buffers > Number of
RX buffer

Must be an integer
from 1 to 8

1 Number of receive
buffers

Buffers > Allocate RX
buffer

Disable
Enable

Enable Allocates the RX buffer
when generating the
configuration structure

Buffers > Buffer size Must be at least 1514
which is the maximum
Ethernet frame size.

1514 Size of Ethernet buffer

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 850 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

Buffers > Padding size Disable
1 Byte
2 Bytes
3 Bytes

Disable The padding size that
is automatically
inserted into the
received packets

Buffers > Padding
offset

Must be less than 64
bytes.

0 The offset into a
receive buffer to insert
padding bytes.

Interrupts > Interrupt
priority

MCU Specific Options Select the EDMAC
interrupt priority.

Interrupts > Callback Name must be a valid
C symbol

NULL Callback provided
when an ISR occurs

Interrupt Configuration

The first R_ETHER_Open function call sets EINT interrupts. The user could provide callback function
which would be invoked when EINT interrupt handler has been completed. The callback arguments
will contain information about a channel number, the ETHERC and EDMAC status, the event code,
and a pointer to the user defined context.

Callback Configuration

The user could provide callback function which would be invoked when either a magic packet or a
link signal change is detected. When the callback function is called, a variable in which the channel
number for which the detection occurred and a constant shown in Table 2.4 are stored is passed as
an argument. If the value of this argument is to be used outside the callback function, its value
should be copied into, for example, a global variable.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA6E1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

Note
1. When using ETHERC, the PCLKA frequency is in the range 12.5 MHz <= PCLKA <= 120 MHz.
2. When using ETHERC, PCLKA = ICLK.

Pin Configuration

To use the Ethernet module, input/output signals of the peripheral function have to be allocated to
pins with the multi-function pin controller (MPC). Please perform the pin setting before calling the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 851 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

R_ETHER_Open function.

Usage Notes
Ethernet Frame Format

The Ethernet module supports the Ethernet II/IEEE 802.3 frame format.

Frame Format for Data Transmission and Reception

Figure 162: Frame Format Image

 The preamble and SFD signal the start of an Ethernet frame. The FCS contains the CRC of the
Ethernet frame and is calculated on the transmitting side. When data is received the CRC value of
the frame is calculated in hardware, and the Ethernet frame is discarded if the values do not match.
When the hardware determines that the data is normal, the valid range of receive data is:
(transmission destination address) + (transmission source address) + (length/type) + (data).

PAUSE Frame Format

Figure 163: Pause Frame Format Image

 The transmission destination address is specified as 01:80:C2:00:00:01 (a multicast address
reserved for PAUSE frames). At the start of the payload the length/type is specified as 0x8808 and
the operation code as 0x0001. The pause duration in the payload is specified by the value of the
automatic PAUSE (AP) bits in the automatic PAUSE frame setting register (APR), or the manual PAUSE
time setting (MP) bits in the manual PAUSE frame setting register (MPR).

Magic Packet Frame Format

Figure 164: Magic Packet Frame Format Image

 In a Magic Packet, the value FF:FF:FF:FF:FF:FF followed by the transmission destination address
repeated 16 times is inserted somewhere in the Ethernet frame data.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 852 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

Limitations

Memory alignment limitation for Ethernet buffer

The Ethernet Driver has several alignment constraints:

16-byte alignment for the descriptor
32-byte aligned read buffer for R_ETHER_RxBufferUpdate when zero copy mode is enabled

Functional limitations in TrustZone Security Extensions

The Ethernet Driver has several security constraints:

MCU Has Security
Extension

Support Flat
project

Support TZ project

Secure Non-Secure

RA6M2 - x - -

RA6M3 - x - -

RA6M4 - *1 x - x

RA6M5 - *1 x - x

Note
1. ETHERC/EDMAC is always Non-secure peripheral in this MCU.

Examples
ETHER Basic Example

This is a basic example of minimal use of the ETHER in an application.

Note
In this example zero-copy mode is disabled and there are no restrictions on buffer alignment.

#define ETHER_EXAMPLE_MAXIMUM_ETHERNET_FRAME_SIZE (1514)

#define ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE (60)

#define ETHER_EXAMPLE_SOURCE_MAC_ADDRESS 0x74, 0x90, 0x50, 0x00, 0x79, 0x01

#define ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS 0x74, 0x90, 0x50, 0x00, 0x79, 0x02

#define ETHER_EXAMPLE_FRAME_TYPE 0x00, 0x2E

#define ETHER_EXAMPLE_PAYLOAD 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, \

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \

/* Receive data buffer */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 853 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

static uint8_t gp_read_buffer[ETHER_EXAMPLE_MAXIMUM_ETHERNET_FRAME_SIZE] = {0};

/* Transmit data buffer */

static uint8_t gp_send_data[ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE] =

{

 ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS, /* Destination MAC address */

 ETHER_EXAMPLE_SOURCE_MAC_ADDRESS, /* Source MAC address */

 ETHER_EXAMPLE_FRAME_TYPE, /* Type field */

 ETHER_EXAMPLE_PAYLOAD /* Payload value (46byte) */

};

void ether_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Source MAC Address */

 static uint8_t mac_address_source[6] = {ETHER_EXAMPLE_SOURCE_MAC_ADDRESS};

 uint32_t read_data_size = 0;

 g_ether0_cfg.p_mac_address = mac_address_source;

 /* Open the ether instance with initial configuration. */

 err = R_ETHER_Open(&g_ether0_ctrl, &g_ether0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 do

 {

 /* When the Ethernet link status read from the PHY-LSI Basic Status register is link-

up,

 * Initializes the module and make auto negotiation. */

 err = R_ETHER_LinkProcess(&g_ether0_ctrl);

 } while (FSP_SUCCESS != err);

 /* Transmission is non-blocking. */

 /* User data copy to internal buffer and is transferred by DMA in the background. */

 err = R_ETHER_Write(&g_ether0_ctrl, (void *) gp_send_data, sizeof(gp_send_data));

 assert(FSP_SUCCESS == err);

 /* received data copy to user buffer from internal buffer. */

 err = R_ETHER_Read(&g_ether0_ctrl, (void *) gp_read_buffer, &read_data_size);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 854 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

 /* Disable transmission and receive function and close the ether instance. */

 R_ETHER_Close(&g_ether0_ctrl);

}

ETHER Advanced Example

The example demonstrates using send and receive function in zero copy mode. Transmit buffers
must be 32-byte aligned and the receive buffer must be released once its contents have been used.

#define ETHER_EXAMPLE_FLAG_ON (1U)

#define ETHER_EXAMPLE_FLAG_OFF (0U)

#define ETHER_EXAMPLE_ETHER_ISR_EE_FR_MASK (1UL << 18)

#define ETHER_EXAMPLE_ETHER_ISR_EE_TC_MASK (1UL << 21)

#define ETHER_EXAMPLE_ETHER_ISR_EC_MPD_MASK (1UL << 1)

#define ETHER_EXAMPLE_ALIGNMENT_32_BYTE (32)

static volatile uint32_t g_example_receive_complete = 0;

static volatile uint32_t g_example_transfer_complete = 0;

static volatile uint32_t g_example_magic_packet_done = 0;

static uint8_t gp_send_data_internal[ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE] =

{

 ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS, /* Destination MAC address */

 ETHER_EXAMPLE_SOURCE_MAC_ADDRESS, /* Source MAC address */

 ETHER_EXAMPLE_FRAME_TYPE, /* Type field */

 ETHER_EXAMPLE_PAYLOAD /* Payload value (46byte) */

};

void ether_example_callback (ether_callback_args_t * p_args) {

 switch (p_args->event)

 {

 case ETHER_EVENT_INTERRUPT:

 {

 if (ETHER_EXAMPLE_ETHER_ISR_EC_MPD_MASK == (p_args->status_ecsr &

ETHER_EXAMPLE_ETHER_ISR_EC_MPD_MASK))

 {

 g_example_magic_packet_done = ETHER_EXAMPLE_FLAG_ON;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 855 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

 if (ETHER_EXAMPLE_ETHER_ISR_EE_TC_MASK == (p_args->status_eesr &

ETHER_EXAMPLE_ETHER_ISR_EE_TC_MASK))

 {

 g_example_transfer_complete = ETHER_EXAMPLE_FLAG_ON;

 }

 if (ETHER_EXAMPLE_ETHER_ISR_EE_FR_MASK == (p_args->status_eesr &

ETHER_EXAMPLE_ETHER_ISR_EE_FR_MASK))

 {

 g_example_receive_complete = ETHER_EXAMPLE_FLAG_ON;

 }

 break;

 }

 default:

 {

 }

 }

}

void ether_advanced_use_internal_buffer_example (void) {

 fsp_err_t err = FSP_SUCCESS;

 /* Source MAC Address */

 static uint8_t mac_address_source[6] = {ETHER_EXAMPLE_SOURCE_MAC_ADDRESS};

 static uint8_t * p_read_buffer_nocopy;

 uint32_t read_data_size = 0;

 g_ether0_cfg.p_mac_address = mac_address_source;

 g_ether0_cfg.zerocopy = ETHER_ZEROCOPY_ENABLE;

 g_ether0_cfg.p_callback = (void (*)(ether_callback_args_t

*))ether_example_callback;

 /* Open the ether instance with initial configuration. */

 err = R_ETHER_Open(&g_ether0_ctrl, &g_ether0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 do

 {

 /* When the Ethernet link status read from the PHY-LSI Basic Status register is link-

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 856 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

up,

 * Initializes the module and make auto negotiation. */

 err = R_ETHER_LinkProcess(&g_ether0_ctrl);

 } while (FSP_SUCCESS != err);

 /* Set user buffer to TX descriptor and enable transmission. */

 err = R_ETHER_Write(&g_ether0_ctrl, (void *) gp_send_data_internal, sizeof

(gp_send_data_internal));

 if (FSP_SUCCESS == err)

 {

 /* Wait for the transmission to complete. */

 /* Data array should not change in zero copy mode until transfer complete. */

 while (ETHER_EXAMPLE_FLAG_ON != g_example_transfer_complete)

 {

 ;

 }

 }

 /* Get receive buffer from RX descriptor. */

 err = R_ETHER_Read(&g_ether0_ctrl, (void *) &p_read_buffer_nocopy,

&read_data_size);

 assert(FSP_SUCCESS == err);

 /* Process received data here */

 /* Release receive buffer to RX descriptor. */

 err = R_ETHER_BufferRelease(&g_ether0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Disable transmission and receive function and close the ether instance. */

 R_ETHER_Close(&g_ether0_ctrl);

}

#define ETHER_EXAMPLE_ALIGNMENT_32_BYTE (32)

#define ETHER_EXAMPLE_ETHERNET_FRAME_PAYLOAD_OFFSET (14)

/* The data buffer must be 32-byte aligned when using zero copy mode. */

static uint8_t gp_send_data_external[ETHER_EXAMPLE_TRANSMIT_ETHERNET_FRAME_SIZE] =

{

 ETHER_EXAMPLE_DESTINATION_MAC_ADDRESS, /* Destination MAC address */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 857 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

 ETHER_EXAMPLE_SOURCE_MAC_ADDRESS, /* Source MAC address */

 ETHER_EXAMPLE_FRAME_TYPE, /* Type field */

 ETHER_EXAMPLE_PAYLOAD /* Payload value (46byte) */

};

typedef struct st_buffer_node

{

 uint8_t * p_buffer;

 struct st_buffer_node * p_next;

} buffer_node_t;

void ether_advanced_use_external_buffer_example (void) {

 fsp_err_t err = FSP_SUCCESS;

 /* Source MAC Address */

 uint8_t mac_address_source[6] = {ETHER_EXAMPLE_SOURCE_MAC_ADDRESS};

 uint8_t * p_tx_buffer = NULL;

 uint8_t * p_rx_buffer = NULL;

 uint8_t * p_rx_allocate_buffer = NULL;

 uint8_t * p_tx_last_sent_buffer = NULL;

 buffer_node_t * p_tx_buffer_head;

 buffer_node_t * p_tx_buffer_tail;

 uint32_t read_data_size = 0;

 uint8_t i;

 g_ether0_cfg.p_mac_address = mac_address_source;

 g_ether0_cfg.zerocopy = ETHER_ZEROCOPY_ENABLE;

 g_ether0_cfg.pp_ether_buffers = NULL;

 /* Create ring buffer structure to manage transmit buffer.*/

 p_tx_buffer_head = (buffer_node_t *) malloc(sizeof(buffer_node_t));

 p_tx_buffer_tail = p_tx_buffer_head;

 for (i = 0; i < g_ether0_cfg.num_tx_descriptors - 1; i++)

 {

 p_tx_buffer_tail->p_buffer = NULL;

 p_tx_buffer_tail->p_next = (buffer_node_t *) malloc(sizeof(buffer_node_t));

 p_tx_buffer_tail = p_tx_buffer_tail->p_next;

 }

 p_tx_buffer_tail->p_buffer = NULL;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 858 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

 p_tx_buffer_tail->p_next = p_tx_buffer_head;

 /* Open the ether instance with initial configuration. */

 err = R_ETHER_Open(&g_ether0_ctrl, &g_ether0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 i = 0;

 /* Initialize receive buffer in Ethernet driver. */

 while (i < g_ether0_cfg.num_rx_descriptors)

 {

 if (posix_memalign((void **) &p_rx_allocate_buffer,

 ETHER_EXAMPLE_ALIGNMENT_32_BYTE,

 g_ether0_cfg.ether_buffer_size * sizeof(char)))

 {

 /* Set receive buffer to Ethernet driver. */

 err = R_ETHER_RxBufferUpdate(&g_ether0_ctrl, (void *)

p_rx_allocate_buffer);

 if (FSP_SUCCESS == err)

 {

 i++;

 }

 }

 else

 {

 assert(0);

 }

 }

 do

 {

 /* When the Ethernet link status read from the PHY-LSI Basic Status register is link-

up,

 * Initializes the module and make auto negotiation. */

 err = R_ETHER_LinkProcess(&g_ether0_ctrl);

 } while (FSP_SUCCESS != err);

 while (1)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 859 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

 {

 if (NULL == p_tx_buffer_tail->p_buffer)

 {

 /* Allocate memory to transmit buffer */

 p_tx_buffer = (uint8_t *) malloc(sizeof(gp_send_data_external));

 /* Process transmit data here. */

 memcpy(p_tx_buffer, gp_send_data_external, sizeof

(gp_send_data_external));

 gp_send_data_external[ETHER_EXAMPLE_ETHERNET_FRAME_PAYLOAD_OFFSET]++;

 /* Set user buffer to TX descriptor and enable transmission. */

 err = R_ETHER_Write(&g_ether0_ctrl, (void *) gp_send_data_external,

sizeof(gp_send_data_external));

 /* Register transmit buffer to ring buffer. */

 if (FSP_SUCCESS == err)

 {

 p_tx_buffer_tail->p_buffer = p_tx_buffer;

 p_tx_buffer_tail = p_tx_buffer_tail->p_next;

 }

 else

 {

 /* Release transmit buffer. */

 free(p_tx_buffer);

 }

 }

 /* Get receive buffer from RX descriptor. */

 err = R_ETHER_Read(&g_ether0_ctrl, (void *) &p_rx_buffer, &read_data_size);

 if (FSP_SUCCESS == err)

 {

 /* Allocate new receive buffer and update receive buffer to RX descriptor. */

 if (0 == posix_memalign((void **) &p_rx_allocate_buffer,

 ETHER_EXAMPLE_ALIGNMENT_32_BYTE,

 g_ether0_cfg.ether_buffer_size * sizeof(char)))

 {

 R_ETHER_RxBufferUpdate(&g_ether0_ctrl, p_rx_allocate_buffer);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 860 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

 }

 else

 {

 assert(0);

 }

 /* Process received data here. */

 /* Release receive buffer. */

 free(p_rx_buffer);

 }

 /* Release all transmitted buffer from the ring buffer. */

 if (FSP_SUCCESS == R_ETHER_TxStatusGet(&g_ether0_ctrl, (void *)

&p_tx_last_sent_buffer))

 {

 buffer_node_t * p_tx_buffer_current = p_tx_buffer_head;

 for (i = 0; i < g_ether0_cfg.num_tx_descriptors; i++)

 {

 if (p_tx_last_sent_buffer == p_tx_buffer_current->p_buffer)

 {

 do

 {

 free(p_tx_buffer_head->p_buffer);

 p_tx_buffer_head->p_buffer = NULL;

 p_tx_buffer_head = p_tx_buffer_head->p_next;

 } while (p_tx_buffer_head != p_tx_buffer_current);

 free(p_tx_buffer_head->p_buffer);

 p_tx_buffer_head->p_buffer = NULL;

 break;

 }

 p_tx_buffer_current = p_tx_buffer_current->p_next;

 }

 }

 }

}

Data Structures

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 861 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

struct ether_instance_ctrl_t

Enumerations

enum ether_previous_link_status_t

enum ether_link_change_t

enum ether_magic_packet_t

enum ether_link_establish_status_t

Data Structure Documentation

◆ ether_instance_ctrl_t

struct ether_instance_ctrl_t

ETHER control block. DO NOT INITIALIZE. Initialization occurs when ether_api_t::open is called.

Data Fields

uint32_t open Used to determine if the
channel is configured.

ether_cfg_t const * p_ether_cfg Pointer to initial configurations.

ether_instance_descriptor_t * p_rx_descriptor Pointer to the currently
referenced transmit descriptor.

ether_instance_descriptor_t * p_tx_descriptor Pointer to the currently
referenced receive descriptor.

void * p_reg_etherc Base register of ethernet
controller for this channel.

void * p_reg_edmac Base register of EDMA
controller for this channel.

ether_previous_link_status_t previous_link_status Previous link status.

ether_link_change_t link_change status of link change

ether_magic_packet_t magic_packet status of magic packet
detection

ether_link_establish_status_t link_establish_status Current Link status.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 862 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

◆ ether_previous_link_status_t

enum ether_previous_link_status_t

Enumerator

ETHER_PREVIOUS_LINK_STATUS_DOWN Previous link status is down.

ETHER_PREVIOUS_LINK_STATUS_UP Previous link status is up.

◆ ether_link_change_t

enum ether_link_change_t

Enumerator

ETHER_LINK_CHANGE_NO_CHANGE Link status is no change.

ETHER_LINK_CHANGE_LINK_DOWN Link status changes to down.

ETHER_LINK_CHANGE_LINK_UP Link status changes to up.

◆ ether_magic_packet_t

enum ether_magic_packet_t

Enumerator

ETHER_MAGIC_PACKET_NOT_DETECTED Magic packet is not detected.

ETHER_MAGIC_PACKET_DETECTED Magic packet is detected.

◆ ether_link_establish_status_t

enum ether_link_establish_status_t

Enumerator

ETHER_LINK_ESTABLISH_STATUS_DOWN Link establish status is down.

ETHER_LINK_ESTABLISH_STATUS_UP Link establish status is up.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 863 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

◆ R_ETHER_Open()

fsp_err_t R_ETHER_Open (ether_ctrl_t *const p_ctrl, ether_cfg_t const *const p_cfg)

After ETHERC, EDMAC and PHY-LSI are reset in software, an auto negotiation of PHY-LSI is begun.
Afterwards, the link signal change interrupt is permitted. Implements ether_api_t::open.

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block or
configuration structure is NULL.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATI
ON

Initialization of PHY-LSI failed.

FSP_ERR_INVALID_CHANNEL Invalid channel number is given.

FSP_ERR_INVALID_POINTER Pointer to MAC address is NULL.

FSP_ERR_INVALID_ARGUMENT Interrupt is not enabled.

FSP_ERR_ETHER_PHY_ERROR_LINK Initialization of PHY-LSI failed.

◆ R_ETHER_Close()

fsp_err_t R_ETHER_Close (ether_ctrl_t *const p_ctrl)

Disables interrupts. Removes power and releases hardware lock. Implements ether_api_t::close.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 864 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

◆ R_ETHER_Read()

fsp_err_t R_ETHER_Read (ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t *const
length_bytes)

Receive Ethernet frame. Receives data to the location specified by the pointer to the receive
buffer. In zero copy mode, the address of the receive buffer is returned. In non zero copy mode, the
received data in the internal buffer is copied to the pointer passed by the argument. Implements
ether_api_t::read.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_NO_DATA There is no data in receive buffer.

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_M
ODE

As a Magic Packet is being detected,
transmission and reception is not enabled.

FSP_ERR_ETHER_ERROR_FILTERING Multicast Frame filter is enable, and
Multicast Address Frame is received.

FSP_ERR_INVALID_POINTER Value of the pointer is NULL.

◆ R_ETHER_BufferRelease()

fsp_err_t R_ETHER_BufferRelease (ether_ctrl_t *const p_ctrl)

Move to the next buffer in the circular receive buffer list. Implements ether_api_t::bufferRelease.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_M
ODE

As a Magic Packet is being detected,
transmission and reception is not enabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 865 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

◆ R_ETHER_RxBufferUpdate()

fsp_err_t R_ETHER_RxBufferUpdate (ether_ctrl_t *const p_ctrl, void *const p_buffer)

Change the buffer pointer of the current rx buffer descriptor. Implements
ether_api_t::rxBufferUpdate.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION A pointer argument is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_INVALID_POINTER The pointer of buffer is NULL or not aligned
on a 32-bit boundary.

FSP_ERR_INVALID_MODE Driver is configured to non zero copy mode.

FSP_ERR_ETHER_RECEIVE_BUFFER_ACTIVE All descriptor is active.

◆ R_ETHER_Write()

fsp_err_t R_ETHER_Write (ether_ctrl_t *const p_ctrl, void *const p_buffer, uint32_t const
frame_length)

Transmit Ethernet frame. Transmits data from the location specified by the pointer to the transmit
buffer, with the data size equal to the specified frame length. In the non zero copy mode, transmits
data after being copied to the internal buffer. Implements ether_api_t::write.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_ERROR_MAGIC_PACKET_M
ODE

As a Magic Packet is being detected,
transmission and reception is not enabled.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER
_FULL

Transmit buffer is not empty.

FSP_ERR_INVALID_POINTER Value of the pointer is NULL.

FSP_ERR_INVALID_ARGUMENT Value of the send frame size is out of range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 866 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

◆ R_ETHER_LinkProcess()

fsp_err_t R_ETHER_LinkProcess (ether_ctrl_t *const p_ctrl)

The Link up processing, the Link down processing, and the magic packet detection processing are
executed. Implements ether_api_t::linkProcess.

Return values
FSP_SUCCESS Link is up.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_LINK Link is down.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATI
ON

When reopening the PHY interface
initialization of the PHY-LSI failed.

FSP_ERR_ALREADY_OPEN When reopening the PHY interface it was
already opened.

FSP_ERR_INVALID_CHANNEL When reopening the PHY interface an
invalid channel was passed.

FSP_ERR_INVALID_POINTER When reopening the PHY interface the MAC
address pointer was NULL.

FSP_ERR_INVALID_ARGUMENT When reopening the PHY interface the
interrupt was not enabled.

FSP_ERR_ETHER_PHY_ERROR_LINK Initialization of the PHY-LSI failed.

◆ R_ETHER_WakeOnLANEnable()

fsp_err_t R_ETHER_WakeOnLANEnable (ether_ctrl_t *const p_ctrl)

The setting of ETHERC is changed from normal sending and receiving mode to magic packet
detection mode. Implements ether_api_t::wakeOnLANEnable.

Return values
FSP_SUCCESS Processing completed successfully.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_ETHER_ERROR_LINK Auto-negotiation is not completed, and
reception is not enabled.

FSP_ERR_ETHER_PHY_ERROR_LINK Initialization of PHY-LSI failed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 867 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet (r_ether)

◆ R_ETHER_TxStatusGet()

fsp_err_t R_ETHER_TxStatusGet (ether_ctrl_t *const p_ctrl, void *const p_buffer_address)

Provides status of Ethernet driver in the user provided pointer. Implements
ether_api_t::txStatusGet.

Return values
FSP_SUCCESS Transmit buffer address is stored in

provided p_buffer_address.

FSP_ERR_ASSERTION Pointer to ETHER control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_INVALID_POINTER p_status is NULL.

FSP_ERR_NOT_FOUND Transmit buffer address has been
overwritten in transmit descriptor.

4.2.21 Ethernet PHY (r_ether_phy)
Modules

Functions

fsp_err_t R_ETHER_PHY_Open (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t
const *const p_cfg)

 Resets Ethernet PHY device. Implements ether_phy_api_t::open.
More...

fsp_err_t R_ETHER_PHY_Close (ether_phy_ctrl_t *const p_ctrl)

 Close Ethernet PHY device. Implements ether_phy_api_t::close.
More...

fsp_err_t R_ETHER_PHY_StartAutoNegotiate (ether_phy_ctrl_t *const p_ctrl)

 Starts auto-negotiate. Implements
ether_phy_api_t::startAutoNegotiate. More...

fsp_err_t R_ETHER_PHY_LinkPartnerAbilityGet (ether_phy_ctrl_t *const p_ctrl,
uint32_t *const p_line_speed_duplex, uint32_t *const p_local_pause,
uint32_t *const p_partner_pause)

 Reports the other side's physical capability. Implements
ether_phy_api_t::linkPartnerAbilityGet. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 868 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

fsp_err_t R_ETHER_PHY_LinkStatusGet (ether_phy_ctrl_t *const p_ctrl)

 Returns the status of the physical link. Implements
ether_phy_api_t::linkStatusGet. More...

Detailed Description

The Ethernet PHY module (r_ether_phy) provides an API for standard Ethernet PHY communications
applications that use the ETHERC peripheral. It implements the Ethernet PHY Interface.

Overview
The Ethernet PHY module is used to setup and manage an external Ethernet PHY device for use with
the on-chip Ethernet Controller (ETHERC) peripheral. It performs auto-negotiation to determine the
optimal connection parameters between link partners. Once initialized the connection between the
external PHY and the onboard controller is automatically managed in hardware.

Features

The Ethernet PHY module supports the following features:

Auto negotiation support
Flow control support
Link status check support

Configuration
Build Time Configurations for r_ether_phy

The following build time configurations are defined in fsp_cfg/r_ether_phy_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Select PHY Default
Other
KSZ8091RNB
KSZ8041
DP83620

Default Select PHY chip to use.
Selecting 'Default' will
automatically choose
the correct option
when using a Renesas
development board.

Reference Clock Default
Enabled
Disabled

Default Select whether to use
the RMII reference
clock. Selecting
'Default' will
automatically choose
the correct option
when using a Renesas
development board.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 869 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

Configurations for Driver > Network > Ethernet Driver on r_ether_phy

This module can be added to the Stacks tab via New Stack > Driver > Network > Ethernet Driver on
r_ether_phy.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_ether_phy0 Module name.

Channel 0
1

0 Select the Ethernet
controller channel
number.

PHY-LSI Address Specify a value
between 0 and 31.

0 Specify the address of
the PHY-LSI used.

PHY-LSI Reset
Completion Timeout

Specify a value
between 0x1 and
0xFFFFFFFF.

0x00020000 Specify the number of
times to read the PHY-
LSI control register
while waiting for reset
completion. This value
should be adjusted
experimentally based
on the PHY-LSI used.

Select MII type MII
RMII

MII Specify whether to use
MII or RMII.

MII/RMII Register
Access Wait-time

Specify a value
between 0x1 and
0x7FFFFFFF.

8 Specify the bit timing
for MII/RMII register
accesses during PHY
initialization. This value
should be adjusted
experimentally based
on the PHY-LSI used.

Flow Control Disable
Enable

Disable Select whether to
enable or disable flow
control.

Usage Notes
Note

See the example below for details on how to initialize the Ethernet PHY module.

Accessing the MII and RMII Registers

Use the PIR register to access the MII and RMII registers in the PHY-LSI. Serial data in the MII and
RMII management frame format is transmitted and received through the ET0_MDC and ET0_MDIO
pins controlled by software.

MII and RMII management frame format

The below table lists the MII and RMII management frame formats.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 870 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

Access type MII and RMII management frame

Item PRE ST OP PHYAD REGAD TA DATA IDLE

Number
of bits

32 2 2 5 5 2 16 1

Read 1...1 01 10 00001 RRRRR Z0 DDDDD
DDDDD
DDDDD
D

Z

Write 1...1 01 01 00001 RRRRR 10 DDDDD
DDDDD
DDDDD
D

Z

Note
- PRE (preamble): Send 32 consecutive 1s.
- ST (start of frame): Send 01b.
- OP (operation code): Send 10b for read or 01b for write.
- PHYAD (PHY address): Up to 32 PHY-LSIs can be connected to one MAC. PHY-LSIs are selected with these 5
bits. When the PHY-LSI address is 1, send 00001b.
- REGAD (register address): One register is selected from up to 32 registers in the PHY-LSI. When the register
address is 1, send 00001b.
- TA (turnaround): Use 2-bit turnaround time to avoid contention between the register address and data during a
read operation.
Send 10b during a write operation. Release the bus for 1 bit during a read operation (Z is output).
(This is indicated as Z0 because 0 is output from the PHY-LSI on the next clock cycle.)
- DATA (data): 16-bit data. Sequentially send or receive starting from the MSB.
- IDLE (IDLE condition): Wait time before inputting the next MII or RMII management format. Release the bus
during a write
operation (Z is output). No control is required, because a bus was already released during a read operation.

Limitations

The r_ether_phy module may need to be customized for PHY devices other than the ones
currently supported (KSZ8091RNB, KSZ8041 and DP83620). Use the existing code as a
starting point for creating a custom implementation.

Examples
ETHER PHY Basic Example

This is a basic example of minimal use of the ETHER PHY in an application.

void ether_phy_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 g_ether_phy0_ctrl.open = 0U;

 g_ether_phy0_cfg.channel = 0;

 /* Initializes the module. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 871 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

 err = R_ETHER_PHY_Open(&g_ether_phy0_ctrl, &g_ether_phy0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start auto negotiation. */

 err = R_ETHER_PHY_StartAutoNegotiate(&g_ether_phy0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Polling until link is established. */

 while (FSP_SUCCESS != R_ETHER_PHY_LinkStatusGet(&g_ether_phy0_ctrl))

 {

 /* Do nothing */

 }

 /* Get link partner ability from phy interface. */

 err = R_ETHER_PHY_LinkPartnerAbilityGet(&g_ether_phy0_ctrl,

 &g_ether_phy0_line_speed_duplex,

 &g_ether_phy0_local_pause,

 &g_ether_phy0_partner_pause);

 assert(FSP_SUCCESS == err);

 /* Check current link status. */

 err = R_ETHER_PHY_LinkStatusGet(&g_ether_phy0_ctrl);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct ether_phy_instance_ctrl_t

Data Structure Documentation

◆ ether_phy_instance_ctrl_t

struct ether_phy_instance_ctrl_t

ETHER PHY control block. DO NOT INITIALIZE. Initialization occurs when ether_phy_api_t::open is
called.

Data Fields

uint32_t open Used to determine if the
channel is configured.

ether_phy_cfg_t const * p_ether_phy_cfg Pointer to initial configurations.

volatile uint32_t * p_reg_pir Pointer to ETHERC peripheral
registers.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 872 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

uint32_t local_advertise Capabilities bitmap for local
advertising.

Function Documentation

◆ R_ETHER_PHY_Open()

fsp_err_t R_ETHER_PHY_Open (ether_phy_ctrl_t *const p_ctrl, ether_phy_cfg_t const *const p_cfg
)

Resets Ethernet PHY device. Implements ether_phy_api_t::open.

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block or
configuration structure is NULL.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

FSP_ERR_INVALID_CHANNEL Invalid channel number is given.

FSP_ERR_INVALID_POINTER Pointer to p_cfg is NULL.

FSP_ERR_TIMEOUT PHY-LSI Reset wait timeout.

◆ R_ETHER_PHY_Close()

fsp_err_t R_ETHER_PHY_Close (ether_phy_ctrl_t *const p_ctrl)

Close Ethernet PHY device. Implements ether_phy_api_t::close.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 873 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

◆ R_ETHER_PHY_StartAutoNegotiate()

fsp_err_t R_ETHER_PHY_StartAutoNegotiate (ether_phy_ctrl_t *const p_ctrl)

Starts auto-negotiate. Implements ether_phy_api_t::startAutoNegotiate.

Return values
FSP_SUCCESS ETHER_PHY successfully starts auto-

negotiate.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_ETHER_PHY_LinkPartnerAbilityGet()

fsp_err_t R_ETHER_PHY_LinkPartnerAbilityGet (ether_phy_ctrl_t *const p_ctrl, uint32_t *const
p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t *const p_partner_pause)

Reports the other side's physical capability. Implements ether_phy_api_t::linkPartnerAbilityGet.

Return values
FSP_SUCCESS ETHER_PHY successfully get link partner

ability.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_INVALID_POINTER Pointer to arguments are NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_ETHER_PHY_ERROR_LINK PHY-LSI is not link up.

FSP_ERR_ETHER_PHY_NOT_READY The auto-negotiation isn't completed

◆ R_ETHER_PHY_LinkStatusGet()

fsp_err_t R_ETHER_PHY_LinkStatusGet (ether_phy_ctrl_t *const p_ctrl)

Returns the status of the physical link. Implements ether_phy_api_t::linkStatusGet.

Return values
FSP_SUCCESS ETHER_PHY successfully get link partner

ability.

FSP_ERR_ASSERTION Pointer to ETHER_PHY control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_ETHER_PHY_ERROR_LINK PHY-LSI is not link up.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 874 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Ethernet PHY (r_ether_phy)

4.2.22 High-Performance Flash Driver (r_flash_hp)
Modules

Functions

fsp_err_t R_FLASH_HP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

fsp_err_t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

fsp_err_t R_FLASH_HP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

fsp_err_t R_FLASH_HP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*blank_check_result)

fsp_err_t R_FLASH_HP_Close (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t
*const p_status)

fsp_err_t R_FLASH_HP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

fsp_err_t R_FLASH_HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

fsp_err_t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t R_FLASH_HP_CallbackSet (flash_ctrl_t *const p_api_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const
p_context, flash_callback_args_t *const p_callback_memory)

fsp_err_t R_FLASH_HP_BankSwap (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t
*const p_info)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 875 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

Detailed Description

Driver for the flash memory on RA high-performance MCUs. This module implements the Flash
Interface.

Overview
The Flash HAL module APIs allow an application to write, erase and blank check both the data and
ROM flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features

The R_FLASH_HP module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.
Blocking erasing, writing and blank-checking of code flash.
Callback functions for completion of non-blocking data flash operations.
Access window (write protection) for ROM Flash, allowing only specified areas of code flash
to be erased or written.
Boot block-swapping.
ID code programming support.

Configuration
Build Time Configurations for r_flash_hp

The following build time configurations are defined in fsp_cfg/r_flash_hp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Code Flash
Programming Enable

Enabled
Disabled

Disabled Controls whether or not
code-flash
programming is
enabled. Disabling
reduces the amount of
ROM and RAM used by
the API.

Data Flash
Programming Enable

Enabled
Disabled

Enabled Controls whether or not
data-flash
programming is
enabled. Disabling
reduces the amount of
ROM used by the API.

Configurations for Driver > Storage > Flash Driver on r_flash_hp

This module can be added to the Stacks tab via New Stack > Driver > Storage > Flash Driver on
r_flash_hp. Non-secure callable guard functions can be generated for this module by right clicking
the module in the RA Configuration tool and checking the "Non-secure Callable" box.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 876 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_flash0 Module name.

Data Flash Background
Operation

Enabled
Disabled

Enabled Enabling allows Flash
API calls that reference
data-flash to return
immediately, with the
operation continuing in
the background.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified. Callback
function called when a
Data Flash Background
Operation completes or
errors.

Flash Ready Interrupt
Priority

MCU Specific Options Select the flash ready
interrupt priority.

Flash Error Interrupt
Priority

MCU Specific Options Select the flash error
interrupt priority.

Clock Configuration

Flash uses FCLK as the clock source depending on the MCU. When writing and erasing the clock
source must be at least 4 MHz.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Warning

It is highly recommended that the developer reviews sections 5 and 6 of the Flash Memory
section of the target MCUs Hardware User’s Manual prior to using the r_flash_hp module. In
particular, understanding ID Code and Access Window functionality can help avoid
unrecoverable flash scenarios.

Data Flash Background Operation (BGO) Precautions

When using the data flash BGO (Background Operation) mode, you can still access the user ROM,
RAM and external memory. You must ensure that the data flash is not accessed during a data flash
operation. This includes interrupts that may access the data flash.

Code Flash Precautions

Code flash cannot be accessed while writing, erasing or blank checking code flash. Code flash cannot
be accessed while modifying the access window, selecting the startup area or setting the ID code. In
order to support modifying code flash all supporting code must reside in RAM. This is only done when
code flash programming is enabled. BGO mode is not supported for code flash, so a code flash
operation will not return before the operation has completed. By default, the vector table resides in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 877 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

the code flash. If an interrupt occurs during the code flash operation, then code flash will be
accessed to fetch the interrupt's starting address and an error will occur. The simplest work-around
is to disable interrupts during code flash operations. Another option is to copy the vector table to
RAM, update the VTOR (Vector Table Offset Register) accordingly and ensure that any interrupt
service routines execute out of RAM. Similarly, you must insure that if in a multi-threaded
environment, threads running from code flash cannot become active while a code flash operation is
in progress.

Flash Clock (FCLK)

The flash clock source is the clock used by the Flash peripheral in performing all Flash operations. As
part of the flash_api_t::open function the Flash clock source is checked will return FSP_ERR_FCLK if it
is invalid. Once the Flash API has been opened, if the flash clock source frequency is changed, the
flash_api_t::updateFlashClockFreq API function must be called to inform the API of the change.
Failure to do so could result in flash operation failures and possibly damage the part.

Interrupts

Enable the flash ready interrupt only if you plan to use the data flash BGO. In this mode, the
application can initiate a data flash operation and then be asynchronously notified of its completion,
or an error, using a user supplied-callback function. The callback function is passed a structure
containing event information that indicates the source of the callback event (for example,
flash_api_t::FLASH_EVENT_ERASE_COMPLETE) When the FLASH FRDYI interrupt is enabled, the
corresponding ISR will be defined in the flash driver. The ISR will call a user-callback function if one
was registered with the flash_api_t::open API.

Note
The Flash HP supports an additional flash-error interrupt and if the BGO mode is enabled for the FLASH HP then
both the Flash Ready Interrupt and Flash Error Interrupts must be enabled (assigned a priority).

Limitations

Write operations must be aligned on page boundaries and must be a multiple of the page
boundary size.
Erase operations will erase the entire block the provided address resides in.
Data flash is better suited for storing data as it can be erased and written to while code is
still executing from code flash. Data flash is also guaranteed for a larger number of
reprogramming/erasure cycles than code flash.
Read values of erased data flash blocks are not guaranteed to be 0xFF. Blank check should
be used to determine if memory has been erased but not yet programmed.

Examples
High-Performance Flash Basic Example

This is a basic example of erasing and writing to data flash and code flash.

#define FLASH_DF_BLOCK_0 0x40100000U /* 64 B: 0x40100000 - 0x4010003F */

#define FLASH_CF_BLOCK_8 0x00010000 /* 32 KB: 0x00010000 - 0x00017FFF */

#define FLASH_DATA_BLOCK_SIZE (1024)

#define FLASH_HP_EXAMPLE_WRITE_SIZE 32

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 878 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

flash_result_t blank_check_result;

void r_flash_hp_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_cfg);

 assert(FSP_SUCCESS == err);

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 /* Check if block 0 is erased. */

 err = R_FLASH_HP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

 /* Verify the previously erased area is blank */

 assert(FLASH_RESULT_BLANK == blank_check_result);

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE));

 /* Disable interrupts to prevent vector table access while code flash is in P/E

mode. */

 __disable_irq();

 /* Erase 1 block of code flash starting at block 10. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_CF_BLOCK_8, 1);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 879 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_CF_BLOCK_8,

FLASH_HP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 /* Enable interrupts after code flash operations are complete. */

 __enable_irq();

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_CF_BLOCK_8,

FLASH_HP_EXAMPLE_WRITE_SIZE));

}

High-Performance Flash Advanced Example

This example demonstrates using BGO to do non-blocking operations on the data flash.

bool interrupt_called;

flash_event_t flash_event;

static flash_cfg_t g_flash_bgo_example_cfg =

{

 .p_callback = flash_callback,

 .p_context = 0,

 .p_extend = NULL,

 .data_flash_bgo = true,

 .ipl = 5,

 .irq = BSP_VECTOR_FLASH_HP_FRDYI_ISR,

};

void r_flash_hp_bgo_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_bgo_example_cfg);

 /* Handle any errors. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 880 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

 assert(FSP_SUCCESS == err);

 interrupt_called = false;

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 while (!interrupt_called)

 {

 ;

 }

 assert(FLASH_EVENT_ERASE_COMPLETE == flash_event);

 interrupt_called = false;

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_HP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

 /* If the interrupt wasn't called process the error. */

 assert(interrupt_called);

 /* If the event wasn't a write complete process the error. */

 assert(FLASH_EVENT_WRITE_COMPLETE == flash_event);

 /* Verify the data was written correctly. */

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE));

}

void flash_callback (flash_callback_args_t * p_args)

{

 interrupt_called = true;

 flash_event = p_args->event;

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 881 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

High-Performance Flash Bank Swap Example

This example demonstrates swapping which flash bank is located at address 0. This feature is only
on select MCUs.

void r_flash_hp_bankswap_example (void)

{

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_cfg);

 /* Handle any errors. */

 assert(FSP_SUCCESS == err);

 /* Write the new application starting at 0x00200000. */

 /* Swap the block at address 0 with the one at 0x00200000 after the next restart.

 * The application at 0x00200000 must be written there by application code. */

 err = R_FLASH_HP_BankSwap(&g_flash_ctrl);

 /* Handle any errors. */

 assert(FSP_SUCCESS == err);

 /* Handle any pre-reset operations here */

 /* Reset the MCU to swap to the other bank */

 __NVIC_SystemReset();

}

Data Structures

struct flash_hp_instance_ctrl_t

Enumerations

enum flash_bgo_operation_t

Data Structure Documentation

◆ flash_hp_instance_ctrl_t

struct flash_hp_instance_ctrl_t

Flash HP instance control block. DO NOT INITIALIZE.

Data Fields

uint32_t opened

 To check whether api has been opened or not.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 882 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

flash_bgo_operation_t current_operation

 Operation in progress, for example, FLASH_OPERATION_CF_ERASE.

Enumeration Type Documentation

◆ flash_bgo_operation_t

enum flash_bgo_operation_t

Possible Flash operation states

Function Documentation

◆ R_FLASH_HP_Open()

fsp_err_t R_FLASH_HP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const *const p_cfg)

Initializes the high performance flash peripheral. Implements flash_api_t::open.

The Open function initializes the Flash.

Example:

 /* Open the flash hp instance. */

 fsp_err_t err = R_FLASH_HP_Open(&g_flash_ctrl, &g_flash_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ALREADY_OPEN The flash control block is already open.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

FSP_ERR_IRQ_BSP_DISABLED Caller is requesting BGO but the Flash
interrupts are not enabled.

FSP_ERR_FCLK FCLK must be a minimum of 4 MHz for Flash
operations.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 883 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_Write()

fsp_err_t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const src_address, uint32_t
flash_address, uint32_t const num_bytes)

Writes to the specified Code or Data Flash memory area. Implements flash_api_t::write.

Example:

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_HP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_HP_EXAMPLE_WRITE_SIZE);

Return values
FSP_SUCCESS Operation successful. If BGO is enabled this

means the operation was started
successfully.

FSP_ERR_IN_USE The Flash peripheral is busy with a prior on-
going transaction.

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Write an area that is
protected by an Access Window.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation. This may be
returned if the requested Flash area is not
blank.

FSP_ERR_TIMEOUT Timed out waiting for FCU operation to
complete.

FSP_ERR_INVALID_SIZE Number of bytes provided was not a
multiple of the programming size or
exceeded the maximum range.

FSP_ERR_INVALID_ADDRESS Invalid address was input or address not on
programming boundary.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 884 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_Erase()

fsp_err_t R_FLASH_HP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erases the specified Code or Data Flash blocks. Implements flash_api_t::erase by the
block_erase_address.

Note
Code flash may contain blocks of different sizes. When erasing code flash it is important to take this into
consideration to prevent erasing a larger address space than desired.

Example:

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_HP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

Return values
FSP_SUCCESS Successful open.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks specified

FSP_ERR_INVALID_ADDRESS Invalid address specified. If the address is in
code flash then code flash programming
must be enabled.

FSP_ERR_IN_USE Other flash operation in progress, or API not
initialized

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Erase an area that is
protected by an Access Window.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_ERASE_FAILED Status is indicating a Erase error.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 885 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_BlankCheck()

fsp_err_t R_FLASH_HP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t
num_bytes, flash_result_t * p_blank_check_result)

Performs a blank check on the specified address area. Implements flash_api_t::blankCheck.

Example:

 /* Check if block 0 is erased. */

 err = R_FLASH_HP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Blank check operation completed with result

in p_blank_check_result, or blank check
started and in-progess (BGO mode).

FSP_ERR_INVALID_ADDRESS Invalid data flash address was input.

FSP_ERR_INVALID_SIZE 'num_bytes' was either too large or not
aligned for the CF/DF boundary size.

FSP_ERR_IN_USE Other flash operation in progress or API not
initialized.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Erase an area that is
protected by an Access Window.

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

FSP_ERR_BLANK_CHECK_FAILED Blank check operation failed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 886 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_Close()

fsp_err_t R_FLASH_HP_Close (flash_ctrl_t *const p_api_ctrl)

Releases any resources that were allocated by the Open() or any subsequent Flash operations.
Implements flash_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

◆ R_FLASH_HP_StatusGet()

fsp_err_t R_FLASH_HP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t *const p_status)

Query the FLASH peripheral for its status. Implements flash_api_t::statusGet.

Example:

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_HP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

Return values
FSP_SUCCESS FLASH peripheral is ready to use.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The Flash API is not Open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 887 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_AccessWindowSet()

fsp_err_t R_FLASH_HP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Configure an access window for the Code Flash memory using the provided start and end address.
An access window defines a contiguous area in Code Flash for which programming/erase is
enabled. This area is on block boundaries. The block containing start_addr is the first block. The
block containing end_addr is the last block. The access window then becomes first block –> last
block inclusive. Anything outside this range of Code Flash is then write protected.

Note
If the start address and end address are set to the same value, then the access window is effectively removed. This
accomplishes the same functionality as R_FLASH_HP_AccessWindowClear().

Implements flash_api_t::accessWindowSet.

Return values
FSP_SUCCESS Access window successfully configured.

FSP_ERR_INVALID_ADDRESS Invalid settings for start_addr and/or
end_addr.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 888 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_AccessWindowClear()

fsp_err_t R_FLASH_HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

Remove any access window that is currently configured in the Code Flash. Subsequent to this call
all Code Flash is writable. Implements flash_api_t::accessWindowClear.

Return values
FSP_SUCCESS Access window successfully removed.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 889 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_IdCodeSet()

fsp_err_t R_FLASH_HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const *const p_id_code,
flash_id_code_mode_t mode)

Implements flash_api_t::idCodeSet.

Return values
FSP_SUCCESS ID Code successfully configured.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

◆ R_FLASH_HP_Reset()

fsp_err_t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)

Reset the FLASH peripheral. Implements flash_api_t::reset.

No attempt is made to check if the flash is busy before executing the reset since the assumption is
that a reset will terminate any existing operation.

Return values
FSP_SUCCESS Flash circuit successfully reset.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_PE_FAILURE Failed to enter or exit P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 890 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_UpdateFlashClockFreq()

fsp_err_t R_FLASH_HP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

Indicate to the already open Flash API that the FCLK has changed. Implements
flash_api_t::updateFlashClockFreq.

This could be the case if the application has changed the system clock, and therefore the FCLK.
Failure to call this function subsequent to changing the FCLK could result in damage to the flash
macro.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_FCLK FCLK is not within the acceptable range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 891 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_StartUpAreaSelect()

fsp_err_t R_FLASH_HP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Selects which block, Default (Block 0) or Alternate (Block 1), is used as the startup area block. The
provided parameters determine which block will become the active startup block and whether that
action will be immediate (but temporary), or permanent subsequent to the next reset. Doing a
temporary switch might appear to have limited usefulness. If there is an access window in place
such that Block 0 is write protected, then one could do a temporary switch, update the block and
switch them back without having to touch the access window. Implements
flash_api_t::startupAreaSelect.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 892 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_CallbackSet()

fsp_err_t R_FLASH_HP_CallbackSet (flash_ctrl_t *const p_api_ctrl, void(*)(flash_callback_args_t *)
p_callback, void const *const p_context, flash_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements flash_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_FLASH_HP_BankSwap()

fsp_err_t R_FLASH_HP_BankSwap (flash_ctrl_t *const p_api_ctrl)

Swaps the flash bank located at address 0x00000000 and address 0x00200000. This can only be
done when in dual bank mode. Dual bank mode can be enabled in the FSP Configuration Tool under
BSP Properties. After a bank swap is done the MCU will need to be reset for the changes to take
place. flash_api_t::bankSwap.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_PE_FAILURE Failed to enter or exit Code Flash P/E mode.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_INVALID_MODE Cannot switch banks while flash is in Linear
mode.

FSP_ERR_WRITE_FAILED Flash write operation failed.

FSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of having received an illegal command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 893 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > High-Performance Flash Driver (r_flash_hp)

◆ R_FLASH_HP_InfoGet()

fsp_err_t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const p_info)

Returns the information about the flash regions. Implements flash_api_t::infoGet.

Return values
FSP_SUCCESS Successful retrieved the request

information.

FSP_ERR_NOT_OPEN The control block is not open.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_info.

4.2.23 Low-Power Flash Driver (r_flash_lp)
Modules

Functions

fsp_err_t R_FLASH_LP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

fsp_err_t R_FLASH_LP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

fsp_err_t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

fsp_err_t R_FLASH_LP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*blank_check_result)

fsp_err_t R_FLASH_LP_Close (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t
*const p_status)

fsp_err_t R_FLASH_LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

fsp_err_t R_FLASH_LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

fsp_err_t R_FLASH_LP_Reset (flash_ctrl_t *const p_api_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 894 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

fsp_err_t R_FLASH_LP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err_t R_FLASH_LP_CallbackSet (flash_ctrl_t *const p_api_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const
p_context, flash_callback_args_t *const p_callback_memory)

fsp_err_t R_FLASH_LP_BankSwap (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

fsp_err_t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const
p_info)

Detailed Description

Driver for the flash memory on RA low-power MCUs. This module implements the Flash Interface.

Overview
The Flash HAL module APIs allow an application to write, erase and blank check both the data and
code flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features

The Low-Power Flash HAL module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.
Blocking erasing, writing and blank checking of code flash.
Callback functions for completion of non-blocking data flash operations.
Access window (write protection) for code flash, allowing only specified areas of code flash
to be erased or written.
Boot block-swapping.
ID code programming support.

Configuration
Build Time Configurations for r_flash_lp

The following build time configurations are defined in fsp_cfg/r_flash_lp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Code Flash
Programming

Enabled
Disabled

Disabled Controls whether or not
code-flash
programming is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 895 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

enabled. Disabling
reduces the amount of
ROM and RAM used by
the API.

Data Flash
Programming

Enabled
Disabled

Enabled Controls whether or not
data-flash
programming is
enabled. Disabling
reduces the amount of
ROM used by the API.

Configurations for Driver > Storage > Flash Driver on r_flash_lp

This module can be added to the Stacks tab via New Stack > Driver > Storage > Flash Driver on
r_flash_lp.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_flash0 Module name.

Data Flash Background
Operation

Enabled
Disabled

Enabled Enabling allows Flash
API calls that reference
data-flash to return
immediately, with the
operation continuing in
the background.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified. Callback
function called when a
Data Flash Background
Operation completes or
errors.

Flash Ready Interrupt
Priority

MCU Specific Options Select the flash ready
interrupt priority.

Clock Configuration

Flash either uses FCLK or ICLK as the clock source depending on the MCU. When writing and erasing
the clock source must be at least 4 MHz.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Warning

It is highly recommended that the developer reviews sections 5 and 6 of the Flash Memory
section of the target MCUs Hardware User’s Manual prior to using the r_flash_lp module. In
particular, understanding ID Code and Access Window functionality can help avoid
unrecoverable flash scenarios.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 896 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

Data Flash Background Operation (BGO) Precautions

When using the data flash BGO, the code flash, RAM and external memory can still be accessed. You
must ensure that the data flash is not accessed during a data flash operation. This includes
interrupts that may access the data flash.

Code Flash Precautions

Code flash cannot be accessed while writing, erasing or blank checking code flash. Code flash cannot
be accessed while modifying the access window, selecting the startup area or setting the ID code. In
order to support modifying code flash all supporting code must reside in RAM. This is only done when
code flash programming is enabled. BGO mode is not supported for code flash, so a code flash
operation will not return before the operation has completed. By default, the vector table resides in
the code flash. If an interrupt occurs during the code flash operation, then code flash will be
accessed to fetch the interrupt's starting address and an error will occur. The simplest work-around
is to disable interrupts during code flash operations. Another option is to copy the vector table to
RAM, update the VTOR (Vector Table Offset Register) accordingly and ensure that any interrupt
service routines execute out of RAM. Similarly, you must insure that if in a multi-threaded
environment, threads running from code flash cannot become active while a code flash operation is
in progress.

Flash Clock Source

The flash clock source is the clock used by the Flash peripheral in performing all Flash operations. As
part of the flash_api_t::open function the Flash clock source is checked will return FSP_ERR_FCLK if it
is invalid. Once the Flash API has been opened, if the flash clock source frequency is changed, the
flash_api_t::updateFlashClockFreq API function must be called to inform the API of the change.
Failure to do so could result in flash operation failures and possibly damage the part.

Interrupts

Enable the flash ready interrupt only if you plan to use the data flash BGO. In this mode, the
application can initiate a data flash operation and then be asynchronously notified of its completion,
or an error, using a user supplied-callback function. The callback function is passed a structure
containing event information that indicates the source of the callback event (for example,
flash_api_t::FLASH_EVENT_ERASE_COMPLETE) When the FLASH FRDYI interrupt is enabled, the
corresponding ISR will be defined in the flash driver. The ISR will call a user-callback function if one
was registered with the flash_api_t::open API.

Note
The Flash HP supports an additional flash-error interrupt and if the BGO mode is enabled for the FLASH HP then
both the Flash Ready Interrupt and Flash Error Interrupts must be enabled (assigned a priority).

Limitations

Write operations must be aligned on page boundaries and must be a multiple of the page
boundary size.
Erase operations will erase the entire block the provided address resides in.
Data flash is better suited for storing data as it can be erased and written to while code is
still executing from code flash. Data flash is also guaranteed for a larger number of
reprogramming/erasure cycles than code flash.
Read values of erased blocks are not guaranteed to be 0xFF. Blank check should be used to
determine if memory has been erased but not yet programmed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 897 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

Examples
Low-Power Flash Basic Example

This is a basic example of erasing and writing to data flash and code flash.

#define FLASH_DF_BLOCK_0 0x40100000U /* 1 KB: 0x40100000 - 0x401003FF */

#define FLASH_CF_BLOCK_10 0x00005000 /* 2 KB: 0x00005000 - 0x000057FF */

#define FLASH_DATA_BLOCK_SIZE (1024)

#define FLASH_LP_EXAMPLE_WRITE_SIZE 32

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

flash_result_t blank_check_result;

void R_FLASH_LP_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash lp instance. */

 fsp_err_t err = R_FLASH_LP_Open(&g_flash_ctrl, &g_flash_cfg);

 assert(FSP_SUCCESS == err);

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 /* Check if block 0 is erased. */

 err = R_FLASH_LP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

 /* Verify the previously erased area is blank */

 assert(FLASH_RESULT_BLANK == blank_check_result);

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 898 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE));

 /* Disable interrupts to prevent vector table access while code flash is in P/E

mode. */

 __disable_irq();

 /* Erase 1 block of code flash starting at block 10. */

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_CF_BLOCK_10, 1);

 assert(FSP_SUCCESS == err);

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_CF_BLOCK_10,

FLASH_LP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 /* Enable interrupts after code flash operations are complete. */

 __enable_irq();

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_CF_BLOCK_10,

FLASH_LP_EXAMPLE_WRITE_SIZE));

}

Low-Power Flash Advanced Example

This example demonstrates using BGO to do non-blocking operations on the data flash.

bool interrupt_called;

flash_event_t flash_event;

static flash_cfg_t g_flash_bgo_example_cfg =

{

 .p_callback = flash_callback,

 .p_context = 0,

 .p_extend = NULL,

 .data_flash_bgo = true,

 .ipl = 5,

 .irq = BSP_VECTOR_FLASH_LP_FRDYI_ISR,

};

void R_FLASH_LP_bgo_example (void)

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 899 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the flash lp instance. */

 fsp_err_t err = R_FLASH_LP_Open(&g_flash_ctrl, &g_flash_bgo_example_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 interrupt_called = false;

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

 assert(FSP_SUCCESS == err);

 while (!interrupt_called)

 {

 ;

 }

 assert(FLASH_EVENT_ERASE_COMPLETE == flash_event);

 interrupt_called = false;

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE);

 assert(FSP_SUCCESS == err);

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_LP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

 /* If the interrupt wasn't called process the error. */

 assert(interrupt_called);

 /* If the event wasn't a write complete process the error. */

 assert(FLASH_EVENT_WRITE_COMPLETE == flash_event);

 /* Verify the data was written correctly. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 900 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

 assert(0 == memcmp(g_src, (uint8_t *) FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE));

}

void flash_callback (flash_callback_args_t * p_args)

{

 interrupt_called = true;

 flash_event = p_args->event;

}

Data Structures

struct flash_lp_instance_ctrl_t

Data Structure Documentation

◆ flash_lp_instance_ctrl_t

struct flash_lp_instance_ctrl_t

Flash instance control block. DO NOT INITIALIZE. Initialization occurs when R_FLASH_LP_Open() is
called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 901 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_Open()

fsp_err_t R_FLASH_LP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const *const p_cfg)

Initialize the Low Power flash peripheral. Implements flash_api_t::open.

The Open function initializes the Flash.

This function must be called once prior to calling any other FLASH API functions. If a user supplied
callback function is supplied, then the Flash Ready interrupt will be configured to call the users
callback routine with an Event type describing the source of the interrupt for Data Flash operations.

Example:

 /* Open the flash lp instance. */

 fsp_err_t err = R_FLASH_LP_Open(&g_flash_ctrl, &g_flash_cfg);

Note
Providing a callback function in the supplied p_cfg->callback field automatically configures the Flash for Data
Flash to operate in non-blocking background operation (BGO) mode.

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION NULL provided for p_ctrl, p_cfg or p_callback
if BGO is enabled.

FSP_ERR_IRQ_BSP_DISABLED Caller is requesting BGO but the Flash
interrupts are not enabled.

FSP_ERR_FCLK FCLK must be a minimum of 4 MHz for Flash
operations.

FSP_ERR_ALREADY_OPEN Flash Open() has already been called.

FSP_ERR_TIMEOUT Failed to exit P/E mode after configuring
flash.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 902 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_Write()

fsp_err_t R_FLASH_LP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const src_address, uint32_t
flash_address, uint32_t const num_bytes)

Write to the specified Code or Data Flash memory area. Implements flash_api_t::write.

Example:

 /* Write 32 bytes to the first block of data flash. */

 err = R_FLASH_LP_Write(&g_flash_ctrl, (uint32_t) g_src, FLASH_DF_BLOCK_0,

FLASH_LP_EXAMPLE_WRITE_SIZE);

Return values
FSP_SUCCESS Operation successful. If BGO is enabled this

means the operation was started
successfully.

FSP_ERR_IN_USE The Flash peripheral is busy with a prior on-
going transaction.

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation. This may be
returned if the requested Flash area is not
blank.

FSP_ERR_TIMEOUT Timed out waiting for FCU operation to
complete.

FSP_ERR_INVALID_SIZE Number of bytes provided was not a
multiple of the programming size or
exceeded the maximum range.

FSP_ERR_INVALID_ADDRESS Invalid address was input or address not on
programming boundary.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 903 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_Erase()

fsp_err_t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erase the specified Code or Data Flash blocks. Implements flash_api_t::erase.

Example:

 /* Erase 1 block of data flash starting at block 0. */

 err = R_FLASH_LP_Erase(&g_flash_ctrl, FLASH_DF_BLOCK_0, 1);

Return values
FSP_SUCCESS Successful open.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks specified

FSP_ERR_INVALID_ADDRESS Invalid address specified

FSP_ERR_IN_USE Other flash operation in progress, or API not
initialized

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN The Flash API is not Open.

FSP_ERR_TIMEOUT Timed out waiting for FCU to be ready.

FSP_ERR_ERASE_FAILED Status is indicating a Erase error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 904 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_BlankCheck()

fsp_err_t R_FLASH_LP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t
num_bytes, flash_result_t * p_blank_check_result)

Perform a blank check on the specified address area. Implements flash_api_t::blankCheck.

Example:

 /* Check if block 0 is erased. */

 err = R_FLASH_LP_BlankCheck(&g_flash_ctrl, FLASH_DF_BLOCK_0,

FLASH_DATA_BLOCK_SIZE, &blank_check_result);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Blankcheck operation completed with result

in p_blank_check_result, or blankcheck
started and in-progess (BGO mode).

FSP_ERR_INVALID_ADDRESS Invalid data flash address was input

FSP_ERR_INVALID_SIZE 'num_bytes' was either too large or not
aligned for the CF/DF boundary size.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_BLANK_CHECK_FAILED An error occurred during blank checking.

◆ R_FLASH_LP_Close()

fsp_err_t R_FLASH_LP_Close (flash_ctrl_t *const p_api_ctrl)

Release any resources that were allocated by the Flash API. Implements flash_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_IN_USE The flash is currently in P/E mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 905 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_StatusGet()

fsp_err_t R_FLASH_LP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status_t *const p_status)

Query the FLASH for its status. Implements flash_api_t::statusGet.

Example:

 flash_status_t status;

 /* Wait until the current flash operation completes. */

 do

 {

 err = R_FLASH_LP_StatusGet(&g_flash_ctrl, &status);

 } while ((FSP_SUCCESS == err) && (FLASH_STATUS_BUSY == status));

Return values
FSP_SUCCESS Flash is ready and available to accept

commands.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 906 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_AccessWindowSet()

fsp_err_t R_FLASH_LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Configure an access window for the Code Flash memory. Implements flash_api_t::accessWindowSet
.

An access window defines a contiguous area in Code Flash for which programming/erase is
enabled. This area is on block boundaries. The block containing start_addr is the first block. The
block containing end_addr is the last block. The access window then becomes first block (inclusive)
–> last block (exclusive). Anything outside this range of Code Flash is then write protected. As an
example, if you wanted to place an accesswindow on Code Flash Blocks 0 and 1, such that only
those two blocks were writable, you would need to specify (address in block 0, address in block 2)
as the respective start and end address.

Note
If the start address and end address are set to the same value, then the access window is effectively removed. This
accomplishes the same functionality as R_FLASH_LP_AccessWindowClear().

The invalid address and programming boundaries supported and enforced by this function are
dependent on the MCU in use as well as the part package size. Please see the User manual and/or
requirements document for additional information.

Parameters
p_api_ctrl The p api control

[in] start_addr The start address

[in] end_addr The end address

Return values
FSP_SUCCESS Access window successfully configured.

FSP_ERR_INVALID_ADDRESS Invalid settings for start_addr and/or
end_addr.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 907 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_AccessWindowClear()

fsp_err_t R_FLASH_LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

Remove any access window that is configured in the Code Flash. Implements
flash_api_t::accessWindowClear. On successful return from this call all Code Flash is writable.

Return values
FSP_SUCCESS Access window successfully removed.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

◆ R_FLASH_LP_IdCodeSet()

fsp_err_t R_FLASH_LP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const *const p_id_code,
flash_id_code_mode_t mode)

Write the ID code provided to the id code registers. Implements flash_api_t::idCodeSet.

Return values
FSP_SUCCESS ID code successfully configured.

FSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for completion of extra
command.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 908 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_Reset()

fsp_err_t R_FLASH_LP_Reset (flash_ctrl_t *const p_api_ctrl)

Reset the FLASH peripheral. Implements flash_api_t::reset.

No attempt is made to check if the flash is busy before executing the reset since the assumption is
that a reset will terminate any existing operation.

Return values
FSP_SUCCESS Flash circuit successfully reset.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

◆ R_FLASH_LP_StartUpAreaSelect()

fsp_err_t R_FLASH_LP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Select which block is used as the startup area block. Implements flash_api_t::startupAreaSelect.

Selects which block - Default (Block 0) or Alternate (Block 1) is used as the startup area block. The
provided parameters determine which block will become the active startup block and whether that
action will be immediate (but temporary), or permanent subsequent to the next reset. Doing a
temporary switch might appear to have limited usefulness. If there is an access window in place
such that Block 0 is write protected, then one could do a temporary switch, update the block and
switch them back without having to touch the access window.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

FSP_ERR_UNSUPPORTED Code Flash Programming is not enabled.
Cannot set FLASH_STARTUP_AREA_BTFLG
when the temporary flag is false.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 909 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_CallbackSet()

fsp_err_t R_FLASH_LP_CallbackSet (flash_ctrl_t *const p_api_ctrl, void(*)(flash_callback_args_t *)
p_callback, void const *const p_context, flash_callback_args_t *const p_callback_memory)

Stub function Implements flash_api_t::callbackSet.

Return values
FSP_ERR_UNSUPPORTED Function has not been implemented.

◆ R_FLASH_LP_BankSwap()

fsp_err_t R_FLASH_LP_BankSwap (flash_ctrl_t *const p_api_ctrl)

Unsupported flash_api_t::bankSwap.

Return values
FSP_ERR_UNSUPPORTED Module does not support Bank Swap.

◆ R_FLASH_LP_UpdateFlashClockFreq()

fsp_err_t R_FLASH_LP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

Indicate to the already open Flash API that the FCLK has changed. Implements
flash_api_t::updateFlashClockFreq.

This could be the case if the application has changed the system clock, and therefore the FCLK.
Failure to call this function subsequent to changing the FCLK could result in damage to the flash
macro.

Return values
FSP_SUCCESS Start-up area successfully toggled.

FSP_ERR_IN_USE Flash is busy with an on-going operation.

FSP_ERR_FCLK Invalid flash clock source frequency.

FSP_ERR_ASSERTION NULL provided for p_ctrl

FSP_ERR_NOT_OPEN Flash API has not yet been opened.

FSP_ERR_TIMEOUT Timed out waiting for the FCU to become
ready.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 910 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low-Power Flash Driver (r_flash_lp)

◆ R_FLASH_LP_InfoGet()

fsp_err_t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const p_info)

Returns the information about the flash regions. Implements flash_api_t::infoGet.

Return values
FSP_SUCCESS Successful retrieved the request

information.

FSP_ERR_ASSERTION NULL provided for p_ctrl or p_info.

FSP_ERR_NOT_OPEN The flash is not open.

4.2.24 Graphics LCD Controller (r_glcdc)
Modules

Functions

fsp_err_t R_GLCDC_Open (display_ctrl_t *const p_api_ctrl, display_cfg_t const
*const p_cfg)

fsp_err_t R_GLCDC_Close (display_ctrl_t *const p_api_ctrl)

fsp_err_t R_GLCDC_Start (display_ctrl_t *const p_api_ctrl)

fsp_err_t R_GLCDC_Stop (display_ctrl_t *const p_api_ctrl)

fsp_err_t R_GLCDC_LayerChange (display_ctrl_t const *const p_api_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
layer)

fsp_err_t R_GLCDC_BufferChange (display_ctrl_t const *const p_api_ctrl,
uint8_t *const framebuffer, display_frame_layer_t layer)

fsp_err_t R_GLCDC_ColorCorrection (display_ctrl_t const *const p_api_ctrl,
display_correction_t const *const p_correction)

fsp_err_t R_GLCDC_ClutUpdate (display_ctrl_t const *const p_api_ctrl,
display_clut_cfg_t const *const p_clut_cfg, display_frame_layer_t
layer)

fsp_err_t R_GLCDC_ClutEdit (display_ctrl_t const *const p_api_ctrl,
display_frame_layer_t layer, uint8_t index, uint32_t color)

fsp_err_t R_GLCDC_StatusGet (display_ctrl_t const *const p_api_ctrl,
display_status_t *const status)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 911 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Detailed Description

Driver for the GLCDC peripheral on RA MCUs. This module implements the Display Interface.

Overview
The GLCDC is a multi-stage graphics output peripheral designed to automatically generate timing
and data signals for LCD panels. As part of its internal pipeline the two internal graphics layers can
be repositioned, alpha blended, color corrected, dithered and converted to and from a wide variety
of pixel formats.

Features

The following features are available:

Feature Options

Input color formats ARGB8888, ARGB4444, ARGB1555, RGB888
(32-bit), RGB565, CLUT 8bpp, CLUT 4bpp, CLUT
1bpp

Output color formats RGB888, RGB666, RGB565, Serial RGB888 (8-bit
parallel)

Correction processes Alpha blending, positioning, brightness and
contrast, gamma correction, dithering

Timing signals Dot clock, Vsync, Hsync, Vertical and horizontal
data enable (DE)

Maximum resolution Up to 1020 x 1008 pixels (dependent on sync
signal width)

Maximum dot clock 60MHz for serial RGB mode, 54MHz otherwise

Internal clock divisors 1-9, 12, 16, 24, 32

Interrupts Vsync (line detect), Layer 1 underflow, Layer 2
underflow

Other functions Byte-order and endianness control, line repeat
function

Configuration
Build Time Configurations for r_glcdc

The following build time configurations are defined in fsp_cfg/r_glcdc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP) Default (BSP) If selected, code for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 912 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Enabled
Disabled

parameter checking is
included in the build.

Color Correction On
Off

Off If selected, code to
adjust brightness,
contrast and gamma
settings is included in
the build. When
disabled all color
correction
configuration options
are ignored.

Configurations for Driver > Graphics > Display Driver on r_glcdc

This module can be added to the Stacks tab via New Stack > Driver > Graphics > Display Driver on
r_glcdc.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_display0 Module name.

Interrupts > Callback
Function

Name must be a valid
C symbol

NULL A user callback
function can be defined
here.

Interrupts > Line
Detect Interrupt
Priority

MCU Specific Options Select the line detect
(Vsync) interrupt
priority.

Interrupts > Underflow
1 Interrupt Priority

MCU Specific Options Select the underflow
interrupt priority for
layer 1.

Interrupts > Underflow
2 Interrupt Priority

MCU Specific Options Select the underflow
interrupt priority for
layer 2.

Input > Graphics Layer
1 > General > Enabled

Yes
No

Yes Specify Used if the
graphics layer 1 is
used. If so a
framebuffer will be
automatically
generated based on
the specified height
and horizontal stride.

Input > Graphics Layer
1 > General >
Horizontal size

Value must be between
16 and 1016

480 Specify the number of
horizontal pixels.

Input > Graphics Layer
1 > General > Vertical
size

Value must be between
16 and 1020

272 Specify the number of
vertical pixels.

Input > Graphics Layer
1 > General >

Must be a valid non-
negative integer with a

0 Specify the horizontal
offset in pixels of the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 913 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Horizontal position maximum configurable
value of 4091

graphics layer from the
background layer.

Input > Graphics Layer
1 > General > Vertical
position

Must be a valid non-
negative integer with a
maximum configurable
value of 4094

0 Specify the vertical
offset in pixels of the
graphics layer from the
background layer.

Input > Graphics Layer
1 > General > Color
format

ARGB8888
(32-bit)
RGB888 (32-bit)
RGB565 (16-bit)
ARGB1555
(16-bit)
ARGB4444
(16-bit)
CLUT8 (8-bit)
CLUT4 (4-bit)
CLUT1 (1-bit)

RGB565 (16-bit) Specify the graphics
layer Input format. If
selecting CLUT formats,
you must write the
CLUT table data before
starting output.

Input > Graphics Layer
1 > General > Line
descending mode

Enabled
Disabled

Disabled Select Used if the
framebuffer starts from
the bottom of the line.

Input > Graphics Layer
1 > Background Color
> Alpha

Value must be between
0 and 255

255 Based on the alpha
value, either the
graphics Layer 2
(foreground graphics
layer) is blended into
the graphics Layer 1
(background graphics
layer) or the graphics
Layer 1 is blended into
the monochrome
background layer.

Input > Graphics Layer
1 > Background Color
> Red

Value must be between
0 and 255

255 Red component of the
background color for
layer 1.

Input > Graphics Layer
1 > Background Color
> Green

Value must be between
0 and 255

255 Green component of
the background color
for layer 1.

Input > Graphics Layer
1 > Background Color
> Blue

Value must be between
0 and 255

255 Blue component of the
background color for
layer 1.

Input > Graphics Layer
1 > Framebuffer >
Framebuffer name

This property must be
a valid C symbol

fb_background Specify the name for
the framebuffer for
Layer 1.

Input > Graphics Layer
1 > Framebuffer >
Number of
framebuffers

Must be a valid non-
negative integer with a
maximum configurable
value of 65535

2 Number of
framebuffers allocated
for Graphics Layer 1.

Input > Graphics Layer
1 > Framebuffer >

Manual Entry .bss Specify the section in
which to allocate the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 914 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Section for framebuffer
allocation

framebuffer. When Arm
Compiler 6 is used to
place this memory in
on-chip SRAM, the
section name must be
.bss or start with .bss.
to avoid consuming
unnecessary ROM
space.

Input > Graphics Layer
1 > Line Repeat >
Enable

On
Off

Off Select On if the display
will be repeated from a
smaller section of the
framebuffer.

Input > Graphics Layer
1 > Line Repeat >
Repeat count

Must be a valid non-
negative integer with a
maximum configurable
value of 65535 i.e
(vertical size) x (lines
repeat times) must be
equal to the panel
vertical size

0 Specify the number of
times the image is
repeated.

Input > Graphics Layer
1 > Fading > Mode

None
Fade-in
Fade-out

None Select the fade
method.

Input > Graphics Layer
1 > Fading > Speed

Value must be between
0 and 255

0 Specify the number of
frames for the fading
transition to complete.

Input > Graphics Layer
2 > General > Enabled

Yes
No

No Specify Used if the
graphics layer 2 is
used. If so a
framebuffer will be
automatically
generated based on
the specified height
and horizontal stride.

Input > Graphics Layer
2 > General >
Horizontal size

Value must be between
16 and 1016

480 Specify the number of
horizontal pixels.

Input > Graphics Layer
2 > General > Vertical
size

Value must be between
16 and 1020

272 Specify the number of
vertical pixels.

Input > Graphics Layer
2 > General >
Horizontal position

Must be a valid non-
negative integer with a
maximum configurable
value of 4091

0 Specify the horizontal
offset in pixels of the
graphics layer from the
background layer.

Input > Graphics Layer
2 > General > Vertical
position

Must be a valid non-
negative integer with a
maximum configurable
value of 4094

0 Specify the vertical
offset in pixels of the
graphics layer from the
background layer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 915 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Input > Graphics Layer
2 > General > Color
format

ARGB8888
(32-bit)
RGB888 (32-bit)
RGB565 (16-bit)
ARGB1555
(16-bit)
ARGB4444
(16-bit)
CLUT8 (8-bit)
CLUT4 (4-bit)
CLUT1 (1-bit)

RGB565 (16-bit) Specify the graphics
layer Input format. If
selecting CLUT formats,
you must write the
CLUT table data before
starting output.

Input > Graphics Layer
2 > General > Line
descending mode

Enabled
Disabled

Disabled Select Used if the
framebuffer starts from
the bottom of the line.

Input > Graphics Layer
2 > Background Color
> Alpha

Value must be between
0 and 255

255 Based on the alpha
value, either the
graphics Layer 2
(foreground graphics
layer) is blended into
the graphics Layer 1
(background graphics
layer) or the graphics
Layer 1 is blended into
the monochrome
background layer.

Input > Graphics Layer
2 > Background Color
> Red

Value must be between
0 and 255

255 Red component of the
background color for
layer 2.

Input > Graphics Layer
2 > Background Color
> Green

Value must be between
0 and 255

255 Green component of
the background color
for layer 2.

Input > Graphics Layer
2 > Background Color
> Blue

Value must be between
0 and 255

255 Blue component of the
background color for
layer 2.

Input > Graphics Layer
2 > Framebuffer >
Framebuffer name

This property must be
a valid C symbol

fb_foreground Specify the name for
the framebuffer for
Layer 2.

Input > Graphics Layer
2 > Framebuffer >
Number of
framebuffers

Must be a valid non-
negative integer with a
maximum configurable
value of 65535

2 Number of
framebuffers allocated
for Graphics Layer 2.

Input > Graphics Layer
2 > Framebuffer >
Section for framebuffer
allocation

Manual Entry .bss Specify the section in
which to allocate the
framebuffer. When Arm
Compiler 6 is used to
place this memory in
on-chip SRAM, the
section name must be
.bss or start with .bss.
to avoid consuming

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 916 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

unnecessary ROM
space.

Input > Graphics Layer
2 > Line Repeat >
Enable

On
Off

Off Select On if the display
will be repeated from a
smaller section of the
framebuffer.

Input > Graphics Layer
2 > Line Repeat >
Repeat count

Must be a valid non-
negative integer with a
maximum configurable
value of 65535 i.e
(vertical size) x (lines
repeat times) must be
equal to the panel
vertical size

0 Specify the number of
times the image is
repeated.

Input > Graphics Layer
2 > Fading > Mode

None
Fade-in
Fade-out

None Select the fade
method.

Input > Graphics Layer
2 > Fading > Speed

Value must be between
0 and 255

0 Specify the number of
frames for the fading
transition to complete.

Output > Timing >
Horizontal total cycles

Value must be between
24 and 1024

525 Specify the total cycles
in a horizontal line. Set
to the number of cycles
defined in the data
sheet of LCD panel
sheet in your system

Output > Timing >
Horizontal active video
cycles

Value must be between
16 and 1016

480 Specify the number of
active video cycles in a
horizontal line
(including front and
back porch). Set to the
number of cycles
defined in the data
sheet of LCD panel
sheet in your system.

Output > Timing >
Horizontal back porch
cycles

Value must be between
6 and 1006

40 Specify the number of
back porch cycles in a
horizontal line. Back
porch starts from the
beginning of Hsync
cycles, which means
back porch cycles
contain Hsync cycles.
Set to the number of
cycles defined in the
data sheet of LCD
panel sheet in your
system.

Output > Timing >
Horizontal sync signal

Value must be between
0 and 1023

1 Specify the number of
Hsync signal assertion

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 917 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

cycles cycles. Set to the
number of cycles
defined in the data
sheet of LCD panel
sheet in your system.

Output > Timing >
Horizontal sync signal
polarity

Low active
High active

Low active Select the polarity of
Hsync signal to match
your system.

Output > Timing >
Vertical total lines

Value must be between
20 and 1024

316 Specify number of total
lines in a frame
(including front and
back porch).

Output > Timing >
Vertical active video
lines

Value must be between
16 and 1020

272 Specify the number of
active video lines in a
frame.

Output > Timing >
Vertical back porch
lines

Value must be between
3 and 1007

8 Specify the number of
back porch lines in a
frame. Back porch
starts from the
beginning of Vsync
lines, which means
back porch lines
contain Vsync lines.

Output > Timing >
Vertical sync signal
lines

Value must be between
0 and 1023

1 Specify the Vsync
signal assertion lines in
a frame.

Output > Timing >
Vertical sync signal
polarity

Low active
High active

Low active Select the polarity of
Vsync signal to match
to your system.

Output > Timing >
Data Enable Signal
Polarity

Low active
High active

High active Select the polarity of
Data Enable signal to
match to your system.

Output > Timing >
Sync edge

Rising edge
Falling edge

Rising edge Select the polarity of
Sync signals to match
to your system.

Output > Format >
Color format

24bits RGB888
18bits RGB666
16bits RGB565
8bits serial

16bits RGB565 Specify the graphics
layer output format to
match to your LCD
panel.

Output > Format >
Color order

RGB
BGR

RGB Select data order for
output signal to LCD
panel.

Output > Format >
Endian

Little endian
Big endian

Little endian Select data endianness
for output signal to LCD
panel.

Output > Background
> Alpha

Value must be between
0 and 255

255 Alpha component of
the background color.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 918 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Output > Background
> Red

Value must be between
0 and 255

0 Red component of the
background color.

Output > Background
> Green

Value must be between
0 and 255

0 Green component of
the background color.

Output > Background
> Blue

Value must be between
0 and 255

0 Blue component of the
background color.

CLUT > Enabled Yes
No

No Specify Used if
selecting CLUT formats
for a graphics layer
input format. If used, a
buffer (CLUT_buffer)
will be automatically
generated based on
the selected pixel
width.

CLUT > Size Must be a valid non-
negative integer with a
maximum configurable
value of 256

256 Specify the number of
entries for the CLUT
source data buffer.
Each entry consumes 4
bytes (1 word).

TCON > Hsync pin
select

Not used
LCD_TCON0
LCD_TCON1
LCD_TCON2
LCD_TCON3

LCD_TCON0 Select the TCON pin
used for the Hsync
signal to match to your
system.

TCON > Vsync pin
select

Not used
LCD_TCON0
LCD_TCON1
LCD_TCON2
LCD_TCON3

LCD_TCON1 Select TCON pin used
for Vsync signal to
match to your system.

TCON > Data enable
(DE) pin select

Not used
LCD_TCON0
LCD_TCON1
LCD_TCON2
LCD_TCON3

LCD_TCON2 Select TCON pin used
for DataEnable signal
to match to your
system.

TCON > Panel clock
source

Internal clock
(GLCDCLK)
External clock
(LCD_EXTCLK)

Internal clock
(GLCDCLK)

Choose between an
internal GLCDCLK
generated from PCLKA
or an external clock
provided to the
LCD_EXTCLK pin.

TCON > Panel clock
division ratio

Refer to the RA
Configuration tool for
available options.

1/24 Select the clock source
divider value.

Color Correction >
Brightness > Enabled

Yes
No

No Enable brightness color
correction.

Color Correction >
Brightness > Red

Value must be between
0 and 1023

512 Red component of the
brightness calibration.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 919 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

channel This value is divided by
512 to determine gain.

Color Correction >
Brightness > Green
channel

Value must be between
0 and 1023

512 Green component of
the brightness
calibration. This value
is divided by 512 to
determine gain.

Color Correction >
Brightness > Blue
channel

Value must be between
0 and 1023

512 Blue component of the
brightness calibration.
This value is divided by
512 to determine gain.

Color Correction >
Contrast > Enabled

Yes
No

No Enable contrast color
correction.

Color Correction >
Contrast > Red
channel gain

Value must be between
0 and 255

128 Red component of the
contrast calibration.
This value is divided by
128 to determine gain.

Color Correction >
Contrast > Green
channel gain

Value must be between
0 and 255

128 Green component of
the contrast
calibration. This value
is divided by 128 to
determine gain.

Color Correction >
Contrast > Blue
channel gain

Value must be between
0 and 255

128 Blue component of the
contrast calibration.
This value is divided by
128 to determine gain.

Color Correction >
Gamma > Red

On
Off

Off Enable gamma color
correction for the red
channel.

Color Correction >
Gamma > Green

On
Off

Off Enable gamma color
correction for the green
channel.

Color Correction >
Gamma > Blue

On
Off

Off Enable gamma color
correction for the blue
channel.

Color Correction >
Process order

Brightness/cont
rast first
Gamma first

Brightness/contrast
first

Select the color
correction processing
order.

Dithering > Enabled Yes
No

No Enable dithering to
reduce the effect of
color banding.

Dithering > Mode Truncate
Round off
2x2 Pattern

Truncate Select the dithering
mode.

Dithering > Pattern A Pattern 00
Pattern 01
Pattern 10

Pattern 11 Select the dithering
pattern.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 920 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Pattern 11

Dithering > Pattern B Pattern 00
Pattern 01
Pattern 10
Pattern 11

Pattern 11 Select the dithering
pattern.

Dithering > Pattern C Pattern 00
Pattern 01
Pattern 10
Pattern 11

Pattern 11 Select the dithering
pattern.

Dithering > Pattern D Pattern 00
Pattern 01
Pattern 10
Pattern 11

Pattern 11 Select the dithering
pattern.

Clock Configuration

The peripheral clock for this module is PCLKA.

The dot clock is typically generated from the PLL with a maximum output frequency of 54 MHz in
most pixel formats (60 MHz for serial RGB). Optionally, a clock signal can be provided to the
LCD_EXTCLK pin for finer framerate control (60 MHz maximum input). With either clock source
dividers of 1-9, 12, 16, 24 and 32 may be used. Clocks must be initialized and settled prior to
starting this module.

Pin Configuration

This module controls a variety of pins necessary for LCD data and timing signal output:

Pin Name Function Notes

LCD_EXTCLK External clock signal input The maximum input clock
frequency is 60MHz.

LCD_CLK Dot clock output The maximum output frequency
is 54MHz (60MHz in serial RGB
mode).

LCD_DATAn Pixel data output lines Pin assignment and color order
is based on the output block
configuration. See the RA6M3
User's Manual
(R01UH0886EJ0100) section
58.1.4 "Output Control for Data
Format" for details.

LCD_TCONn Panel timing signal output These pins can be configured to
output vertical and horizontal
synchronization and data valid
signals.

Note
There are two banks of pins listed for the GLCDC in the RA6M3 User's Manual (_A and _B). In most cases the _B
bank will be used as _A conflicts with SDRAM pins. In either case, it is generally recommended to only use pins
from only one bank at a time as this allows for superior signal routing both inside and outside the package. If _A

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 921 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

and _B pins must be mixed be sure to note the timing precision penalty detailed in Table 60.33 in in the RA6M3
User's Manual.

Usage Notes
Overview

The GLCDC peripheral is a combination of several sub-peripherals that form a pixel data processing
pipeline. Each block passes pixel data to the next but otherwise they are disconnected from one
another - in other words, changing timing block parameters does not affect the output generation
block configuration and vice versa.

Initial Configuration

During R_GLCDC_Open all configured parameters are set in the GLCDC peripheral fully preparing it
for operation. Once opened, calling R_GLCDC_Start is typically all that is needed for basic operation.
Background generation, timing and output parameters are not configurable at runtime, though layer
control and color correction options can be altered.

Framebuffer Allocation

The framebuffer should be allocated in the highest-speed region available (excluding SRAMHS)
without displacing the stack, heap and other program-critical structures. While the RA6M3 does
contain a relatively large 640K of on-chip SRAM, for many screen sizes and color depths SDRAM will
be required. Regardless of the placement two rules must be followed to ensure correct operation of
the GLCDC:

The framebuffer must be aligned on a 64-byte boundary
The horizontal stride of the buffer must be a multiple of 64 bytes

Note
Framebuffers allocated through the RA Configuraton tool automatically follow the alignment and size
requirements.

If your framebuffer will be placed into internal SRAM please note the following best practices:

The framebuffer should ideally not be placed in the SRAMHS block of SRAM as there is no
speed advantage for doing so. In particular, it is important to ensure the framebuffer does
not push the stack or any heaps outside of SRAMHS to preserve CPU performance.
It is recommended to not cross the boundary between SRAM0 and SRAM1 with a single
framebuffer for performance reasons.
If double-buffering is desired (and possible within SRAM), place one framebuffer in SRAM0
and the other in SRAM1.

If you are using SRAM for the framebuffer, to ensure correct placement you will need to edit the
linker script to add new sections. Below is an example of the required edits in the GCC and IAR
formats:

GCC Linker

/*

 Linker File for RA6M3 MCU

*/

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 922 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

/* Linker script to configure memory regions. */

MEMORY

{

 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x0200000 /* 2M */

 RAM (rwx) : ORIGIN = 0x1FFE0000, LENGTH = 0x00A0000 /* 640K */

 FB0 (rwx) : ORIGIN = 0x20000000, LENGTH = 0x0080000 /* 512K */ // Section

for framebuffer 0 (or only framebuffer)

 FB1 (rwx) : ORIGIN = 0x20040000, LENGTH = 0x0040000 /* 256K */ // Section

for framebuffer 1

 DATA_FLASH (rx) : ORIGIN = 0x40100000, LENGTH = 0x0010000 /* 64K */

 QSPI_FLASH (rx) : ORIGIN = 0x60000000, LENGTH = 0x4000000 /* 64M */

 SDRAM (rwx) : ORIGIN = 0x90000000, LENGTH = 0x2000000 /* 32M */

 ID_CODE (rx) : ORIGIN = 0x0100A150, LENGTH = 0x10 /* 16 bytes */

}

// ...

 .noinit (NOLOAD):

 {

 . = ALIGN(4);

 __noinit_start = .;

 KEEP(*(.noinit*))

 __noinit_end = .;

 } > RAM

 /* Place framebuffer sections first, then the rest of RAM */

 .fb0 :

 {

 . = ALIGN(64);

 __fb0_start = .;

 (.fb0);

 __fb0_end = .;

 } > FB0

 .fb1 :

 {

 . = ALIGN(64);

 __fb1_start = .;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 923 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

 (.fb1);

 __fb1_end = .;

 } > FB1

 .bss :

 {

 . = ALIGN(4);

 __bss_start__ = .;

 (.bss)

 *(COMMON)

 . = ALIGN(4);

 __bss_end__ = .;

 } > RAM

// ...

IAR Linker

Note
The IAR linker does not place items correctly when sections overlap. As a result, it is advised to place your
framebuffer(s) as high as possible in the SRAM region in the linker script to maximize the RAM available for
everything else. The below is a general case that should be used unedited only if RAM usage (excluding
framebuffers) is less than 128K.

/* ... */

/*-Memory Regions-*/

define symbol region_VECT_start = 0x00000000;

define symbol region_VECT_end = 0x000003FF;

define symbol region_ROMREG_start = 0x00000400;

define symbol region_ROMREG_end = 0x000004FF;

define symbol region_FLASH_start = 0x00000500;

define symbol region_FLASH_end = 0x001FFFFF;

define symbol region_RAM_start = 0x1FFE0000;

define symbol region_RAM_end = 0x1FFFFFFF; /* RAM limited to SRAMHS */

define symbol region_FB0_start = 0x20000000;

define symbol region_FB0_end = 0x2003FFFF; /* SRAM0 dedicated to framebuffer 0

*/

define symbol region_FB1_start = 0x20040000;

define symbol region_FB1_end = 0x2007FFFF; /* SRAM1 dedicated to framebuffer 1

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 924 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

*/

define symbol region_DF_start = 0x40100000;

define symbol region_DF_end = 0x4010FFFF;

define symbol region_SDRAM_start = 0x90000000;

define symbol region_SDRAM_end = 0x91FFFFFF;

define symbol region_QSPI_start = 0x60000000;

define symbol region_QSPI_end = 0x63FFFFFF;

/* ... */

define memory mem with size = 4G;

define region VECT_region = mem:[from region_VECT_start to region_VECT_end];

define region ROMREG_region = mem:[from region_ROMREG_start to region_ROMREG_end];

define region FLASH_region = mem:[from region_FLASH_start to

region_FLASH_end];

define region RAM_region = mem:[from region_RAM_start to region_RAM_end];

define region FB0_region = mem:[from region_FB0_start to region_FB0_end]; /*

Define framebuffer 0 region */

define region FB1_region = mem:[from region_FB1_start to region_FB1_end]; /*

Define framebuffer 1 region */

define region DF_region = mem:[from region_DF_start to region_DF_end];

define region SDRAM_region = mem:[from region_SDRAM_start to

region_SDRAM_end];

define region QSPI_region = mem:[from region_QSPI_start to region_QSPI_end];

/* ... */

define block START_OF_RAM with fixed order { rw section .fsp_dtc_vector_table,

 block RAM_CODE };

place at start of RAM_region { block START_OF_RAM };

/* Place framebuffer sections first, then the rest of RAM */

place in FB0_region { rw section .fb0 };

place in FB1_region { rw section .fb1 };

place in RAM_region { rw,

 rw section .noinit,

 rw section .bss,

 rw section .data,

 rw section HEAP,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 925 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

 rw section .stack };

Graphics Layers and Timing Parameters

The GLCDC synthesizes graphics data through two configurable graphics layers onto a background
layer. The background is used as a solid-color canvas upon which to composite data from the
graphics layers. The two graphics layers are blended on top of each other (Layer 2 above Layer 1)
and overlaid on the background layer based on their individual configuration. The placement of the
layers (as well as LCD timing parameters) are detailed in Figure 1. The colors of the dimensions
indicate which element of the display_cfg_t struct is being referenced - for example, the width of the
background layer would be [display_cfg].output.htiming.display_cyc as shown in the figure below.

Figure 165: GLCDC layers and timing

Note
The data enable signal (if configured) is the logical AND of the horizontal and vertical data valid signals.
In the GLCDC layers and timing figure, only one graphics layer is shown for simplicity. Additionally, in most
applications the graphics layer(s) will be the same dimensions as the background layer.

Runtime Configuration Options

Note
All runtime configurations detailed below are also automatically configured during R_GLCDC_Open based on the
options selected in the RA Configuration editor.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 926 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

Blend processing

Control of layer positioning, alpha blending and fading is possible at runtime via
R_GLCDC_LayerChange. This function takes a display_runtime_cfg_t parameter which contains the
same input and layer elements as the display_cfg_t control block. Refer to the documentation for
display_runtime_cfg_t as well as the Examples below to see what options are configurable.

Brightness and contrast

Brightness and contrast correction can be controlled through R_GLCDC_ColorCorrection. The
display_correction_t parameter is used to control enabling, disabling and gain values for both
corrections as shown below:

 display_correction_t correction;

 /* Brightness values are 0-1023 with +512 offset being neutral */

 correction.brightness.r = 512;

 correction.brightness.g = 512;

 correction.brightness.b = 512;

 /* Contrast values are 0-255 representing gain of 0-2 (128 is gain of 1) */

 correction.contrast.r = 128;

 correction.contrast.g = 128;

 correction.contrast.b = 128;

 /* Brightness and contrast correction can be enabled or disabled independent of one

another */

 correction.brightness.enable = true;

 correction.contrast.enable = true;

 /* Enable correction */

 R_GLCDC_ColorCorrection(&g_disp_ctrl, &correction);

Color Look-Up Table (CLUT) Modes

The GLCDC supports 1-, 4- and 8-bit color look-up table (CLUT) formats for input pixel data. By using
these modes the framebuffer size in memory can be reduced significantly, allowing even high-
resolution displays to be buffered in on-chip SRAM. To enable CLUT modes for a layer the color
format must be set to a CLUT mode (either at startup or through R_GLCDC_LayerChange) in addition
to filling the CLUT as appropriate via R_GLCDC_ClutUpdate as shown below:

 /* Basic 4-bit (16-color) CLUT definition */

 uint32_t clut_4[16] =

 {

 0xFF000000, // Black

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 927 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

 0xFFFFFFFF, // White

 0xFF0000FF, // Blue

 0xFF0080FF, // Turquoise

 0xFF00FFFF, // Cyan

 0xFF00FF80, // Mint Green

 0xFF00FF00, // Green

 0xFF80FF00, // Lime Green

 0xFFFFFF00, // Yellow

 0xFFFF8000, // Orange

 0xFFFF0000, // Red

 0xFFFF0080, // Pink

 0xFFFF00FF, // Magenta

 0xFF8000FF, // Purple

 0xFF808080, // Gray

 0x00000000 // Transparent

 };

 /* Define the CLUT configuration */

 display_clut_cfg_t clut_cfg =

 {

 .start = 0,

 .size = 16,

 .p_base = clut_4

 };

 /* Update the CLUT in the GLCDC */

 R_GLCDC_ClutUpdate(&g_disp_ctrl, &clut_cfg, DISPLAY_FRAME_LAYER_1);

Note
If individual elements of the CLUT must be changed or if elements must be changed one at a time (for instance,
when using emWin) it is recommended to use R_GLCDC_ClutEdit to avoid repeated memcpy operations.

Other Configuration Options

Gamma correction

Gamma correction is performed based on a gain curved defined in the RA Configuration editor. Each
point on the curve is defined by a threshold and a gain value - each gain value represents a
multiplier from 0x-2x (set as 0-2047) that sets the Y-value of the slope of the gain curve, while each
threshold interval sets the X-value respectively. For a more detailed explanation refer to the RA6M3

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 928 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

User's Manual (R01UH0886EJ0100) Figure 58.12 "Calculation of gamma correction value" and the
related description above it.

When setting threshold values three rules must be followed:

Each threshold value must be greater than the previous value
Threshold values must be greater than zero and less than 1024
Threshold values can equal the previous value only if they are 1023 (maximum)

Note
Gamma correction can only be applied via R_GLCDC_Open.

Dithering

Dithering is a method of pixel blending that allows for smoother transitions between colors when
using a limited palette. A full description of dithering is outside the scope of this document. For more
information on the pattern settings and how to configure them refer to the RA6M3 User's Manual
(R01UH0886EJ0100) Figure 58.13 "Configuration of dither correction block" and Figure 58.14
"Addition value selection method for 2x2 pattern dither".

Bus Utilization

Note

The data provided in this section consists of estimates only. Experimentation is necessary to
obtain real-world performance data on any platform.

While the GLCDC is very flexible in size and color depth of displays there are considerations to be
made in the tradeoff between color depth, framerate and bus utilization. Below is a table showing
estimates of the load at various resolutions, framerates and color depths based on a PLL frequency
of 120MHz (default) and an effective SDRAM throughput of 60 MB/sec. Bus utilization percentages
are provided for the following use cases:

Static image display (GLCDC only): One read
Redrawing one framebuffer every display frame (minimal redraw): One write, one read
Blitting one buffer to another then redrawing the entire buffer every display frame (worst
case): Two writes, three reads

Name Width Heigh
t

Input
color
depth
(bits)

Fram
erate
(FPS)

Buffer
size

(byte
s)

SRAM
use

SRAM
bus
(GLC
DC

only)

SDRA
M bus
(GLC
DC

only)

SRAM
bus

(mini
mal r
edraw

)

SDRA
M bus
(mini
mal r
edraw

)

SRAM
bus

(wors
t

case)

SDRA
M bus
(wors

t
case)

HQVG
A

240 160 8 60 3840
0

6% 1% 4% 2% 8% 5% 19%

HQVG
A

240 160 16 60 7680
0

12% 2% 8% 4% 15% 10% 38%

QVGA 320 240 16 60 1536
00

23% 4% 15% 8% 31% 19% 77%

WQV
GA

400 240 8 60 9600
0

15% 2% 10% 5% 19% 12% 48%

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 929 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

WQV
GA

400 240 16 60 1920
00

29% 5% 19% 10% 38% 24% 96%

HVGA 480 320 16 60 3072
00

47% 8% 31% 15% 61% 38% 154%

VGA 640 480 16 30 6144
00

— — 31% — 61% — 154%

WVG
A

800 480 8 60 3840
00

59% 10% 38% 19% 77% 48% 192%

WVG
A

800 480 16 30 7680
00

— — 38% — 77% — 192%

WVG
A

800 480 32 15 1536
000

— — 38% — 77% — 192%

FWVG
A

960 480 8 30 4608
00

70% 6% 23% 12% 46% 29% 115%

FWVG
A

960 480 16 30 9216
00

— — 46% — 92% — 230%

qHD 960 540 8 30 5184
00

79% 6% 26% 13% 52% 32% 130%

Note
Bus utilization values over 100% indicate that the bandwidth for that bus is exceeded in that scenario and GLCDC
underflow and/or dropped frames may result depending on the bus priority setting. It is recommended to avoid
these scenarios if at all possible by reducing the buffer drawing rate, number of draw/copy operations or the
input color depth. Relaxing vertical timing (increasing total line count) or increasing the clock divider are the
easiest ways to increase the time per frame.

Limitations

Developers should be aware of the following limitations when using the GLCDC API:

Due to a limitation of the GLCDC hardware, if the horizontal back porch is less than the
number of pixels in a graphics burst read (64 bytes) for a layer and the layer is positioned
at a negative X-value then the layer X-position will be locked to the nearest 64-byte
boundary, rounded toward zero.
The GLCDC peripheral offers a chroma-key function that can be used to perform a green-
screen-like color replacement. This functionality is not exposed through the GLCDC API. See
the descriptions for GRn.AB7 through .AB9 in the RA6M3 User's Manual for further details.
Use of R_GLCDC_ClutUpdate and R_GLCDC_ClutEdit may not be mixed on the same frame.

Examples
Basic Example

This is a basic example showing the minimum code required to initialize and start the GLCDC
module. If the entire display can be drawn within the vertical blanking period no further code may be
necessary.

void glcdc_init (void)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 930 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

{

 fsp_err_t err;

 // Open the GLCDC driver

 err = R_GLCDC_Open(&g_disp_ctrl, &g_disp_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 // Start display output

 err = R_GLCDC_Start(&g_disp_ctrl);

 assert(FSP_SUCCESS == err);

}

Layer Transitions

This example demonstrates how to set up and execute both a sliding and fading layer transition. This
is most useful in static image transition scenarios as switching between two actively-drawing
graphics layers may require up to four framebuffers to eliminate tearing.

volatile uint32_t g_vsync_count = 0;

/* Callback function for GLCDC interrupts */

static void glcdc_callback (display_callback_args_t * p_args)

{

 if (p_args->event == DISPLAY_EVENT_LINE_DETECTION)

 {

 g_vsync_count++;

 }

}

/* Simple wait that returns 1 if no Vsync happened within the timeout period */

uint8_t vsync_wait (void)

{

 uint32_t timeout_timer = GLCDC_VSYNC_TIMEOUT;

 g_vsync_count = 0;

 while (!g_vsync_count && --timeout_timer)

 {

 /* Spin here until DISPLAY_EVENT_LINE_DETECTION callback or timeout */

 }

 return timeout_timer ? 0 : 1;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 931 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

}

/* Initiate a fade on Layer 2

 *

 * Parameters:

 * direction True for fade in, false for fade out

 * speed number of frames over which to fade

 */

void glcdc_layer_transition_fade (display_runtime_cfg_t * disp_rt_cfg, bool

direction, uint16_t speed)

{

 fsp_err_t err;

 if (direction)

 {

 /* Set the runtime struct to the desired buffer */

 disp_rt_cfg->input.p_base = (uint32_t *) g_framebuffer_1;

 disp_rt_cfg->layer.fade_control = DISPLAY_FADE_CONTROL_FADEIN;

 }

 else

 {

 disp_rt_cfg->layer.fade_control = DISPLAY_FADE_CONTROL_FADEOUT;

 }

 /* Ensure speed is at least 1 frame */

 if (!speed)

 {

 speed = 1;

 }

 /* Set the fade speed to the desired change in alpha per frame */

 disp_rt_cfg->layer.fade_speed = UINT8_MAX / speed;

 /* Initiate the fade (will start on the next Vsync) */

 err = R_GLCDC_LayerChange(&g_disp_ctrl, disp_rt_cfg, DISPLAY_FRAME_LAYER_2);

 assert(FSP_SUCCESS == err);

}

/* Slide Layer 1 out to the left while sliding Layer 2 in from the right */

void glcdc_layer_transition_sliding (display_runtime_cfg_t * disp_rt_cfg_in,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 932 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

display_runtime_cfg_t * disp_rt_cfg_out)

{

 fsp_err_t err;

 /* Set the config for the incoming layer to be just out of bounds on the right side

*/

 disp_rt_cfg_in->input.p_base = (uint32_t *) g_framebuffer_1;

 disp_rt_cfg_in->layer.coordinate.x = DISPLAY_WIDTH;

 /* Move layer 1 out and layer 2 in at a fixed rate of 4 pixels per frame */

 for (int32_t x = disp_rt_cfg_in->layer.coordinate.x; x >= 0; x -= 4)

 {

 /* Wait for a Vsync before starting */

 vsync_wait();

 /* Set the X-coordinate of both layers then update them */

 disp_rt_cfg_out->layer.coordinate.x = (int16_t) (x - DISPLAY_WIDTH);

 disp_rt_cfg_in->layer.coordinate.x = (int16_t) x;

 err = R_GLCDC_LayerChange(&g_disp_ctrl, disp_rt_cfg_out, DISPLAY_FRAME_LAYER_1

);

 assert(FSP_SUCCESS == err);

 err = R_GLCDC_LayerChange(&g_disp_ctrl, disp_rt_cfg_in, DISPLAY_FRAME_LAYER_2

);

 assert(FSP_SUCCESS == err);

 }

}

Double-Buffering

Using a double-buffer allows one to be output to the LCD while the other is being drawn to memory,
eliminating tearing and in some cases reducing bus load. The following is a basic example showing
integration of the line detect (Vsync) interrupt to set the timing for buffer swapping and drawing.

/* User-defined function to draw the current display to a framebuffer */

void display_draw (uint8_t * framebuffer)

{

 FSP_PARAMETER_NOT_USED(framebuffer);

 /* Draw buffer here */

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 933 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

/* This function is an example of a basic double-buffered display thread */

void display_thread (void)

{

 uint8_t * p_framebuffer = NULL;

 fsp_err_t err;

 /* Initialize and start the R_GLCDC module */

 glcdc_init();

 while (1)

 {

 /* Swap the active framebuffer */

 p_framebuffer = (p_framebuffer == g_framebuffer_0) ? g_framebuffer_1 :

g_framebuffer_0;

 /* Draw the new framebuffer now */

 display_draw(p_framebuffer);

 /* Now that the framebuffer is ready, update the GLCDC buffer pointer on the next

Vsync */

 err = R_GLCDC_BufferChange(&g_disp_ctrl, p_framebuffer, DISPLAY_FRAME_LAYER_1

);

 assert(FSP_SUCCESS == err);

 /* Wait for a Vsync event */

 vsync_wait();

 }

}

Data Structures

struct glcdc_instance_ctrl_t

struct glcdc_extended_cfg_t

Enumerations

enum glcdc_clk_src_t

enum glcdc_panel_clk_div_t

enum glcdc_tcon_pin_t

enum glcdc_bus_arbitration_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 934 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

enum glcdc_correction_proc_order_t

enum glcdc_tcon_signal_select_t

enum glcdc_clut_plane_t

enum glcdc_dithering_mode_t

enum glcdc_dithering_pattern_t

enum glcdc_input_interface_format_t

enum glcdc_output_interface_format_t

enum glcdc_dithering_output_format_t

Data Structure Documentation

◆ glcdc_instance_ctrl_t

struct glcdc_instance_ctrl_t

Display control block. DO NOT INITIALIZE.

◆ glcdc_extended_cfg_t

struct glcdc_extended_cfg_t

GLCDC hardware specific configuration

Data Fields

glcdc_tcon_pin_t tcon_hsync GLCDC TCON output pin select.

glcdc_tcon_pin_t tcon_vsync GLCDC TCON output pin select.

glcdc_tcon_pin_t tcon_de GLCDC TCON output pin select.

glcdc_correction_proc_order_t correction_proc_order Correction control route select.

glcdc_clk_src_t clksrc Clock Source selection.

glcdc_panel_clk_div_t clock_div_ratio Clock divide ratio for dot clock.

glcdc_dithering_mode_t dithering_mode Dithering mode.

glcdc_dithering_pattern_t dithering_pattern_A Dithering pattern A.

glcdc_dithering_pattern_t dithering_pattern_B Dithering pattern B.

glcdc_dithering_pattern_t dithering_pattern_C Dithering pattern C.

glcdc_dithering_pattern_t dithering_pattern_D Dithering pattern D.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 935 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ glcdc_clk_src_t

enum glcdc_clk_src_t

Clock source select

Enumerator

GLCDC_CLK_SRC_INTERNAL Internal.

GLCDC_CLK_SRC_EXTERNAL External.

◆ glcdc_panel_clk_div_t

enum glcdc_panel_clk_div_t

Clock frequency division ratio

Enumerator

GLCDC_PANEL_CLK_DIVISOR_1 Division Ratio 1/1.

GLCDC_PANEL_CLK_DIVISOR_2 Division Ratio 1/2.

GLCDC_PANEL_CLK_DIVISOR_3 Division Ratio 1/3.

GLCDC_PANEL_CLK_DIVISOR_4 Division Ratio 1/4.

GLCDC_PANEL_CLK_DIVISOR_5 Division Ratio 1/5.

GLCDC_PANEL_CLK_DIVISOR_6 Division Ratio 1/6.

GLCDC_PANEL_CLK_DIVISOR_7 Division Ratio 1/7.

GLCDC_PANEL_CLK_DIVISOR_8 Division Ratio 1/8.

GLCDC_PANEL_CLK_DIVISOR_9 Division Ratio 1/9.

GLCDC_PANEL_CLK_DIVISOR_12 Division Ratio 1/12.

GLCDC_PANEL_CLK_DIVISOR_16 Division Ratio 1/16.

GLCDC_PANEL_CLK_DIVISOR_24 Division Ratio 1/24.

GLCDC_PANEL_CLK_DIVISOR_32 Division Ratio 1/32.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 936 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ glcdc_tcon_pin_t

enum glcdc_tcon_pin_t

LCD TCON output pin select

Enumerator

GLCDC_TCON_PIN_NONE No output.

GLCDC_TCON_PIN_0 LCD_TCON0.

GLCDC_TCON_PIN_1 LCD_TCON1.

GLCDC_TCON_PIN_2 LCD_TCON2.

GLCDC_TCON_PIN_3 LCD_TCON3.

◆ glcdc_bus_arbitration_t

enum glcdc_bus_arbitration_t

Bus Arbitration setting

Enumerator

GLCDC_BUS_ARBITRATION_ROUNDROBIN Round robin.

GLCDC_BUS_ARBITRATION_FIX_PRIORITY Fixed.

◆ glcdc_correction_proc_order_t

enum glcdc_correction_proc_order_t

Correction circuit sequence control

Enumerator

GLCDC_CORRECTION_PROC_ORDER_BRIGHTNES
S_CONTRAST2GAMMA

Brightness -> contrast -> gamma correction.

GLCDC_CORRECTION_PROC_ORDER_GAMMA2BRI
GHTNESS_CONTRAST

Gamma correction -> brightness -> contrast.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 937 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ glcdc_tcon_signal_select_t

enum glcdc_tcon_signal_select_t

Timing signals for driving the LCD panel

Enumerator

GLCDC_TCON_SIGNAL_SELECT_STVA_VS STVA/VS.

GLCDC_TCON_SIGNAL_SELECT_STVB_VE STVB/VE.

GLCDC_TCON_SIGNAL_SELECT_STHA_HS STH/SP/HS.

GLCDC_TCON_SIGNAL_SELECT_STHB_HE STB/LP/HE.

GLCDC_TCON_SIGNAL_SELECT_DE DE.

◆ glcdc_clut_plane_t

enum glcdc_clut_plane_t

Clock phase adjustment for serial RGB output

Enumerator

GLCDC_CLUT_PLANE_0 GLCDC CLUT plane 0.

GLCDC_CLUT_PLANE_1 GLCDC CLUT plane 1.

◆ glcdc_dithering_mode_t

enum glcdc_dithering_mode_t

Dithering mode

Enumerator

GLCDC_DITHERING_MODE_TRUNCATE No dithering (truncate)

GLCDC_DITHERING_MODE_ROUND_OFF Dithering with round off.

GLCDC_DITHERING_MODE_2X2PATTERN Dithering with 2x2 pattern.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 938 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ glcdc_dithering_pattern_t

enum glcdc_dithering_pattern_t

Dithering mode

Enumerator

GLCDC_DITHERING_PATTERN_00 2x2 pattern '00'

GLCDC_DITHERING_PATTERN_01 2x2 pattern '01'

GLCDC_DITHERING_PATTERN_10 2x2 pattern '10'

GLCDC_DITHERING_PATTERN_11 2x2 pattern '11'

◆ glcdc_input_interface_format_t

enum glcdc_input_interface_format_t

Output interface format

Enumerator

GLCDC_INPUT_INTERFACE_FORMAT_RGB565 Input interface format RGB565.

GLCDC_INPUT_INTERFACE_FORMAT_RGB888 Input interface format RGB888.

GLCDC_INPUT_INTERFACE_FORMAT_ARGB1555 Input interface format ARGB1555.

GLCDC_INPUT_INTERFACE_FORMAT_ARGB4444 Input interface format ARGB4444.

GLCDC_INPUT_INTERFACE_FORMAT_ARGB8888 Input interface format ARGB8888.

GLCDC_INPUT_INTERFACE_FORMAT_CLUT8 Input interface format CLUT8.

GLCDC_INPUT_INTERFACE_FORMAT_CLUT4 Input interface format CLUT4.

GLCDC_INPUT_INTERFACE_FORMAT_CLUT1 Input interface format CLUT1.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 939 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ glcdc_output_interface_format_t

enum glcdc_output_interface_format_t

Output interface format

Enumerator

GLCDC_OUTPUT_INTERFACE_FORMAT_RGB888 Output interface format RGB888.

GLCDC_OUTPUT_INTERFACE_FORMAT_RGB666 Output interface format RGB666.

GLCDC_OUTPUT_INTERFACE_FORMAT_RGB565 Output interface format RGB565.

GLCDC_OUTPUT_INTERFACE_FORMAT_SERIAL_R
GB

Output interface format Serial RGB.

◆ glcdc_dithering_output_format_t

enum glcdc_dithering_output_format_t

Dithering output format

Enumerator

GLCDC_DITHERING_OUTPUT_FORMAT_RGB888 Dithering output format RGB888.

GLCDC_DITHERING_OUTPUT_FORMAT_RGB666 Dithering output format RGB666.

GLCDC_DITHERING_OUTPUT_FORMAT_RGB565 Dithering output format RGB565.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 940 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ R_GLCDC_Open()

fsp_err_t R_GLCDC_Open (display_ctrl_t *const p_api_ctrl, display_cfg_t const *const p_cfg)

Open GLCDC module. Implements display_api_t::open.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ALREADY_OPEN Device was already open.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_CLOCK_GENERATION Dot clock cannot be generated from clock
source.

FSP_ERR_INVALID_TIMING_SETTING Invalid panel timing parameter.

FSP_ERR_INVALID_LAYER_SETTING Invalid layer setting found.

FSP_ERR_INVALID_ALIGNMENT Input buffer alignment invalid.

FSP_ERR_INVALID_GAMMA_SETTING Invalid gamma correction setting found

FSP_ERR_INVALID_BRIGHTNESS_SETTING Invalid brightness correction setting found

Note
PCLKA must be supplied to Graphics LCD Controller (GLCDC) and GLCDC pins must be set in IOPORT before
calling this API.

◆ R_GLCDC_Close()

fsp_err_t R_GLCDC_Close (display_ctrl_t *const p_api_ctrl)

Close GLCDC module. Implements display_api_t::close.

Return values
FSP_SUCCESS Device was closed successfully.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN The function call is performed when the
driver state is not equal to
DISPLAY_STATE_CLOSED.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed when the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is not in DISPLAY_STATE_CLOSED state. It returns an error if the
register update operation for the background screen generation block is being held.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 941 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ R_GLCDC_Start()

fsp_err_t R_GLCDC_Start (display_ctrl_t *const p_api_ctrl)

Start GLCDC module. Implements display_api_t::start.

Return values
FSP_SUCCESS Device was started successfully.

FSP_ERR_NOT_OPEN GLCDC module has not been opened.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

Note
This API can be called when the driver is not in DISPLAY_STATE_OPENED status.

◆ R_GLCDC_Stop()

fsp_err_t R_GLCDC_Stop (display_ctrl_t *const p_api_ctrl)

Stop GLCDC module. Implements display_api_t::stop.

Return values
FSP_SUCCESS Device was stopped successfully

FSP_ERR_ASSERTION Pointer to the control block is NULL

FSP_ERR_INVALID_MODE Function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_UPDATE_TIMING The function call is performed while the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is in the DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks, the graphics data I/F blocks, or the output
control block is being held.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 942 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ R_GLCDC_LayerChange()

fsp_err_t R_GLCDC_LayerChange (display_ctrl_t const *const p_api_ctrl, display_runtime_cfg_t
const *const p_cfg, display_frame_layer_t layer)

Change layer parameters of GLCDC module at runtime. Implements display_api_t::layerChange.

Return values
FSP_SUCCESS Changed layer parameters of GLCDC

module successfully.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_INVALID_MODE A function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is in DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks or the graphics data I/F block is being held.

◆ R_GLCDC_BufferChange()

fsp_err_t R_GLCDC_BufferChange (display_ctrl_t const *const p_api_ctrl, uint8_t *const
framebuffer, display_frame_layer_t layer)

Change the framebuffer pointer for a layer. Implements display_api_t::bufferChange.

Return values
FSP_SUCCESS Changed layer parameters of GLCDC

module successfully.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_INVALID_MODE A function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_ALIGNMENT The framebuffer pointer is not 64-byte
aligned.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the
GLCDC is updating register values
internally.

Note
This API can be called when the driver is in DISPLAY_STATE_OPENED state or higher. It returns an error if the
register update operation for the background screen generation blocks or the graphics data I/F block is being held.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 943 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ R_GLCDC_ColorCorrection()

fsp_err_t R_GLCDC_ColorCorrection (display_ctrl_t const *const p_api_ctrl, display_correction_t
const *const p_correction)

Perform color correction through the GLCDC module. Implements display_api_t::correction.

Return values
FSP_SUCCESS Color correction by GLCDC module was

performed successfully.

FSP_ERR_ASSERTION Pointer to the control block or the display
correction structure is NULL.

FSP_ERR_INVALID_MODE Function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

FSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the
GLCDC is updating registers internally.

FSP_ERR_INVALID_BRIGHTNESS_SETTING Invalid brightness correction setting found

Note
This API can be called when the driver is in the DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks or the output control block is being held.

◆ R_GLCDC_ClutUpdate()

fsp_err_t R_GLCDC_ClutUpdate (display_ctrl_t const *const p_api_ctrl, display_clut_cfg_t const
*const p_clut_cfg, display_frame_layer_t layer)

Write an entire color look-up table (CLUT) in the GLCDC module. Implements display_api_t::clut.

Return values
FSP_SUCCESS CLUT written successfully.

FSP_ERR_ASSERTION Pointer to the control block or CLUT source
data is NULL.

FSP_ERR_INVALID_UPDATE_TIMING R_GLCDC_ClutEdit was already used to edit
the specified CLUT this frame.

FSP_ERR_INVALID_CLUT_ACCESS Illegal CLUT entry or size is specified.

Note
This API can be called any time. The written data will be used after the next vertical sync event.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 944 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Graphics LCD Controller (r_glcdc)

◆ R_GLCDC_ClutEdit()

fsp_err_t R_GLCDC_ClutEdit (display_ctrl_t const *const p_api_ctrl, display_frame_layer_t layer,
uint8_t index, uint32_t color)

Update an element of a color look-up table (CLUT) in the GLCDC module. Implements
display_api_t::clutEdit.

Return values
FSP_SUCCESS CLUT element updated successfully.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

Note
This API can be called any time. The written data will be used after the next vertical sync event.

◆ R_GLCDC_StatusGet()

fsp_err_t R_GLCDC_StatusGet (display_ctrl_t const *const p_api_ctrl, display_status_t *const
p_status)

Get status of GLCDC module. Implements display_api_t::statusGet.

Return values
FSP_SUCCESS Got status successfully.

FSP_ERR_ASSERTION Pointer to the control block or the status
structure is NULL.

Note
The GLCDC hardware starts the fading processing at the first Vsync after the previous LayerChange() call is held.
Due to this behavior of the hardware, this API may not return DISPLAY_FADE_STATUS_FADING_UNDERWAY
as the fading status, if it is called before the first Vsync after LayerChange() is called. In this case, the API returns
DISPLAY_FADE_STATUS_PENDING, instead of DISPLAY_FADE_STATUS_NOT_UNDERWAY.

4.2.25 General PWM Timer (r_gpt)
Modules

Functions

fsp_err_t R_GPT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const
p_cfg)

fsp_err_t R_GPT_Stop (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Start (timer_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 945 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

fsp_err_t R_GPT_Reset (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Enable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_Disable (timer_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)

fsp_err_t R_GPT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t R_GPT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t R_GPT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

fsp_err_t R_GPT_CounterSet (timer_ctrl_t *const p_ctrl, uint32_t counter)

fsp_err_t R_GPT_OutputEnable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

fsp_err_t R_GPT_OutputDisable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

fsp_err_t R_GPT_AdcTriggerSet (timer_ctrl_t *const p_ctrl,
gpt_adc_compare_match_t which_compare_match, uint32_t
compare_match_value)

fsp_err_t R_GPT_CallbackSet (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_GPT_Close (timer_ctrl_t *const p_ctrl)

Detailed Description

Driver for the GPT32 and GPT16 peripherals on RA MCUs. This module implements the Timer
Interface.

Overview
The GPT module can be used to count events, measure external input signals, generate a periodic
interrupt, or output a periodic or PWM signal to a GTIOC pin.

This module supports the GPT peripherals GPT32EH, GPT32E, GPT32, and GPT16. GPT16 is a 16-bit
timer. The other peripherals (GPT32EH, GPT32E, and GPT32) are 32-bit timers. The 32-bit timers are
all treated the same in this module from the API perspective.

Features

The GPT module has the following features:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 946 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Supports periodic mode, one-shot mode, and PWM mode.
Supports count source of PCLK, GTETRG pins, GTIOC pins, or ELC events.
Supports debounce filter on GTIOC pins.
Signal can be output to a pin.
Configurable period (counts per timer cycle).
Configurable duty cycle in PWM mode.
Supports runtime reconfiguration of period.
Supports runtime reconfiguration of duty cycle in PWM mode.
APIs are provided to start, stop, and reset the counter.
APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.
Supports start, stop, clear, count up, count down, and capture by external sources from
GTETRG pins, GTIOC pins, or ELC events.
Supports symmetric and asymmetric PWM waveform generation.
Supports automatic addition of dead time.
Supports generating ELC events to start an ADC scan at a compare match value (see Event
Link Controller (r_elc)) and updating the compare match value.
Supports linking with a POEG channel to automatically disable GPT output when an error
condition is detected.
Supports setting the counter value while the timer is stopped.
Supports enabling and disabling output pins.
Supports skipping up to seven overflow/underflow (crest/trough) interrupts at a time
Supports generating custom PWM waveforms by configuring the pin's output level at each
compare match and cycle end.

Selecting a Timer

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT

Low Power Modes The GPT can operate in sleep
mode.

The AGT can operate in all low
power modes.

Available Channels The number of GPT channels is
device specific. All currently
supported MCUs have at least 7
GPT channels.

All MCUs have 2 AGT channels.

Timer Resolution All MCUs have at least one
32-bit GPT timer.

The AGT timers are 16-bit
timers.

Clock Source The GPT runs off PCLKD with a
configurable divider up to 1024.
It can also be configured to
count ELC events or external
pulses.

The AGT runs off PCLKB, LOCO,
or subclock.

Configuration

Build Time Configurations for r_gpt

The following build time configurations are defined in fsp_cfg/r_gpt_cfg.h:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 947 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Pin Output Support Disabled
Enabled
Enabled with
Extra Features

Disabled Enables or disables
support for outputting
PWM waveforms on
GTIOCx pins. The
"Enabled with Extra
Features" option
enables support for
Triangle wave modes
and also enables the
features located in the
"Extra Features"
section of each module
instance.

Write Protect Enable Enabled
Disabled

Disabled If selected write
protection is applied to
all GPT channels.

Configurations for Driver > Timers > Timer Driver on r_gpt

This module can be added to the Stacks tab via New Stack > Driver > Timers > Timer Driver on
r_gpt. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_timer0 Module name.

General > Channel Channel number must
exist on this MCU

0 Specify the hardware
channel.

General > Mode Periodic
One-Shot
PWM
Triangle-Wave
Symmetric
PWM
Triangle-Wave
Asymmetric
PWM
Triangle-Wave
Asymmetric
PWM (Mode 3)

Periodic Mode selection.
Periodic: Generates
periodic interrupts or
square waves.
One-shot: Generate a
single interrupt or a
pulse wave. Note: One-
shot mode is
implemented in
software. ISRs must be
enabled for one-shot
even if callback is
unused.
PWM: Generates basic
PWM waveforms.
Triangle-Wave
Symmetric PWM:
Generates symmetric
PWM waveforms with

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 948 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

duty cycle determined
by compare match set
during a crest interrupt
and updated at the
next trough.
Triangle-Wave
Asymmetric PWM:
Generates asymmetric
PWM waveforms with
duty cycle determined
by compare match set
during a crest/trough
interrupt and updated
at the next
trough/crest.

General > Period Value must be a non-
negative integer less
than or equal to
0x40000000000

0x100000000 Specify the timer
period in units selected
below. Setting the
period to 0x100000000
raw counts results in
the maximum period.
Set the period to
0x100000000 raw
counts for a free
running timer or an
input capture
configuration. The
period can be set up to
0x40000000000, which
will use a divider of
1024 with the
maximum period.

If the requested period
cannot be achieved,
the settings with the
largest possible period
that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
generated timer_cfg_t
structure.

General > Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Raw Counts Unit of the period
specified above

Output > Custom Pin Level Low Pin Level Low Set the initial output

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 949 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Waveform > GTIOA >
Initial Output Level

Pin Level High level of GTIOCxA.

Output > Custom
Waveform > GTIOA >
Cycle End Output Level

Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxA at cycle end.

Output > Custom
Waveform > GTIOA >
Compare Match Output
Level

Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxA at compare
match.

Output > Custom
Waveform > GTIOA >
Retain Output Level at
Count Stop

Disabled
Enabled

Disabled Retain the current
GTIOxA output level
when counting is
stopped.

Output > Custom
Waveform > GTIOB >
Initial Output Level

Pin Level Low
Pin Level High

Pin Level Low Set the initial output
level of GTIOCxB.

Output > Custom
Waveform > GTIOB >
Cycle End Output Level

Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxB at cycle end.

Output > Custom
Waveform > GTIOB >
Compare Match Output
Level

Pin Level Retain
Pin Level Low
Pin Level High
Pin Level
Toggle

Pin Level Retain Set the output level of
GTIOCxB at compare
match.

Output > Custom
Waveform > GTIOB >
Retain Output Level at
Count Stop

Disabled
Enabled

Disabled Retain the current
GTIOxB output level
when counting is
stopped.

Output > Custom
Waveform > Custom
Waveform Enable

Disabled
Enabled

Disabled Enable custom
waveform
configuration.

Output > Duty Cycle
Percent (only
applicable in PWM
mode)

Value must be between
0 and 100

50 Specify the timer duty
cycle percent. Only
used in PWM mode.

Output > GTIOCA
Output Enabled

True
False

False Enable the output of
GTIOCA on a pin.

Output > GTIOCA Stop
Level

Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

Output > GTIOCB
Output Enabled

True
False

False Enable the output of
GTIOCB on a pin.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 950 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Output > GTIOCB Stop
Level

Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

Input > Count Up
Source

MCU Specific Options Select external source
that will increment the
counter. If any count
up source is selected,
the timer will count the
external sources only.
It will not count PCLKD
cycles.

Input > Count Down
Source

MCU Specific Options Select external source
that will decrement the
counter. If any count
down source is
selected, the timer will
count the external
sources only. It will not
count PCLKD cycles.

Input > Start Source MCU Specific Options Select external source
that will start the timer.

For pulse width
measurement, set the
Start Source and the
Clear Source to the
trigger edge (the edge
to start the
measurement), and set
the Stop Source and
Capture Source (either
A or B) to the opposite
edge (the edge to stop
the measurement).

For pulse period
measurement, set the
Start Source, the Clear
Source, and the
Capture Source (either
A or B) to the trigger
edge (the edge to start
the measurement).

Input > Stop Source MCU Specific Options Select external source
that will stop the timer.

Input > Clear Source MCU Specific Options Select external source
that will clear the
timer.

Input > Capture A
Source

MCU Specific Options Select external source
that will trigger a
capture A event.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 951 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Input > Capture B
Source

MCU Specific Options Select external source
that will trigger a
capture B event.

Input > Noise Filter A
Sampling Clock Select

No Filter
Filter PCLKD / 1
Filter PCLKD / 4
Filter PCLKD /
16
Filter PCLKD /
64

No Filter Select the input filter
for GTIOCA.

Input > Noise Filter B
Sampling Clock Select

No Filter
Filter PCLKD / 1
Filter PCLKD / 4
Filter PCLKD /
16
Filter PCLKD /
64

No Filter Select the input filter
for GTIOCB.

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified here. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) each time
the timer period
elapses

Interrupts >
Overflow/Crest
Interrupt Priority

MCU Specific Options Select the overflow
interrupt priority. This
is the crest interrupt
for triangle-wave PWM.

Interrupts > Capture A
Interrupt Priority

MCU Specific Options Select the interrupt
priority for capture A.

Interrupts > Capture B
Interrupt Priority

MCU Specific Options Select the interrupt
priority for capture B.

Interrupts >
Underflow/Trough
Interrupt Priority

MCU Specific Options Select the interrupt
priority for the trough
interrupt (triangle-
wave PWM only).

Extra Features >
Output Disable > POEG
Link

POEG Channel
0
POEG Channel
1
POEG Channel
2
POEG Channel
3

POEG Channel 0 Select which POEG to
link this GPT channel
to.

Extra Features >
Output Disable >

Dead Time
Error

Select which errors
send an output disable

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 952 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Output Disable POEG
Trigger

GTIOCA and
GTIOCB High
Level
GTIOCA and
GTIOCB Low
Level

trigger to POEG. Dead
time error is only
available on GPT32E
and GPT32EH variants.

Extra Features >
Output Disable >
GTIOCA Disable Setting

Disable
Prohibited
Set Hi Z
Level Low
Level High

Disable Prohibited Select the disable
setting for GTIOCA.

Extra Features >
Output Disable >
GTIOCB Disable Setting

Disable
Prohibited
Set Hi Z
Level Low
Level High

Disable Prohibited Select the disable
setting for GTIOCB.

Extra Features > ADC
Trigger > Start Event
Trigger (GPTE/GPTEH
only)

Trigger Event
A/D Converter
Start Request A
During Up
Counting
Trigger Event
A/D Converter
Start Request A
During Down
Counting
Trigger Event
A/D Converter
Start Request B
During Up
Counting
Trigger Event
A/D Converter
Start Request B
During Down
Counting

Select which A/D
converter start request
interrupts to generate
and at which point in
the cycle to generate
them. This value only
applies to the GPT32E
and GPT32EH variants.

Extra Features > Dead
Time > Dead Time
Count Up (Raw Counts)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the dead time to
apply during up
counting. This value
also applies during
down counting for the
GPT32 and GPT16
variants.

Extra Features > Dead
Time > Dead Time
Count Down (Raw
Counts) (GPTE/GPTEH
only)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the dead time to
apply during down
counting. This value
only applies to the
GPT32E and GPT32EH
variants.

Extra Features > ADC
Trigger (GPTE/GPTEH

Must be a valid non-
negative integer with a

0 Select the compare
match value that

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 953 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

only) > ADC A
Compare Match (Raw
Counts)

maximum configurable
value of 4294967295
(0xffffffff).

generates a GPTn AD
TRIG A event. This
value only applies to
the GPT32E and
GPT32EH variants.

Extra Features > ADC
Trigger (GPTE/GPTEH
only) > ADC B
Compare Match (Raw
Counts)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the compare
match value that
generates a GPTn AD
TRIG B event. This
value only applies to
the GPT32E and
GPT32EH variants.

Extra Features >
Interrupt Skipping
(GPTE/GPTEH only) >
Interrupt to Count

None
Overflow and
Underflow
(sawtooth)
Crest (triangle)
Trough
(triangle)

None Select the count source
for interrupt skipping.
The interrupt skip
counter increments
after each source
event. All
crest/overflow and
trough/underflow
interrupts are skipped
when the interrupt skip
counter is non-zero.
This value only applies
to the GPT32E and
GPT32EH variants.

Extra Features >
Interrupt Skipping
(GPTE/GPTEH only) >
Interrupt Skip Count

0
1
2
3
4
5
6
7

0 Select the number of
interrupts to skip. This
value only applies to
the GPT32E and
GPT32EH variants.

Extra Features >
Interrupt Skipping
(GPTE/GPTEH only) >
Skip ADC Events

None
ADC A Compare
Match
ADC B Compare
Match
ADC A and B
Compare Match

module.driver.timer.int
errupt_skip.adc.none

Select ADC events to
suppress when the
interrupt skip count is
not zero. This value
only applies to the
GPT32E and GPT32EH
variants.

Extra Features > Extra
Features

Enabled
Disabled

Disabled Select whether to
enable extra features
on this channel.

Clock Configuration

The GPT clock is based on the PCLKD frequency. You can set the PCLKD frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time.

Pin Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 954 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

This module can use GTETRGA, GTETRGB, GTETRGC, GTETRGD, GTIOCA and GTIOCB pins as count
sources.

This module can use GTIOCA and GTIOCB pins as output pins for periodic or PWM signals.

This module can use GTIOCA and GTIOCB as input pins to measure input signals.

Usage Notes
Maximum Period for GPT32

The RA Configuration editor will automatically calculate the period count value and source clock
divider based on the selected period time, units and clock speed.

When the selected period unit is "Raw counts", the maximum period setting is 0x40000000000 on a
32-bit timer or 0x0x4000000 on a 16-bit timer. This will configure the timer with the maximum
period and a count clock divisor of 128.

Note
When manually changing the timer period counts the maximum value for a 32-bit GPT is 0x100000000. This
number overflows the 32-bit value for timer_cfg_t::period_counts. To configure the timer for the maximum period,
set timer_cfg_t::period_counts to 0.

Updating Period and Duty Cycle

The period and duty cycle are updated after the next counter overflow after calling
R_GPT_PeriodSet() or R_GPT_DutyCycleSet(). To force them to update before the next counter
overflow, call R_GPT_Reset() while the counter is running.

One-Shot Mode

The GPT timer does not support one-shot mode natively. One-shot mode is achieved by stopping the
timer in the interrupt service routine before the callback is called. If the interrupt is not serviced
before the timer period expires again, the timer generates more than one event. The callback is only
called once in this case, but multiple events may be generated if the timer is linked to the Data
Transfer Controller (r_dtc).

One-Shot Mode Output

The output waveform in one-shot mode is one PCLKD cycle less than the configured period. The
configured period must be at least 2 counts to generate an output pulse.

Examples of one-shot signals that can be generated by this module are shown below:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 955 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Figure 166: GPT One-Shot Output

Periodic Output

The GTIOC pin toggles twice each time the timer expires in periodic mode. This is achieved by
defining a PWM wave at a 50 percent duty cycle so that the period of the resulting square wave
(from rising edge to rising edge) matches the period of the GPT timer. Since the periodic output is
actually a PWM output, the time at the stop level is one cycle shorter than the time opposite the stop
level for odd period values.

Examples of periodic signals that can be generated by this module are shown below:

Figure 167: GPT Periodic Output

PWM Output

The PWM output signal is high at the beginning of the cycle and low at the end of the cycle.

Examples of PWM signals that can be generated by this module are shown below:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 956 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Figure 168: GPT PWM Output

Triangle-Wave PWM Output

Examples of PWM signals that can be generated by this module are shown below. The
duty_cycle_counts can be modified using R_GPT_DutyCycleSet() in the crest interrupt and updated at
the following trough for symmetric PWM or modified in both the crest/trough interrupts and updated
at the following trough/crest for asymmetric PWM.

Figure 169: GPT Triangle-Wave PWM Output

Event Counting

Event counting can be done by selecting up or down counting sources from GTETRG pins, ELC
events, or GTIOC pins. In event counting mode, the GPT counter is not affected by PCLKD.

Note
In event counting mode, the application must call R_GPT_Start() to enable event counting. The counter will not
change after calling R_GPT_Start() until an event occurs.

Pulse Measurement

If the capture edge occurs before the start edge in pulse measurement, the first capture is invalid
(0).

Controlling GPT with GTETRG Edges

The GPT timer can be configured to stop, start, clear, count up, or count down when a GTETRG rising
or falling edge occurs.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 957 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Note
The GTETRG pins are shared by all GPT channels.
GTETRG pins require POEG to be on (example code for this is provided in GPT Free Running Counter Example).
If input filtering is required on the GTETRG pins, that must also be handled outside this module.

Controlling GPT with ELC Events

The GPT timer can be configured to stop, start, clear, count up, or count down when an ELC event
occurs.

Note
The configurable ELC GPT sources are shared by all GPT channels.
The event links for the ELC must be configured outside this module.

Triggering ELC Events with GPT

The GPT timer can trigger the start of other peripherals. The Event Link Controller (r_elc) guide
provides a list of all available peripherals.

Enabling External Sources for Start, Stop, Clear, or Capture

R_GPT_Enable() must be called when external sources are used for start, stop, clear, or capture.

Interrupt Skipping

When an interrupt skipping source is selected a hardware counter will increment each time the
selected event occurs. Each interrupt past the first (up to the specified skip count) will be
suppressed. If ADC events are selected for skipping they will also be suppressed except during the
timer period leading to the selected interrupt skipping event (see below diagram).

Figure 170: Crest interrupt skipping in triangle-wave PWM modes (skip count 2)

Complementary Output

By using the Custom Waveform option the output pins can be made to output complementary
waveforms. To ensure these waveforms stay in sync, the duty cycle for both pins can be set
simultaneously by calling R_GPT_DutyCycleSet once with a pin parameter of
GPT_IO_PIN_GTIOCA_AND_GTIOCB.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 958 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

Note
The pin level for 0% and 100% duty cycle is determined by the Cycle End Output Level in normal PWM mode and
the Initial Output Level in triangle PWM modes. 100% duty will output the configured level and 0% will output the
opposite. Do not use Pin Level Toggle or Pin Level Retain for the Cycle End Output Level if normal PWM
waveforms are desired.

Examples
GPT Basic Example

This is a basic example of minimal use of the GPT in an application.

void gpt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

}

GPT Callback Example

This is an example of a timer callback.

/* Example callback called when timer expires. */

void timer_callback (timer_callback_args_t * p_args)

{

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* Add application code to be called periodically here. */

 }

}

GPT Free Running Counter Example

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 959 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

To use the GPT as a free running counter, select periodic mode and set the the Period to 0xFFFFFFFF
for a 32-bit timer or 0xFFFF for a 16-bit timer.

void gpt_counter_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) If event count mode is used to count edges on a GTETRG pin, POEG must

be started to use GTETRG.

 * Reference Note 1 of Table 23.2 "GPT functions" in the RA6M3 manual

R01UH0886EJ0100. */

 R_BSP_MODULE_START(FSP_IP_POEG, 0U);

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

 /* (Optional) Stop the timer. */

 (void) R_GPT_Stop(&g_timer0_ctrl);

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_GPT_StatusGet(&g_timer0_ctrl, &status);

}

GPT Input Capture Example

This is an example of using the GPT to capture pulse width or pulse period measurements.

/* Example callback called when a capture occurs. */

uint64_t g_captured_time = 0U;

uint32_t g_capture_overflows = 0U;

void timer_capture_callback (timer_callback_args_t * p_args)

{

 if ((TIMER_EVENT_CAPTURE_A == p_args->event) || (TIMER_EVENT_CAPTURE_B ==

p_args->event))

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 960 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint64_t period = info.period_counts;

 /* The maximum period is one more than the maximum 32-bit number, but will be

reflected as 0 in

 * timer_info_t::period_counts. */

 if (0U == period)

 {

 period = UINT32_MAX + 1U;

 }

 g_captured_time = (period * g_capture_overflows) + p_args->capture;

 g_capture_overflows = 0U;

 }

 if (TIMER_EVENT_CYCLE_END == p_args->event)

 {

 /* An overflow occurred during capture. This must be accounted for at the

application layer. */

 g_capture_overflows++;

 }

}

void gpt_capture_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_GPT_Enable(&g_timer0_ctrl);

 /* (Optional) Disable captures. */

 (void) R_GPT_Disable(&g_timer0_ctrl);

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 961 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

GPT Period Update Example

This an example of updating the period.

#define GPT_EXAMPLE_MSEC_PER_SEC (1000)

#define GPT_EXAMPLE_DESIRED_PERIOD_MSEC (20)

/* This example shows how to calculate a new period value at runtime. */

void gpt_period_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

 /* Get the source clock frequency (in Hz). There are 3 ways to do this in FSP:

 * - If the PCLKD frequency has not changed since reset, the source clock frequency

is

 * BSP_STARTUP_PCLKD_HZ >> timer_cfg_t::source_div

 * - Use the R_GPT_InfoGet function (it accounts for the divider).

 * - Calculate the current PCLKD frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) and right shift

 * by timer_cfg_t::source_div.

 *

 * This example uses the 3rd option (R_FSP_SystemClockHzGet).

 */

 uint32_t pclkd_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) >>

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkd_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) pclkd_freq_hz * GPT_EXAMPLE_DESIRED_PERIOD_MSEC) /

GPT_EXAMPLE_MSEC_PER_SEC);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 962 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

 /* Set the calculated period. */

 err = R_GPT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

}

GPT Duty Cycle Update Example

This an example of updating the duty cycle.

#define GPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT (25)

#define GPT_EXAMPLE_MAX_PERCENT (100)

/* This example shows how to calculate a new duty cycle value at runtime. */

void gpt_duty_cycle_calculation_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. Note that if the

period could be larger than

 * UINT32_MAX / 100, this calculation could overflow. A cast to uint64_t is used to

prevent this. The cast is

 * not required for 16-bit timers. */

 uint32_t duty_cycle_counts =

 (uint32_t) (((uint64_t) current_period_counts *

GPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 GPT_EXAMPLE_MAX_PERCENT);

 /* Set the calculated duty cycle. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 963 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, GPT_IO_PIN_GTIOCB);

 assert(FSP_SUCCESS == err);

}

GPT A/D Converter Start Request Example

This is an example of using the GPT to start the ADC at a configurable A/D converter compare match
value.

#if ((1U << GPT_EXAMPLE_CHANNEL) & (BSP_FEATURE_GPTEH_CHANNEL_MASK |

BSP_FEATURE_GPTE_CHANNEL_MASK))

/* This example shows how to configure the GPT to generate an A/D start request at an

A/D start request compare

 * match value. This example can only be used with GPTE or GPTEH variants. */

void gpt_adc_start_request_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize and configure the ELC. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Configure the ELC to start a scan on ADC unit 0 when GPT channel 0. Note: This is

typically configured in

 * g_elc_cfg and already set during R_ELC_Open. */

 err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_ADC0, ELC_EVENT_GPT0_AD_TRIG_A);

 assert(FSP_SUCCESS == err);

 /* Globally enable ELC events. */

 err = R_ELC_Enable(&g_elc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Initialize the ADC to start a scan based on an ELC event trigger. Set

adc_cfg_t::trigger to

 * ADC_TRIGGER_SYNC_ELC. */

 err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 964 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

 assert(FSP_SUCCESS == err);

 /* Enable ELC triggers by calling R_ADC_ScanStart(). */

 (void) R_ADC_ScanStart(&g_adc0_ctrl);

 /* Initializes the GPT module. Configure gpt_extended_pwm_cfg_t::adc_trigger to set

when the A/D start request

 * is generated. Set gpt_extended_pwm_cfg_t::adc_a_compare_match to set the desired

compare match value. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

 assert(FSP_SUCCESS == err);

 /* Start the timer. A/D converter start request events are generated each time the

counter is equal to the

 * A/D start request compare match value. */

 (void) R_GPT_Start(&g_timer0_ctrl);

}

#endif

Data Structures

struct gpt_output_pin_t

struct gpt_gtior_setting_t

struct gpt_instance_ctrl_t

struct gpt_extended_pwm_cfg_t

struct gpt_extended_cfg_t

Enumerations

enum gpt_io_pin_t

enum gpt_pin_level_t

enum gpt_source_t

enum gpt_capture_filter_t

enum gpt_adc_trigger_t

enum gpt_poeg_link_t

enum gpt_output_disable_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 965 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

enum gpt_gtioc_disable_t

enum gpt_adc_compare_match_t

enum gpt_interrupt_skip_source_t

enum gpt_interrupt_skip_count_t

enum gpt_interrupt_skip_adc_t

Data Structure Documentation

◆ gpt_output_pin_t

struct gpt_output_pin_t

Configurations for output pins.

Data Fields

bool output_enabled Set to true to enable output,
false to disable output.

gpt_pin_level_t stop_level Select a stop level from
gpt_pin_level_t.

◆ gpt_gtior_setting_t

struct gpt_gtior_setting_t

Custom GTIOR settings used for configuring GTIOCxA and GTIOCxB pins.

◆ gpt_instance_ctrl_t

struct gpt_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

◆ gpt_extended_pwm_cfg_t

struct gpt_extended_pwm_cfg_t

GPT extension for advanced PWM features.

Data Fields

uint8_t trough_ipl Trough interrupt priority.

IRQn_Type trough_irq Trough interrupt.

gpt_poeg_link_t poeg_link Select which POEG channel
controls output disable for this
GPT channel.

gpt_output_disable_t output_disable Select which trigger sources
request output disable from

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 966 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

POEG.

gpt_adc_trigger_t adc_trigger Select trigger sources to start
A/D conversion.

uint32_t dead_time_count_up Set a dead time value for
counting up.

uint32_t dead_time_count_down Set a dead time value for
counting down (available on
GPT32E and GPT32EH only)

uint32_t adc_a_compare_match Select the compare match
value used to trigger an A/D
conversion start request using
ELC_EVENT_GPT<channel>_AD
_TRIG_A.

uint32_t adc_b_compare_match Select the compare match
value used to trigger an A/D
conversion start request using
ELC_EVENT_GPT<channel>_AD
_TRIG_B.

gpt_interrupt_skip_source_t interrupt_skip_source Interrupt source to count for
interrupt skipping.

gpt_interrupt_skip_count_t interrupt_skip_count Number of interrupts to skip
between events.

gpt_interrupt_skip_adc_t interrupt_skip_adc ADC events to skip when
interrupt skipping is enabled.

gpt_gtioc_disable_t gtioca_disable_setting DEPRECATED - Select how to
configure GTIOCA when output
is disabled.

gpt_gtioc_disable_t gtiocb_disable_setting DEPRECATED - Select how to
configure GTIOCB when output
is disabled.

◆ gpt_extended_cfg_t

struct gpt_extended_cfg_t

GPT extension configures the output pins for GPT.

Data Fields

gpt_output_pin_t gtioca DEPRECATED - Configuration for
GPT I/O pin A.

gpt_output_pin_t gtiocb DEPRECATED - Configuration for
GPT I/O pin B.

gpt_source_t start_source Event sources that trigger the
timer to start.

gpt_source_t stop_source Event sources that trigger the
timer to stop.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 967 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

gpt_source_t clear_source Event sources that trigger the
timer to clear.

gpt_source_t capture_a_source Event sources that trigger
capture of GTIOCA.

gpt_source_t capture_b_source Event sources that trigger
capture of GTIOCB.

gpt_source_t count_up_source Event sources that trigger a
single up count. If
GPT_SOURCE_NONE is selected
for both count_up_source and
count_down_source, then the
timer count source is PCLK.

gpt_source_t count_down_source Event sources that trigger a
single down count. If
GPT_SOURCE_NONE is selected
for both count_up_source and
count_down_source, then the
timer count source is PCLK.

gpt_capture_filter_t capture_filter_gtioca

gpt_capture_filter_t capture_filter_gtiocb

uint8_t capture_a_ipl Capture A interrupt priority.

uint8_t capture_b_ipl Capture B interrupt priority.

IRQn_Type capture_a_irq Capture A interrupt.

IRQn_Type capture_b_irq Capture B interrupt.

gpt_extended_pwm_cfg_t const
*

p_pwm_cfg Advanced PWM features,
optional.

gpt_gtior_setting_t gtior_setting Custom GTIOR settings used for
configuring GTIOCxA and
GTIOCxB pins.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 968 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ gpt_io_pin_t

enum gpt_io_pin_t

Input/Output pins, used to select which duty cycle to update in R_GPT_DutyCycleSet().

Enumerator

GPT_IO_PIN_GTIOCA GTIOCA.

GPT_IO_PIN_GTIOCB GTIOCB.

GPT_IO_PIN_GTIOCA_AND_GTIOCB GTIOCA and GTIOCB.

GPT_IO_PIN_TROUGH Used in R_GPT_DutyCycleSet when Triangle-
wave PWM Mode 3 is selected.

GPT_IO_PIN_CREST Used in R_GPT_DutyCycleSet when Triangle-
wave PWM Mode 3 is selected.

◆ gpt_pin_level_t

enum gpt_pin_level_t

Level of GPT pin

Enumerator

GPT_PIN_LEVEL_LOW Pin level low.

GPT_PIN_LEVEL_HIGH Pin level high.

◆ gpt_source_t

enum gpt_source_t

Sources can be used to start the timer, stop the timer, count up, or count down. These
enumerations represent a bitmask. Multiple sources can be ORed together.

Enumerator

GPT_SOURCE_NONE No active event sources.

GPT_SOURCE_GTETRGA_RISING Action performed on GTETRGA rising edge.

GPT_SOURCE_GTETRGA_FALLING Action performed on GTETRGA falling edge.

GPT_SOURCE_GTETRGB_RISING Action performed on GTETRGB rising edge.

GPT_SOURCE_GTETRGB_FALLING Action performed on GTETRGB falling edge.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 969 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

GPT_SOURCE_GTETRGC_RISING Action performed on GTETRGC rising edge.

GPT_SOURCE_GTETRGC_FALLING Action performed on GTETRGC falling edge.

GPT_SOURCE_GTETRGD_RISING Action performed on GTETRGB rising edge.

GPT_SOURCE_GTETRGD_FALLING Action performed on GTETRGB falling edge.

GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_L
OW

Action performed when GTIOCA input rises
while GTIOCB is low.

GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HI
GH

Action performed when GTIOCA input rises
while GTIOCB is high.

GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_
LOW

Action performed when GTIOCA input falls
while GTIOCB is low.

GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_
HIGH

Action performed when GTIOCA input falls
while GTIOCB is high.

GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_L
OW

Action performed when GTIOCB input rises
while GTIOCA is low.

GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_HI
GH

Action performed when GTIOCB input rises
while GTIOCA is high.

GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_
LOW

Action performed when GTIOCB input falls
while GTIOCA is low.

GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_
HIGH

Action performed when GTIOCB input falls
while GTIOCA is high.

GPT_SOURCE_GPT_A Action performed on ELC GPTA event.

GPT_SOURCE_GPT_B Action performed on ELC GPTB event.

GPT_SOURCE_GPT_C Action performed on ELC GPTC event.

GPT_SOURCE_GPT_D Action performed on ELC GPTD event.

GPT_SOURCE_GPT_E Action performed on ELC GPTE event.

GPT_SOURCE_GPT_F Action performed on ELC GPTF event.

GPT_SOURCE_GPT_G Action performed on ELC GPTG event.

GPT_SOURCE_GPT_H Action performed on ELC GPTH event.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 970 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ gpt_capture_filter_t

enum gpt_capture_filter_t

Input capture signal noise filter (debounce) setting. Only available for input signals GTIOCxA and
GTIOCxB. The noise filter samples the external signal at intervals of the PCLK divided by one of the
values. When 3 consecutive samples are at the same level (high or low), then that level is passed
on as the observed state of the signal. See "Noise Filter Function" in the hardware manual, GPT
section.

Enumerator

GPT_CAPTURE_FILTER_NONE None - no filtering.

GPT_CAPTURE_FILTER_PCLKD_DIV_1 PCLK/1 - fast sampling.

GPT_CAPTURE_FILTER_PCLKD_DIV_4 PCLK/4.

GPT_CAPTURE_FILTER_PCLKD_DIV_16 PCLK/16.

GPT_CAPTURE_FILTER_PCLKD_DIV_64 PCLK/64 - slow sampling.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 971 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ gpt_adc_trigger_t

enum gpt_adc_trigger_t

Trigger options to start A/D conversion.

Enumerator

GPT_ADC_TRIGGER_NONE None - no output disable request.

GPT_ADC_TRIGGER_UP_COUNT_START_ADC_A Request A/D conversion from ADC unit 0 at up
counting compare match of
gpt_extended_pwm_cfg_t::adc_a_compare_mat
ch.

GPT_ADC_TRIGGER_DOWN_COUNT_START_ADC_
A

Request A/D conversion from ADC unit 0 at
down counting compare match of
gpt_extended_pwm_cfg_t::adc_a_compare_mat
ch.

GPT_ADC_TRIGGER_UP_COUNT_START_ADC_B Request A/D conversion from ADC unit 1 at up
counting compare match of
gpt_extended_pwm_cfg_t::adc_b_compare_mat
ch.

GPT_ADC_TRIGGER_DOWN_COUNT_START_ADC_
B

Request A/D conversion from ADC unit 1 at
down counting compare match of
gpt_extended_pwm_cfg_t::adc_b_compare_mat
ch.

◆ gpt_poeg_link_t

enum gpt_poeg_link_t

POEG channel to link to this channel.

Enumerator

GPT_POEG_LINK_POEG0 Link this GPT channel to POEG channel 0
(GTETRGA)

GPT_POEG_LINK_POEG1 Link this GPT channel to POEG channel 1
(GTETRGB)

GPT_POEG_LINK_POEG2 Link this GPT channel to POEG channel 2
(GTETRGC)

GPT_POEG_LINK_POEG3 Link this GPT channel to POEG channel 3
(GTETRGD)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 972 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ gpt_output_disable_t

enum gpt_output_disable_t

Select trigger to send output disable request to POEG.

Enumerator

GPT_OUTPUT_DISABLE_NONE None - no output disable request.

GPT_OUTPUT_DISABLE_DEAD_TIME_ERROR Request output disable if a dead time error
occurs.

GPT_OUTPUT_DISABLE_GTIOCA_GTIOCB_HIGH Request output disable if GTIOCA and GTIOCB
are high at the same time.

GPT_OUTPUT_DISABLE_GTIOCA_GTIOCB_LOW Request output disable if GTIOCA and GTIOCB
are low at the same time.

◆ gpt_gtioc_disable_t

enum gpt_gtioc_disable_t

Disable level options for GTIOC pins.

Enumerator

GPT_GTIOC_DISABLE_PROHIBITED Do not allow output disable.

GPT_GTIOC_DISABLE_SET_HI_Z Set GTIOC to high impedance when output is
disabled.

GPT_GTIOC_DISABLE_LEVEL_LOW Set GTIOC level low when output is disabled.

GPT_GTIOC_DISABLE_LEVEL_HIGH Set GTIOC level high when output is disabled.

◆ gpt_adc_compare_match_t

enum gpt_adc_compare_match_t

Trigger options to start A/D conversion.

Enumerator

GPT_ADC_COMPARE_MATCH_ADC_A Set A/D conversion start request value for GPT
A/D converter start request A.

GPT_ADC_COMPARE_MATCH_ADC_B Set A/D conversion start request value for GPT
A/D converter start request B.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 973 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ gpt_interrupt_skip_source_t

enum gpt_interrupt_skip_source_t

Interrupt skipping modes

Enumerator

GPT_INTERRUPT_SKIP_SOURCE_NONE Do not skip interrupts.

GPT_INTERRUPT_SKIP_SOURCE_OVERFLOW_UND
ERFLOW

Count and skip overflow and underflow
interrupts.

GPT_INTERRUPT_SKIP_SOURCE_CREST Count crest interrupts for interrupt skipping.
Skip the number of crest and trough interrupts
configured in gpt_interrupt_skip_count_t. When
the interrupt does fire, the trough interrupt
fires before the crest interrupt.

GPT_INTERRUPT_SKIP_SOURCE_TROUGH Count trough interrupts for interrupt skipping.
Skip the number of crest and trough interrupts
configured in gpt_interrupt_skip_count_t. When
the interrupt does fire, the crest interrupt fires
before the trough interrupt.

◆ gpt_interrupt_skip_count_t

enum gpt_interrupt_skip_count_t

Number of interrupts to skip between events

Enumerator

GPT_INTERRUPT_SKIP_COUNT_0 Do not skip interrupts.

GPT_INTERRUPT_SKIP_COUNT_1 Skip one interrupt.

GPT_INTERRUPT_SKIP_COUNT_2 Skip two interrupts.

GPT_INTERRUPT_SKIP_COUNT_3 Skip three interrupts.

GPT_INTERRUPT_SKIP_COUNT_4 Skip four interrupts.

GPT_INTERRUPT_SKIP_COUNT_5 Skip five interrupts.

GPT_INTERRUPT_SKIP_COUNT_6 Skip six interrupts.

GPT_INTERRUPT_SKIP_COUNT_7 Skip seven interrupts.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 974 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ gpt_interrupt_skip_adc_t

enum gpt_interrupt_skip_adc_t

ADC events to skip during interrupt skipping

Enumerator

GPT_INTERRUPT_SKIP_ADC_NONE Do not skip ADC events.

GPT_INTERRUPT_SKIP_ADC_A Skip ADC A events.

GPT_INTERRUPT_SKIP_ADC_B Skip ADC B events.

GPT_INTERRUPT_SKIP_ADC_A_AND_B Skip ADC A and B events.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 975 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_Open()

fsp_err_t R_GPT_Open (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initializes the timer module and applies configurations. Implements timer_api_t::open.

GPT hardware does not support one-shot functionality natively. When using one-shot mode, the
timer will be stopped in an ISR after the requested period has elapsed.

The GPT implementation of the general timer can accept a gpt_extended_cfg_t extension
parameter.

Example:

 /* Initializes the module. */

 err = R_GPT_Open(&g_timer0_ctrl, &g_timer0_cfg);

Return values
FSP_SUCCESS Initialization was successful and timer has

started.

FSP_ERR_ASSERTION A required input pointer is NULL or the
source divider is invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IRQ_BSP_DISABLED timer_cfg_t::mode is
TIMER_MODE_ONE_SHOT or
timer_cfg_t::p_callback is not NULL, but ISR
is not enabled. ISR must be enabled to use
one-shot mode or callback.

FSP_ERR_INVALID_MODE Triangle wave PWM is only supported if
GPT_CFG_OUTPUT_SUPPORT_ENABLE is 2.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 976 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_Stop()

fsp_err_t R_GPT_Stop (timer_ctrl_t *const p_ctrl)

Stops timer. Implements timer_api_t::stop.

Example:

 /* (Optional) Stop the timer. */

 (void) R_GPT_Stop(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_Start()

fsp_err_t R_GPT_Start (timer_ctrl_t *const p_ctrl)

Starts timer. Implements timer_api_t::start.

Example:

 /* Start the timer. */

 (void) R_GPT_Start(&g_timer0_ctrl);

Return values
FSP_SUCCESS Timer successfully started.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 977 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_Reset()

fsp_err_t R_GPT_Reset (timer_ctrl_t *const p_ctrl)

Resets the counter value to 0. Implements timer_api_t::reset.

Note
This function also updates to the new period if no counter overflow has occurred since the last call to
R_GPT_PeriodSet().

Return values
FSP_SUCCESS Counter value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_Enable()

fsp_err_t R_GPT_Enable (timer_ctrl_t *const p_ctrl)

Enables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::enable.

Example:

 /* Enable captures. Captured values arrive in the interrupt. */

 (void) R_GPT_Enable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully enabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 978 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_Disable()

fsp_err_t R_GPT_Disable (timer_ctrl_t *const p_ctrl)

Disables external event triggers that start, stop, clear, or capture the counter. Implements
timer_api_t::disable.

Note
The timer could be running after R_GPT_Disable(). To ensure it is stopped, call R_GPT_Stop().

Example:

 /* (Optional) Disable captures. */

 (void) R_GPT_Disable(&g_timer0_ctrl);

Return values
FSP_SUCCESS External events successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_PeriodSet()

fsp_err_t R_GPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const period_counts)

Sets period value provided. If the timer is running, the period will be updated after the next counter
overflow. If the timer is stopped, this function resets the counter and updates the period.
Implements timer_api_t::periodSet.

Warning
If periodic output is used, the duty cycle buffer registers are updated after the period buffer
register. If this function is called while the timer is running and a GPT overflow occurs
during processing, the duty cycle will not be the desired 50% duty cycle until the counter
overflow after processing completes.

Example:

 /* Get the source clock frequency (in Hz). There are 3 ways to do this in FSP:

 * - If the PCLKD frequency has not changed since reset, the source clock frequency

is

 * BSP_STARTUP_PCLKD_HZ >> timer_cfg_t::source_div

 * - Use the R_GPT_InfoGet function (it accounts for the divider).

 * - Calculate the current PCLKD frequency using

R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) and right shift

 * by timer_cfg_t::source_div.

 *

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 979 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

 * This example uses the 3rd option (R_FSP_SystemClockHzGet).

 */

 uint32_t pclkd_freq_hz = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_PCLKD) >>

g_timer0_cfg.source_div;

 /* Calculate the desired period based on the current clock. Note that this

calculation could overflow if the

 * desired period is larger than UINT32_MAX / pclkd_freq_hz. A cast to uint64_t is

used to prevent this. */

 uint32_t period_counts =

 (uint32_t) (((uint64_t) pclkd_freq_hz * GPT_EXAMPLE_DESIRED_PERIOD_MSEC) /

GPT_EXAMPLE_MSEC_PER_SEC);

 /* Set the calculated period. */

 err = R_GPT_PeriodSet(&g_timer0_ctrl, period_counts);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Period value written successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_DutyCycleSet()

fsp_err_t R_GPT_DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Sets duty cycle on requested pin. Implements timer_api_t::dutyCycleSet.

Duty cycle is updated in the buffer register. The updated duty cycle is reflected after the next cycle
end (counter overflow).

Example:

 /* Get the current period setting. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint32_t current_period_counts = info.period_counts;

 /* Calculate the desired duty cycle based on the current period. Note that if the

period could be larger than

 * UINT32_MAX / 100, this calculation could overflow. A cast to uint64_t is used to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 980 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

prevent this. The cast is

 * not required for 16-bit timers. */

 uint32_t duty_cycle_counts =

 (uint32_t) (((uint64_t) current_period_counts *

GPT_EXAMPLE_DESIRED_DUTY_CYCLE_PERCENT) /

 GPT_EXAMPLE_MAX_PERCENT);

 /* Set the calculated duty cycle. */

 err = R_GPT_DutyCycleSet(&g_timer0_ctrl, duty_cycle_counts, GPT_IO_PIN_GTIOCB);

 assert(FSP_SUCCESS == err);

Parameters
[in] p_ctrl Pointer to instance control

block.

[in] duty_cycle_counts Duty cycle to set in counts.

[in] pin Use gpt_io_pin_t to select
GPT_IO_PIN_GTIOCA or
GPT_IO_PIN_GTIOCB

Return values
FSP_SUCCESS Duty cycle updated successfully.

FSP_ERR_ASSERTION p_ctrl was NULL or the pin is not one of
gpt_io_pin_t

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_ARGUMENT Duty cycle is larger than period.

FSP_ERR_INVALID_MODE GPT_IO_PIN_TROUGH, and
GPT_IO_PIN_CREST settings are invalid in
the this mode.

FSP_ERR_UNSUPPORTED GPT_CFG_OUTPUT_SUPPORT_ENABLE is 0.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 981 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_InfoGet()

fsp_err_t R_GPT_InfoGet (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Get timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Example:

 /* (Optional) Get the current period if not known. */

 timer_info_t info;

 (void) R_GPT_InfoGet(&g_timer0_ctrl, &info);

 uint64_t period = info.period_counts;

 /* The maximum period is one more than the maximum 32-bit number, but will be

reflected as 0 in

 * timer_info_t::period_counts. */

 if (0U == period)

 {

 period = UINT32_MAX + 1U;

 }

Return values
FSP_SUCCESS Period, count direction, frequency, and ELC

event written to caller's structure
successfully.

FSP_ERR_ASSERTION p_ctrl or p_info was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 982 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_StatusGet()

fsp_err_t R_GPT_StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Get current timer status and store it in provided pointer p_status. Implements
timer_api_t::statusGet.

Example:

 /* Read the current counter value. Counter value is in status.counter. */

 timer_status_t status;

 (void) R_GPT_StatusGet(&g_timer0_ctrl, &status);

Return values
FSP_SUCCESS Current timer state and counter value set

successfully.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_CounterSet()

fsp_err_t R_GPT_CounterSet (timer_ctrl_t *const p_ctrl, uint32_t counter)

Set counter value.

Note
Do not call this API while the counter is counting. The counter value can only be updated while the counter is
stopped.

Return values
FSP_SUCCESS Counter value updated.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_IN_USE The timer is running. Stop the timer before
calling this function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 983 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_OutputEnable()

fsp_err_t R_GPT_OutputEnable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

Enable output for GTIOCA and/or GTIOCB.

Return values
FSP_SUCCESS Output is enabled.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_OutputDisable()

fsp_err_t R_GPT_OutputDisable (timer_ctrl_t *const p_ctrl, gpt_io_pin_t pin)

Disable output for GTIOCA and/or GTIOCB.

Return values
FSP_SUCCESS Output is disabled.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_AdcTriggerSet()

fsp_err_t R_GPT_AdcTriggerSet (timer_ctrl_t *const p_ctrl, gpt_adc_compare_match_t
which_compare_match, uint32_t compare_match_value)

Set A/D converter start request compare match value.

Return values
FSP_SUCCESS Counter value updated.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 984 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer (r_gpt)

◆ R_GPT_CallbackSet()

fsp_err_t R_GPT_CallbackSet (timer_ctrl_t *const p_api_ctrl, void(*)(timer_callback_args_t *)
p_callback, void const *const p_context, timer_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements timer_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_GPT_Close()

fsp_err_t R_GPT_Close (timer_ctrl_t *const p_ctrl)

Stops counter, disables output pins, and clears internal driver data. Implements timer_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

4.2.26 General PWM Timer Three-Phase Motor Control Driver
(r_gpt_three_phase)
Modules

Functions

fsp_err_t R_GPT_THREE_PHASE_Open (three_phase_ctrl_t *const p_ctrl,
three_phase_cfg_t const *const p_cfg)

fsp_err_t R_GPT_THREE_PHASE_Stop (three_phase_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_THREE_PHASE_Start (three_phase_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 985 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

fsp_err_t R_GPT_THREE_PHASE_Reset (three_phase_ctrl_t *const p_ctrl)

fsp_err_t R_GPT_THREE_PHASE_DutyCycleSet (three_phase_ctrl_t *const
p_ctrl, three_phase_duty_cycle_t *const p_duty_cycle)

fsp_err_t R_GPT_THREE_PHASE_CallbackSet (three_phase_ctrl_t *const p_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t R_GPT_THREE_PHASE_Close (three_phase_ctrl_t *const p_ctrl)

Detailed Description

Driver for 3-phase motor control using the GPT peripheral on RA MCUs. This module implements the
Three-Phase Interface.

Overview
The General PWM Timer (GPT) Three-Phase driver provides basic functionality for synchronously
starting and stopping three PWM channels for use in 3-phase motor control applications. A function is
additionally provided to allow setting duty cycle values for all three channels, optionally with double-
buffering.

Features

The GPT Three-Phase driver provides the following functions:

Synchronize configuration of three GPT channels
Synchronously start, stop and reset all three GPT channels
Set duty cycle on all three channels with one function

Configuration
Build Time Configurations for r_gpt_three_phase

The following build time configurations are defined in fsp_cfg/r_gpt_three_phase_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Timers > Three-Phase PWM Driver on r_gpt_three_phase

This module can be added to the Stacks tab via New Stack > Driver > Timers > Three-Phase PWM
Driver on r_gpt_three_phase. Non-secure callable guard functions can be generated for this module
by right clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 986 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_three_phase0 Module name.

General > Mode Triangle-Wave
Symmetric
PWM
Triangle-Wave
Asymmetric
PWM
Triangle-Wave
Asymmetric
PWM (Mode 3)

Triangle-Wave
Symmetric PWM

Mode selection.
Triangle-Wave
Symmetric PWM:
Generates symmetric
PWM waveforms with
duty cycle determined
by compare match set
during a crest interrupt
and updated at the
next trough.
Triangle-Wave
Asymmetric PWM:
Generates asymmetric
PWM waveforms with
duty cycle determined
by compare match set
during a crest/trough
interrupt and updated
at the next
trough/crest.

General > Period Value must be a non-
negative integer less
than or equal to
0x40000000000

15 Specify the timer
period in units selected
below. Setting the
period to 0x100000000
raw counts results in
the maximum period.
Set the period to
0x100000000 raw
counts for a free
running timer or an
input capture
configuration. The
period can be set up to
0x40000000000, which
will use a divider of
1024 with the
maximum period.

If the requested period
cannot be achieved,
the settings with the
largest possible period
that is less than or
equal to the requested
period are used. The
theoretical calculated
period is printed in a
comment in the
generated timer_cfg_t
structures for each

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 987 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

timer.

General > Period Unit Raw Counts
Nanoseconds
Microseconds
Milliseconds
Seconds
Hertz
Kilohertz

Kilohertz Unit of the period
specified above

General > GPT U-
Channel

Value must be an
integer greater than or
equal to 0

0 Specify the GPT
channel for U signal
output.

General > GPT V-
Channel

Value must be an
integer greater than or
equal to 0

1 Specify the GPT
channel for V signal
output.

General > GPT W-
Channel

Value must be an
integer greater than or
equal to 0

2 Specify the GPT
channel for W signal
output.

General > Callback
Channel

U-Channel
V-Channel
W-Channel

U-Channel Specify the GPT
channel to set a
callback for when using
R_GPT_THREE_PHASE_
CallbackSet.

General > Buffer Mode Single Buffer
Double Buffer

Single Buffer When Double Buffer is
selected the
'duty_buffer' array in
three_phase_duty_cycl
e_t is used as a buffer
for the 'duty' array.
This allows setting the
duty cycle for the next
two crest/trough
events in asymmetric
mode with only one call
to R_GPT_THREE_PHAS
E_DutyCycleSet.

General > GTIOCA Stop
Level

Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

General > GTIOCB Stop
Level

Pin Level Low
Pin Level High

Pin Level Low Select the behavior of
the output pin when
the timer is stopped.

Extra Features > Dead
Time > Dead Time
Count Up (Raw Counts)

Must be a valid non-
negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

0 Select the dead time to
apply during up
counting. This value
also applies during
down counting for the
GPT32 and GPT16
variants.

Extra Features > Dead Must be a valid non- 0 Select the dead time to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 988 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

Time > Dead Time
Count Down (Raw
Counts) (GPTE/GPTEH
only)

negative integer with a
maximum configurable
value of 4294967295
(0xffffffff).

apply during down
counting. This value
only applies to the
GPT32E and GPT32EH
variants.

Clock Configuration

Please refer to the General PWM Timer (r_gpt) section for more information.

Pin Configuration

Please refer to the General PWM Timer (r_gpt) section for more information.

Usage Notes
Warning

Be sure the GTIOCA/B stop level and dead time values are set appropriately for your
application before attempting to drive a motor. Failure to do so may result in damage to the
motor drive circuitry and/or the motor itself if the timer is stopped by software.

Initial Setup

The following should be configured once the GPT Three-Phase module has been added to a project:

1. Set "Pin Output Support" in one of the GPT submodules to "Enabled with Extra Features"
2. Configure common settings in the GPT Three-Phase module properties
3. Set the crest and trough interrupt priority and callback function in one of the three GPT

submodules (if desired)
4. Set the "Extra Features -> Output Disable" settings in each GPT submodule as needed for

your application

Note
Because all three modules are operated synchronously with the same period interrupts only need to be enabled in
one of the three GPT modules.

Buffer Modes

There are two buffering modes available for duty cycle values - single- and double-buffered. In single
buffer mode only the values specified in the duty array element of three_phase_duty_cycle_t are
used by R_GPT_THREE_PHASE_DutyCycleSet. At the next trough or crest event the output duty cycle
will be internally updated to the set values.

In double buffer mode the duty_buffer array values are used as buffer values for the duty elements.
Once passed to R_GPT_THREE_PHASE_DutyCycleSet, the next trough or crest event will update the
output duty cycle to the values specified in duty as before. However, at the following crest or trough
event the output duty cycle will be updated to the values in duty_buffer. This allows the duty cycle
for both sides of an asymmetric PWM waveform to be set at only one trough or crest event per
period instead of at every event.

Examples
GPT Three-Phase Basic Example

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 989 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

This is a basic example of minimal use of the GPT Three-Phase module in an application. The duty
cycle is updated at every timer trough with the previously loaded buffer value, then the duty cycle
buffer is reloaded in the trough interrupt callback.

void gpt_callback (timer_callback_args_t * p_args)

{

 fsp_err_t err;

 three_phase_duty_cycle_t duty_cycle;

 if (TIMER_EVENT_TROUGH == p_args->event)

 {

 /* Update duty cycle values (example) */

 duty_cycle.duty[THREE_PHASE_CHANNEL_U] =

get_duty_counts(THREE_PHASE_CHANNEL_U);

 duty_cycle.duty[THREE_PHASE_CHANNEL_V] =

get_duty_counts(THREE_PHASE_CHANNEL_V);

 duty_cycle.duty[THREE_PHASE_CHANNEL_W] =

get_duty_counts(THREE_PHASE_CHANNEL_W);

 /* Update duty cycle values */

 err = R_GPT_THREE_PHASE_DutyCycleSet(&g_gpt_three_phase_ctrl, &duty_cycle);

 assert(FSP_SUCCESS == err);

 }

 else

 {

 /* Handle crest event. */

 }

}

void gpt_three_phase_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = R_GPT_THREE_PHASE_Open(&g_gpt_three_phase_ctrl, &g_gpt_three_phase_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the timer. */

 (void) R_GPT_THREE_PHASE_Start(&g_gpt_three_phase_ctrl);

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 990 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

Data Structures

struct gpt_three_phase_instance_ctrl_t

Data Structure Documentation

◆ gpt_three_phase_instance_ctrl_t

struct gpt_three_phase_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when three_phase_api_t::open is
called.

Function Documentation

◆ R_GPT_THREE_PHASE_Open()

fsp_err_t R_GPT_THREE_PHASE_Open (three_phase_ctrl_t *const p_ctrl, three_phase_cfg_t const
*const p_cfg)

Initializes the 3-phase timer module (and associated timers) and applies configurations.
Implements three_phase_api_t::open.

Example:

 /* Initializes the module. */

 err = R_GPT_THREE_PHASE_Open(&g_gpt_three_phase_ctrl, &g_gpt_three_phase_cfg);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION A required input pointer is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

◆ R_GPT_THREE_PHASE_Stop()

fsp_err_t R_GPT_THREE_PHASE_Stop (three_phase_ctrl_t *const p_ctrl)

Stops all timers synchronously. Implements three_phase_api_t::stop.

Return values
FSP_SUCCESS Timers successfully stopped.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 991 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

◆ R_GPT_THREE_PHASE_Start()

fsp_err_t R_GPT_THREE_PHASE_Start (three_phase_ctrl_t *const p_ctrl)

Starts all timers synchronously. Implements three_phase_api_t::start.

Example:

 /* Start the timer. */

 (void) R_GPT_THREE_PHASE_Start(&g_gpt_three_phase_ctrl);

Return values
FSP_SUCCESS Timers successfully started.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_GPT_THREE_PHASE_Reset()

fsp_err_t R_GPT_THREE_PHASE_Reset (three_phase_ctrl_t *const p_ctrl)

Resets the counter values to 0. Implements three_phase_api_t::reset.

Return values
FSP_SUCCESS Counters were reset successfully.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 992 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

◆ R_GPT_THREE_PHASE_DutyCycleSet()

fsp_err_t R_GPT_THREE_PHASE_DutyCycleSet (three_phase_ctrl_t *const p_ctrl,
three_phase_duty_cycle_t *const p_duty_cycle)

Sets duty cycle for all three timers. Implements three_phase_api_t::dutyCycleSet.

In symmetric PWM mode duty cycle values are reflected after the next trough. In asymmetric PWM
mode values are reflected at the next trough OR crest, whichever comes first.

When double-buffering is enabled the values in three_phase_duty_cycle_t::duty_buffer are set to
the double-buffer registers. When values are reflected the first time the single buffer values
(three_phase_duty_cycle_t::duty) are used. On the second reflection the duty_buffer values are
used. In asymmetric PWM mode this enables both count-up and count-down PWM values to be set
at trough (or crest) exclusively.

Note
It is recommended to call this function in a high-priority callback to ensure that it is not interrupted and that no
GPT events occur during setting that would result in a duty cycle buffer load operation.

Example:

 /* Update duty cycle values */

 err = R_GPT_THREE_PHASE_DutyCycleSet(&g_gpt_three_phase_ctrl, &duty_cycle);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Duty cycle updated successfully.

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The instance is not opened.

FSP_ERR_INVALID_ARGUMENT One or more duty cycle count values was
outside the range 0..(period - 1).

◆ R_GPT_THREE_PHASE_CallbackSet()

fsp_err_t R_GPT_THREE_PHASE_CallbackSet (three_phase_ctrl_t *const p_ctrl,
void(*)(timer_callback_args_t *) p_callback, void const *const p_context, timer_callback_args_t
*const p_callback_memory)

Updates the user callback for the GPT U-channel with the option to provide memory for the callback
argument structure. Implements three_phase_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 993 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

◆ R_GPT_THREE_PHASE_Close()

fsp_err_t R_GPT_THREE_PHASE_Close (three_phase_ctrl_t *const p_ctrl)

Stops counters, disables output pins, and clears internal driver data. Implements
three_phase_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

4.2.27 Interrupt Controller Unit (r_icu)
Modules

Functions

fsp_err_t R_ICU_ExternalIrqOpen (external_irq_ctrl_t *const p_api_ctrl,
external_irq_cfg_t const *const p_cfg)

fsp_err_t R_ICU_ExternalIrqEnable (external_irq_ctrl_t *const p_api_ctrl)

fsp_err_t R_ICU_ExternalIrqDisable (external_irq_ctrl_t *const p_api_ctrl)

fsp_err_t R_ICU_ExternalIrqCallbackSet (external_irq_ctrl_t *const p_api_ctrl,
void(*p_callback)(external_irq_callback_args_t *), void const *const
p_context, external_irq_callback_args_t *const p_callback_memory)

fsp_err_t R_ICU_ExternalIrqClose (external_irq_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the ICU peripheral on RA MCUs. This module implements the External IRQ Interface.

Overview
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC, DTC, and
DMAC modules. The R_ICU software module only implements the External IRQ Interface. The
external_irq interface is for configuring interrupts to fire when a trigger condition is detected on an
external IRQ pin.

Note
Multiple instances are used when more than one external interrupt is needed. Configure each instance with
different channels and properties as needed for the specific interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 994 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

Features

Supports configuring interrupts for IRQ pins on the target MCUs
Enabling and disabling interrupt generation.
Configuring interrupt trigger on rising edge, falling edge, both edges, or low level
signal.
Enabling and disabling the IRQ noise filter.

Supports configuring a user callback function, which will be invoked by the HAL module
when an external pin interrupt is generated.

Configuration

Build Time Configurations for r_icu

The following build time configurations are defined in fsp_cfg/r_icu_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Input > External IRQ Driver on r_icu

This module can be added to the Stacks tab via New Stack > Driver > Input > External IRQ Driver on
r_icu. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_external_irq0 Module name.

Channel Value must be an
integer between 0 and
15

0 Specify the hardware
channel.

Trigger Falling
Rising
Both Edges
Low Level

Rising Select the signal edge
or state that triggers
an interrupt.

Digital Filtering Enabled
Disabled

Disabled Select if the digital
noise filter should be
enabled.

Digital Filtering Sample
Clock (Only valid when
Digital Filtering is
Enabled)

PCLK / 1
PCLK / 8
PCLK / 32
PCLK / 64

PCLK / 64 Select the clock divider
for the digital noise
filter.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided here. If this

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 995 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

callback function is
provided, it is called
from the interrupt
service routine (ISR)
each time the IRQn
triggers

Pin Interrupt Priority MCU Specific Options Select the PIN interrupt
priority.

Clock Configuration

The ICU peripheral module doesn't require any specific clock settings.

Note
The digital filter uses PCLKB as the clock source for sampling the IRQ pin.

Pin Configuration

The pin for the external interrupt channel must be configured as an input with IRQ Input Enabled.

Usage Notes
Digital Filter

The digital filter is used to reject trigger conditions that are too short. The trigger condition must be
longer than three periods of the filter clock. The filter clock frequency is determined by PCLKB and
the external_irq_pclk_div_t setting.

MIN_PULSE_WIDTH = EXTERNAL_IRQ_PCLKB_DIV / PCLKB_FREQUENCY * 3

DMAC/DTC

When using an External IRQ pin to trigger a DMAC/DTC transfer, the External IRQ pin must be
opened before the transfer instance is opened.

Examples
Basic Example

This is a basic example of minimal use of the ICU in an application.

#define ICU_IRQN_PIN BSP_IO_PORT_02_PIN_06

#define ICU_IRQN 6

/* Called from icu_irq_isr */

void external_irq_callback (external_irq_callback_args_t * p_args)

{

 (void) p_args;

 g_external_irq_complete = 1;

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 996 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

void simple_example ()

{

 /* Example Configuration */

 external_irq_cfg_t icu_cfg =

 {

 .channel = ICU_IRQN,

 .trigger = EXTERNAL_IRQ_TRIG_RISING,

 .filter_enable = false,

 .pclk_div = EXTERNAL_IRQ_PCLK_DIV_BY_1,

 .p_callback = external_irq_callback,

 .p_context = 0,

 .ipl = 0,

 .irq = (IRQn_Type) 0,

 };

 /* Configure the external interrupt. */

 fsp_err_t err = R_ICU_ExternalIrqOpen(&g_icu_ctrl, &icu_cfg);

 assert(FSP_SUCCESS == err);

 /* Enable the external interrupt. */

 /* Enable not required when used with ELC or DMAC. */

 err = R_ICU_ExternalIrqEnable(&g_icu_ctrl);

 assert(FSP_SUCCESS == err);

 while (0 == g_external_irq_complete)

 {

 /* Wait for interrupt. */

 }

}

Data Structures

struct icu_instance_ctrl_t

Data Structure Documentation

◆ icu_instance_ctrl_t

struct icu_instance_ctrl_t

ICU private control block. DO NOT MODIFY. Initialization occurs when R_ICU_ExternalIrqOpen is
called.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 997 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

Data Fields

uint32_t open

 Used to determine if channel control block is in use.

IRQn_Type irq

 NVIC interrupt number.

uint8_t channel

 Channel.

void const * p_context

Field Documentation

◆ p_context

void const* icu_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in external_irq_callback_args_t.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 998 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

◆ R_ICU_ExternalIrqOpen()

fsp_err_t R_ICU_ExternalIrqOpen (external_irq_ctrl_t *const p_api_ctrl, external_irq_cfg_t const
*const p_cfg)

Configure an IRQ input pin for use with the external interrupt interface. Implements
external_irq_api_t::open.

The Open function is responsible for preparing an external IRQ pin for operation.

Return values
FSP_SUCCESS Open successful.

FSP_ERR_ASSERTION One of the following is invalid:

p_ctrl or p_cfg is NULL

FSP_ERR_ALREADY_OPEN The channel specified has already been
opened. No configurations were changed.
Call the associated Close function to
reconfigure the channel.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in p_cfg is not
available on the device selected in
r_bsp_cfg.h.

FSP_ERR_INVALID_ARGUMENT p_cfg->p_callback is not NULL, but ISR is not
enabled. ISR must be enabled to use
callback function.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

◆ R_ICU_ExternalIrqEnable()

fsp_err_t R_ICU_ExternalIrqEnable (external_irq_ctrl_t *const p_api_ctrl)

Enable external interrupt for specified channel at NVIC. Implements external_irq_api_t::enable.

Return values
FSP_SUCCESS Interrupt Enabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_IRQ_BSP_DISABLED Requested IRQ is not defined in this system

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 999 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

◆ R_ICU_ExternalIrqDisable()

fsp_err_t R_ICU_ExternalIrqDisable (external_irq_ctrl_t *const p_api_ctrl)

Disable external interrupt for specified channel at NVIC. Implements external_irq_api_t::disable.

Return values
FSP_SUCCESS Interrupt disabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_IRQ_BSP_DISABLED Requested IRQ is not defined in this system

◆ R_ICU_ExternalIrqCallbackSet()

fsp_err_t R_ICU_ExternalIrqCallbackSet (external_irq_ctrl_t *const p_api_ctrl,
void(*)(external_irq_callback_args_t *) p_callback, void const *const p_context,
external_irq_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
external_irq_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_ICU_ExternalIrqClose()

fsp_err_t R_ICU_ExternalIrqClose (external_irq_ctrl_t *const p_api_ctrl)

Close the external interrupt channel. Implements external_irq_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN The channel is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,000 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Interrupt Controller Unit (r_icu)

4.2.28 I2C Master on IIC (r_iic_master)
Modules

Functions

fsp_err_t R_IIC_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_IIC_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_IIC_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_IIC_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_IIC_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_IIC_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The I2C master on IIC HAL module supports transactions with an I2C Slave device. Callbacks must be
provided which are invoked when a transmit or receive operation has completed. The callback
argument will contain information about the transaction status, bytes transferred and a pointer to
the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

I2C Master Read from a slave device.
I2C Master Write to a slave device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,001 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_iic_master

The following build time configurations are defined in fsp_cfg/r_iic_master_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode
along with the default
7-bit slave addressing
mode.

Configurations for Driver > Connectivity > I2C Master Driver on r_iic_master

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > I2C Master
Driver on r_iic_master. Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_i2c_master0 Module name.

Channel Value must be a non-
negative integer

0 Specify the IIC channel.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,002 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

transfer rate are used.
The theoretical
calculated transfer rate
and duty cycle are
printed in a comment
in the generated
iic_master_extended_cf
g_t structure.

Rise Time (ns) Value must be a non-
negative integer

120 Set the rise time (tr) in
nanoseconds.

Fall Time (ns) Value must be a non-
negative integer

120 Set the fall time (tf) in
nanoseconds.

Duty Cycle (%) Value must be an
integer between 0 and
100

50 Set the SCL duty cycle.

Slave Address Value must be non-
negative

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the slave
address mode. Ensure
10-bit slave addressing
is enabled in the
configuration to use
10-Bit setting here.

Timeout Mode Short Mode
Long Mode

Short Mode Select the timeout
mode to detect bus
hang.

Timeout during SCL
Low

Enabled
Disabled

Enabled Select if the timeout
can occur when SCL is
held low for a duration
longer than what is set
in the timeout mode.

Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) upon IIC
transaction completion
reporting the
transaction status.

Interrupt Priority Level MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI, TEI and ERI
interrupts.

Clock Configuration

The IIC peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate will be
calculated and set by the tooling depending on the selected transfer rate. If the PCLKB is configured

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,003 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

in such a manner that the selected internal rate cannot be achieved, an error will be returned.

Pin Configuration

The IIC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An I2C channel would consist of two
pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

The IIC error (EEI), receive buffer full (RXI), transmit buffer empty (TXI) and transmit end
(TEI) interrupts for the selected channel used must be enabled in the properties of the
selected device.
Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.

IIC Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate. The closest possible baud-rate that can be achieved (less than or
equal to the requested rate) at the current PCLKB settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Enabling DTC with the IIC

DTC transfer support is configurable and is disabled from the build by default. IIC driver
provides two DTC instances for transmission and reception respectively. The DTC instances
can be enabled individually during configuration.
For further details on DTC please refer Data Transfer Controller (r_dtc)

Multiple Devices on the Bus

A single IIC instance can be used to communicate with multiple slave devices on the same
channel by using the SlaveAddressSet API.

Multi-Master Support

If multiple masters are connected on the same bus, the I2C Master is capable of detecting
bus busy state before initiating the communication.

Restart

IIC master can hold the the bus after an I2C transaction by issuing Restart. This will mimic a
stop followed by start condition.

Examples
Basic Example

This is a basic example of minimal use of the r_iic_master in an application. This example shows how
this driver can be used for basic read and write operations.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,004 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

iic_master_instance_ctrl_t g_i2c_device_ctrl_1;

i2c_master_cfg_t g_i2c_device_cfg_1 =

{

 .channel = I2C_CHANNEL,

 .rate = I2C_MASTER_RATE_FAST,

 .slave = I2C_SLAVE_EEPROM,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_callback, // Callback

 .p_context = &g_i2c_device_ctrl_1,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend

};

void i2c_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_callback_event = p_args->event;

}

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the IIC module */

 err = R_IIC_MASTER_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IIC_MASTER_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,005 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,006 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

Multiple Slave devices on the same channel (bus)

This example demonstrates how a single IIC driver can be used to communicate with different slave
devices which are on the same channel.

Note
The callback function from the first example applies to this example as well.

iic_master_instance_ctrl_t g_i2c_device_ctrl_2;

i2c_master_cfg_t g_i2c_device_cfg_2 =

{

 .channel = I2C_CHANNEL,

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_SLAVE_TEMP_SENSOR,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_callback, // Callback

 .p_context = &g_i2c_device_ctrl_2,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend

};

void single_channel_multi_slave (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_IIC_MASTER_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,007 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Send data to I2C slave on the same channel */

 err = R_IIC_MASTER_SlaveAddressSet(&g_i2c_device_ctrl_2,

I2C_SLAVE_DISPLAY_ADAPTER, I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = 0xAA; // NOLINT

 g_i2c_tx_buffer[1] = 0xBB; // NOLINT

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct iic_master_clock_settings_t

struct iic_master_instance_ctrl_t

struct iic_master_extended_cfg_t

Enumerations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,008 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

enum iic_master_timeout_mode_t

enum iic_master_timeout_scl_low_t

Data Structure Documentation

◆ iic_master_clock_settings_t

struct iic_master_clock_settings_t

I2C clock settings

Data Fields

uint8_t cks_value Internal Reference Clock Select.

uint8_t brh_value High-level period of SCL clock.

uint8_t brl_value Low-level period of SCL clock.

◆ iic_master_instance_ctrl_t

struct iic_master_instance_ctrl_t

I2C control structure. DO NOT INITIALIZE.

◆ iic_master_extended_cfg_t

struct iic_master_extended_cfg_t

R_IIC extended configuration

Data Fields

iic_master_timeout_mode_t timeout_mode Timeout Detection Time Select:
Long Mode = 0 and Short Mode
= 1.

iic_master_timeout_scl_low_t timeout_scl_low Allows timeouts to occur when
SCL is held low.

iic_master_clock_settings_t clock_settings I2C Clock settings.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,009 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

◆ iic_master_timeout_mode_t

enum iic_master_timeout_mode_t

I2C Timeout mode parameter definition

Enumerator

IIC_MASTER_TIMEOUT_MODE_LONG Timeout Detection Time Select: Long Mode ->
TMOS = 0.

IIC_MASTER_TIMEOUT_MODE_SHORT Timeout Detection Time Select: Short Mode ->
TMOS = 1.

◆ iic_master_timeout_scl_low_t

enum iic_master_timeout_scl_low_t

Enumerator

IIC_MASTER_TIMEOUT_SCL_LOW_DISABLED Timeout detection during SCL low disabled.

IIC_MASTER_TIMEOUT_SCL_LOW_ENABLED Timeout detection during SCL low enabled.

Function Documentation

◆ R_IIC_MASTER_Open()

fsp_err_t R_IIC_MASTER_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Set the rate to fast mode plus on a

channel which does not support it.
5. Invalid IRQ number assigned

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,010 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

◆ R_IIC_MASTER_Read()

fsp_err_t R_IIC_MASTER_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read from the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl, p_dest or bytes is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

◆ R_IIC_MASTER_Write()

fsp_err_t R_IIC_MASTER_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write to the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_TX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_IN_USE Bus busy condition. Another transfer was in
progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,011 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

◆ R_IIC_MASTER_Abort()

fsp_err_t R_IIC_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Safely aborts any in-progress transfer and forces the IIC peripheral into ready state.

Return values
FSP_SUCCESS Channel was reset successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

◆ R_IIC_MASTER_SlaveAddressSet()

fsp_err_t R_IIC_MASTER_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const
slave, i2c_master_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device. This function is used to set the device
address and addressing mode of the slave without reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION Pointer to control structure is NULL.

FSP_ERR_IN_USE Another transfer was in-progress.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,012 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

◆ R_IIC_MASTER_Close()

fsp_err_t R_IIC_MASTER_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the I2C device. May power down IIC peripheral. This function will safely terminate any in-
progress I2C transfers.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Handle is not initialized. Call
R_IIC_MASTER_Open to initialize the control
block.

Note
A callback will not be invoked in case an in-progress transfer gets aborted by calling this API.

◆ R_IIC_MASTER_CallbackSet()

fsp_err_t R_IIC_MASTER_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,013 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Master on IIC (r_iic_master)

◆ R_IIC_MASTER_StatusGet()

fsp_err_t R_IIC_MASTER_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t *
p_status)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

4.2.29 I2C Slave on IIC (r_iic_slave)
Modules

Functions

fsp_err_t R_IIC_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl, i2c_slave_cfg_t
const *const p_cfg)

fsp_err_t R_IIC_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_IIC_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes)

fsp_err_t R_IIC_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

fsp_err_t R_IIC_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const
p_context, i2c_slave_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the I2C Slave Interface.

Overview
Features

Supports multiple transmission rates
Standard Mode Support with up to 100-kHz transaction rate.
Fast Mode Support with up to 400-kHz transaction rate.
Fast Mode Plus Support with up to 1-MHz transaction rate.

Reads data written by master device.
Write data which is read by master device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,014 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

Can accept 0x00 as slave address.
Can be assigned a 10-bit address.
Clock stretching is supported and can be implemented via callbacks.
Provides Transmission/Reception transaction size in the callback.
I2C Slave can notify the following events via callbacks: Transmission/Reception Request,
Transmission/Reception Request for more data, Transmission/Reception Completion, Error
Condition.

Configuration
Build Time Configurations for r_iic_slave

The following build time configurations are defined in fsp_cfg/r_iic_slave_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Connectivity > I2C Slave Driver on r_iic_slave

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > I2C Slave
Driver on r_iic_slave. Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Interrupt Priority Level
> Transmit, Receive,
and Transmit End

MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI, and TEI
interrupts.

Interrupt Priority Level
> Error

MCU Specific Options Select the interrupt
priority level. This is set
for ERI interrupt.

Name Name must be a valid
C symbol

g_i2c_slave0 Module name.

Channel Value must be a non-
negative integer

0 Specify the IIC channel.

Rate Standard
Fast-mode
Fast-mode plus

Standard Select the transfer
rate.

If the delay for the
requested transfer rate
cannot be achieved,
the settings with the
largest possible
transfer rate that is
less than or equal to
the requested transfer
rate are used. The
theoretical calculated

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,015 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

delay is printed in a
comment in the
generated
iic_slave_extended_cfg
_t structure.

Internal Reference
Clock

PCLKB / 1
PCLKB / 2
PCLKB / 4
PCLKB / 8
PCLKB / 16
PCLKB / 32
PCLKB / 64
PCLKB / 128

PCLKB / 1 Select the internal
reference clock for IIC
slave. The internal
reference clock is used
only to determine the
clock frequency of the
noise filter samples.

Digital Noise Filter
Stage Select

Disabled
Single-stage
filter
2-stage filter
3-stage filter
4-stage filter

3-stage filter Select the number of
digital filter stages for
IIC Slave.

Slave Address Value must be non-
negative

0x00 Specify the slave
address.

General Call Enabled
Disabled

Disabled Allows the slave to
respond to general call
address: 0x00.

Address Mode 7-Bit
10-Bit

7-Bit Select the slave
address mode.

Clock Stretching Enabled
Disabled

Disabled Configure Clock
Stretching.

Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided. This will be
called from the
interrupt service
routine (ISR) to report
I2C Slave transaction
events and status.

Clock Configuration

The IIC peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate will be
calculated and set by the tooling depending on the selected transfer rate. If the PCLKB is configured
in such a manner that the selected transfer rate cannot be achieved, an error will be returned.

Pin Configuration

The IIC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. An I2C channel would consist of two
pins - SDA and SCL for data/address and clock respectively.

Usage Notes

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,016 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

Interrupt Configuration

The IIC error (EEI), receive buffer full (RXI), transmit buffer empty (TXI) and transmit end
(TEI) interrupts for the selected channel must be enabled in the properties of the selected
device.
The interrupt priority of ERI can be set higher than or equal to the interrupt priorities of RXI,
TXI and TEI.
Note

: During master-write slave-read type of operations if the slave device requires to perform clock
stretching after the last data byte is received, a higher priority ERI will ensure that the ongoing
transaction is completed (by accepting the Stop/Restart condition from the master) before the next
transaction is initiated.
: To support clock stretching (Holding SCL low after the falling edge of the 9th clock cycle), 'Clock
Stretching' configuration must be enabled.

Callback

A callback function must be provided which will be invoked for the cases below:
An I2C Master initiates a transmission or reception:
I2C_SLAVE_EVENT_TX_REQUEST; I2C_SLAVE_EVENT_RX_REQUEST
A Transmission or reception has been completed:
I2C_SLAVE_EVENT_TX_COMPLETE; I2C_SLAVE_EVENT_RX_COMPLETE
An I2C Master is requesting to read or write more data:
I2C_SLAVE_EVENT_TX_MORE_REQUEST; I2C_SLAVE_EVENT_RX_MORE_REQUEST
Error conditions: I2C_SLAVE_EVENT_ABORTED
An I2C Master initiates a general call by passing 0x00 as slave address:
I2C_SLAVE_EVENT_GENERAL_CALL

The callback arguments will contain information about the transaction status/events, bytes
transferred and a pointer to the user defined context.
Clock stretching is enabled by the use of callbacks. This means that the IIC slave can hold
the clock line SCL LOW to force the I2C Master into a wait state.
The table below shows I2C Slave event handling expected in user code:

IIC Slave Callback Event IIC Slave API expected to be called

I2C_SLAVE_EVENT_ABORTED Handle event based on application

I2C_SLAVE_EVENT_RX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_TX_COMPLETE Handle event based on application

I2C_SLAVE_EVENT_RX_REQUEST R_IIC_SLAVE_Read API. If the slave is a Write
Only device call this API with 0 bytes to send a
NACK to the master.

I2C_SLAVE_EVENT_TX_REQUEST R_IIC_SLAVE_Write API

I2C_SLAVE_EVENT_RX_MORE_REQUEST R_IIC_SLAVE_Read API. If the slave cannot read
any more data call this API with 0 bytes to send
a NACK to the master.

I2C_SLAVE_EVENT_TX_MORE_REQUEST R_IIC_SLAVE_Write API

I2C_SLAVE_EVENT_GENERAL_CALL R_IIC_SLAVE_Read

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,017 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

If parameter checking is enabled and R_IIC_SLAVE_Read API is not called for
I2C_SLAVE_EVENT_RX_REQUEST and/or I2C_SLAVE_EVENT_RX_MORE_REQUEST, the slave
will send a NACK to the master and would eventually timeout.
R_IIC_SLAVE_Write API is not called for I2C_SLAVE_EVENT_TX_REQUEST and/or
I2C_SLAVE_EVENT_TX_MORE_REQUEST:

Slave timeout is less than Master timeout: The slave will timeout and release the
bus causing the master to read 0xFF for every remaining byte.
Slave timeout is more than Master timeout: The master will timeout first followed
by the slave.

IIC Slave Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate. The closest possible baud-rate that can be achieved (less than or
equal to the requested rate) at the current PCLKB settings is calculated and used.

Limitations

When 'Clock Stretching' configuration is enabled, the receive operation will not utilize the
double buffer arrangement in hardware for a continuous read. This means that the read
operation would happen in single byte units such that the active master would send the
next byte only when the slave has read the current byte of data.

Examples
Basic Example

This is a basic example of minimal use of the R_IIC_SLAVE in an application. This example shows how
this driver can be used for basic read and write operations.

iic_master_instance_ctrl_t g_i2c_master_ctrl;

i2c_master_cfg_t g_i2c_master_cfg =

{

 .channel = I2C_MASTER_CHANNEL_2,

 .rate = I2C_MASTER_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .addr_mode = I2C_MASTER_ADDR_MODE_7BIT,

 .p_callback = i2c_master_callback, // Callback

 .p_context = &g_i2c_master_ctrl,

 .p_transfer_tx = NULL,

 .p_transfer_rx = NULL,

 .p_extend = &g_iic_master_cfg_extend_standard_mode

};

iic_slave_instance_ctrl_t g_i2c_slave_ctrl;

i2c_slave_cfg_t g_i2c_slave_cfg =

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,018 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

{

 .channel = I2C_SLAVE_CHANNEL_0,

 .rate = I2C_SLAVE_RATE_STANDARD,

 .slave = I2C_7BIT_ADDR_IIC_SLAVE,

 .addr_mode = I2C_SLAVE_ADDR_MODE_7BIT,

 .p_callback = i2c_slave_callback, // Callback

 .p_context = &g_i2c_slave_ctrl,

 .p_extend = &g_iic_slave_cfg_extend_standard_mode

};

void i2c_master_callback (i2c_master_callback_args_t * p_args)

{

 g_i2c_master_callback_event = p_args->event;

}

void i2c_slave_callback (i2c_slave_callback_args_t * p_args)

{

 g_i2c_slave_callback_event = p_args->event;

 if ((p_args->event == I2C_SLAVE_EVENT_RX_COMPLETE) || (p_args->event ==

I2C_SLAVE_EVENT_TX_COMPLETE))

 {

 /* Transaction Successful */

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_RX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_RX_MORE_REQUEST))

 {

 /* Read from Master */

 err = R_IIC_SLAVE_Read(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

g_slave_transfer_length);

 assert(FSP_SUCCESS == err);

 }

 else if ((p_args->event == I2C_SLAVE_EVENT_TX_REQUEST) || (p_args->event ==

I2C_SLAVE_EVENT_TX_MORE_REQUEST))

 {

 /* Write to master */

 err = R_IIC_SLAVE_Write(&g_i2c_slave_ctrl, g_i2c_slave_buffer,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,019 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

g_slave_transfer_length);

 assert(FSP_SUCCESS == err);

 }

 else

 {

 /* Error Event - reported through g_i2c_slave_callback_event */

 }

}

void basic_example (void)

{

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 g_slave_transfer_length = I2C_BUFFER_SIZE_BYTES;

 /* Pin connections:

 * Channel 0 SDA <--> Channel 2 SDA

 * Channel 0 SCL <--> Channel 2 SCL

 */

 /* Initialize the IIC Slave module */

 err = R_IIC_SLAVE_Open(&g_i2c_slave_ctrl, &g_i2c_slave_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the IIC Master module */

 err = R_IIC_MASTER_Open(&g_i2c_master_ctrl, &g_i2c_master_cfg);

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_master_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 err = R_IIC_MASTER_Write(&g_i2c_master_ctrl, &g_i2c_master_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,020 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IIC_SLAVE_Read API to service the Master Write

Request.

 */

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_RX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_master_callback_event = I2C_MASTER_EVENT_ABORTED;

 g_i2c_slave_callback_event = I2C_SLAVE_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_IIC_MASTER_Read(&g_i2c_master_ctrl, &g_i2c_master_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers

 * The Slave Callback will call the R_IIC_SLAVE_Write API to service the Master Read

Request.

 */

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_master_callback_event ||

 I2C_SLAVE_EVENT_TX_COMPLETE != g_i2c_slave_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;

 }

 if ((I2C_MASTER_EVENT_ABORTED == g_i2c_master_callback_event) ||

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,021 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

 (I2C_SLAVE_EVENT_ABORTED == g_i2c_slave_callback_event))

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_master_tx_buffer, g_i2c_master_rx_buffer,

I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Data Structures

struct iic_slave_clock_settings_t

struct iic_slave_extended_cfg_t

Data Structure Documentation

◆ iic_slave_clock_settings_t

struct iic_slave_clock_settings_t

I2C clock settings

Data Fields

uint8_t cks_value Internal Reference Clock Select.

uint8_t brl_value Low-level period of SCL clock.

uint8_t digital_filter_stages Number of digital filter stages
based on brl_value.

◆ iic_slave_extended_cfg_t

struct iic_slave_extended_cfg_t

R_IIC_SLAVE extended configuration

Data Fields

iic_slave_clock_settings_t clock_settings I2C Clock settings.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,022 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

◆ R_IIC_SLAVE_Open()

fsp_err_t R_IIC_SLAVE_Open (i2c_slave_ctrl_t *const p_api_ctrl, i2c_slave_cfg_t const *const p_cfg
)

Opens the I2C slave device.

Return values
FSP_SUCCESS I2C slave device opened successfully.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel is not available on this MCU.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Set the rate to fast mode plus on a

channel which does not support it.
5. Invalid IRQ number assigned

◆ R_IIC_SLAVE_Read()

fsp_err_t R_IIC_SLAVE_Read (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Performs a read from the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C slave read operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_RX_COMPLETE in the callback. In case the master continues
to write more data, an I2C_SLAVE_EVENT_RX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue

FSP_ERR_ASSERTION p_api_ctrl, bytes or p_dest is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,023 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

◆ R_IIC_SLAVE_Write()

fsp_err_t R_IIC_SLAVE_Write (i2c_slave_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Performs a write to the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C slave write operation will begin. The caller will be notified when the operation
has finished by an I2C_SLAVE_EVENT_TX_COMPLETE in the callback. In case the master continues
to read more data, an I2C_SLAVE_EVENT_TX_MORE_REQUEST will be issued via callback. In case of
errors, an I2C_SLAVE_EVENT_ABORTED will be issued via callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

FSP_ERR_IN_USE Another transfer was in progress.

FSP_ERR_NOT_OPEN Device is not open.

◆ R_IIC_SLAVE_Close()

fsp_err_t R_IIC_SLAVE_Close (i2c_slave_ctrl_t *const p_api_ctrl)

Closes the I2C device.

Return values
FSP_SUCCESS Device closed successfully.

FSP_ERR_NOT_OPEN Device not opened.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,024 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Slave on IIC (r_iic_slave)

◆ R_IIC_SLAVE_CallbackSet()

fsp_err_t R_IIC_SLAVE_CallbackSet (i2c_slave_ctrl_t *const p_api_ctrl,
void(*)(i2c_slave_callback_args_t *) p_callback, void const *const p_context,
i2c_slave_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_slave_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.30 I/O Ports (r_ioport)
Modules

Functions

fsp_err_t R_IOPORT_Open (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t R_IOPORT_Close (ioport_ctrl_t *const p_ctrl)

fsp_err_t R_IOPORT_PinsCfg (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t
*p_cfg)

fsp_err_t R_IOPORT_PinCfg (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
uint32_t cfg)

fsp_err_t R_IOPORT_PinEventInputRead (ioport_ctrl_t *const p_ctrl,
bsp_io_port_pin_t pin, bsp_io_level_t *p_pin_event)

fsp_err_t R_IOPORT_PinEventOutputWrite (ioport_ctrl_t *const p_ctrl,
bsp_io_port_pin_t pin, bsp_io_level_t pin_value)

fsp_err_t R_IOPORT_PinRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_value)

fsp_err_t R_IOPORT_PinWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t level)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,025 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

fsp_err_t R_IOPORT_PortDirectionSet (ioport_ctrl_t *const p_ctrl, bsp_io_port_t
port, ioport_size_t direction_values, ioport_size_t mask)

fsp_err_t R_IOPORT_PortEventInputRead (ioport_ctrl_t *const p_ctrl,
bsp_io_port_t port, ioport_size_t *event_data)

fsp_err_t R_IOPORT_PortEventOutputWrite (ioport_ctrl_t *const p_ctrl,
bsp_io_port_t port, ioport_size_t event_data, ioport_size_t
mask_value)

fsp_err_t R_IOPORT_PortRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_port_value)

fsp_err_t R_IOPORT_PortWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t value, ioport_size_t mask)

fsp_err_t R_IOPORT_EthernetModeCfg (ioport_ctrl_t *const p_ctrl,
ioport_ethernet_channel_t channel, ioport_ethernet_mode_t mode)

Detailed Description

Driver for the I/O Ports peripheral on RA MCUs. This module implements the I/O Port Interface.

Overview
The I/O port pins operate as general I/O port pins, I/O pins for peripheral modules, interrupt input
pins, analog I/O, port group function for the ELC, or bus control pins.

Features

The IOPORT HAL module can configure the following pin settings:

Pin direction
Default output state
Pull-up
NMOS/PMOS
Drive strength
Event edge trigger (falling, rising or both)
Whether the pin is to be used as an IRQ pin
Whether the pin is to be used as an analog pin
Peripheral connection

The module also provides the following functionality:

Read/write GPIO pins/ports
Sets event output data
Reads event input data

Configuration
The I/O PORT HAL module must be configured by the user for the desired operation. The operating

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,026 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

state of an I/O pin can be set via the RA Configuraton tool. When the project is built a pin
configuration file is created. The BSP will automatically configure the MCU IO ports accordingly at
startup using the same API functions mentioned in this document.

Build Time Configurations for r_ioport

The following build time configurations are defined in fsp_cfg/r_ioport_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > System > I/O Port Driver on r_ioport

This module can be added to the Stacks tab via New Stack > Driver > System > I/O Port Driver on
r_ioport.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_ioport Module name.

Port 1 ELC Trigger
Source

MCU Specific Options ELC source that will
trigger PORT1

Port 2 ELC Trigger
Source

MCU Specific Options ELC source that will
trigger PORT2

Port 3 ELC Trigger
Source

MCU Specific Options ELC source that will
trigger PORT3

Port 4 ELC Trigger
Source

MCU Specific Options ELC source that will
trigger PORT4

Pin Configuration Name Name must be a valid
C symbol

g_bsp_pin_cfg Name for pin
configuration structure

Clock Configuration

The I/O PORT HAL module does not require a specific clock configuration.

Pin Configuration

The IOPORT module is used for configuring pins.

Usage Notes
Port Group Function for ELC

Depending on pin configuration, the IOPORT module can perform automatic reads and writes on
ports 1-4 on receipt of an ELC event.

When an event is received by a port, the state of the input pins on the port is saved in a hardware
register. Simultaneously, the state of output pins on the port is set or cleared based on settings

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,027 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

configured by the user. The functions R_IOPORT_PinEventInputRead and
R_IOPORT_PortEventInputRead allow reading the last event input state of a pin or port, and event-
triggered pin output can be configured through R_IOPORT_PinEventOutputWrite and
R_IOPORT_PortEventOutputWrite.

In addition, each pin on ports 1-4 can be configured to trigger an ELC event on rising, falling or both
edges. This event can be used to activate other modules when the pin changes state.

Note
The number of ELC-aware ports vary across MCUs. Refer to the Hardware User's Manual for your device for
more details.

Examples
Basic Example

This is a basic example of minimal use of the IOPORT in an application.

void basic_example ()

{

 bsp_io_level_t readLevel;

 fsp_err_t err;

 /* Initialize the IOPORT module and configure the pins

 * Note: The default pin configuration name in the RA Configuraton tool is

g_bsp_pin_cfg */

 err = R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Call R_IOPORT_PinsCfg if the configuration was not part of initial configurations

made in open */

 err = R_IOPORT_PinsCfg(&g_ioport_ctrl, &g_runtime_pin_cfg);

 assert(FSP_SUCCESS == err);

 /* Set Pin 00 of Port 06 to High */

 err = R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00, BSP_IO_LEVEL_HIGH

);

 assert(FSP_SUCCESS == err);

 /* Read Pin 00 of Port 06*/

 err = R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00, &readLevel);

 assert(FSP_SUCCESS == err);

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,028 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

Blinky Example

This example uses IOPORT to configure and toggle a pin to blink an LED.

void blinky_example ()

{

 fsp_err_t err;

 /* Initialize the IOPORT module and configure the pins */

 err = R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Configure Pin as output

 * Call the R_IOPORT_PinCfg if the configuration was not part of initial

configurations made in open */

 err = R_IOPORT_PinCfg(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00,

BSP_IO_DIRECTION_OUTPUT);

 assert(FSP_SUCCESS == err);

 bsp_io_level_t level = BSP_IO_LEVEL_LOW;

 while (1)

 {

 /* Determine the next state of the LEDs */

 if (BSP_IO_LEVEL_LOW == level)

 {

 level = BSP_IO_LEVEL_HIGH;

 }

 else

 {

 level = BSP_IO_LEVEL_LOW;

 }

 /* Update LED on RA6M3-PK */

 err = R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_06_PIN_00, level);

 assert(FSP_SUCCESS == err);

 /* Delay */

 R_BSP_SoftwareDelay(100, BSP_DELAY_UNITS_MILLISECONDS); // NOLINT

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,029 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

}

ELC Example

This is an example of using IOPORT with ELC events. The ELC event system allows the captured data
to be stored when it occurs and then read back at a later time.

static elc_instance_ctrl_t g_elc_ctrl;

static elc_cfg_t g_elc_cfg;

void ioport_elc_example ()

{

 bsp_io_level_t eventValue;

 fsp_err_t err;

 /* Initializes the software and sets the links defined in the control structure. */

 err = R_ELC_Open(&g_elc_ctrl, &g_elc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Create or modify a link between a peripheral function and an event source. */

 err = R_ELC_LinkSet(&g_elc_ctrl, (elc_peripheral_t) ELC_PERIPHERAL_IOPORT2,

ELC_EVENT_ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

 /* Globally enable event linking in the ELC. */

 err = R_ELC_Enable(&g_elc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Initialize the IOPORT module and configure the pins */

 err = R_IOPORT_Open(&g_ioport_ctrl, &g_bsp_pin_cfg);

 assert(FSP_SUCCESS == err);

 /* Call the R_IOPORT_PinCfg if the configuration was not part of initial

configurations made in open */

 err = R_IOPORT_PinCfg(&g_ioport_ctrl, BSP_IO_PORT_02_PIN_00,

BSP_IO_DIRECTION_INPUT);

 assert(FSP_SUCCESS == err);

 /* Generate an event signal through software to the linked peripheral. */

 err = R_ELC_SoftwareEventGenerate(&g_elc_ctrl, ELC_SOFTWARE_EVENT_0);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,030 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

 /* Read Pin Event Input. The data(BSP_IO_LEVEL_HIGH/ BSP_IO_LEVEL_LOW) from

BSP_IO_PORT_02_PIN_00 is read into the

 * EIDR bit */

 err = R_IOPORT_PinEventInputRead(&g_ioport_ctrl, BSP_IO_PORT_02_PIN_00,

&eventValue);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct ioport_instance_ctrl_t

Enumerations

enum ioport_port_pin_t

Data Structure Documentation

◆ ioport_instance_ctrl_t

struct ioport_instance_ctrl_t

IOPORT private control block. DO NOT MODIFY. Initialization occurs when R_IOPORT_Open() is
called.

Enumeration Type Documentation

◆ ioport_port_pin_t

enum ioport_port_pin_t

Superset list of all possible IO port pins.

Enumerator

IOPORT_PORT_00_PIN_00 IO port 0 pin 0.

IOPORT_PORT_00_PIN_01 IO port 0 pin 1.

IOPORT_PORT_00_PIN_02 IO port 0 pin 2.

IOPORT_PORT_00_PIN_03 IO port 0 pin 3.

IOPORT_PORT_00_PIN_04 IO port 0 pin 4.

IOPORT_PORT_00_PIN_05 IO port 0 pin 5.

IOPORT_PORT_00_PIN_06 IO port 0 pin 6.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,031 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_00_PIN_07 IO port 0 pin 7.

IOPORT_PORT_00_PIN_08 IO port 0 pin 8.

IOPORT_PORT_00_PIN_09 IO port 0 pin 9.

IOPORT_PORT_00_PIN_10 IO port 0 pin 10.

IOPORT_PORT_00_PIN_11 IO port 0 pin 11.

IOPORT_PORT_00_PIN_12 IO port 0 pin 12.

IOPORT_PORT_00_PIN_13 IO port 0 pin 13.

IOPORT_PORT_00_PIN_14 IO port 0 pin 14.

IOPORT_PORT_00_PIN_15 IO port 0 pin 15.

IOPORT_PORT_01_PIN_00 IO port 1 pin 0.

IOPORT_PORT_01_PIN_01 IO port 1 pin 1.

IOPORT_PORT_01_PIN_02 IO port 1 pin 2.

IOPORT_PORT_01_PIN_03 IO port 1 pin 3.

IOPORT_PORT_01_PIN_04 IO port 1 pin 4.

IOPORT_PORT_01_PIN_05 IO port 1 pin 5.

IOPORT_PORT_01_PIN_06 IO port 1 pin 6.

IOPORT_PORT_01_PIN_07 IO port 1 pin 7.

IOPORT_PORT_01_PIN_08 IO port 1 pin 8.

IOPORT_PORT_01_PIN_09 IO port 1 pin 9.

IOPORT_PORT_01_PIN_10 IO port 1 pin 10.

IOPORT_PORT_01_PIN_11 IO port 1 pin 11.

IOPORT_PORT_01_PIN_12 IO port 1 pin 12.

IOPORT_PORT_01_PIN_13 IO port 1 pin 13.

IOPORT_PORT_01_PIN_14 IO port 1 pin 14.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,032 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_01_PIN_15 IO port 1 pin 15.

IOPORT_PORT_02_PIN_00 IO port 2 pin 0.

IOPORT_PORT_02_PIN_01 IO port 2 pin 1.

IOPORT_PORT_02_PIN_02 IO port 2 pin 2.

IOPORT_PORT_02_PIN_03 IO port 2 pin 3.

IOPORT_PORT_02_PIN_04 IO port 2 pin 4.

IOPORT_PORT_02_PIN_05 IO port 2 pin 5.

IOPORT_PORT_02_PIN_06 IO port 2 pin 6.

IOPORT_PORT_02_PIN_07 IO port 2 pin 7.

IOPORT_PORT_02_PIN_08 IO port 2 pin 8.

IOPORT_PORT_02_PIN_09 IO port 2 pin 9.

IOPORT_PORT_02_PIN_10 IO port 2 pin 10.

IOPORT_PORT_02_PIN_11 IO port 2 pin 11.

IOPORT_PORT_02_PIN_12 IO port 2 pin 12.

IOPORT_PORT_02_PIN_13 IO port 2 pin 13.

IOPORT_PORT_02_PIN_14 IO port 2 pin 14.

IOPORT_PORT_02_PIN_15 IO port 2 pin 15.

IOPORT_PORT_03_PIN_00 IO port 3 pin 0.

IOPORT_PORT_03_PIN_01 IO port 3 pin 1.

IOPORT_PORT_03_PIN_02 IO port 3 pin 2.

IOPORT_PORT_03_PIN_03 IO port 3 pin 3.

IOPORT_PORT_03_PIN_04 IO port 3 pin 4.

IOPORT_PORT_03_PIN_05 IO port 3 pin 5.

IOPORT_PORT_03_PIN_06 IO port 3 pin 6.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,033 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_03_PIN_07 IO port 3 pin 7.

IOPORT_PORT_03_PIN_08 IO port 3 pin 8.

IOPORT_PORT_03_PIN_09 IO port 3 pin 9.

IOPORT_PORT_03_PIN_10 IO port 3 pin 10.

IOPORT_PORT_03_PIN_11 IO port 3 pin 11.

IOPORT_PORT_03_PIN_12 IO port 3 pin 12.

IOPORT_PORT_03_PIN_13 IO port 3 pin 13.

IOPORT_PORT_03_PIN_14 IO port 3 pin 14.

IOPORT_PORT_03_PIN_15 IO port 3 pin 15.

IOPORT_PORT_04_PIN_00 IO port 4 pin 0.

IOPORT_PORT_04_PIN_01 IO port 4 pin 1.

IOPORT_PORT_04_PIN_02 IO port 4 pin 2.

IOPORT_PORT_04_PIN_03 IO port 4 pin 3.

IOPORT_PORT_04_PIN_04 IO port 4 pin 4.

IOPORT_PORT_04_PIN_05 IO port 4 pin 5.

IOPORT_PORT_04_PIN_06 IO port 4 pin 6.

IOPORT_PORT_04_PIN_07 IO port 4 pin 7.

IOPORT_PORT_04_PIN_08 IO port 4 pin 8.

IOPORT_PORT_04_PIN_09 IO port 4 pin 9.

IOPORT_PORT_04_PIN_10 IO port 4 pin 10.

IOPORT_PORT_04_PIN_11 IO port 4 pin 11.

IOPORT_PORT_04_PIN_12 IO port 4 pin 12.

IOPORT_PORT_04_PIN_13 IO port 4 pin 13.

IOPORT_PORT_04_PIN_14 IO port 4 pin 14.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,034 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_04_PIN_15 IO port 4 pin 15.

IOPORT_PORT_05_PIN_00 IO port 5 pin 0.

IOPORT_PORT_05_PIN_01 IO port 5 pin 1.

IOPORT_PORT_05_PIN_02 IO port 5 pin 2.

IOPORT_PORT_05_PIN_03 IO port 5 pin 3.

IOPORT_PORT_05_PIN_04 IO port 5 pin 4.

IOPORT_PORT_05_PIN_05 IO port 5 pin 5.

IOPORT_PORT_05_PIN_06 IO port 5 pin 6.

IOPORT_PORT_05_PIN_07 IO port 5 pin 7.

IOPORT_PORT_05_PIN_08 IO port 5 pin 8.

IOPORT_PORT_05_PIN_09 IO port 5 pin 9.

IOPORT_PORT_05_PIN_10 IO port 5 pin 10.

IOPORT_PORT_05_PIN_11 IO port 5 pin 11.

IOPORT_PORT_05_PIN_12 IO port 5 pin 12.

IOPORT_PORT_05_PIN_13 IO port 5 pin 13.

IOPORT_PORT_05_PIN_14 IO port 5 pin 14.

IOPORT_PORT_05_PIN_15 IO port 5 pin 15.

IOPORT_PORT_06_PIN_00 IO port 6 pin 0.

IOPORT_PORT_06_PIN_01 IO port 6 pin 1.

IOPORT_PORT_06_PIN_02 IO port 6 pin 2.

IOPORT_PORT_06_PIN_03 IO port 6 pin 3.

IOPORT_PORT_06_PIN_04 IO port 6 pin 4.

IOPORT_PORT_06_PIN_05 IO port 6 pin 5.

IOPORT_PORT_06_PIN_06 IO port 6 pin 6.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,035 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_06_PIN_07 IO port 6 pin 7.

IOPORT_PORT_06_PIN_08 IO port 6 pin 8.

IOPORT_PORT_06_PIN_09 IO port 6 pin 9.

IOPORT_PORT_06_PIN_10 IO port 6 pin 10.

IOPORT_PORT_06_PIN_11 IO port 6 pin 11.

IOPORT_PORT_06_PIN_12 IO port 6 pin 12.

IOPORT_PORT_06_PIN_13 IO port 6 pin 13.

IOPORT_PORT_06_PIN_14 IO port 6 pin 14.

IOPORT_PORT_06_PIN_15 IO port 6 pin 15.

IOPORT_PORT_07_PIN_00 IO port 7 pin 0.

IOPORT_PORT_07_PIN_01 IO port 7 pin 1.

IOPORT_PORT_07_PIN_02 IO port 7 pin 2.

IOPORT_PORT_07_PIN_03 IO port 7 pin 3.

IOPORT_PORT_07_PIN_04 IO port 7 pin 4.

IOPORT_PORT_07_PIN_05 IO port 7 pin 5.

IOPORT_PORT_07_PIN_06 IO port 7 pin 6.

IOPORT_PORT_07_PIN_07 IO port 7 pin 7.

IOPORT_PORT_07_PIN_08 IO port 7 pin 8.

IOPORT_PORT_07_PIN_09 IO port 7 pin 9.

IOPORT_PORT_07_PIN_10 IO port 7 pin 10.

IOPORT_PORT_07_PIN_11 IO port 7 pin 11.

IOPORT_PORT_07_PIN_12 IO port 7 pin 12.

IOPORT_PORT_07_PIN_13 IO port 7 pin 13.

IOPORT_PORT_07_PIN_14 IO port 7 pin 14.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,036 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_07_PIN_15 IO port 7 pin 15.

IOPORT_PORT_08_PIN_00 IO port 8 pin 0.

IOPORT_PORT_08_PIN_01 IO port 8 pin 1.

IOPORT_PORT_08_PIN_02 IO port 8 pin 2.

IOPORT_PORT_08_PIN_03 IO port 8 pin 3.

IOPORT_PORT_08_PIN_04 IO port 8 pin 4.

IOPORT_PORT_08_PIN_05 IO port 8 pin 5.

IOPORT_PORT_08_PIN_06 IO port 8 pin 6.

IOPORT_PORT_08_PIN_07 IO port 8 pin 7.

IOPORT_PORT_08_PIN_08 IO port 8 pin 8.

IOPORT_PORT_08_PIN_09 IO port 8 pin 9.

IOPORT_PORT_08_PIN_10 IO port 8 pin 10.

IOPORT_PORT_08_PIN_11 IO port 8 pin 11.

IOPORT_PORT_08_PIN_12 IO port 8 pin 12.

IOPORT_PORT_08_PIN_13 IO port 8 pin 13.

IOPORT_PORT_08_PIN_14 IO port 8 pin 14.

IOPORT_PORT_08_PIN_15 IO port 8 pin 15.

IOPORT_PORT_09_PIN_00 IO port 9 pin 0.

IOPORT_PORT_09_PIN_01 IO port 9 pin 1.

IOPORT_PORT_09_PIN_02 IO port 9 pin 2.

IOPORT_PORT_09_PIN_03 IO port 9 pin 3.

IOPORT_PORT_09_PIN_04 IO port 9 pin 4.

IOPORT_PORT_09_PIN_05 IO port 9 pin 5.

IOPORT_PORT_09_PIN_06 IO port 9 pin 6.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,037 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_09_PIN_07 IO port 9 pin 7.

IOPORT_PORT_09_PIN_08 IO port 9 pin 8.

IOPORT_PORT_09_PIN_09 IO port 9 pin 9.

IOPORT_PORT_09_PIN_10 IO port 9 pin 10.

IOPORT_PORT_09_PIN_11 IO port 9 pin 11.

IOPORT_PORT_09_PIN_12 IO port 9 pin 12.

IOPORT_PORT_09_PIN_13 IO port 9 pin 13.

IOPORT_PORT_09_PIN_14 IO port 9 pin 14.

IOPORT_PORT_09_PIN_15 IO port 9 pin 15.

IOPORT_PORT_10_PIN_00 IO port 10 pin 0.

IOPORT_PORT_10_PIN_01 IO port 10 pin 1.

IOPORT_PORT_10_PIN_02 IO port 10 pin 2.

IOPORT_PORT_10_PIN_03 IO port 10 pin 3.

IOPORT_PORT_10_PIN_04 IO port 10 pin 4.

IOPORT_PORT_10_PIN_05 IO port 10 pin 5.

IOPORT_PORT_10_PIN_06 IO port 10 pin 6.

IOPORT_PORT_10_PIN_07 IO port 10 pin 7.

IOPORT_PORT_10_PIN_08 IO port 10 pin 8.

IOPORT_PORT_10_PIN_09 IO port 10 pin 9.

IOPORT_PORT_10_PIN_10 IO port 10 pin 10.

IOPORT_PORT_10_PIN_11 IO port 10 pin 11.

IOPORT_PORT_10_PIN_12 IO port 10 pin 12.

IOPORT_PORT_10_PIN_13 IO port 10 pin 13.

IOPORT_PORT_10_PIN_14 IO port 10 pin 14.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,038 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

IOPORT_PORT_10_PIN_15 IO port 10 pin 15.

IOPORT_PORT_11_PIN_00 IO port 11 pin 0.

IOPORT_PORT_11_PIN_01 IO port 11 pin 1.

IOPORT_PORT_11_PIN_02 IO port 11 pin 2.

IOPORT_PORT_11_PIN_03 IO port 11 pin 3.

IOPORT_PORT_11_PIN_04 IO port 11 pin 4.

IOPORT_PORT_11_PIN_05 IO port 11 pin 5.

IOPORT_PORT_11_PIN_06 IO port 11 pin 6.

IOPORT_PORT_11_PIN_07 IO port 11 pin 7.

IOPORT_PORT_11_PIN_08 IO port 11 pin 8.

IOPORT_PORT_11_PIN_09 IO port 11 pin 9.

IOPORT_PORT_11_PIN_10 IO port 11 pin 10.

IOPORT_PORT_11_PIN_11 IO port 11 pin 11.

IOPORT_PORT_11_PIN_12 IO port 11 pin 12.

IOPORT_PORT_11_PIN_13 IO port 11 pin 13.

IOPORT_PORT_11_PIN_14 IO port 11 pin 14.

IOPORT_PORT_11_PIN_15 IO port 11 pin 15.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,039 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

◆ R_IOPORT_Open()

fsp_err_t R_IOPORT_Open (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t * p_cfg)

Initializes internal driver data, then calls pin configuration function to configure pins.

Return values
FSP_SUCCESS Pin configuration data written to PFS

register(s)

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_ALREADY_OPEN Module is already open.

◆ R_IOPORT_Close()

fsp_err_t R_IOPORT_Close (ioport_ctrl_t *const p_ctrl)

Resets IOPORT registers. Implements ioport_api_t::close

Return values
FSP_SUCCESS The IOPORT was successfully uninitialized

FSP_ERR_ASSERTION p_ctrl was NULL

FSP_ERR_NOT_OPEN The module has not been opened

◆ R_IOPORT_PinsCfg()

fsp_err_t R_IOPORT_PinsCfg (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t * p_cfg)

Configures the functions of multiple pins by loading configuration data into pin PFS registers.
Implements ioport_api_t::pinsCfg.

This function initializes the supplied list of PmnPFS registers with the supplied values. This data can
be generated by the Pins tab of the RA Configuration editor or manually by the developer. Different
pin configurations can be loaded for different situations such as low power modes and testing.

Return values
FSP_SUCCESS Pin configuration data written to PFS

register(s)

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,040 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

◆ R_IOPORT_PinCfg()

fsp_err_t R_IOPORT_PinCfg (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t cfg)

Configures the settings of a pin. Implements ioport_api_t::pinCfg.

Return values
FSP_SUCCESS Pin configured

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different pins. This function will change the configuration of the pin with the new
configuration. For example it is not possible with this function to change the drive strength of a pin while leaving
all the other pin settings unchanged. To achieve this the original settings with the required change will need to be
written using this function.

◆ R_IOPORT_PinEventInputRead()

fsp_err_t R_IOPORT_PinEventInputRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t * p_pin_event)

Reads the value of the event input data of a specific pin. Implements
ioport_api_t::pinEventInputRead.

The pin event data is captured in response to a trigger from the ELC. This function enables this
data to be read. Using the event system allows the captured data to be stored when it occurs and
then read back at a later time.

Return values
FSP_SUCCESS Pin read

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_INVALID_ARGUMENT Port is not valid ELC PORT.

Note
This function is re-entrant.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,041 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

◆ R_IOPORT_PinEventOutputWrite()

fsp_err_t R_IOPORT_PinEventOutputWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t pin_value)

This function writes the event output data value to a pin. Implements
ioport_api_t::pinEventOutputWrite.

Using the event system enables a pin state to be stored by this function in advance of being output
on the pin. The output to the pin will occur when the ELC event occurs.

Return values
FSP_SUCCESS Pin event data written

FSP_ERR_INVALID_ARGUMENT Port or Pin or value not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PinRead()

fsp_err_t R_IOPORT_PinRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t *
p_pin_value)

Reads the level on a pin. Implements ioport_api_t::pinRead.

Return values
FSP_SUCCESS Pin read

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

Note
This function is re-entrant for different pins.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,042 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

◆ R_IOPORT_PinWrite()

fsp_err_t R_IOPORT_PinWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
level)

Sets a pin's output either high or low. Implements ioport_api_t::pinWrite.

Return values
FSP_SUCCESS Pin written to

FSP_ERR_INVALID_ARGUMENT The pin and/or level not valid

FSP_ERR_NOT_OPEN The module has not been opene

FSP_ERR_ASSERTION NULL pointerd

Note
This function is re-entrant for different pins. This function makes use of the PCNTR3 register to atomically modify
the level on the specified pin on a port.

◆ R_IOPORT_PortDirectionSet()

fsp_err_t R_IOPORT_PortDirectionSet (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
direction_values, ioport_size_t mask)

Sets the direction of individual pins on a port. Implements ioport_api_t::portDirectionSet().

Multiple pins on a port can be set to inputs or outputs at once. Each bit in the mask parameter
corresponds to a pin on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on.
If a bit is set to 1 then the corresponding pin will be changed to an input or an output as specified
by the direction values. If a mask bit is set to 0 then the direction of the pin will not be changed.

Return values
FSP_SUCCESS Port direction updated

FSP_ERR_INVALID_ARGUMENT The port and/or mask not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,043 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

◆ R_IOPORT_PortEventInputRead()

fsp_err_t R_IOPORT_PortEventInputRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t * p_event_data)

Reads the value of the event input data. Implements ioport_api_t::portEventInputRead().

The event input data for the port will be read. Each bit in the returned value corresponds to a pin
on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on.

The port event data is captured in response to a trigger from the ELC. This function enables this
data to be read. Using the event system allows the captured data to be stored when it occurs and
then read back at a later time.

Return values
FSP_SUCCESS Port read

FSP_ERR_INVALID_ARGUMENT Port not a valid ELC port

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PortEventOutputWrite()

fsp_err_t R_IOPORT_PortEventOutputWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

This function writes the set and reset event output data for a port. Implements
ioport_api_t::portEventOutputWrite.

Using the event system enables a port state to be stored by this function in advance of being
output on the port. The output to the port will occur when the ELC event occurs.

The input value will be written to the specified port when an ELC event configured for that port
occurs. Each bit in the value parameter corresponds to a bit on the port. For example, bit 7
corresponds to pin 7, bit 6 to pin 6, and so on. Each bit in the mask parameter corresponds to a pin
on the port.

Return values
FSP_SUCCESS Port event data written

FSP_ERR_INVALID_ARGUMENT Port or Mask not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,044 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

◆ R_IOPORT_PortRead()

fsp_err_t R_IOPORT_PortRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t *
p_port_value)

Reads the value on an IO port. Implements ioport_api_t::portRead.

The specified port will be read, and the levels for all the pins will be returned. Each bit in the
returned value corresponds to a pin on the port. For example, bit 7 corresponds to pin 7, bit 6 to
pin 6, and so on.

Return values
FSP_SUCCESS Port read

FSP_ERR_ASSERTION NULL pointer

FSP_ERR_NOT_OPEN The module has not been opened

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PortWrite()

fsp_err_t R_IOPORT_PortWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t value,
ioport_size_t mask)

Writes to multiple pins on a port. Implements ioport_api_t::portWrite.

The input value will be written to the specified port. Each bit in the value parameter corresponds to
a bit on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on. Each bit in the
mask parameter corresponds to a pin on the port.

Only the bits with the corresponding bit in the mask value set will be updated. For example, value
= 0xFFFF, mask = 0x0003 results in only bits 0 and 1 being updated.

Return values
FSP_SUCCESS Port written to

FSP_ERR_INVALID_ARGUMENT The port and/or mask not valid

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointerd

Note
This function is re-entrant for different ports. This function makes use of the PCNTR3 register to atomically modify
the levels on the specified pins on a port.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,045 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I/O Ports (r_ioport)

◆ R_IOPORT_EthernetModeCfg()

fsp_err_t R_IOPORT_EthernetModeCfg (ioport_ctrl_t *const p_ctrl, ioport_ethernet_channel_t
channel, ioport_ethernet_mode_t mode)

Configures Ethernet channel PHY mode. Implements ioport_api_t::pinEthernetModeCfg.

Return values
FSP_SUCCESS Ethernet PHY mode set

FSP_ERR_INVALID_ARGUMENT Channel or mode not valid

FSP_ERR_UNSUPPORTED Ethernet configuration not supported on this
device.

FSP_ERR_NOT_OPEN The module has not been opened

FSP_ERR_ASSERTION NULL pointer

Note
This function is not re-entrant.

4.2.31 Independent Watchdog Timer (r_iwdt)
Modules

Functions

fsp_err_t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

fsp_err_t R_IWDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const
p_cfg)

fsp_err_t R_IWDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t
status)

fsp_err_t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const
p_status)

fsp_err_t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const
p_count)

fsp_err_t R_IWDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl,
wdt_timeout_values_t *const p_timeout)

fsp_err_t R_IWDT_CallbackSet (wdt_ctrl_t *const p_ctrl,
void(*p_callback)(wdt_callback_args_t *), void const *const
p_context, wdt_callback_args_t *const p_callback_memory)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,046 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

Detailed Description

Driver for the IWDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview
The independent watchdog timer is used to recover from unexpected errors in an application. The
timer must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the IWDT resets the device
or generates an NMI.

Features

The IWDT HAL module has the following key features:

When the IWDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

The IWDT begins counting at reset.

Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT

Start Mode The WDT can be started from
the application (register start
mode) or configured by
hardware to start automatically
(auto start mode).

The IWDT can only be
configured by hardware to start
automatically.

Clock Source The WDT runs off a peripheral
clock.

The IWDT has its own clock
source which improves safety.

Configuration

Build Time Configurations for r_iwdt

The following build time configurations are defined in fsp_cfg/r_iwdt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Monitoring > Watchdog Driver on r_iwdt

This module can be added to the Stacks tab via New Stack > Driver > Monitoring > Watchdog Driver
on r_iwdt. Non-secure callable guard functions can be generated for this module by right clicking the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,047 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_wdt0 Module name.

NMI callback Name must be a valid
C symbol

NULL A user callback
function can be
provided here. If this
callback function is
provided, it is called
from the interrupt
service routine (ISR)
when the watchdog
triggers.

Note
The IWDT has additional configurable settings in the OFS0 register in the BSP tab properties window. These
settings include the following:

Start Mode
Timeout Period
Dedicated Clock Frequency Divisor
Window End Position
Window Start Position
Reset Interrupt Request Select
Stop Control

Review the OFS0 properties window to see additional details.

Clock Configuration

The IWDT clock is based on the IWDTCLK frequency. You can set the IWDTCLK frequency divider
using the BSP tab of the RA Configuration editor.

Pin Configuration

This module does not use I/O pins.

Usage Notes
NMI Interrupt

The independent watchdog timer uses the NMI, which is enabled by default. No special configuration
is required. When the NMI is triggered, the callback function registered during open is called.

Period Calculation

The IWDT operates from IWDTCLK. With a IWDTCLK of 15000 Hz, the maximum time from the last
refresh to device reset or NMI generation will be just below 35 seconds as detailed below.

IWDTCLK = 15000 Hz
Clock division ratio = IWDTCLK / 256
Timeout period = 2048 cycles
WDT clock frequency = 15000 Hz / 256 = 58.59 Hz
Cycle time = 1 / 58.59 Hz = 17.067 ms

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,048 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

Timeout = 17.067 ms x 2048 cycles = 34.95 seconds

Limitations

Developers should be aware of the following limitations when using the IWDT:

When using a J-Link debugger the IWDT counter does not count and therefore will not reset
the device or generate an NMI. To enable the watchdog to count and generate a reset or
NMI while debugging, add this line of code in the application:
 /* (Optional) Enable the IWDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_IWDT = 0;

If the IWDT is configured to stop the counter in low power mode, then your application must
restart the watchdog by calling R_IWDT_Refresh() after the MCU wakes from low power
mode.

Examples
IWDT Basic Example

This is a basic example of minimal use of the IWDT in an application.

void iwdt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* In auto start mode, the IWDT starts counting immediately when the MCU is powered

on. */

 /* Initializes the module. */

 err = R_IWDT_Open(&g_iwdt0_ctrl, &g_iwdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Application work here. */

 /* Refresh before the counter underflows to prevent reset or NMI based on the

setting. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

 }

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,049 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

IWDT Advanced Example

This example demonstrates using a start window and gives an example callback to handle an NMI
generated by an underflow or refresh error.

#define IWDT_TIMEOUT_COUNTS (2048U)

#define IWDT_MAX_COUNTER (IWDT_TIMEOUT_COUNTS - 1U)

#define IWDT_START_WINDOW_75 ((IWDT_MAX_COUNTER * 3) / 4)

/* Example callback called when a watchdog NMI occurs. */

void iwdt_callback (wdt_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_IWDT_StatusGet(&g_iwdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 /* (Optional) Log source of NMI and any other debug information. */

 /* (Optional) Clear the error flags. */

 err = R_IWDT_StatusClear(&g_iwdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

 /* (Optional) Issue a software reset to reset the MCU. */

 __NVIC_SystemReset();

}

void iwdt_advanced_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) Enable the IWDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_IWDT = 0;

 /* (Optional) Check if the IWDTRF flag is set to know if the system is

 * recovering from a IWDT reset. */

 if (R_SYSTEM->RSTSR1_b.IWDTRF)

 {

 /* Clear the flag. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,050 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

 R_SYSTEM->RSTSR1 = 0U;

 }

 /* Open the module. */

 err = R_IWDT_Open(&g_iwdt0_ctrl, &g_iwdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize other application code. */

 /* Do not call R_IWDT_Refresh() in auto start mode unless the

 * counter is in the acceptable refresh window. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

 while (true)

 {

 /* Application work here. */

 /* (Optional) If there is a chance the application takes less time than

 * the start window, verify the IWDT counter is past the start window

 * before refreshing the IWDT. */

 uint32_t iwdt_counter = 0U;

 do

 {

 /* Read the current IWDT counter value. */

 err = R_IWDT_CounterGet(&g_iwdt0_ctrl, &iwdt_counter);

 assert(FSP_SUCCESS == err);

 } while (iwdt_counter >= IWDT_START_WINDOW_75);

 /* Refresh before the counter underflows to prevent reset or NMI. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

 }

}

Data Structures

struct iwdt_instance_ctrl_t

Data Structure Documentation

◆ iwdt_instance_ctrl_t

struct iwdt_instance_ctrl_t

IWDT control block. DO NOT INITIALIZE. Initialization occurs when wdt_api_t::open is called.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,051 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

Data Fields

uint32_t wdt_open

 Indicates whether the open() API has been successfully called.

void const * p_context

 Placeholder for user data. Passed to the user callback in
wdt_callback_args_t.

R_IWDT_Type * p_reg

 Pointer to register base address.

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT NMI ISR occurs.

Function Documentation

◆ R_IWDT_Refresh()

fsp_err_t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

Refresh the Independent Watchdog Timer. If the refresh fails due to being performed outside of the
permitted refresh period the device will either reset or trigger an NMI ISR to run.

Example:

 /* Refresh before the counter underflows to prevent reset or NMI based on the

setting. */

 (void) R_IWDT_Refresh(&g_iwdt0_ctrl);

Return values
FSP_SUCCESS IWDT successfully refreshed.

FSP_ERR_ASSERTION One or more parameters are NULL pointers.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,052 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

◆ R_IWDT_Open()

fsp_err_t R_IWDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const p_cfg)

Register the IWDT NMI callback.

Example:

 /* Initializes the module. */

 err = R_IWDT_Open(&g_iwdt0_ctrl, &g_iwdt0_cfg);

Return values
FSP_SUCCESS IWDT successfully configured.

FSP_ERR_ASSERTION Null Pointer.

FSP_ERR_NOT_ENABLED An attempt to open the IWDT when the
OFS0 register is not configured for auto-
start mode.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_STATE The security state of the NMI and the
module do not match.

◆ R_IWDT_StatusClear()

fsp_err_t R_IWDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t status)

Clear the IWDT status and error flags. Implements wdt_api_t::statusClear.

Example:

 /* (Optional) Clear the error flags. */

 err = R_IWDT_StatusClear(&g_iwdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS IWDT flag(s) successfully cleared.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,053 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

◆ R_IWDT_StatusGet()

fsp_err_t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const p_status)

Read the IWDT status flags. When the IWDT is configured to output a reset on underflow or refresh
error reading the status and error flags can be read after reset to establish if the IWDT caused the
reset. Reading the status and error flags in NMI output mode indicates whether the IWDT
generated the NMI interrupt.

Indicates both status and error conditions.

Example:

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_IWDT_StatusGet(&g_iwdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS IWDT status successfully read.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

◆ R_IWDT_CounterGet()

fsp_err_t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const p_count)

Read the current count value of the IWDT. Implements wdt_api_t::counterGet.

Example:

 /* Read the current IWDT counter value. */

 err = R_IWDT_CounterGet(&g_iwdt0_ctrl, &iwdt_counter);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS IWDT current count successfully read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,054 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Independent Watchdog Timer (r_iwdt)

◆ R_IWDT_TimeoutGet()

fsp_err_t R_IWDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl, wdt_timeout_values_t *const
p_timeout)

Read timeout information for the watchdog timer. Implements wdt_api_t::timeoutGet.

Return values
FSP_SUCCESS IWDT timeout information retrieved

successfully.

FSP_ERR_ASSERTION One or more parameters are NULL pointers.

FSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

◆ R_IWDT_CallbackSet()

fsp_err_t R_IWDT_CallbackSet (wdt_ctrl_t *const p_ctrl, void(*)(wdt_callback_args_t *) p_callback,
void const *const p_context, wdt_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
wdt_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.32 JPEG Codec (r_jpeg)
Modules

Functions

fsp_err_t R_JPEG_Open (jpeg_ctrl_t *const p_api_ctrl, jpeg_cfg_t const *const
p_cfg)

fsp_err_t R_JPEG_OutputBufferSet (jpeg_ctrl_t *p_api_ctrl, void *output_buffer,
uint32_t output_buffer_size)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,055 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

fsp_err_t R_JPEG_InputBufferSet (jpeg_ctrl_t *constp_api_ctrl, void
*p_data_buffer, uint32_t data_buffer_size)

fsp_err_t R_JPEG_StatusGet (jpeg_ctrl_t *p_api_ctrl, jpeg_status_t *p_status)

fsp_err_t R_JPEG_Close (jpeg_ctrl_t *p_api_ctrl)

fsp_err_t R_JPEG_EncodeImageSizeSet (jpeg_ctrl_t *const p_api_ctrl,
jpeg_encode_image_size_t *p_image_size)

fsp_err_t R_JPEG_DecodeLinesDecodedGet (jpeg_ctrl_t *const p_api_ctrl,
uint32_t *const p_lines)

fsp_err_t R_JPEG_DecodeHorizontalStrideSet (jpeg_ctrl_t *p_api_ctrl, uint32_t
horizontal_stride)

fsp_err_t R_JPEG_DecodeImageSizeGet (jpeg_ctrl_t *p_api_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

fsp_err_t R_JPEG_DecodeImageSubsampleSet (jpeg_ctrl_t *const p_api_ctrl,
jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

fsp_err_t R_JPEG_DecodePixelFormatGet (jpeg_ctrl_t *p_api_ctrl,
jpeg_color_space_t *p_color_space)

fsp_err_t R_JPEG_ModeSet (jpeg_ctrl_t *const p_api_ctrl, jpeg_mode_t mode)

Detailed Description

Driver for the JPEG peripheral on RA MCUs. This module implements the JPEG Codec Interface.

Overview
The JPEG Codec is a hardware block providing accelerated JPEG image encode and decode
functionality independent of the CPU. Images can optionally be partially processed facilitating
streaming applications.

Features

The JPEG Codec provides a number of options useful in a variety of applications:

Basic encoding and decoding
Streaming input and/or output
Decoding JPEGs of unknown size
Shrink (sub-sample) an image during the decoding process
Rearrange input and output byte order (byte, word and/or longword swap)
JPEG error detection

The specifications for the codec are as follows:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,056 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

Feature Options

Decompression input formats Baseline JPEG Y'CbCr 4:4:4, 4:2:2, 4:2:0 and
4:1:1

Decompression output formats ARGB8888, RGB565

Compression input formats Raw Y'CbCr 4:2:2 only

Compression output formats Baseline JPEG Y'CbCr 4:2:2 only

Byte reordering Byte, halfword and/or word swapping on input
and output

Interrupt sources Image size acquired, input/output data pause,
decode complete, error

Compatible image sizes See Minimum Coded Unit (MCU) below

Configuration
Build Time Configurations for r_jpeg

The following build time configurations are defined in fsp_cfg/r_jpeg_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected, code for
parameter checking is
included in the build.

Decode Support Enabled
Disabled

Enabled If selected, code for
decoding JPEG images
is included in the build.

Encode Support Enabled
Disabled

Disabled If selected, code for
encoding JPEG images
is included in the build.

Configurations for Driver > Graphics > JPEG Codec Driver on r_jpeg

This module can be added to the Stacks tab via New Stack > Driver > Graphics > JPEG Codec Driver
on r_jpeg.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_jpeg0 Module name.

General > Default
mode

Decode
Encode

Decode Set the mode to use
when calling
R_JPEG_Open. This
parameter is only used
when both Encode and
Decode support are
enabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,057 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

Decode > Input byte
order

MCU Specific Options Select the byte order of
the input data for
decoding.

Decode > Output byte
order

MCU Specific Options Select the byte order of
the output data for
decoding.

Decode > Output color
format

ARGB8888
(32-bit)
RGB565 (16-bit)

RGB565 (16-bit) Select the output pixel
format for decode
operations.

Decode > Output alpha
(ARGB8888 only)

Value must be an 8-bit
integer (0-255)

255 Specify the alpha value
to apply to each output
pixel when ARGB8888
format is chosen.

Decode > Callback Name must be a valid
C symbol

NULL If a callback function is
provided it will be
called from the
interrupt service
routine (ISR) each time
a related IRQ triggers.

Encode > Horizontal
resolution

Value cannot be
greater than 65535
and must be a non-
negative integer
divisible by 16

480 Horizontal resolution of
the raw image (in
pixels). This value can
be configured at
runtime via
R_JPEG_ImageSizeSet.

Encode > Vertical
resolution

Value cannot be
greater than 65535
and must be a non-
negative integer
divisible by 8

272 Vertical resolution of
the raw image. This
value can be
configured at runtime
via
R_JPEG_ImageSizeSet.

Encode > Horizontal
stride

Value cannot be
greater than 65535
and must be a non-
negative integer

480 Horizontal stride of the
raw image buffer (in
pixels). This value can
be configured at
runtime via
R_JPEG_ImageSizeSet.

Encode > Input byte
order

MCU Specific Options Select the byte order of
the input data for
encoding.

Encode > Output byte
order

MCU Specific Options Select the byte order of
the output data for
encoding.

Encode > Reset
interval

Value cannot be
greater than 65535
and must be a non-
negative integer

512 Set the number of
MCUs between RST
markers. A value of 0
will disable DRI and
RST marker output.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,058 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

Encode > Quality
factor

Value must be between
1 and 100 and must be
an integer

50 Set the quality factor
for encoding (1-100).
Lower values produce
smaller images at the
cost of image quality.

Encode > Callback Name must be a valid
C symbol

NULL If a callback function is
provided it will be
called from the
interrupt service
routine (ISR) each time
a related IRQ triggers.

Interrupts > Decode
Process Interrupt
Priority

MCU Specific Options Select the
decompression
interrupt priority.

Interrupts > Data
Transfer Interrupt
Priority

MCU Specific Options Select the data transfer
interrupt priority.

Clock Configuration

The peripheral clock for this module is PCLKA. No clocks are provided by this module.

Pin Configuration

This module does not have any input or output pin connections.

Usage Notes
Overview

The JPEG Codec contains both decode and encode hardware. While these two functions are largely
independent in configuration only one can be used at a time.

To switch from decode to encode mode (or vice versa) use R_JPEG_ModeSet while the JPEG Codec is
idle.

Status

The status value (jpeg_status_t) provided by the callback and by R_JPEG_StatusGet is a bitfield that
encompasses all potential status indication conditions. One or more statuses can be set
simultaneously.

Decoding Process

JPEG decoding can be performed in several ways depending on the application:

To perform the simplest decode operation where all dimensions are known:
Set the input buffer, stride and output buffer then wait for a callback with status
JPEG_STATUS_OPERATION_COMPLETE.

To pause after decoding the JPEG header (in order to acquire image dimensions and secure
an output buffer):

Call R_JPEG_InputBufferSet before setting the output buffer and wait for a callback
with status JPEG_STATUS_IMAGE_SIZE_READY.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,059 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

To decode a partial JPEG image then pause until the next chunk is available:
Specify a size smaller than the full JPEG data when calling R_JPEG_InputBufferSet.

To pause decoding once an output buffer is filled:
Specify a size smaller than the full decoded image when calling
R_JPEG_OutputBufferSet.

The flowchart below illustrates the steps necessary to handle any decode operation. The statuses
given in blue are part of jpeg_status_t with the JPEG_DECODE_STATUS prefix omitted.

Figure 171: JPEG Decode Operational Flow

Encoding Process

As compared to decoding, encoding is fairly straightforward. The only option available is to stream
input data if desired. The flowchart below details the steps needed to compress an image.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,060 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

Figure 172: JPEG Encode Operational Flow

Handling Failed Operations

If an encode or decode operation fails or times out while the codec is running, the peripheral must be
reset before it is used again. To reset the JPEG Codec simply close and re-open the module by calling
R_JPEG_Close followed by R_JPEG_Open.

Limitations

Developers should be aware of the following limitations when using the JPEG API.

Minimum Coded Unit (MCU)

The JPEG Codec can only correctly process images that are an even increment of minimum coded
units (MCUs). In other words, depending on the format the width and height of an image to be
encoded or decoded must be divisible by the following:

Format Horizontal Vertical

Y'CbCr 4:4:4 8 pixels 8 lines

Y'CbCr 4:2:2 16 pixels 8 lines

Y'CbCr 4:1:1 32 pixels 8 lines

Y'CbCr 4:2:0 16 pixels 16 lines

Note
Because encoding is limited to Y'CbCr 4:2:2, raw pixel input data must always be in whole increments of 16x8
pixels.

Encoding Input Format

The encoding unit only supports Y'CbCr 4:2:2 input. Raw RGB888 data can be converted to this
format as follows:

 y = (0.299000f * r) + (0.587000f * g) + (0.114000f * b);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,061 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 cb = 128 - (0.168736f * r) - (0.331264f * g) + (0.500000f * b);

 cr = 128 + (0.500000f * r) - (0.418688f * g) - (0.081312f * b);

 While these equations are mathematically simple they do use the floating-point unit. To speed
things up we can multiply the coefficients by 256 and divide the sum by 256...

 y = ((76.5440f * r) + (150.272f * g) + (29.1840f * b)) / 256;

 cb = 128 - ((43.1964f * r) - (84.8036f * g) + (128.000f * b)) / 256;

 cr = 128 + ((128.000f * r) - (107.184f * g) - (20.8159f * b)) / 256;

 ...which allows the formulas to be calculated entirely with shifts and addition (coefficients rounded
to the nearest integer):

 y = ((r << 6) + (r << 3) + (r << 2) + r

 + (g << 7) + (g << 4) + (g << 2) + (g << 1)

 + (b << 4) + (b << 3) + (b << 2) + b

) >> 8;

 cb = 128 - ((r << 5) + (r << 3) + (r << 1) + r

 + (g << 6) + (g << 4) + (g << 2) + g

 - (b << 7)

) >> 8;

 cr = 128 + ((r << 7)

 - (g << 6) - (g << 5) - (g << 3) - (g << 1) - g

 - (b << 4) - (b << 2) - b)

) >> 8;

 To compose the final Y'CbCr 4:2:2 data the chroma of every two pixels must be averaged. In
addition, the JPEG Codec expects chrominance values to be in the range -127..127
instead of the standard 1..255.

 cb = (uint8_t) ((int8_t) ((cb0 + cb1 + 1) >> 1) - 128);

 cr = (uint8_t) ((int8_t) ((cr0 + cr1 + 1) >> 1) - 128);

 Finally, the below equation composes two 4:2:2 output pixels at a time with standard byte order
(JPEG_DATA_ORDER_NORMAL):

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,062 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 out = y0 + (cb << 8) + (y1 << 16) + (cr << 24);

Note
RGB565 pixels must be upscaled to RGB888 before using the above formulas. Refer to the below example on
Y'CbCr Conversion for implementation details.

Examples
Basic Decode Example

This is a basic example showing the minimum code required to initialize the JPEG Codec and decode
an image.

void jpeg_decode_basic (void)

{

 fsp_err_t err;

 /* Open JPEG Codec */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set input buffer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, JPEG_PTR, JPEG_SIZE_BYTES);

 assert(FSP_SUCCESS == err);

 /* Set horizontal stride of output buffer */

 err = R_JPEG_DecodeHorizontalStrideSet(&g_jpeg_ctrl, JPEG_HSIZE);

 assert(FSP_SUCCESS == err);

 /* Set output buffer */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, decode_buffer, sizeof(decode_buffer));

 assert(FSP_SUCCESS == err);

 /* Wait for decode completion */

 jpeg_status_t status = (jpeg_status_t) 0;

 while (!(status & (JPEG_STATUS_OPERATION_COMPLETE | JPEG_STATUS_ERROR)))

 {

 err = R_JPEG_StatusGet(&g_jpeg_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,063 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

Streaming Input/Output Example

In this example JPEG data is read in 512-byte chunks. Decoding is paused when a chunk is read and
once the JPEG header is decoded. The image is decoded 16 lines at a time.

Note
Streaming is always bypassed when a given buffer's size encompasses the entire input or output image,
respectively. Though this example decodes via smaller chunks the input and output data are still contiguous for
ease of demonstration. Refer to the comments for further insight as to how to implement streaming with different
JPEG/output buffer size combinations.

#define JPEG_INPUT_SIZE_BYTES 512U

/* JPEG Codec status */

static volatile jpeg_status_t g_jpeg_status = JPEG_STATUS_NONE;

/* JPEG event flag */

static volatile uint8_t jpeg_event = 0;

/* Callback function for JPEG decode interrupts */

void jpeg_decode_callback (jpeg_callback_args_t * p_args)

{

 /* Get JPEG Codec status */

 g_jpeg_status = p_args->status;

 /* Set JPEG flag */

 jpeg_event = 1;

}

/* Simple wait that returns 1 if no event happened within the timeout period */

static uint8_t jpeg_event_wait (void)

{

 uint32_t timeout_timer = JPEG_EVENT_TIMEOUT;

 while (!jpeg_event && --timeout_timer)

 {

 /* Spin here until an event callback or timeout */

 }

 jpeg_event = 0;

 return timeout_timer ? 0 : 1;

}

/* Decode a JPEG image to a buffer using streaming input and output */

void jpeg_decode_streaming (void)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,064 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

{

 uint8_t * p_jpeg = (uint8_t *) JPEG_PTR;

 jpeg_status_t status = (jpeg_status_t) 0;

 uint8_t timeout = 0;

 fsp_err_t err;

 /* Number of input bytes to read at a time */

 uint32_t input_bytes = JPEG_INPUT_SIZE_BYTES;

 /* Open JPEG unit and start decode */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!(status & JPEG_STATUS_ERROR) && !timeout)

 {

 /* Set the input buffer to read `input_bytes` bytes at a time */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, p_jpeg, input_bytes);

 assert(FSP_SUCCESS == err);

 /* This delay is required for streaming input mode to function correctly.

 * (Without this delay the JPEG Codec will not correctly locate markers in the file

header.) */

 R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MICROSECONDS);

 /* Wait for a callback */

 timeout = jpeg_event_wait();

 /* Get the status from the callback */

 status = g_jpeg_status;

 /* Break if the header has finished decoding */

 if (status & JPEG_STATUS_IMAGE_SIZE_READY)

 {

 break;

 }

 /* Move pointer to next block of input data (if needed) */

 p_jpeg = (uint8_t *) ((uint32_t) p_jpeg + input_bytes);

 }

 /* Get image size */

 uint16_t horizontal;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,065 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 uint16_t vertical;

 err = R_JPEG_DecodeImageSizeGet(&g_jpeg_ctrl, &horizontal, &vertical);

 assert(FSP_SUCCESS == err);

 /* Prepare output data buffer here if needed (already allocated in this example) */

 uint8_t * p_output = decode_buffer;

 /* Set horizontal stride */

 err = R_JPEG_DecodeHorizontalStrideSet(&g_jpeg_ctrl, horizontal);

 assert(FSP_SUCCESS == err);

 /* Calculate the number of bytes that will fit in the buffer (16 lines in this

example) */

 uint32_t output_size = horizontal * 16U * 4U;

 /* Start decoding by setting the output buffer */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, p_output, output_size);

 assert(FSP_SUCCESS == err);

 while (!(status & JPEG_STATUS_ERROR) && !timeout)

 {

 /* Wait for a callback */

 timeout = jpeg_event_wait();

 /* Get the status from the callback */

 status = g_jpeg_status;

 /* Break if decoding is complete */

 if (status & JPEG_STATUS_OPERATION_COMPLETE)

 {

 break;

 }

 if (status & JPEG_STATUS_OUTPUT_PAUSE)

 {

 /* Draw the JPEG work buffer to the framebuffer here (if needed) */

 /* Move pointer to next block of output data (if needed) */

 p_output += output_size;

 /* Set the output buffer to the next 16-line block */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, p_output, output_size);

 assert(FSP_SUCCESS == err);

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,066 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 if (status & JPEG_STATUS_INPUT_PAUSE)

 {

 /* Get next block of input data */

 p_jpeg = (uint8_t *) ((uint32_t) p_jpeg + input_bytes);

 /* Set the new input buffer pointer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, p_jpeg, input_bytes);

 assert(FSP_SUCCESS == err);

 }

 }

 /* Close driver to allow encode operations if needed */

 err = R_JPEG_Close(&g_jpeg_ctrl);

 assert(FSP_SUCCESS == err);

}

Encode Example

This is a basic example showing the minimum code required to initialize the JPEG Codec and encode
an image.

Note
This example assumes image dimensions are provided in the configuration. If this is not the case,
R_JPEG_EncodeImageSizeSet must be used to set the size before calling R_JPEG_InputBufferSet.

void jpeg_encode_basic (void)

{

 fsp_err_t err;

 /* Open JPEG Codec */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set output buffer */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, jpeg_buffer, sizeof(jpeg_buffer));

 assert(FSP_SUCCESS == err);

 /* Set input buffer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, RAW_YCBCR_IMAGE_PTR, IMAGE_SIZE_BYTES);

 assert(FSP_SUCCESS == err);

 /* Wait for decode completion */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,067 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 jpeg_status_t status = (jpeg_status_t) 0;

 while (!(status & JPEG_STATUS_OPERATION_COMPLETE))

 {

 err = R_JPEG_StatusGet(&g_jpeg_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

}

Streaming Encode Example

In this example the raw input data is provided in smaller chunks. This can help significantly reduce
buffer size and improve throughput when streaming in raw data from an outside source.

/* Callback function for JPEG encode interrupts */

void jpeg_encode_callback (jpeg_callback_args_t * p_args)

{

 /* Get JPEG Codec status */

 g_jpeg_status = p_args->status;

 /* Set JPEG flag */

 jpeg_event = 1;

}

void jpeg_encode_streaming (void)

{

 uint8_t timeout = 0;

 uint8_t * p_chunk = (uint8_t *) RAW_YCBCR_IMAGE_PTR;

 fsp_err_t err;

 /* Open JPEG Codec */

 err = R_JPEG_Open(&g_jpeg_ctrl, &g_jpeg_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set output buffer */

 err = R_JPEG_OutputBufferSet(&g_jpeg_ctrl, jpeg_buffer, sizeof(jpeg_buffer));

 assert(FSP_SUCCESS == err);

 /* Set the image size */

 jpeg_encode_image_size_t image_size;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,068 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 image_size.horizontal_resolution = X_RESOLUTION;

 image_size.vertical_resolution = Y_RESOLUTION;

 image_size.horizontal_stride_pixels = H_STRIDE;

 err = R_JPEG_EncodeImageSizeSet(&g_jpeg_ctrl, &image_size);

 assert(FSP_SUCCESS == err);

 /* Calculate the size of the input data chunk (16 lines in this example) */

 uint32_t chunk_size = H_STRIDE * 16U * YCBCR_BYTES_PER_PIXEL;

 while (!timeout)

 {

 /* Set the input buffer */

 err = R_JPEG_InputBufferSet(&g_jpeg_ctrl, p_chunk, chunk_size);

 assert(FSP_SUCCESS == err);

 /* Wait for a callback */

 timeout = jpeg_event_wait();

 if (g_jpeg_status & JPEG_STATUS_OPERATION_COMPLETE)

 {

 /* Encode complete */

 break;

 }

 if (g_jpeg_status & JPEG_STATUS_INPUT_PAUSE)

 {

 /* Load next block of input data here (if needed) */

 p_chunk += chunk_size;

 }

 }

}

Y'CbCr Conversion

The below function is provided as a reference for how to convert RGB values to Y'CbCr for use with
the JPEG Codec.

Note
This function is only partially optimized for clarity. Further appllication-specific size- or speed-based optimizations
should be considered when implementing in an actual project.

#define RGB565_G_MASK 0x07E0

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,069 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

#define RGB565_B_MASK 0x001F

#define C_0 128

typedef enum e_pixel_format

{

 PIXEL_FORMAT_ARGB8888,

 PIXEL_FORMAT_RGB565

} pixel_format_t;

/* 5-bit to 8-bit LUT */

const uint8_t lut_32[] =

{

 0, 8, 16, 25, 33, 41, 49, 58,

 66, 74, 82, 90, 99, 107, 115, 123,

 132, 140, 148, 156, 165, 173, 181, 189,

 197, 206, 214, 222, 230, 239, 247, 255

};

/* 6-bit to 8-bit LUT */

const uint8_t lut_64[] =

{

 0, 4, 8, 12, 16, 20, 24, 28,

 32, 36, 40, 45, 49, 53, 57, 61,

 65, 69, 73, 77, 81, 85, 89, 93,

 97, 101, 105, 109, 113, 117, 121, 125,

 130, 134, 138, 142, 146, 150, 154, 158,

 162, 166, 170, 174, 178, 182, 186, 190,

 194, 198, 202, 206, 210, 215, 219, 223,

 227, 231, 235, 239, 243, 247, 251, 255

};

void bitmap_rgb2ycbcr(uint32_t * out, uint8_t * in, uint32_t len, pixel_format_t

format);

/**

 * Convert an RGB buffer to Y'CbCr 4:2:2.

 *

 * NOTE: The width (in pixels) of the image to be converted must be divisible by 2.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,070 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 *

 * Parameters:

 * out Pointer to output buffer

 * in Pointer to input buffer

 * len Length of input buffer (in pixels)

 * format Input buffer format (ARGB8888 or RGB565)

 **

**********************************/

void bitmap_rgb2ycbcr (uint32_t * out, uint8_t * in, uint32_t len, pixel_format_t

format)

{

 uint16_t in0;

 uint16_t in1;

 uint32_t r0;

 uint32_t g0;

 uint32_t b0;

 uint32_t r1;

 uint32_t g1;

 uint32_t b1;

 uint8_t y0;

 uint8_t y1;

 uint8_t cb0;

 uint8_t cr0;

 uint8_t cb1;

 uint8_t cr1;

 /* Divide length by 2 as we're working with two pixels at a time */

 len >>= 1;

 /* Perform the conversion */

 while (len)

 {

 /* Get R, G and B channel values */

 if (format == PIXEL_FORMAT_RGB565)

 {

 /* Get next two 16-bit values */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,071 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 in0 = *((uint16_t *) in);

 in += 2;

 in1 = *((uint16_t *) in);

 in += 2;

 /* Decompose into individual channels */

 r0 = in0 >> 11;

 g0 = (in0 & RGB565_G_MASK) >> 5;

 b0 = in0 & RGB565_B_MASK;

 r1 = in1 >> 11;

 g1 = (in1 & RGB565_G_MASK) >> 5;

 b1 = in1 & RGB565_B_MASK;

 }

 else

 {

 /* Get each ARGB8888 channel in sequence, skipping alpha */

 b0 = *in++;

 g0 = *in++;

 r0 = *in++;

 in++;

 b1 = *in++;

 g1 = *in++;

 r1 = *in++;

 in++;

 }

 /* Convert RGB565 data to RGB888 */

 if (PIXEL_FORMAT_RGB565 == format)

 {

 r0 = lut_32[r0];

 g0 = lut_64[g0];

 b0 = lut_32[b0];

 r1 = lut_32[r1];

 g1 = lut_64[g1];

 b1 = lut_32[b1];

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,072 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 /* Calculate Y'CbCr 4:4:4 values for the two pixels */

 /* Algorithm based on method shown here: https://sistenix.com/rgb2ycbcr.html */

 /* Original coefficients from https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion */

 y0 = (uint8_t) (((r0 << 6) + (r0 << 3) + (r0 << 2) + r0 +

 (g0 << 7) + (g0 << 4) + (g0 << 2) + (g0 << 1) +

 (b0 << 4) + (b0 << 3) + (b0 << 2) + b0

) >> 8);

 cb0 = (uint8_t) (C_0 - (((r0 << 5) + (r0 << 3) + (r0 << 1) + r0 +

 (g0 << 6) + (g0 << 4) + (g0 << 2) + g0 -

 (b0 << 7)

) >> 8));

 cr0 = (uint8_t) (C_0 + (((r0 << 7) -

 (g0 << 6) - (g0 << 5) - (g0 << 3) - (g0 << 1) - g0 -

 (b0 << 4) - (b0 << 2) - b0

) >> 8));

 y1 = (uint8_t) (((r1 << 6) + (r1 << 3) + (r1 << 2) + r1 +

 (g1 << 7) + (g1 << 4) + (g1 << 2) + (g1 << 1) +

 (b1 << 4) + (b1 << 3) + (b1 << 2) + b1

) >> 8);

 cb1 = (uint8_t) (C_0 - (((r1 << 5) + (r1 << 3) + (r1 << 1) + r1 +

 (g1 << 6) + (g1 << 4) + (g1 << 2) + g1 -

 (b1 << 7)

) >> 8));

 cr1 = (uint8_t) (C_0 + (((r1 << 7) -

 (g1 << 6) - (g1 << 5) - (g1 << 3) - (g1 << 1) - g1 -

 (b1 << 4) - (b1 << 2) - b1

) >> 8));

 /* The above code is based on the floating point method shown here: */

 // y0 = (uint8_t) ((0.299F * (float) r0) + (0.587F * (float) g0) + (0.114F * (float)

b0));

 // y1 = (uint8_t) ((0.299F * (float) r1) + (0.587F * (float) g1) + (0.114F * (float)

b1));

 // cb0 = (uint8_t) (128.0F - (0.168736F * (float) r0) - (0.331264F * (float) g0) +

(0.5F * (float) b0));

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,073 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

 // cb1 = (uint8_t) (128.0F - (0.168736F * (float) r1) - (0.331264F * (float) g1) +

(0.5F * (float) b1));

 // cr0 = (uint8_t) (128.0F + (0.5F * (float) r0) - (0.418688F * (float) g0) -

(0.081312F * (float) b0));

 // cr1 = (uint8_t) (128.0F + (0.5F * (float) r1) - (0.418688F * (float) g1) -

(0.081312F * (float) b1));

 /* NOTE: The JPEG Codec expects signed instead of unsigned chrominance values. */

 /* Convert chrominance to -127..127 instead of 1..255 */

 cb0 = (uint8_t) ((int8_t) ((cb0 + cb1 + 1) >> 1) - C_0);

 cr0 = (uint8_t) ((int8_t) ((cr0 + cr1 + 1) >> 1) - C_0);

 /* Convert the two 4:4:4 values into 4:2:2 by averaging the chroma, then write to

output */

 *out++ = (uint32_t) (y0 + (cb0 << 8) + (y1 << 16) + (cr0 << 24));

 len--;

 }

}

Data Structures

struct jpeg_instance_ctrl_t

Data Structure Documentation

◆ jpeg_instance_ctrl_t

struct jpeg_instance_ctrl_t

JPEG Codec module control block. DO NOT INITIALIZE. Initialization occurs when jpep_api_t::open is
called.

Data Fields

uint32_t open JPEG Codec driver status.

jpeg_status_t status JPEG Codec operational status.

fsp_err_t error_code JPEG Codec error code (if any).

jpeg_mode_t mode Current mode (decode or
encode).

uint32_t horizontal_stride_bytes Horizontal Stride settings.

uint32_t output_buffer_size Output buffer size.

jpeg_cfg_t const * p_cfg JPEG Decode configuration
struct.

void const * p_extend JPEG Codec hardware

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,074 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

dependent configuration */.

jpeg_decode_pixel_format_t pixel_format Pixel format.

uint16_t total_lines_decoded Track the number of lines
decoded so far.

jpeg_decode_subsample_t horizontal_subsample Horizontal sub-sample setting.

uint16_t lines_to_encode Number of lines to encode.

uint16_t vertical_resolution vertical size

uint16_t total_lines_encoded Number of lines encoded.

Function Documentation

◆ R_JPEG_Open()

fsp_err_t R_JPEG_Open (jpeg_ctrl_t *const p_api_ctrl, jpeg_cfg_t const *const p_cfg)

Initialize the JPEG Codec module.

Note
This function configures the JPEG Codec for operation and sets up the registers for data format and pixel format
based on user-supplied configuration parameters. Interrupts are enabled to support callbacks.

Return values
FSP_SUCCESS JPEG Codec module is properly configured

and is ready to take input data.

FSP_ERR_ALREADY_OPEN JPEG Codec is already open.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_IRQ_BSP_DISABLED JEDI interrupt does not have an IRQ number.

FSP_ERR_INVALID_ARGUMENT (Encode only) Quality factor, horizontal
resolution and/or vertical resolution are
invalid.

FSP_ERR_INVALID_ALIGNMENT (Encode only) The horizontal resolution (at
16bpp) is not divisible by 8 bytes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,075 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

◆ R_JPEG_OutputBufferSet()

fsp_err_t R_JPEG_OutputBufferSet (jpeg_ctrl_t * p_api_ctrl, void * p_output_buffer, uint32_t
output_buffer_size)

Assign a buffer to the JPEG Codec for storing output data.

Note
In Decode mode, the number of image lines to be decoded depends on the size of the buffer and the horizontal
stride settings. Once the output buffer size is known, the horizontal stride value is known, and the input pixel format
is known (the input pixel format is obtained by the JPEG decoder from the JPEG headers), the driver automatically
computes the number of lines that can be decoded into the output buffer. After these lines are decoded, the JPEG
engine pauses and a callback function is triggered, so the application is able to provide the next buffer for the
JPEG module to resume the operation.

The JPEG decoding operation automatically starts after both the input buffer and the output buffer
are set and the output buffer is big enough to hold at least eight lines of decoded image data.

Return values
FSP_SUCCESS The output buffer is properly assigned to

JPEG codec device.

FSP_ERR_ASSERTION Pointer to the control block or output_buffer
is NULL or output_buffer_size is 0.

FSP_ERR_INVALID_ALIGNMENT Buffer starting address is not 8-byte
aligned.

FSP_ERR_NOT_OPEN JPEG not opened.

FSP_ERR_JPEG_UNSUPPORTED_IMAGE_SIZE The number of horizontal pixels exceeds
horizontal memory stride.

FSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH Invalid buffer size.

FSP_ERR_IN_USE The output buffer cannot be changed during
codec operation.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,076 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

◆ R_JPEG_InputBufferSet()

fsp_err_t R_JPEG_InputBufferSet (jpeg_ctrl_t *const p_api_ctrl, void * p_data_buffer, uint32_t
data_buffer_size)

Assign an input data buffer to the JPEG codec for processing.

Note
After the amount of data is processed, the JPEG driver triggers a callback function with the flag
JPEG_PRV_OPERATION_INPUT_PAUSE set. The application supplies the next chunk of data to the driver so
processing can resume.
The JPEG decoding operation automatically starts after both the input buffer and the output buffer are set, and the
output buffer is big enough to hold at least one line of decoded image data.

If zero is provided for the decode data buffer size the JPEG Codec will never pause for more input
data and will continue to read until either an image has been fully decoded or an error condition
occurs.

Note
When encoding images the minimum data buffer size is 8 lines by 16 Y'CbCr 4:2:2 pixels (256 bytes). This
corresponds to one minimum coded unit (MCU) of the resulting JPEG output.

Return values
FSP_SUCCESS The input data buffer is properly assigned to

JPEG Codec device.

FSP_ERR_ASSERTION Pointer to the control block is NULL, or the
pointer to the input_buffer is NULL, or the
input_buffer_size is 0.

FSP_ERR_INVALID_ALIGNMENT Buffer starting address is not 8-byte
aligned.

FSP_ERR_NOT_OPEN JPEG not opened.

FSP_ERR_IN_USE The input buffer cannot be changed while
the codec is running.

FSP_ERR_INVALID_CALL In encode mode the output buffer must be
set first.

FSP_ERR_JPEG_IMAGE_SIZE_ERROR The buffer size is smaller than the minimum
coded unit (MCU).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,077 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

◆ R_JPEG_StatusGet()

fsp_err_t R_JPEG_StatusGet (jpeg_ctrl_t * p_api_ctrl, jpeg_status_t * p_status)

Get the status of the JPEG codec. This function can also be used to poll the device.

Return values
FSP_SUCCESS The status information is successfully

retrieved.

FSP_ERR_ASSERTION Pointer to the control block or p_status is
NULL.

FSP_ERR_NOT_OPEN JPEG is not opened.

◆ R_JPEG_Close()

fsp_err_t R_JPEG_Close (jpeg_ctrl_t * p_api_ctrl)

Cancel an outstanding JPEG codec operation and close the device.

Return values
FSP_SUCCESS The JPEG unit is stopped and the driver is

closed.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN JPEG not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,078 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

◆ R_JPEG_EncodeImageSizeSet()

fsp_err_t R_JPEG_EncodeImageSizeSet (jpeg_ctrl_t *const p_api_ctrl, jpeg_encode_image_size_t *
p_image_size)

Set the image dimensions for an encode operation.

Note
Image dimensions must be set before setting the input buffer.

Return values
FSP_SUCCESS Image size was successfully written to the

JPEG Codec.

FSP_ERR_ASSERTION Pointer to the control block or p_image_size
is NULL.

FSP_ERR_INVALID_ALIGNMENT Horizontal stride is not 8-byte aligned.

FSP_ERR_INVALID_ARGUMENT Horizontal or vertical resolution is invalid or
zero.

FSP_ERR_NOT_OPEN JPEG not opened.

FSP_ERR_IN_USE Image parameters cannot be changed while
the codec is running.

◆ R_JPEG_DecodeLinesDecodedGet()

fsp_err_t R_JPEG_DecodeLinesDecodedGet (jpeg_ctrl_t * p_api_ctrl, uint32_t * p_lines)

Returns the number of lines decoded into the output buffer.

Note
Use this function to retrieve the number of image lines written to the output buffer after a partial decode operation.
Combined with the horizontal stride settings and the output pixel format the application can compute the amount of
data to read from the output buffer.

Return values
FSP_SUCCESS Line count successfully returned.

FSP_ERR_ASSERTION Pointer to the control block or p_lines is
NULL.

FSP_ERR_NOT_OPEN JPEG not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,079 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

◆ R_JPEG_DecodeHorizontalStrideSet()

fsp_err_t R_JPEG_DecodeHorizontalStrideSet (jpeg_ctrl_t * p_api_ctrl, uint32_t horizontal_stride)

Configure horizontal stride setting for decode operations.

Note
If the image size is known prior to the open call and/or the output buffer stride is constant, pass the horizontal
stride value in the jpeg_cfg_t structure. Otherwise, after the image size becomes available use this function to set
the output buffer horizontal stride value.

Return values
FSP_SUCCESS Horizontal stride value is properly

configured.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_INVALID_ALIGNMENT Horizontal stride is zero or is not 8-byte
aligned.

FSP_ERR_NOT_OPEN JPEG not opened.

◆ R_JPEG_DecodeImageSizeGet()

fsp_err_t R_JPEG_DecodeImageSizeGet (jpeg_ctrl_t * p_api_ctrl, uint16_t * p_horizontal_size,
uint16_t * p_vertical_size)

Obtain the size of an image being decoded.

Return values
FSP_SUCCESS The image size is available and the

horizontal and vertical values are stored in
the memory pointed to by p_horizontal_size
and p_vertical_size.

FSP_ERR_ASSERTION Pointer to the control block is NULL and/or
size is not ready.

FSP_ERR_NOT_OPEN JPEG is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,080 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

◆ R_JPEG_DecodeImageSubsampleSet()

fsp_err_t R_JPEG_DecodeImageSubsampleSet (jpeg_ctrl_t *const p_api_ctrl,
jpeg_decode_subsample_t horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure horizontal and vertical subsampling.

Note
This function can be used to scale the output of decoded image data.

Return values
FSP_SUCCESS Horizontal subsample value is properly

configured.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN JPEG not opened.

◆ R_JPEG_DecodePixelFormatGet()

fsp_err_t R_JPEG_DecodePixelFormatGet (jpeg_ctrl_t * p_api_ctrl, jpeg_color_space_t *
p_color_space)

Get the color format of the JPEG being decoded.

Return values
FSP_SUCCESS The color format was successfully retrieved.

FSP_ERR_ASSERTION Pointer to the control block is NULL.

FSP_ERR_NOT_OPEN JPEG is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,081 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > JPEG Codec (r_jpeg)

◆ R_JPEG_ModeSet()

fsp_err_t R_JPEG_ModeSet (jpeg_ctrl_t *const p_api_ctrl, jpeg_mode_t mode)

Switch between encode and decode mode (or vice-versa).

Note
The codec must not be idle in order to switch modes.

Return values
FSP_SUCCESS Mode changed successfully.

FSP_ERR_ASSERTION p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_IN_USE JPEG Codec is currently in use.

FSP_ERR_INVALID_ARGUMENT (Encode only) Quality factor, horizontal
resolution and/or vertical resolution are
invalid.

FSP_ERR_INVALID_ALIGNMENT (Encode only) The horizontal resolution (at
16bpp) is not divisible by 8 bytes.

4.2.33 Key Interrupt (r_kint)
Modules

Functions

fsp_err_t R_KINT_Open (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_cfg_t
const *const p_cfg)

fsp_err_t R_KINT_Enable (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err_t R_KINT_Disable (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err_t R_KINT_Close (keymatrix_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the KINT peripheral on RA MCUs. This module implements the Key Matrix Interface.

Overview
The KINT module configures the Key Interrupt (KINT) peripheral to detect rising or falling edges on
any of the KINT channels. When such an event is detected on any of the configured pins, the module
generates an interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,082 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Key Interrupt (r_kint)

Features

Detect rising or falling edges on KINT channels
Callback for notifying the application when edges are detected on the configured channels

Configuration

Build Time Configurations for r_kint

The following build time configurations are defined in fsp_cfg/r_kint_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Input > Key Matrix Driver on r_kint

This module can be added to the Stacks tab via New Stack > Driver > Input > Key Matrix Driver on
r_kint.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_kint0 Module name.

Input > Key Interrupt
Flag Mask

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7

Select channels to
enable.

Interrupts > Trigger
Type

Falling Edge
Rising Edge

Rising Edge Specifies if the enabled
channels detect a
rising edge or a falling
edge. NOTE: either all
channels detecting a
rising edge or all
channels detecting a
falling edge.

Interrupts > Callback Name must be a valid
C symbol

kint_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) each time
the IRQ triggers.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,083 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Key Interrupt (r_kint)

Interrupts > Key
Interrupt Priority

MCU Specific Options Select the key interrupt
priority.

Clock Configuration

The KINT peripheral runs on PCLKB.

Pin Configuration

The KRn pins are key switch matrix row input pins.

Usage Notes
Connecting a Switch Matrix

The KINT module is designed to scan the rows of a switch matrix where each row is connected to a
number of columns through switches. A periodic timer (or other mechanism) sets one column pin
high at a time. Any switches that are pressed on the driven column cause a rising (or falling) edge on
the row pin (KRn) causing an interrupt.

Note
In applications where multiple keys may be pressed at the same time it is recommended to put a diode inline with
each switch to prevent ghosting.

Handling Multiple Pins

When an edge is detected on multiple pins at the same time, a single IRQ will be generated. A mask
of all the pins that detected an edge will be passed to the callback.

Examples
Basic Example

This is a basic example of minimal use of the KINT in an application.

static volatile uint32_t g_channel_mask;

static volatile uint32_t g_kint_edge_detected = 0U;

/* Called from key_int_isr */

void r_kint_callback (keymatrix_callback_args_t * p_args)

{

 g_channel_mask = p_args->channel_mask;

 g_kint_edge_detected = 1U;

}

void r_kint_example ()

{

 /* Configure the KINT. */

 fsp_err_t err = R_KINT_Open(&g_kint_ctrl, &g_kint_cfg);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,084 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Key Interrupt (r_kint)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Enable the KINT. */

 err = R_KINT_Enable(&g_kint_ctrl);

 assert(FSP_SUCCESS == err);

 while (0 == g_kint_edge_detected)

 {

 /* Wait for interrupt. */

 }

}

Data Structures

struct kint_instance_ctrl_t

Data Structure Documentation

◆ kint_instance_ctrl_t

struct kint_instance_ctrl_t

Channel instance control block. DO NOT INITIALIZE. Initialization occurs when
keymatrix_api_t::open is called.

Function Documentation

◆ R_KINT_Open()

fsp_err_t R_KINT_Open (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_cfg_t const *const p_cfg)

Configure all the Key Input (KINT) channels and provides a handle for use with the rest of the KINT
API functions. Implements keymatrix_api_t::open.

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One of the following parameters may be
NULL: p_cfg, or p_ctrl or the callback.

FSP_ERR_ALREADY_OPEN The module has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel mask is invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,085 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Key Interrupt (r_kint)

◆ R_KINT_Enable()

fsp_err_t R_KINT_Enable (keymatrix_ctrl_t *const p_api_ctrl)

This function enables interrupts for the KINT peripheral after clearing any pending requests.
Implements keymatrix_api_t::enable.

Return values
FSP_SUCCESS Interrupt enabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The peripheral is not opened.

◆ R_KINT_Disable()

fsp_err_t R_KINT_Disable (keymatrix_ctrl_t *const p_api_ctrl)

This function disables interrupts for the KINT peripheral. Implements keymatrix_api_t::disable.

Return values
FSP_SUCCESS Interrupt disabled successfully.

FSP_ERR_ASSERTION The p_ctrl parameter was null.

FSP_ERR_NOT_OPEN The channel is not opened.

◆ R_KINT_Close()

fsp_err_t R_KINT_Close (keymatrix_ctrl_t *const p_api_ctrl)

Clear the KINT configuration and disable the KINT IRQ. Implements keymatrix_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN The module is not opened.

4.2.34 Low Power Modes (r_lpm)
Modules

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,086 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

Functions

fsp_err_t R_LPM_Open (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const
p_cfg)

fsp_err_t R_LPM_Close (lpm_ctrl_t *const p_api_ctrl)

fsp_err_t R_LPM_LowPowerReconfigure (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t
const *const p_cfg)

fsp_err_t R_LPM_LowPowerModeEnter (lpm_ctrl_t *const p_api_ctrl)

fsp_err_t R_LPM_IoKeepClear (lpm_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the LPM peripheral on RA MCUs. This module implements the Low Power Modes Interface.

Overview
The low power modes driver is used to configure and place the device into the desired low power
mode. Various sources can be configured to wake from standby, request snooze mode, end snooze
mode or end deep standby mode.

Features

The LPM HAL module has the following key features:

Supports the follwowing low power modes:
Deep Software Standby mode (On supported MCUs)
Software Standby mode
Sleep mode
Snooze mode

Supports reducing power consumption when in deep software standby mode through
internal power supply control and by resetting the states of I/O ports.
Supports disabling and enabling the MCU's other hardware peripherals

Configuration
Build Time Configurations for r_lpm

The following build time configurations are defined in fsp_cfg/r_lpm_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Power > Low Power Modes Driver on r_lpm

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,087 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

This module can be added to the Stacks tab via New Stack > Driver > Power > Low Power Modes
Driver on r_lpm. Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_lpm0 Module name.

General > Low Power
Mode

MCU Specific Options Power mode to be
entered.

General > Output port
state in standby and
deep standby

MCU Specific Options Select the state of
output pins during
standby. Applies to
address output, data
output, and other bus
control output pins.

Standby Options >
Wake Sources

MCU Specific Options Enable wake from
standby from these
Sources.

Standby Options >
Snooze Request Source

MCU Specific Options Select the event that
will enter snooze.

Standby Options >
Snooze End Sources

MCU Specific Options Enable wake from
snooze from these
sources.

Standby Options > DTC
state in Snooze Mode

Disabled
Enabled

Disabled Enable wake from
snooze from this
source.

Standby Options >
Snooze Cancel Source

MCU Specific Options Select an interrupt
source to cancel
snooze.

Deep Standby Options
> I/O Port Retention

MCU Specific Options Select the state of the
IO Pins after exiting
deep standby mode.

Deep Standby Options
> Power-Supply Control

MCU Specific Options Select the state of the
internal power supply
in deep standby mode.

Deep Standby Options
> Cancel Sources

MCU Specific Options Enable wake from deep
standby using these
sources.

Deep Standby Options
> Cancel Edges

MCU Specific Options Falling edge trigger is
default. Select sources
to enable wake from
deep standby with
rising edge.

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,088 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

This module does not have any selectable clock sources.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Sleep Mode

At power on, by default sleep is set as the low-power mode. Sleep mode is the most convenient low-
power mode available, as it does not require any special configuration (other than configuring and
enabling a suitable interrupt or event to wake the MCU from sleep) to return to normal program-
execution mode. The states of the SRAM, the processor registers, and the hardware peripherals are
all maintained in sleep mode, and the time needed to enter and wake from sleep is minimal. Any
interrupt causes the MCU device to wake from sleep mode, including the Systick interrupt used by
the RTOS scheduler.

Software Standby Mode

In software-standby mode, the CPU, as well as most of the on-chip peripheral functions and all of the
internal oscillators, are stopped. The contents of the CPU internal registers and SRAM data, the
states of on-chip peripheral functions, and I/O Ports are all retained. Software-standby mode allows
significant reduction in power consumption, because most of the oscillators are stopped in this
mode. Like sleep mode, standby mode requires an interrupt or event be configured and enabled to
wake up.

Snooze Mode

Snooze mode can be used with some MCU peripherals to execute basic tasks while keeping the MCU
in a low-power state. Many core peripherals and all clocks can be selected to run during Snooze,
allowing for more flexible low-power configuration than Software Standby mode. To enable Snooze,
select "Software Standby mode with Snooze mode enabled" for the "Low Power Mode" configuration
option. Snooze mode settings (including entry/exit sources) are available under "Standby Options".

Deep Software Standby Mode

Deep Software Standby Mode is only available on some MCU devices. The MCU always wakes from
Deep Software Standby Mode by going through reset, either by the negation of the reset pin or by
one of the wakeup sources configurable in the "Deep Standby Options" configuration group.

The Reset Status Registers can be used to determine if the reset occured after coming out of deep
sofware standby. For example, R_SYSTEM->RSTSR0_b.DPSRSTF is set to 1 after a deep software
standby reset.

I/O Port Retention can be enabled to maintain I/O port configuration across a deep software standby
reset. Retention can be cancelled through the R_LPM_IoKeepClear API.

Limitations

Developers should be aware of the following limitations when using the LPM:

Flash stop (code flash disable) is not supported. See the section "Flash Operation Control
Register (FLSTOP)" of the RA2/RA4 Family Hardware User's Manual.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,089 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

Reduced SRAM retention area in software standby mode is not supported. See the section
"Power Save Memory Control Register (PSMCR)" of the RA4 Hardware User's Manual.
Only one Snooze Request Source can be used at a time.
When using Snooze mode with SCI0 RXD as the snooze source the system clock must be
HOCO and the MOCO, Main Oscillator and PLL clocks must be turned off.
If the main oscillator or PLL with main oscillator source is used for the system clock, the
wake time from standby mode can be affected by the Main Oscillator Wait Time Setting in
the MOSCWTCR register. This register setting is available to be changed through the Main
Oscillator Wait Time setting in the CGC module properties. See the "Wakeup Timing and
Duration" table in Electrical Characteristics for more information.
When using the DC-DC regulator (where available), the MCU will temporarily switch to the
LDO if Software Standby or Snooze is requested and back again when it is cancelled.
Switching to the LDO incurs a 60 microsecond critical section wherein all interrupts AND
peripherals are stopped. Switching back to DCDC from the LDO incurs an additional 22
microsecond critical section (peripherals running).

Examples
LPM Sleep Example

This is a basic example of minimal use of the LPM in an application. The LPM instance is opened and
the configured low-power mode is entered.

void r_lpm_sleep (void)

{

 fsp_err_t err = R_LPM_Open(&g_lpm_ctrl, &g_lpm_cfg_sleep);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 err = R_LPM_LowPowerModeEnter(&g_lpm_ctrl);

 assert(FSP_SUCCESS == err);

}

LPM Deep Software Standby Example

void r_lpm_deep_software_standby (void)

{

 fsp_err_t err;

 err = R_LPM_Open(&g_lpm_ctrl, &g_lpm_cfg_deep_software_standby);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Check the Deep Software Standby Reset Flag. */

 if (1U == R_SYSTEM->RSTSR0_b.DPSRSTF)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,090 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

 /* Clear the IOKEEP bit to allow I/O Port use. */

 err = R_LPM_IoKeepClear(&g_lpm_ctrl);

 assert(FSP_SUCCESS == err);

 }

 /* Add user code here. */

 /* Reconfigure the module to set the IOKEEP bit before entering deep software

standby. */

 err = R_LPM_LowPowerReconfigure(&g_lpm_ctrl, &g_lpm_cfg_deep_software_standby);

 assert(FSP_SUCCESS == err);

 err = R_LPM_LowPowerModeEnter(&g_lpm_ctrl);

 /* Code after R_LPM_LowPowerModeEnter when using Deep Software Standby never be

executed.

 * Deep software standby exits by resetting the MCU. */

 assert(FSP_SUCCESS == err);

}

Data Structures

struct lpm_instance_ctrl_t

Data Structure Documentation

◆ lpm_instance_ctrl_t

struct lpm_instance_ctrl_t

LPM private control block. DO NOT MODIFY. Initialization occurs when R_LPM_Open() is called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,091 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

◆ R_LPM_Open()

fsp_err_t R_LPM_Open (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg)

Perform any necessary initialization

Return values
FSP_SUCCESS LPM instance opened

FSP_ERR_ASSERTION Null Pointer

FSP_ERR_ALREADY_OPEN LPM instance is already open

FSP_ERR_UNSUPPORTED This MCU does not support Deep Software
Standby

FSP_ERR_INVALID_ARGUMENT One of the following:

Invalid snooze entry source
Invalid snooze end sources

FSP_ERR_INVALID_MODE One of the following:

Invalid low power mode
Invalid DTC option for snooze mode
Invalid deep standby end sources
Invalid deep standby end sources
edges
Invalid power supply option for deep
standby
Invalid IO port option for deep
standby
Invalid output port state setting for
standby or deep standby
Invalid sources for wake from
standby mode
Invalid power supply option for
standby
Invalid IO port option for standby
Invalid standby end sources
Invalid standby end sources edges

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,092 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

◆ R_LPM_Close()

fsp_err_t R_LPM_Close (lpm_ctrl_t *const p_api_ctrl)

Close the LPM Instance

Return values
FSP_SUCCESS LPM driver closed

FSP_ERR_NOT_OPEN LPM instance is not open

FSP_ERR_ASSERTION Null Pointer

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,093 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

◆ R_LPM_LowPowerReconfigure()

fsp_err_t R_LPM_LowPowerReconfigure (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg
)

Configure a low power mode

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
FSP_SUCCESS Low power mode successfuly applied

FSP_ERR_ASSERTION Null Pointer

FSP_ERR_NOT_OPEN LPM instance is not open

FSP_ERR_UNSUPPORTED This MCU does not support Deep Software
Standby

FSP_ERR_INVALID_ARGUMENT One of the following:

Invalid snooze entry source
Invalid snooze end sources

FSP_ERR_INVALID_MODE One of the following:

Invalid low power mode
Invalid DTC option for snooze mode
Invalid deep standby end sources
Invalid deep standby end sources
edges
Invalid power supply option for deep
standby
Invalid IO port option for deep
standby
Invalid output port state setting for
standby or deep standby
Invalid sources for wake from
standby mode
Invalid power supply option for
standby
Invalid IO port option for standby
Invalid standby end sources
Invalid standby end sources edges

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,094 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Power Modes (r_lpm)

◆ R_LPM_LowPowerModeEnter()

fsp_err_t R_LPM_LowPowerModeEnter (lpm_ctrl_t *const p_api_ctrl)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
FSP_SUCCESS Successful.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN LPM instance is not open

FSP_ERR_INVALID_MODE One of the following:

HOCO was not system clock when
using snooze mode with SCI0/RXD0.
HOCO was not stable when using
snooze mode with SCI0/RXD0.
MOCO was running when using
snooze mode with SCI0/RXD0.
MAIN OSCILLATOR was running
when using snooze mode with
SCI0/RXD0.
PLL was running when using snooze
mode with SCI0/RXD0.
Unable to disable ocillator stop
detect when using standby or deep
standby.

◆ R_LPM_IoKeepClear()

fsp_err_t R_LPM_IoKeepClear (lpm_ctrl_t *const p_api_ctrl)

Clear the IOKEEP bit after deep software standby

Return values
FSP_SUCCESS DPSBYCR_b.IOKEEP bit cleared Successfully.

FSP_ERR_UNSUPPORTED Deep standby mode not supported on this
MCU.

4.2.35 Low Voltage Detection (r_lvd)
Modules

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,095 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

Functions

fsp_err_t R_LVD_Open (lvd_ctrl_t *const p_api_ctrl, lvd_cfg_t const *const
p_cfg)

fsp_err_t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

fsp_err_t R_LVD_StatusGet (lvd_ctrl_t *const p_api_ctrl, lvd_status_t
*p_lvd_status)

fsp_err_t R_LVD_StatusClear (lvd_ctrl_t *const p_api_ctrl)

fsp_err_t R_LVD_CallbackSet (lvd_ctrl_t *const p_api_ctrl,
void(*p_callback)(lvd_callback_args_t *), void const *const p_context,
lvd_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the LVD peripheral on RA MCUs. This module implements the Low Voltage Detection
Interface.

Overview
The Low Voltage Detection module configures the voltage monitors to detect when VCC crosses a
specified threshold.

Features

The LVD HAL module supports the following functions:

Two run-time configurable voltage monitors (Voltage Monitor 1, Voltage Monitor 2)
Configurable voltage threshold
Digital filter (Available on specific MCUs)
Support for both interrupt or polling

NMI or maskable interrupt can be configured
Rising, falling, or both edge event detection
Support for resetting the MCU when VCC falls below configured threshold.

Configuration

Build Time Configurations for r_lvd

The following build time configurations are defined in fsp_cfg/r_lvd_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,096 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

Configurations for Driver > Power > Low Voltage Detection Driver on r_lvd

This module can be added to the Stacks tab via New Stack > Driver > Power > Low Voltage
Detection Driver on r_lvd. Non-secure callable guard functions can be generated for this module by
right clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_lvd Module name.

Monitor Number MCU Specific Options Select the LVD monitor.

Digital Filter MCU Specific Options Enable the digital filter
and select the digital
filter clock divider.

Voltage Threshold MCU Specific Options Select the low voltage
detection threshold.

Detection Response Maskable
interrupt
Non-maskable
interrupt
Reset MCU
(Only available
for falling edge)
No response
(Voltage
monitor status
will be polled)

No response (Voltage
monitor status will be
polled)

Select what happens
when the voltage
crosses the threshold
voltage.

Voltage Slope Falling voltage
Rising voltage
Rising or falling
voltage

Falling voltage Select detection on
rising voltage, falling
voltage or both.

Negation Delay Delay from
reset
Delay from
voltage
returning to
normal range

Delay from reset Negation of the
monitor signal can
either be delayed from
the reset event or from
voltage returning to
normal range.

Monitor Interrupt
Callback

Name must be a valid
C symbol.

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) each time
the IRQ triggers.

LVD Monitor Interrupt
Priority

MCU Specific Options Select the LVD Monitor
interrupt priority.

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,097 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

The LOCO clock must be enabled in order to use the digital filter.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Startup Edge Detection

If VCC is below the threshold prior to configuring the voltage monitor for falling edge detection, the
monitor will immediately detect the a falling edge condition. If VCC is above the threshold prior to
configuring the monitor for rising edge detection, the monitor will not detect a rising edge condition
until VCC falls below the threshold and then rises above it again.

Voltage Monitor 0

The LVD HAL module only supports configuring voltage monitor 1 and voltage monitor 2. Voltage
monitor 0 can be configured by setting the appropriate bits in the OFS1 register. This means that
voltage monitor 0 settings cannot be changed at runtime.

Voltage monitor 0 supports the following features

Configurable Voltage Threshold (VDET0)
Reset the device when VCC falls below VDET0

Limitations

The digital filter must be disabled when using voltage monitors in Software Standby or
Deep Software Standby.
Deep Software Standby mode is not possible if the voltage monitor is configured to reset
the MCU.
When the detection response is set to reset, only voltage falling edge detection is possible.

Examples
Basic Example

This is a basic example of minimal use of the LVD in an application.

void basic_example (void)

{

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

 assert(FSP_SUCCESS == err);

 while (1)

 {

 lvd_status_t status;

 err = R_LVD_StatusGet(&g_lvd_ctrl, &status);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,098 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

 assert(FSP_SUCCESS == err);

 if (LVD_THRESHOLD_CROSSING_DETECTED == status.crossing_detected)

 {

 err = R_LVD_StatusClear(&g_lvd_ctrl);

 assert(FSP_SUCCESS == err);

 /* Do something */

 }

 }

}

Interrupt Example

This is a basic example of using a LVD instance that is configured to generate an interrupt.

void interrupt_example (void)

{

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (1)

 {

 /* Application Process */

 /* Application will be interrupted when Vcc crosses the configured threshold. */

 }

}

/* Called when Vcc crosses configured threshold. */

void lvd_callback (lvd_callback_args_t * p_args)

{

 if (LVD_CURRENT_STATE_BELOW_THRESHOLD == p_args->current_state)

 {

 /* Do Something */

 }

}

Reset Example

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,099 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

This is a basic example of using a LVD instance that is configured to reset the MCU.

void reset_example (void)

{

 if (1U == R_SYSTEM->RSTSR0_b.LVD1RF)

 {

 /* The system is coming out of reset because Vcc crossed configured voltage

threshold. */

 /* Clear Voltage Monitor 1 Reset Detect Flag. */

 R_SYSTEM->RSTSR0_b.LVD1RF = 0;

 }

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (1)

 {

 /* Application Process */

 /* Application will reset when Vcc crosses the configured threshold. */

 }

}

Data Structures

struct lvd_instance_ctrl_t

Data Structure Documentation

◆ lvd_instance_ctrl_t

struct lvd_instance_ctrl_t

LVD instance control structure

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,100 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

◆ R_LVD_Open()

fsp_err_t R_LVD_Open (lvd_ctrl_t *const p_api_ctrl, lvd_cfg_t const *const p_cfg)

Initializes a voltage monitor and detector according to the passed-in configuration structure.

Parameters
[in] p_api_ctrl Pointer to the control

structure for the driver
instance

[in] p_cfg Pointer to the configuration
structure for the driver
instance

Note
Digital filter is not to be used with standby modes.
Startup time can take on the order of milliseconds for some configurations.

Example:

 fsp_err_t err = R_LVD_Open(&g_lvd_ctrl, &g_lvd_cfg);

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION Requested configuration was invalid

FSP_ERR_ALREADY_OPEN The instance was already opened

FSP_ERR_IN_USE Another instance is already using the
desired monitor

FSP_ERR_UNSUPPORTED Digital filter was enabled on a device that
does not support it

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,101 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

◆ R_LVD_Close()

fsp_err_t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

Disables the LVD peripheral. Closes the driver instance.

Parameters
[in] p_api_ctrl Pointer to the control block

structure for the driver
instance

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_NOT_OPEN Driver is not open

◆ R_LVD_StatusGet()

fsp_err_t R_LVD_StatusGet (lvd_ctrl_t *const p_api_ctrl, lvd_status_t * p_lvd_status)

Get the current state of the monitor (threshold crossing detected, voltage currently above or below
threshold).

Parameters
[in] p_api_ctrl Pointer to the control

structure for the driver
instance

[out] p_lvd_status Pointer to status structure

Example:

 err = R_LVD_StatusGet(&g_lvd_ctrl, &status);

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_NOT_OPEN Driver is not open

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,102 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Low Voltage Detection (r_lvd)

◆ R_LVD_StatusClear()

fsp_err_t R_LVD_StatusClear (lvd_ctrl_t *const p_api_ctrl)

Clears the latched status of the monitor.

Parameters
[in] p_api_ctrl Pointer to the control

structure for the driver
instance

Return values
FSP_SUCCESS Successful

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_NOT_OPEN Driver is not open

◆ R_LVD_CallbackSet()

fsp_err_t R_LVD_CallbackSet (lvd_ctrl_t *const p_api_ctrl, void(*)(lvd_callback_args_t *)
p_callback, void const *const p_context, lvd_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
lvd_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.36 Operational Amplifier (r_opamp)
Modules

Functions

fsp_err_t R_OPAMP_Open (opamp_ctrl_t *const p_api_ctrl, opamp_cfg_t const
*const p_cfg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,103 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

fsp_err_t R_OPAMP_InfoGet (opamp_ctrl_t *const p_api_ctrl, opamp_info_t
*const p_info)

fsp_err_t R_OPAMP_Start (opamp_ctrl_t *const p_api_ctrl, uint32_t const
channel_mask)

fsp_err_t R_OPAMP_Stop (opamp_ctrl_t *const p_api_ctrl, uint32_t const
channel_mask)

fsp_err_t R_OPAMP_StatusGet (opamp_ctrl_t *const p_api_ctrl, opamp_status_t
*const p_status)

fsp_err_t R_OPAMP_Trim (opamp_ctrl_t *const p_api_ctrl, opamp_trim_cmd_t
const cmd, opamp_trim_args_t const *const p_args)

fsp_err_t R_OPAMP_Close (opamp_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the OPAMP peripheral on RA MCUs. This module implements the OPAMP Interface.

Overview
The OPAMP HAL module provides a high level API for signal amplification applications and supports
the OPAMP peripheral available on RA MCUs.

Features

Low power or high-speed mode
Start by software or AGT compare match
Stop by software or ADC conversion end (stop by ADC conversion end only supported on op-
amp channels configured to start by AGT compare match)
Trimming available on some MCUs (see hardware manual)

Configuration

Build Time Configurations for r_opamp

The following build time configurations are defined in fsp_cfg/r_opamp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Analog > Operational Amplifier Driver on r_opamp

This module can be added to the Stacks tab via New Stack > Driver > Analog > Operational

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,104 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

Amplifier Driver on r_opamp.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_opamp0 Module name.

AGT Start Trigger
Configuration (N/A
unless AGT Start
Trigger is Selected for
the Channel)

AGT1 Compare
Match Starts
OPAMPs 0 and
2 if configured
for AGT Start,
AGT0 Compare
Match Starts
OPAMPs 1 and
3 if configured
for AGT Start
AGT1 Compare
Match Starts
OPAMPs 0 and
1 if configured
for AGT Start,
AGT0 Compare
Match Starts
OPAMPs 2 and
3 if configured
for AGT Start
AGT1 Compare
Match Starts all
OPAMPs
configured for
AGT Start

AGT1 Compare Match
Starts all OPAMPs
configured for AGT
Start

Configure which AGT
channel event triggers
which op-amp channel.
The AGT compare
match event only starts
the op-amp channel if
the AGT Start trigger is
selected in the Trigger
configuration for the
channel.

Power Mode MCU Specific Options Configure the op-amp
based on power or
speed requirements.
This setting affects the
minimum required
stabilization time.
Middle speed is not
available for all MCUs.

Trigger Channel 0 MCU Specific Options Select the event
triggers to start or stop
op-amp channel 0. If
the event trigger is
selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

Trigger Channel 1 MCU Specific Options Select the event
triggers to start or stop

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,105 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

op-amp channel 1. If
the event trigger is
selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

Trigger Channel 2 Software Start
Software Stop
AGT Start
Software Stop
AGT Start ADC
Stop

Software Start
Software Stop

Select the event
triggers to start or stop
op-amp channel 2. If
the event trigger is
selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

Trigger Channel 3 MCU Specific Options Select the event
triggers to start or stop
op-amp channel 3. If
the event trigger is
selected for start, the
start() API enables the
event trigger for this
channel. If the event
trigger is selected for
stop, the stop() API
disables the event
trigger for this channel.

OPAMP AMP0OS MCU Specific Options Select output to
connect to AMP0O pin

OPAMP AMP0PS MCU Specific Options Select input to connect
to AMP0+ pin

OPAMP AMP0MS MCU Specific Options Select input to connect
to AMP0- pin

OPAMP AMP1PS MCU Specific Options Select input to connect
to AMP1+ pin

OPAMP AMP1MS MCU Specific Options Select input to connect
to AMP1- pin

OPAMP AMP2PS MCU Specific Options Select input to connect
to AMP2+ pin

OPAMP AMP2MS MCU Specific Options Select input to connect
to AMP2- pin

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,106 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

Clock Configuration

The OPAMP runs on PCLKB.

Pin Configuration

To use the OPAMP HAL module, the port pins for the channels receiving the analog input must be set
as inputs on the Pins tab of the RA Configuration editor.

Refer to the most recent FSP Release Notes for any additional operational limitations for this module.

Usage Notes
Trimming the OPAMP

On MCUs that support trimming, the op-amp trim register is set to the factory default after
the Open API is called.
This function allows the application to trim the operational amplifier to a user setting, which
overwrites the factory default trim values.
Supported on selected MCUs. See hardware manual for details.
Not supported if configured for low power mode (OPAMP_MODE_LOW_POWER).
This function is not reentrant. Only one side of one op-amp can be trimmed at a time.
Complete the procedure for one side of one channel before calling the trim API with the
command OPAMP_TRIM_CMD_START again.

The trim procedure works as follows:
Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Connect a fixed voltage to the Pch (+) input.
Connect the Nch (-) input to the op-amp output to create a voltage follower.
Ensure the op-amp is operating and stabilized.
Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and
save the value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Pch (+) side input with command
OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the
next step).
If A <= B, call trim() for the Pch (+) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and
save the value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Nch (-) side input with command
OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the
next step).
If A <= B, call trim() for the Nch (-) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Examples

Basic Example

This is a basic example of minimal use of the R_OPAMP in an application. The example demonstrates

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,107 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

configuring OPAMP channel 0 for high speed mode, starting the OPAMP and reading the status of the
OPAMP channel running. It also verifies that the stabilization wait time is the expected time for
selected power mode

#define OPAMP_EXAMPLE_CHANNEL (0U)

void basic_example (void)

{

 fsp_err_t err;

 /* Initialize the OPAMP module. */

 err = R_OPAMP_Open(&g_opamp_ctrl, &g_opamp_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the OPAMP module. */

 err = R_OPAMP_Start(&g_opamp_ctrl, 1 << OPAMP_EXAMPLE_CHANNEL);

 assert(FSP_SUCCESS == err);

 /* Look up the required stabilization wait time. */

 opamp_info_t info;

 err = R_OPAMP_InfoGet(&g_opamp_ctrl, &info);

 assert(FSP_SUCCESS == err);

 /* Wait for the OPAMP to stabilize. */

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

}

Trim Example

This example demonstrates the typical trimming procedure for opamp channel 0 using
R_OPAMP_Trim() API.

#ifndef OPAMP_EXAMPLE_CHANNEL

 #define OPAMP_EXAMPLE_CHANNEL (0U)

#endif

#ifndef OPAMP_EXAMPLE_ADC_CHANNEL

 #define OPAMP_EXAMPLE_ADC_CHANNEL (ADC_CHANNEL_2)

#endif

#define ADC_SCAN_END_DELAY (100U)

#define OPAMP_TRIM_LOOP_COUNT (5)

#define ADC_SCAN_END_MAX_TIMEOUT (0xFFFF)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,108 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

uint32_t g_callback_event_counter = 0;

opamp_trim_args_t trim_args_ch =

{

 .channel = OPAMP_EXAMPLE_CHANNEL,

 .input = OPAMP_TRIM_INPUT_PCH

};

/* This callback is called when ADC Scan Complete event is generated. */

void adc_callback (adc_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 g_callback_event_counter++;

}

void trimming_example (void)

{

 fsp_err_t err;

 /* On RA2A1, configure negative feedback and put DAC12 signal on AMP0+ Pin. */

 g_opamp_cfg_extend.plus_input_select_opamp0 = OPAMP_PLUS_INPUT_AMPPS7;

 g_opamp_cfg_extend.minus_input_select_opamp0 = OPAMP_MINUS_INPUT_AMPMS7;

 /* Initialize the OPAMP module. */

 err = R_OPAMP_Open(&g_opamp_ctrl, &g_opamp_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start the OPAMP module. */

 err = R_OPAMP_Start(&g_opamp_ctrl, 1 << OPAMP_EXAMPLE_CHANNEL);

 assert(FSP_SUCCESS == err);

 /* Look up the required stabilization wait time. */

 opamp_info_t info;

 err = R_OPAMP_InfoGet(&g_opamp_ctrl, &info);

 assert(FSP_SUCCESS == err);

 /* Wait for the OPAMP to stabilize. */

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us, BSP_DELAY_UNITS_MICROSECONDS);

 /* Call trim() for the Pch (+) side input */

 trim_procedure(&trim_args_ch);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,109 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

 trim_args_ch.input = OPAMP_TRIM_INPUT_NCH;

 /* Call trim() for the Nch (-) side input */

 trim_procedure(&trim_args_ch);

}

void trim_procedure (opamp_trim_args_t * trim_args)

{

 fsp_err_t err;

 /* Call trim() for the selected channel and input with command OPAMP_TRIM_CMD_START.

*/

 err = R_OPAMP_Trim(&g_opamp_ctrl, OPAMP_TRIM_CMD_START, trim_args);

 assert(FSP_SUCCESS == err);

 /* Measure the fixed voltage connected to the channel input using the SAR ADC and

save the value

 * (referred to as result_a later in this procedure). */

 /* Reset the ADC callback counter */

 g_callback_event_counter = 0;

 err = R_ADC_ScanStart(&g_adc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Wait for ADC scan complete flag */

 uint32_t timeout = ADC_SCAN_END_MAX_TIMEOUT;

 while (g_callback_event_counter == 0 && timeout != 0)

 {

 timeout--;

 }

 if (0 == timeout)

 {

 err = FSP_ERR_TIMEOUT;

 assert(FSP_SUCCESS == err);

 }

 uint16_t result_a;

 err = R_ADC_Read(&g_adc_ctrl, OPAMP_EXAMPLE_ADC_CHANNEL, &result_a);

 assert(FSP_SUCCESS == err);

 /* Iterate over the following loop 5 times: */

 /* Call trim() with command OPAMP_TRIM_CMD_NEXT_STEP for the selected channel and

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,110 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

given input. */

 uint8_t count = OPAMP_TRIM_LOOP_COUNT;

 while (count > 0)

 {

 count--;

 err = R_OPAMP_Trim(&g_opamp_ctrl, OPAMP_TRIM_CMD_NEXT_STEP, trim_args);

 assert(FSP_SUCCESS == err);

 /* Reset the ADC callback counter */

 g_callback_event_counter = 0;

 /* Read converted value after trim completes. */

 err = R_ADC_ScanStart(&g_adc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Wait for ADC scan complete flag */

 timeout = ADC_SCAN_END_MAX_TIMEOUT;

 while (g_callback_event_counter == 0 && timeout != 0)

 {

 timeout--;

 }

 if (0 == timeout)

 {

 err = FSP_ERR_TIMEOUT;

 assert(FSP_SUCCESS == err);

 }

 uint16_t result_b;

 err = R_ADC_Read(&g_adc_ctrl, OPAMP_EXAMPLE_ADC_CHANNEL, &result_b);

 assert(FSP_SUCCESS == err);

 /* Measure the op-amp output using the SAR ADC (referred to as result_b in the next

step). */

 /* If result_a <= result_b, call trim() for the selected channel and input with

command OPAMP_TRIM_CMD_CLEAR_BIT. */

 if (result_a <= result_b)

 {

 err = R_OPAMP_Trim(&g_opamp_ctrl, OPAMP_TRIM_CMD_CLEAR_BIT, trim_args);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,111 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

 }

 }

}

Data Structures

struct opamp_extended_cfg_t

struct opamp_instance_ctrl_t

Macros

#define OPAMP_MASK_CHANNEL_0

Enumerations

enum opamp_trigger_t

enum opamp_agt_link_t

enum opamp_mode_t

enum opamp_plus_input_t

enum opamp_minus_input_t

enum opamp_output_t

Variables

const opamp_api_t g_opamp_on_opamp

Data Structure Documentation

◆ opamp_extended_cfg_t

struct opamp_extended_cfg_t

OPAMP configuration extension. This extension is required and must be provided in
opamp_cfg_t::p_extend.

Data Fields

opamp_agt_link_t agt_link Configure which AGT links are
paired to which channel. Only
applies to channels if OPAMP_T
RIGGER_AGT_START_SOFTWAR
E_STOP or OPAMP_TRIGGER_AG
T_START_ADC_STOP is selected
for the channel.

opamp_mode_t mode Low power, middle speed, or
high speed mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,112 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

opamp_trigger_t trigger_channel_0 Start and stop triggers for
channel 0.

opamp_trigger_t trigger_channel_1 Start and stop triggers for
channel 1.

opamp_trigger_t trigger_channel_2 Start and stop triggers for
channel 2.

opamp_trigger_t trigger_channel_3 Start and stop triggers for
channel 3.

opamp_plus_input_t plus_input_select_opamp0 OPAMP0+ connection.

opamp_minus_input_t minus_input_select_opamp0 OPAMP0- connection.

opamp_output_t output_select_opamp0 OPAMP0O connection.

opamp_plus_input_t plus_input_select_opamp1 OPAMP1+ connection.

opamp_minus_input_t minus_input_select_opamp1 OPAMP1- connection.

opamp_plus_input_t plus_input_select_opamp2 OPAMP2+ connection.

opamp_minus_input_t minus_input_select_opamp2 OPAMP2- connection.

◆ opamp_instance_ctrl_t

struct opamp_instance_ctrl_t

OPAMP instance control block. DO NOT INITIALIZE. Initialized in opamp_api_t::open().

Macro Definition Documentation

◆ OPAMP_MASK_CHANNEL_0

#define OPAMP_MASK_CHANNEL_0

Version of code that implements the API defined in this file

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,113 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

◆ opamp_trigger_t

enum opamp_trigger_t

Start and stop trigger for the op-amp.

Enumerator

OPAMP_TRIGGER_SOFTWARE_START_SOFTWARE
_STOP

Start and stop with APIs.

OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP Start by AGT compare match and stop with
API.

OPAMP_TRIGGER_AGT_START_ADC_STOP Start by AGT compare match and stop after
ADC conversion.

◆ opamp_agt_link_t

enum opamp_agt_link_t

Which AGT timer starts the op-amp. Only applies to channels if
OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP or OPAMP_TRIGGER_AGT_START_ADC_STOP is
selected for the channel. If OPAMP_TRIGGER_SOFTWARE_START_SOFTWARE_STOP is selected for a
channel, then no AGT compare match event will start that op-amp channel.

Enumerator

OPAMP_AGT_LINK_AGT1_OPAMP_0_2_AGT0_OPA
MP_1_3

OPAMP channel 0 and 2 are started by AGT1
compare match. OPAMP channel 1 and 3 are
started by AGT0 compare match.

OPAMP_AGT_LINK_AGT1_OPAMP_0_1_AGT0_OPA
MP_2_3

OPAMP channel 0 and 1 are started by AGT1
compare match. OPAMP channel 2 and 3 are
started by AGT0 compare match.

OPAMP_AGT_LINK_AGT1_OPAMP_0_1_2_3 All OPAMP channels are started by AGT1
compare match.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,114 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

◆ opamp_mode_t

enum opamp_mode_t

Op-amp mode.

Enumerator

OPAMP_MODE_LOW_POWER Low power mode.

OPAMP_MODE_MIDDLE_SPEED Middle speed mode (not supported on all
MCUs)

OPAMP_MODE_HIGH_SPEED High speed mode.

◆ opamp_plus_input_t

enum opamp_plus_input_t

Options to connect AMPnPS pins.

Enumerator

OPAMP_PLUS_INPUT_NONE No Connection.

OPAMP_PLUS_INPUT_AMPPS0 Set AMPPS0. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS1 Set AMPPS1. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS2 Set AMPPS2. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS3 Set AMPPS3. See hardware manual for channel
specific options.

OPAMP_PLUS_INPUT_AMPPS7 Set AMPPS7. See hardware manual for channel
specific options.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,115 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

◆ opamp_minus_input_t

enum opamp_minus_input_t

Options to connect AMPnMS pins.

Enumerator

OPAMP_MINUS_INPUT_NONE No Connection.

OPAMP_MINUS_INPUT_AMPMS0 Set AMPMS0. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS1 Set AMPMS1. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS2 Set AMPMS2. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS3 Set AMPMS3. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS4 Set AMPMS4. See hardware manual for channel
specific options.

OPAMP_MINUS_INPUT_AMPMS7 Set AMPMS7. See hardware manual for channel
specific options.

◆ opamp_output_t

enum opamp_output_t

Options to connect AMP0OS pin.

Enumerator

OPAMP_OUTPUT_NONE No Connection.

OPAMP_OUTPUT_AMPOS0 Set AMPOS0. See hardware manual for channel
specific options.

OPAMP_OUTPUT_AMPOS1 Set AMPOS1. See hardware manual for channel
specific options.

OPAMP_OUTPUT_AMPOS2 Set AMPOS2. See hardware manual for channel
specific options.

OPAMP_OUTPUT_AMPOS3 Set AMPOS3. See hardware manual for channel
specific options.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,116 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

Function Documentation

◆ R_OPAMP_Open()

fsp_err_t R_OPAMP_Open (opamp_ctrl_t *const p_api_ctrl, opamp_cfg_t const *const p_cfg)

Applies power to the OPAMP and initializes the hardware based on the user configuration.
Implements opamp_api_t::open.

The op-amp is not operational until the opamp_api_t::start is called. If the op-amp is configured to
start after AGT compare match, the op-amp is not operational until opamp_api_t::start and the
associated AGT compare match event occurs.

Some MCUs have switches that must be set before starting the op-amp. These switches must be
set in the application code after opamp_api_t::open and before opamp_api_t::start.

Example:

 /* Initialize the OPAMP module. */

 err = R_OPAMP_Open(&g_opamp_ctrl, &g_opamp_cfg);

Return values
FSP_SUCCESS Configuration successful.

FSP_ERR_ASSERTION An input pointer is NULL.

FSP_ERR_ALREADY_OPEN Control block is already opened.

FSP_ERR_INVALID_ARGUMENT An attempt to configure OPAMP in middle
speed mode on MCU that does not support
middle speed mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,117 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

◆ R_OPAMP_InfoGet()

fsp_err_t R_OPAMP_InfoGet (opamp_ctrl_t *const p_api_ctrl, opamp_info_t *const p_info)

Provides the minimum stabilization wait time in microseconds. Implements opamp_api_t::infoGet.

Example:
 /* Look up the required stabilization wait time. */

 opamp_info_t info;

 err = R_OPAMP_InfoGet(&g_opamp_ctrl, &info);

 assert(FSP_SUCCESS == err);

 /* Wait for the OPAMP to stabilize. */

 R_BSP_SoftwareDelay(info.min_stabilization_wait_us,

BSP_DELAY_UNITS_MICROSECONDS);

Return values
FSP_SUCCESS information on opamp_power_mode

stored in p_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,118 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

◆ R_OPAMP_Start()

fsp_err_t R_OPAMP_Start (opamp_ctrl_t *const p_api_ctrl, uint32_t const channel_mask)

If the OPAMP is configured for hardware triggers, enables hardware triggers. Otherwise, starts the
op-amp. Implements opamp_api_t::start.

Some MCUs have switches that must be set before starting the op-amp. These switches must be
set in the application code after opamp_api_t::open and before opamp_api_t::start.

Example:

 /* Start the OPAMP module. */

 err = R_OPAMP_Start(&g_opamp_ctrl, 1 << OPAMP_EXAMPLE_CHANNEL);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Op-amp started or hardware triggers

enabled successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_INVALID_ARGUMENT channel_mask includes a channel that does
not exist on this MCU.

◆ R_OPAMP_Stop()

fsp_err_t R_OPAMP_Stop (opamp_ctrl_t *const p_api_ctrl, uint32_t const channel_mask)

Stops the op-amp. If the OPAMP is configured for hardware triggers, disables hardware triggers.
Implements opamp_api_t::stop.

Return values
FSP_SUCCESS Op-amp stopped or hardware triggers

disabled successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_INVALID_ARGUMENT channel_mask includes a channel that does
not exist on this MCU.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,119 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

◆ R_OPAMP_StatusGet()

fsp_err_t R_OPAMP_StatusGet (opamp_ctrl_t *const p_api_ctrl, opamp_status_t *const p_status)

Provides the operating status for each op-amp in a bitmask. This bit is set when operation begins,
before the stabilization wait time has elapsed. Implements opamp_api_t::statusGet.

Return values
FSP_SUCCESS Operating status of each op-amp provided

in p_status.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_OPAMP_Trim()

fsp_err_t R_OPAMP_Trim (opamp_ctrl_t *const p_api_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

On MCUs that support trimming, the op-amp trim register is set to the factory default after open().
This function allows the application to trim the operational amplifier to a user setting, which
overwrites the factory default factory trim values.

Not supported on all MCUs. See hardware manual for details. Not supported if configured for low
power mode (OPAMP_MODE_LOW_POWER).

This function is not reentrant. Only one side of one op-amp can be trimmed at a time. Complete the
procedure for one side of one channel before calling trim() with command
OPAMP_TRIM_CMD_START again.

Implements opamp_api_t::trim.

Reference: Section 37.9 "User Offset Trimming" RA2A1 hardware manual R01UM0008EU0130. The
trim procedure works as follows:

Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Connect a fixed voltage to the Pch (+) input.
Connect the Nch (-) input to the op-amp output to create a voltage follower.
Ensure the op-amp is operating and stabilized.
Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the
value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the next step).
If A <= B, call trim() for the Pch (+) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the
value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_NEXT_STEP.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,120 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Operational Amplifier (r_opamp)

Measure the op-amp output using the SAR ADC (referred to as B in the next step).
If A <= B, call trim() for the Nch (-) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_UNSUPPORTED Trimming is not supported on this MCU.

FSP_ERR_INVALID_STATE The command is not valid in the current
state of the trim state machine.

FSP_ERR_INVALID_ARGUMENT The requested channel is not operating or
the trim procedure is not in progress for this
channel/input combination.

FSP_ERR_INVALID_MODE Trim is not allowed in low power mode.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_OPAMP_Close()

fsp_err_t R_OPAMP_Close (opamp_ctrl_t *const p_api_ctrl)

Stops the op-amps. Implements opamp_api_t::close.

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

Variable Documentation

◆ g_opamp_on_opamp

const opamp_api_t g_opamp_on_opamp

OPAMP Implementation of OPAMP interface.

4.2.37 Octa Serial Peripheral Interface Flash (r_ospi)
Modules

Functions

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,121 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

fsp_err_t R_OSPI_Open (spi_flash_ctrl_t *p_ctrl, spi_flash_cfg_t const *const
p_cfg)

fsp_err_t R_OSPI_Close (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_OSPI_DirectWrite (spi_flash_ctrl_t *p_ctrl, uint8_t const *const
p_src, uint32_t const bytes, bool const read_after_write)

fsp_err_t R_OSPI_DirectRead (spi_flash_ctrl_t *p_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

fsp_err_t R_OSPI_DirectTransfer (spi_flash_ctrl_t *p_ctrl,
spi_flash_direct_transfer_t *const p_transfer,
spi_flash_direct_transfer_dir_t direction)

fsp_err_t R_OSPI_SpiProtocolSet (spi_flash_ctrl_t *p_ctrl, spi_flash_protocol_t
spi_protocol)

fsp_err_t R_OSPI_XipEnter (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_OSPI_XipExit (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_OSPI_Write (spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src,
uint8_t *const p_dest, uint32_t byte_count)

fsp_err_t R_OSPI_Erase (spi_flash_ctrl_t *p_ctrl, uint8_t *const
p_device_address, uint32_t byte_count)

fsp_err_t R_OSPI_StatusGet (spi_flash_ctrl_t *p_ctrl, spi_flash_status_t *const
p_status)

fsp_err_t R_OSPI_BankSet (spi_flash_ctrl_t *p_ctrl, uint32_t bank)

Detailed Description

Driver for the OSPI peripheral on RA MCUs. This module implements the SPI Flash Interface.

Overview
The OSPI peripheral interfaces with an external OctaFlash chip to perform data I/O Operations.

Features

The OSPI driver has the following key features:

Perform data I/O Operation in both SPI and OPI modes
Can be configured with OctaFlash device on either of the 2 channels
Memory mapped read access to the OctaFlash
Programming the OctaFlash device using single continuous write
Erasing the OctaFlash device

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,122 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

Sending device specific commands and reading back responses
Entering and exiting XIP (Single Continuous Read) mode
3 byte addressing for SPI
4 byte addressing for SPI and OPI
Auto-calibration for OPI mode (SOPI and DOPI)

Additional build-time features:

Optional (build-time) DMAC support for data transmission.

Note
Use of DMAC for data transmission is strongly recommended. Without the use of DMAC, due to the high-speed
hardware design of the OSPI peripheral, data transmission can be sensitive to timing variance, which could cause
software-based memory-mapped operations to fail unexpectedly.

Configuration
Build Time Configurations for r_ospi

The following build time configurations are defined in driver/r_ospi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DMAC Support Enable
Disable

Disable Enable DMAC support
for the OSPI module.

Configurations for Driver > Storage > OSPI Driver on r_ospi

This module can be added to the Stacks tab via New Stack > Driver > Storage > OSPI Driver on
r_ospi.

Configuration Options Default Description

General > Single
Continuous Mode >
Read Idle Time

Must be an integer
greater than 0 with
maximum configurable
value of 127

100 Specify the read idle
time.

General > Single
Continuous Mode >
Write Idle Time

Must be an integer
greater than 0 with
maximum configurable
value of 127

100 Specify the write idle
time.

General > Name Name must be a valid
C symbol

g_ospi0 Module name.

General > Channel Channel should be 0 or
1

0 Specify the OSPI chip
select line to use.

General > Flash Size Must be an integer
greater than 0 with
maximum configurable

0x04000000 Specify the OctaFlash
size in bytes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,123 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

value of 0x3FFFFFFF

General > SPI Protocol SPI
Single data rate
OPI
Dual data rate
OPI

SPI Select the initial SPI
protocol. SPI protocol
can be changed on the
OctaFlash using
R_OSPI_DirectTransfer(
).

General > Address
Bytes

3
4

4 Select the number of
address bytes.

OPI Mode > Auto-
Calibration > Data
latching delay

Must be a valid non-
negative integer with
maximum configurable
value of 0xFF

0x80 Set this to 0 to enable
auto-calibration. 0x80
is the default value
calculated at 3.3V and
25°C

OPI Mode > Auto-
Calibration > Auto-
Calibration Address

Must be a valid non-
negative integer with
maximum configurable
value of 0xFFFFFFFF

0x00 Set the address of the
read/write destination
to be performed for
auto-calibration.

OPI Mode > Command
Definitions > Page
Program Command

Must be a 16-bit OSPI
Page Program
Command under OPI
Mode|Command
Definitions

0x12ED The command to
program a page in OPI
mode.

OPI Mode > Command
Definitions > Read
Command

Must be a 16-bit OSPI
Read Command under
OPI Mode|Command
Definitions

0xEC13 The command to read
in SOPI mode (8READ).

OPI Mode > Command
Definitions > Dual
Read Command

Must be a 16-bit OSPI
Dual Read Command
under OPI
Mode|Command
Definitions

0xEE11 The command to read
in DOPI mode (8DTRD).

OPI Mode > Command
Definitions > Write
Enable Command

Must be a 16-bit OSPI
Write Enable Command
under OPI
Mode|Command
Definitions

0x06F9 The command to
enable write in OPI
mode.

OPI Mode > Command
Definitions > Status
Command

Must be a 16-bit OSPI
Status Command under
OPI Mode|Command
Definitions

0x05FA The command to query
the status of a write or
erase command in OPI
mode.

OPI Mode > Command
Length Bytes

Must be an integer
between 1 and 2

2 Command length in
bytes

OPI Mode > Memory
Read Dummy Cycles

Must be an integer
between 6 and 10

10 Memory read dummy
cycles

OPI Mode > DOPI Byte
Order

Byte0, Byte1,
Byte2, Byte3

Byte0, Byte1, Byte2,
Byte3

Byte order on the
external bus

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,124 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

Byte1, Byte0,
Byte3, Byte2

SPI Mode > Command
Definitions > Page
Program Command

Must be a 8-bit OSPI
Page Program
Command under SPI
Mode|Command
Definitions

0x12 The command to
program a page in SPI
mode.

SPI Mode > Command
Definitions > Read
Command

Must be a 8-bit OSPI
Read Command under
SPI Mode|Command
Definitions

0x13 The command to read
in SPI mode.

SPI Mode > Command
Definitions > Write
Enable Command

Must be a 16-bit OSPI
Write Enable Command
under SPI
Mode|Command
Definitions

0x06 The command to
enable write in SPI
mode.

SPI Mode > Command
Definitions > Status
Command

Must be a 16-bit OSPI
Status Command under
SPI Mode|Command
Definitions

0x05 The command to query
the status of a write or
erase command in SPI
mode.

Common Command
Definitions > Sector
Erase Command

Must be a value
greater than or equal
to 0

0x21DE The command to erase
a sector. Set Sector
Erase Size to 0 if
unused.

Common Command
Definitions > Block
Erase Command

Must be a value
greater than or equal
to 0

0xDC23 The command to erase
a block. Set Block
Erase Size to 0 if
unused.

Common Command
Definitions > Chip
Erase Command

Must be a value
greater than or equal
to 0

0xC738 The command to erase
the entire chip. Set
Chip Erase Command
to 0 if unused.

Common Command
Definitions > Write
Status Bit

Must be an integer
between 0 and 7

0 Which bit contains the
write in progress status
returned from the
Write Status
Command.

Common Command
Definitions > Sector
Erase Size

Must be an integer
greater than or equal
to 0

4096 The sector erase size.
Set Sector Erase Size
to 0 if Sector Erase is
not supported.

Common Command
Definitions > Block
Erase Size

Must be an integer
greater than or equal
to 0

65536 The block erase size.
Set Block Erase Size to
0 if Block Erase is not
supported.

Chip Select Timing
Setting > Memory
Mapped Read

2
5
7

2 Memory mapped read
command execution
interval setting in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,125 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

Command Interval 9
11
13
15
17

OCTACLK units

Chip Select Timing
Setting > Memory
Mapped Write
Command Interval

2
5
7
9
11
13
15
17

2 Memory mapped write
command execution
interval setting in
OCTACLK units

Chip Select Timing
Setting > Command
Interval

2
5
7
9
11
13
15
17

2 Command execution
interval setting in
OCTACLK units

Chip Select Timing
Setting > Memory
Mapped Read Pull-up
Timing

5 SPI/SOPI
6 SPI/SOPI
7 SPI/SOPI, 6.5
DOPI
8 SPI/SOPI, 7.5
DOPI
9 SPI/SOPI, 8.5
DOPI

5 SPI/SOPI Memory mapped read
signal pull-up timing
setting in OCTACLK
units

Chip Select Timing
Setting > Memory
Mapped Write Pull-up
Timing

2 SPI/SOPI, 1.5
DOPI
3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI
6 SPI/SOPI, 5.5
DOPI
7 SPI/SOPI, 6.5
DOPI
8 SPI/SOPI, 7.5
DOPI
9 SPI/SOPI, 8.5
DOPI

2 SPI/SOPI, 1.5 DOPI Memory mapped write
signal pull-up timing
setting in OCTACLK
units

Chip Select Timing
Setting > Pull-up
Timing

5 SPI/SOPI
6 SPI/SOPI
7 SPI/SOPI, 6.5
DOPI
8 SPI/SOPI, 7.5
DOPI
9 SPI/SOPI, 8.5

5 SPI/SOPI Signal pull-up timing
setting in OCTACLK
units

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,126 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

DOPI

Chip Select Timing
Setting > Memory
Mapped Read Pull-
down Timing

3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI

3 SPI/SOPI, 2.5 DOPI Memory mapped read
signal pull-down timing
setting in OCTACLK
units

Chip Select Timing
Setting > Memory
Mapped Write Pull-
down Timing

3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI

3 SPI/SOPI, 2.5 DOPI Memory mapped write
signal pull-down timing
setting in OCTACLK
units

Chip Select Timing
Setting > Pull-down
Timing

3 SPI/SOPI, 2.5
DOPI
4 SPI/SOPI, 3.5
DOPI
5 SPI/SOPI, 4.5
DOPI

3 SPI/SOPI, 2.5 DOPI Signal pull-down timing
setting in OCTACLK
units

Note
The user is expected to modify the command definitions based on the OctaFlash chip and SPI communication
mode. The default mode is SPI mode and default erase commands are set for OPI mode based on Macronix
OctaFlash MX25LM51245G.

Enabling DMAC

DMAC data transmission support is configurable and is disabled from the build by default. Use of a
high-priority (low channel number) DMAC for data transmission is strongly recommended.

For further details on DMAC please refer Direct Memory Access Controller (r_dmac).

Clock Configuration

PCLKB is the Octal-SPI bus interface, and PCLKA is used to set OSPI registers.

The signals to the OSPI device are derived from OCTASPICLK. The OMSCLK signal is OCTASPICLK / 2.
Data can be output at the OCTASPICLK rate if SPI Protocol is set to Dual Data Rate OPI.

The PCLKB, PCLKA, and OCTASPICLK frequencies can be set on the Clocks tab of the RA
Configuration editor.

Pin Configuration

The following pins are available to connect to an external OSPI device:

OMSCLK: OSPI clock output (OCTASPICLK / 2)
OMDQS: OSPI data strobe signal
OMCS0: OSPI device 0 select
OMCS1: OSPI device 1 select
OMSIO0: Data 0 I/O
OMSIO1: Data 1 I/O
OMSIO2: Data 2 I/O

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,127 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

OMSIO3: Data 3 I/O
OMSIO4: Data 4 I/O
OMSIO5: Data 5 I/O
OMSIO6: Data 6 I/O
OMSIO7: Data 7 I/O

Note
Data pins must be configured with IOPORT_CFG_DRIVE_HS_HIGH.
Chip Select pins should be configured with at least IOPORT_CFG_DRIVE_MEDIUM.

Usage Notes
OSPI Memory Mapped Access

After R_OSPI_Open() completes successfully, the OctaFlash device contents are mapped to address
0x68000000 (channel 0) or 0x70000000 (channel 1) based on the channel configured and can be
read like on-chip flash. Channel 0 supports 128 MB while Channel 1 supports 256 MB of address
space.

Auto-calibration

Auto-calibration procedure is triggered automatically when the 'Data latching delay' field in the
configurator properties is set to 0. The user application is responsible for setting the appropriate
preamble pattern before calling R_OSPI_Open() with SOPI/DOPI mode or changing the SPI protocol to
SOPI/DOPI using R_OSPI_SpiProtocolSet() API. The appropriate preamble pattern can be written to the
desired address using the R_OSPI_Write() API while in the SPI mode. Ensure that the same address is
passed through the configurator. If the OctaFlash chip is already in SOPI/DOPI mode, the preamble
pattern must be programmed using the debugger before calling R_OSPI_Open().

Chip Select Latencies

Chip select latencies can be set through the configurator. The default settings support SOPI and SPI
at minimum latency. In case the driver is opened in SPI mode and will be switched to DOPI mode
later using R_OSPI_SpiProtocolSet(), please select latencies required for DOPI before calling
R_OSPI_Open().

OctaFlash Commands

Set the erase commands based on intended mode of operation (SPI or OPI). These
commands cannot be changed during run-time.
Read, Write and Status commands for both SPI and OPI are configured allowing switching
between the modes at run-time.

Limitations

Developers should be aware of the following limitations when using the OSPI driver:

Single continuous read in SPI mode is not supported by the peripheral. The maximum
amount of data that can be read using a single read command is 4-bytes (When doing a
32-bit access).
Fast Reads would be slower than regular reads as the SPI mode cannot be operated with an
OMSCLK greater than 50MHz.

Examples

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,128 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

Basic Example

This is a basic example of minimal use of the OSPI in an application.

#define OSPI_EXAMPLE_DATA_LENGTH (1024)

uint8_t g_dest[OSPI_EXAMPLE_DATA_LENGTH];

/* Place data in the .ospi_flash section to flash it during programming. */

const uint8_t g_src[OSPI_EXAMPLE_DATA_LENGTH] BSP_PLACE_IN_SECTION(".ospi_flash") =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

/* Place code in the .code_in_ospi section to flash it during programming. */

void r_ospi_example_function(void) BSP_PLACE_IN_SECTION(".code_in_ospi")

__attribute__((noinline));

void r_ospi_example_function (void)

{

 /* Add code here. */

}

void r_ospi_basic_example (void)

{

 /* Open the OSPI instancee */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 /* (Optional) Change SPI to DOPI mode */

 r_ospi_example_spi_to_dopi();

 /* After R_OSPI_Open() and any required device specific intiialization, data can be

read directly from the OSPI flash. */

 memcpy(&g_dest[0], &g_src[0], OSPI_EXAMPLE_DATA_LENGTH);

 /* After R_OSPI_Open() and any required device specific intiialization, functions in

the OSPI flash can be called. */

 r_ospi_example_function();

}

Reading Status Register Example (R_OSPI_DirectWrite, R_OSPI_DirectRead)

This is an example of using R_OSPI_DirectWrite followed by R_OSPI_DirectRead to send the read
status register command and read back the status register from the device.

#define OSPI_COMMAND_READ_STATUS_REGISTER (0x05U)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,129 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

void r_ospi_direct_example (void)

{

 spi_flash_direct_transfer_t ospi_test_direct_transfer =

 {

 .command = OSPI_TEST_READ_STATUS_COMMAND_SPI_MODE,

 .address = 0U,

 .data = 0U,

 .command_length = 1U,

 .address_length = 0U,

 .data_length = 0U,

 .dummy_cycles = 0U

 };

 /* Open the OSPI instance. */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 /* Write Enable */

 err = R_OSPI_DirectTransfer(&g_ospi0_ctrl, &ospi_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);

 assert(FSP_SUCCESS == err);

 /* Read Status Register */

 ospi_test_direct_transfer.command = OSPI_TEST_READ_STATUS_COMMAND_SPI_MODE;

 ospi_test_direct_transfer.data_length = 1U;

 err = R_OSPI_DirectTransfer(&g_ospi0_ctrl, &ospi_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_READ);

 assert(FSP_SUCCESS == err);

 /* Check if Write Enable is set */

 if (OSPI_WEN_BIT_MASK != (ospi_test_direct_transfer.data & OSPI_WEN_BIT_MASK))

 {

 __BKPT(0);

 }

}

Auto-calibration Example (R_OSPI_DirectOpen, R_OSPI_DirectWrite,
R_OSPI_SpiProtocolSet)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,130 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

This is an example of using R_OSPI_SpiProtocolSet to change the operating mode from SPI to SOPI
and allow the driver to initiate auto-calibration.

#define OSPI_DOPI_PREAMBLE_PATTERN_LENGTH_BYTES (16U)

#define OSPI_EXAMPLE_PREAMBLE_ADDRESS (0x68000000U) /* Device connected to CS0 */

const uint8_t g_preamble_bytes[OSPI_DOPI_PREAMBLE_PATTERN_LENGTH_BYTES] =

{

 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x08, 0x00, 0x00, 0xF7, 0xFF, 0x00, 0x08,

0xF7, 0x00, 0xF7

};

void ospi_example_wait_until_wip (void)

{

 fsp_err_t err = FSP_SUCCESS;

 spi_flash_status_t status;

 status.write_in_progress = true;

 uint32_t timeout = UINT32_MAX;

 while ((status.write_in_progress) && (--timeout))

 {

 err = R_OSPI_StatusGet(&g_ospi0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 if (0 == timeout)

 {

 assert(FSP_SUCCESS == err);

 }

}

void r_ospi_auto_calibrate_example (void)

{

 /* Open the OSPI instance. */

 /* Set data_latch_delay_clocks to 0x0 to enable auto-calibration */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

 assert(FSP_SUCCESS == err);

 uint8_t * preamble_pattern_addr = (uint8_t *) OSPI_EXAMPLE_PREAMBLE_ADDRESS;

 err = R_OSPI_Write(&g_ospi0_ctrl, g_preamble_bytes, preamble_pattern_addr,

OSPI_EXAMPLE_PREAMBLE_ADDRESS);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,131 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

 assert(FSP_SUCCESS == err);

 /* Wait until write has been completed */

 ospi_example_wait_until_wip();

 /* Change from SPI to DOPI mode */

 r_ospi_example_spi_to_dopi();

}

Octaclk Update Example (R_OSPI_SpiProtocolSet)

This is an example of using R_BSP_OctaclkUpdate to change the Octal-SPI clock frequency during run
time. The OCTACLK frequency must be updated before calling the R_OSPI_SpiProtocolSet with
appropriate clock source and divider settings required to be set for the new SPI protocol mode.
Ensure that the clock source selected is started.

static void ospi_example_change_omclk (void)

{

 /* Ensure clock source (PLL2 in this example) is running before changing the OCTACLK

frequency */

 bsp_octaclk_settings_t octaclk_settings;

 octaclk_settings.source_clock = BSP_CLOCKS_CLOCK_PLL2;

 octaclk_settings.divider = BSP_CLOCKS_OCTACLK_DIV_2;

 R_BSP_OctaclkUpdate(&octaclk_settings);

}

OSPI Data and IAR

When using the IAR compiler, OSPI data must be const qualified to be downloaded by the debugger.

Data Structures

struct ospi_instance_ctrl_t

Enumerations

enum ospi_device_number_t

enum ospi_command_cs_pullup_clocks_t

enum ospi_command_cs_pulldown_clocks_t

enum ospi_dopi_byte_order_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,132 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

Data Structure Documentation

◆ ospi_instance_ctrl_t

struct ospi_instance_ctrl_t

Instance control block. DO NOT INITIALIZE. Initialization occurs when spi_flash_api_t::open is called

Enumeration Type Documentation

◆ ospi_device_number_t

enum ospi_device_number_t

Enumerator

OSPI_DEVICE_NUMBER_0 Device connected to Chip-Select 0.

OSPI_DEVICE_NUMBER_1 Device connected to Chip-Select 1.

◆ ospi_command_cs_pullup_clocks_t

enum ospi_command_cs_pullup_clocks_t

Enumerator

OSPI_COMMAND_CS_PULLUP_CLOCKS_2 1.5 clocks DOPI mode; 2 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_3 2.5 clocks DOPI mode; 3 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_4 3.5 clocks DOPI mode; 4 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_5 4.5 clocks DOPI mode; 5 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_6 5.5 clocks DOPI mode; 6 Clocks all other
modes; Unsupported for DOPI Read

OSPI_COMMAND_CS_PULLUP_CLOCKS_7 6.5 clocks DOPI mode; 7 Clocks all other
modes

OSPI_COMMAND_CS_PULLUP_CLOCKS_8 7.5 clocks DOPI mode; 8 Clocks all other
modes

OSPI_COMMAND_CS_PULLUP_CLOCKS_9 8.5 clocks DOPI mode; 9 Clocks all other
modes

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,133 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

◆ ospi_command_cs_pulldown_clocks_t

enum ospi_command_cs_pulldown_clocks_t

Enumerator

OSPI_COMMAND_CS_PULLDOWN_CLOCKS_3 2.5 clocks DOPI mode; 3 Clocks all other
modes

OSPI_COMMAND_CS_PULLDOWN_CLOCKS_4 3.5 clocks DOPI mode; 4 Clocks all other
modes

OSPI_COMMAND_CS_PULLDOWN_CLOCKS_5 4.5 clocks DOPI mode; 5 Clocks all other
modes

◆ ospi_dopi_byte_order_t

enum ospi_dopi_byte_order_t

Enumerator

OSPI_DOPI_BYTE_ORDER_0123 DOPI byte order byte 0, byte 1, byte 2, byte 3.

OSPI_DOPI_BYTE_ORDER_1032 DOPI byte order byte 1, byte 0, byte 3, byte 2.

Function Documentation

◆ R_OSPI_Open()

fsp_err_t R_OSPI_Open (spi_flash_ctrl_t * p_ctrl, spi_flash_cfg_t const *const p_cfg)

Open the OSPI driver module. After the driver is open, the OSPI can be accessed like internal flash
memory.

Implements spi_flash_api_t::open.

Example:

 /* Open the OSPI instancee */

 fsp_err_t err = R_OSPI_Open(&g_ospi0_ctrl, &g_ospi0_cfg);

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL.

FSP_ERR_ALREADY_OPEN Driver has already been opened with the
same p_ctrl.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,134 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

◆ R_OSPI_Close()

fsp_err_t R_OSPI_Close (spi_flash_ctrl_t * p_ctrl)

Close the OSPI driver module.

Implements spi_flash_api_t::close.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_instance_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_OSPI_DirectWrite()

fsp_err_t R_OSPI_DirectWrite (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint32_t const
bytes, bool const read_after_write)

Writes raw data directly to the OctaFlash. API not supported. Use R_OSPI_DirectTransfer

Implements spi_flash_api_t::directWrite.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

◆ R_OSPI_DirectRead()

fsp_err_t R_OSPI_DirectRead (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_dest, uint32_t const bytes
)

Reads raw data directly from the OctaFlash. API not supported. Use R_OSPI_DirectTransfer.

Implements spi_flash_api_t::directRead.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,135 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

◆ R_OSPI_DirectTransfer()

fsp_err_t R_OSPI_DirectTransfer (spi_flash_ctrl_t * p_ctrl, spi_flash_direct_transfer_t *const
p_transfer, spi_flash_direct_transfer_dir_t direction)

Read/Write raw data directly with the OctaFlash.

Implements spi_flash_api_t::directTransfer.

Example:

 /* Write Enable */

 err = R_OSPI_DirectTransfer(&g_ospi0_ctrl, &ospi_test_direct_transfer,

SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_OSPI_SpiProtocolSet()

fsp_err_t R_OSPI_SpiProtocolSet (spi_flash_ctrl_t * p_ctrl, spi_flash_protocol_t spi_protocol)

Sets the SPI protocol.

Implements spi_flash_api_t::spiProtocolSet.

Return values
FSP_SUCCESS SPI protocol updated on MCU peripheral.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_CALIBRATE_FAILED Failed to perform auto-calibrate.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,136 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

◆ R_OSPI_XipEnter()

fsp_err_t R_OSPI_XipEnter (spi_flash_ctrl_t * p_ctrl)

Enters Single Continuous Read/Write mode.

Implements spi_flash_api_t::xipEnter.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_OSPI_XipExit()

fsp_err_t R_OSPI_XipExit (spi_flash_ctrl_t * p_ctrl)

Exits XIP (execute in place) mode.

Implements spi_flash_api_t::xipExit.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,137 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

◆ R_OSPI_Write()

fsp_err_t R_OSPI_Write (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint8_t *const p_dest,
uint32_t byte_count)

Program a page of data to the flash.

Implements spi_flash_api_t::write.

Example:

 err = R_OSPI_Write(&g_ospi0_ctrl, g_preamble_bytes, preamble_pattern_addr,

OSPI_EXAMPLE_PREAMBLE_ADDRESS);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION p_instance_ctrl, p_dest or p_src is NULL, or
byte_count crosses a page boundary.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_DEVICE_BUSY Another Write/Erase transaction is in
progress.

FSP_ERR_INVALID_SIZE Write operation crosses page-boundary.

◆ R_OSPI_Erase()

fsp_err_t R_OSPI_Erase (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_device_address, uint32_t
byte_count)

Erase a block or sector of flash. The byte_count must exactly match one of the erase sizes defined
in spi_flash_cfg_t. For chip erase, byte_count must be SPI_FLASH_ERASE_SIZE_CHIP_ERASE.

Implements spi_flash_api_t::erase.

Return values
FSP_SUCCESS The command to erase the flash was

executed successfully.

FSP_ERR_ASSERTION p_instance_ctrl or p_device_address is NULL,
byte_count doesn't match an erase size
defined in spi_flash_cfg_t, or byte_count is
set to 0.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_DEVICE_BUSY The device is busy.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,138 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Octa Serial Peripheral Interface Flash (r_ospi)

◆ R_OSPI_StatusGet()

fsp_err_t R_OSPI_StatusGet (spi_flash_ctrl_t * p_ctrl, spi_flash_status_t *const p_status)

Gets the write or erase status of the flash.

Implements spi_flash_api_t::statusGet.

Example:

 err = R_OSPI_StatusGet(&g_ospi0_ctrl, &status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS The write status is in p_status.

FSP_ERR_ASSERTION p_instance_ctrl or p_status is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_OSPI_BankSet()

fsp_err_t R_OSPI_BankSet (spi_flash_ctrl_t * p_ctrl, uint32_t bank)

Selects the bank to access.

Implements spi_flash_api_t::bankSet.

Return values
FSP_ERR_UNSUPPORTED API not supported by OSPI.

4.2.38 Parallel Data Capture (r_pdc)
Modules

Functions

fsp_err_t R_PDC_Open (pdc_ctrl_t *const p_api_ctrl, pdc_cfg_t const *const
p_cfg)

 Powers on PDC, handles required initialization described in the
hardware manual. More...

fsp_err_t R_PDC_Close (pdc_ctrl_t *const p_api_ctrl)

 Stops and closes the transfer interface, disables and powers off the
PDC, clears internal driver data and disables interrupts. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,139 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Parallel Data Capture (r_pdc)

fsp_err_t R_PDC_CaptureStart (pdc_ctrl_t *const p_api_ctrl, uint8_t *const
p_buffer)

 Starts a capture. Enables interrupts. More...

Detailed Description

Driver for the PDC peripheral on RA MCUs. This module implements the PDC Interface.

Overview
The PDC peripheral supports interfacing with external cameras by accepting timing and data signals
in order to capture incoming data. A callback is invoked every time a frame of data is accepted.

Features

Capture incoming data into a user defined buffer
Data bytes per pixel can be configured
Endianess of the incoming data can be specified
Supports configuring capture width and height
Supports configuring vertical and horizontal sync polarity
Horizontal and Vertical position for image/data capture can be specified
External clock to the camera module can be adjusted
Choice between DMA and DTC to transfer out the captured data
The specified user callback is invoked when a data frame is captured

Configuration
Build Time Configurations for r_pdc

The following build time configurations are defined in fsp_cfg/r_pdc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Graphics > PDC Driver on r_pdc

This module can be added to the Stacks tab via New Stack > Driver > Graphics > PDC Driver on
r_pdc.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_pdc0 Module name.

Input > Signal polarity
> HSYNC

High
Low

High Specify the active
polarity of the HSYNC
signal.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,140 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Parallel Data Capture (r_pdc)

Input > Signal polarity
> VSYNC

High
Low

High Specify the active
polarity of the VSYNC
signal.

Input > Capture
Specifications >
Number of pixels to
capture horizontally

Value must be an
integer greater than 0

640 Specify the number of
horizontal pixels to
capture.

Input > Capture
Specifications >
Number of lines to
capture vertically

Value must be an
integer greater than 0

480 Specify the number of
vertical pixels to
capture.

Input > Capture
Specifications >
Horizontal pixel to start
capture from

Value must be an
integer

0 Specify the horizontal
pixel to start capturing
image data from.
Allows an image
smaller than the native
resolution of a camera
to be captured.

Input > Capture
Specifications > Line to
start capture from

Value must be an
integer

0 Specify the vertical line
to start capturing
image data from.
Allows an image
smaller than the native
resolution of a camera
to be captured.

Input > Bytes per pixel Value must be an
integer greater than 0

2 Specify the number of
bytes per pixel of the
captured image data.

Input > Clock divider CLK/2
CLK/4
CLK/6
CLK/8
CLK/10
CLK/12
CLK/14
CLK/16

CLK/2 Specify the clock
divider of the clock
input to the PDC
peripheral.

Input > Endianess Little
Big

Little Specify the endianness
of the captured image
data.

Output > Buffer >
Image buffer name

Name must be a valid
C symbol

g_user_buffer Specify the name of
the data buffer to
create or set to NULL, if
it is to be created by
the user external to the
PDC driver.

Output > Buffer >
Image buffer section

This property must be
a valid section name

.bss Specify the RAM
section for the image
data buffer. Typically
.bss (internal RAM) or

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,141 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Parallel Data Capture (r_pdc)

.sdram. When Arm
Compiler 6 is used to
place this memory in
on-chip SRAM, the
section name must be
.bss or start with .bss.
to avoid consuming
unnecessary ROM
space.

Output > Buffer >
Number of image
buffers

Value must be an
integer greater than 0

1 Specify the number of
buffers to create.

Interrupts > Callback Name must be a valid
C symbol

g_pdc_user_callback A user callback
function must be
provided. This callback
is invoked for every
successful frame
capture and any error
conditions

Interrupts > PDC
Interrupt Priority

MCU Specific Options Select the PDC
interrupt priority.

Interrupts > DTC
Interrupt Priority

MCU Specific Options Select the DTC
interrupt priority.

Clock Configuration

The PDC peripheral module uses the PCLKB as its clock source. The maximum clock to the camera
module is PCLKB / 2.

Pin Configuration

The PCKO pin is a clock output and should be connected to the clock input of the camera. The PIXCLK
pin is a clock input and should be connected to the output pixel clock of the camera. Likewise, the
HSYNC and VSYNC pins must be connected to the horizontal and vertical sync signals of the camera,
respectively. The PIXD0-PIXD7 pins are the 8-bit data bus input and should be connected to the
relevant output pins of the camera.

Note
Camera control and serial communication pins must be configured separately and are not controlled by this
module.

Usage Notes
Interrupt Configuration

PDC error interrupts are used by this module for reporting errors such as overrun, underrun,
vertical line number setting and horizontal byte number setting errors.
In addition to the PDC error interrupts, DMA or DTC interrupts are also used internally to
perform data transfer from this peripheral to the specified image buffer.
Receive data ready interrupt is used as activation source for DMA and DTC trigger.

Enabling Transfer Modules

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,142 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Parallel Data Capture (r_pdc)

An option to select between DMAC or DTC is provided with DMA as the default transfer
choice.
For further details on DMA please refer Direct Memory Access Controller (r_dmac)
For further details on DTC please refer Data Transfer Controller (r_dtc)

PDC setup with external camera

Before configuring the external camera device the PDC Open API must be called in order to
start clock output.
Ensure that the memory pointed to by p_buffer is both valid and large enough to store a
complete image.
The amount of space required (in bytes) can be calculated as: size (bytes) = image width
(pixels) * image height (lines) * number of bytes per pixel
Ensure that the size above is divisible by and aligned to 32 bytes.

Examples
Basic Example

This is a basic example of minimal use of the PDC in an application. This example shows how this
driver can be used for capturing data from an external I/O device such as an image sensor.

void g_pdc_user_callback (pdc_callback_args_t * p_args)

{

 if (PDC_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_capture_ready = true;

 }

}

void basic_example (void)

{

 fsp_err_t err;

 /* Initialize the PDC module */

 err = R_PDC_Open(&g_pdc0_ctrl, &g_pdc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the camera module at this point. This implementation is camera vendor

specific. */

 camera_module_initialization();

 /* Initialize capture ready flag to false. This gets set to true in PDC callback

upon successful frame capture. */

 g_capture_ready = false;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,143 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Parallel Data Capture (r_pdc)

 err = R_PDC_CaptureStart(&g_pdc0_ctrl, g_user_buffer);

 assert(FSP_SUCCESS == err);

 uint32_t timeout_ms = PDC_DELAY_MS;

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((true != g_capture_ready) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (0U == timeout_ms)

 {

 __BKPT(0);

 }

}

static void camera_module_initialization (void)

{

 /* Camera vendor specific initialization to be done here */

}

Data Structures

struct pdc_instance_ctrl_t

Data Structure Documentation

◆ pdc_instance_ctrl_t

struct pdc_instance_ctrl_t

PDC instance control block. DO NOT INITIALIZE.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,144 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Parallel Data Capture (r_pdc)

◆ R_PDC_Open()

fsp_err_t R_PDC_Open (pdc_ctrl_t *const p_api_ctrl, pdc_cfg_t const *const p_cfg)

Powers on PDC, handles required initialization described in the hardware manual.

Implements pdc_api_t::open.

The Open function provides initial configuration for the PDC module. It powers on the module and
enables the PCLKO output and the PIXCLK input. Further initialization requires the PIXCLK input to
be running in order to be able to reset the PDC as part of its initialization. This clock is input from a
camera module and so the reset and further initialization is performed in pdc_api_t::captureStart.
This function should be called once prior to calling any other PDC API functions. After the PDC is
opened the Open function should not be called again without first calling the Close function.

Example:

 /* Initialize the PDC module */

 err = R_PDC_Open(&g_pdc0_ctrl, &g_pdc0_cfg);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION One or more of the following parameters is
NULL

1. p_cfg is NULL
2. p_api_ctrl is NULL
3. The pointer to the transfer interface

in the p_cfg parameter is NULL
4. Callback parameter is NULL.
5. Invalid IRQ number assigned

FSP_ERR_INVALID_ARGUMENT One or more of the following parameters is
incorrect

1. bytes_per_pixel is zero
2. x_capture_pixels is zero
3. y_capture_pixels is zero
4. x_capture_start_pixel +

x_capture_pixels is greater than
4095, OR

5. y_capture_start_pixel +
y_capture_pixels is greater than
4095

FSP_ERR_ALREADY_OPEN Module is already open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,145 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Parallel Data Capture (r_pdc)

◆ R_PDC_Close()

fsp_err_t R_PDC_Close (pdc_ctrl_t *const p_api_ctrl)

Stops and closes the transfer interface, disables and powers off the PDC, clears internal driver data
and disables interrupts.

Implements pdc_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_api_ctrl is NULL

FSP_ERR_NOT_OPEN Open has not been successfully called.

◆ R_PDC_CaptureStart()

fsp_err_t R_PDC_CaptureStart (pdc_ctrl_t *const p_api_ctrl, uint8_t *const p_buffer)

Starts a capture. Enables interrupts.

Implements pdc_api_t::captureStart.

Sets up the transfer interface to transfer data from the PDC into the specified buffer. Configures the
PDC settings as previously set by the pdc_api_t::open API. These settings are configured here as
the PIXCLK input must be active for the PDC reset operation. When a capture is complete the
callback registered during pdc_api_t::open API call will be called.

Example:

 err = R_PDC_CaptureStart(&g_pdc0_ctrl, g_user_buffer);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Capture start successful.

FSP_ERR_ASSERTION One or more of the following parameters is
NULL

1. p_api_ctrl is NULL
2. p_buffer is NULL while p_buffer field

of the control structure is NULL

FSP_ERR_NOT_OPEN Open has not been successfully called.

FSP_ERR_IN_USE PDC transfer is already in progress.

FSP_ERR_TIMEOUT Reset operation timed out.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,146 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

4.2.39 Port Output Enable for GPT (r_poeg)
Modules

Functions

fsp_err_t R_POEG_Open (poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const
p_cfg)

fsp_err_t R_POEG_StatusGet (poeg_ctrl_t *const p_ctrl, poeg_status_t *const
p_status)

fsp_err_t R_POEG_CallbackSet (poeg_ctrl_t *const p_ctrl,
void(*p_callback)(poeg_callback_args_t *), void const *const
p_context, poeg_callback_args_t *const p_callback_memory)

fsp_err_t R_POEG_OutputDisable (poeg_ctrl_t *const p_ctrl)

fsp_err_t R_POEG_Reset (poeg_ctrl_t *const p_ctrl)

fsp_err_t R_POEG_Close (poeg_ctrl_t *const p_ctrl)

Detailed Description

Driver for the POEG peripheral on RA MCUs. This module implements the POEG Interface.

Overview
The POEG module can be used to configure events to disable GPT GTIOC output pins.

Features

The POEG module has the following features:

Supports disabling GPT output pins based on GTETRG input pin level.
Supports disabling GPT output pins based on comparator crossing events (configurable in
the High-Speed Analog Comparator (r_acmphs) driver).
Supports disabling GPT output pins when GTIOC pins are the same level (configurable in the
General PWM Timer (r_gpt) driver).
Supports disabling GPT output pins when main oscillator stop is detected.
Supports disabling GPT output pins by software API.
Supports notifying the application when GPT output pins are disabled by POEG.
Supports resetting POEG status.

Configuration

Build Time Configurations for r_poeg

The following build time configurations are defined in fsp_cfg/r_poeg_cfg.h:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,147 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Timers > Port Output Enable for GPT on r_poeg

This module can be added to the Stacks tab via New Stack > Driver > Timers > Port Output Enable
for GPT on r_poeg. Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_poeg0 Module name.

General > Channel Must be a valid POEG
channel

0 Specify the hardware
channel.

General > Trigger MCU Specific Options Select the trigger
sources that will enable
POEG. Software disable
is always supported.
This configuration can
only be set once after
reset. It cannot be
modified after the
initial setting.

Input > GTETRG
Polarity

Active High
Active Low

Active High Select the polarity of
the GTETRG pin. Only
applicable if GTETRG
pin is selected under
Trigger.

Input > GTETRG Noise
Filter

Disabled
PCLKB/1
PCLKB/8
PCLKB/32
PCLKB/128

Disabled Configure the noise
filter for the GTETRG
pin. Only applicable if
GTETRG pin is selected
under Trigger.

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function can be
specified here. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR) when GPT
output pins are
disabled by POEG.

Interrupts > Interrupt
Priority

MCU Specific Options Select the POEG
interrupt priority.

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,148 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

The POEG clock is based on the PCLKB frequency.

Pin Configuration

This module can use GTETRGA, GTETRGB, GTETRGC, or GTETRGD as an input signal to disable GPT
output pins.

Usage Notes
POEG GTETRG Pin and Channel

The POEG channel number corresponds to the GTETRG input pin that can be used with the channel.
GTETRGA must be used with POEG channel 0, GTETRGB must be used with POEG channel 1, etc.

Limitations

The user should be aware of the following limitations when using POEG:

The POEG trigger source can only be set once per channel. Modifying the POEG trigger
source after it is set is not allowed by the hardware.
The POEG cannot be disabled using this API. The interrupt is disabled in R_POEG_Close(),
but the POEG will still disable the GPT output pins if a trigger is detected even if the module
is closed.

Examples
POEG Basic Example

This is a basic example of minimal use of the POEG in an application.

void poeg_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the POEG. */

 err = R_POEG_Open(&g_poeg0_ctrl, &g_poeg0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

POEG Callback Example

This is an example of a using the POEG callback to restore GPT output operation.

/* Example callback called when POEG disables GPT output pins. */

void poeg_callback (poeg_callback_args_t * p_args)

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,149 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

 FSP_PARAMETER_NOT_USED(p_args);

 /* (Optional) Determine the cause of the POEG event. */

 poeg_status_t status;

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

 /* Correct the cause of the POEG event before resetting POEG. */

 /* Reset the POEG before exiting the callback. */

 (void) R_POEG_Reset(&g_poeg0_ctrl);

 /* Wait for the status to clear after reset before exiting the callback to ensure

the interrupt does not fire

 * again. */

 do

 {

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

 } while (POEG_STATE_NO_DISABLE_REQUEST != status.state);

 /* Alternatively, if the POEG cannot be reset, disable the POEG interrupt to prevent

it from firing continuously.

 * Update the 0 in the macro below to match the POEG channel number. */

 NVIC_DisableIRQ(VECTOR_NUMBER_POEG0_EVENT);

}

Data Structures

struct poeg_instance_ctrl_t

Data Structure Documentation

◆ poeg_instance_ctrl_t

struct poeg_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when poeg_api_t::open is called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,150 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

◆ R_POEG_Open()

fsp_err_t R_POEG_Open (poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const p_cfg)

Initializes the POEG module and applies configurations. Implements poeg_api_t::open.

Note
The poeg_cfg_t::trigger setting can only be configured once after reset. Reopening with a different trigger
configuration is not possible.

Example:

 /* Initializes the POEG. */

 err = R_POEG_Open(&g_poeg0_ctrl, &g_poeg0_cfg);

Return values
FSP_SUCCESS Initialization was successful.

FSP_ERR_ASSERTION A required input pointer is NULL or the
source divider is invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_IRQ_BSP_DISABLED poeg_cfg_t::p_callback is not NULL, but ISR
is not enabled. ISR must be enabled to use
callback.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel requested in the p_cfg
parameter is not available on this device.

◆ R_POEG_StatusGet()

fsp_err_t R_POEG_StatusGet (poeg_ctrl_t *const p_ctrl, poeg_status_t *const p_status)

Get current POEG status and store it in provided pointer p_status. Implements
poeg_api_t::statusGet.

Example:

 /* (Optional) Determine the cause of the POEG event. */

 poeg_status_t status;

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

Return values
FSP_SUCCESS Current POEG state stored successfully.

FSP_ERR_ASSERTION p_ctrl or p_status was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,151 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

◆ R_POEG_CallbackSet()

fsp_err_t R_POEG_CallbackSet (poeg_ctrl_t *const p_ctrl, void(*)(poeg_callback_args_t *)
p_callback, void const *const p_context, poeg_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements poeg_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_POEG_OutputDisable()

fsp_err_t R_POEG_OutputDisable (poeg_ctrl_t *const p_ctrl)

Disables GPT output pins. Implements poeg_api_t::outputDisable.

Return values
FSP_SUCCESS GPT output pins successfully disabled.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,152 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

◆ R_POEG_Reset()

fsp_err_t R_POEG_Reset (poeg_ctrl_t *const p_ctrl)

Resets status flags. Implements poeg_api_t::reset.

Note
Status flags are only reset if the original POEG trigger is resolved. Check the status using R_POEG_StatusGet
after calling this function to verify the status is cleared.

Example:

 /* Correct the cause of the POEG event before resetting POEG. */

 /* Reset the POEG before exiting the callback. */

 (void) R_POEG_Reset(&g_poeg0_ctrl);

 /* Wait for the status to clear after reset before exiting the callback to ensure

the interrupt does not fire

 * again. */

 do

 {

 (void) R_POEG_StatusGet(&g_poeg0_ctrl, &status);

 } while (POEG_STATE_NO_DISABLE_REQUEST != status.state);

Return values
FSP_SUCCESS Function attempted to clear status flags.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

◆ R_POEG_Close()

fsp_err_t R_POEG_Close (poeg_ctrl_t *const p_ctrl)

Disables POEG interrupt. Implements poeg_api_t::close.

Note
This function does not disable the POEG.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION p_ctrl was NULL.

FSP_ERR_NOT_OPEN The instance is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,153 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Port Output Enable for GPT (r_poeg)

4.2.40 Precision Time Protocol (r_ptp)
Modules

Functions

fsp_err_t R_PTP_Open (ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

fsp_err_t R_PTP_MacAddrSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

fsp_err_t R_PTP_IpAddrSet (ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

fsp_err_t R_PTP_LocalClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_clock_id)

fsp_err_t R_PTP_MasterClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_clock_id, uint16_t port_id)

fsp_err_t R_PTP_MessageFlagsSet (ptp_ctrl_t *const p_ctrl,
ptp_message_type_t message_type, ptp_message_flags_t flags)

fsp_err_t R_PTP_CurrentUtcOffsetSet (ptp_ctrl_t *const p_ctrl, uint16_t offset)

fsp_err_t R_PTP_PortStateSet (ptp_ctrl_t *const p_ctrl, uint32_t state)

fsp_err_t R_PTP_MessageSend (ptp_ctrl_t *const p_ctrl, ptp_message_t const
*const p_message, uint8_t const *const p_tlv_data, uint16_t
tlv_data_size)

fsp_err_t R_PTP_LocalClockValueSet (ptp_ctrl_t *const p_ctrl, ptp_time_t const
*const p_time)

fsp_err_t R_PTP_LocalClockValueGet (ptp_ctrl_t *const p_ctrl, ptp_time_t
*const p_time)

fsp_err_t R_PTP_PulseTimerCommonConfig (ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *const p_timer_cfg)

fsp_err_t R_PTP_PulseTimerEnable (ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

fsp_err_t R_PTP_PulseTimerDisable (ptp_ctrl_t *const p_ctrl, uint32_t channel)

fsp_err_t R_PTP_Close (ptp_ctrl_t *const p_ctrl)

fsp_err_t R_PTP_BestMasterClock (ptp_message_t const *const p_announce1,
ptp_message_t const *const p_announce2, int8_t *const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,154 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

p_comparison)

Detailed Description

Driver for the PTP peripheral on RA MCUs. This module implements the PTP Interface.

Overview
PTP allows for multiple devices on a network to synchronize their clocks with very high precision. The
PTP peripheral generates and processes PTP messages automatically. In slave mode, it also corrects
the local time in order to adjust for any offset from the master clock time.

Features

Ordinary clock
Master mode
Slave mode

Peer-to-peer
End-to-end
Frame fromats

Ethernet II frames
IEEE802.3 + LLC + SNAP frames
IPv4 + UDP

Clock correction modes
Mode 1: Add the offsetFromMaster value to the local time whenever it is updated.
Mode 2: Calculate a clock gradient and continuously adjust the local time in order
to minimize the offsetFromMaster value.

Configuration
Build Time Configurations for r_ptp

The following build time configurations are defined in fsp_cfg/r_ptp_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Network > PTP Driver on r_ptp

This module can be added to the Stacks tab via New Stack > Driver > Network > PTP Driver on
r_ptp.

Configuration Options Default Description

Clock Properties >
Priority 1

Value must in the
range [0,255].

128 Priority1 field
advertised in
generated announce
packets.

Clock Properties > Value must in the 248 Class field advertised

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,155 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

Class range [0,255]. in generated announce
packets.

Clock Properties >
Accuracy

Value must in the
range [0,255].

0xFE Accuracy field
advertised in
generated announce
packets.

Clock Properties >
Variance

Value must in the
range [0,65535].

0xFFFF Variance field
advertised in
generated announce
packets.

Clock Properties >
Priority 2

Value must in the
range [0,255].

128 Priority2 field
advertised in
generated announce
packets.

Clock Properties >
Time Source

Value must in the
range [0,255].

160 Time Source field
advertised in
generated announce
packets.

Ethernet > Multicast
Filter MAC address

Must be a valid MAC
address

01:1B:19:00:00:00 In Multicast Filtered
mode, only multicast
addresses that match
this address are
received by the
ETHERC EDMAC.

Ethernet > Primary
Destination MAC
address

Must be a valid MAC
address

01:1B:19:00:00:00 The destination MAC
address for primary
PTP messages.

Ethernet > PDelay
Destination MAC
address

Must be a valid MAC
address

01:80:C2:00:00:0E The destination MAC
address for PDelay
messages.

IP > Primary
Destination IP address

Must be a valid IP
address

224.0.1.129 The destination IPv4
address for primary
messages.

IP > PDelay Destination
IP address

Must be a valid IP
address

224.0.0.107 The destination IPv4
address for PDelay
messages.

IP > Event Message
TOS

Value must in the
range [0,255].

0 The IP packet TOS for
event messages.

IP > General Message
TOS

Value must in the
range [0,255].

0 The IP packet TOS for
general messages.

IP > Primary Message
TTL

Value must in the
range [0,255].

1 The IP packet TTL for
primary messages.

IP > PDelay Message
TTL

Value must in the
range [0,255].

1 The IP packet TTL for
p_delay messages.

IP > Event Port Value must in the
range [0,65535].

319 The UDP port for event
messages.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,156 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

IP > General Port Value must in the
range [0,65535].

320 The UDP port for
general messages.

Synchronization
Detection > Threshold
(Nanoseconds)

Value must be greater
than 0.

1000000 The minimum
offsetFromMaster value
required in order to
synchronize with the
master clock.

Synchronization
Detection > Count

Value must in the
range [0,255].

5 The number of times
the calculated
offsetFromMaster value
must be less than the
threshold in order to
synchronize with the
master clock.

Synchronization Lost
Detection > Threshold
(Nanoseconds)

Value must be greater
than 0.

10000000 The minimum
offsetFromMaster value
required in order to
lose synchronization
with the master clock.

Synchronization Lost
Detection > Count

Value must in the
range [0,255].

5 The number of times
the calculated
offsetFromMaster value
must be greater than
the threshold in order
to lose synchronization
with the master.

Interrupts > Callback Name must be a valid
C symbol

${module.driver.ptp.na
me}_callback

Called when a
STCA/SYNFP event
occurs, a PTP message
is received, or if a Pulse
Timer event occurs.

Interrupts > MINT
Interrupt priority

MCU Specific Options Select the EPTPC MINT
interrupt priority.

Interrupts > Pulse
Timer Interrupt priority

MCU Specific Options Select the EPTPC IPLS
priority.

Name Name must be a valid
C symbol

g_ptp0 Module name.

Ethernet PHY Interface
Type

MII
RMII

RMII The interface type used
to communicate with
the Ethernet PHY.

Frame Filter Extended
Promiscuous
Mode
Unicast and
Multicast
Unicast and
Multicast
Filtered
Unicast

Unicast Selects how packets
are filtered based on
their destination MAC
address. Packets that
pass the filter are
transferred to the
ETHERC EDMAC.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,157 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

Frame Format Ethernet II
Ethernet II |
IPv4 | UDP
IEEE802.3 | LLC
| SNAP
IEEE802.3 | LLC
| SNAP | IPv4 |
UDP

Ethernet II The format of the
frames that
encapsulate the PTP
messages.

Clock Domain Value must in the
range [0,255].

0 The PTP clock will only
respond to clocks in its
domain.

Clock Domain Filter Enable
Disable

Enable Filter out PTP
messages from other
clock domains.

Buffer Size Value must in the
range [64,1536].

1536 The maximum Ethernet
packet size that can be
transmitted or received
by the application from
the EDMAC.

Number of transmit
buffers

Value must in the
range [1,16].

4 The number of transmit
buffers in the packet
queue.

Number of receive
buffers

Value must in the
range [1,16].

4 The number of receive
buffers in the packet
queue.

Announce message
interval.

MCU Specific Options The period of time
between generated
announce messages.

Sync message interval. MCU Specific Options The period of time
between generated
sync messages.

Delay_req message
interval.

MCU Specific Options The period of time
between generated
delay_req messages.

Message timeout Value must be greater
than 0.

4000 The time in
milliseconds needed to
generate timeout
events after not
receiving a sync or
delay_resp message.

Clock Source PCLKA / 1
PCLKA / 2
PCLKA / 3
PCLKA / 4
PCLKA / 5
PCLKA / 6
REF50CK0

PCLKA / 6 The STCA clock source
must be 20Mhz, 25Mhz,
50Mhz, or 100Mhz.
When REF50CK0 is
selected, the STCA
frequency is 25Mhz.

Clock Correction Mode Clock Clock Correction Mode Clock correction mode

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,158 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

Correction
Mode 1
Clock
Correction
Mode 2

1 1 corrects the local
clock using the current
offsetFromMaster
value. Clock correction
mode 2 calculates a
clock gradient in order
to continuously correct
the local clock.

Gradient Worst10
Interval

Value must in the
range [0,255].

32 The number of sync
messages to use when
calculating the worst10
gradient values (Only
applies to clock
correction mode 2).

Clock Configuration

The STCA input clock can be the following clock sources:

PCLKA / 1
PCLKA / 2
PCLKA / 3
PCLKA / 4
PCLKA / 5
PCLKA / 6
REF50CK0

The STCA input clock is restricted to the following frequencies:

20 Mhz
25 Mhz
50 Mhz
100 Mhz

When REF50CK0 is selected, the input clock frequency is 25 Mhz.

Pin Configuration

The PTP module requires the Ethernet (r_ether) instance in order to initialize the Ethernet PHY. This
means that the ETHERC pins must be configured.

Usage Notes
PTP Port State

The current PTP port state determines which messages need to be generated and processed by the
PTP peripheral. It is the application's responsibility to determine what the current state of the PTP
port should be.

The following messages can be generated by the PTP peripheral:

Announce
Sync
Delay_req

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,159 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

Delay_resp
PDelay_req
PDelay_resp

The following messages can be processed by the PTP peripheral:

Sync
Follow_up
Delay_req
Delay_resp
PDelay_req
PDelay_resp
PDelay_resp_follow_up

The application must receive the following messages in order to determine the current state of its
PTP port:

Announce
Management
Signaling

The following messages can only be sent manually:

Management
Signaling

The PTP API defines the following states:

State Generated Messages Processed Messages Received Messages

Disabled N/A N/A N/A

Passive N/A N/A Announce, Signaling,
Management

E2E/P2P Slave Delay_req/(PDelay_req,
PDelay_resp)

Sync, Follow_up,
Delay_resp/(PDelay_req
, PDelay_resp)

Announce, Signaling,
Management

E2E/P2P Master Announce, Sync,
Delay_resp/(PDelay_req
, PDelay_resp)

delay_req/(PDelay_req,
PDelay_resp)

Announce, Signaling,
Management

Pulse Timers

Pulse Timers are configurable timers used to generate interrupts and ELC events. Each pulse timer
has a configurable start time, pulse, and period. At the start of each timer period, a rising edge
occurs. After the pulse time has elapsed, a falling edge occurs. ELC events and IRQs can be
generated on rising and/or falling edges for each Pulse Timer. There are two types of interrupts
generated by each Pulse Timer; MINT and IPLS.

MINT Interrupts

MINT IRQs are only generated on the rising edge of a Pulse Timer channel. The callback will provide
the channel number of the pulse timer that caused the interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,160 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

IPLS Interrupts

Each Pulse Timer channel can be configured as a source for generating IPLS IRQs. All of the pulse
timers that are selected as IPLS sources are OR'd together and rising and falling edge IRQs can be
generated from the resulting signal. Below is an example of a resulting signal from two IPLS sources.
Unlike MINT interrupts, IPLS interrupts do not provide any information about which Pulse Timer
caused the IRQ because the IRQs from all the Pulse Timers are OR'd together.

Figure 173: IPLS IRQ Generation

Ethernet Frame Filter

The PTP driver can filter Ethernet frames that are received by Ethernet (r_ether). There are four
different filtering modes:

Extended Promiscuous - All Ethernet frames are received by Ethernet (r_ether).
Unicast and Multicast - All Unicast frames destined for the PTP and Multicast frames are
received by Ethernet (r_ether).
Unicast and Multicast Filtered - All Unicast frames destined for the PTP are received by
Ethernet (r_ether). All multicast frames that match ptp_synfp_cfg_t::p_multicast_addr_filter
are received by Ethernet (r_ether).
Unicast - Only Unicast frames destined for the PTP are received by Ethernet (r_ether).

Limitations

Developers should be aware of the following limitations when using the PTP:

PTP will not automatically initialize Ethernet (r_ether). This provides flexibility by allowing
PTP to be used alongside 3rd party IP stacks (Eg. FreeRTOS Plus TCP (rm_freertos_plus_tcp)
), however this means the application must execute the Ethernet (r_ether) link process in
order to use PTP.
The driver will not detect announce message timeouts. This functionality must be handled
by the application.
When IP + UDP frame format is selected, the driver will not automatically join the multicast
group. This must be done by the application.
In order to call PTP API functions from ISRs, the MINT and IPLS interrupt priorities must be
configured to be lower than BSP_CFG_IRQ_MASK_LEVEL_FOR_CRITICAL_SECTION. This is to
guarantee that PTP register accesses are atomic.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,161 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

Examples
Slave Mode

This is a basic example of minimal use of PTP in slave mode.

volatile bool g_first_announce_message_received = false;

volatile bool g_sync_acquired = false;

void slave_mode_basic_example (void)

{

 /* The PTP Instance must be opened before R_ETHER is opened. */

 fsp_err_t err = R_PTP_Open(&g_ptp_ctrl, &g_ptp_cfg);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP MAC address. */

 err = R_PTP_MacAddrSet(&g_ptp_ctrl, g_ptp_mac_address);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP Local Clock ID (Usually generated from MAC address). */

 err = R_PTP_LocalClockIdSet(&g_ptp_ctrl, g_ptp_clock_id);

 assert(FSP_SUCCESS == err);

 /* Open the r_ether_api instance. */

 err = R_ETHER_Open(&g_ether_ctrl, &g_ether_cfg);

 assert(FSP_SUCCESS == err);

 /* Wait for the link to be established. */

 do

 {

 err = R_ETHER_LinkProcess(&g_ether_ctrl);

 } while (FSP_SUCCESS != err);

 /* Set the PTP instance to passive state and listen for announce message. */

 err = R_PTP_PortStateSet(&g_ptp_ctrl, PTP_PORT_STATE_PASSIVE);

 assert(FSP_SUCCESS == err);

 /* Wait for the first announce message (This will provide the master clock ID). */

 uint32_t timeout = EXAMPLE_TIMEOUT;

 while (!g_first_announce_message_received && --timeout)

 {

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,162 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

 assert(0U != timeout);

 /* When a master clock is found, change to the slave state to start synchronizing

 * the local clock to the master clock. */

 err = R_PTP_PortStateSet(&g_ptp_ctrl, PTP_PORT_STATE_E2E_SLAVE);

 assert(FSP_SUCCESS == err);

 /* Wait for local clock to be synchronized with the master clock. */

 timeout = EXAMPLE_TIMEOUT;

 while (!g_sync_acquired && --timeout)

 {

 R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);

 }

 assert(0U != timeout);

 /* The local clock is now synchronized with the grand master clock. */

}

/* Callback called whenever a PTP event occurs. */

void g_ptp_slave_callback_example (ptp_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case PTP_EVENT_SYNC_ACQUIRED:

 {

 /* The offsetFromMaster value is now within the configured threshold to be

 * synchronized with the master clock.

 */

 g_sync_acquired = true;

 break;

 }

 case PTP_EVENT_MESSAGE_RECEIVED:

 {

 static ptp_message_t g_current_master_announce_message;

 switch (p_args->p_message->header.message_type)

 {

 case PTP_MESSAGE_TYPE_ANNOUNCE:

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,163 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

 int8_t comparison = 0;

 if (!g_first_announce_message_received)

 {

 /* If this is the first announce packet, immediately switch to this master clock. */

 comparison = 1;

 g_first_announce_message_received = true;

 }

 else

 {

 /*

 * Run the "Best Master Clock Algorithm" to determine if the clock defined in this

announce

 * packet is better than the current master clock.

 */

 fsp_err_t err = R_PTP_BestMasterClock(&g_current_master_announce_message,

 p_args->p_message,

 &comparison);

 assert(FSP_SUCCESS == err);

 }

 if (1 == comparison)

 {

 /* Save the message as the new master announce message. */

 g_current_master_announce_message = *p_args->p_message;

 /* Set the master clock ID and sourcePortID in the PTP instance so that it

 * synchronizes with the new best master clock.

 */

 fsp_err_t err = R_PTP_MasterClockIdSet(&g_ptp_ctrl,

 g_current_master_annou

nce_message.header.clock_id,

 g_current_master_annou

nce_message.header.source_port_id);

 assert(FSP_SUCCESS == err);

 }

 break;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,164 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

 }

 default:

 {

 break;

 }

 }

 break;

 }

 default:

 {

 break;

 }

 }

}

Master Mode

This is a basic example of minimal use of PTP in master mode.

#define PTP_EXAMPLE_CURRENT_UTC_OFFSET (37)

void master_mode_basic_example (void)

{

 /* The PTP Instance must be opened before R_ETHER is opened. */

 fsp_err_t err = R_PTP_Open(&g_ptp_ctrl, &g_ptp_cfg);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP MAC address. */

 err = R_PTP_MacAddrSet(&g_ptp_ctrl, g_ptp_mac_address);

 assert(FSP_SUCCESS == err);

 /* Configure the PTP Local Clock ID (Usually generated from MAC address). */

 err = R_PTP_LocalClockIdSet(&g_ptp_ctrl, g_ptp_clock_id);

 assert(FSP_SUCCESS == err);

 /* Get the current time from an external time source (Eg. RTC). */

 ptp_time_t current_time;

 get_current_time_example(¤t_time);

 /* Set the PTP local time to the current time. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,165 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

 err = R_PTP_LocalClockValueSet(&g_ptp_ctrl, ¤t_time);

 assert(FSP_SUCCESS == err);

 /* Set the currentUtcOffset field in announce messages. */

 err = R_PTP_CurrentUtcOffsetSet(&g_ptp_ctrl, PTP_EXAMPLE_CURRENT_UTC_OFFSET);

 assert(FSP_SUCCESS == err);

 /* Set message flags in announce messages to indicate that the current UTC offset is

valid and that the PTP timescale is used. */

 ptp_message_flags_t flags;

 flags.value = 0;

 flags.value_b.currentUtcOffsetValid = 1;

 flags.value_b.ptpTimescale = 1;

 err = R_PTP_MessageFlagsSet(&g_ptp_ctrl, PTP_MESSAGE_TYPE_ANNOUNCE, flags);

 assert(FSP_SUCCESS == err);

 /* Open the r_ether_api instance. */

 err = R_ETHER_Open(&g_ether_ctrl, &g_ether_cfg);

 assert(FSP_SUCCESS == err);

 /* Wait for the link to be established. */

 do

 {

 err = R_ETHER_LinkProcess(&g_ether_ctrl);

 } while (FSP_SUCCESS != err);

 /* Set the PTP instance to passive state and listen for announce message. */

 err = R_PTP_PortStateSet(&g_ptp_ctrl, PTP_PORT_STATE_E2E_MASTER);

 assert(FSP_SUCCESS == err);

 /*

 * The master clock is now operational and will automatically generate announce and

sync messages

 * as well as respond to delay_req messages.

 */

}

Send PTP Messages

This is a basic example of how to send PTP messages.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,166 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

#define PTP_MANAGEMENT_ACTION_GET (0U)

#define PTP_TLV_TYPE_MANAGEMENT (1U)

#define PTP_TLV_MANAGEMENT_ID_CLOCK_DESCRIPTION (1U)

static uint32_t g_transmit_complete = 0U;

void send_message_example (void)

{

 static ptp_message_t message;

 static uint8_t p_tlv_data[6];

 memset(&message, 0, sizeof(ptp_message_t));

 /* Fill in the required fields for the message header (Note that appropriate fields

will be endian swapped). */

 message.header.message_type = PTP_MESSAGE_TYPE_MANAGEMENT;

 message.header.version = 2;

 /* The message length is the total number of bytes in the PTP message (Including the

message header). */

 message.header.message_length = (uint16_t) (sizeof(ptp_message_header_t) +

 sizeof(ptp_message_management_t) +

 sizeof(p_tlv_data));

 memcpy(message.header.clock_id, g_ptp_clock_id, sizeof(g_ptp_clock_id));

 message.header.control_field = PTP_CTRL_FIELD_MANAGEMENT;

 /* Fill in the required fields for the management message. */

 memcpy(message.management.target_clock_id, g_target_clock_id, sizeof

(g_target_clock_id));

 message.management.target_port_id = 1;

 message.management.starting_boundary_hops = 1;

 message.management.boundary_hops = 1;

 message.management.action = PTP_MANAGEMENT_ACTION_GET;

 /*

 * Fill in TLV data (Note that TLV data is big endian).

 *

 * Type (Management)

 */

 p_tlv_data[0] = 0;

 p_tlv_data[1] = PTP_TLV_TYPE_MANAGEMENT;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,167 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

 /* Length */

 p_tlv_data[2] = 0;

 p_tlv_data[3] = 2;

 /* Management ID (Clock Description) */

 p_tlv_data[4] = 0;

 p_tlv_data[5] = PTP_TLV_MANAGEMENT_ID_CLOCK_DESCRIPTION;

 /* Send the message. */

 fsp_err_t err = R_PTP_MessageSend(&g_ptp_ctrl, &message, p_tlv_data, sizeof

(p_tlv_data));

 assert(FSP_SUCCESS == err);

 uint32_t timeout = EXAMPLE_TIMEOUT;

 while (0U == g_transmit_complete && --timeout)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MICROSECONDS);

 }

}

/* Callback called whenever a PTP event occurs. */

void g_ptp_send_message_callback_example (ptp_callback_args_t * p_args)

{

 switch (p_args->event)

 {

 case PTP_EVENT_MESSAGE_TRANSMIT_COMPLETE:

 {

 g_transmit_complete = 1U;

 break;

 }

 case PTP_EVENT_MESSAGE_RECEIVED:

 {

 switch (p_args->p_message->header.message_type)

 {

 case PTP_MESSAGE_TYPE_MANAGEMENT:

 {

 /* Handle the response message. */

 break;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,168 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

 }

 default:

 {

 break;

 }

 }

 }

 default:

 {

 break;

 }

 }

}

Data Structures

struct ptp_instance_ctrl_t

Data Structure Documentation

◆ ptp_instance_ctrl_t

struct ptp_instance_ctrl_t

PTP instance control block.

Data Fields

uint32_t open Marks if the instance has been
opened.

uint32_t tx_buffer_write_index Index into the descriptor list to
write the next packet.

uint32_t tx_buffer_complete_index Index into the descriptor list of
the last transmitted packet.

uint32_t rx_buffer_index Index into the descriptor of the
last received packet.

uint32_t tslatr Keep track of whether tslatr
was set.

ptp_cfg_t const * p_cfg Pointer to the configuration
structure.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,169 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

◆ R_PTP_Open()

fsp_err_t R_PTP_Open (ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

This function initializes PTP. Implements ptp_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Configures the peripheral registers acording to the configuration.
Initialize the control structure for use in other PTP Interface functions.

Return values
FSP_SUCCESS The instance has been successfully

configured.

FSP_ERR_ALREADY_OPEN Instance was already initialized.

FSP_ERR_NOT_OPEN The EDMAC instance was not opened
correctly.

FSP_ERR_ASSERTION An invalid argument was given in the
configuration structure.

◆ R_PTP_MacAddrSet()

fsp_err_t R_PTP_MacAddrSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_mac_addr)

This function sets the MAC address for the PTP instance. Implements ptp_api_t::macAddrSet.

Note
This function may only be called while the PTP instance is in ptp_port_state_t::PTP_PORT_STATE_DISABLE.

Return values
FSP_SUCCESS The MAC address has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_INVALID_MODE The instance is not in the correct state.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,170 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

◆ R_PTP_IpAddrSet()

fsp_err_t R_PTP_IpAddrSet (ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

This function sets the IP address for the PTP instance. Implements ptp_api_t::ipAddrSet.

Note
This function may only be called while the PTP instance is in ptp_port_state_t::PTP_PORT_STATE_DISABLE.

Return values
FSP_SUCCESS The IP address has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL.

FSP_ERR_INVALID_MODE The configured
ptp_synfp_cfg_t::frame_format is not
configured to use IP packets, or the instance
is not in the correct state.

◆ R_PTP_LocalClockIdSet()

fsp_err_t R_PTP_LocalClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id)

This function sets the local clock ID for the PTP instance. Implements ptp_api_t::localClockIdSet.

Note
This function may only be called while the PTP instance is in ptp_port_state_t::PTP_PORT_STATE_DISABLE.
Typically the clock ID is derived from the MAC address (E.g. {b1,b2,b3,0xFF,0xFE,b4,b5,b6}).

Return values
FSP_SUCCESS The local clock ID has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

FSP_ERR_INVALID_MODE The instance is not in the correct state.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,171 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

◆ R_PTP_MasterClockIdSet()

fsp_err_t R_PTP_MasterClockIdSet (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id,
uint16_t port_id)

This function sets the master clock ID and port ID that the local clock will synchronize with.
Implements ptp_api_t::masterClockIdSet.

Return values
FSP_SUCCESS The master clock ID and port ID have been

set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

◆ R_PTP_MessageFlagsSet()

fsp_err_t R_PTP_MessageFlagsSet (ptp_ctrl_t *const p_ctrl, ptp_message_type_t message_type,
ptp_message_flags_t flags)

This function sets the flags field for the given message type. Implements
ptp_api_t::messageFlagsSet.

Return values
FSP_SUCCESS The master clock ID and port ID have been

set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_CurrentUtcOffsetSet()

fsp_err_t R_PTP_CurrentUtcOffsetSet (ptp_ctrl_t *const p_ctrl, uint16_t offset)

This function sets the currentUtcOffset value in announce messages. ptp_api_t::currentUtcOffsetSet
.

Return values
FSP_SUCCESS The currentUtcOffset has been updated.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,172 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

◆ R_PTP_PortStateSet()

fsp_err_t R_PTP_PortStateSet (ptp_ctrl_t *const p_ctrl, uint32_t state)

This function changes the current state of the PTP instance. Implements ptp_api_t::portStateSet.

Return values
FSP_SUCCESS The instance will transition to the new state.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

◆ R_PTP_MessageSend()

fsp_err_t R_PTP_MessageSend (ptp_ctrl_t *const p_ctrl, ptp_message_t const *const p_message,
uint8_t const *const p_tlv_data, uint16_t tlv_data_size)

This function sends a PTP message. ptp_api_t::messageSend.

Return values
FSP_SUCCESS The packet has been written to the transmit

descriptor.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER
_FULL

There is no space for the packet in the
transmit queue.

◆ R_PTP_LocalClockValueSet()

fsp_err_t R_PTP_LocalClockValueSet (ptp_ctrl_t *const p_ctrl, ptp_time_t const *const p_time)

This function sets the local clock value. Implements ptp_api_t::localClockValueSet.

Return values
FSP_SUCCESS The local clock value has been set.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,173 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

◆ R_PTP_LocalClockValueGet()

fsp_err_t R_PTP_LocalClockValueGet (ptp_ctrl_t *const p_ctrl, ptp_time_t *const p_time)

This function gets the local clock value. Implements ptp_api_t::localClockValueGet.

Return values
FSP_SUCCESS The local clock value has been written in

p_time.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL

◆ R_PTP_PulseTimerCommonConfig()

fsp_err_t R_PTP_PulseTimerCommonConfig (ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *const p_timer_cfg)

This function configures IPLS IRQ settings that are common to all pulse timer channels. Implements
ptp_api_t::pulseTimerCommonConfig.

Return values
FSP_SUCCESS The pulse timer has been enabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_PulseTimerEnable()

fsp_err_t R_PTP_PulseTimerEnable (ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

This function enables a pulse timer channel. Implements ptp_api_t::pulseTimerEnable.

Return values
FSP_SUCCESS The pulse timer has been enabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,174 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Precision Time Protocol (r_ptp)

◆ R_PTP_PulseTimerDisable()

fsp_err_t R_PTP_PulseTimerDisable (ptp_ctrl_t *const p_ctrl, uint32_t channel)

This function disables a pulse timer channel. Implements ptp_api_t::pulseTimerDisable.

Return values
FSP_SUCCESS The pulse timer has been disabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_Close()

fsp_err_t R_PTP_Close (ptp_ctrl_t *const p_ctrl)

Disable the PTP instance. Implements ptp_api_t::close.

Return values
FSP_SUCCESS The pulse timer has been disabled.

FSP_ERR_NOT_OPEN The instance has not been opened.

FSP_ERR_ASSERTION An argument was NULL or invalid.

◆ R_PTP_BestMasterClock()

fsp_err_t R_PTP_BestMasterClock (ptp_message_t const *const p_announce1, ptp_message_t const
*const p_announce2, int8_t *const p_comparison)

This function compares two clocks to determine which one is the better master clock.

p_comparison:

Set to -1 if p_announce1 defines the best master clock.
Set to 1 if p_announce2 defines the best master clock.
Set to 0 if p_announce1 and p_announce2 define the same clock.

Return values
FSP_SUCCESS The valid result has been written to

p_use_announce_clock.

FSP_ERR_ASSERTION An argument was NULL.

4.2.41 Quad Serial Peripheral Interface Flash (r_qspi)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,175 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

Modules

Functions

fsp_err_t R_QSPI_Open (spi_flash_ctrl_t *p_ctrl, spi_flash_cfg_t const *const
p_cfg)

fsp_err_t R_QSPI_Close (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_QSPI_DirectWrite (spi_flash_ctrl_t *p_ctrl, uint8_t const *const
p_src, uint32_t const bytes, bool const read_after_write)

fsp_err_t R_QSPI_DirectRead (spi_flash_ctrl_t *p_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

fsp_err_t R_QSPI_SpiProtocolSet (spi_flash_ctrl_t *p_ctrl, spi_flash_protocol_t
spi_protocol)

fsp_err_t R_QSPI_XipEnter (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_QSPI_XipExit (spi_flash_ctrl_t *p_ctrl)

fsp_err_t R_QSPI_Write (spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src,
uint8_t *const p_dest, uint32_t byte_count)

fsp_err_t R_QSPI_Erase (spi_flash_ctrl_t *p_ctrl, uint8_t *const
p_device_address, uint32_t byte_count)

fsp_err_t R_QSPI_StatusGet (spi_flash_ctrl_t *p_ctrl, spi_flash_status_t *const
p_status)

fsp_err_t R_QSPI_BankSet (spi_flash_ctrl_t *p_ctrl, uint32_t bank)

Detailed Description

Driver for the QSPI peripheral on RA MCUs. This module implements the SPI Flash Interface.

Overview
Features

The QSPI driver has the following key features:

Memory mapped read access to the QSPI flash
Programming the QSPI flash device
Erasing the QSPI flash device
Sending device specific commands and reading back responses
Entering and exiting QPI mode
Entering and exiting XIP mode
3 or 4 byte addressing

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,176 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

Configuration
Build Time Configurations for r_qspi

The following build time configurations are defined in driver/r_qspi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support Multiple Line
Program in Extended
SPI Mode

Enabled
Disabled

Disabled If selected code for
programming on
multiple lines in
extended SPI mode is
included in the build.

Configurations for Driver > Storage > QSPI Driver on r_qspi

This module can be added to the Stacks tab via New Stack > Driver > Storage > QSPI Driver on
r_qspi.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_qspi0 Module name.

General > SPI Protocol Extended SPI
QPI

Extended SPI Select the initial SPI
protocol. SPI protocol
can be changed in
R_QSPI_Direct().

General > Address
Bytes

3
4
4 with 4-byte
read code

3 Select the number of
address bytes.
Selecting '4 with 4-byte
read code' converts the
default read code
determined in Read
Mode to the 4-byte
version. If 4-byte mode
is selected without
using 4-byte
commands, the
application must issue
the EN4B command
using R_QSPI_Direct().

General > Read Mode Standard Read
Fast Read
Fast Read Dual
Output
Fast Read Dual
I/O
Fast Read Quad
Output

Fast Read Quad I/O Select the read mode
for memory mapped
access.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,177 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

Fast Read Quad
I/O

General > Dummy
Clocks for Fast Read

Refer to the RA
Configuration tool for
available options.

Default Select the number of
dummy clocks for fast
read operations.
Default is 6 clocks for
Fast Read Quad I/O, 4
clocks for Fast Read
Dual I/O, and 8 clocks
for other fast read
instructions including
Fast Read Quad
Output, Fast Read Dual
Output, and Fast Read

General > Page Size
Bytes

Must be an integer
greater than 0

256 The maximum number
of bytes allowed for a
single write.

Command Definitions
> Page Program
Command

Must be an 8-bit QSPI
Page Program
Command under
Command Definitions

0x02 The command to
program a page. If
'Support Multiple Line
Program in Extended
SPI Mode' is Enabled,
this command must
use the same number
of data lines as the
selected read mode.

Command Definitions
> Page Program
Address Lines

1
2
4

1 Select the number of
lines to use for the
address bytes during
write operations. This
can be determined by
referencing the
datasheet for the
external QSPI. It should
either be 1 or match
the number of data
lines used for memory
mapped fast read
operations.

Command Definitions
> Write Enable
Command

Must be an 8-bit QSPI
Write Enable Command
under Command
Definitions

0x06 The command to
enable write.

Command Definitions
> Status Command

Must be an 8-bit QSPI
Status Command under
Command Definitions

0x05 The command to query
the status of a write or
erase command.

Command Definitions
> Write Status Bit

Must be an integer
between 0 and 7

0 Which bit contains the
write in progress status
returned from the
Write Status
Command.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,178 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

Command Definitions
> Sector Erase
Command

Must be an 8-bit QSPI
Sector Erase Command
under Command
Definitions

0x20 The command to erase
a sector. Set Sector
Erase Size to 0 if
unused.

Command Definitions
> Sector Erase Size

Must be an integer
greater than or equal
to 0

4096 The sector erase size.
Set Sector Erase Size
to 0 if Sector Erase is
not supported.

Command Definitions
> Block Erase
Command

Must be an 8-bit QSPI
Block Erase Command
under Command
Definitions

0xD8 The command to erase
a block. Set Block
Erase Size to 0 if
unused.

Command Definitions
> Block Erase Size

Must be an integer
greater than or equal
to 0

65536 The block erase size.
Set Block Erase Size to
0 if Block Erase is not
supported.

Command Definitions
> Block Erase 32KB
Command

Must be an 8-bit QSPI
Block Erase 32KB
Command under
Command Definitions

0x52 The command to erase
a 32KB block. Set Block
Erase Size to 0 if
unused.

Command Definitions
> Block Erase 32KB
Size

Must be an integer
greater than or equal
to 0

32768 The block erase 32KB
size. Set Block Erase
32KB Size to 0 if Block
Erase 32KB is not
supported.

Command Definitions
> Chip Erase
Command

Must be an 8-bit QSPI
Chip Erase Command
under Command
Definitions

0xC7 The command to erase
the entire chip. Set
Chip Erase Command
to 0 if unused.

Command Definitions
> XIP Enter M7-M0

Must be an 8-bit QSPI
XIP Enter M7-M0
command under
Command Definitions

0x20 How to set M7-M0 to
enter XIP mode.

Command Definitions
> XIP Exit M7-M0

Must be an 8-bit QSPI
XIP Exit M7-M0
command under
Command Definitions

0xFF How to set M7-M0 exit
XIP mode.

Bus Timing > QSPKCLK
Divisor

Refer to the RA
Configuration tool for
available options.

2 Select the divisor to
apply to PCLK to get
QSPCLK.

Bus Timing > Minimum
QSSL Deselect Cycles

Refer to the RA
Configuration tool for
available options.

4 QSPCLK Define the minimum
number of QSPCLK
cycles for QSSL to
remain high beween
operations.

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,179 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

The QSPI clock is derived from PCLKA.

Pin Configuration

The following pins are available to connect to an external QSPI device:

QSPCLK: QSPI clock output
QSSL: QSPI slave select
QIO0: Data 0 I/O
QIO1: Data 1 I/O
QIO2: Data 2 I/O
QIO3: Data 3 I/O

Note
It is recommended to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Usage Notes
QSPI Memory Mapped Access

After R_QSPI_Open() completes successfully, the QSPI flash device contents are mapped to address
0x60000000 and can be read like on-chip flash.

Limitations

Developers should be aware of the following limitations when using the QSPI driver:

Only P305-P310 are currently supported by the J-Link driver to flash the QSPI.
The default J-Link downloader requires the device to be in extended SPI mode (not QPI
mode).

Examples
Basic Example

This is a basic example of minimal use of the QSPI in an application.

#define QSPI_EXAMPLE_DATA_LENGTH (1024)

uint8_t g_dest[QSPI_EXAMPLE_DATA_LENGTH];

/* Place data in the .qspi_flash section to flash it during programming. */

const uint8_t g_src[QSPI_EXAMPLE_DATA_LENGTH] BSP_PLACE_IN_SECTION(".qspi_flash") =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

/* Place code in the .code_in_qspi section to flash it during programming. */

void r_qspi_example_function(void) BSP_PLACE_IN_SECTION(".code_in_qspi")

__attribute__((noinline));

void r_qspi_example_function (void)

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,180 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

 /* Add code here. */

}

void r_qspi_basic_example (void)

{

 /* Open the QSPI instance. */

 fsp_err_t err = R_QSPI_Open(&g_qspi0_ctrl, &g_qspi0_cfg);

 assert(FSP_SUCCESS == err);

 /* (Optional) Send device specific initialization commands. */

 r_qspi_example_init();

 /* After R_QSPI_Open() and any required device specific intiialization, data can be

read directly from the QSPI flash. */

 memcpy(&g_dest[0], &g_src[0], QSPI_EXAMPLE_DATA_LENGTH);

 /* After R_QSPI_Open() and any required device specific intiialization, functions in

the QSPI flash can be called. */

 r_qspi_example_function();

}

Initialization Command Structure Example

This is an example of the types of commands that can be used to initialize the QSPI.

#define QSPI_COMMAND_WRITE_ENABLE (0x06U)

#define QSPI_COMMAND_WRITE_STATUS_REGISTER (0x01U)

#define QSPI_COMMAND_ENTER_QPI_MODE (0x38U)

#define QSPI_EXAMPLE_STATUS_REGISTER_1 (0x40)

#define QSPI_EXAMPLE_STATUS_REGISTER_2 (0x00)

static void r_qspi_example_init (void)

{

 /* Write status registers */

 /* Write one byte to enable writing to the status register, then deassert QSSL. */

 uint8_t data[4];

 fsp_err_t err;

 data[0] = QSPI_COMMAND_WRITE_ENABLE;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 1, false);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,181 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

 /* Write 3 bytes, including the write status register command followed by values for

both status registers. In the

 * status registers, set QE to 1 and other bits to their default setting. After all

data is written, deassert the

 * QSSL line. */

 data[0] = QSPI_COMMAND_WRITE_STATUS_REGISTER;

 data[1] = QSPI_EXAMPLE_STATUS_REGISTER_1;

 data[2] = QSPI_EXAMPLE_STATUS_REGISTER_2;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 3, false);

 assert(FSP_SUCCESS == err);

 /* Wait for status register to update. */

 spi_flash_status_t status;

 do

 {

 (void) R_QSPI_StatusGet(&g_qspi0_ctrl, &status);

 } while (true == status.write_in_progress);

 /* Write one byte to enter QSPI mode, then deassert QSSL. After entering QPI mode on

the device, change the SPI

 * protocol to QPI mode on the MCU peripheral. */

 data[0] = QSPI_COMMAND_ENTER_QPI_MODE;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 1, false);

 assert(FSP_SUCCESS == err);

 (void) R_QSPI_SpiProtocolSet(&g_qspi0_ctrl, SPI_FLASH_PROTOCOL_QPI);

}

Reading Status Register Example (R_QSPI_DirectWrite, R_QSPI_DirectRead)

This is an example of using R_QSPI_DirectWrite followed by R_QSPI_DirectRead to send the read
status register command and read back the status register from the device.

#define QSPI_COMMAND_READ_STATUS_REGISTER (0x05U)

void r_qspi_direct_example (void)

{

 /* Read a status register. */

 /* Write one byte to read the status register. Do not deassert QSSL. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,182 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

 uint8_t data;

 fsp_err_t err;

 data = QSPI_COMMAND_READ_STATUS_REGISTER;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data, 1, true);

 assert(FSP_SUCCESS == err);

 /* Read one byte. After all data is read, deassert the QSSL line. */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &data, 1);

 assert(FSP_SUCCESS == err);

 /* Status register contents are available in variable 'data'. */

}

Querying Device Size Example (R_QSPI_DirectWrite, R_QSPI_DirectRead)

This is an example of using R_QSPI_DirectWrite followed by R_QSPI_DirectRead to query the device
size.

#define QSPI_EXAMPLE_COMMAND_READ_ID (0x9F)

#define QSPI_EXAMPLE_COMMAND_READ_SFDP (0x5A)

void r_qspi_size_example (void)

{

 /* Many QSPI devices support more than one way to query the device size. Consult the

datasheet for your

 * QSPI device to determine which of these methods are supported (if any). */

 uint32_t device_size_bytes;

 fsp_err_t err;

#ifdef QSPI_EXAMPLE_COMMAND_READ_ID

 /* This example shows how to get the device size by reading the manufacturer ID. */

 uint8_t data[4];

 data[0] = QSPI_EXAMPLE_COMMAND_READ_ID;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &data[0], 1, true);

 assert(FSP_SUCCESS == err);

 /* Read 3 bytes. The third byte often represents the size of the QSPI, where the

size of the QSPI = 2 ^ N. */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &data[0], 3);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,183 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

 device_size_bytes = 1U << data[2];

 FSP_PARAMETER_NOT_USED(device_size_bytes);

#endif

#ifdef QSPI_EXAMPLE_COMMAND_READ_SFDP

 /* Read the JEDEC SFDP header to locate the JEDEC flash parameters table. Reference

JESD216 "Serial Flash

 * Discoverable Parameters (SFDP)". */

 /* Send the standard 0x5A command followed by 3 address bytes (SFDP header is at

address 0). */

 uint8_t buffer[16];

 memset(&buffer[0], 0, sizeof(buffer));

 buffer[0] = QSPI_EXAMPLE_COMMAND_READ_SFDP;

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &buffer[0], 4, true);

 assert(FSP_SUCCESS == err);

 /* Read out 16 bytes (1 dummy byte followed by 15 data bytes). */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &buffer[0], 16);

 assert(FSP_SUCCESS == err);

 /* Read the JEDEC flash parameters to locate the memory size. */

 /* Send the standard 0x5A command followed by 3 address bytes (located in big endian

order at offset 0xC-0xE).

 * These bytes are accessed at 0xD-0xF because the first byte read is a dummy byte.

*/

 buffer[0] = QSPI_EXAMPLE_COMMAND_READ_SFDP;

 buffer[1] = buffer[0xF];

 buffer[2] = buffer[0xE];

 buffer[3] = buffer[0xD];

 err = R_QSPI_DirectWrite(&g_qspi0_ctrl, &buffer[0], 4, true);

 assert(FSP_SUCCESS == err);

 /* Read out 9 bytes (1 dummy byte followed by 8 data bytes). */

 err = R_QSPI_DirectRead(&g_qspi0_ctrl, &buffer[0], 9);

 assert(FSP_SUCCESS == err);

 /* Read the memory density (located in big endian order at offset 0x4-0x7). These

bytes are accessed at 0x5-0x8

 * because the first byte read is a dummy byte. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,184 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

 uint32_t memory_density = (uint32_t) ((buffer[8] << 24) | (buffer[7] << 16) |

(buffer[6] << 8) | buffer[5]);

 if ((1U << 31) & memory_density)

 {

 /* For densities 4 gigabits and above, bit-31 is set to 1b. The field 30:0 defines

‘N’ where the density is

 * computed as 2^N bits (N must be >= 32). This code subtracts 3 from N to divide by

8 to get the size in

 * bytes instead of bits. */

 device_size_bytes = 1U << ((memory_density & ~(1U << 31)) - 3U);

 }

 else

 {

 /* For densities 2 gigabits or less, bit-31 is set to 0b. The field 30:0 defines the

size in bits. This

 * code divides the memory density by 8 to get the size in bytes instead of bits. */

 device_size_bytes = (memory_density / 8) + 1;

 }

 FSP_PARAMETER_NOT_USED(device_size_bytes);

#endif

}

Data Structures

struct qspi_instance_ctrl_t

Enumerations

enum qspi_qssl_min_high_level_t

enum qspi_qspclk_div_t

Data Structure Documentation

◆ qspi_instance_ctrl_t

struct qspi_instance_ctrl_t

Instance control block. DO NOT INITIALIZE. Initialization occurs when spi_flash_api_t::open is called

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,185 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

Enumeration Type Documentation

◆ qspi_qssl_min_high_level_t

enum qspi_qssl_min_high_level_t

Enumerator

QSPI_QSSL_MIN_HIGH_LEVEL_1_QSPCLK QSSL deselected for at least 1 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_2_QSPCLK QSSL deselected for at least 2 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_3_QSPCLK QSSL deselected for at least 3 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_4_QSPCLK QSSL deselected for at least 4 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_5_QSPCLK QSSL deselected for at least 5 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_6_QSPCLK QSSL deselected for at least 6 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_7_QSPCLK QSSL deselected for at least 7 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_8_QSPCLK QSSL deselected for at least 8 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_9_QSPCLK QSSL deselected for at least 9 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_10_QSPCLK QSSL deselected for at least 10 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_11_QSPCLK QSSL deselected for at least 11 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_12_QSPCLK QSSL deselected for at least 12 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_13_QSPCLK QSSL deselected for at least 13 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_14_QSPCLK QSSL deselected for at least 14 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_15_QSPCLK QSSL deselected for at least 15 QSPCLK.

QSPI_QSSL_MIN_HIGH_LEVEL_16_QSPCLK QSSL deselected for at least 16 QSPCLK.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,186 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

◆ qspi_qspclk_div_t

enum qspi_qspclk_div_t

Enumerator

QSPI_QSPCLK_DIV_2 QSPCLK = PCLK / 2.

QSPI_QSPCLK_DIV_3 QSPCLK = PCLK / 3.

QSPI_QSPCLK_DIV_4 QSPCLK = PCLK / 4.

QSPI_QSPCLK_DIV_5 QSPCLK = PCLK / 5.

QSPI_QSPCLK_DIV_6 QSPCLK = PCLK / 6.

QSPI_QSPCLK_DIV_7 QSPCLK = PCLK / 7.

QSPI_QSPCLK_DIV_8 QSPCLK = PCLK / 8.

QSPI_QSPCLK_DIV_9 QSPCLK = PCLK / 9.

QSPI_QSPCLK_DIV_10 QSPCLK = PCLK / 10.

QSPI_QSPCLK_DIV_11 QSPCLK = PCLK / 11.

QSPI_QSPCLK_DIV_12 QSPCLK = PCLK / 12.

QSPI_QSPCLK_DIV_13 QSPCLK = PCLK / 13.

QSPI_QSPCLK_DIV_14 QSPCLK = PCLK / 14.

QSPI_QSPCLK_DIV_15 QSPCLK = PCLK / 15.

QSPI_QSPCLK_DIV_16 QSPCLK = PCLK / 16.

QSPI_QSPCLK_DIV_17 QSPCLK = PCLK / 17.

QSPI_QSPCLK_DIV_18 QSPCLK = PCLK / 18.

QSPI_QSPCLK_DIV_20 QSPCLK = PCLK / 20.

QSPI_QSPCLK_DIV_22 QSPCLK = PCLK / 22.

QSPI_QSPCLK_DIV_24 QSPCLK = PCLK / 24.

QSPI_QSPCLK_DIV_26 QSPCLK = PCLK / 26.

QSPI_QSPCLK_DIV_28

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,187 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

QSPCLK = PCLK / 28.

QSPI_QSPCLK_DIV_30 QSPCLK = PCLK / 30.

QSPI_QSPCLK_DIV_32 QSPCLK = PCLK / 32.

QSPI_QSPCLK_DIV_34 QSPCLK = PCLK / 34.

QSPI_QSPCLK_DIV_36 QSPCLK = PCLK / 36.

QSPI_QSPCLK_DIV_38 QSPCLK = PCLK / 38.

QSPI_QSPCLK_DIV_40 QSPCLK = PCLK / 40.

QSPI_QSPCLK_DIV_42 QSPCLK = PCLK / 42.

QSPI_QSPCLK_DIV_44 QSPCLK = PCLK / 44.

QSPI_QSPCLK_DIV_46 QSPCLK = PCLK / 46.

QSPI_QSPCLK_DIV_48 QSPCLK = PCLK / 48.

Function Documentation

◆ R_QSPI_Open()

fsp_err_t R_QSPI_Open (spi_flash_ctrl_t * p_ctrl, spi_flash_cfg_t const *const p_cfg)

Open the QSPI driver module. After the driver is open, the QSPI can be accessed like internal flash
memory starting at address 0x60000000.

Implements spi_flash_api_t::open.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION The parameter p_instance_ctrl or p_cfg is
NULL.

FSP_ERR_ALREADY_OPEN Driver has already been opened with the
same p_instance_ctrl.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,188 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

◆ R_QSPI_Close()

fsp_err_t R_QSPI_Close (spi_flash_ctrl_t * p_ctrl)

Close the QSPI driver module.

Implements spi_flash_api_t::close.

Return values
FSP_SUCCESS Configuration was successful.

FSP_ERR_ASSERTION p_instance_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_QSPI_DirectWrite()

fsp_err_t R_QSPI_DirectWrite (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint32_t const
bytes, bool const read_after_write)

Writes raw data directly to the QSPI.

Implements spi_flash_api_t::directWrite.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

FSP_ERR_DEVICE_BUSY The device is busy.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,189 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

◆ R_QSPI_DirectRead()

fsp_err_t R_QSPI_DirectRead (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_dest, uint32_t const bytes
)

Reads raw data directly from the QSPI. This API can only be called after R_QSPI_DirectWrite with
read_after_write set to true.

Implements spi_flash_api_t::directRead.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function must be called after
R_QSPI_DirectWrite with read_after_write
set to true.

◆ R_QSPI_SpiProtocolSet()

fsp_err_t R_QSPI_SpiProtocolSet (spi_flash_ctrl_t * p_ctrl, spi_flash_protocol_t spi_protocol)

Sets the SPI protocol.

Implements spi_flash_api_t::spiProtocolSet.

Return values
FSP_SUCCESS SPI protocol updated on MCU peripheral.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_ARGUMENT Invalid SPI protocol requested.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,190 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

◆ R_QSPI_XipEnter()

fsp_err_t R_QSPI_XipEnter (spi_flash_ctrl_t * p_ctrl)

Enters XIP (execute in place) mode.

Implements spi_flash_api_t::xipEnter.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

◆ R_QSPI_XipExit()

fsp_err_t R_QSPI_XipExit (spi_flash_ctrl_t * p_ctrl)

Exits XIP (execute in place) mode.

Implements spi_flash_api_t::xipExit.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,191 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

◆ R_QSPI_Write()

fsp_err_t R_QSPI_Write (spi_flash_ctrl_t * p_ctrl, uint8_t const *const p_src, uint8_t *const p_dest,
uint32_t byte_count)

Program a page of data to the flash.

Implements spi_flash_api_t::write.

Return values
FSP_SUCCESS The flash was programmed successfully.

FSP_ERR_ASSERTION p_instance_ctrl, p_dest or p_src is NULL, or
byte_count crosses a page boundary.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

FSP_ERR_DEVICE_BUSY The device is busy.

◆ R_QSPI_Erase()

fsp_err_t R_QSPI_Erase (spi_flash_ctrl_t * p_ctrl, uint8_t *const p_device_address, uint32_t
byte_count)

Erase a block or sector of flash. The byte_count must exactly match one of the erase sizes defined
in spi_flash_cfg_t. For chip erase, byte_count must be SPI_FLASH_ERASE_SIZE_CHIP_ERASE.

Implements spi_flash_api_t::erase.

Return values
FSP_SUCCESS The command to erase the flash was

executed successfully.

FSP_ERR_ASSERTION p_instance_ctrl or p_device_address is NULL,
or byte_count doesn't match an erase size
defined in spi_flash_cfg_t, or device is in XIP
mode.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

FSP_ERR_DEVICE_BUSY The device is busy.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,192 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Quad Serial Peripheral Interface Flash (r_qspi)

◆ R_QSPI_StatusGet()

fsp_err_t R_QSPI_StatusGet (spi_flash_ctrl_t * p_ctrl, spi_flash_status_t *const p_status)

Gets the write or erase status of the flash.

Implements spi_flash_api_t::statusGet.

Return values
FSP_SUCCESS The write status is in p_status.

FSP_ERR_ASSERTION p_instance_ctrl or p_status is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

FSP_ERR_INVALID_MODE This function can't be called when XIP mode
is enabled.

◆ R_QSPI_BankSet()

fsp_err_t R_QSPI_BankSet (spi_flash_ctrl_t * p_ctrl, uint32_t bank)

Selects the bank to access. A bank is a 64MB sliding access window into the QSPI device flash
memory space. To access chip address 0x4000000, select bank 1, then read from internal flash
address 0x60000000. To access chip address 0x8001000, select bank 2, then read from internal
flash address 0x60001000.

This function is not required for memory devices less than or equal to 512 Mb (64MB).

Implements spi_flash_api_t::bankSet.

Return values
FSP_SUCCESS Bank successfully selected.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN Driver is not opened.

4.2.42 Realtime Clock (r_rtc)
Modules

Functions

fsp_err_t R_RTC_Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

fsp_err_t R_RTC_Close (rtc_ctrl_t *const p_ctrl)

fsp_err_t R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,193 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

p_time)

fsp_err_t R_RTC_CalendarTimeGet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const
p_time)

fsp_err_t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err_t R_RTC_PeriodicIrqRateSet (rtc_ctrl_t *const p_ctrl,
rtc_periodic_irq_select_t const rate)

fsp_err_t R_RTC_ErrorAdjustmentSet (rtc_ctrl_t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj_cfg)

fsp_err_t R_RTC_InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

fsp_err_t R_RTC_CallbackSet (rtc_ctrl_t *const p_ctrl,
void(*p_callback)(rtc_callback_args_t *), void const *const p_context,
rtc_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the RTC peripheral on RA MCUs. This module implements the RTC Interface.

Overview
The RTC HAL module configures the RTC module and controls clock, calendar and alarm functions. A
callback can be used to respond to the alarm and periodic interrupt.

Features

RTC time and date get and set.
RTC time and date alarm get and set.
RTC alarm and periodic event notification.

The RTC HAL module supports three different interrupt types:

An alarm interrupt generated on a match of any combination of year, month, day, day of
the week, hour, minute or second
A periodic interrupt generated every 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256
second(s)
A carry interrupt is used internally when reading time from the RTC calender to get
accurant time readings.

Note
See section "23.3.5 Reading 64-Hz Counter and Time" of the RA6M3 manual R01UH0886EJ0100 for more details.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,194 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

A user-defined callback function can be registered (in the rtc_api_t::open API call) and will be called
from the interrupt service routine (ISR) for alarm and periodic interrupt. When called, it is passed a
pointer to a structure (rtc_callback_args_t) that holds a user-defined context pointer and an
indication of which type of interrupt was fired.

Date and Time validation

"Parameter Checking" needs to be enabled if date and time validation is required for
calendarTimeSet and calendarAlarmSet APIs. If "Parameter Checking" is enabled, the 'day of the
week' field is automatically calculated and updated by the driver for the provided date. When using
the calendarAlarmSet API, only the fields which have their corresponding match flag set are written
to the registers. Other register fields are reset to default value.

Sub-Clock error adjustment (Time Error Adjustment Function)

The time error adjustment function is used to correct errors, running fast or slow, in the time caused
by variation in the precision of oscillation by the sub-clock oscillator. Because 32,768 cycles of the
sub-clock oscillator constitute 1 second of operation when the sub-clock oscillator is selected, the
clock runs fast if the sub-clock frequency is high and slow if the sub-clock frequency is low. The time
error adjustment functions include:

Automatic adjustment
Adjustment by software

The error adjustment is reset every time RTC is reconfigured or time is set.

Note
RTC driver configurations do not do error adjustment internally while initiliazing the driver. Application must
make calls to the error adjustment api's for desired adjustment. See section 26.3.8 "Time Error Adjustment
Function" of the RA6M3 manual R01UH0886EJ0100) for more details on this feature

Configuration
Build Time Configurations for r_rtc

The following build time configurations are defined in fsp_cfg/r_rtc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Timers > RTC Driver on r_rtc

This module can be added to the Stacks tab via New Stack > Driver > Timers > RTC Driver on r_rtc.
Non-secure callable guard functions can be generated for this module by right clicking the module in
the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rtc0 Module name.

Clock Source Sub-Clock LOCO Select the RTC clock

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,195 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

LOCO source.

Frequency Comparision
Value (LOCO)

Value must be a
positive integer
between 7 and 511

255 Frequency comparison
value when using LOCO

Automatic Adjustment
Mode

Enabled
Disabled

Enabled Enable/ Disable the
Error Adjustment mode

Automatic Adjustment
Period

10 Seconds
1 Minute
NONE

10 Seconds Select the Error
Adjustment Period for
Automatic Adjustment

Adjustment Type (Plus-
Minus)

NONE
Addition
Subtraction

NONE Select the Error
Adjustment type

Error Adjustment Value Value must be a
positive integer less
than equal to 63

0 Specify the Adjustment
Value (the number of
sub-clock cycles) from
the prescaler

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Alarm Interrupt Priority MCU Specific Options Select the alarm
interrupt priority.

Period Interrupt Priority MCU Specific Options Select the period
interrupt priority.

Carry Interrupt Priority MCU Specific Options Select the carry
interrupt priority.

Note
See 23.2.20 Frequency Register (RFRH/RFRL) of the RA6M3 manual R01UH0886EJ0100) for more details

Interrupt Configuration

To activate interrupts for the RTC module, the desired interrupts must be enabled, The underlying
implementation will be expected to handle any interrupts it can support and notify higher layers via
callback.

Clock Configuration

The RTC HAL module can use the following clock sources:

LOCO (Low Speed On-Chip Oscillator) with less accuracy
Sub-clock oscillator with increased accuracy

The LOCO is the default selection during configuration.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,196 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

Pin Configuration

This module does not use I/O pins.

Usage Notes
System Initialization

RTC driver does not start the sub-clock. The application is responsible for ensuring required
clocks are started and stable before accessing MCU peripheral registers.

Warning
The subclock can take seconds to stabilize. The RA startup code does not wait for subclock
stabilization unless the subclock is the main clock source. When running AGT or RTC off the
subclock, the application must ensure the subclock is stable before starting operation.

Carry interrupt priority must be set to avoid incorrect time returned from calendarTimeGet
API during roll-over.
Even when only running in Periodic Interrupt mode R_RTC_CalendarTimeSet must be called
successfully to start the RTC.

Limitations

Developers should be aware of the following limitations when using the RTC:

R_RTC operates in 24-hour mode.
Binary-count mode is not supported.
The R_RTC_CalendarTimeGet() cannot be used from an interrupt that has higher priority
than the carry interrupt. Also, it must not be called with interrupts disabled globally, as this
API internally uses carry interrupt for its processing. API may return incorrect time if this is
done.

Examples
RTC Basic Example

This is a basic example of minimal use of the RTC in an application.

/* rtc_time_t is an alias for the C Standard time.h struct 'tm' */

rtc_time_t set_time =

{

 .tm_sec = 10,

 .tm_min = 11,

 .tm_hour = 12,

 .tm_mday = 6,

 .tm_wday = 3,

 .tm_mon = 11,

 .tm_year = YEARS_SINCE_1900,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,197 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

};

rtc_time_t get_time;

void rtc_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the RTC module */

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the calendar time */

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Get the calendar time */

 R_RTC_CalendarTimeGet(&g_rtc0_ctrl, &get_time);

}

RTC Periodic interrupt example

This is an example of periodic interrupt in RTC.

void rtc_periodic_irq_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the RTC module*/

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* R_RTC_CalendarTimeSet must be called at least once to start the RTC */

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time);

 /* Set the periodic interrupt rate to 1 second */

 R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

 /* Wait for the periodic interrupt */

 while (1)

 {

 /* Wait for interrupt */

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,198 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

}

RTC Alarm interrupt example

This is an example of alarm interrupt in RTC.

void rtc_alarm_irq_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /*Initialize the RTC module*/

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time1.time);

 R_RTC_CalendarAlarmSet(&g_rtc0_ctrl, &set_time1);

 /* Wait for the Alarm interrupt */

 while (1)

 {

 /* Wait for interrupt */

 }

}

RTC Error Adjustment example

This is an example of modifying error adjustment in RTC.

void rtc_erroradj_example ()

{

 fsp_err_t err = FSP_SUCCESS;

 /*Initialize the RTC module*/

 R_RTC_Open(&g_rtc0_ctrl, &g_rtc1_cfg);

 R_RTC_CalendarTimeSet(&g_rtc0_ctrl, &set_time1.time);

 /* Modify Error Adjustment after RTC is running */

 err = R_RTC_ErrorAdjustmentSet(&g_rtc0_ctrl, &err_cfg2);

 assert(FSP_SUCCESS == err);

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,199 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

Data Structures

struct rtc_instance_ctrl_t

Data Structure Documentation

◆ rtc_instance_ctrl_t

struct rtc_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when rtc_api_t::open is called

Data Fields

uint32_t open

 Whether or not driver is open.

const rtc_cfg_t * p_cfg

 Pointer to initial configurations.

volatile bool carry_isr_triggered

 Was the carry isr triggered.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,200 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

◆ R_RTC_Open()

fsp_err_t R_RTC_Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

Opens and configures the RTC driver module. Implements rtc_api_t::open. Configuration includes
clock source, and interrupt callback function.

Example:

 /* Initialize the RTC module */

 err = R_RTC_Open(&g_rtc0_ctrl, &g_rtc0_cfg);

Return values
FSP_SUCCESS Initialization was successful and RTC has

started.

FSP_ERR_ASSERTION Invalid p_ctrl or p_cfg pointer.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

◆ R_RTC_Close()

fsp_err_t R_RTC_Close (rtc_ctrl_t *const p_ctrl)

Close the RTC driver. Implements rtc_api_t::close

Return values
FSP_SUCCESS De-Initialization was successful and RTC

driver closed.

FSP_ERR_ASSERTION Invalid p_ctrl.

FSP_ERR_NOT_OPEN Driver not open already for close.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,201 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

◆ R_RTC_CalendarTimeSet()

fsp_err_t R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Set the calendar time.

Implements rtc_api_t::calendarTimeSet.

Return values
FSP_SUCCESS Calendar time set operation was successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

◆ R_RTC_CalendarTimeGet()

fsp_err_t R_RTC_CalendarTimeGet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Get the calendar time.

Warning
Do not call this function from a critical section or from an interrupt with higher priority than
the carry interrupt, or the time returned may be inaccurate.

Implements rtc_api_t::calendarTimeGet

Return values
FSP_SUCCESS Calendar time get operation was successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,202 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

◆ R_RTC_CalendarAlarmSet()

fsp_err_t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Set the calendar alarm time.

Implements rtc_api_t::calendarAlarmSet.

Precondition
The calendar counter must be running before the alarm can be set.

Return values
FSP_SUCCESS Calendar alarm time set operation was

successful.

FSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

◆ R_RTC_CalendarAlarmGet()

fsp_err_t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Get the calendar alarm time.

Implements rtc_api_t::calendarAlarmGet

Return values
FSP_SUCCESS Calendar alarm time get operation was

successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,203 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

◆ R_RTC_PeriodicIrqRateSet()

fsp_err_t R_RTC_PeriodicIrqRateSet (rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t const rate)

Set the periodic interrupt rate and enable periodic interrupt.

Implements rtc_api_t::periodicIrqRateSet

Note
To start the RTC R_RTC_CalendarTimeSet must be called at least once.

Example:

 /* Set the periodic interrupt rate to 1 second */

 R_RTC_PeriodicIrqRateSet(&g_rtc0_ctrl, RTC_PERIODIC_IRQ_SELECT_1_SECOND);

Return values
FSP_SUCCESS The periodic interrupt rate was successfully

set.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

FSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

◆ R_RTC_ErrorAdjustmentSet()

fsp_err_t R_RTC_ErrorAdjustmentSet (rtc_ctrl_t *const p_ctrl, rtc_error_adjustment_cfg_t const
*const err_adj_cfg)

This function sets time error adjustment

Implements rtc_api_t::errorAdjustmentSet

Return values
FSP_SUCCESS Time error adjustment successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open for operation.

FSP_ERR_UNSUPPORTED The clock source is not sub-clock.

FSP_ERR_INVALID_ARGUMENT Invalid error adjustment value.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,204 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Realtime Clock (r_rtc)

◆ R_RTC_InfoGet()

fsp_err_t R_RTC_InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

Set RTC clock source and running status information ad store it in provided pointer p_rtc_info

Implements rtc_api_t::infoGet

Return values
FSP_SUCCESS Get information Successful.

FSP_ERR_ASSERTION Invalid input argument.

FSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_CallbackSet()

fsp_err_t R_RTC_CallbackSet (rtc_ctrl_t *const p_ctrl, void(*)(rtc_callback_args_t *) p_callback,
void const *const p_context, rtc_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
rtc_api_t::callbackSet

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to RTC control block is NULL or the
RTC is not configured to use the internal
clock.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.43 Secure Crypto Engine (r_sce_protected)
Modules

Functions

fsp_err_t R_SCE_Open (sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

fsp_err_t R_SCE_Close (sce_ctrl_t *const p_ctrl)

fsp_err_t R_SCE_SoftwareReset (void)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,205 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

fsp_err_t R_SCE_AES128_WrappedKeyGenerate (sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_AES256_WrappedKeyGenerate (sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSA1024_WrappedKeyPairGenerate
(sce_rsa1024_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_RSA2048_WrappedKeyPairGenerate
(sce_rsa2048_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp192r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp224r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp256r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_ECC_secp384r1_WrappedKeyPairGenerate
(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t R_SCE_RandomNumberGenerate (uint32_t *random)

fsp_err_t R_SCE_AES128_EncryptedKeyWrap (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_SHA256HMAC_EncryptedKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA1024_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA1024_EncryptedPrivateKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA2048_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA2048_EncryptedPrivateKeyWrap (uint8_t *initial_vector,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,206 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA3072_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa3072_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_RSA4096_EncryptedPublicKeyWrap (uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa4096_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap (uint8_t
*initial_vector, uint8_t *encrypted_key, sce_key_update_key_t
*key_update_key, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128ECB_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128ECB_EncryptUpdate (sce_aes_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES128ECB_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,207 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

fsp_err_t R_SCE_AES128ECB_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128ECB_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES128ECB_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

fsp_err_t R_SCE_AES256ECB_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256ECB_EncryptUpdate (sce_aes_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES256ECB_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t R_SCE_AES256ECB_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256ECB_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES256ECB_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

fsp_err_t R_SCE_AES128CBC_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES128CBC_EncryptUpdate (sce_aes_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES128CBC_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t R_SCE_AES128CBC_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES128CBC_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES128CBC_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

fsp_err_t R_SCE_AES256CBC_EncryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES256CBC_EncryptUpdate (sce_aes_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,208 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

fsp_err_t R_SCE_AES256CBC_EncryptFinal (sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t R_SCE_AES256CBC_DecryptInit (sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t R_SCE_AES256CBC_DecryptUpdate (sce_aes_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES256CBC_DecryptFinal (sce_aes_handle_t *handle, uint8_t
*plain, uint32_t *plain_length)

fsp_err_t R_SCE_AES128GCM_EncryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t R_SCE_AES128GCM_EncryptUpdate (sce_gcm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES128GCM_EncryptFinal (sce_gcm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t R_SCE_AES128GCM_DecryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t R_SCE_AES128GCM_DecryptUpdate (sce_gcm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES128GCM_DecryptFinal (sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

fsp_err_t R_SCE_AES256GCM_EncryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t R_SCE_AES256GCM_EncryptUpdate (sce_gcm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES256GCM_EncryptFinal (sce_gcm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t R_SCE_AES256GCM_DecryptInit (sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,209 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

fsp_err_t R_SCE_AES256GCM_DecryptUpdate (sce_gcm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t
*aad, uint32_t aad_length)

fsp_err_t R_SCE_AES256GCM_DecryptFinal (sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

fsp_err_t R_SCE_AES128CCM_EncryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t adata_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t R_SCE_AES128CCM_EncryptUpdate (sce_ccm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES128CCM_EncryptFinal (sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES128CCM_DecryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t adata_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t R_SCE_AES128CCM_DecryptUpdate (sce_ccm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES128CCM_DecryptFinal (sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_EncryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t adata_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_EncryptUpdate (sce_ccm_handle_t *handle,
uint8_t *plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t R_SCE_AES256CCM_EncryptFinal (sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_DecryptInit (sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t adata_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t R_SCE_AES256CCM_DecryptUpdate (sce_ccm_handle_t *handle,
uint8_t *cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t R_SCE_AES256CCM_DecryptFinal (sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,210 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

fsp_err_t R_SCE_AES128CMAC_GenerateInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128CMAC_GenerateUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES128CMAC_GenerateFinal (sce_cmac_handle_t *handle,
uint8_t *mac)

fsp_err_t R_SCE_AES128CMAC_VerifyInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES128CMAC_VerifyUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES128CMAC_VerifyFinal (sce_cmac_handle_t *handle,
uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_AES256CMAC_GenerateInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256CMAC_GenerateUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES256CMAC_GenerateFinal (sce_cmac_handle_t *handle,
uint8_t *mac)

fsp_err_t R_SCE_AES256CMAC_VerifyInit (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_AES256CMAC_VerifyUpdate (sce_cmac_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_AES256CMAC_VerifyFinal (sce_cmac_handle_t *handle,
uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_SHA256_Init (sce_sha_md5_handle_t *handle)

fsp_err_t R_SCE_SHA256_Update (sce_sha_md5_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t R_SCE_SHA256_Final (sce_sha_md5_handle_t *handle, uint8_t
*digest, uint32_t *digest_length)

fsp_err_t R_SCE_SHA256HMAC_GenerateInit (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_SHA256HMAC_GenerateUpdate (sce_hmac_sha_handle_t
*handle, uint8_t *message, uint32_t message_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,211 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

fsp_err_t R_SCE_SHA256HMAC_GenerateFinal (sce_hmac_sha_handle_t
*handle, uint8_t *mac)

fsp_err_t R_SCE_SHA256HMAC_VerifyInit (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_SHA256HMAC_VerifyUpdate (sce_hmac_sha_handle_t
*handle, uint8_t *message, uint32_t message_length)

fsp_err_t R_SCE_SHA256HMAC_VerifyFinal (sce_hmac_sha_handle_t *handle,
uint8_t *mac, uint32_t mac_length)

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureGenerate (sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa1024_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa1024_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureGenerate (sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa2048_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa2048_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS3072_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa3072_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSASSA_PKCS4096_SignatureVerify (sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa4096_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t R_SCE_RSAES_PKCS1024_Encrypt (sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa1024_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS1024_Decrypt (sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa1024_private_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS2048_Encrypt (sce_rsa_byte_data_t *plain,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,212 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

sce_rsa_byte_data_t *cipher, sce_rsa2048_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS2048_Decrypt (sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa2048_private_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS3072_Encrypt (sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa3072_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_RSAES_PKCS4096_Encrypt (sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa4096_public_wrapped_key_t
*wrapped_key)

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureGenerate
(sce_ecdsa_byte_data_t *message_hash, sce_ecdsa_byte_data_t
*signature, sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureVerify (sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureVerify (sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureVerify (sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureVerify (sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_Init (sce_ecdh_handle_t *handle, uint32_t
key_type, uint32_t use_key_id)

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeySign (sce_ecdh_handle_t *handle,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,213 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key, uint8_t
*public_key, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeyVerify (sce_ecdh_handle_t
*handle, sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
uint8_t *public_key_data, sce_ecdsa_byte_data_t *signature,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_SharedSecretCalculate (sce_ecdh_handle_t
*handle, sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key)

fsp_err_t R_SCE_ECDH_secp256r1_KeyDerivation (sce_ecdh_handle_t *handle,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key, uint32_t
key_type, uint32_t kdf_type, uint8_t *other_info, uint32_t
other_info_length, sce_hmac_sha_wrapped_key_t *salt_wrapped_key,
sce_aes_wrapped_key_t *wrapped_key)

Detailed Description

Driver for the Secure Crypto Engine (SCE) on RA MCUs.

Overview
This module provides SCE functions.

HW Overview

Crypto Peripheral version Devices

SCE9 (Protected mode) RA4M2, RA4M3, RA6M4, RA6M5

Features

The SCE module supports for the following features.

Cryptography
Symmetric Encryption/Decryption

AES
ECB 128/256bit
CBC 128/256bit
GCM 128/256bit
CCM 128/256bit

Asymmetric Encryption/Decryption
RSA

RSAES-PKCS1-V1_5 1024/2048bit
RSAES-PKCS1-V1_5 3072/4096bit (Encryption only)
RSASSA-PKCS1-V1_5 1024/2048bit
RSASSA-PKCS1-V1_5 3072/4096bit (Verification only)

ECC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,214 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

ECDSA secp192r1/secp224r1/secp256r1/secp384r1
ECDH secp192r1/secp224r1/secp256r1/secp384r1

Hash Functions
SHA-2

SHA-256
Message Authentication Code

HMAC-SHA256bit
AES-CMAC 128/256bit

Key Support
AES 128/256bit
RSA 1024/2048bit
RSA 3072/4096bit (public key only)
ECC secp192r1/secp224r1/secp256r1/secp384r1
HMAC-SHA256bit

TRNG

Configuration
Clock Configuration

This module does not require a specific clock configuration.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Getting Started: Creating a SCE Protected Mode Project

Start by creating a new project in e2 studio or RA SC. On the Stacks tab, add New > Driver > Crypto
> SCE Protected Mode. For information on how to install and update secure keys, refer to the
Application Note R11AN0496.

Limitations

Usage of R_SCE_ECDSA_secp384r1_SignatureGenerate/Verify

The SCE does not support SHA-384 in hardware, so the APIs listed below require the user to create a
SHA-384 function for signature generation and verification. To use the APIs listed below, enable
SCE_USER_SHA_384_ENABLED on RA Smart Configurator and prepare a function called
SCE_USER_SHA_384_FUNCTION. The interface of SCE_USER_SHA_384_FUNCTION, which is called by
the following APIs, is described below.

R_SCE_ECDSA_secp384r1_SignatureGenerate()
R_SCE_ECDSA_secp384r1_SignatureVerify()

SCE_USER_SHA_384_FUNCTION()

uint32_t SCE_USER_SHA_384_FUNCTION(uint8_t * message, uint8_t * digest, uint32_t

message_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,215 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

 SHA-384 hash calculation is performed for an area extending the number of bytes specified by the
argument message_length from the address specified by the argument message. The calculation
result should be stored at the address specified by the argument digest.

Parameters
message [in] Start address of message

digest [in,out] address for storing hash calculation
result (48 bytes)

message_length [in] Effective byte count of message

Return values
0 Hash value stored successfully.

others Storing of hash value failed.

Examples
AES Example

This is an example of AES-256 encryption and decryption.

#include <string.h>

#include "r_sce.h"

#define BLOCK 16

void r_sce_example_aes();

sce_instance_ctrl_t sce_ctrl;

sce_cfg_t sce_cfg =

{

 .lifecycle = SCE_SSD

};

static uint8_t plain[BLOCK * 2] =

{

 0x52, 0x65, 0x6e, 0x65, 0x73, 0x61, 0x73, 0x20, 0x45, 0x6c, 0x65, 0x63, 0x74,

0x72, 0x6f, 0x6e,

 0x69, 0x63, 0x73, 0x20, 0x43, 0x6f, 0x72, 0x70, 0x6f, 0x72, 0x61, 0x74, 0x69,

0x6f, 0x6e, 0x00

};

void r_sce_example_aes ()

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,216 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

 sce_aes_handle_t handle;

 sce_aes_wrapped_key_t wrapped_key;

 uint8_t cipher_calculated[32] = {0};

 uint8_t plain_calculated[32] = {0};

 uint32_t dummy;

 /* SCE power on */

 R_SCE_Open(&sce_ctrl, &sce_cfg);

 /* Generate a random key */

 R_SCE_AES256_WrappedKeyGenerate(&wrapped_key);

 /* Encrypt a plain text */

 R_SCE_AES256ECB_EncryptInit(&handle, &wrapped_key);

 R_SCE_AES256ECB_EncryptUpdate(&handle, plain, cipher_calculated, BLOCK * 2);

 R_SCE_AES256ECB_EncryptFinal(&handle, cipher_calculated, &dummy);

 /* Decrypt a cipher text using same key as Encryption */

 R_SCE_AES256ECB_DecryptInit(&handle, &wrapped_key);

 R_SCE_AES256ECB_DecryptUpdate(&handle, cipher_calculated, plain_calculated, BLOCK *

2);

 R_SCE_AES256ECB_DecryptFinal(&handle, plain_calculated, &dummy);

 /* SCE power off */

 R_SCE_Close(&sce_ctrl);

 /* Compare plain and plain_calculated */

 if (memcmp(plain, plain_calculated, BLOCK * 2))

 {

 while (1)

 {

 /* plain and plain_calculated are different (incorrect) */

 }

 }

 else

 {

 while (1)

 {

 /* plain and plain_calculated are the same (correct) */

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,217 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

 }

}

Data Structures

struct sce_instance_ctrl_t

Data Structure Documentation

◆ sce_instance_ctrl_t

struct sce_instance_ctrl_t

SCE private control block. DO NOT MODIFY. Initialization occurs when R_SCE_Open() is called.

Function Documentation

◆ R_SCE_Open()

fsp_err_t R_SCE_Open (sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

Enables use of SCE functionality.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL The error-detection self-test failed to
terminate normally.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_RETRY Indicates that an entropy evaluation failure
occurred. Run the function again.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

Note
The valid pre-run state is SCE disabled. The pre-run state is SCE Disabled State. After the function runs the state
transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,218 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_Close()

fsp_err_t R_SCE_Close (sce_ctrl_t *const p_ctrl)

Stops supply of power to the SCE.

Return values
FSP_SUCCESS Normal termination

Note
The pre-run state is any state. After the function runs the state transitions to SCE Disabled State.

◆ R_SCE_SoftwareReset()

fsp_err_t R_SCE_SoftwareReset (void)

Software reset to SCE.

Reverts the state to the SCE initial state.

Return values
FSP_SUCCESS Normal termination

Note
The pre-run state is any state. After the function runs the state transitions to SCE Disabled State.

◆ R_SCE_AES128_WrappedKeyGenerate()

fsp_err_t R_SCE_AES128_WrappedKeyGenerate (sce_aes_wrapped_key_t * wrapped_key)

This API outputs 128-bit AES wrapped key from a random number.

This API generates a wrapped key from a random number in the SCE. Accordingly, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Parameters
[in,out] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Disabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,219 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256_WrappedKeyGenerate()

fsp_err_t R_SCE_AES256_WrappedKeyGenerate (sce_aes_wrapped_key_t * wrapped_key)

This API outputs 256-bit AES wrapped key from a random number.

This API generates a wrapped key from a random number in the SCE. Accordingly, user key input is
unnecessary. By encrypting data using the wrapped key is output by this API, dead copying of data
can be prevented.

Parameters
[in,out] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Disabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,220 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA1024_WrappedKeyPairGenerate()

fsp_err_t R_SCE_RSA1024_WrappedKeyPairGenerate (sce_rsa1024_wrapped_pair_key_t *
wrapped_pair_key)

This API outputs a wrapped key pair for a 1024-bit RSA public key and private key pair. These keys
are generated from a random value produced internally by the SCE. Consequently, there is no need
to input a user key. Dead copying of data can be prevented by encrypting the data using the
wrapped key output by this API. A public wrapped key is generated by wrapped_pair_key->public,
and a private wrapped key is generated by wrapped_pair_key->private. As the public key
exponent, only 0x00010001 is generated.

Parameters
[in,out] wrapped_pair_key User key index for RSA

1024-bit public key and
private key pair

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred. Key generation
failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,221 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA2048_WrappedKeyPairGenerate()

fsp_err_t R_SCE_RSA2048_WrappedKeyPairGenerate (sce_rsa2048_wrapped_pair_key_t *
wrapped_pair_key)

This API outputs a wrapped key pair for a 2048-bit RSA public key and private key pair. These keys
are generated from a random value produced internally by the SCE. Consequently, there is no need
to input a user key. Dead copying of data can be prevented by encrypting the data using the
wrapped key output by this API. A public wrapped key is generated by wrapped_pair_key->public,
and a private wrapped key is generated by wrapped_pair_key->private. As the public key
exponent, only 0x00010001 is generated.

Parameters
[in,out] wrapped_pair_key User key index for RSA

2048-bit public key and
private key pair

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred. Key generation
failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,222 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp192r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp192r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp192r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->public, and the private key index is generated in wrapped_pair_key->private.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp192r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,223 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp224r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp224r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp224r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->public, and the private key index is generated in wrapped_pair_key->private.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp224r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,224 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp256r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp256r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp256r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->public, and the private key index is generated in wrapped_pair_key->private.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp256r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,225 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp384r1_WrappedKeyPairGenerate()

fsp_err_t R_SCE_ECC_secp384r1_WrappedKeyPairGenerate (sce_ecc_wrapped_pair_key_t *
wrapped_pair_key)

This is an API for outputting a wrapped key pair for secp384r1 public key and private key pair.
These keys are generated from a random number value internally within the SCE. There is
therefore no need to input user keys. It is possible to prevent dead copying of data by using the
wrapped key output by this API to encrypt the data. The public key index is generated in
wrapped_pair_key->public, and the private key index is generated in wrapped_pair_key->private.

Parameters
[in,out] wrapped_pair_key Wrapped pair key for

secp384r1 public key and
private key pair

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RandomNumberGenerate()

fsp_err_t R_SCE_RandomNumberGenerate (uint32_t * random)

This API can generate 4 words random number.

Parameters
[in,out] random Stores 4words (16 bytes)

random data.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,226 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128_EncryptedKeyWrap()

fsp_err_t R_SCE_AES128_EncryptedKeyWrap (uint8_t * initial_vector, uint8_t * encrypted_key,
sce_key_update_key_t * key_update_key, sce_aes_wrapped_key_t * wrapped_key)

This API wraps 128-bit AES key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,227 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256_EncryptedKeyWrap()

fsp_err_t R_SCE_AES256_EncryptedKeyWrap (uint8_t * initial_vector, uint8_t * encrypted_key,
sce_key_update_key_t * key_update_key, sce_aes_wrapped_key_t * wrapped_key)

This API wraps 256-bit AES key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,228 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256HMAC_EncryptedKeyWrap()

fsp_err_t R_SCE_SHA256HMAC_EncryptedKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_hmac_sha_wrapped_key_t *
wrapped_key)

This API wraps HMAC-SHA256 key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key HMAC-SHA256 wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,229 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA1024_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA1024_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa1024_public_wrapped_key_t *
wrapped_key)

This API wraps 1024-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,230 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA1024_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_RSA1024_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa1024_private_wrapped_key_t *
wrapped_key)

This API wraps 1024-bit RSA private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA private
wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,231 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA2048_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA2048_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa2048_public_wrapped_key_t *
wrapped_key)

This API wraps 2048-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,232 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA2048_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_RSA2048_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa2048_private_wrapped_key_t *
wrapped_key)

This API wraps 2048-bit RSA private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA private
wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,233 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA3072_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA3072_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa3072_public_wrapped_key_t *
wrapped_key)

This API wraps 3072-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 3072-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,234 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSA4096_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_RSA4096_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_rsa4096_public_wrapped_key_t *
wrapped_key)

This API wraps 4096-bit RSA public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,235 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp192r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,236 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp224r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,237 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp256r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,238 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_public_wrapped_key_t *
wrapped_key)

This API wraps secp384r1 public key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 public wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,239 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp192r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,240 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp224r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,241 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp256r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,242 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap()

fsp_err_t R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap (uint8_t * initial_vector, uint8_t *
encrypted_key, sce_key_update_key_t * key_update_key, sce_ecc_private_wrapped_key_t *
wrapped_key)

This API wraps secp384r1 private key within the user routine.

Parameters
[in] initial_vector Initialization vector when

generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 private wrapped
key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,243 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128ECB_EncryptInit()

fsp_err_t R_SCE_AES128ECB_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128ECB_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128ECB_EncryptUpdate() function and
R_SCE_AES128ECB_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,244 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128ECB_EncryptUpdate()

fsp_err_t R_SCE_AES128ECB_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES128ECB_EncryptUpdate() function encrypts the second argument, plain, utilizing the
key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES128ECB_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,245 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128ECB_EncryptFinal()

fsp_err_t R_SCE_AES128ECB_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128ECB_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,246 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128ECB_DecryptInit()

fsp_err_t R_SCE_AES128ECB_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128ECB_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128ECB_DecryptUpdate() function and
R_SCE_AES128ECB_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,247 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128ECB_DecryptUpdate()

fsp_err_t R_SCE_AES128ECB_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES128ECB_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES128ECB_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,248 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128ECB_DecryptFinal()

fsp_err_t R_SCE_AES128ECB_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128ECB_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,249 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256ECB_EncryptInit()

fsp_err_t R_SCE_AES256ECB_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES256ECB_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256ECB_EncryptUpdate() function and
R_SCE_AES256ECB_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,250 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256ECB_EncryptUpdate()

fsp_err_t R_SCE_AES256ECB_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES256ECB_EncryptUpdate() function encrypts the second argument, plain, utilizing the
key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES256ECB_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,251 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256ECB_EncryptFinal()

fsp_err_t R_SCE_AES256ECB_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256ECB_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,252 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256ECB_DecryptInit()

fsp_err_t R_SCE_AES256ECB_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128ECB_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128ECB_DecryptUpdate() function and
R_SCE_AES128ECB_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,253 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256ECB_DecryptUpdate()

fsp_err_t R_SCE_AES256ECB_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES256ECB_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES256ECB_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,254 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256ECB_DecryptFinal()

fsp_err_t R_SCE_AES256ECB_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256ECB_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,255 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CBC_EncryptInit()

fsp_err_t R_SCE_AES128CBC_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES128CBC_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128CBC_EncryptUpdate() function and
R_SCE_AES128CBC_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,256 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CBC_EncryptUpdate()

fsp_err_t R_SCE_AES128CBC_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES128CBC_EncryptUpdate() function encrypts the second argument, plain, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES128CBC_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,257 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CBC_EncryptFinal()

fsp_err_t R_SCE_AES128CBC_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128CBC_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,258 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CBC_DecryptInit()

fsp_err_t R_SCE_AES128CBC_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES128CBC_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128CBC_DecryptUpdate() function and
R_SCE_AES128CBC_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,259 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CBC_DecryptUpdate()

fsp_err_t R_SCE_AES128CBC_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES128CBC_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES128CBC_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,260 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CBC_DecryptFinal()

fsp_err_t R_SCE_AES128CBC_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES128CBC_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,261 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CBC_EncryptInit()

fsp_err_t R_SCE_AES256CBC_EncryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES256CBC_EncryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256CBC_EncryptUpdate() function and
R_SCE_AES256CBC_EncryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,262 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CBC_EncryptUpdate()

fsp_err_t R_SCE_AES256CBC_EncryptUpdate (sce_aes_handle_t * handle, uint8_t * plain, uint8_t *
cipher, uint32_t plain_length)

The R_SCE_AES256CBC_EncryptUpdate() function encrypts the second argument, plain, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the encryption result to the third argument,
cipher. After plaintext input is completed, call R_SCE_AES256CBC_EncryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,263 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CBC_EncryptFinal()

fsp_err_t R_SCE_AES256CBC_EncryptFinal (sce_aes_handle_t * handle, uint8_t * cipher, uint32_t *
cipher_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256CBC_EncryptFinal()
function writes the calculation result to the second argument, cipher, and writes the length of the
calculation result to the third argument, cipher_length. The original intent was for a portion of the
encryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to cipher, and 0 is always written to cipher_length. The arguments cipher
and cipher_length are provided for compatibility in anticipation of the time when this restriction is
lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,264 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CBC_DecryptInit()

fsp_err_t R_SCE_AES256CBC_DecryptInit (sce_aes_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector)

The R_SCE_AES256CBC_DecryptInit() function performs preparations for the execution of an AES
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256CBC_DecryptUpdate() function and
R_SCE_AES256CBC_DecryptFinal() function.

Parameters
[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Input illegal wrapped key.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,265 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CBC_DecryptUpdate()

fsp_err_t R_SCE_AES256CBC_DecryptUpdate (sce_aes_handle_t * handle, uint8_t * cipher, uint8_t
* plain, uint32_t cipher_length)

The R_SCE_AES256CBC_DecryptUpdate() function decrypts the second argument, cipher, utilizing
the key index stored in the handle specified in the first argument, handle, and writes the ongoing
status to this first argument. In addition, it writes the decryption result to the third argument, plain.
After plaintext input is completed, call R_SCE_AES256CBC_DecryptFinal().

Specify areas for plain and cipher that do not overlap. For plain and cipher, specify RAM addresses
that are multiples of 4.

Parameters
[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,266 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CBC_DecryptFinal()

fsp_err_t R_SCE_AES256CBC_DecryptFinal (sce_aes_handle_t * handle, uint8_t * plain, uint32_t *
plain_length)

Using the handle specified in the first argument, handle, the R_SCE_AES256CBC_DecryptFinal()
function writes the calculation result to the second argument, plain, and writes the length of the
calculation result to the third argument, plain_length. The original intent was for a portion of the
decryption result that was not a multiple of 16 bytes to be written to the second argument.
However, as a result of the restriction that only multiples of 16 can be input to the Update function,
nothing is ever written to plain, and 0 is always written to plain_length. The arguments plain and
plain_length are provided for compatibility in anticipation of the time when this restriction is lifted.

Parameters
[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,267 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128GCM_EncryptInit()

fsp_err_t R_SCE_AES128GCM_EncryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES128GCM_EncryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128GCM_EncryptUpdate() function and
R_SCE_AES128GCM_EncryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,268 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128GCM_EncryptUpdate()

fsp_err_t R_SCE_AES128GCM_EncryptUpdate (sce_gcm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES128GCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES128GCM_EncryptInit(), along with the additional authentication data specified in the fifth
argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from plain reaches 16 bytes or more,
the encryption result is output to the ciphertext data area specified in the third argument, cipher.
The lengths of the plain and aad data to input are respectively specified in the fourth argument,
plain_data_length, and the sixth argument, aad_length. For these, specify not the total byte count
for the aad and plain input data, but rather the data length to input when the user calls this
function. If the input values plain and aad are not divisible by 16 bytes, they will be padded inside
the function. First process the data that is input from aad, and then process the data that is input
from plain. If aad data is input after starting to input plain data, an error will occur. If aad data and
plain data are input to this function at the same time, the aad data will be processed, and then the
function will transition to the plain data input state.

Specify areas for plain and cipher that do not overlap. For plain, cipher, initial_vector, and aad,
specify RAM addresses that are multiples of 4

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,269 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128GCM_EncryptFinal()

fsp_err_t R_SCE_AES128GCM_EncryptFinal (sce_gcm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_data_length, uint8_t * atag)

If there is 16-byte fractional data indicated by the total data length of the value of plain that was
input by R_SCE_AES128GCM_EncryptUpdate (), the R_SCE_AES128GCM_EncryptFinal() function will
output the result of encrypting that fractional data to the ciphertext data area specified in the
second argument, cipher. Here, the portion that does not reach 16 bytes will be padded with zeros.
The authentication tag is output to the fourth argument, atag. For cipher and atag, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,270 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128GCM_DecryptInit()

fsp_err_t R_SCE_AES128GCM_DecryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES128GCM_DecryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES128GCM_DecryptUpdate() function and
R_SCE_AES128GCM_DecryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,271 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128GCM_DecryptUpdate()

fsp_err_t R_SCE_AES128GCM_DecryptUpdate (sce_gcm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES128GCM_DecryptUpdate() function decrypts the ciphertext specified in the second
argument, cipher, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES128GCM_DecryptInit(), along with the additional authentication data specified in the
fifth argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from cipher reaches 16 bytes or
more, the decryption result is output to the plaintext data area specified in the third argument,
plain. The lengths of the cipher and aad data to input are respectively specified in the fourth
argument, cipher_data_length, and the sixth argument, aad_length. For these, specify not the total
byte count for the aad and cipher input data, but rather the data length to input when the user
calls this function. If the input values cipher and aad are not divisible by 16 bytes, they will be
padded inside the function. First process the data that is input from aad, and then process the data
that is input from cipher. If aad data is input after starting to input cipher data, an error will occur.
If aad data and cipher data are input to this function at the same time, the aad data will be
processed, and then the function will transition to the cipher data input state. Specify areas for
plain and cipher that do not overlap. For plain, cipher, stage, initial_vector, and aad, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,272 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128GCM_DecryptFinal()

fsp_err_t R_SCE_AES128GCM_DecryptFinal (sce_gcm_handle_t * handle, uint8_t * plain, uint32_t
* plain_data_length, uint8_t * atag, uint32_t atag_length)

The R_SCE_AES128GCM_DecryptFinal() function decrypts, in GCM mode, the fractional ciphertext
specified by R_SCE_AES128GCM_DecryptUpdate() that does not reach 16 bytes, and ends GCM
decryption. The encryption data and authentication tag are respectively output to the plaintext
data area specified in the second argument, plain, and the authentication tag area specified in the
fourth argument, atag. The decoded data length is output to the third argument, plain_data_length.
If authentication fails, the return value will be TSIP_ERR_AUTHENTICATION. For the fourth
argument, atag, input 16 bytes or less. If it is less than 16 bytes, it will be padded with zeros inside
the function. For plain and atag, specify RAM addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,273 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256GCM_EncryptInit()

fsp_err_t R_SCE_AES256GCM_EncryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES256GCM_EncryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256GCM_EncryptUpdate() function and
R_SCE_AES256GCM_EncryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,274 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256GCM_EncryptUpdate()

fsp_err_t R_SCE_AES256GCM_EncryptUpdate (sce_gcm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES256GCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES256GCM_EncryptInit(), along with the additional authentication data specified in the fifth
argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from plain reaches 16 bytes or more,
the encryption result is output to the ciphertext data area specified in the third argument, cipher.
The lengths of the plain and aad data to input are respectively specified in the fourth argument,
plain_data_length, and the sixth argument, aad_length. For these, specify not the total byte count
for the aad and plain input data, but rather the data length to input when the user calls this
function. If the input values plain and aad are not divisible by 16 bytes, they will be padded inside
the function. First process the data that is input from aad, and then process the data that is input
from plain. If aad data is input after starting to input plain data, an error will occur. If aad data and
plain data are input to this function at the same time, the aad data will be processed, and then the
function will transition to the plain data input state.

Specify areas for plain and cipher that do not overlap. For plain, cipher, initial_vector, and aad,
specify RAM addresses that are multiples of 4

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,275 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256GCM_EncryptFinal()

fsp_err_t R_SCE_AES256GCM_EncryptFinal (sce_gcm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_data_length, uint8_t * atag)

If there is 16-byte fractional data indicated by the total data length of the value of plain that was
input by R_SCE_AES256GCM_EncryptUpdate (), the R_SCE_AES256GCM_EncryptFinal() function will
output the result of encrypting that fractional data to the ciphertext data area specified in the
second argument, cipher. Here, the portion that does not reach 16 bytes will be padded with zeros.
The authentication tag is output to the fourth argument, atag. For cipher and atag, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,276 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256GCM_DecryptInit()

fsp_err_t R_SCE_AES256GCM_DecryptInit (sce_gcm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * initial_vector, uint32_t initial_vector_length)

The R_SCE_AES256GCM_DecryptInit() function performs preparations for the execution of an GCM
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_AES256GCM_DecryptUpdate() function and
R_SCE_AES256GCM_DecryptFinal() function.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,277 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256GCM_DecryptUpdate()

fsp_err_t R_SCE_AES256GCM_DecryptUpdate (sce_gcm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_data_length, uint8_t * aad, uint32_t aad_length)

The R_SCE_AES256GCM_DecryptUpdate() function decrypts the ciphertext specified in the second
argument, cipher, in GCM mode using the values specified for wrapped_key and initial_vector in
R_SCE_AES256GCM_DecryptInit(), along with the additional authentication data specified in the
fifth argument, aad. Inside this function, the data that is input by the user is buffered until the input
values of aad and plain exceed 16 bytes. After the input data from cipher reaches 16 bytes or
more, the decryption result is output to the plaintext data area specified in the third argument,
plain. The lengths of the cipher and aad data to input are respectively specified in the fourth
argument, cipher_data_length, and the sixth argument, aad_length. For these, specify not the total
byte count for the aad and cipher input data, but rather the data length to input when the user
calls this function. If the input values cipher and aad are not divisible by 16 bytes, they will be
padded inside the function. First process the data that is input from aad, and then process the data
that is input from cipher. If aad data is input after starting to input cipher data, an error will occur.
If aad data and cipher data are input to this function at the same time, the aad data will be
processed, and then the function will transition to the cipher data input state. Specify areas for
plain and cipher that do not overlap. For plain, cipher, stage, initial_vector, and aad, specify RAM
addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER After the data from plain was input, an
invalid handle was input from aad.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,278 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256GCM_DecryptFinal()

fsp_err_t R_SCE_AES256GCM_DecryptFinal (sce_gcm_handle_t * handle, uint8_t * plain, uint32_t
* plain_data_length, uint8_t * atag, uint32_t atag_length)

The R_SCE_AES256GCM_DecryptFinal() function decrypts, in GCM mode, the fractional ciphertext
specified by R_SCE_AES256GCM_DecryptUpdate() that does not reach 16 bytes, and ends GCM
decryption. The encryption data and authentication tag are respectively output to the plaintext
data area specified in the second argument, plain, and the authentication tag area specified in the
fourth argument, atag. The decoded data length is output to the third argument, plain_data_length.
If authentication fails, the return value will be TSIP_ERR_AUTHENTICATION. For the fourth
argument, atag, input 16 bytes or less. If it is less than 16 bytes, it will be padded with zeros inside
the function. For plain and atag, specify RAM addresses that are multiples of 4.

Parameters
[in,out] handle AES-GCM handler (work

area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,279 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CCM_EncryptInit()

fsp_err_t R_SCE_AES128CCM_EncryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES128CCM_EncryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES128CCM_EncryptUpdate() and R_SCE_AES128CCM_EncryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,280 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CCM_EncryptUpdate()

fsp_err_t R_SCE_AES128CCM_EncryptUpdate (sce_ccm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_length)

The R_SCE_AES128CCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in CCM mode using the values specified by wrapped_key, nonce, and adata in
R_SCE_AES128CCM_EncryptInit(). This function buffers internally the data input by the user until
the input value of plain exceeds 16 bytes. Once the amount of plain input data is 16 bytes or
greater, the encrypted result is output to cipher, which is specified in the third argument. Use
payload_length in R_SCE_AES128CCM_EncryptInit() to specify the total data length of plain that will
be input. Use plain_length in this function to specify the data length to be input when the user calls
this function. If the input value of plain is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to plain and cipher do not overlap. Also, specify RAM addresses
that are multiples of 4 for plain and cipher.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,281 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CCM_EncryptFinal()

fsp_err_t R_SCE_AES128CCM_EncryptFinal (sce_ccm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_length, uint8_t * mac, uint32_t mac_length)

If the data length of plain input in R_SCE_AES128CCM_EncryptUpdate() results in leftover data after
16 bytes, the R_SCE_AES128CCM_EncryptFinal() function outputs the leftover encrypted data to
cipher, which is specified in the second argument. The MAC value is output to the fourth argument,
mac. Set the fifth argument, mac_length to the same value as that specified for the argument
mac_length in Aes128CcmEncryptInit(). Also, specify RAM addresses that are multiples of 4 for
cipher and mac.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,282 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CCM_DecryptInit()

fsp_err_t R_SCE_AES128CCM_DecryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES128CCM_DecryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES128CCM_DecryptUpdate() and R_SCE_AES128CCM_DecryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,283 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CCM_DecryptUpdate()

fsp_err_t R_SCE_AES128CCM_DecryptUpdate (sce_ccm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_length)

The R_SCE_AES128CCM_DecryptUpdate() function decrypts the ciphertext specified by the second
argument, cipher, in CCM mode using the values specified by wrapped_key, nonce, and adata in in
R_SCE_AES128CCM_DecryptInit(). This function buffers internally the data input by the user until
the input value of cipher exceeds 16 bytes. Once the amount of cipher input data is 16 bytes or
greater, the decrypted result is output to plain, which is specified in the third argument. Use
payload_length in R_SCE_AES128CCM_DecryptInit() to specify the total data length of cipher that
will be input. Use cipher_length in this function to specify the data length to be input when the user
calls this function. If the input value of cipher is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to cipher and plain do not overlap. Also, specify RAM addresses
that are multiples of 4 for cipher and plain.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,284 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CCM_DecryptFinal()

fsp_err_t R_SCE_AES128CCM_DecryptFinal (sce_ccm_handle_t * handle, uint8_t * plain, uint32_t *
plain_length, uint8_t * mac, uint32_t mac_length)

If the data length of cipher input in R_SCE_AES128GCM_DecryptUpdate() results in leftover data
after 16 bytes, the R_SCE_AES128GCM_DecryptFinal() function outputs the leftover decrypted data
to cipher, which is specified in the second argument. In addition, the function verifies the fourth
argument, mac. Set the fifth argument, mac_length, to the same value as that specified for the
argument mac_length in Aes128CcmDecryptInit().

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL Internal error, or authentication failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,285 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CCM_EncryptInit()

fsp_err_t R_SCE_AES256CCM_EncryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES256CCM_EncryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES256CCM_EncryptUpdate() and R_SCE_AES256CCM_EncryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,286 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CCM_EncryptUpdate()

fsp_err_t R_SCE_AES256CCM_EncryptUpdate (sce_ccm_handle_t * handle, uint8_t * plain, uint8_t
* cipher, uint32_t plain_length)

The R_SCE_AES256CCM_EncryptUpdate() function encrypts the plaintext specified in the second
argument, plain, in CCM mode using the values specified by wrapped_key, nonce, and adata in
R_SCE_AES256CCM_EncryptInit(). This function buffers internally the data input by the user until
the input value of plain exceeds 16 bytes. Once the amount of plain input data is 16 bytes or
greater, the encrypted result is output to cipher, which is specified in the third argument. Use
payload_length in R_SCE_AES256CCM_EncryptInit() to specify the total data length of plain that will
be input. Use plain_length in this function to specify the data length to be input when the user calls
this function. If the input value of plain is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to plain and cipher do not overlap. Also, specify RAM addresses
that are multiples of 4 for plain and cipher.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,287 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CCM_EncryptFinal()

fsp_err_t R_SCE_AES256CCM_EncryptFinal (sce_ccm_handle_t * handle, uint8_t * cipher, uint32_t
* cipher_length, uint8_t * mac, uint32_t mac_length)

If the data length of plain input in R_SCE_AES256CCM_EncryptUpdate() results in leftover data after
16 bytes, the R_SCE_AES256CCM_EncryptFinal() function outputs the leftover encrypted data to
cipher, which is specified in the second argument. The MAC value is output to the fourth argument,
mac. Set the fifth argument, mac_length to the same value as that specified for the argument
mac_length in Aes256CcmEncryptInit(). Also, specify RAM addresses that are multiples of 4 for
cipher and mac.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,288 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CCM_DecryptInit()

fsp_err_t R_SCE_AES256CCM_DecryptInit (sce_ccm_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key, uint8_t * nonce, uint32_t nonce_length, uint8_t * adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

The R_SCE_AES256CCM_DecryptInit() function prepares to perform CCM computation and writes
the result to the first argument, handle. The succeeding functions
R_SCE_AES256CCM_DecryptUpdate() and R_SCE_AES256CCM_DecryptFinal() use handle as an
argument.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,289 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CCM_DecryptUpdate()

fsp_err_t R_SCE_AES256CCM_DecryptUpdate (sce_ccm_handle_t * handle, uint8_t * cipher,
uint8_t * plain, uint32_t cipher_length)

The R_SCE_AES256CCM_DecryptUpdate() function decrypts the ciphertext specified by the second
argument, cipher, in CCM mode using the values specified by wrapped_key, nonce, and adata in in
R_SCE_AES256CCM_DecryptInit(). This function buffers internally the data input by the user until
the input value of cipher exceeds 16 bytes. Once the amount of cipher input data is 16 bytes or
greater, the decrypted result is output to plain, which is specified in the third argument. Use
payload_length in R_SCE_AES256CCM_DecryptInit() to specify the total data length of cipher that
will be input. Use cipher_length in this function to specify the data length to be input when the user
calls this function. If the input value of cipher is less than 16 bytes, the function performs padding
internally.

Ensure that the areas allocated to cipher and plain do not overlap. Also, specify RAM addresses
that are multiples of 4 for cipher and plain.

Parameters
[in,out] handle AES-CCM handler (work

area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,290 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CCM_DecryptFinal()

fsp_err_t R_SCE_AES256CCM_DecryptFinal (sce_ccm_handle_t * handle, uint8_t * plain, uint32_t *
plain_length, uint8_t * mac, uint32_t mac_length)

If the data length of cipher input in R_SCE_AES256GCM_DecryptUpdate() results in leftover data
after 16 bytes, the R_SCE_AES256GCM_DecryptFinal() function outputs the leftover decrypted data
to cipher, which is specified in the second argument. In addition, the function verifies the fourth
argument, mac. Set the fifth argument, mac_length, to the same value as that specified for the
argument mac_length in Aes256CcmDecryptInit().

Parameters
[in,out] handle AES-CCM handler (work

area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL Internal error, or authentication failed.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,291 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CMAC_GenerateInit()

fsp_err_t R_SCE_AES128CMAC_GenerateInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t
* wrapped_key)

The R_SCE_AES128CMAC_GenerateInit() function performs preparations for the execution of an
CMAC calculation, and writes the result to the first argument, handle. The value of handle is used
as an argument in the subsequent R_SCE_AES128CMAC_GenerateUpdate() function and
R_SCE_AES128CMAC_GenerateFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,292 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CMAC_GenerateUpdate()

fsp_err_t R_SCE_AES128CMAC_GenerateUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES128CMAC_GenerateUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES128CMAC_GenerateInit(). Inside this function, the data that is input by the user is
buffered until the input value of message exceeds 16 bytes. The length of the message data to
input is specified in the third argument, message_len. For these, input not the total byte count for
message input data, but rather the message data length to input when the user calls this function.
If the input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,293 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CMAC_GenerateFinal()

fsp_err_t R_SCE_AES128CMAC_GenerateFinal (sce_cmac_handle_t * handle, uint8_t * mac)

The R_SCE_AES128CMAC_GenerateFinal() function outputs the MAC value to the MAC data area
specified in the second argument, mac, and ends CMAC mode.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Not used.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,294 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CMAC_VerifyInit()

fsp_err_t R_SCE_AES128CMAC_VerifyInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES128CMAC_VerifyInit() function performs preparations for the execution of a CMAC
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argumentin the subsequent R_SCE_AES128CMAC_VerifyUpdate() function and
R_SCE_AES128CMAC_VerifyFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 128-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,295 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CMAC_VerifyUpdate()

fsp_err_t R_SCE_AES128CMAC_VerifyUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES128CMAC_VerifyUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES128CMAC_VerifyInit(). Inside this function, the data that is input by the user is buffered
until the input value of message exceeds 16 bytes. The length of the message data to input is
specified in the third argument, message_len. For these, input not the total byte count for message
input data, but rather the message data length to input when the user calls this function. If the
input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,296 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES128CMAC_VerifyFinal()

fsp_err_t R_SCE_AES128CMAC_VerifyFinal (sce_cmac_handle_t * handle, uint8_t * mac, uint32_t
mac_length)

The R_SCE_AES128CMAC_VerifyFinal() function inputs the MAC value in the MAC data area
specified in the second argument, mac, and verifies the MAC value. If authentication fails, the
return value will be TSIP_ERR_AUTHENTICATION. If the MAC value is less than 16 bytes, it will be
padded with zeros inside the function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,297 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CMAC_GenerateInit()

fsp_err_t R_SCE_AES256CMAC_GenerateInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t
* wrapped_key)

The R_SCE_AES256CMAC_GenerateInit() function performs preparations for the execution of an
CMAC calculation, and writes the result to the first argument, handle. The value of handle is used
as an argument in the subsequent R_SCE_AES256CMAC_GenerateUpdate() function and
R_SCE_AES256CMAC_GenerateFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,298 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CMAC_GenerateUpdate()

fsp_err_t R_SCE_AES256CMAC_GenerateUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES256CMAC_GenerateUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES256CMAC_GenerateInit(). Inside this function, the data that is input by the user is
buffered until the input value of message exceeds 16 bytes. The length of the message data to
input is specified in the third argument, message_len. For these, input not the total byte count for
message input data, but rather the message data length to input when the user calls this function.
If the input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,299 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CMAC_GenerateFinal()

fsp_err_t R_SCE_AES256CMAC_GenerateFinal (sce_cmac_handle_t * handle, uint8_t * mac)

The R_SCE_AES256CMAC_GenerateFinal() function outputs the MAC value to the MAC data area
specified in the second argument, mac, and ends CMAC mode.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (16byte)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Not used.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,300 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CMAC_VerifyInit()

fsp_err_t R_SCE_AES256CMAC_VerifyInit (sce_cmac_handle_t * handle, sce_aes_wrapped_key_t *
wrapped_key)

The R_SCE_AES256CMAC_VerifyInit() function performs preparations for the execution of a CMAC
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argumentin the subsequent R_SCE_AES256CMAC_VerifyUpdate() function and
R_SCE_AES256CMAC_VerifyFinal() function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] wrapped_key 256-bit AES wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL Internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,301 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CMAC_VerifyUpdate()

fsp_err_t R_SCE_AES256CMAC_VerifyUpdate (sce_cmac_handle_t * handle, uint8_t * message,
uint32_t message_length)

The R_SCE_AES256CMAC_VerifyUpdate() function performs MAC value generation based on the
message specified in the second argument, message, using the value specified for wrapped_key in
R_SCE_AES256CMAC_VerifyInit(). Inside this function, the data that is input by the user is buffered
until the input value of message exceeds 16 bytes. The length of the message data to input is
specified in the third argument, message_len. For these, input not the total byte count for message
input data, but rather the message data length to input when the user calls this function. If the
input value, message, is not a multiple of 16 bytes, it will be padded within the function. For
message, specify a RAM address that are multiples of 4.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,302 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_AES256CMAC_VerifyFinal()

fsp_err_t R_SCE_AES256CMAC_VerifyFinal (sce_cmac_handle_t * handle, uint8_t * mac, uint32_t
mac_length)

The R_SCE_AES256CMAC_VerifyFinal() function inputs the MAC value in the MAC data area
specified in the second argument, mac, and verifies the MAC value. If authentication fails, the
return value will be TSIP_ERR_AUTHENTICATION. If the MAC value is less than 16 bytes, it will be
padded with zeros inside the function.

Parameters
[in,out] handle AES-CMAC handler (work

area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_SHA256_Init()

fsp_err_t R_SCE_SHA256_Init (sce_sha_md5_handle_t * handle)

The R_SCE_SHA256_Init() function performs preparations for the execution of an SHA-256 hash
calculation, and writes the result to the first argument, handle. The value of handle is used as an
argument in the subsequent R_SCE_SHA256_Update() function and R_SCE_SHA256_Final() function.

Parameters
[in,out] handle SHA handler (work area)

Return values
FSP_SUCCESS Normal termination

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,303 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256_Update()

fsp_err_t R_SCE_SHA256_Update (sce_sha_md5_handle_t * handle, uint8_t * message, uint32_t
message_length)

The R_SCE_SHA256_Update() function calculates a hash value based on the second argument,
message, and the third argument, message_length, and writes the ongoing status to the first
argument, handle. After message input is completed, call R_SCE_SHA256_Final().

Parameters
[in,out] handle SHA handler (work area)

[in] message message data area

[in] message_length message data length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,304 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256_Final()

fsp_err_t R_SCE_SHA256_Final (sce_sha_md5_handle_t * handle, uint8_t * digest, uint32_t *
digest_length)

Using the handle specified in the first argument, handle, the R_SCE_SHA256_Final() function writes
the calculation result to the second argument, digest, and writes the length of the calculation result
to the third argument, digest_length.

Parameters
[in,out] handle SHA handler (work area)

[in,out] digest hasha data area

[in,out] digest_length hash data length (32bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,305 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256HMAC_GenerateInit()

fsp_err_t R_SCE_SHA256HMAC_GenerateInit (sce_hmac_sha_handle_t * handle,
sce_hmac_sha_wrapped_key_t * wrapped_key)

The R_SCE_SHA256HMAC_GenerateInit() function uses the second argument wrapped_key to
prepare for execution of SHA256-HMAC calculation, then writes the result to the first argument
handle. The argument handle is used by the subsequent R_SCE_SHA256HMAC_GenerateUpdate()
function or R_SCE_SHA256HMAC_GenerateFinal() function.

Parameters
[in,out] handle SHA-HMAC handler (work

area)

[in] wrapped_key MAC wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL An invalid MAC wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,306 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256HMAC_GenerateUpdate()

fsp_err_t R_SCE_SHA256HMAC_GenerateUpdate (sce_hmac_sha_handle_t * handle, uint8_t *
message, uint32_t message_length)

The R_SCE_SHA256HMAC_GenerateUpdate() function uses the handle specified by the first
argument handle, calculates a hash value from the second argument message and third argument
message_length, then writes the intermediate result to the first argument handle. After message
input finishes, call the R_SCE_SHA256HMAC_GenerateFinal() function.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in] message Message area

[in] message_length Message length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_SHA256HMAC_GenerateFinal()

fsp_err_t R_SCE_SHA256HMAC_GenerateFinal (sce_hmac_sha_handle_t * handle, uint8_t * mac)

The R_SCE_SHA256HMAC_GenerateFinal() function uses the handle specified by the first argument
handle and writes the calculation result to the second argument mac.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in,out] mac HMAC area (32 bytes)

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,307 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256HMAC_VerifyInit()

fsp_err_t R_SCE_SHA256HMAC_VerifyInit (sce_hmac_sha_handle_t * handle,
sce_hmac_sha_wrapped_key_t * wrapped_key)

The R_SCE_SHA256HMAC_VerifyInit() function uses the second argument wrapped_key to prepare
for execution of SHA256-HMAC calculation, then writes the result to the first argument handle. The
argument handle is used by the subsequent R_SCE_SHA256HMAC_VerifyUpdate() function or
R_SCE_SHA256HMAC_VerifyFinal() function.

Parameters
[in,out] handle SHA-HMAC handler (work

area)

[in] wrapped_key MAC wrapped key

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL An invalid MAC wrapped key was input.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,308 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256HMAC_VerifyUpdate()

fsp_err_t R_SCE_SHA256HMAC_VerifyUpdate (sce_hmac_sha_handle_t * handle, uint8_t *
message, uint32_t message_length)

The R_SCE_SHA256HMAC_VerifyUpdate() function uses the handle specified by the first argument
handle, calculates a hash value from the second argument message and third argument
message_length, then writes the intermediate result to the first argument handle. After message
input finishes, call the R_SCE_SHA256HMAC_VerifyFinal() function.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in] message Message area

[in] message_length Message length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,309 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_SHA256HMAC_VerifyFinal()

fsp_err_t R_SCE_SHA256HMAC_VerifyFinal (sce_hmac_sha_handle_t * handle, uint8_t * mac,
uint32_t mac_length)

The R_SCE_SHA256HMAC_VerifyFinal() function uses the handle specified by the first argument
handle and verifies the mac value from the second argument mac and third argument mac_length.
Input a value in bytes from 4 to 32 as mac_length.

Parameters
[in,out] handle SHA-HMAC handle (work

area)

[in] mac HMAC area

[in] mac_length HMAC length

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RSASSA_PKCS1024_SignatureGenerate()

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureGenerate (sce_rsa_byte_data_t * message_hash,
sce_rsa_byte_data_t * signature, sce_rsa1024_private_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS1024_SignatureGenerate() function generates, in accordance with
RSASSA-PKCS1-V1_5, a signature from the message text or hash value that is input in the first
argument, message_hash, using the private wrapped key input to the third argument,
wrapped_key, and writes the signature text to the second argument, signature. When a message is
specified in the first argument, message_hash->data_type, a hash value is calculated for the
message as specified by the fourth argument, hash_type. When specifying a hash value in the first
argument, message_hash->data_type, a hash value calculated with a hash algorithm as specified
by the fourth argument, hash_type, must be input to message_hash->pdata.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,310 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : data length

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,311 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSASSA_PKCS1024_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS1024_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa1024_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS1024_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,312 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RSASSA_PKCS2048_SignatureGenerate()

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureGenerate (sce_rsa_byte_data_t * message_hash,
sce_rsa_byte_data_t * signature, sce_rsa2048_private_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS2048_SignatureGenerate() function generates, in accordance with
RSASSA-PKCS1-V1_5, a signature from the message text or hash value that is input in the first
argument, message_hash, using the private wrapped key input to the third argument,
wrapped_key, and writes the signature text to the second argument, signature. When a message is
specified in the first argument, message_hash->data_type, a hash value is calculated for the
message as specified by the fourth argument, hash_type. When specifying a hash value in the first
argument, message_hash->data_type, a hash value calculated with a hash algorithm as specified
by the fourth argument, hash_type, must be input to message_hash->pdata.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,313 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : data length

[in] wrapped_key Inputs the 2048-bit RSA
private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,314 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSASSA_PKCS2048_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS2048_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa2048_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS2048_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,315 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_RSASSA_PKCS3072_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS3072_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa3072_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS3072_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

message_hash->pda

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,316 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,317 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSASSA_PKCS4096_SignatureVerify()

fsp_err_t R_SCE_RSASSA_PKCS4096_SignatureVerify (sce_rsa_byte_data_t * signature,
sce_rsa_byte_data_t * message_hash, sce_rsa4096_public_wrapped_key_t * wrapped_key, uint8_t
hash_type)

The R_SCE_RSASSA_PKCS4096_SignatureVerify() function verifies, in accordance with RSASSA-
PKCS1-V1_5, the signature text input to the first argument signature, and the message text or hash
value input to the second argument, message_hash, using the public wrapped key input to the
third argument, wrapped_key. When a message is specified in the second argument,
message_hash->data_type, a hash value is calculated using the public wrapped key input to the
third argument, wrapped_key, and as specified by the fourth argument, hash_type. When
specifying a hash value in the second argument, message_hash->data_type, a hash value
calculated with a hash algorithm as specified by the fourth argument, hash_type, must be input to
message_hash->pdata.

Parameters
[in] signature Signature text information to

verify

signature->pdata :
Specifies pointer to
array storing the
signature text
signature->data_leng
th : Specifies
effective data length
of the array

[in] message_hash Message text or hash value
to verify

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,318 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

HW_SCE_RSA_HASH_SHA256
is supported

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_AUTHENTICATION Authentication failed

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,319 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSAES_PKCS1024_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS1024_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa1024_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS1024_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,320 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSAES_PKCS1024_Decrypt()

fsp_err_t R_SCE_RSAES_PKCS1024_Decrypt (sce_rsa_byte_data_t * cipher, sce_rsa_byte_data_t *
plain, sce_rsa1024_private_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS1024_Decrypt() function RSA-decrypts the ciphertext input to the first
argument, cipher, according to RSAES-PKCS1-V1_5. It writes the decryption result to the second
argument, plain.

Parameters
[in] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in,out] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Inputs plaintext
buffer size. The
following size is
required. Plaintext
buffer size >= public
key n size -11.
Outputs valid data
length after
decryption (public
key n size).

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,321 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,322 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSAES_PKCS2048_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS2048_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa2048_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS2048_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 2048-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,323 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSAES_PKCS2048_Decrypt()

fsp_err_t R_SCE_RSAES_PKCS2048_Decrypt (sce_rsa_byte_data_t * cipher, sce_rsa_byte_data_t *
plain, sce_rsa2048_private_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS2048_Decrypt() function RSA-decrypts the ciphertext input to the first
argument, cipher, according to RSAES-PKCS1-V1_5. It writes the decryption result to the second
argument, plain.

Parameters
[in] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in,out] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Inputs plaintext
buffer size. The
following size is
required. Plaintext
buffer size >= public
key n size -11.
Outputs valid data
length after
decryption (public
key n size).

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,324 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,325 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSAES_PKCS3072_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS3072_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa3072_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS3072_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,326 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_RSAES_PKCS4096_Encrypt()

fsp_err_t R_SCE_RSAES_PKCS4096_Encrypt (sce_rsa_byte_data_t * plain, sce_rsa_byte_data_t *
cipher, sce_rsa4096_public_wrapped_key_t * wrapped_key)

The R_SCE_RSAES_PKCS4096_Encrypt() function RSA-encrypts the plaintext input to the first
argument, plain, according to RSAES-PKCS1-V1_5. It writes the encryption result to the second
argument, cipher.

Parameters
[in] plain plaintext

plain->pdata :
Specifies pointer to
array containing
plaintext.
plain->data_length :
Specifies valid data
length of plaintext
array. data size <=
public key n size - 11

[in,out] cipher ciphertext

cipher->pdata :
Specifies pointer to
array containing
ciphertext.
cipher->data_length
: Inputs ciphertext
buffer size. Outputs
valid data length
after encryption
(public key n size).

[in] wrapped_key Inputs the 4096-bit RSA
public wrapped key.

Return values
FSP_SUCCESS Normal termination

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource needed by the
processing routine was in use by another
processing routine.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Incorrect wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is illegal.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,327 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDSA_secp192r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-256 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp192r1 using
the private wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 24 bytes of the SHA-256 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp192r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (64 bits)
|| signature r (192
bits) || 0 padding (64
bits) || signature s
(192 bits)".
signature->data_leng
th : Data length (byte
units)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,328 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

[in] wrapped_key Input wrapped key of
secp192r1 private key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp224r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-256 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp224r1 using
the private wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 28 bytes of the SHA-256 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp224r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,329 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (32 bits)
|| signature r (224
bits) || 0 padding (32
bits) || signature s
(224 bits)".
signature->data_leng
th : Data length (byte
units)

[in] wrapped_key Input wrapped key of
secp224r1 private key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,330 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDSA_secp256r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-256 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp256r1 using
the private wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 32 bytes of the SHA-256 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp256r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (256
bits) || signature s
(256 bits)".
signature->data_leng
th : Data length (byte
units)

[in] wrapped_key Input wrapped key of
secp256r1 private key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,331 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp384r1_SignatureGenerate()

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureGenerate (sce_ecdsa_byte_data_t * message_hash,
sce_ecdsa_byte_data_t * signature, sce_ecc_private_wrapped_key_t * wrapped_key)

When a message is specified in the first argument, message_hash->data_type, a SHA-384 hash of
the message text input as the first argument, message_hash->pdata, is calculated, and the
signature text is written to the second argument, signature, in accordance with secp384r1 using
the private wrapped key input as the third argument, wrapped_key.

To use message input, prepare a user-defined function for SHA384.

When a hash value is specified in the first argument, message_hash->data_type, the signature text
for the first 48 bytes of the SHA-384 hash value input to the first argument, message_hash->pdata,
is written to the second argument, signature, in accordance with secp384r1 using the private
wrapped key input as the third argument, wrapped_key.

Parameters
[in] message_hash Message or hash value to

which to attach signature

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,332 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

value: 1)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (384
bits) || signature s
(384 bits)".
signature->data_leng
th : Data length (byte
units)

[in] wrapped_key Input wrapped key of
secp384r1 private key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,333 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDSA_secp192r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp192r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp192r1
using the public wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 24 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp192r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (64 bits)
|| signature r (192
bits) || 0 padding (64
bits) || signature s
(192 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,334 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

[in] wrapped_key Input wrapped key of
secp192r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp224r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp224r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp224r1
using the public wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 28 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp224r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"0 padding (32 bits)
|| signature r (224
bits) || 0 padding (32
bits) || signature s
(224 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,335 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Input wrapped key of
secp224r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,336 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDSA_secp256r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp256r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp256r1
using the public wrapped key input as the third argument, wrapped_key.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 32 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp256r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (256
bits) || signature s
(256 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Input wrapped key of

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,337 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

secp256r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

◆ R_SCE_ECDSA_secp384r1_SignatureVerify()

fsp_err_t R_SCE_ECDSA_secp384r1_SignatureVerify (sce_ecdsa_byte_data_t * signature,
sce_ecdsa_byte_data_t * message_hash, sce_ecc_public_wrapped_key_t * wrapped_key)

When a message is specified in the second argument, message_hash->data_type, a SHA-256 hash
of the message text input as the second argument, message_hash->pdata, is calculated, and the
signature text input to the first argument, signature, is validated in accordance with secp384r1
using the public wrapped key input as the third argument, wrapped_key.

To use message input, prepare a user-defined function for SHA384.

When a hash value is specified in the second argument, message_hash->data_type, the signature
text for the first 48 bytes of the SHA-256 hash value input to the second argument,
message_hash->pdata, input to the first argument, signature, is validated in accordance with
secp384r1 using the public wrapped key input as the third argument, wrapped_key.

Parameters
[in] signature Signature text information to

be verified

signature->pdata :
Specifies pointer to
array storing
signature text The
signature format is
"signature r (384
bits) || signature s
(384 bits)".
signature->data_leng
th : Specifies the
data length (byte
units) (nonuse)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,338 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

[in,out] message_hash Message or hash value to be
verified

message_hash->pda
ta : Specifies pointer
to array storing the
message or hash
value
message_hash->data
_length : Specifies
effective data length
of the array (Specify
only when Message
is selected)
message_hash->data
_type : Selects the
data type of
message_hash
(Message: 0 Hash
value: 1)

[in] wrapped_key Input wrapped key of
secp384r1 public key.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,339 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDH_secp256r1_Init()

fsp_err_t R_SCE_ECDH_secp256r1_Init (sce_ecdh_handle_t * handle, uint32_t key_type, uint32_t
use_key_id)

The R_SCE_ECDH_secp256r1_Init() function prepares to perform ECDH key exchange computation
and writes the result to the first argument, handle. The succeeding functions
R_SCE_ECDH_secp256r1_PublicKeySign(), R_SCE_ECDH_secp256r1_PublicKeyVerify(),
R_SCE_ECDH_secp256r1_SharedSecretCalculate(), and R_SCE_ECDH_secp256r1_KeyDerivation()
use handle as an argument.

Use the second argument, key_type, to select the type of ECDH key exchange. When ECDHE is
selected, the R_SCE_ECDH_secp256r1_PublicKeySign() function uses the SCE's random number
generation functionality to generate an secp256r1 key pair. When ECDH is selected, keys installed
beforehand are used for key exchange.

Input 1 as the third argument, use_key_id, to use key_id when key exchange is performed. key_id is
for applications conforming to the DLMS/COSEM standard for smart meters.

Parameters
[in,out] handle ECDH handler (work area)

[in] key_type Key exchange type (0:
ECDHE, 1: ECDH)

[in] use_key_id 0: key_id not used, 1: key_id
used

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_PARAMETER Input data is invalid.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,340 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDH_secp256r1_PublicKeySign()

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeySign (sce_ecdh_handle_t * handle,
sce_ecc_public_wrapped_key_t * ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t *
ecc_private_wrapped_key, uint8_t * public_key, sce_ecdsa_byte_data_t * signature,
sce_ecc_private_wrapped_key_t * wrapped_key)

The R_SCE_ECDH_secp256r1_PublicKeySign() function calculates a signature for a public key user
wrapped key used for ECDH key exchange.

If ECDHE is specified by the key_type argument of the R_SCE_ECDH_secp256r1_Init() function, the
SCE's random number generation functionality is used to generate an secp256r1 key pair. The
public key is output to public_key and the private key is output to wrapped_key.

If ECDH is specified by the key_type argument of the R_SCE_ECDH_secp256r1_Init() function, the
public key input as ecc_public_wrapped_key is output to public_key and nothing is output to
wrapped_key.

The succeeding function R_SCE_ECDH_secp256r1_SharedSecretCalculate() uses the first argument,
handle, as an argument. R_SCE_ECDH_secp256r1_SharedSecretCalculate() function uses
wrapped_key as input to calculate Z.

Parameters
[in,out] handle ECDH handler (work area)

When using key_id, input
handle->key_id after
running
R_SCE_ECDH_secp256r1_Init
().

[in] ecc_public_wrapped_key For ECDHE, input a null
pointer. For ECDH, input the
wrapped key of a secp256r1
public key.

[in] ecc_private_wrapped_key secp256r1 private key for
signature generation

[in,out] public_key User secp256r1 public key
(512-bit) for key exchange.
When using key_id, key_id
(8-bit) || public key (512-bit)
|| 0 padding (24-bit)

[in,out] signature Signature text storage
destination information

signature->pdata :
Specifies pointer to
array storing
signature text. The
signature format is
"signature r (256
bits) || signature s
(256 bits)"
signature->data_leng

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,341 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

th : Data length (in
byte units)

[in,out] wrapped_key For ECDHE, a private
wrapped key generated from
a random number. Not
output for ECDH.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,342 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDH_secp256r1_PublicKeyVerify()

fsp_err_t R_SCE_ECDH_secp256r1_PublicKeyVerify (sce_ecdh_handle_t * handle,
sce_ecc_public_wrapped_key_t * ecc_public_wrapped_key, uint8_t * public_key_data,
sce_ecdsa_byte_data_t * signature, sce_ecc_public_wrapped_key_t * wrapped_key)

The R_SCE_ECDH_secp256r1_PublicKeyVerify() function verifies the signature of the secp256r1
public key of the other ECDH key exchange party. If the signature is correct, it outputs the public
wrapped key to the fifth argument. The first argument, handle, is used as an argument in the
subsequent function R_SCE_ECDH_secp256r1_SharedSecretCalculate().
R_SCE_ECDH_secp256r1_SharedSecretCalculate() uses wrapped_key as input to calculate Z.

Parameters
[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key area for
signature verification

[in] public_key_data secp256r1 public key
(512-bit). When key_id is
used: key_id (8-bit) || public
key (512-bit)

[in] signature ECDSA secp256r1 signature
of ecc_public_wrapped_key

[in,out] wrapped_key wrapped key of
ecc_public_wrapped_key

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred or signature
verification failed.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,343 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDH_secp256r1_SharedSecretCalculate()

fsp_err_t R_SCE_ECDH_secp256r1_SharedSecretCalculate (sce_ecdh_handle_t * handle,
sce_ecc_public_wrapped_key_t * ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t *
ecc_private_wrapped_key, sce_ecdh_wrapped_key_t * shared_secret_wrapped_key)

The R_SCE_ECDH_secp256r1_SharedSecretCalculate() function uses the ECDH key exchange
algorithm to output the wrapped key of the shared secret Z derived from the public key of the
other key exchange party and your own private key. Input as the second argument,
ecc_public_wrapped_key, the public wrapped key whose signature was verified by
R_SCE_ECDH_secp256r1_PublicKeyVerify(). When key_type of R_SCE_ECDH_secp256r1_Init() is 0,
input as the third argument, ecc_private_wrapped_key, the private wrapped key generated from a
random number by R_SCE_ECDH_secp256r1_PublicKeySign(), and when key_type is other than 0,
input the private wrapped key that forms a pair with the second argument of
R_SCE_ECDH_secp256r1_PublicKeySign(). The subsequent R_SCE_ECDH_secp256r1_KeyDerivation()
function uses shared_secret_wrapped_key as key material for outputting the wrapped key.

Parameters
[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key whose
signature was verified by
R_SCE_ECDH_secp256r1_Pub
licKeyVerify()

[in] ecc_private_wrapped_key Private wrapped key

[in,out] shared_secret_wrapped_key Wrapped key of shared
secret Z calculated by ECDH
key exchange

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_FAIL An internal error occurred.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,344 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

◆ R_SCE_ECDH_secp256r1_KeyDerivation()

fsp_err_t R_SCE_ECDH_secp256r1_KeyDerivation (sce_ecdh_handle_t * handle,
sce_ecdh_wrapped_key_t * shared_secret_wrapped_key, uint32_t key_type, uint32_t kdf_type,
uint8_t * other_info, uint32_t other_info_length, sce_hmac_sha_wrapped_key_t *
salt_wrapped_key, sce_aes_wrapped_key_t * wrapped_key)

The R_SCE_ECDH_secp256r1_KeyDerivation() function uses the shared secret "Z
(shared_secret_index)" calculated by the R_SCE_ECDH_secp256r1_SharedSecretCalculate()
function as the key material to derive the wrapped key specified by the third argument, key_type.
The key derivation algorithm is one-step key derivation as defined in NIST SP800-56C. Either
SHA-256 or SHA-256 HMAC is specified by the fourth argument, kdf_type. When SHA-256 HMAC is
specified, the wrapped key output by the R_SCE_SHA256HMAC_EncryptedKeyWrap() function is
specified as the seventh argument, salt_wrapped_key. Enter a fixed value for deriving a key shared
with the key exchange partner in the fifth argument, other_info. A wrapped key corresponding to
key_type is output as the eighth argument, wrapped_key. The correspondences between the types
of derived wrapped_key and the functions with which they can be used as listed below.

AES-128: All AES-128 Init functions
AES-256: All AES-256 Init functions
SHA256-HMAC: R_SCE_SHA256HMAC_GenerateInit() function and
R_SCE_SHA256HMAC_VerifyInit() function

Parameters
[in,out] handle ECDH handler (work area)

[in] shared_secret_wrapped_key Z wrapped key calculated by
R_SCE_ECDH_secp256r1_Sha
redSecretCalculate

[in] key_type Derived key type (0:
AES-128, 1: AES-256,
2:SHA256-HMAC)

[in] kdf_type Algorithm used for key
derivation calculation (0:
SHA-256, 1:SHA256-HMAC)

[in] other_info Additional data used for key
derivation calculation:
AlgorithmID || PartyUInfo ||
PartyVInfo

[in] other_info_length Data length of other_info (up
to 147 byte units)

[in] salt_wrapped_key Salt wrapped key (Input
NULL when kdf_type is 0.)

[in,out] wrapped_key Wrapped key corresponding
to key_type. When the value
of key_type is 2, an
SHA256-HMAC wrapped key
is output. wrapped_key can
be specified by casting the
start address of the area
reserved beforehand by the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,345 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Secure Crypto Engine (r_sce_protected)

sce_hmac_sha_wrapped_key
_t type with the
(sce_aes_wrapped_key_t*)
type.

Return values
FSP_SUCCESS Normal end

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

A resource conflict occurred because a
hardware resource required by the
processing is in use by other processing.

FSP_ERR_CRYPTO_SCE_KEY_SET_FAIL Invalid wrapped key was input.

FSP_ERR_CRYPTO_SCE_PARAMETER An invalid handle was input.

FSP_ERR_CRYPTO_SCE_PROHIBIT_FUNCTION An invalid function was called.

Note
The pre-run state is SCE Enabled State. After the function runs the state transitions to SCE Enabled State.

4.2.44 Serial Communications Interface (SCI) I2C (r_sci_i2c)
Modules

Functions

fsp_err_t R_SCI_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)

fsp_err_t R_SCI_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

fsp_err_t R_SCI_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes, bool const restart)

fsp_err_t R_SCI_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t R_SCI_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_status_t *p_status)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,346 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the I2C Master Interface.

Overview
The Simple I2C master on SCI HAL module supports transactions with an I2C Slave device. Callbacks
must be provided which would be invoked when a transmission or receive has been completed. The
callback arguments will contain information about the transaction status, bytes transferred and a
pointer to the user defined context.

Features

Supports multiple transmission rates
Standard Mode Support with up to 100 kHz transaction rate.
Fast Mode Support with up to 400 kHz transaction rate.

SDA Delay in nanoseconds can be specified as a part of the configuration.
I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features

Optional (build time) DTC support for read and write respectively.
Optional (build time) support for 10-bit slave addressing.

Configuration
Build Time Configurations for r_sci_i2c

The following build time configurations are defined in fsp_cfg/r_sci_i2c_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC on Transmission
and Reception

Enabled
Disabled

Disabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

10-bit slave addressing Enabled
Disabled

Disabled If enabled, the driver
will support 10-bit
slave addressing mode
along with the default
7-bit slave addressing
mode.

Configurations for Driver > Connectivity > I2C Master Driver on r_sci_i2c

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > I2C Master
Driver on r_sci_i2c. Non-secure callable guard functions can be generated for this module by right

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,347 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_i2c0 Module name.

Channel Value must be an
integer between 0 and
9

0 Select the SCI channel.

Slave Address Value must be a hex
value

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the address
mode.

Rate Standard
Fast-mode

Standard Select the I2C data
rate.

If the requested
transfer rate cannot be
achieved, the settings
with the largest
possible transfer rate
that is less than or
equal to the requested
transfer rate are used.
The theoretical
calculated transfer rate
and SDA delay are
printed in a comment
in the generated
sci_i2c_extended_cfg_t
structure.

SDA Output Delay
(nano seconds)

Must be a valid non-
negative integer with
maximum configurable
value of 300

300 Specify the SDA output
delay in nanoseconds.

Noise filter setting Use clock signal
divided by 1
with noise filter
Use clock signal
divided by 2
with noise filter
Use clock signal
divided by 4
with noise filter
Use clock signal
divided by 8
with noise filter

Use clock signal
divided by 1 with noise
filter

Select the sampling
clock for the digital
noise filter

Bit Rate Modulation Enable
Disable

Enable Enabling bitrate
modulation reduces the
percent error of the
actual bitrate with

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,348 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

respect to the
requested baud rate. It
does this by
modulating the number
of cycles per clock
output pulse, so the
clock is no longer a
square wave.

Callback Name must be a valid
C symbol

sci_i2c_master_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Interrupt Priority Level MCU Specific Options Select the interrupt
priority level. This is set
for TXI, RXI (if used),
TEI interrupts.

RX Interrupt Priority
Level [Only used when
DTC is enabled]

MCU Specific Options Select the interrupt
priority level. This is set
for RXI only when DTC
is enabled.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2E1 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,349 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

RA6M5 PCLKA

RA6T1 PCLKA

The actual I2C transfer rate will be calculated and set by the tooling depending on the selected
transfer rate and the SDA delay. If the PCLK is configured in such a manner that the selected internal
rate cannot be achieved, an error will be returned.

Pin Configuration

The SCI I2C peripheral module uses pins on the MCU to communicate to external devices. I/O pins
must be selected and configured as required by the external device. An I2C channel would consist of
two pins - SDA and SCL for data/address and clock respectively.

Usage Notes
Interrupt Configuration

Receive buffer full (RXI), transmit buffer empty (TXI) and transmit end (TEI) interrupts for
the selected channel used must be enabled in the properties of the selected device.
Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.

SCI I2C Master Rate Calculation

The RA Configuration editor calculates the internal baud-rate setting based on the
configured transfer rate and SDA Delay. The closest possible baud-rate that can be
achieved (less than or equal to the requested rate) at the current PCLK settings is
calculated and used.
If a valid clock rate could not be calculated, an error is returned by the tool.

Enabling DTC with the SCI I2C

DTC transfer support is configurable and is disabled from the build by default. SCI I2C driver
provides two DTC instances for transmission and reception respectively.
For further details on DTC please refer Data Transfer Controller (r_dtc)

Multiple Devices on the Bus

A single SCI I2C instance can be used to communicate with multiple slave devices on the
same channel by using the SlaveAddressSet API.

Restart

SCI I2C master can hold the the bus after an I2C transaction by issuing Restart. This will
mimic a stop followed by start condition.

Examples
Basic Example

This is a basic example of minimal use of the r_sci_i2c in an application. This example shows how
this driver can be used for basic read and write operations.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,350 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

void basic_example (void)

{

 fsp_err_t err;

 uint32_t i;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 /* Initialize the IIC module */

 err = R_SCI_I2C_Open(&g_i2c_device_ctrl_1, &g_i2c_device_cfg_1);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Write some data to the transmit buffer */

 for (i = 0; i < I2C_BUFFER_SIZE_BYTES; i++)

 {

 g_i2c_tx_buffer[i] = (uint8_t) i;

 }

 /* Send data to I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SCI_I2C_Write(&g_i2c_device_ctrl_1, &g_i2c_tx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Read data back from the I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_I2C_Read(&g_i2c_device_ctrl_1, &g_i2c_rx_buffer[0],

I2C_BUFFER_SIZE_BYTES, false);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,351 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

 assert(FSP_SUCCESS == err);

 /* Since there is nothing else to do, block until Callback triggers*/

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Verify the read data */

 if (0U != memcmp(g_i2c_tx_buffer, g_i2c_rx_buffer, I2C_BUFFER_SIZE_BYTES))

 {

 __BKPT(0);

 }

}

Multiple Slave devices on the same channel (bus)

This example demonstrates how a single SCI I2C driver can be used to communicate with different
slave devices which are on the same channel.

void single_channel_multi_slave (void)

{

 fsp_err_t err;

 uint32_t timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_I2C_Open(&g_i2c_device_ctrl_2, &g_i2c_device_cfg_2);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clear the recieve buffer */

 memset(g_i2c_rx_buffer, '0', I2C_BUFFER_SIZE_BYTES);

 /* Read data from I2C slave */

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 err = R_SCI_I2C_Read(&g_i2c_device_ctrl_2, &g_i2c_rx_buffer[0],

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,352 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

I2C_BUFFER_SIZE_BYTES, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_RX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

 /* Send data to I2C slave on the same channel */

 err = R_SCI_I2C_SlaveAddressSet(&g_i2c_device_ctrl_2, I2C_SLAVE_DISPLAY_ADAPTER,

I2C_MASTER_ADDR_MODE_7BIT);

 assert(FSP_SUCCESS == err);

 g_i2c_tx_buffer[0] = (uint8_t) I2C_EXAMPLE_DATA_1;

 g_i2c_tx_buffer[1] = (uint8_t) I2C_EXAMPLE_DATA_2;

 g_i2c_callback_event = I2C_MASTER_EVENT_ABORTED;

 timeout_ms = I2C_TRANSACTION_BUSY_DELAY;

 err = R_SCI_I2C_Write(&g_i2c_device_ctrl_2, &g_i2c_tx_buffer[0], 2U, false);

 assert(FSP_SUCCESS == err);

 while ((I2C_MASTER_EVENT_TX_COMPLETE != g_i2c_callback_event) && timeout_ms)

 {

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 timeout_ms--;;

 }

 if (I2C_MASTER_EVENT_ABORTED == g_i2c_callback_event)

 {

 __BKPT(0);

 }

}

Data Structures

struct sci_i2c_clock_settings_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,353 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

struct sci_i2c_instance_ctrl_t

struct sci_i2c_extended_cfg_t

Data Structure Documentation

◆ sci_i2c_clock_settings_t

struct sci_i2c_clock_settings_t

I2C clock settings

Data Fields

bool bitrate_modulation Bit-rate Modulation Function
enable or disable.

uint8_t brr_value Bit rate register settings.

uint8_t clk_divisor_value Clock Select settings.

uint8_t mddr_value Modulation Duty Register
settings.

uint8_t cycles_value SDA Delay Output Cycles
Select.

uint8_t snfr_value Noise Filter Setting Register
value.

◆ sci_i2c_instance_ctrl_t

struct sci_i2c_instance_ctrl_t

I2C control structure. DO NOT INITIALIZE.

◆ sci_i2c_extended_cfg_t

struct sci_i2c_extended_cfg_t

SCI I2C extended configuration

Data Fields

sci_i2c_clock_settings_t clock_settings I2C Clock settings.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,354 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

◆ R_SCI_I2C_Open()

fsp_err_t R_SCI_I2C_Open (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C device.

Return values
FSP_SUCCESS Requested clock rate was set exactly.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_ASSERTION Parameter check failure due to one or more
reasons below:

1. p_api_ctrl or p_cfg is NULL.
2. extended parameter is NULL.
3. Callback parameter is NULL.
4. Clock rate requested is greater than

400KHz
5. Invalid IRQ number assigned

◆ R_SCI_I2C_Close()

fsp_err_t R_SCI_I2C_Close (i2c_master_ctrl_t *const p_api_ctrl)

Closes the I2C device. Power down I2C peripheral.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
FSP_SUCCESS Device closed without issue.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,355 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

◆ R_SCI_I2C_Read()

fsp_err_t R_SCI_I2C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read from the I2C device. The caller will be notified when the operation has completed
(successfully) by an I2C_MASTER_EVENT_RX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION The parameter p_ctrl, p_dest is NULL, bytes
is 0.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Device was not even opened.

◆ R_SCI_I2C_Write()

fsp_err_t R_SCI_I2C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write to the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C write operation will begin. When no callback is provided by the user, this
function performs a blocking write. Otherwise, the write operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_TX_COMPLETE in the callback.

Return values
FSP_SUCCESS Function executed without issue.

FSP_ERR_ASSERTION p_ctrl, p_src is NULL.

FSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size (65535) while DTC is used for
data transfer.

FSP_ERR_NOT_OPEN Device was not even opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,356 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

◆ R_SCI_I2C_Abort()

fsp_err_t R_SCI_I2C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

Aborts any in-progress transfer and forces the I2C peripheral into a ready state.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
FSP_SUCCESS Transaction was aborted without issue.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

◆ R_SCI_I2C_SlaveAddressSet()

fsp_err_t R_SCI_I2C_SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl, uint32_t const slave,
i2c_master_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device.

This function is used to set the device address and addressing mode of the slave without
reconfiguring the entire bus.

Return values
FSP_SUCCESS Address of the slave is set correctly.

FSP_ERR_ASSERTION p_ctrl or address is NULL.

FSP_ERR_NOT_OPEN Device was not even opened.

FSP_ERR_IN_USE An I2C Transaction is in progress.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,357 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) I2C (r_sci_i2c)

◆ R_SCI_I2C_CallbackSet()

fsp_err_t R_SCI_I2C_CallbackSet (i2c_master_ctrl_t *const p_api_ctrl,
void(*)(i2c_master_callback_args_t *) p_callback, void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2c_master_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SCI_I2C_StatusGet()

fsp_err_t R_SCI_I2C_StatusGet (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t * p_status
)

Provides driver status.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

4.2.45 Serial Communications Interface (SCI) SPI (r_sci_spi)
Modules

Functions

fsp_err_t R_SCI_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SCI_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,358 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

void *p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SCI_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_SPI_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_SPI_CalculateBitrate (uint32_t bitrate, sci_spi_div_setting_t
*sclk_div, bool use_mddr)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

Clock Phase (CPHA)
CPHA=0 Select data sampling on leading edge, data change on trailing
edge
CPHA=1 Select data change on leading edge, data sampling on trailing
edge

MSB/LSB first
Configurable bit rate
DTC Support
Callback Events

Transfer Complete
RX Overflow Error (The SCI shift register is copied to the data register before
previous data was read)

Configuration

Build Time Configurations for r_sci_spi

The following build time configurations are defined in fsp_cfg/r_sci_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC Support Enabled Enabled If support for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,359 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

Disabled transfering data using
the DTC will be
compiled in.

Configurations for Driver > Connectivity > SPI Driver on r_sci_spi

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > SPI Driver on
r_sci_spi. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_spi0 Module name.

Channel Value must be a non-
negative integer

0 Select the SCI channel.

Operating Mode Master
Slave

Master Select the SPI
operating mode.

Clock Phase Data sampling
on odd edge,
data variation
on even edge
Data sampling
on even edge,
data variation
on odd edge

Data sampling on odd
edge, data variation on
even edge

Select the clock edge
to sample data.

Clock Polarity Low when idle
High when idle

Low when idle Select clock level when
idle.

Mode Fault Error Enable
Disable

Disable Detect master/slave
mode conflicts.

Bit Order MSB First
LSB First

MSB First Select the data bit
order.

Callback Name must be a valid
C symbol

sci_spi_callback A user callback
function that is called
from the sci spi
interrupts when a
transfer is completed
or an error has
occurred.

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Transmit Interrupt
Priority

MCU Specific Options Select the transmit
interrupt priority.

Transmit End Interrupt
Priority

MCU Specific Options Select the transmit end
interrupt priority.

Error Interrupt Priority MCU Specific Options Select the error
interrupt priority.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,360 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

Bitrate Value must be an
integer greater than 0

8000000 Enter the desired
bitrate.

If the requested bitrate
cannot be achieved,
the settings with the
largest possible value
that is less than or
equal to the requested
bitrate is used. The
theoretical bitrate is
printed in a comment
in the generated
sci_spi_extended_cfg_t
structure.

Bitrate Modulation Disabled
Enabled

Disabled Enabling bitrate
modulation reduces the
percent error of the
actual bitrate with
respect to the
requested baud rate. It
does this by
modulating the number
of cycles per clock
output pulse, so the
clock is no longer a
square wave.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2E1 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,361 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

Pin Configuration

This module uses SCIn_MOSI, SCIn_MISO, SCIn_SPCK, and SCIn_SS pins to communicate with on
board devices.

Note
At high bit rates, it might be necessary to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Usage Notes
Transfer Complete Event

The transfer complete event is triggered when all of the data has been transfered. In slave mode if
the SS pin is de-asserted then no transfer complete event is generated until the SS pin is asserted
and the remaining data is transferred.

Performance

At high bit rates, interrupts may not be able to service transfers fast enough. In master mode this
means there will be a delay between each data frame. In slave mode this could result in RX Overflow
errors.

In order to improve performance at high bit rates, it is recommended that the instance be configured
to service transfers using the DTC.

Transmit From RXI Interrupt

After every byte, the SCI SPI peripheral generates a transmit buffer empty interrupt and a receive
buffer full interrupt. Whenever possible, the SCI_SPI module handles both interrupts in the receive
buffer full interrupt. This improves performance when the DTC is not being used.

Slave Select Pin

In master mode the slave select pin must be driven in software.
In slave mode the hardware handles the slave select pin and will only transfer data when
the SS pin is low.

Bit Rate Modulation

Depending on the peripheral clock frequency, the desired bit rate may not be achievable. With bit
rate modulation, the device can remove a configurable number of input clock pulses to the internal
bit rate counter in order to create the desired bit rate. This has the effect of changing the period of
individual bits in order to achieve the desired average bit rate. For more information see section 34.9
Bit Rate Modulation Function in the RA6M3 manual.

Examples
Basic Example

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,362 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

This is a basic example of minimal use of the SCI_SPI in an application.

static volatile bool g_transfer_complete = false;

static void r_sci_spi_callback (spi_callback_args_t * p_args)

{

 if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = true;

 }

}

void sci_spi_basic_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 /* Configure Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Configure Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SCI_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SCI_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,363 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

 /* De-assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Wait for minimum time required between transfers. */

 R_BSP_SoftwareDelay(SSL_NEXT_ACCESS_DELAY, BSP_DELAY_UNITS_MICROSECONDS);

 /* Assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SCI_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

}

Data Structures

struct sci_spi_div_setting_t

Data Structure Documentation

◆ sci_spi_div_setting_t

struct sci_spi_div_setting_t

Settings for adjusting the SPI CLK.

Data Fields

uint8_t brr

uint8_t cks: 2

uint8_t mddr Set to 0 to disable MDDR.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,364 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

◆ R_SCI_SPI_Open()

fsp_err_t R_SCI_SPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode. Implements spi_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Enables the clock for the SCI channel.
Initializes the associated registers with default value and the user-configurable options.
Provides the channel handle for use with other API functions.

Parameters
p_api_ctrl Pointer to the control structure.

p_cfg Pointer to a configuration structure.

Return values
FSP_SUCCESS Channel initialized successfully.

FSP_ERR_ASSERTION An input parameter is invalid or NULL.

FSP_ERR_ALREADY_OPEN The instance has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel number is invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,365 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

◆ R_SCI_SPI_Read()

fsp_err_t R_SCI_SPI_Read (spi_ctrl_t *const p_api_ctrl, void * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from an SPI device. Implements spi_api_t::read.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission by writing data to the TXD register.
Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination.
Complete data reception via receive buffer full interrupt and transmitting dummy data.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Read operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Bit width is not 8 bits
Length is equal to 0
Pointer to destination is NULL

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,366 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

◆ R_SCI_SPI_Write()

fsp_err_t R_SCI_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device. Implements spi_api_t::write.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable interrupts.
Start data transmission with data via transmit buffer empty interrupt.
Copy data from source buffer to the SPI data register for transmission.
Complete data transmission via transmit buffer empty interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,367 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

◆ R_SCI_SPI_WriteRead()

fsp_err_t R_SCI_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to SPI device while receiving data from SPI device (full duplex).
Implements spi_api_t::writeRead.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission using transmit buffer empty interrupt (or by writing to the TDR
register).
Copy data from source buffer to the SPI data register for transmission.
Receive data from receive buffer full interrupt and copy data to the destination buffer.
Complete data transmission and reception via transmit end interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Parameters
p_api_ctrl Pointer to the control

structure.

p_src Pointer to the source buffer.

p_dest Pointer to the destination
buffer.

[in] length The number of bytes to
transfer.

[in] bit_width Invalid for SCI_SPI (Set to
SPI_BIT_WIDTH_8_BITS).

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION One of the following invalid parameters
passed:

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Pointer to destination is NULL
Length is equal to 0
Bit width is not equal to 8 bits

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_UNSUPPORTED The given bit_width is not supported.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,368 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reconfigure

◆ R_SCI_SPI_CallbackSet()

fsp_err_t R_SCI_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl, void(*)(spi_callback_args_t *)
p_callback, void const *const p_context, spi_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
spi_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SCI_SPI_Close()

fsp_err_t R_SCI_SPI_Close (spi_ctrl_t *const p_api_ctrl)

Disable the SCI channel and set the instance as not open. Implements spi_api_t::close.

Parameters
p_api_ctrl Pointer to an opened instance.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,369 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

◆ R_SCI_SPI_CalculateBitrate()

fsp_err_t R_SCI_SPI_CalculateBitrate (uint32_t bitrate, sci_spi_div_setting_t * sclk_div, bool
use_mddr)

Calculate the register settings required to achieve the desired bitrate.

Parameters
[in] bitrate bitrate [bps]. For example,

250,000; 500,00; 2,500,000
(max), etc.

sclk_div Pointer to
sci_spi_div_setting_t used to
configure baudrate settings.

[in] use_mddr Calculate the divider
settings for use with MDDR.

Return values
FSP_SUCCESS Baud rate is set successfully.

FSP_ERR_ASSERTION Baud rate is not achievable.

Note
The application must pause for 1 bit time after the BRR register is loaded before transmitting/receiving to allow
time for the clock to settle.

4.2.46 Serial Communications Interface (SCI) UART (r_sci_uart)
Modules

Functions

fsp_err_t R_SCI_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const
*const p_cfg)

fsp_err_t R_SCI_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

fsp_err_t R_SCI_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const
p_src, uint32_t const bytes)

fsp_err_t R_SCI_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const
p_baud_setting)

fsp_err_t R_SCI_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const
p_info)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,370 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

fsp_err_t R_SCI_UART_Close (uart_ctrl_t *const p_api_ctrl)

fsp_err_t R_SCI_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t R_SCI_UART_BaudCalculate (uint32_t baudrate, bool
bitrate_modulation, uint32_t baud_rate_error_x_1000, baud_setting_t
*const p_baud_setting)

fsp_err_t R_SCI_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const
p_context, uart_callback_args_t *const p_callback_memory)

fsp_err_t R_SCI_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t
*remaining_bytes)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the UART Interface.

Overview
Features

The SCI UART module supports the following features:

Full-duplex UART communication
Interrupt-driven data transmission and reception
Invoking the user-callback function with an event code (RX/TX complete, TX data empty, RX
char, error, etc)
Baud-rate change at run-time
Bit rate modulation and noise cancellation
CTS/RTS hardware flow control (with an associated pin)
Integration with the DTC transfer module
Abort in-progress read/write operations
FIFO support on supported channels

Configuration
Build Time Configurations for r_sci_uart

The following build time configurations are defined in fsp_cfg/r_sci_uart_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

FIFO Support Enable
Disable

Disable Enable FIFO support for
the SCI_UART module.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,371 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

DTC Support Enable
Disable

Disable Enable DTC support for
the SCI_UART module.

Flow Control Support Enable
Disable

Disable Enable RS232 and
RS485 flow control
support using a user
provided pin.

Configurations for Driver > Connectivity > UART Driver on r_sci_uart

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > UART Driver on
r_sci_uart. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_uart0 Module name.

General > Channel Value must be a non-
negative integer

0 Select the SCI channel.

General > Data Bits 8bits
7bits
9bits

8bits Select the number of
bits per word.

General > Parity None
Odd
Even

None Select the parity mode.

General > Stop Bits 1bit
2bits

1bit Select the number of
stop bits.

Baud > Baud Rate Value must be an
integer greater than 0

115200 Enter the desired baud
rate.

If the requested baud
rate cannot be
achieved, the settings
with the smallest
percent error are used.
The theoretical
calculated baud rate
and percent error are
printed in a comment
in the generated
baud_setting_t
structure.

Baud > Baud Rate
Modulation

Disabled
Enabled

Disabled Enabling baud rate
modulation reduces the
percent error of the
actual baud rate with
respect to the
requested baud rate. It
does this by
modulating the number

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,372 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

of cycles per clock, so
some bits are slightly
longer than others.

Baud > Max Error (%) Must be a valid non
negative integer with a
maximum configurable
value of 100

5 Maximum percent error
allowed during baud
calculation. This is used
by the algorithm to
determine whether or
not to consider using
less accurate
alternative register
settings.

NOTE: The baud
calculation does not
show an error in the
tool if this percent error
was not achieved. The
calculated percent
error is recorded in a
comment in the
generated
baud_setting_t
structure.

Flow Control > CTS/RTS
Selection

MCU Specific Options Select either CTS or
RTS function on the
CTSn_RTSn pin of SCI
channel n or select CTS
function on CTSn pin
and RTS function on
CTSn_RTSn pin of SCI
channel n (Available on
selected MCUs and
channels).

Flow Control >
Software RTS Port

Refer to the RA
Configuration tool for
available options.

Disabled Specify the flow control
pin port for the MCU.

Flow Control >
Software RTS Pin

Refer to the RA
Configuration tool for
available options.

Disabled Specify the flow control
pin for the MCU.

Extra > Clock Source Internal Clock
Internal Clock
With Output on
SCK
External Clock
8x baud rate
External Clock
16x baud rate

Internal Clock Selection of the clock
source to be used in
the baud-rate clock
generator. When
internal clock is used
the baud rate can be
output on the SCK pin.

Extra > Start bit
detection

Falling Edge
Low Level

Falling Edge Start bit detected as
falling edge or low
level.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,373 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

Extra > Noise Filter Enable
Disable

Disable Enable the digital noise
filter on RXDn pin. The
digital noise filter block
in SCI consists of two-
stage flipflop circuits.

Extra > Receive FIFO
Trigger Level

One
Max

Max Unused if the channel
has no FIFO or if DTC is
used for reception. Set
to One to get a
callback immediately
when each byte is
received. Set to Max to
get a callback when
FIFO is full or after 15
bit times with no data
(fewer interrupts).

Interrupts > Callback Name must be a valid
C symbol

user_uart_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Interrupts > Receive
Interrupt Priority

MCU Specific Options Select the receive
interrupt priority.

Interrupts > Transmit
Data Empty Interrupt
Priority

MCU Specific Options Select the transmit
interrupt priority.

Interrupts > Transmit
End Interrupt Priority

MCU Specific Options Select the transmit end
interrupt priority.

Interrupts > Error
Interrupt Priority

MCU Specific Options Select the error
interrupt priority.

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2E1 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,374 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

RA4M3 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

The clock source for the baud-rate clock generator can be selected from the internal clock, the
external clock times 8 or the external clock times 16. The external clock is supplied to the SCK pin.

Pin Configuration

This module uses TXD and RXD to communicate to external devices. CTS or RTS or both (CTS and
RTS) can be controlled by the hardware. Some MCUs support hardware flow control for both CTS and
RTS on some channels. Some MCUs and channels support hardware flow control for either CTS or
RTS but not both. If both are desired a GPIO pin can be used for RTS. When the internal clock is the
source for the baud-rate generator the SCK pin can be used to output a clock with the same
frequency as the bit rate.

Usage Notes
When configured for Hardware CTS and Software RTS the configured flow control pin will be
used for RTS. The pin will be set high inside of the receive ISR while data is being read. It
will be set low when all data is read.
When configured for Hardware CTS and Hardware RTS the CSTn_RTSn pin will be used for
RTS function and the CTSn pin will be used for CTS function on channel n.

Limitations

Transfer size must be less than or equal to 64K bytes if DTC interface is used for transfer.
uart_api_t::infoGet API can be used to get the max transfer size allowed.
Reception is still enabled after uart_api_t::communicationAbort API is called. Any characters
received after abort and before the next call to read will arrive via the callback function with
event UART_EVENT_RX_CHAR.
When using 9-bit reception with DTC, clear the upper 7 bits of data before processing the
read data. The upper 7 bits contain status flags that are part of the register used to read
data in 9-bit mode.

Examples
SCI UART Example

uint8_t g_dest[TRANSFER_LENGTH];

uint8_t g_src[TRANSFER_LENGTH];

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,375 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

uint8_t g_out_of_band_received[TRANSFER_LENGTH];

uint32_t g_transfer_complete = 0;

uint32_t g_receive_complete = 0;

uint32_t g_out_of_band_index = 0;

void r_sci_uart_basic_example (void)

{

 /* Initialize p_src to known data */

 for (uint32_t i = 0; i < TRANSFER_LENGTH; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the transfer instance with initial configuration. */

 fsp_err_t err = R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);

 assert(FSP_SUCCESS == err);

 err = R_SCI_UART_Read(&g_uart0_ctrl, g_dest, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 err = R_SCI_UART_Write(&g_uart0_ctrl, g_src, TRANSFER_LENGTH);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 }

 while (!g_receive_complete)

 {

 }

}

void example_callback (uart_callback_args_t * p_args)

{

 /* Handle the UART event */

 switch (p_args->event)

 {

 /* Received a character */

 case UART_EVENT_RX_CHAR:

 {

 /* Only put the next character in the receive buffer if there is space for it */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,376 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

 if (sizeof(g_out_of_band_received) > g_out_of_band_index)

 {

 /* Write either the next one or two bytes depending on the receive data size */

 if (UART_DATA_BITS_8 >= g_uart0_cfg.data_bits)

 {

 g_out_of_band_received[g_out_of_band_index++] = (uint8_t)

p_args->data;

 }

 else

 {

 uint16_t * p_dest = (uint16_t *)

&g_out_of_band_received[g_out_of_band_index];

 *p_dest = (uint16_t) p_args->data;

 g_out_of_band_index += 2;

 }

 }

 break;

 }

 /* Receive complete */

 case UART_EVENT_RX_COMPLETE:

 {

 g_receive_complete = 1;

 break;

 }

 /* Transmit complete */

 case UART_EVENT_TX_COMPLETE:

 {

 g_transfer_complete = 1;

 break;

 }

 default:

 {

 }

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,377 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

}

SCI UART Baud Set Example

#define SCI_UART_BAUDRATE_19200 (19200)

void r_sci_uart_baud_example (void)

{

 baud_setting_t baud_setting;

 uint32_t baud_rate = SCI_UART_BAUDRATE_19200;

 bool enable_bitrate_modulation = false;

 uint32_t error_rate_x_1000 = 5;

 fsp_err_t err = R_SCI_UART_BaudCalculate(baud_rate, enable_bitrate_modulation,

error_rate_x_1000, &baud_setting);

 assert(FSP_SUCCESS == err);

 err = R_SCI_UART_BaudSet(&g_uart0_ctrl, (void *) &baud_setting);

 assert(FSP_SUCCESS == err);

}

Data Structures

struct sci_uart_instance_ctrl_t

struct baud_setting_t

struct sci_uart_extended_cfg_t

Enumerations

enum sci_clk_src_t

enum sci_uart_flow_control_t

enum sci_uart_rx_fifo_trigger_t

enum sci_uart_start_bit_detect_t

enum sci_uart_noise_cancellation_t

Data Structure Documentation

◆ sci_uart_instance_ctrl_t

struct sci_uart_instance_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,378 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

UART instance control block.

◆ baud_setting_t

struct baud_setting_t

Register settings to acheive a desired baud rate and modulation duty.

Data Fields

union baud_setting_t __unnamed__

uint8_t cks: 2 CKS value to get divisor (CKS =
N)

uint8_t brr Bit Rate Register setting.

uint8_t mddr Modulation Duty Register
setting.

◆ sci_uart_extended_cfg_t

struct sci_uart_extended_cfg_t

UART on SCI device Configuration

Data Fields

sci_clk_src_t clock The source clock for the baud-
rate generator. If internal
optionally output baud rate on
SCK.

sci_uart_start_bit_detect_t rx_edge_start Start reception on falling edge.

sci_uart_noise_cancellation_t noise_cancel Noise cancellation setting.

baud_setting_t * p_baud_setting Register settings for a desired
baud rate.

sci_uart_rx_fifo_trigger_t rx_fifo_trigger Receive FIFO trigger level,
unused if channel has no FIFO
or if DTC is used.

bsp_io_port_pin_t flow_control_pin UART Driver Enable pin.

sci_uart_flow_control_t flow_control CTS/RTS function of the SSn
pin.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,379 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ sci_clk_src_t

enum sci_clk_src_t

Enumeration for SCI clock source

Enumerator

SCI_UART_CLOCK_INT Use internal clock for baud generation.

SCI_UART_CLOCK_INT_WITH_BAUDRATE_OUTPUT

Use internal clock for baud generation and
output on SCK.

SCI_UART_CLOCK_EXT8X Use external clock 8x baud rate.

SCI_UART_CLOCK_EXT16X Use external clock 16x baud rate.

◆ sci_uart_flow_control_t

enum sci_uart_flow_control_t

UART flow control mode definition

Enumerator

SCI_UART_FLOW_CONTROL_RTS Use SCI pin for RTS.

SCI_UART_FLOW_CONTROL_CTS Use SCI pin for CTS.

SCI_UART_FLOW_CONTROL_CTSRTS Use SCI pin for CTS, external pin for RTS.

SCI_UART_FLOW_CONTROL_HARDWARE_CTSRTS

Use CTSn_RTSn pin for RTS and CTSn pin for
CTS. Available only for some channels on
selected MCUs. See hardware manual for
channel specific options.

◆ sci_uart_rx_fifo_trigger_t

enum sci_uart_rx_fifo_trigger_t

Receive FIFO trigger configuration.

Enumerator

SCI_UART_RX_FIFO_TRIGGER_1 Callback after each byte is received without
buffering.

SCI_UART_RX_FIFO_TRIGGER_MAX Callback when FIFO is full or after 15 bit times
with no data (fewer interrupts)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,380 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ sci_uart_start_bit_detect_t

enum sci_uart_start_bit_detect_t

Asynchronous Start Bit Edge Detection configuration.

Enumerator

SCI_UART_START_BIT_LOW_LEVEL Detect low level on RXDn pin as start bit.

SCI_UART_START_BIT_FALLING_EDGE Detect falling level on RXDn pin as start bit.

◆ sci_uart_noise_cancellation_t

enum sci_uart_noise_cancellation_t

Noise cancellation configuration.

Enumerator

SCI_UART_NOISE_CANCELLATION_DISABLE Disable noise cancellation.

SCI_UART_NOISE_CANCELLATION_ENABLE Enable noise cancellation.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,381 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ R_SCI_UART_Open()

fsp_err_t R_SCI_UART_Open (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg)

Configures the UART driver based on the input configurations. If reception is enabled at compile
time, reception is enabled at the end of this function. Implements uart_api_t::open

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Pointer to UART control block or
configuration structure is NULL.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The requested channel does not exist on
this MCU.

FSP_ERR_INVALID_ARGUMENT Flow control is enabled but flow control pin
is not defined or selected channel does not
support "Hardware CTS and Hardware RTS"
flow control.

FSP_ERR_ALREADY_OPEN Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,382 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ R_SCI_UART_Read()

fsp_err_t R_SCI_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Receives user specified number of bytes into destination buffer pointer. Implements
uart_api_t::read

Return values
FSP_SUCCESS Data reception successfully ends.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Destination address or data size is not valid
for 9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A previous read operation is still in progress.

FSP_ERR_UNSUPPORTED SCI_UART_CFG_RX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SCI_UART_Open call, p_dest must be aligned 16-bit boundary.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,383 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ R_SCI_UART_Write()

fsp_err_t R_SCI_UART_Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

Transmits user specified number of bytes from the source buffer pointer. Implements
uart_api_t::write

Return values
FSP_SUCCESS Data transmission finished successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

FSP_ERR_INVALID_ARGUMENT Source address or data size is not valid for
9-bit mode.

FSP_ERR_NOT_OPEN The control block has not been opened

FSP_ERR_IN_USE A UART transmission is in progress

FSP_ERR_UNSUPPORTED SCI_UART_CFG_TX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

If 9-bit data length is specified at R_SCI_UART_Open call, p_src must be aligned on a 16-bit boundary.

◆ R_SCI_UART_BaudSet()

fsp_err_t R_SCI_UART_BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const p_baud_setting)

Updates the baud rate using the clock selected in Open. p_baud_setting is a pointer to a
baud_setting_t structure. Implements uart_api_t::baudSet

Warning
This terminates any in-progress transmission.

Return values
FSP_SUCCESS Baud rate was successfully changed.

FSP_ERR_ASSERTION Pointer to UART control block is NULL or the
UART is not configured to use the internal
clock.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,384 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ R_SCI_UART_InfoGet()

fsp_err_t R_SCI_UART_InfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const p_info)

Provides the driver information, including the maximum number of bytes that can be received or
transmitted at a time. Implements uart_api_t::infoGet

Return values
FSP_SUCCESS Information stored in provided p_info.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

◆ R_SCI_UART_Close()

fsp_err_t R_SCI_UART_Close (uart_ctrl_t *const p_api_ctrl)

Aborts any in progress transfers. Disables interrupts, receiver, and transmitter. Closes lower level
transfer drivers if used. Removes power. Implements uart_api_t::close

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,385 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ R_SCI_UART_Abort()

fsp_err_t R_SCI_UART_Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t communication_to_abort)

Provides API to abort ongoing transfer. Transmission is aborted after the current character is
transmitted. Reception is still enabled after abort(). Any characters received after abort() and
before the transfer is reset in the next call to read(), will arrive via the callback function with event
UART_EVENT_RX_CHAR. Implements uart_api_t::communicationAbort

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,386 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ R_SCI_UART_BaudCalculate()

fsp_err_t R_SCI_UART_BaudCalculate (uint32_t baudrate, bool bitrate_modulation, uint32_t
baud_rate_error_x_1000, baud_setting_t *const p_baud_setting)

Calculates baud rate register settings. Evaluates and determines the best possible settings set to
the baud rate related registers.

Parameters
[in] baudrate Baud rate [bps]. For

example, 19200, 57600,
115200, etc.

[in] bitrate_modulation Enable bitrate modulation

[in] baud_rate_error_x_1000 <baud_rate_percent_error>
x 1000 required for module
to function. Absolute max
baud_rate_error is 15000
(15%).

[out] p_baud_setting Baud setting information
stored here if successful

Return values
FSP_SUCCESS Baud rate is set successfully

FSP_ERR_ASSERTION Null pointer

FSP_ERR_INVALID_ARGUMENT Baud rate is '0', source clock frequency
could not be read, or error in calculated
baud rate is larger than 10%.

◆ R_SCI_UART_CallbackSet()

fsp_err_t R_SCI_UART_CallbackSet (uart_ctrl_t *const p_api_ctrl, void(*)(uart_callback_args_t *)
p_callback, void const *const p_context, uart_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
uart_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,387 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

◆ R_SCI_UART_ReadStop()

fsp_err_t R_SCI_UART_ReadStop (uart_ctrl_t *const p_api_ctrl, uint32_t * remaining_bytes)

Provides API to abort ongoing read. Reception is still enabled after abort(). Any characters received
after abort() and before the transfer is reset in the next call to read(), will arrive via the callback
function with event UART_EVENT_RX_CHAR. Implements uart_api_t::readStop

Return values
FSP_SUCCESS UART transaction aborted successfully.

FSP_ERR_ASSERTION Pointer to UART control block is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

4.2.47 Sigma Delta Analog to Digital Converter (r_sdadc)
Modules

Functions

fsp_err_t R_SDADC_Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t R_SDADC_ScanCfg (adc_ctrl_t *p_ctrl, void const *const p_extend)

fsp_err_t R_SDADC_InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)

fsp_err_t R_SDADC_ScanStart (adc_ctrl_t *p_ctrl)

fsp_err_t R_SDADC_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err_t R_SDADC_StatusGet (adc_ctrl_t *p_ctrl, adc_status_t *p_status)

fsp_err_t R_SDADC_Read (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint16_t *const p_data)

fsp_err_t R_SDADC_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t R_SDADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const
reg_id, int32_t const offset)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,388 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

fsp_err_t R_SDADC_Calibrate (adc_ctrl_t *const p_ctrl, void *const p_extend)

fsp_err_t R_SDADC_Close (adc_ctrl_t *p_ctrl)

Detailed Description

Driver for the SDADC24 peripheral on RA MCUs. This module implements the ADC Interface.

Overview
Features

The SDADC module supports the following features:

24 bit maximum resolution
Configure scans to include:

Multiple analog channels
Outputs of OPAMP0 (P side) and OPAMP1 (N side) of SDADC channel 4

Configurable scan start trigger:
Software scan triggers
Hardware scan triggers (timer expiration, for example)

Configurable scan mode:
Single scan mode, where each trigger starts a single scan
Continuous scan mode, where all channels are scanned continuously

Supports averaging converted samples
Optional callback when single conversion, entire scan, or calibration completes
Supports reading converted data
Sample and hold support

Selecting an ADC

All RA MCUs have an Analog to Digital Converter (r_adc). Only select RA MCUs have an SDADC. When
selecting between them, consider these factors. Refer to the hardware manual for details.

ADC SDADC

Availability Available on all RA MCUs. Available on select RA MCUs.

Resolution The ADC has a maximum
resolution of 12, 14, or 16 bits
depending on the MCU.

The SDADC has a maximum
accuracy of 24 bits.

Number of Channels The ADC has more channels
than the SDADC.

The SDADC 5 channels, one of
which is tied to OPAMP0 and
OPAMP1.

Frequency The ADC sampling time is
shorter (more samples per
second).

The SDADC sampling time is
longer (fewer samples per
second).

Settling Time The ADC does not have a
settling time when switching
between channels.

The SDADC requires a settling
time when switching between
channels.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,389 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

Configuration

Build Time Configurations for r_sdadc

The following build time configurations are defined in fsp_cfg/r_sdadc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Analog > ADC Driver on r_sdadc

This module can be added to the Stacks tab via New Stack > Driver > Analog > ADC Driver on
r_sdadc.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_adc0 Module name.

Mode Single Scan
Continuous
Scan

Continuous Scan In single scan mode, all
channels are converted
once per start trigger,
and conversion stops
after all enabled
channels are scanned.
In continuous scan
mode, conversion
starts after a start
trigger, then continues
until stopped in
software.

Resolution 16 Bit
24 Bit

24 Bit Select 24-bit or 16-bit
resolution.

Alignment Right
Left

Right Select left or right
alignment.

Trigger MCU Specific Options Select conversion start
trigger. Conversion can
be started in software,
or conversion can be
started when a
hardware event occurs
if the hardware event is
linked to the SDADC
peripheral using the
ELC API.

Vref Source Internal
External

Internal Vref can be source
internally and output

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,390 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

on the SBIAS pin, or
Vref can be input from
VREFI.

Vref Voltage 0.8 V
1.0 V
1.2 V
1.4 V
1.6 V
1.8 V
2.0 V
2.2 V
2.4 V

1.0 V Select Vref voltage. If
Vref is input externally,
the voltage on VREFI
must match the
voltage selected within
3%.

Callback Name must be a valid
C symbol

NULL Enter the name of the
callback function to be
called when conversion
completes or a scan
ends.

Conversion End
Interrupt Priority

MCU Specific Options [Required] Select the
interrupt priority for
the conversion end
interrupt.

Scan End Interrupt
Priority

MCU Specific Options [Optional] Select the
interrupt priority for
the scan end interrupt.

Calibration End
Interrupt Priority

MCU Specific Options [Optional] Select the
interrupt priority for
the calibration end
interrupt.

Configurations for Driver > Analog > SDADC Channel Configuration on r_sdadc

This module can be added to the Stacks tab via New Stack > Driver > Analog > SDADC Channel
Configuration on r_sdadc.

Configuration Options Default Description

Input Differential
Single Ended

Differential Select differential or
single-ended input.

Stage 1 Gain 1
2
3
4
8

1 Select the gain for
stage 1 of the PGA.
Must be 1 for single-
ended input.

Stage 2 Gain 1
2
4
8

1 Select the gain for
stage 2 of the PGA.
Must be 1 for single-
ended input.

Oversampling Ratio 64
128
256

256 Select the
oversampling ratio for
the PGA. Must be 256

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,391 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

512
1024
2048

for single-ended input.

Polarity (Valid for
Single-Ended Input
Only)

Positive
Negative

Positive Select positive or
negative polarity for
single-ended input.
VBIAS (1.0 V typical) is
connected on the
opposite input.

Conversions to Average
per Result

Do Not Average
(Interrupt after
Each
Conversion)
Average 8
Average 16
Average 32
Average 64

Do Not Average
(Interrupt after Each
Conversion)

Select the number of
conversions to average
for each result. The AD
C_EVENT_CONVERSION
_END event occurs
after each average, or
after each individual
conversion if averaging
is disabled.

Invert (Valid for
Negative Single-Ended
Input Only)

Result Not
Inverted
Result Inverted

Result Not Inverted Select whether to
invert negative single-
ended input. When the
result is inverted, the
lowest measurable
voltage gives a result
of 0, and the highest
measurable voltage
gives a result of
2^resolution - 1.

Number of Conversions
Per Scan

Refer to the RA
Configuration tool for
available options.

1 Number of conversions
on this channel before
AUTOSCAN moves to
the next channel.
When all conversions of
all channels are
complete, the
ADC_EVENT_SCAN_END
event occurs.

Clock Configuration

The SDADC clock clock is configurable on the clocks tab.

The SDADC clock must be 4 MHz when the SDADC is used.

Pin Configuration

The ANSDnP (n = 0-3) pins are analog input channels that can be used with the SDADC.

Usage Notes
Scan Procedure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,392 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

In this document, the term "scan" refers to the AUTOSCAN feature of the SDADC, which works as
follows:

1. Conversions are performed on enabled channels in ascending order of channel number. All
conversions required for a single channel are completed before the sequencer moves to the
next channel.

2. Conversions are performed at the rate (in Hz) of the SDADC oversampling clock frequency /
oversampling ratio (configured per channel). The FSP uses the normal mode SDADC
oversampling clock frequency.

3. If averaging is enabled for the channel, the number of conversions to average are
performed before each conversion end interrupt occurs.

4. If the number of conversions for the channel is more than 1, SDADC performs the number of
conversions requested. These are performed consecutively. There is a settling time
associated with switching channels. Performing all of the requested conversions for each
channel at a time avoids this settling time after the first conversion.

If averaging is enabled for the channel, each averaged result counts as a single conversion.

5. Continues to the next enabled channel only after completing all conversions requested.
6. After all enabled channels are scanned, a scan end interrupt occurs. The driver supports

single-scan and continuous scan operation modes.
Single-scan mode performs one scan per trigger (hardware trigger or software
start using R_SDADC_ScanStart).
In continuous scan mode, the scan is restarted after each scan completes. A single
trigger is required to start continuous operation of the SDADC.

When Interrupts Are Not Enabled

If interrupts are not enabled, the R_SDADC_StatusGet() API can be used to poll the SDADC to
determine when the scan has completed. The R_SDADC_Read() API function is used to access the
converted SDADC result. This applies to both normal scans and calibration scans.

Calibration

Calibration is required to use the SDADC if any channel is configured for differential mode. Call
R_SDADC_Calibrate() after open, and prior to any other function, then wait for a calibration complete
event before using the SDADC. R_SDADC_Calibrate() should not be called if all channels are
configured for single-ended mode.

Examples
Basic Example

This is a basic example of minimal use of the SDADC in an application.

void sdadc_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,393 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

 err = R_SDADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Calibrate all differential channels. */

 sdadc_calibrate_args_t calibrate_args;

 calibrate_args.mode = SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET;

 calibrate_args.channel = ADC_CHANNEL_0;

 err = R_SDADC_Calibrate(&g_adc0_ctrl, &calibrate_args);

 assert(FSP_SUCCESS == err);

 /* Wait for calibration to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 R_SDADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* In software trigger mode, start a scan by calling R_SDADC_ScanStart(). In other

modes, enable external

 * triggers by calling R_SDADC_ScanStart(). */

 (void) R_SDADC_ScanStart(&g_adc0_ctrl);

 /* Wait for conversion to complete. */

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 R_SDADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* Read converted data. */

 uint32_t channel1_conversion_result;

 R_SDADC_Read32(&g_adc0_ctrl, ADC_CHANNEL_1, &channel1_conversion_result);

}

Using DTC or DMAC with the SDADC

If desired, the DTC or DMAC can be used to store each conversion result in a circular buffer. An
example configuration is below.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,394 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

/* Example DTC transfer settings to used with SDADC. */

/* The transfer length should match the total number of conversions per scan. This

example assumes the SDADC is

 * configured to scan channel 1 three times, then channel 2 and channel 4 once, for a

total of 5 conversions. */

#define SDADC_EXAMPLE_TRANSFER_LENGTH (5)

uint32_t g_sdadc_example_buffer[SDADC_EXAMPLE_TRANSFER_LENGTH];

transfer_info_t g_sdadc_transfer_info =

{

 .dest_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED,

 .repeat_area = TRANSFER_REPEAT_AREA_DESTINATION,

 .irq = TRANSFER_IRQ_END,

 .chain_mode = TRANSFER_CHAIN_MODE_DISABLED,

 .src_addr_mode = TRANSFER_ADDR_MODE_FIXED,

 .mode = TRANSFER_MODE_REPEAT,

 /* NOTE: The data transferred will contain a 24-bit converted value in bits 23:0.

Bit 24 contains a status flag

 * indicating if the result overflowed or not. Bits 27:25 contain the channel number

+ 1. The settings for

 * resolution and alignment and ignored when DTC or DMAC is used. */

 .size = TRANSFER_SIZE_4_BYTE,

 /* NOTE: It is strongly recommended to enable averaging on all channels or no

channels when using DTC with SDADC

 * because the result register is different when averaging is used. If averaging is

enabled on all channels,

 * set transfer_info_t::p_src to &R_SDADC->ADAR. */

 .p_src = (void const *) &R_SDADC0->ADCR,

 .p_dest = &g_sdadc_example_buffer[0],

 .length = SDADC_EXAMPLE_TRANSFER_LENGTH,

};

void sdadc_dtc_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,395 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

 err = R_SDADC_Open(&g_adc0_ctrl, &g_adc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Calibrate all differential channels. */

 sdadc_calibrate_args_t calibrate_args;

 calibrate_args.mode = SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET;

 calibrate_args.channel = ADC_CHANNEL_0;

 err = R_SDADC_Calibrate(&g_adc0_ctrl, &calibrate_args);

 assert(FSP_SUCCESS == err);

 /* Wait for calibration to complete. */

 adc_status_t status;

 status.state = ADC_STATE_SCAN_IN_PROGRESS;

 while (ADC_STATE_SCAN_IN_PROGRESS == status.state)

 {

 R_SDADC_StatusGet(&g_adc0_ctrl, &status);

 }

 /* In software trigger mode, start a scan by calling R_SDADC_ScanStart(). In other

modes, enable external

 * triggers by calling R_SDADC_ScanStart(). */

 (void) R_SDADC_ScanStart(&g_adc0_ctrl);

 /* After each conversion, the converted data is transferred to the next index in

g_sdadc_example_buffer. After

 * the entire scan completes, the index in g_sdadc_example_buffer resets. The data

in g_sdadc_example_buffer

 * is:

 * - g_sdadc_example_buffer[0] = SDADC channel 1 conversion 0

 * - g_sdadc_example_buffer[1] = SDADC channel 1 conversion 1

 * - g_sdadc_example_buffer[2] = SDADC channel 1 conversion 2

 * - g_sdadc_example_buffer[3] = SDADC channel 2 conversion 0

 * - g_sdadc_example_buffer[4] = SDADC channel 4 conversion 0

 // At any point in the application after the first scan completes, the most

recent data for channel 2 can be read

 * from the buffer like this. Shifting removes the unrelated bits in the result

register and propagates the sign

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,396 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

 * bit so the value can be interpreted as a signed result. This assumes channel 2 is

configured in differential

 * mode. */

 int32_t channel_2_data = (int32_t) (g_sdadc_example_buffer[3] << 8) >> 8;

 FSP_PARAMETER_NOT_USED(channel_2_data);

}

Data Structures

struct sdadc_calibrate_args_t

struct sdadc_channel_cfg_t

struct sdadc_scan_cfg_t

struct sdadc_extended_cfg_t

struct sdadc_instance_ctrl_t

Enumerations

enum sdadc_vref_src_t

enum sdadc_vref_voltage_t

enum sdadc_channel_input_t

enum sdadc_channel_stage_1_gain_t

enum sdadc_channel_stage_2_gain_t

enum sdadc_channel_oversampling_t

enum sdadc_channel_polarity_t

enum sdadc_channel_average_t

enum sdadc_channel_inversion_t

enum sdadc_channel_count_formula_t

enum sdadc_calibration_t

Data Structure Documentation

◆ sdadc_calibrate_args_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,397 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

struct sdadc_calibrate_args_t

Structure to pass to the adc_api_t::calibrate p_extend argument.

Data Fields

adc_channel_t channel Which channel to calibrate.

sdadc_calibration_t mode Calibration mode.

◆ sdadc_channel_cfg_t

struct sdadc_channel_cfg_t

SDADC per channel configuration.

◆ sdadc_scan_cfg_t

struct sdadc_scan_cfg_t

SDADC active channel configuration

Data Fields

uint32_t scan_mask Channels/bits: bit 0 is ch0; bit
15 is ch15.

◆ sdadc_extended_cfg_t

struct sdadc_extended_cfg_t

SDADC configuration extension. This extension is required and must be provided in
adc_cfg_t::p_extend.

Data Fields

uint8_t conv_end_ipl Conversion end interrupt
priority.

IRQn_Type conv_end_irq

sdadc_vref_src_t vref_src Source of Vref (internal or
external)

sdadc_vref_voltage_t vref_voltage Voltage of Vref, required for
both internal and external Vref.
If Vref is from an external
source, the voltage must match
the specified voltage within
3%.

sdadc_channel_cfg_t const * p_channel_cfgs[SDADC_MAX_N
UM_CHANNELS]

Configuration for each channel,
set to NULL if unused.

◆ sdadc_instance_ctrl_t

struct sdadc_instance_ctrl_t

ADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,398 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

Enumeration Type Documentation

◆ sdadc_vref_src_t

enum sdadc_vref_src_t

Source of Vref.

Enumerator

SDADC_VREF_SRC_INTERNAL Vref is internally sourced, can be output as
SBIAS.

SDADC_VREF_SRC_EXTERNAL Vref is externally sourced from the VREFI pin.

◆ sdadc_vref_voltage_t

enum sdadc_vref_voltage_t

Voltage of Vref.

Enumerator

SDADC_VREF_VOLTAGE_800_MV Vref is 0.8 V.

SDADC_VREF_VOLTAGE_1000_MV Vref is 1.0 V.

SDADC_VREF_VOLTAGE_1200_MV Vref is 1.2 V.

SDADC_VREF_VOLTAGE_1400_MV Vref is 1.4 V.

SDADC_VREF_VOLTAGE_1600_MV Vref is 1.6 V.

SDADC_VREF_VOLTAGE_1800_MV Vref is 1.8 V.

SDADC_VREF_VOLTAGE_2000_MV Vref is 2.0 V.

SDADC_VREF_VOLTAGE_2200_MV Vref is 2.2 V.

SDADC_VREF_VOLTAGE_2400_MV Vref is 2.4 V (only valid for external Vref)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,399 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ sdadc_channel_input_t

enum sdadc_channel_input_t

Per channel input mode.

Enumerator

SDADC_CHANNEL_INPUT_DIFFERENTIAL Differential input.

SDADC_CHANNEL_INPUT_SINGLE_ENDED Single-ended input.

◆ sdadc_channel_stage_1_gain_t

enum sdadc_channel_stage_1_gain_t

Per channel stage 1 gain options.

Enumerator

SDADC_CHANNEL_STAGE_1_GAIN_1 Gain of 1.

SDADC_CHANNEL_STAGE_1_GAIN_2 Gain of 2.

SDADC_CHANNEL_STAGE_1_GAIN_3 Gain of 3 (only valid for stage 1)

SDADC_CHANNEL_STAGE_1_GAIN_4 Gain of 4.

SDADC_CHANNEL_STAGE_1_GAIN_8 Gain of 8.

◆ sdadc_channel_stage_2_gain_t

enum sdadc_channel_stage_2_gain_t

Per channel stage 2 gain options.

Enumerator

SDADC_CHANNEL_STAGE_2_GAIN_1 Gain of 1.

SDADC_CHANNEL_STAGE_2_GAIN_2 Gain of 2.

SDADC_CHANNEL_STAGE_2_GAIN_4 Gain of 4.

SDADC_CHANNEL_STAGE_2_GAIN_8 Gain of 8.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,400 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ sdadc_channel_oversampling_t

enum sdadc_channel_oversampling_t

Per channel oversampling ratio.

Enumerator

SDADC_CHANNEL_OVERSAMPLING_64 Oversampling ratio of 64.

SDADC_CHANNEL_OVERSAMPLING_128 Oversampling ratio of 128.

SDADC_CHANNEL_OVERSAMPLING_256 Oversampling ratio of 256.

SDADC_CHANNEL_OVERSAMPLING_512 Oversampling ratio of 512.

SDADC_CHANNEL_OVERSAMPLING_1024 Oversampling ratio of 1024.

SDADC_CHANNEL_OVERSAMPLING_2048 Oversampling ratio of 2048.

◆ sdadc_channel_polarity_t

enum sdadc_channel_polarity_t

Per channel polarity, valid for single-ended input only.

Enumerator

SDADC_CHANNEL_POLARITY_POSITIVE Positive-side single-ended input.

SDADC_CHANNEL_POLARITY_NEGATIVE Negative-side single-ended input.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,401 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ sdadc_channel_average_t

enum sdadc_channel_average_t

Per channel number of conversions to average before conversion end callback.

Enumerator

SDADC_CHANNEL_AVERAGE_NONE Do not average (callback for each conversion)

SDADC_CHANNEL_AVERAGE_8 Average 8 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_16 Average 16 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_32 Average 32 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_64 Average 64 samples for each conversion end
callback.

◆ sdadc_channel_inversion_t

enum sdadc_channel_inversion_t

Per channel polarity, valid for negative-side single-ended input only.

Enumerator

SDADC_CHANNEL_INVERSION_OFF Do not invert conversion result.

SDADC_CHANNEL_INVERSION_ON Invert conversion result.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,402 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ sdadc_channel_count_formula_t

enum sdadc_channel_count_formula_t

Select a formula to specify the number of conversions. The following symbols are used in the
formulas:

N: Number of conversions
n: sdadc_channel_cfg_t::coefficient_n, do not set to 0 if m is 0
m: sdadc_channel_cfg_t::coefficient_m, do not set to 0 if n is 0

Either m or n must be non-zero.

Enumerator

SDADC_CHANNEL_COUNT_FORMULA_EXPONENTI
AL

N = 32 * (2 ^ n - 1) + m * 2 ^ n.

SDADC_CHANNEL_COUNT_FORMULA_LINEAR N = (32 * n) + m.

◆ sdadc_calibration_t

enum sdadc_calibration_t

Calibration mode.

Enumerator

SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET Use internal reference to calibrate offset and
gain.

SDADC_CALIBRATION_EXTERNAL_OFFSET Use external reference to calibrate offset.

SDADC_CALIBRATION_EXTERNAL_GAIN Use external reference to calibrate gain.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,403 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ R_SDADC_Open()

fsp_err_t R_SDADC_Open (adc_ctrl_t * p_ctrl, adc_cfg_t const *const p_cfg)

Applies power to the SDADC and initializes the hardware based on the user configuration. As part
of this initialization, the SDADC clock is configured and enabled. If an interrupt priority is non-zero,
enables an interrupt which will call a callback to notify the user when a conversion, scan, or
calibration is complete. R_SDADC_Calibrate() must be called after this function before using the
SDADC if any channels are used in differential mode. Implements adc_api_t::open().

Note
This function delays at least 2 ms as required by the SDADC power on procedure.

Return values
FSP_SUCCESS Configuration successful.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

FSP_ERR_ALREADY_OPEN Control block is already open.

FSP_ERR_IRQ_BSP_DISABLED A required interrupt is disabled

◆ R_SDADC_ScanCfg()

fsp_err_t R_SDADC_ScanCfg (adc_ctrl_t * p_ctrl, void const *const p_extend)

Configures the enabled channels of the ADC. Pass a pointer to sdadc_scan_cfg_t to p_extend.
Implements adc_api_t::scanCfg().

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input pointer is NULL or an input
parameter is invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,404 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ R_SDADC_InfoGet()

fsp_err_t R_SDADC_InfoGet (adc_ctrl_t * p_ctrl, adc_info_t * p_adc_info)

Returns the address of the lowest number configured channel, the total number of results to be
read in order to read the results of all configured channels, the size of each result, and the ELC
event enumerations. Implements adc_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_adc_info.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SDADC_ScanStart()

fsp_err_t R_SDADC_ScanStart (adc_ctrl_t * p_ctrl)

If the SDADC is configured for hardware triggers, enables hardware triggers. Otherwise, starts a
scan. Implements adc_api_t::scanStart().

Return values
FSP_SUCCESS Scan started or hardware triggers enabled

successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

FSP_ERR_IN_USE A conversion or calibration is in progress.

◆ R_SDADC_ScanStop()

fsp_err_t R_SDADC_ScanStop (adc_ctrl_t * p_ctrl)

If the SDADC is configured for hardware triggers, disables hardware triggers. Otherwise, stops any
in-progress scan started by software. Implements adc_api_t::scanStop().

Return values
FSP_SUCCESS Scan stopped or hardware triggers disabled

successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,405 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ R_SDADC_StatusGet()

fsp_err_t R_SDADC_StatusGet (adc_ctrl_t * p_ctrl, adc_status_t * p_status)

Returns the status of a scan started by software, including calibration scans. It is not possible to
determine the status of a scan started by a hardware trigger. Implements
adc_api_t::scanStatusGet().

Return values
FSP_SUCCESS No software scan or calibration is in

progress.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SDADC_Read()

fsp_err_t R_SDADC_Read (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint16_t *const p_data
)

Reads the most recent conversion result from a channel. Truncates 24-bit results to the upper 16
bits. Implements adc_api_t::read().

Note
The result stored in p_data is signed when the SDADC channel is configured in differential mode.
Do not use this API if the conversion end interrupt (SDADC0_ADI) is used to trigger the DTC unless the interrupt
mode is set to TRANSFER_IRQ_EACH.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,406 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ R_SDADC_Read32()

fsp_err_t R_SDADC_Read32 (adc_ctrl_t * p_ctrl, adc_channel_t const reg_id, uint32_t *const
p_data)

Reads the most recent conversion result from a channel. Implements adc_api_t::read32().

Note
The result stored in p_data is signed when the SDADC channel is configured in differential mode. When the
SDADC is configured for 24-bit resolution and right alignment, the sign bit is bit 23, and the upper 8 bits are 0.
When the SDADC is configured for 16-bit resolution and right alignment, the sign bit is bit 15, and the upper 16
bits are 0.
Do not use this API if the conversion end interrupt (SDADC0_ADI) is used to trigger the DTC unless the interrupt
mode is set to TRANSFER_IRQ_EACH.

Return values
FSP_SUCCESS Conversion result in p_data.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,407 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ R_SDADC_OffsetSet()

fsp_err_t R_SDADC_OffsetSet (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t const
offset)

Sets the offset. Offset is applied after stage 1 of the input channel. Offset can only be applied when
the channel is configured for differential input. Implements adc_api_t::offsetSet().

Note: The offset is cleared if adc_api_t::calibrate() is called. The offset can be re-applied if
necessary after the the callback with event ADC_EVENT_CALIBRATION_COMPLETE is called.

Parameters
[in] p_ctrl See p_instance_ctrl in

adc_api_t::offsetSet().

[in] reg_id See reg_id in
adc_api_t::offsetSet().

[in] offset Must be between -15 and 15,
offset (mV) = 10.9376 mV *
offset_steps / stage 1 gain.

Return values
FSP_SUCCESS Offset updated successfully.

FSP_ERR_ASSERTION An input pointer was NULL or an input
parameter was invalid.

FSP_ERR_IN_USE A conversion or calibration is in progress.

FSP_ERR_NOT_OPEN Instance control block is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,408 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Sigma Delta Analog to Digital Converter (r_sdadc)

◆ R_SDADC_Calibrate()

fsp_err_t R_SDADC_Calibrate (adc_ctrl_t *const p_ctrl, void *const p_extend)

Requires sdadc_calibrate_args_t passed to p_extend. Calibrates the specified channel. Calibration is
not required or supported for single-ended mode. Calibration must be completed for differential
mode before using the SDADC. A callback with the event ADC_EVENT_CALIBRATION_COMPLETE is
called when calibration completes. Implements adc_api_t::calibrate().

During external offset calibration, apply a differential voltage of 0 to ANSDnP - ANSDnN, where n is
the input channel and ANSDnP is OPAMP0 for channel 4 and ANSDnN is OPAMP1 for channel 4.
Complete external offset calibration before external gain calibration.

During external gain calibration apply a voltage between 0.4 V / total_gain and 0.8 V / total_gain.
The differential voltage applied during calibration is corrected to a conversion result of 0x7FFFFF,
which is the maximum possible positive differential measurement.

This function clears the offset value. If offset is required after calibration, it must be reapplied after
calibration is complete using adc_api_t::offsetSet.

Return values
FSP_SUCCESS Calibration began successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_IN_USE A conversion or calibration is in progress.

FSP_ERR_NOT_OPEN Instance control block is not open.

◆ R_SDADC_Close()

fsp_err_t R_SDADC_Close (adc_ctrl_t * p_ctrl)

Stops any scan in progress, disables interrupts, and powers down the SDADC peripheral.
Implements adc_api_t::close().

Note
This function delays at least 3 us as required by the SDADC24 stop procedure.

Return values
FSP_SUCCESS Instance control block closed successfully.

FSP_ERR_ASSERTION An input pointer was NULL.

FSP_ERR_NOT_OPEN Instance control block is not open.

4.2.48 SD/MMC Host Interface (r_sdhi)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,409 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

Modules

Functions

fsp_err_t R_SDHI_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg_t const
*const p_cfg)

fsp_err_t R_SDHI_MediaInit (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_device_t
*const p_device)

fsp_err_t R_SDHI_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const
p_source, uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_ReadIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address)

fsp_err_t R_SDHI_WriteIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address,
sdmmc_io_write_mode_t const read_after_write)

fsp_err_t R_SDHI_ReadIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const function, uint32_t const address, uint32_t
*const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t R_SDHI_WriteIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const
*const p_source, uint32_t const function, uint32_t const address,
uint32_t const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t R_SDHI_IoIntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

fsp_err_t R_SDHI_StatusGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_status_t
*const p_status)

fsp_err_t R_SDHI_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const
start_sector, uint32_t const sector_count)

fsp_err_t R_SDHI_CallbackSet (sdmmc_ctrl_t *const p_api_ctrl,
void(*p_callback)(sdmmc_callback_args_t *), void const *const
p_context, sdmmc_callback_args_t *const p_callback_memory)

fsp_err_t R_SDHI_Close (sdmmc_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs. This module implements the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,410 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

SD/MMC Interface.

Overview
Features

Supports the following memory devices: SDSC (SD Standard Capacity), SDHC (SD High
Capacity), SDXC (SD Extended Capacity) and eMMC (embedded Multi Media Card)

Supports reading, writing and erasing SD memory devices
Supports 1, 4 or 8-bit data bus (8-bit bus is supported for eMMC only)
Supports detection of device write protection (SD cards only)
Supports high speed mode

Automatically configures the clock to the maximum clock rate supported by both host
(MCU) and device
Supports hardware acceleration using DMAC or DTC
Supports callback notification when an operation completes or an error occurs

Configuration
Build Time Configurations for r_sdhi

The following build time configurations are defined in fsp_cfg/r_sdhi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Unaligned Access
Support

Disabled
Enabled

Enabled If enabled, code for
supporting buffers that
are not aligned on a
4-byte boundary is
included in the build.
Only disable this if all
buffers passed to the
driver are 4-byte
aligned.

SD Support Disabled
Enabled

Enabled If selected code for SD
card support is
included in the build.

eMMC Support Disabled
Enabled

Disabled If selected code for
eMMC device support is
included in the build.

Configurations for Driver > Storage > SD/MMC Driver on r_sdhi

This module can be added to the Stacks tab via New Stack > Driver > Storage > SD/MMC Driver on
r_sdhi. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,411 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

Name Name must be a valid
C symbol

g_sdmmc0 Module name.

Channel Value must be a non-
negative integer

0 Select the channel.

Bus Width MCU Specific Options Select the bus width.

Block Size Value must be an
integer between 1 and
512

512 Select the media block
size. Must be 512 for
SD cards or eMMC
devices. Must be 1-512
for SDIO.

Card Detection Not Used
CD Pin

CD Pin Select the card
detection method.

Write Protection Not Used
WP Pin

WP Pin Select whether or not
to use the write protect
pin. Select Not Used if
the MCU or device does
not have a write
protect pin.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

Access Interrupt
Priority

MCU Specific Options Select the access
interrupt priority.

Card Interrupt Priority MCU Specific Options Select the card
interrupt priority.

DTC Interrupt Priority MCU Specific Options Select the DTC
interrupt priority.

Interrupt Configurations:

The following interrupts are required to use the r_sdhi module:

Using SD/MMC with DTC:

Access Interrupt
DTC Interrupt

Using SD/MMC with DMAC:

Access Interrupt
DMAC Interrupt (in DMAC instance)

The Card interrupt is optional and only available on MCU packages that have the SDnCD pin (n =
channel number).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,412 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

Clock Configuration

The SDMMC MCU peripheral (SDHI) uses the PCLKA for its clock source. The SDMMC driver selects
the optimal built-in divider based on the PCLKA frequency and the maximum clock rate allowed by
the device obtained at media initialization.

Pin Configuration

The SDMMC driver supports the following pins (n = channel number):

SDnCLK
SDnCMD
SDnDAT0
SDnDAT1
SDnDAT2
SDnDAT3
SDnDAT4 (not available on all MCUs)
SDnDAT5 (not available on all MCUs)
SDnDAT6 (not available on all MCUs)
SDnDAT7 (not available on all MCUs)
SDnCD (not available on all MCUs)
SDnWP

The drive capacity for each pin should be set to "Medium" or "High" for most hardware designs. This
can be configured in the Pins tab of the RA Configuration editor by selecting the pin under Pin
Selection -> Ports.

Usage Notes
Card Detection

When Card Detection is configured to "CD Pin" in the RA Configuration editor, interrupt flags are
cleared and card detection is enabled during R_SDHI_Open().

R_SDHI_StatusGet() can be called to retrieve the current status of the card (including whether a card
is present). If the Card Interrupt Priority is enabled, a callback is called when a card is inserted or
removed.

If a card is removed and reinserted, R_SDHI_MediaInit() must be called before reading from the card
or writing to the card.

Note
R_SDHI_StatusGet() should be used to initially determine the card state after opening the interface.

DMA Request Interrupt Priority

When data transfers are not 4-byte aligned or not a multiple of 4 bytes, a software copy of the block
size (up to 512 bytes) is done in the DMA Request interrupt. This blocks all other interrupts that are a
lower or equal priority to the access interrupt until the software copy is complete.

Timing Notes for R_SDHI_MediaInit

The R_SDHI_MediaInit() API completes the entire device identification and configuration process. This
involves several command-response cycles at a bus width of 1 bit and a bus speed of 400 kHz or

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,413 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

less.

Limitations

Developers should be aware of the following limitations when using the SDHI:

Blocking Calls

The following functions block execution until the response is received for at least one command:

R_SDHI_MediaInit
R_SDHI_Erase

Once the function returns the status of the operation can be determined via R_SDHI_StatusGet or
through receipt of a callback.

Note
Due to the variability in clocking configurations it is recommended to determine blocking delays experimentally on
the target system.

Data Alignment and Size

Data transfers should be 4-byte aligned and a multiple of 4 bytes in size whenever possible. This
recommendation applies to the read(), write(), readIoExt(), and writeIoExt() APIs. When data
transfers are 4-byte aligned and a multiple of 4-bytes, the r_sdhi driver is zero copy and takes full
advantage of hardware acceleration by the DMAC or DTC. When data transfers are not 4-byte
aligned or not a multiple of 4 bytes an extra CPU interrupt is required for each block transferred and
a software copy is used to move data to the destination buffer.

Examples
Basic Example

This is a basic example of minimal use of the r_sdhi in an application.

uint8_t g_dest[SDHI_MAX_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[SDHI_MAX_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint32_t g_transfer_complete = 0;

void r_sdhi_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < SDHI_MAX_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the SDHI driver. */

 fsp_err_t err = R_SDHI_Open(&g_sdmmc0_ctrl, &g_sdmmc0_cfg);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,414 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

 assert(FSP_SUCCESS == err);

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card. This should not be done until the card is plugged in for

SD devices. */

 err = R_SDHI_MediaInit(&g_sdmmc0_ctrl, NULL);

 assert(FSP_SUCCESS == err);

 err = R_SDHI_Write(&g_sdmmc0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 /* Wait for transfer. */

 }

 err = R_SDHI_Read(&g_sdmmc0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

 while (!g_transfer_complete)

 {

 /* Wait for transfer. */

 }

}

/* The callback is called when a transfer completes. */

void r_sdhi_example_callback (sdmmc_callback_args_t * p_args)

{

 if (SDMMC_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = 1;

 }

}

Card Detection Example

This is an example of using SDHI when the card may not be plugged in. The card detection interrupt

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,415 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

must be enabled to use this example.

bool g_card_inserted = false;

void r_sdhi_card_detect_example (void)

{

 /* Open the SDHI driver. This enables the card detection interrupt. */

 fsp_err_t err = R_SDHI_Open(&g_sdmmc0_ctrl, &g_sdmmc0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Check if card is inserted. */

 sdmmc_status_t status;

 err = R_SDHI_StatusGet(&g_sdmmc0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 if (!status.card_inserted)

 {

 while (!g_card_inserted)

 {

 /* Wait for a card insertion interrupt. */

 }

 }

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card after card insertion is detected. */

 err = R_SDHI_MediaInit(&g_sdmmc0_ctrl, NULL);

 assert(FSP_SUCCESS == err);

}

/* The callback is called when a card detection event occurs if the card detection

interrupt is enabled. */

void r_sdhi_card_detect_example_callback (sdmmc_callback_args_t * p_args)

{

 if (SDMMC_EVENT_CARD_INSERTED == p_args->event)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,416 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

 g_card_inserted = true;

 }

 if (SDMMC_EVENT_CARD_REMOVED == p_args->event)

 {

 g_card_inserted = false;

 }

}

Function Documentation

◆ R_SDHI_Open()

fsp_err_t R_SDHI_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg_t const *const p_cfg)

Opens the driver. Resets SDHI, and enables card detection interrupts if card detection is enabled.
R_SDHI_MediaInit must be called after this function before any other functions can be used.

Implements sdmmc_api_t::open().

Example:

 /* Open the SDHI driver. */

 fsp_err_t err = R_SDHI_Open(&g_sdmmc0_ctrl, &g_sdmmc0_cfg);

Return values
FSP_SUCCESS Module is now open.

FSP_ERR_ASSERTION Null Pointer or block size is not in the valid
range of 1-512. Block size must be 512
bytes for SD cards and eMMC devices. It is
configurable for SDIO only.

FSP_ERR_ALREADY_OPEN Driver has already been opened with this
instance of the control structure.

FSP_ERR_IRQ_BSP_DISABLED Access interrupt is not enabled.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this
MCU.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,417 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_MediaInit()

fsp_err_t R_SDHI_MediaInit (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_device_t *const p_device)

Initializes the SDHI hardware and completes identification and configuration for the SD or eMMC
device. This procedure requires several sequential commands. This function blocks until all
identification and configuration commands are complete.

Implements sdmmc_api_t::mediaInit().

Example:

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card. This should not be done until the card is plugged in for

SD devices. */

 err = R_SDHI_MediaInit(&g_sdmmc0_ctrl, NULL);

Return values
FSP_SUCCESS Module is now ready for read/write access.

FSP_ERR_ASSERTION Null Pointer or block size is not in the valid
range of 1-512. Block size must be 512
bytes for SD cards and eMMC devices. It is
configurable for SDIO only.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_INIT_FAILED Device was not identified as an SD card,
eMMC device, or SDIO card.

FSP_ERR_RESPONSE Device did not respond or responded with
an error.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,418 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_Read()

fsp_err_t R_SDHI_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
start_sector, uint32_t const sector_count)

Reads data from an SD or eMMC device. Up to 0x10000 sectors can be read at a time. Implements
sdmmc_api_t::read().

A callback with the event SDMMC_EVENT_TRANSFER_COMPLETE is called when the read data is
available.

Example:

 err = R_SDHI_Read(&g_sdmmc0_ctrl, g_dest, 3, 1);

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

◆ R_SDHI_Write()

fsp_err_t R_SDHI_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const p_source, uint32_t
const start_sector, uint32_t const sector_count)

Writes data to an SD or eMMC device. Up to 0x10000 sectors can be written at a time. Implements
sdmmc_api_t::write().

A callback with the event SDMMC_EVENT_TRANSFER_COMPLETE is called when the all data has
been written and the device is no longer holding DAT0 low to indicate it is busy.

Example:

 err = R_SDHI_Write(&g_sdmmc0_ctrl, g_src, 3, 1);

Return values
FSP_SUCCESS Card write finished successfully.

FSP_ERR_ASSERTION Handle or Source address is NULL.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_CARD_WRITE_PROTECTED SD card is Write Protected.

FSP_ERR_WRITE_FAILED Write operation failed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,419 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_ReadIo()

fsp_err_t R_SDHI_ReadIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address)

The Read function reads a one byte register from an SDIO card. Implements sdmmc_api_t::readIo().

This function blocks until the command is sent and the response is received. p_data contains the
register value read when this function returns.

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

FSP_ERR_RESPONSE Device did not respond or responded with
an error.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,420 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_WriteIo()

fsp_err_t R_SDHI_WriteIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address, sdmmc_io_write_mode_t const read_after_write)

Writes a one byte register to an SDIO card. Implements sdmmc_api_t::writeIo().

This function blocks until the command is sent and the response is received. The register has been
written when this function returns. If read_after_write is true, p_data contains the register value
read when this function returns.

Return values
FSP_SUCCESS Card write finished successfully.

FSP_ERR_ASSERTION Handle or Source address is NULL.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

FSP_ERR_RESPONSE Device did not respond or responded with
an error.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,421 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_ReadIoExt()

fsp_err_t R_SDHI_ReadIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
function, uint32_t const address, uint32_t *const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Reads data from an SDIO card function. Implements sdmmc_api_t::readIoExt().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the read data is available.

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION NULL pointer, or count is not in the valid
range of 1-512 for byte mode or 1-511 for
block mode.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,422 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_WriteIoExt()

fsp_err_t R_SDHI_WriteIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const p_source,
uint32_t const function, uint32_t const address, uint32_t const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Writes data to an SDIO card function. Implements sdmmc_api_t::writeIoExt().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the all data has been written.

Return values
FSP_SUCCESS Card write finished successfully.

FSP_ERR_ASSERTION NULL pointer, or count is not in the valid
range of 1-512 for byte mode or 1-511 for
block mode.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

◆ R_SDHI_IoIntEnable()

fsp_err_t R_SDHI_IoIntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

Enables or disables the SDIO Interrupt. Implements sdmmc_api_t::ioIntEnable().

Return values
FSP_SUCCESS Card enabled or disabled SDIO interrupts

successfully.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_DEVICE_BUSY Driver is busy with a previous operation.

FSP_ERR_UNSUPPORTED SDIO support disabled in
SDHI_CFG_SDIO_SUPPORT_ENABLE.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,423 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_StatusGet()

fsp_err_t R_SDHI_StatusGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_status_t *const p_status)

Provides driver status. Implements sdmmc_api_t::statusGet().

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Driver has not been initialized.

◆ R_SDHI_Erase()

fsp_err_t R_SDHI_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const start_sector, uint32_t
const sector_count)

Erases sectors of an SD card or eMMC device. Implements sdmmc_api_t::erase().

This function blocks until the erase command is sent. Poll the status to determine when erase is
complete.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION A required pointer is NULL or an argument is
invalid.

FSP_ERR_NOT_OPEN Driver has not been initialized.

FSP_ERR_CARD_NOT_INITIALIZED Card was unplugged.

FSP_ERR_CARD_WRITE_PROTECTED SD card is Write Protected.

FSP_ERR_RESPONSE Device did not respond or responded with
an error.

FSP_ERR_DEVICE_BUSY Device is holding DAT0 low (device is busy)
or another operation is ongoing.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,424 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Host Interface (r_sdhi)

◆ R_SDHI_CallbackSet()

fsp_err_t R_SDHI_CallbackSet (sdmmc_ctrl_t *const p_api_ctrl, void(*)(sdmmc_callback_args_t *)
p_callback, void const *const p_context, sdmmc_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements sdmmc_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ R_SDHI_Close()

fsp_err_t R_SDHI_Close (sdmmc_ctrl_t *const p_api_ctrl)

Closes an open SD/MMC device. Implements sdmmc_api_t::close().

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver has not been initialized.

4.2.49 Segment LCD Controller (r_slcdc)
Modules

Functions

fsp_err_t R_SLCDC_Open (slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const
p_cfg)

fsp_err_t R_SLCDC_Write (slcdc_ctrl_t *const p_ctrl, uint8_t const
start_segment, uint8_t const *p_data, uint8_t const segment_count)

fsp_err_t R_SLCDC_Modify (slcdc_ctrl_t *const p_ctrl, uint8_t const
segment_number, uint8_t const data_mask, uint8_t const data)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,425 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

fsp_err_t R_SLCDC_Start (slcdc_ctrl_t *const p_ctrl)

fsp_err_t R_SLCDC_Stop (slcdc_ctrl_t *const p_ctrl)

fsp_err_t R_SLCDC_SetContrast (slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t
const contrast)

fsp_err_t R_SLCDC_SetDisplayArea (slcdc_ctrl_t *const p_ctrl,
slcdc_display_area_t const display_area)

fsp_err_t R_SLCDC_Close (slcdc_ctrl_t *const p_ctrl)

Detailed Description

Driver for the SLCDC peripheral on RA MCUs. This module implements the SLCDC Interface.

Overview
The segment LCD controller (SLCDC) utilizes two to four reference voltages to provide AC signals for
driving traditional segment LCD panels. Depending on the LCD and MCU package, up to 272
segments can be driven. A built-in link to the RTC allows for up to 152 segments to switch between
two patterns at regular intervals. An on-chip boost driver can be used to provide configurable
reference voltages up to 5.25V allowing for simple contrast adjustment.

Features

The SLCDC module can perform the following functions:

Initialize, start and stop the SLCDC
Set and modify the output pattern
Blink between two patterns based on a periodic RTC interrupt signal
Adjust display contrast (only when using internal voltage boosting)

Configuration

Build Time Configurations for r_slcdc

The following build time configurations are defined in fsp_cfg/r_slcdc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Driver > Graphics > Segment LCD Driver on r_slcdc

This module can be added to the Stacks tab via New Stack > Driver > Graphics > Segment LCD
Driver on r_slcdc.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,426 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_slcdc0 Module Name

Clock > Source LOCO
SOSC
MOSC
HOCO

HOCO Select the clock source.

Clock > Divisor Refer to the RA
Configuration tool for
available options.

(HOCO/MOSC) 16384 Select the clock divisor.

Output > Bias method 1/2 bias
1/3 bias
1/4 bias

1/2 bias Select the bias method.
This determines the
number of voltage
levels used to create
the waveforms.

Output > Timeslice Static
2-slice
3-slice
4-slice
8-slice

Static Select the LCD time
slice. The number of
slices should match the
number of common
(COM) pins for your
LCD panel.

Output > Waveform Waveform A
Waveform B

Waveform A Select the LCD
waveform.

Output > Drive method External
resistance
division
Internal voltage
boosting
Capacitor split

External resistance
division

Select the LCD drive
method.

Output > Default
contrast

Refer to the RA
Configuration tool for
available options.

0 Select the default
contrast level.

Valid Configurations

Though there are many setting combinations only a limited subset are supported by the SLCDC
peripheral hardware:

Waveform Slices Bias External
Resistance

Internal Boost Capacitor Split

A 8 1/4 Available Available —

A 4 1/3 Available Available Available

A 3 1/3 Available Available Available

A 3 1/2 Available — —

A 2 1/2 Available — —

A Static — Available — —

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,427 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

B 8 1/4 Available Available Available

B 4 1/3 Available Available —

Clock Configuration

The SLCDC clock can be sourced from the main clock (MOSC), sub-clock (SOSC), HOCO or LOCO.
Dividers of 4 to 1024 are available for SOSC/LOCO and 256 to 524288 for MOSC/HOCO. It is
recommended to adjust the divisor such that the resulting clock provides a frame frequency of
32-128 Hz.

Note
Make sure your desired source clock is enabled and running before starting SLCDC output.
Do not set the segment LCD clock over 512 Hz when using internal boost or capacitor split modes.

Pin Configuration

This module controls a variety of pins necessary for segment LCD voltage generation and signal
output:

Pin Name Function Notes

SEGn Segment data output Connect these signals to the
segment pins of the LCD.

COMn Common signal output Connect these signals to the
common pins of the LCD.

VLn Voltage reference These pins should be connected
to passive components based
on the selected drive method
(see section 45.7 "Supplying
LCD Drive Voltages VL1, VL2,
VL3, and VL4" in the RA4M1
User's Manual
(R01UH0887EJ0100)).

CAPH, CAPL Drive voltage generator
capacitor

Connect a nonpolar 0.47uF
capacitor across these pins
when using internal boost or
capacitor split modes. This pin
is not needed when using
resistance division.

Interrupt Configuration

The SLCDC provides no interrupt signals.

Note
Blinking output timing is driven directly from the RTC periodic interrupt. Once the interrupt is enabled setting the
display to SLCDC_DISP_BLINK will swap between A- and B-pattern each time it occurs. The ELC is not required
for this functionality.

Usage Notes
Limitations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,428 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

Developers should be aware of the following limitations when using the SLCDC:

Different packages provide different numbers of segment pins. Check the User's Manual for
your device to confirm availability and mapping of segment signals.
When using internal boost mode a delay of 5ms is required between calling R_SLCDC_Open
and R_SLCDC_Start to allow the boost circuit to charge.
When using the internal boost or capacitor split method do not set the segment LCD clock
higher than 512 Hz.

Examples
Basic Example

Below is a basic example of minimal use of the SLCDC in an application. The SLCDC driver is
initialized, output is started and a pattern is written to the segment registers.

void slcdc_init (void)

{

 fsp_err_t err;

 /* Open SLCDC driver */

 err = R_SLCDC_Open(&g_slcdc_ctrl, &g_slcdc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* When using internal boost mode this delay is required to allow the boost circuit

to charge. See RA4M1 User's

 * Manual (R01UH0887EJ0100) 8.2.18 "Segment LCD Source Clock Control Register

(SLCDSCKCR)" for details. */

 R_BSP_SoftwareDelay(5, BSP_DELAY_UNITS_MILLISECONDS);

 /* Start SLCDC output */

 err = R_SLCDC_Start(&g_slcdc_ctrl);

 assert(FSP_SUCCESS == err);

 /* Write pattern to display */

 err = R_SLCDC_Write(&g_slcdc_ctrl, 0, segment_data, NUM_SEGMENTS);

 assert(FSP_SUCCESS == err);

}

Note
While the SLCDC is running, pattern data is constantly being output. No latching or buffering is required when
writing or reading segment data.

Blinking Output

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,429 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

This example demonstrates how to set up blinking output using the RTC periodic interrupt. In this
example it is assumed that the SLCDC has already been started.

void slcdc_blink (void)

{

 fsp_err_t err;

 /* Open RTC and set time/date */

 err = R_RTC_Open(&r_rtc_ctrl, &r_rtc_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 err = R_RTC_CalendarTimeSet(&r_rtc_ctrl, &g_rtc_time);

 assert(FSP_SUCCESS == err);

 /* Set RTC periodic interrupt to 2 Hz (display blink cycle will be 1 Hz) */

 err = R_RTC_PeriodicIrqRateSet(&r_rtc_ctrl,

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECOND);

 assert(FSP_SUCCESS == err);

 /* Set display to blink */

 err = R_SLCDC_SetDisplayArea(&g_slcdc_ctrl, SLCDC_DISP_BLINK);

 assert(FSP_SUCCESS == err);

 /* Display will now continuously blink */

}

Data Structures

struct slcdc_instance_ctrl_t

Data Structure Documentation

◆ slcdc_instance_ctrl_t

struct slcdc_instance_ctrl_t

SLCDC control block. DO NOT INITIALIZE. Initialization occurs when slcdc_api_t::open is called

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,430 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

◆ R_SLCDC_Open()

fsp_err_t R_SLCDC_Open (slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

Opens the SLCDC driver. Implements slcdc_api_t::open.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_UNSUPPORTED Invalid display mode.

◆ R_SLCDC_Write()

fsp_err_t R_SLCDC_Write (slcdc_ctrl_t *const p_ctrl, uint8_t const start_segment, uint8_t const *
p_data, uint8_t const segment_count)

Writes a sequence of display data to the segment data registers. Implements slcdc_api_t::write.

Return values
FSP_SUCCESS Data was written successfully.

FSP_ERR_ASSERTION Pointer to the control block or data is NULL.

FSP_ERR_INVALID_ARGUMENT Segment index is (or will be) out of range.

FSP_ERR_NOT_OPEN Device is not opened or initialized.

◆ R_SLCDC_Modify()

fsp_err_t R_SLCDC_Modify (slcdc_ctrl_t *const p_ctrl, uint8_t const segment, uint8_t const data,
uint8_t const data_mask)

Modifies a single segment register based on a mask and the desired data. Implements
slcdc_api_t::modify.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_INVALID_ARGUMENT Invalid parameter in the argument.

FSP_ERR_NOT_OPEN Device is not opened or initialized

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,431 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

◆ R_SLCDC_Start()

fsp_err_t R_SLCDC_Start (slcdc_ctrl_t *const p_ctrl)

Starts output of LCD signals. Implements slcdc_api_t::start.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

◆ R_SLCDC_Stop()

fsp_err_t R_SLCDC_Stop (slcdc_ctrl_t *const p_ctrl)

Stops output of LCD signals. Implements slcdc_api_t::stop.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

◆ R_SLCDC_SetContrast()

fsp_err_t R_SLCDC_SetContrast (slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t const contrast)

Sets contrast to the specified level. Implements slcdc_api_t::setContrast.

Note
Contrast can be adjusted when the SLCDC is operating in internal boost mode only. The range of values is 0-5
when 1/4 bias setting is used and 0-15 otherwise. See RA4M1 User's Manual (R01UH0887EJ0100) section 45.2.4
"LCD Boost Level Control Register (VLCD)" for voltage levels at each setting.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

FSP_ERR_UNSUPPORTED Unsupported operation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,432 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Segment LCD Controller (r_slcdc)

◆ R_SLCDC_SetDisplayArea()

fsp_err_t R_SLCDC_SetDisplayArea (slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

Sets output to Waveform A, Waveform B or blinking output. Implements slcdc_api_t::setDisplayArea
.

Return values
FSP_SUCCESS Device was opened successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_UNSUPPORTED Pattern selection has no effect in 8-time-
slice mode.

FSP_ERR_NOT_OPEN Device is not opened or initialized.

◆ R_SLCDC_Close()

fsp_err_t R_SLCDC_Close (slcdc_ctrl_t *const p_ctrl)

Closes the SLCDC driver. Implements slcdc_api_t::close.

Return values
FSP_SUCCESS Device was closed successfully.

FSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

FSP_ERR_NOT_OPEN Device is not opened or initialized

4.2.50 Serial Peripheral Interface (r_spi)
Modules

Functions

fsp_err_t R_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t R_SPI_Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t const
length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src, uint32_t
const length, spi_bit_width_t const bit_width)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,433 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

fsp_err_t R_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src, void
*p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t R_SPI_Close (spi_ctrl_t *const p_api_ctrl)

fsp_err_t R_SPI_CalculateBitrate (uint32_t bitrate, rspck_div_setting_t
*spck_div)

fsp_err_t R_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the SPI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

Standard SPI Modes
Master or Slave Mode
Clock Polarity (CPOL)

CPOL=0 SCLK is low when idle
CPOL=1 SCLK is high when idle

Clock Phase (CPHA)
CPHA=0 Data Sampled on the even edge of SCLK (Master Mode Only)
CPHA=1 Data Sampled on the odd edge of SCLK

MSB/LSB first
8-Bit, 9-bit, 10-bit, 11-bit, 12-bit, 13-bit, 14-bit, 15-bit, 16-Bit, 20-bit, 24-bit, and
32-Bit data frames

Hardware endian swap in 16-Bit and 32-Bit mode
3-Wire (clock synchronous) or 4-Wire (SPI) Mode

Configurable bitrate
Supports Full Duplex or Transmit Only Mode
DTC Support
Callback Events

Transfer Complete
RX Overflow Error (The SPI shift register is copied to the data register before
previous data was read)
TX Underrun Error (No data to load into shift register for transmitting)
Parity Error (When parity is enabled and a parity error is detected)

Configuration

Build Time Configurations for r_spi

The following build time configurations are defined in fsp_cfg/r_spi_cfg.h:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,434 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Enable Support for
using DTC

Enabled
Disabled

Enabled If enabled, DTC
instances will be
included in the build for
both transmission and
reception.

Enable Transmitting
from RXI Interrupt

Enabled
Disabled

Disabled If enabled, all
operations will be
handled from the RX
(receive) interrupt. This
setting only provides a
performance boost
when DTC is not used.
In addition, Transmit
Only mode is not
supported when this
configuration is
enabled.

Configurations for Driver > Connectivity > SPI Driver on r_spi

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > SPI Driver on
r_spi. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_spi0 Module name.

Channel Value must be a non-
negative integer

0 Select the SPI channel.

Receive Interrupt
Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Transmit Buffer Empty
Interrupt Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Transfer Complete
Interrupt Priority

MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Error Interrupt Priority MCU Specific Options Select the interrupt
priority for all SPI
interrupts.

Operating Mode Master
Slave

Master Select the SPI
operating mode.

Clock Phase Data sampling Data sampling on odd Select the clock edge

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,435 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

on odd edge,
data variation
on even edge
Data sampling
on even edge,
data variation
on odd edge

edge, data variation on
even edge

to sample data.

Clock Polarity Low when idle
High when idle

Low when idle Select clock level when
idle.

Mode Fault Error Enable
Disable

Disable Detect master/slave
mode conflicts.

Bit Order MSB First
LSB First

MSB First Select the data bit
order.

Callback Name must be a valid
C symbol

spi_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the
interrupt service
routine (ISR).

SPI Mode SPI Operation
Clock
Synchronous
Operation

Clock Synchronous
Operation

Select the clock sync
mode.

Full or Transmit Only
Mode

Full Duplex
Transmit Only

Full Duplex Select Full Duplex or
Transmit Only Mode.

Slave Select Polarity Active Low
Active High

Active Low Select the slave select
active level.

Select SSL(Slave
Select)

SSL0
SSL1
SSL2
SSL3

SSL0 Select which slave to
use.

MOSI Idle State MOSI Idle Value
Fixing Disable
MOSI Idle Value
Fixing Low
MOSI Idle Value
Fixing High

MOSI Idle Value Fixing
Disable

Select the MOSI idle
level if MOSI idle is
enabled.

Parity Mode Disabled
Odd
Even

Disabled Select the parity mode
if parity is enabled.

Byte Swapping Disable
Enable

Disable Select the byte swap
mode for 16/32-Bit
Data Frames.

Bitrate Value must be an
integer greater than 0

16000000 Enter the desired
bitrate, change the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,436 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

bitrate to a value
supported by MCU. If
the requested bitrate
cannot be achieved,
the settings with the
largest possible value
that is less than or
equal to the requested
bitrate is used. The
theoretical bitrate is
printed in a comment
in the generated
spi_extended_cfg_t
structure.

Clock Delay SPI_DELAY_COU
NT_1
SPI_DELAY_COU
NT_2
SPI_DELAY_COU
NT_3
SPI_DELAY_COU
NT_4
SPI_DELAY_COU
NT_5
SPI_DELAY_COU
NT_6
SPI_DELAY_COU
NT_7
SPI_DELAY_COU
NT_8

SPI_DELAY_COUNT_1 Configure the number
of SPI clock cycles
before each data
frame.

SSL Negation Delay SPI_DELAY_COU
NT_1
SPI_DELAY_COU
NT_2
SPI_DELAY_COU
NT_3
SPI_DELAY_COU
NT_4
SPI_DELAY_COU
NT_5
SPI_DELAY_COU
NT_6
SPI_DELAY_COU
NT_7
SPI_DELAY_COU
NT_8

SPI_DELAY_COUNT_1 Configure the number
of SPI clock cycles after
each data frame.

Next Access Delay SPI_DELAY_COU
NT_1
SPI_DELAY_COU
NT_2
SPI_DELAY_COU
NT_3
SPI_DELAY_COU

SPI_DELAY_COUNT_1 Configure the number
of SPI clock cycles
between each data
frame.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,437 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

NT_4
SPI_DELAY_COU
NT_5
SPI_DELAY_COU
NT_6
SPI_DELAY_COU
NT_7
SPI_DELAY_COU
NT_8

Clock Configuration

The clock for this module is derived from the following peripheral clock for each MCU group:

MCU Group Peripheral Clock

RA2A1 PCLKB

RA2E1 PCLKB

RA2L1 PCLKB

RA4E1 PCLKA

RA4M1 PCLKA

RA4M2 PCLKA

RA4M3 PCLKA

RA4W1 PCLKA

RA6E1 PCLKA

RA6M1 PCLKA

RA6M2 PCLKA

RA6M3 PCLKA

RA6M4 PCLKA

RA6M5 PCLKA

RA6T1 PCLKA

Pin Configuration

This module uses MOSI, MISO, RSPCK, and SSL pins to communicate with on board devices.

Note
At high bitrates, it might be nessecary to configure the pins with IOPORT_CFG_DRIVE_HIGH.

Usage Notes
Performance

At high bitrates, interrupts may not be able to service transfers fast enough. In master mode this
means there will be a delay between each data frame. In slave mode this could result in TX Underrun

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,438 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

and RX Overflow errors.

In order to improve performance at high bitrates, it is recommended that the instance be configured
to service transfers using the DTC.

Another way to improve performance is to transfer the data in 16/32 bit wide data frames when
possible. A typical use-case where this is possible is when reading/writing to a block device.

Transmit From RXI Interrupt

After every data frame the SPI peripheral generates a transmit buffer empty interrupt and a receive
buffer full interrupt. It is possible to configure the driver to handle transmit buffer empty interrupts in
the receive buffer full isr. This only improves performance when the DTC is not being used.

Note
Configuring the module to use RX DTC instance without also providing a TX DTC instance results in an invalid
configuration when RXI transmit is enabled.
Transmit Only mode is not supported when Transmit from RXI is enabled.

Clock Auto-Stopping

In master mode, if the Receive Buffer Full Interrupts are not handled fast enough, instead of
generating a RX Overflow error, the last clock cycle will be stretched until the receive buffer is read.

Parity Mode

When parity mode is configured, the LSB of each data frame is used as a parity bit. When odd parity
is selected, the LSB is set such that there are an odd number of ones in the data frame. When even
parity is selected, the LSB is set such that there are an even number of ones in the data frame.

Limitations

Developers should be aware of the following limitations when using the SPI:

In master mode, the driver will only configure 4-Wire mode if the device supports SSL Level
Keeping (SSLKP bit in SPCMD0) and will return FSP_ERR_UNSUPPORTED if configured for
4-Wire mode on devices without SSL Level Keeping. Without SSL Level Keeping, the SSL pin
is toggled after every data frame. In most cases this is not desirable behavior so it is
recommended that the SSL pin be driven in software if SSL Level Keeping is not present on
the device.
In order to use CPHA=0 setting in slave mode, the master must toggle the SSL pin after
every data frame (Even if the device supports SSL Level Keeping). Because of this hardware
limitation, the module will return FSP_ERR_UNSUPPORTED when it is configured to use
CPHA=0 setting in slave mode.
The module does not support communicating with multiple slaves using different SSL pins.
In order to achieve this, the module must either be closed and re-opened to change the SSL
pin or drive SSL in software. It is recommended that SSL be driven in software when
controlling multiple slave devices.
The SPI peripheral has a minimum 3 SPI CLK delay between each data frame.
The behavior for Byte Swap operation is not guaranteed for data frames other than 8-bit,
16-bit and 32bit.

Examples

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,439 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

Basic Example

This is a basic example of minimal use of the SPI in an application.

static volatile bool g_transfer_complete = false;

void spi_basic_example (void)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start a write/read transfer */

 err = R_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer, TRANSFER_SIZE,

SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

}

static void r_spi_callback (spi_callback_args_t * p_args)

{

 if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event)

 {

 g_transfer_complete = true;

 }

}

Driving Software Slave Select Line

This is an example of communicating with multiple slave devices by asserting SSL in software.

void spi_software_ssl_example (void)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,440 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

{

 uint8_t tx_buffer[TRANSFER_SIZE];

 uint8_t rx_buffer[TRANSFER_SIZE];

 /* Configure Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Configure Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the SPI module. */

 err = R_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer,

TRANSFER_SIZE, SPI_BIT_WIDTH_8_BITS);

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 1 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_1, BSP_IO_LEVEL_HIGH);

 /* Wait for minimum time required between transfers. */

 R_BSP_SoftwareDelay(SSL_NEXT_ACCESS_DELAY, BSP_DELAY_UNITS_MICROSECONDS);

 /* Assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_LOW);

 /* Start a write/read transfer */

 g_transfer_complete = false;

 err = R_SPI_WriteRead(&g_spi_ctrl, tx_buffer, rx_buffer,

TRANSFER_SIZE, SPI_BIT_WIDTH_8_BITS);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,441 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

 assert(FSP_SUCCESS == err);

 /* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */

 while (false == g_transfer_complete)

 {

 ;

 }

 /* De-assert Slave Select Line 2 */

 R_BSP_PinWrite(SLAVE_SELECT_LINE_2, BSP_IO_LEVEL_HIGH);

}

Configuring the SPI Clock Divider Registers

This example demonstrates how to set the SPI clock divisors at runtime.

void spi_bitrate_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 g_spi_cfg.p_extend = &g_spi_extended_cfg;

 /* Configure SPI Clock divider to achieve largest bitrate less than or equal to the

desired bitrate. */

 err = R_SPI_CalculateBitrate(BITRATE, &(g_spi_extended_cfg.spck_div));

 assert(FSP_SUCCESS == err);

 /* Initialize the SPI module. */

 err = R_SPI_Open(&g_spi_ctrl, &g_spi_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

Data Structures

struct rspck_div_setting_t

struct spi_extended_cfg_t

struct spi_instance_ctrl_t

Enumerations

enum spi_ssl_mode_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,442 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

enum spi_communication_t

enum spi_ssl_polarity_t

enum spi_ssl_select_t

enum spi_mosi_idle_value_fixing_t

enum spi_parity_t

enum spi_byte_swap_t

enum spi_delay_count_t

Data Structure Documentation

◆ rspck_div_setting_t

struct rspck_div_setting_t

SPI Clock Divider settings.

Data Fields

uint8_t spbr SPBR register setting.

uint8_t brdv: 2 BRDV setting in SPCMD0.

◆ spi_extended_cfg_t

struct spi_extended_cfg_t

Extended SPI interface configuration

Data Fields

spi_ssl_mode_t spi_clksyn Select spi or clock syn mode
operation.

spi_communication_t spi_comm Select full-duplex or transmit-
only communication.

spi_ssl_polarity_t ssl_polarity Select SSLn signal polarity.

spi_ssl_select_t ssl_select Select which slave to use:
0-SSL0, 1-SSL1, 2-SSL2, 3-SSL3.

spi_mosi_idle_value_fixing_t mosi_idle Select MOSI idle fixed value and
selection.

spi_parity_t parity Select parity and enable/disable
parity.

spi_byte_swap_t byte_swap Select byte swap mode.

rspck_div_setting_t spck_div Register values for configuring
the SPI Clock Divider.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,443 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

spi_delay_count_t spck_delay SPI Clock Delay Register
Setting.

spi_delay_count_t ssl_negation_delay SPI Slave Select Negation Delay
Register Setting.

spi_delay_count_t next_access_delay SPI Next-Access Delay Register
Setting.

◆ spi_instance_ctrl_t

struct spi_instance_ctrl_t

Channel control block. DO NOT INITIALIZE. Initialization occurs when spi_api_t::open is called.

Data Fields

uint32_t open

 Indicates whether the open() API has been successfully called.

spi_cfg_t const * p_cfg

 Pointer to instance configuration.

R_SPI0_Type * p_regs

 Base register for this channel.

void const * p_tx_data

 Buffer to transmit.

void * p_rx_data

 Buffer to receive.

uint32_t tx_count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

uint32_t rx_count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,444 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

uint32_t count

 Number of Data Frames to transfer (8-bit, 16-bit, 32-bit)

spi_bit_width_t bit_width

 Bits per Data frame (8-bit, 16-bit, 32-bit)

Enumeration Type Documentation

◆ spi_ssl_mode_t

enum spi_ssl_mode_t

3-Wire or 4-Wire mode.

Enumerator

SPI_SSL_MODE_SPI SPI operation (4-wire method)

SPI_SSL_MODE_CLK_SYN Clock Synchronous operation (3-wire method)

◆ spi_communication_t

enum spi_communication_t

Transmit Only (Half Duplex), or Full Duplex.

Enumerator

SPI_COMMUNICATION_FULL_DUPLEX Full-Duplex synchronous serial
communication.

SPI_COMMUNICATION_TRANSMIT_ONLY Transit only serial communication.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,445 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

◆ spi_ssl_polarity_t

enum spi_ssl_polarity_t

Slave Select Polarity.

Enumerator

SPI_SSLP_LOW SSLP signal polarity active low.

SPI_SSLP_HIGH SSLP signal polarity active high.

◆ spi_ssl_select_t

enum spi_ssl_select_t

The Slave Select Line

Enumerator

SPI_SSL_SELECT_SSL0 Select SSL0.

SPI_SSL_SELECT_SSL1 Select SSL1.

SPI_SSL_SELECT_SSL2 Select SSL2.

SPI_SSL_SELECT_SSL3 Select SSL3.

◆ spi_mosi_idle_value_fixing_t

enum spi_mosi_idle_value_fixing_t

MOSI Idle Behavior.

Enumerator

SPI_MOSI_IDLE_VALUE_FIXING_DISABLE MOSI output value=value set in MOIFV bit.

SPI_MOSI_IDLE_VALUE_FIXING_LOW MOSIn level low during MOSI idling.

SPI_MOSI_IDLE_VALUE_FIXING_HIGH MOSIn level high during MOSI idling.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,446 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

◆ spi_parity_t

enum spi_parity_t

Parity Mode

Enumerator

SPI_PARITY_MODE_DISABLE Disable parity.

SPI_PARITY_MODE_ODD Select even parity.

SPI_PARITY_MODE_EVEN Select odd parity.

◆ spi_byte_swap_t

enum spi_byte_swap_t

Byte Swapping Enable/Disable.

Enumerator

SPI_BYTE_SWAP_DISABLE Disable Byte swapping for 16/32-Bit transfers.

SPI_BYTE_SWAP_ENABLE Enable Byte swapping for 16/32-Bit transfers.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,447 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

◆ spi_delay_count_t

enum spi_delay_count_t

Delay count for SPI delay settings.

Enumerator

SPI_DELAY_COUNT_1 Set RSPCK delay count to 1 RSPCK.

SPI_DELAY_COUNT_2 Set RSPCK delay count to 2 RSPCK.

SPI_DELAY_COUNT_3 Set RSPCK delay count to 3 RSPCK.

SPI_DELAY_COUNT_4 Set RSPCK delay count to 4 RSPCK.

SPI_DELAY_COUNT_5 Set RSPCK delay count to 5 RSPCK.

SPI_DELAY_COUNT_6 Set RSPCK delay count to 6 RSPCK.

SPI_DELAY_COUNT_7 Set RSPCK delay count to 7 RSPCK.

SPI_DELAY_COUNT_8 Set RSPCK delay count to 8 RSPCK.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,448 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

◆ R_SPI_Open()

fsp_err_t R_SPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

This functions initializes a channel for SPI communication mode. Implements spi_api_t::open.

This function performs the following tasks:

Performs parameter checking and processes error conditions.
Configures the pperipheral registers acording to the configuration.
Initialize the control structure for use in other SPI Interface functions.

Return values
FSP_SUCCESS Channel initialized successfully.

FSP_ERR_ALREADY_OPEN Instance was already initialized.

FSP_ERR_ASSERTION An invalid argument was given in the
configuration structure.

FSP_ERR_UNSUPPORTED A requested setting is not possible on this
device with the current build configuration.

FSP_ERR_IP_CHANNEL_NOT_PRESENT The channel number is invalid.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls: transfer_api_t::open

Note
This function is reentrant.

◆ R_SPI_Read()

fsp_err_t R_SPI_Read (spi_ctrl_t *const p_api_ctrl, void * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

This function receives data from a SPI device. Implements spi_api_t::read.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI read operation.

Return values
FSP_SUCCESS Read operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control or destination
parameters or transfer length is zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,449 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

◆ R_SPI_Write()

fsp_err_t R_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

This function transmits data to a SPI device using the TX Only Communications Operation Mode.
Implements spi_api_t::write.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI write operation.

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control or source
parameters or transfer length is zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

◆ R_SPI_WriteRead()

fsp_err_t R_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void * p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

This function simultaneously transmits and receive data. Implements spi_api_t::writeRead.

The function performs the following tasks:

Performs parameter checking and processes error conditions.
Sets up the instance to complete a SPI writeRead operation.

Return values
FSP_SUCCESS Write operation successfully completed.

FSP_ERR_ASSERTION NULL pointer to control, source or
destination parameters or transfer length is
zero.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

FSP_ERR_IN_USE A transfer is already in progress.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,450 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

◆ R_SPI_Close()

fsp_err_t R_SPI_Close (spi_ctrl_t *const p_api_ctrl)

This function manages the closing of a channel by the following task. Implements spi_api_t::close.

Disables SPI operations by disabling the SPI bus.

Disables the SPI peripheral.
Disables all the associated interrupts.
Update control structure so it will not work with SPI Interface functions.

Return values
FSP_SUCCESS Channel successfully closed.

FSP_ERR_ASSERTION A required pointer argument is NULL.

FSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

◆ R_SPI_CalculateBitrate()

fsp_err_t R_SPI_CalculateBitrate (uint32_t bitrate, rspck_div_setting_t * spck_div)

Calculates the SPBR register value and the BRDV bits for a desired bitrate. If the desired bitrate is
faster than the maximum bitrate, than the bitrate is set to the maximum bitrate. If the desired
bitrate is slower than the minimum bitrate, than an error is returned.

Parameters
[in] bitrate Desired bitrate

[out] spck_div Memory location to store
bitrate register settings.

Return values
FSP_SUCCESS Valid spbr and brdv values were calculated

FSP_ERR_UNSUPPORTED Bitrate is not achievable

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,451 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Peripheral Interface (r_spi)

◆ R_SPI_CallbackSet()

fsp_err_t R_SPI_CallbackSet (spi_ctrl_t *const p_api_ctrl, void(*)(spi_callback_args_t *) p_callback,
void const *const p_context, spi_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
spi_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.51 Serial Sound Interface (r_ssi)
Modules

Functions

fsp_err_t R_SSI_Open (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

fsp_err_t R_SSI_Stop (i2s_ctrl_t *const p_ctrl)

fsp_err_t R_SSI_StatusGet (i2s_ctrl_t *const p_ctrl, i2s_status_t *const
p_status)

fsp_err_t R_SSI_Write (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t
const bytes)

fsp_err_t R_SSI_Read (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t
const bytes)

fsp_err_t R_SSI_WriteRead (i2s_ctrl_t *const p_ctrl, void const *const p_src,
void *const p_dest, uint32_t const bytes)

fsp_err_t R_SSI_Mute (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

fsp_err_t R_SSI_Close (i2s_ctrl_t *const p_ctrl)

fsp_err_t R_SSI_CallbackSet (i2s_ctrl_t *const p_api_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,452 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

void(*p_callback)(i2s_callback_args_t *), void const *const p_context,
i2s_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the SSIE peripheral on RA MCUs. This module implements the I2S Interface.

Overview
Features

The SSI module supports the following features:

Transmission and reception of uncompressed audio data using the standard I2S protocol in
master mode
Full-duplex I2S communication (channel 0 only)
Integration with the DTC transfer module
Internal connection to GPT timer output to generate the audio clock
Callback function notification when all data is loaded into the SSI FIFO

Configuration

Build Time Configurations for r_ssi

The following build time configurations are defined in fsp_cfg/r_ssi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DTC Support Enabled
Disabled

Enabled If code for DTC transfer
support is included in
the build.

Configurations for Driver > Connectivity > I2S Driver on r_ssi

This module can be added to the Stacks tab via New Stack > Driver > Connectivity > I2S Driver on
r_ssi. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_i2s0 Module name.

Channel Value must be an
integer between 0 and
1

0 Specify the I2S
channel.

Bit Depth 8 Bits 16 Bits Select the bit depth of

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,453 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

16 Bits
18 Bits
20 Bits
22 Bits
24 Bits
32 Bits

one sample of audio
data.

Word Length 8 Bits
16 Bits
24 Bits
32 Bits
48 Bits
64 Bits
128 Bits
256 Bits

16 Bits Select the word length
of audio data. Must be
at least as large as
Data bits.

WS Continue Mode Enabled
Disabled

Disabled Enable WS continue
mode to output the
word select (WS) pin
even when
transmission is idle.

Bit Clock Source External
AUDIO_CLK
Internal
AUDIO_CLK

External AUDIO_CLK Select External
AUDIO_CLK for external
signal to AUDIO_CLK
input pin or Internal
AUDIO_CLK for internal
connection to MCU
specific GPT channel.
Please refer to the
hardware manual for
which GPT channel is
connected to the
internal signal

Bit Clock Divider Refer to the RA
Configuration tool for
available options.

Audio Clock / 1 Select divider used to
generate bit clock from
audio clock.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called from all three
interrupt service
routines (ISR).

Transmit Interrupt
Priority

MCU Specific Options Select the transmit
interrupt priority.

Receive Interrupt
Priority

MCU Specific Options Select the receive
interrupt priority.

Idle/Error Interrupt
Priority

MCU Specific Options Select the Idle/Error
interrupt priority.

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,454 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

The SSI peripheral runs on PCLKB. The PCLKB frequency can be configured on the Clocks tab of the
RA Configuration editor. The SSI audio clock can optionally be supplied from an external source
through the AUDIO_CLK pin in master mode.

Pin Configuration

The SSI uses the following pins:

AUDIO_CLK (optional, master mode only): The AUDIO_CLK pin is used to supply the audio
clock from an external source.
SSIBCKn: Bit clock pin for channel n
SSILRCKn/SSIFSn: Channel selection pin for channel n
SSIRXD0: Reception pin for channel 0
SSITXD0: Transmission pin for channel 0
SSIDATA1: Transmission or reception pin for channel 1

Usage Notes
SSI Frames

An SSI frame is 2 samples worth of data. The frame boundary (end of previous frame, start of next
frame) is on the falling edge of the SSILRCKn signal.

Figure 174: SSI Frame Diagram (8-bit word, 8-bit samples)

Note
If the word length is longer than the sample bit depth, padding bits (0) will be added after the sample.

Audio Data

Only uncompressed PCM data is supported.

Data arrays have the following size, alignment, and length based on the "Bit Depth" setting:

Bit Depth Array Data Type Required Alignment Required Length
(bytes)

8 Bits 8-bit integer 1 byte alignment Multiple of 2

16 Bits 16-bit integer 2 byte alignment Multiple of 4

18 Bits 32-bit integer, right
justified

4 byte alignment Multiple of 8

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,455 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

20 Bits 32-bit integer, right
justified

4 byte alignment Multiple of 8

22 Bits 32-bit integer, right
justified

4 byte alignment Multiple of 8

24 Bits 32-bit integer, right
justified

4 byte alignment Multiple of 8

32 Bits 32-bit integer 4 byte alignment Multiple of 8

Note
The length of the array must be a multiple of 2 when the data type is the recommended data type. The 2 represents
the frame size (left and right channel) of I2S communication. The SSIE peripheral does not support odd read/write
lengths in I2S mode.

Audio Clock

The audio clock is only required for master mode.

Audio Clock Frequency

The bit clock frequency is the product of the sampling frequency and channels and bits per system
word:

bit_clock (Hz) = sampling_frequency (Hz) * channels * system_word_bits

I2S data always has 2 channels.

For example, the bit clock for transmitting 2 channels of 16-bit data (using a 16-bit system word) at
44100 Hz would be:

44100 * 2 * 16 = 1,411,200 Hz

The audio clock frequency is used to generate the bit clock frequency. It must be a multiple of the bit
clock frequency. Refer to the Bit Clock Divider configuration for divider options. The input audio clock
frequency must be:

audio_clock (Hz) = desired_bit_clock (Hz) * bit_clock_divider

To get a bit clock of 1.4 MHz from an audio clock of 2.8 MHz, select the divider Audio Clock / 2.

Audio Clock Source

The audio clock source can come from:

An external source input to the AUDIO_CLK pin
An internal connection to the GPT timer output

Note
When using the internal GPT timer output, Pin Output Support must be Enabled, and GTIOCA Output Enabled
must be True.
See the SSIE section in the MCU hardware manual for information about which GPT channel may be used.

Limitations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,456 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

Developers should be aware of the following limitations when using the SSI:

When using channel 1, full duplex communication is not possible. Only tranmission or
reception is possible.
SSI must go idle before changing the communication mode (between read only, write only,
and full duplex)

Examples
Basic Example

This is a basic example of minimal use of the SSI in an application.

#define SSI_EXAMPLE_SAMPLES_TO_TRANSFER (1024)

#define SSI_EXAMPLE_TONE_FREQUENCY_HZ (800)

int16_t g_src[SSI_EXAMPLE_SAMPLES_TO_TRANSFER];

int16_t g_dest[SSI_EXAMPLE_SAMPLES_TO_TRANSFER];

void ssi_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Create a stereo sine wave. Using formula sample = sin(2 * pi * tone_frequency * t

/ sampling_frequency) */

 uint32_t freq = SSI_EXAMPLE_TONE_FREQUENCY_HZ;

 for (uint32_t t = 0; t < SSI_EXAMPLE_SAMPLES_TO_TRANSFER / 2; t += 1)

 {

 float input = (((float) (freq * t)) * (M_TWOPI)) /

SSI_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ;

 g_src[2 * t] = (int16_t) ((INT16_MAX * sinf(input)));

 g_src[2 * t + 1] = (int16_t) ((INT16_MAX * sinf(input)));

 }

 /* Initialize the module. */

 err = R_SSI_Open(&g_i2s_ctrl, &g_i2s_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Transfer data. */

 (void) R_SSI_WriteRead(&g_i2s_ctrl,

 (uint8_t *) &g_src[0],

 (uint8_t *) &g_dest[0],

 SSI_EXAMPLE_SAMPLES_TO_TRANSFER * sizeof(int16_t));

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,457 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

}

Streaming Example

This is an example of using SSI to stream audio data. This application uses a double buffer to store
PCM sine wave data. It starts transmitting in the main loop, then loads the next buffer if it is ready in
the callback. If the next buffer is not ready, a flag is set in the callback so the application knows to
restart transmission in the main loop.

This example also checks the return code of R_SSI_Write() because R_SSI_Write() can return an error
if a transmit overflow occurs before the FIFO is reloaded. If a transmit overflow occurs before the
FIFO is reloaded, the SSI will be stopped in the error interrupt, and it cannot be restarted until the
I2S_EVENT_IDLE callback is received.

#define SSI_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ (22050)

#define SSI_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK (1024)

#define SSI_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ (800)

int16_t g_stream_src[2][SSI_EXAMPLE_SAMPLES_TO_TRANSFER];

uint32_t g_buffer_index = 0;

volatile bool g_send_data_in_main_loop = true;

volatile bool g_data_ready = false;

/* Example callback called when SSI is ready for more data. */

void ssi_example_callback (i2s_callback_args_t * p_args)

{

 /* Reload the FIFO if we hit the transmit watermark or restart transmission if the

SSI is idle because it was

 * stopped after a transmit FIFO overflow. */

 if ((I2S_EVENT_TX_EMPTY == p_args->event) || (I2S_EVENT_IDLE == p_args->event))

 {

 if (g_data_ready)

 {

 /* Reload FIFO and handle errors. */

 ssi_example_write();

 }

 else

 {

 /* Data was not ready yet, send it in the main loop. */

 g_send_data_in_main_loop = true;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,458 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

 }

 }

}

/* Load the transmit FIFO and check for error conditions. */

void ssi_example_write (void)

{

 /* Transfer data. This call is non-blocking. */

 fsp_err_t err = R_SSI_Write(&g_i2s_ctrl,

 (uint8_t *) &g_stream_src[g_buffer_index][0],

 SSI_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK * sizeof

(int16_t));

 if (FSP_SUCCESS == err)

 {

 /* Switch the buffer after data is sent. */

 g_buffer_index = !g_buffer_index;

 /* Allow loop to calculate next buffer only if transmission was successful. */

 g_data_ready = false;

 }

 else

 {

 /* Getting here most likely means a transmit overflow occurred before the FIFO could

be reloaded. The

 * application must wait until the SSI is idle, then restart transmission. In this

example, the idle

 * callback transmits data or resets the flag g_send_data_in_main_loop. */

 }

}

/* Calculate samples. This example is just a sine wave. For this type of data, it

would be better to calculate

 * one period and loop it. This example should be updated for the audio data used by

the application. */

void ssi_example_calculate_samples (uint32_t buffer_index)

{

 static uint32_t t = 0U;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,459 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

 /* Create a stereo sine wave. Using formula sample = sin(2 * pi * tone_frequency * t

/ sampling_frequency) */

 uint32_t freq = SSI_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ;

 for (uint32_t i = 0; i < SSI_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK / 2; i += 1)

 {

 float input = (((float) (freq * t)) * M_TWOPI) /

SSI_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ;

 t++;

 /* Store sample twice, once for left channel and once for right channel. */

 int16_t sample = (int16_t) ((INT16_MAX * sinf(input)));

 g_stream_src[buffer_index][2 * i] = sample;

 g_stream_src[buffer_index][2 * i + 1] = sample;

 }

 /* Data is ready to be sent in the interrupt. */

 g_data_ready = true;

}

void ssi_streaming_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the module. */

 err = R_SSI_Open(&g_i2s_ctrl, &g_i2s_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Prepare data in a buffer that is not currently used for transmission. */

 ssi_example_calculate_samples(g_buffer_index);

 /* Send data in main loop the first time, and if it was not ready in the interrupt.

*/

 if (g_send_data_in_main_loop)

 {

 /* Clear flag. */

 g_send_data_in_main_loop = false;

 /* Reload FIFO and handle errors. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,460 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

 ssi_example_write();

 }

 /* If the next buffer is ready, wait for the data to be sent in the interrupt. */

 while (g_data_ready)

 {

 /* Do nothing. */

 }

 }

}

Data Structures

struct ssi_instance_ctrl_t

struct ssi_extended_cfg_t

Enumerations

enum ssi_audio_clock_t

enum ssi_clock_div_t

Data Structure Documentation

◆ ssi_instance_ctrl_t

struct ssi_instance_ctrl_t

Channel instance control block. DO NOT INITIALIZE. Initialization occurs when i2s_api_t::open is
called.

◆ ssi_extended_cfg_t

struct ssi_extended_cfg_t

SSI configuration extension. This extension is optional.

Data Fields

ssi_audio_clock_t audio_clock Audio clock source, default is
SSI_AUDIO_CLOCK_EXTERNAL.

ssi_clock_div_t bit_clock_div Select bit clock division ratio.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,461 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

◆ ssi_audio_clock_t

enum ssi_audio_clock_t

Audio clock source.

Enumerator

SSI_AUDIO_CLOCK_EXTERNAL Audio clock source is the AUDIO_CLK input pin.

SSI_AUDIO_CLOCK_INTERNAL Audio clock source is internal connection to a
MCU specific GPT channel output.

◆ ssi_clock_div_t

enum ssi_clock_div_t

Bit clock division ratio. Bit clock frequency = audio clock frequency / bit clock division ratio.

Enumerator

SSI_CLOCK_DIV_1 Clock divisor 1.

SSI_CLOCK_DIV_2 Clock divisor 2.

SSI_CLOCK_DIV_4 Clock divisor 4.

SSI_CLOCK_DIV_6 Clock divisor 6.

SSI_CLOCK_DIV_8 Clock divisor 8.

SSI_CLOCK_DIV_12 Clock divisor 12.

SSI_CLOCK_DIV_16 Clock divisor 16.

SSI_CLOCK_DIV_24 Clock divisor 24.

SSI_CLOCK_DIV_32 Clock divisor 32.

SSI_CLOCK_DIV_48 Clock divisor 48.

SSI_CLOCK_DIV_64 Clock divisor 64.

SSI_CLOCK_DIV_96 Clock divisor 96.

SSI_CLOCK_DIV_128 Clock divisor 128.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,462 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

◆ R_SSI_Open()

fsp_err_t R_SSI_Open (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

Opens the SSI. Implements i2s_api_t::open.

This function sets this clock divisor and the configurations specified in i2s_cfg_t. It also opens the
timer and transfer instances if they are provided.

Return values
FSP_SUCCESS Ready for I2S communication.

FSP_ERR_ASSERTION The pointer to p_ctrl or p_cfg is null.

FSP_ERR_ALREADY_OPEN The control block has already been opened.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Channel number is not available on this
MCU.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open

◆ R_SSI_Stop()

fsp_err_t R_SSI_Stop (i2s_ctrl_t *const p_ctrl)

Stops SSI. Implements i2s_api_t::stop.

This function disables both transmission and reception, and disables any transfer instances used.

The SSI will stop on the next frame boundary. Do not restart SSI until it is idle.

Return values
FSP_SUCCESS I2S communication stop request issued.

FSP_ERR_ASSERTION The pointer to p_ctrl was null.

FSP_ERR_NOT_OPEN The channel is not opened.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,463 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

◆ R_SSI_StatusGet()

fsp_err_t R_SSI_StatusGet (i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

Gets SSI status and stores it in provided pointer p_status. Implements i2s_api_t::statusGet.

Return values
FSP_SUCCESS Information stored successfully.

FSP_ERR_ASSERTION The p_instance_ctrl or p_status parameter
was null.

FSP_ERR_NOT_OPEN The channel is not opened.

◆ R_SSI_Write()

fsp_err_t R_SSI_Write (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const bytes)

Writes data buffer to SSI. Implements i2s_api_t::write.

This function resets the transfer if the transfer interface is used, or writes the length of data that
fits in the FIFO then stores the remaining write buffer in the control block to be written in the ISR.

Write() cannot be called if another write(), read() or writeRead() operation is in progress. Write can
be called when the SSI is idle, or after the I2S_EVENT_TX_EMPTY event.

Return values
FSP_SUCCESS Write initiated successfully.

FSP_ERR_ASSERTION The pointer to p_ctrl or p_src was null, or
bytes requested was 0.

FSP_ERR_IN_USE Another transfer is in progress, data was not
written.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_UNDERFLOW A transmit underflow error is pending. Wait
for the SSI to go idle before resuming
communication.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,464 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

◆ R_SSI_Read()

fsp_err_t R_SSI_Read (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const bytes)

Reads data into provided buffer. Implements i2s_api_t::read.

This function resets the transfer if the transfer interface is used, or reads the length of data
available in the FIFO then stores the remaining read buffer in the control block to be filled in the
ISR.

Read() cannot be called if another write(), read() or writeRead() operation is in progress. Read can
be called when the SSI is idle, or after the I2S_EVENT_RX_FULL event.

Return values
FSP_SUCCESS Read initiated successfully.

FSP_ERR_IN_USE Peripheral is in the wrong mode or not idle.

FSP_ERR_ASSERTION The pointer to p_ctrl or p_dest was null, or
bytes requested was 0.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_OVERFLOW A receive overflow error is pending. Wait for
the SSI to go idle before resuming
communication.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,465 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

◆ R_SSI_WriteRead()

fsp_err_t R_SSI_WriteRead (i2s_ctrl_t *const p_ctrl, void const *const p_src, void *const p_dest,
uint32_t const bytes)

Writes from source buffer and reads data into destination buffer. Implements i2s_api_t::writeRead.

This function calls R_SSI_Write and R_SSI_Read.

writeRead() cannot be called if another write(), read() or writeRead() operation is in progress.
writeRead() can be called when the SSI is idle, or after the I2S_EVENT_RX_FULL event.

Return values
FSP_SUCCESS Write and read initiated successfully.

FSP_ERR_IN_USE Peripheral is in the wrong mode or not idle.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN The channel is not opened.

FSP_ERR_UNDERFLOW A transmit underflow error is pending. Wait
for the SSI to go idle before resuming
communication.

FSP_ERR_OVERFLOW A receive overflow error is pending. Wait for
the SSI to go idle before resuming
communication.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset

◆ R_SSI_Mute()

fsp_err_t R_SSI_Mute (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

Mutes SSI on the next frame boundary. Implements i2s_api_t::mute.

Data is still written while mute is enabled, but the transmit line outputs zeros.

Return values
FSP_SUCCESS Transmission is muted.

FSP_ERR_ASSERTION The pointer to p_ctrl was null.

FSP_ERR_NOT_OPEN The channel is not opened.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,466 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Serial Sound Interface (r_ssi)

◆ R_SSI_Close()

fsp_err_t R_SSI_Close (i2s_ctrl_t *const p_ctrl)

Closes SSI. Implements i2s_api_t::close.

This function powers down the SSI and closes the lower level timer and transfer drivers if they are
used.

Return values
FSP_SUCCESS Device closed successfully.

FSP_ERR_ASSERTION The pointer to p_ctrl was null.

FSP_ERR_NOT_OPEN The channel is not opened.

◆ R_SSI_CallbackSet()

fsp_err_t R_SSI_CallbackSet (i2s_ctrl_t *const p_api_ctrl, void(*)(i2s_callback_args_t *) p_callback,
void const *const p_context, i2s_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
i2s_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.52 USB (r_usb_basic)
Modules

Functions

fsp_err_t R_USB_Open (usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const
p_cfg)

 Applies power to the USB module specified in the argument (p_ctrl).
More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,467 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

fsp_err_t R_USB_Close (usb_ctrl_t *const p_api_ctrl)

 Terminates power to the USB module specified in argument (p_ctrl).
USB0 module stops when USB_IP0 is specified to the member
(module), USB1 module stops when USB_IP1 is specified to the
member (module). More...

fsp_err_t R_USB_Read (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size, uint8_t destination)

 Bulk/interrupt data transfer and control data transfer. More...

fsp_err_t R_USB_Write (usb_ctrl_t *const p_api_ctrl, uint8_t const *const p_buf,
uint32_t size, uint8_t destination)

 Bulk/Interrupt data transfer and control data transfer. More...

fsp_err_t R_USB_Stop (usb_ctrl_t *const p_api_ctrl, usb_transfer_t direction,
uint8_t destination)

 Requests a data read/write transfer be terminated when a data
read/write transfer is being performed. More...

fsp_err_t R_USB_Suspend (usb_ctrl_t *const p_api_ctrl)

 Sends a SUSPEND signal from the USB module assigned to the
member (module) of the usb_crtl_t structure. More...

fsp_err_t R_USB_Resume (usb_ctrl_t *const p_api_ctrl)

 Sends a RESUME signal from the USB module assigned to the
member (module) of the usb_ctrl_tstructure. More...

fsp_err_t R_USB_VbusSet (usb_ctrl_t *const p_api_ctrl, uint16_t state)

 Specifies starting or stopping the VBUS supply. More...

fsp_err_t R_USB_InfoGet (usb_ctrl_t *const p_api_ctrl, usb_info_t *p_info,
uint8_t destination)

 Obtains completed USB-related events. More...

fsp_err_t R_USB_PipeRead (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, uint8_t pipe_number)

 Requests a data read (bulk/interrupt transfer) via the pipe specified
in the argument. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,468 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

fsp_err_t R_USB_PipeWrite (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, uint8_t pipe_number)

 Requests a data write (bulk/interrupt transfer). More...

fsp_err_t R_USB_PipeStop (usb_ctrl_t *const p_api_ctrl, uint8_t pipe_number)

 Terminates a data read/write operation. More...

fsp_err_t R_USB_UsedPipesGet (usb_ctrl_t *const p_api_ctrl, uint16_t *p_pipe,
uint8_t destination)

 Gets the selected pipe number (number of the pipe that has
completed initalization) via bit map information. More...

fsp_err_t R_USB_PipeInfoGet (usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info,
uint8_t pipe_number)

 Gets the following pipe information regarding the pipe specified in
the argument (p_ctrl) member (pipe): endpoint number, transfer
type, transfer direction and maximum packet size. More...

fsp_err_t R_USB_PullUp (usb_ctrl_t *const p_api_ctrl, uint8_t state)

 This API enables or disables pull-up of D+/D- line. More...

fsp_err_t R_USB_EventGet (usb_ctrl_t *const p_api_ctrl, usb_status_t *event)

 Obtains completed USB related events. (OS-less Only) More...

fsp_err_t R_USB_Callback (usb_callback_t *p_callback)

 Register a callback function to be called upon completion of a USB
related event. (RTOS only) More...

fsp_err_t R_USB_HostControlTransfer (usb_ctrl_t *const p_api_ctrl, usb_setup_t
*p_setup, uint8_t *p_buf, uint8_t device_address)

 Performs settings and transmission processing when transmitting a
setup packet. More...

fsp_err_t R_USB_PeriControlDataGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*p_buf, uint32_t size)

 Receives data sent by control transfer. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,469 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

fsp_err_t R_USB_PeriControlDataSet (usb_ctrl_t *const p_api_ctrl, uint8_t
*p_buf, uint32_t size)

 Performs transfer processing for control transfer. More...

fsp_err_t R_USB_PeriControlStatusSet (usb_ctrl_t *const p_api_ctrl,
usb_setup_status_t status)

 Set the response to the setup packet. More...

fsp_err_t R_USB_RemoteWakeup (usb_ctrl_t *const p_api_ctrl)

 Sends a remote wake-up signal to the connected Host. More...

fsp_err_t R_USB_ModuleNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*module_number)

 This API gets the module number. More...

fsp_err_t R_USB_ClassTypeGet (usb_ctrl_t *const p_api_ctrl, usb_class_t
*class_type)

 This API gets the class type. More...

fsp_err_t R_USB_DeviceAddressGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*device_address)

 This API gets the device address. More...

fsp_err_t R_USB_PipeNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*pipe_number)

 This API gets the pipe number. More...

fsp_err_t R_USB_DeviceStateGet (usb_ctrl_t *const p_api_ctrl, uint16_t *state)

 This API gets the state of the device. More...

fsp_err_t R_USB_DataSizeGet (usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)

 This API gets the data size. More...

fsp_err_t R_USB_SetupGet (usb_ctrl_t *const p_api_ctrl, usb_setup_t *setup)

 This API gets the setup type. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,470 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

Detailed Description

Driver for the USB peripheral on RA MCUs. This module implements the USB Interface.

Overview
The USB module operates in combination with the device class drivers provided by Renesas to form
a complete USB stack.

Features

The USB module has the following key features:

USB Host mode
Enumerates Low/Full/High-speed devices (see note below)
Automatic transfer error determination and retry

USB Peripheral mode
Supports USB1.1/2.0/3.0 hosts

Automatic processing of device connect/disconnect, suspend/resume, and USB bus reset
Up to 10 pipes

Control transfers supported on pipe 0
Data transfer on pipes 1 to 9 (Bulk or Interrupt)

Functions with or without an RTOS

Note
Supported speeds are dependent on the MCU.

Configuration
Build Time Configurations for r_usb_basic

The following build time configurations are defined in fsp_cfg/r_usb_basic_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

PLL Frequency 24MHz
20MHz
12MHz
Other

24MHz Specify the PLL
frequency supplied to
the USB module. This
setting only applies to
USB1 (not USB0).

CPU Bus Access Wait
Cycles

Refer to the RA
Configuration tool for
available options.

9 cycles This setting controls
the delay for
consecutive USB
peripheral register
access. Set this value
to a number of CPU
cycles that is
equivalent to 40.8ns or
more.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,471 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

Battery Charging Enabled
Disabled

Enabled Specify whether or not
to include battery
charging functionality.

Power IC Shutdown
Polarity

Active High
Active Low

Active High Select the polarity of
the Shutdown signal on
the power supply IC (if
provided).

Dedicated Charging
Port (DCP) Mode

Enabled
Disabled

Disabled When enabled, USB
communication is
disabled and the port is
used for charging only.

Notifications for SET_IN
TERFACE/SET_FEATURE
/CLEAR_FEATURE

Disabled
Enabled

Enabled When enabled, the
application will receive
notifications for
SET_INTERFACE,
SET_FEATURE and
CLEAR_FEATURE
messages.

Double Buffering Disabled
Enabled

Enabled When enabled, the
FIFOs for Pipes 1-5 are
double-buffered.

Continuous Transfer
Mode

Disabled
Enabled

Disabled Enable or disable
continuous transfer
mode.

LDO Regulator Disable
Enable

Disable Enable or disable LDO
regulator.

DMA Support Disable
Enable

Disable Enable or disable DMA
support for the USB
module.

DMA Source Address DMA Disabled
FS Address
HS Address

DMA Disabled Set this to match the
speed mode when DMA
is enabled. Otherwise,
set to 'DMA Disabled'.

DMA Destination
Address

DMA Disabled
FS Address
HS Address

DMA Disabled Set this to match the
speed mode when DMA
is enabled. Otherwise,
set to 'DMA Disabled'.

Configurations for Middleware > USB > USB Driver on r_usb_basic

Configuration Options Default Description

Name Name must be a valid
C symbol

g_basic0 Module name.

USB Mode Host mode
Peri mode

Host mode Select the usb mode.

USB Speed Full Speed
Hi Speed
Low Speed

Full Speed Select the USB speed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,472 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

USB Module Number USB_IP0 Port
USB_IP1 Port

USB_IP0 Port Specify the USB
module number to be
used.

USB Device Class Peripheral
Communication
s Device Class
Peripheral
Human
Interface
Device Class
Peripheral Mass
Storage Class
Peripheral
Vendor Class
Host
Communication
s Device Class
Host Human
Interface
Device Class
Host Mass
Storage Class
Host Vendor
Class

Peripheral
Communications
Device Class

Select the USB device
class.

USB Descriptor USB Descriptor must
be a valid C symbol.

g_usb_descriptor Enter the name of the
descriptor to be used.
For how to create a
descriptor structure,
refer to the Descriptor
definition chapter in
the usb_basic manual.
Specify NULL when
using the Host class.

USB Compliance
Callback

Compliance Callback
must be a valid C
symbol.

NULL Set the callback for
compliance tests here.

USBFS Interrupt Priority MCU Specific Options Select the interrupt
priority used by the
main USBFS ISR.

USBFS Resume Priority MCU Specific Options Select the interrupt
priority used by the
USBFS Resume ISR.

USBFS D0FIFO
Interrupt Priority

MCU Specific Options Select the interrupt
priority used by the
USBFS D0FIFO.

USBFS D1FIFO
Interrupt Priority

MCU Specific Options Select the interrupt
priority used by the
USBFS D1FIFO.

USBHS Interrupt
Priority

MCU Specific Options Select the interrupt
priority used by the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,473 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

main USBHS ISR.

USBHS D0FIFO
Interrupt Priority

MCU Specific Options Select the interrupt
priority used by the
USBHS D0FIFO ISR.

USBHS D1FIFO
Interrupt Priority

MCU Specific Options Select the interrupt
priority used by the
USBHS D1FIFO ISR.

USB RTOS Callback Enter the address of
the function.

NULL If an FreeRTOS is used,
set the callback
function here.

USB Callback Context Enter the address of
the context.

NULL Set the callback
context here.

Clock Configuration

The USB module uses PLL as the clock source. The PLL frequency can be set in the Clocks tab of the
configuration editor or by using the CGC Interface at run-time.

Note
When using HOCO as the PLL source on Cortex M33 parts the FLL function must be enabled for correct USB
operation. Refer to the MCU Family -> Clocks group of the BSP properties in the RA configuration tool to adjust
FLL settings.

Pin Configuration

In peripheral mode the USB_VBUS and/or USBHS_VBUS pins are used to detect the USB connection
status (connected or disconnected) and should be connected to the USB VBUS signal.

Note
USB_VBUS and USBHS_VBUS are 5V-tolerant pins.

In host mode the USBHS_VBUSEN, USBHS_OVRCURA and USBHS_OVRCURB pins should be connected
to the relevant pins of an external power supply IC, if available. These pins will be used to manage
the USB VBUS supply.

DMA Configuration

When using DMA with USB the following properties must be configured for each DMAC module:

Config Name Select Name Description

Transfer Size 2 Bytes
4 Bytes

In FS mode, select "2 Bytes"
In HS mode, select "4 Bytes"

Activation source USBFS FIFO 0
USBFS FIFO 1
USBHS FIFO 0
USBHS FIFO 1

USB FS Reception
USB FS Transmission
USB HS Reception
USB HS Transmission

Descriptor definition
In Peripheral mode, the usb_descriptor_t structure stores descriptor information including the device

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,474 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

and configuration descriptors. The values set in this structure are sent to the USB host as part of
enumeration.

typedef struct usb_descriptor

{

 uint8_t *p_device; /* Pointer to device descriptor */

 uint8_t *p_config_f; /* Pointer to full-speed configuration descriptor */

 uint8_t *p_config_h; /* Pointer to high-speed configuration descriptor (HS only)

*/

 uint8_t *p_qualifier; /* Pointer to device qualifier descriptor (HS only) */

 uint8_t **pp_string; /* Pointer to string descriptor table */

 uint8_t num_string; /* Number of strings in table */

} usb_descriptor_t;

Note
Even in high-speed mode the full-speed configuration must be made available:

/* Example USB FS descriptor struct */

usb_descriptor_t g_usb_descriptor =

{

 smp_device,

 smp_config_f,

 NULL,

 NULL,

 smp_str_table,

 3,

};

/* Example USB HS descriptor struct */

usb_descriptor_t g_usb_descriptor =

{

 smp_device,

 smp_config_f,

 smp_config_h,

 smp_qualifier,

 smp_str_table,

 3,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,475 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

};

String Descriptor

This USB driver requires string descriptors to be registered in the string descriptor table. Use the
following format to define the elements:

/* String descriptor 0 is reserved for language ID information */

uint8_t str_descriptor_0[]

{

 0x04, /* Length */

 0x03, /* Descriptor type */

 0x09, 0x04 /* Language ID */

};

uint8_t str_descriptor_manufacturer[] =

{

 0x10, /* Length */

 0x03, /* Descriptor type */

 'R', 0x00,

 'E', 0x00,

 'N', 0x00,

 'E', 0x00,

 'S', 0x00,

 'A', 0x00,

 'S', 0x00

};

uint8_t str_descriptor_product[] =

{

 0x12, /* Length */

 0x03, /* Descriptor type */

 'C', 0x00,

 'D', 0x00,

 'C', 0x00,

 '_', 0x00,

 'D', 0x00,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,476 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

 'E', 0x00,

 'M', 0x00,

 'O', 0x00

};

/* String descriptor table */

uint8_t * smp_str_table[] =

{

 str_descriptor_0, /* Index: 0 */

 str_descriptor_manufacturer, /* Index: 1 */

 str_descriptor_product, /* Index: 2 */

};

Note
Set the string index values in the device/configuration descriptors (iManufacturer, iConfiguration etc.) to the index
of the desired string in the string descriptor table. For example, in the table below, the manufacturer is described in
str_descriptor_manufacturer and the value of iManufacturer in the device descriptor is 1.

Other Descriptors

Refer to the Universal Serial Bus Revision 2.0 specification (http://www.usb.org/developers/docs/) for
details on how to construct the device, configuration and qualifier descriptors.

Usage Notes
Program Structure

USB applications (whether using an RTOS or not) should be written as an event-handling loop. Either
a callback function (RTOS only) or R_USB_EventGet should be used to provide event data to the
application loop where a switch statement handles the event.

Note
1.The USB_STATUS_CONFIGURED event should be confirmed before calling R_USB_Read or R_USB_Write.
2.When attaching to USB Host, Suspend event is notified to the application program in USB peripheral mode.
Notification of this event to the application program does not affect the operation.

Limitations

Developers should be aware of the following limitations when using the USB driver:

The current USB driver does not support hub.
In USB host mode, the module does not support suspend during data transfers. Execute
suspend only after confirming that all transfers are complete.
Multiconfigurations are not supported.
This driver does not support CPU transfers using the D0FIFO/D1FIFO register.
Only one device-class driver may be used at a time.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,477 / 2,794

http://www.usb.org/developers/docs/

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

The USB Hi-Speed module only supports Hi-Speed operation.
In USB host mode, this USB driver does not support the composite device.
The user can not specify DMA transfer to USB IP0 and IP1 modules at the same time when
using USB multi-port feature. USB multi-port function: Simultaneous operation feature of
USB Host and Peripheral.

TrustZone

The USB driver for FreeRTOS cannot be allocated in Secure region.

UCLK setting

Enable UCLK in "Clocks" tab on e2 studio when using the following MCU.

1. RA6M4

Examples
USB Basic Example

This is a basic example of minimal use of the USB in an application.

void usb_basic_example (void)

{

 usb_event_info_t event_info;

 usb_status_t event;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 /* Loop back between PC(TerminalSoft) and USB MCU */

 while (1)

 {

 g_usb_on_usb.eventGet(&event_info, &event);

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 case USB_STATUS_WRITE_COMPLETE:

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 break;

 case USB_STATUS_READ_COMPLETE:

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, event_info.data_size,

USB_CLASS_PCDC);

 break;

 case USB_STATUS_REQUEST: /* Receive Class Request */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,478 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

 if (USB_PCDC_SET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataGet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else if (USB_PCDC_GET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 break;

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 break;

 default:

 break;

 }

 }

} /* End of function usb_main() */

Typedefs

typedef usb_event_info_t usb_instance_ctrl_t

Typedef Documentation

◆ usb_instance_ctrl_t

typedef usb_event_info_t usb_instance_ctrl_t

ICU private control block. DO NOT MODIFY. Initialization occurs when R_ICU_ExternalIrqOpen is
called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,479 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_Open()

fsp_err_t R_USB_Open (usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const p_cfg)

Applies power to the USB module specified in the argument (p_ctrl).

Return values
FSP_SUCCESS Success in open.

FSP_ERR_USB_BUSY Specified USB module now in use.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_Close()

fsp_err_t R_USB_Close (usb_ctrl_t *const p_api_ctrl)

Terminates power to the USB module specified in argument (p_ctrl). USB0 module stops when
USB_IP0 is specified to the member (module), USB1 module stops when USB_IP1 is specified to the
member (module).

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_NOT_OPEN USB module is not open.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,480 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_Read()

fsp_err_t R_USB_Read (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size, uint8_t
destination)

Bulk/interrupt data transfer and control data transfer.

1. Bulk/interrupt data transfer

Requests USB data read (bulk/interrupt transfer). The read data is stored in the area
specified by argument (p_buf). After data read is completed, confirm the operation by
checking the return value (USB_STATUS_READ_COMPLETE) of the R_USB_GetEvent function.
The received data size is set in member (size) of the usb_ctrl_t structure. To figure out the
size of the data when a read is complete, check the return value
(USB_STATUS_READ_COMPLETE) of the R_USB_GetEvent function, and then refer to the
member (size) of the usb_crtl_t structure.

2. Control data transfer

The R_USB_Read function is used to receive data in the data stage and the R_USB_Write
function is used to send data to the USB host.

Return values
FSP_SUCCESS Successfully completed (Data read request

completed).

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY Data receive request already in process for
USB device with same device address.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,481 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_Write()

fsp_err_t R_USB_Write (usb_ctrl_t *const p_api_ctrl, uint8_t const *const p_buf, uint32_t size,
uint8_t destination)

Bulk/Interrupt data transfer and control data transfer.

1. Bulk/Interrupt data transfer

Requests USB data write (bulk/interrupt transfer). Stores write data in area specified by
argument (p_buf). Set the device class type in usb_ctrl_t structure member (type). Confirm
after data write is completed by checking the return value
(USB_STATUS_WRITE_COMPLETE) of the R_USB_GetEvent function. For sending a zero-
length packet, please refer the following Note.

2. Control data transfer

The R_USB_Read function is used to receive data in the data stage and the R_USB_Write
function is used to send data to the USB host.

Return values
FSP_SUCCESS Successfully completed. (Data write request

completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY Data write request already in process for
USB device with same device address.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
1.The user needs to send the zero-length packet(ZLP) since this USB driver does not send the ZLP automatically.
When sending a ZLP, the user sets USB_NULL in the third argument (size) of R_USB_Write function as follow.
e.g)
R_USB_Write (&g_basic0_ctrl, &g_buf, USB_NULL);
2.Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,482 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_Stop()

fsp_err_t R_USB_Stop (usb_ctrl_t *const p_api_ctrl, usb_transfer_t direction, uint8_t destination)

Requests a data read/write transfer be terminated when a data read/write transfer is being
performed.

To stop a data read, set USB_TRANSFER_READ as the argument (type); to stop a data write, specify
USB_WRITE as the argument (type).

Return values
FSP_SUCCESS Successfully completed. (stop completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_BUSY Stop processing is called multiple times.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_Suspend()

fsp_err_t R_USB_Suspend (usb_ctrl_t *const p_api_ctrl)

Sends a SUSPEND signal from the USB module assigned to the member (module) of the usb_crtl_t
structure.

After the suspend request is completed, confirm the operation with the return value
(USB_STATUS_SUSPEND) of the R_USB_EventGet function.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY During a suspend request to the specified
USB module, or when the USB module is
already in the suspended state.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,483 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_Resume()

fsp_err_t R_USB_Resume (usb_ctrl_t *const p_api_ctrl)

Sends a RESUME signal from the USB module assigned to the member (module) of the
usb_ctrl_tstructure.

After the resume request is completed, confirm the operation with the return value
(USB_STATUS_RESUME) of the R_USB_EventGet function

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_BUSY Resume already requested for same device
address. (USB host mode only)

FSP_ERR_USB_NOT_SUSPEND USB device is not in the SUSPEND state.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_VbusSet()

fsp_err_t R_USB_VbusSet (usb_ctrl_t *const p_api_ctrl, uint16_t state)

Specifies starting or stopping the VBUS supply.

Return values
FSP_SUCCESS Successful completion. (VBUS supply

start/stop completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,484 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_InfoGet()

fsp_err_t R_USB_InfoGet (usb_ctrl_t *const p_api_ctrl, usb_info_t * p_info, uint8_t destination)

Obtains completed USB-related events.

Return values
FSP_SUCCESS Successful completion. (VBUS supply

start/stop completed)

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_USB_PARAMETER Parameter error.

◆ R_USB_PipeRead()

fsp_err_t R_USB_PipeRead (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size, uint8_t
pipe_number)

Requests a data read (bulk/interrupt transfer) via the pipe specified in the argument.

The read data is stored in the area specified in the argument (p_buf). After the data read is
completed, confirm the operation with the R_USB_GetEvent function return
value(USB_STATUS_READ_COMPLETE). To figure out the size of the data when a read is complete,
check the return value (USB_STATUS_READ_COMPLETE) of the R_USB_GetEvent function, and then
refer to the member (size) of the usb_crtl_t structure.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,485 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_PipeWrite()

fsp_err_t R_USB_PipeWrite (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size, uint8_t
pipe_number)

Requests a data write (bulk/interrupt transfer).

The write data is stored in the area specified in the argument (p_buf). After data write is
completed, confirm the operation with the return value (USB_STATUS_WRITE_COMPLETE) of the
EventGet function. For sending a zero-length packet, please refer the following Note.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
1.The user needs to send the zero-length packet(ZLP) since this USB driver does not send the ZLP automatically.
When sending a ZLP, the user sets USB_NULL in the third argument (size) of R_USB_PipeWrite function as
follow.
e.g)
R_USB_PipeWrite (&g_basic0_ctrl, &g_buf, USB_NULL, pipe_number);
2.Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,486 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_PipeStop()

fsp_err_t R_USB_PipeStop (usb_ctrl_t *const p_api_ctrl, uint8_t pipe_number)

Terminates a data read/write operation.

Return values
FSP_SUCCESS Successfully completed. (Stop request

completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_UsedPipesGet()

fsp_err_t R_USB_UsedPipesGet (usb_ctrl_t *const p_api_ctrl, uint16_t * p_pipe, uint8_t
destination)

Gets the selected pipe number (number of the pipe that has completed initalization) via bit map
information.

The bit map information is stored in the area specified in argument (p_pipe). Based on the
information (module member and address member) assigned to the usb_ctrl_t structure, obtains
the PIPE information of that USB device.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,487 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_PipeInfoGet()

fsp_err_t R_USB_PipeInfoGet (usb_ctrl_t *const p_api_ctrl, usb_pipe_t * p_info, uint8_t
pipe_number)

Gets the following pipe information regarding the pipe specified in the argument (p_ctrl) member
(pipe): endpoint number, transfer type, transfer direction and maximum packet size.

The obtained pipe information is stored in the area specified in the argument (p_info).

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

◆ R_USB_PullUp()

fsp_err_t R_USB_PullUp (usb_ctrl_t *const p_api_ctrl, uint8_t state)

This API enables or disables pull-up of D+/D- line.

Return values
FSP_SUCCESS Successful completion. (Pull-up

enable/disable setting completed)

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,488 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_EventGet()

fsp_err_t R_USB_EventGet (usb_ctrl_t *const p_api_ctrl, usb_status_t * event)

Obtains completed USB related events. (OS-less Only)

In USB host mode, the device address value of the USB device that completed an event is specified
in the usb_ctrl_t structure member (address) specified by the event's argument. In USB peripheral
mode, USB_NULL is specified in member (address). If this function is called in the RTOS execution
environment, a failure is returned.

Return values
FSP_SUCCESS Event Get Success.

FSP_ERR_USB_FAILED If called in the RTOS environment, an error
is returned.

Note
Do not use the same variable as the first argument of R_USB_Open for the first argument.
Do not call this API in the interrupt function.

◆ R_USB_Callback()

fsp_err_t R_USB_Callback (usb_callback_t * p_callback)

Register a callback function to be called upon completion of a USB related event. (RTOS only)

This function registers a callback function to be called when a USB-related event has completed. If
this function is called in the OS-less execution environment, a failure is returned.

Return values
FSP_SUCCESS Successfully completed.

FSP_ERR_USB_FAILED If this function is called in the OS-less
execution environment, a failure is
returned.

FSP_ERR_ASSERTION Parameter is NULL error.

Note
Do not call this API in the interrupt function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,489 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_HostControlTransfer()

fsp_err_t R_USB_HostControlTransfer (usb_ctrl_t *const p_api_ctrl, usb_setup_t * p_setup, uint8_t
* p_buf, uint8_t device_address)

Performs settings and transmission processing when transmitting a setup packet.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_PeriControlDataGet()

fsp_err_t R_USB_PeriControlDataGet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size)

Receives data sent by control transfer.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,490 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_PeriControlDataSet()

fsp_err_t R_USB_PeriControlDataSet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_buf, uint32_t size)

Performs transfer processing for control transfer.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_BUSY Specified pipe now handling data
receive/send request.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_PeriControlStatusSet()

fsp_err_t R_USB_PeriControlStatusSet (usb_ctrl_t *const p_api_ctrl, usb_setup_status_t status)

Set the response to the setup packet.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,491 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_RemoteWakeup()

fsp_err_t R_USB_RemoteWakeup (usb_ctrl_t *const p_api_ctrl)

Sends a remote wake-up signal to the connected Host.

Return values
FSP_SUCCESS Successful completion.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter is NULL error.

FSP_ERR_USB_NOT_SUSPEND Device is not suspended.

FSP_ERR_USB_BUSY The device is in resume operation.

Note
Do not call this API in the following function.
(1). Interrupt function.
(2). Callback function (for RTOS).

◆ R_USB_ModuleNumberGet()

fsp_err_t R_USB_ModuleNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t * module_number)

This API gets the module number.

Return values
FSP_SUCCESS Successful completion.

◆ R_USB_ClassTypeGet()

fsp_err_t R_USB_ClassTypeGet (usb_ctrl_t *const p_api_ctrl, usb_class_t * class_type)

This API gets the class type.

Return values
FSP_SUCCESS Successful completion.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,492 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_DeviceAddressGet()

fsp_err_t R_USB_DeviceAddressGet (usb_ctrl_t *const p_api_ctrl, uint8_t * device_address)

This API gets the device address.

Return values
FSP_SUCCESS Successful completion.

◆ R_USB_PipeNumberGet()

fsp_err_t R_USB_PipeNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t * pipe_number)

This API gets the pipe number.

Return values
FSP_SUCCESS Successful completion.

◆ R_USB_DeviceStateGet()

fsp_err_t R_USB_DeviceStateGet (usb_ctrl_t *const p_api_ctrl, uint16_t * state)

This API gets the state of the device.

Return values
FSP_SUCCESS Successful completion.

◆ R_USB_DataSizeGet()

fsp_err_t R_USB_DataSizeGet (usb_ctrl_t *const p_api_ctrl, uint32_t * data_size)

This API gets the data size.

Return values
FSP_SUCCESS Successful completion.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,493 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB (r_usb_basic)

◆ R_USB_SetupGet()

fsp_err_t R_USB_SetupGet (usb_ctrl_t *const p_api_ctrl, usb_setup_t * setup)

This API gets the setup type.

Return values
FSP_SUCCESS Successful completion.

4.2.53 USB Composite Class (r_usb_composite)
Modules

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Overview
USB composite device works as a USB Peripheral by combining two peripheral device classes and
r_usb_basic module.
This USB driver supports the following composite devices:

1. PCDC + PMSC
2. PCDC + PHID
3. PHID + PMSC
4. PCDC + PCDC

How to Configuration
The following shows FSP configuration procedure for USB composite device.

Select [New Stack]->[USB]->[USB Composite]

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,494 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

Figure 175: Select USB Composite

The following is displayed when selecting [USB Composite].

Figure 176: USB Composite Stack

Select the supported 2 device classes as follows.

Figure 177: Select Device Classes

Note

1. Be sure to select "USB PCDC driver on r_usb_pcdc" and "USB PCDC 2channel driver on r_usb_pcdc"
when configurating for "PCDC + PCDC".

Select the supported 2 device classes as follows. The following is displayed when selecting
2 device classes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,495 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

Figure 178: Delete USB Basic Instance

Note

1. Delete the "g_basic1" instance manually since this instance is not used in composite device. (Refer to
the blue frame in the above figure.)

2. The error is output when selecting the following device classes.
a. PMSC + PMSC
b. PHID + PHID

Figure 179: Device Class Selection Error

Limitations

1.The following composite device is not suppored when using RA2A1(MCU).

1. PMSC + PCDC
2. PCDC + PCDC

2.If you use PMSC, make sure to use usb_basic module with PMSC. There is a risk that the
information on the PMSC storage media cannot be registered normally in the "USB Callback
Context".

Notes

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,496 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

Please determine by the member "pipe" in "usb_event_info" structure when getting PCDC channel
number which the write event is completed in PCDC + PCDC.
Don't refer to the member "type" in "usb_event_info" structure.

Descriptor
Templates for composite device descriptors can be found in ra/fsp/src/r_usb_composite folder. Also,
please be sure to use your vendor ID.

1. r_usb_pcdc_pmsc_descriptor.c.template (for PCDC + PMSC)
2. r_usb_pcdc_phid_descriptor.c.template (for PCDC + PHID)
3. r_usb_phid_pmsc_descriptor.c.template (for PHID + PMSC)
4. r_usb_pcdc_pcdc_descriptor.c.template (for PCDC + PCDC)

Examples
USB COMPOSITE Example

PCDC + PHID

void main_task (void)

{

 #if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

 #endif

 usb_event_info_t usb_event;

 usb_status_t event;

 uint8_t * p_idle_value;

 uint8_t sw_data;

 usb_info_t info;

 fsp_err_t ret_code = FSP_SUCCESS;

 uint8_t send_data[16] BSP_ALIGN_VARIABLE(4);

 uint8_t req_comp_flag = 0;

 uint8_t count = 0;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 set_key_data(g_buf_phid);

 /* Loop back between PC(TerminalSoft) and USB MCU */

 while (1)

 {

 #if (BSP_CFG_RTOS == 2)

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **) &p_mess);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,497 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

 usb_event = *p_mess;

 event = usb_event.event;

 #else /* (BSP_CFG_RTOS == 2) */

 R_USB_EventGet(&usb_event, &event);

 #endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 g_status = NO_WRITING;

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 break;

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 if (usb_event.type == USB_CLASS_PCDC)

 {

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 }

 else if (usb_event.type == USB_CLASS_PHID)

 {

 if (DATA_WRITING == g_status)

 {

 g_status = ZERO_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, (uint8_t *) g_zero_data,

DATA_LEN_PHID, USB_CLASS_PHID); /* Sending the zero data (8 bytes) */

 }

 else if (g_status == ZERO_WRITING)

 {

 g_status = NO_WRITING;

 }

 }

 break;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,498 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

 case USB_STATUS_READ_COMPLETE:

 {

 if (usb_event.type == USB_CLASS_PCDC)

 {

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, usb_event.data_size,

USB_CLASS_PCDC);

 if (req_comp_flag == 1)

 {

 if (g_status == NO_WRITING)

 {

 count++;

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf_phid,

DATA_LEN_PHID, USB_CLASS_PHID);

 }

 }

 }

 break;

 }

 case USB_STATUS_REQUEST: /* Receive Class Request */

 {

 if (USB_PCDC_SET_LINE_CODING == (usb_event.setup.request_type & USB_BREQUEST))

 {

 R_USB_PeriControlDataGet(&g_basic0_ctrl, (uint8_t *) &g_line_coding,

LINE_CODING_LENGTH);

 }

 else if (USB_PCDC_GET_LINE_CODING == (usb_event.setup.request_type & USB_BREQUEST))

 {

 R_USB_PeriControlDataSet(&g_basic0_ctrl, (uint8_t *) &g_line_coding,

LINE_CODING_LENGTH);

 }

 else if (USB_SET_REPORT == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.read(&g_basic0_ctrl, (uint8_t *) &g_numlock, 2,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,499 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

USB_CLASS_PHID); /* Get the NumLock data (NumLock data is not used) */

 }

 else if (USB_GET_DESCRIPTOR == (usb_event.setup.request_type & USB_BREQUEST))

 {

 if (USB_GET_REPORT_DESCRIPTOR == usb_event.setup.request_value)

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl,

 (uint8_t *) g_apl_report,

USB_RECEIVE_REPORT_DESCRIPTOR);

 }

 else if (USB_GET_HID_DESCRIPTOR == usb_event.setup.request_value)

 {

 for (uint8_t i = 0; i < USB_RECEIVE_HID_DESCRIPTOR; i++)

 {

 send_data[i] = g_apl_configuration[84 + i];

 }

 /* Configuration Descriptor address set. */

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, send_data,

USB_RECEIVE_HID_DESCRIPTOR);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 }

 else if (USB_SET_IDLE == (usb_event.setup.request_type & USB_BREQUEST))

 {

 /* Get SetIdle value */

 p_idle_value = (uint8_t *) &usb_event.setup.request_value;

 g_idle = p_idle_value[1];

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,500 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

 }

 else if (USB_GET_IDLE == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, &g_idle, 1);

 }

 else if (USB_SET_PROTOCOL == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 else if (USB_GET_PROTOCOL == (usb_event.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE: /* Complete Class Request */

 {

 if (USB_SET_IDLE == (usb_event.setup.request_type & USB_BREQUEST))

 {

 p_idle_value = (uint8_t *) &usb_event.setup.request_value;

 g_idle = p_idle_value[1];

 }

 else if (USB_SET_PROTOCOL == (usb_event.setup.request_type & USB_BREQUEST))

 {

 /* None */

 /* g_protocol = event_info.setup.value; */

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,501 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

 else

 {

 req_comp_flag = 1;

 }

 break;

 }

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 {

 break;

 }

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_main() */

void set_key_data (uint8_t * p_buf)

{

 static uint8_t key_data;

 key_data = KBD_CODE_A;

 *(p_buf + 2) = key_data;

}

 #if (BSP_CFG_RTOS == 2)

/**

 * Function Name : usb_apl_rec_msg

 * Description : Receive a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t** mess : Message pointer

 * : usb_tm_t tm : Timeout Value

 * Return : uint16_t : USB_OK / USB_ERROR

 **/

usb_er_t usb_apl_rec_msg (uint8_t id, usb_msg_t ** mess, usb_tm_t tm)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,502 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 (void) tm;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 *mess = NULL;

 err = xQueueReceive(handle, (void *) mess, (portMAX_DELAY));

 if ((pdTRUE == err) && (NULL != (*mess)))

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/**

 * End of function usb_apl_rec_msg

 **/

/**

 * Function Name : usb_apl_snd_msg

 * Description : Send a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t* mess : Message pointer

 * Return : usb_er_t : USB_OK / USB_ERROR

 **/

usb_er_t usb_apl_snd_msg (uint8_t id, usb_msg_t * mess)

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,503 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Composite Class (r_usb_composite)

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 err = xQueueSend(handle, (const void *) &mess, (TickType_t) (0));

 if (pdTRUE == err)

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/**

 * End of function usb_apl_snd_msg

 **/

 #endif /* #if (BSP_CFG_RTOS == 2) */

4.2.54 USB Host Communications Device Class Driver (r_usb_hcdc)
Modules

This module provides a USB Host Communications Device Class (HCDC) driver. It implements the
USB HCDC Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,504 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

Overview
The r_usb_hcdc module, when used in combination with the r_usb_basic module, operates as a USB
Host Communications Device Class (HCDC) driver. The HCDC conforms to the PSTN device subclass
abstract control model of the USB Communications Device Class (CDC) specification and enables
communication with a CDC peripheral device.

Features

The r_usb_hcdc module has the following key features:

Checks for connected devices
Implementation of communication line settings
Acquisition of the communication line state
Data transfer to and from a CDC peripheral device

Configuration
Build Time Configurations for r_usb_hcdc

The following build time configurations are defined in fsp_cfg/r_usb_hcdc_cfg.h:

Configuration Options Default Description

Target Peripheral
Device Class ID

CDC class
supported
device
Vendor class
device

CDC class supported
device

Specify the device
class ID of the CDC
device to be
connected.

Bulk Input Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE1 Select the USB pipe to
use for bulk input
transfers.

Bulk Output Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE2 Select the USB pipe to
use for bulk output
transfers.

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the USB pipe to
use for interrupts.

Configurations for Middleware > USB > USB HCDC driver on r_usb_hcdc

This module can be added to the Stacks tab via New Stack > Middleware > USB > USB HCDC driver
on r_usb_hcdc.

Configuration Options Default Description

Name Name must be a valid g_hcdc0 Module name.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,505 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

C symbol

Note
Refer to the USB (r_usb_basic) module for hardware configuration options.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Communications Device Class (CDC), PSTN and ACM

This software conforms to the Abstract Control Model (ACM) subclass of the Communications Device
Class specification as defined in the "USB Communications Class Subclass Specification for PSTN
Devices", Revision 1.2. The Abstract Control Model subclass is a technology that bridges the gap
between USB devices and earlier modems (employing RS-232C connections) enabling use of
application programs designed for older modems.

Basic Functions

The main functions of HCDC are the following:

Verify connected devices
Make communication line settings
Acquire the communication line state
Transfer data to and from the CDC peripheral device

Abstract Control Model Class Requests - Host to Device

This driver supports the following class requests:

Request Code Description

SendEncapsulatedCommand 0x00 Transmits an AT command as
defined by the protocol used by
the device (normally 0 for USB).

GetEncapsulatedResponse 0x01 Requests a response to a
command transmitted by
SendEncapsulatedCommand.

SetCommFeature 0x02 Enables or disables features
such as device-specific 2-byte
code and country setting.

GetCommFeature 0x03 Acquires the enabled/disabled
state of features such as device-
specific 2-byte code and
country setting.

ClearCommFeature 0x04 Restores the default

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,506 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

enabled/disabled settings of
features such as device-specific
2-byte code and country
setting.

SetLineCoding 0x20 Makes communication line
settings (communication speed,
data length, parity bit, and stop
bit length).

GetLineCoding 0x21 Acquires the communication
line setting state.

SetControlLineState 0x22 Makes communication line
control signal (RTS, DTR)
settings.

SendBreak 0x23 Transmits a break signal.

Note
For more information about Abstract Control Model requests, refer to Table 11 "Requests - Abstract Control
Model" in the "USB Communications Class Subclass Specification for PSTN Devices", Revision 1.2.

The expected data format for each command is shown below followed by dependent structures.

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0x21 SEND_ENCAPS
ULATED_COMM

AND (0x00)

0x0000 0x0000 Data length usb_hcdc_enca
psulated_t

0x21 GET_ENCAPSU
LATED_RESPO

NSE (0x01)

0x0000 0x0000 Data length usb_hcdc_enca
psulated_t

0x21 SET_COMM_FE
ATURE (0x02)

usb_hcdc_feat
ure_selector_t

0x0000 Data length usb_hcdc_com
mfeature_t

0x21 GET_COMM_FE
ATURE (0x03)

usb_hcdc_feat
ure_selector_t

0x0000 Data length usb_hcdc_com
mfeature_t

0x21 CLEAR_COMM_
FEATURE

(0x04)

usb_hcdc_feat
ure_selector_t

0x0000 Data length None

0x21 SET_LINE_CODI
NG (0x20)

0x0000 0x0000 0x0000 usb_hcdc_linec
oding_t

0xA1 GET_LINE_COD
ING (0x21)

0x0000 0x0000 0x0007 usb_hcdc_linec
oding_t

0x21 SET_CONTROL
_LINE_STATE

(0x22)

usb_hcdc_cont
rollinestate_t

0x0000 0x0000 None

0x21 SEND_BREAK
(0x23)

usb_hcdc_brea
kduration_t

0x0000 0x0000 None

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,507 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

ACM Notifications from Device to Host

The following class notifications are supported:

Notification Code Description

RESPONSE_AVAILABLE 0x01 Response to
GET_ENCAPSULATED_RESPONS
E

SERIAL_STATE 0x20 Notification of serial line state

The data types returned are as follows:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0xA1 RESPONSE_AV
AILABLE (0x01)

0x0000 0x0000 0x0000 None

0xA1 SERIAL_STATE
(0x20)

0x0000 0x0000 0x0002 usb_hcdc_seria
lstate_t

Note
The host is notified with SERIAL_STATE whenever a change in the UART port state is detected.

Limitations

This driver is subject to the following limitations:

Suspend is not supported when a data transfer is in progress. Confirm that data transfer
has completed before executing suspend.
Use of compound USB devices with CDC class support is not supported.
This module must be incorporated into a project using r_usb_basic and does not provide
any public APIs.
This driver does not support Low-speed.
This driver does not support simultaneous operation with the other device class.

Examples
USB HCDC Loopback Example

The main functions of the HCDC loopback example are as follows:

1. Virtual UART control settings are configured by transmitting the class request
SET_LINE_CODING to the CDC device.

2. Sends receive (Bulk In transfer) requests to a CDC peripheral device and receives data.
3. Loops received data back to the peripheral by means of Bulk Out transfers.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,508 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

Figure 180: Data Transfer (Loopback)

 The main loop performs loopback processing in which data received from a CDC peripheral device is
transmitted unaltered back to the peripheral.

#define SET_LINE_CODING (USB_CDC_SET_LINE_CODING | USB_HOST_TO_DEV | USB_CLASS |

USB_INTERFACE)

#define GET_LINE_CODING (USB_CDC_GET_LINE_CODING | USB_DEV_TO_HOST | USB_CLASS |

USB_INTERFACE)

#define SET_CONTROL_LINE_STATE (USB_CDC_SET_CONTROL_LINE_STATE | USB_HOST_TO_DEV |

USB_CLASS | USB_INTERFACE)

#define COM_SPEED (9600U)

#define COM_DATA_BIT (8U)

#define COM_STOP_BIT (0)

#define COM_PARITY_BIT (0)

#define LINE_CODING_LENGTH (7)

void usb_basic_example (void)

{

 usb_status_t event;

 usb_event_info_t event_info;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,509 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

 /* Get USB event data */

 g_usb_on_usb.eventGet(&event_info, &event);

 /* Handle the received event (if any) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 /* Configure virtual UART settings */

 set_line_coding(&g_basic0_ctrl, event_info.device_address); /* CDC

Class request "SetLineCoding" */

 break;

 case USB_STATUS_READ_COMPLETE:

 if (USB_CLASS_HCDC == event_info.type)

 {

 if (event_info.data_size > 0)

 {

 /* Send the received data back to the connected peripheral */

 g_usb_on_usb.write(&g_basic0_ctrl, g_snd_buf,

event_info.data_size, USB_DEVICE_ADDRESS_1);

 }

 else

 {

 /* Send the data reception request when the zero-length packet is received. */

 g_usb_on_usb.read(&g_basic0_ctrl, g_rcv_buf, CDC_DATA_LEN,

USB_DEVICE_ADDRESS_1);

 }

 }

 else /* USB_HCDCC */

 {

 /* Control Class notification "SerialState" receive start */

 g_usb_on_usb.read(&g_basic0_ctrl,

 (uint8_t *) &g_serial_state,

 USB_HCDC_SERIAL_STATE_MSG_LEN,

 USB_DEVICE_ADDRESS_1);

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,510 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

 break;

 case USB_STATUS_WRITE_COMPLETE:

 /* Start receive operation */

 g_usb_on_usb.read(&g_basic0_ctrl, g_rcv_buf, CDC_DATA_LEN,

USB_DEVICE_ADDRESS_1);

 break;

 case USB_STATUS_REQUEST_COMPLETE:

 if (USB_CDC_SET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Set virtual RTS/DTR signal state */

 set_control_line_state(&g_basic0_ctrl, event_info.device_address);

/* CDC Class request "SetControlLineState" */

 }

 /* Check Complete request "SetControlLineState" */

 else if (USB_CDC_SET_CONTROL_LINE_STATE == (event_info.setup.request_type &

USB_BREQUEST))

 {

 /* Read back virtual UART settings */

 get_line_coding(&g_basic0_ctrl, event_info.device_address); /* CDC

Class request "SetLineCoding" */

 }

 else if (USB_CDC_GET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Now that setup is complete, start loopback operation */

 g_usb_on_usb.read(&g_basic0_ctrl, g_snd_buf, CDC_DATA_LEN,

USB_DEVICE_ADDRESS_1);

 }

 else

 {

 /* Unsupported request */

 }

 break;

 default:

 /* Other event */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,511 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

 break;

 }

 }

}

void set_control_line_state (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

 setup.request_type = SET_CONTROL_LINE_STATE; /*

bRequestCode:SET_CONTROL_LINE_STATE, bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = 0x0000; /* wLength:Zero */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_usb_dummy,

device_address);

}

void set_line_coding (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

 g_com_parm.dwdte_rate = (usb_hcdc_line_speed_t) COM_SPEED;

 g_com_parm.bchar_format = (usb_hcdc_stop_bit_t) COM_STOP_BIT;

 g_com_parm.bparity_type = (usb_hcdc_parity_bit_t) COM_PARITY_BIT;

 g_com_parm.bdata_bits = (usb_hcdc_data_bit_t) COM_DATA_BIT;

 setup.request_type = SET_LINE_CODING; /* bRequestCode:SET_LINE_CODING,

bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = LINE_CODING_LENGTH; /* Data:Line Coding Structure */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_com_parm,

device_address);

}

void get_line_coding (usb_instance_ctrl_t * p_ctrl, uint8_t device_address)

{

 usb_setup_t setup;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,512 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Communications Device Class Driver (r_usb_hcdc)

 setup.request_type = GET_LINE_CODING; /* bRequestCode:GET_LINE_CODING,

bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = LINE_CODING_LENGTH; /* Data:Line Coding Structure */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_com_parm,

device_address);

}

4.2.55 USB Host Human Interface Device Class Driver (r_usb_hhid)
Modules

Functions

fsp_err_t R_USB_HHID_TypeGet (usb_ctrl_t *const p_api_ctrl, uint8_t *p_type,
uint8_t device_address)

 Get HID protocol.(USB Mouse/USB Keyboard/Other Type.) More...

fsp_err_t R_USB_HHID_MaxPacketSizeGet (usb_ctrl_t *const p_api_ctrl,
uint16_t *p_size, uint8_t direction, uint8_t device_address)

 Obtains max packet size for the connected HID device. The max
packet size is set to the area. Set the direction
(USB_HID_IN/USB_HID_OUT). More...

Detailed Description

This module provides a USB Host Human Interface Device Class Driver (HHID). It implements the USB
HHID Interface.

Overview
The r_usb_hhid module combines with the r_usb_basic module to provide a USB Host Human
Interface Device Class (HHID) driver. The HHID driver conforms to the USB Human Interface Device
class specifications and implements communication with a HID device.

Features

The r_usb_hhid module has the following key features:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,513 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

Data communication with a connected HID device (USB mouse, keyboard etc.)
Issuing of HID class requests to a connected HID device
Supports Interrupt OUT transfer

Configuration
Build Time Configurations for r_usb_hhid

The following build time configurations are defined in fsp_cfg/r_usb_hhid_cfg.h:

Configuration Options Default Description

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the pipe number
to use for input
interrupt events.

Interrupt Out Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE9 Select the pipe number
to use for output
interrupt events.

Configurations for Middleware > USB > USB HHID driver on r_usb_hhid

This module can be added to the Stacks tab via New Stack > Middleware > USB > USB HHID driver
on r_usb_hhid. Non-secure callable guard functions can be generated for this module by right clicking
the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_hhid0 Module name.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Note

This driver is not guaranteed to provide USB HID operation in all scenarios. The developer must verify correct
operation when connected to the targeted USB peripherals.

Class Requests

The class requests supported by this driver are shown below:

Request Code Description

USB_GET_REPORT 0x01 Receives a report from the HID
device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,514 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

USB_SET_REPORT 0x09 Sends a report to the HID
device.

USB_GET_IDLE 0x02 Receives a duration (time) from
the HID device.

USB_SET_IDLE 0x0A Sends a duration (time) to the
HID device.

USB_GET_PROTOCOL 0x03 Reads a protocol from the HID
device.

USB_SET_PROTOCOL 0x0B Sends a protocol to the HID
device.

USB_GET_REPORT_DESCRIPTOR 0x06 Requests a report descriptor.

USB_GET_HID_DESCRIPTOR 0x06 Requests a HID descriptor.

Data Format

The boot protocol data format of data received from the keyboard or mouse through interrupt-IN
transfers is shown below:

offset Keyboard (8 Bytes) Mouse (3 Bytes)

0 (Top Byte) Modifier keys b0 : Button 1
b1 : Button 2
b2 : Button 3
b3-b7 : Reserved

+1 Reserved X displacement

+2 Keycode 1 Y displacement

+3 Keycode 2 -

+4 Keycode 3 -

+5 Keycode 4 -

+6 Keycode 5 -

+7 Keycode 6 -

Limitations

The HID driver does not analyze the report descriptor. This driver determines the report
format from the interface protocol.
This driver does not support DMA transfers.
This driver does not support High-speed.
The transfer rates of Full-speed and Low-speed are the same when the max packet sizes of
Full-speed and Low-speed are the same.
This driver does not support simultaneous operation with the other device class.

Examples
USB HHID Example

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,515 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

The main functions of the application are as follows:

1. Performs enumeration and initialization of HID devices.
2. Transfers data to and from a connected HID device (mouse or keyboard). Data received

from the device is read and discarded.
3. When an RTOS is used, the USB driver calls the callback (usb_apl_callback) in order to pass

events to the main loop through a queue.

Figure 181: Example Operating Environment

Application Processing (for RTOS)

The main loop performs processing to receive data from the HID device as part of the main routine.
An overview of the processing performed by the loop is shown below.

1. When a USB-related event has completed, the USB driver calls the callback function
(usb_apl_callback). In the callback function (usb_apl_callback), the application task (APL) is
notified of the USB completion event using the real-time OS functionality.

2. In APL, information regarding the USB completion event was notified from the callback
function is retrieved using the real-time OS functionality.

3. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STATUS_CONFIGURED, APL sends the class request (SET_PROTOCOL) to the
HID device.

4. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STATUS_REQUEST_COMPLETE, APL performs a data reception request to
receive data transmitted from the HID device by calling the R_USB_Read function.

5. The above processing is repeated.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,516 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

Figure 182: Main Loop (Normal mode)

Application Processing (for Non-OS)

The main loop performs processing to receive data from the HID device as part of the main routine.
An overview of the processing of the main loop is presented below.

1. When the R_USB_GetEvent function is called after an HID device attaches to the USB host
and enumeration completes, USB_STATUS_CONFIGURED is set as the return value. When
the APL confirms USB_STATUS_CONFIGURED, it calls the R_USB_Write function to request
transmission of data to the HID device.

2. When the R_USB_GetEvent function is called after sending of class request SET_PROTOCOL
to the HID device has completed, USB_STATUS_REQUEST_COMPLETE is set as the return
value. When the APL confirms USB_STATUS_REQUEST_COMPLETE, it calls the R_USB_Read
function to make a data receive request for data sent by the HID device.

3. When the R_USB_GetEvent function is called after reception of data from the HID device has
completed, USB_STATUS_READ_COMPLETE is set as the return value. When the APL
confirms USB_STATUS_READ_COMPLETE, it calls the R_USB_Read function to make a data
receive request for data sent by the HID device.

4. The processing in step 3, above, is repeated.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,517 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

Figure 183: Main Loop (Normal mode)

/**

 * Macro definitions

 **/

#define SET_PROTOCOL (USB_HID_SET_PROTOCOL | USB_HOST_TO_DEV | USB_CLASS |

USB_INTERFACE)

#define BOOT_PROTOCOL (0)

#define USB_FS_DEVICE_ADDRESS_1 (1)

/**

 * Private global variables and functions

 **/

static const usb_hhid_api_t g_hhid_on_usb =

{

 .typeGet = R_USB_HHID_TypeGet,

 .maxPacketSizeGet = R_USB_HHID_MaxPacketSizeGet,

};

/**

 * Function Name : r_usb_hhid_example

 * Description : Host HID application main process

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,518 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

 * Arguments : none

 * Return value : none

 **/

static void r_usb_hhid_example (void)

{

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif /* (BSP_CFG_RTOS == 2) */

 usb_status_t event;

 usb_event_info_t event_info;

 uint16_t offset = 0;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

#if (BSP_CFG_RTOS == 2)

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **) &p_mess);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 g_usb_on_usb.eventGet(&event_info, &event); /* Get event code */

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 g_hhid_on_usb.typeGet(&g_basic0_ctrl, &g_hid_type,

USB_FS_DEVICE_ADDRESS_1);

 g_hhid_on_usb.maxPacketSizeGet(&g_basic0_ctrl, &g_mxps, USB_HID_IN,

USB_FS_DEVICE_ADDRESS_1);

 /* Send the HID request (SetProtocol) to HID device */

 set_protocol(&g_basic0_ctrl, BOOT_PROTOCOL, USB_FS_DEVICE_ADDRESS_1);

 break;

 }

 case USB_STATUS_READ_COMPLETE:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,519 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

 {

 offset = hid_memcpy(g_store_buf, g_buf, offset, g_mxps);

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, (uint32_t) g_mxps,

USB_FS_DEVICE_ADDRESS_1);

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 if (USB_HID_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, (uint32_t) g_mxps,

USB_FS_DEVICE_ADDRESS_1);

 }

 break;

 }

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_main */

/**

 * Function Name : set_protocol

 * Description : Sending SetProtocol request to HID device

 * Arguments : usb_ctrl_t *p_ctrl : Pointer to usb_instance_ctrl_t structure.

 * : uint8_t ptorocol: Protocol Type

 * : uint8_t device_address: Device address that sends this request

 * Return value : none

 **/

static void set_protocol (usb_instance_ctrl_t * p_ctrl, uint8_t protocol, uint8_t

device_address)

{

 usb_setup_t setup;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,520 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

 setup.request_type =

SET_PROTOCOL; /*

bRequestCode:SET_PROTOCOL, bmRequestType */

 setup.request_value =

protocol; /* wValue: Protocol

Type */

 setup.request_index =

0x0000; /* wIndex:Interface */

 setup.request_length =

0x0000; /* wLength:Zero */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, (uint8_t *) &g_setup_data,

device_address); /* Request Control transfer */

} /* End of function set_protocol */

/**

 * Function Name : hid_memcpy

 * Description : Copy received hhid data to the application buffer

 * Arguments : uint8_t *p_dest : Pointer to application buffer

 * : uint8_t *p_src : Pointer to received buffer

 * : uint16_t offset : Application buffer offset

 * : uint16_t size : Size of receiced hhid data

 * Return value : uint16_t offset + i: Offset

 **/

static uint16_t hid_memcpy (uint8_t * p_dest, uint8_t * p_src, uint16_t offset,

uint16_t size)

{

 uint16_t i;

 for (i = 0; i < size; i++)

 {

 if ((offset + i) == BUFSIZE)

 {

 offset = 0;

 }

 *(p_dest + offset + i) = *(p_src + i);

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,521 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Human Interface Device Class Driver (r_usb_hhid)

 return (uint16_t) (offset + i);

} /* End of function hid_memcpy */

Function Documentation

◆ R_USB_HHID_TypeGet()

fsp_err_t R_USB_HHID_TypeGet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_type, uint8_t
device_address)

Get HID protocol.(USB Mouse/USB Keyboard/Other Type.)

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

◆ R_USB_HHID_MaxPacketSizeGet()

fsp_err_t R_USB_HHID_MaxPacketSizeGet (usb_ctrl_t *const p_api_ctrl, uint16_t * p_size, uint8_t
direction, uint8_t device_address)

Obtains max packet size for the connected HID device. The max packet size is set to the area. Set
the direction (USB_HID_IN/USB_HID_OUT).

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

4.2.56 USB Host Mass Storage Class Driver (r_usb_hmsc)
Modules

Functions

fsp_err_t R_USB_HMSC_StorageCommand (usb_ctrl_t *const p_api_ctrl, uint8_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,522 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

*buf, uint8_t command, uint8_t destination)

 Processing for MassStorage(ATAPI) command. More...

fsp_err_t R_USB_HMSC_DriveNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*p_drive, uint8_t destination)

 Get number of Storage drive. More...

fsp_err_t R_USB_HMSC_SemaphoreGet (void)

 Get a semaphore. (RTOS only) More...

fsp_err_t R_USB_HMSC_SemaphoreRelease (void)

 Release a semaphore. (RTOS only) More...

fsp_err_t R_USB_HMSC_StorageReadSector (uint16_t drive_number, uint8_t
*const buff, uint32_t sector_number, uint16_t sector_count)

 Read sector information. More...

fsp_err_t R_USB_HMSC_StorageWriteSector (uint16_t drive_number, uint8_t
const *const buff, uint32_t sector_number, uint16_t sector_count)

 Write sector information. More...

Detailed Description

This module provides a USB Host Mass Storage Class (HMSC) driver. It implements the USB HMSC
Interface.

Overview
The r_usb_hmsc module, when used in combination with the r_usb_basic module, operates as a USB
Host Mass Storage Class (HMSC) driver. It is built on the USB Mass Storage Class Bulk-Only Transport
(BOT) protocol. It is possible to communicate with BOT-compatible USB storage devices by
combining this module with a file system and storage device driver.

Note
This module should be used in combination with the FreeRTOS+FAT File System.

Features

The r_usb_hmsc module has the following key features:

Checking of connected USB storage devices to determine whether or not operation is
supported

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,523 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

Storage command communication using the BOT protocol
Support for SFF-8070i (ATAPI) USB mass storage subclass
Sharing of a single pipe for IN/OUT directions or multiple devices
Supports up to 4 connected USB storage devices

Class Requests

The class requests supported by this driver are shown below.

Request Description

GetMaxLun Gets the maximum number of units that are
supported.

MassStorageReset Cancels a protocol error.

Storage Commands

This driver supports the following storage commands:

TEST_UNIT_READY
MODE_SELECT10
MODE_SENSE10
PREVENT_ALLOW
READ_FORMAT_CAPACITY
READ10
WRITE10

Configuration
Refer to the USB (r_usb_basic) module.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Warning

Due to the wide variety of USB mass storage device implementations, this driver is not
guaranteed to work with all devices. When implementing the driver it is important to verify
correct operation with the mass storage devices that the end user is expected to use.

Multi Port

This driver supports simultaneous operation with Peripheral Communication Device Class(PCDC). If
the user are using MCU that supports 2 USB modules, such as RA6M3, the user can run HMSC on one
USB module and PCDC on the other. This driver does not support simultaneous operation using
device classes other than PCDC.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,524 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

For Bare Metal

1. To use FreeRTOS+FAT without FreeRTOS, copy FreeRTOSConfigMinimal.h to one of your
project's include paths and rename it FreeRTOSConfig.h.

2. In RA configurator, enter the appropriate values in the Main stack size and Heap size fields.
The figure below is an example of the RA6M3-EK board.

Figure 184: BSP Setting

1. In the Bare Metal version, specify "NULL" in the Callback item.

Figure 185: For Bare Metal Setting

Limitations

1. Some MSC devices may be unable to connect because they are not recognized as storage
devices.

2. MSC devices that return values of 1 or higher in response to the GetMaxLun command
(mass storage class command) are not supported.

3. A maximum of 4 USB storage devices can be connected.
4. Only USB storage devices with a sector size of 512 bytes can be connected.
5. A device that does not respond to the READ_CAPACITY command operates as a device with

a sector size of 512 bytes.
6. The continuous transfer mode cannot be used when using DMA.
7. This module must be incorporated into a project using r_usb_basic and does not provide

any public APIs.
8. This driver does not support Low-speed.

Examples
USB HMSC Example

Example Operating Environment

The following shows an example operating environment for the HMSC.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,525 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

Refer to the associated instruction manuals for details on setting up the evaluation board and using
the emulator, etc.

Figure 186: Example Operating Environment

Application Specifications

The main functions of the application are as follows:

1. Performs enumeration and drive recognition processing on MSC devices.
2. After the above processsing finisihes, the application writes the file to the MSC device once.
3. After writing the above file, the APL repeatedly reads the file. It continues to read the file

repeatedly until the switch is pressed again.

Application Processing (for RTOS)

This application has two tasks. An overview of the processing in these two tasks is provided below.

usb_apl_task

1. After start up, MCU pin setting, USB controller initialization, and application program
initialization are performed.

2. The MSC device is attached to the kit. When enumeration and drive recognition processing
have completed, the USB driver calls the callback function (usb_apl_callback). In the
callback function (usb_apl_callback), the application task is notified of the USB completion
event using the FreeRTOS functionality.

3. In the application task, information regarding the USB completion event about which
notification was received from the callback function is retrieved using the real-time OS

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,526 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

functionality.
4. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step

2 above is USB_STS_CONFIGURED then, based on the USB completion event, the MSC
device is mounted and the file is written to the MSC device.

5. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STS_DETACH, the application initializes the variables for state management.

Figure 187: usb_apl_task

 file_read_task

Of the application tasks usb_apl_task and file_read_task, file_read_task is processed while
usb_apl_task is in the wait state. This task performs file read processing on the file that was written
to the MSC device.

Example Code

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME "TEST_FILE.txt"

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES (10240)

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER (0)

 #define RM_FREERTOS_PLUS_FAT_EXAMPLE_SUPPORT_USB

typedef enum

{

 STATE_ATTACH, STATE_DATA_READY, STATE_DATA_WRITE, STATE_FILE_READ, STATE_DETACH,

STATE_ERROR,

} state_t;

extern rm_freertos_plus_fat_instance_ctrl_t g_rm_freertos_plus_fat0_ctrl;

extern const rm_freertos_plus_fat_cfg_t g_rm_freertos_plus_fat0_cfg;

// @@extern const rm_freertos_plus_fat_disk_cfg_t g_rm_freertos_plus_fat0_disk_cfg;

uint8_t g_file_data[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,527 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

uint8_t g_read_buffer[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

static uint16_t g_state = STATE_DETACH;

void usb_hmsc_baremetal_example (void)

{

 uint16_t i;

 uint16_t k;

 fsp_err_t err;

 FF_FILE * pxSourceFile;

 FF_Disk_t disk;

 rm_freertos_plus_fat_device_t device;

 usb_status_t event;

 usb_event_info_t event_info;

 FF_Error_t ff_err;

 size_t size_return;

 int close_err;

 rm_block_media_usb_instance_ctrl_t * p_instance_ctrl;

 for (i = 0; i < RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES; i++)

 {

 g_file_data[i] = (uint8_t) i;

 }

 /* Open media driver.*/

 RM_FREERTOS_PLUS_FAT_Open(&g_rm_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat0_cfg);

/* When using USB media, enable RM_FREERTOS_PLUS_FAT_EXAMPLE_SUPPORT_USB macro. */

 #ifdef RM_FREERTOS_PLUS_FAT_EXAMPLE_SUPPORT_USB

 while (1)

 {

 g_usb_on_usb.eventGet(&event_info, &event);

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,528 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 p_instance_ctrl = event_info.p_context;

 p_instance_ctrl->device_address = event_info.device_address;

 RM_FREERTOS_PLUS_FAT_MediaInit(&g_rm_freertos_plus_fat0_ctrl, &device);

 /* Initialize one disk for each partition used in the application. */

 RM_FREERTOS_PLUS_FAT_DiskInit(&g_rm_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat0_disk_cfg, &disk);

 /* Mount each disk. This assumes the disk is already partitioned and formatted. */

 FF_Mount(&disk, RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 /* Add the disk to the file system. */

 FF_FS_Add("/", &disk);

 /* Open a source file for writing. */

 pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "w");

 /* Write file data. */

 ff_fwrite(g_file_data, sizeof(g_file_data), 1, pxSourceFile);

 /* Close the file. */

 ff_fclose(pxSourceFile);

 g_state = STATE_FILE_READ;

 break;

 }

 case USB_STATUS_DETACH:

 {

 g_state = STATE_DETACH;

 RM_FREERTOS_PLUS_FAT_DiskDeinit(&g_rm_freertos_plus_fat0_ctrl, &disk);

 break;

 }

 default:

 {

 break;

 }

 }

 if (STATE_FILE_READ == g_state)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,529 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

 pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "r");

 for (k = 0; k < RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES; k++)

 {

 g_read_buffer[k] = (uint8_t) 0;

 }

 /* Read file data. */

 size_return = ff_fread(g_read_buffer, sizeof(g_file_data), 1,

pxSourceFile);

 /* Close the file. */

 close_err = ff_fclose(pxSourceFile);

 }

 }

 #endif

}

Function Documentation

◆ R_USB_HMSC_StorageCommand()

fsp_err_t R_USB_HMSC_StorageCommand (usb_ctrl_t *const p_api_ctrl, uint8_t * buf, uint8_t
command, uint8_t destination)

Processing for MassStorage(ATAPI) command.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,530 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

◆ R_USB_HMSC_DriveNumberGet()

fsp_err_t R_USB_HMSC_DriveNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t * p_drive, uint8_t
destination)

Get number of Storage drive.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

◆ R_USB_HMSC_SemaphoreGet()

fsp_err_t R_USB_HMSC_SemaphoreGet (void)

Get a semaphore. (RTOS only)

If this function is called in the OS less execution environment, a failure is returned.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

◆ R_USB_HMSC_SemaphoreRelease()

fsp_err_t R_USB_HMSC_SemaphoreRelease (void)

Release a semaphore. (RTOS only)

If this function is called in the OS less execution environment, a failure is returned.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,531 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Mass Storage Class Driver (r_usb_hmsc)

◆ R_USB_HMSC_StorageReadSector()

fsp_err_t R_USB_HMSC_StorageReadSector (uint16_t drive_number, uint8_t *const buff, uint32_t
sector_number, uint16_t sector_count)

Read sector information.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
The address specified in the argument buff must be 4-byte aligned.

◆ R_USB_HMSC_StorageWriteSector()

fsp_err_t R_USB_HMSC_StorageWriteSector (uint16_t drive_number, uint8_t const *const buff,
uint32_t sector_number, uint16_t sector_count)

Write sector information.

Return values
FSP_SUCCESS Success.

FSP_ERR_USB_FAILED The function could not be completed
successfully.

FSP_ERR_ASSERTION Parameter Null pointer error.

FSP_ERR_USB_PARAMETER Parameter error.

Note
The address specified in the argument buff must be 4-byte aligned.

4.2.57 USB Host Vendor Class (r_usb_hvnd)
Modules

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,532 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

Overview
USB Host Vendor class works by combining r_usb_basic module.

How to Configuration
The following shows FSP configuration procedure for USB Host Vendor class.

Select [New Stack]->[Middleware]->[USB]->[USB Host Vendor class driver on r_usb_hvnd].

Figure 188: Select USB Host Vendor Class

The following is displayed when selecting [USB Host Vendor class driver on r_usb_hvnd].
The user does not specify USB pipe number in Vendor class.

Figure 189: USB Host Vendor Class Stack

API
Use the following APIs in Host Vendor class application program.

For Data Transfer
Use the following APIs for data transfer for Bulk transfer or Interrupt transfer.

1. R_USB_PipeRead()
2. R_USB_PipeWrite()

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,533 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

3. R_USB_PipeStop()

For Control Transfer
Use the following API for the class request processing.

1. R_USB_HostControlTransfer()

For USB Pipe Information
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor
class. Use the following APIs to get the allocated USB pipe information.

1. R_USB_UsedPipesGet()
2. R_USB_PipeInfoGet()

USB PIPE Allocation
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor class.
The USB PIPE related to the Endpoint Descriptor are allocated in order from USB PIPE1 according to
the description order of the Endpoint Descriptor.

Examples
This application program processes the follwoing after the enumeration completes with USB device.

1. Getting USB Pipe Infomattion
2. Vendor Class Request Processing
3. Loopback processing of bulk transfer and interrupt transfer.

/**

**

 * Macro definitions

 **

**/

/* for Vendor Class Request */

#define USB_SET_VENDOR_NO_DATA (0x0000U)

#define USB_SET_VENDOR (0x0100U)

#define USB_GET_VENDOR (0x0200U)

#define SET_VENDOR_NO_DATA (USB_SET_VENDOR_NO_DATA | USB_HOST_TO_DEV |

USB_VENDOR | USB_INTERFACE)

#define SET_VENDOR (USB_SET_VENDOR | USB_HOST_TO_DEV | USB_VENDOR |

USB_INTERFACE)

#define GET_VENDOR (USB_GET_VENDOR | USB_DEV_TO_HOST | USB_VENDOR |

USB_INTERFACE)

/**

**

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,534 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 * Function Name : usb_main

 * Description : main routine or task for host vendor class application.

 * Arguments : none:

 * Return value : none

 **

**/

void main_task (void)

{

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif

 usb_status_t event;

 usb_event_info_t event_info;

 uint8_t bulk_out_pipe = 0; /* Bulk Out Pipe */

 uint8_t bulk_in_pipe = 0; /* Bulk In Pipe */

 uint8_t int_out_pipe = 0; /* Interrupt Out Pipe */

 uint8_t int_in_pipe = 0; /* Interrupt In Pipe */

 uint16_t buf_type = 0;

 uint8_t pipe = 0;

 uint8_t is_zlp[2] = {0, 0};

 uint16_t used_pipe = 0;

 usb_pipe_t pipe_info;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

#if (BSP_CFG_RTOS == 2)

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **) &p_mess);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 g_usb_on_usb.eventGet(&event_info, &event);

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,535 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 case USB_STATUS_CONFIGURED:

 {

 buffer_init();

 is_zlp[0] = 0;

 is_zlp[1] = 0;

 /* Get USB Pipe Information */

 g_usb_on_usb.usedPipesGet(&g_basic0_ctrl, &used_pipe,

ADDRESS1);

 for (pipe = START_PIPE; pipe < END_PIPE; pipe++)

 {

 if ((used_pipe & (1 << pipe)) != 0)

 {

 g_usb_on_usb.pipeInfoGet(&g_basic0_ctrl, &pipe_info,

pipe);

 if (USB_EP_DIR_IN != (pipe_info.endpoint & USB_EP_DIR_IN))

 {

 /* Out Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

 bulk_out_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_out_pipe = pipe;

 }

 }

 else

 {

 /* In Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,536 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 bulk_in_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_in_pipe = pipe;

 }

 }

 }

 }

 /* Send Vendor Class Request */

 class_request_set_vendor_no_data(&g_basic0_ctrl,

event_info.device_address);

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

 if (FSP_ERR_USB_FAILED != event_info.status)

 {

 if (bulk_in_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 pipe = bulk_out_pipe;

 }

 else if (int_in_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 pipe = int_out_pipe;

 }

 else

 {

 while (1)

 {

 ;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,537 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 }

 }

 buffer_check(buf_type, event_info.data_size);

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl,

&g_buf[buf_type][0], event_info.data_size, pipe);

 }

 break;

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 if (bulk_out_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 if (1 == is_zlp[buf_type])

 {

 pipe = bulk_in_pipe;

 }

 }

 else if (int_out_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 if (1 == is_zlp[buf_type])

 {

 pipe = int_in_pipe;

 }

 }

 else

 {

 /* Nothing */

 }

 if (1 == is_zlp[buf_type])

 {

 is_zlp[buf_type] = 0;

 buffer_clear(buf_type);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,538 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[buf_type][0],

BUF_SIZE, pipe);

 }

 else

 {

 is_zlp[buf_type] = 1;

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl, 0, 0,

event_info.pipe); /* Send ZLP */

 }

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 if (USB_SET_VENDOR_NO_DATA == (event_info.setup.request_type & USB_BREQUEST

))

 {

 class_request_set_vendor(&g_basic0_ctrl,

event_info.device_address);

 }

 else if (USB_SET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 class_request_get_vendor(&g_basic0_ctrl,

event_info.device_address);

 }

 else if (USB_GET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 buffer_init();

 /* Bulk Out Transfer */

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl,

&g_buf[BUF_BULK][0], (BUF_SIZE - USB_APL_MXPS),

 bulk_out_pipe);

 /* Interrupt Out Transfer */

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl, &g_buf[BUF_INT][0],

(BUF_SIZE - USB_APL_MXPS), int_out_pipe);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,539 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 }

 else

 {

 /* Unsupported request */

 }

 break;

 }

 case USB_STATUS_DETACH:

 {

 break;

 }

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_main */

static void class_request_set_vendor (usb_instance_ctrl_t * p_ctrl, uint8_t

device_address)

{

 usb_setup_t setup;

 uint16_t i;

 for (i = 0; i < REQ_SIZE; i++)

 {

 g_request_buf[i] = (uint8_t) i;

 }

 setup.request_type = SET_VENDOR; /* bRequestCode:SET_VENDOR,

bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = REQ_SIZE; /* wLength: Data Length */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, &g_request_buf[0],

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,540 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

device_address);

}

static void class_request_set_vendor_no_data (usb_instance_ctrl_t * p_ctrl,

uint8_t device_address)

{

 usb_setup_t setup;

 uint16_t i;

 for (i = 0; i < REQ_SIZE; i++)

 {

 g_request_buf[i] = (uint8_t) i;

 }

 setup.request_type = SET_VENDOR_NO_DATA; /*

bRequestCode:SET_VENDOR_NO_DATA, bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = 0x0000; /* wLength: Data Length */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, &g_request_buf[0],

device_address);

}

/**

**

 * Function Name : class_request_get_vendor

 * Description : Send Vendor Class Request (GET_VENDOR) to USB device.

 * Arguments : none

 * Return value : none

 **

**/

static void class_request_get_vendor (usb_instance_ctrl_t * p_ctrl, uint8_t

device_address)

{

 usb_setup_t setup;

 uint16_t i;

 for (i = 0; i < REQ_SIZE; i++)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,541 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 {

 g_request_buf[i] = 0;

 }

 setup.request_type = GET_VENDOR; /* bRequestCode:GET_VENDOR,

bmRequestType */

 setup.request_value = 0x0000; /* wValue:Zero */

 setup.request_index = 0x0000; /* wIndex:Interface */

 setup.request_length = REQ_SIZE; /* wLength: Data Length */

 /* Request Control transfer */

 g_usb_on_usb.hostControlTransfer(p_ctrl, &setup, &g_request_buf[0],

device_address);

}

/**

**

 * Function Name : buffer_init

 * Description : buffer initialization

 * Arguments : none

 * Return value : none

 **

**/

static void buffer_init (void)

{

 uint16_t i;

 uint16_t j;

 for (j = 0; j < 2; j++)

 {

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[j][i] = (uint8_t) i;

 }

 }

}

/**

**

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,542 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 * Function Name : buffer_check

 * Description : buffer check

 * Arguments : buf_type : buffer number

 * Return value : none

 **

**/

static void buffer_check (uint16_t buf_type, uint32_t size)

{

 uint16_t i;

 for (i = 0; i < (uint16_t) size; i++)

 {

 if ((uint8_t) (i & USB_VALUE_FF) != g_buf[buf_type][i])

 {

 while (1)

 {

 ;

 }

 }

 }

}

/**

**

 * Function Name : buffer_clear

 * Description : buffer clear

 * Arguments : buf_type : buffer number

 * Return value : none

 **

**/

static void buffer_clear (uint16_t buf_type)

{

 uint16_t i;

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[buf_type][i] = 0;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,543 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 }

}

/**

**

 * End of function usb_mcu_init

 **

**/

#if (BSP_CFG_RTOS == 2)

/**

**

 * Function Name : usb_apl_rec_msg

 * Description : Receive a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t** mess : Message pointer

 * : usb_tm_t tm : Timeout Value

 * Return : uint16_t : USB_OK / USB_ERROR

 **

**/

usb_er_t usb_apl_rec_msg (uint8_t id, usb_msg_t ** mess, usb_tm_t tm)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 (void) tm;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 *mess = NULL;

 err = xQueueReceive(handle, (void *) mess, (portMAX_DELAY));

 if ((pdTRUE == err) && (NULL != (*mess)))

 {

 result = USB_APL_OK;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,544 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/**

**

 * End of function usb_apl_rec_msg

 **

**/

/**

**

 * Function Name : usb_apl_snd_msg

 * Description : Send a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t* mess : Message pointer

 * Return : usb_er_t : USB_OK / USB_ERROR

 **

**/

usb_er_t usb_apl_snd_msg (uint8_t id, usb_msg_t * mess)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 err = xQueueSend(handle, (const void *) &mess, (TickType_t) (0));

 if (pdTRUE == err)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,545 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Host Vendor Class (r_usb_hvnd)

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/**

**

 * End of function usb_apl_snd_msg

 **

**/

#endif /* #if (BSP_CFG_RTOS == 2) */

4.2.58 USB Peripheral Communications Device Class (r_usb_pcdc)
Modules

This module provides a USB Peripheral Communications Device Class Driver (PCDC). It implements
the USB PCDC Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview
The r_usb_pcdc module combines with the r_usb_basic module to provide a USB Peripheral
Communications Device Class (PCDC) driver. The PCDC driver conforms to Abstract Control Model of
the USB Communications Device Class (CDC) specification and enables communication with a CDC
host device.

Features

The r_usb_pcdc module has the following key features:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,546 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Communications Device Class (r_usb_pcdc)

Data transfer to and from a USB host
Response to CDC class requests
Supports CDC notifications

Configuration
Build Time Configurations for r_usb_pcdc

The following build time configurations are defined in fsp_cfg/r_usb_pcdc_cfg.h:

Configuration Options Default Description

Bulk In Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE1 Select the USB pipe to
use for bulk input
transfers.

Bulk Out Pipe USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE2 Select the USB pipe to
use for bulk output
transfers.

Interrupt Out Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the USB pipe to
use for interrupts.

Configurations for Middleware > USB > USB PCDC driver on r_usb_pcdc

This module can be added to the Stacks tab via New Stack > Middleware > USB > USB PCDC driver
on r_usb_pcdc.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_pcdc0 Module name.

Note
Refer to the USB (r_usb_basic) module for hardware configuration options.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Abstract Control Model Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,547 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Communications Device Class (r_usb_pcdc)

The Abstract Control Model subclass of CDC is a technology that bridges the gap between USB
devices and earlier modems (employing RS-232C connections), enabling use of application programs
designed for older modems.

Class Requests (Host to Peripheral)

This driver notifies the application when receiving the following class requests:

Request Code Description

SetLineCoding 0x20 Sets communication line
settings (bitrate, data length,
parity, and stop bit length)

GetLineCoding 0x21 Acquires the communication
line setting state

SetControlLineState 0x22 Set communication line control
signals (RTS, DTR)

Note
For details concerning the Abstract Control Model requests, refer to Table 11 "Requests - Abstract Control Model"
in the "USB Communications Class Subclass Specification for PSTN Devices", Revision 1.2.

Data Format of Class Requests

The data format of supported class requests is described below:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0x21 SET_LINE_CODI
NG (0x20)

0x0000 0x0000 0x0007 usb_pcdc_linec
oding_t

0xA1 GET_LINE_COD
ING (0x21)

0x0000 0x0000 0x0007 usb_pcdc_linec
oding_t

0x21 SET_CONTROL
_LINE_STATE

(0x22)

usb_pcdc_ctrlli
nestate_t

0x0000 0x0000 None

Class Notifications (Peripheral to Host)

The following class notifications are supported:

Notification Code Description

SERIAL_STATE 0x20 Notification of serial line state

The data types returned are as follows:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0xA1 SERIAL_STATE
(0x20)

0x0000 0x0000 0x0002 usb_serial_stat
e_bitmap_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,548 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Communications Device Class (r_usb_pcdc)

Note
The host is notified with SERIAL_STATE whenever a change in the UART port state is detected. This driver will
automatically detect overrun, parity and framing errors. A state notification is performed when a transition from
normal to error state is detected.

Virtual COM-port Usage

When connected to a PC the CDC device can be used as a virtual COM port. After enumeration, the
CDC class requests GetLineCoding and SetControlLineState are executed by the target, and the CDC
device is registered in Windows Device Manager as a virtual COM device.

Registering the CDC device as a virtual COM-port in Windows Device Manager enables data
communication with the CDC device via a terminal app such as PuTTY. When changing settings of
the serial port in the terminal application, the UART setting is propagated to the firmware via the
class request SetLineCoding.

Data input (or file transmission) from the terminal app window is transmitted to the board using
endpoint 2 (EP2); data from the board side is transmitted to the PC using EP1.

When the last packet of data received is the maximum packet size, and the terminal determines that
there is continuous data, the received data may not be displayed in the terminal. If the received data
is smaller than the maximum packet size, the data received up to that point is displayed in the
terminal.

Multi Port

This driver supports simultaneous operation with Host Mass Storage Class(HMSC). If the user are
using MCU that supports 2 USB modules, such as RA6M3, the user can run PCDC on one USB module
and HMSC on the other. This driver does not support simultaneous operation using device classes
other than HMSC.

Limitations

This module must be incorporated into a project using r_usb_basic and does not provide
any public APIs.
This driver does not support Low-speed.

Examples
USB PCDC Loopback Example

The main functions of the PCDC loopback example are as follows:

1. Receives virtual UART configuration data from the host terminal
2. Loops all other received data back to the host terminal

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,549 / 2,794

https://www.putty.org/

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Communications Device Class (r_usb_pcdc)

Figure 190: Example Operating Environment

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,550 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Communications Device Class (r_usb_pcdc)

Figure 191: Main Loop processing (Echo mode)

void usb_basic_example (void)

{

 usb_event_info_t event_info;

 usb_status_t event;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

 /* Get USB event data */

 g_usb_on_usb.eventGet(&event_info, &event);

 /* Handle the received event (if any) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,551 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Communications Device Class (r_usb_pcdc)

 case USB_STATUS_WRITE_COMPLETE:

 /* Initialization complete; get data from host */

 g_usb_on_usb.read(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PCDC);

 break;

 case USB_STATUS_READ_COMPLETE:

 /* Loop back received data to host */

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, event_info.data_size,

USB_CLASS_PCDC);

 break;

 case USB_STATUS_REQUEST: /* Receive Class Request */

 if (USB_PCDC_SET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Configure virtual UART settings */

 g_usb_on_usb.periControlDataGet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else if (USB_PCDC_GET_LINE_CODING == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Send virtual UART settings back to host */

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, (uint8_t *)

&g_line_coding, LINE_CODING_LENGTH);

 }

 else

 {

 /* ACK all other status requests */

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 break;

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 break;

 default:

 break;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,552 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Communications Device Class (r_usb_pcdc)

 }

 }

}

Descriptor
A template for PCDC descriptors can be found in
ra/fsp/src/r_usb_pcdc/r_usb_pcdc_descriptor.c.template. Also, please be sure to use your vendor ID.

4.2.59 USB Peripheral Human Interface Device Class (r_usb_phid)
Modules

This module is USB Peripheral Human Interface Device Class Driver (PHID). It implements the USB
PHID Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview
The r_usb_phid module combines with the r_usb_basic module to provide a USB Peripheral Human
Interface Device Class (PHID) driver. The PHID driver conforms to the USB Human Interface Device
class specifications and implements communication with a HID host.

Features

The r_usb_phid module has the following functions:

Data transfer to and from a USB host
Response to HID class requests
Response to function references from the HID host

Note
This driver is not guaranteed to provide USB HID operation in all scenarios. The developer must verify correct
operation when connected to the targeted USB hosts.

Configuration
Build Time Configurations for r_usb_phid

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,553 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

The following build time configurations are defined in fsp_cfg/r_usb_phid_cfg.h:

Configuration Options Default Description

Interrupt In Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE6 Select the pipe number
for input interrupt
events.

Interrupt Out Pipe USB PIPE6
USB PIPE7
USB PIPE8
USB PIPE9

USB PIPE7 Select the pipe number
for output interrupt
events.

Configurations for Middleware > USB > USB PHID driver on r_usb_phid

This module can be added to the Stacks tab via New Stack > Middleware > USB > USB PHID driver
on r_usb_phid.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_phid0 Module name.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Class Requests (Host to Peripheral)

This driver notifies the application when receiving the following class requests:

Request Code Description

Get_Report 0x01 Receives a report from the HID
host

Set_Report 0x09 Sends a report to the HID host

Get_Idle 0x02 Receives a duration (time) from
the HID host

Set_Idle 0x0A Sends a duration (time) to the
HID host

Get_Protocol 0x03 Reads a protocol from the HID
host

Set_Protocol 0x0B Sends a protocol to the HID
host

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,554 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

Get_Descriptor 0x06 Transmits a report or HID
descriptor

The data format of supported class requests is described below:

bmRequestTyp
e

bRequest wValue wIndex wLength Data

0xA1 GET_REPORT
(0x01)

ReportType &
ReportID

Interface ReportLength Report

0x21 SET_REPORT
(0x09)

ReportType &
ReportID

Interface ReportLength Report

0xA1 GET_IDLE
(0x02)

0 & ReportID Interface 1 Idle rate

0x21 SET_IDLE
(0x0A)

Duration &
ReportID

Interface 0 Idle rate

0xA1 GET_PROTOCO
L (0x03)

0 Interface 0 0 (Boot) or 1
(Report)

0x21 SET_PROTOCO
L (0x0B)

0 (Boot) or 1
(Report)

Interface 0 Not applicable

Descriptors

A template for PHID descriptors can be found in
ra/fsp/src/r_usb_phid/r_usb_phid_descriptor.c.template. Be sure to replace the vendor ID with your
own.

Limitations

This driver does not support USB Hi-speed mode.
This driver does not support USB Low-speed mode.
This driver does not support DMA transfers.
This driver does not support simultaneous operation with USB Host device class.

Examples

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,555 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

Figure 192: Example Operating Environment

USB PHID Example (no RTOS)

This is a minimal example for implementing PHID in a non-RTOS application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,556 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

Figure 193: Main Loop processing for non-RTOS example

#define USB_RECEIVE_REPORT_DESCRIPTOR (76)

#define USB_RECEIVE_HID_DESCRIPTOR (9)

#define USB_WAIT_1000MS (1000)

#define SW_ACTIVE 0

#define SW R_PFS->PORT[0].PIN[8].PmnPFS_b.PIDR

#define SW_PDR R_PFS->PORT[0].PIN[8].PmnPFS_b.PDR

#define SW_PMR R_PFS->PORT[0].PIN[8].PmnPFS_b.PMR

static uint8_t g_buf[] = {0, 0, 0, 0, 0, 0, 0, 0}; /* HID data */

static const uint8_t g_zero_data[] = {0, 0, 0, 0, 0, 0, 0, 0}; /* zero data */

static uint16_t g_numlock = 0;

static uint8_t g_idle = 0;

uint8_t g_remote_wakeup_enable = USB_OFF;

uint8_t g_status = NO_WRITING;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,557 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

/**

 * Function Name : usb_cpu_getkeyno

 * Description : input key port

 * Arguments : none

 * Return value : uint16_t : key_no

 **/

uint8_t usb_cpu_getkeyno (void)

{

 uint8_t key_buf = 0;

 if (SW_ACTIVE == SW)

 {

 if (sw_on_count[0] < SW_ON_THRESHOLD)

 {

 sw_on_count[0]++;

 }

 }

 else

 {

 if (sw_on_count[0] >= SW_ON_THRESHOLD)

 {

 key_buf |= SW_PUSH;

 }

 sw_on_count[0] = 0;

 }

 return key_buf;

}

void set_key_data (uint8_t * p_buf)

{

 static uint8_t key_data;

 key_data = KBD_CODE_A;

 *(p_buf + 2) = key_data;

}

void usb_basic_example (void)

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,558 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 usb_event_info_t event_info;

 usb_status_t event;

 uint8_t * p_idle_value;

 uint8_t sw_data;

 usb_info_t info;

 fsp_err_t ret_code = FSP_SUCCESS;

 uint8_t send_data[16] BSP_ALIGN_VARIABLE(4);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 set_key_data(g_buf);

 while (1)

 {

 g_usb_on_usb.eventGet(&event_info, &event);

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 break;

 case USB_STATUS_WRITE_COMPLETE:

 if (DATA_WRITING == g_status)

 {

 g_status = ZERO_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, (uint8_t *) g_zero_data,

DATA_LEN, USB_CLASS_PHID); /* Sending the zero data (8 bytes) */

 }

 else

 {

 g_status = DATA_WRITING;

 usb_cpu_delay_xms(USB_WAIT_1000MS);

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 break;

 case USB_STATUS_REQUEST:

/* Receive Class Request */

 if (USB_SET_REPORT == (event_info.setup.request_type & USB_BREQUEST))

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,559 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 {

 g_usb_on_usb.read(&g_basic0_ctrl, (uint8_t *) &g_numlock, 2,

USB_CLASS_PHID); /* Get the NumLock data (NumLock data is not used) */

 }

 else if (USB_GET_DESCRIPTOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 if (USB_GET_REPORT_DESCRIPTOR == event_info.setup.request_value)

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl,

 (uint8_t *) g_apl_report,

USB_RECEIVE_REPORT_DESCRIPTOR);

 }

 else if (USB_GET_HID_DESCRIPTOR == event_info.setup.request_value)

 {

 for (uint8_t i = 0; i < USB_RECEIVE_HID_DESCRIPTOR; i++)

 {

 send_data[i] = g_apl_configuration[18 + i];

 }

 /* Configuration Descriptor address set. */

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, send_data,

USB_RECEIVE_HID_DESCRIPTOR);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 }

 else if (USB_SET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Get SetIdle value */

 p_idle_value = (uint8_t *) &event_info.setup.request_value;

 g_idle = p_idle_value[1];

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,560 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 else if (USB_GET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, &g_idle, 1);

 }

 else if (USB_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 else if (USB_GET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 break;

 case USB_STATUS_REQUEST_COMPLETE: /* Complete Class Request */

 if (USB_SET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 p_idle_value = (uint8_t *) &event_info.setup.request_value;

 g_idle = p_idle_value[1];

 }

 else if (USB_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,561 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 /* None */

 }

 else

 {

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 break;

 case USB_STATUS_SUSPEND:

 break;

 case USB_STATUS_DETACH:

 g_remote_wakeup_enable = USB_OFF;

 break;

 default:

 break;

 }

 ret_code = g_usb_on_usb.infoGet(&g_basic0_ctrl, &info, NULL);

 if (FSP_SUCCESS == ret_code)

 {

 sw_data = usb_cpu_getkeyno();

 if (USB_STATUS_SUSPEND == info.device_status)

 {

 if (0 != (sw_data & SW_PUSH))

 {

 g_usb_on_usb.remoteWakeup(&g_basic0_ctrl);

 }

 }

 }

 }

} /* End of function usb_basic_example() */

USB PHID Example (RTOS)

This is a minimal example for implementing PHID in an RTOS application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,562 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

Figure 194: Main Loop processing for RTOS example

 #define USB_APL_MBX (0)

void usb_apl_callback (usb_event_info_t * p_api_event, usb_hdl_t cur_task,

usb_onoff_t usb_state)

{

 (void) usb_state;

 (void) cur_task;

 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *) p_api_event);

} /* End of function usb_apl_callback */

/**

 * Function Name : usb_apl_rec_msg

 * Description : Receive a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t** mess : Message pointer

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,563 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 * : usb_tm_t tm : Timeout Value

 * Return : uint16_t : USB_OK / USB_ERROR

 **/

usb_er_t usb_apl_rec_msg (uint8_t id, usb_msg_t ** mess, usb_tm_t tm)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 *mess = NULL;

 err = xQueueReceive(handle, (void *) mess, (tm));

 if ((pdTRUE == err) && (NULL != (*mess)))

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/**

 * Function Name : usb_apl_snd_msg

 * Description : Send a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t* mess : Message pointer

 * Return : usb_er_t : USB_OK / USB_ERROR

 **/

usb_er_t usb_apl_snd_msg (uint8_t id, usb_msg_t * mess)

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,564 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 err = xQueueSend(handle, (const void *) &mess, (TickType_t) (0));

 if (pdTRUE == err)

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

 return result;

}

/* RTOS-enabled HID example */

void usb_basic_example_rtos (void)

{

 usb_event_info_t * p_mess;

 usb_event_info_t event_info;

 uint8_t * p_idle_value;

 uint8_t sw_data;

 usb_info_t info;

 fsp_err_t ret_code = FSP_SUCCESS;

 uint8_t send_data[16] BSP_ALIGN_VARIABLE(4);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 set_key_data(g_buf);

 /* Loop back between PC(TerminalSoft) and USB MCU */

 while (1)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,565 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **) &p_mess);

 event_info = *p_mess;

 switch (event_info.event)

 {

 case USB_STATUS_CONFIGURED:

 break;

 case USB_STATUS_WRITE_COMPLETE:

 if (DATA_WRITING == g_status)

 {

 g_status = ZERO_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, (uint8_t *) g_zero_data,

DATA_LEN, USB_CLASS_PHID); /* Sending the zero data (8 bytes) */

 }

 else

 {

 g_status = DATA_WRITING;

 usb_cpu_delay_xms(USB_WAIT_1000MS);

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 break;

 case USB_STATUS_REQUEST:

/* Receive Class Request */

 if (USB_SET_REPORT == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.read(&g_basic0_ctrl, (uint8_t *) &g_numlock, 2,

USB_CLASS_PHID); /* Get the NumLock data (NumLock data is not used) */

 }

 else if (USB_GET_DESCRIPTOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 if (USB_GET_REPORT_DESCRIPTOR == event_info.setup.request_value)

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl,

 (uint8_t *) g_apl_report,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,566 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

USB_RECEIVE_REPORT_DESCRIPTOR);

 }

 else if (USB_GET_HID_DESCRIPTOR == event_info.setup.request_value)

 {

 for (uint8_t i = 0; i < USB_RECEIVE_HID_DESCRIPTOR; i++)

 {

 send_data[i] = g_apl_configuration[18 + i];

 }

 /* Configuration Descriptor address set. */

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, send_data,

USB_RECEIVE_HID_DESCRIPTOR);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 }

 else if (USB_SET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* Get SetIdle value */

 p_idle_value = (uint8_t *) &event_info.setup.request_value;

 g_idle = p_idle_value[1];

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_ACK);

 }

 else if (USB_GET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl, &g_idle, 1);

 }

 else if (USB_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,567 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

USB_SETUP_STATUS_ACK);

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 else if (USB_GET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 else

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

USB_SETUP_STATUS_STALL);

 }

 break;

 case USB_STATUS_REQUEST_COMPLETE: /* Complete Class Request */

 if (USB_SET_IDLE == (event_info.setup.request_type & USB_BREQUEST))

 {

 p_idle_value = (uint8_t *) &event_info.setup.request_value;

 g_idle = p_idle_value[1];

 }

 else if (USB_SET_PROTOCOL == (event_info.setup.request_type & USB_BREQUEST))

 {

 /* None */

 }

 else

 {

 g_status = DATA_WRITING;

 g_usb_on_usb.write(&g_basic0_ctrl, g_buf, DATA_LEN, USB_CLASS_PHID

);

 }

 break;

 case USB_STATUS_SUSPEND:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,568 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Human Interface Device Class (r_usb_phid)

 break;

 case USB_STATUS_DETACH:

 g_remote_wakeup_enable = USB_OFF;

 break;

 default:

 break;

 }

 ret_code = g_usb_on_usb.infoGet(&g_basic0_ctrl, &info, NULL);

 if (FSP_SUCCESS == ret_code)

 {

 sw_data = usb_cpu_getkeyno();

 if (USB_STATUS_SUSPEND == info.device_status)

 {

 if (0 != (sw_data & SW_PUSH))

 {

 g_usb_on_usb.remoteWakeup(&g_basic0_ctrl);

 }

 }

 }

 }

} /* End of function usb_basic_example_rtos() */

4.2.60 USB Peripheral Mass Storage Class (r_usb_pmsc)
Modules

This module provides a USB Peripheral Mass Storage Class (PMSC) driver. It implements the USB
PMSC Interface.

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Detailed Description

Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,569 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Mass Storage Class (r_usb_pmsc)

The r_usb_pmsc module combines with the r_usb_basic module to provide USB Peripheral It operates
as a Mass Storage class driver (hereinafter referred to as PMSC).
The USB peripheral mass storage class driver (PMSC) comprises a USB mass storage class bulk-only
transport (BOT) protocol.
When combined with a USB peripheral control driver and media driver, it enables communication
with a USB host as a BOT-compatible storage device.

Features

The r_usb_pmsc module has the following key features:

Storage command control using the BOT protocol
Supports SFF-8070i (ATAPI)
Response to mass storage device class requests from a USB host

Configuration
Build Time Configurations for r_usb_pmsc

The following build time configurations are defined in fsp_cfg/r_usb_pmsc_cfg.h:

Configuration Options Default Description

Bulk Input Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE1 Select the USB pipe to
use for bulk input
transfers.

Bulk Output Transfer
Pipe

USB PIPE1
USB PIPE2
USB PIPE3
USB PIPE4
USB PIPE5

USB PIPE2 Select the USB pipe to
use for bulk output
transfers.

Vendor Information Vendor Information
must be 8 bytes long;
pad with spaces if
shorter.

Vendor Specify the vendor
information field (part
of the Inquiry
command response).

Product Information Product Information
must be 16 bytes long;
pad with spaces if
shorter.

Mass Storage Specify the product
information field (part
of the Inquiry
command response).

Product Revision Level Product Revision Level
must be 4 bytes long;
pad with spaces if
shorter.

1.00 Specify the product
revision level field (part
of the Inquiry
command response).

Sector size 512
4096

512 Specifies the sector
size.

Number of Transfer
Sectors

Please enter a number
between 1 and 255.

8 Specify the maximum
sector size to request
with one data transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,570 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Mass Storage Class (r_usb_pmsc)

Configurations for Middleware > USB > USB PMSC driver on r_usb_pmsc

This module can be added to the Stacks tab via New Stack > Middleware > USB > USB PMSC driver
on r_usb_pmsc.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_pmsc0 Module name.

Refer to the USB (r_usb_basic) module for hardware configuration options.

Clock Configuration

Refer to the USB (r_usb_basic) module.

Pin Configuration

Refer to the USB (r_usb_basic) module.

Usage Notes
Class Requests

The class requests supported by this driver are shown below.

Request Code Description

Bulk-Only Mass Storage Reset 0xFF Resets the connection interface
to the mass storage device.

Get Max Logical Unit Number 0xFE Reports the logical numbers
supported by the device.

Storage Commands

This driver supports the following storage commands.

Command Code Description

TEST_UNIT_READY 0x00 Checks the state of the
peripheral device.

REQUEST_SENSE 0x03 Gets the error information of
the previous storage command
execution result.

INQUIRY 0x12 Gets the parameter information
of the logical unit.

READ_FORMAT_CAPACITY 0x23 Gets the formattable capacity.

READ_CAPACITY 0x25 Gets the capacity information of
the logical unit.

READ10 0x28 Reads data.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,571 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Mass Storage Class (r_usb_pmsc)

WRITE10 0x1A Writes data.

MODE_SENSE10 0x5A Gets the parameters of the
logical unit.

Note
A STALL or FAIL error is sent to the host upon receipt of any command not listed in the above table.

BOT Protocol Overview

BOT (USB MSC Bulk-Only Transport) is a transfer protocol that encapsulates command, data, and
status (results of commands) using only two endpoints (one bulk in and one bulk out). The ATAPI
storage commands and the response status are embedded in a Command Block Wrapper (CBW) and
a Command Status Wrapper (CSW). The below image shows an overview of how the BOT protocol
progresses with command and status data flowing between USB host and peripheral.

Figure 195: BOT protocol Overview

Block Media Interface

PMSC implements a block media interface to enable access to higher-level modules. If the block
media interface supports multiple media, users can select any media to access.

Note
When the user develops the storage media driver, be sure to define the instance named "g_rm_block_media0".

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,572 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Mass Storage Class (r_usb_pmsc)

Limitations

1. The driver always returns 0 in response to the GetMaxLun command.
2. The driver supports a sector size of 512 bytes only.
3. The only media currently supported by the block media interface is an SD card. The card

must be inserted before initializing the driver.
4. When using DMA for Hi-Speed transfers continuous transfer mode must not be used in the

USB Basic driver.
5. The storage area must be formatted before use.
6. When using the SD/MMC Block Media Implementation (rm_block_media_sdmmc), "Card

Detection" must be set to "Not Used" in the SD/MMC Host Interface (r_sdhi) settings.
7. The driver does not support Low-speed.
8. This driver does not support simultaneous operation with USB Host device class.

Examples
USB PMSC Example

In this example, when the evaluation board is connected to the host PC it is recognized as a
removable disk and reading/writing files is possible. The FAT type is either FAT12, FAT16, or FAT32
depending on the size of the media used.

Figure 196: Example Operating Environment

void usb_pmsc_example (void)

{

 usb_event_info_t usb_event;

#if (BSP_CFG_RTOS == 2)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,573 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Mass Storage Class (r_usb_pmsc)

 usb_event_info_t * p_mess;

#else

 usb_status_t event;

#endif

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 /* Loop back between PC(TerminalSoft) and USB MCU */

 while (1)

 {

#if (BSP_CFG_RTOS == 2)

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **) &p_mess);

 usb_event = *p_mess;

 /* Analyzing the received message */

 switch (usb_event.event)

#else /* (BSP_CFG_RTOS == 2) */

 g_usb_on_usb.eventGet(&usb_event, &event);

 switch (event)

#endif /* (BSP_CFG_RTOS == 2) */

 {

 case USB_STATUS_CONFIGURED:

 {

 break;

 }

 case USB_STATUS_SUSPEND:

 case USB_STATUS_DETACH:

 {

#if USB_SUPPORT_LPW == USB_APL_ENABLE

// @@ low_power_mcu();

#endif /* USB_SUPPORT_LPW == USB_APL_ENABLE */

 break;

 }

 default:

 {

 break;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,574 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Mass Storage Class (r_usb_pmsc)

 }

 }

} /* End of function usb_main() */

Descriptor
A template for PMSC descriptors can be found in
ra/fsp/src/r_usb_pmsc/r_usb_pmsc_descriptor.c.template. Also, please be sure to use your vendor ID.

4.2.61 USB Peripheral Vendor Class (r_usb_pvnd)
Modules

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Overview
USB Peripheral Vendor class works by combining r_usb_basic module.

How to Configuration
The following shows FSP configuration procedure for USB Peripheral Vendor class.

Select [New Stack]->[Middleware]->[USB]->[USB Peripheral Vendor class driver on
r_usb_pvnd].

Figure 197: Select USB Peripheral Vendor Class

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,575 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

The following is displayed when selecting [USB Peripheral Vendor class driver on
r_usb_pvnd]. The user does not specify USB pipe number in Vendor class.

Figure 198: USB Peripheral Vendor Class Stack

API
Use the following APIs in Peripheral Vendor class application program.

For Data Transfer
Use the following APIs for data transfer for Bulk transfer or Interrupt transfer.

1. R_USB_PipeRead()
2. R_USB_PipeWrite()
3. R_USB_PipeStop()

For Control Transfer
Use the following API for the class request processing.

1. R_USB_PeriControlDataGet()
2. R_USB_PeriControlDataSet()
3. R_USB_PeriControlStatusSet()

For USB Pipe Information
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor
class. Use the following APIs to get the allocated USB pipe information.

1. R_USB_UsedPipesGet()
2. R_USB_PipeInfoGet()

USB PIPE Allocation
The USB driver allocates USB PIPE by analyzing the descriptor of USB device in Vendor class.
The USB PIPE related to the Endpoint Descriptor are allocated in order from USB PIPE1 according to
the description order of the Endpoint Descriptor.

Limitations
This Peripheral Vendor class can not be included in composite device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,576 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

Descriptor
Template for Vendor class descriptor can be found in ra/fsp/src/r_usb_pvnd folder. Also, please be
sure to use your vendor ID.

Examples
This application program processes the follwoing after the enumeration completes with USB device.

1. Getting USB Pipe Infomattion
2. Vendor Class Request Processing
3. Loopback processing of bulk transfer and interrupt transfer.

/**

**

 * Macro definitions

 **

**/

/* for Vendor Class Request */

#define USB_SET_VENDOR_NO_DATA (0x0000U)

#define USB_SET_VENDOR (0x0100U)

#define USB_GET_VENDOR (0x0200U)

/**

**

 * Function Name : usb_main

 * Description : main routine or task for peripheral vendor class

application.

 * Arguments : none:

 * Return value : none

 **

**/

void main_task (void)

{

#if (BSP_CFG_RTOS == 2)

 usb_event_info_t * p_mess;

#endif

 usb_status_t event;

 usb_event_info_t event_info;

 uint8_t bulk_out_pipe = 0; /* Bulk Out Pipe */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,577 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 uint8_t bulk_in_pipe = 0; /* Bulk In Pipe */

 uint8_t int_out_pipe = 0; /* Interrupt Out Pipe */

 uint8_t int_in_pipe = 0; /* Interrupt In Pipe */

 uint16_t buf_type = 0;

 uint8_t pipe = 0;

 uint8_t is_zlp[2] = {0, 0};

 uint32_t request_length = 0;

 uint16_t used_pipe = 0;

 usb_pipe_t pipe_info;

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

#if (BSP_CFG_RTOS == 2)

 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **) &p_mess);

 event_info = *p_mess;

 event = event_info.event;

#else /* (BSP_CFG_RTOS == 2) */

 g_usb_on_usb.eventGet(&event_info, &event);

#endif /* (BSP_CFG_RTOS == 2) */

 switch (event)

 {

 case USB_STATUS_CONFIGURED:

 {

 buffer_init();

 is_zlp[0] = 0;

 is_zlp[1] = 0;

 g_usb_on_usb.usedPipesGet(&g_basic0_ctrl, &used_pipe,

USB_CLASS_PVND);

 for (pipe = START_PIPE; pipe < END_PIPE; pipe++)

 {

 if ((used_pipe & (1 << pipe)) != 0)

 {

 g_usb_on_usb.pipeInfoGet(&g_basic0_ctrl, &pipe_info,

pipe);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,578 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 if (USB_EP_DIR_IN != (pipe_info.endpoint & USB_EP_DIR_IN))

 {

 /* Out Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

 bulk_out_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_out_pipe = pipe;

 }

 }

 else

 {

 /* In Transfer */

 if (USB_TRANSFER_TYPE_BULK == pipe_info.transfer_type)

 {

 buf_type = BUF_BULK;

 bulk_in_pipe = pipe;

 }

 else

 {

 buf_type = BUF_INT;

 int_in_pipe = pipe;

 }

 }

 }

 }

 break;

 }

 case USB_STATUS_READ_COMPLETE:

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,579 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 if (FSP_ERR_USB_FAILED != event_info.status)

 {

 if (bulk_out_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 pipe = bulk_in_pipe;

 }

 else if (int_out_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 pipe = int_in_pipe;

 }

 else

 {

 while (1)

 {

 ;

 }

 }

 buffer_check(buf_type, event_info.data_size);

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl,

&g_buf[buf_type][0], event_info.data_size, pipe);

 }

 break;

 }

 case USB_STATUS_WRITE_COMPLETE:

 {

 if (bulk_in_pipe == event_info.pipe)

 {

 buf_type = BUF_BULK;

 if (1 == is_zlp[buf_type])

 {

 pipe = bulk_out_pipe;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,580 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 }

 else if (int_in_pipe == event_info.pipe)

 {

 buf_type = BUF_INT;

 if (1 == is_zlp[buf_type])

 {

 pipe = int_out_pipe;

 }

 }

 else

 {

 /* Nothing */

 }

 if (1 == is_zlp[buf_type])

 {

 is_zlp[buf_type] = 0;

 buffer_clear(buf_type);

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[buf_type][0],

BUF_SIZE, pipe);

 }

 else

 {

 is_zlp[buf_type] = 1;

 g_usb_on_usb.pipeWrite(&g_basic0_ctrl, 0, 0,

event_info.pipe); /* Send ZLP */

 }

 break;

 }

 case USB_STATUS_REQUEST:

 {

 if (USB_SET_VENDOR_NO_DATA == (event_info.setup.request_type & USB_BREQUEST

))

 {

 g_usb_on_usb.periControlStatusSet(&g_basic0_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,581 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

USB_SETUP_STATUS_ACK);

 }

 else if (USB_SET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 request_length = event_info.setup.request_length;

 g_usb_on_usb.periControlDataGet(&g_basic0_ctrl,

&g_request_buf[0], request_length);

 }

 else if (USB_GET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.periControlDataSet(&g_basic0_ctrl,

&g_request_buf[0], request_length);

 }

 else

 {

 /* Nothing */

 }

 break;

 }

 case USB_STATUS_REQUEST_COMPLETE:

 {

 if (USB_GET_VENDOR == (event_info.setup.request_type & USB_BREQUEST))

 {

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[BUF_BULK][0],

BUF_SIZE, bulk_out_pipe);

 g_usb_on_usb.pipeRead(&g_basic0_ctrl, &g_buf[BUF_INT][0],

BUF_SIZE, int_out_pipe);

 }

 break;

 }

 case USB_STATUS_DETACH:

 {

 break;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,582 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 default:

 {

 break;

 }

 }

 }

} /* End of function usb_main */

/**

**

 * Function Name : buffer_init

 * Description : buffer initialization

 * Arguments : none

 * Return value : none

 **

**/

static void buffer_init (void)

{

 uint16_t i;

 uint16_t j;

 for (j = 0; j < 2; j++)

 {

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[j][i] = (uint8_t) i;

 }

 }

}

/**

**

 * Function Name : buffer_check

 * Description : buffer check

 * Arguments : buf_type : buffer number

 * Return value : none

 **

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,583 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

**/

static void buffer_check (uint16_t buf_type, uint32_t size)

{

 uint16_t i;

 for (i = 0; i < (uint16_t) size; i++)

 {

 if ((uint8_t) (i & USB_VALUE_FF) != g_buf[buf_type][i])

 {

 while (1)

 {

 ;

 }

 }

 }

}

/**

**

 * Function Name : buffer_clear

 * Description : buffer clear

 * Arguments : buf_type : buffer number

 * Return value : none

 **

**/

static void buffer_clear (uint16_t buf_type)

{

 uint16_t i;

 for (i = 0; i < BUF_SIZE; i++)

 {

 g_buf[buf_type][i] = 0;

 }

}

/**

**

 * End of function usb_mcu_init

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,584 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 **

**/

#if (BSP_CFG_RTOS == 2)

/**

**

 * Function Name : usb_apl_rec_msg

 * Description : Receive a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t** mess : Message pointer

 * : usb_tm_t tm : Timeout Value

 * Return : uint16_t : USB_OK / USB_ERROR

 **

**/

usb_er_t usb_apl_rec_msg (uint8_t id, usb_msg_t ** mess, usb_tm_t tm)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 (void) tm;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 *mess = NULL;

 err = xQueueReceive(handle, (void *) mess, (portMAX_DELAY));

 if ((pdTRUE == err) && (NULL != (*mess)))

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,585 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 return result;

}

/**

**

 * End of function usb_apl_rec_msg

 **

**/

/**

**

 * Function Name : usb_apl_snd_msg

 * Description : Send a message to the specified id (mailbox).

 * Argument : uint8_t id : ID number (mailbox).

 * : usb_msg_t* mess : Message pointer

 * Return : usb_er_t : USB_OK / USB_ERROR

 **

**/

usb_er_t usb_apl_snd_msg (uint8_t id, usb_msg_t * mess)

{

 BaseType_t err;

 QueueHandle_t handle;

 usb_er_t result;

 if (NULL == mess)

 {

 return USB_APL_ERROR;

 }

 handle = (*(g_apl_mbx_table[id]));

 err = xQueueSend(handle, (const void *) &mess, (TickType_t) (0));

 if (pdTRUE == err)

 {

 result = USB_APL_OK;

 }

 else

 {

 result = USB_APL_ERROR;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,586 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB Peripheral Vendor Class (r_usb_pvnd)

 }

 return result;

}

/**

**

 * End of function usb_apl_snd_msg

 **

**/

#endif /* #if (BSP_CFG_RTOS == 2) */

4.2.62 Watchdog Timer (r_wdt)
Modules

Functions

fsp_err_t R_WDT_Refresh (wdt_ctrl_t *const p_ctrl)

fsp_err_t R_WDT_Open (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

fsp_err_t R_WDT_StatusClear (wdt_ctrl_t *const p_ctrl, const wdt_status_t
status)

fsp_err_t R_WDT_StatusGet (wdt_ctrl_t *const p_ctrl, wdt_status_t *const
p_status)

fsp_err_t R_WDT_CounterGet (wdt_ctrl_t *const p_ctrl, uint32_t *const
p_count)

fsp_err_t R_WDT_TimeoutGet (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t
*const p_timeout)

fsp_err_t R_WDT_CallbackSet (wdt_ctrl_t *const p_ctrl,
void(*p_callback)(wdt_callback_args_t *), void const *const
p_context, wdt_callback_args_t *const p_callback_memory)

Detailed Description

Driver for the WDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,587 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

The watchdog timer is used to recover from unexpected errors in an application. The watchdog timer
must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the WDT resets the device
or generates an NMI.

Figure 199: Watchdog Timer Operation Example

Features

The WDT HAL module has the following key features:

When the WDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

The WDT has two supported modes:
In auto start mode, the WDT begins counting at reset.
In register start mode, the WDT can be started from the application.

Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT

Start Mode The WDT can be started from
the application (register start
mode) or configured by
hardware to start automatically

The IWDT can only be
configured by hardware to start
automatically.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,588 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

(auto start mode).

Clock Source The WDT runs off a peripheral
clock.

The IWDT has its own clock
source which improves safety.

Configuration
When using register start mode, configure the watchdog timer on the Stacks tab.

Note
When using auto start mode, configurations on the Stacks tab are ignored. Configure the watchdog using the OFS
settings on the BSP tab.

Build Time Configurations for r_wdt

The following build time configurations are defined in fsp_cfg/r_wdt_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Register Start NMI
Support

Enabled
Disabled

Disabled If enabled, code for NMI
support in register start
mode is included in the
build.

Configurations for Driver > Monitoring > Watchdog Driver on r_wdt

This module can be added to the Stacks tab via New Stack > Driver > Monitoring > Watchdog Driver
on r_wdt. Non-secure callable guard functions can be generated for this module by right clicking the
module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_wdt0 Module name.

Timeout 1,024 Cycles
4,096 Cycles
8,192 Cycles
16,384 Cycles

16,384 Cycles Select the watchdog
timeout in cycles.

Clock Division Ratio PCLK/4
PCLK/64
PCLK/128
PCLK/512
PCLK/2048
PCLK/8192

PCLK/8192 Select the watchdog
clock divisor.

Window Start Position 100% (Window
Position Not
Specified)
75%

100% (Window Position
Not Specified)

Select the allowed
watchdog refresh start
point.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,589 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

50%
25

Window End Position 0% (Window
Position Not
Specified)
25%
50%
75%

0% (Window Position
Not Specified)

Select the allowed
watchdog refresh end
point.

Reset Control Reset Output
NMI Generated

Reset Output Select what happens
when the watchdog
timer expires.

Stop Control WDT Count
Enabled in Low
Power Mode
WDT Count
Disabled in Low
Power Mode

WDT Count Disabled in
Low Power Mode

Select the watchdog
state in low power
mode.

NMI Callback Name must be a valid
C symbol

NULL A user callback
function must be
provided if the WDT is
configured to generate
an NMI when the timer
underflows or a refresh
error occurs. If this
callback function is
provided, it will be
called from the NMI
handler each time the
watchdog triggers.

Clock Configuration

The WDT clock is based on the PCLKB frequency. You can set the PCLKB frequency using the Clocks
tab of the RA Configuration editor or by using the CGC Interface at run-time. The maximum timeout
period with PCLKB running at 60 MHz is approximately 2.2 seconds.

Pin Configuration

This module does not use I/O pins.

Usage Notes
NMI Interrupt

The watchdog timer uses the NMI, which is enabled by default. No special configuration is required.
When the NMI is triggered, the callback function registered during open is called.

Note
When using the WDT in software start mode with NMI and the timer underflows, the WDT status must be reset by
calling R_WDT_StatusClear before restarting the timer via R_WDT_Refresh.

Period Calculation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,590 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

The WDT operates from PCLKB. With a PCLKB of 60 MHz, the maximum time from the last refresh to
device reset or NMI generation will be just over 2.2 seconds as detailed below.

PLCKB = 60 MHz
Clock division ratio = PCLKB / 8192
Timeout period = 16384 cycles
WDT clock frequency = 60 MHz / 8192 = 7.324 kHz
Cycle time = 1 / 7.324 kHz = 136.53 us
Timeout = 136.53 us x 16384 cycles = 2.23 seconds

Limitations

Developers should be aware of the following limitations when using the WDT:

When using a J-Link debugger the WDT counter does not count and therefore will not reset
the device or generate an NMI. To enable the watchdog to count and generate a reset or
NMI while debugging, add this line of code in the application:
 /* (Optional) Enable the WDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_WDT = 0;

If the WDT is configured to stop the counter in low power mode, then your application must
restart the watchdog by calling R_WDT_Refresh() after the MCU wakes from low power
mode.

Examples
WDT Basic Example

This is a basic example of minimal use of the WDT in an application.

void wdt_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* In auto start mode, the WDT starts counting immediately when the MCU is powered

on. */

 /* Initializes the module. */

 err = R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* In register start mode, start the watchdog by calling R_WDT_Refresh. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,591 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

 while (true)

 {

 /* Application work here. */

 /* Refresh before the counter underflows to prevent reset or NMI. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 }

}

WDT Advanced Example

This example demonstrates using a start window and gives an example callback to handle an NMI
generated by an underflow or refresh error.

#define WDT_TIMEOUT_COUNTS (16384U)

#define WDT_MAX_COUNTER (WDT_TIMEOUT_COUNTS - 1U)

#define WDT_START_WINDOW_75 ((WDT_MAX_COUNTER * 3) / 4)

/* Example callback called when a watchdog NMI occurs. */

void wdt_callback (wdt_callback_args_t * p_args)

{

 FSP_PARAMETER_NOT_USED(p_args);

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_WDT_StatusGet(&g_wdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

 /* (Optional) Log source of NMI and any other debug information. */

 /* (Optional) Clear the error flags. */

 err = R_WDT_StatusClear(&g_wdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

 /* (Register start mode) In register start mode, call R_WDT_Refresh() to

 * continue using the watchdog after an error. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 /* (Optional) Issue a software reset to reset the MCU. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,592 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

 __NVIC_SystemReset();

}

void wdt_advanced_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* (Optional) Enable the WDT to count and generate NMI or reset when the

 * debugger is connected. */

 R_DEBUG->DBGSTOPCR_b.DBGSTOP_WDT = 0;

 /* (Optional) Check if the WDTRF flag is set to know if the system is

 * recovering from a WDT reset. */

 if (R_SYSTEM->RSTSR1_b.WDTRF)

 {

 /* Clear the flag. */

 R_SYSTEM->RSTSR1 = 0U;

 }

 /* Open the module. */

 err = R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize other application code. */

 /* (Register start mode) Call R_WDT_Refresh() to start the WDT in register

 * start mode. Do not call R_WDT_Refresh() in auto start mode unless the

 * counter is in the acceptable refresh window. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Application work here. */

 /* (Optional) If there is a chance the application takes less time than

 * the start window, verify the WDT counter is past the start window

 * before refreshing the WDT. */

 uint32_t wdt_counter = 0U;

 do

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,593 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

 /* Read the current WDT counter value. */

 err = R_WDT_CounterGet(&g_wdt0_ctrl, &wdt_counter);

 assert(FSP_SUCCESS == err);

 } while (wdt_counter >= WDT_START_WINDOW_75);

 /* Refresh before the counter underflows to prevent reset or NMI. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

 }

}

Data Structures

struct wdt_instance_ctrl_t

Data Structure Documentation

◆ wdt_instance_ctrl_t

struct wdt_instance_ctrl_t

WDT private control block. DO NOT MODIFY. Initialization occurs when R_WDT_Open() is called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,594 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

◆ R_WDT_Refresh()

fsp_err_t R_WDT_Refresh (wdt_ctrl_t *const p_ctrl)

Refresh the watchdog timer. Implements wdt_api_t::refresh.

In addition to refreshing the watchdog counter this function can be used to start the counter in
register start mode.

Example:

 /* Refresh before the counter underflows to prevent reset or NMI. */

 err = R_WDT_Refresh(&g_wdt0_ctrl);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT successfully refreshed.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

Note
This function only returns FSP_SUCCESS. If the refresh fails due to being performed outside of the permitted
refresh period the device will either reset or trigger an NMI ISR to run.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,595 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

◆ R_WDT_Open()

fsp_err_t R_WDT_Open (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

Configure the WDT in register start mode. In auto-start_mode the NMI callback can be registered.
Implements wdt_api_t::open.

This function should only be called once as WDT configuration registers can only be written to once
so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = R_WDT_Open(&g_wdt0_ctrl, &g_wdt0_cfg);

Return values
FSP_SUCCESS WDT successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_STATE The security state of the NMI and the
module do not match.

Note
In auto start mode the only valid configuration option is for registering the callback for the NMI ISR if NMI output
has been selected.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,596 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

◆ R_WDT_StatusClear()

fsp_err_t R_WDT_StatusClear (wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

Clear the WDT status and error flags. Implements wdt_api_t::statusClear.

Example:

 /* (Optional) Clear the error flags. */

 err = R_WDT_StatusClear(&g_wdt0_ctrl, status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT flag(s) successfully cleared.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

FSP_ERR_UNSUPPORTED This function is only valid if the watchdog
generates an NMI when an error occurs.

Note
When the WDT is configured to output a reset on underflow or refresh error reading the status and error flags
serves no purpose as they will always indicate that no underflow has occurred and there is no refresh error.
Reading the status and error flags is only valid when interrupt request output is enabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,597 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

◆ R_WDT_StatusGet()

fsp_err_t R_WDT_StatusGet (wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

Read the WDT status flags. Implements wdt_api_t::statusGet.

Indicates both status and error conditions.

Example:

 /* (Optional) Determine the source of the NMI. */

 wdt_status_t status = WDT_STATUS_NO_ERROR;

 err = R_WDT_StatusGet(&g_wdt0_ctrl, &status);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT status successfully read.

FSP_ERR_ASSERTION Null pointer as a parameter.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

FSP_ERR_UNSUPPORTED This function is only valid if the watchdog
generates an NMI when an error occurs.

Note
When the WDT is configured to output a reset on underflow or refresh error reading the status and error flags
serves no purpose as they will always indicate that no underflow has occurred and there is no refresh error.
Reading the status and error flags is only valid when interrupt request output is enabled.

◆ R_WDT_CounterGet()

fsp_err_t R_WDT_CounterGet (wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

Read the current count value of the WDT. Implements wdt_api_t::counterGet.

Example:

 /* Read the current WDT counter value. */

 err = R_WDT_CounterGet(&g_wdt0_ctrl, &wdt_counter);

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS WDT current count successfully read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,598 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Watchdog Timer (r_wdt)

◆ R_WDT_TimeoutGet()

fsp_err_t R_WDT_TimeoutGet (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const p_timeout)

Read timeout information for the watchdog timer. Implements wdt_api_t::timeoutGet.

Return values
FSP_SUCCESS WDT timeout information retrieved

successfully.

FSP_ERR_ASSERTION Null Pointer.

FSP_ERR_NOT_OPEN Instance control block is not initialized.

◆ R_WDT_CallbackSet()

fsp_err_t R_WDT_CallbackSet (wdt_ctrl_t *const p_ctrl, void(*)(wdt_callback_args_t *) p_callback,
void const *const p_context, wdt_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
wdt_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

4.2.63 ADPCM Decoder (rm_adpcm_decoder)
Modules

Functions

fsp_err_t RM_ADPCM_DECODER_Open (adpcm_decoder_ctrl_t *p_ctrl,
adpcm_decoder_cfg_t const *const p_cfg)

fsp_err_t RM_ADPCM_DECODER_Decode (adpcm_decoder_ctrl_t *const p_ctrl,
void const *p_src, void *p_dest, uint32_t src_len_bytes)

fsp_err_t RM_ADPCM_DECODER_Reset (adpcm_decoder_ctrl_t *p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,599 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ADPCM Decoder (rm_adpcm_decoder)

fsp_err_t RM_ADPCM_DECODER_Close (adpcm_decoder_ctrl_t *p_ctrl)

Detailed Description

Middleware to implement the ADPCM Audio Decoder. This module implements the ADPCM Decoder
Interface.

Overview
Features

The ADPCM Audio Decoder has the following key features:

Decodes 4-bit ADPCM input to 16-bit PCM output

Configuration
Build Time Configurations for rm_adpcm_decoder

The following build time configurations are defined in fsp_cfg/rm_adpcm_decoder_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Audio > ADPCM Decoder on rm_adpcm_decoder

This module can be added to the Stacks tab via New Stack > Middleware > Audio > ADPCM Decoder
on rm_adpcm_decoder.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_adpcm_decoder0 Module name.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

This is a basic example of minimal use of the ADPCM Audio Decoder implementation in an
application.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,600 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ADPCM Decoder (rm_adpcm_decoder)

void rm_adpcm_decoder_example ()

{

 /* Open the ADPCM audio decoder instance. */

 fsp_err_t err = RM_ADPCM_DECODER_Open(&g_adpcmdec_ctrl, &g_adpcmdec_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Decode the data */

 err = RM_ADPCM_DECODER_Decode(&g_adpcmdec_ctrl, g_adpcm_stream1, g_pcm_stream,

ADPCM_BUFFER_SIZE_BYTES);

 assert(FSP_SUCCESS == err);

 /* Reset the ADPCM audio decoder instance before decoding a new stream. */

 err = RM_ADPCM_DECODER_Reset(&g_adpcmdec_ctrl);

 assert(FSP_SUCCESS == err);

 /* Decode the first chunk of ADPCM data */

 err = RM_ADPCM_DECODER_Decode(&g_adpcmdec_ctrl, g_adpcm_stream2, g_pcm_stream,

(ADPCM_BUFFER_SIZE_BYTES/2));

 assert(FSP_SUCCESS == err);

 /* Decode the second chunk of ADPCM data */

 err = RM_ADPCM_DECODER_Decode(&g_adpcmdec_ctrl,

&g_adpcm_stream2[ADPCM_BUFFER_SIZE_BYTES/2],

 g_pcm_stream, (ADPCM_BUFFER_SIZE_BYTES/2));

 assert(FSP_SUCCESS == err);

}

Data Structures

struct adpcm_decoder_instance_ctrl_t

Data Structure Documentation

◆ adpcm_decoder_instance_ctrl_t

struct adpcm_decoder_instance_ctrl_t

RM_ADPCM_DECODER instance control block. DO NOT INITIALIZE. Initialized in
adpcm_decoder_api_t::open().

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,601 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ADPCM Decoder (rm_adpcm_decoder)

◆ RM_ADPCM_DECODER_Open()

fsp_err_t RM_ADPCM_DECODER_Open (adpcm_decoder_ctrl_t * p_ctrl, adpcm_decoder_cfg_t const
*const p_cfg)

Initializes ADPCM audio decoder device.

Implements adpcm_decoder_api_t::open().

Return values
FSP_SUCCESS Module is ready for use.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_ALREADY_OPEN The instance control structure has already
been opened.

◆ RM_ADPCM_DECODER_Decode()

fsp_err_t RM_ADPCM_DECODER_Decode (adpcm_decoder_ctrl_t *const p_ctrl, void const * p_src,
void * p_dest, uint32_t src_len_bytes)

Decodes 4bit ADPCM data to 16bit PCM data. It reads ADPCM data from area pointed by inputAddr
pointer, decodes the number of samples specified and stores the decoded data in buffer pointed
with outputAddr pointer.

Implements adpcm_decoder_api_t::decode().

Return values
FSP_SUCCESS Decode operation successfully completed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

◆ RM_ADPCM_DECODER_Reset()

fsp_err_t RM_ADPCM_DECODER_Reset (adpcm_decoder_ctrl_t * p_ctrl)

This function resets the ADPCM decoder device.

Implements adpcm_decoder_api_t::reset().

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,602 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ADPCM Decoder (rm_adpcm_decoder)

◆ RM_ADPCM_DECODER_Close()

fsp_err_t RM_ADPCM_DECODER_Close (adpcm_decoder_ctrl_t * p_ctrl)

This function closes the ADPCM decoder device.

Implements adpcm_decoder_api_t::close().

Return values
FSP_SUCCESS Module closed.

FSP_ERR_ASSERTION An input argument is invalid.

FSP_ERR_NOT_OPEN Unit is not open.

4.2.64 Audio Playback with PWM (rm_audio_playback_pwm)
Modules

Functions

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Open (audio_playback_ctrl_t *const
p_api_ctrl, audio_playback_cfg_t const *const p_cfg)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Start (audio_playback_ctrl_t *const
p_api_ctrl)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Stop (audio_playback_ctrl_t *const
p_api_ctrl)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Play (audio_playback_ctrl_t *const
p_api_ctrl, void const *const p_buffer, uint32_t length)

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Close (audio_playback_ctrl_t *const
p_api_ctrl)

Detailed Description

Driver for the Audio Playback middleware on RA MCUs. This module implements the AUDIO
PLAYBACK Interface.

Overview
Features

The Audio Playback with PWM middleware is used to play audio streams at user selected playback
rate using Pulse Width Modulation hardware on GPT or AGT timers. This module can play the 16 bit

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,603 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

uncompressed, unsigned PCM audio stream when AGT is selected as PWM interface and can play 32
bit uncompressed, unsigned PCM audio stream when GPT is used as PWM interface. The application
code is expected to convert the signed PCM data to unsigned PCM data and scale it with the
playback rate before starting the playback.

Configuration
Build Time Configurations for rm_audio_playback_pwm

The following build time configurations are defined in fsp_cfg/rm_audio_playback_pwm_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

DMAC Support Enabled
Disabled

Disabled Select if DMAC will be
used.

Configurations for Middleware > Audio > Audio Playback PWM driver on
rm_audio_playback_pwm

This module can be added to the Stacks tab via New Stack > Middleware > Audio > Audio Playback
PWM driver on rm_audio_playback_pwm.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_rm_audio_playback0 Module name.

General > Playback
Speed (Hz)

Manual Entry 44100 Enter playback sample
rate in Hz.

Interrupts > Callback Name must be a valid
C symbol

g_rm_audio_playback0_
callback

A user callback
function. If this callback
function is provided, it
is called from the
interrupt service
routine (ISR) each time
the playback
completes.

PWM Output Pin Pin A
Pin B

Pin A Select which timer
output pin should be
used for audio output.

Clock Configuration

The Audio Playback with PWM module does not require a specific clock configuration.

Pin Configuration

Configure the PWM output pins for selected PWM HAL layer peripheral (AGT/GPT). One of the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,604 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

following pins needs to be selected and enabled as PWM output for selected channel n,

If GPT is used as PWM interface,

GTIOCAn
GTIOCBn

If AGT is used as PWM interface,

AGTOAn
AGTOBn

Usage Notes
DMAC/DTC Integration

DMAC/DTC is used as a lower level transfer instance with this module and is operated in Normal
mode to transfer 16 bit or 32 bit data from the audio stream buffer to the PWM peripheral AGT or
GPT respectively. Destination address for transfer instance needs to be the Duty Cycle setting
register GTCCR for GPT as PWM driver or AGTMA/AGTCMB in case of AGT as PWM driver. Select
'Transfer Size' as 2 Bytes when AGT is used for PWM generation otherwise select 'Transfer Size' as 4
Bytes if GPT is used for PWM generation.

Examples
Basic Example

This is a basic example of minimal use of the RM_AUDIO_PLAYBACK_PWM in an application. This
example shows how this driver can be used for playing a 16 bit uncompressed PCM audio from a
single input buffer.

int16_t play_buffer[AUDIO_EXAMPLE_LENGTH];

uint32_t g_audio_callback_counter = 0;

void g_audio_example_counter_callback (audio_playback_callback_args_t * p_args)

{

 if (AUDIO_PLAYBACK_EVENT_PLAYBACK_COMPLETE == (p_args->event))

 {

 g_audio_callback_counter++;

 }

}

void basic_example (void)

{

 fsp_err_t err;

 /* Initialize the Audio Playback module for playing an audio stream. */

 err = RM_AUDIO_PLAYBACK_PWM_Open(&g_audio_playback_pwm_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,605 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

&g_audio_playback_pwm_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Set the 16 Bit PCM audio stream to play next */

 err = RM_AUDIO_PLAYBACK_PWM_Play(&g_audio_playback_pwm_ctrl, play_buffer,

AUDIO_EXAMPLE_LENGTH);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start to the play the selected audio stream*/

 err = RM_AUDIO_PLAYBACK_PWM_Start(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait till the playback is completed */

 while (g_audio_callback_counter == 0)

 {

 ;

 }

 /* Stop playing. */

 err = RM_AUDIO_PLAYBACK_PWM_Stop(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

Streaming Example

This is an example of using Audio Playback module to play audio stream. This application uses a
double buffer to store PCM sine wave data. It starts playing in the main loop, then loads the next
buffer if it is ready in the callback. If the next buffer is not ready, a flag is set in the callback so the
application knows to restart playing in the main loop. This example also demonstrates conversion of
signed PCM format data to unsigned PWM format data along with scaling the data samples for
optimum PWM wave generation.

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ (22050U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_PERIOD_VALUE_AT_22050HZ (0x11B7U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK (1024U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ (800U)

#define AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER (1024U)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,606 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

#define AUDIO_PLAYBACK_PWM_EXAMPLE_CONVERT_TO_PWM_SAMPLES (32768U)

#define AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_DATA_BIT_SIZE (16U)

int16_t g_stream_src[2][AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER];

q15_t g_pwm_sample[2][AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER];

q15_t g_pwm_scaled_sample[2][AUDIO_PLAYBACK_PWM_EXAMPLE_SAMPLES_TO_TRANSFER];

uint32_t g_buffer_index = 0;

volatile bool g_send_data_in_main_loop = true;

volatile bool g_data_ready = false;

/* Example callback called when Audio Playback is ready for more data. */

void rm_audio_playback_example_callback (audio_playback_callback_args_t * p_args)

{

 /* Start playing next stream if data is ready. */

 if (AUDIO_PLAYBACK_EVENT_PLAYBACK_COMPLETE == (p_args->event))

 {

 if (g_data_ready)

 {

 /* Reload data and handle errors. */

 rm_audio_playback_example_play();

 }

 else

 {

 /* Data was not ready yet, send it in the main loop. */

 g_send_data_in_main_loop = true;

 }

 }

}

/* Load the next stream and check for error condition. */

void rm_audio_playback_example_play (void)

{

 /* Set the playback stream */

 fsp_err_t err;

 err =

 RM_AUDIO_PLAYBACK_PWM_Play(&g_audio_playback_pwm_ctrl, (int16_t *)

&g_pwm_scaled_sample[g_buffer_index][0],

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,607 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

(AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK * sizeof(int16_t)));

 if (FSP_SUCCESS == err)

 {

 /* Switch the buffer after data is sent. */

 g_buffer_index = !g_buffer_index;

 /* Allow loop to calculate next buffer. */

 g_data_ready = false;

 }

 else

 {

 /* The

 * application must wait until the audio playback is completed. In this example, the

 * callback sets data or resets the flag g_send_data_in_main_loop. */

 }

}

/* Calculate samples. This example is just a sine wave. For this type of data, it

would be better to calculate

 * one period and loop it. This example should be updated for the audio data used by

the application. */

void rm_audio_playback_example_calculate_samples (uint32_t buffer_index)

{

 static uint32_t t = 0U;

 /* Create a sine wave. Using formula sample = sin(2 * pi * tone_frequency * t /

sampling_frequency) */

 uint32_t freq = AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_TONE_FREQUENCY_HZ;

 for (uint32_t i = 0; i < AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK; i

+= 1)

 {

 float input = (((float) (freq * t)) * M_TWOPI) /

AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_AUDIO_SAMPLING_FREQUENCY_HZ;

 t++;

 /* Store sample. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,608 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

 int16_t sample = (int16_t) ((INT16_MAX * sinf(input)));

 g_stream_src[buffer_index][i] = sample;

 }

 /* Convert signed PCM data to unsigned PCM data as PWM needs unsigned input. */

 arm_offset_q15(&g_stream_src[buffer_index][0],

 (q15_t) (INT16_MAX + 1),

 &g_pwm_sample[buffer_index][0],

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK);

 /* Scale the data by the selected period for the timer (calculated for equivalent

playback rate) */

 arm_scale_q15(&g_pwm_sample[buffer_index][0],

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_PERIOD_VALUE_AT_22050HZ,

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_DATA_BIT_SIZE,

 &g_pwm_scaled_sample[buffer_index][0],

 AUDIO_PLAYBACK_PWM_STREAMING_EXAMPLE_SAMPLES_PER_CHUNK);

 /* Data is ready to be sent in the interrupt. */

 g_data_ready = true;

}

void rm_audio_playback_streaming_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initialize the module.

 * Configure the following pins in the pin configurator for PWM output:

 * - If the GPT timer is used for generation of PWM waves configure GTIOCAn or

GTIOCBn pin and enable the output

 * to these pins through the GPT module properties for desired channel n.

 * - Otherwise, if AGT is used for generation of PWM waves configure AGTOAn or

AGTOBn pin and enable the output to

 * to these pins through the AGT module properties for desired channel n.

 * Configure the DMAC/DTC destination address as following:

 * - If the GPT timer is used for generation of PWM waves, configure DMAC/DTC

destination address to the address of

 * GTCCRC register (&R_GPTn->GTCCR[2]) if PWM output pin is GTIOCA otherwise

configure to the address of GTCCRD

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,609 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

 * register (&R_GPTn->GTCCR[3]) if PWM output pin is GTIOCB for desired GPT channel

n.

 * - If the AGT timer is used for generation of PWM waves, configure DMAC/DTC

destination address as the address of

 * AGTCMA register (&R_AGTn->AGTCMA) if PWM output pin is AGTOA otherwise the

address of AGTCMB register

 * (&R_AGTn->AGTCMB) if the PWM output pin is AGTOB for desired AGT channel n.

 * Configure the DMAC/DTC transfer size as 4 Bytes if PWM interface is GPT timer

otherwise configure transfer size as 2 Bytes if

 * PWM interface is AGT timer. */

 err = RM_AUDIO_PLAYBACK_PWM_Open(&g_audio_playback_pwm_ctrl,

&g_audio_playback_pwm_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start timer and transfer modules. */

 err = RM_AUDIO_PLAYBACK_PWM_Start(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 /* Prepare data in a buffer that is not currently used for transmission. */

 rm_audio_playback_example_calculate_samples(g_buffer_index);

 /* Send data in main loop the first time, and if it was not ready in the interrupt.

*/

 if (g_send_data_in_main_loop)

 {

 /* Clear flag. */

 g_send_data_in_main_loop = false;

 /* Reload data and handle errors. */

 rm_audio_playback_example_play();

 }

 /* If the next buffer is ready, wait for the data to be sent in the interrupt. */

 while (g_data_ready)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,610 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

 /* Do nothing. */

 }

 }

}

Data Structures

struct audio_playback_pwm_instance_ctrl_t

Data Structure Documentation

◆ audio_playback_pwm_instance_ctrl_t

struct audio_playback_pwm_instance_ctrl_t

AUDIO_PLAYBACK_PWM instance control block. DO NOT MODIFY. Initialization occurs when
RM_AUDIO_PLAYBACK_PWM_Open() is called.

Data Fields

void(* p_callback)(audio_playback_callback_args_t *p_args)

void * p_context

audio_playback_cfg_t const
*

p_cfg

 Pointer to the configuration structure.

uint32_t open

 Used by driver to check if the control structure is valid.

timer_instance_t const * p_lower_lvl_timer

 Timer API used to generate sampling frequency and GPT/AGT API
used to access PWM hardware.

transfer_instance_t const * p_lower_lvl_transfer

 Transfer API used to transfer data each sampling frequency.

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,611 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

◆ p_callback

void(* audio_playback_pwm_instance_ctrl_t::p_callback) (audio_playback_callback_args_t *p_args)

Callback called when play is complete.

◆ p_context

void* audio_playback_pwm_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in audio_playback_callback_args_t.

Function Documentation

◆ RM_AUDIO_PLAYBACK_PWM_Open()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Open (audio_playback_ctrl_t *const p_api_ctrl,
audio_playback_cfg_t const *const p_cfg)

Opens and configures the Audio Playback with PWM driver. Sets playback speed and transfer rate
to read the audio buffer.

Example:

 /* Initialize the Audio Playback module for playing an audio stream. */

 err = RM_AUDIO_PLAYBACK_PWM_Open(&g_audio_playback_pwm_ctrl,

&g_audio_playback_pwm_cfg);

Return values
FSP_SUCCESS Audio Playback module successfully

configured.

FSP_ERR_ALREADY_OPEN Module already open.

FSP_ERR_ASSERTION One or more pointers point to NULL or
callback is NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,612 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

◆ RM_AUDIO_PLAYBACK_PWM_Start()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Start (audio_playback_ctrl_t *const p_api_ctrl)

Start the PWM HAL driver (AGT or GPT) and timer HAL (AGT or GPT) drivers.

Example:
 /* Start to the play the selected audio stream*/

 err = RM_AUDIO_PLAYBACK_PWM_Start(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Audio playback hardware started

successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not open. This function calls

timer_api_t::start

◆ RM_AUDIO_PLAYBACK_PWM_Stop()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Stop (audio_playback_ctrl_t *const p_api_ctrl)

Stop the PWM HAL driver (AGT or GPT) and timer HAL driver (AGT or GPT).

Example:
 /* Stop playing. */

 err = RM_AUDIO_PLAYBACK_PWM_Stop(&g_audio_playback_pwm_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Audio playback hardware stopped

successfully.

FSP_ERR_ASSERTION The parameter p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not open. This function calls

timer_api_t::stop

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,613 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Audio Playback with PWM (rm_audio_playback_pwm)

◆ RM_AUDIO_PLAYBACK_PWM_Play()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Play (audio_playback_ctrl_t *const p_api_ctrl, void const
*const p_buffer, uint32_t length)

Play a single audio buffer by input samples to the PWM HAL (AGT or GPT) at the sampling
frequency configured by the timer.

Example:
 /* Set the 16 Bit PCM audio stream to play next */

 err = RM_AUDIO_PLAYBACK_PWM_Play(&g_audio_playback_pwm_ctrl, play_buffer,

AUDIO_EXAMPLE_LENGTH);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

Return values
FSP_SUCCESS Buffer playback began successfully.

FSP_ERR_ASSERTION The parameter p_ctrl or p_buffer is
NULL or buffer length is greater than
0x10000.

FSP_ERR_NOT_OPEN Driver not open.. This function calls

transfer_api_t::reset

◆ RM_AUDIO_PLAYBACK_PWM_Close()

fsp_err_t RM_AUDIO_PLAYBACK_PWM_Close (audio_playback_ctrl_t *const p_api_ctrl)

Closes the module driver. Enables module stop mode.

Return values
FSP_SUCCESS Module successfully closed.

FSP_ERR_NOT_OPEN Driver not open.

FSP_ERR_ASSERTION Pointer pointing to NULL.

Note
This function will close all the lower level HAL drivers as well.

4.2.65 AWS PKCS11 PAL (rm_aws_pkcs11_pal)
Modules

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,614 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS PKCS11 PAL (rm_aws_pkcs11_pal)

PKCS#11 PAL layer implementation for use by FreeRTOS TLS.

Overview
Note

The PKCS#11 PAL Interface does not provide any interfaces to the user. Consult the AWS documentation for
more info: https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html.

Configuration
There is no user configuration for this module

Data Flash Usage

The current implementation utilizes 16K of Data flash of which 8K is used for storage and the other
8K is used for backup.

Usage Notes
Limitations

Interrupts are disabled while write or erase operations are being performed.
Credentials are stored on data flash with no tamper protection other than SHA256 for
integrity.
Credential access is not limited in any way. The credential access and tamper issues can be
resolved by updating the implementation to use code flash instead of data flash and using
the Secure MPU to control access to it.

4.2.66 AWS PKCS11 PAL LITTLEFS (rm_aws_pkcs11_pal_littlefs)
Modules

PKCS#11 PAL LittleFS layer implementation for use by FreeRTOS TLS.

Overview
Note

The PKCS#11 PAL LittleFS Interface does not provide any interfaces to the user. Consult the AWS
documentation for more info: https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,615 / 2,794

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html

Flexible Software Package

User’s Manual
API Reference > Modules > AWS PKCS11 PAL LITTLEFS (rm_aws_pkcs11_pal_littlefs)

Configuration
There is no user configuration for this module

Usage Notes
The current implementation utilizes LittleFS Flash Port (rm_littlefs_flash) for storage.

Limitations

Credential access is not limited in any way.

4.2.67 Bluetooth Low Energy Abstraction (rm_ble_abs)
Modules

Functions

fsp_err_t RM_BLE_ABS_Open (ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const
*const p_cfg)

fsp_err_t RM_BLE_ABS_Close (ble_abs_ctrl_t *const p_ctrl)

 Close the BLE channel. Implements ble_abs_api_t::close. More...

fsp_err_t RM_BLE_ABS_Reset (ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t
init_callback)

fsp_err_t RM_BLE_ABS_StartLegacyAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartExtendedAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartNonConnectableAdvertising (ble_abs_ctrl_t *const
p_ctrl, ble_abs_non_connectable_advertising_parameter_t const
*const p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartPeriodicAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t RM_BLE_ABS_StartScanning (ble_abs_ctrl_t *const p_ctrl,
ble_abs_scan_parameter_t const *const p_scan_parameter)

fsp_err_t RM_BLE_ABS_CreateConnection (ble_abs_ctrl_t *const p_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,616 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

ble_abs_connection_parameter_t const *const
p_connection_parameter)

fsp_err_t RM_BLE_ABS_SetLocalPrivacy (ble_abs_ctrl_t *const p_ctrl, uint8_t
const *const p_lc_irk, uint8_t privacy_mode)

fsp_err_t RM_BLE_ABS_StartAuthentication (ble_abs_ctrl_t *const p_ctrl,
uint16_t connection_handle)

fsp_err_t RM_BLE_ABS_DeleteBondInformation (ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const
p_bond_information_parameter)

fsp_err_t RM_BLE_ABS_ImportKeyInformation (ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

fsp_err_t RM_BLE_ABS_ExportKeyInformation (ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

Detailed Description

Middleware for the Bluetooth peripheral on RA MCUs. This module implements the BLE ABS Interface
.

Overview
This module provides BLE GAP functionality that complies with the Bluetooth Core Specification
version 5.0 specified by the Bluetooth SIG. This module is configured via the QE for BLE. QE for BLE
provides standard services defined by standardization organization and custom services defined by
user. Bluetooth LE Profile API Document User's Manual describes the APIs for standard services.

Features

The Bluetooth Low Energy Abstraction module supports the following features:

following GAP Role support
Central: The device that sends a connection request to the Peripheral device.
Peripheral: The device that accepts a connection request from Central and
establishes a connection.
Observer : The device that scans for advertising.
Broadcaster : The device that sends advertising.

LE 2M PHY
BLE communication is supported on the 2 Msym/s PHY.

LE Coded PHY -Supports BLE communication on the Coded PHY. This enables
communication over longer distances than 1M PHY and 2M PHY.
LE Advertising Extensions

Up to four independent adverts can be executed simultaneously.
The size of Advertising Data/Scan Response Data has been expanded to a
maximum of 1650 bytes.
Periodic Advertising is available.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,617 / 2,794

https://www.renesas.com/qe-ble
https://www.renesas.com/us/en/document/apn/ra4w1-group-bluetooth-le-profile-api-document-users-manual

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

LE Channel Selection Algorithm #2
With the hopping channel selection algorithm added in Version 5.0, the machine
that selects the channel It is possible.

High Duty Cycle Non-Connectable Advertising
The ability to support non-connectable advertising with a minimum interval of up
to 20 msec.

LE Secure Connections
Elliptic curve Diffie-Hellman key sharing (ECDH) for pairing with passive
eavesdropping support.

Link Layer privacy
This feature avoids being tracked by other BLE devices by periodically changing
the Bluetooth device address.

Link Layer Extended Scanner Filter policies
Scan Filter support for Resolvable private addresses.

LE Data Packet Length Extension
This function expands the packet size of BLE data communications. It is possible to
scale up to 251 bytes.

LE L2CAP Connection Oriented Channel Support
The ability to support communication using the L2CAP credit based flow control
channel.

Low Duty Cycle Directed Advertising
The ability to support the advertising of the Low Duty Cycle for reconnecting to a
known device.

LE Link Layer Topology
It supports both Master and Slave roles and can operate as Master when
connected to one remote device and as Slave when connected to another remote
device.

LE Ping
This function checks whether the link is maintained or not by requesting the
transmission of packets containing MIC after link encryption.

BLE Library Configuration

There are three types of BLE Protocol Stacks, and the functions provided are different depending on
the type of BLE Protocol Stack you select.

BLE library feature Extended Balance Compact

GAP Role Central Peripheral
Observer Broadcaster

Central Peripheral
Observer Broadcaster

Peripheral Broadcaster

LE 2M PHY Yes Yes No

LE Coded PHY Yes Yes No

LE Advertising
Extensions

Yes No No

LE Channel Selection
Algorithm #2

Yes Yes No

High Duty Cycle Non-
Connectable
Advertising

Yes Yes Yes

LE Secure Connections Yes Yes Yes

Link Layer privacy Yes Yes Yes

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,618 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

Link Layer Extended
Scanner Filter policies

Yes Yes No

LE Data Packet Length
Extension

Yes Yes Yes

LE L2CAP Connection
Oriented Channel
Support

Yes No No

Low Duty Cycle
Directed Advertising

Yes Yes Yes

LE Link Layer Topology Yes Yes No

LE Ping Yes Yes Yes

32-bit UUID Support in
LE

Yes Yes Yes

Target Devices

The Bluetooth Low Energy Abstraction module supports the following devices.

RA4W1

Configuration
Build Time Configurations for rm_ble_abs

The following build time configurations are defined in fsp_cfg/rm_ble_abs_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enable
Disable

Default (BSP) Specify whether to
include code for API
parameter checking.
Valid settings include.

Debug Public Address Must be a valid device
address

FF:FF:FF:50:90:74 Public Address of
firmware initial value.

Debug Random
Address

Must be a valid device
address

FF:FF:FF:FF:FF:FF Random Address of
firmware initial value.

Maximum number of
connections

Value must be an
integer between 1 and
7

7 Maximum number of
connections.

Maximum connection
data length

Value must be an
integer between 27
and 251

251 Maximum connection
data length.

Maximum advertising
data length

Value must be an
integer between 31
and 1650

1650 Maximum advertising
data length.

Maximum advertising
set number

Value must be an
integer between 1 and

4 Maximum advertising
set number.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,619 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

4

Maximum periodic sync
set number.

Value must be an
integer between 1 and
2

2 Maximum periodic sync
set number.

Store Security Data Disable
Enable

Disable Store Security Data in
DataFlash.

Data Flash Block for
Security Data

Value must be an
integer between 0 and
7

0 Data Flash Block for
Security Data
Management.

Remote Device
Bonding Number

Value must be an
integer between 1 and
7

7 Number of remote
device bonding
information.

Connection Event Start
Notify

Disable
Enable

Disable Set Connection event
start notify
enable/disable.

Connection Event Close
Notify

Disable
Enable

Disable Set Connection event
close notify
enable/disable.

Advertising Event Start
Notify

Disable
Enable

Disable Set Advertising event
start notify
enable/disable.

Advertising Event Close
Notify

Disable
Enable

Disable Set Advertising event
close notify
enable/disable.

Scanning Event Start
Notify

Disable
Enable

Disable Set Scanning event
start notify
enable/disable.

Scanning Event Close
Notify

Disable
Enable

Disable Set Scanning event
close notify
enable/disable.

Initiating Event Start
Notify

Disable
Enable

Disable Set Initiating event
start notify
enable/disable.

Initiating Event Close
Notify

Disable
Enable

Disable Set Initiating event
close notify
enable/disable.

RF Deep Sleep Start
Notify

Disable
Enable

Disable Set RF_DEEP_SLEEP
start notify
enable/disable.

RF Deep Sleep Wakeup
Notify

Disable
Enable

Disable Set RF_DEEP_SLEEP
wakeup notify
enable/disable.

Bluetooth dedicated
clock

Value must be an
integer between 0 and
15

6 Load capacitance
adjustment.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,620 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

DC-DC converter Disable
Enable

Disable Set DC-DC converter
for RF part.

Slow Clock Source Use RF_LOCO
Use External
32.768kHz

Use RF_LOCO Set slow clock source
for RF part.

MCU CLKOUT Port P109
P205

P109 When BLE_ABS_CFG_RF
_EXTERNAL_32K_ENAB
LE = 1, Set port of MCU
CLKOUT.

MCU CLKOUT
Frequency Output

MCU CLKOUT
frequency
32.768kHz
MCU CLKOUT
frequency
16.384kHz

MCU CLKOUT
frequency 32.768kHz

When BLE_ABS_CFG_RF
_EXTERNAL_32K_ENAB
LE = 1, set frequency
output from CLKOUT of
MCU part.

Sleep Clock
Accuracy(SCA)

Value must be an
integer between 0 and
500

250 When BLE_ABS_CFG_RF
_EXTERNAL_32K_ENAB
LE = 1, set Sleep Clock
Accuracy(SCA) for RF
slow clock.

Transmission Power
Maximum Value

max +0dBm
max +4dBm

max +4dBm Set transmission power
maximum value.

Transmission Power
Default Value

High 0dBm(Tra
nsmission
Power
Maximum Value
= +0dBm) / +4
dBm(Transmissi
on Power
Maximum Value
= +4dBm)
Mid 0dBm(Tran
smission Power
Maximum Value
= +0dBm) / 0d
Bm(Transmissio
n Power
Maximum Value
= +4dBm)
Low -18dBm(Tr
ansmission
Power
Maximum Value
= +0dBm) / -20
dBm(Transmissi
on Power
Maximum Value
= +4dBm)

High
0dBm(Transmission
Power Maximum Value
= +0dBm) /
+4dBm(Transmission
Power Maximum Value
= +4dBm)

Set default transmit
power. Default transmit
power is dependent on
the configuration of
Maximum transmission
power(BLE_ABS_CFG_R
F_DEF_TX_POW).

CLKOUT_RF Output No output
4MHz output
2MHz output

No output Set CLKOUT_RF output
setting.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,621 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

1MHz output

RF_DEEP_SLEEP
Transition

Disable
Enable

Enable Set RF_DEEP_SLEEP
transition.

MCU Main Clock
Frequency

Value must be an
integer between 1000
and 20000

8000 Set MCU Main Clock
Frequency (kHz). Set
clock source according
to your board
environment. HOCO:
don't care. / Main
Clock: 1000 to 20000
kHz / PLL Circuit: 4000
to 12500 kHz

Code Flash(ROM)
Device Data Block

Value must be an
integer between -1 and
255

255 Device specific data
block on Code Flash
(ROM).

Device Specific Data
Flash Block

Value must be an
integer between -1 and
7

-1 Device specific data
block on E2 Data Flash.

MTU Size Configured Value must be an
integer between 23
and 247

247 MTU Size configured by
GATT MTU exchange
procedure.

Timer Slot Maximum
Number

Value must be an
integer between 1 and
10

10 The maximum number
of timer slot.

Configurations for Middleware > BLE > BLE Abstraction Driver on rm_ble_abs

This module can be added to the Stacks tab via New Stack > Middleware > BLE > BLE Abstraction
Driver on rm_ble_abs.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_ble_abs0 Module name.

General > Gap callback Name must be a valid
C symbol

gap_cb A user callback
function must be
provided if the
BLE_ABS is configured
to generate a GAP. If
QE is used, set to
NULL.

General > Vendor
specific callback

Name must be a valid
C symbol

vs_cb A user callback
function must be
provided if the
BLE_ABS is configured
to generate a Vendor
Specific. If QE is used,
set to NULL.

General > GATT server Name must be a valid gs_abs_gatts_cb_param Set GATT server

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,622 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

callback parameter C symbol callback parameter. If
QE is used, set to
NULL.

General > GATT server
callback number

Must be a valid number 2 The number of GATT
Server callback
functions.

General > GATT client
callback parameter

Name must be a valid
C symbol

gs_abs_gattc_cb_param Set GATT client
callback parameter. If
QE is used, set to
NULL.

General > GATT client
callback number

Must be a valid number 2 The number of GATT
Server callback
functions.

Security > Pairing
parameters

Name must be a valid
C symbol

gs_abs_pairing_param Set pairing parameters.

Security > IO
capabilities of local
device.

BLE_GAP_IOCAP
_DISPLAY_ONLY
BLE_GAP_IOCAP
_DISPLAY_YESN
O
BLE_GAP_IOCAP
_KEYBOARD_ON
LY
BLE_GAP_IOCAP
_NOINPUT_NOO
UTPUT
BLE_GAP_IOCAP
_KEYBOARD_DI
SPLAY

BLE_GAP_IOCAP_NOINP
UT_NOOUTPUT

Select IO capabilities of
local device.

Security > MITM
protection policy.

BLE_GAP_SEC_
MITM_BEST_EFF
ORT
BLE_GAP_SEC_
MITM_STRICT

BLE_GAP_SEC_MITM_BE
ST_EFFORT

Select MITM protection
policy.

Security > Determine
whether to accept only
Secure Connections or
not.

BLE_GAP_SC_BE
ST_EFFORT
BLE_GAP_SC_ST
RICT

BLE_GAP_SC_BEST_EFF
ORT

Select determine
whether to accept only
Secure Connections or
not.

Security > Type of keys
to be distributed from
local device.

BLE_GAP_KEY_D
IST_ENCKEY
BLE_GAP_KEY_D
IST_IDKEY
BLE_GAP_KEY_D
IST_SIGNKEY

Select type of keys to
be distributed from
local device.

Security > Type of keys
which local device
requests a remote
device to distribute.

BLE_GAP_KEY_D
IST_ENCKEY
BLE_GAP_KEY_D
IST_IDKEY
BLE_GAP_KEY_D

Set type of keys which
local device requests a
remote device to
distribute.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,623 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

IST_SIGNKEY

Security > Maximum
LTK size.

Valid range is 7 - 16 16 Set Maximum LTK size.

Interrupts > Callback
provided when an ISR
occurs

Name must be a valid
C symbol

NULL Callback provided
when BLE ABS ISR
occurs

Clock Configuration

Note
System clock (ICLK): 8 MHz or more
Peripheral module clock A (PCLKA): 8MHz or more
The BLE Protocol Stack is optimized for ICLK and PCLKA frequencies of 32 MHz.
It is recommended that the clock be set so that the ICLK and PCLKA frequencies are 32MHz in order to get the
best performance from the BLE.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the BLE_ABS:

Examples
BLE_ABS Basic Example

This is a basic example of minimal use of the BLE_ABS in an application.

#define BLE_ABS_EVENT_FLAG_STACK_ON (0x01 << 0)

#define BLE_ABS_EVENT_FLAG_CONN_IND (0x01 << 1)

#define BLE_ABS_EVENT_FLAG_ADV_ON (0x01 << 2)

#define BLE_ABS_EVENT_FLAG_ADV_OFF (0x01 << 3)

#define BLE_ABS_EVENT_FLAG_DISCONN_IND (0x01 << 4)

#define BLE_ABS_EVENT_FLAG_RSLV_LIST_CONF_COMP (0x01 << 5)

#define BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME 'E', 'x', 'a', 'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME 'T', 'E', 'S', 'T', '_', 'E', 'x', 'a',

'm', 'p', 'l', 'e'

#define BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL (0x00000640)

void ble_abs_peripheral_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,624 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

 volatile uint32_t timeout = UINT16_MAX * UINT8_MAX * 8;

 ble_device_address_t local_identity_address;

 uint8_t local_irk[BLE_GAP_IRK_SIZE];

 uint8_t local_csrk[BLE_GAP_CSRK_SIZE];

 uint8_t * p_local_irk = NULL;

 uint8_t privacy_mode = BLE_GAP_NET_PRIV_MODE;

 uint8_t advertising_data[] =

 {

 /* Flags */

 0x02,

 0x01,

 (0x1a),

 /* Shortened Local Name */

 0x08,

 0x08,

 BLE_ABS_EXAMPLE_SHORTENED_LOCAL_NAME,

 };

 /* Scan Response Data */

 uint8_t scan_response_data[] =

 {

 /* Complete Local Name */

 0x0D,

 0x09,

 BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME,

 };

 ble_abs_legacy_advertising_parameter_t legacy_advertising_parameter =

 {

 .p_peer_address =

NULL,

 .slow_advertising_interval =

BLE_ABS_EXAMPLE_SLOW_ADVERTISING_INTERVAL,

 .slow_advertising_period =

0x0000,

 .p_advertising_data =

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,625 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

advertising_data,

 .advertising_data_length = sizeof

(advertising_data),

 .p_scan_response_data =

scan_response_data,

 .scan_response_data_length = sizeof

(scan_response_data),

 .advertising_filter_policy = BLE_ABS_ADVERTISING_FILTER_ALLOW_ANY

,

 .advertising_channel_map = (BLE_GAP_ADV_CH_37 | BLE_GAP_ADV_CH_38 |

BLE_GAP_ADV_CH_39),

 .own_bluetooth_address_type = BLE_GAP_ADDR_PUBLIC

,

 .own_bluetooth_address = {0},

 };

 g_ble_event_flag = 0;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_STACK_ON event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_STACK_ON & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 /* Set local privacy. */

 err = RM_BLE_ABS_SetLocalPrivacy(&g_ble_abs0_ctrl, p_local_irk, privacy_mode);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_RSLV_LIST_CONF_COMP & g_ble_event_flag) && (--timeout >

0U))

 {

 R_BLE_Execute();

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,626 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!(BLE_ABS_EVENT_FLAG_CONN_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 if (BLE_ABS_EVENT_FLAG_ADV_OFF & g_ble_event_flag)

 {

 /* Restart advertise, when stop advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

 if (FSP_SUCCESS == err)

 {

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_ADV_OFF;

 }

 else if (FSP_ERR_INVALID_STATE == err)

 {

 /* BLE driver state is busy. */

 ;

 }

 else

 {

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 }

 }

 else if ((timeout % BLE_ABS_RETRY_INTERVAL) == 0U)

 {

 /* Stop advertising after a certain amount of time */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,627 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

 R_BLE_GAP_StopAdv(g_advertising_handle);

 }

 else

 {

 ;

 }

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 /* Export local key information. */

 err = RM_BLE_ABS_ExportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Clean up & Close BLE driver */

 g_ble_event_flag = 0;

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

#define BLE_ABS_EVENT_FLAG_STACK_ON (0x01 << 0)

#define BLE_ABS_EVENT_FLAG_CONN_IND (0x01 << 1)

#define BLE_ABS_EVENT_FLAG_ADV_REPT_IND (0x01 << 2)

#define BLE_ABS_EVENT_FLAG_ADV_OFF (0x01 << 3)

#define BLE_ABS_EVENT_FLAG_PAIRING_COMP (0x01 << 4)

#define BLE_ABS_EVENT_FLAG_SCAN_TIMEOUT (0x01 << 5)

#define BLE_ABS_EVENT_FLAG_DELETE_BOND_COMP (0x01 << 6)

#define BLE_ABS_EXAMPLE_FAST_SCAN_INTERVAL (0x0060)

#define BLE_ABS_EXAMPLE_FAST_SCAN_WINDOW (0x0030)

#define BLE_ABS_EXAMPLE_SLOW_SCAN_INTERVAL (0x0800)

#define BLE_ABS_EXAMPLE_SLOW_SCAN_WINDOW (0x0012)

#define BLE_ABS_EXAMPLE_FAST_SCAN_PERIOD (0x0BB8)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,628 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

#define BLE_ABS_EXAMPLE_SLOW_SCAN_PERIOD (0x0000)

#define BLE_ABS_EXAMPLE_CONNECTION_INTERVAL (0x0028)

#define BLE_ABS_EXAMPLE_SUPERVISION_TIMEOUT (0x0200)

#define BLE_ABS_EXAMPLE_DEVICE_ADDRESS 0x88, 0x88, 0x88, 0x88, 0x88, 0x88

#define BLE_ABS_EXAMPLE_IRK 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5,

0xA5

#define BLE_ABS_EXAMPLE_CSRK 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5, 0xA5,

0xA5

#define BLE_ABS_SCAN_FILTER_DATA_LENGTH (12)

/* Scan filter data (data type: Complete Local Name) */

static uint8_t g_filter_data[] =

{

 BLE_ABS_EXAMPLE_COMPLETE_LOCAL_NAME

};

/* Connection phy parameters */

ble_abs_connection_phy_parameter_t g_connection_phy_parameter =

{

 .connection_interval = BLE_ABS_EXAMPLE_CONNECTION_INTERVAL, /* 50.0(ms) */

 .supervision_timeout = BLE_ABS_EXAMPLE_SUPERVISION_TIMEOUT, /* 5,120(ms) */

 .connection_slave_latency = 0x0000,

};

/* Connection device address */

ble_device_address_t g_connection_device_address;

/* Connection parameters */

ble_abs_connection_parameter_t g_connection_parameter =

{

 .p_connection_phy_parameter_1M = &g_connection_phy_parameter,

 .p_device_address = &g_connection_device_address,

 .filter_parameter = BLE_GAP_INIT_FILT_USE_ADDR,

 .connection_timeout = 0x05, /* 5(s) */

};

ble_abs_bond_information_parameter_t g_bond_information_parameter =

{

 .local_bond_information = BLE_ABS_LOCAL_BOND_INFORMATION_ALL,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,629 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

 .remote_bond_information = BLE_ABS_REMOTE_BOND_INFORMATION_ALL,

 .delete_non_volatile_area = BLE_ABS_DELETE_NON_VOLATILE_AREA_ENABLE,

 .p_address = NULL,

 .abs_delete_bond_callback = delete_bond_cb,

};

void ble_abs_central_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 volatile uint32_t timeout = UINT16_MAX * UINT8_MAX * 8;

 g_connection_handle = BLE_GAP_INVALID_CONN_HDL;

 ble_device_address_t local_identity_address =

 {

 .addr = {BLE_ABS_EXAMPLE_DEVICE_ADDRESS},

 .type = BLE_GAP_ADDR_PUBLIC

 };

 uint8_t local_irk[BLE_GAP_IRK_SIZE] = {BLE_ABS_EXAMPLE_IRK};

 uint8_t local_csrk[BLE_GAP_CSRK_SIZE] = {BLE_ABS_EXAMPLE_CSRK};

 static ble_abs_scan_phy_parameter_t scan_phy_parameter =

 {

 .fast_scan_interval = BLE_ABS_EXAMPLE_FAST_SCAN_INTERVAL, /* 60.0(ms) */

 .fast_scan_window = BLE_ABS_EXAMPLE_FAST_SCAN_WINDOW, /* 30.0(ms) */

 .slow_scan_interval = BLE_ABS_EXAMPLE_SLOW_SCAN_INTERVAL, /* 1,280.0(ms) */

 .slow_scan_window = BLE_ABS_EXAMPLE_SLOW_SCAN_WINDOW, /* 11.25(ms) */

 .scan_type = BLE_GAP_SCAN_ACTIVE

 };

 /* Scan parameters */

 ble_abs_scan_parameter_t scan_parameter =

 {

 .p_phy_parameter_1M = &scan_phy_parameter,

 .fast_scan_period = BLE_ABS_EXAMPLE_FAST_SCAN_PERIOD, /* 30,000(ms)

*/

 .slow_scan_period = BLE_ABS_EXAMPLE_SLOW_SCAN_PERIOD,

 .p_filter_data = g_filter_data,

 .filter_data_length = (uint16_t) BLE_ABS_SCAN_FILTER_DATA_LENGTH,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,630 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

 .filter_ad_type = 0x09, /* Data type:

Complete Local Name */

 .device_scan_filter_policy = BLE_GAP_SCAN_ALLOW_ADV_ALL,

 .filter_duplicate = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,

 };

 g_ble_event_flag = 0;

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Connection parameters */

 while (!(BLE_ABS_EVENT_FLAG_STACK_ON & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 /* Import local key information. */

 err = RM_BLE_ABS_ImportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while ((BLE_ABS_EVENT_FLAG_ADV_REPT_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 if ((BLE_ABS_EVENT_FLAG_SCAN_TIMEOUT & g_ble_event_flag) || (BLE_GAP_EVENT_SCAN_OFF

& g_ble_event_flag))

 {

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_ADV_OFF;

 g_ble_event_flag &= (uint16_t) ~BLE_ABS_EVENT_FLAG_SCAN_TIMEOUT;

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

 /* Handle any errors. This function should be defined by the user. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,631 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

 assert(FSP_SUCCESS == err);

 }

 else if ((timeout % BLE_ABS_RETRY_INTERVAL) == 0U)

 {

 /* Stop scanning after a certain amount of time */

 R_BLE_GAP_StopScan();

 }

 else

 {

 ;

 }

 R_BLE_Execute();

 }

 g_ble_event_flag = 0;

 time_out_handle_error(timeout);

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Create connection with remote device. */

 err = RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &g_connection_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_CONN_IND event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_CONN_IND & g_ble_event_flag) && (--timeout > 0U))

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Start authentication with remote device. */

 err = RM_BLE_ABS_StartAuthentication(&g_ble_abs0_ctrl, g_connection_handle);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait BLE_GAP_EVENT_PAIRING_COMP event is notified. */

 while (!(BLE_ABS_EVENT_FLAG_PAIRING_COMP & g_ble_event_flag) && (--timeout > 0U))

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,632 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 g_ble_event_flag = 0;

 timeout = UINT16_MAX * UINT8_MAX * 8;

 /* Delete bonding information. */

 err = RM_BLE_ABS_DeleteBondInformation(&g_ble_abs0_ctrl,

&g_bond_information_parameter);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait delete_bond_cb application callback function is called. */

 while (!(BLE_ABS_EVENT_FLAG_DELETE_BOND_COMP & g_ble_event_flag) && (--timeout >

0U))

 {

 R_BLE_Execute();

 }

 time_out_handle_error(timeout);

 /* Clean up & Close BLE driver */

 g_ble_event_flag = 0;

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

}

void delete_bond_cb (st_ble_dev_addr_t * p_addr) {

 (void) p_addr;

 g_ble_event_flag = g_ble_event_flag | BLE_ABS_EVENT_FLAG_DELETE_BOND_COMP;

}

Data Structures

struct abs_advertising_parameter_t

struct abs_scan_parameter_t

struct ble_abs_instance_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,633 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

struct st_ble_rf_notify_t

 This structure is RF event notify management. More...

Typedefs

typedef void(* ble_abs_timer_cb_t) (uint32_t timer_hdl)

typedef void(* ble_mcu_clock_change_cb_t) (void)

 ble_mcu_clock_change_cb_t is the callback function type to use
CLKOUT_RF as the MCU main clock source. More...

typedef void(* ble_rf_notify_cb_t) (uint32_t)

 ble_rf_notify_cb_t is the RF event notify callback function type.
More...

Enumerations

enum e_ble_timer_type_t

Data Structure Documentation

◆ abs_advertising_parameter_t

struct abs_advertising_parameter_t

advertising set parameters structure

Data Fields

union
abs_advertising_parameter_t

advertising_parameter Advertising parameters.

uint32_t advertising_status Advertising status.

ble_device_address_t remote_device_address Remote device address for
direct advertising.

◆ abs_scan_parameter_t

struct abs_scan_parameter_t

scan parameters structure

Data Fields

ble_abs_scan_parameter_t scan_parameter Scan parameters.

ble_abs_scan_phy_parameter_t scan_phy_parameter_1M 1M phy parameters for scan.

ble_abs_scan_phy_parameter_t scan_phy_parameter_coded Coded phy parameters for scan.
*/.

uint32_t scan_status

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,634 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ ble_abs_instance_ctrl_t

struct ble_abs_instance_ctrl_t

BLE ABS private control block. DO NOT MODIFY. Initialization occurs when RM_BLE_ABS_Open() is
called.

Data Fields

uint32_t open Indicates whether the open()
API has been successfully
called.

void const * p_context Placeholder for user data.
Passed to the user callback in
ble_abs_callback_args_t.

ble_gap_application_callback_t abs_gap_callback GAP callback function.

ble_vendor_specific_application
_callback_t

abs_vendor_specific_callback Vendor specific callback
function.

ble_abs_delete_bond_applicatio
n_callback_t

abs_delete_bond_callback Delete bond information
callback function.

uint32_t connection_timer_handle Cancel a request for connection
timer.

uint32_t advertising_timer_handle Advertising timer for legacy
advertising.

uint32_t scan_timer_handle Scan interval timer.

abs_advertising_parameter_t advertising_set
s[
BLE_MAX_NO_OF_ADV_SETS_SU
PPORTED]

Advertising set information.

abs_scan_parameter_t abs_scan Scan information.

st_ble_dev_addr_t loc_bd_addr Local device address.

uint8_t privacy_mode Privacy mode.

uint32_t set_privacy_status Local privacy status.

ble_abs_timer_t timer[BLE_ABS_CFG_TIMER_NU
MBER_OF_SLOT]

uint8_t local_irk[BLE_GAP_IRK_SIZE]

ble_abs_identity_address_info_t identity_address_info

uint32_t current_timeout_ms Current timeout.

uint32_t elapsed_timeout_ms Elapsed timeout.

ble_abs_cfg_t const * p_cfg Pointer to the BLE ABS
configuration block.

◆ st_ble_rf_notify_t

struct st_ble_rf_notify_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,635 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

This structure is RF event notify management.

Data Fields

uint32_t enable Set enable/disable of each RF
event notification.

Bit0 Notify Connection event
start(0:Disable/1:Enable)
Bit1 Notify Advertising event
start(0:Disable/1:Enable)
Bit2 Notify Scanning event
start(0:Disable/1:Enable)
Bit3 Notify Initiating event
start(0:Disable/1:Enable)
Bit4 Notify Connection event
close(0:Disable/1:Enable)
Bit5 Notify Advertising event
close(0:Disable/1:Enable)
Bit6 Notify Scanning event
close(0:Disable/1:Enable)
Bit7 Notify Initiating event
close(0:Disable/1:Enable)
Bit8 Notify RF_DEEP_SLEEP
event start(0:Disable/1:Enable)
Bit9 Notify RF_DEEP_SLEEP
event close(0:Disable/1:Enable)
Other Bit: Reserved for future
use.

ble_rf_notify_cb_t start_cb Set callback function pointer for
RF event start.

ble_rf_notify_cb_t close_cb Set callback function pointer for
RF event close.

ble_rf_notify_cb_t dsleep_cb Set callback function pointer for
RF_DEEP_SLEEP.

Typedef Documentation

◆ ble_abs_timer_cb_t

typedef void(* ble_abs_timer_cb_t) (uint32_t timer_hdl)

The timer callback invoked when the timer expired.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,636 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ ble_mcu_clock_change_cb_t

ble_mcu_clock_change_cb_t

ble_mcu_clock_change_cb_t is the callback function type to use CLKOUT_RF as the MCU main clock
source.

Parameters
none

Returns
none

◆ ble_rf_notify_cb_t

ble_rf_notify_cb_t

ble_rf_notify_cb_t is the RF event notify callback function type.

Parameters
[in] uint32_t The infomation of RF event

notification.

Returns
none

Enumeration Type Documentation

◆ e_ble_timer_type_t

enum e_ble_timer_type_t

The timer type.

Enumerator

BLE_TIMER_ONE_SHOT One shot timer type

BLE_TIMER_PERIODIC Periodic timer type

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,637 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_Open()

fsp_err_t RM_BLE_ABS_Open (ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const *const p_cfg)

Host stack is initialized with this function. Before using All the R_BLE APIs, it's necessary to call this
function. A callback functions are registered with this function. In order to receive the GAP, GATT,
Vendor specific event, it's necessary to register a callback function. The result of this API call is
notified in BLE_GAP_EVENT_STACK_ON event. Implements ble_abs_api_t::open.

Example:

 /* Open the module. */

 err = RM_BLE_ABS_Open(&g_ble_abs0_ctrl, &g_ble_abs0_cfg);

Return values
FSP_SUCCESS Channel opened successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_INVALID_CHANNEL The channel number is invalid.

FSP_ERR_ALREADY_OPEN Requested channel is already open in a
different configuration.

FSP_ERR_INVALID_ARGUMENT Invalid input parameter.

◆ RM_BLE_ABS_Close()

fsp_err_t RM_BLE_ABS_Close (ble_abs_ctrl_t *const p_ctrl)

Close the BLE channel. Implements ble_abs_api_t::close.

Example:

 /* Close BLE driver */

 err = RM_BLE_ABS_Close(&g_ble_abs0_ctrl);

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_NOT_OPEN Control block not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,638 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_Reset()

fsp_err_t RM_BLE_ABS_Reset (ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t init_callback)

BLE is reset with this function. The process is carried out in the following order. R_BLE_Close() ->
R_BLE_GAP_Terminate() -> R_BLE_Open() -> R_BLE_SetEvent(). The init_cb callback initializes the
others (Host Stack, timer, etc...). Implements ble_abs_api_t::reset.

Return values
FSP_SUCCESS Channel closed successfully.

FSP_ERR_ASSERTION Null pointer presented.

FSP_ERR_NOT_OPEN Control block not open.

◆ RM_BLE_ABS_StartLegacyAdvertising()

fsp_err_t RM_BLE_ABS_StartLegacyAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const p_advertising_parameter)

Start Legacy Advertising after setting advertising parameters, advertising data and scan response
data. The legacy advertising uses the advertising set whose advertising handle is 0. The
advertising type is connectable and scannable(ADV_IND). The address type of local device is Public
Identity Address or RPA(If the resolving list contains no matching entry, use the public address.).
Scan request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements
ble_abs_api_t::startLegacyAdvertising

Example:

 /* Start advertising. */

 err = RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl,

&legacy_advertising_parameter);

Return values
FSP_SUCCESS Operation succeeded

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,639 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartExtendedAdvertising()

fsp_err_t RM_BLE_ABS_StartExtendedAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const p_advertising_parameter)

Start Extended Advertising after setting advertising parameters, advertising data. The extended
advertising uses the advertising set whose advertising handle is 1. The advertising type is
connectable and non-scannable. The address type of local device is Public Identity Address or
RPA(If the resolving list contains no matching entry, use the public address.). Scan request
event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Implements
ble_abs_api_t::startExtendedAdvertising

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

FSP_ERR_UNSUPPORTED Subordinate modules do not support this
feature.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,640 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartNonConnectableAdvertising()

fsp_err_t RM_BLE_ABS_StartNonConnectableAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_non_connectable_advertising_parameter_t const *const p_advertising_parameter)

Start Non-Connectable Advertising after setting advertising parameters, advertising data. The non-
connectable advertising uses the advertising set whose advertising handle is 2. The advertising
type is non-connectable and non-scannable. The address type of local device is Public Identity
Address or RPA(If the resolving list contains no matching entry, use the public address.). Scan
request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is not notified. Secondary Advertising Max Skip is
0. Implements ble_abs_api_t::startNonConnectableAdvertising.

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_STATE Host stack hasn't been initialized.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

◆ RM_BLE_ABS_StartPeriodicAdvertising()

fsp_err_t RM_BLE_ABS_StartPeriodicAdvertising (ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const p_advertising_parameter)

Start Periodic Advertising after setting advertising parameters, periodic advertising parameters,
advertising data and periodic advertising data. The periodic advertising uses the advertising set
whose advertising handle is 3. The advertising type is non-connectable and non-scannable. The
address type of local device is Public Identity Address or RPA(If the resolving list contains no
matching entry, use the public address.). Scan request event(BLE_GAP_EVENT_SCAN_REQ_RECV) is
not notified. Secondary Advertising Max Skip is 0. Implements
ble_abs_api_t::startPeriodicAdvertising

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_advertising_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The advertising parameter is out of range.

FSP_ERR_UNSUPPORTED This feature is not supported in this
configuration.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,641 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_StartScanning()

fsp_err_t RM_BLE_ABS_StartScanning (ble_abs_ctrl_t *const p_ctrl, ble_abs_scan_parameter_t
const *const p_scan_parameter)

Start scanning after setting scan parameters. The scanner address type is Public Identity Address.
Fast scan is followed by slow scan. The end of fast scan or slow scan is notified with
BLE_GAP_EVENT_SCAN_TO event. If fast_period is 0, only slow scan is carried out. If scan_period is
0, slow scan continues. Implements ble_abs_api_t::startScanning.

Example:

 /* Start scanning. */

 err = RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &scan_parameter);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_scan_parameter is specified as NULL.

FSP_ERR_INVALID_ARGUMENT The scan parameter is out of range.

FSP_ERR_IN_USE This API is called in scanning.

FSP_ERR_BLE_ABS_NOT_FOUND Usable timer slot not found.

FSP_ERR_UNSUPPORTED This feature is not supported in this
configuration.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,642 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_CreateConnection()

fsp_err_t RM_BLE_ABS_CreateConnection (ble_abs_ctrl_t *const p_ctrl,
ble_abs_connection_parameter_t const *const p_connection_parameter)

Request create connection. The initiator address type is Public Identity Address. The scan interval
is 60ms and the scan window is 30ms in case of 1M PHY or 2M PHY. The scan interval is 180ms and
the scan window is 90ms in case of coded PHY. The Minimum CE Length and the Maximum CE
Length are 0xFFFF. When the request for a connection has been received by the Controller,
BLE_GAP_EVENT_CREATE_CONN_COMP event is notified. When a link has beens established,
BLE_GAP_EVENT_CONN_IND event is notified. Implements ble_abs_api_t::createConnection.

Example:

 /* Create connection with remote device. */

 err = RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &g_connection_parameter);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_POINTER p_connection_parameter is specified as
NULL.

FSP_ERR_INVALID_ARGUMENT The create connection parameter is out of
range.

FSP_ERR_IN_USE This API is called while creating a link by
previous API call.

FSP_ERR_BLE_ABS_NOT_FOUND Couldn't find a valid timer.

FSP_ERR_UNSUPPORTED This feature is not supported in this
configuration.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,643 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_SetLocalPrivacy()

fsp_err_t RM_BLE_ABS_SetLocalPrivacy (ble_abs_ctrl_t *const p_ctrl, uint8_t const *const p_lc_irk,
uint8_t privacy_mode)

Generate a IRK, add it to the resolving list, set privacy mode and enable RPA function. Register
vendor specific callback function, if IRK is generated by this function. After configuring local device
privacy, BLE_GAP_ADDR_RPA_ID_PUBLIC is specified as own device address in
theadvertising/scan/create connection API. Implements ble_abs_api_t::setLocalPrivacy

Example:

 /* Set local privacy. */

 err = RM_BLE_ABS_SetLocalPrivacy(&g_ble_abs0_ctrl, p_local_irk, privacy_mode);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl is specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_ARGUMENT The privacy_mode parameter is out of
range.

◆ RM_BLE_ABS_StartAuthentication()

fsp_err_t RM_BLE_ABS_StartAuthentication (ble_abs_ctrl_t *const p_ctrl, uint16_t
connection_handle)

Start pairing or encryption. If pairing has been done, start encryption. The pairing parameters are
configured by RM_BLE_ABS_Open() or R_BLE_GAP_SetPairingParams(). If the pairing parameters are
configure by RM_BLE_ABS_Open(),

bonding policy is that bonding information is stored.
Key press notification is not supported. Implements ble_abs_api_t::startAuthentication.

Example:

 /* Start authentication with remote device. */

 err = RM_BLE_ABS_StartAuthentication(&g_ble_abs0_ctrl, g_connection_handle);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION p_instance_ctrl or connection_handle are
specified as NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_ARGUMENT The connection handle parameter is out of
range.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,644 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_DeleteBondInformation()

fsp_err_t RM_BLE_ABS_DeleteBondInformation (ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const p_bond_information_parameter)

Delete bonding information from BLE stack and storage. Implements
ble_abs_api_t::deleteBondInformation.

Example:

 /* Delete bonding information. */

 err = RM_BLE_ABS_DeleteBondInformation(&g_ble_abs0_ctrl,

&g_bond_information_parameter);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter
p_bond_information_parameter is NULL.

FSP_ERR_NOT_OPEN Control block not open.

◆ RM_BLE_ABS_ImportKeyInformation()

fsp_err_t RM_BLE_ABS_ImportKeyInformation (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t *
p_local_identity_address, uint8_t * p_local_irk, uint8_t * p_local_csrk)

Import key information to BLE stack and storage. Implements ble_abs_api_t::importKeyInformation.

Example:

 /* Import local key information. */

 err = RM_BLE_ABS_ImportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_local_identity_address,
p_local_irk or p_local_csrk is NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_INVALID_HW_CONDITION Failure to access internal storage.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,645 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Bluetooth Low Energy Abstraction (rm_ble_abs)

◆ RM_BLE_ABS_ExportKeyInformation()

fsp_err_t RM_BLE_ABS_ExportKeyInformation (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t *
p_local_identity_address, uint8_t * p_local_irk, uint8_t * p_local_csrk)

Export key information to BLE stack and storage. Implements ble_abs_api_t::exportKeyInformation.

Example:

 /* Export local key information. */

 err = RM_BLE_ABS_ExportKeyInformation(&g_ble_abs0_ctrl, &local_identity_address,

local_irk, local_csrk);

Return values
FSP_SUCCESS Operation succeeded.

FSP_ERR_ASSERTION The parameter p_instance_ctrl is NULL.

FSP_ERR_INVALID_POINTER The parameter p_local_identity_address,
p_local_irk or p_local_csrk is NULL.

FSP_ERR_NOT_OPEN Control block not open.

FSP_ERR_BUFFER_EMPTY Dynamic memory allocation failed.

FSP_ERR_OUT_OF_MEMORY Failure to access internal storage.

FSP_ERR_NOT_INITIALIZED Not initialized internal storage.

4.2.68 SD/MMC Block Media Implementation (rm_block_media_sdmmc)
Modules

Functions

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Open (rm_block_media_ctrl_t *const
p_ctrl, rm_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_MediaInit (rm_block_media_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Read (rm_block_media_ctrl_t *const
p_ctrl, uint8_t *const p_dest_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Write (rm_block_media_ctrl_t *const
p_ctrl, uint8_t const *const p_src_address, uint32_t const
block_address, uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Erase (rm_block_media_ctrl_t *const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,646 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Block Media Implementation (rm_block_media_sdmmc)

p_ctrl, uint32_t const block_address, uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_CallbackSet (rm_block_media_ctrl_t
*const p_ctrl, void(*p_callback)(rm_block_media_callback_args_t *),
void const *const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_StatusGet (rm_block_media_ctrl_t *const
p_api_ctrl, rm_block_media_status_t *const p_status)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_InfoGet (rm_block_media_ctrl_t *const
p_ctrl, rm_block_media_info_t *const p_info)

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Close (rm_block_media_ctrl_t *const
p_ctrl)

Detailed Description

Middleware to implement the block media interface on SD cards. This module implements the Block
Media Interface.

Overview
Features

The SD/MMC implementation of the block media interface has the following key features:

Reading, writing, and erasing data from an SD card
Callback called when card insertion or removal is detected
Provides media information such as sector size and total number of sectors.

Configuration
Build Time Configurations for rm_block_media_sdmmc

The following build time configurations are defined in driver/rm_block_media_sdmmc_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Storage > Block Media Implementation on
rm_block_media_sdmmc

This module can be added to the Stacks tab via New Stack > Middleware > Storage > Block Media
Implementation on rm_block_media_sdmmc. Non-secure callable guard functions can be generated
for this module by right clicking the module in the RA Configuration tool and checking the "Non-
secure Callable" box.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,647 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Block Media Implementation (rm_block_media_sdmmc)

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_block_media0 Module name.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called when a card is
inserted or removed.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

This is a basic example of minimal use of the SD/MMC block media implementation in an application.

#define RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE (512)

uint8_t g_dest[RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint32_t g_transfer_complete = 0;

void rm_block_media_sdmmc_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_SDMMC_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_SDMMC driver. */

 fsp_err_t err = RM_BLOCK_MEDIA_SDMMC_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* A device shall be ready to accept the first command within 1ms from detecting VDD

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,648 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Block Media Implementation (rm_block_media_sdmmc)

min. Reference section 6.4.1.1

 * "Power Up Time of Card" in the SD Physical Layer Simplified Specification Version

6.00. */

 R_BSP_SoftwareDelay(1U, BSP_DELAY_UNITS_MILLISECONDS);

 /* Initialize the SD card. This should not be done until the card is plugged in for

SD devices. */

 err = RM_BLOCK_MEDIA_SDMMC_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Write a block of data to sector 3 of an SD card. */

 err = RM_BLOCK_MEDIA_SDMMC_Write(&g_rm_block_media0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 /* Read a block of data from sector 3 of an SD card. */

 err = RM_BLOCK_MEDIA_SDMMC_Read(&g_rm_block_media0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

}

Function Documentation

◆ RM_BLOCK_MEDIA_SDMMC_Open()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

Opens the module.

Implements rm_block_media_api_t::open().

Return values
FSP_SUCCESS Module is available and is now open.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_ALREADY_OPEN Module has already been opened with this
instance of the control structure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::open

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,649 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Block Media Implementation (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_MediaInit()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_MediaInit (rm_block_media_ctrl_t *const p_ctrl)

Initializes the SD or eMMC device. This procedure requires several sequential commands. This
function blocks until all identification and configuration commands are complete.

Implements rm_block_media_api_t::mediaInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::mediaInit

◆ RM_BLOCK_MEDIA_SDMMC_Read()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Read (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const num_blocks)

Reads data from an SD or eMMC device. Up to 0x10000 sectors can be read at a time. Implements
rm_block_media_api_t::read().

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::read

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,650 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Block Media Implementation (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_Write()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Write (rm_block_media_ctrl_t *const p_ctrl, uint8_t const
*const p_src_address, uint32_t const block_address, uint32_t const num_blocks)

Writes data to an SD or eMMC device. Up to 0x10000 sectors can be written at a time. Implements
rm_block_media_api_t::write().

Return values
FSP_SUCCESS Write finished successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::write

◆ RM_BLOCK_MEDIA_SDMMC_Erase()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Erase (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

Erases sectors of an SD card or eMMC device. Implements rm_block_media_api_t::erase().

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

sdmmc_api_t::erase
sdmmc_api_t::statusGet

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,651 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Block Media Implementation (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_CallbackSet()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_CallbackSet (rm_block_media_ctrl_t *const p_ctrl,
void(*)(rm_block_media_callback_args_t *) p_callback, void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements rm_block_media_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

◆ RM_BLOCK_MEDIA_SDMMC_StatusGet()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_StatusGet (rm_block_media_ctrl_t *const p_api_ctrl,
rm_block_media_status_t *const p_status)

Provides driver status. Implements rm_block_media_api_t::statusGet().

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLOCK_MEDIA_SDMMC_InfoGet()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Retrieves module information. Implements rm_block_media_api_t::infoGet().

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,652 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SD/MMC Block Media Implementation (rm_block_media_sdmmc)

◆ RM_BLOCK_MEDIA_SDMMC_Close()

fsp_err_t RM_BLOCK_MEDIA_SDMMC_Close (rm_block_media_ctrl_t *const p_ctrl)

Closes an open SD/MMC device. Implements rm_block_media_api_t::close().

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

4.2.69 SPI Block Media Implementation (rm_block_media_spi)
Modules

Functions

fsp_err_t RM_BLOCK_MEDIA_SPI_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_BLOCK_MEDIA_SPI_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

fsp_err_t RM_BLOCK_MEDIA_SPI_MediaInit (rm_block_media_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_SPI_Read (rm_block_media_ctrl_t *const p_ctrl,
uint8_t *const p_dest, uint32_t const start_block, uint32_t const
num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SPI_StatusGet (rm_block_media_ctrl_t *const
p_ctrl, rm_block_media_status_t *const p_status)

fsp_err_t RM_BLOCK_MEDIA_SPI_Write (rm_block_media_ctrl_t *const p_ctrl,
uint8_t const *const p_src, uint32_t const start_block, uint32_t const
num_blocks)

fsp_err_t RM_BLOCK_MEDIA_SPI_CallbackSet (rm_block_media_ctrl_t *const
p_ctrl, void(*p_callback)(rm_block_media_callback_args_t *), void
const *const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t RM_BLOCK_MEDIA_SPI_Close (rm_block_media_ctrl_t *const p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_SPI_Erase (rm_block_media_ctrl_t *const p_ctrl,
uint32_t const start_block, uint32_t const num_blocks)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,653 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

Detailed Description

Middleware to implement the block media interface on SPI flash memory. This module implements
the Block Media Interface.

Overview
Features

The SPI implementation of the block media interface has the following key features:

Reading, writing, and erasing data from SPI flash memory
Provides media information such as sector size and total number of sectors.
Note

By default, Block Media SPI Read, Write, and Erase are blocking operations. Non-blocking operation
may be achieved by yielding control within the optional callback function.

Configuration
Build Time Configurations for rm_block_media_spi

The following build time configurations are defined in driver/rm_block_media_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected, code for
parameter checking is
included in the build

Configurations for Middleware > Storage > Block Media Implementation on
rm_block_media_spi

This module can be added to the Stacks tab via New Stack > Middleware > Storage > Block Media
Implementation on rm_block_media_spi.

Configuration Options Default Description

Module Instance Name Name must be a valid
C symbol

g_rm_block_media0 Module name

Block size (bytes) Manual Entry 4096 Specify the size of a
block in bytes.

Block count Minimum block count is
1, maximum is defined
by hardware and
software design.

8192 Number of blocks
available for use by
this driver instance.

Base Address Manual Entry 0 Base address offset
(bytes) for instance
memory region.

Callback Function Name must be a valid NULL A user callback

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,654 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

C symbol function can be
provided. If this
callback is provided, it
will be called after the
completion of Read,
Write, and Erase
operations, or anytime
these functions are
waiting on hardware.

[DEPRECATED]
Callback Context

Name must be a valid
C symbol

NULL A user specified
context that will be
provided back to the
user when a callback
occurs.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Limitations

Developers should be aware of the following limitations when using RM_BLOCK_MEDIA_SPI:

Getting and setting Block Protection or Advanced Sector Protection modes is not supported.
Addressing QSPI memory address ranges greater than 64 MB (one bank) is not supported.

Examples
Basic Example

This is a basic example of minimal use of the SPI block media implementation in an application.

#define RM_BLOCK_MEDIA_SPI_BLOCK_SIZE (256U)

uint8_t g_dest[RM_BLOCK_MEDIA_SPI_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[RM_BLOCK_MEDIA_SPI_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

void rm_block_media_spi_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_SPI_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_SPI driver. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,655 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

 fsp_err_t err = RM_BLOCK_MEDIA_SPI_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the SPI flash memory. */

 err = RM_BLOCK_MEDIA_SPI_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Write a block of data to block 3 of the SPI flash memory. */

 err = RM_BLOCK_MEDIA_SPI_Write(&g_rm_block_media0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 /* Read a block of data from block 3 of the SPI flash memory. */

 err = RM_BLOCK_MEDIA_SPI_Read(&g_rm_block_media0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

}

Non-Blocking Example

This is a basic example of using the optional SPI callback to impliment non-blocking operation.

#define RM_BLOCK_MEDIA_EXAMPLE_DEVICE_BLOCK_COUNT 0x1000

void rm_block_media_spi_non_blocking_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_SPI_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_SPI driver. This enables the card detection interrupt. */

 fsp_err_t err = RM_BLOCK_MEDIA_SPI_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the Block Media SPI driver. */

 err = RM_BLOCK_MEDIA_SPI_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,656 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

 /* Erase a large quantity of data from SPI Flash Memory */

 err = RM_BLOCK_MEDIA_SPI_Erase(&g_rm_block_media0_ctrl, 0,

RM_BLOCK_MEDIA_EXAMPLE_DEVICE_BLOCK_COUNT);

 assert(FSP_SUCCESS == err);

}

/* The optional callback is invoked for Read, Write, and Erase operations, whenever

the operation completes or has

 * been blocked by the lower level SPI driver busy indication.

 */

void rm_block_media_spi_example_callback (rm_block_media_callback_args_t * p_args)

{

 if (RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE == p_args->event)

 {

 /* TODO: Process operation complete. */

 }

 else if (RM_BLOCK_MEDIA_EVENT_POLL_STATUS == p_args->event)

 {

 rm_block_media_status_t status;

 rm_block_media_ctrl_t * p_ctrl = (rm_block_media_ctrl_t *) p_args->p_context;

 fsp_err_t err = RM_BLOCK_MEDIA_SPI_StatusGet(p_ctrl, &status);

 assert(FSP_SUCCESS == err);

 if (true == status.busy)

 {

 /* Run waiting tasks */

 vTaskSuspend(xTaskGetCurrentTaskHandle());

 }

 }

 else

 {

 assert(RM_BLOCK_MEDIA_EVENT_ERROR == p_args->event);

 /* TODO: Process Read, Write, or Erase error. */

 }

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,657 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

Function Documentation

◆ RM_BLOCK_MEDIA_SPI_Open()

fsp_err_t RM_BLOCK_MEDIA_SPI_Open (rm_block_media_ctrl_t *const p_ctrl, rm_block_media_cfg_t
const *const p_cfg)

Parameter checking and Acquires mutex, then handles driver initialization at the HAL SPI layer and
marking the open flag in control block.

Implements rm_block_media_api_t::open.

Return values
FSP_SUCCESS Block media for SPI framework is

successfully opened.

FSP_ERR_ASSERTION One of the input parameters or their data
references may be null.

FSP_ERR_ALREADY_OPEN The channel specified has already been
opened. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::open

◆ RM_BLOCK_MEDIA_SPI_InfoGet()

fsp_err_t RM_BLOCK_MEDIA_SPI_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Retrieves module information.

Implements rm_block_media_api_t::infoGet.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,658 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_MediaInit()

fsp_err_t RM_BLOCK_MEDIA_SPI_MediaInit (rm_block_media_ctrl_t *const p_ctrl)

Initializes the Block Media SPI Flash device.

Implements rm_block_media_api_t::mediaInit.

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_BLOCK_MEDIA_SPI_Read()

fsp_err_t RM_BLOCK_MEDIA_SPI_Read (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const start_block, uint32_t const num_blocks)

Reads a number of blocks from spi flash memory. By default, this is a function is blocking. Non-
blocking operation may be achieved by yielding control within the optional callback function.

Implements rm_block_media_api_t::read.

Return values
FSP_SUCCESS SPI data read successfully

FSP_ERR_ASSERTION p_ctrl or p_dest is NULL, or num_blocks is
zero

FSP_ERR_NOT_OPEN Block Media SPI module is not yet open

FSP_ERR_INVALID_ADDRESS Invalid address range for read operation

FSP_ERR_NOT_INITIALIZED Block Media SPI module is not yet initialized

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,659 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_StatusGet()

fsp_err_t RM_BLOCK_MEDIA_SPI_StatusGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_status_t *const p_status)

Provides driver status.

Implements rm_block_media_api_t::statusGet.

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Module is not open.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::statusGet

◆ RM_BLOCK_MEDIA_SPI_Write()

fsp_err_t RM_BLOCK_MEDIA_SPI_Write (rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src, uint32_t const start_block, uint32_t const num_blocks)

Writes provided data to a number of blocks of spi flash memory. By default, this is a function is
blocking. Non-blocking operation may be achieved by yielding control within the optional callback
function.

Implements rm_block_media_api_t::write.

Return values
FSP_SUCCESS Flash write finished successfully.

FSP_ERR_ASSERTION p_ctrl or p_src is NULL. Or num_blocks is
zero.

FSP_ERR_NOT_OPEN Block media SPI Framework module is not
yet initialized.

FSP_ERR_INVALID_ADDRESS Invalid address range

FSP_ERR_NOT_INITIALIZED Block Media SPI module is not yet initialized

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::write

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,660 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_CallbackSet()

fsp_err_t RM_BLOCK_MEDIA_SPI_CallbackSet (rm_block_media_ctrl_t *const p_ctrl,
void(*)(rm_block_media_callback_args_t *) p_callback, void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
API not supported.

Implements rm_block_media_api_t::callbackSet.

Return values
FSP_ERR_UNSUPPORTED API not supported by RM_BLOCK_MEDIA_SPI.

◆ RM_BLOCK_MEDIA_SPI_Close()

fsp_err_t RM_BLOCK_MEDIA_SPI_Close (rm_block_media_ctrl_t *const p_ctrl)

Closes the Block Media SPI device. Implements rm_block_media_api_t::close.

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION One of the following parameters may be
null: p_ctrl.

FSP_ERR_NOT_OPEN Block media SPI Framework module is not
yet initialized.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

spi_flash_api_t::close

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,661 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SPI Block Media Implementation (rm_block_media_spi)

◆ RM_BLOCK_MEDIA_SPI_Erase()

fsp_err_t RM_BLOCK_MEDIA_SPI_Erase (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
start_block, uint32_t const num_blocks)

This function erases blocks of the SPI device. By default, this is a function is blocking. Non-blocking
operation may be achieved by yielding control within the optional callback function.

Implements rm_block_media_api_t::erase.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

FSP_ERR_INVALID_ADDRESS Invalid address range

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

spi_flash_api_t::erase
spi_flash_api_t::statusGet

4.2.70 USB HMSC Block Media Implementation (rm_block_media_usb)
Modules

Functions

fsp_err_t RM_BLOCK_MEDIA_USB_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_BLOCK_MEDIA_USB_MediaInit (rm_block_media_ctrl_t *const
p_ctrl)

fsp_err_t RM_BLOCK_MEDIA_USB_Read (rm_block_media_ctrl_t *const p_ctrl,
uint8_t *const p_dest_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_USB_Write (rm_block_media_ctrl_t *const p_ctrl,
uint8_t const *const p_src_address, uint32_t const block_address,
uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_USB_Erase (rm_block_media_ctrl_t *const p_ctrl,
uint32_t const block_address, uint32_t const num_blocks)

fsp_err_t RM_BLOCK_MEDIA_USB_CallbackSet (rm_block_media_ctrl_t *const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,662 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB HMSC Block Media Implementation (rm_block_media_usb)

p_ctrl, void(*p_callback)(rm_block_media_callback_args_t *), void
const *const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t RM_BLOCK_MEDIA_USB_StatusGet (rm_block_media_ctrl_t *const
p_api_ctrl, rm_block_media_status_t *const p_status)

fsp_err_t RM_BLOCK_MEDIA_USB_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

fsp_err_t RM_BLOCK_MEDIA_USB_Close (rm_block_media_ctrl_t *const p_ctrl)

Detailed Description

Middleware to implement the block media interface on USB mass storage devices. This module
implements the Block Media Interface.

Overview
Features

The USB implementation of the block media interface has the following key features:

Reading, writing, and erasing data from a USB mass storage device
Callback called when device insertion or removal is detected
Provides media information such as sector size and total number of sectors.

Configuration
Build Time Configurations for rm_block_media_usb

The following build time configurations are defined in driver/rm_block_media_usb_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Storage > Block Media Implementation on
rm_block_media_usb

This module can be added to the Stacks tab via New Stack > Middleware > Storage > Block Media
Implementation on rm_block_media_usb.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_block_media0 Module name.

Callback Name must be a valid
C symbol

NULL A user callback
function can be

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,663 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB HMSC Block Media Implementation (rm_block_media_usb)

provided. If this
callback function is
provided, it will be
called when a device is
attached or removed.

Pointer to user context Name must be a valid
C symbol

NULL A user context can be
provided. If this context
is provided, it will be
passed to callback
function when a device
is attached or
removed.

Note
RM_BLOCK_MEDIA_USB_MediaInit function must be called after receiving the insert event notification.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

This is a basic example of minimal use of the USB mass storage block media implementation in an
application.

#define RM_BLOCK_MEDIA_USB_BLOCK_SIZE (512)

volatile bool g_usb_inserted = false;

uint8_t g_dest[RM_BLOCK_MEDIA_USB_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

uint8_t g_src[RM_BLOCK_MEDIA_USB_BLOCK_SIZE] BSP_ALIGN_VARIABLE(4);

void rm_block_media_usb_basic_example (void)

{

 /* Initialize g_src to known data */

 for (uint32_t i = 0; i < RM_BLOCK_MEDIA_USB_BLOCK_SIZE; i++)

 {

 g_src[i] = (uint8_t) ('A' + (i % 26));

 }

 /* Open the RM_BLOCK_MEDIA_USB driver. */

 fsp_err_t err = RM_BLOCK_MEDIA_USB_Open(&g_rm_block_media0_ctrl,

&g_rm_block_media0_cfg);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,664 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB HMSC Block Media Implementation (rm_block_media_usb)

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (!g_usb_inserted)

 {

 /* Wait for a card insertion interrupt. */

 }

 /* Initialize the mass storage device. This should not be done until the device is

plugged in and initialized. */

 err = RM_BLOCK_MEDIA_USB_MediaInit(&g_rm_block_media0_ctrl);

 assert(FSP_SUCCESS == err);

 /* Write a block of data to sector 3 of an USB mass storage device. */

 err = RM_BLOCK_MEDIA_USB_Write(&g_rm_block_media0_ctrl, g_src, 3, 1);

 assert(FSP_SUCCESS == err);

 /* Read a block of data from sector 3 of an USB mass storage device. */

 err = RM_BLOCK_MEDIA_USB_Read(&g_rm_block_media0_ctrl, g_dest, 3, 1);

 assert(FSP_SUCCESS == err);

}

Device Insertion

This is an example of using a callback to determine when a mass storage device is plugged in and
enumerated.

/* The callback is called when a media insertion event occurs. */

void rm_block_media_usb_media_insertion_example_callback

(rm_block_media_callback_args_t * p_args)

{

 if (RM_BLOCK_MEDIA_EVENT_MEDIA_INSERTED == p_args->event)

 {

 g_usb_inserted = true;

 }

 if (RM_BLOCK_MEDIA_EVENT_MEDIA_REMOVED == p_args->event)

 {

 g_usb_inserted = false;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,665 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB HMSC Block Media Implementation (rm_block_media_usb)

}

Function Documentation

◆ RM_BLOCK_MEDIA_USB_Open()

fsp_err_t RM_BLOCK_MEDIA_USB_Open (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

Opens the module.

Implements rm_block_media_api_t::open().

Return values
FSP_SUCCESS Module is available and is now open.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_ALREADY_OPEN Module has already been opened with this
instance of the control structure.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_MediaInit()

fsp_err_t RM_BLOCK_MEDIA_USB_MediaInit (rm_block_media_ctrl_t *const p_ctrl)

Initializes the USB device.

Implements rm_block_media_api_t::mediaInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,666 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB HMSC Block Media Implementation (rm_block_media_usb)

◆ RM_BLOCK_MEDIA_USB_Read()

fsp_err_t RM_BLOCK_MEDIA_USB_Read (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const num_blocks)

Reads data from an USB device. Implements rm_block_media_api_t::read().

This function blocks until the data is read into the destination buffer.

Return values
FSP_SUCCESS Data read successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

FSP_ERR_USB_FAILED The message could not received completed
successfully.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_Write()

fsp_err_t RM_BLOCK_MEDIA_USB_Write (rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src_address, uint32_t const block_address, uint32_t const num_blocks)

Writes data to an USB device. Implements rm_block_media_api_t::write().

This function blocks until the write operation completes.

Return values
FSP_SUCCESS Write finished successfully.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

FSP_ERR_USB_FAILED The message could not received completed
successfully.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,667 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB HMSC Block Media Implementation (rm_block_media_usb)

◆ RM_BLOCK_MEDIA_USB_Erase()

fsp_err_t RM_BLOCK_MEDIA_USB_Erase (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

Erases sectors of an USB device. Implements rm_block_media_api_t::erase().

This function blocks until erase is complete.

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_CallbackSet()

fsp_err_t RM_BLOCK_MEDIA_USB_CallbackSet (rm_block_media_ctrl_t *const p_ctrl,
void(*)(rm_block_media_callback_args_t *) p_callback, void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.
Implements rm_block_media_api_t::callbackSet.

Note
This function is currently unsupported for Block Media over USB.

Return values
FSP_ERR_UNSUPPORTED CallbackSet is not currently supported for

Block Media over USB.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,668 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USB HMSC Block Media Implementation (rm_block_media_usb)

◆ RM_BLOCK_MEDIA_USB_StatusGet()

fsp_err_t RM_BLOCK_MEDIA_USB_StatusGet (rm_block_media_ctrl_t *const p_api_ctrl,
rm_block_media_status_t *const p_status)

Provides driver status. Implements rm_block_media_api_t::statusGet().

Return values
FSP_SUCCESS Status stored in p_status.

FSP_ERR_ASSERTION NULL pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_BLOCK_MEDIA_USB_InfoGet()

fsp_err_t RM_BLOCK_MEDIA_USB_InfoGet (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Retrieves module information. Implements rm_block_media_api_t::infoGet().

Return values
FSP_SUCCESS Erase operation requested.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_NOT_INITIALIZED Module has not been initialized.

◆ RM_BLOCK_MEDIA_USB_Close()

fsp_err_t RM_BLOCK_MEDIA_USB_Close (rm_block_media_ctrl_t *const p_ctrl)

Closes an open USB device. Implements rm_block_media_api_t::close().

Return values
FSP_SUCCESS Successful close.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,669 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > User Block Media Implementation (rm_block_media_user)

4.2.71 User Block Media Implementation (rm_block_media_user)
Modules

Middleware that implements a block media interface on the media of your choice. This module
implements the Block Media Interface.

Overview
Features

This module is for using Block media with user-selected media.

Configuration
Block Media User has no output config settings.
The user is required to create the config settings etc. in the application.
The figure below is an example of the config definition when the user media in USB PMSC is RAM.

const rm_block_media_api_t g_rm_block_media_on_user_media =

{

 .open = RM_BLOCK_MEDIA_RAM_Open,

 .mediaInit = RM_BLOCK_MEDIA_RAM_MediaInit,

 .read = RM_BLOCK_MEDIA_RAM_Read,

 .write = RM_BLOCK_MEDIA_RAM_Write,

 .erase = RM_BLOCK_MEDIA_RAM_Erase,

 .infoGet = RM_BLOCK_MEDIA_RAM_InfoGet,

 .statusGet = RM_BLOCK_MEDIA_RAM_StatusGet,

 .close = RM_BLOCK_MEDIA_RAM_Close,

};

extern void r_usb_pmsc_block_media_event_callback(rm_block_media_callback_args_t *

p_args);

const rm_block_media_cfg_t g_rm_block_media0_cfg =

{.p_extend = NULL, .p_callback = r_usb_pmsc_block_media_event_callback, .p_context =

NULL, };

rm_block_media_instance_t g_rm_block_media0 =

{.p_api = &g_rm_block_media_on_user_media, .p_ctrl = NULL, .p_cfg =

&g_rm_block_media0_cfg, };

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,670 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > User Block Media Implementation (rm_block_media_user)

Note
If you use block_media_user, you need to create a function that matches the media you are using.
In the above example, this is the function with RM_BLOCK_MEDIA_.
Register the created function in rm_block_media_api_t.
The registered rm_block_media_api_t is registered in p_api, which is a member of rm_block_media_instance_t.

Clock Configuration

This module has no required clock configurations.

Pin Configuration

This module does not use I/O pins.

Examples
Basic Example

Please refer to USB Peripheral Mass Storage Class (r_usb_pmsc) for the PMSC application given as an
example.

4.2.72 I2C Communicatons Middleware (rm_comms_i2c)
Modules

Functions

fsp_err_t RM_COMMS_I2C_Open (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_cfg_t const *const p_cfg)

 Opens and configures the Communications Middle module.
Implements rm_comms_api_t::open. More...

fsp_err_t RM_COMMS_I2C_Close (rm_comms_ctrl_t *const p_api_ctrl)

 Disables specified Communications Middle module. Implements
rm_comms_api_t::close. More...

fsp_err_t RM_COMMS_I2C_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes)

 Performs a read from the I2C device. Implements
rm_comms_api_t::read. More...

fsp_err_t RM_COMMS_I2C_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,671 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Communicatons Middleware (rm_comms_i2c)

 Performs a write from the I2C device. Implements
rm_comms_api_t::write. More...

fsp_err_t RM_COMMS_I2C_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

 Performs a write to, then a read from the I2C device. Implements
rm_comms_api_t::writeRead. More...

void rm_comms_i2c_callback (i2c_master_callback_args_t *p_args)

 Common callback function called in the I2C driver callback function.

Detailed Description

Middleware to implement the I2C communications interface. This module implements the
Communicatons Middleware Interface.

Overview
Features

The implementation of the I2C communications interface has the following key features:

Reading data from, writing data to I2C bus
Writes to I2C bus, then reads with restart
A single I2C bus used by multiple I2C devices

Configuration
Build Time Configurations for rm_comms_i2c

The following build time configurations are defined in fsp_cfg/rm_comms_i2c_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Communications > I2C Shared Bus on rm_comms_i2c

This module can be added to the Stacks tab via New Stack > Middleware > Communications > I2C
Shared Bus on rm_comms_i2c.

Configuration Options Default Description

Name Manual Entry g_comms_i2c_bus0 Module name.

Bus Timeout Value must be a non- 0xFFFFFFFF Set timeout for locking

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,672 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Communicatons Middleware (rm_comms_i2c)

negative integer bus in using RTOS.

Semaphore for
Blocking

Unuse
Use

Unuse Set Semaphore for
blocking in using RTOS.

Recursive Mutex for
Bus

Unuse
Use

Unuse Set Mutex for locking
bus in using RTOS.

Configurations for Middleware > Communications > I2C Communication Device on
rm_comms_i2c

This module can be added to the Stacks tab via New Stack > Middleware > Communications > I2C
Communication Device on rm_comms_i2c.

Configuration Options Default Description

Name Manual Entry g_comms_i2c_device0 Module name.

Semaphore Timeout Value must be a non-
negative integer

0xFFFFFFFF Set timeout for
blocking in using RTOS.

Slave Address Value must be non-
negative

0x00 Specify the slave
address.

Address Mode 7-Bit
10-Bit

7-Bit Select the I2C address
mode.

Callback Name must be a valid
C symbol

comms_i2c_callback A user callback
function can be
provided.

Pin Configuration

This module uses SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
Bus Initialization

The I2C communications interface expects a bus instance to be opened before opening any specific
I2C comms device. The communications interface will handle switching between devices on the bus
but will not open or close the bus instance. The user should open the bus with the appropriate I2C
Master Interface open call.

Examples
Basic Example

This is a basic example of minimal use of I2C communications implementation in an application.

void rm_comms_i2c_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Open the I2C bus if it is not already open. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,673 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Communicatons Middleware (rm_comms_i2c)

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

(rm_comms_i2c_bus_extended_cfg_t *) g_comms_i2c_cfg.p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

 err = RM_COMMS_I2C_Open(&g_comms_i2c_ctrl, &g_comms_i2c_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 g_flag = 0;

 /* Send data to an I2C device. */

 RM_COMMS_I2C_Write(&g_comms_i2c_ctrl, &write_data, 1);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 g_flag = 0;

 /* Receive data from an I2C device. */

 RM_COMMS_I2C_Read(&g_comms_i2c_ctrl, &read_data, 1);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 }

}

Data Structures

struct rm_comms_i2c_instance_ctrl_t

Data Structure Documentation

◆ rm_comms_i2c_instance_ctrl_t

struct rm_comms_i2c_instance_ctrl_t

Communications middleware control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,674 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Communicatons Middleware (rm_comms_i2c)

Data Fields

rm_comms_cfg_t const * p_cfg

 middleware configuration.

rm_comms_i2c_bus_extende
d_cfg_t *

p_bus

 Bus using this device;.

void * p_lower_level_cfg

 Used to reconfigure I2C driver.

uint32_t open

 Open flag.

uint32_t transfer_data_bytes

 Size of transfer data.

uint8_t * p_transfer_data

 Pointer to transfer data buffer.

void const * p_context

 Pointer to the user-provided context.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,675 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Communicatons Middleware (rm_comms_i2c)

◆ RM_COMMS_I2C_Open()

fsp_err_t RM_COMMS_I2C_Open (rm_comms_ctrl_t *const p_api_ctrl, rm_comms_cfg_t const
*const p_cfg)

Opens and configures the Communications Middle module. Implements rm_comms_api_t::open.

Example:

 err = RM_COMMS_I2C_Open(&g_comms_i2c_ctrl, &g_comms_i2c_cfg);

Return values
FSP_SUCCESS Communications Middle module

successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_COMMS_BUS_NOT_OPEN I2C driver is not open.

◆ RM_COMMS_I2C_Close()

fsp_err_t RM_COMMS_I2C_Close (rm_comms_ctrl_t *const p_api_ctrl)

Disables specified Communications Middle module. Implements rm_comms_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_I2C_Read()

fsp_err_t RM_COMMS_I2C_Read (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

Performs a read from the I2C device. Implements rm_comms_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,676 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > I2C Communicatons Middleware (rm_comms_i2c)

◆ RM_COMMS_I2C_Write()

fsp_err_t RM_COMMS_I2C_Write (rm_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Performs a write from the I2C device. Implements rm_comms_api_t::write.

Return values
FSP_SUCCESS Successfully writing data .

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_COMMS_I2C_WriteRead()

fsp_err_t RM_COMMS_I2C_WriteRead (rm_comms_ctrl_t *const p_api_ctrl,
rm_comms_write_read_params_t const write_read_params)

Performs a write to, then a read from the I2C device. Implements rm_comms_api_t::writeRead.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

4.2.73 SEGGER emWin Port (rm_emwin_port)
Modules

SEGGER emWin port for RA MCUs.

Overview
The SEGGER emWin RA Port module provides the configuration and hardware acceleration support
necessary for use of emWin on RA products. The port provides full integration with the graphics
peripherals (GLCDC, DRW and JPEG) as well as FreeRTOS.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,677 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

Figure 200: SEGGER emWin FSP Port Block Diagram

Note
This port layer primarily enables hardware acceleration and background handling of many display operations and
does not contain code intended to be directly called by the user. Please consult the SEGGER emWin User Guide
(UM03001) for details on how to use emWin in your project.

Hardware Acceleration

The following functions are currently performed with hardware acceleration:

DRW Engine (r_drw)
Drawing bitmaps (ARGB8888 and RGB565)
4bpp font rendering
Rectangle fill
Line and shape drawing
Anti-aliased operations

Circle stroke and fill
Polygon stroke and fill
Lines and arcs

JPEG Codec (r_jpeg)
JPEG decoding

Graphics LCD Controller (r_glcdc)
Brightness, contrast and gamma correction
Pixel format conversion (framebuffer to LCD)

Configuration
Build Time Configurations for rm_emwin_port

The following build time configurations are defined in fsp_cfg/rm_emwin_port_cfg.h:

Configuration Options Default Description

Memory Allocation >
GUI Heap Size

Value must be a non-
negative integer

32768 Set the size of the heap
to be allocated for use
exclusively by emWin.

Memory Allocation >
Section for GUI Heap

Manual Entry .noinit Specify the section in
which to allocate the
GUI heap. When Arm
Compiler 6 is used to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,678 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

place this memory in
on-chip SRAM, the
section name must be
.bss or start with .bss.
to avoid consuming
unnecessary ROM
space.

Memory Allocation >
Maximum Layers

Value must be a non-
negative integer

16 Set the maximum
number of available
display layers in
emWin.

This setting is not
related to GLCDC Layer
1 or 2.

Memory Allocation >
AA Font Conversion
Buffer Size

Value must be a non-
negative integer

400 Set the size of the
conversion buffer for
anti-aliased font
glyphs. This should be
set to the size (in
bytes) of the largest AA
character to be
rendered.

Configuration > Multi-
thread Support

Enabled
Disabled

Enabled Enable or disable
multithreading support.

Configuration >
Number of emWin-
supported threads

Manual Entry 5 If multithreading
support is enabled this
configuration specifies
the number of different
tasks that can call
emWin functions.

Configuration > Touch
Panel Support

Enabled
Disabled

Enabled Enable or disable touch
panel support.

Configuration > Mouse
Support

Enabled
Disabled

Disabled Enable or disable
support for mouse
input.

Configuration >
Memory Devices

Enabled
Disabled

Enabled Enable or disable
support for memory
devices, which allow
the user to allocate
their own memory in
the GUI heap.

Configuration > Text
Rotation

Enabled
Disabled

Enabled Enable or disable
support for displaying
rotated text.

Configuration >
Window Manager

Enabled
Disabled

Enabled Enable or disable the
emWin Window
Manager (WM).

Configuration > Enabled Disabled Enable or disable

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,679 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

Bidirectional Text Disabled support for
bidirectional text (such
as Arabic or Hebrew).

Configuration > Debug
Logging Level

None (0)
Parameter
checking only
(1)
All checks
enabled (2)
Log errors (3)
Log warnings
(4)
Log all
messages (5)

All checks enabled (2) Set the debug logging
level.

LCD Settings > Wait for
Vertical Sync

Enabled
Disabled

Enabled When enabled emWin
will wait for a vertical
sync event each time
the display is updated.
If an RTOS is used the
thread will yield;
otherwise each frame
will block until Vsync.

WARNING: Disabling
vertical sync will result
in tearing. It is
recommended to
always leave this
setting Enabled if an
RTOS is used.

JPEG Decoding >
General > Input
Alignment

8-byte aligned
(faster)
Unaligned
(slower)

Unaligned (slower) Setting this option to
8-bit alignment can
allow the hardware
JPEG Codec to directly
read JPEG data. This
speeds up JPEG
decoding operations
and reduces RAM
overhead, but all JPEG
images must reside on
an 8-byte boundary.

When this option is
enabled the input
buffer is not allocated.

JPEG Decoding >
General > Double-
Buffer Output

Enabled
Disabled

Disabled Enable this option to
configure JPEG
decoding operations to
use a double-buffered
output pipeline. This
allows the JPEG to be
rendered to the display

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,680 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

at the same time as
decoding at the cost of
additional RAM usage.

Enabling this option
automatically allocates
double the output
buffer size.

JPEG Decoding >
General > Error
Timeout

Value must be a non-
negative integer

50 Set the timeout for
JPEG decoding
operations (in RTOS
ticks) in the event of a
decode error.

JPEG Decoding >
Buffers > Input Buffer
Size

Value must be a non-
negative integer

0x1000 Set the size of the JPEG
decode input buffer (in
bytes). This buffer is
used to ensure 8-byte
alignment of input
data. Specifying a size
smaller than the size of
the JPEG to decode will
use additional
interrupts to stream
data in during the
decoding process.

JPEG Decoding >
Buffers > Output Buffer
Size

Value must be a non-
negative integer

0x3C00 Set the size of the JPEG
decode output buffer
(in bytes). An output
buffer smaller than the
size of a decoded
image will use
additional interrupts to
stream the data into a
framebuffer.

Unless you are sure of
the subsampling used
in and the size of the
input JPEG images it is
recommended to
allocate at least 16
framebuffer lines of
memory.

JPEG Decoding >
Buffers > Section for
Buffers

Manual Entry .noinit Specify the section in
which to allocate the
JPEG work buffers.
When Arm Compiler 6
is used to place this
memory in on-chip
SRAM, the section
name must be .bss or
start with .bss. to avoid

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,681 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

consuming
unnecessary ROM
space.

Hardware Configuration

No clocks or pins are directly required by this module. Please consult the submodules'
documentation for their requirements.

Usage Notes
Getting Started

To get started with emWin in an RA project the following must be performed:

1. Open the RA Configuration editor for your project
2. Add emWin to your project in the Stacks view by clicking New Stack -> SEGGER ->

SEGGER emWin
3. Ensure the configuration options for emWin are set as necessary for your application
4. Set the proporties for the GLCDC module to match the timing and memory requirements of

your display panel
5. Set the JPEG decode color depth to the desired value (if applicable)
6. Ensure interrupts on all modules are enabled:

GLCDC Vertical Position (Vpos) Interrupt
DRW Interrupt (if applicable)
JPEG Encode/Decode and Data Transfer Interrupts (if applicable)

7. Click Generate Project Content to save and commit configuration changes
8. (Non-RTOS projects only) Before calling GUI_Init, call g_hal_init to initialize the framebuffer

address.

At this point the project is now ready to build with emWin. Please refer to the SEGGER emWin User
Guide (UM03001) as well as demo and sample code for details on how to create a GUI application.

Using Hardware Acceleration

In most cases there is no need to perform additional configuration to ensure the DRW Engine is used.
However, there are some guidelines that should be followed depending on the item in question:

Bitmaps:
ARGB8888, RGB888 and RGB565 bitmaps require no additional settings.

Anti-aliased shapes:
Anti-aliased lines, circles, polygons, polygon outlines and arcs are rendered with
the DRW Engine.

Anti-aliased (4bpp) fonts:
Set the text mode to GUI_TM_TRANS or create the relevant widget with
WM_CF_HASTRANS set.
Ensure the "AA Font Conversion Buffer Size" configuration option is set to a size
equal to or greater than the size (in bytes) of the largest glyph.

8bpp palletized images:
When creating these images ensure transparency is not enabled as the SEGGER
method for this is not compatible with the DRW Engine.

RLE-encoded images:
Hardware acceleration is not available for SEGGER's RLE format.

Multi-thread Support

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,682 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

When the "Multi-thread Support" configuration is enabled, emWin can be called from multiple
threads. This comes with advantages and disadvantages:

Advantages:

High flexibility in development of applications
Threads can pend and post on emWin events

Disadvantages:

Slightly higher RAM/ROM use
Large GUI projects can become difficult to debug

Note
Multi-thread support is independent of RTOS support. RTOS support is managed internally and cannot be
manually configured.

Limitations

Developers should be aware of the following limitations when using SEGGER emWin with FSP:

Hardware acceleration is not available when using color modes lower than 16 bits.
Support for rotated screen modes is in development.
Hardware acceleration is not available for SEGGER's RLE image format.

Examples
Basic Example

This is a basic example demonstrating a very simple emWin application. The screen is cleared to
white and "Hello World!" is printed in the center.

Note
emWin manages the GLCDC, DRW and JPEG Codec submodules internally; they do not need to be opened
directly.

#include "DIALOG.h"

#define COLOR_WHITE 0x00FFFFFFU

#define COLOR_BLACK 0x00000000U

#define GUI_DRAW_DELAY 100

static void _cbMain (WM_MESSAGE * pMsg)

{

 GUI_RECT Rect;

 switch (pMsg->MsgId)

 {

 case WM_CREATE:

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,683 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

 break;

 }

 case WM_PAINT:

 {

 /* Clear background to white */

 GUI_SetBkColor(COLOR_WHITE);

 GUI_Clear();

 /* Draw "Hello World!" in black in the center */

 WM_GetClientRect(&Rect);

 GUI_SetColor(COLOR_BLACK);

 GUI_DispStringInRect("Hello World!", &Rect, GUI_TA_VCENTER |

GUI_TA_HCENTER);

 break;

 }

 default:

 {

 WM_DefaultProc(pMsg);

 break;

 }

 }

}

void emWinTask (void)

{

 int32_t xSize;

 int32_t ySize;

 /* Initialize emWin */

 GUI_Init();

 /* Get screen dimensions */

 xSize = LCD_GetXSize();

 ySize = LCD_GetYSize();

 /* Create main window */

 WM_CreateWindowAsChild(0, 0, xSize, ySize, WM_HBKWIN, WM_CF_SHOW, _cbMain, 0);

 /* Enter main drawing loop */

 while (1)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,684 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > SEGGER emWin Port (rm_emwin_port)

 {

 GUI_Delay(GUI_DRAW_DELAY);

 }

}

Note
For further example code please consult SEGGER emWin documentation, which can be downloaded here, as well
as the Quick Start Guide and example project(s) provided with your Evaluation Kit (if applicable).

4.2.74 Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)
Modules

Functions

fsp_err_t RM_FILEX_BLOCK_MEDIA_Open (rm_filex_block_media_ctrl_t *const
p_ctrl, rm_filex_block_media_cfg_t const *const p_cfg)

fsp_err_t RM_FILEX_BLOCK_MEDIA_Close (rm_filex_block_media_ctrl_t *const
p_ctrl)

void RM_FILEX_BLOCK_MEDIA_BlockDriver (FX_MEDIA *p_fx_media)

 Access Block Media device functions open, close, read, write and
control. More...

Detailed Description

Middleware for the Azure RTOS FileX File System control using Block Media on RA MCUs.

Overview
This module provides the hardware port layer for FileX file system. After initializing this module, refer
to the FileX API reference to use the file system: https://docs.microsoft.com/en-us/azure/rtos/filex/

Features

The FileX Block Media module supports the following features:

Callbacks for insertion and removal for removable devices.
ThreadX is typically required for FileX. To use FileX without ThreadX
FX_STANDALONE_ENABLE must be defined.
Unless FX_SINGLE_THREAD or FX_STANDALONE_ENABLE are defined, all FileX operations
are thread safe.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,685 / 2,794

http://www.renesas.com/fsp#downloads
https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

Configuration
Build Time Configurations for rm_filex_block_media

The following build time configurations are defined in
fsp_cfg/middleware/rm_filex_block_media_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) Selects if code for
parameter checking is
to be included in the
build.

Configurations for Middleware > Storage > FileX I/O Driver on rm_filex_block_media

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_filex_block_media
_0

Module name.

Callback Name must be a valid
C symbol

g_rm_filex_block_media
_0_callback

A user callback
function can be
provided. If this
callback function is
provided, it will be
called when media is
inserted or removed. It
will also be called
during operations by
the lower level block
media as a way for the
user to provide their
desired waiting
functionality.

Partition Number 0
1
2
3

0 The partition to use for
partitioned media. This
partition will only be
used if a Master Boot
Record with partition
table exists at block 0
of the media, otherwise
the FileX FAT boot
record should exist or
be formatted to block
0.

Build Time Configurations for fx

The following build time configurations are defined in fsp_cfg/azure/fx/fx_user.h:

Configuration Options Default Description

Common > Max Long
Name Len

Value must be greater
than or equal to 13 and

Specifies the maximum
file name size for FileX.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,686 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

less than or equal to
256, or empty

If left blank the default
value is 256. Legal
values range between
13 and 256.

Common > Max Last
Name Len

Value must be greater
than or equal to 13 and
less than or equal to
256, or empty

This value defines the
maximum file name
length, which includes
full path name. If left
blank the default value
is 256. Legal values
range between 13 and
256.

Common > Max Sector
Cache

Value must be greater
than 0 or empty

Specifies the maximum
number of logical
sectors that can be
cached by FileX. The
actual number of
sectors that can be
cached is lesser of this
constant and how
many sectors can fit in
the amount of memory
supplied at
fx_media_open. The
default value if left
blank is 256. All values
must be a power of 2.

Common > Fat Map
Size

Value must be greater
than 0 or empty

Specifies the number of
sectors that can be
represented in the FAT
update map. The
default value if left
blank is 256. Larger
values help reduce
unneeded updates of
secondary FAT sectors.

Common > Max Fat
Cache

Value must be greater
than 0 or empty

Specifies the number of
entries in the internal
FAT cache. The default
value if left blank is 16.
All values must be a
power of 2.

Threading > Update
Rate (Seconds)

Value must be greater
than 0 or empty

Specifies rate at which
system time in FileX is
adjusted. Default value
if left blank is 10,
specifying that the
FileX system time is
updated every 10
seconds.

Threading > No Timer Enabled Disabled (default) Eliminates the ThreadX

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,687 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

Disabled
(default)

timer setup to update
the FileX system time
and date. Doing so
causes default time
and date to be placed
on all file operations.

Threading > Single
Thread

Enabled
Disabled
(default)

Disabled (default) Eliminates ThreadX
protection logic from
the FileX source. It
should be used if FileX
is being used only from
one thread.

Threading >
Standalone

Enabled
Disabled
(default)

Disabled (default) Enables FileX to be
used in standalone
mode (without Azure
RTOS).

Extra Features > Don't
Update Open Files

Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
does not update
already opened files.

Extra Features > Media
Search Cache

Enabled
(default)
Disabled

Enabled (default) When disabled, the file
search cache
optimization is
disabled.

Extra Features > Direct
Data Read Cache Fill

Enabled
(default)
Disabled

Enabled (default) When disabled, the
direct read sector
update of cache is
disabled.

Extra Features > Media
Statistics

Enabled
(default)
Disabled

Enabled (default) When disabled,
gathering of media
statistics is disabled.

Extra Features > Single
Open Legacy

Enabled
Disabled
(default)

Disabled (default) When enabled, legacy
single open logic for
the same file is
enabled.

Extra Features >
Rename Path Inherit

Enabled
Disabled
(default)

Disabled (default) When enabled,
renaming inherits path
information.

Extra Features > No
Local Path

Enabled
Disabled
(default)

Disabled (default) When enabled,
removes local path
logic from FileX,
resulting in smaller
code size.

Extra Features > 64-bit
LBA

Enabled
Disabled
(default)

Disabled (default) When enabled, 64-bits
sector addresses are
used in I/O driver.

Extra Features > Cache Enabled
(default)
Disabled

Enabled (default) Enables or disables the
cache, default is
enabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,688 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

Extra Features > File
Close

Enabled
(default)
Disabled

Enabled (default) Enables or disables file
close, default is
enabled.

Extra Features > Fast
Close

Enabled
(default)
Disabled

Enabled (default) Enables or disables fast
open, default is
enabled.

Extra Features > Force
Memory Operation

Enabled
(default)
Disabled

Enabled (default) Enables or disables
force memory
operation, default is
enabled.

Extra Features > Build
Options

Enabled
(default)
Disabled

Enabled (default) Enables or disables
build options, default is
enabled.

Extra Features > One
Line Function

Enabled
(default)
Disabled

Enabled (default) Enables or disables one
line function, default is
enabled.

Extra Features > FAT
Entry Refresh

Enabled
(default)
Disabled

Enabled (default) Enables or disables FAT
entry refresh, default is
enabled.

Extra Features >
Consecutive Detect

Enabled
(default)
Disabled

Enabled (default) Enables or disables
consecutive detect,
default is enabled.

Extra Features >
Enable exFAT

Enabled
Disabled
(default)

Disabled (default) Enables exFAT support
in FileX.

Fault Tolerant > Fault
Tolerant Service

Enabled
Disabled
(default)

Disabled (default) When enabled, enables
the FileX Fault Tolerant
Module. Enabling Fault
Tolerant automatically
defines the symbol
FX_FAULT_TOLERANT
and FX_FAULT_TOLERA
NT_DATA.

Fault Tolerant > Fault
Tolerant Data

Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
immediately passes all
file data write requests
to the media's driver.
This potentially
decreases
performance, but helps
limit lost file data. Note
that enabling this
feature does not
automatically enable
FileX Fault Tolerant
Module, which should
be enabled separately.

Fault Tolerant > Fault
Tolerant

Enabled
Disabled

Disabled (default) When enabled, FileX
immediately passes

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,689 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

(default) write requests of all
system sectors (boot,
FAT, and directory
sectors) to the media's
driver. This potentially
decreases
performance, but helps
limit corruption to lost
clusters. Note that
enabling this feature
does not automatically
enable FileX Fault
Tolerant Module, which
should be enabled
separately.

Fault Tolerant > Fault
Tolerant Boot Index

Value must be greater
than or equal to 116
and less than or equal
to 119

Defines byte offset in
the boot sector where
the cluster for the fault
tolerant log is. By
default if left blank this
value is 116. This field
takes 4 bytes. Bytes
116 through 119 are
chosen because they
are marked as
reserved by FAT
12/16/32/exFAT
specification.

Error Checking Enabled
(default)
Disabled

Enabled (default)

Configurations for Azure RTOS > FileX > FileX on Block Media

This module can be added to the Stacks tab via New Stack > Azure RTOS > FileX > FileX on Block
Media.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_fx_media0 Symbol used for
media_ptr parameter in
FileX APIs

Volume Name Name must be a valid
C symbol

Volume 1 Volume name string,
which is a maximum of
11 characters.

Number of FATs Number of FATs must
be an integer greater
than 0

1 Number of FATs in the
media. The minimal
value is 1 for the
primary FAT. Values
greater than 1 result in
additional FAT copies
being maintained at
run-time.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,690 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

Directory Entries Number of Directory
Entries must be an
integer greater than 0

256 Number of directory
entries in the root
directory.

Hidden Sectors Number of Hidden
Sectors must be an
integer

0 Number of sectors
hidden before this
media’s boot sector. If
using media formatted
with multiple partitions
this number should
correspond to the
starting block number
for the desired
partition.

Total Sectors Total Sectors must be
an integer greater than
0

3751936 Total number of sectors
in the media. When
using a Renesas
provided block media
implementation, total
sectors can be fetched
by the infoGet from the
block media API. Any
removable media must
be inserted and
initialized first to
retrieve this info.

Bytes per Sector Bytes per Sector must
be multiple of 32

512 Number of bytes per
sector, which is
typically 512. FileX
requires this to be a
multiple of 32. When
using a Renesas
provided block media
implementation, bytes
per sector can be
fetched by the infoGet
from the block media
API. Any removable
media must be inserted
and initialized first to
retrieve this info.

Sectors per Cluster Sectors per Cluster
must be an integer
greater than 0

1 Number of sectors in
each cluster. The
cluster is the minimum
allocation unit in a FAT
file system.

Volume Serial Number
(exFAT only)

Volume Serial Number
must be an integer
greater than 0

12345 Serial number to be
used for this volume.
exFAT only.

Boundary Unit (exFAT
only)

Boundary unit must be
an integer greater than
0

128 Physical data area
alignment size, in
number of sectors.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,691 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

exFAT only.

Working media
memory size

Memory size must be
an integer greater than
or equal to the size of
one sector

512 Memory allocated for
file system. Memory
size must be an integer
greater than or equal
to the size of one
sector.

Usage Notes
Pending during Read/Write

The FileX Block Media driver provides a number of events in the user callback to handle waiting or
pending while it is doing blocking operations. The events received in the callback will differ
depending on the lower level block media driver in use.

If the lower level block media driver is rm_block_media_spi (SPI blocks on read/write operations):

The user will receive RM_BLOCK_MEDIA_EVENT_POLL_STATUS in the user callback while the
lower level driver is polling for the read/write operation to be complete. The user can
choose to do a thread sleep or software delay upon receiving this event in the callback.
Once the operation is complete no other callbacks will be received.

If the lower level block media driver is rm_block_media_sdmmc (SDMMC is interrupt based, the FileX
Block Media driver will still block while waiting for interrupts from SDMMC):

The user will receive RM_BLOCK_MEDIA_EVENT_WAIT in the user callback when the FileX
Block Media driver begins waiting for an interrupt event from SDMMC. This is sent from a
thread context. The user can choose to pend on a semaphore, sleep the thread, or do a
software delay upon receiving this event in the callback. The FileX Block Media driver
thread will block until an interrupt is received.
Once an SDMMC interrupt is received the user will receive
RM_BLOCK_MEDIA_EVENT_WAIT_END in the user callback. This is sent from an interrupt
context. The user can choose to give a semaphore on this event or do nothing.
If SDMMC is busy on a long erase after receiving the interrupt the FileX Block Media driver
will send RM_BLOCK_MEDIA_EVENT_POLL_STATUS to the user callback and proceed to do a
blocking poll on SDMMC status. The user can choose to do a thread sleep or software delay
upon receiving this event in the callback. This event will not be received by the user on
typical operations by FileX.

Partitioned Media

When using fx_format to format a partition the number of hidden sectors should match the starting
block number of the partition and the total number of sectors should be equal to the number of
sectors in the partition.

Unused User Callback Events

Certain events are defined in rm_block_media_event_t but not returned by the FileX Block Media user
callback:

RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE: This event is handled internally and
operation success is indicated by FileX API calls returning FX_SUCCESS.
RM_BLOCK_MEDIA_EVENT_ERROR: This event is handled internally and operation failure will

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,692 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

be indicated by an error return code from FileX API calls.

Examples
Basic Example

This is a basic example of FileX Block Media in an application.

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME "TEST_FILE.txt"

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_BUFFER_SIZE_BYTES (10240)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_PARTITION_NUMBER (0)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_BLOCK_SIZE (512)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_DIRECTORY_ENTRIES (128)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_FATS (1)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_HIDDEN_SECTORS (0)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_TOTAL_SECTORS (1073741824)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTOR_SIZE (512)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_CLUSTER (1)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_HEADS (1)

#define RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_TRACK (1)

extern rm_filex_block_media_instance_t g_filex_block_media0;

extern rm_filex_block_media_instance_ctrl_t g_filex_block_media0_ctrl;

extern rm_filex_block_media_cfg_t g_filex_block_media0_cfg;

extern FX_MEDIA g_fx_media0;

extern uint8_t g_fx_media0_memory[RM_FILEX_BLOCK_MEDIA_EXAMPLE_BLOCK_SIZE];

extern uint8_t g_file_data[RM_FILEX_BLOCK_MEDIA_EXAMPLE_BUFFER_SIZE_BYTES];

extern uint8_t g_read_buffer[RM_FILEX_BLOCK_MEDIA_EXAMPLE_BUFFER_SIZE_BYTES];

void rm_filex_block_media_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize FileX */

 fx_system_initialize();

 /* Open the media. If the media is removable, it must be inserted before calling

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,693 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

 * fx_media_open. This assumes the disk is already partitioned and formatted. */

 UINT fx_err = fx_media_open(&g_fx_media0,

 "filex_example_media",

 RM_FILEX_BLOCK_MEDIA_BlockDriver,

 &g_filex_block_media0,

 g_fx_media0_memory,

 sizeof(g_fx_media0_memory));

 handle_fx_error(fx_err);

 /* Create a file */

 fx_err = fx_file_create(&g_fx_media0, RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME);

 handle_fx_error(fx_err);

 /* Open source file for writing. */

 FX_FILE sourceFile;

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME, FX_OPEN_FOR_WRITE);

 handle_fx_error(fx_err);

 /* Write file data. */

 fx_err = fx_file_write(&sourceFile, g_file_data, sizeof(g_file_data));

 handle_fx_error(fx_err);

 /* Close the file. */

 fx_err = fx_file_close(&sourceFile);

 handle_fx_error(fx_err);

 /* Open the source file in read mode. */

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_BLOCK_MEDIA_EXAMPLE_FILE_NAME, FX_OPEN_FOR_READ);

 handle_fx_error(fx_err);

 /* Read file data. */

 ULONG actual_size_read;

 fx_err = fx_file_read(&sourceFile, g_read_buffer, sizeof(g_file_data),

&actual_size_read);

 handle_fx_error(fx_err);

 assert(sizeof(g_file_data) == actual_size_read);

 /* Close the file. */

 fx_err = fx_file_close(&sourceFile);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,694 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

 handle_fx_error(fx_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

 /* Close the Media */

 fx_err = fx_media_close(&g_fx_media0);

 handle_fx_error(fx_err);

}

Format Example

This shows how to partition and format a disk if it is not already partitioned and formatted.

void rm_filex_block_media_format_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Format the media */

 UINT fx_err =

fx_media_format(&g_fx_media0, // Pointer to

FileX media control block.

 RM_FILEX_BLOCK_MEDIA_BlockDriver, // Driver entry

 &g_filex_block_media0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_HIDDEN_SECTORS,

// Hidden sectors

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,695 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

RM_FILEX_BLOCK_MEDIA_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_HEADS,

// Heads

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

}

Callback Pend Example

This shows how to use the I/O driver callback with ThreadX in order to wait/pend for operations to
complete.

TX_SEMAPHORE g_operation_wait_semaphore;

/* Callback called by FileX block media I/O driver needs to pend on operation. */

void rm_filex_block_media_test_callback_pend (rm_filex_block_media_callback_args_t *

p_args)

{

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_WAIT)

 {

 /* Interrupt has not happened for operation, get semaphore to wait for it. This will

be called from the FileX I/O driver thread. */

 tx_semaphore_get(&g_operation_wait_semaphore, TX_WAIT_FOREVER);

 }

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_WAIT_END)

 {

 /* Interrupt has occurred for operation, post semaphore so that wait will end. This

will be called from an interrupt context. */

 tx_semaphore_put(&g_operation_wait_semaphore);

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,696 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_POLL_STATUS)

 {

 /* Interrupt has been received from block media device but operation is still

ongoing. The FileX I/O driver will wait on the driver busy status.

 * This event can be used to put the thread to sleep while waiting. This will be

called from the FileX I/O driver thread. */

 tx_thread_sleep(1);

 }

}

void rm_filex_block_media_callback_pend_example (void)

{

 /* Create semaphore for driver use */

 tx_semaphore_create(&g_operation_wait_semaphore, "operation_wait_semaphore", 0);

 /* Open media driver.*/

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Format the media */

 UINT fx_err =

fx_media_format(&g_fx_media0, // Pointer to

FileX media control block.

 RM_FILEX_BLOCK_MEDIA_BlockDriver, // Driver entry

 &g_filex_block_media0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_HIDDEN_SECTORS,

// Hidden sectors

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,697 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

RM_FILEX_BLOCK_MEDIA_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_NUM_HEADS,

// Heads

 RM_FILEX_BLOCK_MEDIA_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

}

Media Insertion Example

This shows how to use the callback to wait for media insertion.

volatile uint32_t g_rm_filex_block_media_insertion_events = 0;

volatile uint32_t g_rm_filex_block_media_removal_events = 0;

/* Callback called by media driver when a removable device is inserted or removed. */

void rm_filex_block_media_test_callback (rm_filex_block_media_callback_args_t *

p_args)

{

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_MEDIA_INSERTED)

 {

 g_rm_filex_block_media_insertion_events++;

 }

 if (p_args->event & RM_BLOCK_MEDIA_EVENT_MEDIA_REMOVED)

 {

 g_rm_filex_block_media_removal_events++;

 }

}

void rm_filex_block_media_media_insertion_example (void)

{

 /* Open media driver.*/

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,698 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

 fsp_err_t err = RM_FILEX_BLOCK_MEDIA_Open(&g_filex_block_media0_ctrl,

&g_filex_block_media0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for media insertion. */

 while (0U == g_rm_filex_block_media_insertion_events)

 {

 /* Wait for media insertion. */

 }

 /* Open the media. If the media is removable, it must be inserted before calling

 * fx_media_open. This assumes the disk is already partitioned and formatted. */

 UINT fx_err = fx_media_open(&g_fx_media0,

 "filex_example_media",

 RM_FILEX_BLOCK_MEDIA_BlockDriver,

 &g_filex_block_media0,

 g_fx_media0_memory,

 sizeof(g_fx_media0_memory));

 handle_fx_error(fx_err);

}

Using FileX with Custom Block Media Implementations

When using a Custom Block Media implementation with rm_filex_block_media the custom
implementation must call rm_filex_block_media_memory_callback upon the completion of a
read/write operation. This callback should be called with an event of
RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE and p_context of
rm_filex_block_media_instance_ctrl_t *. The following example shows how this should be done in the
context of a demo RAM block media read function.

#define EXAMPLE_BLOCK_MEDIA_RAM_START_ADDR (0x20004AFE)

#define EXAMPLE_BLOCK_MEDIA_RAM_BLOCK_SIZE_BYTES (512)

/* Example implementation of rm_block_media_api_t::read(), user should define custom

block media RAM implementation. */

fsp_err_t RM_BLOCK_MEDIA_CUSTOM_RAM_Read (rm_block_media_ctrl_t * const p_ctrl,

 uint8_t * const

 p_dest_address,

 uint32_t const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,699 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

block_address,

 uint32_t const num_blocks)

{

 FSP_PARAMETER_NOT_USED(p_ctrl);

 memcpy(p_dest_address,

 (void *) (EXAMPLE_BLOCK_MEDIA_RAM_START_ADDR + (block_address *

EXAMPLE_BLOCK_MEDIA_RAM_BLOCK_SIZE_BYTES)),

 (EXAMPLE_BLOCK_MEDIA_RAM_BLOCK_SIZE_BYTES * num_blocks));

 /* Notify FileX port of operation complete through calling the callback, this is

required for custom block media/FileX port integration */

 rm_block_media_callback_args_t args;

 args.event = RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLETE;

 args.p_context = (void *) &g_filex_block_media0_ctrl;

 rm_filex_block_media_memory_callback(&args);

 return FSP_SUCCESS;

}

Data Structures

struct rm_filex_block_media_instance_ctrl_t

Data Structure Documentation

◆ rm_filex_block_media_instance_ctrl_t

struct rm_filex_block_media_instance_ctrl_t

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end
of this file. FileX block media private control block. DO NOT MODIFY. Initialization occurs when
RM_FILEX_BLOCK_MEDIA_Open is called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,700 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

◆ RM_FILEX_BLOCK_MEDIA_Open()

fsp_err_t RM_FILEX_BLOCK_MEDIA_Open (rm_filex_block_media_ctrl_t *const p_ctrl,
rm_filex_block_media_cfg_t const *const p_cfg)

The file system relies on the media to be formatted prior to creating directories and files The sector
size and sector count will change depending on the media type and size.

The File Allocation Table (FAT) starts after the reserved sectors in the media. The FAT area is
basically an array of 12-bit, 16-bit, or 32-bit entries that determine if that cluster is allocated or
part of a chain of clusters comprising a subdirectory or a file. The size of each FAT entry is
determined by the number of clusters that need to be represented. If the number of clusters
(derived from the total sectors divided by the sectors per cluster) is less than 4,086, 12-bit FAT
entries are used. If the total number of clusters is greater than 4,086 and less than or equal to
65,525, 16-bit FAT entries are used. Otherwise, if the total number of clusters is greater than
65,525, 32-bit FAT entries are used. Initializes callback and configuration for FileX Block Media
interface. Call this before calling any FileX functions.

Implements rm_filex_block_media_api_t::open().

Return values
FSP_SUCCESS Success.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

◆ RM_FILEX_BLOCK_MEDIA_Close()

fsp_err_t RM_FILEX_BLOCK_MEDIA_Close (rm_filex_block_media_ctrl_t *const p_ctrl)

Closes media device.

Implements rm_filex_block_media_api_t::close().

Return values
FSP_SUCCESS Media device closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,701 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)

◆ RM_FILEX_BLOCK_MEDIA_BlockDriver()

void RM_FILEX_BLOCK_MEDIA_BlockDriver (FX_MEDIA * p_fx_media)

Access Block Media device functions open, close, read, write and control.

The RM_FILEX_BLOCK_MEDIA_BlockDriver function is called from the FileX file system driver and
issues requests to a Block Media device through the FSP Block Media Interface. Uses block media
driver for accesses.

Parameters
[in,out] p_fx_media FileX media control block. All

information about each open
media device are maintained
in the FX_MEDIA data type.
The I/O driver communicates
the success or failure of the
request through the
fx_media_driver_status
member of FX_MEDIA (p_fx_
media->fx_media_driver_sta
tus). Possible values are
documented in the FileX
User Guide.

Return values
None

Returns
Nothing, but updates FileX media control block.

4.2.75 Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)
Modules

Functions

void RM_FILEX_LEVELX_NOR_DeviceDriver (FX_MEDIA *p_fx_media)

 Access LevelX NOR device functions open, close, read, write and
control. More...

Detailed Description

Middleware for the Azure RTOS FileX File System control using LevelX NOR on RA MCUs.

Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,702 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

This module provides the hardware port layer for FileX file system. After initializing this module, refer
to the FileX API reference to use the file system: https://docs.microsoft.com/en-us/azure/rtos/filex/

Features

The FileX LevelX NOR module supports the following features:

ThreadX is typically required for FileX. To use FileX without ThreadX
FX_STANDALONE_ENABLE must be defined.
Unless FX_SINGLE_THREAD or FX_STANDALONE_ENABLE are defined, all FileX operations
are thread safe.

Configuration
Build Time Configurations for rm_filex_levelx_nor

The following build time configurations are defined in fsp_cfg/middleware/rm_filex_levelx_nor_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) Selects if code for
parameter checking is
to be included in the
build.

Configurations for Middleware > Storage > FileX I/O Driver on rm_filex_levelx_nor

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_filex_levelx_nor0 Module name.

Callback Name must be a valid
C symbol

g_rm_filex_levelx_nor_0
_callback

A user callback
function can be
provided. If this
callback function is
provided, it will be
called when media is
inserted or removed. It
will also be called
during operations by
the lower level block
media as a way for the
user to provide their
desired waiting
functionality.

LevelX NOR Name
(String)

Manual Entry g_rm_filex_levelx_nor_0 String name to be input
into LevelX API.

Build Time Configurations for fx

The following build time configurations are defined in fsp_cfg/azure/fx/fx_user.h:

Configuration Options Default Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,703 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

Common > Max Long
Name Len

Value must be greater
than or equal to 13 and
less than or equal to
256, or empty

Specifies the maximum
file name size for FileX.
If left blank the default
value is 256. Legal
values range between
13 and 256.

Common > Max Last
Name Len

Value must be greater
than or equal to 13 and
less than or equal to
256, or empty

This value defines the
maximum file name
length, which includes
full path name. If left
blank the default value
is 256. Legal values
range between 13 and
256.

Common > Max Sector
Cache

Value must be greater
than 0 or empty

Specifies the maximum
number of logical
sectors that can be
cached by FileX. The
actual number of
sectors that can be
cached is lesser of this
constant and how
many sectors can fit in
the amount of memory
supplied at
fx_media_open. The
default value if left
blank is 256. All values
must be a power of 2.

Common > Fat Map
Size

Value must be greater
than 0 or empty

Specifies the number of
sectors that can be
represented in the FAT
update map. The
default value if left
blank is 256. Larger
values help reduce
unneeded updates of
secondary FAT sectors.

Common > Max Fat
Cache

Value must be greater
than 0 or empty

Specifies the number of
entries in the internal
FAT cache. The default
value if left blank is 16.
All values must be a
power of 2.

Threading > Update
Rate (Seconds)

Value must be greater
than 0 or empty

Specifies rate at which
system time in FileX is
adjusted. Default value
if left blank is 10,
specifying that the
FileX system time is
updated every 10
seconds.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,704 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

Threading > No Timer Enabled
Disabled
(default)

Disabled (default) Eliminates the ThreadX
timer setup to update
the FileX system time
and date. Doing so
causes default time
and date to be placed
on all file operations.

Threading > Single
Thread

Enabled
Disabled
(default)

Disabled (default) Eliminates ThreadX
protection logic from
the FileX source. It
should be used if FileX
is being used only from
one thread.

Threading >
Standalone

Enabled
Disabled
(default)

Disabled (default) Enables FileX to be
used in standalone
mode (without Azure
RTOS).

Extra Features > Don't
Update Open Files

Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
does not update
already opened files.

Extra Features > Media
Search Cache

Enabled
(default)
Disabled

Enabled (default) When disabled, the file
search cache
optimization is
disabled.

Extra Features > Direct
Data Read Cache Fill

Enabled
(default)
Disabled

Enabled (default) When disabled, the
direct read sector
update of cache is
disabled.

Extra Features > Media
Statistics

Enabled
(default)
Disabled

Enabled (default) When disabled,
gathering of media
statistics is disabled.

Extra Features > Single
Open Legacy

Enabled
Disabled
(default)

Disabled (default) When enabled, legacy
single open logic for
the same file is
enabled.

Extra Features >
Rename Path Inherit

Enabled
Disabled
(default)

Disabled (default) When enabled,
renaming inherits path
information.

Extra Features > No
Local Path

Enabled
Disabled
(default)

Disabled (default) When enabled,
removes local path
logic from FileX,
resulting in smaller
code size.

Extra Features > 64-bit
LBA

Enabled
Disabled
(default)

Disabled (default) When enabled, 64-bits
sector addresses are
used in I/O driver.

Extra Features > Cache Enabled
(default)

Enabled (default) Enables or disables the
cache, default is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,705 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

Disabled enabled.

Extra Features > File
Close

Enabled
(default)
Disabled

Enabled (default) Enables or disables file
close, default is
enabled.

Extra Features > Fast
Close

Enabled
(default)
Disabled

Enabled (default) Enables or disables fast
open, default is
enabled.

Extra Features > Force
Memory Operation

Enabled
(default)
Disabled

Enabled (default) Enables or disables
force memory
operation, default is
enabled.

Extra Features > Build
Options

Enabled
(default)
Disabled

Enabled (default) Enables or disables
build options, default is
enabled.

Extra Features > One
Line Function

Enabled
(default)
Disabled

Enabled (default) Enables or disables one
line function, default is
enabled.

Extra Features > FAT
Entry Refresh

Enabled
(default)
Disabled

Enabled (default) Enables or disables FAT
entry refresh, default is
enabled.

Extra Features >
Consecutive Detect

Enabled
(default)
Disabled

Enabled (default) Enables or disables
consecutive detect,
default is enabled.

Extra Features >
Enable exFAT

Enabled
Disabled
(default)

Disabled (default) Enables exFAT support
in FileX.

Fault Tolerant > Fault
Tolerant Service

Enabled
Disabled
(default)

Disabled (default) When enabled, enables
the FileX Fault Tolerant
Module. Enabling Fault
Tolerant automatically
defines the symbol
FX_FAULT_TOLERANT
and FX_FAULT_TOLERA
NT_DATA.

Fault Tolerant > Fault
Tolerant Data

Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
immediately passes all
file data write requests
to the media's driver.
This potentially
decreases
performance, but helps
limit lost file data. Note
that enabling this
feature does not
automatically enable
FileX Fault Tolerant
Module, which should
be enabled separately.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,706 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

Fault Tolerant > Fault
Tolerant

Enabled
Disabled
(default)

Disabled (default) When enabled, FileX
immediately passes
write requests of all
system sectors (boot,
FAT, and directory
sectors) to the media's
driver. This potentially
decreases
performance, but helps
limit corruption to lost
clusters. Note that
enabling this feature
does not automatically
enable FileX Fault
Tolerant Module, which
should be enabled
separately.

Fault Tolerant > Fault
Tolerant Boot Index

Value must be greater
than or equal to 116
and less than or equal
to 119

Defines byte offset in
the boot sector where
the cluster for the fault
tolerant log is. By
default if left blank this
value is 116. This field
takes 4 bytes. Bytes
116 through 119 are
chosen because they
are marked as
reserved by FAT
12/16/32/exFAT
specification.

Error Checking Enabled
(default)
Disabled

Enabled (default)

Configurations for Azure RTOS > FileX > FileX on LevelX NOR

This module can be added to the Stacks tab via New Stack > Azure RTOS > FileX > FileX on LevelX
NOR.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_fx_media0 Symbol used for
media_ptr parameter in
FileX APIs

Volume Name Name must be a valid
C symbol

Volume 1 Volume name string,
which is a maximum of
11 characters.

Number of FATs Number of FATs must
be an integer greater
than 0

1 Number of FATs in the
media. The minimal
value is 1 for the
primary FAT. Values
greater than 1 result in
additional FAT copies

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,707 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

being maintained at
run-time.

Directory Entries Number of Directory
Entries must be an
integer greater than 0

256 Number of directory
entries in the root
directory.

Hidden Sectors Number of Hidden
Sectors must be an
integer

0 Number of sectors
hidden before this
media’s boot sector. If
using media formatted
with multiple partitions
this number should
correspond to the
starting block number
for the desired
partition.

Total Sectors Total Sectors must be
an integer greater than
0

3751936 Total number of sectors
in the media. When
using a Renesas
provided block media
implementation, total
sectors can be fetched
by the infoGet from the
block media API. Any
removable media must
be inserted and
initialized first to
retrieve this info.

Sectors per Cluster Sectors per Cluster
must be an integer
greater than 0

1 Number of sectors in
each cluster. The
cluster is the minimum
allocation unit in a FAT
file system.

Volume Serial Number
(exFAT only)

Volume Serial Number
must be an integer
greater than 0

12345 Serial number to be
used for this volume.
exFAT only.

Boundary Unit (exFAT
only)

Boundary unit must be
an integer greater than
0

128 Physical data area
alignment size, in
number of sectors.
exFAT only.

Working media
memory size

Memory size must be
an integer greater than
or equal to the size of
one sector

512 Memory allocated for
file system. Memory
size must be an integer
greater than or equal
to the size of one
sector.

Usage Notes
Pending during Write/Erase

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,708 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

If the underlying LevelX NOR driver performs a blocking operation that requires waiting to complete
(such as a long write/erase on NOR SPI), a callback can be provided to provide a way to wait with an
OS-specific thread wait. This callback will also pass up block erase events.

Partitioned Media

Partitioned media is not supported directly by the FileX LevelX NOR port.

Examples
Basic Example

This is a basic example of FileX Block Media in an application.

#define RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME "TEST_FILE.txt"

#define RM_FILEX_LEVELX_NOR_EXAMPLE_BUFFER_SIZE_BYTES (10240)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_PARTITION_NUMBER (0)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_BLOCK_SIZE (512)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_DIRECTORY_ENTRIES (128)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_FATS (1)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_HIDDEN_SECTORS (0)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_TOTAL_SECTORS (512)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SECTOR_SIZE (512)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_CLUSTER (1)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_HEADS (1)

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_TRACK (1)

extern rm_filex_levelx_nor_instance_t g_filex_levelx_nor0;

extern rm_filex_levelx_nor_instance_ctrl_t g_filex_levelx_nor0_ctrl;

extern rm_filex_levelx_nor_cfg_t g_filex_levelx_nor0_cfg;

extern FX_MEDIA g_fx_media0;

extern uint8_t g_fx_media0_memory[RM_FILEX_LEVELX_NOR_EXAMPLE_BLOCK_SIZE];

extern uint8_t g_file_data[RM_FILEX_LEVELX_NOR_EXAMPLE_BUFFER_SIZE_BYTES];

extern uint8_t g_read_buffer[RM_FILEX_LEVELX_NOR_EXAMPLE_BUFFER_SIZE_BYTES];

void rm_filex_levelx_nor_example (void)

{

 /* Initialize FileX */

 fx_system_initialize();

 /* Initialize LevelX */

 lx_nor_flash_initialize();

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,709 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

 /* Open the media. This assumes the flash is already formatted. */

 UINT fx_err = fx_media_open(&g_fx_media0,

 "filex_example_media",

 RM_FILEX_LEVELX_NOR_DeviceDriver,

 &g_filex_levelx_nor0,

 g_fx_media0_memory,

 sizeof(g_fx_media0_memory));

 handle_fx_error(fx_err);

 /* Create a file */

 fx_err = fx_file_create(&g_fx_media0, RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME);

 handle_fx_error(fx_err);

 /* Open source file for writing. */

 FX_FILE sourceFile;

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME, FX_OPEN_FOR_WRITE);

 handle_fx_error(fx_err);

 /* Write file data. */

 fx_err = fx_file_write(&sourceFile, g_file_data, sizeof(g_file_data));

 handle_fx_error(fx_err);

 /* Close the file. */

 fx_err = fx_file_close(&sourceFile);

 handle_fx_error(fx_err);

 /* Open the source file in read mode. */

 fx_err = fx_file_open(&g_fx_media0, &sourceFile,

RM_FILEX_LEVELX_NOR_EXAMPLE_FILE_NAME, FX_OPEN_FOR_READ);

 handle_fx_error(fx_err);

 /* Read file data. */

 ULONG actual_size_read;

 fx_err = fx_file_read(&sourceFile, g_read_buffer, sizeof(g_file_data),

&actual_size_read);

 handle_fx_error(fx_err);

 assert(sizeof(g_file_data) == actual_size_read);

 /* Close the file. */

 fx_err = fx_file_close(&sourceFile);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,710 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

 handle_fx_error(fx_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

 /* Close the Media */

 fx_err = fx_media_close(&g_fx_media0);

 handle_fx_error(fx_err);

}

Format Example

This shows how to partition and format a disk if it is not already partitioned and formatted.

extern rm_levelx_nor_spi_cfg_t g_levelx_nor_spi0_cfg;

#define RM_FILEX_LEVELX_NOR_EXAMPLE_SPI_SECTOR_SIZE (4096)

void rm_filex_levelx_nor_format_example (void)

{

 spi_flash_instance_t * p_spi_flash_instance = (spi_flash_instance_t *)

g_levelx_nor_spi0_cfg.p_lower_lvl;

 spi_flash_status_t status;

 /* Erase flash prior to usage */

 fsp_err_t err = p_spi_flash_instance->p_api->open(p_spi_flash_instance->p_ctrl,

p_spi_flash_instance->p_cfg);

 assert(FSP_SUCCESS == err);

 for (uint32_t i = g_levelx_nor_spi0_cfg.address_offset;

 i < g_levelx_nor_spi0_cfg.size;

 i += RM_FILEX_LEVELX_NOR_EXAMPLE_SPI_SECTOR_SIZE)

 {

 err = p_spi_flash_instance->p_api->erase(p_spi_flash_instance->p_ctrl,

 (uint8_t *)

g_levelx_nor_spi0_cfg.base_address + i,

RM_FILEX_LEVELX_NOR_EXAMPLE_SPI_SECTOR_SIZE);

 assert(FSP_SUCCESS == err);

 status.write_in_progress = true;

 while (status.write_in_progress)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,711 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

 {

 err =

p_spi_flash_instance->p_api->statusGet(p_spi_flash_instance->p_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 }

 err = p_spi_flash_instance->p_api->close(p_spi_flash_instance->p_ctrl);

 assert(FSP_SUCCESS == err);

 /* Format the media */

 UINT fx_err = fx_media_format(&g_fx_media0,

// Pointer to FileX media control block.

 RM_FILEX_LEVELX_NOR_DeviceDriver, // Driver entry

 &g_filex_levelx_nor0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

 RM_FILEX_LEVELX_NOR_EXAMPLE_HIDDEN_SECTORS,

// Hidden sectors

RM_FILEX_LEVELX_NOR_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_HEADS,

// Heads

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,712 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

}

Callback Wait Example

This shows how to use the I/O driver callback with ThreadX in order to wait for operations to
complete.

/* Callback called by FileX block media I/O driver needs to wait on operation. */

void rm_filex_levelx_nor_test_callback_wait (rm_filex_levelx_nor_callback_args_t *

p_args)

{

 if (p_args->event & RM_FILEX_LEVELX_NOR_EVENT_BUSY)

 {

 /* Put the thread to sleep while waiting for operation to complete. */

 tx_thread_sleep(1);

 }

}

void rm_filex_levelx_nor_callback_wait_example (void)

{

 /* Format the media */

 UINT fx_err = fx_media_format(&g_fx_media0,

// Pointer to FileX media control block.

 RM_FILEX_LEVELX_NOR_DeviceDriver, // Driver entry

 &g_filex_levelx_nor0, // Pointer to Block Media

Driver

 g_fx_media0_memory, // Media buffer pointer

 sizeof(g_fx_media0_memory), // Media buffer size

 "EXAMPLE_VOLUME", // Volume Name

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_FATS,

// Number of FATs

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_DIRECTORY_ENTRIES,

// Directory Entries

 RM_FILEX_LEVELX_NOR_EXAMPLE_HIDDEN_SECTORS,

// Hidden sectors

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,713 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

RM_FILEX_LEVELX_NOR_EXAMPLE_TOTAL_SECTORS, // Total sectors

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTOR_SIZE,

// Sector size

RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_CLUSTER, // Sectors per cluster

 RM_FILEX_LEVELX_NOR_EXAMPLE_NUM_HEADS,

// Heads

 RM_FILEX_LEVELX_NOR_EXAMPLE_SECTORS_PER_TRACK);

// Sectors per track

 handle_fx_error(fx_err);

}

Data Structures

struct rm_filex_levelx_nor_callback_args_t

struct rm_filex_levelx_nor_cfg_t

struct rm_filex_levelx_nor_instance_ctrl_t

struct rm_filex_levelx_nor_instance_t

Enumerations

enum rm_filex_levelx_nor_event_t

Data Structure Documentation

◆ rm_filex_levelx_nor_callback_args_t

struct rm_filex_levelx_nor_callback_args_t

Callback function parameter data

Data Fields

rm_filex_levelx_nor_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ rm_filex_levelx_nor_cfg_t

struct rm_filex_levelx_nor_cfg_t

FileX LevelX configuration

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,714 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

UINT(* nor_driver_initialize)(LX_NOR_FLASH *)

 Pointer to the initialization function.

LX_NOR_FLASH * p_nor_flash

 NOR Flash instance.

CHAR * p_nor_flash_name

 NOR Flash instance name.

fsp_err_t(* close)()

 Pointer to underlying driver close.

void(* p_callback)(rm_filex_levelx_nor_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 Placeholder for user data.

◆ rm_filex_levelx_nor_instance_ctrl_t

struct rm_filex_levelx_nor_instance_ctrl_t

FileX block media private control block. DO NOT MODIFY. Initialization occurs when
RM_FILEX_LEVELX_NOR_Open is called.

Data Fields

rm_filex_levelx_nor_cfg_t const
*

p_cfg Pointer to instance
configuration.

◆ rm_filex_levelx_nor_instance_t

struct rm_filex_levelx_nor_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_filex_levelx_nor_instance_ct
rl_t *

p_ctrl Pointer to the control structure
for this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,715 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)

rm_filex_levelx_nor_cfg_t *const p_cfg Pointer to the configuration
structure for this instance.

Enumeration Type Documentation

◆ rm_filex_levelx_nor_event_t

enum rm_filex_levelx_nor_event_t

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end
of this file. Options for the callback events.

Enumerator

RM_FILEX_LEVELX_NOR_EVENT_BUSY Pending operation, user can define their own
wait functionality.

Function Documentation

◆ RM_FILEX_LEVELX_NOR_DeviceDriver()

void RM_FILEX_LEVELX_NOR_DeviceDriver (FX_MEDIA * p_fx_media)

Access LevelX NOR device functions open, close, read, write and control.

The RM_FILEX_LEVELX_NOR_DeviceDriver function is called from the FileX file system driver and
issues requests to a LevelX NOR device through the LevelX API.

Parameters
[in,out] p_fx_media FileX media control block. All

information about each open
media device are maintained
in the FX_MEDIA data type.
The I/O driver communicates
the success or failure of the
request through the
fx_media_driver_status
member of FX_MEDIA (p_fx_
media->fx_media_driver_sta
tus). Possible values are
documented in the FileX
User Guide.

Return values
None

Returns
Nothing, but updates FileX media control block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,716 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

4.2.76 FreeRTOS+FAT Port (rm_freertos_plus_fat)
Modules

Functions

fsp_err_t RM_FREERTOS_PLUS_FAT_Open (rm_freertos_plus_fat_ctrl_t *const
p_ctrl, rm_freertos_plus_fat_cfg_t const *const p_cfg)

fsp_err_t RM_FREERTOS_PLUS_FAT_MediaInit (rm_freertos_plus_fat_ctrl_t
*const p_ctrl, rm_freertos_plus_fat_device_t *const p_device)

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskInit (rm_freertos_plus_fat_ctrl_t *const
p_ctrl, rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg,
FF_Disk_t *const p_disk)

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskDeinit (rm_freertos_plus_fat_ctrl_t
*const p_ctrl, FF_Disk_t *const p_disk)

fsp_err_t RM_FREERTOS_PLUS_FAT_InfoGet (rm_freertos_plus_fat_ctrl_t *const
p_ctrl, FF_Disk_t *const p_disk, rm_freertos_plus_fat_info_t *const
p_info)

fsp_err_t RM_FREERTOS_PLUS_FAT_Close (rm_freertos_plus_fat_ctrl_t *const
p_ctrl)

Detailed Description

Middleware for the FAT File System control on RA MCUs.

Overview
This module provides the hardware port layer for FreeRTOS+FAT file system. After initializing this
module, refer to the FreeRTOS+FAT API reference to use the file system:
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html

Features

The FreeRTOS+FAT port module supports the following features:

Callbacks for insertion and removal for removable devices.
Helper function to initialize FF_Disk_t
Blocking read and write port functions that use FreeRTOS task notification to pend if
FreeRTOS is used
FreeRTOS is optional

Configuration
Build Time Configurations for rm_freertos_plus_fat

The following build time configurations are defined in fsp_cfg/middleware/rm_freertos_plus_fat_cfg.h:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,717 / 2,794

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for FreeRTOS+ > FreeRTOS+FAT Port for RA

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_freertos_plus_fat
0

Module name.

Total Number of
Sectors

Must be a non-negative
integer

31293440 Enter the total number
of sectors on the
device. If this is not
known, update rm_free
rtos_plus_fat_disk_cfg_t
::num_blocks after
calling
RM_FREERTOS_PLUS_F
AT_MediaInit().

Sector Size (bytes) Must be a power of 2
multiple of 512

512 Select the sector size.
Must match the
underlying media
sector size and at least
512. If this is not
known, update rm_free
rtos_plus_fat_disk_cfg_t
::num_blocks after
calling
RM_FREERTOS_PLUS_F
AT_MediaInit().

Cache Size (bytes) Must be a power of 2
multiple of 512

1024 Select the cache size.
Must be a multiple of
the sector size and at
least 2 times the sector
size.

Partition Number Must be a non-negative
integer

0 Select the partition
number for this disk.

Callback Name must be a valid
C symbol

NULL A user callback
function can be
provided. If this
callback function is
provided, it will be
called when a card is
inserted or removed.

Usage Notes
Pending during Read/Write

If the underlying driver supports non-blocking operations, the FreeRTOS+FAT port pends the active

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,718 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

FreeRTOS task during read and write operations so other tasks can run in the background.

If FreeRTOS is not used, the FreeRTOS+FAT port spins in a while loop waiting for read and write
operations to complete.

FreeRTOS+FAT without FreeRTOS

To use FreeRTOS+FAT without FreeRTOS, copy FreeRTOSConfigMinimal.h to one of your project's
include paths and rename it FreeRTOSConfig.h.

Also, update the Malloc function to malloc and the Free function to free in the Common
configurations.

Examples
Basic Example

This is a basic example of FreeRTOS+FAT in an application.

#define RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME "TEST_FILE.txt"

#define RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES (10240)

#define RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER (0)

extern rm_freertos_plus_fat_instance_ctrl_t g_freertos_plus_fat0_ctrl;

extern const rm_freertos_plus_fat_cfg_t g_freertos_plus_fat0_cfg;

extern rm_freertos_plus_fat_disk_cfg_t g_rm_freertos_plus_fat_disk_cfg;

extern uint8_t g_file_data[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

extern uint8_t g_read_buffer[RM_FREERTOS_PLUS_FAT_EXAMPLE_BUFFER_SIZE_BYTES];

void rm_freertos_plus_fat_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,719 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

 assert(FSP_SUCCESS == err);

 /* Mount each disk. This assumes the disk is already partitioned and formatted. */

 FF_Error_t ff_err = FF_Mount(&disk,

RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 handle_ff_error(ff_err);

 /* Add the disk to the file system. */

 FF_FS_Add("/", &disk);

 /* Open a source file for writing. */

 FF_FILE * pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "w");

 assert(NULL != pxSourceFile);

 /* Write file data. */

 size_t size_return = ff_fwrite(g_file_data, sizeof(g_file_data), 1, pxSourceFile);

 assert(1 == size_return);

 /* Close the file. */

 int close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Open the source file in read mode. */

 pxSourceFile = ff_fopen((const char *) RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME,

"r");

 assert(NULL != pxSourceFile);

 /* Read file data. */

 size_return = ff_fread(g_read_buffer, sizeof(g_file_data), 1, pxSourceFile);

 assert(1 == size_return);

 /* Close the file. */

 close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,720 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

Format Example

This shows how to partition and format a disk if it is not already partitioned and formatted.

void rm_freertos_plus_fat_format_example (void)

{

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

 assert(FSP_SUCCESS == err);

 /* Try to mount the disk. If the disk is not formatted, mount will fail. */

 FF_Error_t ff_err = FF_Mount(&disk,

RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 if (FF_isERR((uint32_t) ff_err))

 {

 /* The disk is likely not formatted. Partition and format the disk, then mount

again. */

 FF_PartitionParameters_t partition_params;

 partition_params.ulSectorCount =

g_rm_freertos_plus_fat_disk_cfg.device.sector_count;

 partition_params.ulHiddenSectors = 1;

 partition_params.ulInterSpace = 0;

 memset(partition_params.xSizes, 0, sizeof(partition_params.xSizes));

 partition_params.xSizes[RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER] =

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,721 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

 (BaseType_t) partition_params.ulSectorCount - 1;

 partition_params.xPrimaryCount = 1;

 partition_params.eSizeType = eSizeIsSectors;

 ff_err = FF_Partition(&disk, &partition_params);

 handle_ff_error(ff_err);

 ff_err = FF_Format(&disk, RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER,

pdFALSE, pdFALSE);

 handle_ff_error(ff_err);

 ff_err = FF_Mount(&disk, RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 handle_ff_error(ff_err);

 }

}

Media Insertion Example

This shows how to use the callback to wait for media insertion.

#if 2 == BSP_CFG_RTOS

static EventGroupHandle_t xUSBEventGroupHandle = NULL;

#else

volatile uint32_t g_rm_freertos_plus_fat_insertion_events = 0;

volatile uint32_t g_rm_freertos_plus_fat_removal_events = 0;

#endif

/* Callback called by media driver when a removable device is inserted or removed. */

void rm_freertos_plus_fat_test_callback (rm_freertos_plus_fat_callback_args_t *

p_args)

{

#if 2 == BSP_CFG_RTOS

 /* Post an event if FreeRTOS is available. */

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 xEventGroupSetBitsFromISR(xUSBEventGroupHandle, p_args->event,

&xHigherPriorityTaskWoken);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

#else

 /* If FreeRTOS is not used, set a global flag. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,722 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

 if (p_args->event & RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED)

 {

 g_rm_freertos_plus_fat_insertion_events++;

 }

 if (p_args->event & RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_REMOVED)

 {

 g_rm_freertos_plus_fat_removal_events++;

 }

#endif

}

void rm_freertos_plus_fat_media_insertion_example (void)

{

#if 2 == BSP_CFG_RTOS

 /* Create event flags if FreeRTOS is used. */

 xUSBEventGroupHandle = xEventGroupCreate();

 TEST_ASSERT_NOT_EQUAL(NULL, xUSBEventGroupHandle);

#endif

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for media insertion. */

#if 2 == BSP_CFG_RTOS

 EventBits_t xEventGroupValue = xEventGroupWaitBits(xUSBEventGroupHandle,

 RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED,

 pdTRUE,

 pdFALSE,

 portMAX_DELAY);

 assert(RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED ==

 (RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED & xEventGroupValue));

#else

 while (0U == g_rm_freertos_plus_fat_insertion_events)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,723 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

 /* Wait for media insertion. */

 }

#endif

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

 assert(FSP_SUCCESS == err);

}

Media Insertion Example for USB

This shows how to use the callback to read and write to USB media.

void rm_freertos_plus_fat_usb_example (void)

{

#if 2 == BSP_CFG_RTOS

 /* Create event flags if FreeRTOS is used. */

 xUSBEventGroupHandle = xEventGroupCreate();

#endif

 /* Open media driver.*/

 fsp_err_t err = RM_FREERTOS_PLUS_FAT_Open(&g_freertos_plus_fat0_ctrl,

&g_freertos_plus_fat0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Wait for the USB media to be attached. */

#if 2 == BSP_CFG_RTOS

 EventBits_t xEventGroupValue = xEventGroupWaitBits(xUSBEventGroupHandle,

 RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,724 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

 pdTRUE,

 pdFALSE,

 portMAX_DELAY);

 assert(RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED ==

 (RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERTED & xEventGroupValue));

#else

 while (0U == g_rm_freertos_plus_fat_insertion_events)

 {

 /* Wait for the USB media to be attached. */

 }

#endif

 /* Initialize the media and the disk. If the media is removable, it must be inserted

before calling

 * RM_FREERTOS_PLUS_FAT_MediaInit. */

 err = RM_FREERTOS_PLUS_FAT_MediaInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg.device);

 assert(FSP_SUCCESS == err);

 /* Initialize one disk for each partition used in the application. */

 FF_Disk_t disk;

 err = RM_FREERTOS_PLUS_FAT_DiskInit(&g_freertos_plus_fat0_ctrl,

&g_rm_freertos_plus_fat_disk_cfg, &disk);

 assert(FSP_SUCCESS == err);

 /* Mount each disk. This assumes the disk is already partitioned and formatted. */

 FF_Error_t ff_err = FF_Mount(&disk,

RM_FREERTOS_PLUS_FAT_EXAMPLE_PARTITION_NUMBER);

 handle_ff_error(ff_err);

 /* Add the disk to the file system. */

 FF_FS_Add("/", &disk);

 /* Open a source file for writing. */

 FF_FILE * pxSourceFile = ff_fopen((const char *)

RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME, "w");

 assert(NULL != pxSourceFile);

 /* Write file data. */

 size_t size_return = ff_fwrite(g_file_data, sizeof(g_file_data), 1, pxSourceFile);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,725 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

 assert(1 == size_return);

 /* Close the file. */

 int close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Open the source file in read mode. */

 pxSourceFile = ff_fopen((const char *) RM_FREERTOS_PLUS_FAT_EXAMPLE_FILE_NAME,

"r");

 assert(NULL != pxSourceFile);

 /* Read file data. */

 size_return = ff_fread(g_read_buffer, sizeof(g_file_data), 1, pxSourceFile);

 assert(1 == size_return);

 /* Close the file. */

 close_err = ff_fclose(pxSourceFile);

 assert(0 == close_err);

 /* Verify the file data read matches the file written. */

 assert(0U == memcmp(g_file_data, g_read_buffer, sizeof(g_file_data)));

}

Data Structures

struct rm_freertos_plus_fat_instance_ctrl_t

Data Structure Documentation

◆ rm_freertos_plus_fat_instance_ctrl_t

struct rm_freertos_plus_fat_instance_ctrl_t

FreeRTOS plus FAT private control block. DO NOT MODIFY. Initialization occurs when
RM_FREERTOS_PLUS_FAT_Open is called.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,726 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

◆ RM_FREERTOS_PLUS_FAT_Open()

fsp_err_t RM_FREERTOS_PLUS_FAT_Open (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_cfg_t const *const p_cfg)

Initializes lower layer media device.

Implements rm_freertos_plus_fat_api_t::open().

Return values
FSP_SUCCESS Success.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_OUT_OF_MEMORY Not enough memory to create semaphore.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

rm_block_media_api_t::open

◆ RM_FREERTOS_PLUS_FAT_MediaInit()

fsp_err_t RM_FREERTOS_PLUS_FAT_MediaInit (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_device_t *const p_device)

Initializes the media device. This function blocks until all identification and configuration commands
are complete.

Implements rm_freertos_plus_fat_api_t::mediaInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module has not been initialized.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

rm_block_media_api_t::mediaInit
rm_block_media_api_t::infoGet

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,727 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

◆ RM_FREERTOS_PLUS_FAT_DiskInit()

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskInit (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg, FF_Disk_t *const p_disk)

Initializes a FreeRTOS+FAT disk structure. This function calls FF_CreateIOManger.

Implements rm_freertos_plus_fat_api_t::diskInit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module has not been initialized.

FSP_ERR_INTERNAL Call to FF_CreateIOManger failed.

◆ RM_FREERTOS_PLUS_FAT_DiskDeinit()

fsp_err_t RM_FREERTOS_PLUS_FAT_DiskDeinit (rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t
*const p_disk)

Deinitializes a FreeRTOS+FAT disk structure. This function calls FF_DeleteIOManger.

Implements rm_freertos_plus_fat_api_t::diskDeinit().

Return values
FSP_SUCCESS Module is initialized and ready to access the

memory device.

FSP_ERR_ASSERTION An input parameter is invalid.

FSP_ERR_NOT_OPEN Module has not been initialized.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,728 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS+FAT Port (rm_freertos_plus_fat)

◆ RM_FREERTOS_PLUS_FAT_InfoGet()

fsp_err_t RM_FREERTOS_PLUS_FAT_InfoGet (rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t
*const p_disk, rm_freertos_plus_fat_info_t *const p_info)

Get partition information. This function can only be called after rm_freertos_plus_fat_api_t::diskInit()
.

Implements rm_freertos_plus_fat_api_t::infoGet().

Return values
FSP_SUCCESS Information stored in p_info.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

FSP_ERR_NOT_FOUND The value of p_iomanager is NULL.

◆ RM_FREERTOS_PLUS_FAT_Close()

fsp_err_t RM_FREERTOS_PLUS_FAT_Close (rm_freertos_plus_fat_ctrl_t *const p_ctrl)

Closes media device.

Implements rm_freertos_plus_fat_api_t::close().

Return values
FSP_SUCCESS Media device closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

rm_block_media_api_t::close

4.2.77 FreeRTOS Plus TCP (rm_freertos_plus_tcp)
Modules

Middleware for using TCP on RA MCUs.

Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,729 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus TCP (rm_freertos_plus_tcp)

FreeRTOS Plus TCP is a TCP stack created for use with FreeRTOS.

This module provides the NetworkInterface required to use FreeRTOS Plus TCP with the Ethernet
(r_ether) driver.

Please refer to the FreeRTOS Plus TCP documentation for further details.

Configuration

Build Time Configurations for FreeRTOS_Plus_TCP

The following build time configurations are defined in aws/FreeRTOSIPConfig.h:

Configuration Options Default Description

Print debug messages Disable
Enable

Disable If ipconfigHAS_DEBUG_
PRINTF is set to 1 then
FreeRTOS_debug_printf
should be defined to
the function used to
print out the debugging
messages.

Print info messages Disable
Enable

Disable Set to 1 to print out
non debugging
messages, for example
the output of the
FreeRTOS_netstat()
command, and ping
replies. If
ipconfigHAS_PRINTF is
set to 1 then
FreeRTOS_printf should
be set to the function
used to print out the
messages.

Byte order of the target
MCU

pdFREERTOS_LITTLE_E
NDIAN

pdFREERTOS_LITTLE_E
NDIAN

Define the byte order
of the target MCU

IP/TCP/UDP checksums Disable
Enable

Enable If the network
card/driver includes
checksum offloading
(IP/TCP/UDP
checksums) then set ip
configDRIVER_INCLUDE
D_RX_IP_CHECKSUM to
1 to prevent the
software stack
repeating the
checksum calculations.

Receive Block Time Value must be a non-
negative integer

10000 Amount of time
FreeRTOS_recv() will

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,730 / 2,794

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus TCP (rm_freertos_plus_tcp)

block for. The timeouts
can be set per socket,
using setsockopt().

Send Block Time Value must be a non-
negative integer

10000 Amount of time
FreeRTOS_send() will
block for. The timeouts
can be set per socket,
using setsockopt().

DNS caching Disable
Enable

Enable DNS caching

DNS Request Attempts Value must be an
integer

2 When a cache is
present, ipconfigDNS_R
EQUEST_ATTEMPTS can
be kept low and also
DNS may use small
timeouts.

IP stack task priority Manual Entry configMAX_PRIORITIES
- 2

Set the priority of the
task that executes the
IP stack.

Stack size in words (not
bytes)

Manual Entry configMINIMAL_STACK_
SIZE * 5

The size, in words (not
bytes), of the stack
allocated to the
FreeRTOS+TCP stack.

Network Events call vA
pplicationIPNetworkEve
ntHook

Disable
Enable

Enable vApplicationIPNetworkE
ventHook is called
when the network
connects or
disconnects.

Max UDP send block
time

Manual Entry 15000 /
portTICK_PERIOD_MS

Max UDP send block
time

Use DHCP Disable
Enable

Enable If ipconfigUSE_DHCP is
1 then FreeRTOS+TCP
will attempt to retrieve
an IP address,
netmask, DNS server
address and gateway
address from a DHCP
server.

DHCP Register
Hostname

Disable
Enable

Enable Register hostname
when using DHCP

DHCP Uses Unicast Disable
Enable

Enable DHCP uses unicast.

DHCP Send Discover
After Auto IP

Disable
Enable

Disable DHCP Send Discover
After Auto IP

DHCP callback function Disable
Enable

Disable Provide an
implementation of the
DHCP callback function

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,731 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus TCP (rm_freertos_plus_tcp)

(xApplicationDHCPHook
)

Interval between
transmissions

Manual Entry 120000 /
portTICK_PERIOD_MS

When
ipconfigUSE_DHCP is
set to 1, DHCP requests
will be sent out at
increasing time
intervals until either a
reply is received from a
DHCP server and
accepted, or the
interval between
transmissions reaches i
pconfigMAXIMUM_DISC
OVER_TX_PERIOD.

ARP Cache Entries Value must be an
integer

6 The maximum number
of entries that can exist
in the ARP table at any
one time

ARP Request
Retransmissions

Value must be an
integer

5 ARP requests that do
not result in an ARP
response will be re-
transmitted a
maximum of ipconfigM
AX_ARP_RETRANSMISSI
ONS times before the
ARP request is aborted.

Maximum time before
ARP table entry
becomes stale

Value must be an
integer

150 The maximum time
between an entry in
the ARP table being
created or refreshed
and the entry being
removed because it is
stale

Use string for IP
Address

Disable
Enable

Enable Take an IP in decimal
dot format (for
example,
"192.168.0.1") as its
parameter FreeRTOS_in
et_addr_quick() takes
an IP address as four
separate numerical
octets (for example,
192, 168, 0, 1) as its
parameters

Total number of
available network
buffers

Value must be an
integer

10 Define the total
number of network
buffer that are
available to the IP
stack

Set the maximum Please enter a valid ipconfigNUM_NETWORK Set the maximum

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,732 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus TCP (rm_freertos_plus_tcp)

number of events function name without
spaces or funny
characters

_BUFFER_DESCRIPTORS
+ 5

number of events that
can be queued for
processing at any one
time. The event queue
must be a minimum of
5 greater than the total
number of network
buffers

Enable
FreeRTOS_sendto()
without calling Bind

Enable
Disable

Disable Set to 1 then calling
FreeRTOS_sendto() on
a socket that has not
yet been bound will
result in the IP stack
automatically binding
the socket to a port
number from the range
socketAUTO_PORT_ALL
OCATION_START_NUMB
ER to 0xffff. If ipconfigA
LLOW_SOCKET_SEND_
WITHOUT_BIND is set
to 0 then calling
FreeRTOS_sendto() on
a socket that has not
yet been bound will
result in the send
operation being
aborted.

TTL values for UDP
packets

Value must be an
integer

128 Define the Time To Live
(TTL) values used in
outgoing UDP packets

TTL values for TCP
packets

Value must be an
integer

128 Defines the Time To
Live (TTL) values used
in outgoing TCP
packets

Use TCP and all its
features

Disable
Enable

Enable Use TCP and all its
features

Let TCP use windowing
mechanism

Disable
Enable

Disable Let TCP use windowing
mechanism

Maximum number of
bytes the payload of a
network frame can
contain

Value must be an
integer

1500 Maximum number of
bytes the payload of a
network frame can
contain

Basic DNS client or
resolver

Disable
Enable

Enable Set ipconfigUSE_DNS to
1 to include a basic
DNS client/resolver.
DNS is used through
the FreeRTOS_gethostb
yname() API function.

Reply to incoming ICMP Disable Enable If ipconfigREPLY_TO_IN

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,733 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus TCP (rm_freertos_plus_tcp)

echo (ping) requests Enable COMING_PINGS is set
to 1 then the IP stack
will generate replies to
incoming ICMP echo
(ping) requests.

FreeRTOS_SendPingRe
quest() is available

Disable
Enable

Disable If ipconfigSUPPORT_OU
TGOING_PINGS is set to
1 then the FreeRTOS_S
endPingRequest() API
function is available.

FreeRTOS_select() (and
associated) API
function is available

Disable
Enable

Disable If ipconfigSUPPORT_SEL
ECT_FUNCTION is set to
1 then the
FreeRTOS_select() (and
associated) API
function is available

Filter out non Ethernet
II frames.

Disable
Enable

Enable If ipconfigFILTER_OUT_
NON_ETHERNET_II_FRA
MES is set to 1 then
Ethernet frames that
are not in Ethernet II
format will be dropped.
This option is included
for potential future IP
stack developments

Responsibility of the
Ethernet interface to
filter out packets

Disable
Enable

Disable If ipconfigETHERNET_D
RIVER_FILTERS_FRAME_
TYPES is set to 1 then it
is the responsibility of
the Ethernet interface
to filter out packets
that are of no interest.

Send RST packets,
when receive unknown
packets.

Disable
Enable

Enable TCP will not send RST
packets in reply to TCP
unknown or out-of-
order packets

Block time to simulate
MAC interrupts

Please enter a valid
function name without
spaces or funny
characters

20 /
portTICK_PERIOD_MS

The windows simulator
cannot really simulate
MAC interrupts, and
needs to block
occasionally to allow
other tasks to run

Access 32-bit fields in
the IP packets

Value must be an
integer

2 To access 32-bit fields
in the IP packets with
32-bit memory
instructions, all packets
will be stored 32-bit-
aligned, plus 16-bits.
This has to do with the
contents of the IP-
packets: all 32-bit

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,734 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus TCP (rm_freertos_plus_tcp)

fields are 32-bit-
aligned, plus 16-bit

Size of the pool of TCP
window descriptors

Value must be an
integer

240 Define the size of the
pool of TCP window
descriptors

Size of Rx buffer for
TCP sockets

Value must be an
integer

3000 Define the size of Rx
buffer for TCP sockets

Size of Tx buffer for
TCP sockets

Value must be an
integer

3000 Define the size of Tx
buffer for TCP sockets

TCP keep-alive Disable
Enable

Enable TCP keep-alive is
avaiable or not

TCP keep-alive interval Value must be an
integer

120 TCP keep-alive interval
in second

The socket semaphore
to unblock the MQTT
task
(USER_SEMAPHORE)

Disable
Enable

Disable The socket semaphore
is used to unblock the
MQTT task

The socket semaphore
to unblock the MQTT
task (WAKE_CALLBACK)

Disable
Enable

Enable The socket semaphore
is used to unblock the
MQTT task

The socket semaphore
to unblock the MQTT
task (USE_CALLBACKS)

Disable
Enable

Disable The socket semaphore
is used to unblock the
MQTT task

The socket semaphore
to unblock the MQTT
task (TX_DRIVER)

Disable
Enable

Disable The socket semaphore
is used to unblock the
MQTT task

The socket semaphore
to unblock the MQTT
task (RX_DRIVER)

Disable
Enable

Disable The socket semaphore
is used to unblock the
MQTT task

Possible optimisation
for expert users

Disable
Enable

Disable Possible optimisation
for expert users -
requires network driver
support. It is is useful
when there is high
network traffic. If non-
zero value then instead
of passing received
packets into the IP task
one at a time the
network interface can
chain received packets
together and pass
them into the IP task in
one go. If set to 0 then
only one buffer will be
sent at a time.

Usage Notes

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,735 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Plus TCP (rm_freertos_plus_tcp)

In order to use the NetworkInterface implementation provided by Renesas for RA devices:

Configure an r_ether instance and provide a pointer to the instance of the NetworkInterface
as follows:

/* Reference used by the NetworkInterface to access the ethernet instance. */

extern ether_instance_t const * gp_freertos_ether;

...

/* Make it reference the configured ether instance. */

ether_instance_t const * gp_freertos_ether = &g_ether_instance;

Follow the TCP stack initialization procedure as described here: FreeRTOS+TCP Networking
Tutorial: Initializing the TCP/IP Stack

Note
The MAC address passed to FreeRTOS_IPInit must match the MAC address configured in the r_ether instance.
g_ether_instance must have vEtherISRCallback configured as the callback.
The xApplicationGetRandomNumber and ulApplicationGetNextSequenceNumber functions should be implemented
in systems using FreeRTOS Plus TCP without Secure Sockets.
To connect to a server using an IP address the macro ipconfigINCLUDE_FULL_INET_ADDR must be set to 1.

Limitations

Zero-copy is not currently supported by the NetworkInterface.

4.2.78 FreeRTOS Port (rm_freertos_port)
Modules

FreeRTOS port for RA MCUs.

Overview
Note

The FreeRTOS Port does not provide any interfaces to the user. Consult the FreeRTOS documentation at
https://www.freertos.org/Documentation for further information.

Features

The RA FreeRTOS port supports the following features:

Standard FreeRTOS configurations
Hardware stack monitor

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,736 / 2,794

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial_Initialising_TCP.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial_Initialising_TCP.html
https://www.freertos.org/Documentation

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Configuration
Build Time Configurations for all

The following build time configurations are defined in aws/FreeRTOSConfig.h:

Configuration Options Default Description

General > Custom
FreeRTOSConfig.h

Manual Entry Add a path to your
custom
FreeRTOSConfig.h file.
It can be used to
override some or all of
the configurations
defined here, and to
define additional
configurations.

General > Use
Preemption

Enabled
Disabled

Enabled Set to Enabled to use
the preemptive RTOS
scheduler, or Disabled
to use the cooperative
RTOS scheduler.

General > Use Port
Optimised Task
Selection

Enabled
Disabled

Disabled Some FreeRTOS ports
have two methods of
selecting the next task
to execute - a generic
method, and a method
that is specific to that
port.

The Generic method:
Is used when Use Port
Optimized Task
Selection is set to 0, or
when a port specific
method is not
implemented.
Can be used with all
FreeRTOS ports.
Is completely written in
C, making it less
efficient than a port
specific method.
Does not impose a limit
on the maximum
number of available
priorities.

A port specific method:
Is not available for all
ports.
Is used when Use Port
Optimized Task

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,737 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Selection is Enabled.
Relies on one or more
architecture specific
assembly instructions
(typically a Count
Leading Zeros [CLZ] or
equivalent instruction)
so can only be used
with the architecture
for which it was
specifically written.
Is more efficient than
the generic method.
Typically imposes a
limit of 32 on the
maximum number of
available priorities.

General > Use Tickless
Idle

Enabled
Disabled

Disabled Set Use Tickless Idle to
Enabled to use the low
power tickless mode,
or Disabled to keep the
tick interrupt running
at all times. Low power
tickless
implementations are
not provided for all
FreeRTOS ports.

General > Cpu Clock
Hz

Manual Entry SystemCoreClock Enter the frequency in
Hz at which the
internal clock that
drives the peripheral
used to generate the
tick interrupt will be
executing - this is
normally the same
clock that drives the
internal CPU clock. This
value is required in
order to correctly
configure timer
peripherals.

General > Tick Rate Hz Must be an integer and
greater than 0

1000 The frequency of the
RTOS tick interrupt.
The tick interrupt is
used to measure time.
Therefore a higher tick
frequency means time
can be measured to a
higher resolution.
However, a high tick
frequency also means
that the RTOS kernel
will use more CPU time

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,738 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

so be less efficient. The
RTOS demo
applications all use a
tick rate of 1000Hz.
This is used to test the
RTOS kernel and is
higher than would
normally be required.

More than one task can
share the same
priority. The RTOS
scheduler will share
processor time
between tasks of the
same priority by
switching between the
tasks during each RTOS
tick. A high tick rate
frequency will
therefore also have the
effect of reducing the
'time slice' given to
each task.

General > Max
Priorities

Must be an integer and
greater than 0

5 The number of
priorities available to
the application tasks.
Any number of tasks
can share the same
priority.
Each available priority
consumes RAM within
the RTOS kernel so this
value should not be set
any higher than
actually required by
your application.

General > Minimal
Stack Size

Must be an integer and
greater than 0

128 The size of the stack
used by the idle task.
Generally this should
not be reduced from
the value set in the
FreeRTOSConfig.h file
provided with the
demo application for
the port you are using.
Like the stack size
parameter to the
xTaskCreate() and
xTaskCreateStatic()
functions, the stack
size is specified in
words, not bytes. If
each item placed on

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,739 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

the stack is 32-bits,
then a stack size of 100
means 400 bytes (each
32-bit stack item
consuming 4 bytes).

General > Max Task
Name Len

Must be an integer and
greater than 0

16 The maximum
permissible length of
the descriptive name
given to a task when
the task is created. The
length is specified in
the number of
characters including
the NULL termination
byte.

General > Use 16-bit
Ticks

Disabled Disabled Time is measured in
'ticks' - which is the
number of times the
tick interrupt has
executed since the
RTOS kernel was
started. The tick count
is held in a variable of
type TickType_t.
Defining
configUSE_16_BIT_TICK
S as 1 causes
TickType_t to be
defined (typedef'ed) as
an unsigned 16bit type.
Defining
configUSE_16_BIT_TICK
S as 0 causes
TickType_t to be
defined (typedef'ed) as
an unsigned 32bit type.

Using a 16-bit type will
greatly improve
performance on 8- and
16-bit architectures,
but limits the
maximum specifiable
time period to 65535
'ticks'. Therefore,
assuming a tick
frequency of 250Hz,
the maximum time a
task can delay or block
when a 16bit counter is
used is 262 seconds,
compared to 17179869
seconds when using a
32-bit counter.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,740 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

General > Idle Should
Yield

Enabled
Disabled

Enabled This parameter
controls the behaviour
of tasks at the idle
priority. It only has an
effect if:
The preemptive
scheduler is being
used.
The application creates
tasks that run at the
idle priority.
If Use Time Slicing is
Enabled then tasks that
share the same priority
will time slice. If none
of the tasks get
preempted then it
might be assumed that
each task at a given
priority will be
allocated an equal
amount of processing
time - and if the
priority is above the
idle priority then this is
indeed the case.
When tasks share the
idle priority the
behaviour can be
slightly different. If Idle
Should Yield is Enabled
then the idle task will
yield immediately if
any other task at the
idle priority is ready to
run. This ensures the
minimum amount of
time is spent in the idle
task when application
tasks are available for
scheduling. This
behaviour can however
have undesirable
effects (depending on
the needs of your
application) as
depicted below:

The diagram above
shows the execution
pattern of four tasks
that are all running at
the idle priority. Tasks
A, B and C are

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,741 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

application tasks. Task
I is the idle task. A
context switch occurs
with regular period at
times T0, T1, ..., T6.
When the idle task
yields task A starts to
execute - but the idle
task has already
consumed some of the
current time slice. This
results in task I and
task A effectively
sharing the same time
slice. The application
tasks B and C therefore
get more processing
time than the
application task A.

This situation can be
avoided by:

If appropriate, using an
idle hook in place of
separate tasks at the
idle priority.
Creating all application
tasks at a priority
greater than the idle
priority.
Setting Idle Should
Yield to Disabled.
Setting Idle Should
Yield to Disabled
prevents the idle task
from yielding
processing time until
the end of its time
slice. This ensure all
tasks at the idle
priority are allocated
an equal amount of
processing time (if
none of the tasks get
pre-empted) - but at
the cost of a greater
proportion of the total
processing time being
allocated to the idle
task.

General > Use Task
Notifications

Enabled
Disabled

Enabled Setting Use Task
Notifications to Enabled
will include direct to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,742 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

task notification
functionality and its
associated API in the
build.
Setting Use Task
Notifications to
Disabled will exclude
direct to task
notification
functionality and its
associated API from the
build.

Each task consumes 8
additional bytes of RAM
when direct to task
notifications are
included in the build.

General > Use Mutexes Enabled
Disabled

Disabled Set to Enabled to
include mutex
functionality in the
build, or Disabled to
omit mutex
functionality from the
build. Readers should
familiarise themselves
with the differences
between mutexes and
binary semaphores in
relation to the
FreeRTOS functionality.

General > Use
Recursive Mutexes

Enabled
Disabled

Disabled Set to Enabled to
include recursive
mutex functionality in
the build, or Disabled
to omit recursive
mutex functionality
from the build.

General > Use
Counting Semaphores

Enabled
Disabled

Enabled Set to Enabled to
include counting
semaphore
functionality in the
build, or Disabled to
omit counting
semaphore
functionality from the
build.

General > Queue
Registry Size

Must be an integer and
greater than 0

10 The queue registry has
two purposes, both of
which are associated
with RTOS kernel
aware debugging:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,743 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

It allows a textual
name to be associated
with a queue for easy
queue identification
within a debugging
GUI.
It contains the
information required by
a debugger to locate
each registered queue
and semaphore.
The queue registry has
no purpose unless you
are using a RTOS
kernel aware
debugger. Registry
Size defines the
maximum number of
queues and
semaphores that can
be registered. Only
those queues and
semaphores that you
want to view using a
RTOS kernel aware
debugger need be
registered. See the API
reference
documentation for
vQueueAddToRegistry(
) and vQueueUnregiste
rQueue() for more
information.

General > Use Queue
Sets

Enabled
Disabled

Disabled Set to Enabled to
include queue set
functionality (the
ability to block, or
pend, on multiple
queues and
semaphores), or
Disabled to omit queue
set functionality.

General > Use Time
Slicing

Enabled
Disabled

Disabled If Use Time Slicing is
Enabled, FreeRTOS
uses prioritised
preemptive scheduling
with time slicing. That
means the RTOS
scheduler will always
run the highest priority
task that is in the
Ready state, and will
switch between tasks
of equal priority on

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,744 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

every RTOS tick
interrupt. If Use Time
Slicing is Disabled then
the RTOS scheduler will
still run the highest
priority task that is in
the Ready state, but
will not switch between
tasks of equal priority
just because a tick
interrupt has occurred.

General > Use Newlib
Reentrant

Enabled
Disabled

Disabled If Use Newlib Reentrant
is Enabled then a
newlib reent structure
will be allocated for
each created task.
Note Newlib support
has been included by
popular demand, but is
not used by the
FreeRTOS maintainers
themselves. FreeRTOS
is not responsible for
resulting newlib
operation. User must
be familiar with newlib
and must provide
system-wide
implementations of the
necessary stubs. Be
warned that (at the
time of writing) the
current newlib design
implements a system-
wide malloc() that must
be provided with locks.

General > Enable
Backward Compatibility

Enabled
Disabled

Disabled The FreeRTOS.h header
file includes a set of
#define macros that
map the names of data
types used in versions
of FreeRTOS prior to
version 8.0.0 to the
names used in
FreeRTOS version
8.0.0. The macros
allow application code
to update the version
of FreeRTOS they are
built against from a pre
8.0.0 version to a post
8.0.0 version without
modification. Setting
Enable Backward

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,745 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Compatibility to
Disabled in
FreeRTOSConfig.h
excludes the macros
from the build, and in
so doing allowing
validation that no pre
version 8.0.0 names
are being used.

General > Num Thread
Local Storage Pointers

Must be an integer and
greater than 0

5 Sets the number of
indexes in each task's
thread local storage
array.

General > Stack Depth
Type

Manual Entry uint32_t Sets the type used to
specify the stack depth
in calls to
xTaskCreate(), and
various other places
stack sizes are used
(for example, when
returning the stack
high water mark).
Older versions of
FreeRTOS specified
stack sizes using
variables of type
UBaseType_t, but that
was found to be too
restrictive on 8-bit
microcontrollers. Stack
Depth Type removes
that restriction by
enabling application
developers to specify
the type to use.

General > Message
Buffer Length Type

Manual Entry size_t FreeRTOS Message
buffers use variables of
type Message Buffer
Length Type to store
the length of each
message. If Message
Buffer Length Type is
not defined then it will
default to size_t. If the
messages stored in a
message buffer will
never be larger than
255 bytes then defining
Message Buffer Length
Type to uint8_t will
save 3 bytes per
message on a 32-bit
microcontroller.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,746 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Likewise if the
messages stored in a
message buffer will
never be larger than
65535 bytes then
defining Message
Buffer Length Type to
uint16_t will save 2
bytes per message on
a 32-bit
microcontroller.

General > Library Max
Syscall Interrupt
Priority

MCU Specific Options The highest interrupt
priority that can be
used by any interrupt
service routine that
makes calls to interrupt
safe FreeRTOS API
functions. DO NOT
CALL INTERRUPT SAFE
FREERTOS API
FUNCTIONS FROM ANY
INTERRUPT THAT HAS
A HIGHER PRIORITY
THAN THIS! (higher
priorities are lower
numeric values)

Below is explanation
for macros that are set
based on this value
from FreeRTOS
website.

In the RA port, configKE
RNEL_INTERRUPT_PRIO
RITY is not used and
the kernel runs at the
lowest priority.

Note in the following
discussion that only API
functions that end in
"FromISR" can be
called from within an
interrupt service
routine.

configMAX_SYSCALL_IN
TERRUPT_PRIORITY
sets the highest
interrupt priority from
which interrupt safe
FreeRTOS API functions
can be called.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,747 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

A full interrupt nesting
model is achieved by
setting configMAX_SYS
CALL_INTERRUPT_PRIO
RITY above (that is, at
a higher priority level)
than configKERNEL_INT
ERRUPT_PRIORITY. This
means the FreeRTOS
kernel does not
completely disable
interrupts, even inside
critical sections.
Further, this is
achieved without the
disadvantages of a
segmented kernel
architecture.

Interrupts that do not
call API functions can
execute at priorities
above configMAX_SYSC
ALL_INTERRUPT_PRIORI
TY and therefore never
be delayed by the
RTOS kernel execution.

A special note for ARM
Cortex-M users: Please
read the page
dedicated to interrupt
priority settings on
ARM Cortex-M devices.
As a minimum,
remember that ARM
Cortex-M cores use
numerically low priority
numbers to represent
HIGH priority
interrupts, which can
seem counter-intuitive
and is easy to forget! If
you wish to assign an
interrupt a low priority
do NOT assign it a
priority of 0 (or other
low numeric value) as
this can result in the
interrupt actually
having the highest
priority in the system -
and therefore
potentially make your

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,748 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

system crash if this
priority is above config
MAX_SYSCALL_INTERR
UPT_PRIORITY.

The lowest priority on a
ARM Cortex-M core is
in fact 255 - however
different ARM Cortex-M
vendors implement a
different number of
priority bits and supply
library functions that
expect priorities to be
specified in different
ways. For example, on
the RA6M3 the lowest
priority you can specify
is 15 - and the highest
priority you can specify
is 0.

General > Assert Manual Entry assert(x) The semantics of the
configASSERT() macro
are the same as the
standard C assert()
macro. An assertion is
triggered if the
parameter passed into
configASSERT() is zero.
configASSERT() is
called throughout the
FreeRTOS source files
to check how the
application is using
FreeRTOS. It is highly
recommended to
develop FreeRTOS
applications with
configASSERT()
defined.

The example definition
(shown at the top of
the file and replicated
below) calls
vAssertCalled(),
passing in the file
name and line number
of the triggering
configASSERT() call
(__FILE__ and __LINE__
are standard macros
provided by most
compilers). This is just

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,749 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

for demonstration as
vAssertCalled() is not a
FreeRTOS function,
configASSERT() can be
defined to take
whatever action the
application writer
deems appropriate.

It is normal to define
configASSERT() in such
a way that it will
prevent the application
from executing any
further. This if for two
reasons; stopping the
application at the point
of the assertion allows
the cause of the
assertion to be
debugged, and
executing past a
triggered assertion will
probably result in a
crash anyway.

Note defining
configASSERT() will
increase both the
application code size
and execution time.
When the application is
stable the additional
overhead can be
removed by simply
commenting out the
configASSERT()
definition in
FreeRTOSConfig.h.

/* Define
configASSERT() to call
vAssertCalled() if the
assertion fails. The
assertion
has failed if the value
of the parameter
passed into
configASSERT() equals
zero. */
#define configASSERT(
(x)) if((x) == 0)
vAssertCalled(__FILE__,
__LINE__)
If running FreeRTOS

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,750 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

under the control of a
debugger, then
configASSERT() can be
defined to just disable
interrupts and sit in a
loop, as demonstrated
below. That will have
the effect of stopping
the code on the line
that failed the assert
test - pausing the
debugger will then
immediately take you
to the offending line so
you can see why it
failed.

/* Define
configASSERT() to
disable interrupts and
sit in a loop. */
#define configASSERT(
(x)) if((x) == 0) { t
askDISABLE_INTERRUP
TS(); for(;;); }

General > Include
Application Defined
Privileged Functions

Enabled
Disabled

Disabled Include Application
Defined Privileged
Functions is only used
by FreeRTOS MPU.
If Include Application
Defined Privileged
Functions is Enabled
then the application
writer must provide a
header file called "appli
cation_defined_privileg
ed_functions.h", in
which functions the
application writer
needs to execute in
privileged mode can be
implemented. Note
that, despite having a
.h extension, the
header file should
contain the
implementation of the
C functions, not just
the functions'
prototypes.

Functions implemented
in "application_defined
_privileged_functions.h

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,751 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

" must save and
restore the processor's
privilege state using
the prvRaisePrivilege()
function and
portRESET_PRIVILEGE()
macro respectively. For
example, if a library
provided print function
accesses RAM that is
outside of the control
of the application
writer, and therefore
cannot be allocated to
a memory protected
user mode task, then
the print function can
be encapsulated in a
privileged function
using the following
code:

void MPU_debug_printf(
const char *pcMessage
)
{
/* State the privilege
level of the processor
when the function was
called. */
BaseType_t
xRunningPrivileged =
prvRaisePrivilege();

/* Call the library
function, which now
has access to all RAM.
*/
debug_printf(
pcMessage);

/* Reset the processor
privilege level to its
original value. */
portRESET_PRIVILEGE(
xRunningPrivileged);
}
This technique should
only be use during
development, and not
deployment, as it
circumvents the
memory protection.

Hooks > Use Idle Hook Enabled Enabled Set to Enabled if you

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,752 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Disabled wish to use an idle
hook, or Disabled to
omit an idle hook.

Hooks > Use Malloc
Failed Hook

Enabled
Disabled

Disabled The kernel uses a call
to pvPortMalloc() to
allocate memory from
the heap each time a
task, queue or
semaphore is created.
The official FreeRTOS
download includes four
sample memory
allocation schemes for
this purpose. The
schemes are
implemented in the
heap_1.c, heap_2.c,
heap_3.c, heap_4.c and
heap_5.c source files
respectively. Use
Malloc Failed Hook is
only relevant when one
of these three sample
schemes is being used.
The malloc() failed
hook function is a hook
(or callback) function
that, if defined and
configured, will be
called if pvPortMalloc()
ever returns NULL.
NULL will be returned
only if there is
insufficient FreeRTOS
heap memory
remaining for the
requested allocation to
succeed.

If Use Malloc Failed
Hook is Enabled then
the application must
define a malloc() failed
hook function. If Use
Malloc Failed Hook is
set to Dosab;ed then
the malloc() failed hook
function will not be
called, even if one is
defined. Malloc() failed
hook functions must
have the name and
prototype shown
below.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,753 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

void vApplicationMalloc
FailedHook(void);

Hooks > Use Daemon
Task Startup Hook

Enabled
Disabled

Disabled If Use Timers and Use
Daemon Task Startup
Hook are both Enabled
then the application
must define a hook
function that has the
exact name and
prototype as shown
below. The hook
function will be called
exactly once when the
RTOS daemon task
(also known as the
timer service task)
executes for the first
time. Any application
initialisation code that
needs the RTOS to be
running can be placed
in the hook function.
void void vApplicationD
aemonTaskStartupHoo
k(void);

Hooks > Use Tick Hook Enabled
Disabled

Disabled Set to Enabled if you
wish to use an tick
hook, or Disabled to
omit an tick hook.

Hooks > Check For
Stack Overflow

Enabled
Disabled

Disabled The stack overflow
detection page
describes the use of
this parameter. This is
not recommended for
RA MCUs with
hardware stack monitor
support. RA MCU
designs should enable
the RA hardware stack
monitor instead.

Stats > Use Trace
Facility

Enabled
Disabled

Disabled Set to Enabled if you
wish to include
additional structure
members and functions
to assist with execution
visualisation and
tracing.

Stats > Use Stats
Formatting Functions

Enabled
Disabled

Disabled Set Use Trace Facility
and Use Stats
Formatting Functions
to Enabled to include

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,754 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

the vTaskList() and vTa
skGetRunTimeStats()
functions in the build.
Setting either to
Disabled will omit
vTaskList() and vTaskG
etRunTimeStates()
from the build.

Stats > Generate Run
Time Stats

Enabled
Disabled

Disabled The Run Time Stats
page describes the use
of this parameter.

Memory Allocation >
Support Static
Allocation

Enabled
Disabled

Enabled If Support Static
Allocation is Enabled
then RTOS objects can
be created using RAM
provided by the
application writer.
If Support Static
Allocation is Disabled
then RTOS objects can
only be created using
RAM allocated from the
FreeRTOS heap.

If Support Static
Allocation is left
undefined it will default
to 0.

If Support Static
Allocation is Enabled
then the application
writer must also
provide two callback
functions: vApplication
GetIdleTaskMemory()
to provide the memory
for use by the RTOS
Idle task, and (if Use
Timers is Enabled) vAp
plicationGetTimerTask
Memory() to provide
memory for use by the
RTOS Daemon/Timer
Service task. Examples
are provided below.

/* Support Static
Allocation is Enabled,
so the application must
provide an
implementation of vAp
plicationGetIdleTaskMe

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,755 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

mory() to provide the
memory that is
used by the Idle task. */
void vApplicationGetIdl
eTaskMemory(
StaticTask_t **ppxIdleT
askTCBBuffer,

StackType_t **ppxIdleT
askStackBuffer,

uint32_t
*pulIdleTaskStackSize)
{
/* If the buffers to be
provided to the Idle
task are declared
inside this
function then they
must be declared static
- otherwise they will be
allocated on
the stack and so not
exists after this
function exits. */
static StaticTask_t
xIdleTaskTCB;
static StackType_t
uxIdleTaskStack[config
MINIMAL_STACK_SIZE];

/* Pass out a pointer to
the StaticTask_t
structure in which the
Idle task's
state will be stored. */
*ppxIdleTaskTCBBuffer
=

/* Pass out the array
that will be used as the
Idle task's stack. */
*ppxIdleTaskStackBuffe
r = uxIdleTaskStack;

/* Pass out the size of
the array pointed to by
*ppxIdleTaskStackBuffe
r.
Note that, as the array
is necessarily of type
StackType_t,
configMINIMAL_STACK_
SIZE is specified in
words, not bytes. */
*pulIdleTaskStackSize
= configMINIMAL_STAC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,756 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

K_SIZE;
}
/*------------------------------
-----------------------------*/

/* Support Static
Allocation and Use
Timers are both
Enabled, so the
application must
provide an
implementation of vAp
plicationGetTimerTask
Memory()
to provide the memory
that is used by the
Timer service task. */
void vApplicationGetTi
merTaskMemory(
StaticTask_t **ppxTime
rTaskTCBBuffer,

StackType_t **ppxTime
rTaskStackBuffer,

uint32_t
*pulTimerTaskStackSiz
e)
{
/* If the buffers to be
provided to the Timer
task are declared
inside this
function then they
must be declared static
- otherwise they will be
allocated on
the stack and so not
exists after this
function exits. */
static StaticTask_t
xTimerTaskTCB;
static StackType_t
uxTimerTaskStack[con
figTIMER_TASK_STACK_
DEPTH];

/* Pass out a pointer to
the StaticTask_t
structure in which the
Timer
task's state will be
stored. */
*ppxTimerTaskTCBBuff
er =

/* Pass out the array

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,757 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

that will be used as the
Timer task's stack. */
*ppxTimerTaskStackBu
ffer =
uxTimerTaskStack;

/* Pass out the size of
the array pointed to by
*ppxTimerTaskStackBu
ffer.
Note that, as the array
is necessarily of type
StackType_t,
configTIMER_TASK_STA
CK_DEPTH is specified
in words, not bytes. */
*pulTimerTaskStackSiz
e = configTIMER_TASK_
STACK_DEPTH;
}

Examples of the
callback functions that
must be provided by
the application to
supply the RAM used
by the Idle and Timer
Service tasks if Support
Static Allocation
is Enabled.

See the Static Vs
Dynamic Memory
Allocation page for
more information.

Memory Allocation >
Support Dynamic
Allocation

Enabled
Disabled

Disabled If Support Dynamic
Allocation is Enabled
then RTOS objects can
be created using RAM
that is automatically
allocated from the
FreeRTOS heap.
If Support Dynamic
Allocation is set to 0
then RTOS objects can
only be created using
RAM provided by the
application writer.

See the Static Vs
Dynamic Memory
Allocation page for
more information.

Memory Allocation > Must be an integer and 1024 The total amount of

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,758 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Total Heap Size greater than 0 RAM available in the
FreeRTOS heap.
This value will only be
used if Support
Dynamic Allocation is
Enabled and the
application makes use
of one of the sample
memory allocation
schemes provided in
the FreeRTOS source
code download. See
the memory
configuration section
for further details.

Memory Allocation >
Application Allocated
Heap

Enabled
Disabled

Disabled By default the
FreeRTOS heap is
declared by FreeRTOS
and placed in memory
by the linker. Setting
Application Allocated
Heap to Enabled allows
the heap to instead be
declared by the
application writer,
which allows the
application writer to
place the heap
wherever they like in
memory.
If heap_1.c, heap_2.c or
heap_4.c is used, and
Application Allocated
Heap is Enabled, then
the application writer
must provide a uint8_t
array with the exact
name and dimension
as shown below. The
array will be used as
the FreeRTOS heap.
How the array is placed
at a specific memory
location is dependent
on the compiler being
used - refer to your
compiler's
documentation.

uint8_t ucHeap[
configTOTAL_HEAP_SIZ
E];

Timers > Use Timers Enabled
Disabled

Enabled Set to Enabled to
include software timer

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,759 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

functionality, or
Disabled to omit
software timer
functionality. See the
FreeRTOS software
timers page for a full
description.

Timers > Timer Task
Priority

Must be an integer and
greater than 0

3 Sets the priority of the
software timer
service/daemon task.
See the FreeRTOS
software timers page
for a full description.

Timers > Timer Queue
Length

Must be an integer and
greater than 0

10 Sets the length of the
software timer
command queue. See
the FreeRTOS software
timers page for a full
description.

Timers > Timer Task
Stack Depth

Must be an integer and
greater than 0

128 Sets the stack depth
allocated to the
software timer
service/daemon task.
See the FreeRTOS
software timers page
for a full description.

Optional Functions >
vTaskPrioritySet()
Function

Enabled
Disabled

Enabled Include
vTaskPrioritySet()
function in build

Optional Functions >
uxTaskPriorityGet()
Function

Enabled
Disabled

Enabled Include
uxTaskPriorityGet()
function in build

Optional Functions >
vTaskDelete() Function

Enabled
Disabled

Enabled Include vTaskDelete()
function in build

Optional Functions >
vTaskSuspend()
Function

Enabled
Disabled

Enabled Include
vTaskSuspend()
function in build

Optional Functions >
xResumeFromISR()
Function

Enabled
Disabled

Enabled Include
xResumeFromISR()
function in build

Optional Functions >
vTaskDelayUntil()
Function

Enabled
Disabled

Enabled Include
vTaskDelayUntil()
function in build

Optional Functions >
vTaskDelay() Function

Enabled
Disabled

Enabled Include vTaskDelay()
function in build

Optional Functions > x
TaskGetSchedulerState
() Function

Enabled
Disabled

Enabled Include xTaskGetSched
ulerState() function in
build

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,760 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Optional Functions > x
TaskGetCurrentTaskHa
ndle() Function

Enabled
Disabled

Enabled Include xTaskGetCurre
ntTaskHandle()
function in build

Optional Functions > u
xTaskGetStackHighWat
erMark() Function

Enabled
Disabled

Disabled Include uxTaskGetStac
kHighWaterMark()
function in build

Optional Functions > x
TaskGetIdleTaskHandle
() Function

Enabled
Disabled

Disabled Include xTaskGetIdleTa
skHandle() function in
build

Optional Functions >
eTaskGetState()
Function

Enabled
Disabled

Disabled Include
eTaskGetState()
function in build

Optional Functions > x
EventGroupSetBitFromI
SR() Function

Enabled
Disabled

Enabled Include xEventGroupSe
tBitFromISR() function
in build

Optional Functions > x
TimerPendFunctionCall(
) Function

Enabled
Disabled

Disabled Include xTimerPendFun
ctionCall() function in
build

Optional Functions >
xTaskAbortDelay()
Function

Enabled
Disabled

Disabled Include
xTaskAbortDelay()
function in build

Optional Functions >
xTaskGetHandle()
Function

Enabled
Disabled

Disabled Include
xTaskGetHandle()
function in build

Optional Functions >
xTaskResumeFromISR()
Function

Enabled
Disabled

Enabled Include
xTaskResumeFromISR()
function in build

RA > Hardware Stack
Monitor

Enabled
Disabled

Disabled Include RA stack
monitor

Logging > Print String
Function

Manual Entry printf(x)

Logging > Logging Max
Message Length

Manual Entry 192

Logging > Logging
Include Time and Task
Name

Disabled
Enabled

Disabled

Clock Configuration

The FreeRTOS port uses the SysTick timer as the system clock. The timer rate is configured in the
FreeRTOS component under General > Tick Rate Hz.

Pin Configuration

This module does not use I/O pins.

Usage Notes

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,761 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

Hardware Stack Monitor (PSPLIM)

A UsageFault is generated if PSP goes out of the memory area for the stack allocated for the current
task. If UsageFault is not enabled, it is escalated to HardFault.

Hardware Stack Monitor (SPMON)

The hardware stack monitor generates an NMI if the PSP goes out of the memory area for the stack
allocated for the current task. A callback can be registered using R_BSP_GroupIrqWrite() to be called
whenever a stack overflow or underflow of the PSP for a particular thread is detected.

Stack Monitor Underflow Detection

By default the hardware stack monitor only checks for overflow of the process stack. To check for
underflow define configRECORD_STACK_HIGH_ADDRESS as 1 on the command line.

Low Power Modes

When FreeRTOS is configured to use tickless idle, the idle task executes WFI() when no task is ready
to run. If the MCU is configured to enter software standby mode or deep software standby mode
when the idle task executes WFI(), the RA FreeRTOS port changes the low power mode to sleep
mode so the idle task can wake from SysTick. The low power mode settings are restored when the
MCU wakes from sleep mode.

TrustZone Integration

When using an RTOS in a TrustZone project, ARM recommends keeping the RTOS in the non-secure
project. Tasks may call non-secure callable functions if the task has allocated a secure context (using
portALLOCATE_SECURE_CONTEXT).

The secure context can be freed by deleting the thread or using the portCLEAN_UP_TCB(pxTCB)
macro.

Examples
Stack Monitor Example

This is an example of using the stack monitor in an application.

#if BSP_FEATURE_BSP_HAS_SP_MON

void stack_monitor_callback (bsp_grp_irq_t irq)

{

 FSP_PARAMETER_NOT_USED(irq);

 if (1U == R_MPU_SPMON->SP[0].CTL_b.ERROR)

 {

 /* Handle main stack monitor error here. */

 }

 if (1U == R_MPU_SPMON->SP[1].CTL_b.ERROR)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,762 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

 {

 /* Handle process stack monitor error here. */

 }

}

void rm_freertos_port_stack_monitor_example (void)

{

 /* Register a callback to be called when the stack goes outside the allocated stack

area. */

 R_BSP_GroupIrqWrite(BSP_GRP_IRQ_MPU_STACK, stack_monitor_callback);

}

#else

/* Allocate stack space to return from UsageFault. */

uint32_t g_stack_overflow_exception_stack[8] BSP_ALIGN_VARIABLE(BSP_STACK_ALIGNMENT)

BSP_PLACE_IN_SECTION(

 BSP_SECTION_STACK);

/* MCUs that do not have an SPMON stack monitor use PSPLIM to detect stack overflows.

When a stack overflow error

 * occurs, the UsageFault_Handler fires if it has been enabled. */

void UsageFault_Handler (void)

{

 register uint32_t cfsr = SCB->CFSR;

 if (cfsr & SCB_CFSR_STKOF_Msk)

 {

 /* Update PSP and PSPLIM to point to an exception stack frame allocated for stack

overflows. */

 register uint32_t * p_exception_stack_frame = (uint32_t *)

(&g_stack_overflow_exception_stack);

 __set_PSP((uint32_t) p_exception_stack_frame);

 __set_PSPLIM((uint32_t) p_exception_stack_frame);

 /* Clear XPSR, only set T-bit. */

 p_exception_stack_frame[7] = 1U << 24;

 /* Set PC to stack overflow error while loop. When execution returns from the

UsageFault, it will go to the

 * stack_overflow_error_occurred function. It cannot return to the location where

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,763 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

the fault occurred because

 * the MCU does not save the exception stack frame to the stack when a stack

overflow error occurs. */

 p_exception_stack_frame[6] = (uint32_t) stack_overflow_error_occurred;

 }

 /* Clear flags. */

 SCB->CFSR = cfsr;

}

/* This function is called from UsageFault_Handler after a stack overflow occurs. */

void stack_overflow_error_occurred (void)

{

 /* When recovering from a stack overflow, move the task to a while(1) loop. */

 while (1)

 {

 /* Do nothing. */

 }

}

void rm_freertos_port_stack_monitor_example (void)

{

 /* Enable usage fault. */

 SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk;

}

#endif

TrustZone Example

This is an example of calling portALLOCATE_SECURE_CONTEXT before calling any non-secure callable
functions in a task.

void rm_freertos_port_trustzone_task_example (void)

{

 /* When FreeRTOS is used in a non-secure TrustZone application,

portALLOCATE_SECURE_CONTEXT must be called prior

 * to calling any non-secure callable function in a task. The parameter is unused in

the FSP implementation. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,764 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FreeRTOS Port (rm_freertos_port)

 portALLOCATE_SECURE_CONTEXT(0);

 rm_freertos_port_nsc_function();

}

4.2.79 RTOS Context Management (rm_tz_context)
Modules

RTOS Context Management for RA MCUs.

Overview
Add this module to a secure TrustZone project to allow the associated non-secure project to use an
RTOS. It is used by an RTOS port for RA MCUs (for example, the FreeRTOS Port (rm_freertos_port),
which is automatically added to RA projects when FreeRTOS is selected during project creation).

Note
The RTOS Context Management module does not provide any interfaces to the user. To use this module to port an
RTOS, consult the Arm documentation at https://arm-
software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html for further information.

Configuration
Build Time Configurations for rm_tz_context

The following build time configurations are defined in fsp_cfg/rm_tz_context_cfg.h:

Configuration Options Default Description

Process Stack Slots Value must be a non-
negative integer
greater than 0

8 The maximum number
of threads that can
allocate a secure
context. For
applications using
FreeRTOS, the Idle task
requires 1 context as
well.

Process Stack Size Value must be a non-
negative multiple of 8

256 The maximum stack
size of all non-secure
callable functions.

Clock Configuration

This module does not use peripheral clocks.

Pin Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,765 / 2,794

https://arm-software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html
https://arm-software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html

Flexible Software Package

User’s Manual
API Reference > Modules > RTOS Context Management (rm_tz_context)

This module does not use I/O pins.

Usage Notes
TrustZone Integration

When using an RTOS in a TrustZone project, ARM recommends keeping the RTOS in the non-secure
project. Tasks may call non-secure callable functions if the task has allocated a secure context. To
allocate a secure context, reference the documentation for the RTOS port used. For example,
reference TrustZone Integration when FreeRTOS is used.

Sealing the Process Stack

This module seals each process stack by placing the value 0xFEF5EDA5 above the stack top. For
more information, refer to section 3.5 "Sealing a Stack" in "Secure software guidelines for ARMv8-M":
https://developer.arm.com/documentation/100720/0300.

4.2.80 FS2012 Sensor Middleware (rm_fs2012)
Modules

Functions

fsp_err_t RM_FS2012_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_cfg_t const *const p_cfg)

 Opens and configures the FS2012 Middle module. Implements
rm_fsxxxx_api_t::open. More...

fsp_err_t RM_FS2012_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

 Disables specified FS2012 control block. Implements
rm_fsxxxx_api_t::close. More...

fsp_err_t RM_FS2012_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data)

 Reads ADC data from FS2012. Implements rm_fsxxxx_api_t::read.
More...

fsp_err_t RM_FS2012_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl,
rm_fsxxxx_raw_data_t *const p_raw_data, rm_fsxxxx_data_t *const
p_fs2012_data)

 Calculates flow from ADC data. Unit of Gas flow is SLPM (Standard
liter per minute) Unit of Liquid flow is SCCM (Standard cubic
centimeter per minute) Implements rm_fsxxxx_api_t::dataCalculate.
More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,766 / 2,794

https://developer.arm.com/documentation/100720/0300

Flexible Software Package

User’s Manual
API Reference > Modules > FS2012 Sensor Middleware (rm_fs2012)

Detailed Description

Middleware to implement the FS2012 sensor interface. This module implements the FSXXXX
Middleware Interface.

Overview
Features

The FS2012 sensor interface implementation has the following key features:

Getting ADC data from the sensor
Calculating flow value from ADC data

Configuration
Build Time Configurations for rm_fs2012

The following build time configurations are defined in fsp_cfg/rm_fs2012_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Device Type FS2012-1020-N
G
FS2012-1100-N
G

FS2012-1100-NG Select FS2012 device
type.

Configurations for Middleware > Sensor > Flow > FS2012 on rm_fs2012

This module can be added to the Stacks tab via New Stack > Middleware > Sensor > Flow > FS2012
on rm_fs2012.

Configuration Options Default Description

Name Manual Entry g_fs2012_sensor0 Module name.

Callback Name must be a valid
C symbol

fs2012_callback A user callback
function can be
provided.

Pin Configuration

This module uses SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
FS2012 datasheet is here. The module only supports FS2012-1020-NG and FS2012-1100-NG.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,767 / 2,794

https://www.renesas.com/us/en/document/dst/fs2012-datasheet?language=en&r=344051

Flexible Software Package

User’s Manual
API Reference > Modules > FS2012 Sensor Middleware (rm_fs2012)

Examples
Basic Example

This is a basic example of minimal use of FS2012 sensor implementation in an application.

void rm_fs2012_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_fsxxxx_raw_data_t fs2012_raw_data;

 rm_fsxxxx_data_t fs2012_data;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *) g_fs2012_cfg.p_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

 err = RM_FS2012_Open(&g_fs2012_ctrl, &g_fs2012_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 g_flag = 0;

 /* Read ADC Data from FS2012 */

 RM_FS2012_Read(&g_fs2012_ctrl,

 &fs2012_raw_data);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Calculate Flow value from ADC data */

 RM_FS2012_DataCalculate(&g_fs2012_ctrl, &fs2012_raw_data, &fs2012_data);

 /* FS2012 sample rate. See table 4 on the page 5 of the datasheet. */

 /* Gas : 409.6ms, Liquid : 716.8ms */

 R_BSP_SoftwareDelay(FS2012_GAS_SAMPLE_RATE, BSP_DELAY_UNITS_MICROSECONDS);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,768 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FS2012 Sensor Middleware (rm_fs2012)

 }

}

Data Structures

struct rm_fs2012_instance_ctrl_t

Data Structure Documentation

◆ rm_fs2012_instance_ctrl_t

struct rm_fs2012_instance_ctrl_t

FS2012 Control Block

Data Fields

uint32_t open

 Open flag.

rm_fsxxxx_cfg_t const * p_cfg

 Pointer to FS2012 Configuration.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_context

 Pointer to the user-provided context.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,769 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FS2012 Sensor Middleware (rm_fs2012)

◆ RM_FS2012_Open()

fsp_err_t RM_FS2012_Open (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

Opens and configures the FS2012 Middle module. Implements rm_fsxxxx_api_t::open.

Example:

 err = RM_FS2012_Open(&g_fs2012_ctrl, &g_fs2012_cfg);

Return values
FSP_SUCCESS FS2012 successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

◆ RM_FS2012_Close()

fsp_err_t RM_FS2012_Close (rm_fsxxxx_ctrl_t *const p_api_ctrl)

Disables specified FS2012 control block. Implements rm_fsxxxx_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_FS2012_Read()

fsp_err_t RM_FS2012_Read (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

Reads ADC data from FS2012. Implements rm_fsxxxx_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,770 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > FS2012 Sensor Middleware (rm_fs2012)

◆ RM_FS2012_DataCalculate()

fsp_err_t RM_FS2012_DataCalculate (rm_fsxxxx_ctrl_t *const p_api_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fs2012_data)

Calculates flow from ADC data. Unit of Gas flow is SLPM (Standard liter per minute) Unit of Liquid
flow is SCCM (Standard cubic centimeter per minute) Implements rm_fsxxxx_api_t::dataCalculate.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

4.2.81 Azure RTOS GUIX Port (rm_guix_port)
Modules

Functions

UINT rm_guix_port_hw_initialize (GX_DISPLAY *p_display)

Detailed Description

Overview
The Azure RTOS GUIX Port module provides the configuration and hardware acceleration support
necessary for use of GUIX on RA products. The port provides full integration with the graphics
peripherals (GLCDC, DRW and JPEG).

Figure 201: Azure RTOS GUIX Port Block Diagram

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,771 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

This port layer primarily enables hardware acceleration and background handling of many display operations and
does not contain code intended to be directly called by the user. For information about how to use GUIX and GUIX
Studio (including example code) please consult the Azure RTOS GUIX documentation.

Hardware Acceleration

The following functions are currently performed with hardware acceleration:

DRW Engine (D/AVE 2D Port Interface (r_drw))
Drawing bitmaps
8, 4 and 1bpp uncompressed and compressed (RLE) font rendering
Line and shape drawing
Anti-aliased operations

Circle stroke and fill
Polygon stroke and fill
Lines and arcs

JPEG Codec (r_jpeg)
JPEG decoding

Graphics LCD Controller (r_glcdc)
Brightness, contrast and gamma correction
Pixel format conversion (framebuffer to LCD)

Configuration
Build Time Configurations for gx

The following build time configurations are defined in fsp_cfg/azure/gx/gx_user.h:

Configuration Options Default Description

Hardware Acceleration
> JPEG Codec Support

Enabled
Disabled

Enabled Select whether or not
to use the JPEG Codec
for hardware
acceleration.

Hardware Acceleration
> DRW Engine Support

Enabled
Disabled

Enabled Select whether or not
to use the DRW Engine
for hardware
acceleration.

Hardware Acceleration
> Max DRW Operations

Value must be a
positive integer

85 Specifies the maximum
number of DRW
operations before
flushing the display list.
Reducing this value
may reduce the peak
heap used by the
application but may
reduce performance.

Internal Thread > Stack
Size

Value must be greater
than zero

4096 GUIX internal thread
stack size in bytes.
Must be greater than
zero.

Internal Thread > Value must be between 30 Priority of the GUIX

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,772 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/guix/

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

Priority 0 to 31 Internal Thread. The
value must be between
0 to 31.

Internal Thread > Time
Slice

Value must be a non-
negative integer

10 Time Slice value of the
GUIX Internal Thread.
The value must be
between 0
(TX_NO_TIME_SLICE) to
0xFFFFFFFF.

System Timer (ms) Value must be greater
than or equal to 10

20 GUIX system timer
period (GX_SYSTEM_TI
MER_MS). This value
will be internally
converted to RTOS
ticks and will be
rounded down to the
next smallest multiple
of the RTOS tick period
(1000 / TX_TIMER_TICK
S_PER_SECOND).

Multithread Support Disabled
Enabled

Enabled Must be enabled if
GUIX functions are
called from multiple
threads. Set to
Disabled when calling
GUIX from only one
thread to reduce
system overhead.

UTF8 Support Disabled
Enabled

Enabled Select whether to
enable or disable
support for UTF8
characters.

Event Queue Size Value must be greater
than zero

48 Maximum number of
events in the GUIX
event queue.

Enable GX_WIDGET
User Data

Enabled
Disabled

Disabled Set to Enabled to to
use the
gx_widget_user_data
member in the
GX_WIDGET structure.

Build Time Configurations for rm_guix_port

The following build time configurations are defined in fsp_cfg/middleware/rm_guix_port_cfg.h:

Configuration Options Default Description

DRW Buffer Cache Enabled
Disabled

Enabled Enabling this option
significantly improves
DRW Engine
performance. Set to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,773 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

Disabled only if Display
underflow events are
triggered under high
graphics load.

Configurations for Azure RTOS > GUIX Port on rm_guix_port

This module can be added to the Stacks tab via New Stack > Azure RTOS > GUIX Port on
rm_guix_port.

Configuration Options Default Description

Display Rotation >
Screen Orientation

None
CW (90
degrees)
FLIP (180
degrees)
CCW (270
degrees)

None Select the display
orientation specified in
the GUIX Studio
project. The Canvas
Buffer must be enabled
when rotating 180
degrees (FLIP).

Display Rotation > Use
Canvas Buffer

Enabled
Disabled

Disabled When screen rotation is
set to a value other
than 0 a canvas buffer
must be used. The
canvas buffer size will
be the same as a frame
buffer for the display
module.

Display Rotation >
Canvas Buffer Memory
Section

This property must be
a valid section name

bss Specify the memory
section where the GUIX
Canvas Buffer will be
allocated.

JPEG Decoding > Work
Buffer Size

Must be a valid integer 0xC800 Specify the JPEG work
buffer size in bytes. A
larger buffer can
reduce JPEG
decode/draw times.
The buffer will not be
allocated if JPEG Codec
support is disabled.

Unless you are sure of
the subsampling used
in and the size of the
input JPEG images it is
recommended to
allocate at least 16
framebuffer lines of
memory.

JPEG Decoding > Buffer
Memory Section

This property must be
a valid section name

bss Specify the memory
section where the JPEG
Work Buffer will be
allocated.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,774 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

Name Name must be a valid
C symbol

g_rm_guix_port0 Module name.

Target Display Layer Graphics Layer
1
Graphics Layer
2

Graphics Layer 1 Specify which graphics
screen to inherit the
buffer and display
dimensions from.

Callback Function Must be a valid C
symbol

NULL If a callback function is
provided it will be
called when Display
events occur.

Hardware Configuration

No clocks or pins are directly required by this module. Please consult the submodules'
documentation for their requirements.

Usage Notes
Getting Started

To get started with GUIX in an RA project the following must be performed:

1. In e2 studio, open the RA Configuration editor for your GUIX project
2. Select or create a thread
3. Add GUIX to your project in the Stacks view by clicking New Stack -> Azure RTOS ->

GUIX
4. Ensure the configuration options for GUIX and the port layer are set as necessary for your

application
5. Set the proporties for the GLCDC module to match the timing and memory requirements of

your display panel
6. Set the input color format in the GLCDC module (Input -> Graphics Layer * -> General ->

Color format) and the output color format in the JPEG Codec module if applicable (Decode
-> Output color format) per your project specification

7. Click the BSP tab in the configuration editor and confirm the heap size in the Properties
pane is sufficient (see Note below)

8. Click Generate Project Content to save and commit configuration changes
9. Drop the Quick Setup entry in Developer Assistance into the desired thread entry C file and

update the items marked with TODO as necessary
10. Call the Quick Setup function from the thread entry function (or where desired)

At this point the project is now ready to build and run your GUIX Studio project. Please refer to the
documentation for Azure RTOS GUIX and GUIX Studio for details on how to create and edit a GUI
application.

Note
It is recommended to start with 8K-32K of heap to begin development. Actual heap use is typically far lower than
this but must be characterized by the developer.

Using Hardware Acceleration

In most cases there is no need to perform additional configuration to ensure the DRW Engine is used.
However, there are some guidelines that should be followed:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,775 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

Avoid transparent pixelmaps in 8-bit display mode as they are rendered in software. In
particular, ensure PNGs to be used in 8bpp GUIX Studio projects are saved without
transparency data if no transparency is needed.
The following items may require a large heap to draw successfully:

Polygons (more sides = more heap)
Filled arcs and ellipses (more framebuffer lines occupied = more heap)
gx_canvas_pixelmap_tile (more tiles = more heap)

When using hardware acceleration, images used for tile fill of shapes must have dimensions
that are a power of 2. This limitation does not apply to gx_canvas_pixelmap_tile as well as
certain arc/ellipse fill functions as GUIX manually draws pixelmaps to fill these shapes (at
the expense of heap space).

Examples
Basic Example

This is a basic example demonstrating how to get GUIX up and running given an existing GUIX Studio
project. A template for this code is available in Developer Assistance for the GUIX Port module.

Note
GUIX manages the GLCDC, DRW and JPEG Codec submodules internally; they do not need to be opened directly.

GX_WINDOW_ROOT * p_window_root;

void guix_user_start (void)

{

 /* Initialize GUIX */

 gx_system_initialize();

 /* Configure GUIX Studio project main display and get a pointer to the root window

*/

 gx_studio_display_configure(MAIN_DISPLAY,

 rm_guix_port_hw_initialize,

 MAIN_DISPLAY_LANGUAGE_ENGLISH,

 MAIN_DISPLAY_THEME,

 &p_window_root);

 /* Set pointer to the first buffer generated by the configuration

(rm_guix_port_canvas) */

 gx_canvas_memory_define(p_window_root->gx_window_root_canvas,

 rm_guix_port_canvas,

p_window_root->gx_window_root_canvas->gx_canvas_memory_size);

 /* Create and show the root window in the GUIX Studio project */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,776 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

 gx_studio_named_widget_create("root_widget_name", (GX_WIDGET *) p_window_root,

GX_NULL);

 gx_widget_show(p_window_root);

 /* Start GUIX */

 gx_system_start();

 /* GUIX will continue to run in its own thread */

}

Data Structures

struct rm_guix_port_callback_args_t

Enumerations

enum rm_guix_port_device_t

enum rm_guix_port_event_t

Data Structure Documentation

◆ rm_guix_port_callback_args_t

struct rm_guix_port_callback_args_t

Callback arguments for the FSP GUIX Port

Data Fields

rm_guix_port_device_t device Device code.

rm_guix_port_event_t event Event code of the low level
hardware.

uint32_t error Error code if
RM_GUIX_PORT_EVENT_ERROR.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,777 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

◆ rm_guix_port_device_t

enum rm_guix_port_device_t

Low level device code for the GUIX

Enumerator

RM_GUIX_PORT_DEVICE_NONE Non hardware.

RM_GUIX_PORT_DEVICE_DISPLAY Display device.

RM_GUIX_PORT_DEVICE_DRW 2D Graphics Engine

RM_GUIX_PORT_DEVICE_JPEG JPEG Codec.

◆ rm_guix_port_event_t

enum rm_guix_port_event_t

Display event codes

Enumerator

RM_GUIX_PORT_EVENT_ERROR Low level driver error occurs.

RM_GUIX_PORT_EVENT_DISPLAY_VSYNC Display interface VSYNC.

RM_GUIX_PORT_EVENT_UNDERFLOW Display interface underflow.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,778 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS GUIX Port (rm_guix_port)

◆ rm_guix_port_hw_initialize()

UINT rm_guix_port_hw_initialize (GX_DISPLAY * p_display)

Callback function to be passed to gx_studio_display_configure in order to start hardware modules.

Example:

 /* Configure GUIX Studio project main display and get a pointer to the root window

*/

 gx_studio_display_configure(MAIN_DISPLAY,

 rm_guix_port_hw_initialize,

 MAIN_DISPLAY_LANGUAGE_ENGLISH,

 MAIN_DISPLAY_THEME,

 &p_window_root);

Note
This function should only be called by GUIX.

Return values
GX_SUCCESS Device driver setup is successfully done.

GX_FAILURE Device driver setup failed.

4.2.82 HS300X Sensor Middleware (rm_hs300x)
Modules

Functions

fsp_err_t RM_HS300X_Open (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_cfg_t const *const p_cfg)

 Opens and configures the HS300X Middle module. Implements
rm_hs300x_api_t::open. More...

fsp_err_t RM_HS300X_Close (rm_hs300x_ctrl_t *const p_api_ctrl)

 Disables specified HS300X control block. Implements
rm_hs300x_api_t::close. More...

fsp_err_t RM_HS300X_MeasurementStart (rm_hs300x_ctrl_t *const p_api_ctrl)

 This function should be called when start a measurement and when
measurement data is stale data. Sends the slave address to the
hs300x and start a measurement. Implements
rm_hs300x_api_t::measurementStart. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,779 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

fsp_err_t RM_HS300X_Read (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_raw_data_t *const p_raw_data)

 Reads ADC data from HS300X. Implements rm_hs300x_api_t::read.
More...

fsp_err_t RM_HS300X_DataCalculate (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_raw_data_t *const p_raw_data, rm_hs300x_data_t *const
p_hs300x_data)

 Calculates humidity [RH] and temperature [Celsius] from ADC data.
Implements rm_hs300x_api_t::dataCalculate. More...

fsp_err_t RM_HS300X_ProgrammingModeEnter (rm_hs300x_ctrl_t *const
p_api_ctrl)

 This function must be called within 10ms after applying power to the
sensor. Sends the commands to enter the programming mode. After
calling this function, please wait 120us. Implements
rm_hs300x_api_t::programmingModeEnter. More...

fsp_err_t RM_HS300X_ResolutionChange (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t
const resolution)

 This function must be called after calling the
RM_HS300X_ProgrammingModeEnter function. Changes the sensor
resolution. This function blocks for 120 us software delay plus 9
bytes on the I2C bus. After calling this function, 14ms must be
waited. Failure to comply with these times may result in data
corruption and introduce errors in sensor measurements.
Implements rm_hs300x_api_t::resolutionChange. More...

fsp_err_t RM_HS300X_SensorIdGet (rm_hs300x_ctrl_t *const p_api_ctrl,
uint32_t *const p_sensor_id)

 This function must be called after calling the
RM_HS300X_ProgrammingModeEnter function. Gets the sensor ID.
This function blocks for 240 us software delay plus 12 bytes on the
I2C bus. Implements rm_hs300x_api_t::sensorIdGet. More...

fsp_err_t RM_HS300X_ProgrammingModeExit (rm_hs300x_ctrl_t *const
p_api_ctrl)

 This function must be called after calling the
RM_HS300X_ProgrammingModeEnter function. This function must be
called to return to normal sensor operation and perform
measurements. Sends the commands to exit the programming
mode. Implements rm_hs300x_api_t::programmingModeExit. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,780 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

Detailed Description

Middleware to implement the HS300X sensor interface. This module implements the HS300X
Middleware Interface.

Overview
Features

The HS300X sensor interface implementation has the following key features:

Starting a measurement at any time
Getting ADC data from the sensor
Calculating humidity and temperature value from getting ADC data
Changing the sensor resolution
Getting the sensor ID

Configuration
Build Time Configurations for rm_hs300x

The following build time configurations are defined in fsp_cfg/rm_hs300x_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Data type Both humidity
and
temperature
Humidity only

Both humidity and
temperature

Select Getting humidity
only and both humidity
and temperature.

Programming Mode ON
OFF

OFF If selected the
programming mode
can be entered.

Configurations for Middleware > Sensor > HS300X on rm_hs300x

This module can be added to the Stacks tab via New Stack > Middleware > Sensor > HS300X on
rm_hs300x.

Configuration Options Default Description

Name Manual Entry g_hs300x_sensor0 Module name.

Callback Name must be a valid
C symbol

hs300x_callback A user callback
function can be
provided.

Pin Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,781 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

This module use SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
HS300x datasheet is here.
If ADC data is valid and calculating humidity and temperature is finished, it is needed to start a
measurement again. If ADC data is invalid, it is needed to read ADC data from HS300x again.

If changing the sensor resolution and getting the sensor ID, RM_HS300X_ProgrammingModeEnter
function must be called within 10ms after applying power to the sensor. Entering the programming
mode takes 120us. Thresore, after calling RM_HS300X_ProgrammingModeEnter function, please wait
120us. After calling RM_HS300X_ResolutionChange function, 14ms must be waited because failure to
comply with these times may result in data corruption and introduce errors in sensor measurements.

Examples
Basic Example

This is a basic example of minimal use of HS300X sensor implementation in an application.

void rm_hs300x_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_hs300x_raw_data_t hs300x_raw_data;

 rm_hs300x_data_t hs300x_data;

 uint8_t calculated_flag = 0;

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *) g_hs300x_cfg.p_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

 err = RM_HS300X_Open(&g_hs300x_ctrl, &g_hs300x_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

#if RM_HS300X_CFG_PROGRAMMING_MODE

 uint32_t sensor_id;

 g_flag = 0;

 /* Enter the programming mode. This must be called within 10ms after applying power.

*/

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,782 / 2,794

https://www.renesas.com/jp/ja/document/dst/hs300x-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

 RM_HS300X_ProgrammingModeEnter(&g_hs300x_ctrl);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Delay 120us. Entering the programming mode takes 120us. */

 R_BSP_SoftwareDelay(120, BSP_DELAY_UNITS_MICROSECONDS);

 /* Get the sensor ID */

 RM_HS300X_SensorIdGet(&g_hs300x_ctrl, &sensor_id);

 g_flag = 0;

 /* Change the humidity resolution */

 RM_HS300X_ResolutionChange(&g_hs300x_ctrl, RM_HS300X_HUMIDITY_DATA,

RM_HS300X_RESOLUTION_8BIT);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Delay 14ms. Failure to comply with these times may result in data corruption and

introduce errors in sensor measurements. */

 R_BSP_SoftwareDelay(14, BSP_DELAY_UNITS_MILLISECONDS);

 g_flag = 0;

 /* Change the temperature resolution */

 RM_HS300X_ResolutionChange(&g_hs300x_ctrl, RM_HS300X_TEMPERATURE_DATA,

RM_HS300X_RESOLUTION_8BIT);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Delay 14ms. Failure to comply with these times may result in data corruption and

introduce errors in sensor measurements. */

 R_BSP_SoftwareDelay(14, BSP_DELAY_UNITS_MILLISECONDS);

 g_flag = 0;

 /* Exit the programming mode */

 RM_HS300X_ProgrammingModeExit(&g_hs300x_ctrl);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,783 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

 while (0 == g_flag)

 {

 /* Wait callback */

 }

#endif

 while (true)

 {

 g_flag = 0;

 /* Start Measurement */

 RM_HS300X_MeasurementStart(&g_hs300x_ctrl);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 do

 {

 g_flag = 0;

 /* Read ADC Data from HS300X */

 RM_HS300X_Read(&g_hs300x_ctrl, &hs300x_raw_data);

 while (0 == g_flag)

 {

 /* Wait callback */

 }

 /* Calculate Humidity and Temperatuere values from ADC data */

 err = RM_HS300X_DataCalculate(&g_hs300x_ctrl, &hs300x_raw_data,

&hs300x_data);

 if (FSP_SUCCESS == err)

 {

 calculated_flag = 1;

 }

 else if (FSP_ERR_SENSOR_INVALID_DATA == err)

 {

 /* Stale data */

 calculated_flag = 0;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,784 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

 }

 else

 {

 handle_error(err);

 }

 } while (0 == calculated_flag);

 /* Wait 4 seconds. See table 4 on the page 6 of the datasheet. */

 R_BSP_SoftwareDelay(4, BSP_DELAY_UNITS_SECONDS);

 }

}

Data Structures

struct rm_hs300x_programmnig_mode_params_t

struct rm_hs300x_instance_ctrl_t

Data Structure Documentation

◆ rm_hs300x_programmnig_mode_params_t

struct rm_hs300x_programmnig_mode_params_t

HS300X programming mode process block

Data Fields

volatile bool enter Enter flag.

volatile bool blocking Blocking flag.

volatile bool communication_finished Communication flag for
blocking.

volatile rm_hs300x_event_t event Callback event.

◆ rm_hs300x_instance_ctrl_t

struct rm_hs300x_instance_ctrl_t

HS300x Control Block

Data Fields

uint32_t open

 Open flag.

rm_hs300x_cfg_t const * p_cfg

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,785 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

 Pointer to HS300X Configuration.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_context

 Pointer to the user-provided context.

rm_hs300x_programmnig_m
ode_params_t

programming_mode

 Programming mode flag.

Function Documentation

◆ RM_HS300X_Open()

fsp_err_t RM_HS300X_Open (rm_hs300x_ctrl_t *const p_api_ctrl, rm_hs300x_cfg_t const *const
p_cfg)

Opens and configures the HS300X Middle module. Implements rm_hs300x_api_t::open.

Example:

 err = RM_HS300X_Open(&g_hs300x_ctrl, &g_hs300x_cfg);

Return values
FSP_SUCCESS HS300X successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,786 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

◆ RM_HS300X_Close()

fsp_err_t RM_HS300X_Close (rm_hs300x_ctrl_t *const p_api_ctrl)

Disables specified HS300X control block. Implements rm_hs300x_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_HS300X_MeasurementStart()

fsp_err_t RM_HS300X_MeasurementStart (rm_hs300x_ctrl_t *const p_api_ctrl)

This function should be called when start a measurement and when measurement data is stale
data. Sends the slave address to the hs300x and start a measurement. Implements
rm_hs300x_api_t::measurementStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_HS300X_Read()

fsp_err_t RM_HS300X_Read (rm_hs300x_ctrl_t *const p_api_ctrl, rm_hs300x_raw_data_t *const
p_raw_data)

Reads ADC data from HS300X. Implements rm_hs300x_api_t::read.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,787 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

◆ RM_HS300X_DataCalculate()

fsp_err_t RM_HS300X_DataCalculate (rm_hs300x_ctrl_t *const p_api_ctrl, rm_hs300x_raw_data_t
*const p_raw_data, rm_hs300x_data_t *const p_hs300x_data)

Calculates humidity [RH] and temperature [Celsius] from ADC data. Implements
rm_hs300x_api_t::dataCalculate.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_SENSOR_INVALID_DATA Data is invalid.

◆ RM_HS300X_ProgrammingModeEnter()

fsp_err_t RM_HS300X_ProgrammingModeEnter (rm_hs300x_ctrl_t *const p_api_ctrl)

This function must be called within 10ms after applying power to the sensor. Sends the commands
to enter the programming mode. After calling this function, please wait 120us. Implements
rm_hs300x_api_t::programmingModeEnter.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,788 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

◆ RM_HS300X_ResolutionChange()

fsp_err_t RM_HS300X_ResolutionChange (rm_hs300x_ctrl_t *const p_api_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t const resolution)

This function must be called after calling the RM_HS300X_ProgrammingModeEnter function.
Changes the sensor resolution. This function blocks for 120 us software delay plus 9 bytes on the
I2C bus. After calling this function, 14ms must be waited. Failure to comply with these times may
result in data corruption and introduce errors in sensor measurements. Implements
rm_hs300x_api_t::resolutionChange.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Module is not entering the programming
mode.

FSP_ERR_ABORTED Communication is aborted.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

◆ RM_HS300X_SensorIdGet()

fsp_err_t RM_HS300X_SensorIdGet (rm_hs300x_ctrl_t *const p_api_ctrl, uint32_t *const
p_sensor_id)

This function must be called after calling the RM_HS300X_ProgrammingModeEnter function. Gets
the sensor ID. This function blocks for 240 us software delay plus 12 bytes on the I2C bus.
Implements rm_hs300x_api_t::sensorIdGet.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Module is not entering the programming
mode.

FSP_ERR_ABORTED Communication is aborted.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,789 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > HS300X Sensor Middleware (rm_hs300x)

◆ RM_HS300X_ProgrammingModeExit()

fsp_err_t RM_HS300X_ProgrammingModeExit (rm_hs300x_ctrl_t *const p_api_ctrl)

This function must be called after calling the RM_HS300X_ProgrammingModeEnter function. This
function must be called to return to normal sensor operation and perform measurements. Sends
the commands to exit the programming mode. Implements
rm_hs300x_api_t::programmingModeExit.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_MODE Module is not entering the programming
mode.

FSP_ERR_UNSUPPORTED Programming mode is not supported.

4.2.83 Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)
Modules

Functions

fsp_err_t RM_LEVELX_NOR_SPI_Open (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl, rm_levelx_nor_spi_cfg_t const *const p_cfg)

 Initializes LevelX NOR SPI port read/write and control. More...

fsp_err_t RM_LEVELX_NOR_SPI_Read (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl, ULONG *const p_flash_addr, ULONG *const p_dest, ULONG
word_count)

 LevelX NOR driver "read sector" service. More...

fsp_err_t RM_LEVELX_NOR_SPI_Write (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl, ULONG *const p_flash_addr, ULONG *const p_src, ULONG
word_count)

 LevelX NOR driver "write sector" service. More...

fsp_err_t RM_LEVELX_NOR_SPI_BlockErase (rm_levelx_nor_spi_instance_ctrl_t
*const p_ctrl, ULONG block, ULONG erase_count)

 LevelX NOR driver "block erase" service. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,790 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

fsp_err_t RM_LEVELX_NOR_SPI_BlockErasedVerify
(rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl, ULONG block)

 LevelX NOR driver "block erased verify" service. More...

fsp_err_t RM_LEVELX_NOR_SPI_Close (rm_levelx_nor_spi_instance_ctrl_t *const
p_ctrl)

 LevelX NOR driver close service. More...

Detailed Description

Middleware for using Azure RTOS LevelX on NOR SPI memory.

Overview
This module provides the hardware port layer for LevelX on NOR SPI flash memory. Setup for this
module is done solely through calling LevelX APIs. Please refer to the LevelX API reference:
https://docs.microsoft.com/en-us/azure/rtos/levelx/

Configuration
Build Time Configurations for rm_levelx_nor_spi

The following build time configurations are defined in fsp_cfg/middleware/rm_levelx_nor_spi_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) Selects if code for
parameter checking is
to be included in the
build.

Write Verify Enabled
Disabled

Disabled When enabled reads
back data written to
SPI memory in order to
verify it.

Page Buffer Size
(bytes)

Size should be greater
than zero

256 When direct read is
enabled in LevelX a
situation can occur
where the driver has to
write to SPI memory
with the source
locaiton also being
within the SPI memory
address range. In this
situation the driver
needs a buffer that is
at least the same size
as a page in order to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,791 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/levelx/

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

temporarily store data
to write out.

Configurations for Middleware > Storage > LevelX NOR Port on rm_levelx_nor_spi

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_levelx_nor_spi0 Module name.

Memory Start Adress
Offset (bytes)

Offset should be
greater than or equal
to zero

0 Enter the starting
offset to use in the SPI
memory. The starting
address for LevelX
memory will be the SPI
memory base address
plus this offset.

Memory Size (bytes) Size should be greater
than zero

33554432 Enter the size that the
LevelX Memory should
be. This can be smaller
than the SPI memory
size in order to use a
subset of SPI memory.

Poll Status Count Poll Status Count
should be greater than
or equal to zero

0xFFFFFFFF Number of times to poll
for operation complete
status for blocking
memory operations.

Build Time Configurations for lx

The following build time configurations are defined in fsp_cfg/azure/lx/lx_user.h:

Configuration Options Default Description

NOR > Direct Read Enabled
(default)
Disabled

Enabled (default) When enabled, this
option bypasses the
NOR flash driver read
routine in favor or
reading the NOR
memory directly,
resulting in a
significant performance
increase.

NOR > Free Sector
Data Verify

Enabled
Disabled
(default)

Disabled (default) When enabled, this
causes the LevelX NOR
instance open logic to
verify free NOR sectors
are all ones.

NOR > Extended Cache Enabled
(default)
Disabled

Enabled (default) Enables the extended
NOR cache.

NOR > Extended Cache
Size

Manual Entry If not set this value
defaults to 8, which

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,792 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

represents a maximum
of 8 sectors that can be
cached in a NOR
instance.

NOR > Sector Mapping
Cache Size

Value must be greater
than or equal to 8 and
a power of 2, or empty

If not set this value
defaults to 16 and
defines the logical
sector mapping cache
size. Large values
improve performance,
but cost memory. The
minimum size is 8 and
all values must be a
power of 2.

NAND > Sector
Mapping Cache Size

Value must be greater
than or equal to 8 and
a power of 2, or empty

If not set this value
defaults to 128 and
defines the logical
sector mapping cache
size. Large values
improve performance,
but cost memory. The
minimum size is 8 and
all values must be a
power of 2.

NAND > Flash Direct
Mapping Cache

Enabled
Disabled
(default)

Disabled (default) When enabled, this
creates a direct
mapping cache, such
that there are no cache
misses. It also required
that LX_NAND_SECTOR
_MAPPING_CACHE_SIZE
represents the exact
number of total pages
in your flash device.

Thread Safe Enabled
Disabled
(default)

Disabled (default) When enabled, this
makes LevelX thread-
safe by using a
ThreadX mutex object
throughout the API.

Standalone Mode Enabled
Disabled
(default)

Disabled (default) When enabled, allows
LevelX to be used in
standalone mode
(without Azure RTOS).

Usage Notes
Pending during Erase/Write

The LevelX NOR SPI driver is blocking on all SPI operations and will poll device status for operation
completion on Writes and Erases. A callback can be provided by the user to wait with an OS-specific
thread wait in these instances.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,793 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

Closing the driver

When lx_nor_flash_close is called to close the LevelX instance it does not call any services within the
LevelX NOR SPI driver to close out the driver instance. The user should call the generated close
function (i.e. g_rm_levelx_nor_spi0_close) in order to close out the driver instance.

Erasing Flash Memory Prior to Usage

The area of the flash memory being used for the LevelX instance should be erased using the lower
level flash API prior to usage. Otherwise, LevelX API may fail on lx_nor_flash_open due to any areas
in flash memory that have been written/set.

Examples
Basic Example

This is a basic example of using the LevelX NOR SPI driver with the LevelX API in an application.

#define RM_LEVELX_NOR_SPI_EXAMPLE_SECTOR_SIZE (512)

#define RM_LEVELX_NOR_SPI_EXAMPLE_BUFFER_FILL_VALUE (0xA5)

#define RM_LEVELX_NOR_SPI_EXAMPLE_SPI_SECTOR_SIZE (4096)

extern rm_levelx_nor_spi_instance_ctrl_t g_levelx_nor_spi0_ctrl;

extern rm_levelx_nor_spi_cfg_t g_levelx_nor_spi0_cfg;

extern LX_NOR_FLASH g_lx_nor_flash0;

void rm_levelx_nor_spi_example (void)

{

 uint8_t read_buffer[RM_LEVELX_NOR_SPI_EXAMPLE_SECTOR_SIZE];

 uint8_t write_buffer[RM_LEVELX_NOR_SPI_EXAMPLE_SECTOR_SIZE];

 spi_flash_instance_t * p_spi_flash_instance = (spi_flash_instance_t *)

g_levelx_nor_spi0_cfg.p_lower_lvl;

 spi_flash_status_t status;

 memset(write_buffer, RM_LEVELX_NOR_SPI_EXAMPLE_BUFFER_FILL_VALUE, sizeof

(write_buffer));

 /* Erase flash prior to usage */

 fsp_err_t err = p_spi_flash_instance->p_api->open(p_spi_flash_instance->p_ctrl,

p_spi_flash_instance->p_cfg);

 assert(FSP_SUCCESS == err);

 for (uint32_t i = g_levelx_nor_spi0_cfg.address_offset;

 i < g_levelx_nor_spi0_cfg.size;

 i += RM_LEVELX_NOR_SPI_EXAMPLE_SPI_SECTOR_SIZE)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,794 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

 err = p_spi_flash_instance->p_api->erase(p_spi_flash_instance->p_ctrl,

 (uint8_t *)

g_levelx_nor_spi0_cfg.base_address + i,

RM_LEVELX_NOR_SPI_EXAMPLE_SPI_SECTOR_SIZE);

 assert(FSP_SUCCESS == err);

 status.write_in_progress = true;

 while (status.write_in_progress)

 {

 err =

p_spi_flash_instance->p_api->statusGet(p_spi_flash_instance->p_ctrl, &status);

 assert(FSP_SUCCESS == err);

 }

 }

 err = p_spi_flash_instance->p_api->close(p_spi_flash_instance->p_ctrl);

 assert(FSP_SUCCESS == err);

 /* Initialize LevelX */

 lx_nor_flash_initialize();

 UINT lx_err = lx_nor_flash_open(&g_lx_nor_flash0, "LX_NOR_SPI_EXAMPLE",

g_levelx_nor_spi0_initialize);

 handle_lx_error(lx_err);

 /* Write test value to sector 0 then read back to verify */

 lx_err = lx_nor_flash_sector_write(&g_lx_nor_flash0, 0, write_buffer);

 handle_lx_error(lx_err);

 lx_err = lx_nor_flash_sector_read(&g_lx_nor_flash0, 0, read_buffer);

 handle_lx_error(lx_err);

 assert(0 == memcmp(read_buffer, write_buffer, sizeof(read_buffer)));

}

Callback Wait Example

This shows how to use the LevelX NOR SPI driver callback with ThreadX in order to wait for
operations to complete.

/* Callback called by LevelX NOR SPI driver needs to wait on operation. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,795 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

void rm_levelx_nor_spi_callback_wait_example (rm_levelx_nor_spi_callback_args_t *

p_args)

{

 if (p_args->event & RM_LEVELX_NOR_SPI_EVENT_BUSY)

 {

 /* Put the thread to sleep while waiting for operation to complete. */

 tx_thread_sleep(1);

 }

}

Data Structures

struct rm_levelx_nor_spi_callback_args_t

struct rm_levelx_nor_spi_cfg_t

struct rm_levelx_nor_spi_instance_ctrl_t

Enumerations

enum rm_levelx_nor_spi_event_t

Data Structure Documentation

◆ rm_levelx_nor_spi_callback_args_t

struct rm_levelx_nor_spi_callback_args_t

RM_LEVELX_NOR_SPI callback arguments definitions

Data Fields

rm_levelx_nor_spi_event_t event LevelX NOR driver callback
event.

void const * p_context Placeholder for user data.

◆ rm_levelx_nor_spi_cfg_t

struct rm_levelx_nor_spi_cfg_t

SF_EL_LX_NOR Config Block Type

Data Fields

spi_flash_instance_t const * p_lower_lvl

 Lower level memory pointer.

LX_NOR_FLASH * p_lx_nor_flash

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,796 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

 Pointer to the LevelX nor flash instance.

uint32_t base_address

 Base address of memory mapped region.

uint32_t address_offset

 Offset to use subset of available flash size if desired.

uint32_t size

 Size of the partitioned region.

uint32_t poll_status_count

 Number of times to poll for operation complete status before
returning an error.

void const * p_context

 Placeholder for user data. Passed to the user callback.

void(* p_callback)(rm_levelx_nor_spi_callback_args_t *p_args)

 Callback function.

◆ rm_levelx_nor_spi_instance_ctrl_t

struct rm_levelx_nor_spi_instance_ctrl_t

SF_EL_LX_NOR Control Block Type

Data Fields

rm_levelx_nor_spi_cfg_t const * p_cfg Pointer to instance
configuration.

uint32_t start_address Start address of partition to use
within memory mapped region.

uint32_t minimum_erase_size Minimum erase size of SPI
memory.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,797 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

uint8_t page_buffer[RM_LEVELX_NOR_S
PI_CFG_BUFFER_SIZE]

Page buffer for situations when
writing to SPI memory from a
source within SPI memory.

uint32_t open Used to determine if module is
initialized.

Enumeration Type Documentation

◆ rm_levelx_nor_spi_event_t

enum rm_levelx_nor_spi_event_t

Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end
of this file. Options for the callback events.

Enumerator

RM_LEVELX_NOR_SPI_EVENT_BUSY Pending operation, user can define their own
wait functionality.

Function Documentation

◆ RM_LEVELX_NOR_SPI_Open()

fsp_err_t RM_LEVELX_NOR_SPI_Open (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl,
rm_levelx_nor_spi_cfg_t const *const p_cfg)

Initializes LevelX NOR SPI port read/write and control.

Calls lower level SPI memory functions.

Parameters
[in,out] p_ctrl Control block for the LevelX

NOR SPI instance.

[in,out] p_cfg Configuration for LevelX
NOR SPI port.

Return values
FSP_SUCCESS LevelX NOR driver is successfully opened.

FSP_ERR_ASSERTION p_ctrl or p_cfg is NULL.

FSP_ERR_ALREADY_OPEN Driver is already in OPEN state.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:open

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,798 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_Read()

fsp_err_t RM_LEVELX_NOR_SPI_Read (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl, ULONG
*const p_flash_addr, ULONG *const p_dest, ULONG word_count)

LevelX NOR driver "read sector" service.

This is responsible for reading a specific sector in a specific block of the NOR flash. All error
checking and correcting logic is the responsibility of this service.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in] p_flash_addr Specifies the address of a
logical sector within a NOR
flash block of memory.

[in,out] p_dest Specifies where to place the
sector contents.

[in] word_count Specifies how many 32-bit
words to read.

Return values
FSP_SUCCESS LevelX NOR flash sector read successful.

FSP_ERR_ASSERTION p_ctrl, p_flash_addr or p_dest is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for reading.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,799 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_Write()

fsp_err_t RM_LEVELX_NOR_SPI_Write (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl, ULONG
*const p_flash_addr, ULONG *const p_src, ULONG word_count)

LevelX NOR driver "write sector" service.

This is responsible for writing a specific sector into a block of the NOR flash. All error checking is
the responsibility of the this service.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in,out] p_flash_addr Specifies the address of a
logical sector within a NOR
flash block of memory.

[in] p_src Specifies the source of the
write.

[in] word_count Specifies how many 32-bit
words to write.

Return values
FSP_SUCCESS LevelX NOR flash sector write successful.

FSP_ERR_ASSERTION p_ctrl, p_flash_addr or p_src is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for writing.

FSP_ERR_TIMEOUT Timeout occurred while waiting for
operation to complete.

FSP_ERR_WRITE_FAILED Verification of Write operation failed.

FSP_ERR_INVALID_ADDRESS Write address or size falls outside of flash
memory range.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:write

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,800 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_BlockErase()

fsp_err_t RM_LEVELX_NOR_SPI_BlockErase (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl,
ULONG block, ULONG erase_count)

LevelX NOR driver "block erase" service.

This is responsible for erasing the specified block of the NOR flash.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in] block Specifies which NOR block to
erase.

[in] erase_count Provided for diagnostic
purposes(currently unused).

Return values
FSP_SUCCESS LevelX NOR flash block erase successful.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for erasing.

FSP_ERR_TIMEOUT Timeout occurred while waiting for
operation to complete.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:erase

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,801 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

◆ RM_LEVELX_NOR_SPI_BlockErasedVerify()

fsp_err_t RM_LEVELX_NOR_SPI_BlockErasedVerify (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl,
ULONG block)

LevelX NOR driver "block erased verify" service.

This is responsible for verifying the specified block of the NOR flash is erased.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

[in] block Specifies which block to
verify that it is erased.

Return values
FSP_SUCCESS LevelX flash block erase verification

successful.

FSP_ERR_ASSERTION p_ctrl or lower level driver is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for verifying.

FSP_ERR_NOT_ERASED The block is not erased properly.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes.

◆ RM_LEVELX_NOR_SPI_Close()

fsp_err_t RM_LEVELX_NOR_SPI_Close (rm_levelx_nor_spi_instance_ctrl_t *const p_ctrl)

LevelX NOR driver close service.

This is responsible for closing the driver properly.

Parameters
[in] p_ctrl Control block for the LevelX

NOR SPI instance.

Return values
FSP_SUCCESS LevelX flash is available and is now open for

read, write, and control access.

FSP_ERR_ASSERTION p_ctrl is NULL.

FSP_ERR_NOT_OPEN Driver not in OPEN state for closing.

Returns
See Common_Error_Codes or lower level drivers for other possible return codes. This
function calls

spi_flash_api_t:close

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,802 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)

4.2.84 LittleFS Flash Port (rm_littlefs_flash)
Modules

Functions

fsp_err_t RM_LITTLEFS_FLASH_Open (rm_littlefs_ctrl_t *const p_ctrl,
rm_littlefs_cfg_t const *const p_cfg)

fsp_err_t RM_LITTLEFS_FLASH_Close (rm_littlefs_ctrl_t *const p_ctrl)

Detailed Description

Middleware for the LittleFS File System control on RA MCUs.

Overview
This module provides the hardware port layer for the LittleFS file system. After initializing this
module, refer to the LittleFS documentation to use the file system:
https://github.com/ARMmbed/littlefs

Configuration
Build Time Configurations for rm_littlefs_flash

The following build time configurations are defined in fsp_cfg/rm_littlefs_flash_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > LittleFS on Flash

Configuration Options Default Description

Name Name must be a valid
C symbol

g_rm_littlefs0 Module name.

Read Size Must be a non-negative
integer

1 Minimum size of a
block read. All read
operations will be a
multiple of this value.

Program Size Must be a non-negative
integer

4 Minimum size of a
block program. All
program operations will
be a multiple of this
value.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,803 / 2,794

https://github.com/ARMmbed/littlefs

Flexible Software Package

User’s Manual
API Reference > Modules > LittleFS Flash Port (rm_littlefs_flash)

Block Size (bytes) Must be a multiple of
64

128 Size of an erasable
block. This does not
impact RAM
consumption and may
be larger than the
physical erase size.
However, non-inlined
files take up at
minimum one block.
Must be a multiple of
the read and program
sizes.

Block Count Manual Entry (BSP_DATA_FLASH_SIZ
E_BYTES/128)

Number of erasable
blocks on the device.

Block Cycles Must be an integer 1024 Number of erase cycles
before LittleFS evicts
metadata logs and
moves the metadata to
another block.
Suggested values are
in the range 100-1000,
with large values
having better
performance at the
cost of less consistent
wear distribution. Set
to -1 to disable block-
level wear-leveling.

Cache Size Must be a non-negative
integer

64 Size of block caches.
Each cache buffers a
portion of a block in
RAM. The LittleFS
needs a read cache, a
program cache, and
one additional cache
per file. Larger caches
can improve
performance by storing
more data and
reducing the number of
disk accesses. Must be
a multiple of the read
and program sizes, and
a factor of the block
size.

Lookahead Size Must be a non-negative
multiple of 8

16 Size of the lookahead
buffer in bytes. A larger
lookahead buffer
increases the number
of blocks found during
an allocation pass. The
lookahead buffer is

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,804 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > LittleFS Flash Port (rm_littlefs_flash)

stored as a compact
bitmap, so each byte of
RAM can track 8
blocks. Must be a
multiple of 8.

Common LittleFS Configuration

Build Time Configurations for LittleFS

The following build time configurations are defined in arm/littlefs/lfs_util.h:

Configuration Options Default Description

Custom lfs_util.h Manual Entry Add a path to your
custom lfs_util.h file. It
can be used to override
some or all of the
configurations defined
here, and to define
additional
configurations.

Thread Safe Enabled
Disabled

Disabled Enables thread safety
in LittleFS.

Use Malloc Enabled
Disabled

Enabled Configures the use of
malloc by LittleFS.

Use Assert Enabled
Disabled

Enabled Configures the use of
assert by LittleFS.

Debug Messages Enabled
Disabled

Disabled Configures debug
messages.

Warning Messages Enabled
Disabled

Disabled Configures warning
messages.

Error Messages Enabled
Disabled

Disabled Configures error
messages.

Trace Messages Enabled
Disabled

Disabled Configures trace
messages.

Intrinsics Enabled
Disabled

Enabled Configures intrinsic
functions such as
__builtin_clz.

Instance Name for
STDIO wrapper

Name must be a valid
C symbol

g_rm_littlefs0 The rm_littlefs instance
name to use with the
STDIO wrapper.

Usage Notes
Blocking Read/Write/Erase

The LittleFS port blocks on Read/Write/Erase calls until the operation has completed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,805 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > LittleFS Flash Port (rm_littlefs_flash)

Memory Constraints

The block size defined in the LittleFS configuration must be a multiple of the data flash erase size of
the MCU. It must be greater than 104bytes which is the minimum block size of a LittleFS block. For
information about data flash erase sizes refer to the "Specifications of the code flash memory and
data flash memory" table of the "Flash Memory" chapter's "Overview" section.

Limitations

This module is not thread safe.

Examples
Basic Example

This is a basic example of LittleFS on Flash in an application.

extern const rm_littlefs_cfg_t g_rm_littlefs_flash0_cfg;

#ifdef LFS_NO_MALLOC

static uint8_t g_file_buffer[LFS_CACHE_SIZE];

static struct lfs_file_config g_file_cfg =

{

 .buffer = g_file_buffer

};

#endif

void rm_littlefs_example (void)

{

 uint8_t buffer[30];

 lfs_file_t file;

 /* Open LittleFS Flash port.*/

 fsp_err_t err = RM_LITTLEFS_FLASH_Open(&g_rm_littlefs_flash0_ctrl,

&g_rm_littlefs_flash0_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 /* Format the filesystem. */

 int lfs_err = lfs_format(&g_rm_littlefs_flash0_lfs, &g_rm_littlefs_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Mount the filesystem. */

 lfs_err = lfs_mount(&g_rm_littlefs_flash0_lfs, &g_rm_littlefs_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,806 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > LittleFS Flash Port (rm_littlefs_flash)

 /* Create a breakfast directory. */

 lfs_err = lfs_mkdir(&g_rm_littlefs_flash0_lfs, "breakfast");

 handle_lfs_error(lfs_err);

 /* Create a file toast in the breakfast directory. */

 const char * path = "breakfast/toast";

#ifdef LFS_NO_MALLOC

 /***

 * By default LittleFS uses malloc to allocate buffers. This can be disabled in the

RA Configuration editor.

 * Buffers will be generated from the configuration for the read, program and

lookahead buffers.

 * When opening a file a unique buffer must be passed in for use as a file buffer.

 * The buffer size must be equal to the cache size.

***********************************/

 lfs_err = lfs_file_opencfg(&g_rm_littlefs_flash0_lfs,

 &file,

 path,

 LFS_O_WRONLY | LFS_O_CREAT | LFS_O_APPEND,

 &g_file_cfg);

 handle_lfs_error(lfs_err);

#else

 lfs_err = lfs_file_open(&g_rm_littlefs_flash0_lfs, &file, path, LFS_O_WRONLY |

LFS_O_CREAT | LFS_O_APPEND);

 handle_lfs_error(lfs_err);

#endif

 const char * contents = "butter";

 lfs_size_t len = strlen(contents);

 /* Apply butter to toast 10 times. */

 for (uint32_t i = 0; i < 10; i++)

 {

 lfs_err = lfs_file_write(&g_rm_littlefs_flash0_lfs, &file, contents, len);

 if (lfs_err < 0)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,807 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > LittleFS Flash Port (rm_littlefs_flash)

 {

 handle_lfs_error(lfs_err);

 }

 }

 /* Close the file. */

 lfs_err = lfs_file_close(&g_rm_littlefs_flash0_lfs, &file);

 handle_lfs_error(lfs_err);

 /* Unmount the filesystem. */

 lfs_err = lfs_unmount(&g_rm_littlefs_flash0_lfs);

 handle_lfs_error(lfs_err);

 /* Remount the filesystem. */

 lfs_err = lfs_mount(&g_rm_littlefs_flash0_lfs, &g_rm_littlefs_flash0_lfs_cfg);

 handle_lfs_error(lfs_err);

 /* Open breakfast/toast. */

#ifdef LFS_NO_MALLOC

 lfs_err = lfs_file_opencfg(&g_rm_littlefs_flash0_lfs, &file, path, LFS_O_RDONLY,

&g_file_cfg);

 handle_lfs_error(lfs_err);

#else

 lfs_err = lfs_file_open(&g_rm_littlefs_flash0_lfs, &file, path, LFS_O_RDONLY);

 handle_lfs_error(lfs_err);

#endif

 handle_lfs_error(lfs_err);

 /* Verify the toast is buttered the correct amount. */

 for (uint32_t i = 0; i < 10; i++)

 {

 lfs_err = lfs_file_read(&g_rm_littlefs_flash0_lfs, &file, buffer, len);

 if (lfs_err < 0)

 {

 handle_lfs_error(lfs_err);

 }

 assert(0 == memcmp(buffer, contents, len));

 }

 /* Close the file. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,808 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > LittleFS Flash Port (rm_littlefs_flash)

 lfs_err = lfs_file_close(&g_rm_littlefs_flash0_lfs, &file);

 handle_lfs_error(lfs_err);

}

Function Documentation

◆ RM_LITTLEFS_FLASH_Open()

fsp_err_t RM_LITTLEFS_FLASH_Open (rm_littlefs_ctrl_t *const p_ctrl, rm_littlefs_cfg_t const *const
p_cfg)

Opens the driver and initializes lower layer driver.

Implements rm_littlefs_api_t::open().

Return values
FSP_SUCCESS Success.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_INVALID_SIZE The provided block size is invalid.

FSP_ERR_INVALID_ARGUMENT Flash BGO mode must be disabled.

FSP_ERR_INTERNAL Failed to create the semaphore.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

flash_api_t::open

◆ RM_LITTLEFS_FLASH_Close()

fsp_err_t RM_LITTLEFS_FLASH_Close (rm_littlefs_ctrl_t *const p_ctrl)

Closes the lower level driver.

Implements rm_littlefs_api_t::close().

Return values
FSP_SUCCESS Media device closed.

FSP_ERR_ASSERTION An input parameter was invalid.

FSP_ERR_NOT_OPEN Module not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

flash_api_t::close

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,809 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > LittleFS Flash Port (rm_littlefs_flash)

4.2.85 MCUboot Port (rm_mcuboot_port)
Modules

MCUboot Port for RA MCUs.

Overview
Note

The MCUboot Port does not provide any interfaces to the user. Consult the MCUboot documentation at
https://mcu-tools.github.io/mcuboot/ for further information.

Configuration
Build Time Configurations for MCUboot

The following build time configurations are defined in mcu-
tools/include/mcuboot_config/mcuboot_config.h:

Configuration Options Default Description

General > Custom
mcuboot_config.h

Manual Entry Add a path to your
custom
mcuboot_config.h file.
It can be used to
override some or all of
the configurations
defined here, and to
define additional
configurations.

General > Upgrade
Mode

Swap
Overwrite Only
Overwrite Only
Fast

Overwrite Only Swap supports A/B
image swapping with
rollback. Other modes
with simpler code path,
which only supports
overwriting the existing
image with the update
image or running the
newest image directly
from its flash partition,
are also available.

General > Validate
Primary Image

Enabled
Disabled

Enabled Always check the
signature of the image
in the primary slot
before booting, even if
no upgrade was
performed. This is
recommended if the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,810 / 2,794

https://mcu-tools.github.io/mcuboot/

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

boot time penalty is
acceptable.

General > Downgrade
Prevention (Overwrite
Only)

Enabled
Disabled

Disabled Prevent downgrades by
enforcing incrementing
version numbers. When
this option is set, any
upgrade must have
greater major version
or greater minor
version with equal
major version. This
mechanism only
protects against some
attacks against version
downgrades (for
example, a JTAG could
be used to write an
older version).

General > Number of
Images Per Application

1
2 (TrustZone)

1 Number of separately
updateable images.

General > Watchdog
Feed

Manual Entry This function might be
implemented if the OS /
HW watchdog is
enabled while doing a
swap upgrade and the
time it takes for a
swapping is long
enough to cause an
unwanted reset. If
implementing this, the
OS main.c must also
enable the watchdog (if
required)!

General > Measured
Boot

Enabled
Disabled

Disabled Copies the boot data
into the secure RAM,
intended to be used by
the secure App.

General > Data
Sharing

Enabled
Disabled

Disabled Copies the user data
into the secure RAM,
intended to be used by
the secure App.

Signing Options >
TrustZone > Boot
Record (Image 2)

String length must be
12 characters or less.

Create CBOR encoded
boot record TLV for
Image 2. Represents
the role of the software
component (e.g. CoFM
for coprocessor
firmware). [max. 12
characters]

Signing Options >
TrustZone > Custom

Manual Entry --confirm Add any custom
options to pass to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,811 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

(Image 2) imgtool.py here. --pad
places a trailer on the
image that indicates
that the image should
be considered an
upgrade. Writing this
image in the secondary
slot will then cause the
bootloader to upgrade
to it. --confirm marks
the image as
confirmed, which
causes the upgrade to
be permanent.

Signing Options >
Signature Type

None
ECDSA P-256
RSA 2048
RSA 3072

ECDSA P-256 Configure the signature
type.

Signing Options > Boot
Record

String length must be
12 characters or less.

Create CBOR encoded
boot record TLV.
Represents the role of
the software
component (e.g. CoFM
for coprocessor
firmware). [max. 12
characters]

Signing Options >
Custom

Manual Entry --confirm Add any custom
options to pass to
imgtool.py here. --pad
places a trailer on the
image that indicates
that the image should
be considered an
upgrade. Writing this
image in the secondary
slot will then cause the
bootloader to upgrade
to it. --confirm marks
the image as
confirmed, which
causes the upgrade to
be permanent.

Debugging > Log Level Off
Error
Warning
Info
Debug

Off Configure log level.

Flash Layout >
TrustZone > Non-
Secure Callable Region
Size (Bytes)

Value must be an
integer multiple of the
1024.

0x0 Size of the Non-Secure
Callable region of the
Secure image.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,812 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

Flash Layout >
TrustZone > Non-
Secure Flash Area Size
(Bytes) (TrustZone Non-
Secure)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x0 Size of the Non-Secure
region. This must be
non-zero for all
TrustZone projects to
ensure memory is
partitioned correctly,
even if the Secure and
Non-Secure regions are
treated as a single
image. If the Non-
Secure region can be
updated separately,
this size must account
for the header and
trailer.

Flash Layout >
TrustZone > Non-
Secure Callable RAM
Region Size (Bytes)

Value must be an
integer multiple of the
1024.

0x0 Size of the Non-Secure
Callable RAM region of
the Secure image.

Flash Layout >
TrustZone > Non-
Secure RAM Region
Size (Bytes) (TrustZone
Non-Secure)

Value must be an
integer multiple of the
8192.

0x0 Size of the Non-Secure
RAM region. This must
be non-zero for all
TrustZone projects to
ensure memory is
partitioned correctly,
even if the Secure and
Non-Secure regions are
treated as a single
image.

Flash Layout >
TrustZone > Image 2
Header Size (Bytes)

Value must be an
integer multiple of
0x80 (alignment
required by VTOR).

0x80 Size of the flash
reserved for the
application image
header for Image 2.

Flash Layout >
Bootloader Flash Area
Size (Bytes)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x20000 Size of the flash
reserved for the
bootloader.

Flash Layout > Image 1
Header Size (Bytes)

Value must be an
integer multiple of
0x80 (alignment
required by VTOR).

0x80 Size of the flash
reserved for the
application image
header.

Flash Layout > Image 1
Flash Area Size (Bytes)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x20000 Size of the application
image 1, including the
header and trailer. For
TrustZone projects,
enter the combined
size of the Secure and
Non-Secure Callable
regions if the Non-
Secure image can be
updated separately, or

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,813 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

enter the size of the
entire image slot if
Secure, Non-Secure
Callable, and Non-
Secure regions are
updated as a single
image.

Flash Layout > Scratch
Flash Area Size (Bytes)

Value must be an
integer multiple of the
largest erase size on
the mcu.

0x0 Size of the scratch
area. Only required for
swap update method.

Data Sharing >
Maximum Measured
Boot Record Size
(Bytes)

Value must be an
integer.

0x64 Maximum size of the
boot record.

Data Sharing > Shared
Data Size (Bytes)

Value must be an
integer.

0x380 Size of the shared RAM
area. Required for
Measured Boot.

Data Sharing > Shared
Data Address

Value must be an
integer

0x20000000 Shared RAM start
address. Required for
Measured Boot.

Clock Configuration

This module does not use peripheral clocks.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Getting Started: Creating an MCUboot Project

Start by creating a new project in e2 studio or RA SC. If the MCU supports TrustZone, select a Flat
project. The bootloader resides entirely in Secure memory, but it is considered a flat project because
it does not provide any Non-Secure Callable functions. On the Stacks tab, add New > Bootloader >
MCUboot. Resolve any constraint errors and edit configurations as desired. Add either the example
keys or generate your own key. The MCUboot key generation tool is provided at ra/mcu-
tools/MCUboot/scripts/imgtool.py and documented at https://github.com/mcu-
tools/mcuboot/blob/master/docs/imgtool.md. Install the following required python packages to use
imgtool.py: https://github.com/mcu-tools/mcuboot/blob/master/scripts/requirements.txt.

In src/hal_entry.c, drag in Developer Assistance > HAL/Common > MCUboot > Quick Setup > Call
Quick Setup. Add a call to mcuboot_quick_setup() in the application and make any desired updates.

Note
MCUboot will contain either the verificaton public key or its hash. During production it is necessary to
permanently lock the flash region where MCUboot is programmed to prevent the keys or the code from being
modified.

Getting Started: Signing Tool Prerequisite

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,814 / 2,794

https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/docs/imgtool.md
https://github.com/mcu-tools/mcuboot/blob/master/scripts/requirements.txt

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

To use the MCUboot signing tool, ensure you have Python 3.x installed on your system. Then install
the Python packages required for the signing tool with the following command:

pip3 install --user -r ra/mcu-tools/MCUboot/scripts/requirements.txt

Getting Started: Converting a Project to an MCUboot Image

MCUboot application images must execute from the image slot defined by the MCUboot project.
They are also limited to a single downloadable flash region. All of this is handled by specifying a
BootloaderDataFile in the FSP Configuration tool.

Any existing project can be converted to an MCUboot image.

1. If the project was created with a version prior to FSP v3.0.0, update the linker script to the
v3.0.0 version before using it as an MCUboot application image.

2. Right click the project to convert in e2 studio or RA SC and select Properties.
3. Open C/C++ Build and select Build Variables.
4. Click Add...
5. For Variable Name, enter BootloaderDataFile. For Type, select File. Browse to the *.bld file

created alongside the *.elf file for the associated MCUboot project.
6. Click OK, then Apply and Close.

To convert a TrustZone image, follow the steps above for both the Secure project and the Non-
Secure project.

MCUboot application images must also be signed to work with MCUboot. At a minimum, this involves
adding a SHA and MCUboot specific constant data called boot magic in the image trailer.

A template to get started with signing based on the properties specified in the MCUboot stack is
output in a comment at the top of ra_cfg/mcu-tools/include/mcuboot_config/mcuboot_config.h.

Signing can be done on the command line after building or as a post-build step in e2 studio. To sign
the image as a post-build step:

1. Update the paths as documented in the signing comment in ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h.

2. Join the two commands (arm-none-eabi-objcopy and python) with ' & ' on Windows or ' ; ' on
Linux.

3. Copy the single line command to Project > Properties, C/C++ Build > Settings, Build Steps
(tab), Post-build steps, Command(s).

4. The signed image is output next to the application <project>.elf file with a default name of
<project>_signed.bin.

Getting Started: Download and Debug

For projects that do not use TrustZone, debug the MCUboot project using the default configuration.
Before running, load the signed image to the address specified in the signing comment in ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h. This can be done with the Load Ancillary File button
when debugging in e2 studio. Upgrade images can be loaded to the upgrade image slots using the
same method.

For TrustZone projects, debug using the Secure project to ensure the IDAU is partitioned correctly
when debugging in e2 studio. Make the following modifications before debugging in e2 studio:

1. In the Debug Configurations for your project, on the Startup tab, click Add... to add the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,815 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

MCUboot project *.elf file (Image and Symbols), and optionally the Non-Secure project *.elf
file.

2. For the Secure and Non-Secure project *.elf file, load Symbols Only.
3. After starting to debug, load the signed Secure image and the signed Non-Secure image

into the addresses specified in the signing comment in ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h. This can be done with the Load Ancillary
File button when debugging in e2 studio. Upgrade images can be loaded to the upgrade
image slots using the same method.

Confirming Upgrade in Swap Mode

In Swap Mode operation, if the upgrade image is signed with the –pad option, MCUboot will install
that image as a temporary update where if nothing else is done, a reboot will cause MCUboot to
revert to the image version that was swapped out during the upgrade. In order for the updated
image to prevent this reversion and make the update permanent, the boot_set_confirmed() must be
called from the application.

To avail this capability in the application image, from the Stacks tab, add New > Bootloader >
MCUboot Image Utilities (Swap Mode). Resolve any constraint errors and edit configurations as
desired.

In src/hal_entry.c, drag in Developer Assistance > HAL/Common > MCUboot Image Utilities > Quick
Setup > Confirm Primary Image. Add a call to boot_set_confirmed() in the application and confirm
the image in the primary slot.

MCUboot Memory Map

For single image projects, the default memory map looks like:

Figure 202: MCUboot Memory Map

 For projects with 2 separately updateable images (used for TrustZone applications where the Secure
and Non-Secure images can be updated separately), the default memory map looks like:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,816 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

Figure 203: MCUboot Memory Map (TrustZone)

MCUboot Crypto Stack Options

The following crypto stacks can be used with MCUboot in FSP:

1. MbedTLS, which is hardware accelerated on all RA devices. On the RA2 which has an AES
engine only, ECC/RSA/SHA operations are in software.

2. TinyCrypt (S/W Only) can be used with all devices.
3. TinyCrypt (H/W Accelerated) has AES operations accelerated for the RA2 family only. When

using MCUboot without encryption there is no difference between using this or the S/W only
version.

4. SCE9 Protected Mode on devices that have the SCE9 (eg: RA6M4, RA4M3, RA4M2)

MbedTLS provides the best performance for MCUBoot signature verification on the RA6 and RA4
devices but has a much larger code footprint compared to TinyCrypt. For RA2 devices TinyCrypt is
the best option.

Using SCE9 Protected Mode Crypto Stack

Using this crypto stack with MCUBoot provides additional security by ensuring that any keys that are
used were securely provisioned for the specific device. The Application Note R11AN0496 provides
detailed steps on how to go about installing these keys. Since the section "Preparing Keys for
Installation and Update Using RFP" document currently only provides information on how to install an
AES key, this section will provide information on how to install an ECC public key.

Note
When using the SCE9 Protected Mode Stack with MCUboot it is required that the public keys in the format
described in the "MCUboot Example Keys" module in the stack is also provided in the project.

1. Generate an ECC key pair. There are various ways to do this but you can use openSSL to do
so: "openssl ecparam -name secp256k1 -genkey -noout -out my_ecc_secp256k1_key.pem".

2. Once the key is generated, in order to install the public key using RFP (Renesas Flash
Programmer) the user needs to have their own UFPK (User Factory Programming Key) and
W-UFPK (Wrapped User Factory Programming Key). Refer to R11AN0496 on how to obtain
these keys.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,817 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

3. Once the UFPK and W-UFPK are available, we need to extract the public key from the pem
file. The public key can be viewed by using "openssl ec -noout -text -in
my_ecc_secp256k1_key.pem". Note that when the ECC public key is printed out this way, it
will contain a 0x04 ASN.1 demarcator at the start which should be discarded.

4. Use the rfp-util.exe utility from the RFP installation folder to wrap the public key using the
UFPK and W-UFPK into a format that can be installed by RFP and the factory bootloader on
the MCU.

5. Use RFP as described in R11AN0496 to install the key to the location of mcuboot_sce9_key
section.

These are examples that install the default keys provided with MCUboot in ra/mcu-tools/MCUboot/.
The examples assume that UFPK nd W-UFPK are already available.

 //Print out the EC-P256 Public Key using openSSL

C:\ openssl ec -noout -text -in root-ec-p256.pem

read EC key

Private-Key: (256 bit)

priv:

 d7:98:d5:2f:83:01:24:3b:d3:54:2b:7e:55:ed:4c:

 74:61:19:00:b0:f9:50:5a:82:4f:e1:e8:ec:06:3b:

 cf:f1

pub:

 04:2a:cb:40:3c:e8:fe:ed:5b:a4:49:95:a1:a9:1d:

 ae:e8:db:be:19:37:cd:14:fb:2f:24:57:37:e5:95:

 39:88:d9:94:b9:d6:5a:eb:d7:cd:d5:30:8a:d6:fe:

 48:b2:4a:6a:81:0e:e5:f0:7d:8b:68:34:cc:3a:6a:

 fc:53:8e:fa:c1

ASN1 OID: prime256v1

NIST CURVE: P-256

//Use the public key (ignore the 0x04 ASN.1 demarcator) in the RFP command line to

convert the public key into an installable format

C:\ "C:\Program Files (x86)\Renesas Electronics\Programming Tools\Renesas Flash

Programmer V3.08\rfp-util.exe" /genkey /ufpk "C:\ufpk.key" /wufpk

"C:\ufpk.key_enc.key" /key "2acb403ce8feed5ba44995a1a91daee8dbbe1937cd14fb2f245737e59

53988d994b9d65aebd7cdd5308ad6fe48b24a6a810ee5f07d8b6834cc3a6afc538efac1" /userkey

"16" /output "C:\ECC_pub_install.rkey"

// From the bootloader map file determine the address of mcuboot_sce9_key section

Use RFP to install "ECC_pub_install.rkey" as described in R11AN0496 to the address

where the mcuboot_sce9_key section is located.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,818 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

Limitations

MCUboot tooling updates to adjust available flash in application images are currently only supported
for the GCC compiler. IAR and AC6 support will be added in a future release.

Examples
Basic Example

This is an example of using MCUboot in an application.

void rm_mcuboot_port_example (void)

{

#ifdef MCUBOOT_USE_MBED_TLS

 /* Initialize mbedtls. */

 mbedtls_platform_context ctx = {0};

 assert(0 == mbedtls_platform_setup(&ctx));

#elif defined(MCUBOOT_USE_TINYCRYPT)

 /* Initialize TinyCrypt port. */

 assert(FSP_SUCCESS == RM_TINCYRYPT_PORT_Init());

#else

 /* Initialize SCE9 Protected Mode driver. */

 sce_instance_ctrl_t sce_ctrl;

 const sce_cfg_t sce_cfg =

 {.lifecycle = SCE_SSD};

 assert(FSP_SUCCESS == R_SCE_Open(&sce_ctrl, &sce_cfg));

#endif

 /* (Optional) To check for updates, call boot_set_pending. */

 bool update = 0;

 if (update)

 {

 boot_set_pending(0);

 }

 /* Verify the boot image and get its location. */

 struct boot_rsp rsp;

 assert(0 == boot_go(&rsp));

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,819 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > MCUboot Port (rm_mcuboot_port)

 /* Enter the application. */

 RM_MCUBOOT_PORT_BootApp(&rsp);

}

4.2.86 Motor Current (rm_motor_current)
Modules

Functions

fsp_err_t RM_MOTOR_CURRENT_Open (motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

 Opens and configures the Motor Current Module. Implements
motor_current_api_t::open. More...

fsp_err_t RM_MOTOR_CURRENT_Close (motor_current_ctrl_t *const p_ctrl)

 Disables specified Motor Current Module. Implements
motor_current_api_t::close. More...

fsp_err_t RM_MOTOR_CURRENT_Reset (motor_current_ctrl_t *const p_ctrl)

 Reset variables of Motor Current Module. Implements
motor_current_api_t::reset. More...

fsp_err_t RM_MOTOR_CURRENT_Run (motor_current_ctrl_t *const p_ctrl)

 Run(Start) the Current Control. Implements motor_current_api_t::run.
More...

fsp_err_t RM_MOTOR_CURRENT_ParameterSet (motor_current_ctrl_t *const
p_ctrl, motor_current_input_t const *const p_st_input)

 Set (Input) Parameter Data. Implements
motor_current_api_t::parameterSet. More...

fsp_err_t RM_MOTOR_CURRENT_CurrentReferenceSet (motor_current_ctrl_t
*const p_ctrl, float const id_reference, float const iq_reference)

 Set Current Reference Data. Implements
motor_current_api_t::currentReferenceSet. More...

fsp_err_t RM_MOTOR_CURRENT_SpeedPhaseSet (motor_current_ctrl_t *const
p_ctrl, float const speed, float const phase)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,820 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

 Set Current Speed & rotor phase Data. Implements
motor_current_api_t::speedPhaseSet. More...

fsp_err_t RM_MOTOR_CURRENT_CurrentSet (motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current,
motor_current_input_voltage_t const *const p_st_voltage)

 Set d/q-axis Current & Voltage Data. Implements
motor_current_api_t::currentSet. More...

fsp_err_t RM_MOTOR_CURRENT_ParameterGet (motor_current_ctrl_t *const
p_ctrl, motor_current_output_t *const p_st_output)

 Get Output Parameters. Implements
motor_current_api_t::parameterGet. More...

fsp_err_t RM_MOTOR_CURRENT_CurrentGet (motor_current_ctrl_t *const
p_ctrl, float *const p_id, float *const p_iq)

 Get d/q-axis Current. Implements motor_current_api_t::currentGet.
More...

fsp_err_t RM_MOTOR_CURRENT_PhaseVoltageGet (motor_current_ctrl_t *const
p_ctrl, motor_current_get_voltage_t *const p_voltage)

 Gets the set phase voltage. Implements
motor_current_api_t::phaseVoltageGet. More...

fsp_err_t RM_MOTOR_CURRENT_ParameterUpdate (motor_current_ctrl_t *const
p_ctrl, motor_current_cfg_t const *const p_cfg)

 Update the parameters of Current Control. Implements
motor_current_api_t::parameterUpdate. More...

void rm_motor_current_encoder_cyclic (motor_current_instance_t const
*p_ctrl)

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor current
Interface.

Overview
The motor current is used to control the electric current of motor rotation in an appication. This
module should be called cyclically after the A/D conversion of electric current of each phase in an
application. This module calculates each phase voltage with input current reference, electric current

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,821 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

and rotor angle.

Features

The Motor Current Module has below features.

Calculate each phase(U/V/W) voltage.
Decoupling Control.
Voltage Error Compensation.

Configuration
Build Time Configurations for rm_motor_current

The following build time configurations are defined in fsp_cfg/rm_motor_current_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Motor > Motor Current Controller on rm_motor_current

This module can be added to the Stacks tab via New Stack > Middleware > Motor > Motor Current
Controller on rm_motor_current.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_motor_current0 Module name.

General > Sensor type Sensorless
Encoder

Sensorless Select sensor type

General > Current
control decimation

Manual Entry 0 Decimation of current
control.

General > PWM carrier
frequency (kHz)

Manual Entry 20.0F PWM carrier frequency.

General > Input
voltage

Manual Entry 24.0F Input voltage for
limitation of current PI
control.

General > Sample
delay compensation

Disable
Enable

Enable Select enable/disable
sample delay
compensation.

General > Voltage
error compensation

Disable
Enable

Enable Select enable/disable
voltage error
compensation.

General > Voltage
error compensation
table of voltage 1

Manual Entry 0.672F Voltage error
compensation table of
voltage.

General > Voltage Manual Entry 0.945F Voltage error

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,822 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

error compensation
table of voltage 2

compensation table of
voltage.

General > Voltage
error compensation
table of voltage 3

Manual Entry 1.054F Voltage error
compensation table of
voltage.

General > Voltage
error compensation
table of voltage 4

Manual Entry 1.109F Voltage error
compensation table of
voltage.

General > Voltage
error compensation
table of voltage 5

Manual Entry 1.192F Voltage error
compensation table of
voltage.

General > Voltage
error compensation
table of current 1

Manual Entry 0.013F Voltage error
compensation table of
current.

General > Voltage
error compensation
table of current 2

Manual Entry 0.049F Voltage error
compensation table of
current.

General > Voltage
error compensation
table of current 3

Manual Entry 0.080F Voltage error
compensation table of
current.

General > Voltage
error compensation
table of current 4

Manual Entry 0.184F Voltage error
compensation table of
current.

General > Voltage
error compensation
table of current 5

Manual Entry 0.751F Voltage error
compensation table of
current.

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at A/D
conversion finish
interrupt.

Design Parameter >
Current PI loop omega

Manual Entry 300.0F Current PI loop omega

Design Parameter >
Current PI loop zeta

Manual Entry 1.0F Current PI loop zeta

Motor Parameter >
Pole pairs

Manual Entry 2 Pole pairs

Motor Parameter >
Resistance (ohm)

Manual Entry 8.5F Resistance

Motor Parameter >
Inductance of d-axis
(H)

Manual Entry 0.0045F Inductance of d-axis

Motor Parameter >
Inductance of q-axis

Manual Entry 0.0045F Inductance of q-axis

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,823 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

(H)

Motor Parameter >
Permanent magnetic
flux (Wb)

Manual Entry 0.02159F Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Manual Entry 0.0000028F Rotor inertia

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Set the Period of Current Control with none-negative value.
Set the Reference Voltage with none-negative value.

Examples
Basic Example

This is a basic example of minimal use of the Motor Current in an application.

void motor_current_basic_example (void)

{

 motor_current_input_current_t temp_input_current;

 motor_current_input_voltage_t temp_input_voltage;

 motor_current_get_voltage_t temp_get_voltage;

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_CURRENT_Open(g_test_motor_current.p_ctrl,

g_test_motor_current.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,824 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

 /* Set current reference before get phase voltage */

 (void) RM_MOTOR_CURRENT_CurrentReferenceSet(g_test_motor_current.p_ctrl, 1.0F,

1.0F);

 /* Set speed and phase data before get phase voltage */

 (void) RM_MOTOR_CURRENT_SpeedPhaseSet(g_test_motor_current.p_ctrl, 104.72F,

1.0F);

 temp_input_current.iu = 1.0F;

 temp_input_current.iv = 1.0F;

 temp_input_current.iw = 1.0F;

 temp_input_voltage.vdc = 24.0F;

 temp_input_voltage.va_max = 24.0F;

 /* Set electric current and voltage before get phase voltage */

 (void) RM_MOTOR_CURRENT_CurrentSet(g_test_motor_current.p_ctrl,

temp_input_current, temp_input_voltage);

 /* Activate the process. */

 (void) RM_MOTOR_CURRENT_Run(g_test_motor_current.p_ctrl);

 /* Get d/q-axis current*/

 (void) RM_MOTOR_CURRENT_CurrentGet(g_test_motor_current.p_ctrl, &f_get_id,

&f_get_iq);

 /* Get the flag of PI control */

 (void) RM_MOTOR_CURRENT_PhaseVolageGet(g_test_motor_current.p_ctrl,

&temp_get_voltage);

 /* Get Output Parameter */

 (void) RM_MOTOR_CURRENT_ParameterGet(g_test_motor_current.p_ctrl,

&test_output);

 (void) RM_MOTOR_CURRENT_ParameterUpdate(g_test_motor_current.p_ctrl,

g_test_motor_current.p_cfg);

 }

 /* Reset the process. */

 (void) RM_MOTOR_CURRENT_Reset(g_test_motor_current.p_ctrl);

 /* Close the module. */

 (void) RM_MOTOR_CURRENT_Close(g_test_motor_current.p_ctrl);

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,825 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

Function Documentation

◆ RM_MOTOR_CURRENT_Open()

fsp_err_t RM_MOTOR_CURRENT_Open (motor_current_ctrl_t *const p_ctrl, motor_current_cfg_t
const *const p_cfg)

Opens and configures the Motor Current Module. Implements motor_current_api_t::open.

Return values
FSP_SUCCESS Motor Current successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_CURRENT_Close()

fsp_err_t RM_MOTOR_CURRENT_Close (motor_current_ctrl_t *const p_ctrl)

Disables specified Motor Current Module. Implements motor_current_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_CURRENT_Reset()

fsp_err_t RM_MOTOR_CURRENT_Reset (motor_current_ctrl_t *const p_ctrl)

Reset variables of Motor Current Module. Implements motor_current_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,826 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

◆ RM_MOTOR_CURRENT_Run()

fsp_err_t RM_MOTOR_CURRENT_Run (motor_current_ctrl_t *const p_ctrl)

Run(Start) the Current Control. Implements motor_current_api_t::run.

Return values
FSP_SUCCESS Successfully run.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_CURRENT_ParameterSet()

fsp_err_t RM_MOTOR_CURRENT_ParameterSet (motor_current_ctrl_t *const p_ctrl,
motor_current_input_t const *const p_st_input)

Set (Input) Parameter Data. Implements motor_current_api_t::parameterSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input argument error.

◆ RM_MOTOR_CURRENT_CurrentReferenceSet()

fsp_err_t RM_MOTOR_CURRENT_CurrentReferenceSet (motor_current_ctrl_t *const p_ctrl, float
const id_reference, float const iq_reference)

Set Current Reference Data. Implements motor_current_api_t::currentReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,827 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

◆ RM_MOTOR_CURRENT_SpeedPhaseSet()

fsp_err_t RM_MOTOR_CURRENT_SpeedPhaseSet (motor_current_ctrl_t *const p_ctrl, float const
speed, float const phase)

Set Current Speed & rotor phase Data. Implements motor_current_api_t::speedPhaseSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_CURRENT_CurrentSet()

fsp_err_t RM_MOTOR_CURRENT_CurrentSet (motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current, motor_current_input_voltage_t const
*const p_st_voltage)

Set d/q-axis Current & Voltage Data. Implements motor_current_api_t::currentSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_CURRENT_ParameterGet()

fsp_err_t RM_MOTOR_CURRENT_ParameterGet (motor_current_ctrl_t *const p_ctrl,
motor_current_output_t *const p_st_output)

Get Output Parameters. Implements motor_current_api_t::parameterGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,828 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

◆ RM_MOTOR_CURRENT_CurrentGet()

fsp_err_t RM_MOTOR_CURRENT_CurrentGet (motor_current_ctrl_t *const p_ctrl, float *const p_id,
float *const p_iq)

Get d/q-axis Current. Implements motor_current_api_t::currentGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_CURRENT_PhaseVoltageGet()

fsp_err_t RM_MOTOR_CURRENT_PhaseVoltageGet (motor_current_ctrl_t *const p_ctrl,
motor_current_get_voltage_t *const p_voltage)

Gets the set phase voltage. Implements motor_current_api_t::phaseVoltageGet.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_CURRENT_ParameterUpdate()

fsp_err_t RM_MOTOR_CURRENT_ParameterUpdate (motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

Update the parameters of Current Control. Implements motor_current_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,829 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Current (rm_motor_current)

◆ rm_motor_current_encoder_cyclic()

void rm_motor_current_encoder_cyclic (motor_current_instance_t const * p_ctrl)

(end addtogroup MOTOR_CURRENT)

4.2.87 Motor Driver (rm_motor_driver)
Modules

Functions

fsp_err_t RM_MOTOR_DRIVER_Open (motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

 Opens and configures the Motor Driver module. Implements
motor_driver_api_t::open. More...

fsp_err_t RM_MOTOR_DRIVER_Close (motor_driver_ctrl_t *const p_ctrl)

 Disables specified Motor Driver Module. Implements
motor_driver_api_t::close. More...

fsp_err_t RM_MOTOR_DRIVER_Reset (motor_driver_ctrl_t *const p_ctrl)

 Reset variables of Motor Driver Module. Implements
motor_driver_api_t::reset. More...

fsp_err_t RM_MOTOR_DRIVER_PhaseVoltageSet (motor_driver_ctrl_t *const
p_ctrl, float const u_voltage, float const v_voltage, float const
w_voltage)

 Set Phase Voltage Data to calculate PWM duty. Implements
motor_driver_api_t::phaseVoltageSet. More...

fsp_err_t RM_MOTOR_DRIVER_CurrentGet (motor_driver_ctrl_t *const p_ctrl,
motor_driver_current_get_t *const p_current_get)

 Get calculated phase Current, Vdc & Va_max data. Implements
motor_driver_api_t::currentGet. More...

fsp_err_t RM_MOTOR_DRIVER_FlagCurrentOffsetGet (motor_driver_ctrl_t
*const p_ctrl, uint8_t *const p_flag_offset)

 Get the flag of finish current offset detection. Implements
motor_driver_api_t::flagCurrentOffsetGet. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,830 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Driver (rm_motor_driver)

fsp_err_t RM_MOTOR_DRIVER_CurrentOffsetRestart (motor_driver_ctrl_t *const
p_ctrl)

 Restart the current offset detection. Implements
motor_driver_api_t::currentOffsetRestart. More...

fsp_err_t RM_MOTOR_DRIVER_ParameterUpdate (motor_driver_ctrl_t *const
p_ctrl, motor_driver_cfg_t const *const p_cfg)

 Update the parameters of Driver Module. Implements
motor_driver_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor driver
Interface.

Overview
The motor driver module is used to translate phase voltage to PWM duty and output PWM, and
detect phase current and main line voltage. This module should be called cyclically at included A/D
Conversion finish interrupt.

Features

The Motor Driver Module has below features.

Calculate each phase(U/V/W) PWM duty according to reference and output PWM.
Detect each phase current and main line voltage.
Detect and correct A/D offset at phase current channel

Configuration
Build Time Configurations for rm_motor_driver

The following build time configurations are defined in fsp_cfg/rm_motor_driver_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Motor > ADC and PWM Modulation Driver on
rm_motor_driver

This module can be added to the Stacks tab via New Stack > Middleware > Motor > ADC and PWM
Modulation Driver on rm_motor_driver .

Configuration Options Default Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,831 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Driver (rm_motor_driver)

General > Name Name must be a valid
C symbol

g_motor_driver0 Module name.

General > PWM Timer
Frequency[MHz]

Manual Entry 120 GPT PWM Timer
Frequency

General > PWM Carrier
Period[Microseconds]

Manual Entry 50 GPT PWM Carrier
Period

General > Dead
Time[Raw Counts]

Manual Entry 240 GPT PWM Dead Time

General > Current
Range[A]

Manual Entry 27.5F Current Range to
measure(Maximum
input current)

General > Voltage
Range[V]

Manual Entry 111.0F Voltage Range to
measure(Maximum
input Main Line
Voltage)

General > Counts for
current offset
measurement

Manual Entry 500 How many times to
measure current offset

General > A/D
conversion channel for
U Phase current

Manual Entry 0 Specify the A/D
channel for U Phase
current

General > A/D
conversion channel for
W Phase current

Manual Entry 2 Specify the A/D
channel for W Phase
current

General > A/D
conversion channel for
Main Line Voltage

Manual Entry 5 Specify the A/D
channel for Main Line
Voltage

General > Input
Voltage

Manual Entry 24.0F Input Voltage

General > Resolution
of A/D conversion

Manual Entry 0xFFF Resolution of A/D
conversion

General > Offset of A/D
conversion for current

Manual Entry 0x745 Offset of A/D
conversion for current

General > Conversion
level of A/D conversion
for voltage

Manual Entry 0.6F Conversion level of A/D
conversion for voltage

General > GTIOCA Stop
Level

Pin Level Low
Pin Level High

Pin Level High Select the behavior of
the output pin when
the timer is stopped.

General > GTIOCB Stop
Level

Pin Level Low
Pin Level High

Pin Level High Select the behavior of
the output pin when
the timer is stopped.

Modulation > Maximum
Duty

Manual Entry 0.9375F Maximum Duty of PWM

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,832 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Driver (rm_motor_driver)

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at A/D
conversion finish
interrupt.

Clock Configuration

Set used clock with included GPT timer.

Pin Configuration

Depend on included GPT Three Phase Module and ADC Module.

Usage Notes
Limitations

Basically no limitation exists.

Examples
Basic Example

This is a basic example of minimal use of the Motor Driver in an application.

void motor_driver_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_DRIVER_Open(&g_motor_driver0.p_ctrl, &g_motor_driver0.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at cyclic interrupt (e.g. included GPT PWM Carrier

intterupt).

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Get electric current, main line voltage and maximum voltage component */

 (void) RM_MOTOR_DRIVER_CurrentGet(&g_motor_driver0.p_ctrl, &f_get_iu,

&f_get_iw, &f_get_vdc, &f_get_va_max);

 /* Get the flag of A/D convderted current offset */

 (void) RM_MOTOR_DRIVER_FlagCurrentOffsetGet(&g_motor_driver0.p_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,833 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Driver (rm_motor_driver)

&u1_get_flg_offset);

 // Perform current control process here

 /* Set phase voltage */

 (void) RM_MOTOR_DRIVER_PhaseVoltageSet(&g_motor_driver0.p_ctrl, 1.0F, 1.0F,

1.0F);

 (void) RM_MOTOR_DRIVER_ParameterUpdate(&g_motor_driver0.p_ctrl,

&g_motor_driver0.p_cfg);

 }

 (void) RM_MOTOR_DRIVER_Reset(&g_motor_driver0.p_ctrl);

 //

 (void) RM_MOTOR_DRIVER_Close(&g_motor_driver0.p_ctrl);

}

Function Documentation

◆ RM_MOTOR_DRIVER_Open()

fsp_err_t RM_MOTOR_DRIVER_Open (motor_driver_ctrl_t *const p_ctrl, motor_driver_cfg_t const
*const p_cfg)

Opens and configures the Motor Driver module. Implements motor_driver_api_t::open.

Return values
FSP_SUCCESS Motor Driver successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,834 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Driver (rm_motor_driver)

◆ RM_MOTOR_DRIVER_Close()

fsp_err_t RM_MOTOR_DRIVER_Close (motor_driver_ctrl_t *const p_ctrl)

Disables specified Motor Driver Module. Implements motor_driver_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_DRIVER_Reset()

fsp_err_t RM_MOTOR_DRIVER_Reset (motor_driver_ctrl_t *const p_ctrl)

Reset variables of Motor Driver Module. Implements motor_driver_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_DRIVER_PhaseVoltageSet()

fsp_err_t RM_MOTOR_DRIVER_PhaseVoltageSet (motor_driver_ctrl_t *const p_ctrl, float const
u_voltage, float const v_voltage, float const w_voltage)

Set Phase Voltage Data to calculate PWM duty. Implements motor_driver_api_t::phaseVoltageSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,835 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Driver (rm_motor_driver)

◆ RM_MOTOR_DRIVER_CurrentGet()

fsp_err_t RM_MOTOR_DRIVER_CurrentGet (motor_driver_ctrl_t *const p_ctrl,
motor_driver_current_get_t *const p_current_get)

Get calculated phase Current, Vdc & Va_max data. Implements motor_driver_api_t::currentGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_DRIVER_FlagCurrentOffsetGet()

fsp_err_t RM_MOTOR_DRIVER_FlagCurrentOffsetGet (motor_driver_ctrl_t *const p_ctrl, uint8_t
*const p_flag_offset)

Get the flag of finish current offset detection. Implements motor_driver_api_t::flagCurrentOffsetGet
.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input parameter error.

◆ RM_MOTOR_DRIVER_CurrentOffsetRestart()

fsp_err_t RM_MOTOR_DRIVER_CurrentOffsetRestart (motor_driver_ctrl_t *const p_ctrl)

Restart the current offset detection. Implements motor_driver_api_t::currentOffsetRestart.

Return values
FSP_SUCCESS Successfully restarted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,836 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Driver (rm_motor_driver)

◆ RM_MOTOR_DRIVER_ParameterUpdate()

fsp_err_t RM_MOTOR_DRIVER_ParameterUpdate (motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

Update the parameters of Driver Module. Implements motor_driver_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

4.2.88 Motor encoder vector control (rm_motor_encoder)
Modules

Functions

fsp_err_t RM_MOTOR_ENCODER_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t
const *const p_cfg)

fsp_err_t RM_MOTOR_ENCODER_Close (motor_ctrl_t *const p_ctrl)

 Disables specified Motor Encoder Control block. Implements
motor_api_t::close. More...

fsp_err_t RM_MOTOR_ENCODER_Run (motor_ctrl_t *const p_ctrl)

 Run Motor (Start motor rotation). Implements motor_api_t::run.
More...

fsp_err_t RM_MOTOR_ENCODER_Stop (motor_ctrl_t *const p_ctrl)

 Stop Motor (Stop motor rotation). Implements motor_api_t::stop.
More...

fsp_err_t RM_MOTOR_ENCODER_Reset (motor_ctrl_t *const p_ctrl)

 Reset Motor Encoder Control block. Implements motor_api_t::reset.
More...

fsp_err_t RM_MOTOR_ENCODER_ErrorSet (motor_ctrl_t *const p_ctrl,
motor_error_t const error)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,837 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

 Set error information. Implements motor_api_t::errorSet. More...

fsp_err_t RM_MOTOR_ENCODER_SpeedSet (motor_ctrl_t *const p_ctrl, float
const speed_rpm)

 Set speed reference[rpm]. Implements motor_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_ENCODER_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

 Set position reference[degree]. Implements motor_api_t::positionSet.
More...

fsp_err_t RM_MOTOR_ENCODER_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t
*const p_status)

 Get current control status. Implements motor_api_t::statusGet.
More...

fsp_err_t RM_MOTOR_ENCODER_AngleGet (motor_ctrl_t *const p_ctrl, float
*const p_angle_rad)

 Get current rotor angle. Implements motor_api_t::angleGet. More...

fsp_err_t RM_MOTOR_ENCODER_SpeedGet (motor_ctrl_t *const p_ctrl, float
*const p_speed_rpm)

 Get rotational speed. Implements motor_api_t::speedGet. More...

fsp_err_t RM_MOTOR_ENCODER_ErrorCheck (motor_ctrl_t *const p_ctrl,
uint16_t *const p_error)

 Check the occurunce of Error. Implements motor_api_t::errorCheck.
More...

Detailed Description

Control a SPM motor on RA MCUs. This module implements the Motor encoder vector control
(rm_motor_encoder).

Overview
The motor encoder vector control is used to control motor rotation in an application. This module is
meant to be used with Surface Permanent Magnet (SPM) motors and allows applications to start or
stop motor rotation easily.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,838 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

Features

The motor encoder module has below features.

Start/stop motor rotation
Error detection (over current, over speed, over voltage, low voltage)

Configuration
Build Time Configurations for rm_motor_encoder

The following build time configurations are defined in fsp_cfg/rm_motor_encoder_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Motor > Motor encoder vector control

This module can be added to the Stacks tab via New Stack > Middleware > Motor > Motor encoder
vector control.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_motor_encoder0 Module name.

General > Limit of over
current (A)

Must be a valid non-
negative value.

2.0F Limit of over
current.(Detection
threshold)

General > Limit of over
voltage (V)

Must be a valid non-
negative value.

28.0F Limit of over
voltage.(Detection
threshold)

General > Limit of over
speed (rpm)

Must be a valid non-
negative value.

2100.0F Limit of over
speed.(Detection
threshold)

General > Limit of low
voltage (V)

Must be a valid non-
negative value.

18.0F Limit of low
voltage.(Detection
threshold)

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at speed
control cyclic interrupt.

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple status transition
process.

Pin Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,839 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

This module does not use I/O pins.

Usage Notes
Limitations

Examples
Basic Example

This is a basic example of minimal use of the motor encoder module in an application.

void motor_encoder_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_ENCODER_Open(g_motor_encoder0.p_ctrl, g_motor_encoder0.p_cfg);

 handle_error(err);

 /* Set speed reference before motor run */

 (void) RM_MOTOR_ENCODER_SpeedSet(g_motor_encoder0.p_ctrl,

RM_MOTOR_ENCODER_TEST_OVER_SPEED_LIMIT);

 /* Set position reference before motor run */

 (void) RM_MOTOR_ENCODER_PositionSet(g_motor_encoder0.p_ctrl, &g_posref_sample1);

 /* Start motor rotation */

 (void) RM_MOTOR_ENCODER_Run(g_motor_encoder0.p_ctrl);

 /* Get current status */

 (void) RM_MOTOR_ENCODER_StatusGet(g_motor_encoder0.p_ctrl, &smpl_status);

 /* Get current rotor angle */

 (void) RM_MOTOR_ENCODER_AngleGet(g_motor_encoder0.p_ctrl, &smpl_angle);

 /* Get current motor speed */

 (void) RM_MOTOR_ENCODER_SpeedGet(g_motor_encoder0.p_ctrl, &smpl_speed);

 /* Check error */

 (void) RM_MOTOR_ENCODER_ErrorCheck(g_motor_encoder0.p_ctrl, &smpl_error);

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_Stop(g_motor_encoder0.p_ctrl);

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_ErrorSet(g_motor_encoder0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,840 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

 /* Reset Speed Control */

 (void) RM_MOTOR_ENCODER_Reset(g_motor_encoder0.p_ctrl);

 /* Close Speed Control */

 (void) RM_MOTOR_ENCODER_Close(g_motor_encoder0.p_ctrl);

}

Data Structures

struct motor_encoder_callback_args_t

Enumerations

enum motor_encoder_ctrl_t

enum motor_encoder_ctrl_event_t

enum motor_encoder_callback_event_t

Data Structure Documentation

◆ motor_encoder_callback_args_t

struct motor_encoder_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data.

motor_encoder_callback_event_
t

event

Enumeration Type Documentation

◆ motor_encoder_ctrl_t

enum motor_encoder_ctrl_t

Enumerator

MOTOR_ENCODER_CTRL_STOP Stop mode.

MOTOR_ENCODER_CTRL_RUN Run mode.

MOTOR_ENCODER_CTRL_ERROR Error mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,841 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

◆ motor_encoder_ctrl_event_t

enum motor_encoder_ctrl_event_t

Enumerator

MOTOR_ENCODER_CTRL_EVENT_STOP Stop event.

MOTOR_ENCODER_CTRL_EVENT_RUN Run event.

MOTOR_ENCODER_CTRL_EVENT_ERROR Error event.

MOTOR_ENCODER_CTRL_EVENT_RESET Reset event.

◆ motor_encoder_callback_event_t

enum motor_encoder_callback_event_t

Events that can trigger a callback function

Enumerator

MOTOR_ENCODER_CALLBACK_EVENT_SPEED_FO
RWARD

Event forward speed control.

MOTOR_ENCODER_CALLBACK_EVENT_SPEED_BA
CKWARD

Event backward speed control.

MOTOR_ENCODER_CALLBACK_EVENT_CURRENT_
FORWARD

Event forward current control.

MOTOR_ENCODER_CALLBACK_EVENT_CURRENT_
BACKWARD

Event backward current control.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,842 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_Open()

fsp_err_t RM_MOTOR_ENCODER_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const p_cfg
)

Configure the MOTOR in register start mode. Implements motor_api_t::open.

This function should only be called once as MOTOR configuration registers can only be written to
once so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_ENCODER_Open(g_motor_encoder0.p_ctrl, g_motor_encoder0.p_cfg);

Return values
FSP_SUCCESS MOTOR successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note

◆ RM_MOTOR_ENCODER_Close()

fsp_err_t RM_MOTOR_ENCODER_Close (motor_ctrl_t *const p_ctrl)

Disables specified Motor Encoder Control block. Implements motor_api_t::close.

Example:

 /* Close Speed Control */

 (void) RM_MOTOR_ENCODER_Close(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,843 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_Run()

fsp_err_t RM_MOTOR_ENCODER_Run (motor_ctrl_t *const p_ctrl)

Run Motor (Start motor rotation). Implements motor_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_ENCODER_Run(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_ENCODER_Stop()

fsp_err_t RM_MOTOR_ENCODER_Stop (motor_ctrl_t *const p_ctrl)

Stop Motor (Stop motor rotation). Implements motor_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_Stop(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,844 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_Reset()

fsp_err_t RM_MOTOR_ENCODER_Reset (motor_ctrl_t *const p_ctrl)

Reset Motor Encoder Control block. Implements motor_api_t::reset.

Example:

 /* Reset Speed Control */

 (void) RM_MOTOR_ENCODER_Reset(g_motor_encoder0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_ENCODER_ErrorSet()

fsp_err_t RM_MOTOR_ENCODER_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t const error)

Set error information. Implements motor_api_t::errorSet.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_ENCODER_ErrorSet(g_motor_encoder0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,845 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_SpeedSet()

fsp_err_t RM_MOTOR_ENCODER_SpeedSet (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set speed reference[rpm]. Implements motor_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_ENCODER_SpeedSet(g_motor_encoder0.p_ctrl,

RM_MOTOR_ENCODER_TEST_OVER_SPEED_LIMIT);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_ENCODER_PositionSet()

fsp_err_t RM_MOTOR_ENCODER_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

Set position reference[degree]. Implements motor_api_t::positionSet.

Example:

 /* Set position reference before motor run */

 (void) RM_MOTOR_ENCODER_PositionSet(g_motor_encoder0.p_ctrl, &g_posref_sample1);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data set pointer is invalid..

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,846 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_StatusGet()

fsp_err_t RM_MOTOR_ENCODER_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

Get current control status. Implements motor_api_t::statusGet.

Example:

 /* Get current status */

 (void) RM_MOTOR_ENCODER_StatusGet(g_motor_encoder0.p_ctrl, &smpl_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_ENCODER_AngleGet()

fsp_err_t RM_MOTOR_ENCODER_AngleGet (motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

Get current rotor angle. Implements motor_api_t::angleGet.

Example:

 /* Get current rotor angle */

 (void) RM_MOTOR_ENCODER_AngleGet(g_motor_encoder0.p_ctrl, &smpl_angle);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,847 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor encoder vector control (rm_motor_encoder)

◆ RM_MOTOR_ENCODER_SpeedGet()

fsp_err_t RM_MOTOR_ENCODER_SpeedGet (motor_ctrl_t *const p_ctrl, float *const p_speed_rpm)

Get rotational speed. Implements motor_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void) RM_MOTOR_ENCODER_SpeedGet(g_motor_encoder0.p_ctrl, &smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_ENCODER_ErrorCheck()

fsp_err_t RM_MOTOR_ENCODER_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

Check the occurunce of Error. Implements motor_api_t::errorCheck.

Example:

 /* Check error */

 (void) RM_MOTOR_ENCODER_ErrorCheck(g_motor_encoder0.p_ctrl, &smpl_error);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

4.2.89 Motor Angle and Speed Estimation (rm_motor_estimate)
Modules

Functions

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,848 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

fsp_err_t RM_MOTOR_ESTIMATE_Open (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

 Opens and configures the Angle Estimation module. Implements
motor_angle_api_t::open. More...

fsp_err_t RM_MOTOR_ESTIMATE_Close (motor_angle_ctrl_t *const p_ctrl)

 Disables specified Angle Estimation module. Implements
motor_angle_api_t::close. More...

fsp_err_t RM_MOTOR_ESTIMATE_Reset (motor_angle_ctrl_t *const p_ctrl)

 Reset variables of Angle Estimation module. Implements
motor_angle_api_t::reset. More...

fsp_err_t RM_MOTOR_ESTIMATE_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current,
motor_angle_voltage_reference_t *const p_st_voltage)

 Set d/q-axis Current Data & Voltage Reference. Implements
motor_angle_api_t::currentSet. More...

fsp_err_t RM_MOTOR_ESTIMATE_SpeedSet (motor_angle_ctrl_t *const p_ctrl,
float const speed_ctrl, float const damp_speed)

 Set Speed Information. Implements motor_angle_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_ESTIMATE_FlagPiCtrlSet (motor_angle_ctrl_t *const
p_ctrl, uint32_t const flag_pi)

 Set the flag of PI Control runs. Implements
motor_angle_api_t::flagPiCtrlSet. More...

fsp_err_t RM_MOTOR_ESTIMATE_AngleSpeedGet (motor_angle_ctrl_t *const
p_ctrl, float *const p_angle, float *const p_speed, float *const
p_phase_err)

 Gets the current rotor's angle and rotation speed. Implements
motor_angle_api_t::angleSpeedGet. More...

fsp_err_t RM_MOTOR_ESTIMATE_EstimatedComponentGet (motor_angle_ctrl_t
*const p_ctrl, float *const p_ed, float *const p_eq)

 Gets estimated d/q-axis component. Implements
motor_angle_api_t::estimatedComponentGet. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,849 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

fsp_err_t RM_MOTOR_ESTIMATE_ParameterUpdate (motor_angle_ctrl_t *const
p_ctrl, motor_angle_cfg_t const *const p_cfg)

 Update the parameters of Angle&Speed Estimation. Implements
motor_angle_api_t::parameterUpdate. More...

fsp_err_t RM_MOTOR_ESTIMATE_InternalCalculate (motor_angle_ctrl_t *const
p_ctrl)

 Calculate internal parameters. Implements
motor_angle_api_t::internalCalculate. More...

fsp_err_t RM_MOTOR_ESTIMATE_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

 Angle Adjustment Process. Implements
motor_angle_api_t::angleAdjust. More...

fsp_err_t RM_MOTOR_ESTIMATE_EncoderCyclic (motor_angle_ctrl_t *const
p_ctrl)

 Encoder Cyclic Process (Call in cyclic timer). Implements
motor_angle_api_t::encoderCyclic. More...

fsp_err_t RM_MOTOR_ESTIMATE_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

 Gets information of Encoder Angle Module. Implements
motor_angle_api_t::infoGet. More...

Detailed Description

Calculation proccess for the motor control on RA MCUs. This module implements the Motor angle
Interface.

Overview
The motor angle and speed estimation module is used to calculate rotor angle and rotational speed
in an application. This module should be called cyclically after the A/D conversion of electric current
of each phase in an application.

Features

The Motor Angle and Speed Estimation Module has below features.

Calculate rotor angle [radian].
Calculate rotational speed [radian/second].

Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,850 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

Build Time Configurations for rm_motor_estimate

The following build time configurations are defined in fsp_cfg/rm_motor_estimate_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Motor > Motor Angle Driver on rm_motor_estimate

This module can be added to the Stacks tab via New Stack > Middleware > Motor > Motor Angle
Driver on rm_motor_estimate.

Configuration Options Default Description

Motor Parameter >
Pole pairs

Manual Entry 2 Pole pairs

Motor Parameter >
Resistance[ohm]

Manual Entry 8.5F Resistance

Motor Parameter >
Inductance of d-axis[H]

Manual Entry 0.0045F Inductance of d-axis

Motor Parameter >
Inductance of q-axis[H]

Manual Entry 0.0045F Inductance of q-axis

Motor Parameter >
Permanent magnetic
flux[Wb]

Manual Entry 0.02159F Permanent magnetic
flux

Motor Parameter >
Rotor inertia[kgm^2]

Manual Entry 0.0000028F Rotor inertia

Name Name must be a valid
C symbol

g_motor_angle0 Module name.

Openloop damping Disable
Enable

Enable Openloop damping
functionally enable or
disable

Natural frequency of
BEMF observer

Manual Entry 1000.0F Natural frequency of
BEMF observer

Damping ratio of BEMF
observer

Manual Entry 1.0F Damping ratio of BEMF
observer

Natural frequency of
PLL Speed estimate
loop

Manual Entry 20.0F Natural frequency of
PLL Speed estimate
loop

Damping ratio of PLL
Speed estimate loop

Manual Entry 1.0F Damping ratio of PLL
Speed estimate loop

Control period Manual Entry 0.00005F Control period

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,851 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Developers should be aware of the following limitations when using the Motor Angle and Speed
Estimation:

Examples
Basic Example

This is a basic example of minimal use of the Motor Angle and Speed Estimation in an application.

void motor_estimate_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 motor_angle_current_t smpl_current:

 motor_angle_voltage_reference_t smpl_voltage;

 /* Initializes the module. */

 err = RM_MOTOR_ESTIMATE_Open(&g_mtr_angle0_ctrl, &g_mtr_angle_set0_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 while (true)

 {

 /* Application work here. */

 /* Set PI Control Flag before get Angle/Speed and Estimated Component */

 (void) RM_MOTOR_ESTIMATE_FlagPiCtrlSet(&g_mtr_angle0_ctrl, 1U);

 smpl_current.id = 1.0F;

 smpl_current.iq = 1.0F;

 smpl_voltage.vd = 10.0F;

 smpl_voltage.vq = 10.0F;

 /* Set Current and Speed data before get Angle/Speed and Estimated Component */

 (void) RM_MOTOR_ESTIMATE_CurrentSet(&g_mtr_angle0_ctrl, smpl_current,

smpl_voltage);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,852 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

 /* Set Internal Speed Reference & damping speed data before get Angle/Speed and

Estimated Component */

 (void) RM_MOTOR_ESTIMATE_SpeedSet(&g_mtr_angle0_ctrl, 104.27F, 10.0F);

 /* Get Angle/Speed data */

 (void) RM_MOTOR_ESTIMATE_AngleSpeedGet(&g_mtr_angle0_ctrl, &f_get_angle,

&f_get_speed, &f_get_phase_err);

 /* Get Estimated Component */

 (void) RM_MOTOR_ESTIMATE_EstimatedComponentGet(&g_mtr_angle0_ctrl, &f_get_ed,

&f_get_eq);

 }

}

Function Documentation

◆ RM_MOTOR_ESTIMATE_Open()

fsp_err_t RM_MOTOR_ESTIMATE_Open (motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t const
*const p_cfg)

Opens and configures the Angle Estimation module. Implements motor_angle_api_t::open.

Return values
FSP_SUCCESS MTR_ANGL_EST successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_ESTIMATE_Close()

fsp_err_t RM_MOTOR_ESTIMATE_Close (motor_angle_ctrl_t *const p_ctrl)

Disables specified Angle Estimation module. Implements motor_angle_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,853 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_Reset()

fsp_err_t RM_MOTOR_ESTIMATE_Reset (motor_angle_ctrl_t *const p_ctrl)

Reset variables of Angle Estimation module. Implements motor_angle_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_CurrentSet()

fsp_err_t RM_MOTOR_ESTIMATE_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage
)

Set d/q-axis Current Data & Voltage Reference. Implements motor_angle_api_t::currentSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_SpeedSet()

fsp_err_t RM_MOTOR_ESTIMATE_SpeedSet (motor_angle_ctrl_t *const p_ctrl, float const
speed_ctrl, float const damp_speed)

Set Speed Information. Implements motor_angle_api_t::speedSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,854 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_FlagPiCtrlSet()

fsp_err_t RM_MOTOR_ESTIMATE_FlagPiCtrlSet (motor_angle_ctrl_t *const p_ctrl, uint32_t const
flag_pi)

Set the flag of PI Control runs. Implements motor_angle_api_t::flagPiCtrlSet.

Return values
FSP_SUCCESS Successfully set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_AngleSpeedGet()

fsp_err_t RM_MOTOR_ESTIMATE_AngleSpeedGet (motor_angle_ctrl_t *const p_ctrl, float *const
p_angle, float *const p_speed, float *const p_phase_err)

Gets the current rotor's angle and rotation speed. Implements motor_angle_api_t::angleSpeedGet.

Return values
FSP_SUCCESS Successful data get.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_EstimatedComponentGet()

fsp_err_t RM_MOTOR_ESTIMATE_EstimatedComponentGet (motor_angle_ctrl_t *const p_ctrl, float
*const p_ed, float *const p_eq)

Gets estimated d/q-axis component. Implements motor_angle_api_t::estimatedComponentGet.

Return values
FSP_SUCCESS Successfully data gotten.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,855 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_ParameterUpdate()

fsp_err_t RM_MOTOR_ESTIMATE_ParameterUpdate (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

Update the parameters of Angle&Speed Estimation. Implements
motor_angle_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data is update.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_InternalCalculate()

fsp_err_t RM_MOTOR_ESTIMATE_InternalCalculate (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters. Implements motor_angle_api_t::internalCalculate.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_AngleAdjust()

fsp_err_t RM_MOTOR_ESTIMATE_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process. Implements motor_angle_api_t::angleAdjust.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,856 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Estimation (rm_motor_estimate)

◆ RM_MOTOR_ESTIMATE_EncoderCyclic()

fsp_err_t RM_MOTOR_ESTIMATE_EncoderCyclic (motor_angle_ctrl_t *const p_ctrl)

Encoder Cyclic Process (Call in cyclic timer). Implements motor_angle_api_t::encoderCyclic.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_ESTIMATE_InfoGet()

fsp_err_t RM_MOTOR_ESTIMATE_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Gets information of Encoder Angle Module. Implements motor_angle_api_t::infoGet.

Return values
FSP_ERR_UNSUPPORTED Unsupported.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

4.2.90 Motor Position (rm_motor_position)
Modules

Functions

fsp_err_t RM_MOTOR_POSITION_Open (motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

 Opens and configures the Motor Position Module. Implements
motor_position_api_t::open. More...

fsp_err_t RM_MOTOR_POSITION_Close (motor_position_ctrl_t *const p_ctrl)

 Disables specified Motor Position Module. Implements
motor_position_api_t::close. More...

fsp_err_t RM_MOTOR_POSITION_Reset (motor_position_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,857 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

 Reset the variables of Motor Position Module. Implements
motor_position_api_t::reset. More...

fsp_err_t RM_MOTOR_POSITION_PositionGet (motor_position_ctrl_t *const
p_ctrl, int16_t *const p_position)

 Get Rotor Position Data [degree]. Implements
motor_position_api_t::positionGet. More...

fsp_err_t RM_MOTOR_POSITION_PositionSet (motor_position_ctrl_t *const
p_ctrl, float const position_rad)

 Set Position Data from Encoder [radian]. Implements
motor_position_api_t::positionSet. More...

fsp_err_t RM_MOTOR_POSITION_PositionReferenceSet (motor_position_ctrl_t
*const p_ctrl, int16_t const position_reference_deg)

 Set Position Reference Data [degree]. Implements
motor_position_api_t::positionReferenceSet. More...

fsp_err_t RM_MOTOR_POSITION_ControlModeSet (motor_position_ctrl_t *const
p_ctrl, motor_position_ctrl_mode_t const mode)

 Set Position Control Mode. Implements
motor_position_api_t::controlModeSet. More...

fsp_err_t RM_MOTOR_POSITION_PositionControl (motor_position_ctrl_t *const
p_ctrl)

 Calculates internal position reference.(Main process of Position
Control) Implements motor_position_api_t::positionControl. More...

fsp_err_t RM_MOTOR_POSITION_IpdSpeedPControl (motor_position_ctrl_t
*const p_ctrl, float const ref_speed_rad, float const speed_rad, float
*const p_iq_ref)

 Calculates the q-axis current reference by P control. Implements
motor_position_api_t::ipdSpeedPControl. More...

fsp_err_t RM_MOTOR_POSITION_SpeedReferencePControlGet
(motor_position_ctrl_t *const p_ctrl, float *const p_speed_ref)

 Get Speed Reference by P Control. Implements
motor_position_api_t::speedReferencePControlGet. More...

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceIpdControlGet

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,858 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

(motor_position_ctrl_t *const p_ctrl, float const max_speed_rad, float
*const p_speed_ref)

 Get Speed Reference by IPD Control. Implements
motor_position_api_t::speedReferenceIpdControlGet. More...

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceFeedforwardGet
(motor_position_ctrl_t *const p_ctrl, float *const p_speed_ref)

 Get Speed Reference by Feedforward. Implements
motor_position_api_t::speedReferenceFeedforwardGet. More...

fsp_err_t RM_MOTOR_POSITION_ParameterUpdate (motor_position_ctrl_t
*const p_ctrl, motor_position_cfg_t const *const p_cfg)

 Update the parameters of Position Control Calculation. Implements
motor_position_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor position
Interface.

Overview
The motor position is used to control the position of motor rotor in an appication. This module should
be called cyclically in an application (e.g. in cyclic timer interrupt). This module calculates speed
reference with inputted position reference and current rotational speed.

Features

The Motor Position Module has below features.

Calculate speed reference.

Configuration
Build Time Configurations for rm_motor_position

The following build time configurations are defined in fsp_cfg/rm_motor_position_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Motor > Motor Position Controller on rm_motor_position

This module can be added to the Stacks tab via New Stack > Middleware > Motor > Motor Position

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,859 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

Controller on rm_motor_position.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_motor_position0 Module name.

General > Position
Dead Band

Manual Entry 1U Ignored Area of
Position Control.

General > Position
Band Limit

Manual Entry 3U Ignored Area of
Position Control.

General > Speed
Feedforward Ratio

Manual Entry 0.8F Speed Feedforward
Ratio.

General > Encoder
Counts per one rotation

Manual Entry 1200.0F Encoder Counts per
one rotation.

General > Position
Omega

Manual Entry 10.0F Position Control
Omega.

General > Period of
Speed Control[sec]

Manual Entry 0.0005F Period of Speed
Control.

IPD > IPD LPF Disable
Enable

Disable IPD LPF process enable
or disable

IPD > Position Kp ratio Manual Entry 0.3F Position Kp ratio.

IPD > Position
Feedforward ratio

Manual Entry 0.0F Position Feedforward
ratio.

IPD > Speed K ratio Manual Entry 2.0F Speed K ratio

IPD > Error Limit #1 Manual Entry 10.0F Error Limitation #1

IPD > Error Limit #2 Manual Entry 0.2F Error Limitation #2

IPD > LPF Omega Manual Entry 500.0F LPF Omega.

IPD > LPF Zeta Manual Entry 1.0F LPF Zeta.

Position Profiling >
Interval Time

Manual Entry 400U Interval Time.

Position Profiling >
Accel Time

Manual Entry 0.3F Accel Time.

Position Profiling >
Maximum Accel Time

Manual Entry 8117.96F Maximum Accelaration
Time [sec]

Position Profiling >
Accelaration Maximum
Speed

Manual Entry 2000.0F Accelaration Maximum
Speed.

Position Profiling >
Update Step of Timer

Manual Entry 0.0005F Update Step of Timer.

Motor Parameter >
Pole Pair

Manual Entry 7 Pole Pair

Motor Parameter > Manual Entry 0.453F Resistance

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,860 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

Resistance[ohm]

Motor Parameter >
Inductance of d-axis[H]

Manual Entry 0.0009447F Inductance of d-axis

Motor Parameter >
Inductance of q-axis[H]

Manual Entry 0.0009447F Inductance of q-axis

Motor Parameter >
Inertia[kgm^2]

Manual Entry 0.006198F Inertia

Motor Parameter >
Motor Inertia[kgm^2]

Manual Entry 0.00000962F Motor Inertia

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Set the period of speed control with non-negative value.
Set the limit of speed change step with non-negative value.
Set the maximum speed with non-negative value.

Examples
Basic Example

This is a basic example of using the Motor Position module in an application.

void motor_position_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_POSITION_Open(g_motor_position0.p_ctrl, g_motor_position0.p_cfg);

 handle_error(err);

 /* Set working mode */

 RM_MOTOR_POSITION_ModeSet(g_motor_position0.p_ctrl,

MOTOR_POSITION_CTRL_MODE_STEP);

 /* Set position reference */

 RM_MOTOR_POSITION_PositionReferenceSet(g_motor_position0.p_ctrl, 180U);

 /* Basically run this module at cyclic interrupt (e.g. AGT timer).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,861 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Perform Position Control Process */

 RM_MOTOR_POSITION_PositionControl(g_motor_position0.p_ctrl);

 /* Perform Speed IPD Control Process */

 RM_MOTOR_POSITION_IpdSpeedPControl(g_motor_position0.p_ctrl, 0.0F, 0.0F,

&temp_iq_ref);

 /* Get Position */

 RM_MOTOR_POSITION_PositionGet(g_motor_position0.p_ctrl, &temp_position);

 /* Update parameters */

 RM_MOTOR_POSITION_ParameterUpdate(g_motor_position0.p_ctrl,

&g_motor_position0.p_cfg);

 }

 /* Reset Speed Control */

 RM_MOTOR_POSITION_Reset(g_motor_position0.p_ctrl);

 /* Close Speed Control */

 RM_MOTOR_POSITION_Close(g_motor_position0.p_ctrl);

}

Enumerations

enum motor_position_ipd_lpf_t

Enumeration Type Documentation

◆ motor_position_ipd_lpf_t

enum motor_position_ipd_lpf_t

Enumerator

MOTOR_POSITION_IPD_LPF_DISABLE ipd control is disabled

MOTOR_POSITION_IPD_LPF_ENABLE ipd control is enabled

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,862 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

◆ RM_MOTOR_POSITION_Open()

fsp_err_t RM_MOTOR_POSITION_Open (motor_position_ctrl_t *const p_ctrl, motor_position_cfg_t
const *const p_cfg)

Opens and configures the Motor Position Module. Implements motor_position_api_t::open.

Return values
FSP_SUCCESS Motor Position Module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Set parameter is invalid.

◆ RM_MOTOR_POSITION_Close()

fsp_err_t RM_MOTOR_POSITION_Close (motor_position_ctrl_t *const p_ctrl)

Disables specified Motor Position Module. Implements motor_position_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_Reset()

fsp_err_t RM_MOTOR_POSITION_Reset (motor_position_ctrl_t *const p_ctrl)

Reset the variables of Motor Position Module. Implements motor_position_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,863 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

◆ RM_MOTOR_POSITION_PositionGet()

fsp_err_t RM_MOTOR_POSITION_PositionGet (motor_position_ctrl_t *const p_ctrl, int16_t *const
p_position)

Get Rotor Position Data [degree]. Implements motor_position_api_t::positionGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_POSITION_PositionSet()

fsp_err_t RM_MOTOR_POSITION_PositionSet (motor_position_ctrl_t *const p_ctrl, float const
position_rad)

Set Position Data from Encoder [radian]. Implements motor_position_api_t::positionSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_PositionReferenceSet()

fsp_err_t RM_MOTOR_POSITION_PositionReferenceSet (motor_position_ctrl_t *const p_ctrl, int16_t
const position_reference_deg)

Set Position Reference Data [degree]. Implements motor_position_api_t::positionReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,864 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

◆ RM_MOTOR_POSITION_ControlModeSet()

fsp_err_t RM_MOTOR_POSITION_ControlModeSet (motor_position_ctrl_t *const p_ctrl,
motor_position_ctrl_mode_t const mode)

Set Position Control Mode. Implements motor_position_api_t::controlModeSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_PositionControl()

fsp_err_t RM_MOTOR_POSITION_PositionControl (motor_position_ctrl_t *const p_ctrl)

Calculates internal position reference.(Main process of Position Control) Implements
motor_position_api_t::positionControl.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_POSITION_IpdSpeedPControl()

fsp_err_t RM_MOTOR_POSITION_IpdSpeedPControl (motor_position_ctrl_t *const p_ctrl, float const
ref_speed_rad, float const speed_rad, float *const p_iq_ref)

Calculates the q-axis current reference by P control. Implements
motor_position_api_t::ipdSpeedPControl.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,865 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

◆ RM_MOTOR_POSITION_SpeedReferencePControlGet()

fsp_err_t RM_MOTOR_POSITION_SpeedReferencePControlGet (motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

Get Speed Reference by P Control. Implements motor_position_api_t::speedReferencePControlGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_POSITION_SpeedReferenceIpdControlGet()

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceIpdControlGet (motor_position_ctrl_t *const p_ctrl,
float const max_speed_rad, float *const p_speed_ref)

Get Speed Reference by IPD Control. Implements
motor_position_api_t::speedReferenceIpdControlGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_POSITION_SpeedReferenceFeedforwardGet()

fsp_err_t RM_MOTOR_POSITION_SpeedReferenceFeedforwardGet (motor_position_ctrl_t *const
p_ctrl, float *const p_speed_ref)

Get Speed Reference by Feedforward. Implements
motor_position_api_t::speedReferenceFeedforwardGet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,866 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Position (rm_motor_position)

◆ RM_MOTOR_POSITION_ParameterUpdate()

fsp_err_t RM_MOTOR_POSITION_ParameterUpdate (motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

Update the parameters of Position Control Calculation. Implements
motor_position_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

4.2.91 Motor Angle and Speed Calculation with an Encoder
(rm_motor_sense_encoder)
Modules

Functions

fsp_err_t RM_MOTOR_SENSE_ENCODER_Open (motor_angle_ctrl_t *const
p_ctrl, motor_angle_cfg_t const *const p_cfg)

 Opens and configures the Angle Encoder module. Implements
motor_angle_api_t::open. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_Close (motor_angle_ctrl_t *const
p_ctrl)

 Disables specified Angle Encoder module. Implements
motor_angle_api_t::close. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_Reset (motor_angle_ctrl_t *const
p_ctrl)

 Reset variables of Angle Encoder module. Implements
motor_angle_api_t::reset. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_InternalCalculate (motor_angle_ctrl_t
*const p_ctrl)

 Calculate internal parameters. Implements
motor_angle_api_t::internalCalculate. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,867 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleSpeedGet (motor_angle_ctrl_t
*const p_ctrl, float *const p_angle, float *const p_speed, float *const
p_phase_err)

 Gets the current rotor's angle and rotation speed. Implements
motor_angle_api_t::angleSpeedGet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleAdjust (motor_angle_ctrl_t
*const p_ctrl)

 Angle Adjustment Process. Implements
motor_angle_api_t::angleAdjust. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_EncoderCyclic (motor_angle_ctrl_t
*const p_ctrl)

 Encoder Cyclic Process (Call in cyclic timer). Implements
motor_angle_api_t::encoderCyclic. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_InfoGet (motor_angle_ctrl_t *const
p_ctrl, motor_angle_encoder_info_t *const p_info)

 Gets information of Encoder Angle Module. Implements
motor_angle_api_t::infoGet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_ParameterUpdate (motor_angle_ctrl_t
*const p_ctrl, motor_angle_cfg_t const *const p_cfg)

 Update the parameters of Angle&Speed calculation with an encoder.
Implements motor_angle_api_t::parameterUpdate. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_CurrentSet (motor_angle_ctrl_t *const
p_ctrl, motor_angle_current_t *const p_st_current,
motor_angle_voltage_reference_t *const p_st_voltage)

 Set d/q-axis Current Data & Voltage Reference. Implements
motor_angle_api_t::currentSet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_SpeedSet (motor_angle_ctrl_t *const
p_ctrl, float const speed_ctrl, float const damp_speed)

 Set Speed Information. Implements motor_angle_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_FlagPiCtrlSet (motor_angle_ctrl_t
*const p_ctrl, uint32_t const flag_pi)

 Set the flag of PI Control runs. Implements

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,868 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

motor_angle_api_t::flagPiCtrlSet. More...

fsp_err_t RM_MOTOR_SENSE_ENCODER_EstimatedComponentGet
(motor_angle_ctrl_t *const p_ctrl, float *const p_ed, float *const p_eq)

 Gets estimated d/q-axis component. Implements
motor_angle_api_t::estimatedComponentGet. More...

Detailed Description

Calculation proccess for the motor control on RA MCUs. This module implements the Motor angle
Interface.

Overview
The motor angle and speed calculation with an encoder module is used to calculate rotor angle and
rotational speed in an application. This module is designed to be used with the motor current module
(rm_motor_current).

Features

The motor angle and speed calculation with an encoder module has the features listed below.

Calculate rotor angle [radian].
Calculate rotational speed [radian/second].

Configuration
Build Time Configurations for rm_motor_sense_encoder

The following build time configurations are defined in fsp_cfg/rm_motor_sense_encoder_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Motor > Motor Angle Driver on rm_motor_sense_encoder

This module can be added to the Stacks tab via New Stack > Middleware > Motor > Motor Angle
Driver on rm_motor_sense_encoder.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_motor_sense_encode
r0

Module name.

Motor Parameter >
Pole pairs

Must be a valid non-
negative value.

7 Pole pairs

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,869 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

Motor Parameter >
Resistance (ohm)

Must be a valid non-
negative value.

0.453F Resistance

Motor Parameter >
Inductance of d-axis
(H)

Must be a valid non-
negative value.

0.0009447F Inductance of d-axis

Motor Parameter >
Inductance of q-axis
(H)

Must be a valid non-
negative value.

0.0009447F Inductance of q-axis

Motor Parameter >
Permanent magnetic
flux (Wb)

Must be a valid non-
negative value.

0.006198F Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Must be a valid non-
negative value.

0.00000962F Rotor inertia

Control Type Speed
Position

Position Select control Type

Period of Current
control (kHz)

Must be a valid non-
negative value.

20.0F Period of Current
control

Period of Speed control
(sec)

Must be a valid non-
negative value.

0.0005F Period of Speed control

PWM Carrier Frequency
(kHz)

Must be a valid non-
negative value.

20.0F PWM Carrier Frequency

Decimation of Interrupt Manual Entry 0U Decimation of Interrupt

Counts per Rotation Must be a valid non-
negative value.

1200U Encoder Counts per
One Rotation

Counts for Angle Adjust Must be a valid non-
negative value.

512U Counts for Angle Adjust
(as working time)

Zero speed counts Must be a valid non-
negative value.

20000000U Threshold counts to
judge zero speed

Occupancy Time Must be a valid non-
negative value.

0.30F Occupancy time of
carrier interrup

Carrier Time Must be a valid non-
negative value.

0.000013F Processing time of
carrier interrupt

Process Time Must be a valid non-
negative value.

0.000001F Processing time of
encoder interrupt

Highspeed Change
Margin (rpm)

Must be a valid non-
negative value.

150U Margin of toggle speed
for high speed mode

LPF parameter for
Highspeed Filter

Must be a valid non-
negative value.

0.1F Highspeed mode speed
LPF parameter

Counts to change
speed

Must be a valid non-
negative value.

8U Counts for mode
change of position
speed calculation

Clock Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,870 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

Pin Configuration

Usage Notes
Limitations

Developers should be aware of the following limitations when using the motor angle and speed
calculation with an encoder: all configurations should be set as positive values.

Examples
Basic Example

This is a basic example of minimal use of the motor angle and speed calculation with an encoder in
an application.

void motor_sense_encoder_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_SENSE_ENCODER_Open(&g_mtr_angle0_ctrl, &g_mtr_angle_set0_cfg);

 assert(FSP_SUCCESS == err);

 /* Basically run this module at A/D conversion finish interrupt.

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Initialize motor with the encoder */

 (void) RM_MOTOR_SENSE_ENCODER_AngleAdjust(&g_mtr_angle0_ctrl);

 /* Perform cyclic encoder process*/

 (void) RM_MOTOR_SENSE_ENCODER_EncoderCyclic(&g_mtr_angle0_ctrl);

 /* Calculate information with encoder signal input */

 (void) RM_MOTOR_SENSE_ENCODER_InternalCalculate(&g_mtr_angle0_ctrl);

 /* Get angle/speed data */

 (void) RM_MOTOR_SENSE_ENCODER_AngleSpeedGet(&g_mtr_angle0_ctrl, &f_get_angle,

&f_get_speed, &f_get_phase_err);

 /* Get calculated component */

 (void) RM_MOTOR_SENSE_ENCODER_InfoGet(&g_mtr_angle0_ctrl, &temp_info);

 }

 /* Reset the module */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,871 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

 (void) RM_MOTOR_SENSE_ENCODER_Reset(&g_mtr_angle0_ctrl);

 /* Close the module */

 (void) RM_MOTOR_SENSE_ENCODER_Close(&g_mtr_angle0_ctrl);

}

Enumerations

enum motor_sense_encoder_loop_t

enum motor_sense_encoder_mode_t

Enumeration Type Documentation

◆ motor_sense_encoder_loop_t

enum motor_sense_encoder_loop_t

Enumerator

MOTOR_SENSE_ENCODER_LOOP_SPEED Speed control mode.

MOTOR_SENSE_ENCODER_LOOP_POSITION Position control mode.

◆ motor_sense_encoder_mode_t

enum motor_sense_encoder_mode_t

Enumerator

MOTOR_SENSE_ENCODER_MODE_INIT Initialize mode (Start status)

MOTOR_SENSE_ENCODER_MODE_BOOT Boot mode (Angle adjustment status)

MOTOR_SENSE_ENCODER_MODE_DRIVE Drive mode (Normal work status)

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,872 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_Open()

fsp_err_t RM_MOTOR_SENSE_ENCODER_Open (motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t
const *const p_cfg)

Opens and configures the Angle Encoder module. Implements motor_angle_api_t::open.

Return values
FSP_SUCCESS Angle Encoder module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_SENSE_ENCODER_Close()

fsp_err_t RM_MOTOR_SENSE_ENCODER_Close (motor_angle_ctrl_t *const p_ctrl)

Disables specified Angle Encoder module. Implements motor_angle_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_Reset()

fsp_err_t RM_MOTOR_SENSE_ENCODER_Reset (motor_angle_ctrl_t *const p_ctrl)

Reset variables of Angle Encoder module. Implements motor_angle_api_t::reset.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,873 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_InternalCalculate()

fsp_err_t RM_MOTOR_SENSE_ENCODER_InternalCalculate (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters. Implements motor_angle_api_t::internalCalculate.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_AngleSpeedGet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleSpeedGet (motor_angle_ctrl_t *const p_ctrl, float
*const p_angle, float *const p_speed, float *const p_phase_err)

Gets the current rotor's angle and rotation speed. Implements motor_angle_api_t::angleSpeedGet.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_AngleAdjust()

fsp_err_t RM_MOTOR_SENSE_ENCODER_AngleAdjust (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process. Implements motor_angle_api_t::angleAdjust.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,874 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_EncoderCyclic()

fsp_err_t RM_MOTOR_SENSE_ENCODER_EncoderCyclic (motor_angle_ctrl_t *const p_ctrl)

Encoder Cyclic Process (Call in cyclic timer). Implements motor_angle_api_t::encoderCyclic.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_InfoGet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_InfoGet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Gets information of Encoder Angle Module. Implements motor_angle_api_t::infoGet.

Return values
FSP_SUCCESS Successfully data calculated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SENSE_ENCODER_ParameterUpdate()

fsp_err_t RM_MOTOR_SENSE_ENCODER_ParameterUpdate (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *const p_cfg)

Update the parameters of Angle&Speed calculation with an encoder. Implements
motor_angle_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data is update.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,875 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_CurrentSet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_CurrentSet (motor_angle_ctrl_t *const p_ctrl,
motor_angle_current_t *const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage
)

Set d/q-axis Current Data & Voltage Reference. Implements motor_angle_api_t::currentSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software currentSet is

not supported.

◆ RM_MOTOR_SENSE_ENCODER_SpeedSet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_SpeedSet (motor_angle_ctrl_t *const p_ctrl, float const
speed_ctrl, float const damp_speed)

Set Speed Information. Implements motor_angle_api_t::speedSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software speedSet is

not supported.

◆ RM_MOTOR_SENSE_ENCODER_FlagPiCtrlSet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_FlagPiCtrlSet (motor_angle_ctrl_t *const p_ctrl, uint32_t
const flag_pi)

Set the flag of PI Control runs. Implements motor_angle_api_t::flagPiCtrlSet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software flagPiCtrlSet

is not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,876 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

◆ RM_MOTOR_SENSE_ENCODER_EstimatedComponentGet()

fsp_err_t RM_MOTOR_SENSE_ENCODER_EstimatedComponentGet (motor_angle_ctrl_t *const
p_ctrl, float *const p_ed, float *const p_eq)

Gets estimated d/q-axis component. Implements motor_angle_api_t::estimatedComponentGet.

Return values
FSP_ERR_UNSUPPORTED Motor sense encoder software

estimatedComponentGet is not supported.

4.2.92 Motor Sensorless Vector Control (rm_motor_sensorless)
Modules

Functions

fsp_err_t RM_MOTOR_SENSORLESS_Open (motor_ctrl_t *const p_ctrl,
motor_cfg_t const *const p_cfg)

fsp_err_t RM_MOTOR_SENSORLESS_Close (motor_ctrl_t *const p_ctrl)

 Disables specified Motor Sensorless Control block. Implements
motor_api_t::close. More...

fsp_err_t RM_MOTOR_SENSORLESS_Run (motor_ctrl_t *const p_ctrl)

 Run Motor (Start motor rotation). Implements motor_api_t::run.
More...

fsp_err_t RM_MOTOR_SENSORLESS_Stop (motor_ctrl_t *const p_ctrl)

 Stop Motor (Stop motor rotation). Implements motor_api_t::stop.
More...

fsp_err_t RM_MOTOR_SENSORLESS_Reset (motor_ctrl_t *const p_ctrl)

 Reset Motor Sensorless Control block. Implements motor_api_t::reset
. More...

fsp_err_t RM_MOTOR_SENSORLESS_ErrorSet (motor_ctrl_t *const p_ctrl,
motor_error_t const error)

 Set error information. Implements motor_api_t::errorSet. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,877 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

fsp_err_t RM_MOTOR_SENSORLESS_SpeedSet (motor_ctrl_t *const p_ctrl, float
const speed_rpm)

 Set speed reference[rpm]. Implements motor_api_t::speedSet.
More...

fsp_err_t RM_MOTOR_SENSORLESS_StatusGet (motor_ctrl_t *const p_ctrl,
uint8_t *const p_status)

 Get current control status. Implements motor_api_t::statusGet.
More...

fsp_err_t RM_MOTOR_SENSORLESS_AngleGet (motor_ctrl_t *const p_ctrl, float
*const p_angle_rad)

 Get current rotor angle. Implements motor_api_t::angleGet. More...

fsp_err_t RM_MOTOR_SENSORLESS_SpeedGet (motor_ctrl_t *const p_ctrl, float
*const p_speed_rpm)

 Get rotational speed. Implements motor_api_t::speedGet. More...

fsp_err_t RM_MOTOR_SENSORLESS_ErrorCheck (motor_ctrl_t *const p_ctrl,
uint16_t *const p_error)

 Check the occurunce of Error. Implements motor_api_t::errorCheck.
More...

fsp_err_t RM_MOTOR_SENSORLESS_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

 Set position reference. Implements motor_api_t::positionSet. More...

Detailed Description

Usual control of a SPM motor on RA MCUs. This module implements the Motor Sensorless Vector
Control (rm_motor_sensorless).

Overview
The motor sensorless vector control is used to control a motor rotation in an appication. This module
is implemented with using SPM motor. User can start/stop motor rotation simply.

Features

The Motor Sensorless Module has below features.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,878 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

Start/Stop a motor rotation
Error detection (over current, over speed, over voltage, low voltage)

Configuration
Build Time Configurations for rm_motor_sensorless

The following build time configurations are defined in fsp_cfg/rm_motor_sensorless_cfg.h:

Configuration Options Default Description

Parameter checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Configurations for Middleware > Motor > Motor sensorless vector control

This module can be added to the Stacks tab via New Stack > Middleware > Motor > Motor sensorless
vector control.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_motor_sensorless0 Module name.

General > Limit of over
current (A)

Manual Entry 0.42F Limit of over
current.(Detection
threshold)

General > Limit of over
voltage (V)

Manual Entry 28.0F Limit of over
voltage.(Detection
threshold)

General > Limit of over
speed (rpm)

Manual Entry 3000.0F Limit of over
speed.(Detection
threshold)

General > Limit of low
voltage (V)

Manual Entry 14.0F Limit of low
voltage.(Detection
threshold)

Interrupts > Callback Name must be a valid
C symbol

NULL A user callback
function. If this callback
function is provided, it
is called at speed
control cyclic interrupt.

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple status transition
process.

Pin Configuration

This module does not use I/O pins.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,879 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

Usage Notes
Limitations

Set the limit of electric current with non-negative value.
Set the limit of input voltage with non-negative value.
Set the limit of rotational speed with non-negative value.

Examples
Basic Example

This is a basic example of minimal use of the Motor Sensorless in an application.

void motor_sensorless_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_SENSORLESS_Open(g_motor_sensorless0.p_ctrl,

g_motor_sensorless0.p_cfg);

 assert(FSP_SUCCESS == err);

 /* Set speed reference before motor run */

 (void) RM_MOTOR_SENSORLESS_SpeedSet(g_motor_sensorless0.p_ctrl,

DEF_SENSORLESS_TEST_OVSPD_LIM);

 /* Start motor rotation */

 (void) RM_MOTOR_SENSORLESS_Run(g_motor_sensorless0.p_ctrl);

 /* Get current status */

 (void) RM_MOTOR_SENSORLESS_StatusGet(g_motor_sensorless0.p_ctrl, &smpl_status);

 /* Get current rotor angle */

 (void) RM_MOTOR_SENSORLESS_AngleGet(g_motor_sensorless0.p_ctrl, &smpl_angle);

 /* Get current motor speed */

 (void) RM_MOTOR_SENSORLESS_SpeedGet(g_motor_sensorless0.p_ctrl, &smpl_speed);

 /* Check error */

 (void) RM_MOTOR_SENSORLESS_ErrorCheck(g_motor_sensorless0.p_ctrl, &smpl_error);

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_Stop(g_motor_sensorless0.p_ctrl);

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_ErrorSet(g_motor_sensorless0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,880 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

 /* Reset Speed Control */

 (void) RM_MOTOR_SENSORLESS_Reset(g_motor_sensorless0.p_ctrl);

 /* Close Speed Control */

 (void) RM_MOTOR_SENSORLESS_Close(g_motor_sensorless0.p_ctrl);

}

Data Structures

struct motor_sensorless_callback_args_t

Enumerations

enum motor_sensorless_callback_event_t

Data Structure Documentation

◆ motor_sensorless_callback_args_t

struct motor_sensorless_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data.

motor_sensorless_callback_eve
nt_t

event

Enumeration Type Documentation

◆ motor_sensorless_callback_event_t

enum motor_sensorless_callback_event_t

Events that can trigger a callback function

Enumerator

MOTOR_SENSORLESS_CALLBACK_EVENT_SPEED_
FORWARD

Event forward Speed Control.

MOTOR_SENSORLESS_CALLBACK_EVENT_SPEED_
BACKWARD

Event backward Speed Control.

MOTOR_SENSORLESS_CALLBACK_EVENT_CURRE
NT_FORWARD

Event forward Current Control.

MOTOR_SENSORLESS_CALLBACK_EVENT_CURRE
NT_BACKWARD

Event backward Current Control.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,881 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_Open()

fsp_err_t RM_MOTOR_SENSORLESS_Open (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const
p_cfg)

Configure the MOTOR in register start mode. Implements motor_api_t::open.

This function should only be called once as MOTOR configuration registers can only be written to
once so subsequent calls will have no effect.

Example:

 /* Initializes the module. */

 err = RM_MOTOR_SENSORLESS_Open(g_motor_sensorless0.p_ctrl,

g_motor_sensorless0.p_cfg);

Return values
FSP_SUCCESS MOTOR successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Note

◆ RM_MOTOR_SENSORLESS_Close()

fsp_err_t RM_MOTOR_SENSORLESS_Close (motor_ctrl_t *const p_ctrl)

Disables specified Motor Sensorless Control block. Implements motor_api_t::close.

Example:

 /* Close Speed Control */

 (void) RM_MOTOR_SENSORLESS_Close(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,882 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_Run()

fsp_err_t RM_MOTOR_SENSORLESS_Run (motor_ctrl_t *const p_ctrl)

Run Motor (Start motor rotation). Implements motor_api_t::run.

Example:

 /* Start motor rotation */

 (void) RM_MOTOR_SENSORLESS_Run(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_SENSORLESS_Stop()

fsp_err_t RM_MOTOR_SENSORLESS_Stop (motor_ctrl_t *const p_ctrl)

Stop Motor (Stop motor rotation). Implements motor_api_t::stop.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_Stop(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,883 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_Reset()

fsp_err_t RM_MOTOR_SENSORLESS_Reset (motor_ctrl_t *const p_ctrl)

Reset Motor Sensorless Control block. Implements motor_api_t::reset.

Example:

 /* Reset Speed Control */

 (void) RM_MOTOR_SENSORLESS_Reset(g_motor_sensorless0.p_ctrl);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_SENSORLESS_ErrorSet()

fsp_err_t RM_MOTOR_SENSORLESS_ErrorSet (motor_ctrl_t *const p_ctrl, motor_error_t const error
)

Set error information. Implements motor_api_t::errorSet.

Example:

 /* Stop motor rotation */

 (void) RM_MOTOR_SENSORLESS_ErrorSet(g_motor_sensorless0.p_ctrl,

MOTOR_ERROR_OVER_CURRENT_HW);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,884 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_SpeedSet()

fsp_err_t RM_MOTOR_SENSORLESS_SpeedSet (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set speed reference[rpm]. Implements motor_api_t::speedSet.

Example:

 /* Set speed reference before motor run */

 (void) RM_MOTOR_SENSORLESS_SpeedSet(g_motor_sensorless0.p_ctrl,

DEF_SENSORLESS_TEST_OVSPD_LIM);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

Note

◆ RM_MOTOR_SENSORLESS_StatusGet()

fsp_err_t RM_MOTOR_SENSORLESS_StatusGet (motor_ctrl_t *const p_ctrl, uint8_t *const p_status
)

Get current control status. Implements motor_api_t::statusGet.

Example:

 /* Get current status */

 (void) RM_MOTOR_SENSORLESS_StatusGet(g_motor_sensorless0.p_ctrl, &smpl_status);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,885 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_AngleGet()

fsp_err_t RM_MOTOR_SENSORLESS_AngleGet (motor_ctrl_t *const p_ctrl, float *const p_angle_rad
)

Get current rotor angle. Implements motor_api_t::angleGet.

Example:

 /* Get current rotor angle */

 (void) RM_MOTOR_SENSORLESS_AngleGet(g_motor_sensorless0.p_ctrl, &smpl_angle);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_SENSORLESS_SpeedGet()

fsp_err_t RM_MOTOR_SENSORLESS_SpeedGet (motor_ctrl_t *const p_ctrl, float *const
p_speed_rpm)

Get rotational speed. Implements motor_api_t::speedGet.

Example:

 /* Get current motor speed */

 (void) RM_MOTOR_SENSORLESS_SpeedGet(g_motor_sensorless0.p_ctrl, &smpl_speed);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,886 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Sensorless Vector Control (rm_motor_sensorless)

◆ RM_MOTOR_SENSORLESS_ErrorCheck()

fsp_err_t RM_MOTOR_SENSORLESS_ErrorCheck (motor_ctrl_t *const p_ctrl, uint16_t *const
p_error)

Check the occurunce of Error. Implements motor_api_t::errorCheck.

Example:

 /* Check error */

 (void) RM_MOTOR_SENSORLESS_ErrorCheck(g_motor_sensorless0.p_ctrl, &smpl_error);

Return values
FSP_SUCCESS Successfully resetted.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Data received pointer is invalid..

Note

◆ RM_MOTOR_SENSORLESS_PositionSet()

fsp_err_t RM_MOTOR_SENSORLESS_PositionSet (motor_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position)

Set position reference. Implements motor_api_t::positionSet.

Example:

Return values
FSP_ERR_UNSUPPORTED Unsupported.

Note

4.2.93 Motor Speed (rm_motor_speed)
Modules

Functions

fsp_err_t RM_MOTOR_SPEED_Open (motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

 Opens and configures the Motor Speed Module. Implements
motor_speed_api_t::open. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,887 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

fsp_err_t RM_MOTOR_SPEED_Close (motor_speed_ctrl_t *const p_ctrl)

 Disables specified Motor Speed Module. Implements
motor_speed_api_t::close. More...

fsp_err_t RM_MOTOR_SPEED_Reset (motor_speed_ctrl_t *const p_ctrl)

 Reset the variables of Motor Speed Module. Implements
motor_speed_api_t::reset. More...

fsp_err_t RM_MOTOR_SPEED_Run (motor_speed_ctrl_t *const p_ctrl)

 Run(Start) the Motor Speed Control. Implements
motor_speed_api_t::run. More...

fsp_err_t RM_MOTOR_SPEED_SpeedReferenceSet (motor_speed_ctrl_t *const
p_ctrl, float const speed_reference_rpm)

 Set Speed Reference Data. Implements
motor_speed_api_t::speedReferenceSet. More...

fsp_err_t RM_MOTOR_SPEED_PositionReferenceSet (motor_speed_ctrl_t *const
p_ctrl, motor_speed_position_data_t const *const p_position_data)

 Set Position Reference Data. Implements
motor_speed_api_t::positionReferenceSet. More...

fsp_err_t RM_MOTOR_SPEED_ParameterSet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

 Set Input parameters. Implements motor_speed_api_t::parameterSet.
More...

fsp_err_t RM_MOTOR_SPEED_SpeedControl (motor_speed_ctrl_t *const p_ctrl)

 Calculates the d/q-axis current reference.(Main process of Speed
Control) Implements motor_speed_api_t::speedControl. More...

fsp_err_t RM_MOTOR_SPEED_ParameterGet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

 Get Speed Control Parameters. Implements
motor_speed_api_t::parameterGet. More...

fsp_err_t RM_MOTOR_SPEED_ParameterUpdate (motor_speed_ctrl_t *const
p_ctrl, motor_speed_cfg_t const *const p_cfg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,888 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

 Update the parameters of Speed Control Calculation. Implements
motor_speed_api_t::parameterUpdate. More...

Detailed Description

Calculation process for the motor control on RA MCUs. This module implements the Motor speed
Interface.

Overview
The motor speed is used to control the speed of motor rotation in an appication. This module should
be called cyclically in an application (e.g. in cyclic timer interrupt). This module caliculates d/q-axis
current reference with input speed reference, current rotational speed, and d/q-axis current.

Features

The motor speed module has below features.

Calculate d/q-axis electric current reference.
Flux weakening process at high speed rotation.
Open loop damping control when using sensorless type.
Low pass filter of input rotational speed.
Speed observer function when using encoder type.

Configuration
Build Time Configurations for rm_motor_speed

The following build time configurations are defined in fsp_cfg/rm_motor_speed_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Postion Support Enabled
Disabled

Disabled Enable position
algorithm support.

Configurations for Middleware > Motor > Motor Speed Controller on rm_motor_speed

This module can be added to the Stacks tab via New Stack > Middleware > Motor > Motor Speed
Controller on rm_motor_speed.

Configuration Options Default Description

General > Name Name must be a valid
C symbol

g_motor_speed0 Module name.

General > Speed
control period (sec)

Manual Entry 0.0005F Period of speed control
function.

General > Step of Manual Entry 0.5F Step of speed change

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,889 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

speed climbing (rpm) at start of open-loop.

General > Maximum
rotational speed (rpm)

Manual Entry 2650 Maximum rotational
speed (Limit speed).

General > Speed LPF
omega

Manual Entry 10.0F Design parameter for
speed LPF.

General > Speed at Id
climbing (rpm)

Manual Entry 500 From this speed d-axis
current is controlled
climbing.

General > Limit of q-
axis current (A)

Manual Entry 0.42F Limit of q-axis current.

General > Step of
speed feedback at
open-loop

Manual Entry 0.20F Step of speed feedback
at open-loop.

General > Open-loop
damping

Disable
Enable

Enable Select enable/disable
Open-loop damping
control.

General > Flux
weakening

Disable
Enable

Disable Select enable/disable
flux weakening control.

General > Torque
compensation for
sensorless transition

Disable
Enable

Enable Select enable/disable
torque compensation
for sensorless
transition.

General > Speed
observer

Disable
Enable

Enable Select enable/disable
Speed observer
process.

General > Control
method

PID
IPD

PID Select the control
method [PID or IPD].

General > Control type Sensoreless
Encoder

Sensoreless

Open-Loop > Step of d-
axis current climbing

Manual Entry 0.3F Step of d-axis current
climbing

Open-Loop > Step of d-
axis current
descending

Manual Entry 0.3F Step of d-axis current
descending

Open-Loop > Step of q-
axis current
descending ratio

Manual Entry 1.0F Step of q-axis current
descending ratio

Open-Loop >
Reference of d-axis
current

Manual Entry 0.3F Reference of d-axis
current

Open-Loop > Threshold
of speed control
descending

Manual Entry 600 When rotational speed
reaches this speed, d-
axis current is
controlled descending.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,890 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

Open-Loop > Threshold
of speed control
climbing

Manual Entry 500 Until rotational speed
reaches this speed, d-
axis current is
controlled climbing.

Open-Loop > Period
between open-loop to
BEMF (sec)

Manual Entry 0.025F Margin time between
open-loop control
changes to BEMF PI
control.

Open-Loop > Phase
error(degree) to decide
sensor-less switch
timing

Manual Entry 10 Phase error(degree) to
decide sensor-less
switch timing.

Design parameter >
Speed PI loop omega

Manual Entry 5.0F Speed PI loop omega

Design parameter >
Speed PI loop zeta

Manual Entry 1.0F Speed PI loop zeta

Design parameter >
Estimated d-axis HPF
omega

Manual Entry 2.5F HPF cutoff frequency
for ed (Hz)

Design parameter >
Open-loop damping
zeta

Manual Entry 1.0F Damping ratio of open-
loop damping control

Design parameter >
Cutoff frequency of
phase error LPF

Manual Entry 10.0F Cutoff frequency of
phase error LPF

Design parameter >
Speed observer omega

Manual Entry 200.0F Speed observer loop
omega

Design parameter >
Speed observer zeta

Manual Entry 1.0F Speed observer loop
zeta

Motor Parameter >
Pole pairs

Manual Entry 2 Pole pairs

Motor Parameter >
Resistance (ohm)

Manual Entry 8.5F Resistance

Motor Parameter >
Inductance of d-axis
(H)

Manual Entry 0.0045F Inductance of d-axis

Motor Parameter >
Inductance of q-axis
(H)

Manual Entry 0.0045F Inductance of q-axis

Motor Parameter >
Permanent magnetic
flux (Wb)

Manual Entry 0.02159F Permanent magnetic
flux

Motor Parameter >
Rotor inertia (kgm^2)

Manual Entry 0.0000028F Rotor inertia

Interrupts > Callback Name must be a valid NULL A user callback

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,891 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

C symbol function. If this callback
function is provided, it
is called at timer
interrupt.

Interrupts > Input data Name must be a valid
C symbol

NULL Structure for Speed
control Input. If you set
this content, Speed
Control function read
these data
automatically. (No
need to use Set API.)

Interrupts > Output
data

Name must be a valid
C symbol

NULL Structure for Speed
control Output. If you
set this content, Speed
Control function write
need data
automatically. (No
need to use Get API.)

Clock Configuration

This module doesn't depend on clock setting, because this module is a simple calculation process.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Limitations

Set the period of speed control with none-negative value.
Set the limit of speed change step with none-negative value.
Set the maximum speed with none-negative value.

Examples
Basic Example

This is a basic example of minimal use of the motor speed in an application.

void motor_speed_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 /* Initializes the module. */

 err = RM_MOTOR_SPEED_Open(g_motor_speed0.p_ctrl, g_motor_speed0.p_cfg);

 handle_error(err);

 /* Set speed reference before get current reference */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,892 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

 (void) RM_MOTOR_SPEED_SpeedReferenceSet(g_motor_speed0.p_ctrl, 104.72F);

 /* Set position reference before get current reference

 * (Basically Exclusive to SpeedReferenceSet. This is only sample,) */

 (void) RM_MOTOR_SPEED_PositionReferenceSet(g_motor_speed0.p_ctrl,

&g_posref_sample);

 /* Basically run this module at cyclic interrupt (e.g. AGT timer).

 * This implementation is an example. */

 // while (true)

 {

 /* Application work here. */

 /* Set input parameter data before get current reference */

 (void) RM_MOTOR_SPEED_ParameterSet(g_motor_speed0.p_ctrl,

&g_test_speed_input);

 /* Activate Speed Process */

 (void) RM_MOTOR_SPEED_Run(g_motor_speed0.p_ctrl);

 /* Perform Speed Control Process */

 (void) RM_MOTOR_SPEED_SpeedControl(g_motor_speed0.p_ctrl);

 /* Get output parameters */

 (void) RM_MOTOR_SPEED_ParameterGet(g_motor_speed0.p_ctrl,

&g_test_speed_output);

 //

 /* Update parameters */

 (void) RM_MOTOR_SPEED_ParameterUpdate(g_motor_speed0.p_ctrl,

&g_motor_speed0.p_cfg);

 }

 /* Reset Speed Control */

 (void) RM_MOTOR_SPEED_Reset(g_motor_speed0.p_ctrl);

 /* Close Speed Control */

 (void) RM_MOTOR_SPEED_Close(g_motor_speed0.p_ctrl);

}

Enumerations

enum motor_speed_control_type_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,893 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

enum motor_speed_openloop_damping_t

enum motor_speed_flux_weaken_t

enum motor_speed_less_switch_t

enum motor_speed_observer_switch_t

enum motor_speed_ctrl_status_t

Enumeration Type Documentation

◆ motor_speed_control_type_t

enum motor_speed_control_type_t

Enumerator

MOTOR_SPEED_CONTROL_TYPE_SENSORLESS Sensorless type.

MOTOR_SPEED_CONTROL_TYPE_ENCODER Encoder type.

◆ motor_speed_openloop_damping_t

enum motor_speed_openloop_damping_t

Enumerator

MOTOR_SPEED_OPENLOOP_DAMPING_DISABLE Disable openloop damping.

MOTOR_SPEED_OPENLOOP_DAMPING_ENABLE Enable openloop damping.

◆ motor_speed_flux_weaken_t

enum motor_speed_flux_weaken_t

Enumerator

MOTOR_SPEED_FLUX_WEAKEN_DISABLE Disable flux-weakening control.

MOTOR_SPEED_FLUX_WEAKEN_ENABLE Enable flux-weakening control.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,894 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

◆ motor_speed_less_switch_t

enum motor_speed_less_switch_t

Enumerator

MOTOR_SPEED_LESS_SWITCH_DISABLE Disable soft switching between open-loop
mode and normal FOC mode.

MOTOR_SPEED_LESS_SWITCH_ENABLE Enable soft switching between open-loop mode
and normal FOC mode.

◆ motor_speed_observer_switch_t

enum motor_speed_observer_switch_t

Enumerator

MOTOR_SPEED_OBSERVER_SWITCH_DISABLE Disable speed observer.

MOTOR_SPEED_OBSERVER_SWITCH_ENABLE Enable speed observer.

◆ motor_speed_ctrl_status_t

enum motor_speed_ctrl_status_t

Enumerator

MOTOR_SPEED_CTRL_STATUS_INIT Speed control status is INIT.

MOTOR_SPEED_CTRL_STATUS_BOOT Speed control status is BOOT.

MOTOR_SPEED_CTRL_STATUS_RUN Speed control status is RUN.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,895 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

◆ RM_MOTOR_SPEED_Open()

fsp_err_t RM_MOTOR_SPEED_Open (motor_speed_ctrl_t *const p_ctrl, motor_speed_cfg_t const
*const p_cfg)

Opens and configures the Motor Speed Module. Implements motor_speed_api_t::open.

Return values
FSP_SUCCESS Motor Speed Module successfully

configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_MOTOR_SPEED_Close()

fsp_err_t RM_MOTOR_SPEED_Close (motor_speed_ctrl_t *const p_ctrl)

Disables specified Motor Speed Module. Implements motor_speed_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_Reset()

fsp_err_t RM_MOTOR_SPEED_Reset (motor_speed_ctrl_t *const p_ctrl)

Reset the variables of Motor Speed Module. Implements motor_speed_api_t::reset.

Return values
FSP_SUCCESS Successfully reset.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,896 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

◆ RM_MOTOR_SPEED_Run()

fsp_err_t RM_MOTOR_SPEED_Run (motor_speed_ctrl_t *const p_ctrl)

Run(Start) the Motor Speed Control. Implements motor_speed_api_t::run.

Return values
FSP_SUCCESS Successfully start.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_SpeedReferenceSet()

fsp_err_t RM_MOTOR_SPEED_SpeedReferenceSet (motor_speed_ctrl_t *const p_ctrl, float const
speed_reference_rpm)

Set Speed Reference Data. Implements motor_speed_api_t::speedReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_PositionReferenceSet()

fsp_err_t RM_MOTOR_SPEED_PositionReferenceSet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position_data)

Set Position Reference Data. Implements motor_speed_api_t::positionReferenceSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Input structure pointer is NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,897 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

◆ RM_MOTOR_SPEED_ParameterSet()

fsp_err_t RM_MOTOR_SPEED_ParameterSet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

Set Input parameters. Implements motor_speed_api_t::parameterSet.

Return values
FSP_SUCCESS Successfully data is set.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

◆ RM_MOTOR_SPEED_SpeedControl()

fsp_err_t RM_MOTOR_SPEED_SpeedControl (motor_speed_ctrl_t *const p_ctrl)

Calculates the d/q-axis current reference.(Main process of Speed Control) Implements
motor_speed_api_t::speedControl.

Return values
FSP_SUCCESS Successful data calculation.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_MOTOR_SPEED_ParameterGet()

fsp_err_t RM_MOTOR_SPEED_ParameterGet (motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

Get Speed Control Parameters. Implements motor_speed_api_t::parameterGet.

Return values
FSP_SUCCESS Successfully the flag is gotten.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Output pointer is NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,898 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Motor Speed (rm_motor_speed)

◆ RM_MOTOR_SPEED_ParameterUpdate()

fsp_err_t RM_MOTOR_SPEED_ParameterUpdate (motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

Update the parameters of Speed Control Calculation. Implements
motor_speed_api_t::parameterUpdate.

Return values
FSP_SUCCESS Successfully data was updated.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

4.2.94 Azure RTOS NetX Secure Crypto Hardware Acceleration
(rm_netx_secure_crypto)
Modules

Detailed Description

Hardware acceleration for the Netx Crypto implementation of the Microsoft Azure RTOS NetX Crypto
API.

Overview
Please refer to the NetXDuo - NetX Crypto documentation for further details.

HW Overview

Crypto Peripheral version Devices

SCE9 RA6M4, RA4M3, RA4M2, RA6M5

SCE7 RA6M3, RA6M2, RA6M1, RA6T1

SCE5 RA4W1, RA4M1

AES Engine RA2A1, RA2E1, RA2E2, RA2L1

Note
NetX Crypto hardware acceleration is unsupported on 'SCE5' and 'AES Engine' crypto peripherals listed above.

Features

This module provides SCE9 hardware support for the following NetX Crypto operations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,899 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/netx/netx-crypto/chapter1

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

SHA256 calculation
SHA224 calculation
MAC Operations

HMAC with SHA224
HMAC with SHA256

AES
Keybits - 128, 192, 256

Encryption and Decryption.
Chaining Modes: CBC, CTR, GCM mode

AES Chaining Mode HW Acceleration

CBC Fully accelerated

CTR Only block cipher unit is HW
accelerated

GCM Encrypt - Fully accelerated;
Decrypt - Only GHASH and block
cipher unit is HW accelerated

CCM Only block cipher unit is HW
accelerated

Random number generation
ECC

ECDSA: Supported Curves - SECP384R1, SECP256R1, SECP224R1.
ECDH: Supported Curves - SECP384R1, SECP256R1, SECP224R1.

RSA
Signature Generation - RSA 2048 (Plain or Wrapped private) key. (This can be used
for decryption)
Signature Verification - RSA 2048, RSA 3072 and RSA 4096 keys. (This can be used
for encryption)
Supported encoding scheme: PKCS1V15 This module provides SCE7 hardware
support for the following NetX Crypto operations

AES
Keybits - 128, 256

Encryption and Decryption.
Chaining Modes: CBC, CTR, GCM mode

AES Chaining Mode HW Acceleration

CBC Fully accelerated

CTR Only block cipher unit is HW
accelerated

GCM Only block cipher unit is HW
accelerated

CCM Only block cipher unit is HW
accelerated

Configuration
Build Time Configurations for rm_netx_secure_crypto_sw_port

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,900 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

The following build time configurations are defined in
fsp_cfg/middleware/rm_netx_secure_crypto_cfg.h:

Configuration Options Default Description

Standalone Usage Use Standalone
Crypto Only
Use with TLS

Use Standalone Crypto
Only

Defines NX_CRYPTO_ST
ANDALONE_ENABLE.

Maximum RSA Modulus
size (bits)

1024
2048
3072
4096

4096

Build Time Configurations for rm_netx_secure_crypto

The following build time configurations are defined in
fsp_cfg/middleware/rm_netx_secure_crypto_cfg.h:

Configuration Options Default Description

Hardware Acceleration
> Hash > SHA256/224

MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_SHA256_ALT.

Hardware Acceleration
> Cipher > AES

MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_AES_ALT

Hardware Acceleration
> Public Key
Cryptography (PKC) >
ECC > ECC

MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_ECC_ALT

Hardware Acceleration
> Public Key
Cryptography (PKC) >
ECC > ECDSA Scratch
Buffer Size (Bytes)

Value must be an
integer

3016 Sets value of NX_CRYP
TO_ECDSA_SCRATCH_B
UFFER_SIZE

Hardware Acceleration
> Public Key
Cryptography (PKC) >
ECC > ECDH Scratch
Buffer Size (Bytes)

Value must be an
integer

2464 Sets value of NX_CRYP
TO_ECDH_SCRATCH_BU
FFER_SIZE

Hardware Acceleration
> Public Key
Cryptography (PKC) >
RSA > RSA

MCU Specific Options Enables/Disables RSA
HW support

Hardware Acceleration
> Public Key
Cryptography (PKC) >
RSA > RSA 2048 (HW)

MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_RSA_2048_AL
T to allow HW support

Hardware Acceleration
> Public Key

MCU Specific Options Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,901 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

Cryptography (PKC) >
RSA > RSA 3072
Verify/Encryption (HW)

ETHODS_RSA_3072_AL
T to allow HW support

Hardware Acceleration
> Public Key
Cryptography (PKC) >
RSA > RSA 4096
Verify/Encryption (HW)

MCU Specific Options Enables RSA NETX_SEC
URE_CRYPTO_NX_CRYP
TO_METHODS_RSA_409
6_ALT to allow HW
support

Hardware Acceleration
> Public Key
Cryptography (PKC) >
RSA > RSA Scratch
Buffer Size (Bytes)

MCU Specific Options Sets value of NX_CRYP
TO_RSA_SCRATCH_BUF
FER_SIZE

Hardware Acceleration
> TRNG

Enabled
Disabled

Enabled Enables NETX_SECURE_
CRYPTO_NX_CRYPTO_M
ETHODS_TRNG_ALT.

Standalone Usage Use Standalone
Crypto Only
Use with TLS

Use Standalone Crypto
Only

Defines NX_CRYPTO_ST
ANDALONE_ENABLE.

Random Number Generator Configuration

To enable hardware acceleration for the TRNG, the macro
NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_TRNG_ALT must be defined in the configuration file.
By default TRNG is enabled which can be disabled using the RA Configuration editor.

Once enabled 'rand' function will be mapped to HW TRNG; the 'srand' function is not supported, any
calls to this function will have no effect. Functionality to re-seed the HW TRNG is not supported by
the existing implementation.

If disabled, both 'rand' and 'srand' will be mapped to the C Standard Library. This would require
setting up the heap as 'rand' implementation calls 'malloc'.

SHA256 Configuration

To enable hardware acceleration for the SHA256/224 calculation, the macro
NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_SHA256_ALT must be defined in the configuration
file. By default SHA256 is enabled which can be disabled using the RA Configuration editor.

AES Configuration

To enable hardware acceleration for the AES128/192/256 operation, the macro
NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_AES_ALT must be defined in the configuration file. By
default AES is enabled which can be disabled using the RA Configuration editor.

ECC Configuration

To enable hardware acceleration for the ECDSA and ECDH for curves SECP384R1, SECP256R1 and
SECP224R1, the macro NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_ECC_ALT must be defined in
the configuration file. By default ECC operations are enabled which can be disabled using the RA
Configuration editor.

RSA Configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,902 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

To enable hardware acceleration for the RSA Encrypt/Decrypt (or Sign/Verify) operation(s), the
macro(s) below must be must be defined in the configuration file:

Configuration Macro Feature / Operation

NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_
RSA_2048_ALT

Signature Generation / Signature Verification
(Encryption / Decryption)

NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_
RSA_3072_ALT

Signature Verification (Encryption Only)

NETX_SECURE_CRYPTO_NX_CRYPTO_METHODS_
RSA_4096_ALT

Signature Verification (Encryption Only)

By default RSA 2048 is enabled which can be disabled using the RA Configuration editor.

RSA software implementation is completely disabled when any of the above macros are enabled.

Usage Notes
Memory Alignment

Use 32bit aligned buffer pointers as arguments to APIs for best performance.

Hardware Initialization

_nx_crypto_initialize() must be invoked before using the NetX Crypto APIs to ensure that the SCE
peripheral is initialized.

Memory Usage

Sufficient memory must be allocated to be used as 'crypto_metadata' for the chosen crypto
operation(s). Refer Azure RTOS NetX Crypto API description for recommended 'crypto_metadata_size'
based on selected crypto operations. Sufficient amount of memory must be allocated for the thread
stack to support low level crypto operations when using this module in the standalone mode or
through NetX Secure (TLS). A minimum stack of 0x1000 is required to use ECC and RSA. This is
either the main stack in a bare metal application or the specific thread stack for an RTOS based
application.

AES Usage

GCM mode

The first byte of the IV must indicate the length of the subsequent IV. For example if the IV is {0x00,
0x00, 0x00}, then the IV pointer passed to the _nx_crypto_method_aes_operation must store the IV
as {0x03, 0x00, 0x00, 0x00}. Refer to the example code for actual usage.

CTR mode

For CTR mode the IV pointer must be as defined in Using Advanced Encryption Standard (AES)
Counter Mode With IPsec Encapsulating Security Payload (ESP) under 'Figure 2. Counter Block
Format'. The IV must be 8 bytes in length. The Nonce field in the reference above must be 4 bytes
and should be passed to _nx_crypto_method_aes_operation through the key pointer stored after the
actual AES key. For Example, if the AES 128-bit Plain Key is {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00} and the Nonce is {0x01, 0x07, 0xBD, 0xFD}, the key passed to the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,903 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/netx/netx-crypto/chapter4
https://tools.ietf.org/html/rfc3686
https://tools.ietf.org/html/rfc3686

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

_nx_crypto_method_aes_operation during Encryption/Decryption should be set as {0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x07, 0xBD, 0xFD}. This format would also be valid for
Wrapped keys where the Nonce is appended at the end of the actual Wrapped key. Refer to the
example code for actual usage.

The 'Block Counter' field in the above reference is fixed to {0x00, 0x00, 0x00, 0x01} at the
beginning and increments internally after every subsequent AES block is processed. Test vectors
that have the initial Block Counter not set to {0x00, 0x00, 0x00, 0x01} cannnot be used in this
implementation.

ECC Usage

ECC operations include ECDH and ECDSA. As a part of ECDSA operation the input message can be
hashed before signing or verification, or the message digest can be provided directly. ECC Scratch
buffer size can be optionally reduced as supported ECC computations are now done by the HW. This
is controlled by NX_CRYPTO_ECDSA_SCRATCH_BUFFER_SIZE and
NX_CRYPTO_ECDH_SCRATCH_BUFFER_SIZE macros for ECDSA and ECDH respectively.

Operation Key Format

ECDSA Signature Plain private key; Wrapped private key

ECDSA Signature-Verify Uncompressed public key

Key Generation using ECDSA operation API Wrapped private key; Uncompressed public key

ECDH private key import Plain private key; Wrapped private key (Allows
for Uncompressed and Formatted public key)

ECDH public key export Uncompressed public key

ECDH setup Uncompressed public key

ECDH shared secret calculate Uncompressed public key

Key Generation using ECDH operation API Wrapped private key; Uncompressed public key

Note:

Uncompressed public key is of the form (0x04 || Qx || Qy). Refer Section 2.2. Subject Public
Key under RFC5480
Formatted public key is of the form (Key Info (4 bytes) || Qx || Qy || Key Info (16 bytes)).
This is the key which is used internally by SCE peripheral. (Qx and Qy are zero padded for
224 bit curves).

RSA Usage

Wrapped Key Usage

To use the NetX Crypto stack with wrapped private keys (for signature generation/decryption), a
dummy pointer (non-NULL) should be passed to the 'key' parameter during
_nx_crypto_method_rsa_init API call. However, the 'key_size_in_bits' parameter should be equal to
the intended RSA modulus length in bits. The actual wrapped key must be passed as the 'key'
parameter to the _nx_crypto_method_rsa_operation API call with its length in bits passed through the
'key_size_in_bits' parameter.

For PKCS1V15 operation 'key' and 'key_size_in_bits' parameters of
_nx_crypto_method_pkcs1_v1_5_init are unused. These can be passed as NULL and 0 respectively.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,904 / 2,794

https://tools.ietf.org/html/rfc5480

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

The actual wrapped key must be passed as the 'key' parameter to the
_nx_crypto_method_pkcs1_v1_5_operation API call and the intended modulus length in bits must be
passed through the 'key_size_in_bits' parameter.

Limitations

Only little endian mode is supported.
RSA CRT keys are not supported.
ECJPAKE related operations are unsupported for NIST 224, 256 and 384 bit curves when HW
ECC is eanbled.

Examples
Initialization Example

This example shows how to initialize the HW crypto engine. This step must be performed before any
crypto algorithm is used.

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

Hash Example

This is an example on calculating the SHA256 hash using the NetX Crypto API.

extern NX_CRYPTO_METHOD crypto_method_sha256;

const uint8_t NIST_SHA256ShortMsgLen200[] =

{

 0x2e, 0x7e, 0xa8, 0x4d, 0xa4, 0xbc, 0x4d, 0x7c, 0xfb, 0x46, 0x3e, 0x3f, 0x2c,

0x86, 0x47, 0x05,

 0x7a, 0xff, 0xf3, 0xfb, 0xec, 0xec, 0xa1, 0xd2, 00

};

const uint8_t NIST_SHA256ShortMsgLen200_expected[] =

{

 0x76, 0xe3, 0xac, 0xbc, 0x71, 0x88, 0x36, 0xf2, 0xdf, 0x8a, 0xd2, 0xd0, 0xd2,

0xd7, 0x6f, 0x0c,

 0xfa, 0x5f, 0xea, 0x09, 0x86, 0xbe, 0x91, 0x8f, 0x10, 0xbc, 0xee, 0x73, 0x0d,

0xf4, 0x41, 0xb9

};

void netx_secure_crypto_sha256_example (void)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,905 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

{

 size_t actual_hash_len = RM_NETX_SECURE_CRYPTO_EXAMPLE_SHA256_HASH_SIZE_BYTES;

 uint8_t actual_hash[RM_NETX_SECURE_CRYPTO_EXAMPLE_SHA256_HASH_SIZE_BYTES];

 uint8_t metadata[sizeof(NX_CRYPTO_SHA256)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_SHA256);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 init */

 err = _nx_crypto_method_sha256_init(&crypto_method_sha256, NX_CRYPTO_NULL, 0,

&handler, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 operation - NX_CRYPTO_HASH_INITIALIZE */

 err = _nx_crypto_method_sha256_operation(NX_CRYPTO_HASH_INITIALIZE,

 handler,

 &crypto_method_sha256,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 operation - NX_CRYPTO_HASH_UPDATE,

 * call this multiple times if needed to hash multiple data batches */

 err =

 _nx_crypto_method_sha256_operation(NX_CRYPTO_HASH_UPDATE,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,906 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 handler,

 &crypto_method_sha256,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) NIST_SHA256ShortMsgLen200,

 sizeof(NIST_SHA256ShortMsgLen200),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto SHA256 operation - NX_CRYPTO_HASH_CALCULATE */

 err = _nx_crypto_method_sha256_operation(NX_CRYPTO_HASH_CALCULATE,

 handler,

 &crypto_method_sha256,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 (uint8_t *) actual_hash,

 actual_hash_len,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Ensure generated SHA256 hash matches the expected digest */

 err = (uint32_t) memcmp(&actual_hash[0], &NIST_SHA256ShortMsgLen200_expected[0],

actual_hash_len);

 assert(0 == err);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,907 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

}

AES Example

This is an example on using the NetX Crypto API to encrypt and decrypt multi-block data.

AES CBC Example

extern NX_CRYPTO_METHOD crypto_method_aes_cbc_256;

/* fe8901fecd3ccd2ec5fdc7c7a0b50519c245b42d611a5ef9e90268d59f3edf33 */

const uint8_t NIST_AES256_CBC_key[] =

{

 0xfe, 0x89, 0x01, 0xfe, 0xcd, 0x3c, 0xcd, 0x2e, 0xc5, 0xfd, 0xc7, 0xc7, 0xa0,

0xb5, 0x05, 0x19,

 0xc2, 0x45, 0xb4, 0x2d, 0x61, 0x1a, 0x5e, 0xf9, 0xe9, 0x02, 0x68, 0xd5, 0x9f,

0x3e, 0xdf, 0x33

};

/* 851e8764776e6796aab722dbb644ace8 */

const uint8_t NIST_AES256_CBC_iv[] =

{

 0xbd, 0x41, 0x6c, 0xb3, 0xb9, 0x89, 0x22, 0x28, 0xd8, 0xf1, 0xdf, 0x57, 0x56,

0x92, 0xe4, 0xd0

};

/* 6282b8c05c5c1530b97d4816ca434762 */

const uint8_t NIST_AES256_CBC_plaintext[] =

{

 0x8d, 0x3a, 0xa1, 0x96, 0xec, 0x3d, 0x7c, 0x9b, 0x5b, 0xb1, 0x22, 0xe7, 0xfe,

0x77, 0xfb, 0x12,

 0x95, 0xa6, 0xda, 0x75, 0xab, 0xe5, 0xd3, 0xa5, 0x10, 0x19, 0x4d, 0x3a, 0x8a,

0x41, 0x57, 0xd5,

 0xc8, 0x9d, 0x40, 0x61, 0x97, 0x16, 0x61, 0x98, 0x59, 0xda, 0x3e, 0xc9, 0xb2,

0x47, 0xce, 0xd9

};

/* 6acc04142e100a65f51b97adf5172c41 */

const uint8_t NIST_AES256_CBC_ciphertext[] =

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,908 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 0x60, 0x8e, 0x82, 0xc7, 0xab, 0x04, 0x00, 0x7a, 0xdb, 0x22, 0xe3, 0x89, 0xa4,

0x47, 0x97, 0xfe,

 0xd7, 0xde, 0x09, 0x0c, 0x8c, 0x03, 0xca, 0x8a, 0x2c, 0x5a, 0xcd, 0x9e, 0x84,

0xdf, 0x37, 0xfb,

 0xc5, 0x8c, 0xe8, 0xed, 0xb2, 0x93, 0xe9, 0x8f, 0x02, 0xb6, 0x40, 0xd6, 0xd1,

0xd7, 0x24, 0x64

};

void netx_secure_crypto_aes256cbc_multipart_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_AES)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_AES);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* 3 AES Blocks */

 uint8_t generated_ciphertext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 uint8_t generated_plaintext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 err =

 _nx_crypto_method_aes_init(&crypto_method_aes_cbc_256, (uint8_t *)

NIST_AES256_CBC_key,

 sizeof(NIST_AES256_CBC_key) << 3U, &handler, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_aes_cbc_256,

 NULL,

 0,

 (uint8_t *) NIST_AES256_CBC_plaintext,

 sizeof(NIST_AES256_CBC_plaintext),

 (uint8_t *) NIST_AES256_CBC_iv,

 generated_ciphertext,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,909 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 sizeof(generated_ciphertext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated ciphertext matches the expected ciphertext */

 err = (uint32_t) memcmp(generated_ciphertext, NIST_AES256_CBC_ciphertext,

sizeof(generated_ciphertext));

 assert(0 == err);

 /* Decryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_DECRYPT,

 handler,

 &crypto_method_aes_cbc_256,

 NULL,

 0,

 (uint8_t *) NIST_AES256_CBC_ciphertext,

 sizeof(NIST_AES256_CBC_ciphertext),

 (uint8_t *) NIST_AES256_CBC_iv,

 generated_plaintext,

 sizeof(generated_plaintext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated plaintext matches the input plaintext */

 err = (uint32_t) memcmp(generated_plaintext, NIST_AES256_CBC_plaintext,

sizeof(generated_ciphertext));

 assert(0 == err);

}

AES GCM Example

extern NX_CRYPTO_METHOD crypto_method_aes_128_gcm_16;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,910 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

/* 83F9D97D4AB759FDDCC3EF54A0E2A8EC */

static const uint8_t key_gcm_128[] =

{

 0x83, 0xF9, 0xD9, 0x7D, 0x4A, 0xB7, 0x59, 0xFD, 0xDC, 0xC3, 0xEF, 0x54, 0xA0,

0xE2, 0xA8, 0xEC

};

/* In case of IV the IV length must be the first byte followed by the actual IV.

 * In this example the IV length is 0x01 and the actual IV is 0xCF

 */

/* 01CF */

static const uint8_t iv_gcm_128[] =

{

 0x01, 0xCF

};

/* 77E6329CF9424F71C808DF9170BFD298 */

static const uint8_t plain_gcm_128[] =

{

 0x77, 0xE6, 0x32, 0x9C, 0xF9, 0x42, 0x4F, 0x71, 0xC8, 0x08, 0xDF, 0x91, 0x70,

0xBF, 0xD2, 0x98

};

/* 6DD49EAEB4103DAC8F97E3234946DD2D */

static const uint8_t aad_gcm_128[] =

{

 0x6D, 0xD4, 0x9E, 0xAE, 0xB4, 0x10, 0x3D, 0xAC, 0x8F, 0x97, 0xE3, 0x23, 0x49,

0x46, 0xDD, 0x2D

};

/* 50DE86A7A92A8A5EA33DB5696B96CD77AA181E84BC8B4BF5A68927C409D422CB */

static const uint8_t secret_gcm_128[] =

{

 /* Ciphertext */

 0x50, 0xDE, 0x86, 0xA7, 0xA9, 0x2A, 0x8A, 0x5E, 0xA3, 0x3D, 0xB5, 0x69, 0x6B,

0x96, 0xCD, 0x77,

 /* Tag */

 0xAA, 0x18, 0x1E, 0x84, 0xBC, 0x8B, 0x4B, 0xF5, 0xA6, 0x89, 0x27, 0xC4, 0x09,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,911 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

0xD4, 0x22, 0xCB

};

void netx_secure_crypto_aes128gcm_multipart_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_AES)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_AES);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* 3 AES Blocks */

 uint8_t generated_ciphertext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 uint8_t generated_plaintext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 err =

 _nx_crypto_method_aes_init(&crypto_method_aes_128_gcm_16,

 (uint8_t *) key_gcm_128,

 sizeof(key_gcm_128) << 3U,

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Setup Additional Authentication Data */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_SET_ADDITIONAL_DATA,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

 0,

 (uint8_t *) aad_gcm_128,

 sizeof(aad_gcm_128),

 NULL,

 NULL,

 0,

 metadata,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,912 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

 0,

 (uint8_t *) plain_gcm_128,

 sizeof(plain_gcm_128),

 (uint8_t *) iv_gcm_128,

 generated_ciphertext,

 sizeof(generated_ciphertext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* The 16 byte tag is appended to the generated ciphertext */

 /* Verify generated tag matches the expected tag */

 err = (uint32_t) memcmp(&generated_ciphertext[sizeof(plain_gcm_128)],

&secret_gcm_128[sizeof(plain_gcm_128)], 16U);

 assert(0 == err);

 /* Verify generated ciphertext matches the expected ciphertext */

 err = (uint32_t) memcmp(generated_ciphertext, secret_gcm_128, sizeof

(secret_gcm_128));

 assert(0 == err);

 /* Setup Additional Authentication Data */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_SET_ADDITIONAL_DATA,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,913 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 0,

 (uint8_t *) aad_gcm_128,

 sizeof(aad_gcm_128),

 NULL,

 NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Decryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_DECRYPT,

 handler,

 &crypto_method_aes_128_gcm_16,

 NULL,

 0,

 (uint8_t *) generated_ciphertext,

 sizeof(secret_gcm_128), /* ciphertext size + tag size */

 (uint8_t *) iv_gcm_128,

 generated_plaintext,

 sizeof(generated_plaintext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated plaintext matches the input plaintext */

 err = (uint32_t) memcmp(generated_plaintext, plain_gcm_128, sizeof

(plain_gcm_128));

 assert(0 == err);

}

AES CTR Example

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,914 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

NX_CRYPTO_METHOD crypto_method_aes_ctr_256 =

{

 NX_CRYPTO_ENCRYPTION_AES_CTR, /* AES crypto

algorithm */

 NX_CRYPTO_AES_256_KEY_LEN_IN_BITS, /* Key size in bits

*/

 NX_CRYPTO_AES_IV_LEN_IN_BITS, /* IV size in

bits */

 0, /* ICV size in bits, not

used */

 (NX_CRYPTO_AES_BLOCK_SIZE_IN_BITS >> 3), /* Block size in bytes

*/

 sizeof(NX_CRYPTO_AES), /* Metadata size in bytes */

 _nx_crypto_method_aes_init, /* AES-CBC initialization

routine */

 _nx_crypto_method_aes_cleanup, /* AES-CBC cleanup routine

*/

 _nx_crypto_method_aes_ctr_operation /* AES-CBC

operation */

};

/*Note: For CTR, the key_ctr is the conjunction of key and nonce. */

/* D0E78C4D0B30D33F5BF4A132B2F94A4A38963511A3904B117E35A37B5AAC8A193BF0D158 */

const uint8_t key_ctr_256[] =

{

 /* AES Key */

 0xD0, 0xE7, 0x8C, 0x4D, 0x0B, 0x30, 0xD3, 0x3F, 0x5B, 0xF4, 0xA1, 0x32, 0xB2,

0xF9, 0x4A, 0x4A,

 0x38, 0x96, 0x35, 0x11, 0xA3, 0x90, 0x4B, 0x11, 0x7E, 0x35, 0xA3, 0x7B, 0x5A,

0xAC, 0x8A, 0x19,

 /* Nonce */

 0x3B, 0xF0, 0xD1, 0x58,

};

/* A1A31704C8B7E16C */

const uint8_t iv_ctr_256[] =

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,915 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

{

 0xA1, 0xA3, 0x17, 0x04, 0xC8, 0xB7, 0xE1, 0x6C,

};

/* 981FA33222C5451017530155A4BF7F29 */

const uint8_t plain_ctr_256[] =

{

 0x98, 0x1F, 0xA3, 0x32, 0x22, 0xC5, 0x45, 0x10, 0x17, 0x53, 0x01, 0x55, 0xA4,

0xBF, 0x7F, 0x29,

};

/* 643B91B4E541B20AAAEAB77F2D328566 */

const uint8_t secret_ctr_256[] =

{

 0x64, 0x3B, 0x91, 0xB4, 0xE5, 0x41, 0xB2, 0x0A, 0xAA, 0xEA, 0xB7, 0x7F, 0x2D,

0x32, 0x85, 0x66,

};

void netx_secure_crypto_aes256ctr_multipart_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_AES)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_AES);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* 3 AES Blocks */

 uint8_t generated_ciphertext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 uint8_t generated_plaintext[3U * NX_CRYPTO_AES_BLOCK_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 err =

 _nx_crypto_method_aes_init(&crypto_method_aes_ctr_256,

 (uint8_t *) key_ctr_256,

crypto_method_aes_ctr_256.nx_crypto_key_size_in_bits,

 &handler,

 metadata,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,916 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_aes_ctr_256,

 (uint8_t *) key_ctr_256,

crypto_method_aes_ctr_256.nx_crypto_key_size_in_bits,

 (uint8_t *) plain_ctr_256,

 sizeof(plain_ctr_256),

 (uint8_t *) iv_ctr_256,

 generated_ciphertext,

 sizeof(generated_ciphertext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated ciphertext matches the expected ciphertext */

 err = (uint32_t) memcmp(generated_ciphertext, secret_ctr_256, sizeof

(secret_ctr_256));

 assert(0 == err);

 /* Decryption. */

 err = _nx_crypto_method_aes_operation(NX_CRYPTO_DECRYPT,

 handler,

 &crypto_method_aes_ctr_256,

 (uint8_t *) key_ctr_256,

crypto_method_aes_ctr_256.nx_crypto_key_size_in_bits,

 (uint8_t *) secret_ctr_256,

 sizeof(secret_ctr_256),

 (uint8_t *) iv_ctr_256,

 generated_plaintext,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,917 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 sizeof(generated_plaintext),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify generated plaintext matches the input plaintext */

 err = (uint32_t) memcmp(generated_plaintext, plain_ctr_256, sizeof

(plain_ctr_256));

 assert(0 == err);

}

ECDSA Example

This is an example on using the NetX Crypto API to sign and verify input message data. Based on the
hash algorithm selected a digest is computed of the plain input message before sign/verify.

extern NX_CRYPTO_METHOD crypto_method_ecdsa;

extern NX_CRYPTO_METHOD crypto_method_ec_secp256;

extern NX_CRYPTO_METHOD crypto_method_sha256;

const uint8_t ECC_SECP256R1Keydata[] =

{

 0xf9, 0xa7, 0x68, 0x71, 0x24, 0x68, 0x9d, 0x32, 0x92, 0x6f, 0x1d, 0xfb, 0xbe,

0xf2, 0x61, 0x41, // NOLINT(readability-magic-numbers)

 0x07, 0x54, 0x0d, 0xb9, 0xa8, 0x8a, 0x8b, 0xc2, 0xd5, 0xe9, 0x38, 0x4b, 0xf9,

0xe5, 0x43, 0x5a // NOLINT(readability-magic-numbers)

};

const uint8_t ECC_SECP256R1PublicKeydata[] =

{

 0x04,

 /* ASN1 Constant */

 0x5b, 0xba, 0xd4, 0x2e, 0xb5, 0xc1, 0x07, 0xf2, 0x0e, 0x01, 0x95, 0x42, 0x6e,

0x90, 0xb8, 0x4e, // NOLINT(readability-magic-numbers)

 0xe9, 0x5a, 0xa1, 0xe8, 0x4c, 0x6c, 0xa5, 0x32, 0x3c, 0xf3, 0x09, 0xf5, 0xff,

0x8b, 0x3d, 0x26, // NOLINT(readability-magic-numbers)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,918 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 0xb6, 0x88, 0xc1, 0xdb, 0x02, 0xaf, 0x4d, 0xa5, 0x0e, 0x73, 0x61, 0x96, 0xb3,

0x59, 0x95, 0x6f, // NOLINT(readability-magic-numbers)

 0x5e, 0xc9, 0xa1, 0xf9, 0xb7, 0xb3, 0xb6, 0xdf, 0x54, 0x82, 0x79, 0xe3, 0xb6,

0x4e, 0xac, 0xb6 // NOLINT(readability-magic-numbers)

};

const uint8_t ECC_SECP256R1Message[] = "ASYMMETRIC_INPUT_FOR_SIGN......";

void netx_secure_crypto_ecdsa_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_ECDSA)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_ECDSA);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 ULONG sig_length;

 NX_CRYPTO_EXTENDED_OUTPUT extended_output;

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Call the crypto initialization function. */

 err = _nx_crypto_method_ecdsa_init(&crypto_method_ecdsa, NX_CRYPTO_NULL, 0,

&handler, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set hash method. */

 err = _nx_crypto_method_ecdsa_operation(NX_CRYPTO_HASH_METHOD_SET,

 handler,

 &crypto_method_ecdsa,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_sha256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,919 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set EC curve. */

 err =

 _nx_crypto_method_ecdsa_operation(NX_CRYPTO_EC_CURVE_SET,

 handler,

 &crypto_method_ecdsa,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_ec_secp256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 extended_output.nx_crypto_extended_output_data = output;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof(output);

 /* Sign the hash data using ECDSA. */

 err = _nx_crypto_method_ecdsa_operation(NX_CRYPTO_SIGNATURE_GENERATE,

 handler,

 &crypto_method_ec_secp256,

 (uint8_t *) ECC_SECP256R1Keydata,

 sizeof(ECC_SECP256R1Keydata) << 3,

 (uint8_t *) ECC_SECP256R1Message,

 sizeof(ECC_SECP256R1Message),

 NX_CRYPTO_NULL,

 (uint8_t *) &extended_output,

 sizeof(extended_output),

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,920 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 sig_length = extended_output.nx_crypto_extended_output_actual_size;

 /* Verify the generated signature. */

 err = _nx_crypto_method_ecdsa_operation(NX_CRYPTO_SIGNATURE_VERIFY,

 handler,

 &crypto_method_ec_secp256,

 (uint8_t *) ECC_SECP256R1PublicKeydata,

 sizeof(ECC_SECP256R1PublicKeydata) << 3,

 (uint8_t *) ECC_SECP256R1Message,

 sizeof(ECC_SECP256R1Message),

 NX_CRYPTO_NULL,

 output,

 sig_length,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

}

ECDH Example

This is an example on using the NetX Crypto API to generate a shared secret using ECDH. A shared
secret is computed using known public key (from peer) and generated private key. Another shared
secret is computed using the generated public key and known private key (imported to mimic peer).
Both the shared secrets are checked to be the same.

extern NX_CRYPTO_METHOD crypto_method_ecdh;

/*Private key 59137e38152350b195c9718d39673d519838055ad908dd4757152fd8255c09bf */

const uint8_t ECC_SECP256R1Keydata_ecdh[] =

{

 0x59, 0x13, 0x7e, 0x38, 0x15, 0x23, 0x50, 0xb1, 0x95, 0xc9, 0x71, 0x8d, 0x39,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,921 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

0x67, 0x3d, 0x51, // NOLINT(readability-magic-numbers)

 0x98, 0x38, 0x05, 0x5a, 0xd9, 0x08, 0xdd, 0x47, 0x57, 0x15, 0x2f, 0xd8, 0x25,

0x5c, 0x09, 0xbf, // NOLINT(readability-magic-numbers)

};

/*Public key 4, a8c5fdce8b62c5ada598f141adb3b26cf254c280b2857a63d2ad783a73115f6b,

806e1aafec4af80a0d786b3de45375b517a7e5b51ffb2c356537c9e6ef227d4a*/

const uint8_t ECC_SECP256R1PublicKeydata_ecdh[] =

{

 0x04,

 0xa8,0xc5, 0xfd, 0xce, 0x8b, 0x62, 0xc5, 0xad, 0xa5, 0x98, 0xf1, 0x41, 0xad,

0xb3, 0xb2, 0x6c, // NOLINT(readability-magic-numbers)

 0xf2,0x54, 0xc2, 0x80, 0xb2, 0x85, 0x7a, 0x63, 0xd2, 0xad, 0x78, 0x3a, 0x73,

0x11, 0x5f, 0x6b, // NOLINT(readability-magic-numbers)

 0x80,0x6e, 0x1a, 0xaf, 0xec, 0x4a, 0xf8, 0x0a, 0x0d, 0x78, 0x6b, 0x3d, 0xe4,

0x53, 0x75, 0xb5, // NOLINT(readability-magic-numbers)

 0x17,0xa7, 0xe5, 0xb5, 0x1f, 0xfb, 0x2c, 0x35, 0x65, 0x37, 0xc9, 0xe6, 0xef,

0x22, 0x7d, 0x4a, // NOLINT(readability-magic-numbers)

};

void netx_secure_crypto_ecdh_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_ECDH)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_ECDH);

 uint32_t err = NX_CRYPTO_SUCCESS;

 uint8_t local_public_key[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 uint32_t local_public_key_len = 0;

 uint8_t shared_secret[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 uint32_t shared_secret_len = 0;

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 NX_CRYPTO_EXTENDED_OUTPUT extended_output;

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Call the crypto initialization function. */

 err = _nx_crypto_method_ecdh_init(&crypto_method_ecdh, NX_CRYPTO_NULL, 0,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,922 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

NX_CRYPTO_NULL, metadata, metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set EC curve. */

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_EC_CURVE_SET,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_ec_secp256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Generate local public key. This will generate a key pair.

 * The private wrapped key will be held by the ecdh context and the public key

(local_public_key)

 * will be returned for sharing with the peer.

 */

 extended_output.nx_crypto_extended_output_data = local_public_key;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof

(local_public_key);

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_SETUP,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,923 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 (uint8_t *) &extended_output,

 sizeof(extended_output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 local_public_key_len = extended_output.nx_crypto_extended_output_actual_size;

 /* Calculate shared secret using the test (peer's) public key. */

 extended_output.nx_crypto_extended_output_data = shared_secret;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof(shared_secret);

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_CALCULATE,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *)

ECC_SECP256R1PublicKeydata_ecdh,

 sizeof(ECC_SECP256R1PublicKeydata_ecdh),

 NX_CRYPTO_NULL,

 (uint8_t *) &extended_output,

 sizeof(extended_output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 shared_secret_len = extended_output.nx_crypto_extended_output_actual_size;

 err = _nx_crypto_method_ecdh_cleanup(metadata);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Verify. The below operations will be carried out by the peer. */

 /* Call the crypto initialization function. */

 err = _nx_crypto_method_ecdh_init(&crypto_method_ecdh, NX_CRYPTO_NULL, 0,

NX_CRYPTO_NULL, metadata, metadata_size);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,924 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 assert(NX_CRYPTO_SUCCESS == err);

 /* Set EC curve. */

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_EC_CURVE_SET,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 (uint8_t *) &crypto_method_ec_secp256,

 sizeof(NX_CRYPTO_METHOD *),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Import the test private key. The peer could generate its own key pair,

 * in this example a test private key is used for simplicity. */

 err =

 _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_KEY_PAIR_IMPORT,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 (uint8_t *) ECC_SECP256R1Keydata_ecdh,

 (NX_CRYPTO_KEY_SIZE)

(sizeof(ECC_SECP256R1Keydata_ecdh) << 3),

 (uint8_t *) ECC_SECP256R1PublicKeydata_ecdh,

 sizeof(ECC_SECP256R1PublicKeydata_ecdh),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,925 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Calculate the shared secret using the local public key generated above and shared

with the peer. */

 extended_output.nx_crypto_extended_output_data = output;

 extended_output.nx_crypto_extended_output_length_in_byte = sizeof(output);

 err = _nx_crypto_method_ecdh_operation(NX_CRYPTO_DH_CALCULATE,

 NX_CRYPTO_NULL,

 &crypto_method_ecdh,

 NX_CRYPTO_NULL,

 0,

 local_public_key,

 local_public_key_len,

 NX_CRYPTO_NULL,

 (uint8_t *) &extended_output,

 sizeof(extended_output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Validate the output. Both the parties must generate the same shared secret */

 err = (extended_output.nx_crypto_extended_output_actual_size !=

shared_secret_len);

 assert(NX_CRYPTO_SUCCESS == err);

 err = (uint32_t) memcmp(output, shared_secret,

extended_output.nx_crypto_extended_output_actual_size);

 assert(NX_CRYPTO_SUCCESS == err);

}

RSA Example

This is an example on using the NetX Crypto API to encrypt and decrypt input message data.

extern NX_CRYPTO_METHOD crypto_method_rsa;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,926 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

/* 00010001 */

const uint8_t public_e[] =

{

 0x00, 0x01, 0x00, 0x01,

};

/* 13FF7429F8E851F1079CCFCE3B3CD8606ABA8607AD85CBB3057501EBD58811F3C04823171F192C048E

1E883AF8CF958810151D3874AEDC8EC4F88D2065C581569F1E200852DD40B6DFD1652659085A9DD1D3B86

9EA3617D904D209DE156A60BA5929D02F16430273D10720C2F28D2B95684DCAA6B9F6A508EA2CBBC11B9F

3F30D6201EA6CFFBBF1C44255CEC58EE70DBC872442BCCF115D8F743557B5DE5F42DDDA6CEAE7977793CC

9D90ADFE65E520F5520B615CF3B8C2DC82D7AC75EDB1297CF38AB23A37EED18D4DD45D9AD051B26401BE8

6E8C8E53F9585A702D02F1B5BD65F6739DFA6BFFE560CA130B6F1D4779C556C06D9CD29FB72D8851904F9

CDEE9 */

const uint8_t private_e_2048[] =

{

 0x13, 0xFF, 0x74, 0x29, 0xF8, 0xE8, 0x51, 0xF1, 0x07, 0x9C, 0xCF, 0xCE, 0x3B,

0x3C, 0xD8, 0x60,

 0x6A, 0xBA, 0x86, 0x07, 0xAD, 0x85, 0xCB, 0xB3, 0x05, 0x75, 0x01, 0xEB, 0xD5,

0x88, 0x11, 0xF3,

 0xC0, 0x48, 0x23, 0x17, 0x1F, 0x19, 0x2C, 0x04, 0x8E, 0x1E, 0x88, 0x3A, 0xF8,

0xCF, 0x95, 0x88,

 0x10, 0x15, 0x1D, 0x38, 0x74, 0xAE, 0xDC, 0x8E, 0xC4, 0xF8, 0x8D, 0x20, 0x65,

0xC5, 0x81, 0x56,

 0x9F, 0x1E, 0x20, 0x08, 0x52, 0xDD, 0x40, 0xB6, 0xDF, 0xD1, 0x65, 0x26, 0x59,

0x08, 0x5A, 0x9D,

 0xD1, 0xD3, 0xB8, 0x69, 0xEA, 0x36, 0x17, 0xD9, 0x04, 0xD2, 0x09, 0xDE, 0x15,

0x6A, 0x60, 0xBA,

 0x59, 0x29, 0xD0, 0x2F, 0x16, 0x43, 0x02, 0x73, 0xD1, 0x07, 0x20, 0xC2, 0xF2,

0x8D, 0x2B, 0x95,

 0x68, 0x4D, 0xCA, 0xA6, 0xB9, 0xF6, 0xA5, 0x08, 0xEA, 0x2C, 0xBB, 0xC1, 0x1B,

0x9F, 0x3F, 0x30,

 0xD6, 0x20, 0x1E, 0xA6, 0xCF, 0xFB, 0xBF, 0x1C, 0x44, 0x25, 0x5C, 0xEC, 0x58,

0xEE, 0x70, 0xDB,

 0xC8, 0x72, 0x44, 0x2B, 0xCC, 0xF1, 0x15, 0xD8, 0xF7, 0x43, 0x55, 0x7B, 0x5D,

0xE5, 0xF4, 0x2D,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,927 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 0xDD, 0xA6, 0xCE, 0xAE, 0x79, 0x77, 0x79, 0x3C, 0xC9, 0xD9, 0x0A, 0xDF, 0xE6,

0x5E, 0x52, 0x0F,

 0x55, 0x20, 0xB6, 0x15, 0xCF, 0x3B, 0x8C, 0x2D, 0xC8, 0x2D, 0x7A, 0xC7, 0x5E,

0xDB, 0x12, 0x97,

 0xCF, 0x38, 0xAB, 0x23, 0xA3, 0x7E, 0xED, 0x18, 0xD4, 0xDD, 0x45, 0xD9, 0xAD,

0x05, 0x1B, 0x26,

 0x40, 0x1B, 0xE8, 0x6E, 0x8C, 0x8E, 0x53, 0xF9, 0x58, 0x5A, 0x70, 0x2D, 0x02,

0xF1, 0xB5, 0xBD,

 0x65, 0xF6, 0x73, 0x9D, 0xFA, 0x6B, 0xFF, 0xE5, 0x60, 0xCA, 0x13, 0x0B, 0x6F,

0x1D, 0x47, 0x79,

 0xC5, 0x56, 0xC0, 0x6D, 0x9C, 0xD2, 0x9F, 0xB7, 0x2D, 0x88, 0x51, 0x90, 0x4F,

0x9C, 0xDE, 0xE9,

};

/* E0F5059966A8AEC4BF7CDAC8AE2430BDF61C54D09CAB9963CBF9A52AC641E384B6431D3B6A9D181151

9A2904E1170A44446C80E7638A4AF2720A7654AB740D8A151FDD216F3D6933422FD9AC14AEDE9CCD021EA

79E46925F4B18FD1AF2C0073CFC3A69AC71A2B3673D08136CDB01C379892601C7C857D68018DAE924CB8C

D29377A14C752B92BAFF14C3A49725AE2FEFAAD4686D8A7D9F94EB11BF81E05BD5D2586526FB129E73539

F9223D496B2ACA23CCACC34D5B18533BD0F5815A76F94F4F55D965FE61599B44BD8FBAD35F42B612A4C4F

2765B2097A5C0090EA8166D9C6DA1E03B6119736B794600491C48433132D0F15D5DE3BB4270DF6BC9012B

74931 */

const uint8_t m_2048[] =

{

 0xE0, 0xF5, 0x05, 0x99, 0x66, 0xA8, 0xAE, 0xC4, 0xBF, 0x7C, 0xDA, 0xC8, 0xAE,

0x24, 0x30, 0xBD,

 0xF6, 0x1C, 0x54, 0xD0, 0x9C, 0xAB, 0x99, 0x63, 0xCB, 0xF9, 0xA5, 0x2A, 0xC6,

0x41, 0xE3, 0x84,

 0xB6, 0x43, 0x1D, 0x3B, 0x6A, 0x9D, 0x18, 0x11, 0x51, 0x9A, 0x29, 0x04, 0xE1,

0x17, 0x0A, 0x44,

 0x44, 0x6C, 0x80, 0xE7, 0x63, 0x8A, 0x4A, 0xF2, 0x72, 0x0A, 0x76, 0x54, 0xAB,

0x74, 0x0D, 0x8A,

 0x15, 0x1F, 0xDD, 0x21, 0x6F, 0x3D, 0x69, 0x33, 0x42, 0x2F, 0xD9, 0xAC, 0x14,

0xAE, 0xDE, 0x9C,

 0xCD, 0x02, 0x1E, 0xA7, 0x9E, 0x46, 0x92, 0x5F, 0x4B, 0x18, 0xFD, 0x1A, 0xF2,

0xC0, 0x07, 0x3C,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,928 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 0xFC, 0x3A, 0x69, 0xAC, 0x71, 0xA2, 0xB3, 0x67, 0x3D, 0x08, 0x13, 0x6C, 0xDB,

0x01, 0xC3, 0x79,

 0x89, 0x26, 0x01, 0xC7, 0xC8, 0x57, 0xD6, 0x80, 0x18, 0xDA, 0xE9, 0x24, 0xCB,

0x8C, 0xD2, 0x93,

 0x77, 0xA1, 0x4C, 0x75, 0x2B, 0x92, 0xBA, 0xFF, 0x14, 0xC3, 0xA4, 0x97, 0x25,

0xAE, 0x2F, 0xEF,

 0xAA, 0xD4, 0x68, 0x6D, 0x8A, 0x7D, 0x9F, 0x94, 0xEB, 0x11, 0xBF, 0x81, 0xE0,

0x5B, 0xD5, 0xD2,

 0x58, 0x65, 0x26, 0xFB, 0x12, 0x9E, 0x73, 0x53, 0x9F, 0x92, 0x23, 0xD4, 0x96,

0xB2, 0xAC, 0xA2,

 0x3C, 0xCA, 0xCC, 0x34, 0xD5, 0xB1, 0x85, 0x33, 0xBD, 0x0F, 0x58, 0x15, 0xA7,

0x6F, 0x94, 0xF4,

 0xF5, 0x5D, 0x96, 0x5F, 0xE6, 0x15, 0x99, 0xB4, 0x4B, 0xD8, 0xFB, 0xAD, 0x35,

0xF4, 0x2B, 0x61,

 0x2A, 0x4C, 0x4F, 0x27, 0x65, 0xB2, 0x09, 0x7A, 0x5C, 0x00, 0x90, 0xEA, 0x81,

0x66, 0xD9, 0xC6,

 0xDA, 0x1E, 0x03, 0xB6, 0x11, 0x97, 0x36, 0xB7, 0x94, 0x60, 0x04, 0x91, 0xC4,

0x84, 0x33, 0x13,

 0x2D, 0x0F, 0x15, 0xD5, 0xDE, 0x3B, 0xB4, 0x27, 0x0D, 0xF6, 0xBC, 0x90, 0x12,

0xB7, 0x49, 0x31,

};

/* 551C2E268F7ED44D0E8B063F5B2B510CB809F53BD54E9956971E243B2363DA123C29AB4A009EDE1FCE

C54625971A4E3490F3EA398BF7386AAC34720E43FB0C795445B520AEE4D7694EE1474F60F77E1B5F09FE2

ED004333658D212122F040322D1564512A1540400F27E18049A762A5EDC9F072CA4F49F408252D42B31BC

35523373740E90DDDA6A8CE7865EEB7C694A662C74412406AB190FE0435DA2551F0C24A48939DDA58A023

9706D40B4977473689DC36CE5A4DF4EF892816CBDE2780D9389B7384674C93B1DDAF728F292B5671679FC

7175AC0A3B2197B809E7CF410417010F3B1316D10D82466C62F3A01667B70A714E0499400E255D4C39EA7

DE55C */

const uint8_t plain_2048[] =

{

 0x55, 0x1C, 0x2E, 0x26, 0x8F, 0x7E, 0xD4, 0x4D, 0x0E, 0x8B, 0x06, 0x3F, 0x5B,

0x2B, 0x51, 0x0C,

 0xB8, 0x09, 0xF5, 0x3B, 0xD5, 0x4E, 0x99, 0x56, 0x97, 0x1E, 0x24, 0x3B, 0x23,

0x63, 0xDA, 0x12,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,929 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 0x3C, 0x29, 0xAB, 0x4A, 0x00, 0x9E, 0xDE, 0x1F, 0xCE, 0xC5, 0x46, 0x25, 0x97,

0x1A, 0x4E, 0x34,

 0x90, 0xF3, 0xEA, 0x39, 0x8B, 0xF7, 0x38, 0x6A, 0xAC, 0x34, 0x72, 0x0E, 0x43,

0xFB, 0x0C, 0x79,

 0x54, 0x45, 0xB5, 0x20, 0xAE, 0xE4, 0xD7, 0x69, 0x4E, 0xE1, 0x47, 0x4F, 0x60,

0xF7, 0x7E, 0x1B,

 0x5F, 0x09, 0xFE, 0x2E, 0xD0, 0x04, 0x33, 0x36, 0x58, 0xD2, 0x12, 0x12, 0x2F,

0x04, 0x03, 0x22,

 0xD1, 0x56, 0x45, 0x12, 0xA1, 0x54, 0x04, 0x00, 0xF2, 0x7E, 0x18, 0x04, 0x9A,

0x76, 0x2A, 0x5E,

 0xDC, 0x9F, 0x07, 0x2C, 0xA4, 0xF4, 0x9F, 0x40, 0x82, 0x52, 0xD4, 0x2B, 0x31,

0xBC, 0x35, 0x52,

 0x33, 0x73, 0x74, 0x0E, 0x90, 0xDD, 0xDA, 0x6A, 0x8C, 0xE7, 0x86, 0x5E, 0xEB,

0x7C, 0x69, 0x4A,

 0x66, 0x2C, 0x74, 0x41, 0x24, 0x06, 0xAB, 0x19, 0x0F, 0xE0, 0x43, 0x5D, 0xA2,

0x55, 0x1F, 0x0C,

 0x24, 0xA4, 0x89, 0x39, 0xDD, 0xA5, 0x8A, 0x02, 0x39, 0x70, 0x6D, 0x40, 0xB4,

0x97, 0x74, 0x73,

 0x68, 0x9D, 0xC3, 0x6C, 0xE5, 0xA4, 0xDF, 0x4E, 0xF8, 0x92, 0x81, 0x6C, 0xBD,

0xE2, 0x78, 0x0D,

 0x93, 0x89, 0xB7, 0x38, 0x46, 0x74, 0xC9, 0x3B, 0x1D, 0xDA, 0xF7, 0x28, 0xF2,

0x92, 0xB5, 0x67,

 0x16, 0x79, 0xFC, 0x71, 0x75, 0xAC, 0x0A, 0x3B, 0x21, 0x97, 0xB8, 0x09, 0xE7,

0xCF, 0x41, 0x04,

 0x17, 0x01, 0x0F, 0x3B, 0x13, 0x16, 0xD1, 0x0D, 0x82, 0x46, 0x6C, 0x62, 0xF3,

0xA0, 0x16, 0x67,

 0xB7, 0x0A, 0x71, 0x4E, 0x04, 0x99, 0x40, 0x0E, 0x25, 0x5D, 0x4C, 0x39, 0xEA,

0x7D, 0xE5, 0x5C,

};

/* 10F904E071338569EC131401A7869F42F3BCAE252B5D3C8755FD24D47997A9CD4221D992B2871E0528

3B98841FC5C379C5D0E35B3938279B344299C3CF1566E0C994D0A9013AF64174F1379A4B5E4E9DE57491F

3078F6D10011EA55535D0763E538662C9996F4FCF8B64A768685AA417ADB6978743D3D1F513CF143DD6D3

83AD6357728A88928D39E27EA4D0B2AF92FC7F63875F9D6A70FAE7993C1FF04DF9A2F99216874BC123D4B

7DA7E7E8974CFC10ACF0C7BC8747526A8D16791F969082EA9B0C36D77B67C37B325682D74178E4234D52D

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,930 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

5635273301A6CC35E315AE74D659B1433576DAAE6780FA39E0550D971F2CB5817CAAFC24B5220E21C8CEE

E85DD */

const uint8_t secret_2048[] =

{

 0x10, 0xF9, 0x04, 0xE0, 0x71, 0x33, 0x85, 0x69, 0xEC, 0x13, 0x14, 0x01, 0xA7,

0x86, 0x9F, 0x42,

 0xF3, 0xBC, 0xAE, 0x25, 0x2B, 0x5D, 0x3C, 0x87, 0x55, 0xFD, 0x24, 0xD4, 0x79,

0x97, 0xA9, 0xCD,

 0x42, 0x21, 0xD9, 0x92, 0xB2, 0x87, 0x1E, 0x05, 0x28, 0x3B, 0x98, 0x84, 0x1F,

0xC5, 0xC3, 0x79,

 0xC5, 0xD0, 0xE3, 0x5B, 0x39, 0x38, 0x27, 0x9B, 0x34, 0x42, 0x99, 0xC3, 0xCF,

0x15, 0x66, 0xE0,

 0xC9, 0x94, 0xD0, 0xA9, 0x01, 0x3A, 0xF6, 0x41, 0x74, 0xF1, 0x37, 0x9A, 0x4B,

0x5E, 0x4E, 0x9D,

 0xE5, 0x74, 0x91, 0xF3, 0x07, 0x8F, 0x6D, 0x10, 0x01, 0x1E, 0xA5, 0x55, 0x35,

0xD0, 0x76, 0x3E,

 0x53, 0x86, 0x62, 0xC9, 0x99, 0x6F, 0x4F, 0xCF, 0x8B, 0x64, 0xA7, 0x68, 0x68,

0x5A, 0xA4, 0x17,

 0xAD, 0xB6, 0x97, 0x87, 0x43, 0xD3, 0xD1, 0xF5, 0x13, 0xCF, 0x14, 0x3D, 0xD6,

0xD3, 0x83, 0xAD,

 0x63, 0x57, 0x72, 0x8A, 0x88, 0x92, 0x8D, 0x39, 0xE2, 0x7E, 0xA4, 0xD0, 0xB2,

0xAF, 0x92, 0xFC,

 0x7F, 0x63, 0x87, 0x5F, 0x9D, 0x6A, 0x70, 0xFA, 0xE7, 0x99, 0x3C, 0x1F, 0xF0,

0x4D, 0xF9, 0xA2,

 0xF9, 0x92, 0x16, 0x87, 0x4B, 0xC1, 0x23, 0xD4, 0xB7, 0xDA, 0x7E, 0x7E, 0x89,

0x74, 0xCF, 0xC1,

 0x0A, 0xCF, 0x0C, 0x7B, 0xC8, 0x74, 0x75, 0x26, 0xA8, 0xD1, 0x67, 0x91, 0xF9,

0x69, 0x08, 0x2E,

 0xA9, 0xB0, 0xC3, 0x6D, 0x77, 0xB6, 0x7C, 0x37, 0xB3, 0x25, 0x68, 0x2D, 0x74,

0x17, 0x8E, 0x42,

 0x34, 0xD5, 0x2D, 0x56, 0x35, 0x27, 0x33, 0x01, 0xA6, 0xCC, 0x35, 0xE3, 0x15,

0xAE, 0x74, 0xD6,

 0x59, 0xB1, 0x43, 0x35, 0x76, 0xDA, 0xAE, 0x67, 0x80, 0xFA, 0x39, 0xE0, 0x55,

0x0D, 0x97, 0x1F,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,931 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 0x2C, 0xB5, 0x81, 0x7C, 0xAA, 0xFC, 0x24, 0xB5, 0x22, 0x0E, 0x21, 0xC8, 0xCE,

0xEE, 0x85, 0xDD,

};

void netx_secure_crypto_rsa_example (void)

{

 uint8_t metadata[sizeof(NX_CRYPTO_RSA)];

 uint32_t metadata_size = sizeof(NX_CRYPTO_RSA);

 uint32_t err = NX_CRYPTO_SUCCESS;

 void * handler = NX_CRYPTO_NULL;

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_OUTPUT_BUFFER_SIZE] = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Encryption. */

 err =

 _nx_crypto_method_rsa_init(&crypto_method_rsa,

 (uint8_t *) m_2048,

RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(m_2048)),

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 err = _nx_crypto_method_rsa_operation(NX_CRYPTO_ENCRYPT,

 handler,

 &crypto_method_rsa,

 (uint8_t *) public_e,

 RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(public_e)),

 (uint8_t *) plain_2048,

 sizeof(m_2048),

 NX_CRYPTO_NULL,

 output,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,932 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 sizeof(m_2048),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 err = (uint32_t) memcmp(output, secret_2048, sizeof(m_2048));

 assert(0 == err);

 err = _nx_crypto_method_rsa_cleanup(metadata);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Decryption. */

 memset(output, 0, sizeof(output));

 err =

 _nx_crypto_method_rsa_init(&crypto_method_rsa,

 (uint8_t *) m_2048,

RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(m_2048)),

 &handler,

 metadata,

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 err = _nx_crypto_method_rsa_operation(NX_CRYPTO_DECRYPT,

 handler,

 &crypto_method_rsa,

 (uint8_t *) private_e_2048,

 RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(private_e_2048)),

 (uint8_t *) secret_2048,

 sizeof(m_2048),

 NX_CRYPTO_NULL,

 output,

 sizeof(m_2048),

 metadata,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,933 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 err = (uint32_t) memcmp(output, plain_2048, sizeof(m_2048));

 assert(0 == err);

}

RSA PKCS1V1.5 Example

This is an example on using the NetX Crypto API to sign and verify input message data. The plain
input message is PKCS1V1.5 encoded before signature generation.

PKCS1V15 Example

HMAC SHA256 Example

This is an example on using the HMAC with SHA256 hash using the NetX Crypto API.

extern NX_CRYPTO_METHOD crypto_method_hmac_sha256;

/*

C4DA057B81EA740B697FFE1B6EB8591356BA6D5EA7F1B96E4F048030449ACD64E4BB271CB4DCF94937E6

*/

const uint8_t key_256[] =

{

 0xC4, 0xDA, 0x05, 0x7B, 0x81, 0xEA, 0x74, 0x0B, 0x69, 0x7F, 0xFE, 0x1B, 0x6E,

0xB8, 0x59, 0x13,

 0x56, 0xBA, 0x6D, 0x5E, 0xA7, 0xF1, 0xB9, 0x6E, 0x4F, 0x04, 0x80, 0x30, 0x44,

0x9A, 0xCD, 0x64,

 0xE4, 0xBB, 0x27, 0x1C, 0xB4, 0xDC, 0xF9, 0x49, 0x37, 0xE6,

};

/* BDACB6555D294D3AFFC245520116062D98F88D64276BDA593492AE71CFE16E46CABC287CB00DF21D96

066D5856C2224EEF609D4896302540078F3A0EE325F5337E */

const uint8_t plain_256[] =

{

 0xBD, 0xAC, 0xB6, 0x55, 0x5D, 0x29, 0x4D, 0x3A, 0xFF, 0xC2, 0x45, 0x52, 0x01,

0x16, 0x06, 0x2D,

 0x98, 0xF8, 0x8D, 0x64, 0x27, 0x6B, 0xDA, 0x59, 0x34, 0x92, 0xAE, 0x71, 0xCF,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,934 / 2,794

https://github.com/azure-rtos/netxduo/blob/master/crypto_libraries/src/nx_crypto_method_self_test_pkcs1.c

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

0xE1, 0x6E, 0x46,

 0xCA, 0xBC, 0x28, 0x7C, 0xB0, 0x0D, 0xF2, 0x1D, 0x96, 0x06, 0x6D, 0x58, 0x56,

0xC2, 0x22, 0x4E,

 0xEF, 0x60, 0x9D, 0x48, 0x96, 0x30, 0x25, 0x40, 0x07, 0x8F, 0x3A, 0x0E, 0xE3,

0x25, 0xF5, 0x33,

 0x7E,

};

/* 940F986AC891C9000B72EF0CEC69AB66AF002E3A34EB8A3A5F94484E45C0396C */

const uint8_t secret_256[] =

{

 0x94, 0x0F, 0x98, 0x6A, 0xC8, 0x91, 0xC9, 0x00, 0x0B, 0x72, 0xEF, 0x0C, 0xEC,

0x69, 0xAB, 0x66,

 0xAF, 0x00, 0x2E, 0x3A, 0x34, 0xEB, 0x8A, 0x3A, 0x5F, 0x94, 0x48, 0x4E, 0x45,

0xC0, 0x39, 0x6C,

};

void netx_secure_crypto_hmac_sha256_example (void)

{

 uint8_t output[RM_NETX_SECURE_CRYPTO_EXAMPLE_SHA256_HASH_SIZE_BYTES] = {0};

 uint8_t metadata[sizeof(NX_CRYPTO_SHA256_HMAC)] = {0};

 uint32_t metadata_size = sizeof(NX_CRYPTO_SHA256_HMAC);

 void * handler = NX_CRYPTO_NULL;

 uint32_t err = NX_CRYPTO_SUCCESS;

 /* Setup the platform; initialize the SCE and the TRNG */

 err = _nx_crypto_initialize();

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 init */

 err = _nx_crypto_method_hmac_sha256_init(&crypto_method_hmac_sha256,

 (UCHAR *) key_256,

 RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(key_256)),

 &handler,

 metadata,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,935 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 metadata_size);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 operation - NX_CRYPTO_HASH_INITIALIZE */

 err =

 _nx_crypto_method_hmac_sha256_operation(NX_CRYPTO_HASH_INITIALIZE,

 handler,

 &crypto_method_hmac_sha256,

 (UCHAR *) key_256,

RM_NETX_SECURE_CRYPTO_BYTES_TO_BITS(sizeof(key_256)),

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 operation - NX_CRYPTO_HASH_UPDATE */

 err = _nx_crypto_method_hmac_sha256_operation(NX_CRYPTO_HASH_UPDATE,

 handler,

 &crypto_method_hmac_sha256,

 NX_CRYPTO_NULL,

 0,

 (UCHAR *) plain_256,

 sizeof(plain_256),

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL,

 0,

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,936 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Nx Crypto HMAC-SHA256 operation - NX_CRYPTO_HASH_CALCULATE */

 err = _nx_crypto_method_hmac_sha256_operation(NX_CRYPTO_HASH_CALCULATE,

 handler,

 &crypto_method_hmac_sha256,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 0,

 NX_CRYPTO_NULL,

 (UCHAR *) output,

 sizeof(output),

 metadata,

 metadata_size,

 NX_CRYPTO_NULL,

 NX_CRYPTO_NULL);

 assert(NX_CRYPTO_SUCCESS == err);

 /* Ensure generated HMAC-SHA256 mac matches the expected mac */

 err = (uint32_t) memcmp(output, secret_256, sizeof(secret_256));

 assert(0 == err);

}

4.2.95 Azure RTOS NetX Duo Ether Driver (rm_netxduo_ether)
Modules

Overview
This module provides a NetX Duo driver that is implemented using the Ethernet Interface.

Please refer to the NetXDuo documentation for further details.

Features

Packet Types Supported

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,937 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/netx-duo/overview-netx-duo

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo Ether Driver (rm_netxduo_ether)

ARP
IPv4
IPv6

Link status callback
Configurable IP MTU

Configuration

Configurations for Middleware > Networking > NetX Duo Ethernet Driver

Configuration Options Default Description

Name Name must be a valid
C symbol

g_netxduo_ether_0 Module name.

IP MTU Value must be in the
range [576, 1500]
bytes.

1500 IP MTU

Usage Notes
Calculating the Packet Size for an IP instance

In order to ensure that there is enough space to store an entire Ethernet frame, the packet pool used
for receiving packets must have a payload size that is 32 bytes larger than the configured
ether_cfg_t::ether_buffer_size. The extra 32 bytes is needed in order to ensure that the allocated
packets are properly aligned to 32 bytes.

ether_cfg_t::ether_buffer_size is calcualted from the IP MTU using the following formula:

ceil((rm_netxduo_ether_cfg_t::mtu + Ethernet Header (14) + Padding Bytes (2)) / 32) * 32

Examples
Basic Example

This is a basic example of minimal use of the NetX Duo Ether Driver in an application.

#define NETXDUO_EXAMPLE_IP_STACK_SIZE (2048U)

#define NETXDUO_EXAMPLE_ARP_CACHE_SIZE (2048U)

#define NETXDUO_EXAMPLE_PACKET_SIZE (1568U)

#define NETXDUO_EXAMPLE_PACKET_NUM (100U)

#define NETXDUO_EXAMPLE_PACKET_POOL_SIZE ((sizeof(NX_PACKET) +

NETXDUO_EXAMPLE_PACKET_SIZE) * \

 NETXDUO_EXAMPLE_PACKET_NUM)

static NX_IP g_ip;

static NX_PACKET_POOL g_packet_pool;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,938 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo Ether Driver (rm_netxduo_ether)

static uint8_t g_ip_stack_memory[NETXDUO_EXAMPLE_IP_STACK_SIZE]

BSP_ALIGN_VARIABLE(4);

static uint8_t g_packet_pool_memory[NETXDUO_EXAMPLE_PACKET_POOL_SIZE]

BSP_ALIGN_VARIABLE(4);

static uint8_t g_ip_arp_cache_memory[NETXDUO_EXAMPLE_ARP_CACHE_SIZE]

BSP_ALIGN_VARIABLE(4);

static void rm_netxduo_ether0 (NX_IP_DRIVER * driver_req_ptr)

{

 /* Pass the driver request and ethernet driver configuration to the NetX Duo Ether

Driver. */

 rm_netxduo_ether(driver_req_ptr, &g_netxduo_ether_instance);

}

void rm_netxduo_ether_example ()

{

 UINT status;

 nx_system_initialize();

 /* Create a packet pool for the IP instance. */

 status = nx_packet_pool_create(&g_packet_pool,

 "Packet Pool",

 NETXDUO_EXAMPLE_PACKET_SIZE,

 &g_packet_pool_memory[0],

 NETXDUO_EXAMPLE_PACKET_POOL_SIZE);

 assert(NX_SUCCESS == status);

 /* Create an IP instance using the rm_netxduo_ether driver and packet pool instance.

*/

 status = nx_ip_create(&g_ip,

 "IP Instance",

 IP_ADDRESS(192, 168, 1, 2),

 IP_ADDRESS(255, 255, 255, 0),

 &g_packet_pool,

 rm_netxduo_ether0,

 &g_ip_stack_memory[0],

 sizeof(g_ip_stack_memory),

 0);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,939 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo Ether Driver (rm_netxduo_ether)

 assert(NX_SUCCESS == status);

 /* Enable all modules that are required by the application. */

 status = nx_arp_enable(&g_ip, g_ip_arp_cache_memory, sizeof

(g_ip_arp_cache_memory));

 assert(NX_SUCCESS == status);

 status = nx_tcp_enable(&g_ip);

 assert(NX_SUCCESS == status);

 status = nx_icmp_enable(&g_ip);

 assert(NX_SUCCESS == status);

}

4.2.96 Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)
Modules

Overview
This module provides a NetX Duo driver that is implemented using the rm_wifi_onchip_silex driver.

Please refer to the NetXDuo documentation for further details.

Features

Packet Types Supported
TCP/IPv4

Configurable IP MTU

Configuration

Build Time Configurations for rm_netxduo_wifi

The following build time configurations are defined in fsp_cfg/middleware/rm_netxduo_wifi_cfg.h:

Configuration Options Default Description

IP MTU (bytes) Value must be in the
range [576, 1500]
bytes.

1500 IP MTU

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,940 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/netx-duo/overview-netx-duo

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)

Usage Notes
Connecting to a Wireless Network

NetX Duo does not support connecting to a wireless network directly and instead the driver functions
should be called directly to establish a connection.

rm_wifi_onchip_silex_open should be called to initialize the WiFi module driver.
rm_wifi_onchip_silex_scan should be used to scan for access points.
rm_wifi_onchip_silex_connect should be used before opening a NetX IP instance in order to
connect it to a network.

Unsupported NetX Duo Features

TCP client sockets are the sole feature supported by both the hardware TCP/IP feature in NetX Duo
and the WiFi driver as well, so any protocol that doesn't run over TCP will be unsupported.

DNS is not supported. The user can preform a DNS lookup by calling
rm_wifi_onchip_silex_dns_query.
ICMP is not supported. The user can perform a ping by calling rm_wifi_onchip_silex_ping.
ARP is not supported. This should be handled directly by the WiFi module.
UDP is not supported. The WiFi module driver does not support UDP sockets.
SNTP is not supported. See the public APIs for communication with time servers Wifi
Middleware (rm_wifi_onchip_silex).

Examples
Basic Example

This is a basic example of minimal use of the NetX Duo WiFi Driver in an application.

#define NETXDUO_EXAMPLE_IP_STACK_SIZE (2048U)

#define NETXDUO_EXAMPLE_ARP_CACHE_SIZE (2048U)

#define NETXDUO_EXAMPLE_PACKET_SIZE (1568U)

#define NETXDUO_EXAMPLE_PACKET_NUM (100U)

#define NETXDUO_EXAMPLE_PACKET_POOL_SIZE ((sizeof(NX_PACKET) +

NETXDUO_EXAMPLE_PACKET_SIZE) * \

 NETXDUO_EXAMPLE_PACKET_NUM)

#define NETXDUO_EXAMPLE_SSID "ssidName"

#define NETXDUO_EXAMPLE_PASSWORD "password"

static NX_IP g_ip0;

static NX_PACKET_POOL g_packet_pool0;

static uint8_t g_ip0_stack_memory[NETXDUO_EXAMPLE_IP_STACK_SIZE]

BSP_ALIGN_VARIABLE(4);

static uint8_t g_packet_pool0_pool_memory[NETXDUO_EXAMPLE_PACKET_POOL_SIZE]

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,941 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)

BSP_ALIGN_VARIABLE(4);

extern wifi_onchip_silex_cfg_t g_wifi_onchip_silex_cfg;

void rm_netxduo_wifi_example ()

{

 UINT status;

 fsp_err_t err;

 nx_system_initialize();

 /* Open WiFi module */

 err = rm_wifi_onchip_silex_open(&g_wifi_onchip_silex_cfg);

 assert(FSP_SUCCESS == err);

 /* Connect to desired AP */

 err = rm_wifi_onchip_silex_connect(NETXDUO_EXAMPLE_SSID, eWiFiSecurityWPA2,

NETXDUO_EXAMPLE_PASSWORD);

 assert(FSP_SUCCESS == err);

 /* Create a packet pool for the IP instance. */

 status = nx_packet_pool_create(&g_packet_pool0,

 "Packet Pool",

 NETXDUO_EXAMPLE_PACKET_SIZE,

 &g_packet_pool0_pool_memory[0],

 NETXDUO_EXAMPLE_PACKET_POOL_SIZE);

 assert(NX_SUCCESS == status);

 /* Create an IP instance using the rm_netxduo_wifi driver and packet pool instance.

*/

 status = nx_ip_create(&g_ip0,

 "IP Instance",

 IP_ADDRESS(192, 168, 1, 2),

 IP_ADDRESS(255, 255, 255, 0),

 &g_packet_pool0,

 rm_netxduo_wifi,

 &g_ip0_stack_memory[0],

 sizeof(g_ip0_stack_memory),

 0);

 assert(NX_SUCCESS == status);

 /* Enable all modules that are required by the application. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,942 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)

 status = nx_tcp_enable(&g_ip0);

 assert(NX_SUCCESS == status);

}

TLS Example

This is a basic example of connecting a TLS socket.

#define NETXDUO_EXAMPLE_CRYPTO_METADATA_BUFFER_SIZE (18000U)

#define NETXDUO_EXAMPLE_TLS_PACKET_REASSEMBLY_BUFFER_SIZE (4000U)

#define NETXDUO_EXAMPLE_PORT (3005U)

#define NETXDUO_EXAMPLE_SERVER_PORT (9050U)

#define NETXDUO_EXAMPLE_IP IP_ADDRESS(1, 2, 3, 5)

NX_SECURE_TLS_CRYPTO g_nx_crypto_tls_test_ciphers;

static UCHAR g_tls_crypto_metadata[NETXDUO_EXAMPLE_CRYPTO_METADATA_BUFFER_SIZE];

static UCHAR g_tls_packet_buffer[NETXDUO_EXAMPLE_TLS_PACKET_REASSEMBLY_BUFFER_SIZE];

static NX_SECURE_X509_CERT g_certificate;

extern const UCHAR g_trusted_ca_data; // User trusted certificates

extern USHORT g_trusted_ca_length;

void rm_netxduo_wifi_tls_example ()

{

 UINT status;

 fsp_err_t err;

 NX_TCP_SOCKET * p_socket;

 NX_SECURE_TLS_SESSION tls_session;

 nx_system_initialize();

 /* Initialize NetX Crypto */

 status = nx_crypto_initialize();

 assert(NX_SUCCESS == status);

 /* Open WiFi module */

 err = rm_wifi_onchip_silex_open(&g_wifi_onchip_silex_cfg);

 assert(FSP_SUCCESS == err);

 /* Connect to desired AP */

 err = rm_wifi_onchip_silex_connect(NETXDUO_EXAMPLE_SSID, eWiFiSecurityWPA2,

NETXDUO_EXAMPLE_PASSWORD);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,943 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)

 assert(FSP_SUCCESS == err);

 /* Create a packet pool for the IP instance. */

 status = nx_packet_pool_create(&g_packet_pool0,

 "Packet Pool",

 NETXDUO_EXAMPLE_PACKET_SIZE,

 &g_packet_pool0_pool_memory[0],

 NETXDUO_EXAMPLE_PACKET_POOL_SIZE);

 assert(NX_SUCCESS == status);

 /* Create an IP instance using the rm_netxduo_wifi driver and packet pool instance.

*/

 status = nx_ip_create(&g_ip0,

 "IP Instance",

 IP_ADDRESS(192, 168, 1, 2),

 IP_ADDRESS(255, 255, 255, 0),

 &g_packet_pool0,

 rm_netxduo_wifi,

 &g_ip0_stack_memory[0],

 sizeof(g_ip0_stack_memory),

 0);

 assert(NX_SUCCESS == status);

 /* Enable all modules that are required by the application. */

 status = nx_tcp_enable(&g_ip0);

 assert(NX_SUCCESS == status);

 /* Initialize the NetX Secure TLS system. */

 nx_secure_tls_initialize();

 /* Create a TCP socket to use for the TLS session. */

 status = nx_tcp_socket_create(&g_ip0,

 p_socket,

 "TLS Client Socket",

 NX_IP_NORMAL,

 NX_FRAGMENT_OKAY,

 NX_IP_TIME_TO_LIVE,

 1024 * 4,

 NX_NULL,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,944 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)

 NX_NULL);

 assert(NX_SUCCESS == status);

 /* Create a TLS session for our socket. This sets up the TLS session object for

 * later use */

 status =

 nx_secure_tls_session_create(&tls_session,

 &g_nx_crypto_tls_test_ciphers,

 g_tls_crypto_metadata,

 NETXDUO_EXAMPLE_CRYPTO_METADATA_BUFFER_SIZE);

 assert(NX_SUCCESS == status);

 /* Set the packet reassembly buffer for this TLS session. */

 status = nx_secure_tls_session_packet_buffer_set(&tls_session,

 g_tls_packet_buffer,

NETXDUO_EXAMPLE_TLS_PACKET_REASSEMBLY_BUFFER_SIZE);

 assert(NX_SUCCESS == status);

 /* Initialize an X.509 certificate with the CA root certificate data. */

 status = nx_secure_x509_certificate_initialize(&g_certificate,

 (UCHAR *) g_trusted_ca_data,

 g_trusted_ca_length,

 NX_NULL,

 0,

 NX_NULL,

 0,

 NX_SECURE_X509_KEY_TYPE_NONE);

 assert(NX_SUCCESS == status);

 /* Add the initialized certificate as a trusted root certificate. */

 status = nx_secure_tls_trusted_certificate_add(&tls_session, &g_certificate);

 assert(NX_SUCCESS == status);

 /* Bind the socket to a port. */

 status = nx_tcp_client_socket_bind(p_socket, NETXDUO_EXAMPLE_PORT,

NX_WAIT_FOREVER);

 assert(NX_SUCCESS == status);

 /* Connect TCP socket */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,945 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)

 status = nx_tcp_client_socket_connect(p_socket, NETXDUO_EXAMPLE_IP,

NETXDUO_EXAMPLE_SERVER_PORT, NX_WAIT_FOREVER);

 assert(NX_SUCCESS == status);

 /* Start the TLS Session using the connected TCP socket. This function will

 * ascertain from the TCP socket state that this is a TLS Client session. */

 status = nx_secure_tls_session_start(&tls_session, p_socket, NX_WAIT_FOREVER);

 assert(NX_SUCCESS == status);

}

4.2.97 Crypto Middleware (rm_psa_crypto)
Modules

Functions

fsp_err_t RM_PSA_CRYPTO_TRNG_Read (uint8_t *const p_rngbuf, uint32_t
num_req_bytes, uint32_t *p_num_gen_bytes)

 Reads requested length of random data from the TRNG. Generate
nbytes of random bytes and store them in p_rngbuf buffer. More...

int mbedtls_platform_setup (mbedtls_platform_context *ctx)

void mbedtls_platform_teardown (mbedtls_platform_context *ctx)

Detailed Description

Hardware acceleration for the mbedCrypto implementation of the ARM PSA Crypto API.

Overview
Note

The PSA Crypto module does not provide any interfaces to the user. This release uses the Mbed TLSversion
2.24.0 which conforms to the PSA Crypto API 1.0 specification. Consult the ARM documentation at
https://armmbed.github.io/mbed-crypto/psa/#application-programming-interface for further information. FSP
3.0 onward adopts a change by ARM where mbedCrypto has been integrated back to MbedTLS and the term
mbedCrypto has been deprecated. The mbedCrypto term in FSP now refers to the crypto portion of the MbedTLS
module.

HW Overview

Crypto Peripheral version Devices

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,946 / 2,794

https://armmbed.github.io/mbed-crypto/psa/#application-programming-interface

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

SCE9 RA6M4, RA4M3, RA4M2, RA6M5

SCE7 RA6M3, RA6M2, RA6M1, RA6T1

SCE5 RA4W1, RA4M1

AES Engine RA2A1, RA2E1, RA2E2, RA2L1

Features

The PSA_Crypto module provides hardware support for the following PSA Crypto operations

SHA256 calculation
SHA224 calculation

MAC Operations
AES

Keybits - 128, 192, 256
Plain-Text Key Generation
Wrapped Key Generation
Encryption and Decryption with no padding and with PKCS7 padding.
CBC, CTR, CCM and GCM modes
MAC operations
Export and Import for Plaintext and Wrapped keys

ECC
Curves:

SECP256R1
SECP256K1
Brainpool256R1
SECP384R1
Brainpool384R1

Plain-Text Key Generation (Unavailable on SCE9)
Wrapped Key Generation
Signing and Verification
Export and Import for Plaintext and Wrapped keys
ECDH Support

RSA
Keybits - 2048. Verification only for 3072 and 4096 bits
Plain-Text Key Generation (Unavailable on SCE9)
Wrapped Key Generation
Signature Generation
Verification
Encryption and Decryption with PKCS1V15 and OAEP padding
Export and Import for Plaintext and Wrapped keys

Random number generation
Persistent Key Storage

Configuration
Build Time Configurations for mbedCrypto

The following build time configurations are defined in arm/mbedtls/config.h:

Configuration Options Default Description

Hardware Acceleration
> Key Format > AES

MCU Specific Options Select AES key formats
used

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,947 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Hardware Acceleration
> Key Format > ECC

MCU Specific Options Select ECC key formats
used

Hardware Acceleration
> Key Format > RSA

MCU Specific Options Select RSA key formats
used

Hardware Acceleration
> Hash > SHA256/224

MCU Specific Options Defines
MBEDTLS_SHA256_ALT
and MBEDTLS_SHA256_
PROCESS_ALT.

Hardware Acceleration
> Cipher > AES

MCU Specific Options Defines
MBEDTLS_AES_ALT, MB
EDTLS_AES_SETKEY_EN
C_ALT, MBEDTLS_AES_
SETKEY_DEC_ALT, MBE
DTLS_AES_ENCRYPT_AL
T and MBEDTLS_AES_D
ECRYPT_ALT

Hardware Acceleration
> Public Key
Cryptography (PKC) >
ECC

MCU Specific Options Defines
MBEDTLS_ECP_ALT

Hardware Acceleration
> Public Key
Cryptography (PKC) >
ECDSA

MCU Specific Options Defines MBEDTLS_ECD
SA_SIGN_ALT and MBE
DTLS_ECDSA_VERIFY_A
LT

Hardware Acceleration
> Public Key
Cryptography (PKC) >
RSA

MCU Specific Options Defines
MBEDTLS_RSA_ALT.

Hardware Acceleration
> Public Key
Cryptography (PKC) >
RSA 3072 Verify

MCU Specific Options Enables RSA 3072
Verify.

Hardware Acceleration
> Public Key
Cryptography (PKC) >
RSA 4096 Verify

MCU Specific Options Enables RSA 4096
Verify.

Hardware Acceleration
> TRNG

Enabled Enabled Defines MBEDTLS_ENT
ROPY_HARDWARE_ALT.

Hardware Acceleration
> Secure Crypto
Engine Initialization

Enabled Enabled MBEDTLS_PLATFORM_S
ETUP_TEARDOWN_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_E
XIT_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_E
XIT_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_T
IME_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_T
IME_ALT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,948 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Platform > Alternate >
MBEDTLS_PLATFORM_F
PRINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_F
PRINTF_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_P
RINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_P
RINTF_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_S
NPRINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
NPRINTF_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_V
SNPRINTF_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_V
SNPRINTF_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_N
V_SEED_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
V_SEED_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_Z
EROIZE_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_Z
EROIZE_ALT

Platform > Alternate >
MBEDTLS_PLATFORM_G
MTIME_R_ALT

Define
Undefine

Undefine MBEDTLS_PLATFORM_G
MTIME_R_ALT

Platform >
MBEDTLS_HAVE_ASM

Define
Undefine

Undefine MBEDTLS_HAVE_ASM

Platform > MBEDTLS_N
O_UDBL_DIVISION

Define
Undefine

Undefine MBEDTLS_NO_UDBL_DI
VISION

Platform > MBEDTLS_N
O_64BIT_MULTIPLICATI
ON

Define
Undefine

Undefine MBEDTLS_NO_64BIT_M
ULTIPLICATION

Platform >
MBEDTLS_HAVE_SSE2

Define
Undefine

Undefine MBEDTLS_HAVE_SSE2

Platform >
MBEDTLS_HAVE_TIME

Define
Undefine

Undefine MBEDTLS_HAVE_TIME

Platform > MBEDTLS_H
AVE_TIME_DATE

Define
Undefine

Undefine MBEDTLS_HAVE_TIME_
DATE

Platform > MBEDTLS_P
LATFORM_MEMORY

Define
Undefine

Define MBEDTLS_PLATFORM_
MEMORY

Platform > MBEDTLS_P
LATFORM_NO_STD_FUN
CTIONS

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
O_STD_FUNCTIONS

Platform >
MBEDTLS_TIMING_ALT

Define
Undefine

Undefine MBEDTLS_TIMING_ALT

Platform > MBEDTLS_N
O_PLATFORM_ENTROPY

Define
Undefine

Define MBEDTLS_NO_PLATFOR
M_ENTROPY

Platform > Define Define MBEDTLS_ENTROPY_C

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,949 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

MBEDTLS_ENTROPY_C Undefine

Platform >
MBEDTLS_PLATFORM_C

Define
Undefine

Define MBEDTLS_PLATFORM_C

Platform > MBEDTLS_P
LATFORM_STD_CALLOC

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_CALLOC

Platform > MBEDTLS_P
LATFORM_STD_CALLOC
value

Manual Entry calloc MBEDTLS_PLATFORM_S
TD_CALLOC value

Platform > MBEDTLS_P
LATFORM_STD_FREE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_FREE

Platform > MBEDTLS_P
LATFORM_STD_FREE
value

Manual Entry free MBEDTLS_PLATFORM_S
TD_FREE value

Platform > MBEDTLS_P
LATFORM_STD_EXIT

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_EXIT

Platform > MBEDTLS_P
LATFORM_STD_EXIT
value

Manual Entry exit MBEDTLS_PLATFORM_S
TD_EXIT value

Platform > MBEDTLS_P
LATFORM_STD_TIME

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_TIME

Platform > MBEDTLS_P
LATFORM_STD_TIME
value

Manual Entry time MBEDTLS_PLATFORM_S
TD_TIME value

Platform > MBEDTLS_P
LATFORM_STD_FPRINTF

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_FPRINTF

Platform > MBEDTLS_P
LATFORM_STD_FPRINTF
value

Manual Entry fprintf MBEDTLS_PLATFORM_S
TD_FPRINTF value

Platform > MBEDTLS_P
LATFORM_STD_PRINTF

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_PRINTF

Platform > MBEDTLS_P
LATFORM_STD_PRINTF
value

Manual Entry printf MBEDTLS_PLATFORM_S
TD_PRINTF value

Platform > MBEDTLS_P
LATFORM_STD_SNPRIN
TF

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_SNPRINTF

Platform > MBEDTLS_P
LATFORM_STD_SNPRIN
TF value

Manual Entry snprintf MBEDTLS_PLATFORM_S
TD_SNPRINTF value

Platform > MBEDTLS_P
LATFORM_STD_EXIT_SU
CCESS

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_EXIT_SUCCESS

Platform > MBEDTLS_P
LATFORM_STD_EXIT_SU

Manual Entry 0 MBEDTLS_PLATFORM_S
TD_EXIT_SUCCESS

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,950 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

CCESS value value

Platform > MBEDTLS_P
LATFORM_STD_EXIT_FA
ILURE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_EXIT_FAILURE

Platform > MBEDTLS_P
LATFORM_STD_EXIT_FA
ILURE value

Manual Entry 1 MBEDTLS_PLATFORM_S
TD_EXIT_FAILURE value

Platform > MBEDTLS_P
LATFORM_STD_NV_SEE
D_READ

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_NV_SEED_READ

Platform > MBEDTLS_P
LATFORM_STD_NV_SEE
D_READ value

Manual Entry mbedtls_platform_std_
nv_seed_read

MBEDTLS_PLATFORM_S
TD_NV_SEED_READ
value

Platform > MBEDTLS_P
LATFORM_STD_NV_SEE
D_WRITE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_NV_SEED_WRITE

Platform > MBEDTLS_P
LATFORM_STD_NV_SEE
D_WRITE value

Manual Entry mbedtls_platform_std_
nv_seed_write

MBEDTLS_PLATFORM_S
TD_NV_SEED_WRITE
value

Platform > MBEDTLS_P
LATFORM_STD_NV_SEE
D_FILE

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
TD_NV_SEED_FILE

Platform > MBEDTLS_P
LATFORM_STD_NV_SEE
D_FILE value

Manual Entry MBEDTLS_PLATFORM_S
TD_NV_SEED_FILE
value

Platform > MBEDTLS_P
LATFORM_CALLOC_MA
CRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_C
ALLOC_MACRO

Platform > MBEDTLS_P
LATFORM_CALLOC_MA
CRO value

Manual Entry calloc MBEDTLS_PLATFORM_C
ALLOC_MACRO value

Platform > MBEDTLS_P
LATFORM_FREE_MACR
O

Define
Undefine

Undefine MBEDTLS_PLATFORM_F
REE_MACRO

Platform > MBEDTLS_P
LATFORM_FREE_MACR
O value

Manual Entry free MBEDTLS_PLATFORM_F
REE_MACRO value

Platform > MBEDTLS_P
LATFORM_EXIT_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_E
XIT_MACRO

Platform > MBEDTLS_P
LATFORM_EXIT_MACRO
value

Manual Entry exit MBEDTLS_PLATFORM_E
XIT_MACRO value

Platform > MBEDTLS_P
LATFORM_TIME_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_T
IME_MACRO

Platform > MBEDTLS_P Manual Entry time MBEDTLS_PLATFORM_T

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,951 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

LATFORM_TIME_MACRO
value

IME_MACRO value

Platform > MBEDTLS_P
LATFORM_TIME_TYPE_
MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_T
IME_TYPE_MACRO

Platform > MBEDTLS_P
LATFORM_TIME_TYPE_
MACRO value

Manual Entry time_t MBEDTLS_PLATFORM_T
IME_TYPE_MACRO
value

Platform > MBEDTLS_P
LATFORM_FPRINTF_MA
CRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_F
PRINTF_MACRO

Platform > MBEDTLS_P
LATFORM_FPRINTF_MA
CRO value

Manual Entry fprintf MBEDTLS_PLATFORM_F
PRINTF_MACRO value

Platform > MBEDTLS_P
LATFORM_PRINTF_MAC
RO

Define
Undefine

Undefine MBEDTLS_PLATFORM_P
RINTF_MACRO

Platform > MBEDTLS_P
LATFORM_PRINTF_MAC
RO value

Manual Entry printf MBEDTLS_PLATFORM_P
RINTF_MACRO value

Platform > MBEDTLS_P
LATFORM_SNPRINTF_M
ACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_S
NPRINTF_MACRO

Platform > MBEDTLS_P
LATFORM_SNPRINTF_M
ACRO value

Manual Entry snprintf MBEDTLS_PLATFORM_S
NPRINTF_MACRO value

Platform > MBEDTLS_P
LATFORM_VSNPRINTF_
MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_V
SNPRINTF_MACRO

Platform > MBEDTLS_P
LATFORM_VSNPRINTF_
MACRO value

Manual Entry vsnprintf MBEDTLS_PLATFORM_V
SNPRINTF_MACRO
value

Platform > MBEDTLS_P
LATFORM_NV_SEED_RE
AD_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
V_SEED_READ_MACRO

Platform > MBEDTLS_P
LATFORM_NV_SEED_RE
AD_MACRO value

Manual Entry mbedtls_platform_std_
nv_seed_read

MBEDTLS_PLATFORM_N
V_SEED_READ_MACRO
value

Platform > MBEDTLS_P
ARAM_FAILED

Define
Undefine

Undefine MBEDTLS_PARAM_FAIL
ED

Platform > MBEDTLS_P
LATFORM_NV_SEED_W
RITE_MACRO

Define
Undefine

Undefine MBEDTLS_PLATFORM_N
V_SEED_WRITE_MACRO

Platform > MBEDTLS_P
LATFORM_NV_SEED_W

Manual Entry mbedtls_platform_std_
nv_seed_write

MBEDTLS_PLATFORM_N
V_SEED_WRITE_MACRO

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,952 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

RITE_MACRO value value

General >
PSA_CRYPTO_SECURE

Define
Undefine

Undefine PSA_CRYPTO_SECURE

General > MBEDTLS_D
EPRECATED_WARNING

Define
Undefine

Undefine MBEDTLS_DEPRECATE
D_WARNING

General > MBEDTLS_D
EPRECATED_REMOVED

Define
Undefine

Define MBEDTLS_DEPRECATE
D_REMOVED

General > MBEDTLS_C
HECK_PARAMS

Define
Undefine

Define MBEDTLS_CHECK_PARA
MS

General > MBEDTLS_C
HECK_PARAMS_ASSERT

Define
Undefine

Undefine MBEDTLS_CHECK_PARA
MS_ASSERT

General > MBEDTLS_E
RROR_STRERROR_DUM
MY

Define
Undefine

Define MBEDTLS_ERROR_STRE
RROR_DUMMY

General > MBEDTLS_M
EMORY_DEBUG

Define
Undefine

Undefine MBEDTLS_MEMORY_DE
BUG

General > MBEDTLS_M
EMORY_BACKTRACE

Define
Undefine

Undefine MBEDTLS_MEMORY_BA
CKTRACE

General > MBEDTLS_PS
A_CRYPTO_SPM

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_SPM

General >
MBEDTLS_SELF_TEST

Define
Undefine

Undefine MBEDTLS_SELF_TEST

General > MBEDTLS_T
HREADING_ALT

Define
Undefine

Define MBEDTLS_THREADING_
ALT

General > MBEDTLS_T
HREADING_PTHREAD

Define
Undefine

Undefine MBEDTLS_THREADING_
PTHREAD

General > MBEDTLS_U
SE_PSA_CRYPTO

Undefine Undefine MBEDTLS_USE_PSA_CR
YPTO

General > MBEDTLS_V
ERSION_FEATURES

Define
Undefine

Define MBEDTLS_VERSION_FE
ATURES

General >
MBEDTLS_ERROR_C

Define
Undefine

Define MBEDTLS_ERROR_C

General > MBEDTLS_M
EMORY_BUFFER_ALLOC
_C

Define
Undefine

Undefine MBEDTLS_MEMORY_BU
FFER_ALLOC_C

General > MBEDTLS_PS
A_CRYPTO_C

Define
Undefine

Define MBEDTLS_PSA_CRYPTO
_C

General > MBEDTLS_PS
A_CRYPTO_SE_C

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_SE_C

General > MBEDTLS_T
HREADING_C

Define
Undefine

Define MBEDTLS_THREADING_
C

General > Define Undefine MBEDTLS_TIMING_C

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,953 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

MBEDTLS_TIMING_C Undefine

General >
MBEDTLS_VERSION_C

Define
Undefine

Define MBEDTLS_VERSION_C

General > MBEDTLS_M
EMORY_ALIGN_MULTIPL
E

Define
Undefine

Undefine MBEDTLS_MEMORY_ALI
GN_MULTIPLE

General > MBEDTLS_M
EMORY_ALIGN_MULTIPL
E value

Manual Entry 4 MBEDTLS_MEMORY_ALI
GN_MULTIPLE value

Cipher > Alternate >
MBEDTLS_ARC4_ALT

Define
Undefine

Undefine MBEDTLS_ARC4_ALT

Cipher > Alternate >
MBEDTLS_ARIA_ALT

Define
Undefine

Undefine MBEDTLS_ARIA_ALT

Cipher > Alternate > M
BEDTLS_BLOWFISH_AL
T

Define
Undefine

Undefine MBEDTLS_BLOWFISH_A
LT

Cipher > Alternate > M
BEDTLS_CAMELLIA_ALT

Define
Undefine

Undefine MBEDTLS_CAMELLIA_A
LT

Cipher > Alternate >
MBEDTLS_CCM_ALT

Define
Undefine

Undefine MBEDTLS_CCM_ALT

Cipher > Alternate > M
BEDTLS_CHACHA20_AL
T

Define
Undefine

Undefine MBEDTLS_CHACHA20_
ALT

Cipher > Alternate > M
BEDTLS_CHACHAPOLY_
ALT

Define
Undefine

Undefine MBEDTLS_CHACHAPOL
Y_ALT

Cipher > Alternate >
MBEDTLS_CMAC_ALT

Define
Undefine

Undefine MBEDTLS_CMAC_ALT

Cipher > Alternate >
MBEDTLS_DES_ALT

Define
Undefine

Undefine MBEDTLS_DES_ALT

Cipher > Alternate >
MBEDTLS_GCM_ALT

MCU Specific Options MBEDTLS_GCM_ALT

Cipher > Alternate >
MBEDTLS_NIST_KW_AL
T

Define
Undefine

Undefine MBEDTLS_NIST_KW_AL
T

Cipher > Alternate >
MBEDTLS_XTEA_ALT

Define
Undefine

Undefine MBEDTLS_XTEA_ALT

Cipher > Alternate > M
BEDTLS_DES_SETKEY_A
LT

Define
Undefine

Undefine MBEDTLS_DES_SETKEY
_ALT

Cipher > Alternate > M
BEDTLS_DES_CRYPT_E
CB_ALT

Define
Undefine

Undefine MBEDTLS_DES_CRYPT_
ECB_ALT

Cipher > Alternate > M Define Undefine MBEDTLS_DES3_CRYPT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,954 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

BEDTLS_DES3_CRYPT_E
CB_ALT

Undefine _ECB_ALT

Cipher > AES > MBEDT
LS_AES_ROM_TABLES

Define
Undefine

Undefine MBEDTLS_AES_ROM_TA
BLES

Cipher > AES > MBEDT
LS_AES_FEWER_TABLE
S

Define
Undefine

Undefine MBEDTLS_AES_FEWER_
TABLES

Cipher > MBEDTLS_CA
MELLIA_SMALL_MEMOR
Y

Define
Undefine

Undefine MBEDTLS_CAMELLIA_S
MALL_MEMORY

Cipher > MBEDTLS_CIP
HER_MODE_CBC

Define
Undefine

Define MBEDTLS_CIPHER_MOD
E_CBC

Cipher > MBEDTLS_CIP
HER_MODE_CFB

Define
Undefine

Define MBEDTLS_CIPHER_MOD
E_CFB

Cipher > MBEDTLS_CIP
HER_MODE_CTR

Define
Undefine

Define MBEDTLS_CIPHER_MOD
E_CTR

Cipher > MBEDTLS_CIP
HER_MODE_OFB

Define
Undefine

Undefine MBEDTLS_CIPHER_MOD
E_OFB

Cipher > MBEDTLS_CIP
HER_MODE_XTS

Define
Undefine

Undefine MBEDTLS_CIPHER_MOD
E_XTS

Cipher > MBEDTLS_CIP
HER_NULL_CIPHER

Define
Undefine

Undefine MBEDTLS_CIPHER_NUL
L_CIPHER

Cipher > MBEDTLS_CIP
HER_PADDING_PKCS7

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_PKCS7

Cipher > MBEDTLS_CIP
HER_PADDING_ONE_AN
D_ZEROS

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_ONE_AND_ZEROS

Cipher > MBEDTLS_CIP
HER_PADDING_ZEROS_
AND_LEN

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_ZEROS_AND_LEN

Cipher > MBEDTLS_CIP
HER_PADDING_ZEROS

Define
Undefine

Define MBEDTLS_CIPHER_PAD
DING_ZEROS

Cipher >
MBEDTLS_AES_C

Define Define MBEDTLS_AES_C

Cipher >
MBEDTLS_ARC4_C

Define
Undefine

Undefine MBEDTLS_ARC4_C

Cipher >
MBEDTLS_BLOWFISH_C

Define
Undefine

Undefine MBEDTLS_BLOWFISH_C

Cipher >
MBEDTLS_CAMELLIA_C

Define
Undefine

Undefine MBEDTLS_CAMELLIA_C

Cipher >
MBEDTLS_ARIA_C

Define
Undefine

Undefine MBEDTLS_ARIA_C

Cipher > Define Define MBEDTLS_CCM_C

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,955 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

MBEDTLS_CCM_C Undefine

Cipher >
MBEDTLS_CHACHA20_
C

Define
Undefine

Undefine MBEDTLS_CHACHA20_
C

Cipher > MBEDTLS_CH
ACHAPOLY_C

Define
Undefine

Undefine MBEDTLS_CHACHAPOL
Y_C

Cipher >
MBEDTLS_CIPHER_C

Define
Undefine

Define MBEDTLS_CIPHER_C

Cipher >
MBEDTLS_DES_C

Define
Undefine

Undefine MBEDTLS_DES_C

Cipher >
MBEDTLS_GCM_C

Define
Undefine

Define MBEDTLS_GCM_C

Cipher >
MBEDTLS_NIST_KW_C

Define
Undefine

Undefine MBEDTLS_NIST_KW_C

Cipher >
MBEDTLS_XTEA_C

Define
Undefine

Undefine MBEDTLS_XTEA_C

Public Key
Cryptography (PKC) >
DHM > Alternate >
MBEDTLS_DHM_ALT

Define
Undefine

Undefine MBEDTLS_DHM_ALT

Public Key
Cryptography (PKC) >
DHM >
MBEDTLS_DHM_C

Define
Undefine

Undefine MBEDTLS_DHM_C

Public Key
Cryptography (PKC) >
ECC > Alternate >
MBEDTLS_ECJPAKE_ALT

Define
Undefine

Undefine MBEDTLS_ECJPAKE_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECDSA_GENKEY_
ALT

Define
Undefine

Undefine MBEDTLS_ECDSA_GEN
KEY_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_INTERNAL_A
LT

Define
Undefine

Undefine MBEDTLS_ECP_INTERN
AL_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_RANDOMIZE
_JAC_ALT

Define
Undefine

Undefine MBEDTLS_ECP_RANDO
MIZE_JAC_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE

Define
Undefine

Undefine MBEDTLS_ECP_ADD_MI
XED_ALT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,956 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

DTLS_ECP_ADD_MIXED
_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_DOUBLE_JAC
_ALT

Define
Undefine

Undefine MBEDTLS_ECP_DOUBLE
_JAC_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_NORMALIZE_
JAC_MANY_ALT

Define
Undefine

Undefine MBEDTLS_ECP_NORMA
LIZE_JAC_MANY_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_NORMALIZE_
JAC_ALT

Define
Undefine

Undefine MBEDTLS_ECP_NORMA
LIZE_JAC_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_DOUBLE_AD
D_MXZ_ALT

Define
Undefine

Undefine MBEDTLS_ECP_DOUBLE
_ADD_MXZ_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_RANDOMIZE
_MXZ_ALT

Define
Undefine

Undefine MBEDTLS_ECP_RANDO
MIZE_MXZ_ALT

Public Key
Cryptography (PKC) >
ECC > Alternate > MBE
DTLS_ECP_NORMALIZE_
MXZ_ALT

Define
Undefine

Undefine MBEDTLS_ECP_NORMA
LIZE_MXZ_ALT

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_SECP192R
1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P192R1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_SECP224R
1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P224R1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_SECP256R
1_ENABLED

Define
Undefine

Define MBEDTLS_ECP_DP_SEC
P256R1_ENABLED

Public Key
Cryptography (PKC) >

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P384R1_ENABLED

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,957 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

ECC > Curves > MBED
TLS_ECP_DP_SECP384R
1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_SECP521R
1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P521R1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_SECP192K
1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P192K1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_SECP224K
1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P224K1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_SECP256K
1_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_SEC
P256K1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_BP256R1_
ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_BP2
56R1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_BP384R1_
ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_BP3
84R1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_BP512R1_
ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_BP5
12R1_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_CURVE25
519_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_CUR
VE25519_ENABLED

Public Key
Cryptography (PKC) >
ECC > Curves > MBED
TLS_ECP_DP_CURVE44
8_ENABLED

Define
Undefine

Undefine MBEDTLS_ECP_DP_CUR
VE448_ENABLED

Public Key Define Undefine MBEDTLS_ECDH_GEN_P

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,958 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Cryptography (PKC) >
ECC > MBEDTLS_ECDH
_GEN_PUBLIC_ALT

Undefine UBLIC_ALT

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECDH
_COMPUTE_SHARED_AL
T

Define
Undefine

Undefine MBEDTLS_ECDH_COMP
UTE_SHARED_ALT

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_N
IST_OPTIM

Define
Undefine

Undefine MBEDTLS_ECP_NIST_OP
TIM

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_R
ESTARTABLE

Define
Undefine

Undefine MBEDTLS_ECP_RESTAR
TABLE

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECDH
_LEGACY_CONTEXT

Define
Undefine

Undefine MBEDTLS_ECDH_LEGAC
Y_CONTEXT

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECDS
A_DETERMINISTIC

Define
Undefine

Undefine MBEDTLS_ECDSA_DETE
RMINISTIC

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_PK_PA
RSE_EC_EXTENDED

Define
Undefine

Undefine MBEDTLS_PK_PARSE_E
C_EXTENDED

Public Key
Cryptography (PKC) >
ECC >
MBEDTLS_ECDH_C

Define
Undefine

Undefine MBEDTLS_ECDH_C

Public Key
Cryptography (PKC) >
ECC >
MBEDTLS_ECDSA_C

Define
Undefine

Define MBEDTLS_ECDSA_C

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_C

Define
Undefine

Define MBEDTLS_ECP_C

Public Key
Cryptography (PKC) >
ECC >
MBEDTLS_ECJPAKE_C

Define
Undefine

Undefine MBEDTLS_ECJPAKE_C

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_
MAX_BITS

Define
Undefine

Undefine MBEDTLS_ECP_MAX_BI
TS

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,959 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_
MAX_BITS value

Manual Entry 521 MBEDTLS_ECP_MAX_BI
TS value

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_
WINDOW_SIZE

Define
Undefine

Undefine MBEDTLS_ECP_WINDO
W_SIZE

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_
WINDOW_SIZE value

Manual Entry 6 MBEDTLS_ECP_WINDO
W_SIZE value

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_F
IXED_POINT_OPTIM

Define
Undefine

Undefine MBEDTLS_ECP_FIXED_P
OINT_OPTIM

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECP_F
IXED_POINT_OPTIM
value

Manual Entry 1 MBEDTLS_ECP_FIXED_P
OINT_OPTIM value

Public Key
Cryptography (PKC) >
ECC > MBEDTLS_ECDH
_VARIANT_EVEREST_EN
ABLED

Define
Undefine

Undefine MBEDTLS_ECDH_VARIA
NT_EVEREST_ENABLED

Public Key
Cryptography (PKC) >
RSA > MBEDTLS_PK_RS
A_ALT_SUPPORT

Define
Undefine

Undefine MBEDTLS_PK_RSA_ALT_
SUPPORT

Public Key
Cryptography (PKC) >
RSA >
MBEDTLS_RSA_NO_CRT

Define
Undefine

Define MBEDTLS_RSA_NO_CRT

Public Key
Cryptography (PKC) >
RSA > MBEDTLS_RSA_C

Define
Undefine

Define MBEDTLS_RSA_C

Public Key
Cryptography (PKC) >
MBEDTLS_GENPRIME

Define
Undefine

Define MBEDTLS_GENPRIME

Public Key
Cryptography (PKC) >
MBEDTLS_PKCS1_V15

Define
Undefine

Define MBEDTLS_PKCS1_V15

Public Key
Cryptography (PKC) >
MBEDTLS_PKCS1_V21

Define
Undefine

Define MBEDTLS_PKCS1_V21

Public Key Define Define MBEDTLS_ASN1_PARSE

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,960 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Cryptography (PKC) >
MBEDTLS_ASN1_PARSE
_C

Undefine _C

Public Key
Cryptography (PKC) >
MBEDTLS_ASN1_WRITE
_C

Define
Undefine

Define MBEDTLS_ASN1_WRITE
_C

Public Key
Cryptography (PKC) >
MBEDTLS_BASE64_C

Define
Undefine

Define MBEDTLS_BASE64_C

Public Key
Cryptography (PKC) >
MBEDTLS_BIGNUM_C

Define
Undefine

Define MBEDTLS_BIGNUM_C

Public Key
Cryptography (PKC) >
MBEDTLS_OID_C

Define
Undefine

Define MBEDTLS_OID_C

Public Key
Cryptography (PKC) >
MBEDTLS_PEM_PARSE_
C

Define
Undefine

Define MBEDTLS_PEM_PARSE_
C

Public Key
Cryptography (PKC) >
MBEDTLS_PEM_WRITE_
C

Define
Undefine

Define MBEDTLS_PEM_WRITE_
C

Public Key
Cryptography (PKC) >
MBEDTLS_PK_C

Define
Undefine

Define MBEDTLS_PK_C

Public Key
Cryptography (PKC) >
MBEDTLS_PK_PARSE_C

Define
Undefine

Define MBEDTLS_PK_PARSE_C

Public Key
Cryptography (PKC) >
MBEDTLS_PK_WRITE_C

Define
Undefine

Define MBEDTLS_PK_WRITE_C

Public Key
Cryptography (PKC) >
MBEDTLS_PKCS5_C

Define
Undefine

Define MBEDTLS_PKCS5_C

Public Key
Cryptography (PKC) >
MBEDTLS_PKCS12_C

Define
Undefine

Define MBEDTLS_PKCS12_C

Public Key
Cryptography (PKC) >
MBEDTLS_MPI_WINDO
W_SIZE

Define
Undefine

Undefine MBEDTLS_MPI_WINDO
W_SIZE

Public Key
Cryptography (PKC) >
MBEDTLS_MPI_WINDO
W_SIZE value

Manual Entry 6 MBEDTLS_MPI_WINDO
W_SIZE value

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,961 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key
Cryptography (PKC) >
MBEDTLS_MPI_MAX_SIZ
E

Define
Undefine

Undefine MBEDTLS_MPI_MAX_SIZ
E

Public Key
Cryptography (PKC) >
MBEDTLS_MPI_MAX_SIZ
E value

Manual Entry 1024 MBEDTLS_MPI_MAX_SIZ
E value

Hash > Alternate >
MBEDTLS_MD2_ALT

Define
Undefine

Undefine MBEDTLS_MD2_ALT

Hash > Alternate >
MBEDTLS_MD4_ALT

Define
Undefine

Undefine MBEDTLS_MD4_ALT

Hash > Alternate >
MBEDTLS_MD5_ALT

Define
Undefine

Undefine MBEDTLS_MD5_ALT

Hash > Alternate > MB
EDTLS_RIPEMD160_ALT

Define
Undefine

Undefine MBEDTLS_RIPEMD160_
ALT

Hash > Alternate >
MBEDTLS_SHA1_ALT

Define
Undefine

Undefine MBEDTLS_SHA1_ALT

Hash > Alternate >
MBEDTLS_SHA512_ALT

Define
Undefine

Undefine MBEDTLS_SHA512_ALT

Hash > Alternate > MB
EDTLS_MD2_PROCESS_
ALT

Define
Undefine

Undefine MBEDTLS_MD2_PROCE
SS_ALT

Hash > Alternate > MB
EDTLS_MD4_PROCESS_
ALT

Define
Undefine

Undefine MBEDTLS_MD4_PROCE
SS_ALT

Hash > Alternate > MB
EDTLS_MD5_PROCESS_
ALT

Define
Undefine

Undefine MBEDTLS_MD5_PROCE
SS_ALT

Hash > Alternate > MB
EDTLS_RIPEMD160_PR
OCESS_ALT

Define
Undefine

Undefine MBEDTLS_RIPEMD160_
PROCESS_ALT

Hash > Alternate > MB
EDTLS_SHA1_PROCESS
_ALT

Define
Undefine

Undefine MBEDTLS_SHA1_PROCE
SS_ALT

Hash > Alternate > MB
EDTLS_SHA512_PROCE
SS_ALT

Define
Undefine

Undefine MBEDTLS_SHA512_PRO
CESS_ALT

Hash > MBEDTLS_SHA2
56_SMALLER

Define
Undefine

Undefine MBEDTLS_SHA256_SMA
LLER

Hash > MBEDTLS_SHA5
12_SMALLER

Define
Undefine

Undefine MBEDTLS_SHA512_SMA
LLER

Hash > MBEDTLS_SHA5
12_NO_SHA384

Define
Undefine

Undefine MBEDTLS_SHA512_NO_
SHA384

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,962 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Hash >
MBEDTLS_MD_C

Define
Undefine

Define MBEDTLS_MD_C

Hash >
MBEDTLS_MD2_C

Define
Undefine

Undefine MBEDTLS_MD2_C

Hash >
MBEDTLS_MD4_C

Define
Undefine

Undefine MBEDTLS_MD4_C

Hash >
MBEDTLS_MD5_C

Define
Undefine

Define MBEDTLS_MD5_C

Hash >
MBEDTLS_RIPEMD160_
C

Define
Undefine

Define MBEDTLS_RIPEMD160_
C

Hash >
MBEDTLS_SHA1_C

Define
Undefine

Define MBEDTLS_SHA1_C

Hash >
MBEDTLS_SHA256_C

Define
Undefine

Define MBEDTLS_SHA256_C

Hash >
MBEDTLS_SHA512_C

Define
Undefine

Undefine MBEDTLS_SHA512_C

Message
Authentication Code
(MAC) > Alternate > M
BEDTLS_POLY1305_ALT

Define
Undefine

Undefine MBEDTLS_POLY1305_A
LT

Message
Authentication Code
(MAC) >
MBEDTLS_CMAC_C

Define
Undefine

Undefine MBEDTLS_CMAC_C

Message
Authentication Code
(MAC) >
MBEDTLS_HKDF_C

Define
Undefine

Define MBEDTLS_HKDF_C

Message
Authentication Code
(MAC) > MBEDTLS_HM
AC_DRBG_C

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_C

Message
Authentication Code
(MAC) >
MBEDTLS_POLY1305_C

Define
Undefine

Undefine MBEDTLS_POLY1305_C

RNG > MBEDTLS_TEST_
NULL_ENTROPY

Define
Undefine

Undefine MBEDTLS_TEST_NULL_
ENTROPY

RNG > MBEDTLS_NO_D
EFAULT_ENTROPY_SOU
RCES

Define
Undefine

Undefine MBEDTLS_NO_DEFAULT
_ENTROPY_SOURCES

RNG > MBEDTLS_ENTR
OPY_FORCE_SHA256

Define
Undefine

Undefine MBEDTLS_ENTROPY_FO
RCE_SHA256

RNG > MBEDTLS_ENTR Define Undefine MBEDTLS_ENTROPY_NV

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,963 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

OPY_NV_SEED Undefine _SEED

RNG > MBEDTLS_PSA_I
NJECT_ENTROPY

Define
Undefine

Undefine MBEDTLS_PSA_INJECT_
ENTROPY

RNG >
MBEDTLS_CTR_DRBG_C

Define
Undefine

Define MBEDTLS_CTR_DRBG_C

RNG > MBEDTLS_CTR_
DRBG_C_ALT

Define Define MBEDTLS_CTR_DRBG_C
_ALT

RNG >
MBEDTLS_HAVEGE_C

Define
Undefine

Undefine MBEDTLS_HAVEGE_C

RNG > MBEDTLS_CTR_
DRBG_ENTROPY_LEN

Define
Undefine

Undefine RNG|MBEDTLS_CTR_DR
BG_ENTROPY_LEN

RNG > MBEDTLS_CTR_
DRBG_ENTROPY_LEN
value

Manual Entry 48 RNG value|MBEDTLS_C
TR_DRBG_ENTROPY_LE
N

RNG > MBEDTLS_CTR_
DRBG_RESEED_INTERV
AL

Define
Undefine

Undefine RNG|MBEDTLS_CTR_DR
BG_RESEED_INTERVAL

RNG > MBEDTLS_CTR_
DRBG_RESEED_INTERV
AL value

Manual Entry 10000 RNG value|MBEDTLS_C
TR_DRBG_RESEED_INT
ERVAL

RNG > MBEDTLS_CTR_
DRBG_MAX_INPUT

Define
Undefine

Undefine MBEDTLS_CTR_DRBG_
MAX_INPUT

RNG > MBEDTLS_CTR_
DRBG_MAX_INPUT
value

Manual Entry 256 MBEDTLS_CTR_DRBG_
MAX_INPUT value

RNG > MBEDTLS_CTR_
DRBG_MAX_REQUEST

Define
Undefine

Undefine MBEDTLS_CTR_DRBG_
MAX_REQUEST

RNG > MBEDTLS_CTR_
DRBG_MAX_REQUEST
value

Manual Entry 1024 MBEDTLS_CTR_DRBG_
MAX_REQUEST value

RNG > MBEDTLS_CTR_
DRBG_MAX_SEED_INPU
T

Define
Undefine

Undefine MBEDTLS_CTR_DRBG_
MAX_SEED_INPUT

RNG > MBEDTLS_CTR_
DRBG_MAX_SEED_INPU
T value

Manual Entry 384 MBEDTLS_CTR_DRBG_
MAX_SEED_INPUT value

RNG > MBEDTLS_CTR_
DRBG_USE_128_BIT_KE
Y

Define
Undefine

Undefine MBEDTLS_CTR_DRBG_U
SE_128_BIT_KEY

RNG > MBEDTLS_HMAC
_DRBG_RESEED_INTER
VAL

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_RESEED_INTERVAL

RNG > MBEDTLS_HMAC
_DRBG_RESEED_INTER

Manual Entry 10000 MBEDTLS_HMAC_DRBG
_RESEED_INTERVAL

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,964 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

VAL value value

RNG > MBEDTLS_HMAC
_DRBG_MAX_INPUT

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_MAX_INPUT

RNG > MBEDTLS_HMAC
_DRBG_MAX_INPUT
value

Manual Entry 256 MBEDTLS_HMAC_DRBG
_MAX_INPUT value

RNG > MBEDTLS_HMAC
_DRBG_MAX_REQUEST

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_MAX_REQUEST

RNG > MBEDTLS_HMAC
_DRBG_MAX_REQUEST
value

Manual Entry 1024 MBEDTLS_HMAC_DRBG
_MAX_REQUEST value

RNG > MBEDTLS_HMAC
_DRBG_MAX_SEED_INP
UT

Define
Undefine

Undefine MBEDTLS_HMAC_DRBG
_MAX_SEED_INPUT

RNG > MBEDTLS_HMAC
_DRBG_MAX_SEED_INP
UT value

Manual Entry 384 MBEDTLS_HMAC_DRBG
_MAX_SEED_INPUT
value

RNG > MBEDTLS_ENTR
OPY_MAX_SOURCES

Define
Undefine

Undefine MBEDTLS_ENTROPY_M
AX_SOURCES

RNG > MBEDTLS_ENTR
OPY_MAX_SOURCES
value

Manual Entry 20 MBEDTLS_ENTROPY_M
AX_SOURCES value

RNG > MBEDTLS_ENTR
OPY_MAX_GATHER

Define
Undefine

Undefine MBEDTLS_ENTROPY_M
AX_GATHER

RNG > MBEDTLS_ENTR
OPY_MAX_GATHER
value

Manual Entry 128 MBEDTLS_ENTROPY_M
AX_GATHER value

RNG > MBEDTLS_ENTR
OPY_MIN_HARDWARE

Define
Undefine

Undefine MBEDTLS_ENTROPY_MI
N_HARDWARE

RNG > MBEDTLS_ENTR
OPY_MIN_HARDWARE
value

Manual Entry 32 MBEDTLS_ENTROPY_MI
N_HARDWARE value

Storage >
MBEDTLS_FS_IO

Define
Undefine

Undefine MBEDTLS_FS_IO

Storage > MBEDTLS_PS
A_CRYPTO_KEY_ID_ENC
ODES_OWNER

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_KEY_ID_ENCODES_OW
NER

Storage > MBEDTLS_PS
A_CRYPTO_STORAGE_C

Define
Undefine

Undefine MBEDTLS_PSA_CRYPTO
_STORAGE_C

Storage > MBEDTLS_PS
A_ITS_FILE_C

Define
Undefine

Undefine MBEDTLS_PSA_ITS_FILE
_C

SHA256 Configuration

To enable hardware acceleration for the SHA256/224 calculation, the macro MBEDTLS_SHA256_ALT

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,965 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

and MBEDTLS_SHA256_PROCESS_ALT must be defined in the configuration file. By default SHA256 is
enabled. SHA256 can be disabled, but SHA512 then needs to be enabled (software version) because
the PSA implementation uses it for the entropy accumulator. This can be done using the RA
Configuration editor.

AES Configuration

To enable hardware acceleration for the AES128/256 operation, the macro
MBEDTLS_AES_SETKEY_ENC_ALT, MBEDTLS_AES_SETKEY_DEC_ALT, MBEDTLS_AES_ENCRYPT_ALT and
MBEDTLS_AES_DECRYPT_ALT must be defined in the configuration file. By default AES is enabled.
AES cannot be disabled because the PSA implementation requires it for the CTR_DRBG random
number generator. This can be done using the RA Configuration editor.

ECC Configuration

To enable hardware acceleration for the ECC Key Generation operation, the macro
MBEDTLS_ECP_ALT must be defined in the configuration file. For ECDSA, the macros
MBEDTLS_ECDSA_SIGN_ALT and MBEDTLS_ECDSA_VERIFY_ALT must be defined. By default ECC,
ECDSA and ECDHE are enabled. To disable ECC, undefine MBEDTLS_ECP_C, MBEDTLS_ECDSA_C and
MBEDTLS_ECDH_C. This can be done using the RA Configuration editor.

RSA Configuration

To enable hardware acceleration for the RSA2048 operation, the macro MBEDTLS_RSA_ALT must be
defined in the configuration file. By default RSA is enabled. To disable RSA, undefine
MBEDTLS_RSA_C, MBEDTLS_PK_C, MBEDTLS_PK_PARSE_C, MBEDTLS_PK_WRITE_C. This can be done
using the RA Configuration editor.

Wrapped Key Usage

To use the Secure Crypto Engine to generate and use wrapped keys, use
PSA_KEY_TYPE_AES_WRAPPED or PSA_KEY_TYPE_ECC_KEY_PAIR_WRAPPED(curve) or
PSA_KEY_TYPE_RSA_KEY_PAIR when setting the key type attribute. Setting the key's type attribute
using this value will cause the SCE to use wrapped key mode for all operations related to that key.
The user can use the export functionality to save the wrapped keys to user ROM and import it later
for usage. This mode requires that Wrapped Key functionality for the algorithm is enabled in the
project configuration.

Note
On the SCE9 devices, only the RSA public key can be exported. A file system must be used to store the internally
generated private key.

Persistent Key Storage

Persistent key storage can be enabled by defining MBEDTLS_FS_IO,
MBEDTLS_PSA_CRYPTO_STORAGE_C, and MBEDTLS_PSA_ITS_FILE_C. The key lifetime must also be
specifed as PSA_KEY_LIFETIME_PERSISTENT. A lower level storage module must be added in the RA
Configuration editor and initialized in the code before generating persistent keys. Persistent storage
supports the use of plaintext and vendor keys. Refer to the lower level storage module
documentation for information on how it should be initialized. To generate a persistent key the key
must be assigned a unique id prior to calling generate using the psa_set_key_id api.

 if (PSA_KEY_LIFETIME_IS_PERSISTENT(lifetime))

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,966 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 /* Set the id to a positive integer. */

 psa_set_key_id(&attributes, (psa_key_id_t) 5);

 }

Platform Configuration

To run the mbedCrypto implementation of the PSA Crypto API on the MCU, the macro
MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT must be defined in the configuration file. This enables
code that will initialize the SCE. Parameter checking (General|MBEDTLS_CHECK_PARAMS) is enabled
by default. To reduce code size, disable parameter checking.

Random Number Configuration

To run the mbedCrypto implementation of the PSA Crypto API on the MCU, the macro
MBEDTLS_ENTROPY_HARDWARE_ALT must be defined in the configuration file. This enables using
the TRNG as an entropy source. None of the other cryptographic operations (even in software only
mode) will work without this feature.

Usage Notes
Hardware Initialization

mbedtls_platform_setup() must be invoked before using the PSA Crypto API to ensure that the SCE
peripheral is initialized.

Memory Usage

In general, depending on the mbedCrypto features being used a heap size of 0x1000 to 0x5000
bytes is required. The total allocated heap should be the sum of the heap requirements of the
individual algorithms:

Algorithm Required Heap (bytes)

SHA256/224 None

AES 0x200

Hardware ECC 0x400

Software ECC 0x1800

RSA 0x1500

A minimum stack of 0x1000 is required where the module is used. This is either the main stack in a
bare metal application or the task stack of the task used for crypto operations.

Limitations

Only little endian mode is supported.

SCE9 Usage

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,967 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

The crypto capabilities on the SCE9 are different resulting in the below usage limitations with
mbedCrypto:

The module includes both wrapped and plaintext keys code irrespective of whether the
application requires it.
Plaintext key generation is not supported for RSA and ECC; only wrapped keys can be
generated.
If ECDH is used, only wrapped key will be generated on SCE9 and will not return an error
even if the user context is somehow set for plain key. This may be relevant only if the
psa_key_agreement() function with plaintext key on SCE9 is attempted.

Using PSA Crypto with TrustZone

Unlike FSP drivers, PSA Crypto cannot be configured as Non-secure callable in the RA Configurator
for a secure project. The reason for this is that in order to achieve the security objective of
controlling access to protected keys, both the PSA Crypto code as well as the keys must be placed in
the secure region. Since the PSA Crypto API requires access to the keys directly during initialization
and later via a key handle, allowing non-secure code to use the API by making it Non-secure callable
will require the keys to be stored in non-secure memory.

This section will provide a short explanation of how to add PSA Crypto to a secure project and have it
usable by the non-secure project without exposing the keys. In this example the secure project will
contain an RSA private key and the non-secure project is expected to be able to perform sign and
verify operations using that key.

Figure 204: PSA Crypto Non-secure callable example

Secure project
During secure project boot-up, psa_crypto_init() is called.
The RSA private key is programmed into secure flash either at the factory or by
calling psa_generate_key() in persistent mode. Note that the data-flash area used
by the LittleFS will have to be in the secure region if the key is generated as a
persistent.
psa_import_key()/psa_open_key() are called with the resultant handle held in
secure RAM.
The Non-secure callable section contains the following user-defined functions

verify_with_my_rsa_key(input_signature, input_hash, verification_result)
The implementation of this function in secure region will call
psa_verify_hash() and return the result via verification_result.

sign_with_my_rsa_key(input_hash, output_signature)
The implementation of this function in secure region will call
psa_sign_hash() and return the signature via output_signature.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,968 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

Non-secure project

Calls verify_with_my_rsa_key() to verify a signature. The implementation will use
the public key that is present in the secure project.
Calls sign_with_my_rsa_key() to generate a signature. The implementation will use
the private key that is present on the secure project.

For more details on how to add user-code to the Non-secure callable region refer to the
"Security Design with Arm TrustZone - IP Protection (R11AN0467EU0100)" Application Note.

Examples
Hash Example

This is an example on calculating the SHA256 hash using the PSA Crypto API.

const uint8_t NIST_SHA256ShortMsgLen200[] =

{

 0x2e, 0x7e, 0xa8, 0x4d, 0xa4, 0xbc, 0x4d, 0x7c, 0xfb, 0x46, 0x3e, 0x3f, 0x2c,

0x86, 0x47, 0x05,

 0x7a, 0xff, 0xf3, 0xfb, 0xec, 0xec, 0xa1, 0xd2, 00

};

const uint8_t NIST_SHA256ShortMsgLen200_expected[] =

{

 0x76, 0xe3, 0xac, 0xbc, 0x71, 0x88, 0x36, 0xf2, 0xdf, 0x8a, 0xd2, 0xd0, 0xd2,

0xd7, 0x6f, 0x0c,

 0xfa, 0x5f, 0xea, 0x09, 0x86, 0xbe, 0x91, 0x8f, 0x10, 0xbc, 0xee, 0x73, 0x0d,

0xf4, 0x41, 0xb9

};

void psa_crypto_sha256_example (void)

{

 psa_algorithm_t alg = PSA_ALG_SHA_256;

 psa_hash_operation_t operation = {0};

 size_t expected_hash_len = PSA_HASH_SIZE(alg);

 uint8_t actual_hash[PSA_HASH_MAX_SIZE];

 size_t actual_hash_len;

 mbedtls_platform_context ctx = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,969 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 /* Platform initialization failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_hash_setup(&operation, alg))

 {

 /* Hash setup failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_hash_update(&operation, NIST_SHA256ShortMsgLen200,

sizeof(NIST_SHA256ShortMsgLen200)))

 {

 /* Hash calculation failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_hash_finish(&operation, &actual_hash[0], sizeof

(actual_hash), &actual_hash_len))

 {

 /* Reading calculated hash failed */

 debugger_break();

 }

 else if (0 != memcmp(&actual_hash[0], &NIST_SHA256ShortMsgLen200_expected[0],

actual_hash_len))

 {

 /* Hash compare of calculated value with expected value failed */

 debugger_break();

 }

 else if (0 != memcmp(&expected_hash_len, &actual_hash_len, sizeof

(expected_hash_len)))

 {

 /* Hash size compare of calculated value with expected value failed */

 debugger_break();

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,970 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 else

 {

 /* SHA256 calculation succeeded */

 debugger_break();

 }

 /* De-initialize the platform. This is currently a placeholder function which does

not do anything. */

 mbedtls_platform_teardown(&ctx);

}

AES Example

This is an example on using the PSA Crypto API to generate an AES256 key, encrypting and
decrypting multi-block data and using PKCS7 padding.

static psa_status_t cipher_operation (psa_cipher_operation_t * operation,

 const uint8_t * input,

 size_t input_size,

 size_t part_size,

 uint8_t * output,

 size_t output_size,

 size_t * output_len)

{

 psa_status_t status;

 size_t bytes_to_write = 0;

 size_t bytes_written = 0;

 size_t len = 0;

 *output_len = 0;

 while (bytes_written != input_size)

 {

 bytes_to_write = (input_size - bytes_written > part_size ?

 part_size :

 input_size - bytes_written);

 status = psa_cipher_update(operation,

 input + bytes_written,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,971 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 bytes_to_write,

 output + *output_len,

 output_size - *output_len,

 &len);

 if (PSA_SUCCESS != status)

 {

 return status;

 }

 bytes_written += bytes_to_write;

 *output_len += len;

 }

 status = psa_cipher_finish(operation, output + *output_len, output_size -

*output_len, &len);

 if (PSA_SUCCESS != status)

 {

 return status;

 }

 *output_len += len;

 return status;

}

void psa_crypto_aes256cbcmultipart_example (void)

{

 enum

 {

 block_size = PSA_BLOCK_CIPHER_BLOCK_SIZE(PSA_KEY_TYPE_AES),

 key_bits = 256,

 input_size = 100,

 part_size = 10,

 };

 mbedtls_platform_context ctx = {0};

 const psa_algorithm_t alg = PSA_ALG_CBC_PKCS7;

 psa_cipher_operation_t operation_1 = PSA_CIPHER_OPERATION_INIT;

 psa_cipher_operation_t operation_2 = PSA_CIPHER_OPERATION_INIT;

 size_t iv_len = 0;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,972 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 psa_key_handle_t key_handle = 0;

 size_t encrypted_length = 0;

 size_t decrypted_length = 0;

 uint8_t iv[block_size] = {0};

 uint8_t input[input_size] = {0};

 uint8_t encrypted_data[input_size + block_size] = {0};

 uint8_t decrypted_data[input_size + block_size] = {0};

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_lifetime_t lifetime;

 /* Setup the platform; initialize the SCE */

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 /* Platform initialization failed */

 debugger_break();

 }

 if (PSA_SUCCESS != psa_crypto_init())

 {

 /* PSA Crypto Initialization failed */

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT |

PSA_KEY_USAGE_DECRYPT);

 psa_set_key_algorithm(&attributes, alg);

 /* To use wrapped keys instead of plaintext use PSA_KEY_TYPE_AES_WRAPPED. */

 psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);

 psa_set_key_bits(&attributes, key_bits);

 lifetime = PSA_KEY_LIFETIME_VOLATILE;

 /* To use persistent keys:

 *......Use a lifetime value of PSA_KEY_LIFETIME_PERSISTENT

 * - The file system must be initialized prior to calling the generate/import key

functions.

 * - Refer to the littlefs example to see how to format and mount the filesystem. */

 psa_set_key_lifetime(&attributes, lifetime);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,973 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 if (PSA_KEY_LIFETIME_IS_PERSISTENT(lifetime))

 {

 /* Set the id to a positive integer. */

 psa_set_key_id(&attributes, (psa_key_id_t) 5);

 }

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random number generation for input data failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Generating AES 256 key and allocating to key slot failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_encrypt_setup(&operation_1, key_handle, alg))

 {

 /* Initializing the encryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_generate_iv(&operation_1, iv, sizeof(iv),

&iv_len))

 {

 /* Generating the random IV failed */

 debugger_break();

 }

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_1, input, input_size, part_size,

encrypted_data, sizeof(encrypted_data),

 &encrypted_length))

 {

 /* Encryption failed */

 debugger_break();

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,974 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_1))

 {

 /* Terminating the encryption operation failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_decrypt_setup(&operation_2, key_handle, alg))

 {

 /* Initializing the decryption (with PKCS7 padding) operation handle failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_set_iv(&operation_2, iv, sizeof(iv)))

 {

 /* Setting the IV failed */

 debugger_break();

 }

 else if (PSA_SUCCESS !=

 cipher_operation(&operation_2, encrypted_data, encrypted_length,

part_size, decrypted_data,

 sizeof(decrypted_data), &decrypted_length))

 {

 /* Decryption failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_cipher_abort(&operation_2))

 {

 /* Terminating the decryption operation failed */

 debugger_break();

 }

 else if (0 != memcmp(input, decrypted_data, sizeof(input)))

 {

 /* Comparing the input data with decrypted data failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_destroy_key(key_handle))

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,975 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 {

 /* Destroying the key handle failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded */

 }

 /* Close the SCE */

 mbedtls_platform_teardown(&ctx);

}

AES-CCM Example

This is an example on using the PSA Crypto API to generate an AES256 key, encrypting and
decrypting multi-block data and using PKCS7 padding using AES-CCM.

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random plaintext input generation failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Key generation failed */

 debugger_break();

 }

 /* AES-CCM Encryption */

 else if (PSA_SUCCESS !=

 psa_aead_encrypt(key_handle, PSA_ALG_CCM, nonce, sizeof(nonce),

additional_data, sizeof(additional_data),

 input, sizeof(input), encrypt, sizeof(encrypt),

&output_len))

 {

 /* AES-CCM Encryption failed */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,976 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 debugger_break();

 }

 /* AES-CCM Decryption */

 else if (PSA_SUCCESS !=

 psa_aead_decrypt(key_handle, PSA_ALG_CCM, nonce, sizeof(nonce),

additional_data, sizeof(additional_data),

 encrypt, output_len, decrypt, sizeof(decrypt),

&output_len))

 {

 /* AES-CCM Decryption failed */

 debugger_break();

 }

 else if (0U != memcmp(input, decrypt, sizeof(input)))

 {

 /* The decrypted result did not match the plaintext input */

 debugger_break();

 }

 else

 {

 /* All operations were successful */

 }

CMAC Example

This is an example on using the PSA Crypto API to generate an AES256 key, followed by generation
and verification of MAC for random data of known length.

 if (PSA_SUCCESS != psa_generate_random(input, sizeof(input)))

 {

 /* Random number generation failure */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 /* Key generation failure */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,977 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 debugger_break();

 }

 /* Steps to generate the MAC */

 else if (PSA_SUCCESS != psa_mac_sign_setup(&operation, key_handle, alg))

 {

 /* MAC Sign setup failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_mac_update(&operation, input, input_size))

 {

 /* MAC update failed */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_mac_sign_finish(&operation, AES_CMAC_mac, sizeof

(AES_CMAC_mac), &mac_ret))

 {

 /* MAC Sign operation failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded for MAC generation */

 }

 /* Steps to verify the generated MAC */

 if (PSA_SUCCESS != psa_mac_verify_setup(&verify_operation, key_handle, alg))

 {

 /* MAC verification setup failure */

 debugger_break();

 }

 else if (PSA_SUCCESS != psa_mac_update(&verify_operation, input, input_size))

 {

 /* MAC update failure */

 debugger_break();

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,978 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 else if (PSA_SUCCESS != psa_mac_verify_finish(&verify_operation, AES_CMAC_mac,

mac_ret))

 {

 /* MAC verification failed */

 debugger_break();

 }

 else

 {

 /* All the operations succeeded for MAC verification */

 }

ECC Example

This is an example on using the PSA Crypto API to generate an ECC-P256R1 key, signing and
verifying data after hashing it first using SHA256.

Note
Unlike RSA, ECDSA does not have any padding schemes. Thus the hash argument for the ECC sign operation
MUST have a size larger than or equal to the curve size; i.e. for PSA_ECC_CURVE_SECP256R1 the payload size
must be at least 256/8 bytes. nist.fips.186-4: " A hash function that provides a lower security strength than the
security strength associated with the bit length of 'n' ordinarily should not be used, since this would reduce the
security strength of the digital signature process to a level no greater than that provided by the hash function."

#define ECC_256_BIT_LENGTH 256

#define ECC_256_EXPORTED_SIZE 500

uint8_t exportedECC_SECP256R1Key[ECC_256_EXPORTED_SIZE];

size_t exportedECC_SECP256R1Keylength = 0;

void psa_ecc256R1_example (void)

{

/* This example generates an ECC-P256R1 keypair, performs signing and verification

operations.

 * It then exports the generated key into ASN1 DER format to a RAM array which can

then be programmed to flash.

 * It then re-imports that key, and performs signing and verification operations. */

 unsigned char payload[] = "ASYMMETRIC_INPUT_FOR_SIGN......";

 unsigned char signature1[PSA_SIGNATURE_MAX_SIZE] = {0};

 unsigned char signature2[PSA_SIGNATURE_MAX_SIZE] = {0};

 size_t signature_length1 = 0;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,979 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 size_t signature_length2 = 0;

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_attributes_t read_attributes = PSA_KEY_ATTRIBUTES_INIT;

 mbedtls_platform_context ctx = {0};

 psa_key_handle_t ecc_key_handle = {0};

 psa_hash_operation_t hash_operation = {0};

 uint8_t payload_hash[PSA_HASH_MAX_SIZE];

 size_t payload_hash_len;

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != psa_crypto_init())

 {

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |

PSA_KEY_USAGE_VERIFY_HASH | PSA_KEY_USAGE_EXPORT);

 psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256));

 /* To use wrapped keys instead of plaintext:

 * - Use PSA_KEY_TYPE_ECC_KEY_PAIR_WRAPPED(PSA_ECC_FAMILY_SECP_R1).*/

 psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1));

 psa_set_key_bits(&attributes, ECC_256_BIT_LENGTH);

 /* To use persistent keys instead of volatile:

 * - Use PSA_KEY_LIFETIME_PERSISTENT.

 * - The file system must be initialized prior to calling the generate/import key

functions.

 * - Refer to the littlefs example to see how to format and mount the filesystem. */

 psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_VOLATILE);

 /* Generate ECC P256R1 Key pair */

 if (PSA_SUCCESS != psa_generate_key(&attributes, &ecc_key_handle))

 {

 debugger_break();

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,980 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 }

 /* Test the key information */

 if (PSA_SUCCESS != psa_get_key_attributes(ecc_key_handle, &read_attributes))

 {

 debugger_break();

 }

 /* Calculate the hash of the message */

 if (PSA_SUCCESS != psa_hash_setup(&hash_operation, PSA_ALG_SHA_256))

 {

 debugger_break();

 }

 if (PSA_SUCCESS != psa_hash_update(&hash_operation, payload, sizeof(payload)))

 {

 debugger_break();

 }

 if (PSA_SUCCESS !=

 psa_hash_finish(&hash_operation, &payload_hash[0], sizeof(payload_hash),

&payload_hash_len))

 {

 debugger_break();

 }

 /* Sign message using the private key

 * NOTE: The hash argument (payload_hash here) MUST have a size equal to the curve

size;

 * i.e. for SECP256R1 the payload size must be 256/8 bytes.

 * Similarly for SECP384R1 the payload size must be 384/8 bytes.

 * nist.fips.186-4: " A hash function that provides a lower security strength than

 * the security strength associated with the bit length of 'n' ordinarily should not

be used, since this

 * would reduce the security strength of the digital signature process to a level no

greater than that

 * provided by the hash function." */

 if (PSA_SUCCESS !=

 psa_sign_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,981 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

payload_hash_len, signature1,

 sizeof(signature1), &signature_length1))

 {

 debugger_break();

 }

 /* Verify the signature1 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

payload_hash_len, signature1,

 signature_length1))

 {

 debugger_break();

 }

 /* Export the key. The exported key can then be save to flash for later usage. */

 if (PSA_SUCCESS !=

 psa_export_key(ecc_key_handle, exportedECC_SECP256R1Key, sizeof

(exportedECC_SECP256R1Key),

 &exportedECC_SECP256R1Keylength))

 {

 debugger_break();

 }

 /* Destroy the key and handle */

 if (PSA_SUCCESS != psa_destroy_key(ecc_key_handle))

 {

 debugger_break();

 }

 /* Import the previously exported key pair */

 if (PSA_SUCCESS !=

 psa_import_key(&attributes, exportedECC_SECP256R1Key,

exportedECC_SECP256R1Keylength, &ecc_key_handle))

 {

 debugger_break();

 }

 /* Sign message using the private key */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,982 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 if (PSA_SUCCESS !=

 psa_sign_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

payload_hash_len, signature2,

 sizeof(signature2), &signature_length2))

 {

 debugger_break();

 }

 /* Verify signature2 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(ecc_key_handle, PSA_ALG_ECDSA(PSA_ALG_SHA_256), payload_hash,

payload_hash_len, signature2,

 signature_length2))

 {

 debugger_break();

 }

 /* Signatures cannot be compared since ECC signatures vary for the same data unless

Deterministic ECC is used which is not supported by the HW.

 * Only the verification operation can be used to validate signatures. */

}

RSA Example

This is an example on using the PSA Crypto API to generate an RSA2048 key, encrypting and
decrypting multi-block data and using PKCS7 padding.

#define RSA_2048_BIT_LENGTH 2048

#define RSA_2048_EXPORTED_SIZE 1210

/* The RSA 2048 key pair export in der format is roughly as follows

 * RSA private keys:

 * RSAPrivateKey ::= SEQUENCE { --------------------------------------- 1 + 3

 * version Version, --------------------------------------- 1 + 1 + 1

 * modulus INTEGER, ---------------- n ------------------- 1 + 3 + 256 + 1

 * publicExponent INTEGER, ---------------- e ------------------- 1 + 4

 * privateExponent INTEGER, ---------------- d ------------------- 1 + 3 + 256 (276

for Wrapped)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,983 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 * prime1 INTEGER, ---------------- p ------------------- 1 + 3 + (256 / 2)

 * prime2 INTEGER, ---------------- q ------------------- 1 + 3 + (256 / 2)

 * exponent1 INTEGER, ---------------- d mod (p-1) --------- 1 + 2 + (256 / 2) (4 for

Wrapped)

 * exponent2 INTEGER, ---------------- d mod (q-1) --------- 1 + 2 + (256 / 2) (4 for

Wrapped)

 * coefficient INTEGER, ---------------- (inverse of q) mod p - 1 + 2 + (256 / 2) (4

for Wrapped)

 * otherPrimeInfos OtherPrimeInfos OPTIONAL ------------------------ 0 (not

supported)

 * }

 */

uint8_t exportedRSA2048Key[RSA_2048_EXPORTED_SIZE];

size_t exportedRSA2048Keylength = 0;

void psa_rsa2048_example (void)

{

/* This example generates an RSA2048 keypair, performs signing and verification

operations.

 * It then exports the generated key into ASN1 DER format to a RAM array which can

then be programmed to flash.

 * It then re-imports that key, and performs signing and verification operations. */

 mbedtls_platform_context ctx = {0};

 psa_key_handle_t key_handle = {0};

 unsigned char payload[] = "ASYMMETRIC_INPUT_FOR_SIGN";

 unsigned char signature1[PSA_SIGNATURE_MAX_SIZE] = {0};

 unsigned char signature2[PSA_SIGNATURE_MAX_SIZE] = {0};

 size_t signature_length1 = 0;

 size_t signature_length2 = 0;

 psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

 psa_key_attributes_t read_attributes = PSA_KEY_ATTRIBUTES_INIT;

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

 {

 debugger_break();

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,984 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 if (PSA_SUCCESS != psa_crypto_init())

 {

 debugger_break();

 }

 /* Set key attributes */

 psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH |

PSA_KEY_USAGE_VERIFY_HASH | PSA_KEY_USAGE_EXPORT);

 psa_set_key_algorithm(&attributes, PSA_ALG_RSA_PKCS1V15_SIGN_RAW);

 /* To use wrapped keys instead of plaintext:

 * - Use PSA_KEY_TYPE_RSA_KEY_PAIR_WRAPPED. */

 psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);

 psa_set_key_bits(&attributes, RSA_2048_BIT_LENGTH);

 /* To use persistent keys instead of volatile:

 * - Use PSA_KEY_LIFETIME_PERSISTENT.

 * - The file system must be initialized prior to calling the generate/import key

functions.

 * - Refer to the littlefs example to see how to format and mount the filesystem. */

 psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_VOLATILE);

 /* Generate RSA 2048 Key pair */

 if (PSA_SUCCESS != psa_generate_key(&attributes, &key_handle))

 {

 debugger_break();

 }

 /* Test the key information */

 if (PSA_SUCCESS != psa_get_key_attributes(key_handle, &read_attributes))

 {

 debugger_break();

 }

 /* Sign message using the private key */

 if (PSA_SUCCESS !=

 psa_sign_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload, sizeof

(payload), signature1,

 sizeof(signature1), &signature_length1))

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,985 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 debugger_break();

 }

 /* Verify the signature1 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload,

sizeof(payload), signature1,

 signature_length1))

 {

 debugger_break();

 }

 /* Export the key */

 if (PSA_SUCCESS !=

 psa_export_key(key_handle, exportedRSA2048Key, sizeof(exportedRSA2048Key),

&exportedRSA2048Keylength))

 {

 debugger_break();

 }

 /* Destroy the key and handle */

 if (PSA_SUCCESS != psa_destroy_key(key_handle))

 {

 debugger_break();

 }

 /* Import the previously exported key pair */

 if (PSA_SUCCESS != psa_import_key(&attributes, exportedRSA2048Key,

exportedRSA2048Keylength, &key_handle))

 {

 debugger_break();

 }

 /* Sign message using the private key */

 if (PSA_SUCCESS !=

 psa_sign_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload, sizeof

(payload), signature2,

 sizeof(signature2), &signature_length2))

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,986 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

 debugger_break();

 }

 /* Verify signature2 using the public key */

 if (PSA_SUCCESS !=

 psa_verify_hash(key_handle, PSA_ALG_RSA_PKCS1V15_SIGN_RAW, payload,

sizeof(payload), signature2,

 signature_length2))

 {

 debugger_break();

 }

 /* Compare signatures to verify that the same signature was generated */

 if (0 != memcmp(signature2, signature1, signature_length2))

 {

 debugger_break();

 }

 mbedtls_psa_crypto_free();

 mbedtls_platform_teardown(&ctx);

}

Function Documentation

◆ RM_PSA_CRYPTO_TRNG_Read()

fsp_err_t RM_PSA_CRYPTO_TRNG_Read (uint8_t *const p_rngbuf, uint32_t num_req_bytes,
uint32_t * p_num_gen_bytes)

Reads requested length of random data from the TRNG. Generate nbytes of random bytes and
store them in p_rngbuf buffer.

Return values
FSP_SUCCESS Random number generation successful

FSP_ERR_ASSERTION NULL input parameter(s).

FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

s_generate_16byte_random_data

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,987 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Crypto Middleware (rm_psa_crypto)

◆ mbedtls_platform_setup()

int mbedtls_platform_setup (mbedtls_platform_context * ctx)

This function initializes the SCE and the TRNG. It must be invoked before the crypto library can be
used. This implementation is used if MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT is defined.

Example:

 mbedtls_platform_context ctx = {0};

 /* Setup the platform; initialize the SCE and the TRNG */

 if (PSA_SUCCESS != mbedtls_platform_setup(&ctx))

Return values
0 Initialization was successful.

MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILE
D

SCE Initialization error.

◆ mbedtls_platform_teardown()

void mbedtls_platform_teardown (mbedtls_platform_context * ctx)

This implementation is used if MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT is defined. It is
intended to de-initialize any items that were initialized in the mbedtls_platform_setup() function,
but currently is only a placeholder function.

Example:

 /* De-initialize the platform. This is currently a placeholder function which does

not do anything. */

 mbedtls_platform_teardown(&ctx);

Return values
N/A

4.2.98 Azure RTOS ThreadX Port (rm_threadx_port)
Modules

ThreadX port for RA MCUs.

Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,988 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

Note
The ThreadX Port does not provide any interfaces to the user. Consult the ThreadX documentation at
https://docs.microsoft.com/en-us/azure/rtos/threadx/ for further information.

Features

The RA ThreadX port supports the following features:

Standard ThreadX configurations
Hardware stack monitor

Configuration
Build Time Configurations for ThreadX

The following build time configurations are defined in fsp_cfg/azure/tx/tx_user.h:

Configuration Options Default Description

General > Custom
tx_user.h

Manual Entry Add a path to your
custom tx_user.h file. It
can be used to override
some or all of the
configurations defined
here, and to define
additional
configurations.

General > Error
Checking

Enabled
Disabled

Enabled The ThreadX basic API
error checking can be
bypassed by compiling
with the symbol TX_DIS
ABLE_ERROR_CHECKIN
G defined.

General > Max
Priorities

Value must be a
multiple of 32 or empty

32 Define the priority
levels for ThreadX.
Legal values range
from 32 to 1024 and
MUST be evenly
divisible by 32.

General > Minimum
Stack

Value must be greater
than 0 or empty

200 Define the minimum
stack for a ThreadX
thread on this
processor. If the size
supplied during thread
creation is less than
this value, the thread
create call will return
an error.

General > Stack Filling Enabled
Disabled

Enabled Determine is stack
filling is enabled. By
default, ThreadX stack
filling is enabled, which

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,989 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/threadx/

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

places an 0xEF pattern
in each byte of each
thread's stack. This is
used by debuggers
with ThreadX-
awareness and by the
ThreadX run-time stack
checking feature.

General > Preemption
Threshold

Enabled
Disabled

Disabled Determine if
preemption-threshold
should be disabled. By
default, preemption-
threshold is disabled. If
the application does
not use preemption-
threshold, it may be
disabled to reduce
code size and improve
performance.

General > Notify
Callbacks

Enabled
Disabled

Disabled Determine if the notify
callback option should
be disabled. By default,
notify callbacks are
disabled. If the
application does not
use notify callbacks,
they may be disabled
to reduce code size
and improve
performance.

General > Inline
Thread Resume
Suspend

Enabled
Disabled

Disabled Determine if the
tx_thread_resume and
tx_thread_suspend
services should have
their internal code in-
line. This results in a
larger image, but
improves the
performance of the
thread resume and
suspend services.

General > Not
Interruptable

Enabled
Disabled

Disabled Determine if the
internal ThreadX code
is non-interruptable.
This results in smaller
code size and less
processing overhead,
but increases the
interrupt lockout time.

General > IAR Library
Support

Enabled
Disabled

Disabled Enable IAR library
support (IAR compiler
only). When IAR Library

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,990 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

Support is Enabled,
enable the linker option
--threaded_lib. In the
IAR IDE, this can be
enabled in Project >
Options > General
Options > Library
Configuration > Enable
thread support in
library.

General > BSD Support Enabled
Disabled

Disabled Defines TX_THREAD_EX
TENSION_1 to
bsd_err_no in order to
support NXD BSD.

General > FileX Pointer Enabled
Disabled

Enabled Determine if there is a
FileX pointer in the
thread control block.
By default, the pointer
is there for
legacy/backwards
compatibility. The
pointer must also be
there for applications
using FileX. Disable this
to save space in the
thread control block.

Timer > Timer Ticks
Per Second

Value must be greater
than 0 or empty

100 Define the number of
times the system timer
runs per second.
Default is 100 ticks per
second, which results
in a tick every 10ms.

Timer > Timer Thread
Stack Size

Value must be greater
than 0 or empty

1024 Define the system
timer thread's default
stack size and priority.
These are only
applicable if TX_TIMER_
PROCESS_IN_ISR is
disabled.

Timer > Timer Thread
Priority

Value must be greater
than 0 or empty

0 Define the system
timer thread's default
stack size and priority.
These are only
applicable if TX_TIMER_
PROCESS_IN_ISR is
disabled.

Timer > Timer Process
In ISR

Enabled
Disabled

Enabled Determine if timer
expirations (application
timers, timeouts, and
tx_thread_sleep calls
should be processed

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,991 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

within the a system
timer thread or directly
in the timer ISR. When
disabled, the timer
thread is used. When
enabled, timer
expiration processing is
done directly from the
timer ISR, thereby
eliminating the timer
thread control block,
stack, and context
switching to activate it.

Timer > Reactivate
Inline

Enabled
Disabled

Disabled Determine if in-line
timer reactivation
should be used within
the timer expiration
processing. By default,
this is disabled and a
function call is used.
When enabled,
reactivating is
performed in-line
resulting in faster timer
processing but slightly
larger code size.

Timer > Timer Enabled
Disabled

Enabled Determine if no timer
processing is required.
This option will help
eliminate the timer
processing when not
needed.

Trace > Event Trace Enabled
Disabled

Disabled Determine if the trace
event logging code
should be enabled. This
causes slight increases
in code size and
overhead, but provides
the ability to generate
system trace
information which is
available for viewing in
TraceX.

Trace > Trace Buffer
Name

Name must be a valid
C symbol

g_tx_trace_buffer Name of trace buffer
symbol, only used if
Event Trace is enabled.

Trace > Memory
section for Trace Buffer

Manual Entry .bss Specify the memory
section where the
Trace Buffer will be
allocated, only used if
Event Trace is enabled.
To view TraceX data,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,992 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

export this buffer as
raw binary data to a
file (.trx extension
recommended) and
open it with Microsoft
Azure RTOS TraceX.

Trace > Trace Buffer
Size

Value must be greater
than 0

65536 Trace buffer size in
bytes, only used if
Event Trace is enabled

Trace > Trace Buffer
Number of Registries

Value must be greater
than 0

30 Number of registries
available to TraceX,
only used if Event
Trace is enabled

Performance > Block
Pool Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers block
pool performance
information.

Performance > Byte
Pool Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers byte
pool performance
information.

Performance > Event
Flags Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers event
flags performance
information.

Performance > Mutex
Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers mutex
performance
information.

Performance > Queue
Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers queue
performance
information.

Performance >
Semaphore
Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers
semaphore
performance
information.

Performance > Thread
Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers
thread performance
information.

Performance > Timer
Performance Info

Enabled
Disabled

Disabled When enabled,
ThreadX gathers timer
performance
information.

RA > Hardware Thread
Stack Monitoring

MCU Specific Options Use RA Hardware Stack
Monitors to monitor

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,993 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

thread stacks for
overflow. Not available
on MCUs that support
PSPLIM.

Interrupts > SysTick
Interrupt Priority

MCU Specific Options Select the Systick
interrupt priority.

Interrupts > Maximum
Interrupt Priority

MCU Specific Options The maximum priority
(lowest numerical
value) an interrupt can
have and use scheduler
services. Interrupts
with higher priority can
interrupt most
scheduler critical
sections. Setting this to
Priority 0 (highest)
disables this feature.
This feature is not
available on MCUs that
do not have the
BASEPRI register.

Clock Configuration

The ThreadX port uses the SysTick timer as the system clock. The timer rate is configured in the
ThreadX component under General > Timer Ticks Per Second.

Pin Configuration

This module does not use I/O pins.

Usage Notes
Interrupt Priorities

When no threads are ready to run, the ThreadX port spins in the PendSV_Handler, which is fixed at
the lowest interrupt priority. The MCU does not service any other interrupts of the lowest priority
while no threads are ready to run.

To get around this limitation, the application can create an idle thread that is always ready to run. If
the idle thread enters a lower power mode, make sure all interrupts that are required to resume the
scheduler can wake the MCU in the configured power mode. If the application expects to wake after
a certain number of ticks, the idle thread should not enter standby mode because the SysTick cannot
wake the MCU from standby mode. See Low Power Modes (r_lpm) for more information regarding low
power modes.

Warning
Do not attempt to wake a thread from an interrupt with the lowest available interrupt
priority unless the application has created an idle thread.

Hardware Stack Monitor

The hardware stack monitor generates an NMI if the PSP goes out of the memory area for the stack

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,994 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

allocated for the current thread. A callback can be registered using R_BSP_GroupIrqWrite() to be
called whenever a stack overflow or underflow of the PSP for a particular thread is detected.

Low Power Modes

The idle processing executes WFI() when no thread is ready to run. If the MCU is configured to enter
software standby mode or deep software standby mode when the idle processing executes WFI(),
the RA ThreadX port changes the low power mode to sleep mode so the idle processing can wake
from SysTick. The low power mode settings are restored when the MCU wakes from sleep mode.

TrustZone Integration

When using an RTOS in a TrustZone project, ARM recommends keeping the RTOS in the non-secure
project. Tasks may call non-secure callable functions if the thread has allocated a secure context
(using tx_thread_secure_stack_allocate).

The secure context can be freed by deleting the thread or calling tx_thread_secure_stack_free.

Examples
Stack Monitor Example

This is an example of using the stack monitor in an application.

#if BSP_FEATURE_BSP_HAS_SP_MON

void stack_monitor_callback(bsp_grp_irq_t irq);

void stack_monitor_callback (bsp_grp_irq_t irq)

{

 FSP_PARAMETER_NOT_USED(irq);

 if (1U == R_MPU_SPMON->SP[0].CTL_b.ERROR)

 {

 /* Handle main stack monitor error here. */

 }

 if (1U == R_MPU_SPMON->SP[1].CTL_b.ERROR)

 {

 /* Handle process stack monitor error here. */

 }

}

void rm_threadx_port_stack_monitor_example (void)

{

 /* Register a callback to be called when the stack goes outside the allocated stack

area. */

 R_BSP_GroupIrqWrite(BSP_GRP_IRQ_MPU_STACK, stack_monitor_callback);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,995 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

}

#else

/* Allocate stack space to return from UsageFault. */

uint32_t g_stack_overflow_exception_stack[8] BSP_ALIGN_VARIABLE(BSP_STACK_ALIGNMENT)

BSP_PLACE_IN_SECTION(

 BSP_SECTION_STACK);

/* MCUs that do not have an SPMON stack monitor use PSPLIM to detect stack overflows.

When a stack overflow error

 * occurs, the UsageFault_Handler fires if it has been enabled. */

void UsageFault_Handler (void)

{

 register uint32_t cfsr = SCB->CFSR;

 if (cfsr & SCB_CFSR_STKOF_Msk)

 {

 /* Update PSP and PSPLIM to point to an exception stack frame allocated for stack

overflows. */

 register uint32_t * p_exception_stack_frame = (uint32_t *)

(&g_stack_overflow_exception_stack);

 __set_PSP((uint32_t) p_exception_stack_frame);

 __set_PSPLIM((uint32_t) p_exception_stack_frame);

 /* Clear XPSR, only set T-bit. */

 p_exception_stack_frame[7] = 1U << 24;

 /* Set PC to stack overflow error while loop. When execution returns from the

UsageFault, it will go to the

 * stack_overflow_error_occurred function. It cannot return to the location where

the fault occurred because

 * the MCU does not save the exception stack frame to the stack when a stack

overflow error occurs. */

 p_exception_stack_frame[6] = (uint32_t) stack_overflow_error_occurred;

 }

 /* Clear flags. */

 SCB->CFSR = cfsr;

}

/* This function is called from UsageFault_Handler after a stack overflow occurs. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,996 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Azure RTOS ThreadX Port (rm_threadx_port)

void stack_overflow_error_occurred (void)

{

 /* When recovering from a stack overflow, move the thread to a while(1) loop. */

 while (1)

 {

 /* Do nothing. */

 }

}

void rm_threadx_port_stack_monitor_example (void)

{

 /* Enable usage fault. */

 SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk;

}

#endif

TrustZone Example

This is an example of calling tx_thread_secure_stack_allocate before calling any non-secure callable
functions in a thread.

extern TX_THREAD * _tx_thread_current_ptr;

void rm_threadx_port_trustzone_thread_example (void)

{

 /* When ThreadX is used in a non-secure TrustZone application,

tx_thread_secure_stack_allocate must be called prior

 * to calling any non-secure callable function in a thread. The first parameter is a

pointer to the thread control block.

 * This function can be called when the thread is created or in the thread before an

non-secure callable function is

 * called. The second parameter is unused in the FSP implementation. */

 UINT status = tx_thread_secure_stack_allocate(_tx_thread_current_ptr, 0);

 assert(TX_SUCCESS == status);

 rm_threadx_port_nsc_function();

}

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,997 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

4.2.99 Intel TinyCrypt (rm_tinycrypt_port)
Modules

Functions

fsp_err_t RM_TINCYRYPT_PORT_TRNG_Read (uint8_t *const p_rngbuf, uint32_t
num_req_bytes)

 Reads requested length of random data from the TRNG. Generate
num_req_bytes of random bytes and store them in p_rngbuf buffer.
More...

fsp_err_t RM_TINCYRYPT_PORT_Init (void)

int default_CSPRNG (uint8_t *dest, unsigned int size)

 Implements the Cryptographically Secure Pseudo-Random Number
Generator function required byt TinyCrypt. More...

Detailed Description

AES128 Hardware acceleration for TinyCrypt on the RA2 family.

Overview
Note

The TinyCrypt port module does not provide any interfaces to the user. Consult the documentation at
https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst for further information.

TinyCrypt is designed as a small footprint software crypto implementation to be used on resource
constrained devices. The software only module is available in FSP on all RA devices. Hardware
acceleration for AES-128 is provided only for the RA2 family. This release uses TinyCrypt v0.2.8.

Hardware Overview

Crypto Peripheral version Devices

AES Engine RA2A1, RA2E1, RA2L1

Features

For features supported by the software-only version, refer to the TinyCrypt documentation.

The TinyCrypt port module provides hardware support for the following operations

AES
Keybits - 128
ECB, CBC, CTR, CCM and CMAC modes -TRNG

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,998 / 2,794

https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

Configuration
Build Time Configurations for TinyCrypt_Acceleration

The following build time configurations are defined in fsp_cfg/rm_tinycrypt_port_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

AES Configuration

To enable hardware acceleration for the AES128 operation, choose TinyCrypt (H/W Accelerated) from
the stack options . This feature is only supported on the RA2 family.

Usage Notes
Hardware Initialization

Invoke RM_TINCYRYPT_PORT_Init () to initialize the hardware before using Tinycrypt if either
hardware acceleration or the TRNG is to be used.

Random Number Generation

There are two Pseudo-random Number Generators (PRNG) provided in TinyCrypt

CTR-PRNG which uses AES128 internally in its implementation. Enabling AES128 hardware
acceleration will improve the performance of this module.
HMAC-PRNG which uses SHA256 internally in its implementation.

 Both these implementations will only be able to provide a random pseudo-random
number sequence if they are seeded with truly random data. The TRNG module that is
present in hardware and available in rm_tinycrypt_port must be used to seed these
modules. When using CTR-PRNG or HMAC-PRNG, use the RM_TINCYRYPT_PORT_TRNG_Read()
function to obtain random data from the TRNG hardware and use that to seed the PRNG modules
before invoking the pseudo-random number generation. If purely random data is sufficient for the
application, then RM_TINCYRYPT_PORT_TRNG_Read() can be used directly instead. The hardware
TRNG implements the CTR_DRBG spec.

Default CSPRNG

The TinyCrypt ECC implementation requires a platform specific implementation of the
default_CSPRNG() function. This function has been implemented using the hardware TRNG in the
port to support software ECC usage. When using TinyCrypt in S/W mode, it is necessary to
implement default_CSPRNG() if using ECC signature generation (ECDSA) or key derivation (ECDH).

AES-128 Usage

The AES ECB mode implementation is provided in aes_encrypt.decrypt.c. All the other modes of AES
operation including CBC, CCN, CMAC and CTR use the ECB mode for the block operation. On the RA2,
the ECB mode has been hardware accelerated which improves performance of the other modes as
well. Additionally the CBC mode has also been accelerated.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 1,999 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

To use the different AES modes, first initialize the hardware (on the RA2) and then use the functions
defined in the header file of each AES mode. Note that TinyCrypt does not provide any type of
padding or buffering so the data provided to these modes should be multiples of AES block size.

Memory Usage

TinyCrypt does not use dynamic allocation so there is no heap requirement.

Limitations

Usage with RA4 and RA6 devices

TinyCrypt (S/W Only) can be used on RA4 and RA6 devices. However, since ECC signature generation
(ECDSA) and key derivation (ECDH) requires a random number source, that operation is currently not
supported on these devices when using TinyCrypt (S/W Only). In order to support those operations
the function default_CSPRNG() must be implemented in the user code.

TinyCrypt

No padding is supported; the user is expected to provide adequately padded data
depending on the algorithm used.
AES Key generation is not supported.
Key encoding/decoding is not supported.

TinyCrypt Port

AES CTR is currently only partially hardware accelerated.

Using TinyCrypt with TrustZone

Unlike FSP drivers, TinyCrypt cannot be configured as Non-secure callable in the RA Configurator for
a secure project. The reason for this is that in order to achieve the security objective of controlling
access to protected keys, both the crypto code as well as the keys must be placed in the secure
region. Since the tinyCrypt API requires access to the keys directly during initialization and later via a
key handle, allowing non-secure code to use the API by making it Non-secure callable will require the
keys to be stored in non-secure memory.

This limitation is identical to that for PSA Crypto. Refer to the documentation of that module on how
to create a crypto Non-Secure Callable layer to be used in such situations.

Examples
AES-CBC Example

This is an example on using TinyCrypt to encrypt and decrypt data using an AES-128 key in CBC
mode.

#define TC_INPUT_PLAINTEXT_SIZE 64U

#define TF_AES_IV_SIZE TC_AES_BLOCK_SIZE

#define TC_OUTPUT_CIPHERTEXT_SIZE (TC_INPUT_PLAINTEXT_SIZE + TF_AES_IV_SIZE)

/*

 * NIST test vectors from SP 800-38a:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,000 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

 *

 * Block #1

 * Plaintext 6bc1bee22e409f96e93d7e117393172a

 * Input Block 6bc0bce12a459991e134741a7f9e1925

 * Output Block 7649abac8119b246cee98e9b12e9197d

 * Ciphertext 7649abac8119b246cee98e9b12e9197d

 * Block #2

 * Plaintext ae2d8a571e03ac9c9eb76fac45af8e51

 * Input Block d86421fb9f1a1eda505ee1375746972c

 * Output Block 5086cb9b507219ee95db113a917678b2

 * Ciphertext 5086cb9b507219ee95db113a917678b2

 * Block #3

 * Plaintext 30c81c46a35ce411e5fbc1191a0a52ef

 * Input Block 604ed7ddf32efdff7020d0238b7c2a5d

 * Output Block 73bed6b8e3c1743b7116e69e22229516

 * Ciphertext 73bed6b8e3c1743b7116e69e22229516

 * Block #4

 * Plaintext f69f2445df4f9b17ad2b417be66c3710

 * Input Block 8521f2fd3c8eef2cdc3da7e5c44ea206

 * Output Block 3ff1caa1681fac09120eca307586e1a7

 * Ciphertext 3ff1caa1681fac09120eca307586e1a7

 */

const uint8_t cbc_key[TC_AES_KEY_SIZE] =

{

 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09,

0xcf, 0x4f, 0x3c

};

uint8_t cbc_iv[TC_AES_KEY_SIZE] =

{

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

0x0d, 0x0e, 0x0f

};

const uint8_t cbc_plaintext[64] =

{

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,001 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73,

0x93, 0x17, 0x2a,

 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45,

0xaf, 0x8e, 0x51,

 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a,

0x0a, 0x52, 0xef,

 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6,

0x6c, 0x37, 0x10

};

uint8_t cbc_expected_ciphertext[TC_OUTPUT_CIPHERTEXT_SIZE] =

{

 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,

0x0d, 0x0e, 0x0f, // NOLINT(readability-magic-numbers)

 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12,

0xe9, 0x19, 0x7d, // NOLINT(readability-magic-numbers)

 0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91,

0x76, 0x78, 0xb2, // NOLINT(readability-magic-numbers)

 0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22,

0x22, 0x95, 0x16, // NOLINT(readability-magic-numbers)

 0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75,

0x86, 0xe1, 0xa7 // NOLINT(readability-magic-numbers)

};

void tinycrypt_aes128cbc_example (void)

{

 struct tc_aes_key_sched_struct aes_keyschedule;

 uint8_t cbc_encrypted[TC_OUTPUT_CIPHERTEXT_SIZE] = {0U};

 uint8_t cbc_decrypted[TC_OUTPUT_CIPHERTEXT_SIZE] = {0U};

 if (TC_CRYPTO_SUCCESS != tc_aes128_set_encrypt_key(&aes_keyschedule, cbc_key))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS !=

 tc_cbc_mode_encrypt(cbc_encrypted, sizeof(cbc_plaintext) +

TC_AES_BLOCK_SIZE, cbc_plaintext,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,002 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

 sizeof(cbc_plaintext), cbc_iv, &aes_keyschedule))

 {

 debugger_break();

 }

 else if (0 != memcmp(&cbc_encrypted[0], &cbc_expected_ciphertext[0], sizeof

(cbc_encrypted)))

 {

 debugger_break();

 }

 else if (TC_CRYPTO_SUCCESS !=

 tc_cbc_mode_decrypt(cbc_decrypted, sizeof(cbc_encrypted),

&cbc_encrypted[TC_AES_BLOCK_SIZE],

 sizeof(cbc_encrypted), cbc_encrypted, &aes_keyschedule))

 {

 debugger_break();

 }

 else if (0 != memcmp(&cbc_plaintext[0], &cbc_decrypted[0], sizeof(cbc_plaintext)))

 {

 debugger_break();

 }

 else

 {

 /* Operation successful. */

 while (1)

 {

 ;

 }

 }

}

CTR-PRNG Example

This is an example on using the CTR_PRNG module in TinyCrypt to obtain random data.

#define TC_ENTROPY_SIZE 64U

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,003 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

#define TC_CTRPRNG_OUTPUT_SIZE 32U

void tinycrypt_ctr_prng_example (void)

{

 TCCtrPrng_t cprng_ctx;

 uint8_t seed[TC_ENTROPY_SIZE];

 uint8_t ctr_prng_output_1[TC_CTRPRNG_OUTPUT_SIZE] = {0};

 uint8_t ctr_prng_output_2[TC_CTRPRNG_OUTPUT_SIZE] = {0};

 /* Setup the platform; initialize the crypto engine. */

 if (0 != RM_TINCYRYPT_PORT_Init())

 {

 debugger_break();

 }

 /* Read random data from the TRNG to use as seed for the CTR_PRNG. */

 else if (FSP_SUCCESS != RM_TINCYRYPT_PORT_TRNG_Read(seed, sizeof(seed)))

 {

 debugger_break();

 }

 /* Initialize and seed the CTR_PRNG with the random data from the TRNG. */

 else if (TC_CRYPTO_SUCCESS != tc_ctr_prng_init(&cprng_ctx, seed, sizeof(seed), 0,

0))

 {

 debugger_break();

 }

 /* Read random data from the CTR_PRNG. */

 else if (TC_CRYPTO_SUCCESS !=

 tc_ctr_prng_generate(&cprng_ctx, 0, 0, ctr_prng_output_1, sizeof

(ctr_prng_output_1)))

 {

 debugger_break();

 }

 /* Check that the generated value is not 0. */

 else if (0 != memcmp(&ctr_prng_output_1[0], &ctr_prng_output_2[0], sizeof

(ctr_prng_output_1)))

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,004 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

 debugger_break();

 }

 /* Read random data again from the TRNG. */

 else if (TC_CRYPTO_SUCCESS !=

 tc_ctr_prng_generate(&cprng_ctx, 0, 0, ctr_prng_output_1, sizeof

(ctr_prng_output_1)))

 {

 debugger_break();

 }

 /* Check that the generated value is different than the previous call. */

 else if (0 != memcmp(&ctr_prng_output_1[0], &ctr_prng_output_2[0], sizeof

(ctr_prng_output_1)))

 {

 debugger_break();

 }

 else

 {

 /* Operation successful. */

 while (1)

 {

 ;

 }

 }

}

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,005 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Intel TinyCrypt (rm_tinycrypt_port)

◆ RM_TINCYRYPT_PORT_TRNG_Read()

fsp_err_t RM_TINCYRYPT_PORT_TRNG_Read (uint8_t *const p_rngbuf, uint32_t num_req_bytes)

Reads requested length of random data from the TRNG. Generate num_req_bytes of random bytes
and store them in p_rngbuf buffer.

Return values
FSP_SUCCESS Random number generation successful

FSP_ERR_ASSERTION NULL input parameter(s).

FSP_ERR_CRYPTO_UNKNOWN An unknown error occurred.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

HW_SCE_RNG_Read

◆ RM_TINCYRYPT_PORT_Init()

fsp_err_t RM_TINCYRYPT_PORT_Init ()

Initialize the SCE.

◆ default_CSPRNG()

int default_CSPRNG (uint8_t * dest, unsigned int size)

Implements the Cryptographically Secure Pseudo-Random Number Generator function required byt
TinyCrypt.

Return values
TC_CRYPTO_SUCCESS Random number generation successful

TC_CRYPTO_FAIL Random number generation failed.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

RM_TINCYRYPT_PORT_TRNG_Read

4.2.100 Capacitive Touch Middleware (rm_touch)
Modules

Functions

fsp_err_t RM_TOUCH_Open (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,006 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

p_cfg)

 Opens and configures the TOUCH Middle module. Implements
touch_api_t::open. More...

fsp_err_t RM_TOUCH_ScanStart (touch_ctrl_t *const p_ctrl)

 This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Before starting the next scan, first get the
data with RM_TOUCH_DataGet(). If a different control block scan
should be run, check the scan is complete before executing.
Implements touch_api_t::scanStart. More...

fsp_err_t RM_TOUCH_DataGet (touch_ctrl_t *const p_ctrl, uint64_t
*p_button_status, uint16_t *p_slider_position, uint16_t
*p_wheel_position)

 Gets the 64-bit mask indicating which buttons are pressed. Also, this
function gets the current position of where slider or wheel is being
pressed. If initial offset tuning is enabled, The first several calls are
used to tuning for the sensors. Implements touch_api_t::dataGet.
More...

fsp_err_t RM_TOUCH_PadDataGet (touch_ctrl_t *const p_ctrl, uint16_t
*p_pad_rx_coordinate, uint16_t *p_pad_tx_coordinate, uint8_t
*p_pad_num_touch)

 This function gets the current position of pad is being pressed.
Implements touch_api_t::padDataGet , g_touch_on_ctsu. More...

fsp_err_t RM_TOUCH_ScanStop (touch_ctrl_t *const p_ctrl)

 Scan stop specified TOUCH control block. Implements
touch_api_t::scanStop. More...

fsp_err_t RM_TOUCH_CallbackSet (touch_ctrl_t *const p_api_ctrl,
void(*p_callback)(touch_callback_args_t *), void const *const
p_context, touch_callback_args_t *const p_callback_memory)

fsp_err_t RM_TOUCH_Close (touch_ctrl_t *const p_ctrl)

 Disables specified TOUCH control block. Implements
touch_api_t::close. More...

fsp_err_t RM_TOUCH_SensitivityRatioGet (touch_ctrl_t *const p_ctrl,
touch_sensitivity_info_t *p_touch_sensitivity_info)

 Get the touch sensitivity ratio. Implements
touch_api_t::sensitivityRatioGet. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,007 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

fsp_err_t RM_TOUCH_ThresholdAdjust (touch_ctrl_t *const p_ctrl,
touch_sensitivity_info_t *p_touch_sensitivity_info)

 Adjust the touch judgment threshold. Implements
touch_api_t::thresholdAdjust. More...

fsp_err_t RM_TOUCH_DriftControl (touch_ctrl_t *const p_ctrl, uint16_t
input_drift_freq)

 Control drift correction. Implements touch_api_t::driftControl. More...

Detailed Description

This module supports the Capacitive Touch Sensing Unit (CTSU). It implements the Touch
Middleware Interface.

Overview
The Touch Middleware uses the Capacitive Touch Sensing Unit (r_ctsu) API and provides application-
level APIs for scanning touch buttons, sliders, and wheels. This module is configured via the QE for
Capacitive Touch.

Features

Supports touch buttons (Self and Mutual), sliders, and wheels
Can retrieve the status of up to 64 buttons at once
Software and external triggering
Callback on scan end
Collects and calculates usable scan results:

Slider position from 1 to 100 (percent)
Wheel position from 1 to 360 (degrees)

Dynamic touch-judgment-threshold adjustment
Calculate the XY coordinates of the pad(CTSU2)
Optional (build time) support for real-time monitoring functionality through the QE tool over
UART
Optional (build time) support for tuning function through the QE Standalone Version tool
over UART(CTSU2)
TrustZone Support

Configuration
Note

This module is configured via the QE for Capacitive Touch. For information on how to use the QE tool, once
the tool is installed click Help -> Help Contents in e2 studio and search for "QE".

This module also supports the QE monitor function. The monitor determines whether to use
debugger or serial communications, determines the type of the information from QE and sends only
the necessary information. This module also supports the QE monitor function. The monitor
determines whether to use debugger or serial communications, determines the type of the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,008 / 2,794

https://www.renesas.com/qe-capacitive-touch
https://www.renesas.com/qe-capacitive-touch
https://www.renesas.com/qe-capacitive-touch

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

information from QE and sends only the necessary information.

Note
Multiple configurations can be defined within a single project allowing for different scan procedures or button
layouts.

Build Time Configurations for rm_touch

The following build time configurations are defined in fsp_cfg/rm_touch_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support for QE
monitoring using UART

Enabled
Disabled

Disabled Enable SCI_UART
support for QE
monitoring.

Support for QE Tuning
using UART

Enabled
Disabled

Disabled Enable SCI_UART
support for QE Tuning.

Configurations for Middleware > CapTouch > TOUCH Driver on rm_touch

This module can be added to the Stacks tab via New Stack > Middleware > CapTouch > TOUCH
Driver on rm_touch. Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Interrupt Configuration

Refer to the Capacitive Touch Sensing Unit (r_ctsu) section for details.

Clock Configuration

Refer to the Capacitive Touch Sensing Unit (r_ctsu) section for details.

Pin Configuration

Refer to the Capacitive Touch Sensing Unit (r_ctsu) section for details.

Usage Notes
Measurements and Data Processing

The module determines whether the button has been touched based on the change in capacitance
and detects the position of the slider or wheel. This requires continued periodic measurements of
capacitance. When developing your application, make sure to periodically call
RM_TOUCH_ScanStart() and RM_TOUCH_DataGet(). For more details, refer to the sample application.

Button Touch Determination

Creating reference value and threshold

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,009 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

A touch button is not a mechanical button in which the ON/OF state is switched by hardware. The
ON/OFF state is determined via software.
First, a reference value is created based on measurement results in the non-touch state. The initial
reference value is the first measured value. The threshold is then determined with an arbitrary
offset. If a measured value exceeds the threshold, the button is determined to be in the ON state, if
it does not exceed the threshold, it is in the OFF state.
Processing for self-capacitance and mutual capacitance are basically the same. However, because
the amount of capacitance decreases when a mutual capacitance button is touched, the user needs
to set the threshold based on decreasing measured values to determine the ON/OFF state.
You can set the threshold for each button separately in the configuration settings (threshold in
touch_button_cfg_t). The following functions are also included to deal with issues such as chattering
suppression and changes in the external environment which affect actual touch recognition.

Positive Noise Filter/Negative Noise Filter

As a chattering countermeasure, you can confirm the ON/OFF state after a set number of
consecutive ON or OFF determinations.
In the configuration settings (on_freq and off_freq in touch_cfg_t) set the number of consecutive ON
or OFF states. You can do this for all buttons in the touch interface configuration. Be aware that,
although this is an effective solution to improving chattering, the greater the number of consecutive
states, the slower the response to actual touch.

Hysteresis

This is another chattering countermeasure. Offset the constant to the threshold after the state goes
to ON, and prevent chattering by using hysteresis as the OFF-to-ON and ON-to-OFF threshold.
You can set the hysteresis value for each button in the configuration settings (hysteresis in
touch_button_cfg_t). The larger the hysteresis, the more effective the countermeasure is in
suppressing chattering. However, keep in mind that this will make it more difficult to return the state
from ON-to-OFF of OFF-to-ON.

Drift Correction Process

As a countermeasure for changes in the external environment, the drift correction process refreshes
the reference value.
After averaging the measured value in the OFF state over a set period, if the button is in the touch
OFF state after a set period, the reference value is refreshed. The drift correction is only executed in
the OFF state and is cleared when touch ON is determined.
Set the period in the configuration settings (drift_freq in touch_cfg_t). You can do this for all buttons
in the touch interface configuration. This allows you to adjust the ability to determine the touch state
despite changes in the external environment.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,010 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

Figure 205: Button Touch Determination

Press and hold cancel

Strong noise or other sudden environment changes can disable the drift correction process,
preventing return from the ON state. The press and hold cancel function implements the drift
correction process and returns the button from the ON state by forcibly turning the state to OFF after
a certain number of consecutive ON state periods.
Set the number of consecutive ON periods required for the press and hold cancel function to return
the button to the OFF state in the configuration settings (cancel_freq in touch_cfg_t). You can do this
for all buttons in the touch interface configuration.

Touch Position Detection of Slider/Wheel

Configure a slider with multiple terminals to be measured (TS) physically arranged in a straight line.
Configure a wheel with multiple terminals physically arranged in a circle.
The touch position is calculated from the measured values of the TS in the configuration. The
calculation method for sliders and wheels is fundamentally the same.

1. Detect the maximum value (TS_MAX) among the terminals in the configuration.
2. Calculate the difference (d1, d2) between TS_MAX and the terminals on either side. (If the

TS_MAX terminal is at one end of the slider, use the values of the two terminals to the right
or left, accordingly.)

3. If the total of d1 and d2 exceeds the threshold, position calculation is initiated. If the total
amount does not exceed the threshold, the position calculation process is ended.

4. With TS_MAX as the middle position, the ratio of d1 to d2 is used to calculate the position.
The slider has a range of 1 to 100, and the while has a range of 1 to 360.

Slider Wheel

Electrode type Self capacitance only Self capacitance only

Number of electrodes 3-10 4+

Touch position output range 1-100 1-360

Default value (no touch) 0xFFFF 0xFFFF

Tuning the Touch Determination Adjustment

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,011 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

When QE tuning, a measurement is performed with a finger touching the button and the tuned
parameters are output in the configuration file. The setting value of the threshold is 60% of the touch
sensitivity between touch and non-touch state, and the setting value of the hysteresis coefficient is
5% of the threshold.
This module provides the functions for dynamic adjusting of these threshold and hysteresis
coefficient.
They are two functions as below.

Adjusting the threshold and hysteresis coefficient to an arbitrary ratio.
Use RM_TOUCH_ThresholdAdjust().

When changing the touch determination threshold ratio from 60% QE set to 70% user specified, the
touch determination thresholds are as below.
If you want to make this setting, set the member of the second argument as follows. It is also
necessary to set the ratio of the amount of touch change and the hysteresis value.

*p_touch_sensitivity_ratio = 100,
old_threshold_ratio = 60,
new_threshold_ratio = 70,
new_hysteresis_ratio = 5

Figure 206: Example of changing the threshold ratio

Adjusting the threshold and hysteresis coefficient according to the current touch
sensitivity.
Use RM_TOUCH_SensitivityRatioGet(), RM_TOUCH_ThresholdAdjust(), and
RM_TOUCH_DriftControl().

When changing the kind of the overlay panel, the touch sensitivity differs from the one QE tuned.
Wanting to use the software as it is without re-tuning. If you use a thicker overlay than that at QE
tuning, the touch sensitivity decreases, and a touch may not be determined because of the same

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,012 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

touch determination threshold. This function adjusts the touch determination threshold based on the
ratio of the touch sensitivity after changing the overlay to the touch sensitivity at the QE tuning.

RM_TOUCH_SensitivityRatioGet() outputs the ratio of the current touch sensitivity assuming that the
touch sensitivity at the QE setting is 100%.
The following figure shows the case where an overlay panel is thinner and the touch sensitivity
increases.

Figure 207: Example of increase touch sensitivity for thin overlay panels

 Following figure shows the case where an overlay panel is thicker and the touch sensitivity
decreases.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,013 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

Figure 208: Example of decrease touch sensitivity for thicker overlay panels

 RM_TOUCH_ThresholdAdjust() sets the new touch determination threshold and the hysteresis value
by using the touch sensitivity ratio obtained with RM_TOUCH_SensitivityRatioGet() as arguments.

Example of calculation 1:
The touch sensitivity ratio is 140%, and the threshold set by QE is 1500.
Threshold = 140 * 1500 / 100 = 2100

*p_touch_sensitivity_ratio = 140,
old_threshold_ratio = 60,
new_threshold_ratio = 60,
new_hysteresis_ratio = 5

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,014 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

Figure 209: Example of calculation 1

 Example of calculation 2:
The touch sensitivity ratio is 60%, and the threshold set by QE is 1500.
Threshold = 60 * 1500 / 100 = 900

*p_touch_sensitivity_ratio = 60,
old_threshold_ratio = 60,
new_threshold_ratio = 60,
new_hysteresis_ratio = 5

Figure 210: Example of calculation 2

 RM_TOUCH_DriftContorol() set the second argument to 0 to stop the drift correction function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,015 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

When calculating the ratio of the touch change amount using RM_TOUCH_SensitivityRatioGet(), the
touch change amount decreases due to the thick overlay, and the threshold value is not exceeded
even if touched. Prevents the reference value from drifting.

Example of the application for adjustment using data flash without re-tuning or software
rewriting

Enable UART communication to PC and ‘tuning mode’. In tuning mode, the MCU transmits the ratio of
the touch sensitivity in the touch state to the PC in real time. A user sends a command to decide the
ratio while monitoring on the PC. The MCU stores the received ratio in the data flash. Make sure that
the ratio stored in the data flash is read at the software activation, and the touch determination
threshold is adjusted based on this stored value.

Pad

Configure a pad with multiple terminals physically arranged in cross.
The current position is Calculated from the measured values of the CTSU mutual scanning in the
configuration.
Use RM_TOUCH_PadDataGet().
Pad is subject so some limitations:

Pad

Electrode type CFC mutual capacitance only

Number of electrodes RX(TS-CFC)3+, TX(Any TS)3+

Touch position output range rx_coodinate:(0 ~ rx_pixel), tx_coodinate:(0 ~
tx_pixsel)

Default value (no touch) rx_coodinate:0xFFFF, tx_coodinate:0xFFFF

Pixel range rx_pixel:(1 ~ 65535), tx_pixsel:(1 ~ 65535)

Pitch for each terminal can be set with QE. Pitch's default value is 64.
The relationship between pixel and pitch : Pixel = Pitch × number of TS - 1

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,016 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

Figure 211: Example of Pad

TrustZone Support

In r_ctsu and rm_touch module, Non-Secure Callable Guard Functions are only generated from QE for
Capacitive Touch. QE can be used for tuning in secure or flat project, but not in non-secure project. If
you want to use in non-secure project, copy the output file from secure or flat project. Refer to QE
Help for more information.

Examples
Basic Example

This is a basic example of minimal use of the TOUCH in an application.

void touch_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 err = RM_TOUCH_Open(&g_touch_ctrl, &g_touch_cfg);

 /* Handle any errors. This function should be defined by the user. */

 assert(FSP_SUCCESS == err);

 while (true)

 {

 RM_TOUCH_ScanStart(&g_touch_ctrl);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,017 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

 while (0 == g_flag)

 {

 /* Wait scan end callback */

 }

 g_flag = 0;

 err = RM_TOUCH_DataGet(&g_touch_ctrl, &button, slider, wheel);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Multi Mode Example

This is a optional example of using both Self-capacitance and Mutual-capacitance. Refer to the Multi
Mode Example in CTSU usage notes.

void touch_optional_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 err = RM_TOUCH_Open(&g_touch_ctrl, &g_touch_cfg);

 assert(FSP_SUCCESS == err);

 err = RM_TOUCH_Open(&g_touch_ctrl_mutual, &g_touch_cfg_mutual);

 assert(FSP_SUCCESS == err);

 while (true)

 {

 RM_TOUCH_ScanStart(&g_touch_ctrl);

 while (0 == g_flag)

 {

 /* Wait scan end callback */

 }

 g_flag = 0;

 RM_TOUCH_ScanStart(&g_touch_ctrl_mutual);

 while (0 == g_flag)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,018 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

 {

 /* Wait scan end callback */

 }

 g_flag = 0;

 err = RM_TOUCH_DataGet(&g_touch_ctrl, &button, slider, wheel);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 err = RM_TOUCH_DataGet(&g_touch_ctrl_mutual, &button, slider, wheel);

 if (FSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Data Structures

struct touch_button_info_t

struct touch_slider_info_t

struct touch_wheel_info_t

struct touch_pad_info_t

struct touch_instance_ctrl_t

Data Structure Documentation

◆ touch_button_info_t

struct touch_button_info_t

Information of button

Data Fields

uint64_t status Touch result bitmap.

uint16_t * p_threshold Pointer to Threshold value
array.
g_touch_button_threshold[] is
set by Open API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,019 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

uint16_t * p_hysteresis Pointer to Hysteresis value
array.
g_touch_button_hysteresis[] is
set by Open API.

uint16_t * p_reference Pointer to Reference value
array.
g_touch_button_reference[] is
set by Open API.

uint16_t * p_on_count Continuous touch counter.
g_touch_button_on_count[] is
set by Open API.

uint16_t * p_off_count Continuous non-touch counter.
g_touch_button_off_count[] is
set by Open API.

uint32_t * p_drift_buf Drift reference value.
g_touch_button_drift_buf[] is set
by Open API.

uint16_t * p_drift_count Drift counter.
g_touch_button_drift_count[] is
set by Open API.

uint8_t on_freq Copy from config by Open API.

uint8_t off_freq Copy from config by Open API.

uint16_t drift_freq Copy from config by Open API.

uint16_t cancel_freq Copy from config by Open API.

◆ touch_slider_info_t

struct touch_slider_info_t

Information of slider

Data Fields

uint16_t * p_position Calculated Position data.
g_touch_slider_position[] is set
by Open API.

uint16_t * p_threshold Copy from config by Open API.
g_touch_slider_threshold[] is set
by Open API.

◆ touch_wheel_info_t

struct touch_wheel_info_t

Information of wheel

Data Fields

uint16_t * p_position Calculated Position data.
g_touch_wheel_position[] is set
by Open API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,020 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

uint16_t * p_threshold Copy from config by Open API.
g_touch_wheel_threshold[] is
set by Open API.

◆ touch_pad_info_t

struct touch_pad_info_t

Information of pad

Data Fields

uint16_t * p_rx_coordinate RX coordinate.

uint16_t * p_tx_coordinate TX coordinate.

uint16_t * p_num_touch number of touch

uint16_t * p_threshold Coordinate calculation
threshold value.

uint16_t * p_base_buf ScanData Base Value Buffer.

uint16_t * p_rx_pixel X coordinate resolution.

uint16_t * p_tx_pixel Y coordinate resolution.

uint8_t * p_max_touch Maximum number of touch
judgments used by the pad.

int32_t * p_drift_buf Drift reference value.
g_touch_button_drift_buf[] is set
by Open API.

uint16_t * p_drift_count Drift counter.
g_touch_button_drift_count[] is
set by Open API.

uint8_t num_drift Copy from config by Open API.

◆ touch_instance_ctrl_t

struct touch_instance_ctrl_t

TOUCH private control block. DO NOT MODIFY. Initialization occurs when RM_TOUCH_Open() is
called.

Data Fields

uint32_t open Whether or not driver is open.

touch_button_info_t binfo Information of button.

touch_slider_info_t sinfo Information of slider.

touch_wheel_info_t winfo Information of wheel.

bool serial_tuning_enable Flag of serial tuning status.

touch_pad_info_t pinfo Information of pad.

touch_cfg_t const * p_touch_cfg Pointer to initial configurations.

ctsu_instance_t const * p_ctsu_instance Pointer to CTSU instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,021 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

Function Documentation

◆ RM_TOUCH_Open()

fsp_err_t RM_TOUCH_Open (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

Opens and configures the TOUCH Middle module. Implements touch_api_t::open.

Example:

 err = RM_TOUCH_Open(&g_touch_ctrl, &g_touch_cfg);

Return values
FSP_SUCCESS TOUCH successfully configured.

FSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

FSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

FSP_ERR_INVALID_ARGUMENT Configuration parameter error.

◆ RM_TOUCH_ScanStart()

fsp_err_t RM_TOUCH_ScanStart (touch_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires. If initial offset tuning is enabled,
The first several calls are used to tuning for the sensors. Before starting the next scan, first get the
data with RM_TOUCH_DataGet(). If a different control block scan should be run, check the scan is
complete before executing. Implements touch_api_t::scanStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance or other.

FSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,022 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

◆ RM_TOUCH_DataGet()

fsp_err_t RM_TOUCH_DataGet (touch_ctrl_t *const p_ctrl, uint64_t * p_button_status, uint16_t *
p_slider_position, uint16_t * p_wheel_position)

Gets the 64-bit mask indicating which buttons are pressed. Also, this function gets the current
position of where slider or wheel is being pressed. If initial offset tuning is enabled, The first several
calls are used to tuning for the sensors. Implements touch_api_t::dataGet.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

◆ RM_TOUCH_PadDataGet()

fsp_err_t RM_TOUCH_PadDataGet (touch_ctrl_t *const p_ctrl, uint16_t * p_pad_rx_coordinate,
uint16_t * p_pad_tx_coordinate, uint8_t * p_pad_num_touch)

This function gets the current position of pad is being pressed. Implements
touch_api_t::padDataGet , g_touch_on_ctsu.

Return values
FSP_SUCCESS Successfully data decoded.

FSP_ERR_ASSERTION Null pointer.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

◆ RM_TOUCH_ScanStop()

fsp_err_t RM_TOUCH_ScanStop (touch_ctrl_t *const p_ctrl)

Scan stop specified TOUCH control block. Implements touch_api_t::scanStop.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,023 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

◆ RM_TOUCH_CallbackSet()

fsp_err_t RM_TOUCH_CallbackSet (touch_ctrl_t *const p_api_ctrl, void(*)(touch_callback_args_t *)
p_callback, void const *const p_context, touch_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
touch_api_t::callbackSet

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

◆ RM_TOUCH_Close()

fsp_err_t RM_TOUCH_Close (touch_ctrl_t *const p_ctrl)

Disables specified TOUCH control block. Implements touch_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_TOUCH_SensitivityRatioGet()

fsp_err_t RM_TOUCH_SensitivityRatioGet (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t *
p_touch_sensitivity_info)

Get the touch sensitivity ratio. Implements touch_api_t::sensitivityRatioGet.

Return values
FSP_SUCCESS Successfully touch sensitivity ratio got.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_CTSU_SCANNING Scanning this instance.

FSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,024 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Capacitive Touch Middleware (rm_touch)

◆ RM_TOUCH_ThresholdAdjust()

fsp_err_t RM_TOUCH_ThresholdAdjust (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t *
p_touch_sensitivity_info)

Adjust the touch judgment threshold. Implements touch_api_t::thresholdAdjust.

Return values
FSP_SUCCESS Successfully touch judgment threshold was

adjusted.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ RM_TOUCH_DriftControl()

fsp_err_t RM_TOUCH_DriftControl (touch_ctrl_t *const p_ctrl, uint16_t input_drift_freq)

Control drift correction. Implements touch_api_t::driftControl.

Return values
FSP_SUCCESS Successfully drift correction was controlled.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

4.2.101 USBX Porting Layer (rm_usbx_port)
Modules

Functions

Refer to USB (r_usb_basic) for the common API (r_usb_basic) to be called from the application.

Overview
This USB driver works by combining USBX and r_usb_basic module.

How to Configuration
Using a class other than HMSC. The following describes how to configure USBX using PCDC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,025 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

as an example.

1.Select [New Stack]->[Azure RTOS]->[USBX]->[PCDC]

Figure 212: Select USB Device Class

 2.The following is displayed when selecting USBX PCDC.

Figure 213: USBX PCDC Stack

 3.Select the USB pipe to use.

Figure 214: Select using USB Pipe

Using HMSC. Since HMSC is used in a different way from other USBX modules, the usage is
described below.
1.Select [New Stack]->[Azure RTOS]->[FileX]->[FileX on USBX]

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,026 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

Figure 215: Select USB Device Class

 2.The following is displayed when selecting Filex on USBX.

Figure 216: FileX on USBX Stack

Note

The following are notes on using the ux_host_class_cdc_acm_read function or the
ux_device_class_cdc_acm_read function.

1. Please specify a multiple of MaxPacketSize to the 3rd argument(requested_length). since If
the value of the 3rd argument is not multiple of MaxPacketSize, all data sent by USB Host or
USB Peripheral may not be received correctly.

2. Please specify start address of thr area allocated a size larger than 3rd
argument(requested_length) to the 2nd argument(data_pointer or buffer).

HMSC uses FileX. For more information on FileX, please refer to the following URL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,027 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

https://docs.microsoft.com/en-us/azure/rtos/filex/

Limitations

1.Please call the initialization function in the application program. Please be sure to call R_USB_Open
function after calling the following functions.

Peripheral
PCDC / PHID

ux_system_initialize
ux_device_stack_initialize
ux_device_stack_class_register

PMSC
ux_system_initialize
ux_device_stack_initialize

Host
HCDC / HHID

ux_system_initialize
ux_host_stack_initialize

HMSC
ux_system_initialize
ux_host_stack_initialize
fx_system_initialize

2.Set the value for 1000 Ticks per second in the "Timer Ticks Per Second" item.

Figure 217: Specify value of Timer Ticks Per Second

 3.Set the Thread priority to a value of 21.

Figure 218: Specify value of Thread priority

 4.When using the following functions, call the following functions in the following order after calling
the R_USB_Close function.

Peripheral
PCDC / PHID

_ux_device_stack_class_unregister
_ux_device_stack_uninitialize

PMSC

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,028 / 2,794

https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/
https://docs.microsoft.com/en-us/azure/rtos/filex/

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

_ux_device_stack_uninitialize
Host

_ux_host_stack_uninitialize

5.The USBX HID class does not support OUT transfer.

6.When using USBX HHID, please use Wired device.

7.This module does not support the MCU(RA4M1 and RA2A1) since the RAM size is small.

Descriptor
Templates for USBX descriptors can be found in ra/fsp/src/rm_usbx_port folder. Also, please be sure
to use your vendor ID.
Change the descriptor.c.template file for each class as follows if High-speed mode is used.

rm_usbx_pcdc_descriptor.c.template

1. Comment on lines 108 and 243.
2. Delete the "//" on lines 109 and 242.

rm_usbx_pmsc_descriptor.c.template

1. Comment on lines 78 and 153.
2. Delete the "//" on lines 79 and 152.

Examples
USBX PCDC Example

PCDC loopback example is as follows.

 #define VALUE_105 (105)

 #define VALUE_2 (2)

 #define VALUE_103 (103)

 #define VALUE_93 (93)

/**

 * Function Name : ux_cdc_device0_instance_activate

 * Description : Get instance

 * Arguments : void * cdc_instance : Pointer to the area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_activate (void * cdc_instance)

{

 /* Save the CDC instance. */

 g_cdc = (UX_SLAVE_CLASS_CDC_ACM *) cdc_instance;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,029 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

}

/**

 * End of function ux_cdc_device0_instance_activate

 **/

/**

 * Function Name : ux_cdc_device0_instance_deactivate

 * Description : Clear instance

 * Arguments : void * cdc_instance : Pointer to area store the instance pointer

 * Return value : none

 **/

static void ux_cdc_device0_instance_deactivate (void * cdc_instance)

{

 FSP_PARAMETER_NOT_USED(cdc_instance);

 g_cdc = UX_NULL;

}

/**

 * End of function ux_cdc_device0_instance_deactivate

 **/

/**

 * Function Name : apl_status_change_cb

 * Description : USB callback function for USB status change

 * Arguments : ULONG status : USB status

 * Return value : UX_SUCCESS

 **/

UINT apl_status_change_cb (ULONG status)

{

 switch (status)

 {

 case UX_DEVICE_ATTACHED:

 g_attach = USB_YES;

 break;

 case UX_DEVICE_REMOVED:

 g_attach = USB_NO;

 break;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,030 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 default:

 break;

 }

 return UX_SUCCESS;

}

/**

 * End of function apl_status_change_cb

 **/

/**

 * Function Name : usbx_pcdc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_pcdc_sample (void)

{

 fsp_err_t err;

 uint32_t ret;

 uint32_t size;

 _ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 _ux_device_stack_initialize(g_device_framework_hi_speed,

 VALUE_103,

 g_device_framework_full_speed,

 VALUE_93,

 g_string_framework,

 VALUE_105,

 g_language_id_framework,

 VALUE_2,

 apl_status_change_cb);

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_activate =

ux_cdc_device0_instance_activate;

 g_ux_device_class_cdc_acm0_parameter.ux_slave_class_cdc_acm_instance_deactivate =

 ux_cdc_device0_instance_deactivate;

 _ux_device_stack_class_register(_ux_system_slave_class_cdc_acm_name,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,031 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

_ux_device_class_cdc_acm_entry, 1, 0x00,

 (void *) &g_ux_device_class_cdc_acm0_parameter);

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS == err)

 {

 while (1)

 {

 if (USB_YES == g_attach)

 {

 while (g_cdc == UX_NULL)

 {

 ;

 }

 ret = _ux_device_class_cdc_acm_read(g_cdc, g_buf, DATA_LEN,

&g_actual_length);

 if (UX_SUCCESS == ret)

 {

 size = g_actual_length;

 _ux_device_class_cdc_acm_write(g_cdc, g_buf, size,

&g_actual_length);

 }

 }

 }

 }

}

/**

 * End of function usbx_pcdc_sample

 **/

USBX HCDC Example

The main functions of the HCDC loopback example are as follows:

1. Virtual UART control settings are configured by transmitting the class request
SET_LINE_CODING to the CDC device.

2. Sends receive (Bulk In transfer) requests to a CDC peripheral device and receives data.
3. Loops received data back to the peripheral by means of Bulk Out transfers.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,032 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

The main loop performs loopback processing in which data received from a CDC peripheral device is
transmitted unaltered back to the peripheral.

 #define VALUE_100 (100)

UINT ux_host_usr_event_notification (ULONG event, UX_HOST_CLASS * host_class, VOID *

instance)

{

 if (_ux_utility_memory_compare(_ux_system_host_class_cdc_acm_name, host_class,

_ux_utility_string_length_get(_ux_system_host_class_cdc_acm_name)) ==

 UX_SUCCESS)

 {

 if (event == UX_FSP_DEVICE_INSERTION) /* Check if there is a device insertion. */

 {

 p_cdc_acm = (UX_HOST_CLASS_CDC_ACM *) instance;

 if

(p_cdc_acm->ux_host_class_cdc_acm_interface->ux_interface_descriptor.bInterfaceClass

!=

 UX_HOST_CLASS_CDC_DATA_CLASS)

 {

 /* It seems the DATA class is on the second interface. Or we hope ! */

 p_cdc_acm = p_cdc_acm->ux_host_class_cdc_acm_next_instance;

 /* Check again this interface, if this is not the data interface, we give up. */

 if

(p_cdc_acm->ux_host_class_cdc_acm_interface->ux_interface_descriptor.bInterfaceClass

!=

 UX_HOST_CLASS_CDC_DATA_CLASS)

 {

 /* We did not find a proper data interface. */

 p_cdc_acm = UX_NULL;

 }

 }

 if (p_cdc_acm != UX_NULL)

 {

 tx_event_flags_set(&g_cdcacm_activate_event_flags0, CDCACM_FLAG,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,033 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

TX_OR);

 }

 }

 else if (event == UX_FSP_DEVICE_REMOVAL) /* Check if there is a device removal. */

 {

 tx_event_flags_set(&g_cdcacm_activate_event_flags0, ~CDCACM_FLAG,

TX_AND);

 p_cdc_acm = UX_NULL;

 }

 else

 {

 }

 }

 return UX_SUCCESS;

}

void buffer_clear (uint8_t * p)

{

 uint16_t counter;

 for (counter = 0; counter < DATA_LEN; counter++)

 {

 *p = 0U;

 }

}

/**

 * Function Name : usbx_hcdc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

/* CDCACM Host Thread entry function */

void usbx_hcdc_sample (void)

{

 uint32_t status;

 ULONG actual_flags;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,034 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 uint16_t counter = 0;

 for (counter = 0; counter < DATA_LEN; counter++)

 {

 g_write_buf[counter] = (uint8_t) counter;

 }

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_host_stack_initialize(ux_host_usr_event_notification);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

 tx_event_flags_get(&g_cdcacm_activate_event_flags0, CDCACM_FLAG, TX_OR,

&actual_flags, TX_WAIT_FOREVER);

 if (p_cdc_acm != UX_NULL)

 {

 if (0 == g_is_communicate)

 {

 tx_thread_sleep(VALUE_100);

 g_is_communicate = 1;

 }

 status = ux_host_class_cdc_acm_write(p_cdc_acm, g_write_buf, DATA_LEN,

&g_write_actual_length);

 if ((UX_SUCCESS == status) && (DATA_LEN == g_write_actual_length))

 {

 g_read_actual_length = 0;

 buffer_clear(g_read_buf);

 status = ux_host_class_cdc_acm_read(p_cdc_acm, g_read_buf, DATA_LEN,

&g_read_actual_length);

 if ((UX_SUCCESS == status) && (DATA_LEN == g_read_actual_length))

 {

 for (counter = 0; counter < DATA_LEN; counter++)

 {

 if ((uint8_t) counter != g_read_buf[counter])

 {

 while (1)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,035 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 {

 ;

 }

 }

 }

 }

 }

 }

 }

}

USBX PMSC Example

PMSC storage example is as follows.

const rm_block_media_cfg_t g_rm_block_media0_cfg =

{.p_extend = NULL, .p_callback = NULL, .p_context = NULL, };

rm_block_media_instance_t g_rm_block_media0 =

{.p_api = &g_rm_block_media_on_user_media, .p_ctrl = NULL, .p_cfg =

&g_rm_block_media0_cfg, };

/**

 * Function Name : usbx_pmsc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_pmsc_sample (void)

{

 fsp_err_t err;

 UINT ret;

 ULONG size;

 _ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 _ux_device_stack_initialize(

 g_device_framework_hi_speed,

 60,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,036 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 g_device_framework_full_speed,

 50,

 g_string_framework,

 93,

 g_language_id_framework,

 2,

 UX_NULL

);

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS == err)

 {

 while (1)

 {

 ;

 }

 }

}

USBX HMSC Example

HMSC storage example is as follows.

#define UX_STORAGE_BUFFER_SIZE (64 * 1024)

#define EVENT_USB_PLUG_IN (1UL << 0)

#define EVENT_USB_PLUG_OUT (1UL << 1)

#define MEMPOOL_SIZE (63488)

#define DATA_LEN (2048)

#define VALUE_32 (32)

#define VALUE_100 (100)

#define VALUE_200 (200)

#define VALUE_256 (256)

#define VALUE_1024 (1024)

#define DEVICE_INSERTION (0x01U)

#define DEVICE_REMOVAL (0x02U)

static uint16_t g_read_buf[UX_STORAGE_BUFFER_SIZE];

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,037 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

static uint16_t g_write_buf[UX_STORAGE_BUFFER_SIZE];

static FX_FILE g_file;

static uint8_t g_ux_pool_memory[MEMPOOL_SIZE];

static FX_MEDIA * g_p_media = UX_NULL;

TX_EVENT_FLAGS_GROUP g_usb_plug_events;

UINT usb_host_plug_event_notification(ULONG usb_event, UX_HOST_CLASS * host_class,

VOID * instance);

UINT ux_system_host_storage_fx_media_get(UX_HOST_CLASS_STORAGE * instance,

 UX_HOST_CLASS_STORAGE_MEDIA **

p_storage_media,

 FX_MEDIA ** p_fx_media);

static UINT apl_change_function (ULONG event, UX_HOST_CLASS * host_class, VOID *

instance)

{

 UINT status = UX_SUCCESS;

 UX_HOST_CLASS * class;

 UX_HOST_CLASS_STORAGE * storage;

 UX_HOST_CLASS_STORAGE_MEDIA * storage_media;

 (void) instance;

 /* Check the class container if it is for a USBX Host Mass Storage class. */

 if (UX_SUCCESS ==

 _ux_utility_memory_compare(_ux_system_host_class_storage_name, host_class,

_ux_utility_string_length_get(_ux_system_host_class_storage_name)))

 {

 /* Check if there is a device insertion. */

 if (DEVICE_INSERTION == event)

 {

 status = ux_host_stack_class_get(_ux_system_host_class_storage_name,

&class);

 if (UX_SUCCESS != status)

 {

 return status;

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,038 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 status = ux_host_stack_class_instance_get(class, 0, (void **) &storage);

 if (UX_SUCCESS != status)

 {

 return status;

 }

 if (UX_HOST_CLASS_INSTANCE_LIVE != storage->ux_host_class_storage_state)

 {

 return UX_ERROR;

 }

 storage_media = class->ux_host_class_media;

 g_p_media = &storage_media->ux_host_class_storage_media;

 tx_event_flags_set(&g_usb_plug_events, EVENT_USB_PLUG_IN, TX_OR);

 }

 else if (DEVICE_REMOVAL == event) /* Check if there is a device removal. */

 {

 g_p_media = UX_NULL;

 tx_event_flags_set(&g_usb_plug_events, EVENT_USB_PLUG_OUT, TX_OR);

 }

 else

 {

 }

 }

 return status;

}

/**

 * Function Name : usbx_hmsc_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_hmsc_sample (void)

{

 CHAR volume[VALUE_32];

 FX_MEDIA * p_media;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,039 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 ULONG actual_length = 0;

 ULONG actual_flags;

 UINT tx_return;

 UINT fx_return;

 uint16_t data_count = 0;

 fx_system_initialize();

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_host_stack_initialize(apl_change_function);

 tx_event_flags_create(&g_usb_plug_events, (CHAR *) "USB Plug Event Flags");

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 while (1)

 {

 // Wait until device inserted.

 tx_return = tx_event_flags_get(&g_usb_plug_events,

 EVENT_USB_PLUG_IN,

 TX_OR_CLEAR,

 &actual_flags,

 TX_WAIT_FOREVER);

 if (TX_SUCCESS != tx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 // Get the pointer to FileX Media Control Block for a USB flash device

 p_media = g_p_media;

 // Retrieve the volume name of the opened media from the Data sector

 fx_return = fx_media_volume_get(p_media, volume, FX_DIRECTORY_SECTOR);

 if (FX_SUCCESS == fx_return)

 {

 // Set the default directory in the opened media, arbitrary name called "firstdir"

 fx_directory_default_set(p_media, "firstdir");

 // Suspend this thread for 200 time-ticks

 tx_thread_sleep(VALUE_100);

 // Try to open the file, 'counter.txt'.

 fx_return = fx_file_open(p_media, &g_file, "counter.txt",

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,040 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

(FX_OPEN_FOR_READ | FX_OPEN_FOR_WRITE));

 if (FX_SUCCESS != fx_return)

 {

 // The 'counter.txt' file is not found, so create a new file

 fx_return = fx_file_create(p_media, "counter.txt");

 if (FX_SUCCESS != fx_return)

 {

 break;

 }

 // Open that file

 fx_return = fx_file_open(p_media, &g_file, "counter.txt",

(FX_OPEN_FOR_READ | FX_OPEN_FOR_WRITE));

 if (FX_SUCCESS != fx_return)

 {

 break;

 }

 }

 // Already open a file, then read the file in blocks

 // Set a specified byte offset for reading

 fx_return = fx_file_seek(&g_file, 0);

 if (FX_SUCCESS == fx_return)

 {

 fx_return = fx_file_read(&g_file, g_read_buf, DATA_LEN,

&actual_length);

 if ((FX_SUCCESS == fx_return) || (FX_END_OF_FILE == fx_return))

 {

 if (data_count == VALUE_1024)

 {

 // empty file

 data_count = 0;

 }

 for (uint16_t data_max_count = data_count; data_count < (data_max_count +

VALUE_256); data_count++)

 {

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,041 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 g_write_buf[data_count] = data_count;

 }

 // Set the specified byte offset for writing

 fx_return = fx_file_seek(&g_file, 0);

 if (FX_SUCCESS == fx_return)

 {

 // Write the file in blocks

 fx_return = fx_file_write(&g_file, g_write_buf, DATA_LEN);

 if (FX_SUCCESS == fx_return)

 {

 }

 else

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 }

 }

 }

 else

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 // Close already opened file

 fx_return = fx_file_close(&g_file);

 if (FX_SUCCESS != fx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 tx_thread_sleep(VALUE_200);

 }

 else

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,042 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 /* flush the media */

 fx_return = fx_media_flush(p_media);

 if (FX_SUCCESS != fx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 /* close the media */

 fx_return = fx_media_close(p_media);

 if (FX_SUCCESS != fx_return)

 {

 tx_thread_sleep(TX_WAIT_FOREVER);

 }

 // Wait for unplugging the USB

 tx_event_flags_get(&g_usb_plug_events, EVENT_USB_PLUG_OUT, TX_OR_CLEAR,

&actual_flags, TX_WAIT_FOREVER);

 } // while(1)

}

USBX PHID Example

PHID keyboard example is as follows.

/**

 * Function Name : usbx_phid_keyboard_sample

 * Description : Application task (loopback processing)

 * Arguments : none

 * Return value : none

 **/

void usbx_phid_keyboard_sample (void)

{

 UX_SLAVE_CLASS_HID_EVENT hid_event;

 UCHAR key;

 fsp_err_t err;

 _ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 _ux_device_stack_initialize(NULL,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,043 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 0,

 g_device_framework_full_speed,

 VALUE_52,

 g_string_framework,

 VALUE_53,

 g_language_id_framework,

 VALUE_2,

 apl_status_change_cb);

 g_ux_device_class_hid_parameter.ux_slave_class_hid_instance_activate =

ux_hid_instance_activate;

 g_ux_device_class_hid_parameter.ux_slave_class_hid_instance_deactivate =

ux_hid_instance_deactivate;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_report_address =

g_apl_report;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_report_length =

REPORT_DESCRIPTOR_LENGTH;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_callback =

apl_hid_set_report_cb;

 g_ux_device_class_hid_parameter.ux_device_class_hid_parameter_report_id = 0;

 ux_device_stack_class_register(_ux_system_slave_class_hid_name,

 _ux_device_class_hid_entry,

 1,

 0x00,

 (void *) &g_ux_device_class_hid_parameter);

 /* Set the first key to 'a' which is 04. */

 key = 0x04;

 /* reset the HID event structure. */

 ux_utility_memory_set(&hid_event, 0, sizeof(UX_SLAVE_CLASS_HID_EVENT));

 err = g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 if (FSP_SUCCESS == err)

 {

 while (1)

 {

 if (USB_NO == g_suspend)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,044 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 {

 while (UX_NULL == g_hid)

 {

 /* Then wait. */

 tx_thread_sleep(10);

 }

 /* 5sec wait */

 usb_cpu_delay_xms((uint16_t) VALUE_5000);

 /* Then insert a key into the keyboard event. Length is fixed to 8. */

 hid_event.ux_device_class_hid_event_length = 8;

 /* First byte is a modifier byte. */

 hid_event.ux_device_class_hid_event_buffer[0] = 0;

 /* Second byte is reserved. */

 hid_event.ux_device_class_hid_event_buffer[1] = 0;

 /* The 6 next bytes are keys. We only have one key here. */

 hid_event.ux_device_class_hid_event_buffer[2] = key;

 /* Set the keyboard event. */

 ux_device_class_hid_event_set(g_hid, &hid_event);

 /* Next event has the key depressed. */

 hid_event.ux_device_class_hid_event_buffer[2] = 0;

 /* Length is fixed to 8. */

 hid_event.ux_device_class_hid_event_length = 8;

 /* Set the keyboard event. */

 ux_device_class_hid_event_set(g_hid, &hid_event);

 /* Are we at the end of alphabet ? */

 if (key != (0x04 + 26))

 {

 /* Next key. */

 key++;

 }

 else

 {

 /* Start over again. */

 key = 0x04;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,045 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 }

 apl_status_change_cb(UX_DEVICE_SUSPENDED);

 }

 else

 {

 if (USB_NO == g_remote_wakeup)

 {

 tx_thread_sleep(VALUE_10000);

 /* Remote wakeup processing */

 g_remote_wakeup = USB_YES;

 ux_device_stack_host_wakeup();

 apl_status_change_cb(UX_DEVICE_RESUMED);

 }

 }

 }

 }

}

USBX HHID Example

HHID user interface example is as follows.

void keyboard_update_task (ULONG thread_input)

{

 ULONG usbx_return_value;

 /* keyboard button masks, set by ux_host_class_hid_keyboard_buttons_get call */

 ULONG keyboard_key = 0;

 /* keyboard state masks, set by ux_host_class_hid_keyboard_buttons_get call */

 ULONG keyboard_state = 0;

 FSP_PARAMETER_NOT_USED(thread_input);

 while (1)

 {

 usbx_return_value = ux_host_class_hid_keyboard_key_get(

 (UX_HOST_CLASS_HID_KEYBOARD *)

hid_keyboard_client->ux_host_class_hid_client_local_instance,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,046 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 &keyboard_key,

 &keyboard_state);

 if ((usbx_return_value == UX_SUCCESS) || (usbx_return_value == UX_NO_KEY_PRESS))

 {

 hid_devices_info.device_connected = KEYBOARD_DEVICE;

 hid_devices_info.key = keyboard_key;

 hid_devices_info.keyboard_status = keyboard_state;

 /* Clear the states for next read */

 keyboard_key = 0;

 keyboard_state = 0;

 /* copy the keyboard states to queue */

 tx_queue_send(&device_parameters, &hid_devices_info, TX_NO_WAIT);

 }

 tx_thread_sleep(10);

 }

}

void mouse_update_task (ULONG thread_input)

{

 /* mouse button masks, set by ux_host_class_hid_mouse_buttons_get call */

 ULONG mouse_buttons;

 /* X co-ordinate displacement of mouse */

 SLONG mouse_x_position = 0;

 /* Y co-ordinate displacement of mouse */

 SLONG mouse_y_position = 0;

 /* variable to hold USBX return values */

 ULONG usbx_return_value;

 FSP_PARAMETER_NOT_USED(thread_input);

 while (1)

 {

 usbx_return_value = ux_host_class_hid_mouse_buttons_get(

 (UX_HOST_CLASS_HID_MOUSE *)

hid_mouse_client->ux_host_class_hid_client_local_instance,

 &mouse_buttons);

 if (usbx_return_value == UX_SUCCESS)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,047 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 {

 usbx_return_value = ux_host_class_hid_mouse_position_get(

 (UX_HOST_CLASS_HID_MOUSE *)

hid_mouse_client->ux_host_class_hid_client_local_instance,

 &mouse_x_position,

 &mouse_y_position);

 }

 if (usbx_return_value == UX_SUCCESS)

 {

 hid_devices_info.device_connected = MOUSE_DEVICE;

 hid_devices_info.key = mouse_buttons;

 hid_devices_info.mouse_direction_X = mouse_x_position;

 hid_devices_info.mouse_direction_Y = mouse_y_position;

 tx_queue_send(&device_parameters, &hid_devices_info, TX_NO_WAIT);

 }

 tx_thread_sleep(10);

 }

}

void usbx_hhid_sample (void)

{

 uint8_t i;

 ux_system_initialize((CHAR *) g_ux_pool_memory, MEMPOOL_SIZE, UX_NULL, 0);

 ux_host_stack_initialize(ux_system_host_hid_change_function);

 g_usb_on_usb.open(&g_basic0_ctrl, &g_basic0_cfg);

 tx_thread_create(&keyboard_update,

 (CHAR *) "keyboard_update_task",

 keyboard_update_task,

 (ULONG) NULL,

 &keyboard_update_stack,

 2048,

 22,

 2,

 1,

 TX_AUTO_START);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,048 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 tx_thread_create(&mouse_update,

 (CHAR *) "mouse_update_task",

 mouse_update_task,

 (ULONG) NULL,

 &mouse_update_stack,

 1024,

 22,

 2,

 1,

 TX_AUTO_START);

 while (1)

 {

 for (i = 0; i < UX_HOST_CLASS_HID_MAX_CLIENTS; i++)

 {

 /* Check whether the instance registered? through USB HID device insertion callback?

*/

 if (NULL != hid_class_keyboard_instance[i])

 {

 UX_HOST_CLASS_HID_CLIENT * hid_client =

hid_class_keyboard_instance[i]->ux_host_class_hid_client;

 hid_keyboard_client = hid_client;

 tx_thread_sleep(10);

 }

 /* Check whether the instance registered? through USB HID device insertion callback?

*/

 if (NULL != hid_class_mouse_instance[i])

 {

 UX_HOST_CLASS_HID_CLIENT * hid_client =

hid_class_mouse_instance[i]->ux_host_class_hid_client;

 hid_mouse_client = hid_client;

 tx_thread_sleep(10);

 }

 /* If multiple similar type devices are connected, allow them one by one share data

with application */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,049 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > USBX Porting Layer (rm_usbx_port)

 tx_thread_sleep(10);

 }

 }

}

4.2.102 Virtual EEPROM (rm_vee_flash)
Modules

Functions

fsp_err_t RM_VEE_FLASH_Open (rm_vee_ctrl_t *const p_api_ctrl, rm_vee_cfg_t
const *const p_cfg)

fsp_err_t RM_VEE_FLASH_RecordWrite (rm_vee_ctrl_t *const p_api_ctrl,
uint32_t const rec_id, uint8_t const *const p_rec_data, uint32_t const
num_bytes)

fsp_err_t RM_VEE_FLASH_RecordPtrGet (rm_vee_ctrl_t *const p_api_ctrl,
uint32_t const rec_id, uint8_t **const pp_rec_data, uint32_t *const
p_num_bytes)

fsp_err_t RM_VEE_FLASH_RefDataWrite (rm_vee_ctrl_t *const p_api_ctrl,
uint8_t const *const p_ref_data)

fsp_err_t RM_VEE_FLASH_RefDataPtrGet (rm_vee_ctrl_t *const p_api_ctrl,
uint8_t **const pp_ref_data)

fsp_err_t RM_VEE_FLASH_StatusGet (rm_vee_ctrl_t *const p_api_ctrl,
rm_vee_status_t *const p_status)

fsp_err_t RM_VEE_FLASH_Refresh (rm_vee_ctrl_t *const p_api_ctrl)

fsp_err_t RM_VEE_FLASH_Format (rm_vee_ctrl_t *const p_api_ctrl, uint8_t
const *const p_ref_data)

fsp_err_t RM_VEE_FLASH_CallbackSet (rm_vee_ctrl_t *const p_api_ctrl,
void(*p_callback)(rm_vee_callback_args_t *), void const *const
p_context, rm_vee_callback_args_t *const p_callback_memory)

fsp_err_t RM_VEE_FLASH_Close (rm_vee_ctrl_t *const p_api_ctrl)

Detailed Description

Virtual EEPROM on RA MCUs. This module implements the Virtual EEPROM Interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,050 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

Overview
This VEE module emulates basic EEPROM capabilities. Support is provided for reading and writing
both common records and reference data (originally programmed during product assembly or test).
A count of the number of segments erased throughout the lifetime of the application is maintained
and can be accessed at any time. Wear leveling is handled automatically by the driver.

Features

Writing and reading user defined records of any length to data flash.
Wear leveling is handled automatically.
Reference data such as calibration data programmed at assembly or test time is preserved.
Reference data can be updated at run time.
Fault resilient design.

Data Flash Segmentation

Wear leveling is handled by changing the location in the data flash where a record is stored every
time that it is updated. This change in physical location of the record is transparent to the user. Any
time an update for a specific record ID is written, it is written to the next unused location in data
flash and its location is stored in RAM for quick look-up later. When required, only the most recent
version of these records is automatically copied to the next blank segment in data flash. The data
flash area is divided into a number of equal-size segments. There is only one segment active at a
time. A segment contains two areas- the record area (which is the vast majority of the segment) and
the reference data area which contains optional data typically programmed during assembly or final
test. Records and updated reference data are written to this segment until one of the two areas
becomes full. The record area must be able to hold at least one of every record ID possible and still
have space left over for record updates.

Figure 219: Segment Data Format

 When a segment does not have sufficient space for additional records or updated reference data, a
Refresh occurs. This process copies the most recent record for each ID as well as the latest version
of reference data (if any) to the next segment. The very first time VEE runs on an MCU, it marks the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,051 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

last segment as active whether there is reference data configured or not. The end of VEE data flash
area is used to provide an easily identified physical flash address that can be used while
programming reference data without requiring Virtual EEPROM middleware.

Figure 220: Refresh Operation

Record Format

Each record begins with a header that contains the record size, followed by the data, and the trailer.
The trailer contains a validation code which is used for internal purposes only and is not a 16-bit CRC
or ECC value. If that level of error checking is desired, the user should include that in the record data
passed to the driver.

Figure 221: Record Format

Reference Data Area

VEE can be configured for the presence of reference data. The original programmed reference data
must be located at the end of the VEE data flash area. An area of equal size is reserved below this in
case updated reference data becomes available later. Below that is a header which indicates
whether the update area has been written to.

Figure 222: Reference Data Area Format

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,052 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

 Just as with records, the validation code is used for internal purposes only and is not a 16-bit CRC or
ECC value. If that level of error checking is desired, the user should include that in the updated
reference data passed to the driver.

Fault Tolerance

The Virtual EEPROM has a fault tolerant design. If for any reason an operation fails before it is
completed the next time the module is opened a refresh will occur. Any corrupted data will be
discarded.

Configuration
Build Time Configurations for rm_vee_flash

The following build time configurations are defined in fsp_cfg/rm_vee_flash_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Reference Data
Support

Enabled
Disabled

Disabled Support writing
reference data to the
end of the segment.

Refresh Buffer Size Value must be an
integer greater than 0
and a multiple of 4
bytes.

32 The size of the internal
buffer used to copying
data from one flash
segment to another
during a refresh
operation. This is
required because data
flash to data flash
transfers are not
supported by the
hardware.

Configurations for Middleware > Storage > Virtual EEPROM on Flash

This module can be added to the Stacks tab via New Stack > Middleware > Storage > Virtual
EEPROM on Flash. Non-secure callable guard functions can be generated for this module by right
clicking the module in the RA Configuration tool and checking the "Non-secure Callable" box.

Configuration Options Default Description

Name Name must be a valid
C symbol

g_vee0 Module name.

Record Max ID Value must be an
integer.

16 Set this value to the
highest record ID in
use.

Number of Segments Value must be an
integer.

2 Set value to number of
segments desired in
data flash (minimum

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,053 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

2). The fewer the
segments, the fewer
refreshes occur, but
the longer refreshes
take to complete
(erase time).

Start Address Manual Entry BSP_FEATURE_FLASH_
DATA_FLASH_START

Start address of the
flash area used by
Virtual EEPROM.

Total Size Manual Entry BSP_DATA_FLASH_SIZE
_BYTES

The total size (In bytes)
of the flash area used
by Virtual EEPROM.

Reference Data Size Value must be an
integer.

0 The size of the
reference area (In
bytes) used by Virtual
EEPROM.

Callback Name must be a valid
C symbol

vee_callback A user callback
function can be
provided. If this
callback function is
provided, it will be
called from the flash
interrupt service
routine (ISR).

Clock Configuration

There is no clock configuration for the RM_VEE_FLASH module.

Pin Configuration

This module does not use I/O pins.

Usage Notes
A refresh buffer is required to copy data between segments. Data flash cannot be simultaneously
read from and written to. Data will be temporarily copied into RAM during refresh operations.

Examples
Basic Example

This is a basic example of minimal use of the RM_VEE_FLASH module in an application.

volatile bool callback_called = false;

/* Record ID to use for storing pressure data. */

#define ID_PRESSURE (0U)

/* Example data structure. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,054 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

typedef struct st_pressure

{

 uint32_t timestamp;

 uint16_t low;

 uint16_t average;

 uint16_t high;

} pressure_t;

void rm_vee_example ()

{

 /* Open the Virtual EEPROM Module. */

 fsp_err_t err = RM_VEE_FLASH_Open(&g_vee_ctrl, &g_vee_cfg);

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

 /* Read pressure data from external sensor. */

 pressure_t pressure_data;

 get_pressure_data(&pressure_data);

 /* Write the pressure data to a Virtual EEPROM Record. */

 err = RM_VEE_FLASH_RecordWrite(&g_vee_ctrl, ID_PRESSURE, (uint8_t *)

&pressure_data, sizeof(pressure_t));

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

 /* Wait for the Virtual EEPROM callback to indicate it finished writing data. */

 while (false == callback_called)

 {

 ;

 }

 /* Get a pointer to the record that is stored in data flash. */

 uint32_t length;

 pressure_t * p_pressure_data;

 err = RM_VEE_FLASH_RecordPtrGet(&g_vee_ctrl, ID_PRESSURE, (uint8_t **)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,055 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

&p_pressure_data, &length);

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

 /* Close the Virtual EEPROM Module. */

 err = RM_VEE_FLASH_Close(&g_vee_ctrl);

 if (FSP_SUCCESS != err)

 {

 error_handler();

 }

}

void rm_vee_tests_callback (rm_vee_callback_args_t * p_args)

{

 callback_called = true;

 FSP_PARAMETER_NOT_USED(p_args);

}

Data Structures

struct rm_vee_flash_cfg_t

struct rm_vee_flash_instance_ctrl_t

Data Structure Documentation

◆ rm_vee_flash_cfg_t

struct rm_vee_flash_cfg_t

User configuration structure, used in open function

Data Fields

flash_instance_t const * p_flash Pointer to a flash instance.

◆ rm_vee_flash_instance_ctrl_t

struct rm_vee_flash_instance_ctrl_t

Instance control block. This is private to the FSP and should not be used or modified by the
application.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,056 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_Open()

fsp_err_t RM_VEE_FLASH_Open (rm_vee_ctrl_t *const p_api_ctrl, rm_vee_cfg_t const *const p_cfg
)

Open the RM_VEE_FLASH driver module

Implements rm_vee_api_t::open

Initializes the driver's internal structures and opens the Flash driver. The Flash driver must be
closed prior to opening VEE. The error code FSP_SUCCESS_RECOVERY indicates that VEE detected
corrupted data; most likely due to a power loss during a data flash write or erase. In these cases,
an automatic internal Refresh is performed and the partially written data is lost.

Return values
FSP_SUCCESS Successful. FSP_SUCCESS_RECOVERY

changed to FSP_SUCCESS

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_ALREADY_OPEN This function has already been called.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_TIMEOUT Interrupts disabled outside of VEE

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

FSP_ERR_INVALID_ARGUMENT The supplied configuration is invalid.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,057 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_RecordWrite()

fsp_err_t RM_VEE_FLASH_RecordWrite (rm_vee_ctrl_t *const p_api_ctrl, uint32_t const rec_id,
uint8_t const *const p_rec_data, uint32_t const num_bytes)

Writes a record to data flash.

Implements rm_vee_api_t::recordWrite

This function writes num_bytes of data pointed to by p_rec_data to data flash. This function returns
immediately after starting the flash write. BE SURE NOT TO MODIFY the data buffer contents until
after the write completes. This includes exiting the calling function when the data buffer is a local
variable (stack may be used by another function and corrupt the data buffer contents).

Return values
FSP_SUCCESS Write started successfully.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_INVALID_ARGUMENT An argument contains an illegal value.

FSP_ERR_INVALID_MODE The operation cannot be started in the
current mode.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,058 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_RecordPtrGet()

fsp_err_t RM_VEE_FLASH_RecordPtrGet (rm_vee_ctrl_t *const p_api_ctrl, uint32_t const rec_id,
uint8_t **const pp_rec_data, uint32_t *const p_num_bytes)

Gets a pointer to the most recent record data.

Implements rm_vee_api_t::recordPtrGet

This function sets the argument pointer to the most recent version of the record data in flash. Flash
cannot be accessed for reading and writing at the same time. Therefore, reading the data at
p_ref_data must be completed prior to initiating any type of Flash write.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_ASSERTION p_ref_data is NULL.

FSP_ERR_INVALID_ARGUMENT Record data not configured.

FSP_ERR_NOT_FOUND The record associated with the requested ID
could not be found.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,059 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_RefDataWrite()

fsp_err_t RM_VEE_FLASH_RefDataWrite (rm_vee_ctrl_t *const p_api_ctrl, uint8_t const *const
p_ref_data)

Writes new Reference data to the reference update area.

Implements rm_vee_api_t::refDataWrite

This function writes VEE_CFG_REF_DATA_SIZE bytes pointed to by p_ref_data to data flash. This
function returns immediately after starting the flash write. BE SURE NOT TO MODIFY the data buffer
contents until after the write completes.

Return values
FSP_SUCCESS Write started successfully.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_INVALID_MODE The operation cannot be started in the
current mode.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_UNSUPPORTED Reference data is not supported in the
current configuration.

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,060 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_RefDataPtrGet()

fsp_err_t RM_VEE_FLASH_RefDataPtrGet (rm_vee_ctrl_t *const p_api_ctrl, uint8_t **const
pp_ref_data)

Gets a pointer to the most recent reference data.

Implements rm_vee_api_t::recordPtrGet

This function sets the argument pointer to the most recent version of the reference data in flash.
Flash cannot be accessed for reading and writing at the same time.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_UNSUPPORTED Reference data is not supported in the
current configuration.

FSP_ERR_NOT_FOUND No reference data was found.

◆ RM_VEE_FLASH_StatusGet()

fsp_err_t RM_VEE_FLASH_StatusGet (rm_vee_ctrl_t *const p_api_ctrl, rm_vee_status_t *const
p_status)

Get the current status of the driver.

Implements rm_vee_api_t::statusGet

This command is typically used to verify that the last Write or Refresh command has completed
before attempting to perform another API call.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,061 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_Refresh()

fsp_err_t RM_VEE_FLASH_Refresh (rm_vee_ctrl_t *const p_api_ctrl)

Manually start a refresh operation

Implements rm_vee_api_t::refresh

This function is used to start a segment Refresh at any time. The Refresh process by default occurs
automatically when no more record or reference data space is available and a Write is requested.
However, the app may desire to force a refresh when it knows it is running low on space and large
amounts of data are about to be recorded.

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed in hardware.

FSP_ERR_INVALID_MODE The operation cannot be started in the
current mode.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,062 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_Format()

fsp_err_t RM_VEE_FLASH_Format (rm_vee_ctrl_t *const p_api_ctrl, uint8_t const *const p_ref_data
)

Start a manual format operation.

Implements rm_vee_api_t::format

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_IN_USE Last API call still executing.

FSP_ERR_PE_FAILURE This error indicates that a flash
programming, erase, or blankcheck
operation has failed

FSP_ERR_ASSERTION An input parameter is NULL.

FSP_ERR_TIMEOUT Flash write timed out (Should not be
possible when flash bgo is used).

FSP_ERR_NOT_INITIALIZED Corruption found. A refresh is required.

◆ RM_VEE_FLASH_CallbackSet()

fsp_err_t RM_VEE_FLASH_CallbackSet (rm_vee_ctrl_t *const p_api_ctrl,
void(*)(rm_vee_callback_args_t *) p_callback, void const *const p_context, rm_vee_callback_args_t
*const p_callback_memory)

Updates the user callback with the option to provide memory for the callback argument structure.

Implements rm_vee_api_t::callbackSet.

Return values
FSP_SUCCESS Callback updated successfully.

FSP_ERR_ASSERTION A required pointer is NULL.

FSP_ERR_NOT_OPEN The control block has not been opened.

FSP_ERR_NO_CALLBACK_MEMORY p_callback is non-secure and
p_callback_memory is either secure or
NULL.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,063 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Virtual EEPROM (rm_vee_flash)

◆ RM_VEE_FLASH_Close()

fsp_err_t RM_VEE_FLASH_Close (rm_vee_ctrl_t *const p_api_ctrl)

Closes the Flash driver and VEE driver.

Implements rm_vee_api_t::close

Return values
FSP_SUCCESS Successful.

FSP_ERR_NOT_OPEN The module has not been opened.

FSP_ERR_ASSERTION An input parameter is NULL.

4.2.103 AWS Device Provisioning
Modules

AWS Device Provisioning example software.

Overview
Terminology

The terminology defined below will be used in the following sections.

Term Description

Service Provider Entity that provides the cloud infrastructure and
associated services, for example, AWS/Azure.

Device Manufacturer Entity that provides the MCU, for example,
Renesas.

OEM Entity that uses the MCU to create a product.

Customer End user of OEM product.

Device ID

For systems that intend to use Public Key Certificate (PKC), the Device ID is in the form of a key pair
(RSA or ECC). A PKC comprises of a public key, metadata, and finally a signature over all that. This
signature is generated by the entity that issues the certificate and is known as a CA (Certificate
Authority). The most common format for a public certificate is the X.509 format which is typically
PEM (base 64) encoded such that the certificate is human-readable. It can also be DER encoded
which is binary encoding and thus not human readable. The public key portion of the Device ID is
used for the Device Certificate.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,064 / 2,794

https://tools.ietf.org/html/rfc5280#section-4.1

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Device Provisioning

Provisioning

Device Provisioning refers to the process by which a service provider links a certificate to a Device ID
and thus a device. Depending on the provisioning model, an existing certificate from the device may
be used or a new one will be issued at this stage. Provisioning (also referred to as Registration)
occurs with respect to a particular service provider, for example, AWS or Azure. It is necessary that
the certificate is issued by the service provider or a CA known to those providers. When a device is
provisioned with AWS for example, the AWS IoT service associates the Device ID (and thus the
device) with a specific certificate. The certificate will be programmed into the device and for all
future transactions with AWS, the certificate will be used as the means of identifying the device. The
public and private key are also stored on the MCU.

Provisioning Models

Provisioning services vary between service providers. There are essentially three general
provisioning models.

1. Provisioning happens on the production line. This requires the provisioning Infrastructure to
be present on the production line. This is the most secure model, but is expensive.

2. Devices are programmed with a shared credential that is linked into the code at build time
and the provisioning occurs when a customer uses the device for the first time. The shared
credential and a unique device serial number are used to uniquely identify the device
during the provisioning process. So long as the product only has the shared credential, it
will only operate with limited (as defined by certificate policy) functionality .Once the
provisioning is done, then the device will be fully functional. This is the most common use
case for consumer products where no sensitive information is being transmitted. AWS
provides an example of this model.

3. Devices have no identity programmed in the factory; provisioning occurs through some
other device like a smartphone which is already trusted by the service provider.

In all these cases, the Device Identity

1. Is unique to the device
2. Must have restricted access within the device
3. Can be used to issue more than one certificate and the certificates themselves have to be

updatable in the field.

AWS uses the PKCS11 API to erase, store and retrieve certificates. These PKCS11 functions (Write,
Read and Erase) are separated out into a Physical Abstraction Layer (PAL) which the OEM/Device
Manufacturer is expected to implement for the type of memory that they intend to use. The internal
rm_aws_pkcs11_pal module implements these requirements on RA MCU data flash.

AWS Provisioning Example
AWS provides an example implementation to support device provisioning. This implementation uses
the PKCS11 API to store device credentials into the PKCS11 defined memory. The implementation
(aws_dev_mode_key_provisioning.c) exposes two functions:

1. vDevModeKeyProvisioning()
2. vAlternateKeyProvisioning()

Both of these functions require that the device credentials be provided in PEM format. Using either of
these example functions as is in production is not recommended; but vAlternateKeyProvisioning()
provides more flexibility because of the ability to provide credentials as arguments.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,065 / 2,794

https://docs.aws.amazon.com/iot/latest/developerguide/iot-provision.html
https://aws.amazon.com/blogs/iot/provisioning-with-a-bootstrap-certificate-in-aws-iot-core/

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Device Provisioning

Credentials can be created as follows:

Create your own CA and use that to generate the device certificate. This CA will have to be
registered with the service provider with which the product will be used, for example
Register your CA with AWS.
Use AWS to generate the device certificate.

Examples
Basic Example

This is a basic example of provisioning a device using the AWS demo implementation.

#define keyCLIENT_CERTIFICATE_PEM \

 "-----BEGIN CERTIFICATE-----\n" \

 "MIIDETCCAfkCFHwd2yn8zn5qB2ChYUT9Mvbi9Xp1MA0GCSqGSIb3DQEBCwUAMEUx\n" \

 "CzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRl\n" \

 "cm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTkwOTExMjEyMjU0WhcNMjAwOTEwMjEy\n" \

 "MjU0WjBFMQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UE\n" \

 "CgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOC\n" \

 "AQ8AMIIBCgKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABMA0GCSqGSIb3DQEBCwUA\n" \

 "A4IBAQCdqq59ubdRY9EiV3bleKXeqG7+8HgBHdm0X9dgq10nD37p00YLyuZLE9NM\n" \

 "066G/VcflGrx/Nzw+/UuI7/UuBbBS/3ppHRnsZqBIl8nnr/ULrFQy8z3vKtL1q3C\n" \

 "DxabjPONlPO2keJeTTA71N/RCEMwJoa8i0XKXGdu/hQo6x4n+Gq73fEiGCl99xsc\n" \

 "4tIO4yPS4lv+uXBzEUzoEy0CLIkiDesnT5lLeCyPmUNoU89HU95IusZT7kygCHHd\n" \

 "72am1ic3X8PKc268KT3ilr3VMhK67C+iIIkfrM5AiU+oOIRrIHSC/p0RigJg3rXA\n" \

 "GBIRHvt+OYF9fDeG7U4QDJNCfGW+\n" \

 "-----END CERTIFICATE-----"

#define keyCLIENT_PRIVATE_KEY_PEM \

 "-----BEGIN RSA PRIVATE KEY-----\n" \

 "MIIEowIBAAKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,066 / 2,794

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://docs.aws.amazon.com/cli/latest/reference/iot/register-ca-certificate.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Device Provisioning

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABAoIBAQCGR2hC/ZVJhqIM\n" \

 "c2uuJZKpElpIIBBPOObZwwS3IYR4UUjzVgMn7UbbmxflLXD8lzfZU4YVp0vTH5lC\n" \

 "07qvYuXpHqtnj+GEok837VYCtUY9AuHeDM/2paV3awNV15E1PFG1Jd3pqnH7tJw6\n" \

 "VBZBDiGNNt1agN/UnoSlMfvpU0r8VGPXCBNxe3JY5QyBJPI1wF4LcxRI+eYmr7Ja\n" \

 "/cjn97DZotgz4B7gUNu8XIEkUOTwPabZINY1zcLWiXTMA+8qTniPVk653h14Xqt4\n" \

 "4o4D4YCTpwJcmxSV1m21/6+uyuXr9SIKAE+Ys2cYLA46x+rwLaW5fUoQ5hHa0Ytb\n" \

 "RYJ4SrtBAoGBANWtwlE69N0hq5xDPckSbNGubIeG8P4mBhGkJxIqYoqugGLMDiGX\n" \

 "4bltrjr2TPWaxTo3pPavLJiBMIsENA5KU+c/r0jLkxgEp9MIVJrtNgkCiDQqogBG\n" \

 "j4IJL2iQwXoLCqk2tx/dh9Mww+7SETE7EPNrv4UrYaGN5AEvpf5W+NHPAoGBAMQ6\n" \

 "wVa0Mx1PlA4enY2rfE3WXP8bzjleSOwR75JXqG2WbPC0/cszwbyPWOEqRpBZfvD/\n" \

 "QFkKx06xp1C09XwiQanr2gDucYXHeEKg/9iuJV1UkMQp95ojlhtSXdRZV7/l4pmN\n" \

 "fpB2vcAptX/4gY4tDrWMO08JNnRjE7duC+rmmk1hAoGAS4L0QLCNB/h2JOq+Uuhn\n" \

 "/FGfmOVfFPFrA6D3DbxcxpWUWVWzSLvb0SOphryzxbfEKyau7V5KbDp7ZSU/IC20\n" \

 "KOygjSEkAkDi7fjrrTRW/Cgg6g6G4YIOBO4qCtHdDbwJMHNdk6096qw5EZS67qLp\n" \

 "Apz5OZ5zChySjri/+HnTxJECgYBysGSP6IJ3fytplTtAshnU5JU2BWpi3ViBoXoE\n" \

 "bndilajWhvJO8dEqBB5OfAcCF0y6TnWtlT8oH21LHnjcNKlsRw0Dvllbd1oylybx\n" \

 "3da41dRG0sCEtoflMB7nHdDLt/DZDnoKtVvyFG6gfP47utn+Ahgn+Zp6K+46J3eP\n" \

 "s3g8AQKBgE/PJiaF8pbBXaZOuwRRA9GOMSbDIF6+jBYTYp4L9wk4+LZArKtyI+4k\n" \

 "Md2DUvHwMC+ddOtKqjYnLm+V5cSbvu7aPvBZtwxghzTUDcf7EvnA3V/bQBh3R0z7\n" \

 "pVsxTyGRmBSeLdbUWACUbX9LXdpudarPAJ59daWmP3mBEVmWdzUw\n" \

 "-----END RSA PRIVATE KEY-----"

void device_provisioning_example (void)

{

 /* Initialize IOT FreeRTOS Libraries */

 SYSTEM_Init();

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 ProvisioningParams_t params;

 /* Provision device with provided credentials. The provided credentials are written

to data flash.

 * In production, the credentials can be provided over a comms channel instead of

being linked into the image.

 * The same example provisioning function, vAlternateKeyProvisioning, can be used in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,067 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Device Provisioning

that case. */

 params.pucClientPrivateKey = (uint8_t *) keyCLIENT_PRIVATE_KEY_PEM;

 params.pucClientCertificate = (uint8_t *) keyCLIENT_CERTIFICATE_PEM;

 params.ulClientPrivateKeyLength = 1 + strlen((const char *)

params.pucClientPrivateKey);

 params.ulClientCertificateLength = 1 + strlen((const char *)

params.pucClientCertificate);

 params.pucJITPCertificate = NULL;

 params.ulJITPCertificateLength = 0;

 vAlternateKeyProvisioning(¶ms);

}

Limitations
The provisioning code is an example provided by AWS. It must be modified to meet product
requirements.

4.2.104 AWS HTTPS
Modules

This module provides the AWS HTTPS integration documentation.

Overview
The AWS HTTPS core library can be used to send HTTP and HTTPS requests. The documentation for
the library can be found at the following link: coreHTTP.

Features

Secure and Non-secure HTTP requests
Mutually authenticated connections

Configuration
Memory Usage

The AWS HTTPS library relies heavily on dynamic memory allocation for thread/task creation as well
as other uses. It is recommended to tweak the thread stack configuration values based on usage.
Noteable values are:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,068 / 2,794

https://www.freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://docs.aws.amazon.com/freertos/latest/userguide/core-http-ma-demo.html

Flexible Software Package

User’s Manual
API Reference > Modules > AWS HTTPS

AWS IoT Common

IoT Thread Default Stack Size
IoT Network Receive Task Stack Size

FreeRTOS Thread

General|Minimal Stack Size

FreeRTOS Plus TCP

Stack size in words (not bytes)

Usage Notes
Limitations

MbedTLS must be initialized and key provisioning must be done before starting a secure
connection. Refer to AWS Secure Sockets.

Examples

HTTPS GET request

/* Certificate copied from https://www.amazontrust.com/repository/AmazonRootCA1.pem

*/

static const char g_server_certificate[] = "-----BEGIN CERTIFICATE-----\n" \

 "MIIDQTCCAimgAwIBAgITBmyfz5m/jAo54vB4ikPmljZbyjANBgkqhkiG9w0BAQsF\n" \

 "ADA5MQswCQYDVQQGEwJVUzEPMA0GA1UEChMGQW1hem9uMRkwFwYDVQQDExBBbWF6\n" \

 "b24gUm9vdCBDQSAxMB4XDTE1MDUyNjAwMDAwMFoXDTM4MDExNzAwMDAwMFowOTEL\n" \

 "MAkGA1UEBhMCVVMxDzANBgNVBAoTBkFtYXpvbjEZMBcGA1UEAxMQQW1hem9uIFJv\n" \

 "b3QgQ0EgMTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALJ4gHHKeNXj\n" \

 "ca9HgFB0fW7Y14h29Jlo91ghYPl0hAEvrAIthtOgQ3pOsqTQNroBvo3bSMgHFzZM\n" \

 "9O6II8c+6zf1tRn4SWiw3te5djgdYZ6k/oI2peVKVuRF4fn9tBb6dNqcmzU5L/qw\n" \

 "IFAGbHrQgLKm+a/sRxmPUDgH3KKHOVj4utWp+UhnMJbulHheb4mjUcAwhmahRWa6\n" \

 "VOujw5H5SNz/0egwLX0tdHA114gk957EWW67c4cX8jJGKLhD+rcdqsq08p8kDi1L\n" \

 "93FcXmn/6pUCyziKrlA4b9v7LWIbxcceVOF34GfID5yHI9Y/QCB/IIDEgEw+OyQm\n" \

 "jgSubJrIqg0CAwEAAaNCMEAwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n" \

 "AYYwHQYDVR0OBBYEFIQYzIU07LwMlJQuCFmcx7IQTgoIMA0GCSqGSIb3DQEBCwUA\n" \

 "A4IBAQCY8jdaQZChGsV2USggNiMOruYou6r4lK5IpDB/G/wkjUu0yKGX9rbxenDI\n" \

 "U5PMCCjjmCXPI6T53iHTfIUJrU6adTrCC2qJeHZERxhlbI1Bjjt/msv0tadQ1wUs\n" \

 "N+gDS63pYaACbvXy8MWy7Vu33PqUXHeeE6V/Uq2V8viTO96LXFvKWlJbYK8U90vv\n" \

 "o/ufQJVtMVT8QtPHRh8jrdkPSHCa2XV4cdFyQzR1bldZwgJcJmApzyMZFo6IQ6XU\n" \

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,069 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS HTTPS

 "5MsI+yMRQ+hDKXJioaldXgjUkK642M4UwtBV8ob2xJNDd2ZhwLnoQdeXeGADbkpy\n" \

 "rqXRfboQnoZsG4q5WTP468SQvvG5\n" \

 "-----END CERTIFICATE-----";

/* Default settings to use if DHCP fails. */

const uint8_t g_default_ip_address[4] = {192, 168, 0, 100};

const uint8_t g_default_subnet_mask[4] = {255, 255, 255, 0};

const uint8_t g_default_gateway[4] = {192, 168, 0, 1};

const uint8_t g_default_dns[4] = {8, 8, 8, 8};

void https_example_entry (void * pvParameters)

{

 FSP_PARAMETER_NOT_USED(pvParameters);

 /* Initialize IOT FreeRTOS Libraries */

 SYSTEM_Init();

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 /* Initialize the logging task. */

 assert(pdPASS == xLoggingTaskInitialize(256, 1, 10));

 /* In order to use the PKCS11 PAL, littlefs must be configured. */

 fsp_err_t fsp_err_status = RM_LITTLEFS_FLASH_Open(g_rm_littlefs0.p_ctrl,

g_rm_littlefs0.p_cfg);

 assert(FSP_SUCCESS == fsp_err_status);

 /* Reformat littlefs to ensure that data flash is in a known state. */

 assert(0 == lfs_format(&g_rm_littlefs0_lfs, &g_rm_littlefs0_lfs_cfg));

 /* Mount littlefs. */

 assert(0 == lfs_mount(&g_rm_littlefs0_lfs, &g_rm_littlefs0_lfs_cfg));

 /*

 * Write the keys into data flash using the PKCS11 PAL so that they can be used

during TLS setup

 * Note that in an application this will only be done when provisioning a device

with a private key.

 * Once a device has been provisioned, the keys will persist in data flash.

 */

 ProvisioningParams_t params;

 params.pucClientPrivateKey = (uint8_t *) g_client_private_key;

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,070 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS HTTPS

 params.pucClientCertificate = (uint8_t *) g_client_certificate;

 params.ulClientPrivateKeyLength = sizeof(g_client_private_key);

 params.ulClientCertificateLength = sizeof(g_client_certificate);

 params.pucJITPCertificate = NULL;

 params.ulJITPCertificateLength = 0;

 uint32_t err = (uint32_t) vAlternateKeyProvisioning(¶ms);

 assert(0 == err);

 /* Start up the network stack. */

 FreeRTOS_IPInit(g_default_ip_address,

 g_default_subnet_mask,

 g_default_gateway,

 g_default_dns,

 g_ether0.p_cfg->p_mac_address);

 while (pdFALSE == FreeRTOS_IsNetworkUp())

 {

 vTaskDelay(10);

 }

 ServerInfo_t xServerInfo = {0};

 SocketsConfig_t xSocketsConfig = {0};

 TransportSocketStatus_t xNetworkStatus = TRANSPORT_SOCKET_STATUS_SUCCESS;

 /* Initializer server information. */

 xServerInfo.pHostName = "postman-echo.com";

 xServerInfo.hostNameLength = strlen(xServerInfo.pHostName);

 xServerInfo.port = HTTPS_EXAMPLE_TLS_PORT;

 /* Configure credentials for TLS authenticated session. */

 xSocketsConfig.enableTls = true;

 xSocketsConfig.pAlpnProtos = NULL;

 xSocketsConfig.maxFragmentLength = 0;

 xSocketsConfig.disableSni = false;

 xSocketsConfig.pRootCa = g_server_certificate;

 xSocketsConfig.rootCaSize = sizeof(g_server_certificate);

 xSocketsConfig.sendTimeoutMs = HTTPS_EXAMPLE_TIMEOUT;

 xSocketsConfig.recvTimeoutMs = HTTPS_EXAMPLE_TIMEOUT;

 NetworkContext_t xNetworkContext = {0};

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,071 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS HTTPS

 /* Attempt to create a authenticated TLS connection. */

 xNetworkStatus = SecureSocketsTransport_Connect(&xNetworkContext, &xServerInfo,

&xSocketsConfig);

 assert(TRANSPORT_SOCKET_STATUS_SUCCESS == xNetworkStatus);

 TransportInterface_t xTransportInterface;

 /* Define the transport interface. */

 xTransportInterface.pNetworkContext = &xNetworkContext;

 xTransportInterface.send = SecureSocketsTransport_Send;

 xTransportInterface.recv = SecureSocketsTransport_Recv;

 HTTPRequestInfo_t xRequestInfo = {0};

 HTTPRequestHeaders_t xRequestHeaders = {0};

 /* Configure a GET request. */

 xRequestInfo.pHost = "postman-echo.com";

 xRequestInfo.hostLen = strlen(xRequestInfo.pHost);

 xRequestInfo.pMethod = HTTP_METHOD_GET;

 xRequestInfo.methodLen = strlen(HTTP_METHOD_GET);

 xRequestInfo.pPath = "/get?arg1=val1&arg2=val2";

 xRequestInfo.pathLen = strlen(xRequestInfo.pPath);

 xRequestInfo.reqFlags = HTTP_REQUEST_KEEP_ALIVE_FLAG;

 /* Set the buffer used for storing request headers. */

 static uint8_t ucUserBuffer[HTTPS_EXAMPLE_USER_BUFFER_SIZE];

 xRequestHeaders.pBuffer = ucUserBuffer;

 xRequestHeaders.bufferLen = sizeof(ucUserBuffer);

 /* Initialize the request. */

 HTTPStatus_t xHTTPStatus = HTTPClient_InitializeRequestHeaders(&xRequestHeaders,

&xRequestInfo);

 assert(HTTPSuccess == xHTTPStatus);

 /* Reuse the user buffer for storing the response headers. */

 HTTPResponse_t xResponse = {0};

 xResponse.pBuffer = ucUserBuffer;

 xResponse.bufferLen = sizeof(ucUserBuffer);

 /* Send the request. */

 xHTTPStatus = HTTPClient_Send(&xTransportInterface, &xRequestHeaders, (uint8_t *)

NULL, 0, &xResponse, 0);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,072 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS HTTPS

 assert(HTTPSuccess == xHTTPStatus);

 xNetworkStatus = SecureSocketsTransport_Disconnect(&xNetworkContext);

 assert(TRANSPORT_SOCKET_STATUS_SUCCESS == xNetworkStatus);

 /* The HTTPS request has completed. The result is stored in xResponse. */

}

4.2.105 AWS MQTT
Modules

This module provides the AWS MQTT integration documentation.

Overview
The AWS MQTT library can connect to either AWS or a third party MQTT broker such as Mosquitto.
The documentation for the library can be found at the following link: coreMQTT.

Features

MQTT connections over TLS to an AWS IoT Endpoint or Mosquitto server
Unsecure MQTT connections to Mosquitto servers. This is not recommended for production
and should only be done to a local server for testiing.

Configuration
Memory Usage

The AWS MQTT library relies heavily on dynamic memory allocation for thread/task creation as well
as other uses. Depending on the configuration it may be required to provde as much as 110k heap.
To decrease this it is recommended to tweak the thread stack configuration values based on usage.
Noteable values are:

AWS IoT Common

IoT Thread Default Stack Size
IoT Network Receive Task Stack Size

FreeRTOS Thread

General|Minimal Stack Size

FreeRTOS Plus TCP

Stack size in words (not bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,073 / 2,794

https://mosquitto.org/
https://www.freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > AWS MQTT

Usage Notes
The AWS MQTT library utilizes a system taskpool to queue up messages. This system task pool must
be created before calling into the MQTT library. iot_init.c has been provided for easy initialization of
this taskpool via IotSdk_Init().

The AWS MQTT Demo has been provided to easily demonstrate MQTT functionality. An example of
initializiing the system taskpool and running the MQTT demo has been provided below.

Limitations

aws_clientcredential.h and aws_clientcredential_keys.h need to be added manually.
The IoT Thread must have a higher priorty than the Network Receive Thread.
MbedTLS must be initialized and key provisioning must be done before starting a secure
connection. Refer to AWS Secure Sockets.

Examples

Non-secure connection to a Mosquitto server

#define IOT_LOG_STACK_SIZE (256)

const uint8_t g_ip_address[4] = {169, 254, 57, 49};

const uint8_t g_net_mask[4] = {255, 255, 0, 0};

const uint8_t g_gateway_address[4] = {169, 254, 57, 49};

const uint8_t g_dns_address[4] = {8, 8, 8, 8};

const uint8_t g_mac_address[6] = {0x66, 0x66, 0x66, 0x66, 0x66, 0x66};

void mqtt_non_secure_example ()

{

 /* Initialize IOT FreeRTOS Libraries */

 SYSTEM_Init();

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 xLoggingTaskInitialize(IOT_LOG_STACK_SIZE, 1, 10);

 /* Start up the network stack. */

 FreeRTOS_IPInit(g_ip_address, g_net_mask, g_gateway_address, g_dns_address,

g_mac_address);

 while (pdFALSE == FreeRTOS_IsNetworkUp())

 {

 vTaskDelay(1);

 }

 /* AWS MQTT APIs can now be called. Please refer to the documentation linked above.

*/

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,074 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS MQTT

 /* If using the MQTT Wrapper IotSdk_Init() must be called prior to using MQTT. */

}

Secure connection to a Mosquitto server

Note
MbedTLS must be initialized and key provisioning must be done before starting a secure connection. Refer to AWS
Secure Sockets.

#define keyCLIENT_CERTIFICATE_PEM \

 "-----BEGIN CERTIFICATE-----\n" \

 "example_certificate_formatting\n" \

 "-----END CERTIFICATE-----"

#define keyCLIENT_PRIVATE_KEY_PEM \

 "-----BEGIN RSA PRIVATE KEY-----\n" \

 "example_certificate_formatting\n" \

 "-----END RSA PRIVATE KEY-----"

void mqtt_secure_example ()

{

 /* Initialize IOT FreeRTOS Libraries */

 SYSTEM_Init();

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 xLoggingTaskInitialize(IOT_LOG_STACK_SIZE, 1, 10);

 ProvisioningParams_t params;

 /* Write the keys into a secure region in data flash. */

 params.pucClientPrivateKey = (uint8_t *) keyCLIENT_PRIVATE_KEY_PEM;

 params.pucClientCertificate = (uint8_t *) keyCLIENT_CERTIFICATE_PEM;

 params.ulClientPrivateKeyLength = 1 + strlen((const char *)

params.pucClientPrivateKey);

 params.ulClientCertificateLength = 1 + strlen((const char *)

params.pucClientCertificate);

 params.pucJITPCertificate = NULL;

 params.ulJITPCertificateLength = 0;

 vAlternateKeyProvisioning(¶ms);

 /* Start up the network stack. */

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,075 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS MQTT

 FreeRTOS_IPInit(g_ip_address, g_net_mask, g_gateway_address, g_dns_address,

g_mac_address);

 while (pdFALSE == FreeRTOS_IsNetworkUp())

 {

 vTaskDelay(1);

 }

 /* AWS MQTT APIs can now be called. Please refer to the documentation linked above.

*/

 /* If using the MQTT Wrapper IotSdk_Init() must be called prior to using MQTT. */

}

4.2.106 Wifi Middleware (rm_wifi_onchip_silex)
Modules

Functions

fsp_err_t RM_WIFI_ONCHIP_SILEX_EpochTimeGet (time_t *p_utc_time)

fsp_err_t RM_WIFI_ONCHIP_SILEX_LocalTimeGet (uint8_t *p_local_time,
uint32_t size_string)

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpEnableSet
(wifi_onchip_silex_sntp_enable_t enable)

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet (uint8_t
*p_ip_address)

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet (int32_t hours, uint32_t
minutes, wifi_onchip_silex_sntp_daylight_savings_enable_t
daylightSavingsEnable)

Detailed Description

Wifi and Socket implementation using the Silex SX-ULPGN WiFi module on RA MCUs.

Overview
This Middleware module supplies an implementation for the FreeRTOS Secure Sockets and WiFi
interfaces using the Silex SX-ULPGN module.

You can find specifics about the WiFi and Secure Socket interface APIs supported by this module at
these web sites: Secure Sockets API or Wifi API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,076 / 2,794

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

The SX-ULPGN is a low-power, compact IEEE 802.11b/g/n 2.4GHz 1x1 Wireless LAN module equipped
with the Qualcomm® QCA4010 Wireless SOC. The module comes readily equipped with radio
certification for Japan, North America and Europe. More information about this module can be found
at the Silex Web Site

Features

The WiFi Onchip Silex Middleware driver supplies these features:

Supports connect/disconnect to a b/g/n (2.4GHz) WiFi Access Point using Open, WPA, and
WPA2 security. Encryption types can be either TKIP, or CCMP(AES).
Supports retrieval of the module device MAC address.
Once connected you can acquire the assigned module device IP.
Supports a WiFi network scan capability to get a list of local Access Points.
Supports a Ping function to test network connectivity.
Supports a DNS Query call to retrieve the IPv4 address of a supplied URL.
Supports a BSD style Secure Socket interface.
Drive supports 1 or 2 UARTs for interfacing with the SX-ULPGN module. The second UART is
considered optional.

Configuration
Build Time Configurations for rm_wifi_onchip_silex

The following build time configurations are defined in fsp_cfg/rm_wifi_onchip_silex_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Number of supported
socket instances

Refer to the RA
Configuration tool for
available options.

1 Enable number of
socket instances

Size of RX buffer for
socket

Manual Entry 4096

Size of TX buffer for
CMD Port

Manual Entry 1500

Size of RX buffer for
CMD Port

Manual Entry 3000

Semaphore maximum
timeout

Manual Entry 10000

Number of retries for
AT commands

Manual Entry 10

Module Reset Port Refer to the RA
Configuration tool for
available options.

06 Specify the module
reset pin port for the
MCU.

Module Reset Pin Refer to the RA
Configuration tool for

03 Specify the module
reset pin for the MCU.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,077 / 2,794

https://www.silextechnology.com/connectivity-solutions/embedded-wireless/sx-ulpgn

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

available options.

Enable SNTP Client Enabled
Disabled

Disabled Should the SNTP client
of the module be
enabled

Configurations for Middleware > WiFi > WiFi Onchip Silex Driver using r_sci_uart

Configuration Options Default Description

SNTP server IPv4
address

Must be a valid IPv4
address

0.0.0.0

STNP Timezone Offset
from UTC Hours

Must be between 12
and -12 hours

0 Value in hours from 12
to -12

STNP Timezone Offset
from UTC Minutes

Must be between 0 and
59 minutes

0 Value in minutes from
0 to 59

Use Daylight Savings
Time

Enabled
Disabled

Disabled Specify if daytime
savings should be used
for local time calulation

Note: It is suggested that when using the Silex Module that DTC and FIFO are enabled in the UART
configuration to facilitate a more reliable data transfer between module and MCU.

Note: If you wish to use flow control then you must enable flow control in the RA Configuration
editor. This can be found in the UART setting. It is advantageous to use flow control all the time since
it allows the hardware to gate the flow of data across the serial bus. Without hardware flow control
for faster data rate you will most likely see an overflow condition between MCU and the module
device.

Note: Higher baud rates are supported in the RA Configuration editor and should be changed in the
first UART configuration. There is no need to change the second UART baud rate since it is only used
as an AT command channel.

Note: It is a good idea to also enable the FIFO in the UART configuration settings if you plan to use
higher baud rates.

Interrupt Configuration

Refer to Serial Communications Interface (SCI) UART (r_sci_uart). R_SCI_UART_Open() is called by
Wifi Middleware (rm_wifi_onchip_silex).

Clock Configuration

Refer to Serial Communications Interface (SCI) UART (r_sci_uart).

Pin Configuration

Refer to Serial Communications Interface (SCI) UART (r_sci_uart). R_SCI_UART_Open() is called by
Wifi Middleware (rm_wifi_onchip_silex)

Usage Notes
Limitations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,078 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

WiFi AP connections do not currently support WEP security.
When operating with a single UART only single socket connections are possible. To support
multiple sockets two UART channels must be connected to the module. When using the
Renesas-provided SX-ULPGN PMOD board the second UART channel is on pins 9 and 10 of
the PMOD header.
Network connection parameters SSID and Passphrase for the Access Point can not contain
any commas. This is a current limitation of the Silex module firmware. The
rm_wifi_onchip_silex_connect() function will return an error if a comma is detected.
When operating with a single UART and there is an active socket connection you cannot call
WIFI_Scan(), WIFI_Ping(), SOCKETS_GetHostByName(), WIFI_GetMAC(), or WIFI_GetIPInfo().
Calling one of these function will return an error code in this situation. These commands are
blocked in the one UART case during an active socket connection because they could cause
data loss. To avoid this limitation please configure the hardware to use both UARTs.
The Silex WiFi modules SNTP support requires all configuration changes to made when the
WiFi is disconnected from an Access Point. This is a limitation of the Silex module firmware.
If changes to the default SNTP settings are required then the application will have to close
the current AP connection, make the necessary SNTP changes, and then re-establish the
original connection.

Examples
Basic Example

This is a basic example of minimal use of WiFi Middleware in an application.

void wifi_onchip_basic_example (void)

{

 WIFIReturnCode_t wifi_err;

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucChannel = 0,

 .xPassword.xWPA.cPassphrase = "password",

 .ucSSID = "access_point_ssid",

 .xPassword.xWPA.ucLength = 8,

 .ucSSIDLength = 17,

 .xSecurity = eWiFiSecurityWPA2,

 };

 SocketsSockaddr_t addr = {0};

 int32_t number_bytes_rx = 0;

 int32_t number_bytes_tx = 0;

 memset(scan_data, 0, sizeof(WIFIScanResult_t) * MAX_WIFI_SCAN_RESULTS);

 memset(g_socket_recv_buffer, 0, sizeof(uint8_t) * SX_WIFI_SOCKET_RX_BUFFER_SIZE);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,079 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

 /* Open connection to the Wifi Module */

 wifi_err = WIFI_On();

 assert(eWiFiSuccess == wifi_err);

 /* Connect to the Access Point */

 wifi_err = WIFI_ConnectAP(&net_params);

 assert(eWiFiSuccess == wifi_err);

 /* Get address assigned by AP */

 WIFIIPConfiguration_t ipInfo;

 wifi_err = WIFI_GetIPInfo(&ipInfo);

 assert(eWiFiSuccess == wifi_err);

 /* Ping an address accessible on the network */

 uint8_t ip_address[4] = {216, 58, 194, 174}; // NOLINT

 const uint16_t ping_count = 3;

 const uint32_t intervalMS = 100;

 wifi_err = WIFI_Ping(&ip_address[0], ping_count, intervalMS);

 assert(eWiFiSuccess == wifi_err);

 /* Scan the local Wifi network for other APs */

 wifi_err = WIFI_Scan(&scan_data[0], MAX_WIFI_SCAN_RESULTS);

 assert(eWiFiSuccess == wifi_err);

 /* Do a DNS Query for IP address of server */

 addr.ulAddress = SOCKETS_GetHostByName("www.renesas.com");

 addr.usPort = SOCKETS_htons(80);

 /* Initialize the Socket Interface */

 BaseType_t sock_err = SOCKETS_Init();

 assert(pdPASS == sock_err);

 /* Create a socket instance */

 Socket_t socket1 = SOCKETS_Socket(SOCKETS_AF_INET, SOCKETS_SOCK_STREAM,

SOCKETS_IPPROTO_TCP);

 assert(NULL != socket1);

 /* Connect to an server using address */

 sock_err = SOCKETS_Connect(socket1, &addr, sizeof(SocketsSockaddr_t));

 assert(pdPASS == sock_err);

 /* Send a HTTP Get call to server */

 number_bytes_tx = SOCKETS_Send(socket1, HTTP_GET_string, strlen(HTTP_GET_string),

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,080 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

0);

 assert(number_bytes_tx > 0);

 /* Receive the HTTP GET call reply */

 number_bytes_rx = SOCKETS_Recv(socket1, g_socket_recv_buffer,

SX_WIFI_SOCKET_RX_BUFFER_SIZE, 0);

 assert(number_bytes_rx > 0);

 /* Close the socket connection */

 SOCKETS_Close(socket1);

 /* Shutdown the WIFI and Socket Interfaces */

 WIFI_Off();

}

SNTP example

An example of using Simple Network Time Protocol (SNTP) on WiFi in an application.

#define RM_WIFI_ONCHIP_SILEX_TEMP_BUFFER_SIZE (64)

/*

 * Example of the use of SNTP with Wifi. Example gets the epoch time and local

 * system time strings. It is also demonstrated how the user will need to disconnect

 * from the access point to make changes to the SNTP configuration during runtime.

 *

 * Function assumes that the SNTP has been enabled and configured with proper

 * SNTP server address. For brevity error checking has not been implemented.

 *

 */

void wifi_onchip_sntp_example (void)

{

 /* Setup Access Point connection parameters */

 WIFINetworkParams_t net_params =

 {

 .ucSSID = "access_point_ssid",

 .ucSSIDLength = 17,

 .xPassword.xWPA.cPassphrase = "password",

 .xPassword.xWPA.ucLength = 8,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,081 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

 .ucChannel = 0,

 .xSecurity = eWiFiSecurityWPA2

 };

 uint8_t local_time[RM_WIFI_ONCHIP_SILEX_TEMP_BUFFER_SIZE];

 time_t current_sys_time = 0;

 // SNTP IP address

 uint8_t ip_address_sntp_server_valid[4] = {216, 239, 35, 0}; // NOLINT : Static

IP address

 memset(local_time, 0, sizeof(local_time));

 /* Open connection to the Wifi Module */

 WIFI_On();

 /* Connect to the Access Point */

 WIFI_ConnectAP(&net_params);

 /* Get the Epoch time in seconds since Jan 1, 1970 UTC */

 RM_WIFI_ONCHIP_SILEX_EpochTimeGet(¤t_sys_time);

 /* Get the local time string */

 RM_WIFI_ONCHIP_SILEX_LocalTimeGet((uint8_t *) local_time, sizeof(local_time));

 /* Disconnect from the access point to make changes to the SNTP configuration */

 WIFI_Disconnect();

 /* Change the IP address of the server */

 RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet((uint8_t *)

ip_address_sntp_server_valid);

 /* Change the timezone to PST with daylight saving enabled */

 RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet(-7, 0,

WIFI_ONCHIP_SILEX_SNTP_DAYLIGHT_SAVINGS_ENABLE);

 /* Connect back to the access point */

 WIFI_ConnectAP(&net_params);

 /* Get the Epoch time in seconds since Jan 1, 1970 UTC */

 RM_WIFI_ONCHIP_SILEX_EpochTimeGet(¤t_sys_time);

 /* Get the local time string in format [DayOfWeek Month DayOfMonth Year

Hour:Minute:Second] */

 RM_WIFI_ONCHIP_SILEX_LocalTimeGet((uint8_t *) local_time, sizeof(local_time));

 /* Disconnect from the Access Point and shutdown the WIFI module*/

 WIFI_Disconnect();

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,082 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

 WIFI_Off();

}

Multi-Socket Example

Data Structures

struct wifi_onchip_silex_cfg_t

struct ulpgn_socket_t

struct wifi_onchip_silex_instance_ctrl_t

Enumerations

enum sx_ulpgn_socket_status_t

enum sx_ulpgn_socket_rw

enum wifi_onchip_silex_sntp_enable_t

enum wifi_onchip_silex_sntp_daylight_savings_enable_t

Data Structure Documentation

◆ wifi_onchip_silex_cfg_t

struct wifi_onchip_silex_cfg_t

User configuration structure, used in open function

Data Fields

const uint32_t num_uarts Number of UART interfaces to
use.

const uint32_t num_sockets Number of sockets to initialize.

const bsp_io_port_pin_t reset_pin Reset pin used for module.

const uart_instance_t * uart_instances[WIFI_ONCHIP_SI
LEX_CFG_MAX_NUMBER_UART_
PORTS]

SCI UART instances.

const
wifi_onchip_silex_sntp_enable_t

sntp_enabled Enable/Disable the SNTP Client.

const uint8_t * sntp_server_ip The SNTP server IP address
string.

const int32_t sntp_timezone_offset_from_utc_
hours

Timezone offset from UTC in
(+/-) hours.

const uint32_t sntp_timezone_offset_from_utc_
minutes

Timezone offset from UTC in
minutes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,083 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

const
wifi_onchip_silex_sntp_daylight_
savings_enable_t

sntp_timezone_use_daylight_sa
vings

Enable/Disable use of daylight
saving time.

void const * p_context User defined context passed
into callback function.

void const * p_extend Pointer to extended
configuration by instance of
interface.

◆ ulpgn_socket_t

struct ulpgn_socket_t

Silex ULPGN Wifi internal socket instance structure

Data Fields

StreamBufferHandle_t socket_byteq_hdl Socket stream buffer handle.

StaticStreamBuffer_t socket_byteq_struct Structure to hold stream buffer
info.

uint8_t socket_recv_buff[WIFI_ONCHIP_
SILEX_CFG_MAX_SOCKET_RX_SI
ZE]

Socket receive buffer used by
byte queue.

uint32_t socket_status Current socket status.

uint32_t socket_recv_error_count Socket receive error count.

uint32_t socket_create_flag Flag to determine in socket has
been created.

uint32_t socket_read_write_flag flag to determine if read and/or
write channels are active.

◆ wifi_onchip_silex_instance_ctrl_t

struct wifi_onchip_silex_instance_ctrl_t

WIFI_ONCHIP_SILEX private control block. DO NOT MODIFY.

Data Fields

uint32_t open Flag to indicate if wifi instance
has been initialized.

wifi_onchip_silex_cfg_t const * p_wifi_onchip_silex_cfg Pointer to initial configurations.

bsp_io_port_pin_t reset_pin Wifi module reset pin.

uint32_t num_uarts number of UARTS currently
used for communication with
module

uint32_t tx_data_size Size of the data to send.

uint32_t num_creatable_sockets Number of simultaneous
sockets supported.

uint32_t curr_cmd_port Current UART instance index for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,084 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

AT commands.

uint32_t curr_data_port Current UART instance index for
data.

uint8_t cmd_rx_queue_buf[WIFI_ONCHI
P_SILEX_CFG_CMD_RX_BUF_SIZ
E]

Command port receive buffer
used by byte queue //
FreeRTOS.

StreamBufferHandle_t socket_byteq_hdl Socket stream buffer handle.

StaticStreamBuffer_t socket_byteq_struct Structure to hold stream buffer
info.

volatile uint32_t curr_socket_index Currently active socket
instance.

uint8_t cmd_tx_buff[WIFI_ONCHIP_SILE
X_CFG_CMD_TX_BUF_SIZE]

Command send buffer.

uint8_t cmd_rx_buff[WIFI_ONCHIP_SILE
X_CFG_CMD_RX_BUF_SIZE]

Command receive buffer.

uint32_t at_cmd_mode Current command mode.

uint8_t curr_ipaddr[4] Current IP address of module.

uint8_t curr_subnetmask[4] Current Subnet Mask of
module.

uint8_t curr_gateway[4] Current GAteway of module.

SemaphoreHandle_t tx_sem Transmit binary semaphore
handle.

SemaphoreHandle_t rx_sem Receive binary semaphore
handle.

uint8_t last_data[WIFI_ONCHIP_SILEX_R
ETURN_TEXT_LENGTH]

Tailing buffer used for
command parser.

uart_instance_t * uart_instance_objects[WIFI_ONC
HIP_SILEX_CFG_MAX_NUMBER_
UART_PORTS]

UART instance objects.

SemaphoreHandle_t uart_tei_sem[WIFI_ONCHIP_SILE
X_CFG_MAX_NUMBER_UART_PO
RTS]

UART transmission end binary
semaphore.

ulpgn_socket_t sockets[WIFI_ONCHIP_SILEX_CF
G_NUM_CREATEABLE_SOCKETS]

Internal socket instances.

Enumeration Type Documentation

◆ sx_ulpgn_socket_status_t

enum sx_ulpgn_socket_status_t

Silex ULPGN Wifi socket status types

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,085 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

◆ sx_ulpgn_socket_rw

enum sx_ulpgn_socket_rw

Silex socket shutdown channels

◆ wifi_onchip_silex_sntp_enable_t

enum wifi_onchip_silex_sntp_enable_t

Silex WiFi module enable/disable for SNTP

◆ wifi_onchip_silex_sntp_daylight_savings_enable_t

enum wifi_onchip_silex_sntp_daylight_savings_enable_t

Silex WiFi module enable/disable for SNTP

Function Documentation

◆ RM_WIFI_ONCHIP_SILEX_EpochTimeGet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_EpochTimeGet (time_t * p_utc_time)

Get the current system time as the number of seconds since epoch 1970-01-01 00:00:00 UTC

This will retrieve time info from an NTP server at the address entered via an during configuration. If
the server isn’t set or the client isn’t enabled, then it will return an error. The date/time is retrieved
as the number of seconds since 00:00:00 UTC January 1, 1970

Parameters
[out] p_utc_time Returns the epoch time in

seconds.

Return values
FSP_SUCCESS Successfully retrieved the system time from

module.

FSP_ERR_ASSERTION The parameter utc_time or p_instance_ctrl is
NULL.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,086 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

◆ RM_WIFI_ONCHIP_SILEX_LocalTimeGet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_LocalTimeGet (uint8_t * p_local_time, uint32_t size_string)

Get the current local time based on current timezone in a string format

Get the current local time based on current timezone in a string . Exp: Wed Oct 15 1975 07:06:00

Parameters
[out] p_local_time Returns local time in string

format.

[in] size_string Size of p_local_time string
buffer.The size of this string
needs to be at least 25 bytes

Return values
FSP_SUCCESS Successfully returned the local time string.

FSP_ERR_ASSERTION The parameter local_time or p_instance_ctrl
is NULL.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_SIZE String size value passed in exceeds
maximum.

◆ RM_WIFI_ONCHIP_SILEX_SntpEnableSet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpEnableSet (wifi_onchip_silex_sntp_enable_t enable)

Enable or Disable the SNTP Client Service

Set the SNTP Client to Enable or Disable

Parameters
[in] enable Can be set to enable/disable

for SNTP support.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,087 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

◆ RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpServerIpAddressSet (uint8_t * p_ip_address)

Update the SNTP Server IP Address

Set the SNTP Client Server IP Address

Parameters
[in] p_ip_address Pointer to IP address of SNTP

server in byte array format.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_ASSERTION The parameter p_ip_address or
p_instance_ctrl is NULL.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,088 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > Wifi Middleware (rm_wifi_onchip_silex)

◆ RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet()

fsp_err_t RM_WIFI_ONCHIP_SILEX_SntpTimeZoneSet (int32_t hours, uint32_t minutes,
wifi_onchip_silex_sntp_daylight_savings_enable_t daylightSavingsEnable)

Update the SNTP Timezone

Set the SNTP Client Timezone

Parameters
[in] hours Number of hours (+/-) used

for timezone offset from
GMT.

[in] minutes Number of minutes used for
timezone offset from GMT.

[in] daylightSavingsEnable Enable/Disable daylight
saving in the timezone
calculation.

Return values
FSP_SUCCESS Successfully set the value.

FSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

FSP_ERR_NOT_OPEN Module is not open.

FSP_ERR_INVALID_ARGUMENT Parameter passed into function was invalid.

4.2.107 AWS Secure Sockets
Modules

This module provides the AWS Secure Sockets implementation.

Overview
Features

Information about the features provided by the AWS Secure Sockets Library is available in the
FreeRTOS Libraries User Guide.

The FSP implementation supports using Secure Sockets with either Ethernet or WiFi. These stacks
can be added in FSP via the RA Configuration editor under FreeRTOS | Secure Sockets.

Dependencies

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,089 / 2,794

https://docs.aws.amazon.com/freertos/latest/userguide/secure-sockets.html

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Secure Sockets

The Secure Sockets library has two dependencies:

1. A TCP/IP implementation
2. A TLS implementation

For TCP/IP, AWS have provided the FreeRTOS TCP/IP implementation. For TLS, AWS have chosen
mbedTLS, but use PKCS11 for storage and invoking the crypto portion of mbedTLS. For more
information about AWS Secure Sockets, refer to the AWS documentation. An example of Secure
Sockets usage is on the same page.

mbedTLS

mbedTLS is ARM's implementation of the TLS and SSL protocols as well as the cryptographic
primitives required by those implementations. mbedTLS is also solely used for its cryptographic
features even if the TLS/SSL portions are not used. With PSA, ARM have created a separate API for
cryptography. Starting with mbedTLS3, crypto implementation has been moved out to a new module
called mbedCrypto (PSA Crypto API) and a build time configuration can direct the mbedTLS3
implementation to use either the old mbedtls cryptography functions or use the new PSA Crypto
API. Since the current version of mbedCrypto (PSA Crypto API) implements both the old mbedtls
crypto API as well as the new PSA Crypto API, either option is functional for now.

CipherSuites

During the TLS connection setup stage, the client has to indicate to the server the type of
cryptographic operations that it supports. This is referred to as the ciphersuite. The entire list of
ciphersuites supported by mbedTLS can be found in mbedtls/ssl_ciphersuites.h.

Configuration

In FSP, Secure Sockets can be added as a new stack via FreeRTOS | Secure Sockets | Secure Sockets
on WiFi or Secure Sockets on FreeRTOS Plus TCP. All required dependant modules, except heap, are
automatically added. To complete the configuration,

Add a heap instance and use the same one for all dependencies.
Resolve the module configuration requirements.

Usage Notes
For detailed documentation on Secure Sockets consult the AWS documentation.

Examples
Basic Example

This is a basic example of using the Secure Sockets API with Ethernet. The message "hello, world!" is
sent to a remote socket.

#define SECURE_SOCKETS_EXAMPLE_BUFFER_SIZE (64)

static const char SERVER_CERTIFICATE_PEM[] =

 "-----BEGIN CERTIFICATE-----\n"

 "MIIDazCCAlOgAwIBAgIURabL79ayIywQv0y8SPnbZ1FYDRIwDQYJKoZIhvcNAQEL\n"

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,090 / 2,794

https://docs.aws.amazon.com/freertos/latest/userguide/secure-sockets.html
https://tls.mbed.org/
https://developer.arm.com/architectures/security-architectures/platform-security-architecture
https://docs.aws.amazon.com/freertos/latest/userguide/secure-sockets.html

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Secure Sockets

 "BQAwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoM\n"

 "GEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDAeFw0xOTA5MTEyMTIyMjZaFw0yMDA5\n"

 "MTAyMTIyMjZaMEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEw\n"

 "HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwggEiMA0GCSqGSIb3DQEB\n"

 "AQUAA4IBDwAwggEKAoIBAQDSA3h+5sT58FHgnovnQzsVHQ0H/3TsnEKwVzyBwTQl\n"

 "s4PbG6VXCWyyJWjdJ4XMH1oU8gAlxauFbwOO98Aquei4K3Pi/ynKNBeX4VJcLyE5\n"

 "Azq7nRIIwt4+OoZ5kV7v8JIoLY5i+Ktn3zq1t0y1ZmK6Uk/rRPonb+Kx7wQPx7jq\n"

 "ZIZGda+CgF6ZedidPcABuggqD1y3U2gLiRPoBhe9nN2hG60rRp7vhbWMF0pzTDXu\n"

 "BKF7XSTbhYz3pl6NeOCLh5E3t8x908Ui5W1zDN3iOysrcwQFtCiGTvzNtxSfli1+\n"

 "PugIt9Q2vlYmuz5qI+juxHftJSXO86M5SV7exqUOXP9RAgMBAAGjUzBRMB0GA1Ud\n"

 "DgQWBBQG8VNJEJUjpTKMjmrOY3XApNp5lDAfBgNVHSMEGDAWgBQG8VNJEJUjpTKM\n"

 "jmrOY3XApNp5lDAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQAt\n"

 "CabfjsYUnG8tt3/GDdhjsuG+SfeQe11S73pZi3+L616bPH5MNUv+LkgR/1AFEqt5\n"

 "WadKVTgzW5Ork1t7CfkYwrOHbyhyaaDPzERjMCfCcl8lQluBy6vE/lEb0hWq6XlO\n"

 "f6+8i+VKxWkSIXs2ZQqqYSOTTzAjHSsiiuE5WsC00ErvCvnC7uD6+3Y7W1uQRkFZ\n"

 "uSd9AN1ixPvAFi69FF/ymlJv6vII5GXOVDrIwdr50bMNuezMEx6qMNDADRH8iEaL\n"

 "JaSgfklczGiI1i7MPD4JTtsXOgKwxcBDAa0zQDVA5uBGEIOhva3m5X70N4iO7W0V\n"

 "eEhZekKeg3Fl3t/CXi8l\n"

 "-----END CERTIFICATE-----";

#define keyCLIENT_CERTIFICATE_PEM \

 "-----BEGIN CERTIFICATE-----\n" \

 "MIIDETCCAfkCFHwd2yn8zn5qB2ChYUT9Mvbi9Xp1MA0GCSqGSIb3DQEBCwUAMEUx\n" \

 "CzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRl\n" \

 "cm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTkwOTExMjEyMjU0WhcNMjAwOTEwMjEy\n" \

 "MjU0WjBFMQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UE\n" \

 "CgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOC\n" \

 "AQ8AMIIBCgKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABMA0GCSqGSIb3DQEBCwUA\n" \

 "A4IBAQCdqq59ubdRY9EiV3bleKXeqG7+8HgBHdm0X9dgq10nD37p00YLyuZLE9NM\n" \

 "066G/VcflGrx/Nzw+/UuI7/UuBbBS/3ppHRnsZqBIl8nnr/ULrFQy8z3vKtL1q3C\n" \

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,091 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Secure Sockets

 "DxabjPONlPO2keJeTTA71N/RCEMwJoa8i0XKXGdu/hQo6x4n+Gq73fEiGCl99xsc\n" \

 "4tIO4yPS4lv+uXBzEUzoEy0CLIkiDesnT5lLeCyPmUNoU89HU95IusZT7kygCHHd\n" \

 "72am1ic3X8PKc268KT3ilr3VMhK67C+iIIkfrM5AiU+oOIRrIHSC/p0RigJg3rXA\n" \

 "GBIRHvt+OYF9fDeG7U4QDJNCfGW+\n" \

 "-----END CERTIFICATE-----"

#define keyCLIENT_PRIVATE_KEY_PEM \

 "-----BEGIN RSA PRIVATE KEY-----\n" \

 "MIIEowIBAAKCAQEAo8oThJXSMDo41oL7HTpC4TX8NalBvnkFw30Av67dl/oZDjVA\n" \

 "iXPnZkhVppLnj++0/Oed0M7UwNUO2nurQt6yTYrvW7E8ZPjAlC7ueJcGYZhOaVv2\n" \

 "bhSmigjFQru2lw5odSuYy5+22CCgxft58nrRCo5Bk+GwWgZmcrxe/BzutRHQ7X4x\n" \

 "dYJhyhBOi2R1Kt8XsbuWilfgfkVhhkVklFeKqiypdQM6cnPWo/G4DyW34jOXzzEM\n" \

 "FLWvQOQLCKUZOgjJBnFdbx8oOOwMkYCChbV7gqPE6cw0Zy26CvlLQiINyonLPbNT\n" \

 "c64sS/ZBGPZFOPJmb4tG2nipYgZ1hO/r++jCbwIDAQABAoIBAQCGR2hC/ZVJhqIM\n" \

 "c2uuJZKpElpIIBBPOObZwwS3IYR4UUjzVgMn7UbbmxflLXD8lzfZU4YVp0vTH5lC\n" \

 "07qvYuXpHqtnj+GEok837VYCtUY9AuHeDM/2paV3awNV15E1PFG1Jd3pqnH7tJw6\n" \

 "VBZBDiGNNt1agN/UnoSlMfvpU0r8VGPXCBNxe3JY5QyBJPI1wF4LcxRI+eYmr7Ja\n" \

 "/cjn97DZotgz4B7gUNu8XIEkUOTwPabZINY1zcLWiXTMA+8qTniPVk653h14Xqt4\n" \

 "4o4D4YCTpwJcmxSV1m21/6+uyuXr9SIKAE+Ys2cYLA46x+rwLaW5fUoQ5hHa0Ytb\n" \

 "RYJ4SrtBAoGBANWtwlE69N0hq5xDPckSbNGubIeG8P4mBhGkJxIqYoqugGLMDiGX\n" \

 "4bltrjr2TPWaxTo3pPavLJiBMIsENA5KU+c/r0jLkxgEp9MIVJrtNgkCiDQqogBG\n" \

 "j4IJL2iQwXoLCqk2tx/dh9Mww+7SETE7EPNrv4UrYaGN5AEvpf5W+NHPAoGBAMQ6\n" \

 "wVa0Mx1PlA4enY2rfE3WXP8bzjleSOwR75JXqG2WbPC0/cszwbyPWOEqRpBZfvD/\n" \

 "QFkKx06xp1C09XwiQanr2gDucYXHeEKg/9iuJV1UkMQp95ojlhtSXdRZV7/l4pmN\n" \

 "fpB2vcAptX/4gY4tDrWMO08JNnRjE7duC+rmmk1hAoGAS4L0QLCNB/h2JOq+Uuhn\n" \

 "/FGfmOVfFPFrA6D3DbxcxpWUWVWzSLvb0SOphryzxbfEKyau7V5KbDp7ZSU/IC20\n" \

 "KOygjSEkAkDi7fjrrTRW/Cgg6g6G4YIOBO4qCtHdDbwJMHNdk6096qw5EZS67qLp\n" \

 "Apz5OZ5zChySjri/+HnTxJECgYBysGSP6IJ3fytplTtAshnU5JU2BWpi3ViBoXoE\n" \

 "bndilajWhvJO8dEqBB5OfAcCF0y6TnWtlT8oH21LHnjcNKlsRw0Dvllbd1oylybx\n" \

 "3da41dRG0sCEtoflMB7nHdDLt/DZDnoKtVvyFG6gfP47utn+Ahgn+Zp6K+46J3eP\n" \

 "s3g8AQKBgE/PJiaF8pbBXaZOuwRRA9GOMSbDIF6+jBYTYp4L9wk4+LZArKtyI+4k\n" \

 "Md2DUvHwMC+ddOtKqjYnLm+V5cSbvu7aPvBZtwxghzTUDcf7EvnA3V/bQBh3R0z7\n" \

 "pVsxTyGRmBSeLdbUWACUbX9LXdpudarPAJ59daWmP3mBEVmWdzUw\n" \

 "-----END RSA PRIVATE KEY-----"

const uint8_t g_ip_address[4] = {169, 254, 57, 49};

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,092 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Secure Sockets

const uint8_t g_net_mask[4] = {255, 255, 0, 0};

const uint8_t g_gateway_address[4] = {169, 254, 57, 49};

const uint8_t g_dns_address[4] = {8, 8, 8, 8};

const uint8_t g_mac_address[6] = {0x66, 0x66, 0x66, 0x66, 0x66, 0x66};

static uint8_t g_buffer[SECURE_SOCKETS_EXAMPLE_BUFFER_SIZE];

/**

 * Refer to the following link for detailed API information:

 * https://docs.aws.amazon.com/freertos/latest/lib-

ref/html2/secure_sockets/secure_sockets_function_primary.html

 **

**********************************/

void secure_sockets_ethernet_example (void)

{

 /* Initialize IOT FreeRTOS Libraries */

 SYSTEM_Init();

 /* Initialize the crypto hardware acceleration. */

 mbedtls_platform_setup(NULL);

 xLoggingTaskInitialize(256, 1, 10); // NOLINT(readability-magic-numbers)

 ProvisioningParams_t params;

 /* Write the keys into a secure region in data flash. */

 params.pucClientPrivateKey = (uint8_t *) keyCLIENT_PRIVATE_KEY_PEM;

 params.pucClientCertificate = (uint8_t *) keyCLIENT_CERTIFICATE_PEM;

 params.ulClientPrivateKeyLength = 1 + strlen((const char *)

params.pucClientPrivateKey);

 params.ulClientCertificateLength = 1 + strlen((const char *)

params.pucClientCertificate);

 params.pucJITPCertificate = NULL;

 params.ulJITPCertificateLength = 0;

 vAlternateKeyProvisioning(¶ms);

 /* Start up the network stack. */

 FreeRTOS_IPInit(g_ip_address, g_net_mask, g_gateway_address, g_dns_address,

g_mac_address);

 while (pdFALSE == FreeRTOS_IsNetworkUp())

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,093 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Secure Sockets

 {

 vTaskDelay(1);

 }

 Socket_t socket = SOCKETS_Socket(SOCKETS_AF_INET, SOCKETS_SOCK_STREAM,

SOCKETS_IPPROTO_TCP);

 if (SOCKETS_INVALID_SOCKET == socket)

 {

 /* Could not create socket. */

 __BKPT(0);

 }

 /* Enable TLS and configure the server certificate. */

 SOCKETS_SetSockOpt(socket, 0, SOCKETS_SO_REQUIRE_TLS, NULL, (size_t) 0);

 SOCKETS_SetSockOpt(socket, 0, SOCKETS_SO_TRUSTED_SERVER_CERTIFICATE,

SERVER_CERTIFICATE_PEM,

 sizeof(SERVER_CERTIFICATE_PEM));

 /* Connect to a remote server */

 SocketsSockaddr_t server_addr;

 server_addr.usPort = SOCKETS_htons(9001);

 server_addr.ulAddress = SOCKETS_inet_addr_quick(192, 168, 0, 3);

 if (0 != SOCKETS_Connect(socket, &server_addr, sizeof(server_addr)))

 {

 /* Could not connect to server. */

 __BKPT(0);

 }

 /* Send a message and check that the correct number of bytes were transferred */

 const char msg[] = "hello, world!\n";

 if (sizeof(msg) != SOCKETS_Send(socket, msg, sizeof(msg), 0))

 {

 /* Failed to send data. */

 __BKPT(0);

 }

 if (0 != SOCKETS_Shutdown(socket, SOCKETS_SHUT_RDWR))

 {

 __BKPT(0);

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,094 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > AWS Secure Sockets

 }

 /* Follow socket shutdown example:

 * https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/API/close.html

 */

 while (0 <= SOCKETS_Recv(socket, g_buffer, sizeof(g_buffer), 0))

 {

 vTaskDelay(10);

 }

 SOCKETS_Close(socket);

}

const char * pcApplicationHostnameHook (void)

{

 /* Assign the name "FreeRTOS" to this network node. This function will

 * be called during the DHCP: the machine will be registered with an IP

 * address plus this name. */

 return "FreeRTOS";

}

void vApplicationIPNetworkEventHook (eIPCallbackEvent_t eNetworkEvent)

{

 FSP_PARAMETER_NOT_USED(eNetworkEvent);

}

4.2.108 ZMOD4XXX Sensor Middleware (rm_zmod4xxx)
Modules

Functions

fsp_err_t RM_ZMOD4XXX_Open (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_cfg_t const *const p_cfg)

 This function should be called when start a measurement and when
measurement data is stale data. Sends the slave address to the
zmod4xxx and start a measurement. Implements
rm_zmod4xxx_api_t::open. More...

fsp_err_t RM_ZMOD4XXX_MeasurementStart (rm_zmod4xxx_ctrl_t *const
p_api_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,095 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

 This function should be called when start a measurement.
Implements rm_zmod4xxx_api_t::measurementStart. More...

fsp_err_t RM_ZMOD4XXX_MeasurementStop (rm_zmod4xxx_ctrl_t *const
p_api_ctrl)

 This function should be called when stop a measurement.
Implements rm_zmod4xxx_api_t::measurementStop. More...

fsp_err_t RM_ZMOD4XXX_StatusCheck (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

 This function should be called when polling is used. It reads the
status of sensor. Implements rm_zmod4xxx_api_t::statusCheck.
More...

fsp_err_t RM_ZMOD4XXX_Read (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::read. More...

fsp_err_t RM_ZMOD4XXX_TemperatureAndHumiditySet (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, float temperature, float humidity)

 This function is valid only for OAQ_2nd_Gen. This function should be
called before DataCalculate. Humidity and temperature
measurements are needed for ambient compensation. Implements
rm_zmod4xxx_api_t::temperatureAndHumiditySet. More...

fsp_err_t RM_ZMOD4XXX_Iaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_1st_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::iaq1stGenDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_Iaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_2nd_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::iaq2ndGenDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_OdorDataCalculate (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,096 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

rm_zmod4xxx_odor_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::odorDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_SulfurOdorDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_sulfur_odor_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::sulfurOdorDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_Oaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_1st_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::oaq1stGenDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_Oaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t
*const p_api_ctrl, rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_2nd_data_t *const p_zmod4xxx_data)

 This function should be called when measurement finishes. To check
measurement status either polling or busy/interrupt pin can be used.
Implements rm_zmod4xxx_api_t::oaq2ndGenDataCalculate. More...

fsp_err_t RM_ZMOD4XXX_Close (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

 This function should be called when close the sensor. Implements
rm_zmod4xxx_api_t::close. More...

void rm_zmod4xxx_comms_i2c_callback (rm_comms_callback_args_t
*p_args)

 ZMOD4XXX callback function called in the I2C Communications
Middleware callback function. More...

Detailed Description

Middleware to implement the ZMOD4XXX sensor interface. This module implements the ZMOD4XXX
Middleware Interface.

Overview

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,097 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

This module provides an API for configuring and controlling the ZMOD4XXX sensor. Supported
ZMOD4XXX sensors are below.

ZMOD4410
ZMOD4510

I2C communication with the ZMOD4XXX sensor is realized by connecting with the rm_comms_i2c
module.

Features

The ZMOD4XXX sensor interface implementation has the following key features:

Initialize the sensor for measurement
Start a measurement at any time
Read status register for wait until the measurement is done. This will also be signaled by an
interrupt
Get the ADC data from the sensor
Input the ADC data and acquire the air quality values by calculation in the library.

Configuration
RM_ZMOD4XXX_CFG_OPERATION_MODE is set according to the library selected.

Build Time Configurations for rm_zmod4xxx

The following build time configurations are defined in fsp_cfg/rm_zmod4xxx_cfg.h:

Configuration Options Default Description

Parameter Checking Default (BSP)
Enabled
Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Build Time Configurations for rm_zmod4410_iaq_1st

The following build time configurations are defined in fsp_cfg/rm_zmod4xxx_lib_cfg.h:

Configuration Options Default Description

Power mode Continuous
Low Power

Continuous Select power mode

Configurations for Middleware > Sensor > ZMOD4XXX on rm_zmod4xxx

This module can be added to the Stacks tab via New Stack > Middleware > Sensor > ZMOD4XXX on
rm_zmod4xxx.

Configuration Options Default Description

Name Manual Entry g_zmod4xxx_sensor0 Module name.

Comms I2C Callback Name must be a valid
C symbol

zmod4xxx_comms_i2c_
callback

A user COMMS I2C
callback function can
be provided.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,098 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

IRQ Callback Name must be a valid
C symbol

zmod4xxx_irq_callback A user IRQ callback
function can be
provided.

Pin Configuration

This module use SDA and SCL pins of I2C Master and SCI I2C.

Usage Notes
ZMOD4410 datasheet is here.
The ZMOD4410 has five modes of operation.

Mode Method Description

Operation Mode 1 IAQ 1st Generation Continuous Measurement of UBA levels for
IAQ and eCO2, provides
continuous data

Operation Mode 2 IAQ 1st Generation Low Power Measurement of UBA levels for
IAQ and eCO2, fixed sampling
interval of 6 seconds

Operation Mode 3 IAQ 2nd Generation Using AI for improved ppm
TVOC, IAQ and eCO2
functionality (recommended for
new designs)

Operation Mode 4 Odor Control signal based on Air
Quality Changes

Operation Mode 5 Sulfur-based Odor
Discrimination

The odors in "sulfur" (sulfur
based) and "acceptable"
(organic based) and shows an
intensity level of the smell

ZMOD4510 datasheet is here.
The ZMOD4510 has two modes of operation.

Mode Method Description

Operation Mode 1 OAQ 1st Generation Measurement of Air Quality

Operation Mode 2 OAQ 2nd Generation Selective Ozone featuring Ultra-
Low Power

A library corresponding to each of these modes is required. By setting in RA Configuration, the
library will be generated in the ra/fsp/lib/rm_zmod4xxx folder of your project.

Initialization

Initialize with RM_ZMOD4XXX_Open(). One channel of timer is required to measure the waiting time
at initialization.

From measurement start to data acquisition

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,099 / 2,794

https://www.renesas.com/document/dst/zmod4410-datasheet
https://www.renesas.com/document/dst/zmod4510-datasheet

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

After normal completion, start the measurement with RM_ZMOD4XXX_MeasurementStart(). An
endless loop continuously checks the status of the ZMOD4XXX sensor and reads its data. The raw
data is subsequently processed, and the air quality values are calculated.

If IRQ is enabled

1. Call RM_ZMOD4XXX_MeasurementStart().
2. Wait until RM_ZMOD4XXX_EVENT_MEASUREMENT_COMPLETE is received via IRQ callback.
3. Call RM_ZMOD4XXX_Read(). This function will read the ADC data.
4. Wait until RM_ZMOD4XXX_EVENT_SUCCESS is received.
5. Call the DataCalculate API according to the mode.

If IRQ is disabled

1. Call RM_ZMOD4XXX_MeasurementStart().
2. Wait until RM_ZMOD4XXX_EVENT_SUCCESS is received.
3. Call RM_ZMOD4XXX_StatusCheck(). This function will execute a status check over I2C.
4. If RM_ZMOD4XXX_EVENT_MEASUREMENT_NOT_COMPLETE is received in callback, user

should wait some time and then call RM_ZMOD4XXX_StatusCheck() again.
5. Wait until RM_ZMOD4XXX_EVENT_MEASUREMENT_COMPLETE is received.
6. Call RM_ZMOD4XXX_Read() and read the ADC data.
7. Wait until RM_ZMOD4XXX_EVENT_SUCCESS is received.
8. Call the DataCalculate API according to the mode.

Examples
Basic Example

This is a basic example of minimal use of ZMOD4XXX sensor implementation in an application.

void rm_zmod4xxx_basic_example (void)

{

 fsp_err_t err = FSP_SUCCESS;

 rm_zmod4xxx_raw_data_t g_zmod4xxx_raw_data;

#if ((RM_ZMOD4XXX_CFG_OPERATION_MODE == 1) || (RM_ZMOD4XXX_CFG_OPERATION_MODE == 2))

 rm_zmod4xxx_iaq_1st_data_t g_zmod4xxx_data;

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 3)

 rm_zmod4xxx_iaq_2nd_data_t g_zmod4xxx_data;

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 4)

 rm_zmod4xxx_odor_data_t g_zmod4xxx_data;

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 5)

 rm_zmod4xxx_sulfur_odor_data_t g_zmod4xxx_data;

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 6)

 rm_zmod4xxx_oaq_1st_data_t g_zmod4xxx_data;

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 7)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,100 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

 rm_zmod4xxx_oaq_2nd_data_t g_zmod4xxx_data;

#endif

 /* Open the I2C bus if it is not already open. */

 rm_comms_i2c_bus_extended_cfg_t * p_extend =

 (rm_comms_i2c_bus_extended_cfg_t *)

g_zmod4xxx_cfg.p_comms_instance->p_cfg->p_extend;

 i2c_master_instance_t * p_driver_instance = (i2c_master_instance_t *)

p_extend->p_driver_instance;

 p_driver_instance->p_api->open(p_driver_instance->p_ctrl,

p_driver_instance->p_cfg);

 do

 {

 err = RM_ZMOD4XXX_Open(&g_zmod4xxx_ctrl, &g_zmod4xxx_cfg);

 } while ((FSP_ERR_ABORTED == err) || (FSP_ERR_TIMEOUT == err));

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 g_zmod4xxx_callback_flag = 0;

 err = RM_ZMOD4XXX_MeasurementStart(&g_zmod4xxx_ctrl);

 handle_error(err);

 while (0U == g_zmod4xxx_callback_flag)

 {

 }

 while (1)

 {

 do

 {

 g_zmod4xxx_callback_flag = 0;

 err = RM_ZMOD4XXX_Read(&g_zmod4xxx_ctrl, &g_zmod4xxx_raw_data);

 if (err == FSP_ERR_SENSOR_MEASUREMENT_NOT_FINISHED)

 {

 R_BSP_SoftwareDelay(ZMOD4XXX_WAIT_50, BSP_DELAY_UNITS_MILLISECONDS);

 }

 } while (err != FSP_SUCCESS);

 while (0U == g_zmod4xxx_callback_flag)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,101 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

 {

 }

#if ((RM_ZMOD4XXX_CFG_OPERATION_MODE == 1) || (RM_ZMOD4XXX_CFG_OPERATION_MODE == 2))

 err = RM_ZMOD4XXX_Iaq1stGenDataCalculate(&g_zmod4xxx_ctrl,

&g_zmod4xxx_raw_data, &g_zmod4xxx_data);

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 3)

 err = RM_ZMOD4XXX_Iaq2ndGenDataCalculate(&g_zmod4xxx_ctrl,

&g_zmod4xxx_raw_data, &g_zmod4xxx_data);

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 4)

 err = RM_ZMOD4XXX_OdorDataCalculate(&g_zmod4xxx_ctrl, &g_zmod4xxx_raw_data,

&g_zmod4xxx_data);

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 5)

 err = RM_ZMOD4XXX_SulfurOdorDataCalculate(&g_zmod4xxx_ctrl,

&g_zmod4xxx_raw_data, &g_zmod4xxx_data);

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 6)

 err = RM_ZMOD4XXX_Oaq1stGenDataCalculate(&g_zmod4xxx_ctrl,

&g_zmod4xxx_raw_data, &g_zmod4xxx_data);

#elif (RM_ZMOD4XXX_CFG_OPERATION_MODE == 7)

 err = RM_ZMOD4XXX_Oaq2ndGenDataCalculate(&g_zmod4xxx_ctrl,

&g_zmod4xxx_raw_data, &g_zmod4xxx_data);

#endif

 if (FSP_SUCCESS == err)

 {

 /* Describe the process by referring to g_zmod4xxx_data */

 }

 else if (FSP_ERR_SENSOR_IN_STABILIZATION == err)

 {

 /* Delay required time */

 R_BSP_SoftwareDelay(RM_ZMOD4XXX_ALG_REQ_DELAY_IN_MS, BSP_DELAY_UNITS_MILLISECONDS);

 }

 else

 {

 handle_error(err);

 }

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,102 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

 }

}

Data Structures

struct rm_zmod4xxx_init_process_params_t

struct rm_zmod4xxx_instance_ctrl_t

Data Structure Documentation

◆ rm_zmod4xxx_init_process_params_t

struct rm_zmod4xxx_init_process_params_t

ZMOD4XXX initialization process block

Data Fields

volatile uint32_t delay_ms Delay milliseconds.

volatile bool communication_finished Communication flag for
blocking.

volatile bool measurement_finished IRQ flag.

volatile rm_zmod4xxx_event_t event Callback event.

◆ rm_zmod4xxx_instance_ctrl_t

struct rm_zmod4xxx_instance_ctrl_t

ZMOD4XXX control block

Data Fields

uint32_t open

 Open flag.

uint8_t buf [RM_ZMOD4XXX_MAX_I2C_BUF_SIZE]

 Buffer for I2C communications.

uint8_t register_address

 Register address to access.

rm_zmod4xxx_status_param
s_t

status

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,103 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

 Status parameter.

volatile
rm_zmod4xxx_event_t

event

 Callback event.

rm_zmod4xxx_init_process_
params_t

init_process_params

 For the initialization process.

rm_zmod4xxx_cfg_t const * p_cfg

 Pointer of configuration block.

rm_comms_instance_t const
*

p_comms_i2c_instance

 Pointer of I2C Communications Middleware instance structure.

void const * p_timer_instance

 Pointer to Timer driver instance.

void const * p_irq_instance

 Pointer to IRQ instance.

void * p_zmod4xxx_device

 Pointer to ZMOD4XXX device structure.

void * p_zmod4xxx_handle

 Pointer to ZMOD4XXX library handler.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,104 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

void * p_zmod4xxx_results

 Pointer to ZMOD4XXX library results.

float temperature

 Temperature for OAQ 2nd.

float humidity

 Humidity for OAQ 2nd.

void const * p_context

 Pointer to the user-provided context.

void(* p_comms_callback)(rm_zmod4xxx_callback_args_t *p_args)

 I2C Communications callback.

void(* p_irq_callback)(rm_zmod4xxx_callback_args_t *p_args)

 IRQ callback.

Function Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,105 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

◆ RM_ZMOD4XXX_Open()

fsp_err_t RM_ZMOD4XXX_Open (rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_cfg_t const
*const p_cfg)

This function should be called when start a measurement and when measurement data is stale
data. Sends the slave address to the zmod4xxx and start a measurement. Implements
rm_zmod4xxx_api_t::open.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_ALREADY_OPEN Module is already open.

FSP_ERR_UNSUPPORTED Unsupport product ID.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

◆ RM_ZMOD4XXX_MeasurementStart()

fsp_err_t RM_ZMOD4XXX_MeasurementStart (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when start a measurement. Implements
rm_zmod4xxx_api_t::measurementStart.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,106 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

◆ RM_ZMOD4XXX_MeasurementStop()

fsp_err_t RM_ZMOD4XXX_MeasurementStop (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when stop a measurement. Implements
rm_zmod4xxx_api_t::measurementStop.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

◆ RM_ZMOD4XXX_StatusCheck()

fsp_err_t RM_ZMOD4XXX_StatusCheck (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when polling is used. It reads the status of sensor. Implements
rm_zmod4xxx_api_t::statusCheck.

Return values
FSP_SUCCESS Successfully started.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT communication is timeout.

FSP_ERR_ABORTED communication is aborted.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,107 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

◆ RM_ZMOD4XXX_Read()

fsp_err_t RM_ZMOD4XXX_Read (rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_raw_data_t
*const p_raw_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::read.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_TIMEOUT Communication is timeout.

FSP_ERR_ABORTED Communication is aborted.

FSP_ERR_SENSOR_MEASUREMENT_NOT_FINI
SHED

Measurement is not finished.

◆ RM_ZMOD4XXX_TemperatureAndHumiditySet()

fsp_err_t RM_ZMOD4XXX_TemperatureAndHumiditySet (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
float temperature, float humidity)

This function is valid only for OAQ_2nd_Gen. This function should be called before DataCalculate.
Humidity and temperature measurements are needed for ambient compensation. Implements
rm_zmod4xxx_api_t::temperatureAndHumiditySet.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,108 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

◆ RM_ZMOD4XXX_Iaq1stGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Iaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_1st_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::iaq1stGenDataCalculate
.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_SENSOR_IN_STABILIZATION Module is stabilizing.

FSP_ERR_UNSUPPORTED Operation mode is not supported.

◆ RM_ZMOD4XXX_Iaq2ndGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Iaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_2nd_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::iaq2ndGenDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_SENSOR_IN_STABILIZATION Module is stabilizing.

FSP_ERR_UNSUPPORTED Operation mode is not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,109 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

◆ RM_ZMOD4XXX_OdorDataCalculate()

fsp_err_t RM_ZMOD4XXX_OdorDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_odor_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements rm_zmod4xxx_api_t::odorDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_SENSOR_IN_STABILIZATION Module is stabilizing.

FSP_ERR_UNSUPPORTED Operation mode is not supported.

◆ RM_ZMOD4XXX_SulfurOdorDataCalculate()

fsp_err_t RM_ZMOD4XXX_SulfurOdorDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_sulfur_odor_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::sulfurOdorDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_SENSOR_IN_STABILIZATION Module is stabilizing.

FSP_ERR_UNSUPPORTED Operation mode is not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,110 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

◆ RM_ZMOD4XXX_Oaq1stGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Oaq1stGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_1st_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::oaq1stGenDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_SENSOR_IN_STABILIZATION Module is stabilizing.

FSP_ERR_UNSUPPORTED Operation mode is not supported.

◆ RM_ZMOD4XXX_Oaq2ndGenDataCalculate()

fsp_err_t RM_ZMOD4XXX_Oaq2ndGenDataCalculate (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_2nd_data_t *const
p_zmod4xxx_data)

This function should be called when measurement finishes. To check measurement status either
polling or busy/interrupt pin can be used. Implements
rm_zmod4xxx_api_t::oaq2ndGenDataCalculate.

Return values
FSP_SUCCESS Successfully results are read.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not opened configured.

FSP_ERR_SENSOR_IN_STABILIZATION Module is stabilizing.

FSP_ERR_UNSUPPORTED Operation mode is not supported.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,111 / 2,794

Flexible Software Package

User’s Manual
API Reference > Modules > ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

◆ RM_ZMOD4XXX_Close()

fsp_err_t RM_ZMOD4XXX_Close (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

This function should be called when close the sensor. Implements rm_zmod4xxx_api_t::close.

Return values
FSP_SUCCESS Successfully closed.

FSP_ERR_ASSERTION Null pointer passed as a parameter.

FSP_ERR_NOT_OPEN Module is not open.

◆ rm_zmod4xxx_comms_i2c_callback()

void rm_zmod4xxx_comms_i2c_callback (rm_comms_callback_args_t * p_args)

ZMOD4XXX callback function called in the I2C Communications Middleware callback function.

(end addtogroup ZMOD4XXX)

4.3 Interfaces

Detailed Description

The FSP interfaces provide APIs for common functionality. They can be implemented by one or more
modules. Modules can use other modules as dependencies using this interface layer.

Modules

ADC Interface

 Interface for A/D Converters.

BLE Interface

 Interface for Bluetooth Low Energy functions.

CAC Interface

 Interface for clock frequency accuracy measurements.

CAN Interface

 Interface for CAN peripheral.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,112 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces

CEC Interface

 Interface for CEC peripheral.

CGC Interface

 Interface for clock generation.

Comparator Interface

 Interface for comparators.

CRC Interface

 Interface for cyclic redundancy checking.

CTSU Interface

 Interface for Capacitive Touch Sensing Unit (CTSU) functions.

DAC Interface

 Interface for D/A converters.

Display Interface

 Interface for LCD panel displays.

DOC Interface

 Interface for the Data Operation Circuit.

ELC Interface

 Interface for the Event Link Controller.

Ethernet Interface

 Interface for Ethernet functions.

Ethernet PHY Interface

 Interface for Ethernet PHY functions.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,113 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces

External IRQ Interface

 Interface for detecting external interrupts.

Flash Interface

 Interface for the Flash Memory.

I2C Master Interface

 Interface for I2C master communication.

I2C Slave Interface

 Interface for I2C slave communication.

I2S Interface

 Interface for I2S audio communication.

I/O Port Interface

 Interface for accessing I/O ports and configuring I/O functionality.

JPEG Codec Interface

 Interface for JPEG functions.

Key Matrix Interface

 Interface for key matrix functions.

Low Power Modes Interface

 Interface for accessing low power modes.

Low Voltage Detection Interface

 Interface for Low Voltage Detection.

OPAMP Interface

 Interface for Operational Amplifiers.

PDC Interface

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,114 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces

 Interface for PDC functions.

POEG Interface

 Interface for the Port Output Enable for GPT.

PTP Interface

 Interface for PTP functions.

RTC Interface

 Interface for accessing the Realtime Clock.

SD/MMC Interface

 Interface for accessing SD, eMMC, and SDIO devices.

SLCDC Interface

 Interface for Segment LCD controllers.

SPI Interface

 Interface for SPI communications.

SPI Flash Interface

 Interface for accessing external SPI flash devices.

Three-Phase Interface

 Interface for three-phase timer functions.

Timer Interface

 Interface for timer functions.

Transfer Interface

 Interface for data transfer functions.

UART Interface

 Interface for UART communications.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,115 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces

USB Interface

 Interface for USB functions.

USB HCDC Interface

 Interface for USB HCDC functions.

USB HHID Interface

 Interface for USB HHID functions.

USB HMSC Interface

 Interface for USB HMSC functions.

USB PCDC Interface

 Interface for USB PCDC functions.

USB PHID Interface

 Interface for USB PHID functions.

USB PMSC Interface

 Interface for USB PMSC functions.

WDT Interface

 Interface for watch dog timer functions.

ADPCM Decoder Interface

 Interface for ADPCM decoder.

AUDIO PLAYBACK Interface

 Interface for the Audio Playback.

BLE ABS Interface

 Interface for Bluetooth Low Energy Abstraction functions.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,116 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces

Block Media Interface

 Interface for block media memory access.

Communicatons Middleware Interface

 Interface for Communications Middleware functions.

FileX Block Media Port Interface

 Interface for FileX Block Media port.

FreeRTOS+FAT Port Interface

 Interface for FreeRTOS+FAT port.

FSXXXX Middleware Interface

 Interface for FSXXXX Middleware functions.

HS300X Middleware Interface

 Interface for HS300X Middleware functions.

LittleFS Interface

 Interface for LittleFS access.

Motor angle Interface

 Interface for motor angle and speed calculation functions.

Motor Interface

 Interface for Motor functions.

Motor current Interface

 Interface for motor current functions.

Motor driver Interface

 Interface for motor driver functions.

Motor position Interface

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,117 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces

 Interface for motor position functions.

Motor speed Interface

 Interface for motor speed functions.

Touch Middleware Interface

 Interface for Touch Middleware functions.

Virtual EEPROM Interface

 Interface for Virtual EEPROM access.

ZMOD4XXX Middleware Interface

 Interface for ZMOD4XXX Middleware functions.

SCE Interface

 Interface for Secure Crypto Engine (SCE) functions.

4.3.1 ADC Interface
Interfaces

Detailed Description

Interface for A/D Converters.

Summary
The ADC interface provides standard ADC functionality including one-shot mode (single scan),
continuous scan and group scan. It also allows configuration of hardware and software triggers for
starting scans. After each conversion an interrupt can be triggered, and if a callback function is
provided, the call back is invoked with the appropriate event information.

Implemented by: Analog to Digital Converter (r_adc)

Data Structures

struct adc_status_t

struct adc_callback_args_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,118 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

struct adc_info_t

struct adc_cfg_t

struct adc_api_t

struct adc_instance_t

Typedefs

typedef void adc_ctrl_t

Enumerations

enum adc_mode_t

enum adc_resolution_t

enum adc_alignment_t

enum adc_trigger_t

enum adc_event_t

enum adc_channel_t

enum adc_state_t

Data Structure Documentation

◆ adc_status_t

struct adc_status_t

ADC status.

Data Fields

adc_state_t state Current state.

◆ adc_callback_args_t

struct adc_callback_args_t

ADC callback arguments definitions

Data Fields

uint16_t unit ADC device in use.

adc_event_t event ADC callback event.

void const * p_context Placeholder for user data.

adc_channel_t channel Channel of conversion result.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,119 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

Only valid for ADC_EVENT_CON
VERSION_COMPLETE.

◆ adc_info_t

struct adc_info_t

ADC Information Structure for Transfer Interface

Data Fields

__I uint16_t * p_address The address to start reading the
data from.

uint32_t length The total number of transfers to
read.

transfer_size_t transfer_size The size of each transfer.

elc_peripheral_t elc_peripheral Name of the peripheral in the
ELC list.

elc_event_t elc_event Name of the ELC event for the
peripheral.

uint32_t calibration_data Temperature sensor calibration
data (0xFFFFFFFF if
unsupported) for reference
voltage.

int16_t slope_microvolts Temperature sensor slope in
microvolts/degrees C.

bool calibration_ongoing Calibration is in progress.

◆ adc_cfg_t

struct adc_cfg_t

ADC general configuration

Data Fields

uint16_t unit

 ADC unit to be used.

adc_mode_t mode

 ADC operation mode.

adc_resolution_t resolution

 ADC resolution.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,120 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

adc_alignment_t alignment

 Specify left or right alignment; ignored if addition used.

adc_trigger_t trigger

 Default and Group A trigger source.

IRQn_Type scan_end_irq

 Scan end IRQ number.

IRQn_Type scan_end_b_irq

 Scan end group B IRQ number.

uint8_t scan_end_ipl

 Scan end interrupt priority.

uint8_t scan_end_b_ipl

 Scan end group B interrupt priority.

void(* p_callback)(adc_callback_args_t *p_args)

 Callback function; set to NULL for none.

void const * p_context

 Placeholder for user data. Passed to the user callback in
adc_callback_args_t.

void const * p_extend

 Extension parameter for hardware specific settings.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,121 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_api_t

struct adc_api_t

ADC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

fsp_err_t(* scanCfg)(adc_ctrl_t *const p_ctrl, void const *const p_extend)

fsp_err_t(* scanStart)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* scanStop)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* scanStatusGet)(adc_ctrl_t *const p_ctrl, adc_status_t *p_status)

fsp_err_t(* read)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint16_t
*const p_data)

fsp_err_t(* read32)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id,
uint32_t *const p_data)

fsp_err_t(* calibrate)(adc_ctrl_t *const p_ctrl, void *const p_extend)

fsp_err_t(* offsetSet)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id,
int32_t const offset)

fsp_err_t(* callbackSet)(adc_ctrl_t *const p_api_ctrl,
void(*p_callback)(adc_callback_args_t *), void const *const
p_context, adc_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(adc_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,122 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ open

fsp_err_t(* adc_api_t::open) (adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

Initialize ADC Unit; apply power, set the operational mode, trigger sources, interrupt priority, and
configurations common to all channels and sensors.

Implemented as

R_ADC_Open()
R_SDADC_Open()

Precondition
Configure peripheral clocks, ADC pins and IRQs prior to calling this function.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_cfg Pointer to configuration
structure

◆ scanCfg

fsp_err_t(* adc_api_t::scanCfg) (adc_ctrl_t *const p_ctrl, void const *const p_extend)

Configure the scan including the channels, groups, and scan triggers to be used for the unit that
was initialized in the open call. Some configurations are not supported for all implementations. See
implementation for details.

Implemented as

R_ADC_ScanCfg()
R_SDADC_ScanCfg()

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_extend See implementation for
details

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,123 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ scanStart

fsp_err_t(* adc_api_t::scanStart) (adc_ctrl_t *const p_ctrl)

Start the scan (in case of a software trigger), or enable the hardware trigger.

Implemented as

R_ADC_ScanStart()
R_SDADC_ScanStart()

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ scanStop

fsp_err_t(* adc_api_t::scanStop) (adc_ctrl_t *const p_ctrl)

Stop the ADC scan (in case of a software trigger), or disable the hardware trigger.

Implemented as

R_ADC_ScanStop()
R_SDADC_ScanStop()

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ scanStatusGet

fsp_err_t(* adc_api_t::scanStatusGet) (adc_ctrl_t *const p_ctrl, adc_status_t *p_status)

Check scan status.

Implemented as

R_ADC_StatusGet()
R_SDADC_StatusGet()

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_status Pointer to store current
status in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,124 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ read

fsp_err_t(* adc_api_t::read) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint16_t *const
p_data)

Read ADC conversion result.

Implemented as

R_ADC_Read()
R_SDADC_Read()

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] p_data Pointer to variable to load
value into.

◆ read32

fsp_err_t(* adc_api_t::read32) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uint32_t *const
p_data)

Read ADC conversion result into a 32-bit word.

Implemented as

R_SDADC_Read32()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] p_data Pointer to variable to load
value into.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,125 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ calibrate

fsp_err_t(* adc_api_t::calibrate) (adc_ctrl_t *const p_ctrl, void *const p_extend)

Calibrate ADC or associated PGA (programmable gain amplifier). The driver may require
implementation specific arguments to the p_extend input. Not supported for all implementations.
See implementation for details.

Implemented as

R_SDADC_Calibrate()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_extend Pointer to implementation
specific arguments

◆ offsetSet

fsp_err_t(* adc_api_t::offsetSet) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t const
offset)

Set offset for input PGA configured for differential input. Not supported for all implementations. See
implementation for details.

Implemented as

R_SDADC_OffsetSet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] offset See implementation for
details.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,126 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ callbackSet

fsp_err_t(* adc_api_t::callbackSet) (adc_ctrl_t *const p_api_ctrl,
void(*p_callback)(adc_callback_args_t *), void const *const p_context, adc_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_ADC_CallbackSet()
Parameters

[in] p_ctrl Pointer to the ADC control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* adc_api_t::close) (adc_ctrl_t *const p_ctrl)

Close the specified ADC unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Implemented as

R_ADC_Close()
R_SDADC_Close()

Parameters
[in] p_ctrl Pointer to control handle

structure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,127 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ infoGet

fsp_err_t(* adc_api_t::infoGet) (adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

Return the ADC data register address of the first (lowest number) channel and the total number of
bytes to be read in order for the DTC/DMAC to read the conversion results of all configured
channels. Return the temperature sensor calibration and slope data.

Implemented as

R_ADC_InfoGet()
R_SDADC_InfoGet()

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_adc_info Pointer to ADC information
structure

◆ adc_instance_t

struct adc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

adc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

adc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

void const * p_channel_cfg Pointer to the channel
configuration structure for this
instance.

adc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ adc_ctrl_t

typedef void adc_ctrl_t

ADC control block. Allocate using driver instance control structure from driver instance header file.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,128 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_mode_t

enum adc_mode_t

ADC operation mode definitions

Enumerator

ADC_MODE_SINGLE_SCAN Single scan - one or more channels.

ADC_MODE_GROUP_SCAN Two trigger sources to trigger scan for two
groups which contain one or more channels.

ADC_MODE_CONTINUOUS_SCAN Continuous scan - one or more channels.

◆ adc_resolution_t

enum adc_resolution_t

ADC data resolution definitions

Enumerator

ADC_RESOLUTION_12_BIT 12 bit resolution

ADC_RESOLUTION_10_BIT 10 bit resolution

ADC_RESOLUTION_8_BIT 8 bit resolution

ADC_RESOLUTION_14_BIT 14 bit resolution

ADC_RESOLUTION_16_BIT 16 bit resolution

ADC_RESOLUTION_24_BIT 24 bit resolution

◆ adc_alignment_t

enum adc_alignment_t

ADC data alignment definitions

Enumerator

ADC_ALIGNMENT_RIGHT Data alignment right.

ADC_ALIGNMENT_LEFT Data alignment left.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,129 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_trigger_t

enum adc_trigger_t

ADC trigger mode definitions

Enumerator

ADC_TRIGGER_SOFTWARE Software trigger; not for group modes.

ADC_TRIGGER_SYNC_ELC Synchronous trigger via ELC.

ADC_TRIGGER_ASYNC_EXTERNAL External asynchronous trigger; not for group
modes.

◆ adc_event_t

enum adc_event_t

ADC callback event definitions

Enumerator

ADC_EVENT_SCAN_COMPLETE Normal/Group A scan complete.

ADC_EVENT_SCAN_COMPLETE_GROUP_B Group B scan complete.

ADC_EVENT_CALIBRATION_COMPLETE Calibration complete.

ADC_EVENT_CONVERSION_COMPLETE Conversion complete.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,130 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

◆ adc_channel_t

enum adc_channel_t

ADC channels

Enumerator

ADC_CHANNEL_0 ADC channel 0.

ADC_CHANNEL_1 ADC channel 1.

ADC_CHANNEL_2 ADC channel 2.

ADC_CHANNEL_3 ADC channel 3.

ADC_CHANNEL_4 ADC channel 4.

ADC_CHANNEL_5 ADC channel 5.

ADC_CHANNEL_6 ADC channel 6.

ADC_CHANNEL_7 ADC channel 7.

ADC_CHANNEL_8 ADC channel 8.

ADC_CHANNEL_9 ADC channel 9.

ADC_CHANNEL_10 ADC channel 10.

ADC_CHANNEL_11 ADC channel 11.

ADC_CHANNEL_12 ADC channel 12.

ADC_CHANNEL_13 ADC channel 13.

ADC_CHANNEL_14 ADC channel 14.

ADC_CHANNEL_15 ADC channel 15.

ADC_CHANNEL_16 ADC channel 16.

ADC_CHANNEL_17 ADC channel 17.

ADC_CHANNEL_18 ADC channel 18.

ADC_CHANNEL_19 ADC channel 19.

ADC_CHANNEL_20 ADC channel 20.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,131 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADC Interface

ADC_CHANNEL_21 ADC channel 21.

ADC_CHANNEL_22 ADC channel 22.

ADC_CHANNEL_23 ADC channel 23.

ADC_CHANNEL_24 ADC channel 24.

ADC_CHANNEL_25 ADC channel 25.

ADC_CHANNEL_26 ADC channel 26.

ADC_CHANNEL_27 ADC channel 27.

ADC_CHANNEL_28 ADC channel 28.

ADC_CHANNEL_DUPLEX_A Data duplexing register A.

ADC_CHANNEL_DUPLEX_B Data duplexing register B.

ADC_CHANNEL_DUPLEX Data duplexing register.

ADC_CHANNEL_TEMPERATURE Temperature sensor output.

ADC_CHANNEL_VOLT Internal reference voltage.

◆ adc_state_t

enum adc_state_t

ADC states.

Enumerator

ADC_STATE_IDLE ADC is idle.

ADC_STATE_SCAN_IN_PROGRESS ADC scan in progress.

4.3.2 BLE Interface
Interfaces

Detailed Description

Interface for Bluetooth Low Energy functions.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,132 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE Interface

Summary
The BLE interface for the Bluetooth Low Energy (BLE) peripheral provides Bluetooth Low Energy
functionality.

The Bluetooth Low Energy interface can be implemented by:

Bluetooth Low Energy Library (r_ble)

Macros

#define BLE_VERSION_MAJOR

#define BLE_VERSION_MINOR

#define BLE_LIB_EXTENDED

#define BLE_LIB_BALANCE

#define BLE_LIB_COMPACT

Macro Definition Documentation

◆ BLE_VERSION_MAJOR

#define BLE_VERSION_MAJOR

BLE Module Major Version.

◆ BLE_VERSION_MINOR

#define BLE_VERSION_MINOR

BLE Module Minor Version.

◆ BLE_LIB_EXTENDED

#define BLE_LIB_EXTENDED

BLE Protocol Stack Library Extended type.

◆ BLE_LIB_BALANCE

#define BLE_LIB_BALANCE

BLE Protocol Stack Library Balance type.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,133 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE Interface

◆ BLE_LIB_COMPACT

#define BLE_LIB_COMPACT

BLE Protocol Stack Library Compacy type.

4.3.3 CAC Interface
Interfaces

Detailed Description

Interface for clock frequency accuracy measurements.

Summary
The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of pulses of
the clock to be measured.

Implemented by: Clock Frequency Accuracy Measurement Circuit (r_cac)

Data Structures

struct cac_ref_clock_config_t

struct cac_meas_clock_config_t

struct cac_callback_args_t

struct cac_cfg_t

struct cac_api_t

struct cac_instance_t

Typedefs

typedef void cac_ctrl_t

Enumerations

enum cac_event_t

enum cac_clock_type_t

enum cac_clock_source_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,134 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

enum cac_ref_divider_t

enum cac_ref_digfilter_t

enum cac_ref_edge_t

enum cac_meas_divider_t

Data Structure Documentation

◆ cac_ref_clock_config_t

struct cac_ref_clock_config_t

Structure defining the settings that apply to reference clock configuration.

Data Fields

cac_ref_divider_t divider Divider specification for the
Reference clock.

cac_clock_source_t clock Clock source for the Reference
clock.

cac_ref_digfilter_t digfilter Digital filter selection for the
CACREF ext clock.

cac_ref_edge_t edge Edge detection for the
Reference clock.

◆ cac_meas_clock_config_t

struct cac_meas_clock_config_t

Structure defining the settings that apply to measurement clock configuration.

Data Fields

cac_meas_divider_t divider Divider specification for the
Measurement clock.

cac_clock_source_t clock Clock source for the
Measurement clock.

◆ cac_callback_args_t

struct cac_callback_args_t

Callback function parameter data

Data Fields

cac_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Value provided in configuration
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,135 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_cfg_t

struct cac_cfg_t

CAC Configuration

Data Fields

cac_ref_clock_config_t cac_ref_clock

 Reference clock specific settings.

cac_meas_clock_config_t cac_meas_clock

 Measurement clock specific settings.

uint16_t cac_upper_limit

 The upper limit counter threshold.

uint16_t cac_lower_limit

 The lower limit counter threshold.

IRQn_Type mendi_irq

 Measurement End IRQ number.

IRQn_Type ovfi_irq

 Measurement Overflow IRQ number.

IRQn_Type ferri_irq

 Frequency Error IRQ number.

uint8_t mendi_ipl

 Measurement end interrupt priority.

uint8_t ovfi_ipl

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,136 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

 Overflow interrupt priority.

uint8_t ferri_ipl

 Frequency error interrupt priority.

void(* p_callback)(cac_callback_args_t *p_args)

 Callback provided when a CAC interrupt ISR occurs.

void const * p_context

 Passed to user callback in cac_callback_args_t.

void const * p_extend

 CAC hardware dependent configuration */.

◆ cac_api_t

struct cac_api_t

CAC functions implemented at the HAL layer API

Data Fields

fsp_err_t(* open)(cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

fsp_err_t(* startMeasurement)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* stopMeasurement)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* read)(cac_ctrl_t *const p_ctrl, uint16_t *const p_counter)

fsp_err_t(* callbackSet)(cac_ctrl_t *const p_api_ctrl,
void(*p_callback)(cac_callback_args_t *), void const *const
p_context, cac_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(cac_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,137 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

Field Documentation

◆ open

fsp_err_t(* cac_api_t::open) (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

Open function for CAC device.

Parameters
[out] p_ctrl Pointer to CAC device

control. Must be declared by
user.

[in] cac_cfg_t Pointer to CAC configuration
structure.

◆ startMeasurement

fsp_err_t(* cac_api_t::startMeasurement) (cac_ctrl_t *const p_ctrl)

Begin a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ stopMeasurement

fsp_err_t(* cac_api_t::stopMeasurement) (cac_ctrl_t *const p_ctrl)

End a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,138 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ read

fsp_err_t(* cac_api_t::read) (cac_ctrl_t *const p_ctrl, uint16_t *const p_counter)

Read function for CAC peripheral.

Parameters
[in] p_ctrl Control for the CAC device

context.

[in] p_counter Pointer to variable in which
to store the current
CACNTBR register contents.

◆ callbackSet

fsp_err_t(* cac_api_t::callbackSet) (cac_ctrl_t *const p_api_ctrl,
void(*p_callback)(cac_callback_args_t *), void const *const p_context, cac_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_CAC_CallbackSet()
Parameters

[in] p_ctrl Control block set in
cac_api_t::open call

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* cac_api_t::close) (cac_ctrl_t *const p_ctrl)

Close function for CAC device.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ cac_instance_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,139 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

struct cac_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

cac_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cac_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cac_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ cac_ctrl_t

typedef void cac_ctrl_t

CAC control block. Allocate an instance specific control block to pass into the CAC API calls.

Implemented as

cac_instance_ctrl_t

Enumeration Type Documentation

◆ cac_event_t

enum cac_event_t

Event types returned by the ISR callback when used in CAC interrupt mode

Enumerator

CAC_EVENT_FREQUENCY_ERROR Frequency error.

CAC_EVENT_MEASUREMENT_COMPLETE Measurement complete.

CAC_EVENT_COUNTER_OVERFLOW Counter overflow.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,140 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_clock_type_t

enum cac_clock_type_t

Enumeration of the two possible clocks.

Enumerator

CAC_CLOCK_MEASURED Measurement clock.

CAC_CLOCK_REFERENCE Reference clock.

◆ cac_clock_source_t

enum cac_clock_source_t

Enumeration of the possible clock sources for both the reference and measurement clocks.

Enumerator

CAC_CLOCK_SOURCE_MAIN_OSC Main clock oscillator.

CAC_CLOCK_SOURCE_SUBCLOCK Sub-clock.

CAC_CLOCK_SOURCE_HOCO HOCO (High speed on chip oscillator)

CAC_CLOCK_SOURCE_MOCO MOCO (Middle speed on chip oscillator)

CAC_CLOCK_SOURCE_LOCO LOCO (Low speed on chip oscillator)

CAC_CLOCK_SOURCE_PCLKB PCLKB (Peripheral Clock B)

CAC_CLOCK_SOURCE_IWDT IWDT-dedicated on-chip oscillator.

CAC_CLOCK_SOURCE_EXTERNAL Externally supplied measurement clock on
CACREF pin.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,141 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_ref_divider_t

enum cac_ref_divider_t

Enumeration of available dividers for the reference clock.

Enumerator

CAC_REF_DIV_32 Reference clock divided by 32.

CAC_REF_DIV_128 Reference clock divided by 128.

CAC_REF_DIV_1024 Reference clock divided by 1024.

CAC_REF_DIV_8192 Reference clock divided by 8192.

◆ cac_ref_digfilter_t

enum cac_ref_digfilter_t

Enumeration of available digital filter settings for an external reference clock.

Enumerator

CAC_REF_DIGITAL_FILTER_OFF No digital filter on the CACREF pin for
reference clock.

CAC_REF_DIGITAL_FILTER_1 Sampling clock for digital filter = measuring
frequency.

CAC_REF_DIGITAL_FILTER_4 Sampling clock for digital filter = measuring
frequency/4.

CAC_REF_DIGITAL_FILTER_16 Sampling clock for digital filter = measuring
frequency/16.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,142 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAC Interface

◆ cac_ref_edge_t

enum cac_ref_edge_t

Enumeration of available edge detect settings for the reference clock.

Enumerator

CAC_REF_EDGE_RISE Rising edge detect for the Reference clock.

CAC_REF_EDGE_FALL Falling edge detect for the Reference clock.

CAC_REF_EDGE_BOTH Both Rising and Falling edges detect for the
Reference clock.

◆ cac_meas_divider_t

enum cac_meas_divider_t

Enumeration of available dividers for the measurement clock

Enumerator

CAC_MEAS_DIV_1 Measurement clock divided by 1.

CAC_MEAS_DIV_4 Measurement clock divided by 4.

CAC_MEAS_DIV_8 Measurement clock divided by 8.

CAC_MEAS_DIV_32 Measurement clock divided by 32.

4.3.4 CAN Interface
Interfaces

Detailed Description

Interface for CAN peripheral.

Summary
The CAN interface provides common APIs for CAN HAL drivers. CAN interface supports following
features.

Full-duplex CAN communication
Generic CAN parameter setting

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,143 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

Interrupt driven transmit/receive processing
Callback function support with returning event code
Hardware resource locking during a transaction

Implemented by:

Controller Area Network (r_can)
Controller Area Network - Flexible Data (r_canfd)

Data Structures

struct can_info_t

struct can_bit_timing_cfg_t

struct can_frame_t

struct can_callback_args_t

struct can_cfg_t

struct can_api_t

struct can_instance_t

Typedefs

typedef void can_ctrl_t

Enumerations

enum can_event_t

enum can_operation_mode_t

enum can_test_mode_t

enum can_id_mode_t

enum can_frame_type_t

Data Structure Documentation

◆ can_info_t

struct can_info_t

CAN status info

Data Fields

uint32_t status Useful information from the
CAN status register.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,144 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

uint32_t rx_mb_status RX Message Buffer New Data
flags.

uint32_t rx_fifo_status RX FIFO Empty flags.

uint8_t error_count_transmit Transmit error count.

uint8_t error_count_receive Receive error count.

uint32_t error_code Error code, cleared after
reading.

◆ can_bit_timing_cfg_t

struct can_bit_timing_cfg_t

CAN bit rate configuration.

Data Fields

uint32_t baud_rate_prescaler Baud rate prescaler. Valid
values: 1 - 1024.

uint32_t time_segment_1 Time segment 1 control.

uint32_t time_segment_2 Time segment 2 control.

uint32_t synchronization_jump_width Synchronization jump width.

◆ can_frame_t

struct can_frame_t

CAN data Frame

Data Fields

uint32_t id CAN ID.

can_id_mode_t id_mode Standard or Extended ID (IDE).

can_frame_type_t type Frame type (RTR).

uint8_t data_length_code CAN Data Length Code (DLC).

uint32_t options Implementation-specific
options.

uint8_t data[CAN_DATA_BUFFER_LENG
TH]

CAN data.

◆ can_callback_args_t

struct can_callback_args_t

CAN callback parameter definition

Data Fields

uint32_t channel Device channel number.

can_event_t event Event code.

uint32_t error Error code.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,145 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

union can_callback_args_t __unnamed__

can_frame_t * p_frame

void const * p_context Context provided to user during
callback.

can_frame_t frame Received frame data.

◆ can_cfg_t

struct can_cfg_t

CAN Configuration

Data Fields

uint32_t channel

 CAN channel.

can_bit_timing_cfg_t * p_bit_timing

 CAN bit timing.

void(* p_callback)(can_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined callback context.

void const * p_extend

 CAN hardware dependent configuration.

uint8_t ipl

 Error/Transmit/Receive interrupt priority.

IRQn_Type error_irq

 Error IRQ number.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,146 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

IRQn_Type rx_irq

 Receive IRQ number.

IRQn_Type tx_irq

 Transmit IRQ number.

◆ can_api_t

struct can_api_t

Shared Interface definition for CAN

Data Fields

fsp_err_t(* open)(can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

fsp_err_t(* write)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t
*const p_frame)

fsp_err_t(* read)(can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t
*const p_frame)

fsp_err_t(* close)(can_ctrl_t *const p_ctrl)

fsp_err_t(* modeTransition)(can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

fsp_err_t(* infoGet)(can_ctrl_t *const p_ctrl, can_info_t *const p_info)

fsp_err_t(* callbackSet)(can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const
p_context, can_callback_args_t *const p_callback_memory)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,147 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

◆ open

fsp_err_t(* can_api_t::open) (can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

Open function for CAN device

Implemented as

R_CAN_Open()
R_CANFD_Open()

Parameters
[in,out] p_ctrl Pointer to the CAN control

block. Must be declared by
user. Value set here.

[in] can_cfg_t Pointer to CAN configuration
structure. All elements of
this structure must be set by
user.

◆ write

fsp_err_t(* can_api_t::write) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const
p_frame)

Write function for CAN device

Implemented as

R_CAN_Write()
R_CANFD_Write()

Parameters
[in] p_ctrl Pointer to the CAN control

block.

[in] buffer Buffer number (mailbox or
message buffer) to write to.

[in] p_frame Pointer for frame of CAN ID,
DLC, data and frame type to
write.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,148 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

◆ read

fsp_err_t(* can_api_t::read) (can_ctrl_t *const p_ctrl, uint32_t buffer_number, can_frame_t *const
p_frame)

Read function for CAN device

Implemented as

R_CANFD_Read()
Parameters

[in] p_ctrl Pointer to the CAN control
block.

[in] buffer Message buffer (number) to
read from.

[in] p_frame Pointer to store the CAN ID,
DLC, data and frame type.

◆ close

fsp_err_t(* can_api_t::close) (can_ctrl_t *const p_ctrl)

Close function for CAN device

Implemented as

R_CAN_Close()
Parameters

[in] p_ctrl Pointer to the CAN control
block.

◆ modeTransition

fsp_err_t(* can_api_t::modeTransition) (can_ctrl_t *const p_api_ctrl, can_operation_mode_t
operation_mode, can_test_mode_t test_mode)

Mode Transition function for CAN device

Implemented as

R_CAN_ModeTransition()
R_CANFD_ModeTransition()

Parameters
[in] p_ctrl Pointer to the CAN control

block.

[in] operation_mode Destination CAN operation
state.

[in] test_mode Destination CAN test state.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,149 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

◆ infoGet

fsp_err_t(* can_api_t::infoGet) (can_ctrl_t *const p_ctrl, can_info_t *const p_info)

Get CAN channel info.

Implemented as

R_CAN_InfoGet()
R_CANFD_InfoGet()

Parameters
[in] p_ctrl Handle for channel (pointer

to channel control block)

[out] p_info Memory address to return
channel specific data to.

◆ callbackSet

fsp_err_t(* can_api_t::callbackSet) (can_ctrl_t *const p_api_ctrl,
void(*p_callback)(can_callback_args_t *), void const *const p_context, can_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_CAN_CallbackSet()
R_CANFD_CallbackSet()

Parameters
[in] p_ctrl Control block set in

can_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ can_instance_t

struct can_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

can_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,150 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

can_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

can_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ can_ctrl_t

typedef void can_ctrl_t

CAN control block. Allocate an instance specific control block to pass into the CAN API calls.

Implemented as

can_instance_ctrl_t
canfd_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,151 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

◆ can_event_t

enum can_event_t

CAN event codes

Enumerator

CAN_EVENT_ERR_WARNING Error Warning event.

CAN_EVENT_ERR_PASSIVE Error Passive event.

CAN_EVENT_ERR_BUS_OFF Bus Off event.

CAN_EVENT_BUS_RECOVERY Bus Off Recovery event.

CAN_EVENT_MAILBOX_MESSAGE_LOST Mailbox has been overrun.

CAN_EVENT_ERR_BUS_LOCK Bus lock detected (32 consecutive dominant
bits).

CAN_EVENT_ERR_CHANNEL Channel error has occurred.

CAN_EVENT_TX_ABORTED Transmit abort event.

CAN_EVENT_RX_COMPLETE Receive complete event.

CAN_EVENT_TX_COMPLETE Transmit complete event.

CAN_EVENT_ERR_GLOBAL Global error has occurred.

CAN_EVENT_TX_FIFO_EMPTY Transmit FIFO is empty.

◆ can_operation_mode_t

enum can_operation_mode_t

CAN Operation modes

Enumerator

CAN_OPERATION_MODE_NORMAL CAN Normal Operation Mode.

CAN_OPERATION_MODE_RESET CAN Reset Operation Mode.

CAN_OPERATION_MODE_HALT CAN Halt Operation Mode.

CAN_OPERATION_MODE_SLEEP CAN Sleep Operation Mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,152 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CAN Interface

◆ can_test_mode_t

enum can_test_mode_t

CAN Test modes

Enumerator

CAN_TEST_MODE_DISABLED CAN Test Mode Disabled.

CAN_TEST_MODE_LISTEN CAN Test Listen Mode.

CAN_TEST_MODE_LOOPBACK_EXTERNAL CAN Test External Loopback Mode.

CAN_TEST_MODE_LOOPBACK_INTERNAL CAN Test Internal Loopback Mode.

CAN_TEST_MODE_INTERNAL_BUS CANFD Internal CAN Bus Communication Test
Mode.

◆ can_id_mode_t

enum can_id_mode_t

CAN ID modes

Enumerator

CAN_ID_MODE_STANDARD Standard IDs of 11 bits used.

CAN_ID_MODE_EXTENDED Extended IDs of 29 bits used.

◆ can_frame_type_t

enum can_frame_type_t

CAN frame types

Enumerator

CAN_FRAME_TYPE_DATA Data frame.

CAN_FRAME_TYPE_REMOTE Remote frame.

4.3.5 CEC Interface
Interfaces

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,153 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

Detailed Description

Interface for CEC peripheral.

Summary
The CEC interface provides common APIs for CEC HAL drivers and supports the following features:

Opening and closing the CEC module.
Allocation for full range of local address settings (TV, Recording Device, Playback Device,
etc.)
Supports a user-callback function (required), invoked when transmit, receive, or error
interrupts are received.

Implemented by:

Consumer Electronics Control (r_cec)

Data Structures

union cec_message_t

struct cec_callback_args_t

struct cec_cfg_t

struct cec_api_t

struct cec_instance_t

Typedefs

typedef void cec_ctrl_t

Enumerations

enum cec_addr_t

enum cec_clock_source_t

enum cec_state_t

enum cec_error_t

enum cec_event_t

Data Structure Documentation

◆ cec_message_t

union cec_message_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,154 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

CEC message

Data Fields

struct cec_message_t __unnamed__

uint8_t raw_data[CEC_DATA_BUFFER_L
ENGTH+2 *sizeof(uint8_t)]

Contiguous raw data.

◆ cec_callback_args_t

struct cec_callback_args_t

CEC callback parameter definition

Data Fields

cec_event_t event Event code.

void const * p_context Context provided to user during
callback.

bool addr_match Local addresss matches
message destination.

uint8_t data_byte Received data byte (INTDA)

cec_status_t status CEC Module status data.

cec_error_t errors Error code bitfield.

◆ cec_cfg_t

struct cec_cfg_t

CEC Configuration

Data Fields

cec_timing_t const * bit_timing_cfg

 CEC Bit Timing Configuration.

uint16_t rx_data_sample_time

 Receive Data Sample Time Setting.

uint16_t rx_data_bit_reference_width

 Receive Data Bit Reference Width.

void(* p_callback)(cec_callback_args_t *p_args)

 Pointer to callback function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,155 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

void const * p_context

 User defined callback context.

uint8_t ipl

 Error/Data/Message interrupt priority level.

IRQn_Type error_irq

 Error IRQ number.

IRQn_Type data_irq

 Data IRQ number.

IRQn_Type msg_irq

 Communication Complete IRQ number.

void * p_extend

 Pointer to extended configuration structure.

◆ cec_api_t

struct cec_api_t

Shared Interface definition for CEC

Data Fields

fsp_err_t(* open)(cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

fsp_err_t(* mediaInit)(cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

fsp_err_t(* write)(cec_ctrl_t *const p_ctrl, cec_message_t const *const
p_message, uint32_t message_size)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,156 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

fsp_err_t(* close)(cec_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(cec_ctrl_t *const p_ctrl, cec_status_t *const p_status)

fsp_err_t(* callbackSet)(cec_ctrl_t *const p_ctrl,
void(*p_callback)(cec_callback_args_t *), void const *const
p_context, cec_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* cec_api_t::open) (cec_ctrl_t *const p_ctrl, cec_cfg_t const *const p_cfg)

Open function for CEC device

Implemented as

R_CEC_Open()
Parameters

[in,out] p_ctrl Pointer to the CEC control
block. Must be declared by
user. Value set here.

[in] p_cfg Pointer to CEC configuration
structure. All elements of
this structure must be set by
user.

◆ mediaInit

fsp_err_t(* cec_api_t::mediaInit) (cec_ctrl_t *const p_ctrl, cec_addr_t local_address)

Initializes the CEC device. May be called any time after the CEC module has been opened. This API
blocks until the device initialization procedure is complete.

Implemented as

R_CEC_MediaInit()
Parameters

[in] p_ctrl Pointer to CEC instance
control block.

[out] local_address Desired Logical address for
local device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,157 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

◆ write

fsp_err_t(* cec_api_t::write) (cec_ctrl_t *const p_ctrl, cec_message_t const *const p_message,
uint32_t message_size)

Write function for CEC device

Implemented as

R_CEC_Write()
Parameters

[in] p_ctrl Pointer to CEC instance
control block

[in] p_message Message data

[in] message_size Total size of entire message

◆ close

fsp_err_t(* cec_api_t::close) (cec_ctrl_t *const p_ctrl)

Close function for CEC device

Implemented as

R_CEC_Close()
Parameters

[in] p_ctrl Pointer to CEC instance
control block

[out] p_message Message data

◆ statusGet

fsp_err_t(* cec_api_t::statusGet) (cec_ctrl_t *const p_ctrl, cec_status_t *const p_status)

Get CEC channel info.

Implemented as

R_CEC_StatusGet()
Parameters

[in] p_ctrl Pointer to CEC instance
control block

[out] p_status Memory address to return
channel specific data to.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,158 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

◆ callbackSet

fsp_err_t(* cec_api_t::callbackSet) (cec_ctrl_t *const p_ctrl, void(*p_callback)(cec_callback_args_t *),
void const *const p_context, cec_callback_args_t *const p_callback_memory)

Specify callback function, optional context pointer and working memory pointer.

Implemented as

R_CEC_CallbackSet()
Parameters

[in] p_ctrl Control block set in
cec_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_callback_memory Pointer to volatile memory
where callback structure cec
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ cec_instance_t

struct cec_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

cec_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cec_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cec_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ cec_ctrl_t

typedef void cec_ctrl_t

CEC control block. Allocate an instance specific control block to pass into the CEC API calls.

Implemented as

cec_instance_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,159 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

Enumeration Type Documentation

◆ cec_addr_t

enum cec_addr_t

CEC Addresses

Enumerator

CEC_ADDR_TV CEC Address for TV.

CEC_ADDR_RECORDING_DEVICE_1 CEC Address for Recording Device 1.

CEC_ADDR_RECORDING_DEVICE_2 CEC Address for Recording Devide 2.

CEC_ADDR_TUNER_1 CEC Address for Tuner 1.

CEC_ADDR_PLAYBACK_DEVICE_1 CEC Address for Playback Device 1.

CEC_ADDR_AUDIO_SYSTEM CEC Address for Audio System.

CEC_ADDR_TUNER_2 CEC Address for Tuner 2.

CEC_ADDR_TUNER_3 CEC Address for Tuner 3.

CEC_ADDR_PLAYBACK_DEVICE_2 CEC Address for Playback Device 2.

CEC_ADDR_RECORDING_DEVICE_3 CEC Address for Recording Device 3.

CEC_ADDR_TUNER_4 CEC Address for Tuner 4.

CEC_ADDR_PLAYBACK_DEVICE_3 CEC Address for Playback Device 3.

CEC_ADDR_SPECIFIC_USE CEC Address for Specific Use.

CEC_ADDR_UNREGISTERED CEC Address for Unregistered Devices.

CEC_ADDR_BROADCAST CEC Broadcast message.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,160 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

◆ cec_clock_source_t

enum cec_clock_source_t

CEC Source Clock

Enumerator

CEC_CLOCK_SOURCE_PCLKB_DIV_32 PCLKB / 32 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_64 PCLKB / 64 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_128 PCLKB / 128 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_256 PCLKB / 256 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_512 PCLKB / 512 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_PCLKB_DIV_1024 PCLKB / 1024 is the source of the CEC Clock.

CEC_CLOCK_SOURCE_CECCLK CECCLK is the source of the CEC Clock.

CEC_CLOCK_SOURCE_CECCLK_DIV_256 CECCLK / 256 is the source of the CEC Clock.

◆ cec_state_t

enum cec_state_t

CEC State

Enumerator

CEC_STATE_UNINIT Module requires initialization.

CEC_STATE_READY Module ready for operation.

CEC_STATE_TX_ACTIVE Transmit in progress, either direct or
broadcast.

CEC_STATE_RX_ACTIVE Receive in progress, either direct or
broadcast.

CEC_STATE_BUSY CEC Signal Free Time has not yet elapsed.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,161 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CEC Interface

◆ cec_error_t

enum cec_error_t

CEC Error Code

Enumerator

CEC_ERROR_NONE No errors currently active.

CEC_ERROR_OERR Overrun error.

CEC_ERROR_UERR Unterrun Error.

CEC_ERROR_ACKERR ACK Error.

CEC_ERROR_TERR Timing Error.

CEC_ERROR_TXERR Transmission Error.

CEC_ERROR_AERR Bus arbitration Loss.

CEC_ERROR_BLERR Bus lock error.

CEC_ERROR_ADDR Address allocation error.

◆ cec_event_t

enum cec_event_t

CEC event codes

Enumerator

CEC_EVENT_RX_DATA Receive Data byte event.

CEC_EVENT_RX_COMPLETE Receive complete event.

CEC_EVENT_TX_COMPLETE Transmit complete event.

CEC_EVENT_READY CEC Address allocated and module is now
ready.

CEC_EVENT_ERR Error has occurred.

4.3.6 CGC Interface

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,162 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

Interfaces

Detailed Description

Interface for clock generation.

Summary
The CGC interface provides the ability to configure and use all of the CGC module's capabilities.
Among the capabilities is the selection of several clock sources to use as the system clock source.
Additionally, the system clocks can be divided down to provide a wide range of frequencies for
various system and peripheral needs.

Clock stability can be checked and clocks may also be stopped to save power when not needed. The
API has a function to return the frequency of the system and system peripheral clocks at run time.
There is also a feature to detect when the main oscillator has stopped, with the option of calling a
user provided callback function.

The CGC interface is implemented by:

Clock Generation Circuit (r_cgc)

Data Structures

struct cgc_callback_args_t

struct cgc_pll_cfg_t

union cgc_divider_cfg_t

struct cgc_cfg_t

struct cgc_clocks_cfg_t

struct cgc_api_t

struct cgc_instance_t

Typedefs

typedef void cgc_ctrl_t

Enumerations

enum cgc_event_t

enum cgc_clock_t

enum cgc_pll_div_t

enum cgc_pll_mul_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,163 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

enum cgc_sys_clock_div_t

enum cgc_usb_clock_div_t

enum cgc_clock_change_t

Data Structure Documentation

◆ cgc_callback_args_t

struct cgc_callback_args_t

Callback function parameter data

Data Fields

cgc_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ cgc_pll_cfg_t

struct cgc_pll_cfg_t

Clock configuration structure - Used as an input parameter to the cgc_api_t::clockStart function for
the PLL clock.

Data Fields

cgc_clock_t source_clock PLL source clock (main
oscillator or HOCO)

cgc_pll_div_t divider PLL divider.

cgc_pll_mul_t multiplier PLL multiplier.

◆ cgc_divider_cfg_t

union cgc_divider_cfg_t

Clock configuration structure - Used as an input parameter to the cgc_api_t::systemClockSet and
cgc_api_t::systemClockGet functions.

Data Fields

uint32_t sckdivcr_w (@ 0x4001E020) System clock
Division control register

struct cgc_divider_cfg_t __unnamed__

◆ cgc_cfg_t

struct cgc_cfg_t

Configuration options.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,164 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_clocks_cfg_t

struct cgc_clocks_cfg_t

Clock configuration

Data Fields

cgc_clock_t system_clock System clock source
enumeration.

cgc_pll_cfg_t pll_cfg PLL configuration structure.

cgc_pll_cfg_t pll2_cfg PLL2 configuration structure.

cgc_divider_cfg_t divider_cfg Clock dividers structure.

cgc_clock_change_t loco_state State of LOCO.

cgc_clock_change_t moco_state State of MOCO.

cgc_clock_change_t hoco_state State of HOCO.

cgc_clock_change_t mainosc_state State of Main oscillator.

cgc_clock_change_t pll_state State of PLL.

cgc_clock_change_t pll2_state State of PLL2.

◆ cgc_api_t

struct cgc_api_t

CGC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

fsp_err_t(* clocksCfg)(cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const
p_clock_cfg)

fsp_err_t(* clockStart)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_pll_cfg_t const *const p_pll_cfg)

fsp_err_t(* clockStop)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t(* clockCheck)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

fsp_err_t(* systemClockSet)(cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

fsp_err_t(* systemClockGet)(cgc_ctrl_t *const p_ctrl, cgc_clock_t *const
p_clock_source, cgc_divider_cfg_t *const p_divider_cfg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,165 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

fsp_err_t(* oscStopDetectEnable)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* oscStopDetectDisable)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* oscStopStatusClear)(cgc_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(cgc_ctrl_t *const p_api_ctrl,
void(*p_callback)(cgc_callback_args_t *), void const *const
p_context, cgc_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(cgc_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* cgc_api_t::open) (cgc_ctrl_t *const p_ctrl, cgc_cfg_t const *const p_cfg)

Initial configuration

Implemented as

R_CGC_Open()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_cfg Pointer to configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,166 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ clocksCfg

fsp_err_t(* cgc_api_t::clocksCfg) (cgc_ctrl_t *const p_ctrl, cgc_clocks_cfg_t const *const p_clock_cfg)

Configure all system clocks.

Implemented as

R_CGC_ClocksCfg()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_clock_cfg Pointer to desired
configuration of system
clocks

◆ clockStart

fsp_err_t(* cgc_api_t::clockStart) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source, cgc_pll_cfg_t
const *const p_pll_cfg)

Start a clock.

Implemented as

R_CGC_ClockStart()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source Clock source to start

[in] p_pll_cfg Pointer to PLL configuration,
can be NULL if clock_source
is not CGC_CLOCK_PLL or
CGC_CLOCK_PLL2

◆ clockStop

fsp_err_t(* cgc_api_t::clockStop) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Stop a clock.

Implemented as

R_CGC_ClockStop()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source The clock source to stop

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,167 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ clockCheck

fsp_err_t(* cgc_api_t::clockCheck) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)

Check the stability of the selected clock.

Implemented as

R_CGC_ClockCheck()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source Which clock source to check
for stability

◆ systemClockSet

fsp_err_t(* cgc_api_t::systemClockSet) (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source,
cgc_divider_cfg_t const *const p_divider_cfg)

Set the system clock.

Implemented as

R_CGC_SystemClockSet()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] clock_source Clock source to set as
system clock

[in] p_divider_cfg Pointer to the clock divider
configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,168 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ systemClockGet

fsp_err_t(* cgc_api_t::systemClockGet) (cgc_ctrl_t *const p_ctrl, cgc_clock_t *const p_clock_source,
cgc_divider_cfg_t *const p_divider_cfg)

Get the system clock information.

Implemented as

R_CGC_SystemClockGet()
Parameters

[in] p_ctrl Pointer to instance control
block

[out] p_clock_source Returns the current system
clock

[out] p_divider_cfg Returns the current system
clock dividers

◆ oscStopDetectEnable

fsp_err_t(* cgc_api_t::oscStopDetectEnable) (cgc_ctrl_t *const p_ctrl)

Enable and optionally register a callback for Main Oscillator stop detection.

Implemented as

R_CGC_OscStopDetectEnable()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_callback Callback function that will be
called by the NMI interrupt
when an oscillation stop is
detected. If the second
argument is "false", then
this argument can be NULL.

[in] enable Enable/disable Oscillation
Stop Detection

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,169 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ oscStopDetectDisable

fsp_err_t(* cgc_api_t::oscStopDetectDisable) (cgc_ctrl_t *const p_ctrl)

Disable Main Oscillator stop detection.

Implemented as

R_CGC_OscStopDetectDisable()
Parameters

[in] p_ctrl Pointer to instance control
block

◆ oscStopStatusClear

fsp_err_t(* cgc_api_t::oscStopStatusClear) (cgc_ctrl_t *const p_ctrl)

Clear the oscillator stop detection flag.

Implemented as

R_CGC_OscStopStatusClear()
Parameters

[in] p_ctrl Pointer to instance control
block

◆ callbackSet

fsp_err_t(* cgc_api_t::callbackSet) (cgc_ctrl_t *const p_api_ctrl,
void(*p_callback)(cgc_callback_args_t *), void const *const p_context, cgc_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_CGC_CallbackSet()
Parameters

[in] p_ctrl Pointer to the CGC control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,170 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ close

fsp_err_t(* cgc_api_t::close) (cgc_ctrl_t *const p_ctrl)

Close the CGC driver.

Implemented as

R_CGC_Close()
Parameters

[in] p_ctrl Pointer to instance control
block

◆ cgc_instance_t

struct cgc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

cgc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

cgc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

cgc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ cgc_ctrl_t

typedef void cgc_ctrl_t

CGC control block. Allocate an instance specific control block to pass into the CGC API calls.

Implemented as

cgc_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,171 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_event_t

enum cgc_event_t

Events that can trigger a callback function

Enumerator

CGC_EVENT_OSC_STOP_DETECT Oscillator stop detection has caused the
event.

◆ cgc_clock_t

enum cgc_clock_t

System clock source identifiers - The source of ICLK, BCLK, FCLK, PCLKS A-D and UCLK prior to the
system clock divider

Enumerator

CGC_CLOCK_HOCO The high speed on chip oscillator.

CGC_CLOCK_MOCO The middle speed on chip oscillator.

CGC_CLOCK_LOCO The low speed on chip oscillator.

CGC_CLOCK_MAIN_OSC The main oscillator.

CGC_CLOCK_SUBCLOCK The subclock oscillator.

CGC_CLOCK_PLL The PLL oscillator.

CGC_CLOCK_PLL2 The PLL2 oscillator.

◆ cgc_pll_div_t

enum cgc_pll_div_t

PLL divider values

Enumerator

CGC_PLL_DIV_1 PLL divider of 1.

CGC_PLL_DIV_2 PLL divider of 2.

CGC_PLL_DIV_3 PLL divider of 3 (S7, S5 only)

CGC_PLL_DIV_4 PLL divider of 4 (S3 only)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,172 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_pll_mul_t

enum cgc_pll_mul_t

PLL multiplier values

Enumerator

CGC_PLL_MUL_8_0 PLL multiplier of 8.0.

CGC_PLL_MUL_9_0 PLL multiplier of 9.0.

CGC_PLL_MUL_10_0 PLL multiplier of 10.0.

CGC_PLL_MUL_10_5 PLL multiplier of 10.5.

CGC_PLL_MUL_11_0 PLL multiplier of 11.0.

CGC_PLL_MUL_11_5 PLL multiplier of 11.5.

CGC_PLL_MUL_12_0 PLL multiplier of 12.0.

CGC_PLL_MUL_12_5 PLL multiplier of 12.5.

CGC_PLL_MUL_13_0 PLL multiplier of 13.0.

CGC_PLL_MUL_13_5 PLL multiplier of 13.5.

CGC_PLL_MUL_14_0 PLL multiplier of 14.0.

CGC_PLL_MUL_14_5 PLL multiplier of 14.5.

CGC_PLL_MUL_15_0 PLL multiplier of 15.0.

CGC_PLL_MUL_15_5 PLL multiplier of 15.5.

CGC_PLL_MUL_16_0 PLL multiplier of 16.0.

CGC_PLL_MUL_16_5 PLL multiplier of 16.5.

CGC_PLL_MUL_17_0 PLL multiplier of 17.0.

CGC_PLL_MUL_17_5 PLL multiplier of 17.5.

CGC_PLL_MUL_18_0 PLL multiplier of 18.0.

CGC_PLL_MUL_18_5 PLL multiplier of 18.5.

CGC_PLL_MUL_19_0 PLL multiplier of 19.0.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,173 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

CGC_PLL_MUL_19_5 PLL multiplier of 19.5.

CGC_PLL_MUL_20_0 PLL multiplier of 20.0.

CGC_PLL_MUL_20_5 PLL multiplier of 20.5.

CGC_PLL_MUL_21_0 PLL multiplier of 21.0.

CGC_PLL_MUL_21_5 PLL multiplier of 21.5.

CGC_PLL_MUL_22_0 PLL multiplier of 22.0.

CGC_PLL_MUL_22_5 PLL multiplier of 22.5.

CGC_PLL_MUL_23_0 PLL multiplier of 23.0.

CGC_PLL_MUL_23_5 PLL multiplier of 23.5.

CGC_PLL_MUL_24_0 PLL multiplier of 24.0.

CGC_PLL_MUL_24_5 PLL multiplier of 24.5.

CGC_PLL_MUL_25_0 PLL multiplier of 25.0.

CGC_PLL_MUL_25_5 PLL multiplier of 25.5.

CGC_PLL_MUL_26_0 PLL multiplier of 26.0.

CGC_PLL_MUL_26_5 PLL multiplier of 26.5.

CGC_PLL_MUL_27_0 PLL multiplier of 27.0.

CGC_PLL_MUL_27_5 PLL multiplier of 27.5.

CGC_PLL_MUL_28_0 PLL multiplier of 28.0.

CGC_PLL_MUL_28_5 PLL multiplier of 28.5.

CGC_PLL_MUL_29_0 PLL multiplier of 29.0.

CGC_PLL_MUL_29_5 PLL multiplier of 29.5.

CGC_PLL_MUL_30_0 PLL multiplier of 30.0.

CGC_PLL_MUL_31_0 PLL multiplier of 31.0.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,174 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_sys_clock_div_t

enum cgc_sys_clock_div_t

System clock divider vlues - The individually selectable divider of each of the system clocks, ICLK,
BCLK, FCLK, PCLKS A-D.

Enumerator

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_64 System clock divided by 64.

◆ cgc_usb_clock_div_t

enum cgc_usb_clock_div_t

USB clock divider values

Enumerator

CGC_USB_CLOCK_DIV_3 Divide USB source clock by 3.

CGC_USB_CLOCK_DIV_4 Divide USB source clock by 4.

CGC_USB_CLOCK_DIV_5 Divide USB source clock by 5.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,175 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CGC Interface

◆ cgc_clock_change_t

enum cgc_clock_change_t

Clock options

Enumerator

CGC_CLOCK_CHANGE_START Start the clock.

CGC_CLOCK_CHANGE_STOP Stop the clock.

CGC_CLOCK_CHANGE_NONE No change to the clock.

4.3.7 Comparator Interface
Interfaces

Detailed Description

Interface for comparators.

Summary
The comparator interface provides standard comparator functionality, including generating an event
when the comparator result changes.

Implemented by:

High-Speed Analog Comparator (r_acmphs)
Low-Power Analog Comparator (r_acmplp)

Data Structures

struct comparator_info_t

struct comparator_status_t

struct comparator_callback_args_t

struct comparator_cfg_t

struct comparator_api_t

struct comparator_instance_t

Typedefs

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,176 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

typedef void comparator_ctrl_t

Enumerations

enum comparator_mode_t

enum comparator_trigger_t

enum comparator_polarity_invert_t

enum comparator_pin_output_t

enum comparator_filter_t

enum comparator_state_t

Data Structure Documentation

◆ comparator_info_t

struct comparator_info_t

Comparator information.

Data Fields

uint32_t min_stabilization_wait_us Minimum stabilization wait time
in microseconds.

◆ comparator_status_t

struct comparator_status_t

Comparator status.

Data Fields

comparator_state_t state Current comparator state.

◆ comparator_callback_args_t

struct comparator_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
comparator_api_t::open
function in comparator_cfg_t.

uint32_t channel The physical hardware channel
that caused the interrupt.

◆ comparator_cfg_t

struct comparator_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,177 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

User configuration structure, used in open function

Data Fields

uint8_t channel

 Hardware channel used.

comparator_mode_t mode

 Normal or window mode.

comparator_trigger_t trigger

 Trigger setting.

comparator_filter_t filter

 Digital filter clock divisor setting.

comparator_polarity_invert_t invert

 Whether to invert output.

comparator_pin_output_t pin_output

 Whether to include output on output pin.

uint8_t vref_select

 Internal Vref Select.

uint8_t ipl

 Interrupt priority.

IRQn_Type irq

 NVIC interrupt number.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,178 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

void(* p_callback)(comparator_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Comparator hardware dependent configuration.

Field Documentation

◆ p_callback

void(* comparator_cfg_t::p_callback) (comparator_callback_args_t *p_args)

Callback called when comparator event occurs.

◆ p_context

void const* comparator_cfg_t::p_context

Placeholder for user data. Passed to the user callback in comparator_callback_args_t.

◆ comparator_api_t

struct comparator_api_t

Comparator functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(comparator_ctrl_t *const p_ctrl, comparator_cfg_t const
*const p_cfg)

fsp_err_t(* outputEnable)(comparator_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

fsp_err_t(* statusGet)(comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

fsp_err_t(* close)(comparator_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,179 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ open

fsp_err_t(* comparator_api_t::open) (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const
p_cfg)

Initialize the comparator.

Implemented as

R_ACMPHS_Open()
R_ACMPLP_Open()

Parameters
[in] p_ctrl Pointer to instance control

block

[in] p_cfg Pointer to configuration

◆ outputEnable

fsp_err_t(* comparator_api_t::outputEnable) (comparator_ctrl_t *const p_ctrl)

Start the comparator.

Implemented as

R_ACMPHS_OutputEnable()
R_ACMPLP_OutputEnable()

Parameters
[in] p_ctrl Pointer to instance control

block

◆ infoGet

fsp_err_t(* comparator_api_t::infoGet) (comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

Provide information such as the recommended minimum stabilization wait time.

Implemented as

R_ACMPHS_InfoGet()
R_ACMPLP_InfoGet()

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_info Comparator information
stored here

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,180 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ statusGet

fsp_err_t(* comparator_api_t::statusGet) (comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

Provide current comparator status.

Implemented as

R_ACMPHS_StatusGet()
R_ACMPLP_StatusGet()

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_status Status stored here

◆ close

fsp_err_t(* comparator_api_t::close) (comparator_ctrl_t *const p_ctrl)

Stop the comparator.

Implemented as

R_ACMPHS_Close()
R_ACMPLP_Close()

Parameters
[in] p_ctrl Pointer to instance control

block

◆ comparator_instance_t

struct comparator_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

comparator_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

comparator_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

comparator_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,181 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ comparator_ctrl_t

typedef void comparator_ctrl_t

Includes board and MCU related header files. Comparator control block. Allocate an instance
specific control block to pass into the comparator API calls.

Implemented as

acmphs_instance_ctrl_t
acmplp_instance_ctrl_t

Enumeration Type Documentation

◆ comparator_mode_t

enum comparator_mode_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_MODE_NORMAL Normal mode.

COMPARATOR_MODE_WINDOW Window mode, not supported by all
implementations.

◆ comparator_trigger_t

enum comparator_trigger_t

Trigger type: rising edge, falling edge, both edges, low level.

Enumerator

COMPARATOR_TRIGGER_RISING Rising edge trigger.

COMPARATOR_TRIGGER_FALLING Falling edge trigger.

COMPARATOR_TRIGGER_BOTH_EDGE Both edges trigger.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,182 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ comparator_polarity_invert_t

enum comparator_polarity_invert_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_POLARITY_INVERT_OFF Do not invert polarity.

COMPARATOR_POLARITY_INVERT_ON Invert polarity.

◆ comparator_pin_output_t

enum comparator_pin_output_t

Select whether to include the comparator output on the output pin.

Enumerator

COMPARATOR_PIN_OUTPUT_OFF Do not include comparator output on output
pin.

COMPARATOR_PIN_OUTPUT_ON Include comparator output on output pin.

◆ comparator_filter_t

enum comparator_filter_t

Comparator digital filtering sample clock divisor settings.

Enumerator

COMPARATOR_FILTER_OFF Disable debounce filter.

COMPARATOR_FILTER_1 Filter using PCLK divided by 1, not supported
by all implementations.

COMPARATOR_FILTER_8 Filter using PCLK divided by 8.

COMPARATOR_FILTER_16 Filter using PCLK divided by 16, not supported
by all implementations.

COMPARATOR_FILTER_32 Filter using PCLK divided by 32.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,183 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Comparator Interface

◆ comparator_state_t

enum comparator_state_t

Current comparator state.

Enumerator

COMPARATOR_STATE_OUTPUT_LOW VCMP < VREF if polarity is not inverted, VCMP
> VREF if inverted.

COMPARATOR_STATE_OUTPUT_HIGH VCMP > VREF if polarity is not inverted, VCMP
< VREF if inverted.

COMPARATOR_STATE_OUTPUT_DISABLED comparator_api_t::outputEnable() has not been
called

4.3.8 CRC Interface
Interfaces

Detailed Description

Interface for cyclic redundancy checking.

Summary
The CRC (Cyclic Redundancy Check) calculator generates CRC codes using five different polynomials
including 8 bit, 16 bit, and 32 bit variations. Calculation can be performed by sending data to the
block using the CPU or by snooping on read or write activity on one of 10 SCI channels.

Implemented by:

Cyclic Redundancy Check (CRC) Calculator (r_crc)

Data Structures

struct crc_input_t

struct crc_cfg_t

struct crc_api_t

struct crc_instance_t

Typedefs

typedef void crc_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,184 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

Enumerations

enum crc_polynomial_t

enum crc_bit_order_t

enum crc_snoop_direction_t

enum crc_snoop_address_t

Data Structure Documentation

◆ crc_input_t

struct crc_input_t

Structure for CRC inputs

◆ crc_cfg_t

struct crc_cfg_t

User configuration structure, used in open function

Data Fields

crc_polynomial_t polynomial CRC Generating Polynomial
Switching (GPS)

crc_bit_order_t bit_order CRC Calculation Switching
(LMS)

crc_snoop_address_t snoop_address Register Snoop Address
(CRCSA)

void const * p_extend CRC Hardware Dependent
Configuration.

◆ crc_api_t

struct crc_api_t

CRC driver structure. General CRC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

fsp_err_t(* close)(crc_ctrl_t *const p_ctrl)

fsp_err_t(* crcResultGet)(crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

fsp_err_t(* snoopEnable)(crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,185 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

fsp_err_t(* snoopDisable)(crc_ctrl_t *const p_ctrl)

fsp_err_t(* calculate)(crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input,
uint32_t *p_crc_result)

Field Documentation

◆ open

fsp_err_t(* crc_api_t::open) (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

Open the CRC driver module.

Implemented as

R_CRC_Open()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[in] p_cfg Pointer to a configuration
structure.

◆ close

fsp_err_t(* crc_api_t::close) (crc_ctrl_t *const p_ctrl)

Close the CRC module driver

Implemented as

R_CRC_Close()
Parameters

[in] p_ctrl Pointer to crc device handle

Return values
FSP_SUCCESS Configuration was successful.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,186 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ crcResultGet

fsp_err_t(* crc_api_t::crcResultGet) (crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

Return the current calculated value.

Implemented as

R_CRC_CalculatedValueGet()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[out] crc_result The calculated value from
the last CRC calculation.

◆ snoopEnable

fsp_err_t(* crc_api_t::snoopEnable) (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

Configure and Enable snooping.

Implemented as

R_CRC_SnoopEnable()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[in] crc_seed CRC seed.

◆ snoopDisable

fsp_err_t(* crc_api_t::snoopDisable) (crc_ctrl_t *const p_ctrl)

Disable snooping.

Implemented as

R_CRC_SnoopDisable()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,187 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ calculate

fsp_err_t(* crc_api_t::calculate) (crc_ctrl_t *const p_ctrl, crc_input_t *const p_crc_input, uint32_t
*p_crc_result)

Perform a CRC calculation on a block of data.

Implemented as

R_CRC_Calculate()
Parameters

[in] p_ctrl Pointer to crc device handle.

[in] p_crc_input A pointer to structure for
CRC inputs

[out] crc_result The calculated value of the
CRC calculation.

◆ crc_instance_t

struct crc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

crc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

crc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

crc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ crc_ctrl_t

typedef void crc_ctrl_t

CRC control block. Allocate an instance specific control block to pass into the CRC API calls.

Implemented as

crc_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,188 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ crc_polynomial_t

enum crc_polynomial_t

CRC Generating Polynomial Switching (GPS).

Enumerator

CRC_POLYNOMIAL_CRC_8 8-bit CRC-8 (X^8 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_16 16-bit CRC-16 (X^16 + X^15 + X^2 + 1)

CRC_POLYNOMIAL_CRC_CCITT 16-bit CRC-CCITT (X^16 + X^12 + X^5 + 1)

CRC_POLYNOMIAL_CRC_32 32-bit CRC-32 (X^32 + X^26 + X^23 + X^22
+ X^16 + X^12 + X^11 + X^10 + X^8 +
X^7 + X^5 + X^4 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_32C 32-bit CRC-32C (X^32 + X^28 + X^27 +
X^26 + X^25 + X^23 + X^22 + X^20 +
X^19 + X^18 + X^14 + X^13 + X^11 +
X^10 + X^9 + X^8 + X^6 + 1)

◆ crc_bit_order_t

enum crc_bit_order_t

CRC Calculation Switching (LMS)

Enumerator

CRC_BIT_ORDER_LMS_LSB Generates CRC for LSB first communication.

CRC_BIT_ORDER_LMS_MSB Generates CRC for MSB first communication.

◆ crc_snoop_direction_t

enum crc_snoop_direction_t

Snoop-On-Write/Read Switch (CRCSWR)

Enumerator

CRC_SNOOP_DIRECTION_RECEIVE Snoop-on-read.

CRC_SNOOP_DIRECTION_TRANSMIT Snoop-on-write.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,189 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

◆ crc_snoop_address_t

enum crc_snoop_address_t

Snoop SCI register Address (lower 14 bits)

Enumerator

CRC_SNOOP_ADDRESS_NONE Snoop mode disabled.

CRC_SNOOP_ADDRESS_SCI0_TDR Snoop SCI0 transmit data register.

CRC_SNOOP_ADDRESS_SCI1_TDR Snoop SCI1 transmit data register.

CRC_SNOOP_ADDRESS_SCI2_TDR Snoop SCI2 transmit data register.

CRC_SNOOP_ADDRESS_SCI3_TDR Snoop SCI3 transmit data register.

CRC_SNOOP_ADDRESS_SCI4_TDR Snoop SCI4 transmit data register.

CRC_SNOOP_ADDRESS_SCI5_TDR Snoop SCI5 transmit data register.

CRC_SNOOP_ADDRESS_SCI6_TDR Snoop SCI6 transmit data register.

CRC_SNOOP_ADDRESS_SCI7_TDR Snoop SCI7 transmit data register.

CRC_SNOOP_ADDRESS_SCI8_TDR Snoop SCI8 transmit data register.

CRC_SNOOP_ADDRESS_SCI9_TDR Snoop SCI9 transmit data register.

CRC_SNOOP_ADDRESS_SCI0_FTDRL Snoop SCI0 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI1_FTDRL Snoop SCI1 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI2_FTDRL Snoop SCI2 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI3_FTDRL Snoop SCI3 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI4_FTDRL Snoop SCI4 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI5_FTDRL Snoop SCI5 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI6_FTDRL Snoop SCI6 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI7_FTDRL Snoop SCI7 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI8_FTDRL Snoop SCI8 transmit FIFO data register.

CRC_SNOOP_ADDRESS_SCI9_FTDRL Snoop SCI9 transmit FIFO data register.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,190 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CRC Interface

CRC_SNOOP_ADDRESS_SCI0_RDR Snoop SCI0 receive data register.

CRC_SNOOP_ADDRESS_SCI1_RDR Snoop SCI1 receive data register.

CRC_SNOOP_ADDRESS_SCI2_RDR Snoop SCI2 receive data register.

CRC_SNOOP_ADDRESS_SCI3_RDR Snoop SCI3 receive data register.

CRC_SNOOP_ADDRESS_SCI4_RDR Snoop SCI4 receive data register.

CRC_SNOOP_ADDRESS_SCI5_RDR Snoop SCI5 receive data register.

CRC_SNOOP_ADDRESS_SCI6_RDR Snoop SCI6 receive data register.

CRC_SNOOP_ADDRESS_SCI7_RDR Snoop SCI7 receive data register.

CRC_SNOOP_ADDRESS_SCI8_RDR Snoop SCI8 receive data register.

CRC_SNOOP_ADDRESS_SCI9_RDR Snoop SCI9 receive data register.

CRC_SNOOP_ADDRESS_SCI0_FRDRL Snoop SCI0 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI1_FRDRL Snoop SCI1 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI2_FRDRL Snoop SCI2 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI3_FRDRL Snoop SCI3 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI4_FRDRL Snoop SCI4 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI5_FRDRL Snoop SCI5 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI6_FRDRL Snoop SCI6 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI7_FRDRL Snoop SCI7 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI8_FRDRL Snoop SCI8 receive FIFO data register.

CRC_SNOOP_ADDRESS_SCI9_FRDRL Snoop SCI9 receive FIFO data register.

4.3.9 CTSU Interface
Interfaces

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,191 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

Detailed Description

Interface for Capacitive Touch Sensing Unit (CTSU) functions.

Summary
The CTSU interface provides CTSU functionality.

The CTSU interface can be implemented by:

Capacitive Touch Sensing Unit (r_ctsu)

Data Structures

struct ctsu_callback_args_t

struct ctsu_element_cfg_t

struct ctsu_cfg_t

struct ctsu_api_t

struct ctsu_instance_t

Typedefs

typedef void ctsu_ctrl_t

Enumerations

enum ctsu_event_t

enum ctsu_cap_t

enum ctsu_txvsel_t

enum ctsu_txvsel2_t

enum ctsu_atune1_t

enum ctsu_atune12_t

enum ctsu_md_t

enum ctsu_posel_t

enum ctsu_ssdiv_t

Data Structure Documentation

◆ ctsu_callback_args_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,192 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

struct ctsu_callback_args_t

Callback function parameter data

Data Fields

ctsu_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data. Set in
ctsu_api_t::open function in
ctsu_cfg_t.

◆ ctsu_element_cfg_t

struct ctsu_element_cfg_t

CTSU Configuration parameters. Element Configuration

Data Fields

ctsu_ssdiv_t ssdiv CTSU Spectrum Diffusion
Frequency Division Setting
(CTSU Only)

uint16_t so CTSU Sensor Offset Adjustment.

uint8_t snum CTSU Measurement Count
Setting.

uint8_t sdpa CTSU Base Clock Setting.

◆ ctsu_cfg_t

struct ctsu_cfg_t

User configuration structure, used in open function

Data Fields

ctsu_cap_t cap

 CTSU Scan Start Trigger Select.

ctsu_txvsel_t txvsel

 CTSU Transmission Power Supply Select.

ctsu_txvsel2_t txvsel2

 CTSU Transmission Power Supply Select 2 (CTSU2 Only)

ctsu_atune1_t atune1

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,193 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

 CTSU Power Supply Capacity Adjustment (CTSU Only)

ctsu_atune12_t atune12

 CTSU Power Supply Capacity Adjustment (CTSU2 Only)

ctsu_md_t md

 CTSU Measurement Mode Select.

ctsu_posel_t posel

 CTSU Non-Measured Channel Output Select (CTSU2 Only)

uint8_t ctsuchac0

 TS00-TS07 enable mask.

uint8_t ctsuchac1

 TS08-TS15 enable mask.

uint8_t ctsuchac2

 TS16-TS23 enable mask.

uint8_t ctsuchac3

 TS24-TS31 enable mask.

uint8_t ctsuchac4

 TS32-TS39 enable mask.

uint8_t ctsuchtrc0

 TS00-TS07 mutual-tx mask.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,194 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

uint8_t ctsuchtrc1

 TS08-TS15 mutual-tx mask.

uint8_t ctsuchtrc2

 TS16-TS23 mutual-tx mask.

uint8_t ctsuchtrc3

 TS24-TS31 mutual-tx mask.

uint8_t ctsuchtrc4

 TS32-TS39 mutual-tx mask.

ctsu_element_cfg_t const * p_elements

 Pointer to elements configuration array.

uint8_t num_rx

 Number of receive terminals.

uint8_t num_tx

 Number of transmit terminals.

uint16_t num_moving_average

 Number of moving average for measurement data.

bool tunning_enable

 Initial offset tuning flag.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,195 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

bool judge_multifreq_disable

 Disable to judge multi frequency.

void(* p_callback)(ctsu_callback_args_t *p_args)

 Callback provided when CTSUFN ISR occurs.

transfer_instance_t const * p_transfer_tx

 DTC instance for transmit at CTSUWR. Set to NULL if unused.

transfer_instance_t const * p_transfer_rx

 DTC instance for receive at CTSURD. Set to NULL if unused.

adc_instance_t const * p_adc_instance

 ADC instance for temperature correction.

IRQn_Type write_irq

 CTSU_CTSUWR interrupt vector.

IRQn_Type read_irq

 CTSU_CTSURD interrupt vector.

IRQn_Type end_irq

 CTSU_CTSUFN interrupt vector.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,196 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

 Pointer to extended configuration by instance of interface.

◆ ctsu_api_t

struct ctsu_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

fsp_err_t(* scanStart)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* dataGet)(ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

fsp_err_t(* scanStop)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* diagnosis)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const
p_context, ctsu_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(ctsu_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* ctsu_api_t::open) (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

Open driver.

Implemented as

R_CTSU_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,197 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ scanStart

fsp_err_t(* ctsu_api_t::scanStart) (ctsu_ctrl_t *const p_ctrl)

Scan start.

Implemented as

R_CTSU_ScanStart()
Parameters

[in] p_ctrl Pointer to control structure.

◆ dataGet

fsp_err_t(* ctsu_api_t::dataGet) (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

Data get.

Implemented as

R_CTSU_DataGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_data Pointer to get data array.

◆ scanStop

fsp_err_t(* ctsu_api_t::scanStop) (ctsu_ctrl_t *const p_ctrl)

ScanStop.

Implemented as

R_CTSU_ScanStop()
Parameters

[in] p_ctrl Pointer to control structure.

◆ diagnosis

fsp_err_t(* ctsu_api_t::diagnosis) (ctsu_ctrl_t *const p_ctrl)

Diagnosis.

Implemented as

R_CTSU_Diagnosis()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,198 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ callbackSet

fsp_err_t(* ctsu_api_t::callbackSet) (ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const p_context, ctsu_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_CTSU_CallbackSet()
Parameters

[in] p_ctrl Pointer to the CTSU control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* ctsu_api_t::close) (ctsu_ctrl_t *const p_ctrl)

Close driver.

Implemented as

R_CTSU_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ ctsu_instance_t

struct ctsu_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ctsu_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ctsu_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ctsu_api_t const * p_api Pointer to the API structure for
this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,199 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

Typedef Documentation

◆ ctsu_ctrl_t

typedef void ctsu_ctrl_t

CTSU Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

ctsu_instance_ctrl_t

Enumeration Type Documentation

◆ ctsu_event_t

enum ctsu_event_t

CTSU Events for callback function

Enumerator

CTSU_EVENT_SCAN_COMPLETE Normal end.

CTSU_EVENT_OVERFLOW Sensor counter overflow (CTSUST.CTSUSOVF
set)

CTSU_EVENT_ICOMP Abnormal TSCAP voltage
(CTSUERRS.CTSUICOMP set)

CTSU_EVENT_ICOMP1 Abnormal sensor current (CTSUSR.ICOMP1 set)

◆ ctsu_cap_t

enum ctsu_cap_t

CTSU Scan Start Trigger Select

Enumerator

CTSU_CAP_SOFTWARE Scan start by software trigger.

CTSU_CAP_EXTERNAL Scan start by external trigger.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,200 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_txvsel_t

enum ctsu_txvsel_t

CTSU Transmission Power Supply Select

Enumerator

CTSU_TXVSEL_VCC VCC selected.

CTSU_TXVSEL_INTERNAL_POWER Internal logic power supply selected.

◆ ctsu_txvsel2_t

enum ctsu_txvsel2_t

CTSU Transmission Power Supply Select 2 (CTSU2 Only)

Enumerator

CTSU_TXVSEL_MODE Follow TXVSEL setting.

CTSU_TXVSEL_VCC_PRIVATE VCC private selected.

◆ ctsu_atune1_t

enum ctsu_atune1_t

CTSU Power Supply Capacity Adjustment (CTSU Only)

Enumerator

CTSU_ATUNE1_NORMAL Normal output (40uA)

CTSU_ATUNE1_HIGH High-current output (80uA)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,201 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_atune12_t

enum ctsu_atune12_t

CTSU Power Supply Capacity Adjustment (CTSU2 Only)

Enumerator

CTSU_ATUNE12_80UA High-current output (80uA)

CTSU_ATUNE12_40UA Normal output (40uA)

CTSU_ATUNE12_20UA Low-current output (20uA)

CTSU_ATUNE12_160UA Very high-current output (160uA)

◆ ctsu_md_t

enum ctsu_md_t

CTSU Measurement Mode Select

Enumerator

CTSU_MODE_SELF_MULTI_SCAN Self-capacitance multi scan mode.

CTSU_MODE_MUTUAL_FULL_SCAN Mutual capacitance full scan mode.

CTSU_MODE_MUTUAL_CFC_SCAN Mutual capacitance cfc scan mode (CTSU2
Only)

CTSU_MODE_CURRENT_SCAN Current scan mode (CTSU2 Only)

CTSU_MODE_CORRECTION_SCAN Correction scan mode (CTSU2 Only)

CTSU_MODE_DIAGNOSIS_SCAN Diagnosis scan mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,202 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_posel_t

enum ctsu_posel_t

CTSU Non-Measured Channel Output Select (CTSU2 Only)

Enumerator

CTSU_POSEL_LOW_GPIO Output low through GPIO.

CTSU_POSEL_HI_Z Hi-Z.

CTSU_POSEL_LOW Output low through the power setting by the
TXVSEL[1:0] bits.

CTSU_POSEL_SAME_PULSE Same phase pulse output as transmission
channel through the power setting by the
TXVSEL[1:0] bits.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,203 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > CTSU Interface

◆ ctsu_ssdiv_t

enum ctsu_ssdiv_t

CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only)

Enumerator

CTSU_SSDIV_4000 4.00 <= Base clock frequency (MHz)

CTSU_SSDIV_2000 2.00 <= Base clock frequency (MHz) < 4.00

CTSU_SSDIV_1330 1.33 <= Base clock frequency (MHz) < 2.00

CTSU_SSDIV_1000 1.00 <= Base clock frequency (MHz) < 1.33

CTSU_SSDIV_0800 0.80 <= Base clock frequency (MHz) < 1.00

CTSU_SSDIV_0670 0.67 <= Base clock frequency (MHz) < 0.80

CTSU_SSDIV_0570 0.57 <= Base clock frequency (MHz) < 0.67

CTSU_SSDIV_0500 0.50 <= Base clock frequency (MHz) < 0.57

CTSU_SSDIV_0440 0.44 <= Base clock frequency (MHz) < 0.50

CTSU_SSDIV_0400 0.40 <= Base clock frequency (MHz) < 0.44

CTSU_SSDIV_0360 0.36 <= Base clock frequency (MHz) < 0.40

CTSU_SSDIV_0330 0.33 <= Base clock frequency (MHz) < 0.36

CTSU_SSDIV_0310 0.31 <= Base clock frequency (MHz) < 0.33

CTSU_SSDIV_0290 0.29 <= Base clock frequency (MHz) < 0.31

CTSU_SSDIV_0270 0.27 <= Base clock frequency (MHz) < 0.29

CTSU_SSDIV_0000 0.00 <= Base clock frequency (MHz) < 0.27

4.3.10 DAC Interface
Interfaces

Detailed Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,204 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

Interface for D/A converters.

Summary
The DAC interface provides standard Digital/Analog Converter functionality. A DAC application writes
digital sample data to the device and generates analog output on the DAC output pin.

Implemented by:

Digital to Analog Converter (r_dac)
Digital to Analog Converter (r_dac8)

Data Structures

struct dac_info_t

struct dac_cfg_t

struct dac_api_t

struct dac_instance_t

Typedefs

typedef void dac_ctrl_t

Enumerations

enum dac_data_format_t

Data Structure Documentation

◆ dac_info_t

struct dac_info_t

DAC information structure to store various information for a DAC

Data Fields

uint8_t bit_width Resolution of the DAC.

◆ dac_cfg_t

struct dac_cfg_t

DAC Open API configuration parameter

Data Fields

uint8_t channel ID associated with this DAC
channel.

bool ad_da_synchronized AD/DA synchronization.

void const * p_extend

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,205 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

◆ dac_api_t

struct dac_api_t

DAC driver structure. General DAC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

fsp_err_t(* close)(dac_ctrl_t *const p_ctrl)

fsp_err_t(* write)(dac_ctrl_t *const p_ctrl, uint16_t value)

fsp_err_t(* start)(dac_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(dac_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* dac_api_t::open) (dac_ctrl_t *const p_ctrl, dac_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DAC_Open()
R_DAC8_Open()

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,206 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

◆ close

fsp_err_t(* dac_api_t::close) (dac_ctrl_t *const p_ctrl)

Close the D/A Converter.

Implemented as

R_DAC_Close()
R_DAC8_Close()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ write

fsp_err_t(* dac_api_t::write) (dac_ctrl_t *const p_ctrl, uint16_t value)

Write sample value to the D/A Converter.

Implemented as

R_DAC_Write()
R_DAC8_Write()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

[in] value Sample value to be written
to the D/A Converter.

◆ start

fsp_err_t(* dac_api_t::start) (dac_ctrl_t *const p_ctrl)

Start the D/A Converter if it has not been started yet.

Implemented as

R_DAC_Start()
R_DAC8_Start()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,207 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

◆ stop

fsp_err_t(* dac_api_t::stop) (dac_ctrl_t *const p_ctrl)

Stop the D/A Converter if the converter is running.

Implemented as

R_DAC_Stop()
R_DAC8_Stop()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ dac_instance_t

struct dac_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

dac_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

dac_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

dac_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ dac_ctrl_t

typedef void dac_ctrl_t

DAC control block. Allocate an instance specific control block to pass into the DAC API calls.

Implemented as

dac_instance_ctrl_t
dac8_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,208 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DAC Interface

◆ dac_data_format_t

enum dac_data_format_t

DAC Open API data format settings.

Enumerator

DAC_DATA_FORMAT_FLUSH_RIGHT LSB of data is flush to the right leaving the top
4 bits unused.

DAC_DATA_FORMAT_FLUSH_LEFT MSB of data is flush to the left leaving the
bottom 4 bits unused.

4.3.11 Display Interface
Interfaces

Detailed Description

Interface for LCD panel displays.

Summary
The display interface provides standard display functionality:

Signal timing configuration for LCD panels with RGB interface.
Dot clock source selection (internal or external) and frequency divider.
Blending of multiple graphics layers on the background screen.
Color correction (brightness/configuration/gamma correction).
Interrupts and callback function.

Implemented by: Graphics LCD Controller (r_glcdc)

Data Structures

struct display_timing_t

struct display_color_t

struct display_coordinate_t

struct display_brightness_t

struct display_contrast_t

struct display_correction_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,209 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

struct gamma_correction_t

struct display_gamma_correction_t

struct display_clut_t

struct display_input_cfg_t

struct display_output_cfg_t

struct display_layer_t

struct display_callback_args_t

struct display_cfg_t

struct display_runtime_cfg_t

struct display_clut_cfg_t

struct display_status_t

struct display_api_t

struct display_instance_t

Typedefs

typedef void display_ctrl_t

Enumerations

enum display_frame_layer_t

enum display_state_t

enum display_event_t

enum display_in_format_t

enum display_out_format_t

enum display_endian_t

enum display_color_order_t

enum display_signal_polarity_t

enum display_sync_edge_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,210 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

enum display_fade_control_t

enum display_fade_status_t

Data Structure Documentation

◆ display_timing_t

struct display_timing_t

Display signal timing setting

Data Fields

uint16_t total_cyc Total cycles in one line or total
lines in one frame.

uint16_t display_cyc Active video cycles or lines.

uint16_t back_porch Back porch cycles or lines.

uint16_t sync_width Sync signal asserting width.

display_signal_polarity_t sync_polarity Sync signal polarity.

◆ display_color_t

struct display_color_t

RGB Color setting

◆ display_coordinate_t

struct display_coordinate_t

Contrast (gain) correction setting

Data Fields

int16_t x Coordinate X, this allows to set
signed value.

int16_t y Coordinate Y, this allows to set
signed value.

◆ display_brightness_t

struct display_brightness_t

Brightness (DC) correction setting

Data Fields

bool enable Brightness Correction On/Off.

uint16_t r Brightness (DC) adjustment for
R channel.

uint16_t g Brightness (DC) adjustment for
G channel.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,211 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

uint16_t b Brightness (DC) adjustment for
B channel.

◆ display_contrast_t

struct display_contrast_t

Contrast (gain) correction setting

Data Fields

bool enable Contrast Correction On/Off.

uint8_t r Contrast (gain) adjustment for
R channel.

uint8_t g Contrast (gain) adjustment for
G channel.

uint8_t b Contrast (gain) adjustment for
B channel.

◆ display_correction_t

struct display_correction_t

Color correction setting

Data Fields

display_brightness_t brightness Brightness.

display_contrast_t contrast Contrast.

◆ gamma_correction_t

struct gamma_correction_t

Gamma correction setting for each color

Data Fields

bool enable Gamma Correction On/Off.

uint16_t * gain Gain adjustment.

uint16_t * threshold Start threshold.

◆ display_gamma_correction_t

struct display_gamma_correction_t

Gamma correction setting

Data Fields

gamma_correction_t r Gamma correction for R
channel.

gamma_correction_t g Gamma correction for G
channel.

gamma_correction_t b Gamma correction for B

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,212 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

channel.

◆ display_clut_t

struct display_clut_t

CLUT setting

Data Fields

uint32_t color_num The number of colors in CLUT.

const uint32_t * p_clut Address of the area storing the
CLUT data (in ARGB8888
format)

◆ display_input_cfg_t

struct display_input_cfg_t

Graphics plane input configuration structure

Data Fields

uint32_t * p_base Base address to the frame
buffer.

uint16_t hsize Horizontal pixel size in a line.

uint16_t vsize Vertical pixel size in a frame.

uint32_t hstride Memory stride (bytes) in a line.

display_in_format_t format Input format setting.

bool line_descending_enable Line descending enable.

bool lines_repeat_enable Line repeat enable.

uint16_t lines_repeat_times Expected number of line
repeating.

◆ display_output_cfg_t

struct display_output_cfg_t

Display output configuration structure

Data Fields

display_timing_t htiming Horizontal display cycle setting.

display_timing_t vtiming Vertical display cycle setting.

display_out_format_t format Output format setting.

display_endian_t endian Bit order of output data.

display_color_order_t color_order Color order in pixel.

display_signal_polarity_t data_enable_polarity Data Enable signal polarity.

display_sync_edge_t sync_edge Signal sync edge selection.

display_color_t bg_color Background color.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,213 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

display_brightness_t brightness Brightness setting.

display_contrast_t contrast Contrast setting.

display_gamma_correction_t * p_gamma_correction Pointer to gamma correction
setting.

bool dithering_on Dithering on/off.

◆ display_layer_t

struct display_layer_t

Graphics layer blend setup parameter structure

Data Fields

display_coordinate_t coordinate Blending location (starting point
of image)

display_color_t bg_color Color outside region.

display_fade_control_t fade_control Layer fade-in/out control on/off.

uint8_t fade_speed Layer fade-in/out frame rate.

◆ display_callback_args_t

struct display_callback_args_t

Display callback parameter definition

Data Fields

display_event_t event Event code.

void const * p_context Context provided to user during
callback.

◆ display_cfg_t

struct display_cfg_t

Display main configuration structure

Data Fields

display_input_cfg_t input [2]

 Graphics input frame setting. More...

display_output_cfg_t output

 Graphics output frame setting.

display_layer_t layer [2]

 Graphics layer blend setting.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,214 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

uint8_t line_detect_ipl

 Line detect interrupt priority.

uint8_t underflow_1_ipl

 Underflow 1 interrupt priority.

uint8_t underflow_2_ipl

 Underflow 2 interrupt priority.

IRQn_Type line_detect_irq

 Line detect interrupt vector.

IRQn_Type underflow_1_irq

 Underflow 1 interrupt vector.

IRQn_Type underflow_2_irq

 Underflow 2 interrupt vector.

void(* p_callback)(display_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Display hardware dependent configuration. More...

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,215 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Field Documentation

◆ input

display_input_cfg_t display_cfg_t::input[2]

Graphics input frame setting.

Generic configuration for display devices

◆ p_callback

void(* display_cfg_t::p_callback) (display_callback_args_t *p_args)

Pointer to callback function.

Configuration for display event processing

◆ p_extend

void const* display_cfg_t::p_extend

Display hardware dependent configuration.

Pointer to display peripheral specific configuration

◆ display_runtime_cfg_t

struct display_runtime_cfg_t

Display main configuration structure

Data Fields

display_input_cfg_t input Graphics input frame setting.

Generic configuration for
display devices

display_layer_t layer Graphics layer alpha blending
setting.

◆ display_clut_cfg_t

struct display_clut_cfg_t

Display CLUT configuration structure

Data Fields

uint32_t * p_base Pointer to CLUT source data.

uint16_t start Beginning of CLUT entry to be
updated.

uint16_t size Size of CLUT entry to be
updated.

◆ display_status_t

struct display_status_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,216 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Display Status

Data Fields

display_state_t state Status of GLCDC module.

display_fade_status_t fade_status[
DISPLAY_FRAME_LAYER_2+1]

Status of fade-in/fade-out
status.

◆ display_api_t

struct display_api_t

Shared Interface definition for display peripheral

Data Fields

fsp_err_t(* open)(display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

fsp_err_t(* close)(display_ctrl_t *const p_ctrl)

fsp_err_t(* start)(display_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(display_ctrl_t *const p_ctrl)

fsp_err_t(* layerChange)(display_ctrl_t const *const p_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
frame)

fsp_err_t(* bufferChange)(display_ctrl_t const *const p_ctrl, uint8_t *const
framebuffer, display_frame_layer_t frame)

fsp_err_t(* correction)(display_ctrl_t const *const p_ctrl, display_correction_t
const *const p_param)

fsp_err_t(* clut)(display_ctrl_t const *const p_ctrl, display_clut_cfg_t const
*const p_clut_cfg, display_frame_layer_t layer)

fsp_err_t(* clutEdit)(display_ctrl_t const *const p_ctrl, display_frame_layer_t
layer, uint8_t index, uint32_t color)

fsp_err_t(* statusGet)(display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,217 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Field Documentation

◆ open

fsp_err_t(* display_api_t::open) (display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

Open display device.

Implemented as

R_GLCDC_Open()
Parameters

[in,out] p_ctrl Pointer to display interface
control block. Must be
declared by user. Value set
here.

[in] p_cfg Pointer to display
configuration structure. All
elements of this structure
must be set by user.

◆ close

fsp_err_t(* display_api_t::close) (display_ctrl_t *const p_ctrl)

Close display device.

Implemented as

R_GLCDC_Close()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ start

fsp_err_t(* display_api_t::start) (display_ctrl_t *const p_ctrl)

Display start.

Implemented as

R_GLCDC_Start()
Parameters

[in] p_ctrl Pointer to display interface
control block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,218 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ stop

fsp_err_t(* display_api_t::stop) (display_ctrl_t *const p_ctrl)

Display stop.

Implemented as

R_GLCDC_Stop()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ layerChange

fsp_err_t(* display_api_t::layerChange) (display_ctrl_t const *const p_ctrl, display_runtime_cfg_t
const *const p_cfg, display_frame_layer_t frame)

Change layer parameters at runtime.

Implemented as

R_GLCDC_LayerChange()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] p_cfg Pointer to run-time layer
configuration structure.

[in] frame Number of graphic frames.

◆ bufferChange

fsp_err_t(* display_api_t::bufferChange) (display_ctrl_t const *const p_ctrl, uint8_t *const
framebuffer, display_frame_layer_t frame)

Change layer framebuffer pointer.

Implemented as

R_GLCDC_BufferChange()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] framebuffer Pointer to desired
framebuffer.

[in] frame Number of graphic frames.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,219 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ correction

fsp_err_t(* display_api_t::correction) (display_ctrl_t const *const p_ctrl, display_correction_t const
*const p_param)

Color correction.

Implemented as

R_GLCDC_ColorCorrection()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] param Pointer to color correction
configuration structure.

◆ clut

fsp_err_t(* display_api_t::clut) (display_ctrl_t const *const p_ctrl, display_clut_cfg_t const *const
p_clut_cfg, display_frame_layer_t layer)

Set CLUT for display device.

Implemented as

R_GLCDC_ClutUpdate()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] p_clut_cfg Pointer to CLUT
configuration structure.

[in] layer Layer number corresponding
to the CLUT.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,220 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ clutEdit

fsp_err_t(* display_api_t::clutEdit) (display_ctrl_t const *const p_ctrl, display_frame_layer_t layer,
uint8_t index, uint32_t color)

Set CLUT element for display device.

Implemented as

R_GLCDC_ClutEdit()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] layer Layer number corresponding
to the CLUT.

[in] index CLUT element index.

[in] color Desired CLUT index color.

◆ statusGet

fsp_err_t(* display_api_t::statusGet) (display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

Get status for display device.

Implemented as

R_GLCDC_StatusGet()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] status Pointer to display interface
status structure.

◆ display_instance_t

struct display_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

display_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

display_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

display_api_t const * p_api Pointer to the API structure for
this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,221 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

Typedef Documentation

◆ display_ctrl_t

typedef void display_ctrl_t

Display control block. Allocate an instance specific control block to pass into the display API calls.

Implemented as

glcdc_instance_ctrl_tDisplay control block

Enumeration Type Documentation

◆ display_frame_layer_t

enum display_frame_layer_t

Display frame number

Enumerator

DISPLAY_FRAME_LAYER_1 Frame layer 1.

DISPLAY_FRAME_LAYER_2 Frame layer 2.

◆ display_state_t

enum display_state_t

Display interface operation state

Enumerator

DISPLAY_STATE_CLOSED Display closed.

DISPLAY_STATE_OPENED Display opened.

DISPLAY_STATE_DISPLAYING Displaying.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,222 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_event_t

enum display_event_t

Display event codes

Enumerator

DISPLAY_EVENT_GR1_UNDERFLOW Graphics frame1 underflow occurs.

DISPLAY_EVENT_GR2_UNDERFLOW Graphics frame2 underflow occurs.

DISPLAY_EVENT_LINE_DETECTION Designated line is processed.

◆ display_in_format_t

enum display_in_format_t

Input format setting

Enumerator

DISPLAY_IN_FORMAT_32BITS_ARGB8888 ARGB8888, 32 bits.

DISPLAY_IN_FORMAT_32BITS_RGB888 RGB888, 32 bits.

DISPLAY_IN_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB1555 ARGB1555, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB4444 ARGB4444, 16 bits.

DISPLAY_IN_FORMAT_CLUT8 CLUT8.

DISPLAY_IN_FORMAT_CLUT4 CLUT4.

DISPLAY_IN_FORMAT_CLUT1 CLUT1.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,223 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_out_format_t

enum display_out_format_t

Output format setting

Enumerator

DISPLAY_OUT_FORMAT_24BITS_RGB888 RGB888, 24 bits.

DISPLAY_OUT_FORMAT_18BITS_RGB666 RGB666, 18 bits.

DISPLAY_OUT_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_OUT_FORMAT_8BITS_SERIAL SERIAL, 8 bits.

◆ display_endian_t

enum display_endian_t

Data endian select

Enumerator

DISPLAY_ENDIAN_LITTLE Little-endian.

DISPLAY_ENDIAN_BIG Big-endian.

◆ display_color_order_t

enum display_color_order_t

RGB color order select

Enumerator

DISPLAY_COLOR_ORDER_RGB Color order RGB.

DISPLAY_COLOR_ORDER_BGR Color order BGR.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,224 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_signal_polarity_t

enum display_signal_polarity_t

Polarity of a signal select

Enumerator

DISPLAY_SIGNAL_POLARITY_LOACTIVE Low active signal.

DISPLAY_SIGNAL_POLARITY_HIACTIVE High active signal.

◆ display_sync_edge_t

enum display_sync_edge_t

Signal synchronization edge select

Enumerator

DISPLAY_SIGNAL_SYNC_EDGE_RISING Signal is synchronized to rising edge.

DISPLAY_SIGNAL_SYNC_EDGE_FALLING Signal is synchronized to falling edge.

◆ display_fade_control_t

enum display_fade_control_t

Fading control

Enumerator

DISPLAY_FADE_CONTROL_NONE Applying no fading control.

DISPLAY_FADE_CONTROL_FADEIN Applying fade-in control.

DISPLAY_FADE_CONTROL_FADEOUT Applying fade-out control.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,225 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Display Interface

◆ display_fade_status_t

enum display_fade_status_t

Fading status

Enumerator

DISPLAY_FADE_STATUS_NOT_UNDERWAY Fade-in/fade-out is not in progress.

DISPLAY_FADE_STATUS_FADING_UNDERWAY Fade-in or fade-out is in progress.

DISPLAY_FADE_STATUS_PENDING Fade-in/fade-out is configured but not yet
started.

4.3.12 DOC Interface
Interfaces

Detailed Description

Interface for the Data Operation Circuit.

Defines the API and data structures for the DOC implementation of the Data Operation Circuit (DOC)
interface.

Summary
This module implements the DOC_API using the Data Operation Circuit (DOC).

Implemented by: Data Operation Circuit (r_doc)

Data Structures

struct doc_status_t

struct doc_callback_args_t

struct doc_cfg_t

struct doc_api_t

struct doc_instance_t

Typedefs

typedef void doc_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,226 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

Enumerations

enum doc_event_t

Data Structure Documentation

◆ doc_status_t

struct doc_status_t

DOC status

◆ doc_callback_args_t

struct doc_callback_args_t

Callback function parameter data.

Data Fields

void const * p_context Set in doc_api_t::open function
in doc_cfg_t.

Placeholder for user data.

◆ doc_cfg_t

struct doc_cfg_t

User configuration structure, used in the open function.

Data Fields

doc_event_t event

 Select enumerated value from doc_event_t.

uint16_t doc_data

 Initial/reference value for DODSR register.

uint8_t ipl

 DOC interrupt priority.

IRQn_Type irq

 NVIC interrupt number assigned to this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,227 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

void(* p_callback)(doc_callback_args_t *p_args)

void const * p_context

Field Documentation

◆ p_callback

void(* doc_cfg_t::p_callback) (doc_callback_args_t *p_args)

Callback provided when a DOC ISR occurs.

◆ p_context

void const* doc_cfg_t::p_context

Placeholder for user data. Passed to the user callback in doc_callback_args_t.

◆ doc_api_t

struct doc_api_t

Data Operation Circuit (DOC) API structure. DOC functions implemented at the HAL layer will follow
this API.

Data Fields

fsp_err_t(* open)(doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

fsp_err_t(* close)(doc_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(doc_ctrl_t *const p_ctrl, doc_status_t *p_status)

fsp_err_t(* write)(doc_ctrl_t *const p_ctrl, uint16_t data)

fsp_err_t(* callbackSet)(doc_ctrl_t *const p_api_ctrl,
void(*p_callback)(doc_callback_args_t *), void const *const
p_context, doc_callback_args_t *const p_callback_memory)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,228 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

◆ open

fsp_err_t(* doc_api_t::open) (doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DOC_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ close

fsp_err_t(* doc_api_t::close) (doc_ctrl_t *const p_ctrl)

Allow the driver to be reconfigured. Will reduce power consumption.

Implemented as

R_DOC_Close()
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

◆ statusGet

fsp_err_t(* doc_api_t::statusGet) (doc_ctrl_t *const p_ctrl, doc_status_t *p_status)

Gets the result of addition/subtraction and stores it in the provided pointer p_data.

Implemented as

R_DOC_StatusGet()
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

[out] p_data Provides the 16 bit result of
the addition/subtraction
operation at the user defined
location.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,229 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

◆ write

fsp_err_t(* doc_api_t::write) (doc_ctrl_t *const p_ctrl, uint16_t data)

Write to the DODIR register.

Implemented as

R_DOC_Write()
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

[in] data data to be written to DOC
DODIR register.

◆ callbackSet

fsp_err_t(* doc_api_t::callbackSet) (doc_ctrl_t *const p_api_ctrl,
void(*p_callback)(doc_callback_args_t *), void const *const p_context, doc_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_DOC_CallbackSet()
Parameters

[in] p_ctrl Pointer to the DOC control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ doc_instance_t

struct doc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

doc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

doc_cfg_t const * p_cfg Pointer to the configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,230 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > DOC Interface

structure for this instance.

doc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ doc_ctrl_t

typedef void doc_ctrl_t

DOC control block. Allocate an instance specific control block to pass into the DOC API calls.

Implemented as

doc_instance_ctrl_t

Enumeration Type Documentation

◆ doc_event_t

enum doc_event_t

Event that can trigger a callback function.

Enumerator

DOC_EVENT_COMPARISON_MISMATCH Comparison of data has resulted in a
mismatch.

DOC_EVENT_ADDITION Addition of data has resulted in a value greater
than H'FFFF.

DOC_EVENT_SUBTRACTION Subtraction of data has resulted in a value less
than H'0000.

DOC_EVENT_COMPARISON_MATCH Comparison of data has resulted in a match.

4.3.13 ELC Interface
Interfaces

Detailed Description

Interface for the Event Link Controller.

Data Structures

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,231 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

struct elc_cfg_t

struct elc_api_t

struct elc_instance_t

Typedefs

typedef void elc_ctrl_t

Enumerations

enum elc_peripheral_t

enum elc_software_event_t

Data Structure Documentation

◆ elc_cfg_t

struct elc_cfg_t

Main configuration structure for the Event Link Controller

Data Fields

elc_event_t const link[ELC_PERIPHERAL_NUM] Event link register (ELSR)
settings.

◆ elc_api_t

struct elc_api_t

ELC driver structure. General ELC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

fsp_err_t(* close)(elc_ctrl_t *const p_ctrl)

fsp_err_t(* softwareEventGenerate)(elc_ctrl_t *const p_ctrl,
elc_software_event_t event_num)

fsp_err_t(* linkSet)(elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral,
elc_event_t signal)

fsp_err_t(* linkBreak)(elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

fsp_err_t(* enable)(elc_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,232 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

fsp_err_t(* disable)(elc_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* elc_api_t::open) (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)

Initialize all links in the Event Link Controller.

Implemented as

R_ELC_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* elc_api_t::close) (elc_ctrl_t *const p_ctrl)

Disable all links in the Event Link Controller and close the API.

Implemented as

R_ELC_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ softwareEventGenerate

fsp_err_t(* elc_api_t::softwareEventGenerate) (elc_ctrl_t *const p_ctrl, elc_software_event_t
event_num)

Generate a software event in the Event Link Controller.

Implemented as

R_ELC_SoftwareEventGenerate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] eventNum Software event number to
be generated.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,233 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

◆ linkSet

fsp_err_t(* elc_api_t::linkSet) (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral, elc_event_t signal)

Create a single event link.

Implemented as

R_ELC_LinkSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] peripheral The peripheral block that will
receive the event signal.

[in] signal The event signal.

◆ linkBreak

fsp_err_t(* elc_api_t::linkBreak) (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)

Break an event link.

Implemented as

R_ELC_LinkBreak()
Parameters

[in] p_ctrl Pointer to control structure.

[in] peripheral The peripheral that should
no longer be linked.

◆ enable

fsp_err_t(* elc_api_t::enable) (elc_ctrl_t *const p_ctrl)

Enable the operation of the Event Link Controller.

Implemented as

R_ELC_Enable()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,234 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

◆ disable

fsp_err_t(* elc_api_t::disable) (elc_ctrl_t *const p_ctrl)

Disable the operation of the Event Link Controller.

Implemented as

R_ELC_Disable()
Parameters

[in] p_ctrl Pointer to control structure.

◆ elc_instance_t

struct elc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

elc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

elc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

elc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ elc_ctrl_t

typedef void elc_ctrl_t

ELC control block. Allocate an instance specific control block to pass into the ELC API calls.

Implemented as

elc_instance_ctrl_t

Enumeration Type Documentation

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals (not all available on all MCUs)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,235 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ELC Interface

◆ elc_software_event_t

enum elc_software_event_t

Software event number

Enumerator

ELC_SOFTWARE_EVENT_0 Software event 0.

ELC_SOFTWARE_EVENT_1 Software event 1.

4.3.14 Ethernet Interface
Interfaces

Detailed Description

Interface for Ethernet functions.

Summary
The Ethernet interface provides Ethernet functionality. The Ethernet interface supports the following
features:

Transmit/receive processing (Blocking and Non-Blocking)
Callback function with returned event code
Magic packet detection mode support
Auto negotiation support
Flow control support
Multicast filtering support

Implemented by:

Ethernet (r_ether)

Data Structures

struct ether_instance_descriptor_t

struct ether_callback_args_t

struct ether_cfg_t

struct ether_api_t

struct ether_instance_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,236 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

Typedefs

typedef void ether_ctrl_t

Enumerations

enum ether_wake_on_lan_t

enum ether_flow_control_t

enum ether_multicast_t

enum ether_promiscuous_t

enum ether_zerocopy_t

enum ether_event_t

Data Structure Documentation

◆ ether_instance_descriptor_t

struct ether_instance_descriptor_t

EDMAC descriptor as defined in the hardware manual. Structure must be packed at 1 byte.

◆ ether_callback_args_t

struct ether_callback_args_t

Callback function parameter data

Data Fields

uint32_t channel Device channel number.

ether_event_t event Event code.

uint32_t status_ecsr ETHERC status register for
interrupt handler.

uint32_t status_eesr ETHERC/EDMAC status register
for interrupt handler.

void const * p_context Placeholder for user data. Set in
ether_api_t::open function in
ether_cfg_t.

◆ ether_cfg_t

struct ether_cfg_t

Configuration parameters.

Data Fields

uint8_t channel

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,237 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

 Channel.

ether_zerocopy_t zerocopy

 Zero copy enable or disable in Read/Write function.

ether_multicast_t multicast

 Multicast enable or disable.

ether_promiscuous_t promiscuous

 Promiscuous mode enable or disable.

ether_flow_control_t flow_control

 Flow control functionally enable or disable.

ether_padding_t padding

 Padding length inserted into the received Ethernet frame.

uint32_t padding_offset

 Offset of the padding inserted into the received Ethernet frame.

uint32_t broadcast_filter

 Limit of the number of broadcast frames received continuously.

uint8_t * p_mac_address

 Pointer of MAC address.

ether_instance_descriptor_t
*

p_rx_descriptors

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,238 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

 Receive descriptor buffer pool.

ether_instance_descriptor_t
*

p_tx_descriptors

 Transmit descriptor buffer pool.

uint8_t num_tx_descriptors

 Number of transmission descriptor.

uint8_t num_rx_descriptors

 Number of receive descriptor.

uint8_t ** pp_ether_buffers

 Transmit and receive buffer.

uint32_t ether_buffer_size

 Size of transmit and receive buffer.

IRQn_Type irq

 NVIC interrupt number.

uint32_t interrupt_priority

 NVIC interrupt priority.

void(* p_callback)(ether_callback_args_t *p_args)

 Callback provided when an ISR occurs.

ether_phy_instance_t const
*

p_ether_phy_instance

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,239 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

 Pointer to ETHER_PHY instance.

void const * p_context

 Placeholder for user data. More...

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ p_context

void const* ether_cfg_t::p_context

Placeholder for user data.

Placeholder for user data. Passed to the user callback in ether_callback_args_t.

◆ ether_api_t

struct ether_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ether_ctrl_t *const p_api_ctrl, ether_cfg_t const *const p_cfg)

fsp_err_t(* close)(ether_ctrl_t *const p_api_ctrl)

fsp_err_t(* read)(ether_ctrl_t *const p_api_ctrl, void *const p_buffer, uint32_t
*const length_bytes)

fsp_err_t(* bufferRelease)(ether_ctrl_t *const p_api_ctrl)

fsp_err_t(* rxBufferUpdate)(ether_ctrl_t *const p_api_ctrl, void *const p_buffer)

fsp_err_t(* write)(ether_ctrl_t *const p_api_ctrl, void *const p_buffer, uint32_t
const frame_length)

fsp_err_t(* linkProcess)(ether_ctrl_t *const p_api_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,240 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

fsp_err_t(* wakeOnLANEnable)(ether_ctrl_t *const p_api_ctrl)

fsp_err_t(* txStatusGet)(ether_ctrl_t *const p_api_ctrl, void *const
p_buffer_address)

Field Documentation

◆ open

fsp_err_t(* ether_api_t::open) (ether_ctrl_t *const p_api_ctrl, ether_cfg_t const *const p_cfg)

Open driver.

Implemented as

R_ETHER_Open()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* ether_api_t::close) (ether_ctrl_t *const p_api_ctrl)

Close driver.

Implemented as

R_ETHER_Close()
Parameters

[in] p_api_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,241 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ read

fsp_err_t(* ether_api_t::read) (ether_ctrl_t *const p_api_ctrl, void *const p_buffer, uint32_t *const
length_bytes)

Read packet if data is available.

Implemented as

R_ETHER_Read()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buffer Pointer to where to store
read data.

[in] length_bytes Number of bytes in buffer

◆ bufferRelease

fsp_err_t(* ether_api_t::bufferRelease) (ether_ctrl_t *const p_api_ctrl)

Release rx buffer from buffer pool process in zero-copy read operation.

Implemented as

R_ETHER_BufferRelease()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ rxBufferUpdate

fsp_err_t(* ether_api_t::rxBufferUpdate) (ether_ctrl_t *const p_api_ctrl, void *const p_buffer)

Update the buffer pointer in the current receive descriptor.

Implemented as

R_ETHER_RxBufferUpdate()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buffer New address to write into
the rx buffer descriptor.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,242 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ write

fsp_err_t(* ether_api_t::write) (ether_ctrl_t *const p_api_ctrl, void *const p_buffer, uint32_t const
frame_length)

Write packet.

Implemented as

R_ETHER_Write()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buffer Pointer to data to write.

[in] frame_length Send ethernet frame size
(without 4 bytes of CRC data
size).

◆ linkProcess

fsp_err_t(* ether_api_t::linkProcess) (ether_ctrl_t *const p_api_ctrl)

Process link.

Implemented as

R_ETHER_LinkProcess()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ wakeOnLANEnable

fsp_err_t(* ether_api_t::wakeOnLANEnable) (ether_ctrl_t *const p_api_ctrl)

Enable magic packet detection.

Implemented as

R_ETHER_WakeOnLANEnable()
Parameters

[in] p_api_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,243 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ txStatusGet

fsp_err_t(* ether_api_t::txStatusGet) (ether_ctrl_t *const p_api_ctrl, void *const p_buffer_address)

Get the address of the most recently sent buffer.

Implemented as

R_ETHER_TxStatusGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[out] p_buffer_address Pointer to the address of the
most recently sent buffer.

◆ ether_instance_t

struct ether_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ether_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ether_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ether_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ether_ctrl_t

typedef void ether_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

ether_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,244 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ ether_wake_on_lan_t

enum ether_wake_on_lan_t

Wake on LAN

Enumerator

ETHER_WAKE_ON_LAN_DISABLE Disable Wake on LAN.

ETHER_WAKE_ON_LAN_ENABLE Enable Wake on LAN.

◆ ether_flow_control_t

enum ether_flow_control_t

Flow control functionality

Enumerator

ETHER_FLOW_CONTROL_DISABLE Disable flow control functionality.

ETHER_FLOW_CONTROL_ENABLE Enable flow control functionality with pause
frames.

◆ ether_multicast_t

enum ether_multicast_t

Multicast Filter

Enumerator

ETHER_MULTICAST_DISABLE Disable reception of multicast frames.

ETHER_MULTICAST_ENABLE Enable reception of multicast frames.

◆ ether_promiscuous_t

enum ether_promiscuous_t

Promiscuous Mode

Enumerator

ETHER_PROMISCUOUS_DISABLE Only receive packets with current MAC
address, multicast, and broadcast.

ETHER_PROMISCUOUS_ENABLE Receive all packets.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,245 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet Interface

◆ ether_zerocopy_t

enum ether_zerocopy_t

Zero copy

Enumerator

ETHER_ZEROCOPY_DISABLE Disable zero copy in Read/Write function.

ETHER_ZEROCOPY_ENABLE Enable zero copy in Read/Write function.

◆ ether_event_t

enum ether_event_t

Event code of callback function

Enumerator

ETHER_EVENT_WAKEON_LAN Magic packet detection event.

ETHER_EVENT_LINK_ON Link up detection event.

ETHER_EVENT_LINK_OFF Link down detection event.

ETHER_EVENT_INTERRUPT Interrupt event.

4.3.15 Ethernet PHY Interface
Interfaces

Detailed Description

Interface for Ethernet PHY functions.

Summary
The Ethernet PHY module (r_ether_phy) provides an API for standard Ethernet PHY communications
applications that use the ETHERC peripheral.

The Ethernet PHY interface supports the following features:

Auto negotiation support
Flow control support
Link status check support

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,246 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

Implemented by:

Ethernet PHY (r_ether_phy)

Data Structures

struct ether_phy_cfg_t

struct ether_phy_api_t

struct ether_phy_instance_t

Typedefs

typedef void ether_phy_ctrl_t

Enumerations

enum ether_phy_flow_control_t

enum ether_phy_link_speed_t

enum ether_phy_mii_type_t

Data Structure Documentation

◆ ether_phy_cfg_t

struct ether_phy_cfg_t

Configuration parameters.

Data Fields

uint8_t channel Channel.

uint8_t phy_lsi_address Address of PHY-LSI.

uint32_t phy_reset_wait_time Wait time for PHY-LSI reboot.

int32_t mii_bit_access_wait_time Wait time for MII/RMII access.

ether_phy_flow_control_t flow_control Flow control functionally enable
or disable.

ether_phy_mii_type_t mii_type Interface type is MII or RMII.

void const * p_context Placeholder for user data.
Passed to the user callback in
ether_phy_callback_args_t.

void const * p_extend Placeholder for user extension.

◆ ether_phy_api_t

struct ether_phy_api_t

Functions implemented at the HAL layer will follow this API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,247 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

Data Fields

fsp_err_t(* open)(ether_phy_ctrl_t *const p_api_ctrl, ether_phy_cfg_t const
*const p_cfg)

fsp_err_t(* close)(ether_phy_ctrl_t *const p_api_ctrl)

fsp_err_t(* startAutoNegotiate)(ether_phy_ctrl_t *const p_api_ctrl)

fsp_err_t(* linkPartnerAbilityGet)(ether_phy_ctrl_t *const p_api_ctrl, uint32_t
*const p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t
*const p_partner_pause)

fsp_err_t(* linkStatusGet)(ether_phy_ctrl_t *const p_api_ctrl)

Field Documentation

◆ open

fsp_err_t(* ether_phy_api_t::open) (ether_phy_ctrl_t *const p_api_ctrl, ether_phy_cfg_t const *const
p_cfg)

Open driver.

Implemented as

R_ETHER_PHY_Open()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* ether_phy_api_t::close) (ether_phy_ctrl_t *const p_api_ctrl)

Close driver.

Implemented as

R_ETHER_PHY_Close()
Parameters

[in] p_api_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,248 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

◆ startAutoNegotiate

fsp_err_t(* ether_phy_api_t::startAutoNegotiate) (ether_phy_ctrl_t *const p_api_ctrl)

Start auto negotiation.

Implemented as

R_ETHER_PHY_StartAutoNegotiate()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ linkPartnerAbilityGet

fsp_err_t(* ether_phy_api_t::linkPartnerAbilityGet) (ether_phy_ctrl_t *const p_api_ctrl, uint32_t
*const p_line_speed_duplex, uint32_t *const p_local_pause, uint32_t *const p_partner_pause)

Get the partner ability.

Implemented as

R_ETHER_PHY_LinkPartnerAbilityGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[out] p_line_speed_duplex Pointer to the location of
both the line speed and the
duplex.

[out] p_local_pause Pointer to the location to
store the local pause bits.

[out] p_partner_pause Pointer to the location to
store the partner pause bits.

◆ linkStatusGet

fsp_err_t(* ether_phy_api_t::linkStatusGet) (ether_phy_ctrl_t *const p_api_ctrl)

Get Link status from PHY-LSI interface.

Implemented as

R_ETHER_PHY_LinkStatusGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ ether_phy_instance_t

struct ether_phy_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,249 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

Data Fields

ether_phy_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ether_phy_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ether_phy_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ether_phy_ctrl_t

typedef void ether_phy_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

ether_phy_instance_ctrl_t

Enumeration Type Documentation

◆ ether_phy_flow_control_t

enum ether_phy_flow_control_t

Flow control functionality

Enumerator

ETHER_PHY_FLOW_CONTROL_DISABLE Disable flow control functionality.

ETHER_PHY_FLOW_CONTROL_ENABLE Enable flow control functionality with pause
frames.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,250 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Ethernet PHY Interface

◆ ether_phy_link_speed_t

enum ether_phy_link_speed_t

Link speed

Enumerator

ETHER_PHY_LINK_SPEED_NO_LINK Link is not established.

ETHER_PHY_LINK_SPEED_10H Link status is 10Mbit/s and half duplex.

ETHER_PHY_LINK_SPEED_10F Link status is 10Mbit/s and full duplex.

ETHER_PHY_LINK_SPEED_100H Link status is 100Mbit/s and half duplex.

ETHER_PHY_LINK_SPEED_100F Link status is 100Mbit/s and full duplex.

◆ ether_phy_mii_type_t

enum ether_phy_mii_type_t

Media-independent interface

Enumerator

ETHER_PHY_MII_TYPE_MII MII.

ETHER_PHY_MII_TYPE_RMII RMII.

4.3.16 External IRQ Interface
Interfaces

Detailed Description

Interface for detecting external interrupts.

Summary
The External IRQ Interface is for configuring interrupts to fire when a trigger condition is detected on
an external IRQ pin.

The External IRQ Interface can be implemented by:

Interrupt Controller Unit (r_icu)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,251 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

Data Structures

struct external_irq_callback_args_t

struct external_irq_cfg_t

struct external_irq_api_t

struct external_irq_instance_t

Typedefs

typedef void external_irq_ctrl_t

Enumerations

enum external_irq_trigger_t

enum external_irq_pclk_div_t

Data Structure Documentation

◆ external_irq_callback_args_t

struct external_irq_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
external_irq_api_t::open
function in external_irq_cfg_t.

uint32_t channel The physical hardware channel
that caused the interrupt.

◆ external_irq_cfg_t

struct external_irq_cfg_t

User configuration structure, used in open function

Data Fields

uint8_t channel

 Hardware channel used.

uint8_t ipl

 Interrupt priority.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,252 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

IRQn_Type irq

 NVIC interrupt number assigned to this instance.

external_irq_trigger_t trigger

 Trigger setting.

external_irq_pclk_div_t pclk_div

 Digital filter clock divisor setting.

bool filter_enable

 Digital filter enable/disable setting.

void(* p_callback)(external_irq_callback_args_t *p_args)

void const * p_context

void const * p_extend

 External IRQ hardware dependent configuration.

Field Documentation

◆ p_callback

void(* external_irq_cfg_t::p_callback) (external_irq_callback_args_t *p_args)

Callback provided external input trigger occurs.

◆ p_context

void const* external_irq_cfg_t::p_context

Placeholder for user data. Passed to the user callback in external_irq_callback_args_t.

◆ external_irq_api_t

struct external_irq_api_t

External interrupt driver structure. External interrupt functions implemented at the HAL layer will
follow this API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,253 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

Data Fields

fsp_err_t(* open)(external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

fsp_err_t(* enable)(external_irq_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(external_irq_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(external_irq_ctrl_t *const p_api_ctrl,
void(*p_callback)(external_irq_callback_args_t *), void const *const
p_context, external_irq_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(external_irq_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* external_irq_api_t::open) (external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

Initial configuration.

Implemented as

R_ICU_ExternalIrqOpen()
Parameters

[out] p_ctrl Pointer to control block.
Must be declared by user.
Value set here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,254 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

◆ enable

fsp_err_t(* external_irq_api_t::enable) (external_irq_ctrl_t *const p_ctrl)

Enable callback when an external trigger condition occurs.

Implemented as

R_ICU_ExternalIrqEnable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

◆ disable

fsp_err_t(* external_irq_api_t::disable) (external_irq_ctrl_t *const p_ctrl)

Disable callback when external trigger condition occurs.

Implemented as

R_ICU_ExternalIrqDisable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,255 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

◆ callbackSet

fsp_err_t(* external_irq_api_t::callbackSet) (external_irq_ctrl_t *const p_api_ctrl, void(
*p_callback)(external_irq_callback_args_t *), void const *const p_context,
external_irq_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_ICU_ExternalIrqCallbackSet()
Parameters

[in] p_ctrl Pointer to the Extneral IRQ
control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* external_irq_api_t::close) (external_irq_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Implemented as

R_ICU_ExternalIrqClose()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

◆ external_irq_instance_t

struct external_irq_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

external_irq_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

external_irq_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,256 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

external_irq_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ external_irq_ctrl_t

typedef void external_irq_ctrl_t

External IRQ control block. Allocate an instance specific control block to pass into the external IRQ
API calls.

Implemented as

icu_instance_ctrl_t

Enumeration Type Documentation

◆ external_irq_trigger_t

enum external_irq_trigger_t

Condition that will trigger an interrupt when detected.

Enumerator

EXTERNAL_IRQ_TRIG_FALLING Falling edge trigger.

EXTERNAL_IRQ_TRIG_RISING Rising edge trigger.

EXTERNAL_IRQ_TRIG_BOTH_EDGE Both edges trigger.

EXTERNAL_IRQ_TRIG_LEVEL_LOW Low level trigger.

◆ external_irq_pclk_div_t

enum external_irq_pclk_div_t

External IRQ input pin digital filtering sample clock divisor settings. The digital filter rejects trigger
conditions that are shorter than 3 periods of the filter clock.

Enumerator

EXTERNAL_IRQ_PCLK_DIV_BY_1 Filter using PCLK divided by 1.

EXTERNAL_IRQ_PCLK_DIV_BY_8 Filter using PCLK divided by 8.

EXTERNAL_IRQ_PCLK_DIV_BY_32 Filter using PCLK divided by 32.

EXTERNAL_IRQ_PCLK_DIV_BY_64 Filter using PCLK divided by 64.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,257 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > External IRQ Interface

4.3.17 Flash Interface
Interfaces

Detailed Description

Interface for the Flash Memory.

Summary
The Flash interface provides the ability to read, write, erase, and blank check the code flash and data
flash regions.

The Flash interface is implemented by:

Low-Power Flash Driver (r_flash_lp)

Data Structures

struct flash_block_info_t

struct flash_regions_t

struct flash_info_t

struct flash_callback_args_t

struct flash_cfg_t

struct flash_api_t

struct flash_instance_t

Typedefs

typedef void flash_ctrl_t

Enumerations

enum flash_result_t

enum flash_startup_area_swap_t

enum flash_event_t

enum flash_id_code_mode_t

enum flash_status_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,258 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

Data Structure Documentation

◆ flash_block_info_t

struct flash_block_info_t

Flash block details stored in factory flash.

Data Fields

uint32_t block_section_st_addr Starting address for this block
section (blocks of this size)

uint32_t block_section_end_addr Ending address for this block
section (blocks of this size)

uint32_t block_size Flash erase block size.

uint32_t block_size_write Flash write block size.

◆ flash_regions_t

struct flash_regions_t

Flash block details

Data Fields

uint32_t num_regions Length of block info array.

flash_block_info_t const * p_block_array Block info array base address.

◆ flash_info_t

struct flash_info_t

Information about the flash blocks

Data Fields

flash_regions_t code_flash Information about the code
flash regions.

flash_regions_t data_flash Information about the code
flash regions.

◆ flash_callback_args_t

struct flash_callback_args_t

Callback function parameter data

Data Fields

flash_event_t event Event can be used to identify
what caused the callback (flash
ready or error).

void const * p_context Placeholder for user data. Set in
flash_api_t::open function
in::flash_cfg_t.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,259 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ flash_cfg_t

struct flash_cfg_t

FLASH Configuration

Data Fields

bool data_flash_bgo

 True if BGO (Background Operation) is enabled for Data Flash.

void(* p_callback)(flash_callback_args_t *p_args)

 Callback provided when a Flash interrupt ISR occurs.

void const * p_extend

 FLASH hardware dependent configuration.

void const * p_context

 Placeholder for user data. Passed to user callback in
flash_callback_args_t.

uint8_t ipl

 Flash ready interrupt priority.

IRQn_Type irq

 Flash ready interrupt number.

uint8_t err_ipl

 Flash error interrupt priority (unused in r_flash_lp)

IRQn_Type err_irq

 Flash error interrupt number (unused in r_flash_lp)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,260 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ flash_api_t

struct flash_api_t

Shared Interface definition for FLASH

Data Fields

fsp_err_t(* open)(flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

fsp_err_t(* write)(flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t
const flash_address, uint32_t const num_bytes)

fsp_err_t(* erase)(flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_blocks)

fsp_err_t(* blankCheck)(flash_ctrl_t *const p_ctrl, uint32_t const address,
uint32_t const num_bytes, flash_result_t *const
p_blank_check_result)

fsp_err_t(* infoGet)(flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

fsp_err_t(* close)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(flash_ctrl_t *const p_ctrl, flash_status_t *const p_status)

fsp_err_t(* accessWindowSet)(flash_ctrl_t *const p_ctrl, uint32_t const
start_addr, uint32_t const end_addr)

fsp_err_t(* accessWindowClear)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* idCodeSet)(flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

fsp_err_t(* reset)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* updateFlashClockFreq)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* startupAreaSelect)(flash_ctrl_t *const p_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,261 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

fsp_err_t(* bankSwap)(flash_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(flash_ctrl_t *const p_api_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const
p_context, flash_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* flash_api_t::open) (flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

Open FLASH device.

Implemented as

R_FLASH_LP_Open()
R_FLASH_HP_Open()

Parameters
[out] p_ctrl Pointer to FLASH device

control. Must be declared by
user. Value set here.

[in] flash_cfg_t Pointer to FLASH
configuration structure. All
elements of this structure
must be set by the user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,262 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ write

fsp_err_t(* flash_api_t::write) (flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t const
flash_address, uint32_t const num_bytes)

Write FLASH device.

Implemented as

R_FLASH_LP_Write()
R_FLASH_HP_Write()

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] src_address Address of the buffer
containing the data to write
to Flash.

[in] flash_address Code Flash or Data Flash
address to write. The
address must be on a
programming line boundary.

[in] num_bytes The number of bytes to
write. This number must be
a multiple of the
programming size. For Code
Flash this is
FLASH_MIN_PGM_SIZE_CF.
For Data Flash this is
FLASH_MIN_PGM_SIZE_DF.

Warning
Specifying a number that is not a multiple of the programming size will result in
SF_FLASH_ERR_BYTES being returned and no data written.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,263 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ erase

fsp_err_t(* flash_api_t::erase) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erase FLASH device.

Implemented as

R_FLASH_LP_Erase()
R_FLASH_HP_Erase()

Parameters
[in] p_ctrl Control for the FLASH

device.

[in] address The block containing this
address is the first block
erased.

[in] num_blocks Specifies the number of
blocks to be erased, the
starting block determined by
the block_erase_address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,264 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ blankCheck

fsp_err_t(* flash_api_t::blankCheck) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_bytes, flash_result_t *const p_blank_check_result)

Blank check FLASH device.

Implemented as

R_FLASH_LP_BlankCheck()
R_FLASH_HP_BlankCheck()

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] address The starting address of the
Flash area to blank check.

[in] num_bytes Specifies the number of
bytes that need to be
checked. See the specific
handler for details.

[out] p_blank_check_result Pointer that will be
populated by the API with
the results of the blank
check operation in non-BGO
(blocking) mode. In this case
the blank check operation
completes here and the
result is returned. In Data
Flash BGO mode the blank
check operation is only
started here and the result
obtained later when the
supplied callback routine is
called. In this case
FLASH_RESULT_BGO_ACTIVE
will be returned in
p_blank_check_result.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,265 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ infoGet

fsp_err_t(* flash_api_t::infoGet) (flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

Close FLASH device.

Implemented as

R_FLASH_LP_InfoGet()
R_FLASH_HP_InfoGet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[out] p_info Pointer to FLASH info
structure.

◆ close

fsp_err_t(* flash_api_t::close) (flash_ctrl_t *const p_ctrl)

Close FLASH device.

Implemented as

R_FLASH_LP_Close()
R_FLASH_HP_Close()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ statusGet

fsp_err_t(* flash_api_t::statusGet) (flash_ctrl_t *const p_ctrl, flash_status_t *const p_status)

Get Status for FLASH device.

Implemented as

R_FLASH_LP_StatusGet()
R_FLASH_HP_StatusGet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[out] p_ctrl Pointer to the current flash
status.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,266 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ accessWindowSet

fsp_err_t(* flash_api_t::accessWindowSet) (flash_ctrl_t *const p_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Set Access Window for FLASH device.

Implemented as

R_FLASH_LP_AccessWindowSet()
R_FLASH_HP_AccessWindowSet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window. This address will not
be within the access window.

◆ accessWindowClear

fsp_err_t(* flash_api_t::accessWindowClear) (flash_ctrl_t *const p_ctrl)

Clear any existing Code Flash access window for FLASH device.

Implemented as

R_FLASH_LP_AccessWindowClear()
R_FLASH_HP_AccessWindowClear()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,267 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ idCodeSet

fsp_err_t(* flash_api_t::idCodeSet) (flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

Set ID Code for FLASH device. Setting the ID code can restrict access to the device. The ID code will
be required to connect to the device. Bits 126 and 127 are set based on the mode.

For example, uint8_t id_bytes[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99,
0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0x00}; with mode
FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERASE_SUPPORT will result in an ID code of
00112233445566778899aabbccddeec0

With mode FLASH_ID_CODE_MODE_LOCKED, it will result in an ID code of
00112233445566778899aabbccddee80

Implemented as

R_FLASH_LP_IdCodeSet()
R_FLASH_HP_IdCodeSet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] p_id_bytes Ponter to the ID Code to be
written.

[in] mode Mode used for checking the
ID code.

◆ reset

fsp_err_t(* flash_api_t::reset) (flash_ctrl_t *const p_ctrl)

Reset function for FLASH device.

Implemented as

R_FLASH_LP_Reset()
R_FLASH_HP_Reset()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,268 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ updateFlashClockFreq

fsp_err_t(* flash_api_t::updateFlashClockFreq) (flash_ctrl_t *const p_ctrl)

Update Flash clock frequency (FCLK) and recalculate timeout values

Implemented as

R_FLASH_LP_UpdateFlashClockFreq()
R_FLASH_HP_UpdateFlashClockFreq()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ startupAreaSelect

fsp_err_t(* flash_api_t::startupAreaSelect) (flash_ctrl_t *const p_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Select which block - Default (Block 0) or Alternate (Block 1) is used as the start-up area block.

Implemented as

R_FLASH_LP_StartUpAreaSelect()
R_FLASH_HP_StartUpAreaSelect()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] swap_type FLASH_STARTUP_AREA_BLO
CK0, FLASH_STARTUP_AREA_
BLOCK1 or FLASH_STARTUP_
AREA_BTFLG.

[in] is_temporary True or false. See table
below.

swap_type is_temporary Operation

FLASH_STARTUP_AREA_BLOCK0 false On next reset Startup area will
be Block 0.

FLASH_STARTUP_AREA_BLOCK1 true Startup area is immediately,
but temporarily switched to
Block 1.

FLASH_STARTUP_AREA_BTFLG true Startup area is immediately,
but temporarily switched to the
Block determined by the
Configuration BTFLG.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,269 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ bankSwap

fsp_err_t(* flash_api_t::bankSwap) (flash_ctrl_t *const p_ctrl)

Swap the bank used as the startup area. Only valid in dual bank mode.

Implemented as

R_FLASH_HP_BankSwap()
Parameters

[in] p_ctrl Pointer to FLASH device
control.

◆ callbackSet

fsp_err_t(* flash_api_t::callbackSet) (flash_ctrl_t *const p_api_ctrl,
void(*p_callback)(flash_callback_args_t *), void const *const p_context, flash_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_FLASH_HP_CallbackSet()
Parameters

[in] p_ctrl Control block set in
flash_api_t::open call for this
timer.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ flash_instance_t

struct flash_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

flash_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

flash_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,270 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

flash_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ flash_ctrl_t

typedef void flash_ctrl_t

Flash control block. Allocate an instance specific control block to pass into the flash API calls.

Implemented as

flash_lp_instance_ctrl_t
flash_hp_instance_ctrl_t

Enumeration Type Documentation

◆ flash_result_t

enum flash_result_t

Result type for certain operations

Enumerator

FLASH_RESULT_BLANK Return status for Blank Check Function.

FLASH_RESULT_NOT_BLANK Return status for Blank Check Function.

FLASH_RESULT_BGO_ACTIVE Flash is configured for BGO mode. Result is
returned in callback.

◆ flash_startup_area_swap_t

enum flash_startup_area_swap_t

Parameter for specifying the startup area swap being requested by startupAreaSelect()

Enumerator

FLASH_STARTUP_AREA_BTFLG Startup area will be set based on the value of
the BTFLG.

FLASH_STARTUP_AREA_BLOCK0 Startup area will be set to Block 0.

FLASH_STARTUP_AREA_BLOCK1 Startup area will be set to Block 1.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,271 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ flash_event_t

enum flash_event_t

Event types returned by the ISR callback when used in Data Flash BGO mode

Enumerator

FLASH_EVENT_ERASE_COMPLETE Erase operation successfully completed.

FLASH_EVENT_WRITE_COMPLETE Write operation successfully completed.

FLASH_EVENT_BLANK Blank check operation successfully completed.
Specified area is blank.

FLASH_EVENT_NOT_BLANK Blank check operation successfully completed.
Specified area is NOT blank.

FLASH_EVENT_ERR_DF_ACCESS Data Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CF_ACCESS Code Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CMD_LOCKED Operation failed, FCU is in Locked state (often
result of an illegal command)

FLASH_EVENT_ERR_FAILURE Erase or Program Operation failed.

FLASH_EVENT_ERR_ONE_BIT A 1-bit error has been corrected when reading
the flash memory area by the sequencer.

◆ flash_id_code_mode_t

enum flash_id_code_mode_t

ID Code Modes for writing to ID code registers

Enumerator

FLASH_ID_CODE_MODE_UNLOCKED ID code is ignored.

FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERA
SE_SUPPORT

ID code is checked. All erase is available.

FLASH_ID_CODE_MODE_LOCKED ID code is checked.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,272 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Flash Interface

◆ flash_status_t

enum flash_status_t

Flash status

Enumerator

FLASH_STATUS_IDLE The flash is idle.

FLASH_STATUS_BUSY The flash is currently processing a command.

4.3.18 I2C Master Interface
Interfaces

Detailed Description

Interface for I2C master communication.

Summary
The I2C master interface provides a common API for I2C HAL drivers. The I2C master interface
supports:

Interrupt driven transmit/receive processing
Callback function support which can return an event code

Implemented by:

I2C Master on IIC (r_iic_master)

Data Structures

struct i2c_master_callback_args_t

struct i2c_master_status_t

struct i2c_master_cfg_t

struct i2c_master_api_t

struct i2c_master_instance_t

Typedefs

typedef void i2c_master_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,273 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

Enumerations

enum i2c_master_rate_t

enum i2c_master_addr_mode_t

enum i2c_master_event_t

Data Structure Documentation

◆ i2c_master_callback_args_t

struct i2c_master_callback_args_t

I2C callback parameter definition

Data Fields

void const * p_context Pointer to user-provided
context.

i2c_master_event_t event Event code.

◆ i2c_master_status_t

struct i2c_master_status_t

I2C status indicators

Data Fields

bool open True if driver is open.

◆ i2c_master_cfg_t

struct i2c_master_cfg_t

I2C configuration block

Data Fields

uint8_t channel

 Identifier recognizable by implementation. More...

i2c_master_rate_t rate

 Device's maximum clock rate from enum i2c_rate_t.

uint32_t slave

 The address of the slave device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,274 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

i2c_master_addr_mode_t addr_mode

 Indicates how slave fields should be interpreted.

uint8_t ipl

 Interrupt priority level. Same for RXI, TXI, TEI and ERI.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

transfer_instance_t const * p_transfer_tx

 DTC instance for I2C transmit.Set to NULL if unused. More...

transfer_instance_t const * p_transfer_rx

 DTC instance for I2C receive. Set to NULL if unused.

void(* p_callback)(i2c_master_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,275 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

 Pointer to the user-provided context.

void const * p_extend

 Any configuration data needed by the hardware. More...

Field Documentation

◆ channel

uint8_t i2c_master_cfg_t::channel

Identifier recognizable by implementation.

Generic configuration

◆ p_transfer_tx

transfer_instance_t const* i2c_master_cfg_t::p_transfer_tx

DTC instance for I2C transmit.Set to NULL if unused.

DTC support

◆ p_callback

void(* i2c_master_cfg_t::p_callback) (i2c_master_callback_args_t *p_args)

Pointer to callback function.

Parameters to control software behavior

◆ p_extend

void const* i2c_master_cfg_t::p_extend

Any configuration data needed by the hardware.

Implementation-specific configuration

◆ i2c_master_api_t

struct i2c_master_api_t

Interface definition for I2C access as master

Data Fields

fsp_err_t(* open)(i2c_master_ctrl_t *const p_ctrl, i2c_master_cfg_t const *const
p_cfg)

fsp_err_t(* read)(i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,276 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

fsp_err_t(* write)(i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

fsp_err_t(* abort)(i2c_master_ctrl_t *const p_ctrl)

fsp_err_t(* slaveAddressSet)(i2c_master_ctrl_t *const p_ctrl, uint32_t const
slave, i2c_master_addr_mode_t const addr_mode)

fsp_err_t(* callbackSet)(i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const
p_context, i2c_master_callback_args_t *const p_callback_memory)

fsp_err_t(* statusGet)(i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t
*p_status)

fsp_err_t(* close)(i2c_master_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* i2c_master_api_t::open) (i2c_master_ctrl_t *const p_ctrl, i2c_master_cfg_t const *const
p_cfg)

Opens the I2C Master driver and initializes the hardware.

Implemented as

R_IIC_MASTER_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,277 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ read

fsp_err_t(* i2c_master_api_t::read) (i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read operation on an I2C Master device.

Implemented as

R_IIC_MASTER_Read()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

[in] restart Specify if the restart
condition should be issued
after reading.

◆ write

fsp_err_t(* i2c_master_api_t::write) (i2c_master_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes, bool const restart)

Performs a write operation on an I2C Master device.

Implemented as

R_IIC_MASTER_Write()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

[in] restart Specify if the restart
condition should be issued
after writing.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,278 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ abort

fsp_err_t(* i2c_master_api_t::abort) (i2c_master_ctrl_t *const p_ctrl)

Performs a reset of the peripheral.

Implemented as

R_IIC_MASTER_Abort()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

◆ slaveAddressSet

fsp_err_t(* i2c_master_api_t::slaveAddressSet) (i2c_master_ctrl_t *const p_ctrl, uint32_t const slave,
i2c_master_addr_mode_t const addr_mode)

Sets address of the slave device without reconfiguring the bus.

Implemented as

R_IIC_MASTER_SlaveAddressSet()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

[in] slave_address Address of the slave device.

[in] address_mode Addressing mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,279 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ callbackSet

fsp_err_t(* i2c_master_api_t::callbackSet) (i2c_master_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_master_callback_args_t *), void const *const p_context,
i2c_master_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_IIC_MASTER_CallbackSet()
Parameters

[in] p_ctrl Pointer to the IIC Master
control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ statusGet

fsp_err_t(* i2c_master_api_t::statusGet) (i2c_master_ctrl_t *const p_api_ctrl, i2c_master_status_t
*p_status)

Gets the status of the configured I2C device.

Implemented as

R_IIC_MASTER_StatusGet()
Parameters

[in] p_ctrl Pointer to the IIC Master
control block.

[out] p_status Pointer to store current
status.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,280 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ close

fsp_err_t(* i2c_master_api_t::close) (i2c_master_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C Master device.

Implemented as

R_IIC_MASTER_Close()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_master_t::open
call.

◆ i2c_master_instance_t

struct i2c_master_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2c_master_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2c_master_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2c_master_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ i2c_master_ctrl_t

typedef void i2c_master_ctrl_t

I2C control block. Allocate an instance specific control block to pass into the I2C API calls.

Implemented as

iic_master_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,281 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Master Interface

◆ i2c_master_rate_t

enum i2c_master_rate_t

Communication speed options

Enumerator

I2C_MASTER_RATE_STANDARD 100 kHz

I2C_MASTER_RATE_FAST 400 kHz

I2C_MASTER_RATE_FASTPLUS 1 MHz

◆ i2c_master_addr_mode_t

enum i2c_master_addr_mode_t

Addressing mode options

Enumerator

I2C_MASTER_ADDR_MODE_7BIT Use 7-bit addressing mode.

I2C_MASTER_ADDR_MODE_10BIT Use 10-bit addressing mode.

◆ i2c_master_event_t

enum i2c_master_event_t

Callback events

Enumerator

I2C_MASTER_EVENT_ABORTED A transfer was aborted.

I2C_MASTER_EVENT_RX_COMPLETE A receive operation was completed
successfully.

I2C_MASTER_EVENT_TX_COMPLETE A transmit operation was completed
successfully.

4.3.19 I2C Slave Interface
Interfaces

Detailed Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,282 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

Interface for I2C slave communication.

Summary
The I2C slave interface provides a common API for I2C HAL drivers. The I2C slave interface supports:

Interrupt driven transmit/receive processing
Callback function support which returns a event codes

Implemented by:

I2C Slave on IIC (r_iic_slave)

Data Structures

struct i2c_slave_callback_args_t

struct i2c_slave_cfg_t

struct i2c_slave_api_t

struct i2c_slave_instance_t

Typedefs

typedef void i2c_slave_ctrl_t

Enumerations

enum i2c_slave_rate_t

enum i2c_slave_addr_mode_t

enum i2c_slave_event_t

Data Structure Documentation

◆ i2c_slave_callback_args_t

struct i2c_slave_callback_args_t

I2C callback parameter definition

Data Fields

void const * p_context Pointer to user-provided
context.

uint32_t bytes Number of received/transmitted
bytes in buffer.

i2c_slave_event_t event Event code.

◆ i2c_slave_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,283 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

struct i2c_slave_cfg_t

I2C configuration block

Data Fields

uint8_t channel

 Identifier recognizable by implementation. More...

i2c_slave_rate_t rate

 Device's maximum clock rate from enum i2c_rate_t.

uint16_t slave

 The address of the slave device.

i2c_slave_addr_mode_t addr_mode

 Indicates how slave fields should be interpreted.

bool general_call_enable

 Allow a General call from master.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,284 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

uint8_t ipl

 Interrupt priority level for RXI, TXI and TER interrupts.

uint8_t eri_ipl

 Interrupt priority level for ERI interrupt.

bool clock_stretching_enable

 Low Hold SCL during reception for the period between the 9th and
the 1st clock cycle.

void(* p_callback)(i2c_slave_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Any configuration data needed by the hardware. More...

Field Documentation

◆ channel

uint8_t i2c_slave_cfg_t::channel

Identifier recognizable by implementation.

Generic configuration

◆ p_callback

void(* i2c_slave_cfg_t::p_callback) (i2c_slave_callback_args_t *p_args)

Pointer to callback function.

Parameters to control software behavior

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,285 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ p_extend

void const* i2c_slave_cfg_t::p_extend

Any configuration data needed by the hardware.

Implementation-specific configuration

◆ i2c_slave_api_t

struct i2c_slave_api_t

Interface definition for I2C access as slave

Data Fields

fsp_err_t(* open)(i2c_slave_ctrl_t *const p_ctrl, i2c_slave_cfg_t const *const
p_cfg)

fsp_err_t(* read)(i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

fsp_err_t(* write)(i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes)

fsp_err_t(* callbackSet)(i2c_slave_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const
p_context, i2c_slave_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(i2c_slave_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,286 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ open

fsp_err_t(* i2c_slave_api_t::open) (i2c_slave_ctrl_t *const p_ctrl, i2c_slave_cfg_t const *const p_cfg)

Opens the I2C Slave driver and initializes the hardware.

Implemented as

R_IIC_SLAVE_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

◆ read

fsp_err_t(* i2c_slave_api_t::read) (i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Performs a read operation on an I2C Slave device.

Implemented as

R_IIC_SLAVE_Read()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_slave_api_t::open call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,287 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ write

fsp_err_t(* i2c_slave_api_t::write) (i2c_slave_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const
bytes)

Performs a write operation on an I2C Slave device.

Implemented as

R_IIC_SLAVE_Write()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_slave_api_t::open call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

◆ callbackSet

fsp_err_t(* i2c_slave_api_t::callbackSet) (i2c_slave_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2c_slave_callback_args_t *), void const *const p_context,
i2c_slave_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_IIC_SLAVE_CallbackSet()
Parameters

[in] p_ctrl Pointer to the IIC Slave
control block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,288 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ close

fsp_err_t(* i2c_slave_api_t::close) (i2c_slave_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C Slave device.

Implemented as

R_IIC_SLAVE_Close()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_slave_api_t::open call.

◆ i2c_slave_instance_t

struct i2c_slave_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2c_slave_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2c_slave_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2c_slave_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ i2c_slave_ctrl_t

typedef void i2c_slave_ctrl_t

I2C control block. Allocate an instance specific control block to pass into the I2C API calls.

Implemented as

iic_slave_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,289 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ i2c_slave_rate_t

enum i2c_slave_rate_t

Communication speed options

Enumerator

I2C_SLAVE_RATE_STANDARD 100 kHz

I2C_SLAVE_RATE_FAST 400 kHz

I2C_SLAVE_RATE_FASTPLUS 1 MHz

◆ i2c_slave_addr_mode_t

enum i2c_slave_addr_mode_t

Addressing mode options

Enumerator

I2C_SLAVE_ADDR_MODE_7BIT Use 7-bit addressing mode.

I2C_SLAVE_ADDR_MODE_10BIT Use 10-bit addressing mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,290 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2C Slave Interface

◆ i2c_slave_event_t

enum i2c_slave_event_t

Callback events

Enumerator

I2C_SLAVE_EVENT_ABORTED A transfer was aborted.

I2C_SLAVE_EVENT_RX_COMPLETE A receive operation was completed
successfully.

I2C_SLAVE_EVENT_TX_COMPLETE A transmit operation was completed
successfully.

I2C_SLAVE_EVENT_RX_REQUEST A read operation expected from slave.
Detected a write from master.

I2C_SLAVE_EVENT_TX_REQUEST A write operation expected from slave.
Detected a read from master.

I2C_SLAVE_EVENT_RX_MORE_REQUEST A read operation expected from slave. Master
sends out more data than configured to be
read in slave.

I2C_SLAVE_EVENT_TX_MORE_REQUEST A write operation expected from slave. Master
requests more data than configured to be
written by slave.

I2C_SLAVE_EVENT_GENERAL_CALL General Call address received from Master.
Detected a write from master.

4.3.20 I2S Interface
Interfaces

Detailed Description

Interface for I2S audio communication.

Summary
The I2S (Inter-IC Sound) interface provides APIs and definitions for I2S audio communication.

Known Implementations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,291 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

Serial Sound Interface (r_ssi)

Data Structures

struct i2s_callback_args_t

struct i2s_status_t

struct i2s_cfg_t

struct i2s_api_t

struct i2s_instance_t

Typedefs

typedef void i2s_ctrl_t

Enumerations

enum i2s_pcm_width_t

enum i2s_word_length_t

enum i2s_event_t

enum i2s_mode_t

enum i2s_mute_t

enum i2s_ws_continue_t

enum i2s_state_t

Data Structure Documentation

◆ i2s_callback_args_t

struct i2s_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
i2s_api_t::open function in
i2s_cfg_t.

i2s_event_t event The event can be used to
identify what caused the
callback (overflow or error).

◆ i2s_status_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,292 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

struct i2s_status_t

I2S status.

Data Fields

i2s_state_t state Current I2S state.

◆ i2s_cfg_t

struct i2s_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t channel

i2s_pcm_width_t pcm_width

 Audio PCM data width.

i2s_word_length_t word_length

 Audio word length, bits must be >= i2s_cfg_t::pcm_width bits.

i2s_ws_continue_t ws_continue

 Whether to continue WS transmission during idle state.

i2s_mode_t operating_mode

 Master or slave mode.

transfer_instance_t const * p_transfer_tx

transfer_instance_t const * p_transfer_rx

void(* p_callback)(i2s_callback_args_t *p_args)

void const * p_context

void const * p_extend

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,293 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

 Extension parameter for hardware specific settings.

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t idle_err_ipl

 Idle/Error interrupt priority.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type int_irq

 Idle/Error IRQ number.

Field Documentation

◆ channel

uint32_t i2s_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_transfer_tx

transfer_instance_t const* i2s_cfg_t::p_transfer_tx

To use DTC during write, link a DTC instance here. Set to NULL if unused.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,294 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ p_transfer_rx

transfer_instance_t const* i2s_cfg_t::p_transfer_rx

To use DTC during read, link a DTC instance here. Set to NULL if unused.

◆ p_callback

void(* i2s_cfg_t::p_callback) (i2s_callback_args_t *p_args)

Callback provided when an I2S ISR occurs. Set to NULL for no CPU interrupt.

◆ p_context

void const* i2s_cfg_t::p_context

Placeholder for user data. Passed to the user callback in i2s_callback_args_t.

◆ i2s_api_t

struct i2s_api_t

I2S functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

fsp_err_t(* stop)(i2s_ctrl_t *const p_ctrl)

fsp_err_t(* mute)(i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

fsp_err_t(* write)(i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const
bytes)

fsp_err_t(* read)(i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const
bytes)

fsp_err_t(* writeRead)(i2s_ctrl_t *const p_ctrl, void const *const p_src, void
*const p_dest, uint32_t const bytes)

fsp_err_t(* statusGet)(i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

fsp_err_t(* close)(i2s_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(i2s_ctrl_t *const p_api_ctrl,
void(*p_callback)(i2s_callback_args_t *), void const *const p_context,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,295 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

i2s_callback_args_t *const p_callback_memory)

Field Documentation

◆ open

fsp_err_t(* i2s_api_t::open) (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_SSI_Open()
Precondition

Peripheral clocks and any required output pins should be configured prior to calling this
function.

Note
To reconfigure after calling this function, call i2s_api_t::close first.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ stop

fsp_err_t(* i2s_api_t::stop) (i2s_ctrl_t *const p_ctrl)

Stop communication. Communication is stopped when callback is called with I2S_EVENT_IDLE.

Implemented as

R_SSI_Stop()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,296 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ mute

fsp_err_t(* i2s_api_t::mute) (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

Enable or disable mute.

Implemented as

R_SSI_Mute()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] mute_enable Whether to enable or disable
mute.

◆ write

fsp_err_t(* i2s_api_t::write) (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t const bytes)

Write I2S data. All transmit data is queued when callback is called with I2S_EVENT_TX_EMPTY.
Transmission is complete when callback is called with I2S_EVENT_IDLE.

Implemented as

R_SSI_Write()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,297 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ read

fsp_err_t(* i2s_api_t::read) (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const bytes)

Read I2S data. Reception is complete when callback is called with I2S_EVENT_RX_EMPTY.

Implemented as

R_SSI_Read()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
receive will stop at the
multiple of 8 below
requested bytes.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,298 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ writeRead

fsp_err_t(* i2s_api_t::writeRead) (i2s_ctrl_t *const p_ctrl, void const *const p_src, void *const
p_dest, uint32_t const bytes)

Simultaneously write and read I2S data. Transmission and reception are complete when callback is
called with I2S_EVENT_IDLE.

Implemented as

R_SSI_WriteRead()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffers. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8, and receive
will stop at the multiple of 8
below requested bytes.

◆ statusGet

fsp_err_t(* i2s_api_t::statusGet) (i2s_ctrl_t *const p_ctrl, i2s_status_t *const p_status)

Get current status and store it in provided pointer p_status.

Implemented as

R_SSI_StatusGet()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[out] p_status Current status of the driver.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,299 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ close

fsp_err_t(* i2s_api_t::close) (i2s_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Implemented as

R_SSI_Close()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

◆ callbackSet

fsp_err_t(* i2s_api_t::callbackSet) (i2s_ctrl_t *const p_api_ctrl, void(*p_callback)(i2s_callback_args_t
*), void const *const p_context, i2s_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_SSI_CallbackSet()
Parameters

[in] p_ctrl Pointer to the I2S control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ i2s_instance_t

struct i2s_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

i2s_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

i2s_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

i2s_api_t const * p_api Pointer to the API structure for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,300 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

this instance.

Typedef Documentation

◆ i2s_ctrl_t

typedef void i2s_ctrl_t

I2S control block. Allocate an instance specific control block to pass into the I2S API calls.

Implemented as

ssi_instance_ctrl_t

Enumeration Type Documentation

◆ i2s_pcm_width_t

enum i2s_pcm_width_t

Audio PCM width

Enumerator

I2S_PCM_WIDTH_8_BITS Using 8-bit PCM.

I2S_PCM_WIDTH_16_BITS Using 16-bit PCM.

I2S_PCM_WIDTH_18_BITS Using 18-bit PCM.

I2S_PCM_WIDTH_20_BITS Using 20-bit PCM.

I2S_PCM_WIDTH_22_BITS Using 22-bit PCM.

I2S_PCM_WIDTH_24_BITS Using 24-bit PCM.

I2S_PCM_WIDTH_32_BITS Using 24-bit PCM.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,301 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ i2s_word_length_t

enum i2s_word_length_t

Audio system word length.

Enumerator

I2S_WORD_LENGTH_8_BITS Using 8-bit system word length.

I2S_WORD_LENGTH_16_BITS Using 16-bit system word length.

I2S_WORD_LENGTH_24_BITS Using 24-bit system word length.

I2S_WORD_LENGTH_32_BITS Using 32-bit system word length.

I2S_WORD_LENGTH_48_BITS Using 48-bit system word length.

I2S_WORD_LENGTH_64_BITS Using 64-bit system word length.

I2S_WORD_LENGTH_128_BITS Using 128-bit system word length.

I2S_WORD_LENGTH_256_BITS Using 256-bit system word length.

◆ i2s_event_t

enum i2s_event_t

Events that can trigger a callback function

Enumerator

I2S_EVENT_IDLE Communication is idle.

I2S_EVENT_TX_EMPTY Transmit buffer is below FIFO trigger level.

I2S_EVENT_RX_FULL Receive buffer is above FIFO trigger level.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,302 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I2S Interface

◆ i2s_mode_t

enum i2s_mode_t

I2S communication mode

Enumerator

I2S_MODE_SLAVE Slave mode.

I2S_MODE_MASTER Master mode.

◆ i2s_mute_t

enum i2s_mute_t

Mute audio samples.

Enumerator

I2S_MUTE_OFF Disable mute.

I2S_MUTE_ON Enable mute.

◆ i2s_ws_continue_t

enum i2s_ws_continue_t

Whether to continue WS (word select line) transmission during idle state.

Enumerator

I2S_WS_CONTINUE_ON Enable WS continue mode.

I2S_WS_CONTINUE_OFF Disable WS continue mode.

◆ i2s_state_t

enum i2s_state_t

Possible status values returned by i2s_api_t::statusGet.

Enumerator

I2S_STATE_IN_USE I2S is in use.

I2S_STATE_STOPPED I2S is stopped.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,303 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

4.3.21 I/O Port Interface
Interfaces

Detailed Description

Interface for accessing I/O ports and configuring I/O functionality.

Summary
The IOPort shared interface provides the ability to access the IOPorts of a device at both bit and port
level. Port and pin direction can be changed.

IOPORT Interface description: I/O Ports (r_ioport)

Data Structures

struct ioport_pin_cfg_t

struct ioport_cfg_t

struct ioport_api_t

struct ioport_instance_t

Typedefs

typedef uint16_t ioport_size_t

 IO port size on this device. More...

typedef void ioport_ctrl_t

Enumerations

enum ioport_peripheral_t

enum ioport_ethernet_channel_t

enum ioport_ethernet_mode_t

enum ioport_cfg_options_t

enum ioport_pwpr_t

Data Structure Documentation

◆ ioport_pin_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,304 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

struct ioport_pin_cfg_t

Pin identifier and pin PFS pin configuration value

Data Fields

uint32_t pin_cfg Pin PFS configuration - Use
ioport_cfg_options_t parameters
to configure.

bsp_io_port_pin_t pin Pin identifier.

◆ ioport_cfg_t

struct ioport_cfg_t

Multiple pin configuration data for loading into PFS registers by R_IOPORT_Init()

Data Fields

uint16_t number_of_pins Number of pins for which there
is configuration data.

ioport_pin_cfg_t const * p_pin_cfg_data Pin configuration data.

◆ ioport_api_t

struct ioport_api_t

IOPort driver structure. IOPort functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t(* close)(ioport_ctrl_t *const p_ctrl)

fsp_err_t(* pinsCfg)(ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

fsp_err_t(* pinCfg)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t
cfg)

fsp_err_t(* pinEventInputRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_event)

fsp_err_t(* pinEventOutputWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t
pin, bsp_io_level_t pin_value)

fsp_err_t(* pinEthernetModeCfg)(ioport_ctrl_t *const p_ctrl,
ioport_ethernet_channel_t channel, ioport_ethernet_mode_t mode)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,305 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

fsp_err_t(* pinRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_value)

fsp_err_t(* pinWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t level)

fsp_err_t(* portDirectionSet)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t direction_values, ioport_size_t mask)

fsp_err_t(* portEventInputRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_event_data)

fsp_err_t(* portEventOutputWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

fsp_err_t(* portRead)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
*p_port_value)

fsp_err_t(* portWrite)(ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t value, ioport_size_t mask)

Field Documentation

◆ open

fsp_err_t(* ioport_api_t::open) (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

Initialize internal driver data and initial pin configurations. Called during startup. Do not call this API
during runtime. Use ioport_api_t::pinsCfg for runtime reconfiguration of multiple pins.

Implemented as

R_IOPORT_Open()
Parameters

[in] p_cfg Pointer to pin configuration
data array.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,306 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ close

fsp_err_t(* ioport_api_t::close) (ioport_ctrl_t *const p_ctrl)

Close the API.

Implemented as

R_IOPORT_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ pinsCfg

fsp_err_t(* ioport_api_t::pinsCfg) (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t *p_cfg)

Configure multiple pins.

Implemented as

R_IOPORT_PinsCfg()
Parameters

[in] p_cfg Pointer to pin configuration
data array.

◆ pinCfg

fsp_err_t(* ioport_api_t::pinCfg) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, uint32_t cfg)

Configure settings for an individual pin.

Implemented as

R_IOPORT_PinCfg()
Parameters

[in] pin Pin to be read.

[in] cfg Configuration options for the
pin.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,307 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ pinEventInputRead

fsp_err_t(* ioport_api_t::pinEventInputRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_event)

Read the event input data of the specified pin and return the level.

Implemented as

R_IOPORT_PinEventInputRead()
Parameters

[in] pin Pin to be read.

[in] p_pin_event Pointer to return the event
data.

◆ pinEventOutputWrite

fsp_err_t(* ioport_api_t::pinEventOutputWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t pin_value)

Write pin event data.

Implemented as

R_IOPORT_PinEventOutputWrite()
Parameters

[in] pin Pin event data is to be
written to.

[in] pin_value Level to be written to pin
output event.

◆ pinEthernetModeCfg

fsp_err_t(* ioport_api_t::pinEthernetModeCfg) (ioport_ctrl_t *const p_ctrl, ioport_ethernet_channel_t
channel, ioport_ethernet_mode_t mode)

Configure the PHY mode of the Ethernet channels.

Implemented as

R_IOPORT_EthernetModeCfg()
Parameters

[in] channel Channel configuration will be
set for.

[in] mode PHY mode to set the channel
to.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,308 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ pinRead

fsp_err_t(* ioport_api_t::pinRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
*p_pin_value)

Read level of a pin.

Implemented as

R_IOPORT_PinRead()
Parameters

[in] pin Pin to be read.

[in] p_pin_value Pointer to return the pin
level.

◆ pinWrite

fsp_err_t(* ioport_api_t::pinWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin, bsp_io_level_t
level)

Write specified level to a pin.

Implemented as

R_IOPORT_PinWrite()
Parameters

[in] pin Pin to be written to.

[in] level State to be written to the
pin.

◆ portDirectionSet

fsp_err_t(* ioport_api_t::portDirectionSet) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t direction_values, ioport_size_t mask)

Set the direction of one or more pins on a port.

Implemented as

R_IOPORT_PortDirectionSet()
Parameters

[in] port Port being configured.

[in] direction_values Value controlling direction of
pins on port (1 - output, 0 -
input).

[in] mask Mask controlling which pins
on the port are to be
configured.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,309 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ portEventInputRead

fsp_err_t(* ioport_api_t::portEventInputRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t *p_event_data)

Read captured event data for a port.

Implemented as

R_IOPORT_PortEventInputRead()
Parameters

[in] port Port to be read.

[in] p_event_data Pointer to return the event
data.

◆ portEventOutputWrite

fsp_err_t(* ioport_api_t::portEventOutputWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t event_data, ioport_size_t mask_value)

Write event output data for a port.

Implemented as

R_IOPORT_PortEventOutputWrite()
Parameters

[in] port Port event data will be
written to.

[in] event_data Data to be written as event
data to specified port.

[in] mask_value Each bit set to 1 in the mask
corresponds to that bit's
value in event data. being
written to port.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,310 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ portRead

fsp_err_t(* ioport_api_t::portRead) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
*p_port_value)

Read states of pins on the specified port.

Implemented as

R_IOPORT_PortRead()
Parameters

[in] port Port to be read.

[in] p_port_value Pointer to return the port
value.

◆ portWrite

fsp_err_t(* ioport_api_t::portWrite) (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port, ioport_size_t
value, ioport_size_t mask)

Write to multiple pins on a port.

Implemented as

R_IOPORT_PortWrite()
Parameters

[in] port Port to be written to.

[in] value Value to be written to the
port.

[in] mask Mask controlling which pins
on the port are written to.

◆ ioport_instance_t

struct ioport_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ioport_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ioport_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ioport_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,311 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_size_t

typedef uint16_t ioport_size_t

IO port size on this device.

IO port type used with ports

◆ ioport_ctrl_t

typedef void ioport_ctrl_t

IOPORT control block. Allocate an instance specific control block to pass into the IOPORT API calls.

Implemented as

ioport_instance_ctrl_t

Enumeration Type Documentation

◆ ioport_peripheral_t

enum ioport_peripheral_t

Superset of all peripheral functions.

Enumerator

IOPORT_PERIPHERAL_IO Pin will functions as an IO pin

IOPORT_PERIPHERAL_DEBUG Pin will function as a DEBUG pin

IOPORT_PERIPHERAL_AGT Pin will function as an AGT peripheral pin

IOPORT_PERIPHERAL_GPT0 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_GPT1 Pin will function as a GPT peripheral pin

IOPORT_PERIPHERAL_SCI0_2_4_6_8 Pin will function as an SCI peripheral pin

IOPORT_PERIPHERAL_SCI1_3_5_7_9 Pin will function as an SCI peripheral pin

IOPORT_PERIPHERAL_SPI Pin will function as a SPI peripheral pin

IOPORT_PERIPHERAL_IIC Pin will function as a IIC peripheral pin

IOPORT_PERIPHERAL_KEY Pin will function as a KEY peripheral pin

IOPORT_PERIPHERAL_CLKOUT_COMP_RTC Pin will function as a clock/comparator/RTC
peripheral pin

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,312 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

IOPORT_PERIPHERAL_CAC_AD Pin will function as a CAC/ADC peripheral pin

IOPORT_PERIPHERAL_BUS Pin will function as a BUS peripheral pin

IOPORT_PERIPHERAL_CTSU Pin will function as a CTSU peripheral pin

IOPORT_PERIPHERAL_LCDC Pin will function as a segment LCD peripheral
pin

IOPORT_PERIPHERAL_DALI Pin will function as a DALI peripheral pin

IOPORT_PERIPHERAL_CAN Pin will function as a CAN peripheral pin

IOPORT_PERIPHERAL_QSPI Pin will function as a QSPI peripheral pin

IOPORT_PERIPHERAL_SSI Pin will function as an SSI peripheral pin

IOPORT_PERIPHERAL_USB_FS Pin will function as a USB full speed peripheral
pin

IOPORT_PERIPHERAL_USB_HS Pin will function as a USB high speed
peripheral pin

IOPORT_PERIPHERAL_SDHI_MMC Pin will function as an SD/MMC peripheral pin

IOPORT_PERIPHERAL_ETHER_MII Pin will function as an Ethernet MMI peripheral
pin

IOPORT_PERIPHERAL_ETHER_RMII Pin will function as an Ethernet RMMI
peripheral pin

IOPORT_PERIPHERAL_PDC Pin will function as a PDC peripheral pin

IOPORT_PERIPHERAL_LCD_GRAPHICS Pin will function as a graphics LCD peripheral
pin

IOPORT_PERIPHERAL_TRACE Pin will function as a debug trace peripheral
pin

IOPORT_PERIPHERAL_OSPI Pin will function as a OSPI peripheral pin

IOPORT_PERIPHERAL_CEC Pin will function as a CEC peripheral pin

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,313 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_ethernet_channel_t

enum ioport_ethernet_channel_t

Superset of Ethernet channels.

Enumerator

IOPORT_ETHERNET_CHANNEL_0 Used to select Ethernet channel 0.

IOPORT_ETHERNET_CHANNEL_1 Used to select Ethernet channel 1.

IOPORT_ETHERNET_CHANNEL_END Marks end of enum - used by parameter
checking.

◆ ioport_ethernet_mode_t

enum ioport_ethernet_mode_t

Superset of Ethernet PHY modes.

Enumerator

IOPORT_ETHERNET_MODE_RMII Ethernet PHY mode set to MII.

IOPORT_ETHERNET_MODE_MII Ethernet PHY mode set to RMII.

IOPORT_ETHERNET_MODE_END Marks end of enum - used by parameter
checking.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,314 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_cfg_options_t

enum ioport_cfg_options_t

Options to configure pin functions

Enumerator

IOPORT_CFG_PORT_DIRECTION_INPUT Sets the pin direction to input (default)

IOPORT_CFG_PORT_DIRECTION_OUTPUT Sets the pin direction to output.

IOPORT_CFG_PORT_OUTPUT_LOW Sets the pin level to low.

IOPORT_CFG_PORT_OUTPUT_HIGH Sets the pin level to high.

IOPORT_CFG_PULLUP_ENABLE Enables the pin's internal pull-up.

IOPORT_CFG_PIM_TTL Enables the pin's input mode.

IOPORT_CFG_NMOS_ENABLE Enables the pin's NMOS open-drain output.

IOPORT_CFG_PMOS_ENABLE Enables the pin's PMOS open-drain ouput.

IOPORT_CFG_DRIVE_MID Sets pin drive output to medium.

IOPORT_CFG_DRIVE_HS_HIGH Sets pin drive output to high along with
supporting high speed.

IOPORT_CFG_DRIVE_MID_IIC Sets pin to drive output needed for IIC on a
20mA port.

IOPORT_CFG_DRIVE_HIGH Sets pin drive output to high.

IOPORT_CFG_EVENT_RISING_EDGE Sets pin event trigger to rising edge.

IOPORT_CFG_EVENT_FALLING_EDGE Sets pin event trigger to falling edge.

IOPORT_CFG_EVENT_BOTH_EDGES Sets pin event trigger to both edges.

IOPORT_CFG_IRQ_ENABLE Sets pin as an IRQ pin.

IOPORT_CFG_ANALOG_ENABLE Enables pin to operate as an analog pin.

IOPORT_CFG_PERIPHERAL_PIN Enables pin to operate as a peripheral pin.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,315 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > I/O Port Interface

◆ ioport_pwpr_t

enum ioport_pwpr_t

Enumerator

IOPORT_PFS_WRITE_DISABLE Disable PFS write access.

IOPORT_PFS_WRITE_ENABLE Enable PFS write access.

4.3.22 JPEG Codec Interface
Interfaces

Detailed Description

Interface for JPEG functions.

Data Structures

struct jpeg_encode_image_size_t

struct jpeg_callback_args_t

struct jpeg_cfg_t

struct jpeg_api_t

struct jpeg_instance_t

Typedefs

typedef void jpeg_ctrl_t

Enumerations

enum jpeg_color_space_t

enum jpeg_data_order_t

enum jpeg_status_t

enum jpeg_decode_pixel_format_t

enum jpeg_decode_subsample_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,316 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

Data Structure Documentation

◆ jpeg_encode_image_size_t

struct jpeg_encode_image_size_t

Image parameter structure

Data Fields

uint16_t horizontal_stride_pixels Horizontal stride.

uint16_t horizontal_resolution Horizontal Resolution in pixels.

uint16_t vertical_resolution Vertical Resolution in pixels.

◆ jpeg_callback_args_t

struct jpeg_callback_args_t

Callback status structure

Data Fields

jpeg_status_t status JPEG status.

uint32_t image_size JPEG image size.

void const * p_context Pointer to user-provided
context.

◆ jpeg_cfg_t

struct jpeg_cfg_t

User configuration structure, used in open function.

Data Fields

IRQn_Type jedi_irq

 Data transfer interrupt IRQ number.

IRQn_Type jdti_irq

 Decompression interrupt IRQ number.

uint8_t jdti_ipl

 Data transfer interrupt priority.

uint8_t jedi_ipl

 Decompression interrupt priority.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,317 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

jpeg_mode_t default_mode

 Mode to use at startup.

jpeg_data_order_t decode_input_data_order

 Input data stream byte order.

jpeg_data_order_t decode_output_data_order

 Output data stream byte order.

jpeg_decode_pixel_format_t pixel_format

 Pixel format.

uint8_t alpha_value

 Alpha value to be applied to decoded pixel data. Only valid for
ARGB8888 format.

void(* p_decode_callback)(jpeg_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_decode_context

 Placeholder for user data. Passed to user callback in
jpeg_callback_args_t.

jpeg_data_order_t encode_input_data_order

 Input data stream byte order.

jpeg_data_order_t encode_output_data_order

 Output data stream byte order.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,318 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

uint16_t dri_marker

 DRI Marker setting (0 = No DRI or RST marker)

uint16_t horizontal_resolution

 Horizontal resolution of input image.

uint16_t vertical_resolution

 Vertical resolution of input image.

uint16_t horizontal_stride_pixels

 Horizontal stride of input image.

uint8_t const * p_quant_luma_table

 Luma quantization table.

uint8_t const * p_quant_chroma_table

 Chroma quantization table.

uint8_t const * p_huffman_luma_ac_table

 Huffman AC table for luma.

uint8_t const * p_huffman_luma_dc_table

 Huffman DC table for luma.

uint8_t const * p_huffman_chroma_ac_table

 Huffman AC table for chroma.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,319 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

uint8_t const * p_huffman_chroma_dc_table

 Huffman DC table for chroma.

void(* p_encode_callback)(jpeg_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_encode_context

 Placeholder for user data. Passed to user callback in
jpeg_callback_args_t.

◆ jpeg_api_t

struct jpeg_api_t

JPEG functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(jpeg_ctrl_t *const p_ctrl, jpeg_cfg_t const *const p_cfg)

fsp_err_t(* inputBufferSet)(jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t
buffer_size)

fsp_err_t(* outputBufferSet)(jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t
buffer_size)

fsp_err_t(* statusGet)(jpeg_ctrl_t *const p_ctrl, jpeg_status_t *const p_status)

fsp_err_t(* close)(jpeg_ctrl_t *const p_ctrl)

fsp_err_t(* horizontalStrideSet)(jpeg_ctrl_t *const p_ctrl, uint32_t
horizontal_stride)

fsp_err_t(* pixelFormatGet)(jpeg_ctrl_t *const p_ctrl, jpeg_color_space_t *const
p_color_space)

fsp_err_t(* imageSubsampleSet)(jpeg_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,320 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

jpeg_decode_subsample_t vertical_subsample)

fsp_err_t(* linesDecodedGet)(jpeg_ctrl_t *const p_ctrl, uint32_t *const p_lines)

fsp_err_t(* imageSizeGet)(jpeg_ctrl_t *const p_ctrl, uint16_t *p_horizontal_size,
uint16_t *p_vertical_size)

fsp_err_t(* imageSizeSet)(jpeg_ctrl_t *const p_ctrl, jpeg_encode_image_size_t
*p_image_size)

fsp_err_t(* modeSet)(jpeg_ctrl_t *const p_ctrl, jpeg_mode_t mode)

Field Documentation

◆ open

fsp_err_t(* jpeg_api_t::open) (jpeg_ctrl_t *const p_ctrl, jpeg_cfg_t const *const p_cfg)

Initial configuration

Implemented as

R_JPEG_Open()
Precondition

none
Parameters

[in,out] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,321 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ inputBufferSet

fsp_err_t(* jpeg_api_t::inputBufferSet) (jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t buffer_size)

Assign input data buffer to JPEG codec.

Implemented as

R_JPEG_InputBufferSet()
Precondition

the JPEG codec module must have been opened properly.
Note

The buffer starting address must be 8-byte aligned.
Parameters

[in] p_ctrl Control block set in
jpeg_api_t::open call.

[in] p_buffer Pointer to the input buffer
space

[in] buffer_size Size of the input buffer

◆ outputBufferSet

fsp_err_t(* jpeg_api_t::outputBufferSet) (jpeg_ctrl_t *const p_ctrl, void *p_buffer, uint32_t
buffer_size)

Assign output buffer to JPEG codec for storing output data.

Implemented as

R_JPEG_OutputBufferSet()
Precondition

The JPEG codec module must have been opened properly.
Note

The buffer starting address must be 8-byte aligned. For the decoding process, the HLD driver automatically
computes the number of lines of the image to decoded so the output data fits into the given space. If the supplied
output buffer is not able to hold the entire frame, the application should call the Output Full Callback function so it
can be notified when additional buffer space is needed.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[in] p_buffer Pointer to the output buffer
space

[in] buffer_size Size of the output buffer

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,322 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ statusGet

fsp_err_t(* jpeg_api_t::statusGet) (jpeg_ctrl_t *const p_ctrl, jpeg_status_t *const p_status)

Retrieve current status of the JPEG codec module.

Implemented as

R_JPEG_StatusGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_api_t::open call.

[out] p_status JPEG module status

◆ close

fsp_err_t(* jpeg_api_t::close) (jpeg_ctrl_t *const p_ctrl)

Cancel an outstanding operation.

Implemented as

R_JPEG_Close()
Precondition

the JPEG codec module must have been opened properly.
Note

If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,323 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ horizontalStrideSet

fsp_err_t(* jpeg_api_t::horizontalStrideSet) (jpeg_ctrl_t *const p_ctrl, uint32_t horizontal_stride)

Configure the horizontal stride value.

Implemented as

R_JPEG_DecodeHorizontalStrideSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_api_t::open call.

[in] horizontal_stride Horizontal stride value to be
used for the decoded image
data.

[in] buffer_size Size of the output buffer

◆ pixelFormatGet

fsp_err_t(* jpeg_api_t::pixelFormatGet) (jpeg_ctrl_t *const p_ctrl, jpeg_color_space_t *const
p_color_space)

Get the input pixel format.

Implemented as

R_JPEG_DecodePixelFormatGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_api_t::open call.

[out] p_color_space JPEG input format.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,324 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ imageSubsampleSet

fsp_err_t(* jpeg_api_t::imageSubsampleSet) (jpeg_ctrl_t *const p_ctrl, jpeg_decode_subsample_t
horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure the horizontal and vertical subsample settings.

Implemented as

R_JPEG_DecodeImageSubsampleSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_api_t::open call.

[in] horizontal_subsample Horizontal subsample value

[in] vertical_subsample Vertical subsample value

◆ linesDecodedGet

fsp_err_t(* jpeg_api_t::linesDecodedGet) (jpeg_ctrl_t *const p_ctrl, uint32_t *const p_lines)

Return the number of lines decoded into the output buffer.

Implemented as

R_JPEG_DecodeLinesDecodedGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_api_t::open call.

[out] p_lines Number of lines decoded

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,325 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ imageSizeGet

fsp_err_t(* jpeg_api_t::imageSizeGet) (jpeg_ctrl_t *const p_ctrl, uint16_t *p_horizontal_size, uint16_t
*p_vertical_size)

Retrieve image size during decoding operation.

Implemented as

R_JPEG_DecodeImageSizeGet()
Precondition

the JPEG codec module must have been opened properly.
Note

If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[out] p_horizontal_size Image horizontal size, in
number of pixels.

[out] p_vertical_size Image vertical size, in
number of pixels.

◆ imageSizeSet

fsp_err_t(* jpeg_api_t::imageSizeSet) (jpeg_ctrl_t *const p_ctrl, jpeg_encode_image_size_t
*p_image_size)

Set image parameters to JPEG Codec

Implemented as

R_JPEG_EncodeImageSizeSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in,out] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_image_size Pointer to the RAW image
parameters

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,326 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ modeSet

fsp_err_t(* jpeg_api_t::modeSet) (jpeg_ctrl_t *const p_ctrl, jpeg_mode_t mode)

Switch between encode and decode mode or vice-versa.

Implemented as

R_JPEG_ModeSet()
Precondition

The JPEG codec module must have been opened properly. The JPEG Codec can only perform
one operation at a time and requires different configuration for encode and decode. This
function facilitates easy switching between the two modes in case both are needed in an
application.

Parameters
[in] p_ctrl Control block set in

jpeg_api_t::open call.

[in] mode Mode to switch to

◆ jpeg_instance_t

struct jpeg_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

jpeg_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

jpeg_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

jpeg_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ jpeg_ctrl_t

typedef void jpeg_ctrl_t

JPEG decode control block. Allocate an instance specific control block to pass into the JPEG decode
API calls.

Implemented as

jpeg_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,327 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ jpeg_color_space_t

enum jpeg_color_space_t

Configuration for this module Image color space definitions

Enumerator

JPEG_COLOR_SPACE_YCBCR444 Color Space YCbCr 444.

JPEG_COLOR_SPACE_YCBCR422 Color Space YCbCr 422.

JPEG_COLOR_SPACE_YCBCR420 Color Space YCbCr 420.

JPEG_COLOR_SPACE_YCBCR411 Color Space YCbCr 411.

◆ jpeg_data_order_t

enum jpeg_data_order_t

Multi-byte Data Format

Enumerator

JPEG_DATA_ORDER_NORMAL (1)(2)(3)(4)(5)(6)(7)(8) Normal byte order

JPEG_DATA_ORDER_BYTE_SWAP (2)(1)(4)(3)(6)(5)(8)(7) Byte Swap

JPEG_DATA_ORDER_WORD_SWAP (3)(4)(1)(2)(7)(8)(5)(6) Word Swap

JPEG_DATA_ORDER_WORD_BYTE_SWAP (4)(3)(2)(1)(8)(7)(6)(5) Word-Byte Swap

JPEG_DATA_ORDER_LONGWORD_SWAP (5)(6)(7)(8)(1)(2)(3)(4) Longword Swap

JPEG_DATA_ORDER_LONGWORD_BYTE_SWAP (6)(5)(8)(7)(2)(1)(4)(3) Longword Byte Swap

JPEG_DATA_ORDER_LONGWORD_WORD_SWAP (7)(8)(5)(6)(3)(4)(1)(2) Longword Word Swap

JPEG_DATA_ORDER_LONGWORD_WORD_BYTE_S
WAP

(8)(7)(6)(5)(4)(3)(2)(1) Longword Word Byte
Swap

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,328 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ jpeg_status_t

enum jpeg_status_t

JPEG HLD driver internal status information. The driver can simultaneously be in more than any one
status at the same time. Parse the status bit-fields using the definitions in this enum to determine
driver status

Enumerator

JPEG_STATUS_NONE JPEG codec module is not initialized.

JPEG_STATUS_IDLE JPEG Codec module is open but not running.

JPEG_STATUS_RUNNING JPEG Codec is running.

JPEG_STATUS_HEADER_PROCESSING JPEG Codec module is reading the JPEG header
information.

JPEG_STATUS_INPUT_PAUSE JPEG Codec paused waiting for more input
data.

JPEG_STATUS_OUTPUT_PAUSE JPEG Codec paused after it decoded the
number of lines specified by user.

JPEG_STATUS_IMAGE_SIZE_READY JPEG decoding operation obtained image size,
and paused.

JPEG_STATUS_ERROR JPEG Codec module encountered an error.

JPEG_STATUS_OPERATION_COMPLETE JPEG Codec has completed the operation.

◆ jpeg_decode_pixel_format_t

enum jpeg_decode_pixel_format_t

Pixel Data Format

Enumerator

JPEG_DECODE_PIXEL_FORMAT_ARGB8888 Pixel Data ARGB8888 format.

JPEG_DECODE_PIXEL_FORMAT_RGB565 Pixel Data RGB565 format.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,329 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > JPEG Codec Interface

◆ jpeg_decode_subsample_t

enum jpeg_decode_subsample_t

Data type for horizontal and vertical subsample settings. This setting applies only to the decoding
operation.

Enumerator

JPEG_DECODE_OUTPUT_NO_SUBSAMPLE No subsample. The image is decoded with no
reduction in size.

JPEG_DECODE_OUTPUT_SUBSAMPLE_HALF The output image size is reduced by half.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_QUAR
TER

The output image size is reduced to one-
quarter.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_EIGHT
H

The output image size is reduced to one-
eighth.

4.3.23 Key Matrix Interface
Interfaces

Detailed Description

Interface for key matrix functions.

Summary
The KEYMATRIX interface provides standard Key Matrix functionality including event generation on a
rising or falling edge for one or more channels at the same time. The generated event indicates all
channels that are active in that instant via a bit mask. This allows the interface to be used with a
matrix configuration or a one-to-one hardware implementation that is triggered on either a rising or
a falling edge.

Implemented by:

Key Interrupt (r_kint)

Data Structures

struct keymatrix_callback_args_t

struct keymatrix_cfg_t

struct keymatrix_api_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,330 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

struct keymatrix_instance_t

Typedefs

typedef void keymatrix_ctrl_t

Enumerations

enum keymatrix_trigger_t

Data Structure Documentation

◆ keymatrix_callback_args_t

struct keymatrix_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Holder for user data. Set in
keymatrix_api_t::open function
in keymatrix_cfg_t.

uint32_t channel_mask Bit vector representing the
physical hardware channel(s)
that caused the interrupt.

◆ keymatrix_cfg_t

struct keymatrix_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t channel_mask

 Key Input channel(s). Bit mask of channels to open.

keymatrix_trigger_t trigger

 Key Input trigger setting.

uint8_t ipl

 Interrupt priority level.

IRQn_Type irq

 NVIC IRQ number.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,331 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

void(* p_callback)(keymatrix_callback_args_t *p_args)

 Callback for key interrupt ISR.

void const * p_context

 Holder for user data. Passed to callback in keymatrix_user_cb_data_t.

void const * p_extend

 Extension parameter for hardware specific settings.

◆ keymatrix_api_t

struct keymatrix_api_t

Key Matrix driver structure. Key Matrix functions implemented at the HAL layer will use this API.

Data Fields

fsp_err_t(* open)(keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

fsp_err_t(* enable)(keymatrix_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(keymatrix_ctrl_t *const p_ctrl)

fsp_err_t(* close)(keymatrix_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,332 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

◆ open

fsp_err_t(* keymatrix_api_t::open) (keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

Initial configuration.

Implemented as

R_KINT_Open()
Parameters

[out] p_ctrl Pointer to control block.
Must be declared by user.
Value set in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ enable

fsp_err_t(* keymatrix_api_t::enable) (keymatrix_ctrl_t *const p_ctrl)

Enable Key interrupt

Implemented as

R_KINT_Enable()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

◆ disable

fsp_err_t(* keymatrix_api_t::disable) (keymatrix_ctrl_t *const p_ctrl)

Disable Key interrupt.

Implemented as

R_KINT_Disable()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,333 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

◆ close

fsp_err_t(* keymatrix_api_t::close) (keymatrix_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Implemented as

R_KINT_Close()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

◆ keymatrix_instance_t

struct keymatrix_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

keymatrix_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

keymatrix_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

keymatrix_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ keymatrix_ctrl_t

typedef void keymatrix_ctrl_t

Key matrix control block. Allocate an instance specific control block to pass into the key matrix API
calls.

Implemented as

kint_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,334 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Key Matrix Interface

◆ keymatrix_trigger_t

enum keymatrix_trigger_t

Trigger type: rising edge, falling edge

Enumerator

KEYMATRIX_TRIG_FALLING Falling edge trigger.

KEYMATRIX_TRIG_RISING Rising edge trigger.

4.3.24 Low Power Modes Interface
Interfaces

Detailed Description

Interface for accessing low power modes.

Summary
This section defines the API for the LPM (Low Power Mode) Driver. The LPM Driver provides functions
for controlling power consumption by configuring and transitioning to a low power mode. The LPM
driver supports configuration of MCU low power modes using the LPM hardware peripheral. The LPM
driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCUs.

The LPM interface is implemented by:

Low Power Modes (r_lpm)

Data Structures

struct lpm_cfg_t

struct lpm_api_t

struct lpm_instance_t

Typedefs

typedef void lpm_ctrl_t

Enumerations

enum lpm_mode_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,335 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

enum lpm_snooze_request_t

enum lpm_snooze_end_t

enum lpm_snooze_cancel_t

enum lpm_snooze_dtc_t

enum lpm_standby_wake_source_t

enum lpm_io_port_t

enum lpm_power_supply_t

enum lpm_deep_standby_cancel_edge_t

enum lpm_deep_standby_cancel_source_t

enum lpm_output_port_enable_t

Data Structure Documentation

◆ lpm_cfg_t

struct lpm_cfg_t

User configuration structure, used in open function

Data Fields

lpm_mode_t low_power_mode Low Power Mode

lpm_standby_wake_source_bits_
t

standby_wake_sources Bitwise list of sources to wake
from standby

lpm_snooze_request_t snooze_request_source Snooze request source

lpm_snooze_end_bits_t snooze_end_sources Bitwise list of snooze end
sources

lpm_snooze_cancel_t snooze_cancel_sources List of snooze cancel sources

lpm_snooze_dtc_t dtc_state_in_snooze State of DTC in snooze mode,
enabled or disabled

void const * p_extend Placeholder for extension.

◆ lpm_api_t

struct lpm_api_t

LPM driver structure. General LPM functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,336 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

fsp_err_t(* close)(lpm_ctrl_t *const p_api_ctrl)

fsp_err_t(* lowPowerReconfigure)(lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const
*const p_cfg)

fsp_err_t(* lowPowerModeEnter)(lpm_ctrl_t *const p_api_ctrl)

fsp_err_t(* ioKeepClear)(lpm_ctrl_t *const p_api_ctrl)

Field Documentation

◆ open

fsp_err_t(* lpm_api_t::open) (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const p_cfg)

Initialization function

Implemented as

R_LPM_Open()

◆ close

fsp_err_t(* lpm_api_t::close) (lpm_ctrl_t *const p_api_ctrl)

Initialization function

Implemented as

R_LPM_Close()

◆ lowPowerReconfigure

fsp_err_t(* lpm_api_t::lowPowerReconfigure) (lpm_ctrl_t *const p_api_ctrl, lpm_cfg_t const *const
p_cfg)

Configure a low power mode.

Implemented as

R_LPM_LowPowerReconfigure()
Parameters

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,337 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lowPowerModeEnter

fsp_err_t(* lpm_api_t::lowPowerModeEnter) (lpm_ctrl_t *const p_api_ctrl)

Enter low power mode (sleep/standby/deep standby) using WFI macro. Function will return after
waking from low power mode.

Implemented as

R_LPM_LowPowerModeEnter()

◆ ioKeepClear

fsp_err_t(* lpm_api_t::ioKeepClear) (lpm_ctrl_t *const p_api_ctrl)

Clear the IOKEEP bit after deep software standby.

Implemented as

R_LPM_IoKeepClear()

◆ lpm_instance_t

struct lpm_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

lpm_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

lpm_cfg_t const *const p_cfg Pointer to the configuration
structure for this instance.

lpm_api_t const *const p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ lpm_ctrl_t

typedef void lpm_ctrl_t

LPM control block. Allocate an instance specific control block to pass into the LPM API calls.

Implemented as

lpm_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,338 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_mode_t

enum lpm_mode_t

Low power modes

Enumerator

LPM_MODE_SLEEP Sleep mode.

LPM_MODE_STANDBY Software Standby mode.

LPM_MODE_STANDBY_SNOOZE Software Standby mode with Snooze mode
enabled.

LPM_MODE_DEEP Deep Software Standby mode.

◆ lpm_snooze_request_t

enum lpm_snooze_request_t

Snooze request sources

Enumerator

LPM_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request.

LPM_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,339 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request.

LPM_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request.

LPM_SNOOZE_REQUEST_KEY Enable KR snooze request.

LPM_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request.

LPM_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request.

LPM_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request.

LPM_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request.

LPM_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze
request.

LPM_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze
request.

LPM_SNOOZE_REQUEST_AGT3_UNDERFLOW Enable AGT3 underflow snooze request.

LPM_SNOOZE_REQUEST_AGT3_COMPARE_A Enable AGT3 compare match A snooze
request.

LPM_SNOOZE_REQUEST_AGT3_COMPARE_B Enable AGT3 compare match B snooze
request.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,340 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_snooze_end_t

enum lpm_snooze_end_t

Snooze end control

Enumerator

LPM_SNOOZE_END_STANDBY_WAKE_SOURCES Transition from Snooze to Normal mode
directly.

LPM_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow.

LPM_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion.

LPM_SNOOZE_END_DTC_TRANS_COMPLETE_NEG
ATED

Not Last DTC transmission completion.

LPM_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match.

LPM_SNOOZE_END_ADC0_COMPARE_MISMATCH ADC Channel 0 compare mismatch.

LPM_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match.

LPM_SNOOZE_END_ADC1_COMPARE_MISMATCH ADC 1 compare mismatch.

LPM_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch.

LPM_SNOOZE_END_AGT3_UNDERFLOW AGT3 underflow.

◆ lpm_snooze_cancel_t

enum lpm_snooze_cancel_t

Snooze cancel control

Enumerator

LPM_SNOOZE_CANCEL_SOURCE_NONE No snooze cancel source.

LPM_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM ADC Channel 0 window compare match.

LPM_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM

ADC Channel 0 window compare mismatch.

LPM_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE

DTC transfer completion.

LPM_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,341 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_snooze_dtc_t

enum lpm_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPM_SNOOZE_DTC_DISABLE Disable DTC operation.

LPM_SNOOZE_DTC_ENABLE Enable DTC operation.

◆ lpm_standby_wake_source_t

enum lpm_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPM_STANDBY_WAKE_SOURCE_IRQ0 IRQ0.

LPM_STANDBY_WAKE_SOURCE_IRQ1 IRQ1.

LPM_STANDBY_WAKE_SOURCE_IRQ2 IRQ2.

LPM_STANDBY_WAKE_SOURCE_IRQ3 IRQ3.

LPM_STANDBY_WAKE_SOURCE_IRQ4 IRQ4.

LPM_STANDBY_WAKE_SOURCE_IRQ5 IRQ5.

LPM_STANDBY_WAKE_SOURCE_IRQ6 IRQ6.

LPM_STANDBY_WAKE_SOURCE_IRQ7 IRQ7.

LPM_STANDBY_WAKE_SOURCE_IRQ8 IRQ8.

LPM_STANDBY_WAKE_SOURCE_IRQ9 IRQ9.

LPM_STANDBY_WAKE_SOURCE_IRQ10 IRQ10.

LPM_STANDBY_WAKE_SOURCE_IRQ11 IRQ11.

LPM_STANDBY_WAKE_SOURCE_IRQ12 IRQ12.

LPM_STANDBY_WAKE_SOURCE_IRQ13 IRQ13.

LPM_STANDBY_WAKE_SOURCE_IRQ14 IRQ14.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,342 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_STANDBY_WAKE_SOURCE_IRQ15 IRQ15.

LPM_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt.

LPM_STANDBY_WAKE_SOURCE_KEY Key interrupt.

LPM_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt.

LPM_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt.

LPM_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt.

LPM_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt.

LPM_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt.

LPM_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt.

LPM_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt.

LPM_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT3UD AGT3 underflow interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT3CA AGT3 compare match A interrupt.

LPM_STANDBY_WAKE_SOURCE_AGT3CB AGT3 compare match B interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,343 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_io_port_t

enum lpm_io_port_t

I/O port state after Deep Software Standby mode

Enumerator

LPM_IO_PORT_RESET When the Deep Software Standby mode is
canceled, the I/O ports are in the reset state

LPM_IO_PORT_NO_CHANGE When the Deep Software Standby mode is
canceled, the I/O ports are in the same state as
in the Deep Software Standby mode

◆ lpm_power_supply_t

enum lpm_power_supply_t

Power supply control

Enumerator

LPM_POWER_SUPPLY_DEEPCUT0 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is supplied in deep software
standby mode

LPM_POWER_SUPPLY_DEEPCUT1 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode

LPM_POWER_SUPPLY_DEEPCUT3 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode. In addition, LVD is disabled and
the low power function in a poweron reset
circuit is enabled

◆ lpm_deep_standby_cancel_edge_t

enum lpm_deep_standby_cancel_edge_t

Deep Standby Interrupt Edge

Enumerator

LPM_DEEP_STANDBY_CANCEL_SOURCE_EDGE_N
ONE

No options for a deep standby cancel source.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_RIS

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,344 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

ING IRQ0-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_FA
LLING

IRQ0-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_RIS
ING

IRQ1-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_FA
LLING

IRQ1-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_RIS
ING

IRQ2-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_FA
LLING

IRQ2-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_RIS
ING

IRQ3-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_FA
LLING

IRQ3-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_RIS
ING

IRQ4-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_FA
LLING

IRQ4-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_RIS
ING

IRQ5-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_FA
LLING

IRQ5-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_RIS
ING

IRQ6-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_FA
LLING

IRQ6-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_RIS
ING

IRQ7-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_FA
LLING

IRQ7-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_RIS
ING

IRQ8-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_FA
LLING

IRQ8-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_RIS
ING

IRQ9-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_FA
LLING

IRQ9-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_RI
SING

IRQ10-DS Pin Rising Edge.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,345 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_F
ALLING

IRQ10-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_RI
SING

IRQ11-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_F
ALLING

IRQ11-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_RI
SING

IRQ12-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_F
ALLING

IRQ12-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_RI
SING

IRQ13-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_F
ALLING

IRQ13-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_RI
SING

IRQ14-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_F
ALLING

IRQ14-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_RI
SING

IRQ14-DS Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_F
ALLING

IRQ14-DS Pin Falling Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1_RI
SING

LVD1 Rising Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1_FA
LLING

LVD1 Falling Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2_RI
SING

LVD2 Rising Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2_FA
LLING

LVD2 Falling Slope.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI_RISI
NG

NMI Pin Rising Edge.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI_FAL
LING

NMI Pin Falling Edge.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,346 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

◆ lpm_deep_standby_cancel_source_t

enum lpm_deep_standby_cancel_source_t

Deep Standby cancel sources

Enumerator

LPM_DEEP_STANDBY_CANCEL_SOURCE_RESET_O
NLY

Cancel deep standby only by reset.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 IRQ0.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 IRQ1.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 IRQ2.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 IRQ3.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 IRQ4.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 IRQ5.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 IRQ6.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 IRQ7.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 IRQ8.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 IRQ9.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ10 IRQ10.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 IRQ11.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ12 IRQ12.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ13 IRQ13.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ14 IRQ14.

LPM_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 IRQ15.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD1 LVD1.

LPM_DEEP_STANDBY_CANCEL_SOURCE_LVD2 LVD2.

LPM_DEEP_STANDBY_CANCEL_SOURCE_RTC_INT
ERVAL

RTC Interval Interrupt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,347 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Power Modes Interface

LPM_DEEP_STANDBY_CANCEL_SOURCE_RTC_ALA
RM

RTC Alarm Interrupt.

LPM_DEEP_STANDBY_CANCEL_SOURCE_NMI NMI.

LPM_DEEP_STANDBY_CANCEL_SOURCE_USBFS USBFS Suspend/Resume.

LPM_DEEP_STANDBY_CANCEL_SOURCE_USBHS USBHS Suspend/Resume.

LPM_DEEP_STANDBY_CANCEL_SOURCE_AGT1 AGT1 Underflow.

◆ lpm_output_port_enable_t

enum lpm_output_port_enable_t

Output port enable

Enumerator

LPM_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE 0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPM_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

4.3.25 Low Voltage Detection Interface
Interfaces

Detailed Description

Interface for Low Voltage Detection.

Summary
The LVD driver provides functions for configuring the LVD voltage monitors and detectors.

Implemented by:

Low Voltage Detection (r_lvd)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,348 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

Data Structures

struct lvd_status_t

struct lvd_callback_args_t

struct lvd_cfg_t

struct lvd_api_t

struct lvd_instance_t

Typedefs

typedef void lvd_ctrl_t

Enumerations

enum lvd_threshold_t

enum lvd_response_t

enum lvd_voltage_slope_t

enum lvd_sample_clock_t

enum lvd_negation_delay_t

enum lvd_threshold_crossing_t

enum lvd_current_state_t

Data Structure Documentation

◆ lvd_status_t

struct lvd_status_t

Current state of a voltage monitor.

Data Fields

lvd_threshold_crossing_t crossing_detected Threshold crossing detection
(latched)

lvd_current_state_t current_state Instantaneous status of
monitored voltage (above or
below threshold)

◆ lvd_callback_args_t

struct lvd_callback_args_t

LVD callback parameter definition

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,349 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

Data Fields

uint32_t monitor_number Monitor number.

lvd_current_state_t current_state Current state of the voltage
monitor.

void const * p_context Placeholder for user data.

◆ lvd_cfg_t

struct lvd_cfg_t

LVD configuration structure

Data Fields

uint32_t monitor_number

lvd_threshold_t voltage_threshold

lvd_response_t detection_response

lvd_voltage_slope_t voltage_slope

lvd_negation_delay_t negation_delay

lvd_sample_clock_t sample_clock_divisor

IRQn_Type irq

uint8_t monitor_ipl

void(* p_callback)(lvd_callback_args_t *p_args)

void const * p_context

void const * p_extend

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,350 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ monitor_number

uint32_t lvd_cfg_t::monitor_number

Monitor number, 1, 2, ...

◆ voltage_threshold

lvd_threshold_t lvd_cfg_t::voltage_threshold

Threshold for out of range voltage detection

◆ detection_response

lvd_response_t lvd_cfg_t::detection_response

Response on detecting a threshold crossing

◆ voltage_slope

lvd_voltage_slope_t lvd_cfg_t::voltage_slope

Direction of voltage crossing that will trigger a detection (Rising Edge, Falling Edge, Both).

◆ negation_delay

lvd_negation_delay_t lvd_cfg_t::negation_delay

Negation of LVD signal follows reset or voltage in range

◆ sample_clock_divisor

lvd_sample_clock_t lvd_cfg_t::sample_clock_divisor

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

◆ irq

IRQn_Type lvd_cfg_t::irq

Interrupt number.

◆ monitor_ipl

uint8_t lvd_cfg_t::monitor_ipl

Interrupt priority level.

◆ p_callback

void(* lvd_cfg_t::p_callback) (lvd_callback_args_t *p_args)

User function to be called from interrupt

◆ p_context

void const* lvd_cfg_t::p_context

Placeholder for user data. Passed to the user callback in

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,351 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ p_extend

void const* lvd_cfg_t::p_extend

Extension parameter for hardware specific settings

◆ lvd_api_t

struct lvd_api_t

LVD driver API structure. LVD driver functions implemented at the HAL layer will adhere to this API.

Data Fields

fsp_err_t(* open)(lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

fsp_err_t(* statusGet)(lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

fsp_err_t(* statusClear)(lvd_ctrl_t *const p_ctrl)

fsp_err_t(* callbackSet)(lvd_ctrl_t *const p_api_ctrl,
void(*p_callback)(lvd_callback_args_t *), void const *const p_context,
lvd_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(lvd_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* lvd_api_t::open) (lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

Initializes a low voltage detection driver according to the passed-in configuration structure.

Implemented as

R_LVD_Open()
Parameters

[in] p_ctrl Pointer to control structure
for the driver instance

[in] p_cfg Pointer to the configuration
structure for the driver
instance

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,352 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ statusGet

fsp_err_t(* lvd_api_t::statusGet) (lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

Get the current state of the monitor, (threshold crossing detected, voltage currently above or
below threshold). Must be used if the peripheral was initialized with lvd_response_t set to
LVD_RESPONSE_NONE.

Implemented as

R_LVD_StatusGet()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

[in,out] p_lvd_status Pointer to a lvd_status_t
structure

◆ statusClear

fsp_err_t(* lvd_api_t::statusClear) (lvd_ctrl_t *const p_ctrl)

Clears the latched status of the monitor. Must be used if the peripheral was initialized with
lvd_response_t set to LVD_RESPONSE_NONE.

Implemented as

R_LVD_StatusClear()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,353 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ callbackSet

fsp_err_t(* lvd_api_t::callbackSet) (lvd_ctrl_t *const p_api_ctrl, void(*p_callback)(lvd_callback_args_t
*), void const *const p_context, lvd_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_LVD_CallbackSet()
Parameters

[in] p_ctrl Pointer to the LVD control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* lvd_api_t::close) (lvd_ctrl_t *const p_ctrl)

Disables the LVD peripheral. Closes the driver instance.

Implemented as

R_LVD_Close()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

◆ lvd_instance_t

struct lvd_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

lvd_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

lvd_cfg_t const * p_cfg Pointer to the configuration
structure for this interface
instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,354 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

lvd_api_t const * p_api Pointer to the API structure for
this interface instance.

Typedef Documentation

◆ lvd_ctrl_t

typedef void lvd_ctrl_t

LVD control block. Allocate an instance specific control block to pass into the LVD API calls.

Implemented as

lvd_instance_ctrl_t

Enumeration Type Documentation

◆ lvd_threshold_t

enum lvd_threshold_t

Register definitions, common services, and error codes. Voltage detection level The thresholds
supported by each MCU are in the MCU User's Manual as well as in the r_lvd module description on
the stack tab of the RA project.

Enumerator

LVD_THRESHOLD_MONITOR_1_LEVEL_4_29V 4.29V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_14V 4.14V

LVD_THRESHOLD_MONITOR_1_LEVEL_4_02V 4.02V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_84V 3.84V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_10V 3.10V

LVD_THRESHOLD_MONITOR_1_LEVEL_3_00V 3.00V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_90V 2.90V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_79V 2.79V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_68V 2.68V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_58V 2.58V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_48V 2.48V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_20V 2.20V

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,355 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

LVD_THRESHOLD_MONITOR_1_LEVEL_1_96V 1.96V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_86V 1.86V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_75V 1.75V

LVD_THRESHOLD_MONITOR_1_LEVEL_1_65V 1.65V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_99V 2.99V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_92V 2.92V

LVD_THRESHOLD_MONITOR_1_LEVEL_2_85V 2.85V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_29V 4.29V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_14V 4.14V

LVD_THRESHOLD_MONITOR_2_LEVEL_4_02V 4.02V

LVD_THRESHOLD_MONITOR_2_LEVEL_3_84V 3.84V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_99V 2.99V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_92V 2.92V

LVD_THRESHOLD_MONITOR_2_LEVEL_2_85V 2.85V

◆ lvd_response_t

enum lvd_response_t

Response types for handling threshold crossing event.

Enumerator

LVD_RESPONSE_NMI Non-maskable interrupt.

LVD_RESPONSE_INTERRUPT Maskable interrupt.

LVD_RESPONSE_RESET Reset.

LVD_RESPONSE_NONE No response, status must be requested via
statusGet function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,356 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ lvd_voltage_slope_t

enum lvd_voltage_slope_t

The direction from which Vcc must cross the threshold to trigger a detection (rising, falling, or
both).

Enumerator

LVD_VOLTAGE_SLOPE_RISING When VCC >= Vdet2 (rise) is detected.

LVD_VOLTAGE_SLOPE_FALLING When VCC < Vdet2 (drop) is detected.

LVD_VOLTAGE_SLOPE_BOTH When drop and rise are detected.

◆ lvd_sample_clock_t

enum lvd_sample_clock_t

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

Enumerator

LVD_SAMPLE_CLOCK_LOCO_DIV_2 Digital filter sample clock is LOCO divided by 2.

LVD_SAMPLE_CLOCK_LOCO_DIV_4 Digital filter sample clock is LOCO divided by 4.

LVD_SAMPLE_CLOCK_LOCO_DIV_8 Digital filter sample clock is LOCO divided by 8.

LVD_SAMPLE_CLOCK_LOCO_DIV_16 Digital filter sample clock is LOCO divided by
16.

LVD_SAMPLE_CLOCK_DISABLED Digital filter is disabled.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,357 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Low Voltage Detection Interface

◆ lvd_negation_delay_t

enum lvd_negation_delay_t

Negation delay of LVD reset signal follows reset or voltage in range

Enumerator

LVD_NEGATION_DELAY_FROM_VOLTAGE Negation follows a stabilization time (tLVDn)
after VCC > Vdet1 is detected. If a transition to
software standby or deep software standby is
to be made, the only possible value for the RN
bit is LVD_NEGATION_DELAY_FROM_VOLTAGE

LVD_NEGATION_DELAY_FROM_RESET Negation follows a stabilization time (tLVDn)
after assertion of the LVDn reset. If a transition
to software standby or deep software standby
is to be made, the only possible value for the
RN bit is
LVD_NEGATION_DELAY_FROM_VOLTAGE

◆ lvd_threshold_crossing_t

enum lvd_threshold_crossing_t

Threshold crossing detection (latched)

Enumerator

LVD_THRESHOLD_CROSSING_NOT_DETECTED Threshold crossing has not been detected.

LVD_THRESHOLD_CROSSING_DETECTED Threshold crossing has been detected.

◆ lvd_current_state_t

enum lvd_current_state_t

Instantaneous status of VCC (above or below threshold)

Enumerator

LVD_CURRENT_STATE_BELOW_THRESHOLD VCC < threshold.

LVD_CURRENT_STATE_ABOVE_THRESHOLD VCC >= threshold or monitor is disabled.

4.3.26 OPAMP Interface
Interfaces

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,358 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > OPAMP Interface

Detailed Description

Interface for Operational Amplifiers.

Summary
The OPAMP interface provides standard operational amplifier functionality, including starting and
stopping the amplifier.

Implemented by: Operational Amplifier (r_opamp)

Data Structures

struct opamp_trim_args_t

struct opamp_info_t

struct opamp_status_t

struct opamp_cfg_t

struct opamp_api_t

struct opamp_instance_t

Typedefs

typedef void opamp_ctrl_t

Enumerations

enum opamp_trim_cmd_t

enum opamp_trim_input_t

Data Structure Documentation

◆ opamp_trim_args_t

struct opamp_trim_args_t

OPAMP trim arguments.

Data Fields

uint8_t channel Channel.

opamp_trim_input_t input Which input of the channel
above.

◆ opamp_info_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,359 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > OPAMP Interface

struct opamp_info_t

OPAMP information.

Data Fields

uint32_t min_stabilization_wait_us Minimum stabilization wait time
in microseconds.

◆ opamp_status_t

struct opamp_status_t

OPAMP status.

Data Fields

uint32_t operating_channel_mask Bitmask of channels currently
operating.

◆ opamp_cfg_t

struct opamp_cfg_t

OPAMP general configuration.

Data Fields

void const * p_extend Extension parameter for
hardware specific settings.

◆ opamp_api_t

struct opamp_api_t

OPAMP functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(opamp_ctrl_t *const p_ctrl, opamp_cfg_t const *const p_cfg)

fsp_err_t(* start)(opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

fsp_err_t(* stop)(opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

fsp_err_t(* trim)(opamp_ctrl_t *const p_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

fsp_err_t(* infoGet)(opamp_ctrl_t *const p_ctrl, opamp_info_t *const p_info)

fsp_err_t(* statusGet)(opamp_ctrl_t *const p_ctrl, opamp_status_t *const
p_status)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,360 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > OPAMP Interface

fsp_err_t(* close)(opamp_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* opamp_api_t::open) (opamp_ctrl_t *const p_ctrl, opamp_cfg_t const *const p_cfg)

Initialize the operational amplifier.

Implemented as

R_OPAMP_Open()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_cfg Pointer to configuration

◆ start

fsp_err_t(* opamp_api_t::start) (opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

Start the op-amp(s).

Implemented as

R_OPAMP_Start()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] channel_mask Bitmask of channels to start

◆ stop

fsp_err_t(* opamp_api_t::stop) (opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

Stop the op-amp(s).

Implemented as

R_OPAMP_Stop()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] channel_mask Bitmask of channels to stop

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,361 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > OPAMP Interface

◆ trim

fsp_err_t(* opamp_api_t::trim) (opamp_ctrl_t *const p_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

Trim the op-amp(s). Not supported on all MCUs. See implementation for procedure details.

Implemented as

R_OPAMP_Trim()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] cmd Trim command

[in] p_args Pointer to arguments for the
command

◆ infoGet

fsp_err_t(* opamp_api_t::infoGet) (opamp_ctrl_t *const p_ctrl, opamp_info_t *const p_info)

Provide information such as the recommended minimum stabilization wait time.

Implemented as

R_OPAMP_InfoGet()
Parameters

[in] p_ctrl Pointer to instance control
block

[out] p_info OPAMP information stored
here

◆ statusGet

fsp_err_t(* opamp_api_t::statusGet) (opamp_ctrl_t *const p_ctrl, opamp_status_t *const p_status)

Provide status of each op-amp channel.

Implemented as

R_OPAMP_StatusGet()
Parameters

[in] p_ctrl Pointer to instance control
block

[out] p_status Status stored here

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,362 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > OPAMP Interface

◆ close

fsp_err_t(* opamp_api_t::close) (opamp_ctrl_t *const p_ctrl)

Close the specified OPAMP unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Implemented as

R_OPAMP_Close()
Parameters

[in] p_ctrl Pointer to instance control
block

◆ opamp_instance_t

struct opamp_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

opamp_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

opamp_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

opamp_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ opamp_ctrl_t

typedef void opamp_ctrl_t

OPAMP control block. Allocate using driver instance control structure from driver instance header
file.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,363 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > OPAMP Interface

◆ opamp_trim_cmd_t

enum opamp_trim_cmd_t

Includes board and MCU related header files. Trim command.

Enumerator

OPAMP_TRIM_CMD_START Initialize trim state machine.

OPAMP_TRIM_CMD_NEXT_STEP Move to next step in state machine.

OPAMP_TRIM_CMD_CLEAR_BIT Clear trim bit.

◆ opamp_trim_input_t

enum opamp_trim_input_t

Trim input.

Enumerator

OPAMP_TRIM_INPUT_PCH Trim non-inverting (+) input.

OPAMP_TRIM_INPUT_NCH Trim inverting (-) input.

4.3.27 PDC Interface
Interfaces

Detailed Description

Interface for PDC functions.

Summary
The PDC interface provides the functionality for capturing an image from an image sensor/camera.
When a capture is complete a transfer complete interrupt is triggered.

Implemented by:

Parallel Data Capture (r_pdc)

Data Structures

struct pdc_callback_args_t

struct pdc_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,364 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PDC Interface

struct pdc_api_t

struct pdc_instance_t

Typedefs

typedef void pdc_ctrl_t

Enumerations

enum pdc_clock_division_t

enum pdc_endian_t

enum pdc_hsync_polarity_t

enum pdc_vsync_polarity_t

enum pdc_event_t

Data Structure Documentation

◆ pdc_callback_args_t

struct pdc_callback_args_t

Callback function parameter data

Data Fields

pdc_event_t event Event causing the callback.

uint8_t * p_buffer Pointer to buffer containing the
captured data.

void const * p_context Placeholder for user data. Set in
pdc_api_t::open function in
pdc_cfg_t.

◆ pdc_cfg_t

struct pdc_cfg_t

PDC configuration parameters.

Data Fields

uint16_t x_capture_start_pixel

 Horizontal position to start capture.

uint16_t x_capture_pixels

 Number of horizontal pixels to capture.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,365 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PDC Interface

uint16_t y_capture_start_pixel

 Vertical position to start capture.

uint16_t y_capture_pixels

 Number of vertical lines/pixels to capture.

pdc_clock_division_t clock_division

 Clock divider.

pdc_endian_t endian

 Endian of capture data.

pdc_hsync_polarity_t hsync_polarity

 Polarity of HSYNC input.

pdc_vsync_polarity_t vsync_polarity

 Polarity of VSYNC input.

uint8_t * p_buffer

 Pointer to buffer to write image into.

uint8_t bytes_per_pixel

 Number of bytes per pixel.

uint8_t pdc_ipl

 PDC interrupt priority.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,366 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PDC Interface

uint8_t transfer_req_ipl

 Transfer interrupt priority.

IRQn_Type pdc_irq

 PDC IRQ number.

IRQn_Type transfer_req_irq

 Transfer request IRQ number.

transfer_instance_t const * p_lower_lvl_transfer

 Pointer to the transfer instance the PDC should use.

void(* p_callback)(pdc_callback_args_t *p_args)

 Callback provided when a PDC transfer ISR occurs.

void const * p_context

 User defined context passed to callback function.

void const * p_extend

 Placeholder for user data.

◆ pdc_api_t

struct pdc_api_t

PDC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(pdc_ctrl_t *const p_ctrl, pdc_cfg_t const *const p_cfg)

fsp_err_t(* close)(pdc_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,367 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PDC Interface

fsp_err_t(* captureStart)(pdc_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

Field Documentation

◆ open

fsp_err_t(* pdc_api_t::open) (pdc_ctrl_t *const p_ctrl, pdc_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_PDC_Open()
Note

To reconfigure after calling this function, call pdc_api_t::close first.
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* pdc_api_t::close) (pdc_ctrl_t *const p_ctrl)

Closes the driver and allows reconfiguration. May reduce power consumption.

Implemented as

R_PDC_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ captureStart

fsp_err_t(* pdc_api_t::captureStart) (pdc_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

Start a capture.

Implemented as

R_PDC_CaptureStart()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_buffer Pointer to store captured
image data.

◆ pdc_instance_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,368 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PDC Interface

struct pdc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

pdc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

pdc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

pdc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ pdc_ctrl_t

typedef void pdc_ctrl_t

PDC control block. Allocate an instance specific control block to pass into the PDC API calls.

Implemented as

pdc_instance_ctrl_t

Enumeration Type Documentation

◆ pdc_clock_division_t

enum pdc_clock_division_t

Clock divider applied to PDC clock to provide PCKO output frequency

Enumerator

PDC_CLOCK_DIVISION_2 CLK / 2.

PDC_CLOCK_DIVISION_4 CLK / 4.

PDC_CLOCK_DIVISION_6 CLK / 6.

PDC_CLOCK_DIVISION_8 CLK / 8.

PDC_CLOCK_DIVISION_10 CLK / 10.

PDC_CLOCK_DIVISION_12 CLK / 12.

PDC_CLOCK_DIVISION_14 CLK / 14.

PDC_CLOCK_DIVISION_16 CLK / 16.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,369 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PDC Interface

◆ pdc_endian_t

enum pdc_endian_t

Endian of captured data

Enumerator

PDC_ENDIAN_LITTLE Data is in little endian format.

PDC_ENDIAN_BIG Data is in big endian format.

◆ pdc_hsync_polarity_t

enum pdc_hsync_polarity_t

Polarity of input HSYNC signal

Enumerator

PDC_HSYNC_POLARITY_HIGH HSYNC signal is active high.

PDC_HSYNC_POLARITY_LOW HSYNC signal is active low.

◆ pdc_vsync_polarity_t

enum pdc_vsync_polarity_t

Polarity of input VSYNC signal

Enumerator

PDC_VSYNC_POLARITY_HIGH VSYNC signal is active high.

PDC_VSYNC_POLARITY_LOW VSYNC signal is active low.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,370 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PDC Interface

◆ pdc_event_t

enum pdc_event_t

PDC events

Enumerator

PDC_EVENT_TRANSFER_COMPLETE Complete frame transferred by DMAC/DTC.

PDC_EVENT_RX_DATA_READY Receive data ready interrupt.

PDC_EVENT_FRAME_END Frame end interrupt.

PDC_EVENT_ERR_OVERRUN Overrun interrupt.

PDC_EVENT_ERR_UNDERRUN Underrun interrupt.

PDC_EVENT_ERR_V_SET Vertical line setting error interrupt.

PDC_EVENT_ERR_H_SET Horizontal byte number setting error interrupt.

4.3.28 POEG Interface
Interfaces

Detailed Description

Interface for the Port Output Enable for GPT.

Defines the API and data structures for the Port Output Enable for GPT (POEG) interface.

Summary
The POEG disables GPT output pins based on configurable events.

Implemented by: Port Output Enable for GPT (r_poeg)

Data Structures

struct poeg_status_t

struct poeg_callback_args_t

struct poeg_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,371 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

struct poeg_api_t

struct poeg_instance_t

Typedefs

typedef void poeg_ctrl_t

Enumerations

enum poeg_state_t

enum poeg_trigger_t

enum poeg_gtetrg_polarity_t

enum poeg_gtetrg_noise_filter_t

Data Structure Documentation

◆ poeg_status_t

struct poeg_status_t

POEG status

Data Fields

poeg_state_t state Current state of POEG.

◆ poeg_callback_args_t

struct poeg_callback_args_t

Callback function parameter data.

Data Fields

void const * p_context Placeholder for user data, set in
poeg_cfg_t.

◆ poeg_cfg_t

struct poeg_cfg_t

User configuration structure, used in the open function.

Data Fields

poeg_trigger_t trigger

 Select one or more triggers for the POEG.

poeg_gtetrg_polarity_t polarity

 Select the polarity for the GTETRG pin.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,372 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

poeg_gtetrg_noise_filter_t noise_filter

 Configure the GTETRG noise filter.

void(* p_callback)(poeg_callback_args_t *p_args)

void const * p_context

uint32_t channel

 Channel 0 corresponds to GTETRGA, 1 to GTETRGB, etc.

IRQn_Type irq

 NVIC interrupt number assigned to this instance.

uint8_t ipl

 POEG interrupt priority.

Field Documentation

◆ p_callback

void(* poeg_cfg_t::p_callback) (poeg_callback_args_t *p_args)

Callback called when a POEG interrupt occurs.

◆ p_context

void const* poeg_cfg_t::p_context

Placeholder for user data. Passed to the user callback in poeg_callback_args_t.

◆ poeg_api_t

struct poeg_api_t

Port Output Enable for GPT (POEG) API structure. POEG functions implemented at the HAL layer will
follow this API.

Data Fields

fsp_err_t(* open)(poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const p_cfg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,373 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

fsp_err_t(* statusGet)(poeg_ctrl_t *const p_ctrl, poeg_status_t *p_status)

fsp_err_t(* callbackSet)(poeg_ctrl_t *const p_api_ctrl,
void(*p_callback)(poeg_callback_args_t *), void const *const
p_context, poeg_callback_args_t *const p_callback_memory)

fsp_err_t(* outputDisable)(poeg_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(poeg_ctrl_t *const p_ctrl)

fsp_err_t(* close)(poeg_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* poeg_api_t::open) (poeg_ctrl_t *const p_ctrl, poeg_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_POEG_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,374 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

◆ statusGet

fsp_err_t(* poeg_api_t::statusGet) (poeg_ctrl_t *const p_ctrl, poeg_status_t *p_status)

Gets the current driver state.

Implemented as

R_POEG_StatusGet()
Parameters

[in] p_ctrl Control block set in
poeg_api_t::open call.

[out] p_status Provides the current state of
the POEG.

◆ callbackSet

fsp_err_t(* poeg_api_t::callbackSet) (poeg_ctrl_t *const p_api_ctrl,
void(*p_callback)(poeg_callback_args_t *), void const *const p_context, poeg_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_POEG_CallbackSet()
Parameters

[in] p_ctrl Control block set in
poeg_api_t::open call for this
timer.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,375 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

◆ outputDisable

fsp_err_t(* poeg_api_t::outputDisable) (poeg_ctrl_t *const p_ctrl)

Disables GPT output pins by software request.

Implemented as

R_POEG_OutputDisable()
Parameters

[in] p_ctrl Control block set in
poeg_api_t::open call.

◆ reset

fsp_err_t(* poeg_api_t::reset) (poeg_ctrl_t *const p_ctrl)

Attempts to clear status flags to reenable GPT output pins. Confirm all status flags are cleared after
calling this function by calling poeg_api_t::statusGet().

Implemented as

R_POEG_Reset()
Parameters

[in] p_ctrl Control block set in
poeg_api_t::open call.

◆ close

fsp_err_t(* poeg_api_t::close) (poeg_ctrl_t *const p_ctrl)

Disables POEG interrupt.

Implemented as

R_POEG_Close()
Parameters

[in] p_ctrl Control block set in
poeg_api_t::open call.

◆ poeg_instance_t

struct poeg_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

poeg_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

poeg_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,376 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

poeg_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ poeg_ctrl_t

typedef void poeg_ctrl_t

DOC control block. Allocate an instance specific control block to pass into the DOC API calls.

Implemented as

poeg_instance_ctrl_t

Enumeration Type Documentation

◆ poeg_state_t

enum poeg_state_t

POEG states.

Enumerator

POEG_STATE_NO_DISABLE_REQUEST GPT output is not disabled by POEG.

POEG_STATE_PIN_DISABLE_REQUEST GPT output disabled due to GTETRG pin level.

POEG_STATE_GPT_OR_COMPARATOR_DISABLE_R
EQUEST

GPT output disabled due to high speed analog
comparator or GPT.

POEG_STATE_OSCILLATION_STOP_DISABLE_REQ
UEST

GPT output disabled due to main oscillator
stop.

POEG_STATE_SOFTWARE_STOP_DISABLE_REQUE
ST

GPT output disabled due to
poeg_api_t::outputDisable()

POEG_STATE_PIN_DISABLE_REQUEST_ACTIVE GPT output disable request active from the
GTETRG pin. If a filter is used, this flag
represents the state of the filtered input.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,377 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

◆ poeg_trigger_t

enum poeg_trigger_t

Triggers that will disable GPT output pins.

Enumerator

POEG_TRIGGER_SOFTWARE Software disable is always supported with
POEG. Select this option if no other triggers are
used.

POEG_TRIGGER_PIN Disable GPT output based on GTETRG input
level.

POEG_TRIGGER_GPT_OUTPUT_LEVEL Disable GPT output based on GPT output pin
levels.

POEG_TRIGGER_OSCILLATION_STOP Disable GPT output based on main oscillator
stop.

POEG_TRIGGER_ACMPHS0 Disable GPT output based on ACMPHS0
comparator result.

POEG_TRIGGER_ACMPHS1 Disable GPT output based on ACMPHS1
comparator result.

POEG_TRIGGER_ACMPHS2 Disable GPT output based on ACMPHS2
comparator result.

POEG_TRIGGER_ACMPHS3 Disable GPT output based on ACMPHS3
comparator result.

POEG_TRIGGER_ACMPHS4 Disable GPT output based on ACMPHS4
comparator result.

POEG_TRIGGER_ACMPHS5 Disable GPT output based on ACMPHS5
comparator result.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,378 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > POEG Interface

◆ poeg_gtetrg_polarity_t

enum poeg_gtetrg_polarity_t

GTETRG polarity.

Enumerator

POEG_GTETRG_POLARITY_ACTIVE_HIGH Disable GPT output based when GTETRG input
level is high.

POEG_GTETRG_POLARITY_ACTIVE_LOW Disable GPT output based when GTETRG input
level is low.

◆ poeg_gtetrg_noise_filter_t

enum poeg_gtetrg_noise_filter_t

GTETRG noise filter. For the input signal to pass through the noise filter, the active level set in
poeg_gtetrg_polarity_t must be read 3 consecutive times at the sampling clock selected.

Enumerator

POEG_GTETRG_NOISE_FILTER_DISABLED No noise filter applied to GTETRG input.

POEG_GTETRG_NOISE_FILTER_PCLKB_DIV_1 Apply noise filter with sample clock PCLKB.

POEG_GTETRG_NOISE_FILTER_PCLKB_DIV_8 Apply noise filter with sample clock PCLKB/8.

POEG_GTETRG_NOISE_FILTER_PCLKB_DIV_32 Apply noise filter with sample clock PCLKB/32.

POEG_GTETRG_NOISE_FILTER_PCLKB_DIV_128 Apply noise filter with sample clock
PCLKB/128.

4.3.29 PTP Interface
Interfaces

Detailed Description

Interface for PTP functions.

Summary
The PTP interface provides the functionality for using PTP.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,379 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

Implemented by:

Precision Time Protocol (r_ptp)

Data Structures

struct ptp_clock_properties_t

struct ptp_time_t

struct ptp_message_flags_t

struct ptp_message_header_t

struct ptp_message_sync_t

struct ptp_message_pdelay_req_t

struct ptp_message_pdelay_resp_t

struct ptp_message_announce_t

struct ptp_message_signaling_t

struct ptp_message_management_t

struct ptp_message_t

struct ptp_callback_args_t

struct ptp_pulse_timer_common_cfg_t

struct ptp_pulse_timer_cfg_t

struct ptp_sync_state_cfg_t

struct ptp_synfp_cfg_t

struct ptp_synfp_cfg_t.ether

struct ptp_synfp_cfg_t.ipv4

struct ptp_stca_cfg_t

struct ptp_cfg_t

struct ptp_api_t

struct ptp_instance_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,380 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

Typedefs

typedef enum PTP_PACKED
e_ptp_ctrl_field

ptp_ctrl_field_t

typedef ptp_message_sync_t ptp_message_delay_req_t

typedef ptp_message_sync_t ptp_message_follow_up_t

typedef
ptp_message_pdelay_resp_t

ptp_message_delay_resp_t

typedef
ptp_message_delay_resp_t

ptp_message_pdelay_resp_follow_up_t

Enumerations

enum ptp_message_type_t

enum ptp_port_state_t

enum ptp_clock_delay_mechanism_t

enum ptp_frame_format_t

enum ptp_frame_filter_mode_t

enum ptp_stca_clock_freq_t

enum ptp_stca_clock_sel_t

enum ptp_message_interval_t

enum ptp_clock_correction_mode_t

enum ptp_event_t

enum ptp_ethernet_phy_interface_t

Variables

enum PTP_PACKED e_ptp_ctrl_field

Data Structure Documentation

◆ ptp_clock_properties_t

struct ptp_clock_properties_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,381 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

Clock properties used in the best master clock algorithm (BMCA) in order to determine the
grandmaster clock.

In master mode, these properties will be advertised in announce messages.

Note: The final property used in BMCA is the clock ID. This is usually configured at runtime because
it is often based on the hardware address.

Data Fields

uint8_t priority1 Priority1 value used in best
master calculation.

uint8_t cclass Class value.

uint8_t accuracy Accuracy of the clock.

uint16_t variance Variance of the clock.

uint8_t priority2 Priority2 value used as
secondary priority in best
master calculation.

◆ ptp_time_t

struct ptp_time_t

Structure for storing time with nanosecond precision .

Data Fields

uint16_t seconds_upper Upper 16 bits of the seconds.

uint32_t seconds_lower Lower 32 bits of the seconds.

uint32_t nanoseconds Nanoseconds.

◆ ptp_message_flags_t

struct ptp_message_flags_t

Flags field in PTP message header.

◆ ptp_message_header_t

struct ptp_message_header_t

Commom PTP Message Header.

Data Fields

uint8_t message_type: 4 The message type.

uint8_t sdoid_major: 4 Standard Organization ID Major.

uint8_t version: 4 PTP Version.

uint8_t minor_version: 4 PTP Minor Version.

uint16_t message_length The total message length
(Including the header).

uint8_t domain The clock domain.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,382 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

uint8_t sdoid_minor: 8 Standard Organization ID
minor.

ptp_message_flags_t flags Flags set in the message.

uint64_t correction_field Correction Field that is updated
when a message passes
through a transparent clock.

uint32_t reserved

uint8_t clock_id[8] Clock ID that the message was
sent from.

uint16_t source_port_id Port ID that the message was
sent from.

uint16_t sequence_id Sequence ID of the message.

ptp_ctrl_field_t control_field Control field (Message specifc).

uint8_t log_message_interval Logbase2 of the message
period.

◆ ptp_message_sync_t

struct ptp_message_sync_t

Sync Message Type (0x00).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

◆ ptp_message_pdelay_req_t

struct ptp_message_pdelay_req_t

PDelay_req Message Type (0x02).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

uint8_t reserved[10]

◆ ptp_message_pdelay_resp_t

struct ptp_message_pdelay_resp_t

PDelay_resp Message Type (0x03).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

uint8_t source_port_identity[10] Clock ID + sourcePortId.

◆ ptp_message_announce_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,383 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

struct ptp_message_announce_t

Announce Message Type (0x0B).

Data Fields

ptp_time_t origin_timestamp Timestamp when the message
was transmitted.

uint16_t current_utc_offset Offset from UTC in seconds.

uint8_t reserved

ptp_clock_properties_t clock_properties Clock properties used in Best
Master Clock Algorithm.

uint8_t clock_id[8] Clock ID that the message was
sent from.

uint16_t steps_removed The number of boundary clocks
between the clock and the
grand master clock.

uint8_t time_source The source of time (Eg.
INTERNAL_OSC).

◆ ptp_message_signaling_t

struct ptp_message_signaling_t

Signaling Message Type (0x0C).

Data Fields

uint8_t target_clock_id[8] ID of the target PTP instance.

uint16_t target_port_id Port of the target PTP instance.

◆ ptp_message_management_t

struct ptp_message_management_t

Management Message Type (0x0D).

Data Fields

uint8_t target_clock_id[8] ID of the target PTP instance.

uint16_t target_port_id Port of the target PTP instance.

uint8_t starting_boundary_hops The starting number of times
the message is retransmitted
by boundary clocks.

uint8_t boundary_hops The remaining number of
retransmissions.

uint8_t action The action that will be taken on
reception of the message.

uint8_t reserved

◆ ptp_message_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,384 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

struct ptp_message_t

Complete PTP Message.

Data Fields

ptp_message_header_t header Header of the message.

union ptp_message_t __unnamed__

◆ ptp_callback_args_t

struct ptp_callback_args_t

Arguments passed to p_ptp_callback.

Data Fields

ptp_event_t event Event that caused the callback.

ptp_message_t const * p_message The message received (PTP
message fields will be little
endian).

uint8_t const * p_tlv_data Start of TLV data (TLV data will
be big endian).

uint16_t tlv_data_size Total bytes of TLV data.

uint32_t pulse_timer_channel Channel of the pulse timer that
caused
ptp_event_t::PTP_EVENT_PULSE
_TIMER_MINT_RISING_EDGE.

void const * p_context Context value set in the
configuration.

◆ ptp_pulse_timer_common_cfg_t

struct ptp_pulse_timer_common_cfg_t

Structure for configuring the IPLS IRQ settings that are common to all pulse timer channels.

Data Fields

ptp_enable_t ipls_rising_irq Enable the IPLS IRQ when a
rising edge is detected.

ptp_enable_t ipls_falling_irq Enable the IPLS IRQ when a
falling edge is detected.

ptp_enable_t ipls_rising_irq_auto_clear Auto disable the rising edge IRQ
after the first rising edge is
detected.

ptp_enable_t ipls_falling_irq_auto_clear Auto disable the falling edge
IRQ after the first falling edge is
detected.

◆ ptp_pulse_timer_cfg_t

struct ptp_pulse_timer_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,385 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

Structure for configuring a pulse timer channel.

Data Fields

ptp_time_t start_time The exact time when the timer
will start.

uint32_t period The period of the timer in
nanoseconds.

uint32_t pulse The pulse width of the timer in
nanoseconds.

ptp_enable_t mint_rising_irq Enable MINT rising edge IRQ.

ptp_enable_t ipls_rising_event Enable IPLS rising edge ELC
event.

ptp_enable_t ipls_falling_event Enable IPLS falling edge ELC
event.

ptp_enable_t ipls_rising_event_auto_clear Enable IPLS rising edge ELC
event.

ptp_enable_t ipls_falling_event_auto_clear Enable IPLS falling edge ELC
event.

ptp_enable_t ipls_irq_source Enable using this channel as a
source for the IPLS IRQ.

◆ ptp_sync_state_cfg_t

struct ptp_sync_state_cfg_t

Configuration settings for determining when the PTP clock is synchronized.

Data Fields

uint64_t threshold The maximum clock offset
required to transition between
synchronization states.

uint8_t count The number of times the clock
must be above the threshold in
order to transition between
synchronization states.

◆ ptp_synfp_cfg_t

struct ptp_synfp_cfg_t

Configuration settings for the SYNFP.

Data Fields

ptp_ethernet_phy_interface_t ethernet_phy_interface The type of interface used to
communicate with the PHY.

ptp_frame_format_t frame_format Frame format used to transport
PTP messages.

ptp_frame_filter_mode_t frame_filter Frame filter mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,386 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

uint8_t clock_domain Clock domain that the clock
operates in.

ptp_enable_t clock_domain_filter Filter out messages from other
clock domains.

ptp_message_interval_t announce_interval Interval for transmitting
announce messages.

ptp_message_interval_t sync_interval Interval for transmitting sync
messages.

ptp_message_interval_t delay_req_interval Interval for transmitting
delay_req messages.

uint32_t message_timeout Timeout in milliseconds for
receiving PTP messages.

ptp_clock_properties_t clock_properties Clock properties used in
annonce messages.

uint8_t timesource TimeSource field used in
announce messages.

uint8_t * p_multicast_addr_filter Filter for multicast packets.

struct ptp_synfp_cfg_t ether Valid if frame_format is set to
Ethernet II or IEEE 802.3.

struct ptp_synfp_cfg_t ipv4 Valid if frame_format is set to
IPV4_UDP.

◆ ptp_synfp_cfg_t.ether

struct ptp_synfp_cfg_t.ether

Valid if frame_format is set to Ethernet II or IEEE 802.3.

Data Fields

uint8_t * p_primary_mac_addr The MAC address to send
primary messages.

uint8_t * p_pdelay_mac_addr The MAC address to send p2p
messages.

◆ ptp_synfp_cfg_t.ipv4

struct ptp_synfp_cfg_t.ipv4

Valid if frame_format is set to IPV4_UDP.

Data Fields

uint32_t primary_ip_addr The IP address to send primary
messages.

uint32_t pdelay_ip_addr The IP address to send pdelay
messages.

uint8_t event_tos Type of service for event
messages.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,387 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

uint8_t general_tos Type of service for general
messages.

uint8_t primary_ttl Time to live for primary
messages.

uint8_t pdelay_ttl Time to live for pdelay
messages.

uint16_t event_udp_port The port to send event
messages.

uint16_t general_udp_port The port to send general
messages.

◆ ptp_stca_cfg_t

struct ptp_stca_cfg_t

Configuration settings for the STCA.

Data Fields

ptp_stca_clock_freq_t clock_freq Select the clock frequency of
the STCA.

ptp_stca_clock_sel_t clock_sel Select the input clock to the
STCA.

ptp_clock_correction_mode_t clock_correction_mode Select the clock correction
mode.

uint8_t gradient_worst10_interval Select the interval for the
gradient worst10 acquisition.

ptp_sync_state_cfg_t sync_threshold Configure the synchronization
threshold.

ptp_sync_state_cfg_t sync_loss_threshold Configure the SYnchronization
lost threshold.

◆ ptp_cfg_t

struct ptp_cfg_t

User configuration structure, used in open function

Data Fields

ptp_synfp_cfg_t synfp

 Configuration settings for the SYNFP.

ptp_stca_cfg_t stca

 Configuration settings for the STCA.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,388 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

edmac_instance_t * p_edmac_instance

 Pointer to PTP edmac instance.

uint16_t buffer_size

 The maximum Ethernet packet size that can be transmitted or
received.

uint8_t ** p_rx_buffers

 Pointer to list of buffers used to receive PTP packets.

uint8_t ** p_tx_buffers

 Pointer to list of buffers used to transmit PTP packets.

IRQn_Type mint_irq

 Interrupt number for PTP event IRQ.

IRQn_Type ipls_irq

 Interrupt number for PTP timer IRQ.

uint8_t mint_ipl

 Interrupt priority of the PTP event IRQ.

uint8_t ipls_ipl

 Interrupt priority of the PTP timer IRQ.

void(* p_callback)(ptp_callback_args_t *p_args)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,389 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ p_callback

void(* ptp_cfg_t::p_callback) (ptp_callback_args_t *p_args)

Callback for handling received PTP events.

◆ ptp_api_t

struct ptp_api_t

Timer API structure. General timer functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

fsp_err_t(* macAddrSet)(ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

fsp_err_t(* ipAddrSet)(ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

fsp_err_t(* localClockIdSet)(ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_clock_id)

fsp_err_t(* masterClockIdSet)(ptp_ctrl_t *const p_ctrl, uint8_t const *const
p_clock_id, uint16_t port_id)

fsp_err_t(* messageFlagsSet)(ptp_ctrl_t *const p_ctrl, ptp_message_type_t
message_type, ptp_message_flags_t flags)

fsp_err_t(* currentUtcOffsetSet)(ptp_ctrl_t *const p_ctrl, uint16_t offset)

fsp_err_t(* portStateSet)(ptp_ctrl_t *const p_ctrl, uint32_t state)

fsp_err_t(* messageSend)(ptp_ctrl_t *const p_ctrl, ptp_message_t const *const
p_message, uint8_t const *const p_tlv_data, uint16_t tlv_data_size)

fsp_err_t(* localClockValueSet)(ptp_ctrl_t *const p_ctrl, ptp_time_t const *const
p_time)

fsp_err_t(* localClockValueGet)(ptp_ctrl_t *const p_ctrl, ptp_time_t *const
p_time)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,390 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

fsp_err_t(* pulseTimerCommonConfig)(ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *p_timer_cfg)

fsp_err_t(* pulseTimerEnable)(ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

fsp_err_t(* pulseTimerDisable)(ptp_ctrl_t *const p_ctrl, uint32_t channel)

fsp_err_t(* close)(ptp_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* ptp_api_t::open) (ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_PTP_Open()
Note

To reconfigure after calling this function, call ptp_api_t::close first.
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ macAddrSet

fsp_err_t(* ptp_api_t::macAddrSet) (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_mac_addr)

Set the MAC address for the PTP.

Implemented as

R_PTP_MacAddrSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_hw_addr Pointer to the 6 byte MAC
address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,391 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ ipAddrSet

fsp_err_t(* ptp_api_t::ipAddrSet) (ptp_ctrl_t *const p_ctrl, uint32_t ip_addr)

Set the IP address for the PTP.

Implemented as

R_PTP_IpAddrSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] ip_addr 32 bit IPv4 address of the
PTP.

◆ localClockIdSet

fsp_err_t(* ptp_api_t::localClockIdSet) (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id)

Set the local clock ID (Usually based off of the PTP MAC address).

Implemented as

R_PTP_LocalClockIdSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_clock_id Pointer to 8 byte clock ID.

◆ masterClockIdSet

fsp_err_t(* ptp_api_t::masterClockIdSet) (ptp_ctrl_t *const p_ctrl, uint8_t const *const p_clock_id,
uint16_t port_id)

Set the master clock ID (Usually obtained from previously received announce message).

Implemented as

R_PTP_MasterClockIdSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_clock_id Pointer to 8 byte clock ID.

[in] port_id The port on the master
clock.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,392 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ messageFlagsSet

fsp_err_t(* ptp_api_t::messageFlagsSet) (ptp_ctrl_t *const p_ctrl, ptp_message_type_t
message_type, ptp_message_flags_t flags)

Set the flags field for the given message type.

Implemented as

R_PTP_MessageFlagsSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] message_type The message type.

[in] flags Flags to set.

◆ currentUtcOffsetSet

fsp_err_t(* ptp_api_t::currentUtcOffsetSet) (ptp_ctrl_t *const p_ctrl, uint16_t offset)

Sets the offsetFromMaster field in announce messages.

Implemented as

R_PTP_CurrentUtcOffsetSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] offset New currentUtcOffset value.

◆ portStateSet

fsp_err_t(* ptp_api_t::portStateSet) (ptp_ctrl_t *const p_ctrl, uint32_t state)

Transition to a new clock state.

Implemented as

R_PTP_PortStateSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] state The state to transition into.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,393 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ messageSend

fsp_err_t(* ptp_api_t::messageSend) (ptp_ctrl_t *const p_ctrl, ptp_message_t const *const
p_message, uint8_t const *const p_tlv_data, uint16_t tlv_data_size)

Send a PTP message. Appropriate fields in the PTP message will be endian swapped. The
application must ensure that the TLV data is in big endian format.

Implemented as

R_PTP_MessageSend()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_message Pointer to a PTP message.

[in] p_tlv_data Pointer to TLV data that is
appended to the end of the
PTP message.

[in] tlv_data_size Size of the TLV data in bytes.

◆ localClockValueSet

fsp_err_t(* ptp_api_t::localClockValueSet) (ptp_ctrl_t *const p_ctrl, ptp_time_t const *const p_time)

Set the local clock value.

Implemented as

R_PTP_LocalClockValueSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_time Pointer to the new time
setting.

◆ localClockValueGet

fsp_err_t(* ptp_api_t::localClockValueGet) (ptp_ctrl_t *const p_ctrl, ptp_time_t *const p_time)

Get the local clock value.

Implemented as

R_PTP_LocalClockValueGet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_time Pointer to store the current
time setting.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,394 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ pulseTimerCommonConfig

fsp_err_t(* ptp_api_t::pulseTimerCommonConfig) (ptp_ctrl_t *const p_ctrl,
ptp_pulse_timer_common_cfg_t *p_timer_cfg)

Configuration that is common to all of the pulse timers.

Implemented as

R_PTP_PulseTimerCommonConfig()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_timer_cfg Pointer to the pulse timer
common configuration.

◆ pulseTimerEnable

fsp_err_t(* ptp_api_t::pulseTimerEnable) (ptp_ctrl_t *const p_ctrl, uint32_t channel,
ptp_pulse_timer_cfg_t *const p_timer_cfg)

Setup a pulse timer.

Implemented as

R_PTP_PulseTimerEnable()
Parameters

[in] p_ctrl Pointer to control structure.

[in] channel The pulse timer channel to
setup.

[in] p_timer_cfg Pointer to the pulse timer
configuration.

◆ pulseTimerDisable

fsp_err_t(* ptp_api_t::pulseTimerDisable) (ptp_ctrl_t *const p_ctrl, uint32_t channel)

Stop a pulse timer.

Implemented as

R_PTP_PulseTimerDisable()
Parameters

[in] p_ctrl Pointer to control structure.

[in] channel The pulse timer channel to
stop.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,395 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ close

fsp_err_t(* ptp_api_t::close) (ptp_ctrl_t *const p_ctrl)

Stop PTP operation.

Implemented as

R_PTP_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ ptp_instance_t

struct ptp_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ptp_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ptp_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

ptp_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ptp_ctrl_field_t

typedef enum PTP_PACKED e_ptp_ctrl_field ptp_ctrl_field_t

The control field for PTP message header.

◆ ptp_message_delay_req_t

typedef ptp_message_sync_t ptp_message_delay_req_t

Delay_req Message Type (0x01).

◆ ptp_message_follow_up_t

typedef ptp_message_sync_t ptp_message_follow_up_t

Follow_up Message Type (0x08).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,396 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ ptp_message_delay_resp_t

typedef ptp_message_pdelay_resp_t ptp_message_delay_resp_t

Delay_resp Message Type (0x09).

◆ ptp_message_pdelay_resp_follow_up_t

typedef ptp_message_delay_resp_t ptp_message_pdelay_resp_follow_up_t

PDelay_resp_follow_up Message Type (0x0A).

Enumeration Type Documentation

◆ ptp_message_type_t

enum ptp_message_type_t

Standard PTP message types.

Enumerator

PTP_MESSAGE_TYPE_SYNC Sync Message Type.

PTP_MESSAGE_TYPE_DELAY_REQ Delay_req Message Type.

PTP_MESSAGE_TYPE_PDELAY_REQ PDelay_req Message Type.

PTP_MESSAGE_TYPE_PDELAY_RESP PDelay_resp Message Type.

PTP_MESSAGE_TYPE_FOLLOW_UP Follow_up Message Type.

PTP_MESSAGE_TYPE_DELAY_RESP Delay_resp Message Type.

PTP_MESSAGE_TYPE_PDELAY_RESP_FOLLOW_UP PDelay_resp_follow_up Message Type.

PTP_MESSAGE_TYPE_ANNOUNCE Announce Message Type.

PTP_MESSAGE_TYPE_SIGNALING Signaling Message Type.

PTP_MESSAGE_TYPE_MANAGEMENT Management Message Type.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,397 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ ptp_port_state_t

enum ptp_port_state_t

Possible states that the PTP instance can be in.

Enumerator

PTP_PORT_STATE_GENERATE_ANNOUNCE Generate Announce Messages.

PTP_PORT_STATE_GENERATE_SYNC Generate Sync Messages.

PTP_PORT_STATE_GENERATE_DELAY_REQ Generate Delay_req Messages.

PTP_PORT_STATE_GENERATE_PDELAY_REQ Generate PDelay_req Messages.

PTP_PORT_STATE_RECEIVE_ANNOUNCE Receive Announce Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_SYNC Receive Sync Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_FOLLOW_UP Receive Follow_up Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_DELAY_REQ Receive Delay_req Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_DELAY_RESP Receive Delay_resp Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_PDELAY_REQ Receive PDelay_req Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_PDELAY_RESP Receive PDelay_resp Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_PDELAY_RESP_FOLLO
W_UP

Receive PDelay_resp_follow_up Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_MANAGEMENT Receive Management Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_RECEIVE_SIGNALING Receive Signaling Messages from
ptp_cfg_t::p_callback.

PTP_PORT_STATE_PROCESS_SYNC Enable Sync Message processing.

PTP_PORT_STATE_PROCESS_FOLLOW_UP Enable Follow_up Message processing.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,398 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

PTP_PORT_STATE_PROCESS_DELAY_REQ Enable Delay_req Message processing.

PTP_PORT_STATE_PROCESS_DELAY_RESP Enable Delay_resp Message processing.

PTP_PORT_STATE_PROCESS_PDELAY_REQ Enable PDelay_req Message processing.

PTP_PORT_STATE_PROCESS_PDELAY_RESP Enable PDelay_resp Message processing.

PTP_PORT_STATE_PROCESS_PDELAY_RESP_FOLL
OW_UP

Enable PDelay_resp_follow_up Message
processing.

PTP_PORT_STATE_PASSIVE Configure the PTP instance to only receive
Announce, Management, and Signaling
Messages.

PTP_PORT_STATE_E2E_MASTER Configure the PTP instance to operate as a E2E
Master.

PTP_PORT_STATE_E2E_SLAVE Configure the PTP instance to operate as a E2E
Slave.

PTP_PORT_STATE_P2P_MASTER Configure the PTP instance to operate as a P2P
Master.

PTP_PORT_STATE_P2P_SLAVE Configure the PTP instance to operate as a P2P
Slave.

PTP_PORT_STATE_RECEIVE_ALL Configure the PTP instance to receive all
messages.

PTP_PORT_STATE_DISABLE Disable all PTP message generation,
processing, and reception.

◆ ptp_clock_delay_mechanism_t

enum ptp_clock_delay_mechanism_t

The mechanism used for delay messages.

Enumerator

PTP_CLOCK_DELAY_MECHANISM_E2E End to end delay mechanism.

PTP_CLOCK_DELAY_MECHANISM_P2P Peer to peer delay mechanism.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,399 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ ptp_frame_format_t

enum ptp_frame_format_t

Frame formats that PTP messages can be encapsulated in.

Enumerator

PTP_FRAME_FORMAT_ETHERII Send PTP messages using Ethernet II frames.

PTP_FRAME_FORMAT_IEEE802_3 Send PTP messages using IEEE802_3 frames.

PTP_FRAME_FORMAT_ETHERII_IPV4_UDP Send PTP messages using Ethernet II frames
with an IP and UDP header.

PTP_FRAME_FORMAT_IEEE802_3_IPV4_UDP Send PTP messages using IEEE802.3 frames
with an IP and UDP header.

◆ ptp_frame_filter_mode_t

enum ptp_frame_filter_mode_t

Filter PTP messages based on destination MAC address. Messages that pass the filter will be
transferred to the ETHERC EDMAC.

Enumerator

PTP_FRAME_FILTER_MODE_EXT_PROMISCUOUS_
MODE

Receive all packets.

PTP_FRAME_FILTER_MODE_UNICAST_MULTICAST Receive all unicast packets destined for the
PTP and all multicast packets.

PTP_FRAME_FILTER_MODE_UNICAST_MULTICAST
_FILTERED

Receive Unicast packets destined for the PTP
and filter configured multicast packets.

PTP_FRAME_FILTER_MODE_UNICAST Receive unicast packets destined for the PTP.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,400 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ ptp_stca_clock_freq_t

enum ptp_stca_clock_freq_t

STCA input clock frequency.

Enumerator

PTP_STCA_CLOCK_FREQ_20MHZ 20 Mhz Input Clock

PTP_STCA_CLOCK_FREQ_25MHZ 25 Mhz Input Clock

PTP_STCA_CLOCK_FREQ_50MHZ 50 Mhz Input Clock

PTP_STCA_CLOCK_FREQ_100MHZ 100 Mhz Input Clock

◆ ptp_stca_clock_sel_t

enum ptp_stca_clock_sel_t

STCA input clock selection.

Enumerator

PTP_STCA_CLOCK_SEL_PCLKA_DIV_1 PCLKA.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_2 PCLKA Divided by 2.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_3 PCLKA Divided by 3.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_4 PCLKA Divided by 4.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_5 PCLKA Divided by 5.

PTP_STCA_CLOCK_SEL_PCLKA_DIV_6 PCLKA Divided by 6.

PTP_STCA_CLOCK_SEL_REF50CK0 50-MHz Reference Signal for timing in RMII
mode (STCA clock frequency is 25 Mhz when
REF50CK0 is used).

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,401 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ ptp_message_interval_t

enum ptp_message_interval_t

Message interval for transmitting PTP messages.

Enumerator

PTP_MESSAGE_INTERVAL_1_128 1 / 128 seconds

PTP_MESSAGE_INTERVAL_1_64 1 / 64 seconds

PTP_MESSAGE_INTERVAL_1_32 1 / 32 seconds

PTP_MESSAGE_INTERVAL_1_16 1 / 16 seconds

PTP_MESSAGE_INTERVAL_1_8 1 / 8 seconds

PTP_MESSAGE_INTERVAL_1_4 1 / 4 seconds

PTP_MESSAGE_INTERVAL_1_2 1 / 2 seconds

PTP_MESSAGE_INTERVAL_1 1 seconds

PTP_MESSAGE_INTERVAL_2 2 seconds

PTP_MESSAGE_INTERVAL_4 4 seconds

PTP_MESSAGE_INTERVAL_8 8 seconds

PTP_MESSAGE_INTERVAL_16 16 seconds

PTP_MESSAGE_INTERVAL_32 32 seconds

PTP_MESSAGE_INTERVAL_64 64 seconds

◆ ptp_clock_correction_mode_t

enum ptp_clock_correction_mode_t

Clock correction mode.

Enumerator

PTP_CLOCK_CORRECTION_MODE1 Correct the local clock using the current
offsetFromMaster value.

PTP_CLOCK_CORRECTION_MODE2 Correct the local clock using the calculated
clock gradient.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,402 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

◆ ptp_event_t

enum ptp_event_t

PTP events provided by ptp_cfg_t::p_callback.

Enumerator

PTP_EVENT_SYNC_ACQUIRED The local clock is synchronized to the master
clock.

PTP_EVENT_SYNC_LOST The local clock is not synchronized to the
master clcok.

PTP_EVENT_SYNC_MESSAGE_TIMEOUT A sync message has not been received for the
configured time.

PTP_EVENT_WORST10_ACQUIRED Gradient worst10 values has been calcualted.

PTP_EVENT_OFFSET_FROM_MASTER_UPDATED The offset from the master clock has been
updated.

PTP_EVENT_LOG_MESSAGE_INT_CHANGED The message interval was changed.

PTP_EVENT_MEAN_PATH_DELAY_UPDATED The mean path delay has been updated.

PTP_EVENT_DELAY_RESP_TIMEOUT A delay_resp has not been received for the
configured time.

PTP_EVENT_LOG_MESSAGE_INT_OUT_OF_RANGE The updated message interval is out of range.

PTP_EVENT_DELAY_REQ_FIFO_OVERFLOW The FIFO buffer for storing information from
received Delay_Req messages holds 32 or
more entries.

PTP_EVENT_LOOP_RECEPTION_DETECTED A packet with the same sourcePortIdendity as
the local clock was received.

PTP_EVENT_CTRL_INFO_ABNORMALITY A malformed frame was received (EDMAC,
ETHERC, and EPTPC must be reset).

PTP_EVENT_DELAY_RESP_PROCESSING_HALTED Processing of delay_resp messages has been
halted.

PTP_EVENT_MESSAGE_GENERATION_HALTED Generation of messages has been halted.

PTP_EVENT_MESSAGE_RECEIVED A PTP message was received from the EDMAC.

PTP_EVENT_MESSAGE_TRANSMIT_COMPLETE A PTP message has been transmitted.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,403 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > PTP Interface

PTP_EVENT_PULSE_TIMER_MINT_RISING_EDGE A rising edge occurred on a pulse timer
channel.

PTP_EVENT_PULSE_TIMER_IPLS_COMMON A rising or falling edge occurred on any pulse
timer channel.

◆ ptp_ethernet_phy_interface_t

enum ptp_ethernet_phy_interface_t

The Ethernet PHY interface type.

Enumerator

PTP_ETHERNET_PHY_INTERFACE_MII Media-independant interface.

PTP_ETHERNET_PHY_INTERFACE_RMII Reduced media-independant interface.

Variable Documentation

◆ e_ptp_ctrl_field

enum PTP_PACKED e_ptp_ctrl_field

The control field for PTP message header.

4.3.30 RTC Interface
Interfaces

Detailed Description

Interface for accessing the Realtime Clock.

Summary
The RTC Interface is for configuring Real Time Clock (RTC) functionality including alarm, periodic
notiification and error adjustment.

The Real Time Clock Interface can be implemented by:

Realtime Clock (r_rtc)

Data Structures

struct rtc_callback_args_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,404 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

struct rtc_error_adjustment_cfg_t

struct rtc_alarm_time_t

struct rtc_info_t

struct rtc_cfg_t

struct rtc_api_t

struct rtc_instance_t

Typedefs

typedef struct tm rtc_time_t

typedef void rtc_ctrl_t

Enumerations

enum rtc_event_t

enum rtc_clock_source_t

enum rtc_status_t

enum rtc_error_adjustment_t

enum rtc_error_adjustment_mode_t

enum rtc_error_adjustment_period_t

enum rtc_periodic_irq_select_t

Data Structure Documentation

◆ rtc_callback_args_t

struct rtc_callback_args_t

Callback function parameter data

Data Fields

rtc_event_t event The event can be used to
identify what caused the
callback (compare match or
error).

void const * p_context Placeholder for user data.

◆ rtc_error_adjustment_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,405 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

struct rtc_error_adjustment_cfg_t

Time error adjustment value configuration

Data Fields

rtc_error_adjustment_mode_t adjustment_mode Automatic Adjustment
Enable/Disable.

rtc_error_adjustment_period_t adjustment_period Error Adjustment period.

rtc_error_adjustment_t adjustment_type Time error adjustment setting.

uint32_t adjustment_value Value of the prescaler for error
adjustment.

◆ rtc_alarm_time_t

struct rtc_alarm_time_t

Alarm time setting structure

Data Fields

rtc_time_t time Time structure.

bool sec_match Enable the alarm based on a
match of the seconds field.

bool min_match Enable the alarm based on a
match of the minutes field.

bool hour_match Enable the alarm based on a
match of the hours field.

bool mday_match Enable the alarm based on a
match of the days field.

bool mon_match Enable the alarm based on a
match of the months field.

bool year_match Enable the alarm based on a
match of the years field.

bool dayofweek_match Enable the alarm based on a
match of the dayofweek field.

◆ rtc_info_t

struct rtc_info_t

RTC Information Structure for information returned by infoGet()

Data Fields

rtc_clock_source_t clock_source Clock source for the RTC block.

rtc_status_t status RTC run status.

◆ rtc_cfg_t

struct rtc_cfg_t

User configuration structure, used in open function

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,406 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

Data Fields

rtc_clock_source_t clock_source

 Clock source for the RTC block.

uint32_t freq_compare_value_loco

 The frequency comparison value for LOCO.

rtc_error_adjustment_cfg_t
const *const

p_err_cfg

 Pointer to Error Adjustment configuration.

uint8_t alarm_ipl

 Alarm interrupt priority.

IRQn_Type alarm_irq

 Alarm interrupt vector.

uint8_t periodic_ipl

 Periodic interrupt priority.

IRQn_Type periodic_irq

 Periodic interrupt vector.

uint8_t carry_ipl

 Carry interrupt priority.

IRQn_Type carry_irq

 Carry interrupt vector.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,407 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

void(* p_callback)(rtc_callback_args_t *p_args)

 Called from the ISR.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 RTC hardware dependant configuration.

◆ rtc_api_t

struct rtc_api_t

RTC driver structure. General RTC functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

fsp_err_t(* close)(rtc_ctrl_t *const p_ctrl)

fsp_err_t(* calendarTimeSet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

fsp_err_t(* calendarTimeGet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

fsp_err_t(* calendarAlarmSet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const
p_alarm)

fsp_err_t(* calendarAlarmGet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const
p_alarm)

fsp_err_t(* periodicIrqRateSet)(rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t
const rate)

fsp_err_t(* errorAdjustmentSet)(rtc_ctrl_t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj_cfg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,408 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

fsp_err_t(* callbackSet)(rtc_ctrl_t *const p_ctrl,
void(*p_callback)(rtc_callback_args_t *), void const *const p_context,
rtc_callback_args_t *const p_callback_memory)

fsp_err_t(* infoGet)(rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

Field Documentation

◆ open

fsp_err_t(* rtc_api_t::open) (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

Open the RTC driver.

Implemented as

R_RTC_Open()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_cfg Pointer to the configuration
structure

◆ close

fsp_err_t(* rtc_api_t::close) (rtc_ctrl_t *const p_ctrl)

Close the RTC driver.

Implemented as

R_RTC_Close()
Parameters

[in] p_ctrl Pointer to RTC device
handle.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,409 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ calendarTimeSet

fsp_err_t(* rtc_api_t::calendarTimeSet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Set the calendar time and start the calender counter

Implemented as

R_RTC_CalendarTimeSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_time Pointer to a time structure
that contains the time to set

[in] clock_start Flag that starts the clock
right after it is set

◆ calendarTimeGet

fsp_err_t(* rtc_api_t::calendarTimeGet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *const p_time)

Get the calendar time.

Implemented as

R_RTC_CalendarTimeGet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[out] p_time Pointer to a time structure
that contains the time to get

◆ calendarAlarmSet

fsp_err_t(* rtc_api_t::calendarAlarmSet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Set the calendar alarm time and enable the alarm interrupt.

Implemented as

R_RTC_CalendarAlarmSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_alarm Pointer to an alarm structure
that contains the alarm time
to set

[in] irq_enable_flag Enable the ALARM irq if set

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,410 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ calendarAlarmGet

fsp_err_t(* rtc_api_t::calendarAlarmGet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *const p_alarm)

Get the calendar alarm time.

Implemented as

R_RTC_CalendarAlarmGet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[out] p_alarm Pointer to an alarm structure
to fill up with the alarm time

◆ periodicIrqRateSet

fsp_err_t(* rtc_api_t::periodicIrqRateSet) (rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t const
rate)

Set the periodic irq rate

Implemented as

R_RTC_PeriodicIrqRateSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] rate Rate of periodic interrupts

◆ errorAdjustmentSet

fsp_err_t(* rtc_api_t::errorAdjustmentSet) (rtc_ctrl_t *const p_ctrl, rtc_error_adjustment_cfg_t const
*const err_adj_cfg)

Set time error adjustment.

Implemented as

R_RTC_ErrorAdjustmentSet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] err_adj_cfg Pointer to the Error
Adjustment Config

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,411 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ callbackSet

fsp_err_t(* rtc_api_t::callbackSet) (rtc_ctrl_t *const p_ctrl, void(*p_callback)(rtc_callback_args_t *),
void const *const p_context, rtc_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_RTC_CallbackSet()
Parameters

[in] p_ctrl Pointer to the RTC control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated

◆ infoGet

fsp_err_t(* rtc_api_t::infoGet) (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

Return the currently configure clock source for the RTC

Implemented as

R_RTC_InfoGet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[out] p_rtc_info Pointer to RTC information
structure

◆ rtc_instance_t

struct rtc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rtc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rtc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rtc_api_t const * p_api Pointer to the API structure for
this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,412 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

Typedef Documentation

◆ rtc_time_t

typedef struct tm rtc_time_t

Date and time structure defined in C standard library <time.h>

◆ rtc_ctrl_t

typedef void rtc_ctrl_t

RTC control block. Allocate an instance specific control block to pass into the RTC API calls.

Implemented as

rtc_instance_ctrl_t

Enumeration Type Documentation

◆ rtc_event_t

enum rtc_event_t

Events that can trigger a callback function

Enumerator

RTC_EVENT_ALARM_IRQ Real Time Clock ALARM IRQ.

RTC_EVENT_PERIODIC_IRQ Real Time Clock PERIODIC IRQ.

◆ rtc_clock_source_t

enum rtc_clock_source_t

Clock source for the RTC block

Enumerator

RTC_CLOCK_SOURCE_SUBCLK Sub-clock oscillator.

RTC_CLOCK_SOURCE_LOCO Low power On Chip Oscillator.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,413 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ rtc_status_t

enum rtc_status_t

RTC run state

Enumerator

RTC_STATUS_STOPPED RTC counter is stopped.

RTC_STATUS_RUNNING RTC counter is running.

◆ rtc_error_adjustment_t

enum rtc_error_adjustment_t

Time error adjustment settings

Enumerator

RTC_ERROR_ADJUSTMENT_NONE Adjustment is not performed.

RTC_ERROR_ADJUSTMENT_ADD_PRESCALER Adjustment is performed by the addition to the
prescaler.

RTC_ERROR_ADJUSTMENT_SUBTRACT_PRESCALE
R

Adjustment is performed by the subtraction
from the prescaler.

◆ rtc_error_adjustment_mode_t

enum rtc_error_adjustment_mode_t

Time error adjustment mode settings

Enumerator

RTC_ERROR_ADJUSTMENT_MODE_MANUAL Adjustment mode is set to manual.

RTC_ERROR_ADJUSTMENT_MODE_AUTOMATIC Adjustment mode is set to automatic.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,414 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > RTC Interface

◆ rtc_error_adjustment_period_t

enum rtc_error_adjustment_period_t

Time error adjustment period settings

Enumerator

RTC_ERROR_ADJUSTMENT_PERIOD_1_MINUTE Adjustment period is set to every one minute.

RTC_ERROR_ADJUSTMENT_PERIOD_10_SECOND Adjustment period is set to every ten second.

RTC_ERROR_ADJUSTMENT_PERIOD_NONE Adjustment period not supported in manual
mode.

◆ rtc_periodic_irq_select_t

enum rtc_periodic_irq_select_t

Periodic Interrupt select

Enumerator

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_256_SECO
ND

A periodic irq is generated every 1/256
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_128_SECO
ND

A periodic irq is generated every 1/128
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_64_SECO
ND

A periodic irq is generated every 1/64 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_32_SECO
ND

A periodic irq is generated every 1/32 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_16_SECO
ND

A periodic irq is generated every 1/16 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_8_SECON
D

A periodic irq is generated every 1/8 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_4_SECON
D

A periodic irq is generated every 1/4 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECON
D

A periodic irq is generated every 1/2 second.

RTC_PERIODIC_IRQ_SELECT_1_SECOND A periodic irq is generated every 1 second.

RTC_PERIODIC_IRQ_SELECT_2_SECOND A periodic irq is generated every 2 seconds.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,415 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

4.3.31 SD/MMC Interface
Interfaces

Detailed Description

Interface for accessing SD, eMMC, and SDIO devices.

Summary
The r_sdhi interface provides standard SD and eMMC media functionality. This interface also
supports SDIO.

The SD/MMC interface is implemented by:

SD/MMC Host Interface (r_sdhi)

Data Structures

struct sdmmc_status_t

struct sdmmc_device_t

struct sdmmc_callback_args_t

struct sdmmc_cfg_t

struct sdmmc_api_t

struct sdmmc_instance_t

Typedefs

typedef void sdmmc_ctrl_t

Enumerations

enum sdmmc_card_type_t

enum sdmmc_bus_width_t

enum sdmmc_io_transfer_mode_t

enum sdmmc_io_address_mode_t

enum sdmmc_io_write_mode_t

enum sdmmc_event_t

enum sdmmc_card_detect_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,416 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

enum sdmmc_write_protect_t

enum sdmmc_r1_state_t

Data Structure Documentation

◆ sdmmc_status_t

struct sdmmc_status_t

Current status.

Data Fields

bool initialized False if card was removed (only
applies if MCU supports card
detection and SDnCD pin is
connected), true otherwise.

If ready is false, call
sdmmc_api_t::mediaInit to
reinitialize it

bool transfer_in_progress true = Card is busy

bool card_inserted Card detect status, true if card
detect is not used.

◆ sdmmc_device_t

struct sdmmc_device_t

Information obtained from the media device.

Data Fields

sdmmc_card_type_t card_type SD, eMMC, or SDIO.

bool write_protected true = Card is write protected

uint32_t clock_rate Current clock rate.

uint32_t sector_count Sector count.

uint32_t sector_size_bytes Sector size.

uint32_t erase_sector_count Minimum erasable unit (in 512
byte sectors)

◆ sdmmc_callback_args_t

struct sdmmc_callback_args_t

Callback function parameter data

Data Fields

sdmmc_event_t event The event can be used to
identify what caused the
callback.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,417 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

sdmmc_response_t response Response from card, only valid
if SDMMC_EVENT_RESPONSE is
set in event.

void const * p_context Placeholder for user data.

◆ sdmmc_cfg_t

struct sdmmc_cfg_t

SD/MMC Configuration

Data Fields

uint8_t channel

 Channel of SD/MMC host interface.

sdmmc_bus_width_t bus_width

 Device bus width is 1, 4 or 8 bits wide.

transfer_instance_t const * p_lower_lvl_transfer

 Transfer instance used to move data with DMA or DTC.

void(* p_callback)(sdmmc_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 SD/MMC hardware dependent configuration.

uint32_t block_size

sdmmc_card_detect_t card_detect

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,418 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

sdmmc_write_protect_t write_protect

IRQn_Type access_irq

 Access IRQ number.

IRQn_Type sdio_irq

 SDIO IRQ number.

IRQn_Type card_irq

 Card IRQ number.

IRQn_Type dma_req_irq

 DMA request IRQ number.

uint8_t access_ipl

 Access interrupt priority.

uint8_t sdio_ipl

 SDIO interrupt priority.

uint8_t card_ipl

 Card interrupt priority.

uint8_t dma_req_ipl

 DMA request interrupt priority.

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,419 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ block_size

uint32_t sdmmc_cfg_t::block_size

Block size in bytes. Block size must be 512 bytes for SD cards and eMMC devices. Block size can be
1-512 bytes for SDIO.

◆ card_detect

sdmmc_card_detect_t sdmmc_cfg_t::card_detect

Whether or not card detection is used.

◆ write_protect

sdmmc_write_protect_t sdmmc_cfg_t::write_protect

Select whether or not to use the write protect pin. Select Not Used if the MCU or device does not
have a write protect pin.

◆ sdmmc_api_t

struct sdmmc_api_t

SD/MMC functions implemented at the HAL layer API.

Data Fields

fsp_err_t(* open)(sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

fsp_err_t(* mediaInit)(sdmmc_ctrl_t *const p_ctrl, sdmmc_device_t *const
p_device)

fsp_err_t(* read)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const start_sector, uint32_t const sector_count)

fsp_err_t(* write)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const start_sector, uint32_t const sector_count)

fsp_err_t(* readIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address)

fsp_err_t(* writeIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address, sdmmc_io_write_mode_t
const read_after_write)

fsp_err_t(* readIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const function, uint32_t const address, uint32_t *const
count, sdmmc_io_transfer_mode_t transfer_mode,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,420 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

sdmmc_io_address_mode_t address_mode)

fsp_err_t(* writeIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const
p_source, uint32_t const function, uint32_t const address, uint32_t
const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

fsp_err_t(* ioIntEnable)(sdmmc_ctrl_t *const p_ctrl, bool enable)

fsp_err_t(* statusGet)(sdmmc_ctrl_t *const p_ctrl, sdmmc_status_t *const
p_status)

fsp_err_t(* erase)(sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector,
uint32_t const sector_count)

fsp_err_t(* callbackSet)(sdmmc_ctrl_t *const p_api_ctrl,
void(*p_callback)(sdmmc_callback_args_t *), void const *const
p_context, sdmmc_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(sdmmc_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* sdmmc_api_t::open) (sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

Open the SD/MMC driver.

Implemented as

R_SDHI_Open()
Parameters

[in] p_ctrl Pointer to SD/MMC instance
control block.

[in] p_cfg Pointer to SD/MMC instance
configuration structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,421 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ mediaInit

fsp_err_t(* sdmmc_api_t::mediaInit) (sdmmc_ctrl_t *const p_ctrl, sdmmc_device_t *const p_device)

Initializes an SD/MMC device. If the device is a card, the card must be plugged in prior to calling
this API. This API blocks until the device initialization procedure is complete.

Implemented as

R_SDHI_MediaInit()
Parameters

[in] p_ctrl Pointer to SD/MMC instance
control block.

[out] p_device Pointer to store device
information.

◆ read

fsp_err_t(* sdmmc_api_t::read) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
start_sector, uint32_t const sector_count)

Read data from an SD/MMC channel. This API is not supported for SDIO devices.

Implemented as

R_SDHI_Read()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] start_sector First sector address to read.

[in] sector_count Number of sectors to read.
All sectors must be in the
range of
sdmmc_device_t::sector_cou
nt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,422 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ write

fsp_err_t(* sdmmc_api_t::write) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source, uint32_t
const start_sector, uint32_t const sector_count)

Write data to SD/MMC channel. This API is not supported for SDIO devices.

Implemented as

R_SDHI_Write()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] start_sector First sector address to write
to.

[in] sector_count Number of sectors to write.
All sectors must be in the
range of
sdmmc_device_t::sector_cou
nt.

◆ readIo

fsp_err_t(* sdmmc_api_t::readIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address)

Read one byte of I/O data from an SDIO device. This API is not supported for SD or eMMC memory
devices.

Implemented as

R_SDHI_ReadIo()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[out] p_data Pointer to location to store
data byte.

[in] function SDIO Function Number.

[in] address SDIO register address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,423 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ writeIo

fsp_err_t(* sdmmc_api_t::writeIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address, sdmmc_io_write_mode_t const read_after_write)

Write one byte of I/O data to an SDIO device. This API is not supported for SD or eMMC memory
devices.

Implemented as

R_SDHI_WriteIo()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[in,out] p_data Pointer to data byte to write.
Read data is also provided
here if read_after_write is
true.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] read_after_write Whether or not to read back
the same register after
writing

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,424 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ readIoExt

fsp_err_t(* sdmmc_api_t::readIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const function, uint32_t const address, uint32_t *const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Read multiple bytes or blocks of I/O data from an SDIO device. This API is not supported for SD or
eMMC memory devices.

Implemented as

R_SDHI_ReadIoExt()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
read, maximum 512 bytes or
511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,425 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ writeIoExt

fsp_err_t(* sdmmc_api_t::writeIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const function, uint32_t const address, uint32_t const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Write multiple bytes or blocks of I/O data to an SDIO device. This API is not supported for SD or
eMMC memory devices.

Implemented as

R_SDHI_WriteIoExt()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] function_number SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
write, maximum 512 bytes
or 511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

◆ ioIntEnable

fsp_err_t(* sdmmc_api_t::ioIntEnable) (sdmmc_ctrl_t *const p_ctrl, bool enable)

Enables SDIO interrupt for SD/MMC instance. This API is not supported for SD or eMMC memory
devices.

Implemented as

R_SDHI_IoIntEnable
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[in] enable Interrupt enable = true,
interrupt disable = false.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,426 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ statusGet

fsp_err_t(* sdmmc_api_t::statusGet) (sdmmc_ctrl_t *const p_ctrl, sdmmc_status_t *const p_status)

Get SD/MMC device status.

Implemented as

R_SDHI_StatusGet()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[out] p_status Pointer to current driver
status.

◆ erase

fsp_err_t(* sdmmc_api_t::erase) (sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector, uint32_t
const sector_count)

Erase SD/MMC sectors. The sector size for erase is fixed at 512 bytes. This API is not supported for
SDIO devices.

Implemented as

R_SDHI_Erase
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

[in] start_sector First sector to erase. Must be
a multiple of
sdmmc_device_t::erase_sect
or_count.

[in] sector_count Number of sectors to erase.
Must be a multiple of
sdmmc_device_t::erase_sect
or_count. All sectors must be
in the range of
sdmmc_device_t::sector_cou
nt.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,427 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ callbackSet

fsp_err_t(* sdmmc_api_t::callbackSet) (sdmmc_ctrl_t *const p_api_ctrl,
void(*p_callback)(sdmmc_callback_args_t *), void const *const p_context, sdmmc_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_SDHI_CallbackSet()
Parameters

[in] p_ctrl Control block set in
sdmmc_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* sdmmc_api_t::close) (sdmmc_ctrl_t *const p_ctrl)

Close open SD/MMC device.

Implemented as

R_SDHI_Close()
Parameters

[in] p_ctrl Pointer to an open SD/MMC
instance control block.

◆ sdmmc_instance_t

struct sdmmc_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

sdmmc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

sdmmc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

sdmmc_api_t const * p_api Pointer to the API structure for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,428 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

this instance.

Typedef Documentation

◆ sdmmc_ctrl_t

typedef void sdmmc_ctrl_t

SD/MMC control block. Allocate an instance specific control block to pass into the SD/MMC API
calls.

Implemented as

sdmmc_instance_ctrl_t

Enumeration Type Documentation

◆ sdmmc_card_type_t

enum sdmmc_card_type_t

SD/MMC media uses SD protocol or MMC protocol.

Enumerator

SDMMC_CARD_TYPE_MMC The media is an eMMC device.

SDMMC_CARD_TYPE_SD The media is an SD card.

SDMMC_CARD_TYPE_SDIO The media is an SDIO card.

◆ sdmmc_bus_width_t

enum sdmmc_bus_width_t

SD/MMC data bus is 1, 4 or 8 bits wide.

Enumerator

SDMMC_BUS_WIDTH_1_BIT Data bus is 1 bit wide.

SDMMC_BUS_WIDTH_4_BITS Data bus is 4 bits wide.

SDMMC_BUS_WIDTH_8_BITS Data bus is 8 bits wide.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,429 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ sdmmc_io_transfer_mode_t

enum sdmmc_io_transfer_mode_t

SDIO transfer mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_MODE_TRANSFER_BYTE SDIO byte transfer mode.

SDMMC_IO_MODE_TRANSFER_BLOCK SDIO block transfer mode.

◆ sdmmc_io_address_mode_t

enum sdmmc_io_address_mode_t

SDIO address mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_ADDRESS_MODE_FIXED Write all data to the same address.

SDMMC_IO_ADDRESS_MODE_INCREMENT Increment destination address after each
write.

◆ sdmmc_io_write_mode_t

enum sdmmc_io_write_mode_t

Controls the RAW (read after write) flag of CMD52. Used to read back the status after writing a
control register.

Enumerator

SDMMC_IO_WRITE_MODE_NO_READ Write only (do not read back)

SDMMC_IO_WRITE_READ_AFTER_WRITE Read back the register after write.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,430 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ sdmmc_event_t

enum sdmmc_event_t

Events that can trigger a callback function

Enumerator

SDMMC_EVENT_CARD_REMOVED Card removed event.

SDMMC_EVENT_CARD_INSERTED Card inserted event.

SDMMC_EVENT_RESPONSE Response event.

SDMMC_EVENT_SDIO IO event.

SDMMC_EVENT_TRANSFER_COMPLETE Read or write complete.

SDMMC_EVENT_TRANSFER_ERROR Read or write failed.

SDMMC_EVENT_ERASE_COMPLETE Erase completed.

SDMMC_EVENT_ERASE_BUSY Erase timeout, poll sdmmc_api_t::statusGet.

◆ sdmmc_card_detect_t

enum sdmmc_card_detect_t

Card detection configuration options.

Enumerator

SDMMC_CARD_DETECT_NONE Card detection unused.

SDMMC_CARD_DETECT_CD Card detection using the CD pin.

◆ sdmmc_write_protect_t

enum sdmmc_write_protect_t

Write protection configuration options.

Enumerator

SDMMC_WRITE_PROTECT_NONE Write protection unused.

SDMMC_WRITE_PROTECT_WP Write protection using WP pin.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,431 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SD/MMC Interface

◆ sdmmc_r1_state_t

enum sdmmc_r1_state_t

Card state when receiving the prior command.

Enumerator

SDMMC_R1_STATE_IDLE Idle State.

SDMMC_R1_STATE_READY Ready State.

SDMMC_R1_STATE_IDENT Identification State.

SDMMC_R1_STATE_STBY Stand-by State.

SDMMC_R1_STATE_TRAN Transfer State.

SDMMC_R1_STATE_DATA Sending-data State.

SDMMC_R1_STATE_RCV Receive-data State.

SDMMC_R1_STATE_PRG Programming State.

SDMMC_R1_STATE_DIS Disconnect State (between programming and
stand-by)

SDMMC_R1_STATE_IO This is an I/O card and memory states do not
apply.

4.3.32 SLCDC Interface
Interfaces

Detailed Description

Interface for Segment LCD controllers.

Data Structures

struct slcdc_cfg_t

struct slcdc_api_t

struct slcdc_instance_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,432 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

Typedefs

typedef void slcdc_ctrl_t

Enumerations

enum slcdc_bias_method_t

enum slcdc_time_slice_t

enum slcdc_waveform_t

enum slcdc_drive_volt_gen_t

enum slcdc_display_area_control_blink_t

enum slcdc_display_area_t

enum slcdc_contrast_t

enum slcdc_display_on_off_t

enum slcdc_display_enable_disable_t

enum slcdc_display_clock_t

enum slcdc_clk_div_t

Data Structure Documentation

◆ slcdc_cfg_t

struct slcdc_cfg_t

SLCDC configuration block

Data Fields

slcdc_display_clock_t slcdc_clock LCD clock source (LCDSCKSEL)

slcdc_clk_div_t slcdc_clock_setting LCD clock setting (LCDC0)

slcdc_bias_method_t bias_method LCD display bias method select
(LBAS bit)

slcdc_time_slice_t time_slice Time slice of LCD display select
(LDTY bit)

slcdc_waveform_t waveform LCD display waveform select
(LWAVE bit)

slcdc_drive_volt_gen_t drive_volt_gen LCD Drive Voltage Generator
Select (MDSET bit)

slcdc_contrast_t contrast LCD Boost Level (contrast
setting)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,433 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ slcdc_api_t

struct slcdc_api_t

SLCDC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

fsp_err_t(* write)(slcdc_ctrl_t *const p_ctrl, uint8_t const start_segment, uint8_t
const *p_data, uint8_t const segment_count)

fsp_err_t(* modify)(slcdc_ctrl_t *const p_ctrl, uint8_t const segment, uint8_t
const data_mask, uint8_t const data)

fsp_err_t(* start)(slcdc_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(slcdc_ctrl_t *const p_ctrl)

fsp_err_t(* setContrast)(slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t const
contrast)

fsp_err_t(* setDisplayArea)(slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

fsp_err_t(* close)(slcdc_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,434 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ open

fsp_err_t(* slcdc_api_t::open) (slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

Open SLCDC.

Implemented as

R_SLCDC_Open()
Parameters

[in,out] p_ctrl Pointer to display interface
control block. Must be
declared by user.

[in] p_cfg Pointer to display
configuration structure. All
elements of this structure
must be set by the user.

◆ write

fsp_err_t(* slcdc_api_t::write) (slcdc_ctrl_t *const p_ctrl, uint8_t const start_segment, uint8_t const
*p_data, uint8_t const segment_count)

Write data to the SLCDC segment data array. Specifies the initial display data. Except when using
8-time slice mode, store values in the lower 4 bits when writing to the A-pattern area and in the
upper 4 bits when writing to the B-pattern area.

Implemented as

R_SLCDC_Write()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] start_segment Specify the start segment
number to be written.

[in] p_data Pointer to the display data to
be written to the specified
segments.

[in] segment_count Number of segments to be
written.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,435 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ modify

fsp_err_t(* slcdc_api_t::modify) (slcdc_ctrl_t *const p_ctrl, uint8_t const segment, uint8_t const
data_mask, uint8_t const data)

Rewrite data in the SLCDC segment data array. Rewrites the LCD display data in 1-bit units. If a bit
is not specified for rewriting, the value stored in the bit is held as it is.

Implemented as

R_SLCDC_Modify()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] segment The segment to be written.

[in] data_mask Mask the data being
displayed. Set 0 to the bit to
be rewritten and set 1 to the
other bits. Multiple bits can
be rewritten.

[in] data Specify display data to
rewrite to the specified
segment.

◆ start

fsp_err_t(* slcdc_api_t::start) (slcdc_ctrl_t *const p_ctrl)

Enable display signal output. Displays the segment data on the LCD.

Implemented as

R_SLCDC_Start()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ stop

fsp_err_t(* slcdc_api_t::stop) (slcdc_ctrl_t *const p_ctrl)

Disable display signal output. Stops displaying data on the LCD.

Implemented as

R_SLCDC_Stop()
Parameters

[in] p_ctrl Pointer to display interface
control block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,436 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ setContrast

fsp_err_t(* slcdc_api_t::setContrast) (slcdc_ctrl_t *const p_ctrl, slcdc_contrast_t const contrast)

Set the display contrast. This function can be used only when the internal voltage boosting method
is used for drive voltage generation.

Implemented as

R_SLCDC_SetContrast()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ setDisplayArea

fsp_err_t(* slcdc_api_t::setDisplayArea) (slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

Set LCD display area. This function sets a specified display area, A-pattern or B-pattern. This
function can be used to 'blink' the display between A-pattern and B-pattern area data.

When using blinking, the RTC is required to operate before this function is executed. To configure
the RTC, follow the steps below. 1) Open RTC 2) Set Periodic IRQ 3) Start RTC counter 4) Enable
IRQ, RTC_EVENT_PERIODIC_IRQ Refer to the User's Manual for the detailed procedure.

Implemented as

R_SLCDC_SetDisplayArea()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] display_area Display area to be used, A-
pattern or B-pattern area.

◆ close

fsp_err_t(* slcdc_api_t::close) (slcdc_ctrl_t *const p_ctrl)

Close SLCDC.

Implemented as

R_SLCDC_Close()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ slcdc_instance_t

struct slcdc_instance_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,437 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

slcdc_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

slcdc_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

slcdc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ slcdc_ctrl_t

typedef void slcdc_ctrl_t

SLCDC control block. Allocate an instance specific control block to pass into the SLCDC API calls.

Implemented as

slcdc_instance_ctrl_tSLCDC control block

Enumeration Type Documentation

◆ slcdc_bias_method_t

enum slcdc_bias_method_t

LCD display bias method.

Enumerator

SLCDC_BIAS_2 1/2 bias method

SLCDC_BIAS_3 1/3 bias method

SLCDC_BIAS_4 1/4 bias method

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,438 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ slcdc_time_slice_t

enum slcdc_time_slice_t

Time slice of LCD display.

Enumerator

SLCDC_STATIC Static.

SLCDC_SLICE_2 2-time slice

SLCDC_SLICE_3 3-time slice

SLCDC_SLICE_4 4-time slice

SLCDC_SLICE_8 8-time slice

◆ slcdc_waveform_t

enum slcdc_waveform_t

LCD display waveform select.

Enumerator

SLCDC_WAVE_A Waveform A.

SLCDC_WAVE_B Waveform B.

◆ slcdc_drive_volt_gen_t

enum slcdc_drive_volt_gen_t

LCD Drive Voltage Generator Select.

Enumerator

SLCDC_VOLT_EXTERNAL External resistance division method.

SLCDC_VOLT_INTERNAL Internal voltage boosting method.

SLCDC_VOLT_CAPACITOR Capacitor split method.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,439 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ slcdc_display_area_control_blink_t

enum slcdc_display_area_control_blink_t

Display Data Area Control

Enumerator

SLCDC_NOT_BLINKING Display either A-pattern or B-pattern data.

SLCDC_BLINKING Alternately display A-pattern and B-pattern
data.

◆ slcdc_display_area_t

enum slcdc_display_area_t

Display Area data

Enumerator

SLCDC_DISP_A Display A-pattern data.

SLCDC_DISP_B Display B-pattern data.

SLCDC_DISP_BLINK Blink between A- and B-pattern.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,440 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ slcdc_contrast_t

enum slcdc_contrast_t

LCD Boost Level (contrast) settings

Enumerator

SLCDC_CONTRAST_0 Contrast level 0.

SLCDC_CONTRAST_1 Contrast level 1.

SLCDC_CONTRAST_2 Contrast level 2.

SLCDC_CONTRAST_3 Contrast level 3.

SLCDC_CONTRAST_4 Contrast level 4.

SLCDC_CONTRAST_5 Contrast level 5.

SLCDC_CONTRAST_6 Contrast level 6.

SLCDC_CONTRAST_7 Contrast level 7.

SLCDC_CONTRAST_8 Contrast level 8.

SLCDC_CONTRAST_9 Contrast level 9.

SLCDC_CONTRAST_10 Contrast level 10.

SLCDC_CONTRAST_11 Contrast level 11.

SLCDC_CONTRAST_12 Contrast level 12.

SLCDC_CONTRAST_13 Contrast level 13.

SLCDC_CONTRAST_14 Contrast level 14.

SLCDC_CONTRAST_15 Contrast level 15.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,441 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

◆ slcdc_display_on_off_t

enum slcdc_display_on_off_t

LCD Display Enable/Disable

Enumerator

SLCDC_DISP_OFF Display off.

SLCDC_DISP_ON Display on.

◆ slcdc_display_enable_disable_t

enum slcdc_display_enable_disable_t

LCD Display output enable

Enumerator

SLCDC_DISP_DISABLE Output ground level to segment/common pins.

SLCDC_DISP_ENABLE Output enable.

◆ slcdc_display_clock_t

enum slcdc_display_clock_t

LCD Display clock selection

Enumerator

SLCDC_CLOCK_LOCO Display clock source LOCO.

SLCDC_CLOCK_SOSC Display clock source SOSC.

SLCDC_CLOCK_MOSC Display clock source MOSC.

SLCDC_CLOCK_HOCO Display clock source HOCO.

◆ slcdc_clk_div_t

enum slcdc_clk_div_t

LCD clock settings

Enumerator

SLCDC_CLK_DIVISOR_LOCO_4 LOCO Clock/4.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,442 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SLCDC Interface

SLCDC_CLK_DIVISOR_LOCO_8 LOCO Clock/8.

SLCDC_CLK_DIVISOR_LOCO_16 LOCO Clock/16.

SLCDC_CLK_DIVISOR_LOCO_32 LOCO Clock/32.

SLCDC_CLK_DIVISOR_LOCO_64 LOCO Clock/64.

SLCDC_CLK_DIVISOR_LOCO_128 LOCO Clock/128.

SLCDC_CLK_DIVISOR_LOCO_256 LOCO Clock/256.

SLCDC_CLK_DIVISOR_LOCO_512 LOCO Clock/512.

SLCDC_CLK_DIVISOR_LOCO_1024 LOCO Clock/1024.

SLCDC_CLK_DIVISOR_HOCO_256 HOCO Clock/256.

SLCDC_CLK_DIVISOR_HOCO_512 HOCO Clock/512.

SLCDC_CLK_DIVISOR_HOCO_1024 HOCO Clock/1024.

SLCDC_CLK_DIVISOR_HOCO_2048 HOCO Clock/2048.

SLCDC_CLK_DIVISOR_HOCO_4096 HOCO Clock/4096.

SLCDC_CLK_DIVISOR_HOCO_8192 HOCO Clock/8192.

SLCDC_CLK_DIVISOR_HOCO_16384 HOCO Clock/16384.

SLCDC_CLK_DIVISOR_HOCO_32768 HOCO Clock/32768.

SLCDC_CLK_DIVISOR_HOCO_65536 HOCO Clock/65536.

SLCDC_CLK_DIVISOR_HOCO_131072 HOCO Clock/131072.

SLCDC_CLK_DIVISOR_HOCO_262144 HOCO Clock/262144.

SLCDC_CLK_DIVISOR_HOCO_524288 HOCO Clock/524288.

4.3.33 SPI Interface
Interfaces

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,443 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

Detailed Description

Interface for SPI communications.

Summary
Provides a common interface for communication using the SPI Protocol.

Implemented by:

Serial Peripheral Interface (r_spi)
Serial Communications Interface (SCI) SPI (r_sci_spi)

Data Structures

struct spi_callback_args_t

struct spi_write_read_guard_args_t

struct spi_cfg_t

struct spi_api_t

struct spi_instance_t

Typedefs

typedef void spi_ctrl_t

Enumerations

enum spi_bit_width_t

enum spi_mode_t

enum spi_clk_phase_t

enum spi_clk_polarity_t

enum spi_mode_fault_t

enum spi_bit_order_t

enum spi_event_t

Data Structure Documentation

◆ spi_callback_args_t

struct spi_callback_args_t

Common callback parameter definition

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,444 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

Data Fields

uint32_t channel Device channel number.

spi_event_t event Event code.

void const * p_context Context provided to user during
callback.

◆ spi_write_read_guard_args_t

struct spi_write_read_guard_args_t

Non-secure arguments for write-read guard function

◆ spi_cfg_t

struct spi_cfg_t

SPI interface configuration

Data Fields

uint8_t channel

 Channel number to be used.

IRQn_Type rxi_irq

 Receive Buffer Full IRQ number.

IRQn_Type txi_irq

 Transmit Buffer Empty IRQ number.

IRQn_Type tei_irq

 Transfer Complete IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

uint8_t rxi_ipl

 Receive Interrupt priority.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,445 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

uint8_t txi_ipl

 Transmit Interrupt priority.

uint8_t tei_ipl

 Transfer Complete Interrupt priority.

uint8_t eri_ipl

 Error Interrupt priority.

spi_mode_t operating_mode

 Select master or slave operating mode.

spi_clk_phase_t clk_phase

 Data sampling on odd or even clock edge.

spi_clk_polarity_t clk_polarity

 Clock level when idle.

spi_mode_fault_t mode_fault

 Mode fault error (master/slave conflict) flag.

spi_bit_order_t bit_order

 Select to transmit MSB/LSB first.

transfer_instance_t const * p_transfer_tx

 To use SPI DTC/DMA write transfer, link a DTC/DMA instance here.
Set to NULL if unused.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,446 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

transfer_instance_t const * p_transfer_rx

 To use SPI DTC/DMA read transfer, link a DTC/DMA instance here. Set
to NULL if unused.

void(* p_callback)(spi_callback_args_t *p_args)

 Pointer to user callback function.

void const * p_context

 User defined context passed to callback function.

void const * p_extend

 Extended SPI hardware dependent configuration.

◆ spi_api_t

struct spi_api_t

Shared Interface definition for SPI

Data Fields

fsp_err_t(* open)(spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

fsp_err_t(* read)(spi_ctrl_t *const p_ctrl, void *p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

fsp_err_t(* write)(spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const
length, spi_bit_width_t const bit_width)

fsp_err_t(* writeRead)(spi_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

fsp_err_t(* callbackSet)(spi_ctrl_t *const p_api_ctrl,
void(*p_callback)(spi_callback_args_t *), void const *const p_context,
spi_callback_args_t *const p_callback_memory)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,447 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

fsp_err_t(* close)(spi_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* spi_api_t::open) (spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode.

Implemented as

R_SPI_Open()
R_SCI_SPI_Open()

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to SPI configuration
structure.

◆ read

fsp_err_t(* spi_api_t::read) (spi_ctrl_t *const p_ctrl, void *p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from a SPI device.

Implemented as

R_SPI_Read()
R_SCI_SPI_Read()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,448 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ write

fsp_err_t(* spi_api_t::write) (spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device.

Implemented as

R_SPI_Write()
R_SCI_SPI_Write()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,449 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ writeRead

fsp_err_t(* spi_api_t::writeRead) (spi_ctrl_t *const p_ctrl, void const *p_src, void *p_dest, uint32_t
const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to a SPI device while receiving data from a SPI device (full duplex).

Implemented as

R_SPI_WriteRead()
R_SCI_SPI_WriteRead()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count. The
argument must not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,450 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ callbackSet

fsp_err_t(* spi_api_t::callbackSet) (spi_ctrl_t *const p_api_ctrl, void(*p_callback)(spi_callback_args_t
*), void const *const p_context, spi_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_SCI_SPI_CallbackSet()
Parameters

[in] p_ctrl Pointer to the SPI control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* spi_api_t::close) (spi_ctrl_t *const p_ctrl)

Remove power to the SPI channel designated by the handle and disable the associated interrupts.

Implemented as

R_SPI_Close()
R_SCI_SPI_Close()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

◆ spi_instance_t

struct spi_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

spi_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

spi_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

spi_api_t const * p_api Pointer to the API structure for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,451 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

this instance.

Typedef Documentation

◆ spi_ctrl_t

typedef void spi_ctrl_t

SPI control block. Allocate an instance specific control block to pass into the SPI API calls.

Implemented as

sci_spi_instance_ctrl_t
spi_instance_ctrl_t

Enumeration Type Documentation

◆ spi_bit_width_t

enum spi_bit_width_t

Data bit width

Enumerator

SPI_BIT_WIDTH_8_BITS Data bit width is 8 bits byte.

SPI_BIT_WIDTH_9_BITS Data bit width is 9 bits word.

SPI_BIT_WIDTH_10_BITS Data bit width is 10 bits word.

SPI_BIT_WIDTH_11_BITS Data bit width is 11 bits word.

SPI_BIT_WIDTH_12_BITS Data bit width is 12 bits word.

SPI_BIT_WIDTH_13_BITS Data bit width is 13 bits word.

SPI_BIT_WIDTH_14_BITS Data bit width is 14 bits word.

SPI_BIT_WIDTH_15_BITS Data bit width is 15 bits word.

SPI_BIT_WIDTH_16_BITS Data bit width is 16 bits word.

SPI_BIT_WIDTH_20_BITS Data bit width is 20 bits long word.

SPI_BIT_WIDTH_24_BITS Data bit width is 24 bits long word.

SPI_BIT_WIDTH_32_BITS Data bit width is 32 bits long word.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,452 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ spi_mode_t

enum spi_mode_t

Master or slave operating mode

Enumerator

SPI_MODE_MASTER Channel operates as SPI master.

SPI_MODE_SLAVE Channel operates as SPI slave.

◆ spi_clk_phase_t

enum spi_clk_phase_t

Clock phase

Enumerator

SPI_CLK_PHASE_EDGE_ODD 0: Data sampling on odd edge, data variation
on even edge

SPI_CLK_PHASE_EDGE_EVEN 1: Data variation on odd edge, data sampling
on even edge

◆ spi_clk_polarity_t

enum spi_clk_polarity_t

Clock polarity

Enumerator

SPI_CLK_POLARITY_LOW 0: Clock polarity is low when idle

SPI_CLK_POLARITY_HIGH 1: Clock polarity is high when idle

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,453 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

◆ spi_mode_fault_t

enum spi_mode_fault_t

Mode fault error flag. This error occurs when the device is setup as a master, but the SSLA line
does not seem to be controlled by the master. This usually happens when the connecting device is
also acting as master. A similar situation can also happen when configured as a slave.

Enumerator

SPI_MODE_FAULT_ERROR_ENABLE Mode fault error flag on.

SPI_MODE_FAULT_ERROR_DISABLE Mode fault error flag off.

◆ spi_bit_order_t

enum spi_bit_order_t

Bit order

Enumerator

SPI_BIT_ORDER_MSB_FIRST Send MSB first in transmission.

SPI_BIT_ORDER_LSB_FIRST Send LSB first in transmission.

◆ spi_event_t

enum spi_event_t

SPI events

Enumerator

SPI_EVENT_TRANSFER_COMPLETE The data transfer was completed.

SPI_EVENT_TRANSFER_ABORTED The data transfer was aborted.

SPI_EVENT_ERR_MODE_FAULT Mode fault error.

SPI_EVENT_ERR_READ_OVERFLOW Read overflow error.

SPI_EVENT_ERR_PARITY Parity error.

SPI_EVENT_ERR_OVERRUN Overrun error.

SPI_EVENT_ERR_FRAMING Framing error.

SPI_EVENT_ERR_MODE_UNDERRUN Underrun error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,454 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Interface

4.3.34 SPI Flash Interface
Interfaces

Detailed Description

Interface for accessing external SPI flash devices.

Summary
The SPI flash API provides an interface that configures, writes, and erases sectors in SPI flash
devices.

Implemented by:

Octa Serial Peripheral Interface Flash (r_ospi)
Quad Serial Peripheral Interface Flash (r_qspi)

Data Structures

struct spi_flash_erase_command_t

struct spi_flash_direct_transfer_t

struct spi_flash_cfg_t

struct spi_flash_status_t

struct spi_flash_api_t

struct spi_flash_instance_t

Typedefs

typedef void spi_flash_ctrl_t

Enumerations

enum spi_flash_read_mode_t

enum spi_flash_protocol_t

enum spi_flash_address_bytes_t

enum spi_flash_data_lines_t

enum spi_flash_dummy_clocks_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,455 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

enum spi_flash_direct_transfer_dir_t

Data Structure Documentation

◆ spi_flash_erase_command_t

struct spi_flash_erase_command_t

Structure to define an erase command and associated erase size.

Data Fields

uint16_t command Erase command.

uint32_t size Size of erase for associated
command, set to SPI_FLASH_ER
ASE_SIZE_CHIP_ERASE for chip
erase.

◆ spi_flash_direct_transfer_t

struct spi_flash_direct_transfer_t

Structure to define a direct transfer.

Data Fields

uint32_t address Starting address.

uint32_t data Data.

uint16_t command Transfer command.

uint8_t dummy_cycles Number of dummy cycles.

uint8_t command_length Command length.

uint8_t address_length Address lengrh.

uint8_t data_length Data length.

◆ spi_flash_cfg_t

struct spi_flash_cfg_t

User configuration structure used by the open function

Data Fields

spi_flash_protocol_t spi_protocol Initial SPI protocol. SPI protocol
can be changed in
spi_flash_api_t::spiProtocolSet.

spi_flash_read_mode_t read_mode Read mode.

spi_flash_address_bytes_t address_bytes Number of bytes used to
represent the address.

spi_flash_dummy_clocks_t dummy_clocks Number of dummy clocks to
use for fast read operations.

spi_flash_data_lines_t page_program_address_lines Number of lines used to send

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,456 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

address for page program
command. This should either be
1 or match the number of lines
used in the selected read
mode.

uint8_t write_status_bit Which bit determines write
status.

uint8_t write_enable_bit Which bit determines write
status.

uint32_t page_size_bytes Page size in bytes (maximum
number of bytes for page
program)

uint8_t page_program_command Page program command.

uint8_t write_enable_command Command to enable write or
erase, typically 0x06.

uint8_t status_command Command to read the write
status.

uint8_t read_command Read command - OSPI SPI mode
only.

uint8_t xip_enter_command Command to enter XIP mode.

uint8_t xip_exit_command Command to exit XIP mode.

uint8_t erase_command_list_length Length of erase command list.

spi_flash_erase_command_t
const *

p_erase_command_list List of all erase commands and
associated sizes.

void const * p_extend Pointer to implementation
specific extended
configurations.

◆ spi_flash_status_t

struct spi_flash_status_t

Status.

Data Fields

bool write_in_progress Whether or not a write is in
progress. This is determined by
reading the
spi_flash_cfg_t::write_status_bit
from the
spi_flash_cfg_t::status_comman
d.

◆ spi_flash_api_t

struct spi_flash_api_t

SPI flash implementations follow this API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,457 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

Data Fields

fsp_err_t(* open)(spi_flash_ctrl_t *p_ctrl, spi_flash_cfg_t const *const p_cfg)

fsp_err_t(* directWrite)(spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src,
uint32_t const bytes, bool const read_after_write)

fsp_err_t(* directRead)(spi_flash_ctrl_t *p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

fsp_err_t(* directTransfer)(spi_flash_ctrl_t *p_ctrl, spi_flash_direct_transfer_t
*const p_transfer, spi_flash_direct_transfer_dir_t direction)

fsp_err_t(* spiProtocolSet)(spi_flash_ctrl_t *p_ctrl, spi_flash_protocol_t
spi_protocol)

fsp_err_t(* write)(spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src, uint8_t
*const p_dest, uint32_t byte_count)

fsp_err_t(* erase)(spi_flash_ctrl_t *p_ctrl, uint8_t *const p_device_address,
uint32_t byte_count)

fsp_err_t(* statusGet)(spi_flash_ctrl_t *p_ctrl, spi_flash_status_t *const p_status)

fsp_err_t(* xipEnter)(spi_flash_ctrl_t *p_ctrl)

fsp_err_t(* xipExit)(spi_flash_ctrl_t *p_ctrl)

fsp_err_t(* bankSet)(spi_flash_ctrl_t *p_ctrl, uint32_t bank)

fsp_err_t(* close)(spi_flash_ctrl_t *p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,458 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ open

fsp_err_t(* spi_flash_api_t::open) (spi_flash_ctrl_t *p_ctrl, spi_flash_cfg_t const *const p_cfg)

Open the SPI flash driver module.

Implemented as

R_OSPI_Open()
R_QSPI_Open()

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_cfg Pointer to a configuration
structure

◆ directWrite

fsp_err_t(* spi_flash_api_t::directWrite) (spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src, uint32_t
const bytes, bool const read_after_write)

Write raw data to the SPI flash.

Implemented as

R_OSPI_DirectWrite()
R_QSPI_DirectWrite()

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_src Pointer to raw data to write,
must include any required
command/address

[in] bytes Number of bytes to write

[in] read_after_write If true, the slave select
remains asserted and the
peripheral does not return to
direct communications
mode. If false, the slave
select is deasserted and
memory mapped access is
possible after this function
returns if the device is not
busy.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,459 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ directRead

fsp_err_t(* spi_flash_api_t::directRead) (spi_flash_ctrl_t *p_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

Read raw data from the SPI flash. Must follow a call to spi_flash_api_t::directWrite.

Implemented as

R_OSPI_DirectRead()
R_QSPI_DirectRead()

Parameters
[in] p_ctrl Pointer to a driver handle

[out] p_dest Pointer to read raw data into

[in] bytes Number of bytes to read

◆ directTransfer

fsp_err_t(* spi_flash_api_t::directTransfer) (spi_flash_ctrl_t *p_ctrl, spi_flash_direct_transfer_t *const
p_transfer, spi_flash_direct_transfer_dir_t direction)

Direct Read/Write raw data to the SPI flash.

Implemented as

R_OSPI_DirectTransfer()
Parameters

[in] p_ctrl Pointer to a driver handle

[in] p_data Pointer to command,
address and data values and
lengths

[in] direction Direct Read/Write

◆ spiProtocolSet

fsp_err_t(* spi_flash_api_t::spiProtocolSet) (spi_flash_ctrl_t *p_ctrl, spi_flash_protocol_t spi_protocol)

Change the SPI protocol in the driver. The application must change the SPI protocol on the device.

Implemented as

R_OSPI_SpiProtocolSet()
R_QSPI_SpiProtocolSet()

Parameters
[in] p_ctrl Pointer to a driver handle

[in] spi_protocol Desired SPI protocol

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,460 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ write

fsp_err_t(* spi_flash_api_t::write) (spi_flash_ctrl_t *p_ctrl, uint8_t const *const p_src, uint8_t *const
p_dest, uint32_t byte_count)

Program a page of data to the flash.

Implemented as

R_OSPI_Write()
R_QSPI_Write()

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_src The memory address of the
data to write to the flash
device

[in] p_dest The location in the flash
device address space to
write the data to

[in] byte_count The number of bytes to write

◆ erase

fsp_err_t(* spi_flash_api_t::erase) (spi_flash_ctrl_t *p_ctrl, uint8_t *const p_device_address, uint32_t
byte_count)

Erase a certain number of bytes of the flash.

Implemented as

R_OSPI_Erase()
R_QSPI_Erase()

Parameters
[in] p_ctrl Pointer to a driver handle

[in] p_device_address The location in the flash
device address space to
start the erase from

[in] byte_count The number of bytes to
erase. Set to SPI_FLASH_ERA
SE_SIZE_CHIP_ERASE to
erase entire chip.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,461 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ statusGet

fsp_err_t(* spi_flash_api_t::statusGet) (spi_flash_ctrl_t *p_ctrl, spi_flash_status_t *const p_status)

Get the write or erase status of the flash.

Implemented as

R_OSPI_StatusGet()
R_QSPI_StatusGet()

Parameters
[in] p_ctrl Pointer to a driver handle

[out] p_status Current status of the SPI
flash device stored here.

◆ xipEnter

fsp_err_t(* spi_flash_api_t::xipEnter) (spi_flash_ctrl_t *p_ctrl)

Enter XIP mode.

Implemented as

R_OSPI_XipEnter()
R_QSPI_XipEnter()

Parameters
[in] p_ctrl Pointer to a driver handle

◆ xipExit

fsp_err_t(* spi_flash_api_t::xipExit) (spi_flash_ctrl_t *p_ctrl)

Exit XIP mode.

Implemented as

R_OSPI_XipExit()
R_QSPI_XipExit()

Parameters
[in] p_ctrl Pointer to a driver handle

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,462 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ bankSet

fsp_err_t(* spi_flash_api_t::bankSet) (spi_flash_ctrl_t *p_ctrl, uint32_t bank)

Select the bank to access. See implementation for details.

Implemented as

R_OSPI_BankSet()
R_QSPI_BankSet()

Parameters
[in] p_ctrl Pointer to a driver handle

[in] bank The bank number

◆ close

fsp_err_t(* spi_flash_api_t::close) (spi_flash_ctrl_t *p_ctrl)

Close the SPI flash driver module.

Implemented as

R_OSPI_Close()
R_QSPI_Close()

Parameters
[in] p_ctrl Pointer to a driver handle

◆ spi_flash_instance_t

struct spi_flash_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

spi_flash_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

spi_flash_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

spi_flash_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,463 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ spi_flash_ctrl_t

typedef void spi_flash_ctrl_t

SPI flash control block. Allocate an instance specific control block to pass into the SPI flash API
calls.

Implemented as

qspi_instance_ctrl_t
ospi_instance_ctrl_t

Enumeration Type Documentation

◆ spi_flash_read_mode_t

enum spi_flash_read_mode_t

Read mode.

Enumerator

SPI_FLASH_READ_MODE_STANDARD Standard Read Mode (no dummy cycles)

SPI_FLASH_READ_MODE_FAST_READ Fast Read Mode (dummy cycles between
address and data)

SPI_FLASH_READ_MODE_FAST_READ_DUAL_OUT
PUT

Fast Read Dual Output Mode (data on 2 lines)

SPI_FLASH_READ_MODE_FAST_READ_DUAL_IO Fast Read Dual I/O Mode (address and data on
2 lines)

SPI_FLASH_READ_MODE_FAST_READ_QUAD_OUT
PUT

Fast Read Quad Output Mode (data on 4 lines)

SPI_FLASH_READ_MODE_FAST_READ_QUAD_IO Fast Read Quad I/O Mode (address and data on
4 lines)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,464 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ spi_flash_protocol_t

enum spi_flash_protocol_t

SPI protocol.

Enumerator

SPI_FLASH_PROTOCOL_EXTENDED_SPI Extended SPI mode (commands on 1 line)

SPI_FLASH_PROTOCOL_QPI QPI mode (commands on 4 lines). Note that
the application must ensure the device is in
QPI mode.

SPI_FLASH_PROTOCOL_SOPI SOPI mode (command and data on 8 lines).
Note that the application must ensure the
device is in SOPI mode.

SPI_FLASH_PROTOCOL_DOPI DOPI mode (command and data on 8 lines,
dual data rate). Note that the application must
ensure the device is in DOPI mode.

◆ spi_flash_address_bytes_t

enum spi_flash_address_bytes_t

Number of bytes in the address.

Enumerator

SPI_FLASH_ADDRESS_BYTES_3 3 address bytes

SPI_FLASH_ADDRESS_BYTES_4 4 address bytes with standard commands. If
this option is selected, the application must
issue the EN4B command using
spi_flash_api_t::directWrite() if required by the
device.

SPI_FLASH_ADDRESS_BYTES_4_4BYTE_READ_CO
DE

4 address bytes using standard 4-byte
command set.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,465 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ spi_flash_data_lines_t

enum spi_flash_data_lines_t

Number of data lines used.

Enumerator

SPI_FLASH_DATA_LINES_1 1 data line

SPI_FLASH_DATA_LINES_2 2 data lines

SPI_FLASH_DATA_LINES_4 4 data lines

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,466 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ spi_flash_dummy_clocks_t

enum spi_flash_dummy_clocks_t

Number of dummy cycles for fast read operations.

Enumerator

SPI_FLASH_DUMMY_CLOCKS_DEFAULT Default is 6 clocks for Fast Read Quad I/O, 4
clocks for Fast Read Dual I/O, and 8 clocks for
other fast read instructions including Fast Read
Quad Output, Fast Read Dual Output, and Fast
Read.

SPI_FLASH_DUMMY_CLOCKS_3 3 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_4 4 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_5 5 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_6 6 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_7 7 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_8 8 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_9 9 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_10 10 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_11 11 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_12 12 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_13 13 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_14 14 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_15 15 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_16 16 dummy clocks

SPI_FLASH_DUMMY_CLOCKS_17 17 dummy clocks

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,467 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SPI Flash Interface

◆ spi_flash_direct_transfer_dir_t

enum spi_flash_direct_transfer_dir_t

Direct Read and Write direction

4.3.35 Three-Phase Interface
Interfaces

Detailed Description

Interface for three-phase timer functions.

Summary
The Three-Phase interface provides functionality for synchronous start/stop/reset control of three
timer channels for use in 3-phase motor control applications.

Implemented by:

General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)

Data Structures

struct three_phase_duty_cycle_t

struct three_phase_cfg_t

struct three_phase_api_t

struct three_phase_instance_t

Typedefs

typedef void three_phase_ctrl_t

Enumerations

enum three_phase_channel_t

enum three_phase_buffer_mode_t

Data Structure Documentation

◆ three_phase_duty_cycle_t

struct three_phase_duty_cycle_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,468 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Three-Phase Interface

Struct for passing duty cycle values to three_phase_api_t::dutyCycleSet

Data Fields

uint32_t duty[3] Duty cycle. Note: When the GPT
instances are configured in TIM
ER_MODE_TRIANGLE_WAVE_AS
YMMETRIC_PWM_MODE3, this
value sets the duty cycle count
that is transfered to GTCCRA/B
at the trough.

uint32_t duty_buffer[3] Double-buffer for duty cycle
values. Note: When the GPT
instances are configured in TIM
ER_MODE_TRIANGLE_WAVE_AS
YMMETRIC_PWM_MODE3, this
value sets the duty cycle count
that is transfered to GTCCRA/B
at the crest.

◆ three_phase_cfg_t

struct three_phase_cfg_t

User configuration structure, used in open function

Data Fields

three_phase_buffer_mode_t buffer_mode Single or double-buffer mode.

timer_instance_t const * p_timer_instance[3] Pointer to the timer instance
structs.

three_phase_channel_t callback_ch Channel to enable callback
when using
three_phase_api_t::callbackSet.

uint32_t channel_mask Bitmask of timer channels used
by this module.

void const * p_context Placeholder for user data.
Passed to the user callback in
timer_callback_args_t.

void const * p_extend Extension parameter for
hardware specific settings.

◆ three_phase_api_t

struct three_phase_api_t

Three-Phase API structure.

Data Fields

fsp_err_t(* open)(three_phase_ctrl_t *const p_ctrl, three_phase_cfg_t const
*const p_cfg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,469 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Three-Phase Interface

fsp_err_t(* start)(three_phase_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(three_phase_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(three_phase_ctrl_t *const p_ctrl)

fsp_err_t(* dutyCycleSet)(three_phase_ctrl_t *const p_ctrl,
three_phase_duty_cycle_t *const p_duty_cycle)

fsp_err_t(* callbackSet)(three_phase_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(three_phase_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* three_phase_api_t::open) (three_phase_ctrl_t *const p_ctrl, three_phase_cfg_t const
*const p_cfg)

Initial configuration.

Implemented as

R_GPT_THREE_PHASE_Open()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,470 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Three-Phase Interface

◆ start

fsp_err_t(* three_phase_api_t::start) (three_phase_ctrl_t *const p_ctrl)

Start all three timers synchronously.

Implemented as

R_GPT_THREE_PHASE_Start()
Parameters

[in] p_ctrl Control block set in
three_phase_api_t::open call
for this timer.

◆ stop

fsp_err_t(* three_phase_api_t::stop) (three_phase_ctrl_t *const p_ctrl)

Stop all three timers synchronously.

Implemented as

R_GPT_THREE_PHASE_Stop()
Parameters

[in] p_ctrl Control block set in
three_phase_api_t::open call
for this timer.

◆ reset

fsp_err_t(* three_phase_api_t::reset) (three_phase_ctrl_t *const p_ctrl)

Reset all three timers synchronously.

Implemented as

R_GPT_THREE_PHASE_Reset()
Parameters

[in] p_ctrl Control block set in
three_phase_api_t::open call
for this timer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,471 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Three-Phase Interface

◆ dutyCycleSet

fsp_err_t(* three_phase_api_t::dutyCycleSet) (three_phase_ctrl_t *const p_ctrl,
three_phase_duty_cycle_t *const p_duty_cycle)

Sets the duty cycle match values. If the timer is counting, the updated duty cycle is reflected after
the next timer expiration.

Implemented as

R_GPT_THREE_PHASE_DutyCycleSet()
Parameters

[in] p_ctrl Control block set in
three_phase_api_t::open call
for this timer.

[in] p_duty_cycle Duty cycle values for all
three timer channels.

◆ callbackSet

fsp_err_t(* three_phase_api_t::callbackSet) (three_phase_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const p_context, timer_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_GPT_THREE_PHASE_CallbackSet()
Parameters

[in] p_ctrl Control block set in
three_phase_api_t::open call.

[in] p_callback Callback function to register
with GPT U-channel

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,472 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Three-Phase Interface

◆ close

fsp_err_t(* three_phase_api_t::close) (three_phase_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Implemented as

R_GPT_THREE_PHASE_Close()
Parameters

[in] p_ctrl Control block set in
three_phase_api_t::open call
for this timer.

◆ three_phase_instance_t

struct three_phase_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

three_phase_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

three_phase_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

three_phase_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ three_phase_ctrl_t

typedef void three_phase_ctrl_t

Three-Phase control block. Allocate an instance specific control block to pass into the timer API
calls.

Implemented as

gpt_three_phase_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,473 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Three-Phase Interface

◆ three_phase_channel_t

enum three_phase_channel_t

Timer channel indices

Enumerator

THREE_PHASE_CHANNEL_U U-channel index.

THREE_PHASE_CHANNEL_V V-channel index.

THREE_PHASE_CHANNEL_W W-channel index.

◆ three_phase_buffer_mode_t

enum three_phase_buffer_mode_t

Buffering mode

Enumerator

THREE_PHASE_BUFFER_MODE_SINGLE Single-buffer mode.

THREE_PHASE_BUFFER_MODE_DOUBLE Double-buffer mode.

4.3.36 Timer Interface
Interfaces

Detailed Description

Interface for timer functions.

Summary
The general timer interface provides standard timer functionality including periodic mode, one-shot
mode, PWM output, and free-running timer mode. After each timer cycle (overflow or underflow), an
interrupt can be triggered.

If an instance supports output compare mode, it is provided in the extension configuration
timer_on_<instance>_cfg_t defined in r_<instance>.h.

Implemented by:

General PWM Timer (r_gpt)
Asynchronous General Purpose Timer (r_agt)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,474 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

Data Structures

struct timer_callback_args_t

struct timer_info_t

struct timer_status_t

struct timer_cfg_t

struct timer_api_t

struct timer_instance_t

Typedefs

typedef void timer_ctrl_t

Enumerations

enum timer_event_t

enum timer_variant_t

enum timer_state_t

enum timer_mode_t

enum timer_direction_t

enum timer_source_div_t

Data Structure Documentation

◆ timer_callback_args_t

struct timer_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
timer_api_t::open function in
timer_cfg_t.

timer_event_t event The event can be used to
identify what caused the
callback.

uint32_t capture Most recent capture, only valid
if event is
TIMER_EVENT_CAPTURE_A or
TIMER_EVENT_CAPTURE_B.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,475 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ timer_info_t

struct timer_info_t

Timer information structure to store various information for a timer resource

Data Fields

timer_direction_t count_direction Clock counting direction of the
timer.

uint32_t clock_frequency Clock frequency of the timer
counter.

uint32_t period_counts Period in raw timer counts.

Note
For triangle wave PWM
modes, the full period is
double this value.

◆ timer_status_t

struct timer_status_t

Current timer status.

Data Fields

uint32_t counter Current counter value.

timer_state_t state Current timer state (running or
stopped)

◆ timer_cfg_t

struct timer_cfg_t

User configuration structure, used in open function

Data Fields

timer_mode_t mode

 Select enumerated value from timer_mode_t.

uint32_t period_counts

 Period in raw timer counts.

timer_source_div_t source_div

 Source clock divider.

uint32_t duty_cycle_counts

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,476 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

 Duty cycle in counts.

uint8_t channel

uint8_t cycle_end_ipl

 Cycle end interrupt priority.

IRQn_Type cycle_end_irq

 Cycle end interrupt.

void(* p_callback)(timer_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

Field Documentation

◆ channel

uint8_t timer_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_callback

void(* timer_cfg_t::p_callback) (timer_callback_args_t *p_args)

Callback provided when a timer ISR occurs. Set to NULL for no CPU interrupt.

◆ p_context

void const* timer_cfg_t::p_context

Placeholder for user data. Passed to the user callback in timer_callback_args_t.

◆ timer_api_t

struct timer_api_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,477 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

Timer API structure. General timer functions implemented at the HAL layer follow this API.

Data Fields

fsp_err_t(* open)(timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

fsp_err_t(* start)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* enable)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(timer_ctrl_t *const p_ctrl)

fsp_err_t(* periodSet)(timer_ctrl_t *const p_ctrl, uint32_t const period)

fsp_err_t(* dutyCycleSet)(timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)

fsp_err_t(* infoGet)(timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

fsp_err_t(* statusGet)(timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

fsp_err_t(* callbackSet)(timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const
p_context, timer_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(timer_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,478 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ open

fsp_err_t(* timer_api_t::open) (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_GPT_Open()
R_AGT_Open()

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ start

fsp_err_t(* timer_api_t::start) (timer_ctrl_t *const p_ctrl)

Start the counter.

Implemented as

R_GPT_Start()
R_AGT_Start()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ stop

fsp_err_t(* timer_api_t::stop) (timer_ctrl_t *const p_ctrl)

Stop the counter.

Implemented as

R_GPT_Stop()
R_AGT_Stop()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,479 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ reset

fsp_err_t(* timer_api_t::reset) (timer_ctrl_t *const p_ctrl)

Reset the counter to the initial value.

Implemented as

R_GPT_Reset()
R_AGT_Reset()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ enable

fsp_err_t(* timer_api_t::enable) (timer_ctrl_t *const p_ctrl)

Enables input capture.

Implemented as

R_GPT_Enable()
R_AGT_Enable()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ disable

fsp_err_t(* timer_api_t::disable) (timer_ctrl_t *const p_ctrl)

Disables input capture.

Implemented as

R_GPT_Disable()
R_AGT_Disable()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,480 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ periodSet

fsp_err_t(* timer_api_t::periodSet) (timer_ctrl_t *const p_ctrl, uint32_t const period)

Set the time until the timer expires. See implementation for details of period update timing.

Implemented as

R_GPT_PeriodSet()
R_AGT_PeriodSet()

Note
Timer expiration may or may not generate a CPU interrupt based on how the timer is configured in
timer_api_t::open.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] p_period Time until timer should
expire.

◆ dutyCycleSet

fsp_err_t(* timer_api_t::dutyCycleSet) (timer_ctrl_t *const p_ctrl, uint32_t const duty_cycle_counts,
uint32_t const pin)

Sets the number of counts for the pin level to be high. If the timer is counting, the updated duty
cycle is reflected after the next timer expiration.

Implemented as

R_GPT_DutyCycleSet()
R_AGT_DutyCycleSet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] duty_cycle_counts Time until duty cycle should
expire.

[in] pin Which output pin to update.
See implementation for
details.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,481 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ infoGet

fsp_err_t(* timer_api_t::infoGet) (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Stores timer information in p_info.

Implemented as

R_GPT_InfoGet()
R_AGT_InfoGet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_info Collection of information for
this timer.

◆ statusGet

fsp_err_t(* timer_api_t::statusGet) (timer_ctrl_t *const p_ctrl, timer_status_t *const p_status)

Get the current counter value and timer state and store it in p_status.

Implemented as

R_GPT_StatusGet()
R_AGT_StatusGet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_status Current status of this timer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,482 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ callbackSet

fsp_err_t(* timer_api_t::callbackSet) (timer_ctrl_t *const p_api_ctrl,
void(*p_callback)(timer_callback_args_t *), void const *const p_context, timer_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_GPT_CallbackSet()
R_AGT_CallbackSet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* timer_api_t::close) (timer_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Implemented as

R_GPT_Close()
R_AGT_Close()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ timer_instance_t

struct timer_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

timer_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,483 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

timer_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

timer_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ timer_ctrl_t

typedef void timer_ctrl_t

Timer control block. Allocate an instance specific control block to pass into the timer API calls.

Implemented as

gpt_instance_ctrl_t
agt_instance_ctrl_t

Enumeration Type Documentation

◆ timer_event_t

enum timer_event_t

Events that can trigger a callback function

Enumerator

TIMER_EVENT_CYCLE_END Requested timer delay has expired or timer
has wrapped around.

TIMER_EVENT_CREST Timer crest event (counter is at a maximum,
triangle-wave PWM only)

TIMER_EVENT_CAPTURE_A A capture has occurred on signal A.

TIMER_EVENT_CAPTURE_B A capture has occurred on signal B.

TIMER_EVENT_TROUGH Timer trough event (counter is 0, triangle-wave
PWM only.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,484 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ timer_variant_t

enum timer_variant_t

Timer variant types.

Enumerator

TIMER_VARIANT_32_BIT 32-bit timer

TIMER_VARIANT_16_BIT 16-bit timer

◆ timer_state_t

enum timer_state_t

Possible status values returned by timer_api_t::statusGet.

Enumerator

TIMER_STATE_STOPPED Timer is stopped.

TIMER_STATE_COUNTING Timer is running.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,485 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ timer_mode_t

enum timer_mode_t

Timer operational modes

Enumerator

TIMER_MODE_PERIODIC Timer restarts after period elapses.

TIMER_MODE_ONE_SHOT Timer stops after period elapses.

TIMER_MODE_PWM Timer generates saw-wave PWM output.

TIMER_MODE_TRIANGLE_WAVE_SYMMETRIC_PW
M

Timer generates symmetric triangle-wave PWM
output.

TIMER_MODE_TRIANGLE_WAVE_ASYMMETRIC_P
WM

Timer generates asymmetric triangle-wave
PWM output.

TIMER_MODE_TRIANGLE_WAVE_ASYMMETRIC_P
WM_MODE3

Timer generates Asymmetric Triangle-wave
PWM output. In PWM mode 3, the duty cycle
does not need to be updated at each
tough/crest interrupt. Instead, the trough and
crest duty cycle values can be set once and
only need to be updated when the application
needs to change the duty cycle.

◆ timer_direction_t

enum timer_direction_t

Direction of timer count

Enumerator

TIMER_DIRECTION_DOWN Timer count goes up.

TIMER_DIRECTION_UP Timer count goes down.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,486 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Timer Interface

◆ timer_source_div_t

enum timer_source_div_t

PCLK divisors

Enumerator

TIMER_SOURCE_DIV_1 Timer clock source divided by 1.

TIMER_SOURCE_DIV_2 Timer clock source divided by 2.

TIMER_SOURCE_DIV_4 Timer clock source divided by 4.

TIMER_SOURCE_DIV_8 Timer clock source divided by 8.

TIMER_SOURCE_DIV_16 Timer clock source divided by 16.

TIMER_SOURCE_DIV_32 Timer clock source divided by 32.

TIMER_SOURCE_DIV_64 Timer clock source divided by 64.

TIMER_SOURCE_DIV_128 Timer clock source divided by 128.

TIMER_SOURCE_DIV_256 Timer clock source divided by 256.

TIMER_SOURCE_DIV_1024 Timer clock source divided by 1024.

4.3.37 Transfer Interface
Interfaces

Detailed Description

Interface for data transfer functions.

Summary
The transfer interface supports background data transfer (no CPU intervention).

Implemented by:

Data Transfer Controller (r_dtc)
Direct Memory Access Controller (r_dmac)

Data Structures

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,487 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

struct transfer_properties_t

struct transfer_info_t

struct transfer_cfg_t

struct transfer_api_t

struct transfer_instance_t

Typedefs

typedef void transfer_ctrl_t

Enumerations

enum transfer_mode_t

enum transfer_size_t

enum transfer_addr_mode_t

enum transfer_repeat_area_t

enum transfer_chain_mode_t

enum transfer_irq_t

enum transfer_start_mode_t

Data Structure Documentation

◆ transfer_properties_t

struct transfer_properties_t

Driver specific information.

Data Fields

uint32_t block_count_max Maximum number of blocks.

uint32_t block_count_remaining Number of blocks remaining.

uint32_t transfer_length_max Maximum number of transfers.

uint32_t transfer_length_remaining Number of transfers remaining.

◆ transfer_info_t

struct transfer_info_t

This structure specifies the properties of the transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,488 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

Warning
When using DTC, this structure corresponds to the descriptor block registers required by
the DTC. The following components may be modified by the driver: p_src, p_dest,
num_blocks, and length.
When using DTC, do NOT reuse this structure to configure multiple transfers. Each transfer
must have a unique transfer_info_t.
When using DTC, this structure must not be allocated in a temporary location. Any instance
of this structure must remain in scope until the transfer it is used for is closed.

Note
When using DTC, consider placing instances of this structure in a protected section of memory.

Data Fields

union transfer_info_t __unnamed__

void const *volatile p_src Source pointer.

void *volatile p_dest Destination pointer.

volatile uint16_t num_blocks Number of blocks to transfer
when using
TRANSFER_MODE_BLOCK (both
DTC an DMAC) or
TRANSFER_MODE_REPEAT
(DMAC only) or
TRANSFER_MODE_REPEAT_BLO
CK (DMAC only), unused in
other modes.

volatile uint16_t length Length of each transfer. Range
limited for
TRANSFER_MODE_BLOCK,
TRANSFER_MODE_REPEAT, and
TRANSFER_MODE_REPEAT_BLO
CK see HAL driver for details.

◆ transfer_cfg_t

struct transfer_cfg_t

Driver configuration set in transfer_api_t::open. All elements except p_extend are required and
must be initialized.

Data Fields

transfer_info_t * p_info Pointer to transfer configuration
options. If using chain transfer
(DTC only), this can be a
pointer to an array of chained
transfers that will be completed
in order.

void const * p_extend Extension parameter for
hardware specific settings.

◆ transfer_api_t

struct transfer_api_t

Transfer functions implemented at the HAL layer will follow this API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,489 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

Data Fields

fsp_err_t(* open)(transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

fsp_err_t(* reconfigure)(transfer_ctrl_t *const p_ctrl, transfer_info_t *p_info)

fsp_err_t(* reset)(transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

fsp_err_t(* enable)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* disable)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* softwareStart)(transfer_ctrl_t *const p_ctrl, transfer_start_mode_t
mode)

fsp_err_t(* softwareStop)(transfer_ctrl_t *const p_ctrl)

fsp_err_t(* infoGet)(transfer_ctrl_t *const p_ctrl, transfer_properties_t *const
p_properties)

fsp_err_t(* close)(transfer_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,490 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ open

fsp_err_t(* transfer_api_t::open) (transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DTC_Open()
R_DMAC_Open()

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ reconfigure

fsp_err_t(* transfer_api_t::reconfigure) (transfer_ctrl_t *const p_ctrl, transfer_info_t *p_info)

Reconfigure the transfer. Enable the transfer if p_info is valid.

Implemented as

R_DTC_Reconfigure()
R_DMAC_Reconfigure()

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_info Pointer to a new transfer info
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,491 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ reset

fsp_err_t(* transfer_api_t::reset) (transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

Reset source address pointer, destination address pointer, and/or length, keeping all other settings
the same. Enable the transfer if p_src, p_dest, and length are valid.

Implemented as

R_DTC_Reset()
R_DMAC_Reset()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] p_src Pointer to source. Set to
NULL if source pointer
should not change.

[in] p_dest Pointer to destination. Set to
NULL if destination pointer
should not change.

[in] num_transfers Transfer length in normal
mode or number of blocks in
block mode. In DMAC only,
resets number of repeats
(initially stored in
transfer_info_t::num_blocks)
in repeat mode. Not used in
repeat mode for DTC.

◆ enable

fsp_err_t(* transfer_api_t::enable) (transfer_ctrl_t *const p_ctrl)

Enable transfer. Transfers occur after the activation source event (or when
transfer_api_t::softwareStart is called if ELC_EVENT_ELC_NONE is chosen as activation source).

Implemented as

R_DTC_Enable()
R_DMAC_Enable()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,492 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ disable

fsp_err_t(* transfer_api_t::disable) (transfer_ctrl_t *const p_ctrl)

Disable transfer. Transfers do not occur after the activation source event (or when
transfer_api_t::softwareStart is called if ELC_EVENT_ELC_NONE is chosen as the DMAC activation
source).

Note
If a transfer is in progress, it will be completed. Subsequent transfer requests do not cause a transfer.

Implemented as

R_DTC_Disable()
R_DMAC_Disable()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

◆ softwareStart

fsp_err_t(* transfer_api_t::softwareStart) (transfer_ctrl_t *const p_ctrl, transfer_start_mode_t mode)

Start transfer in software.

Warning
Only works if ELC_EVENT_ELC_NONE is chosen as the DMAC activation source.

Note
Not supported for DTC.

Implemented as

R_DMAC_SoftwareStart()
Parameters

[in] p_ctrl Control block set in
transfer_api_t::open call for
this transfer.

[in] mode Select mode from
transfer_start_mode_t.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,493 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ softwareStop

fsp_err_t(* transfer_api_t::softwareStop) (transfer_ctrl_t *const p_ctrl)

Stop transfer in software. The transfer will stop after completion of the current transfer.

Note
Not supported for DTC.
Only applies for transfers started with TRANSFER_START_MODE_REPEAT.

Warning
Only works if ELC_EVENT_ELC_NONE is chosen as the DMAC activation source.

Implemented as

R_DMAC_SoftwareStop()
Parameters

[in] p_ctrl Control block set in
transfer_api_t::open call for
this transfer.

◆ infoGet

fsp_err_t(* transfer_api_t::infoGet) (transfer_ctrl_t *const p_ctrl, transfer_properties_t *const
p_properties)

Provides information about this transfer.

Implemented as

R_DTC_InfoGet()
R_DMAC_InfoGet()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[out] p_properties Driver specific information.

◆ close

fsp_err_t(* transfer_api_t::close) (transfer_ctrl_t *const p_ctrl)

Releases hardware lock. This allows a transfer to be reconfigured using transfer_api_t::open.

Implemented as

R_DTC_Close()
R_DMAC_Close()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,494 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_instance_t

struct transfer_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

transfer_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

transfer_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

transfer_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ transfer_ctrl_t

typedef void transfer_ctrl_t

Transfer control block. Allocate an instance specific control block to pass into the transfer API calls.

Implemented as

dtc_instance_ctrl_t
dmac_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,495 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_mode_t

enum transfer_mode_t

Transfer mode describes what will happen when a transfer request occurs.

Enumerator

TRANSFER_MODE_NORMAL In normal mode, each transfer request causes
a transfer of transfer_size_t from the source
pointer to the destination pointer. The transfer
length is decremented and the source and
address pointers are updated according to
transfer_addr_mode_t. After the transfer length
reaches 0, transfer requests will not cause any
further transfers.

TRANSFER_MODE_REPEAT Repeat mode is like normal mode, except that
when the transfer length reaches 0, the pointer
to the repeat area and the transfer length will
be reset to their initial values. If DMAC is used,
the transfer repeats only
transfer_info_t::num_blocks times. After the
transfer repeats transfer_info_t::num_blocks
times, transfer requests will not cause any
further transfers. If DTC is used, the transfer
repeats continuously (no limit to the number of
repeat transfers).

TRANSFER_MODE_BLOCK In block mode, each transfer request causes
transfer_info_t::length transfers of
transfer_size_t. After each individual transfer,
the source and destination pointers are
updated according to transfer_addr_mode_t.
After the block transfer is complete,
transfer_info_t::num_blocks is decremented.
After the transfer_info_t::num_blocks reaches
0, transfer requests will not cause any further
transfers.

TRANSFER_MODE_REPEAT_BLOCK In addition to block mode features, repeat-
block mode supports a ring buffer of blocks
and offsets within a block (to split blocks into
arrays of their first data, second data, etc.)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,496 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_size_t

enum transfer_size_t

Transfer size specifies the size of each individual transfer. Total transfer length = transfer_size_t *
transfer_length_t

Enumerator

TRANSFER_SIZE_1_BYTE Each transfer transfers a 8-bit value.

TRANSFER_SIZE_2_BYTE Each transfer transfers a 16-bit value.

TRANSFER_SIZE_4_BYTE Each transfer transfers a 32-bit value.

◆ transfer_addr_mode_t

enum transfer_addr_mode_t

Address mode specifies whether to modify (increment or decrement) pointer after each transfer.

Enumerator

TRANSFER_ADDR_MODE_FIXED Address pointer remains fixed after each
transfer.

TRANSFER_ADDR_MODE_OFFSET Offset is added to the address pointer after
each transfer.

TRANSFER_ADDR_MODE_INCREMENTED Address pointer is incremented by associated
transfer_size_t after each transfer.

TRANSFER_ADDR_MODE_DECREMENTED Address pointer is decremented by associated
transfer_size_t after each transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,497 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_repeat_area_t

enum transfer_repeat_area_t

Repeat area options (source or destination). In TRANSFER_MODE_REPEAT, the selected pointer
returns to its original value after transfer_info_t::length transfers. In TRANSFER_MODE_BLOCK and
TRANSFER_MODE_REPEAT_BLOCK, the selected pointer returns to its original value after each
transfer.

Enumerator

TRANSFER_REPEAT_AREA_DESTINATION Destination area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK or
TRANSFER_MODE_REPEAT_BLOCK.

TRANSFER_REPEAT_AREA_SOURCE Source area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK or
TRANSFER_MODE_REPEAT_BLOCK.

◆ transfer_chain_mode_t

enum transfer_chain_mode_t

Chain transfer mode options.

Note
Only applies for DTC.

Enumerator

TRANSFER_CHAIN_MODE_DISABLED Chain mode not used.

TRANSFER_CHAIN_MODE_EACH Switch to next transfer after a single transfer
from this transfer_info_t.

TRANSFER_CHAIN_MODE_END Complete the entire transfer defined in this
transfer_info_t before chaining to next
transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,498 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Transfer Interface

◆ transfer_irq_t

enum transfer_irq_t

Interrupt options.

Enumerator

TRANSFER_IRQ_END Interrupt occurs only after last transfer. If this
transfer is chained to a subsequent transfer,
the interrupt will occur only after subsequent
chained transfer(s) are complete.

Warning
DTC triggers the interrupt of the
activation source. Choosing
TRANSFER_IRQ_END with DTC will
prevent activation source interrupts until
the transfer is complete.

TRANSFER_IRQ_EACH Interrupt occurs after each transfer.

Note
Not available in all HAL drivers. See HAL driver
for details.

◆ transfer_start_mode_t

enum transfer_start_mode_t

Select whether to start single or repeated transfer with software start.

Enumerator

TRANSFER_START_MODE_SINGLE Software start triggers single transfer.

TRANSFER_START_MODE_REPEAT Software start transfer continues until transfer
is complete.

4.3.38 UART Interface
Interfaces

Detailed Description

Interface for UART communications.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,499 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

Summary
The UART interface provides common APIs for UART HAL drivers. The UART interface supports the
following features:

Full-duplex UART communication
Interrupt driven transmit/receive processing
Callback function with returned event code
Runtime baud-rate change
Hardware resource locking during a transaction
CTS/RTS hardware flow control support (with an associated IOPORT pin)

Implemented by:

Serial Communications Interface (SCI) UART (r_sci_uart)

Data Structures

struct uart_info_t

struct uart_callback_args_t

struct uart_cfg_t

struct uart_api_t

struct uart_instance_t

Typedefs

typedef void uart_ctrl_t

Enumerations

enum uart_event_t

enum uart_data_bits_t

enum uart_parity_t

enum uart_stop_bits_t

enum uart_dir_t

Data Structure Documentation

◆ uart_info_t

struct uart_info_t

UART driver specific information

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,500 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

uint32_t write_bytes_max Maximum bytes that can be
written at this time. Only
applies if
uart_cfg_t::p_transfer_tx is not
NULL.

uint32_t read_bytes_max Maximum bytes that are
available to read at one time.
Only applies if
uart_cfg_t::p_transfer_rx is not
NULL.

◆ uart_callback_args_t

struct uart_callback_args_t

UART Callback parameter definition

Data Fields

uint32_t channel Device channel number.

uart_event_t event Event code.

uint32_t data Contains the next character
received for the events
UART_EVENT_RX_CHAR,
UART_EVENT_ERR_PARITY,
UART_EVENT_ERR_FRAMING, or
UART_EVENT_ERR_OVERFLOW.
Otherwise unused.

void const * p_context Context provided to user during
callback.

◆ uart_cfg_t

struct uart_cfg_t

UART Configuration

Data Fields

uint8_t channel

 Select a channel corresponding to the channel number of the
hardware.

uart_data_bits_t data_bits

 Data bit length (8 or 7 or 9)

uart_parity_t parity

 Parity type (none or odd or even)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,501 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

uart_stop_bits_t stop_bits

 Stop bit length (1 or 2)

uint8_t rxi_ipl

 Receive interrupt priority.

IRQn_Type rxi_irq

 Receive interrupt IRQ number.

uint8_t txi_ipl

 Transmit interrupt priority.

IRQn_Type txi_irq

 Transmit interrupt IRQ number.

uint8_t tei_ipl

 Transmit end interrupt priority.

IRQn_Type tei_irq

 Transmit end interrupt IRQ number.

uint8_t eri_ipl

 Error interrupt priority.

IRQn_Type eri_irq

 Error interrupt IRQ number.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,502 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

transfer_instance_t const * p_transfer_rx

transfer_instance_t const * p_transfer_tx

void(* p_callback)(uart_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 UART hardware dependent configuration.

Field Documentation

◆ p_transfer_rx

transfer_instance_t const* uart_cfg_t::p_transfer_rx

Optional transfer instance used to receive multiple bytes without interrupts. Set to NULL if unused.
If NULL, the number of bytes allowed in the read API is limited to one byte at a time.

◆ p_transfer_tx

transfer_instance_t const* uart_cfg_t::p_transfer_tx

Optional transfer instance used to send multiple bytes without interrupts. Set to NULL if unused. If
NULL, the number of bytes allowed in the write APIs is limited to one byte at a time.

◆ uart_api_t

struct uart_api_t

Shared Interface definition for UART

Data Fields

fsp_err_t(* open)(uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

fsp_err_t(* read)(uart_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes)

fsp_err_t(* write)(uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,503 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

const bytes)

fsp_err_t(* baudSet)(uart_ctrl_t *const p_ctrl, void const *const
p_baudrate_info)

fsp_err_t(* infoGet)(uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

fsp_err_t(* communicationAbort)(uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

fsp_err_t(* callbackSet)(uart_ctrl_t *const p_api_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const
p_context, uart_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(uart_ctrl_t *const p_ctrl)

fsp_err_t(* readStop)(uart_ctrl_t *const p_ctrl, uint32_t *remaining_bytes)

Field Documentation

◆ open

fsp_err_t(* uart_api_t::open) (uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

Open UART device.

Implemented as

R_SCI_UART_Open()
Parameters

[in,out] p_ctrl Pointer to the UART control
block. Must be declared by
user. Value set here.

[in] uart_cfg_t Pointer to UART
configuration structure. All
elements of this structure
must be set by user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,504 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ read

fsp_err_t(* uart_api_t::read) (uart_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const bytes)

Read from UART device. The read buffer is used until the read is complete. When a transfer is
complete, the callback is called with event UART_EVENT_RX_COMPLETE. Bytes received outside an
active transfer are received in the callback function with event UART_EVENT_RX_CHAR. The
maximum transfer size is reported by infoGet().

Implemented as

R_SCI_UART_Read()
Parameters

[in] p_ctrl Pointer to the UART control
block for the channel.

[in] p_dest Destination address to read
data from.

[in] bytes Read data length.

◆ write

fsp_err_t(* uart_api_t::write) (uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t const
bytes)

Write to UART device. The write buffer is used until write is complete. Do not overwrite write buffer
contents until the write is finished. When the write is complete (all bytes are fully transmitted on
the wire), the callback called with event UART_EVENT_TX_COMPLETE. The maximum transfer size is
reported by infoGet().

Implemented as

R_SCI_UART_Write()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] p_src Source address to write data
to.

[in] bytes Write data length.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,505 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ baudSet

fsp_err_t(* uart_api_t::baudSet) (uart_ctrl_t *const p_ctrl, void const *const p_baudrate_info)

Change baud rate.

Warning
Calling this API aborts any in-progress transmission and disables reception until the new
baud settings have been applied.

Implemented as

R_SCI_UART_BaudSet()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] p_baudrate_info Pointer to module specific
information for configuring
baud rate.

◆ infoGet

fsp_err_t(* uart_api_t::infoGet) (uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

Get the driver specific information.

Implemented as

R_SCI_UART_InfoGet()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] baudrate Baud rate in bps.

◆ communicationAbort

fsp_err_t(* uart_api_t::communicationAbort) (uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

Abort ongoing transfer.

Implemented as

R_SCI_UART_Abort()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] communication_to_abort Type of abort request.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,506 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ callbackSet

fsp_err_t(* uart_api_t::callbackSet) (uart_ctrl_t *const p_api_ctrl,
void(*p_callback)(uart_callback_args_t *), void const *const p_context, uart_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_SCI_Uart_CallbackSet()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* uart_api_t::close) (uart_ctrl_t *const p_ctrl)

Close UART device.

Implemented as

R_SCI_UART_Close()
Parameters

[in] p_ctrl Pointer to the UART control
block.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,507 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ readStop

fsp_err_t(* uart_api_t::readStop) (uart_ctrl_t *const p_ctrl, uint32_t *remaining_bytes)

Stop ongoing read and return the number of bytes remaining in the read.

Implemented as

R_SCI_UART_ReadStop()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in,out] remaining_bytes Pointer to location to store
remaining bytes for read.

◆ uart_instance_t

struct uart_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

uart_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

uart_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

uart_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ uart_ctrl_t

typedef void uart_ctrl_t

UART control block. Allocate an instance specific control block to pass into the UART API calls.

Implemented as

sci_uart_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,508 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ uart_event_t

enum uart_event_t

UART Event codes

Enumerator

UART_EVENT_RX_COMPLETE Receive complete event.

UART_EVENT_TX_COMPLETE Transmit complete event.

UART_EVENT_RX_CHAR Character received.

UART_EVENT_ERR_PARITY Parity error event.

UART_EVENT_ERR_FRAMING Mode fault error event.

UART_EVENT_ERR_OVERFLOW FIFO Overflow error event.

UART_EVENT_BREAK_DETECT Break detect error event.

UART_EVENT_TX_DATA_EMPTY Last byte is transmitting, ready for more data.

◆ uart_data_bits_t

enum uart_data_bits_t

UART Data bit length definition

Enumerator

UART_DATA_BITS_8 Data bits 8-bit.

UART_DATA_BITS_7 Data bits 7-bit.

UART_DATA_BITS_9 Data bits 9-bit.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,509 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > UART Interface

◆ uart_parity_t

enum uart_parity_t

UART Parity definition

Enumerator

UART_PARITY_OFF No parity.

UART_PARITY_EVEN Even parity.

UART_PARITY_ODD Odd parity.

◆ uart_stop_bits_t

enum uart_stop_bits_t

UART Stop bits definition

Enumerator

UART_STOP_BITS_1 Stop bit 1-bit.

UART_STOP_BITS_2 Stop bits 2-bit.

◆ uart_dir_t

enum uart_dir_t

UART transaction definition

Enumerator

UART_DIR_RX_TX Both RX and TX.

UART_DIR_RX Only RX.

UART_DIR_TX Only TX.

4.3.39 USB Interface
Interfaces

Detailed Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,510 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

Interface for USB functions.

Summary
The USB interface provides USB functionality.

The USB interface can be implemented by:

USB (r_usb_basic)

Data Structures

struct usb_cfg_t

struct usb_api_t

struct usb_instance_t

Macros

#define USB_BREQUEST

 b15-8

#define USB_GET_STATUS

 USB Standard request Get Status.

#define USB_CLEAR_FEATURE

 USB Standard request Clear Feature.

#define USB_REQRESERVED

 USB Standard request Reqreserved.

#define USB_SET_FEATURE

 USB Standard request Set Feature.

#define USB_REQRESERVED1

 USB Standard request Reqreserved1.

#define USB_SET_ADDRESS

 USB Standard request Set Address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,511 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_GET_DESCRIPTOR

 USB Standard request Get Descriptor.

#define USB_SET_DESCRIPTOR

 USB Standard request Set Descriptor.

#define USB_GET_CONFIGURATION

 USB Standard request Get Configuration.

#define USB_SET_CONFIGURATION

 USB Standard request Set Configuration.

#define USB_GET_INTERFACE

 USB Standard request Get Interface.

#define USB_SET_INTERFACE

 USB Standard request Set Interface.

#define USB_SYNCH_FRAME

 USB Standard request Synch Frame.

#define USB_HOST_TO_DEV

 From host to device.

#define USB_DEV_TO_HOST

 From device to host.

#define USB_STANDARD

 Standard Request.

#define USB_CLASS

 Class Request.

#define USB_VENDOR

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,512 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

 Vendor Request.

#define USB_DEVICE

 Device.

#define USB_INTERFACE

 Interface.

#define USB_ENDPOINT

 End Point.

#define USB_OTHER

 Other.

#define USB_NULL

 NULL pointer.

#define USB_IP0

 USB0 module.

#define USB_IP1

 USB1 module.

#define USB_PIPE0

 Pipe Number0.

#define USB_PIPE1

 Pipe Number1.

#define USB_PIPE2

 Pipe Number2.

#define USB_PIPE3

 Pipe Number3.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,513 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_PIPE4

 Pipe Number4.

#define USB_PIPE5

 Pipe Number5.

#define USB_PIPE6

 Pipe Number6.

#define USB_PIPE7

 Pipe Number7.

#define USB_PIPE8

 Pipe Number8.

#define USB_PIPE9

 Pipe Number9.

#define USB_EP0

 End Point Number0.

#define USB_EP1

 End Point Number1.

#define USB_EP2

 End Point Number2.

#define USB_EP3

 End Point Number3.

#define USB_EP4

 End Point Number4.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,514 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_EP5

 End Point Number5.

#define USB_EP6

 End Point Number6.

#define USB_EP7

 End Point Number7.

#define USB_EP8

 End Point Number8.

#define USB_EP9

 End Point Number9.

#define USB_EP10

 End Point Number10.

#define USB_EP11

 End Point Number11.

#define USB_EP12

 End Point Number12.

#define USB_EP13

 End Point Number13.

#define USB_EP14

 End Point Number14.

#define USB_EP15

 End Point Number15.

#define USB_EP_DIR

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,515 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

 b7: Endpoint Direction

#define USB_EP_DIR_IN

 b7: Endpoint Direction In

#define USB_EP_DIR_OUT

 b7: Endpoint Direction Out

#define USB_DT_DEVICE

 Device Descriptor.

#define USB_DT_CONFIGURATION

 Configuration Descriptor.

#define USB_DT_STRING

 String Descriptor.

#define USB_DT_INTERFACE

 Interface Descriptor.

#define USB_DT_ENDPOINT

 Endpoint Descriptor.

#define USB_DT_DEVICE_QUALIFIER

 Device Qualifier Descriptor.

#define USB_DT_OTHER_SPEED_CONF

 Other Speed Configuration Descriptor.

#define USB_DT_INTERFACE_POWER

 Interface Power Descriptor.

#define USB_DT_OTGDESCRIPTOR

 OTG Descriptor.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,516 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_DT_HUBDESCRIPTOR

 HUB descriptor.

#define USB_IFCLS_NOT

 Un corresponding Class.

#define USB_IFCLS_AUD

 Audio Class.

#define USB_IFCLS_CDC

 CDC Class.

#define USB_IFCLS_CDCC

 CDC-Control Class.

#define USB_IFCLS_HID

 HID Class.

#define USB_IFCLS_PHY

 Physical Class.

#define USB_IFCLS_IMG

 Image Class.

#define USB_IFCLS_PRN

 Printer Class.

#define USB_IFCLS_MAS

 Mass Storage Class.

#define USB_IFCLS_HUB

 HUB Class.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,517 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

#define USB_IFCLS_CDCD

 CDC-Data Class.

#define USB_IFCLS_CHIP

 Chip/Smart Card Class.

#define USB_IFCLS_CNT

 Content-Security Class.

#define USB_IFCLS_VID

 Video Class.

#define USB_IFCLS_DIAG

 Diagnostic Device.

#define USB_IFCLS_WIRE

 Wireless Controller.

#define USB_IFCLS_APL

 Application-Specific.

#define USB_IFCLS_VEN

 Vendor-Specific Class.

#define USB_EP_IN

 In Endpoint.

#define USB_EP_OUT

 Out Endpoint.

#define USB_EP_ISO

 Isochronous Transfer.

#define USB_EP_BULK

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,518 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

 Bulk Transfer.

#define USB_EP_INT

 Interrupt Transfer.

#define USB_CF_RESERVED

 Reserved(set to 1)

#define USB_CF_SELFP

 Self Powered.

#define USB_CF_BUSP

 Bus Powered.

#define USB_CF_RWUPON

 Remote Wake up ON.

#define USB_CF_RWUPOFF

 Remote Wake up OFF.

#define USB_DD_BLENGTH

 Device Descriptor Length.

#define USB_CD_BLENGTH

 Configuration Descriptor Length.

#define USB_ID_BLENGTH

 Interface Descriptor Length.

#define USB_ED_BLENGTH

 Endpoint Descriptor Length.

Typedefs

typedef void usb_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,519 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

Enumerations

enum usb_speed_t

enum usb_setup_status_t

enum usb_status_t

enum usb_class_t

enum usb_bcport_t

enum usb_onoff_t

enum usb_transfer_t

enum usb_transfer_type_t

enum usb_mode_t

enum usb_compliancetest_status_t

Data Structure Documentation

◆ usb_cfg_t

struct usb_cfg_t

USB configuration.

Data Fields

usb_mode_t usb_mode USB_MODE_HOST/USB_MODE_P
ERI.

usb_speed_t usb_speed USB speed
(USB_HS/USB_FS/USB_LS)

uint8_t module_number USB module number
(USB_IP0/USB_IP1)

usb_class_t type USB device class etc.

usb_descriptor_t * p_usb_reg Pointer to the usb_decriptor_t
structure area.

usb_compliance_cb_t usb_complience_cb

IRQn_Type irq USBI dedicated interrupt
number storage variable.

IRQn_Type irq_r USBR dedicated interrupt
number storage variable.

IRQn_Type irq_d0 FS D0FIFO dedicated interrupt

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,520 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

number storage variable.

IRQn_Type irq_d1 FS D1FIFO dedicated interrupt
number storage variable.

IRQn_Type hsirq USBIR dedicated interrupt
number storage variable.

IRQn_Type hsirq_d0 HS D0FIFO dedicated interrupt
number storage variable.

IRQn_Type hsirq_d1 HS D1FIFO dedicated interrupt
number storage variable.

uint8_t ipl Variable to store the interrupt
priority of USBI.

uint8_t ipl_r Variable to store the interrupt
priority of USBR.

uint8_t ipl_d0 Variable to store the interrupt
priority of FS D0FIFO.

uint8_t ipl_d1 Variable to store the interrupt
priority of FS D1FIFO.

uint8_t hsipl Variable to store the interrupt
priority of USBIR.

uint8_t hsipl_d0 Variable to store the interrupt
priority of HS D0FIFO.

uint8_t hsipl_d1 Variable to store the interrupt
priority of HS D1FIFO.

usb_callback_t * p_usb_apl_callback Application Callback.

void const * p_context Other Context.

const transfer_instance_t * p_transfer_tx Send context.

const transfer_instance_t * p_transfer_rx Receive context.

◆ usb_api_t

struct usb_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const p_cfg)

fsp_err_t(* close)(usb_ctrl_t *const p_api_ctrl)

fsp_err_t(* read)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
uint8_t destination)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,521 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

fsp_err_t(* write)(usb_ctrl_t *const p_api_ctrl, uint8_t const *const p_buf,
uint32_t size, uint8_t destination)

fsp_err_t(* stop)(usb_ctrl_t *const p_api_ctrl, usb_transfer_t direction, uint8_t
destination)

fsp_err_t(* suspend)(usb_ctrl_t *const p_api_ctrl)

fsp_err_t(* resume)(usb_ctrl_t *const p_api_ctrl)

fsp_err_t(* vbusSet)(usb_ctrl_t *const p_api_ctrl, uint16_t state)

fsp_err_t(* infoGet)(usb_ctrl_t *const p_api_ctrl, usb_info_t *p_info, uint8_t
destination)

fsp_err_t(* pipeRead)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
uint8_t pipe_number)

fsp_err_t(* pipeWrite)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size,
uint8_t pipe_number)

fsp_err_t(* pipeStop)(usb_ctrl_t *const p_api_ctrl, uint8_t pipe_number)

fsp_err_t(* usedPipesGet)(usb_ctrl_t *const p_api_ctrl, uint16_t *p_pipe, uint8_t
destination)

fsp_err_t(* pipeInfoGet)(usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info, uint8_t
pipe_number)

fsp_err_t(* eventGet)(usb_ctrl_t *const p_api_ctrl, usb_status_t *event)

fsp_err_t(* callback)(usb_callback_t *p_callback)

fsp_err_t(* pullUp)(usb_ctrl_t *const p_api_ctrl, uint8_t state)

fsp_err_t(* hostControlTransfer)(usb_ctrl_t *const p_api_ctrl, usb_setup_t
*p_setup, uint8_t *p_buf, uint8_t device_address)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,522 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

fsp_err_t(* periControlDataGet)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size)

fsp_err_t(* periControlDataSet)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size)

fsp_err_t(* periControlStatusSet)(usb_ctrl_t *const p_api_ctrl,
usb_setup_status_t status)

fsp_err_t(* remoteWakeup)(usb_ctrl_t *const p_api_ctrl)

fsp_err_t(* moduleNumberGet)(usb_ctrl_t *const p_api_ctrl, uint8_t
*module_number)

fsp_err_t(* classTypeGet)(usb_ctrl_t *const p_api_ctrl, usb_class_t *class_type)

fsp_err_t(* deviceAddressGet)(usb_ctrl_t *const p_api_ctrl, uint8_t
*device_address)

fsp_err_t(* pipeNumberGet)(usb_ctrl_t *const p_api_ctrl, uint8_t *pipe_number)

fsp_err_t(* deviceStateGet)(usb_ctrl_t *const p_api_ctrl, uint16_t *state)

fsp_err_t(* dataSizeGet)(usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)

fsp_err_t(* setupGet)(usb_ctrl_t *const p_api_ctrl, usb_setup_t *setup)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,523 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ open

fsp_err_t(* usb_api_t::open) (usb_ctrl_t *const p_api_ctrl, usb_cfg_t const *const p_cfg)

Start the USB module

Implemented as

R_USB_Open()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* usb_api_t::close) (usb_ctrl_t *const p_api_ctrl)

Stop the USB module

Implemented as

R_USB_Close()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ read

fsp_err_t(* usb_api_t::read) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size, uint8_t
destination)

Request USB data read

Implemented as

R_USB_Read()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
read data.

[in] size Read request size.

[in] destination In Host mode, it represents
the device address, and in
Peripheral mode, it
represents the device class.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,524 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ write

fsp_err_t(* usb_api_t::write) (usb_ctrl_t *const p_api_ctrl, uint8_t const *const p_buf, uint32_t size,
uint8_t destination)

Request USB data write

Implemented as

R_USB_Write()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
write data.

[in] size Read request size.

[in] destination In Host mode, it represents
the device address, and in
Peripheral mode, it
represents the device class.

◆ stop

fsp_err_t(* usb_api_t::stop) (usb_ctrl_t *const p_api_ctrl, usb_transfer_t direction, uint8_t
destination)

Stop USB data read/write processing

Implemented as

R_USB_Stop()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] direction Receive
(USB_TRANSFER_READ) or
send
(USB_TRANSFER_WRITE).

[in] destination In Host mode, it represents
the device address, and in
Peripheral mode, it
represents the device class.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,525 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ suspend

fsp_err_t(* usb_api_t::suspend) (usb_ctrl_t *const p_api_ctrl)

Request suspend

Implemented as

R_USB_Suspend()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ resume

fsp_err_t(* usb_api_t::resume) (usb_ctrl_t *const p_api_ctrl)

Request resume

Implemented as

R_USB_Resume()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ vbusSet

fsp_err_t(* usb_api_t::vbusSet) (usb_ctrl_t *const p_api_ctrl, uint16_t state)

Sets VBUS supply start/stop.

Implemented as

R_USB_VbusSet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] state VBUS supply start/stop
specification

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,526 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ infoGet

fsp_err_t(* usb_api_t::infoGet) (usb_ctrl_t *const p_api_ctrl, usb_info_t *p_info, uint8_t destination)

Get information on USB device.

Implemented as

R_USB_InfoGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_info Pointer to usb_info_t
structure area.

[in] destination Device address for Host.

◆ pipeRead

fsp_err_t(* usb_api_t::pipeRead) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size, uint8_t
pipe_number)

Request data read from specified pipe

Implemented as

R_USB_PipeRead()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
read data.

[in] size Read request size.

[in] pipe_number Pipe Number.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,527 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ pipeWrite

fsp_err_t(* usb_api_t::pipeWrite) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size, uint8_t
pipe_number)

Request data write to specified pipe

Implemented as

R_USB_PipeWrite()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_buf Pointer to area that stores
write data.

[in] size Read request size.

[in] pipe_number Pipe Number.

◆ pipeStop

fsp_err_t(* usb_api_t::pipeStop) (usb_ctrl_t *const p_api_ctrl, uint8_t pipe_number)

Stop USB data read/write processing to specified pipe

Implemented as

R_USB_PipeStop()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] pipe_number Pipe Number.

◆ usedPipesGet

fsp_err_t(* usb_api_t::usedPipesGet) (usb_ctrl_t *const p_api_ctrl, uint16_t *p_pipe, uint8_t
destination)

Get pipe number

Implemented as

R_USB_UsedPipesGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_pipe Pointer to area that stores
the selected pipe number
(bit map information).

[in] destination Device address for Host.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,528 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ pipeInfoGet

fsp_err_t(* usb_api_t::pipeInfoGet) (usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info, uint8_t
pipe_number)

Get pipe information

Implemented as

R_USB_PipeInfoGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_info Pointer to usb_pipe_t
structure area.

[in] pipe_number Pipe Number.

◆ eventGet

fsp_err_t(* usb_api_t::eventGet) (usb_ctrl_t *const p_api_ctrl, usb_status_t *event)

Return USB-related completed events (OS less only)

Implemented as

R_USB_EventGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[out] event Pointer to event.

◆ callback

fsp_err_t(* usb_api_t::callback) (usb_callback_t *p_callback)

Register a callback function to be called upon completion of a USB related event. (RTOS only)

Implemented as

R_USB_Callback()
Parameters

[in] p_callback Pointer to Callback function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,529 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ pullUp

fsp_err_t(* usb_api_t::pullUp) (usb_ctrl_t *const p_api_ctrl, uint8_t state)

Pull-up enable/disable setting of D+/D- line.

Implemented as

R_USB_PullUp()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] state Pull-up enable/disable
setting.

◆ hostControlTransfer

fsp_err_t(* usb_api_t::hostControlTransfer) (usb_ctrl_t *const p_api_ctrl, usb_setup_t *p_setup,
uint8_t *p_buf, uint8_t device_address)

Performs settings and transmission processing when transmitting a setup packet.

Implemented as

R_USB_HostControlTransfer()
Parameters

[in] p_api_ctrl USB control structure.

[in] p_setup Setup packet information.

[in] p_buf Transfer area information.

[in] device_address Device address information.

◆ periControlDataGet

fsp_err_t(* usb_api_t::periControlDataGet) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size)

Receives data sent by control transfer.

Implemented as

R_USB_PeriControlDataGet()
Parameters

[in] p_api_ctrl USB control structure.

[in] p_buf Data reception area
information.

[in] size Data reception size
information.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,530 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ periControlDataSet

fsp_err_t(* usb_api_t::periControlDataSet) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t size)

Performs transfer processing for control transfer.

Implemented as

R_USB_PeriControlDataSet()
Parameters

[in] p_api_ctrl USB control structure.

[in] p_buf Area information for data
transfer.

[in] size Transfer size information.

◆ periControlStatusSet

fsp_err_t(* usb_api_t::periControlStatusSet) (usb_ctrl_t *const p_api_ctrl, usb_setup_status_t status)

Set the response to the setup packet.

Implemented as

R_USB_PeriControlStatusSet()
Parameters

[in] p_api_ctrl USB control structure.

[in] status USB port startup
information.

◆ remoteWakeup

fsp_err_t(* usb_api_t::remoteWakeup) (usb_ctrl_t *const p_api_ctrl)

Sends a remote wake-up signal to the connected Host.

Implemented as

R_USB_RemoteWakeup()
Parameters

[in] p_api_ctrl USB control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,531 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ moduleNumberGet

fsp_err_t(* usb_api_t::moduleNumberGet) (usb_ctrl_t *const p_api_ctrl, uint8_t *module_number)

This API gets the module number.

Implemented as

R_USB_ModuleNumberGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] module_number Module number to get.

◆ classTypeGet

fsp_err_t(* usb_api_t::classTypeGet) (usb_ctrl_t *const p_api_ctrl, usb_class_t *class_type)

This API gets the module number.

Implemented as

R_USB_ClassTypeGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] class_type Class type to get.

◆ deviceAddressGet

fsp_err_t(* usb_api_t::deviceAddressGet) (usb_ctrl_t *const p_api_ctrl, uint8_t *device_address)

This API gets the device address.

Implemented as

R_USB_DeviceAddressGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] device_address Device address to get.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,532 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ pipeNumberGet

fsp_err_t(* usb_api_t::pipeNumberGet) (usb_ctrl_t *const p_api_ctrl, uint8_t *pipe_number)

This API gets the pipe number.

Implemented as

R_USB_PipeNumberGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] pipe_number Pipe number to get.

◆ deviceStateGet

fsp_err_t(* usb_api_t::deviceStateGet) (usb_ctrl_t *const p_api_ctrl, uint16_t *state)

This API gets the state of the device.

Implemented as

R_USB_DeviceStateGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] state Device state to get.

◆ dataSizeGet

fsp_err_t(* usb_api_t::dataSizeGet) (usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)

This API gets the data size.

Implemented as

R_USB_DataSizeGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] data_size Data size to get.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,533 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ setupGet

fsp_err_t(* usb_api_t::setupGet) (usb_ctrl_t *const p_api_ctrl, usb_setup_t *setup)

This API gets the setup type.

Implemented as

R_USB_SetupGet()
Parameters

[in] p_api_ctrl USB control structure.

[out] setup Setup type to get.

◆ usb_instance_t

struct usb_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

usb_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

usb_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

usb_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ usb_ctrl_t

typedef void usb_ctrl_t

USB control block. Allocate an instance specific control block to pass into the USB API calls.

Implemented as

usb_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,534 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_speed_t

enum usb_speed_t

USB speed type

Enumerator

USB_SPEED_LS Low speed operation.

USB_SPEED_FS Full speed operation.

USB_SPEED_HS Hi speed operation.

◆ usb_setup_status_t

enum usb_setup_status_t

USB request result

Enumerator

USB_SETUP_STATUS_ACK ACK response.

USB_SETUP_STATUS_STALL STALL response.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,535 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_status_t

enum usb_status_t

USB driver status

Enumerator

USB_STATUS_POWERED Powered State.

USB_STATUS_DEFAULT Default State.

USB_STATUS_ADDRESS Address State.

USB_STATUS_CONFIGURED Configured State.

USB_STATUS_SUSPEND Suspend State.

USB_STATUS_RESUME Resume State.

USB_STATUS_DETACH Detach State.

USB_STATUS_REQUEST Request State.

USB_STATUS_REQUEST_COMPLETE Request Complete State.

USB_STATUS_READ_COMPLETE Read Complete State.

USB_STATUS_WRITE_COMPLETE Write Complete State.

USB_STATUS_BC battery Charge State

USB_STATUS_OVERCURRENT Over Current state.

USB_STATUS_NOT_SUPPORT Device Not Support.

USB_STATUS_NONE None Status.

USB_STATUS_MSC_CMD_COMPLETE MSC_CMD Complete.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,536 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_class_t

enum usb_class_t

USB class type

Enumerator

USB_CLASS_PCDC PCDC Class.

USB_CLASS_PCDCC PCDCC Class.

USB_CLASS_PCDC2 PCDC2 Class.

USB_CLASS_PCDCC2 PCDCC2 Class.

USB_CLASS_PHID PHID Class.

USB_CLASS_PVND PVND Class.

USB_CLASS_HCDC HCDC Class.

USB_CLASS_HCDCC HCDCC Class.

USB_CLASS_HHID HHID Class.

USB_CLASS_HVND HVND Class.

USB_CLASS_HMSC HMSC Class.

USB_CLASS_PMSC PMSC Class.

USB_CLASS_REQUEST USB Class Request.

USB_CLASS_END USB Class End Code.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,537 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_bcport_t

enum usb_bcport_t

USB battery charging type

Enumerator

USB_BCPORT_SDP SDP port settings.

USB_BCPORT_CDP CDP port settings.

USB_BCPORT_DCP DCP port settings.

◆ usb_onoff_t

enum usb_onoff_t

USB status

Enumerator

USB_OFF USB Off State.

USB_ON USB On State.

◆ usb_transfer_t

enum usb_transfer_t

USB read/write type

Enumerator

USB_TRANSFER_READ Data Receive communication.

USB_TRANSFER_WRITE Data transmission communication.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,538 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB Interface

◆ usb_transfer_type_t

enum usb_transfer_type_t

USB transfer type

Enumerator

USB_TRANSFER_TYPE_BULK Bulk communication.

USB_TRANSFER_TYPE_INT Interrupt communication.

USB_TRANSFER_TYPE_ISO Isochronous communication.

◆ usb_mode_t

enum usb_mode_t

Enumerator

USB_MODE_HOST Host mode.

USB_MODE_PERI Peripheral mode.

◆ usb_compliancetest_status_t

enum usb_compliancetest_status_t

Enumerator

USB_COMPLIANCETEST_ATTACH Device Attach Detection.

USB_COMPLIANCETEST_DETACH Device Detach Detection.

USB_COMPLIANCETEST_TPL TPL device connect.

USB_COMPLIANCETEST_NOTTPL Not TPL device connect.

USB_COMPLIANCETEST_HUB USB Hub connect.

USB_COMPLIANCETEST_OVRC Over current.

USB_COMPLIANCETEST_NORES Response Time out for Control Read Transfer.

USB_COMPLIANCETEST_SETUP_ERR Setup Transaction Error.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,539 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HCDC Interface

4.3.40 USB HCDC Interface
Interfaces

Detailed Description

Interface for USB HCDC functions.

Summary
The USB HCDC interface provides USB HCDC functionality.

The USB HCDC interface can be implemented by:

USB Host Communications Device Class Driver (r_usb_hcdc)

Data Structures

struct usb_hcdc_encapsulated_t

struct usb_hcdc_abstractstate_t

struct usb_hcdc_countrysetting_t

union usb_hcdc_commfeature_t

struct usb_hcdc_linecoding_t

struct usb_hcdc_controllinestate_t

struct usb_hcdc_serialstate_t

struct usb_hcdc_breakduration_t

Enumerations

enum usb_hcdc_data_bit_t

enum usb_hcdc_stop_bit_t

enum usb_hcdc_parity_bit_t

enum usb_hcdc_line_speed_t

enum usb_hcdc_feature_selector_t

Data Structure Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,540 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HCDC Interface

◆ usb_hcdc_encapsulated_t

struct usb_hcdc_encapsulated_t

Encapsulated data

Data Fields

uint8_t * p_data Protocol dependent data.

uint16_t wlength Data length in bytes.

◆ usb_hcdc_abstractstate_t

struct usb_hcdc_abstractstate_t

Abstract Control Model (ACM) settings bitmap

Data Fields

uint16_t bis: 1 Idle enable.

uint16_t bdms: 1 Data multiplexing enable.

uint16_t rsv: 14 Reserved.

◆ usb_hcdc_countrysetting_t

struct usb_hcdc_countrysetting_t

Country code data

Data Fields

uint16_t country_code Country code.

◆ usb_hcdc_commfeature_t

union usb_hcdc_commfeature_t

Feature setting data

Data Fields

usb_hcdc_abstractstate_t abstract_state ACM settings bitmap.

usb_hcdc_countrysetting_t country_setting Country code.

◆ usb_hcdc_linecoding_t

struct usb_hcdc_linecoding_t

Virtual UART configuration (line coding)

Data Fields

usb_hcdc_line_speed_t dwdte_rate Data terminal rate in bits per
second.

usb_hcdc_stop_bit_t bchar_format Stop bits.

usb_hcdc_parity_bit_t bparity_type Parity.

usb_hcdc_data_bit_t bdata_bits Data bits.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,541 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HCDC Interface

uint8_t rsv Reserved.

◆ usb_hcdc_controllinestate_t

struct usb_hcdc_controllinestate_t

Virtual UART control signal bitmap

Data Fields

uint16_t bdtr: 1 DTR.

uint16_t brts: 1 RTS.

uint16_t rsv: 14 Reserved.

◆ usb_hcdc_serialstate_t

struct usb_hcdc_serialstate_t

Virtual UART state bitmap

Data Fields

uint16_t brx_carrier: 1 DCD signal.

uint16_t btx_carrier: 1 DSR signal.

uint16_t bbreak: 1 Break detection status.

uint16_t bring_signal: 1 Ring signal.

uint16_t bframing: 1 Framing error.

uint16_t bparity: 1 Parity error.

uint16_t bover_run: 1 Over Run error.

uint16_t rsv: 9 Reserved.

◆ usb_hcdc_breakduration_t

struct usb_hcdc_breakduration_t

Break duration data

Data Fields

uint16_t wtime_ms Duration of Break.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,542 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HCDC Interface

◆ usb_hcdc_data_bit_t

enum usb_hcdc_data_bit_t

Virtual UART data length

Enumerator

USB_HCDC_DATA_BIT_7 7 bits

USB_HCDC_DATA_BIT_8 8 bits

◆ usb_hcdc_stop_bit_t

enum usb_hcdc_stop_bit_t

Virtual UART stop bit length

Enumerator

USB_HCDC_STOP_BIT_1 1 bit

USB_HCDC_STOP_BIT_15 1.5 bits

USB_HCDC_STOP_BIT_2 2 bits

◆ usb_hcdc_parity_bit_t

enum usb_hcdc_parity_bit_t

Virtual UART parity bit setting

Enumerator

USB_HCDC_PARITY_BIT_NONE No parity bit.

USB_HCDC_PARITY_BIT_ODD Odd parity.

USB_HCDC_PARITY_BIT_EVEN Even parity.

◆ usb_hcdc_line_speed_t

enum usb_hcdc_line_speed_t

Virtual UART bitrate

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,543 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HCDC Interface

◆ usb_hcdc_feature_selector_t

enum usb_hcdc_feature_selector_t

Feature Selector

4.3.41 USB HHID Interface
Interfaces

Detailed Description

Interface for USB HHID functions.

Summary
The USB HHID interface provides USB HHID functionality.

The USB HHID interface can be implemented by:

USB Host Human Interface Device Class Driver (r_usb_hhid)

Data Structures

struct usb_hhid_api_t

struct usb_hhid_instance_t

Macros

#define USB_HID_OTHER

 Other.

#define USB_HID_KEYBOARD

 Keyboard.

#define USB_HID_MOUSE

 Mouse.

#define USB_HID_IN

 In Transfer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,544 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HHID Interface

#define USB_HID_OUT

 Out Transfer.

Data Structure Documentation

◆ usb_hhid_api_t

struct usb_hhid_api_t

USB HHID functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* typeGet)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_type, uint8_t
device_address)

fsp_err_t(* maxPacketSizeGet)(usb_ctrl_t *const p_api_ctrl, uint16_t *p_size,
uint8_t direction, uint8_t device_address)

Field Documentation

◆ typeGet

fsp_err_t(* usb_hhid_api_t::typeGet) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_type, uint8_t
device_address)

Get HID protocol.(USB Mouse/USB Keyboard/Other Type.)

Implemented as

R_USB_HHID_TypeGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_type Pointer to store HID protocol
value.

[in] device_address Device Address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,545 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HHID Interface

◆ maxPacketSizeGet

fsp_err_t(* usb_hhid_api_t::maxPacketSizeGet) (usb_ctrl_t *const p_api_ctrl, uint16_t *p_size,
uint8_t direction, uint8_t device_address)

Obtains max packet size for the connected HID device. The max packet size is set to the area. Set
the direction (USB_HID_IN/USB_HID_OUT).

Implemented as

R_USB_HHID_MaxPacketSizeGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_size Pointer to the area to store
the max package size.

[in] direction Transfer direction.

[in] device_address Device Address.

◆ usb_hhid_instance_t

struct usb_hhid_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

usb_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

usb_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

usb_hhid_api_t const * p_api Pointer to the API structure for
this instance.

4.3.42 USB HMSC Interface
Interfaces

Detailed Description

Interface for USB HMSC functions.

Summary
The USB HMSC interface provides USB HMSC functionality.

The USB HMSC interface can be implemented by:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,546 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

USB Host Mass Storage Class Driver (r_usb_hmsc)

Data Structures

struct usb_hmsc_api_t

Enumerations

enum usb_atapi_t

enum usb_csw_result_t

Data Structure Documentation

◆ usb_hmsc_api_t

struct usb_hmsc_api_t

USB HMSC functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* storageCommand)(usb_ctrl_t *const p_api_ctrl, uint8_t *buf, uint8_t
command, uint8_t destination)

fsp_err_t(* driveNumberGet)(usb_ctrl_t *const p_api_ctrl, uint8_t *p_drive,
uint8_t destination)

fsp_err_t(* storageReadSector)(uint16_t drive_number, uint8_t *const buff,
uint32_t sector_number, uint16_t sector_count)

fsp_err_t(* storageWriteSector)(uint16_t drive_number, uint8_t const *const
buff, uint32_t sector_number, uint16_t sector_count)

fsp_err_t(* semaphoreGet)(void)

fsp_err_t(* semaphoreRelease)(void)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,547 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ storageCommand

fsp_err_t(* usb_hmsc_api_t::storageCommand) (usb_ctrl_t *const p_api_ctrl, uint8_t *buf, uint8_t
command, uint8_t destination)

Processing for MassStorage(ATAPI) command.

Implemented as

R_USB_HMSC_StorageCommand()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] *buf Pointer to the buffer area to
store the transfer data.

[in] command ATAPI command.

[in] destination Represents a device
address.

◆ driveNumberGet

fsp_err_t(* usb_hmsc_api_t::driveNumberGet) (usb_ctrl_t *const p_api_ctrl, uint8_t *p_drive, uint8_t
destination)

Get number of Storage drive.

Implemented as

R_USB_HMSC_DriveNumberGet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[out] p_drive Store address for Drive No.

[in] destination Represents a device
address.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,548 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ storageReadSector

fsp_err_t(* usb_hmsc_api_t::storageReadSector) (uint16_t drive_number, uint8_t *const buff,
uint32_t sector_number, uint16_t sector_count)

Read sector information.

Implemented as

R_USB_HMSC_StorageReadSector()
Parameters

[in] drive_number Drive number.

[out] *buff Pointer to the buffer area to
store the transfer data.

[in] sector_number The sector number to start
with.

[in] sector_count Transmit with the sector size
of the number of times.

◆ storageWriteSector

fsp_err_t(* usb_hmsc_api_t::storageWriteSector) (uint16_t drive_number, uint8_t const *const buff,
uint32_t sector_number, uint16_t sector_count)

Write sector information.

Implemented as

R_USB_HMSC_StorageWriteSector()
Parameters

[in] drive_number Drive number.

[in] *buff Pointer to the buffer area to
store the transfer data.

[in] sector_number The sector number to start
with.

[in] sector_count Transmit with the sector size
of the number of times.

◆ semaphoreGet

fsp_err_t(* usb_hmsc_api_t::semaphoreGet) (void)

Get Semaphore.

Implemented as

R_USB_HMSC_SemaphoreGet()

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,549 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ semaphoreRelease

fsp_err_t(* usb_hmsc_api_t::semaphoreRelease) (void)

Release Semaphore.

Implemented as

R_USB_HMSC_SemaphoreRelease()

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,550 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ usb_atapi_t

enum usb_atapi_t

ATAPI commands

Enumerator

USB_ATAPI_TEST_UNIT_READY Test Unit Ready.

USB_ATAPI_REQUEST_SENSE Request Sense.

USB_ATAPI_FORMAT_UNIT Format Unit.

USB_ATAPI_INQUIRY Inquiry.

USB_ATAPI_MODE_SELECT6 Mode Select6.

USB_ATAPI_MODE_SENSE6 Mode Sense6.

USB_ATAPI_START_STOP_UNIT Start Stop Unit.

USB_ATAPI_PREVENT_ALLOW Prevent Allow.

USB_ATAPI_READ_FORMAT_CAPACITY Read Format Capacity.

USB_ATAPI_READ_CAPACITY Read Capacity.

USB_ATAPI_READ10 Read10.

USB_ATAPI_WRITE10 Write10.

USB_ATAPI_SEEK Seek.

USB_ATAPI_WRITE_AND_VERIFY Write and Verify.

USB_ATAPI_VERIFY10 Verify10.

USB_ATAPI_MODE_SELECT10 Mode Select10.

USB_ATAPI_MODE_SENSE10 Mode Sense10.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,551 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB HMSC Interface

◆ usb_csw_result_t

enum usb_csw_result_t

Command Status Wrapper (CSW)

Enumerator

USB_CSW_RESULT_SUCCESS CSW was successful.

USB_CSW_RESULT_FAIL CSW failed.

USB_CSW_RESULT_PHASE CSW has phase error.

4.3.43 USB PCDC Interface
Interfaces

Detailed Description

Interface for USB PCDC functions.

Summary
The USB PCDC interface provides USB PCDC functionality.

The USB PCDC interface can be implemented by:

USB Peripheral Communications Device Class (r_usb_pcdc)

Data Structures

struct usb_serial_state_bitmap_t

union usb_sci_serialstate_t

struct usb_pcdc_linecoding_t

struct usb_pcdc_ctrllinestate_t

Macros

#define USB_PCDC_SET_LINE_CODING

 Set Line Coding.

#define USB_PCDC_GET_LINE_CODING

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,552 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB PCDC Interface

 Get Line Coding.

#define USB_PCDC_SET_CONTROL_LINE_STATE

 Control Line State.

#define USB_PCDC_SERIAL_STATE

 Serial State Code.

#define USB_PCDC_SETUP_TBL_BSIZE

 Setup packet table size (uint16_t * 5)

Data Structure Documentation

◆ usb_serial_state_bitmap_t

struct usb_serial_state_bitmap_t

Virtual UART signal state

Data Fields

uint16_t b_rx_carrier: 1 DCD signal.

uint16_t b_tx_carrier: 1 DSR signal.

uint16_t b_break: 1 Break signal.

uint16_t b_ring_signal: 1 Ring signal.

uint16_t b_framing: 1 Framing error.

uint16_t b_parity: 1 Parity error.

uint16_t b_over_run: 1 Overrun error.

uint16_t rsv: 9 Reserved.

◆ usb_sci_serialstate_t

union usb_sci_serialstate_t

Class Notification Serial State

Data Fields

uint32_t word Word Access.

usb_serial_state_bitmap_t bit Bit Access.

◆ usb_pcdc_linecoding_t

struct usb_pcdc_linecoding_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,553 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB PCDC Interface

Virtual UART communication settings

Data Fields

uint32_t dw_dte_rate Bitrate.

uint8_t b_char_format Stop bits.

uint8_t b_parity_type Parity.

uint8_t b_data_bits Data bits.

uint8_t rsv Reserved.

◆ usb_pcdc_ctrllinestate_t

struct usb_pcdc_ctrllinestate_t

Virtual UART control line state

Data Fields

uint16_t bdtr: 1 DTR.

uint16_t brts: 1 RTS.

uint16_t rsv: 14 Reserved.

4.3.44 USB PHID Interface
Interfaces

Detailed Description

Interface for USB PHID functions.

Summary
The USB interface provides USB functionality.

The USB PHID interface can be implemented by:

USB Peripheral Human Interface Device Class (r_usb_phid)

4.3.45 USB PMSC Interface
Interfaces

Detailed Description

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,554 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > USB PMSC Interface

Interface for USB PMSC functions.

Summary
The USB PMSC interface provides USB PMSC functionality.

The USB PMSC interface can be implemented by:

USB Peripheral Mass Storage Class (r_usb_pmsc)

Macros

#define USB_MASS_STORAGE_RESET

 Mass storage reset request code.

#define USB_GET_MAX_LUN

 Get max logical unit number request code.

4.3.46 WDT Interface
Interfaces

Detailed Description

Interface for watch dog timer functions.

Summary
The WDT interface for the Watchdog Timer (WDT) peripheral provides watchdog functionality
including resetting the device or generating an interrupt.

The watchdog timer interface can be implemented by:

Watchdog Timer (r_wdt)
Independent Watchdog Timer (r_iwdt)

Data Structures

struct wdt_callback_args_t

struct wdt_timeout_values_t

struct wdt_cfg_t

struct wdt_api_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,555 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

struct wdt_instance_t

Typedefs

typedef void wdt_ctrl_t

Enumerations

enum wdt_timeout_t

enum wdt_clock_division_t

enum wdt_window_start_t

enum wdt_window_end_t

enum wdt_reset_control_t

enum wdt_stop_control_t

enum wdt_status_t

Data Structure Documentation

◆ wdt_callback_args_t

struct wdt_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data. Set in
wdt_api_t::open function in
wdt_cfg_t.

◆ wdt_timeout_values_t

struct wdt_timeout_values_t

WDT timeout data. Used to return frequency of WDT clock and timeout period

Data Fields

uint32_t clock_frequency_hz Frequency of watchdog clock
after divider.

uint32_t timeout_clocks Timeout period in units of
watchdog clock ticks.

◆ wdt_cfg_t

struct wdt_cfg_t

WDT configuration parameters.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,556 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

Data Fields

wdt_timeout_t timeout

 Timeout period.

wdt_clock_division_t clock_division

 Clock divider.

wdt_window_start_t window_start

 Refresh permitted window start position.

wdt_window_end_t window_end

 Refresh permitted window end position.

wdt_reset_control_t reset_control

 Select NMI or reset generated on underflow.

wdt_stop_control_t stop_control

 Select whether counter operates in sleep mode.

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT NMI ISR occurs.

void const * p_context

void const * p_extend

 Placeholder for user extension.

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,557 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ p_context

void const* wdt_cfg_t::p_context

Placeholder for user data. Passed to the user callback in wdt_callback_args_t.

◆ wdt_api_t

struct wdt_api_t

WDT functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

fsp_err_t(* refresh)(wdt_ctrl_t *const p_ctrl)

fsp_err_t(* statusGet)(wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

fsp_err_t(* statusClear)(wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

fsp_err_t(* counterGet)(wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

fsp_err_t(* timeoutGet)(wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const
p_timeout)

fsp_err_t(* callbackSet)(wdt_ctrl_t *const p_api_ctrl,
void(*p_callback)(wdt_callback_args_t *), void const *const
p_context, wdt_callback_args_t *const p_callback_memory)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,558 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ open

fsp_err_t(* wdt_api_t::open) (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

Initialize the WDT in register start mode. In auto-start mode with NMI output it registers the NMI
callback.

Implemented as

R_WDT_Open()
R_IWDT_Open()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ refresh

fsp_err_t(* wdt_api_t::refresh) (wdt_ctrl_t *const p_ctrl)

Refresh the watchdog timer.

Implemented as

R_WDT_Refresh()
R_IWDT_Refresh()

Parameters
[in] p_ctrl Pointer to control structure.

◆ statusGet

fsp_err_t(* wdt_api_t::statusGet) (wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

Read the status of the WDT.

Implemented as

R_WDT_StatusGet()
R_IWDT_StatusGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_status Pointer to variable to return
status information through.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,559 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ statusClear

fsp_err_t(* wdt_api_t::statusClear) (wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

Clear the status flags of the WDT.

Implemented as

R_WDT_StatusClear()
R_IWDT_StatusClear()

Parameters
[in] p_ctrl Pointer to control structure.

[in] status Status condition(s) to clear.

◆ counterGet

fsp_err_t(* wdt_api_t::counterGet) (wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

Read the current WDT counter value.

Implemented as

R_WDT_CounterGet()
R_IWDT_CounterGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_count Pointer to variable to return
current WDT counter value.

◆ timeoutGet

fsp_err_t(* wdt_api_t::timeoutGet) (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const p_timeout)

Read the watchdog timeout values.

Implemented as

R_WDT_TimeoutGet()
R_IWDT_TimeoutGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_timeout Pointer to structure to return
timeout values.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,560 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ callbackSet

fsp_err_t(* wdt_api_t::callbackSet) (wdt_ctrl_t *const p_api_ctrl,
void(*p_callback)(wdt_callback_args_t *), void const *const p_context, wdt_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_WDT_CallbackSet()
Parameters

[in] p_ctrl Pointer to the WDT control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ wdt_instance_t

struct wdt_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

wdt_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

wdt_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

wdt_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ wdt_ctrl_t

typedef void wdt_ctrl_t

WDT control block. Allocate an instance specific control block to pass into the WDT API calls.

Implemented as

wdt_instance_ctrl_t
iwdt_instance_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,561 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

Enumeration Type Documentation

◆ wdt_timeout_t

enum wdt_timeout_t

WDT time-out periods.

Enumerator

WDT_TIMEOUT_128 128 clock cycles

WDT_TIMEOUT_512 512 clock cycles

WDT_TIMEOUT_1024 1024 clock cycles

WDT_TIMEOUT_2048 2048 clock cycles

WDT_TIMEOUT_4096 4096 clock cycles

WDT_TIMEOUT_8192 8192 clock cycles

WDT_TIMEOUT_16384 16384 clock cycles

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,562 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ wdt_clock_division_t

enum wdt_clock_division_t

WDT clock division ratio.

Enumerator

WDT_CLOCK_DIVISION_1 CLK/1.

WDT_CLOCK_DIVISION_4 CLK/4.

WDT_CLOCK_DIVISION_16 CLK/16.

WDT_CLOCK_DIVISION_32 CLK/32.

WDT_CLOCK_DIVISION_64 CLK/64.

WDT_CLOCK_DIVISION_128 CLK/128.

WDT_CLOCK_DIVISION_256 CLK/256.

WDT_CLOCK_DIVISION_512 CLK/512.

WDT_CLOCK_DIVISION_2048 CLK/2048.

WDT_CLOCK_DIVISION_8192 CLK/8192.

◆ wdt_window_start_t

enum wdt_window_start_t

WDT refresh permitted period window start position.

Enumerator

WDT_WINDOW_START_25 Start position = 25%.

WDT_WINDOW_START_50 Start position = 50%.

WDT_WINDOW_START_75 Start position = 75%.

WDT_WINDOW_START_100 Start position = 100%.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,563 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ wdt_window_end_t

enum wdt_window_end_t

WDT refresh permitted period window end position.

Enumerator

WDT_WINDOW_END_75 End position = 75%.

WDT_WINDOW_END_50 End position = 50%.

WDT_WINDOW_END_25 End position = 25%.

WDT_WINDOW_END_0 End position = 0%.

◆ wdt_reset_control_t

enum wdt_reset_control_t

WDT Counter underflow and refresh error control.

Enumerator

WDT_RESET_CONTROL_NMI NMI request when counter underflows.

WDT_RESET_CONTROL_RESET Reset request when counter underflows.

◆ wdt_stop_control_t

enum wdt_stop_control_t

WDT Counter operation in sleep mode.

Enumerator

WDT_STOP_CONTROL_DISABLE Count will not stop when device enters sleep
mode.

WDT_STOP_CONTROL_ENABLE Count will automatically stop when device
enters sleep mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,564 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > WDT Interface

◆ wdt_status_t

enum wdt_status_t

WDT status

Enumerator

WDT_STATUS_NO_ERROR No status flags set.

WDT_STATUS_UNDERFLOW_ERROR Underflow flag set.

WDT_STATUS_REFRESH_ERROR Refresh error flag set. Refresh outside of
permitted window.

WDT_STATUS_UNDERFLOW_AND_REFRESH_ERR
OR

Underflow and refresh error flags set.

4.3.47 ADPCM Decoder Interface
Interfaces

Detailed Description

Interface for ADPCM decoder.

Summary
The ADPCM decoder interface provides functionality to decode the 4bit ADPCM data to 16bit PCM
output.

Implemented by: ADPCM Decoder (rm_adpcm_decoder)

Data Structures

struct adpcm_decoder_cfg_t

struct adpcm_decoder_api_t

struct adpcm_decoder_instance_t

Typedefs

typedef void adpcm_decoder_ctrl_t

Data Structure Documentation

◆ adpcm_decoder_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,565 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADPCM Decoder Interface

struct adpcm_decoder_cfg_t

Audio Decoder general configuration

◆ adpcm_decoder_api_t

struct adpcm_decoder_api_t

Audio Decoder interface API.

Data Fields

fsp_err_t(* open)(adpcm_decoder_ctrl_t *const p_ctrl, adpcm_decoder_cfg_t
const *const p_cfg)

fsp_err_t(* decode)(adpcm_decoder_ctrl_t *const p_ctrl, void const *p_src, void
*p_dest, uint32_t src_len_bytes)

fsp_err_t(* reset)(adpcm_decoder_ctrl_t *const p_ctrl)

fsp_err_t(* close)(adpcm_decoder_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* adpcm_decoder_api_t::open) (adpcm_decoder_ctrl_t *const p_ctrl, adpcm_decoder_cfg_t
const *const p_cfg)

Initialize Audio Decoder device.

Implemented as

RM_ADPCM_DECODER_Open()
Note

To reconfigure after calling this function, call adpcm_decoder_api_t::close first.
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_cfg Pointer to configuration
structure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,566 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADPCM Decoder Interface

◆ decode

fsp_err_t(* adpcm_decoder_api_t::decode) (adpcm_decoder_ctrl_t *const p_ctrl, void const *p_src,
void *p_dest, uint32_t src_len_bytes)

Decodes the compressed data and stores it in output buffer.

Implemented as

RM_ADPCM_DECODER_Decode()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_src Pointer to a source data
buffer from which data will
be picked up for decode
operation. The argument
must not be NULL.

[out] p_dest Pointer to the location to
store the decoded data.

[in] p_dest Number of bytes to be
decoded.

◆ reset

fsp_err_t(* adpcm_decoder_api_t::reset) (adpcm_decoder_ctrl_t *const p_ctrl)

Resets the ADPCM driver.

Implemented as

RM_ADPCM_DECODER_Reset()
Parameters

[in] p_ctrl Pointer to control handle
structure

◆ close

fsp_err_t(* adpcm_decoder_api_t::close) (adpcm_decoder_ctrl_t *const p_ctrl)

Close the specified Audio decoder modules.

Implemented as

RM_ADPCM_DECODER_Close()
Parameters

[in] p_ctrl Pointer to control handle
structure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,567 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ADPCM Decoder Interface

◆ adpcm_decoder_instance_t

struct adpcm_decoder_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

adpcm_decoder_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

adpcm_decoder_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

adpcm_decoder_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ adpcm_decoder_ctrl_t

typedef void adpcm_decoder_ctrl_t

Audio Decoder control block. Allocate an instance specific control block to pass into the Audio
Decoder API calls.

Implemented as

adpcm_decoder_instance_ctrl_t

4.3.48 AUDIO PLAYBACK Interface
Interfaces

Detailed Description

Interface for the Audio Playback.

Defines the API and data structures for the Audio Playback implementation.

Summary
This module provides common interface for Audio Playback.

Implemented by: Audio Playback with PWM (rm_audio_playback_pwm)

Data Structures

struct audio_playback_callback_args_t

struct audio_playback_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,568 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > AUDIO PLAYBACK Interface

struct audio_playback_api_t

struct audio_playback_instance_t

Typedefs

typedef void audio_playback_ctrl_t

Enumerations

enum audio_playback_event_t

Data Structure Documentation

◆ audio_playback_callback_args_t

struct audio_playback_callback_args_t

Callback function parameter data

Data Fields

void * p_context Placeholder for user data.

audio_playback_event_t event Event that triggered the
callback.

◆ audio_playback_cfg_t

struct audio_playback_cfg_t

Audio Playback configuration parameters.

Data Fields

void const * p_extend

 Hardware dependent configuration.

void(* p_callback)(audio_playback_callback_args_t *p_args)

void * p_context

Field Documentation

◆ p_callback

void(* audio_playback_cfg_t::p_callback) (audio_playback_callback_args_t *p_args)

Callback called when play is complete.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,569 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > AUDIO PLAYBACK Interface

◆ p_context

void* audio_playback_cfg_t::p_context

Placeholder for user data. Passed to the user callback in audio_playback_callback_args_t.

◆ audio_playback_api_t

struct audio_playback_api_t

Audio Playback functions implemented by the Audio Playback drivers will follow this API.

Data Fields

fsp_err_t(* open)(audio_playback_ctrl_t *const p_ctrl, audio_playback_cfg_t
const *const p_cfg)

fsp_err_t(* start)(audio_playback_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(audio_playback_ctrl_t *const p_ctrl)

fsp_err_t(* play)(audio_playback_ctrl_t *const p_ctrl, void const *const p_buffer,
uint32_t length)

fsp_err_t(* close)(audio_playback_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* audio_playback_api_t::open) (audio_playback_ctrl_t *const p_ctrl, audio_playback_cfg_t
const *const p_cfg)

Open a audio playback module.

Implemented as

RM_AUDIO_PLAYBACK_PWM_Open()
Parameters

[in] p_ctrl Pointer to memory allocated
for control block.

[in] p_cfg Pointer to the hardware
configurations.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,570 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > AUDIO PLAYBACK Interface

◆ start

fsp_err_t(* audio_playback_api_t::start) (audio_playback_ctrl_t *const p_ctrl)

Start audio playback hardware.

Implemented as

RM_AUDIO_PLAYBACK_PWM_Start()
Parameters

[in] p_ctrl Pointer to control block.

◆ stop

fsp_err_t(* audio_playback_api_t::stop) (audio_playback_ctrl_t *const p_ctrl)

Stop audio playback hardware.

Implemented as

RM_AUDIO_PLAYBACK_PWM_Stop()
Parameters

[in] p_ctrl Pointer to control block.

◆ play

fsp_err_t(* audio_playback_api_t::play) (audio_playback_ctrl_t *const p_ctrl, void const *const
p_buffer, uint32_t length)

Play audio buffer.

Implemented as

RM_AUDIO_PLAYBACK_PWM_Play()
Parameters

[in] p_ctrl Pointer to control block.

[in] p_buffer Pointer to buffer with PCM
samples to play. Data must
be scaled for audio playback
hardware.

[in] length Length of data in p_buffer.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,571 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > AUDIO PLAYBACK Interface

◆ close

fsp_err_t(* audio_playback_api_t::close) (audio_playback_ctrl_t *const p_ctrl)

Close the audio driver.

Implemented as

RM_AUDIO_PLAYBACK_PWM_Close()
Parameters

[in] p_ctrl Pointer to control block
initialized in
audio_playback_api_t::open.

◆ audio_playback_instance_t

struct audio_playback_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

audio_playback_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

audio_playback_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

audio_playback_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ audio_playback_ctrl_t

typedef void audio_playback_ctrl_t

Audio Playback control block. Allocate an instance specific control block to pass into the
AUDIO_PLAYBACK API calls.

Implemented as

audio_playback_pwm_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,572 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > AUDIO PLAYBACK Interface

◆ audio_playback_event_t

enum audio_playback_event_t

Callback event types.

Enumerator

AUDIO_PLAYBACK_EVENT_PLAYBACK_COMPLETE Audio playback complete event.

4.3.49 BLE ABS Interface
Interfaces

Detailed Description

Interface for Bluetooth Low Energy Abstraction functions.

Summary
The BLE ABS interface for the Bluetooth Low Energy Abstraction (BLE ABS) peripheral provides
Bluetooth Low Energy Abstraction functionality.

The Bluetooth Low Energy Abstraction interface can be implemented by:

Bluetooth Low Energy Abstraction (rm_ble_abs)

Data Structures

struct ble_device_address_t

struct ble_gap_connection_parameter_t

struct ble_gap_connection_phy_parameter_t

struct ble_gap_scan_phy_parameter_t

struct ble_gap_scan_on_t

struct ble_abs_callback_args_t

struct ble_abs_pairing_parameter_t

struct ble_abs_gatt_server_callback_set_t

struct ble_abs_gatt_client_callback_set_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,573 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

struct ble_abs_legacy_advertising_parameter_t

struct ble_abs_extend_advertising_parameter_t

struct ble_abs_non_connectable_advertising_parameter_t

struct ble_abs_periodic_advertising_parameter_t

struct ble_abs_scan_phy_parameter_t

struct ble_abs_scan_parameter_t

struct ble_abs_connection_phy_parameter_t

struct ble_abs_connection_parameter_t

struct ble_abs_cfg_t

struct ble_abs_api_t

struct ble_abs_instance_t

Macros

#define BLE_ABS_ADVERTISING_PHY_LEGACY

 Non-Connectable Legacy Advertising phy setting.

Typedefs

typedef void(* ble_gap_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_evt_data_t *p_event_data)

typedef void(* ble_vendor_specific_application_callback_t) (uint16_t event_type,
ble_status_t event_result, st_ble_vs_evt_data_t *p_event_data)

typedef void(* ble_gatt_server_application_callback_t) (uint16_t event_type,
ble_status_t event_result, st_ble_gatts_evt_data_t *p_event_data)

typedef void(* ble_gatt_client_application_callback_t) (uint16_t event_type,
ble_status_t event_result, st_ble_gattc_evt_data_t *p_event_data)

typedef void(* ble_abs_delete_bond_application_callback_t) (st_ble_dev_addr_t
*p_addr)

typedef void ble_abs_ctrl_t

Enumerations

enum ble_abs_advertising_filter_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,574 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

enum ble_abs_local_bond_information_t

enum ble_abs_remote_bond_information_t

enum ble_abs_delete_non_volatile_area_t

Data Structure Documentation

◆ ble_device_address_t

struct ble_device_address_t

st_ble_device_address is the type of bluetooth device address(BD_ADDR).

Data Fields

uint8_t addr[BLE_BD_ADDR_LEN] bluetooth device address.

uint8_t type the type of bluetooth device
address.

◆ ble_gap_connection_parameter_t

struct ble_gap_connection_parameter_t

ble_gap_connection_parameter_t is Connection parameters included in connection interval, slave
latency, supervision timeout, ce length.

Data Fields

uint16_t conn_intv_min Minimum connection interval.

uint16_t conn_intv_max Maximum connection interval.

uint16_t conn_latency Slave latency.

uint16_t sup_to Supervision timeout.

uint16_t min_ce_length Minimum CE Length.

uint16_t max_ce_length Maximum CE Length.

◆ ble_gap_connection_phy_parameter_t

struct ble_gap_connection_phy_parameter_t

ble_gap_connection_phy_parameter_t is Connection parameters per PHY.

Data Fields

uint16_t scan_intv Scan interval.

uint16_t scan_window Scan window.

ble_gap_connection_parameter_
t *

p_conn_param Connection interval, slave
latency, supervision timeout,
and CE length.

◆ ble_gap_scan_phy_parameter_t

struct ble_gap_scan_phy_parameter_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,575 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

Scan parameters per scan PHY.

Data Fields

uint8_t scan_type Scan type.

uint16_t scan_intv Scan interval.

uint16_t scan_window Scan window.

◆ ble_gap_scan_on_t

struct ble_gap_scan_on_t

Parameters configured when scanning starts.

Data Fields

uint8_t proc_type Procedure type.

uint8_t filter_dups Filter duplicates.

uint16_t duration Scan duration.

uint16_t period Scan period.

◆ ble_abs_callback_args_t

struct ble_abs_callback_args_t

Callback function parameter data

Data Fields

uint32_t channel Select a channel corresponding
to the channel number of the
hardware.

ble_event_cb_t ble_abs_event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data. Set in
ble_abs_api_t::open function in
ble_abs_cfg_t.

◆ ble_abs_pairing_parameter_t

struct ble_abs_pairing_parameter_t

st_ble_abs_pairing_parameter_t includes the pairing parameters.

Data Fields

uint8_t io_capabilitie_local_device IO capabilities of local device.

uint8_t mitm_protection_policy MITM protection policy.

uint8_t secure_connection_only Determine whether to accept
only Secure Connections or not.

uint8_t local_key_distribute Type of keys to be distributed
from local device.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,576 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

uint8_t remote_key_distribute Type of keys which local device
requests a remote device to
distribute.

uint8_t maximum_key_size Maximum LTK size.

uint8_t padding[2] padding

◆ ble_abs_gatt_server_callback_set_t

struct ble_abs_gatt_server_callback_set_t

GATT Server callback function and the priority.

Data Fields

ble_gatt_server_application_call
back_t

gatt_server_callback_function GATT Server callback function.

uint8_t gatt_server_callback_priority The priority number of GATT
Server callback function.

◆ ble_abs_gatt_client_callback_set_t

struct ble_abs_gatt_client_callback_set_t

GATT Client callback function and the priority.

Data Fields

ble_gatt_client_application_callb
ack_t

gatt_client_callback_function GATT Client callback function.

uint8_t gatt_client_callback_priority The priority number of GATT
Client callback function.

◆ ble_abs_legacy_advertising_parameter_t

struct ble_abs_legacy_advertising_parameter_t

st_ble_abs_legacy_advertising_parameter_t is the parameters for legacy advertising.

Data Fields

ble_device_address_t * p_peer_address The remote device address.
If the p_peer_address
parameter is not NULL, Direct
Connectable Advertising is
performed to the remote
address.
If the p_peer_address
parameter is NULL, Undirect
Connectable Advertising is
performed according to
the advertising filter policy
specified by the filter
parameter.

uint8_t * p_advertising_data Advertising Data.
If the p_advertising_data is
specified as NULL, Advertising

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,577 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

Data is not included in the
advertising PDU.

uint8_t * p_scan_response_data Scan Response Data.
If the p_scan_response_data is
specified as NULL, Scan
Response Data is not included
in the advertising PDU.

uint32_t fast_advertising_interval Advertising with the
fast_advertising_interval
parameter continues for the
period specified
by the fast_period parameter.
Time(ms) =
fast_advertising_interval *
0.625.
If the fast_period parameter is
0, this parameter is ignored.
Valid range is 0x00000020 -
0x00FFFFFF.

uint32_t slow_advertising_interval After the elapse of the
fast_period, advertising with the
slow_advertising_interval
parameter continues
for the period specified by the
slow_advertising_interval
parameter.
Time(ms) =
slow_advertising_interval *
0.625.
If the slow_advertising_interval
parameter is 0, this parameter
is ignored.
Valid range is 0x00000020 -
0x00FFFFFF.

uint16_t fast_advertising_period The period which advertising
with the
fast_advertising_interval
parameter continues for.
Time = duration * 10ms.
After the elapse of the
fast_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the fast_advertising_period
parameter is 0x0000,
advertising with the
fast_advertising_interval
parameter is not performed.

uint16_t slow_advertising_period The period which advertising
with the

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,578 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

slow_advertising_interval
parameter continues for. Time
= duration * 10ms.
After the elapse of the
slow_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the slow_advertising_period
parameter is 0x0000, the
advertising continues.

uint16_t advertising_data_length Advertising data length(byte).
Valid range is 0-31.
If the advertising_data_length is
0, Advertising Data is not
included in the advertising PDU.

uint16_t scan_response_data_length Scan response data length (in
bytes).
Scan Response Data(byte).
Valid range is 0-31.
If the
scan_response_data_length is
0, Scan Response Data is not
included in the advertising PDU.

uint8_t advertising_channel_map The channel map used for the
advertising packet
transmission.
It is a bitwise OR of the
following values.
macro description

BLE_GAP_ADV
_CH_37(0x01)

Use 37 CH.

BLE_GAP_ADV
_CH_38(0x02)

Use 38 CH.

BLE_GAP_ADV
_CH_39(0x04)

Use 38 CH.

BLE_GAP_ADV
_CH_ALL(0x07
)

Use 37 - 39
CH.

uint8_t advertising_filter_policy Advertising filter policy.
If the p_peer_address
parameter is NULL, the
advertising is performed
according to the advertising
filter policy.
If the p_peer_address
parameter is not NULL, this
parameter is ignored.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,579 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

macro description

BLE_ABS_ADV
ERTISING_FILT
ER_ALLOW_A
NY(0x00)

Process scan
and
connection
requests from
all devices.

BLE_ABS_ADV
ERTISING_FILT
ER_ALLOW_W
HITE_LIST(0x0
1)

Process scan
and
connection
requests from
only devices
in the White
List.

uint8_t own_bluetooth_address_type Own Bluetooth address type.
Select one of the following.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

uint8_t own_bluetooth_address[6] Own Bluetooth address.

uint8_t padding[3] padding

◆ ble_abs_extend_advertising_parameter_t

struct ble_abs_extend_advertising_parameter_t

st_ble_abs_extend_advertising_parameter_t is the parameters for extended advertising.

Data Fields

ble_device_address_t * p_peer_address The remote device address.
If the p_addr parameter is not
NULL, Direct Connectable
Advertising is performed to the
remote address.
If the p_addr parameter is
NULL, Undirect Connectable
Advertising is performed
according to the advertising
filter policy specified by the
filter parameter.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,580 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

uint8_t * p_advertising_data Advertising data. If p_adv_data
is specified as NULL, advertising
data is not set.

uint32_t fast_advertising_interval Advertising with the
fast_advertising_interval
parameter continues for
the period specified by the
fast_advertising_period
parameter.
Time(ms) =
fast_advertising_interval *
0.625.
If the fast_advertising_period
parameter is 0, this parameter
is ignored.
Valid range is 0x00000020 -
0x00FFFFFF.

uint32_t slow_advertising_interval After the elapse of the
fast_advertising_period,
advertising with the
slow_advertising_interval
parameter
continues for the period
specified by the
slow_advertising_period
parameter.
Time(ms) =
fast_advertising_interval *
0.625.
If the fast_advertising_period
parameter is 0, this parameter
is ignored.
Valid range is 0x00000020 -
0x00FFFFFF.

uint16_t fast_advertising_period The period which advertising
with the
fast_advertising_interval
parameter continues for.
Time = duration * 10ms.
After the elapse of the
fast_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the fast_advertising_period
parameter is 0x0000, the
fast_advertising_interval
parameter is ignored.

uint16_t slow_advertising_period The period which advertising
with the
slow_advertising_interval

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,581 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

parameter continues for.
Time = duration * 10ms.
After the elapse of the
slow_advertising_period,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the slow_advertising_period
parameter is 0x0000, the
advertising continues.

uint16_t advertising_data_length Advertising data length (in
bytes).
Valid range is 0-229.
If the adv_data_length is 0,
Advertising Data is not included
in the advertising PDU.

uint8_t advertising_channel_map The channel map used for the
advertising packet
transmission.
It is a bitwise OR of the
following values.
macro description

BLE_GAP_ADV
_CH_37(0x01)

Use 37 CH.

BLE_GAP_ADV
_CH_38(0x02)

Use 38 CH.

BLE_GAP_ADV
_CH_39(0x04)

Use 38 CH.

BLE_GAP_ADV
_CH_ALL(0x07
)

Use 37 - 39
CH.

uint8_t advertising_filter_policy Advertising filter policy.
If the p_peer_address
parameter is NULL, the
advertising is performed
according to the advertising
filter policy.
If the p_peer_address
parameter is not NULL, this
parameter is ignored.
macro description

BLE_ABS_ADV
ERTISING_FILT
ER_ALLOW_A
NY(0x00)

Process scan
and
connection
requests from
all devices.

BLE_ABS_ADV Process scan

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,582 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

ERTISING_FILT
ER_ALLOW_W
HITE_LIST(0x0
1)

and
connection
requests from
only devices
in the White
List.

uint8_t own_bluetooth_address_type Own Bluetooth address type.
Select one of the following.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

uint8_t own_bluetooth_address[6] Own Bluetooth address.

uint8_t primary_advertising_phy Primary advertising PHY.
In this parameter, only 1M PHY
and Coded PHY can be
specified, and 2M PHY cannot
be specified.
macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Primary
Advertising
PHY.
When the
adv_prop_typ
e field is
Legacy
Advertising
PDU type, this
field shall be
set to BLE_GA
P_ADV_PHY_1
M.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY as
Primary
Advertising
PHY.
Coding

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,583 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t secondary_advertising_phy Secondary advertising Phy.
Select one of the following.
macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Secondary
Advertising
PHY.

BLE_GAP_ADV
_PHY_2M(0x0
2)

Use 2M PHY
as Secondary
Advertising
PHY.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY(S=8) as
Secondary
Advertising
PHY.
Coding
scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t padding[3] padding

◆ ble_abs_non_connectable_advertising_parameter_t

struct ble_abs_non_connectable_advertising_parameter_t

st_ble_abs_non_connectable_advertising_parameter_t is the parameters for non-connectable
advertising.

Data Fields

ble_device_address_t * p_peer_address The remote device address.
If the p_peer_address
parameter is not NULL, Direct
Connectable Advertising is
performed to the remote
address.
If the p_peer_address
parameter is NULL, Undirect
Connectable Advertising is
performed
according to the advertising
filter policy specified by the
filter parameter.

uint8_t * p_advertising_data Advertising data. If p_adv_data

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,584 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

is specified as NULL, advertising
data is not set.

uint32_t advertising_interval Advertising with the
advertising_interval parameter
continues for the period
specified by the duration
parameter.
Time(ms) = advertising_interval
* 0.625.
If the duration parameter is
0x0000, the advertising with
the advertising_interval
parameter continue.
Valid range is 0x00000020 -
0x00FFFFFF.

uint16_t advertising_duration The period which advertising
with the advertising_interval
parameter continues for.
Time = advertising_duration *
10ms.
After the elapse of the
advertising_duration,
BLE_GAP_EVENT_ADV_OFF
event notifies that the
advertising has stopped.
Valid range is 0x0000 - 0xFFFF.
If the advertising_duration
parameter is 0x0000, the
advertising continues.

uint16_t advertising_data_length Advertising data length (in
bytes).
If the primary_advertising_phy
parameter is
BLE_ABS_ADVERTISING_PHY_LE
GACY(0x00), the valid range is
0-31.
If the primary_advertising_phy
parameter is the other values,
the valid range is 0-1650.
If the advertising_data_length
parameter is 0, Advertising
Data is not included in the
advertising PDU.

uint8_t advertising_channel_map The channel map used for the
advertising packet
transmission.
It is a bitwise OR of the
following values.
macro description

BLE_GAP_ADV
_CH_37(0x01)

Use 37 CH.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,585 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

BLE_GAP_ADV
_CH_38(0x02)

Use 38 CH.

BLE_GAP_ADV
_CH_39(0x04)

Use 38 CH.

BLE_GAP_ADV
_CH_ALL(0x07
)

Use 37 - 39
CH.

uint8_t own_bluetooth_address_type Own Bluetooth address type.
Select one of the following.
macro description

BLE_GAP_ADD
R_PUBLIC(0x0
0)

Public
Address

BLE_GAP_ADD
R_RPA_ID_PUB
LIC(0x02)

Resolvable
Private
Address.
If the IRK of
local device
has not been
registered in
Resolving List,
public address
is used.

uint8_t own_bluetooth_address[6] Own Bluetooth address.

uint8_t primary_advertising_phy Primary advertising PHY.
In this parameter, only 1M PHY
and Coded PHY can be
specified, and 2M PHY cannot
be specified.
macro description

BLE_ABS_ADV
ERTISING_PHY
_LEGACY(0x0
0)

Use 1M PHY
as Primary
Advertising
PHY for Non-
Connectable
Legacy
Advertising.
If Periodic
Advertising is
performed,
this value
shall not set
to the
adv_phy
parameter.

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Primary
Advertising

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,586 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

PHY.
When the
adv_prop_typ
e field is
Legacy
Advertising
PDU type, this
field shall be
set to BLE_GA
P_ADV_PHY_1
M.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY as
Primary
Advertising
PHY.
Coding
scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t secondary_advertising_phy Secondary advertising Phy.
Select one of the following.
macro description

BLE_GAP_ADV
_PHY_1M(0x0
1)

Use 1M PHY
as Secondary
Advertising
PHY.

BLE_GAP_ADV
_PHY_2M(0x0
2)

Use 2M PHY
as Secondary
Advertising
PHY.

BLE_GAP_ADV
_PHY_CD(0x0
3)

Use Coded
PHY(S=8) as
Secondary
Advertising
PHY.
Coding
scheme is
configured by
R_BLE_VS_Set
CodingSchem
e().

uint8_t padding[2] padding

◆ ble_abs_periodic_advertising_parameter_t

struct ble_abs_periodic_advertising_parameter_t

st_ble_abs_periodic_advertising_parameter_t is the parameters for periodic advertising.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,587 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

Data Fields

ble_abs_non_connectable_adver
tising_parameter_t

advertising_parameter Advertising parameters.

uint8_t * p_periodic_advertising_data Periodic advertising data. If
p_perd_adv_data is specified as
NULL, periodic advertising data
is not set.

uint16_t periodic_advertising_interval Periodic advertising interval.
Time(ms) =
periodic_advertising_interval *
1.25.
Valid range is 0x0006 - 0xFFFF.

uint16_t periodic_advertising_data_lengt
h

Periodic advertising data length
(in bytes).
Valid range is 0 - 1650.
If the
periodic_advertising_data_lengt
h is 0, Periodic Advertising Data
is not included in the
advertising PDU.

◆ ble_abs_scan_phy_parameter_t

struct ble_abs_scan_phy_parameter_t

st_ble_abs_scan_phy_parameter_t is the phy parameters for scan.

Data Fields

uint16_t fast_scan_interval Fast scan interval.
Interval(ms) =
fast_scan_interval * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t slow_scan_interval Slow Scan interval.
Slow Scan interval(ms) =
slow_scan_interval * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t fast_scan_window Fast Scan window.
Fast Scan window(ms) =
fast_scan_window * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint16_t slow_scan_window Slow Scan window.
Slow Scan window(ms) =
slow_scan_window * 0.625.
Valid range is 0x0004 - 0xFFFF.

uint8_t scan_type Scan type.
macro description

BLE_GAP_SCA
N_PASSIVE(0x
00)

Passive Scan.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,588 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

BLE_GAP_SCA
N_ACTIVE(0x0
1)

Active Scan.

uint8_t padding[3] padding.

◆ ble_abs_scan_parameter_t

struct ble_abs_scan_parameter_t

st_ble_abs_scan_parameter_t is the parameters for scan.

Data Fields

ble_abs_scan_phy_parameter_t
*

p_phy_parameter_1M Scan parameters for receiving
the advertising packets in 1M
PHY.
In case of not receiving the
advertising packets in 1M PHY,
this field is specified as NULL.
p_phy_parameter_1M or
p_phy_parameter_coded field
shall be set to scan parameters.

ble_abs_scan_phy_parameter_t
*

p_phy_parameter_coded Scan parameters for receiving
the advertising packets in
Coded PHY.
In case of not receiving the
advertising packets in Coded
PHY, this field is specified as
NULL.
p_phy_parameter_1M or
p_phy_parameter_coded field
shall be set to scan parameters.

uint8_t * p_filter_data Data for Advertising Data
filtering.
The p_filter_data parameter is
used for the advertising data in
single advertising report.
The advertising data composed
of multiple advertising reports
is not filtered by this
parameter.
If the p_filter_data parameter is
specified as NULL, the filtering
is not done.

uint16_t fast_scan_period The period which scan with the
fast scan interval/fast scan
window continues for.
Time(ms) = fast_scan_period *
10.
Valid range is 0x0000 - 0xFFFF.
If the fast_scan_period
parameter is 0x0000, scan with
the fast scan interval/fast scan

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,589 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

window is not performed.
After the elapse of the
fast_scan_period,
BLE_GAP_EVENT_SCAN_TO
event notifies that the scan has
stopped.

uint16_t slow_scan_period The period which scan with the
slow scan interval/slow scan
window continues for.
Time = slow_scan_period *
10ms.
Valid range is 0x0000 - 0xFFFF.
If the slow_scan_period
parameter is 0x0000, the scan
continues.
After the elapse of the
slow_scan_period,
BLE_GAP_EVENT_SCAN_TO
event notifies that the scan has
stopped.

uint16_t filter_data_length The length of the data specified
by the p_filter_data parameter.
Valid range is 0x0000-0x0010.
If the filter_data_length
parameter is 0, the filtering is
not done.

uint8_t device_scan_filter_policy Scan Filter Policy. Select one of
the following.
.

Address type setting
(Field [7:4])
macro descriptio

n

BLE_GAP_
ADDR_PU
BLIC(0x00
)

Use Public
Address.

BLE_GAP_
ADDR_RA
ND(0x01)

Use
Random
Address.

BLE_GAP_
ADDR_RP
A_ID_PUBL
IC(0x02)

If the IRK
of local
device has
been
registered
in
Resolving
list, use
RPA. If
not, use

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,590 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

Public
Address.

BLE_GAP_
ADDR_RP
A_ID_RAN
DOM(0x03
)

If the IRK
of local
device has
been
registered
in
Resolving
list, use
RPA. If
not, use
Random
Address.

White list setting (Field
[3:0])
macro descriptio

n

BLE_GAP_
SCAN_ALL
OW_ADV_
ALL(0x00)

Accept all
advertisin
g and
scan
response
PDUs
except
directed
advertisin
g PDUs
not
addressed
to local
device.

BLE_GAP_
SCAN_ALL
OW_ADV_
WLST(0x0
1)

Accept
only
advertisin
g and
scan
response
PDUs from
remote
devices
whose
address is
registered
in the
White List.
Directed
advertisin
g PDUs
which are
not

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,591 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

addressed
to local
device is
ignored.

BLE_GAP_
SCAN_ALL
OW_ADV_
EXCEPT_D
IRECTED(0
x02)

Accept all
advertisin
g and
scan
response
PDUs
except
directed
advertisin
g PDUs
whose the
target
address is
identity
address
but
doesn't
address
local
device.
However
directed
advertisin
g PDUs
whose the
target
address is
the local
resolvable
private
address
are
accepted.

BLE_GAP_
SCAN_ALL
OW_ADV_
EXCEPT_D
IRECTED_
WLST(0x0
3)

Accept all
advertisin
g and
scan
response
PDUs. The
following
are
excluded.

Ad
ve
rti
sin
g
an

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,592 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

d s
ca
n r
es
po
ns
e P
DU
s
wh
er
e
th
e a
dv
ert
ise
r's
ide
nti
ty
ad
dr
es
s
is
no
t
in
th
e
W
hit
e L
ist.

Dir
ect
ed
ad
ve
rti
sin
g P
DU
s
wh
os
e
th
e t
ar
ge
t a
dd

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,593 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

res
s
is i
de
nti
ty
ad
dr
es
s
bu
t d
oe
sn'
t a
dd
res
s l
oc
al
de
vic
e.
Ho
we
ve
r d
ire
cte
d a
dv
ert
isi
ng
PD
Us
wh
os
e
th
e t
ar
ge
t a
dd
res
s
is
th
e l
oc
al
res
olv
abl

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,594 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

e p
riv
at
e a
dd
res
s
ar
e a
cc
ep
te
d.

uint8_t filter_duplicate Filter duplicates.
Maximum number of filtered
devices is 8.
The 9th and subsequent
devices are not filtered by this
parameter.
macro description

BLE_GAP_SCA
N_FILT_DUPLI
C_DISABLE(0x
00)

Duplicate
filter disabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE(0x
01)

Duplicate
filter enabled.

BLE_GAP_SCA
N_FILT_DUPLI
C_ENABLE_FO
R_PERIOD(0x0
2))

Duplicate
filtering
enabled, reset
for each scan
period.

uint8_t filter_ad_type The AD type of the data
specified by the p_filter_data
parameter.
The AD type identifier values
are defined in Bluetooth SIG
Assigned Number
(
https://www.bluetooth.com/spe
cifications/assigned-numbers).

uint8_t padding[3] Padding.

◆ ble_abs_connection_phy_parameter_t

struct ble_abs_connection_phy_parameter_t

st_ble_abs_connection_phy_parameter_t is the phy parameters for create connection.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,595 / 2,794

https://www.bluetooth.com/specifications/assigned-numbers
https://www.bluetooth.com/specifications/assigned-numbers

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

Data Fields

uint16_t connection_interval Connection interval.
Time(ms) = connection_interval
* 1.25.
Valid range is 0x0006 - 0x0C80.

uint16_t connection_slave_latency Slave latency.
Valid range is 0x0000 - 0x01F3.

uint16_t supervision_timeout Supervision timeout.
Time(ms) =
supervision_timeout * 10.
Valid range is 0x000A - 0x0C80.

uint8_t padding[2] Padding.

◆ ble_abs_connection_parameter_t

struct ble_abs_connection_parameter_t

st_ble_abs_connection_parameter_t is the parameters for create connection.

Data Fields

ble_abs_connection_phy_param
eter_t *

p_connection_phy_parameter_1
M

Connection interval, slave
latency, supervision timeout for
1M PHY.
The p_connection_phy_paramet
er_1M is specified as NULL, a
connection request is not sent
with 1M PHY.

ble_abs_connection_phy_param
eter_t *

p_connection_phy_parameter_2
M

Connection interval, slave
latency, supervision timeout for
2M PHY.
The p_connection_phy_paramet
er_2M is specified as NULL, a
connection request is not sent
with 2M PHY.

ble_abs_connection_phy_param
eter_t *

p_connection_phy_parameter_c
oded

Connection interval, slave
latency, supervision timeout for
Coded PHY.
The p_connection_phy_paramet
er_coded is specified as NULL, a
connection request is not sent
with Coded PHY.

ble_device_address_t * p_device_address Address of the device to be
connected.
If the filter field is
BLE_GAP_INIT_FILT_USE_WLST(
0x01), this parameter is ignored
and please fill
p_device_address.addr with
0x00.

uint8_t filter_parameter The filter field specifies whether

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,596 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

the White List is used or not,
when connecting with a remote
device.
.

Address type setting
(Field [7:4])
macro descriptio

n

BLE_GAP_
ADDR_PU
BLIC(0x00
)

Use Public
Address.

BLE_GAP_
ADDR_RA
ND(0x01)

Use
Random
Address.

BLE_GAP_
ADDR_RP
A_ID_PUBL
IC(0x02)

If the IRK
of local
device has
been
registered
in
Resolving
list, use
RPA. If
not, use
Public
Address.

BLE_GAP_
ADDR_RP
A_ID_RAN
DOM(0x03
)

If the IRK
of local
device has
been
registered
in
Resolving
list, use
RPA. If
not, use
Random
Address.

White list setting (Field
[3:0])
macro descriptio

n

BLE_GAP_I
NIT_FILT_
USE_ADD
R(0x00)

White List
is not
used.
The
remote
device to

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,597 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

be
connected
is
specified
by the
p_addr
field is
used.

BLE_GAP_I
NIT_FILT_
USE_WLST
(0x01)

White List
is used.
The
remote
device
registered
in White
List is
connected
with local
device.
The
p_addr
field is
ignored.

uint8_t connection_timeout The time(sec) to cancel the
create connection request.
Valid range is 0 <=
connection_timeout <= 10.
If the connection_timeout field
is 0, the create connection
request is not canceled.
.

uint8_t padding[2] Padding.

◆ ble_abs_cfg_t

struct ble_abs_cfg_t

BLE ABS configuration parameters.

Data Fields

uint32_t channel

 Select a channel corresponding to the channel number of the
hardware. More...

ble_gap_application_callbac
k_t

gap_callback

 GAP callback function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,598 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

ble_vendor_specific_applicat
ion_callback_t

vendor_specific_callback

 Vendor Specific callback function.

ble_abs_gatt_server_callbac
k_set_t *

p_gatt_server_callback_list

 GATT Server callback set.

uint8_t gatt_server_callback_list_number

 The number of GATT Server callback functions.

ble_abs_gatt_client_callback
_set_t *

p_gatt_client_callback_list

 GATT Client callback set.

uint8_t gatt_client_callback_list_number

 The number of GATT Client callback functions.

ble_abs_pairing_parameter_t
*

p_pairing_parameter

 Pairing parameters.

flash_instance_t const * p_flash_instance

 Pointer to flash instance.

timer_instance_t const * p_timer_instance

 Pointer to timer instance.

void(* p_callback)(ble_abs_callback_args_t *p_args)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,599 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

 Callback provided when a BLE ISR occurs.

void const * p_context

 Placeholder for user data. Passed to the user callback in
ble_abs_callback_args_t.

void const * p_extend

 Placeholder for user extension.

Field Documentation

◆ channel

uint32_t ble_abs_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

the parameters for initialization.

◆ ble_abs_api_t

struct ble_abs_api_t

BLE ABS functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const *const p_cfg)

fsp_err_t(* close)(ble_abs_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t init_callback)

fsp_err_t(* startLegacyAdvertising)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t(* startExtendedAdvertising)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t(* startNonConnectableAdvertising)(ble_abs_ctrl_t *const p_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,600 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

ble_abs_non_connectable_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t(* startPeriodicAdvertising)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const
p_advertising_parameter)

fsp_err_t(* startScanning)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_scan_parameter_t const *const p_scan_parameter)

fsp_err_t(* createConnection)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_connection_parameter_t const *const
p_connection_parameter)

fsp_err_t(* setLocalPrivacy)(ble_abs_ctrl_t *const p_ctrl, uint8_t const *const
p_lc_irk, uint8_t privacy_mode)

fsp_err_t(* startAuthentication)(ble_abs_ctrl_t *const p_ctrl, uint16_t
connection_handle)

fsp_err_t(* deleteBondInformation)(ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const
p_bond_information_parameter)

fsp_err_t(* importKeyInformation)(ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

fsp_err_t(* exportKeyInformation)(ble_abs_ctrl_t *const p_ctrl,
ble_device_address_t *p_local_identity_address, uint8_t *p_local_irk,
uint8_t *p_local_csrk)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,601 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

◆ open

fsp_err_t(* ble_abs_api_t::open) (ble_abs_ctrl_t *const p_ctrl, ble_abs_cfg_t const *const p_cfg)

Initialize the BLE ABS in register start mode.

Implemented as

RM_BLE_ABS_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* ble_abs_api_t::close) (ble_abs_ctrl_t *const p_ctrl)

Close the BLE ABS.

Implemented as

RM_BLE_ABS_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* ble_abs_api_t::reset) (ble_abs_ctrl_t *const p_ctrl, ble_event_cb_t init_callback)

Close the BLE ABS.

Implemented as

RM_BLE_ABS_Reset()
Parameters

[in] p_ctrl Pointer to control structure.

[in] init_callback callback function to initialize
Host Stack.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,602 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

◆ startLegacyAdvertising

fsp_err_t(* ble_abs_api_t::startLegacyAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_legacy_advertising_parameter_t const *const p_advertising_parameter)

Start Legacy Connectable Advertising.

Implemented as

RM_BLE_ABS_StartLegacyAdvertising()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for Legacy
Advertising.

◆ startExtendedAdvertising

fsp_err_t(* ble_abs_api_t::startExtendedAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_extend_advertising_parameter_t const *const p_advertising_parameter)

Start Extended Connectable Advertising.

Implemented as

RM_BLE_ABS_StartExtendedAdvertising()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for extend
Advertising.

◆ startNonConnectableAdvertising

fsp_err_t(* ble_abs_api_t::startNonConnectableAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_non_connectable_advertising_parameter_t const *const p_advertising_parameter)

Start Non-Connectable Advertising.

Implemented as

RM_BLE_ABS_StartNonConnectableAdvertising()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for non-
connectable Advertising.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,603 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

◆ startPeriodicAdvertising

fsp_err_t(* ble_abs_api_t::startPeriodicAdvertising) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_periodic_advertising_parameter_t const *const p_advertising_parameter)

Start Periodic Advertising.

Implemented as

RM_BLE_ABS_StartPeriodicAdvertising()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_advertising_parameter Pointer to Advertising
parameters for periodic
Advertising.

◆ startScanning

fsp_err_t(* ble_abs_api_t::startScanning) (ble_abs_ctrl_t *const p_ctrl, ble_abs_scan_parameter_t
const *const p_scan_parameter)

Start scanning.

Implemented as

RM_BLE_ABS_StartScanning()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_scan_parameter Pointer to scan parameter.

◆ createConnection

fsp_err_t(* ble_abs_api_t::createConnection) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_connection_parameter_t const *const p_connection_parameter)

Request create connection.

Implemented as

RM_BLE_ABS_CreateConnection()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_connection_parameter Pointer to connection
parameter.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,604 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

◆ setLocalPrivacy

fsp_err_t(* ble_abs_api_t::setLocalPrivacy) (ble_abs_ctrl_t *const p_ctrl, uint8_t const *const
p_lc_irk, uint8_t privacy_mode)

Configure local device privacy.

Implemented as

RM_BLE_ABS_SetLocalPrivacy()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_lc_irk Pointer to IRK to be
registered in the resolving
list.

[in] privacy_mode privacy_mode privacy mode.

◆ startAuthentication

fsp_err_t(* ble_abs_api_t::startAuthentication) (ble_abs_ctrl_t *const p_ctrl, uint16_t
connection_handle)

Start pairing or encryption.

Implemented as

RM_BLE_ABS_StartAuthentication()
Parameters

[in] p_ctrl Pointer to control structure.

[in] connection_handle Connection handle
identifying the remote
device.

◆ deleteBondInformation

fsp_err_t(* ble_abs_api_t::deleteBondInformation) (ble_abs_ctrl_t *const p_ctrl,
ble_abs_bond_information_parameter_t const *const p_bond_information_parameter)

Delete bond information.

Implemented as

RM_BLE_ABS_DeleteBondInformation()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_bond_information_parame
ter

Pointer to bond information
parameter.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,605 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

◆ importKeyInformation

fsp_err_t(* ble_abs_api_t::importKeyInformation) (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t
*p_local_identity_address, uint8_t *p_local_irk, uint8_t *p_local_csrk)

Import local identity address, keys information to local storage.

Implemented as

RM_BLE_ABS_ImportKeyInformation()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_local_identity_address Pointer to local identiry
address.

[in] uint8_t p_local_irk Pointer to local
IRK

[in] uint8_t p_local_csrk Pointer to local
CSRK

◆ exportKeyInformation

fsp_err_t(* ble_abs_api_t::exportKeyInformation) (ble_abs_ctrl_t *const p_ctrl, ble_device_address_t
*p_local_identity_address, uint8_t *p_local_irk, uint8_t *p_local_csrk)

Export local identity address, keys information from local storage.

Implemented as

RM_BLE_ABS_ExportKeyInformation()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_local_identity_address Pointer to local identiry
address.

[out] uint8_t p_local_irk Pointer to local
IRK

[out] uint8_t p_local_csrk Pointer to local
CSRK

◆ ble_abs_instance_t

struct ble_abs_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

ble_abs_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

ble_abs_cfg_t const * p_cfg Pointer to the configuration

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,606 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

structure for this instance.

ble_abs_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ ble_gap_application_callback_t

typedef void(* ble_gap_application_callback_t) (uint16_t event_type, ble_status_t event_result,
st_ble_evt_data_t *p_event_data)

ble_gap_application_callback_t is the GAP Event callback function type.

◆ ble_vendor_specific_application_callback_t

typedef void(* ble_vendor_specific_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_vs_evt_data_t *p_event_data)

ble_vendor_specific_application_callback_t is the Vendor Specific Event callback function type.

◆ ble_gatt_server_application_callback_t

typedef void(* ble_gatt_server_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_gatts_evt_data_t *p_event_data)

ble_gatt_server_application_callback_t is the GATT Server Event callback function type.

◆ ble_gatt_client_application_callback_t

typedef void(* ble_gatt_client_application_callback_t) (uint16_t event_type, ble_status_t
event_result, st_ble_gattc_evt_data_t *p_event_data)

ble_gatt_client_application_callback_t is the GATT Server Event callback function type.

◆ ble_abs_delete_bond_application_callback_t

typedef void(* ble_abs_delete_bond_application_callback_t) (st_ble_dev_addr_t *p_addr)

ble_abs_delete_bond_application_callback_t is the delete bond information Event callback function
type.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,607 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

◆ ble_abs_ctrl_t

typedef void ble_abs_ctrl_t

BLE ABS control block. Allocate an instance specific control block to pass into the BLE ABS API
calls.

Implemented as

ble_abs_instance_ctrl_t

Enumeration Type Documentation

◆ ble_abs_advertising_filter_t

enum ble_abs_advertising_filter_t

Advertising Filter Policy

Enumerator

BLE_ABS_ADVERTISING_FILTER_ALLOW_ANY Receive a connect request from all devices.

BLE_ABS_ADVERTISING_FILTER_ALLOW_WHITE_L
IST

Receive a connect request from only the
devices registered in White List.

◆ ble_abs_local_bond_information_t

enum ble_abs_local_bond_information_t

Local keys delete policy

Enumerator

BLE_ABS_LOCAL_BOND_INFORMATION_NONE Delete no local keys.

BLE_ABS_LOCAL_BOND_INFORMATION_ALL Delete all local keys.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,608 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > BLE ABS Interface

◆ ble_abs_remote_bond_information_t

enum ble_abs_remote_bond_information_t

Remote keys delete policy

Enumerator

BLE_ABS_REMOTE_BOND_INFORMATION_NONE Delete no remote device keys.

BLE_ABS_REMOTE_BOND_INFORMATION_SPECIFI
ED

Delete the keys specified by the device
address.

BLE_ABS_REMOTE_BOND_INFORMATION_ALL Delete all remote device keys.

◆ ble_abs_delete_non_volatile_area_t

enum ble_abs_delete_non_volatile_area_t

Deletion policy for non-volatile memory

Enumerator

BLE_ABS_DELETE_NON_VOLATILE_AREA_DISABL
E

Delete no keys stored in storage.

BLE_ABS_DELETE_NON_VOLATILE_AREA_ENABLE

Delete the keys stored in storage.

4.3.50 Block Media Interface
Interfaces

Detailed Description

Interface for block media memory access.

Summary
The block media interface supports reading, writing, and erasing media devices. All functions are non-
blocking if possible. The callback is used to determine when an operation completes.

Implemented by:

SD/MMC Block Media Implementation (rm_block_media_sdmmc)
SPI Block Media Implementation (rm_block_media_spi)
USB HMSC Block Media Implementation (rm_block_media_usb)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,609 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

Data Structures

struct rm_block_media_info_t

struct rm_block_media_callback_args_t

struct rm_block_media_cfg_t

struct rm_block_media_status_t

struct rm_block_media_api_t

struct rm_block_media_instance_t

Typedefs

typedef void rm_block_media_ctrl_t

Enumerations

enum rm_block_media_event_t

Data Structure Documentation

◆ rm_block_media_info_t

struct rm_block_media_info_t

Block media device information supported by the instance

Data Fields

uint32_t sector_size_bytes Sector size in bytes.

uint32_t num_sectors Total number of sectors.

bool reentrant True if connected block media
driver is reentrant.

bool write_protected True if connected block media
device is write protected.

◆ rm_block_media_callback_args_t

struct rm_block_media_callback_args_t

Callback function parameter data

Data Fields

rm_block_media_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ rm_block_media_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,610 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

struct rm_block_media_cfg_t

User configuration structure, used in open function

Data Fields

void(* p_callback)(rm_block_media_callback_args_t *p_args)

 DEPRECATED - Block size, must be a power of 2 multiple of
sector_size_bytes. More...

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Extension parameter for hardware specific settings.

Field Documentation

◆ p_callback

void(* rm_block_media_cfg_t::p_callback) (rm_block_media_callback_args_t *p_args)

DEPRECATED - Block size, must be a power of 2 multiple of sector_size_bytes.

Pointer to callback function

◆ rm_block_media_status_t

struct rm_block_media_status_t

Current status

Data Fields

bool initialized False if
rm_block_media_api_t::mediaIni
t has not been called since
media was inserted, true
otherwise.

bool busy True if media is busy with a
previous write/erase operation.

bool media_inserted Media insertion status, true if
media is not removable.

◆ rm_block_media_api_t

struct rm_block_media_api_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,611 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

Block media interface API.

Data Fields

fsp_err_t(* open)(rm_block_media_ctrl_t *const p_ctrl, rm_block_media_cfg_t
const *const p_cfg)

fsp_err_t(* mediaInit)(rm_block_media_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const
num_blocks)

fsp_err_t(* write)(rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src_address, uint32_t const block_address, uint32_t const
num_blocks)

fsp_err_t(* erase)(rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

fsp_err_t(* callbackSet)(rm_block_media_ctrl_t *const p_ctrl,
void(*p_callback)(rm_block_media_callback_args_t *), void const
*const p_context, rm_block_media_callback_args_t *const
p_callback_memory)

fsp_err_t(* statusGet)(rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_status_t *const p_status)

fsp_err_t(* infoGet)(rm_block_media_ctrl_t *const p_ctrl, rm_block_media_info_t
*const p_info)

fsp_err_t(* close)(rm_block_media_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,612 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

◆ open

fsp_err_t(* rm_block_media_api_t::open) (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_cfg_t const *const p_cfg)

Initialize block media device. rm_block_media_api_t::mediaInit must be called to complete the
initialization procedure.

Implemented as

RM_BLOCK_MEDIA_SDMMC_Open
RM_BLOCK_MEDIA_SPI_Open
RM_BLOCK_MEDIA_USB_Open

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ mediaInit

fsp_err_t(* rm_block_media_api_t::mediaInit) (rm_block_media_ctrl_t *const p_ctrl)

Initializes a media device. If the device is removable, it must be plugged in prior to calling this API.
This function blocks until media initialization is complete.

Implemented as

RM_BLOCK_MEDIA_SDMMC_MediaInit
RM_BLOCK_MEDIA_SPI_MediaInit
RM_BLOCK_MEDIA_USB_MediaInit

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,613 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

◆ read

fsp_err_t(* rm_block_media_api_t::read) (rm_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const block_address, uint32_t const num_blocks)

Reads blocks of data from the specified memory device address to the location specified by the
caller.

Implemented as

RM_BLOCK_MEDIA_SDMMC_Read
RM_BLOCK_MEDIA_SPI_Read
RM_BLOCK_MEDIA_USB_Read

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[out] p_dest_address Destination to read the data
into.

[in] block_address Block address to read the
data from.

[in] num_blocks Number of blocks of data to
read.

◆ write

fsp_err_t(* rm_block_media_api_t::write) (rm_block_media_ctrl_t *const p_ctrl, uint8_t const *const
p_src_address, uint32_t const block_address, uint32_t const num_blocks)

Writes blocks of data to the specified device memory address.

Implemented as

RM_BLOCK_MEDIA_SDMMC_Write
RM_BLOCK_MEDIA_SPI_Write
RM_BLOCK_MEDIA_USB_Write

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[in] p_src_address Address to read the data to
be written.

[in] block_address Block address to write the
data to.

[in] num_blocks Number of blocks of data to
write.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,614 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

◆ erase

fsp_err_t(* rm_block_media_api_t::erase) (rm_block_media_ctrl_t *const p_ctrl, uint32_t const
block_address, uint32_t const num_blocks)

Erases blocks of data from the memory device.

Implemented as

RM_BLOCK_MEDIA_SDMMC_Erase
RM_BLOCK_MEDIA_SPI_Erase
RM_BLOCK_MEDIA_USB_Erase

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[in] block_address Block address to start the
erase process at.

[in] num_blocks Number of blocks of data to
erase.

◆ callbackSet

fsp_err_t(* rm_block_media_api_t::callbackSet) (rm_block_media_ctrl_t *const p_ctrl, void(
*p_callback)(rm_block_media_callback_args_t *), void const *const p_context,
rm_block_media_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

RM_BLOCK_MEDIA_SDMMC_CallbackSet()
Parameters

[in] p_ctrl Control block set in
rm_block_media_api_t::open
call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,615 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

◆ statusGet

fsp_err_t(* rm_block_media_api_t::statusGet) (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_status_t *const p_status)

Get status of connected device.

Implemented as

RM_BLOCK_MEDIA_SDMMC_StatusGet
RM_BLOCK_MEDIA_SPI_StatusGet
RM_BLOCK_MEDIA_USB_StatusGet

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[out] p_status Pointer to store current
status.

◆ infoGet

fsp_err_t(* rm_block_media_api_t::infoGet) (rm_block_media_ctrl_t *const p_ctrl,
rm_block_media_info_t *const p_info)

Returns information about the block media device.

Implemented as

RM_BLOCK_MEDIA_SDMMC_InfoGet
RM_BLOCK_MEDIA_SPI_InfoGet
RM_BLOCK_MEDIA_USB_InfoGet

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

[out] p_info Pointer to information
structure. All elements of
this structure will be set by
the function.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,616 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

◆ close

fsp_err_t(* rm_block_media_api_t::close) (rm_block_media_ctrl_t *const p_ctrl)

Closes the module.

Implemented as

RM_BLOCK_MEDIA_SDMMC_Close
RM_BLOCK_MEDIA_SPI_Close
RM_BLOCK_MEDIA_USB_Close

Parameters
[in] p_ctrl Control block set in

rm_block_media_api_t::open
call.

◆ rm_block_media_instance_t

struct rm_block_media_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_block_media_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_block_media_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rm_block_media_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_block_media_ctrl_t

typedef void rm_block_media_ctrl_t

Block media API control block. Allocate an instance specific control block to pass into the block
media API calls.

Implemented as

rm_block_media_sdmmc_instance_ctrl_t
rm_block_media_spi_instance_ctrl_t
rm_block_media_usb_instance_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,617 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Block Media Interface

◆ rm_block_media_event_t

enum rm_block_media_event_t

Events that can trigger a callback function

Enumerator

RM_BLOCK_MEDIA_EVENT_MEDIA_REMOVED Media removed event.

RM_BLOCK_MEDIA_EVENT_MEDIA_INSERTED Media inserted event.

RM_BLOCK_MEDIA_EVENT_OPERATION_COMPLET
E

Read, write, or erase completed.

RM_BLOCK_MEDIA_EVENT_ERROR Error on media operation.

RM_BLOCK_MEDIA_EVENT_POLL_STATUS Poll rm_block_media_api_t::statusGet for
write/erase completion.

RM_BLOCK_MEDIA_EVENT_MEDIA_SUSPEND Media suspended event.

RM_BLOCK_MEDIA_EVENT_MEDIA_RESUME Media resumed event.

RM_BLOCK_MEDIA_EVENT_WAIT Indication to user that they should wait for an
interrupt on a pending operation.

RM_BLOCK_MEDIA_EVENT_WAIT_END Indication to user that interrupt has been
received and waiting can end.

4.3.51 Communicatons Middleware Interface
Interfaces

Detailed Description

Interface for Communications Middleware functions.

Summary
The Communications interface provides multiple communications functionality.

The Communications interface can be implemented by:

I2C Communicatons Middleware (rm_comms_i2c)

Data Structures

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,618 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Communicatons Middleware Interface

struct rm_comms_write_read_params_t

struct rm_comms_callback_args_t

struct rm_comms_cfg_t

struct rm_comms_api_t

struct rm_comms_instance_t

Typedefs

typedef void rm_comms_ctrl_t

Enumerations

enum rm_comms_event_t

Data Structure Documentation

◆ rm_comms_write_read_params_t

struct rm_comms_write_read_params_t

Struct to pack params for writeRead

◆ rm_comms_callback_args_t

struct rm_comms_callback_args_t

Communications middleware callback parameter definition

◆ rm_comms_cfg_t

struct rm_comms_cfg_t

Communications middleware configuration block

Data Fields

uint32_t semaphore_timeout

 timeout for callback.

void(* p_callback)(rm_comms_callback_args_t *p_args)

 Pointer to callback function, mostly used if using non-blocking
functionality.

void const * p_lower_level_cfg

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,619 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Communicatons Middleware Interface

 Pointer to lower level driver configuration structure.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void const * p_context

 Pointer to the user-provided context.

◆ rm_comms_api_t

struct rm_comms_api_t

COMM APIs

Data Fields

fsp_err_t(* open)(rm_comms_ctrl_t *const p_ctrl, rm_comms_cfg_t const *const
p_cfg)

fsp_err_t(* close)(rm_comms_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

fsp_err_t(* write)(rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes)

fsp_err_t(* writeRead)(rm_comms_ctrl_t *const p_ctrl,
rm_comms_write_read_params_t write_read_params)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,620 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Communicatons Middleware Interface

◆ open

fsp_err_t(* rm_comms_api_t::open) (rm_comms_ctrl_t *const p_ctrl, rm_comms_cfg_t const *const
p_cfg)

Open driver.

Implemented as

RM_COMMS_I2C_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_comms_api_t::close) (rm_comms_ctrl_t *const p_ctrl)

Close driver.

Implemented as

RM_COMMS_I2C_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ read

fsp_err_t(* rm_comms_api_t::read) (rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes)

Read data.

Implemented as

RM_COMMS_I2C_Read()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,621 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Communicatons Middleware Interface

◆ write

fsp_err_t(* rm_comms_api_t::write) (rm_comms_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Write data.

Implemented as

RM_COMMS_I2C_Write()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

◆ writeRead

fsp_err_t(* rm_comms_api_t::writeRead) (rm_comms_ctrl_t *const p_ctrl,
rm_comms_write_read_params_t write_read_params)

Write bytes over comms followed by a read, will have a struct for params.

Implemented as

RM_COMMS_I2C_WriteRead()
Parameters

[in] p_ctrl Pointer to control structure.

[in] write_read_params Parameters structure.

◆ rm_comms_instance_t

struct rm_comms_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Typedef Documentation

◆ rm_comms_ctrl_t

typedef void rm_comms_ctrl_t

Communications control block. Allocate an instance specific control block to pass into the
Communications API calls.

Implemented as

rm_comms_i2c_instance_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,622 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Communicatons Middleware Interface

Enumeration Type Documentation

◆ rm_comms_event_t

enum rm_comms_event_t

Event in the callback function

4.3.52 FileX Block Media Port Interface
Interfaces

Detailed Description

Interface for FileX Block Media port.

Summary
The FileX block media port provides notifications for insertion and removal of removable media and
provides initialization functions required by FileX.

The FileX Block media interface can be implemented by: Azure RTOS FileX Block Media I/O Driver
(rm_filex_block_media)

Data Structures

struct rm_filex_block_media_callback_args_t

struct rm_filex_block_media_cfg_t

struct rm_filex_block_media_api_t

struct rm_filex_block_media_instance_t

Typedefs

typedef void rm_filex_block_media_ctrl_t

Enumerations

enum rm_filex_block_media_partition_t

Data Structure Documentation

◆ rm_filex_block_media_callback_args_t

struct rm_filex_block_media_callback_args_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,623 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FileX Block Media Port Interface

Callback function parameter data

Data Fields

rm_block_media_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ rm_filex_block_media_cfg_t

struct rm_filex_block_media_cfg_t

Block media configuration structure

Data Fields

rm_block_media_instance_t
*

p_lower_lvl_block_media

 Lower level block media pointer.

rm_filex_block_media_partiti
on_t

partition

 Partition to use for partitioned media.

void(* p_callback)(rm_filex_block_media_callback_args_t *p_args)

 Pointer to callback function.

◆ rm_filex_block_media_api_t

struct rm_filex_block_media_api_t

FileX block media functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_filex_block_media_ctrl_t *const p_ctrl,
rm_filex_block_media_cfg_t const *const p_cfg)

fsp_err_t(* close)(rm_filex_block_media_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,624 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FileX Block Media Port Interface

◆ open

fsp_err_t(* rm_filex_block_media_api_t::open) (rm_filex_block_media_ctrl_t *const p_ctrl,
rm_filex_block_media_cfg_t const *const p_cfg)

Open media device.

Implemented as

RM_FILEX_BLOCK_MEDIA_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* rm_filex_block_media_api_t::close) (rm_filex_block_media_ctrl_t *const p_ctrl)

Close media device.

Implemented as

RM_FILEX_BLOCK_MEDIA_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ rm_filex_block_media_instance_t

struct rm_filex_block_media_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_filex_block_media_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_filex_block_media_cfg_t
const *const

p_cfg Pointer to the configuration
structure for this instance.

rm_filex_block_media_api_t
const *

p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ rm_filex_block_media_ctrl_t

typedef void rm_filex_block_media_ctrl_t

Block media control structure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,625 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FileX Block Media Port Interface

Enumeration Type Documentation

◆ rm_filex_block_media_partition_t

enum rm_filex_block_media_partition_t

Partitions that can be selected to use FileX with

Enumerator

RM_FILEX_BLOCK_MEDIA_PARTITION0 Partition 0 (0x01BE) in Master Boot Record
Partition Table.

RM_FILEX_BLOCK_MEDIA_PARTITION1 Partition 1 (0x01CE) in Master Boot Record
Partition Table.

RM_FILEX_BLOCK_MEDIA_PARTITION2 Partition 2 (0x01DE) in Master Boot Record
Partition Table.

RM_FILEX_BLOCK_MEDIA_PARTITION3 Partition 3 (0x01EE) in Master Boot Record
Partition Table.

4.3.53 FreeRTOS+FAT Port Interface
Interfaces

Detailed Description

Interface for FreeRTOS+FAT port.

Summary
The FreeRTOS+FAT port provides notifications for insertion and removal of removable media and
provides initialization functions required by FreeRTOS+FAT.

The FreeRTOS+FAT interface can be implemented by: FreeRTOS+FAT Port (rm_freertos_plus_fat)

Data Structures

struct rm_freertos_plus_fat_callback_args_t

struct rm_freertos_plus_fat_device_t

struct rm_freertos_plus_fat_api_t

struct rm_freertos_plus_fat_instance_t

Enumerations

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,626 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FreeRTOS+FAT Port Interface

enum rm_freertos_plus_fat_event_t

enum rm_freertos_plus_fat_type_t

Data Structure Documentation

◆ rm_freertos_plus_fat_callback_args_t

struct rm_freertos_plus_fat_callback_args_t

Callback function parameter data

Data Fields

rm_freertos_plus_fat_event_t event The event can be used to
identify what caused the
callback.

void const * p_context Placeholder for user data.

◆ rm_freertos_plus_fat_device_t

struct rm_freertos_plus_fat_device_t

Information obtained from the media device.

Data Fields

uint32_t sector_count Sector count.

uint32_t sector_size_bytes Sector size in bytes.

◆ rm_freertos_plus_fat_api_t

struct rm_freertos_plus_fat_api_t

FreeRTOS plus Fat functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_cfg_t const *const p_cfg)

fsp_err_t(* mediaInit)(rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_device_t *const p_device)

fsp_err_t(* diskInit)(rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg, FF_Disk_t
*const p_disk)

fsp_err_t(* diskDeinit)(rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t *const
p_disk)

fsp_err_t(* infoGet)(rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t *const

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,627 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FreeRTOS+FAT Port Interface

p_disk, rm_freertos_plus_fat_info_t *const p_info)

fsp_err_t(* close)(rm_freertos_plus_fat_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_freertos_plus_fat_api_t::open) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_cfg_t const *const p_cfg)

Open media device.

Implemented as

RM_FREERTOS_PLUS_FAT_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ mediaInit

fsp_err_t(* rm_freertos_plus_fat_api_t::mediaInit) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_device_t *const p_device)

Initializes a media device. If the device is removable, it must be plugged in prior to calling this API.
This function blocks until media initialization is complete.

Implemented as

RM_FREERTOS_PLUS_FAT_MediaInit
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_device Pointer to store device
information.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,628 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FreeRTOS+FAT Port Interface

◆ diskInit

fsp_err_t(* rm_freertos_plus_fat_api_t::diskInit) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
rm_freertos_plus_fat_disk_cfg_t const *const p_disk_cfg, FF_Disk_t *const p_disk)

Initializes a FreeRTOS+FAT FF_Disk_t structure.

Implemented as

RM_FREERTOS_PLUS_FAT_DiskInit
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_disk_cfg Pointer to disk configurations

[out] p_disk Pointer to store
FreeRTOS+FAT disk
structure.

◆ diskDeinit

fsp_err_t(* rm_freertos_plus_fat_api_t::diskDeinit) (rm_freertos_plus_fat_ctrl_t *const p_ctrl,
FF_Disk_t *const p_disk)

Deinitializes a FreeRTOS+FAT FF_Disk_t structure.

Implemented as

RM_FREERTOS_PLUS_FAT_DiskDeinit
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_disk_cfg Pointer to disk configurations

[out] p_disk Pointer to store
FreeRTOS+FAT disk
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,629 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FreeRTOS+FAT Port Interface

◆ infoGet

fsp_err_t(* rm_freertos_plus_fat_api_t::infoGet) (rm_freertos_plus_fat_ctrl_t *const p_ctrl, FF_Disk_t
*const p_disk, rm_freertos_plus_fat_info_t *const p_info)

Returns information about the media device.

Implemented as

RM_FREERTOS_PLUS_FAT_InfoGet
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_info Pointer to information
structure. All elements of
this structure will be set by
the function.

◆ close

fsp_err_t(* rm_freertos_plus_fat_api_t::close) (rm_freertos_plus_fat_ctrl_t *const p_ctrl)

Close media device.

Implemented as

RM_FREERTOS_PLUS_FAT_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ rm_freertos_plus_fat_instance_t

struct rm_freertos_plus_fat_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_freertos_plus_fat_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_freertos_plus_fat_cfg_t
const *const

p_cfg Pointer to the configuration
structure for this instance.

rm_freertos_plus_fat_api_t const
*

p_api Pointer to the API structure for
this instance.

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,630 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FreeRTOS+FAT Port Interface

◆ rm_freertos_plus_fat_event_t

enum rm_freertos_plus_fat_event_t

Events that can trigger a callback function

Enumerator

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_REMOV
ED

Media removed event.

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_INSERT
ED

Media inserted event.

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_SUSPE
ND

Media suspended event.

RM_FREERTOS_PLUS_FAT_EVENT_MEDIA_RESUM
E

Media resumed event.

◆ rm_freertos_plus_fat_type_t

enum rm_freertos_plus_fat_type_t

Enumerator

RM_FREERTOS_PLUS_FAT_TYPE_FAT32 FAT32 disk.

RM_FREERTOS_PLUS_FAT_TYPE_FAT16 FAT16 disk.

RM_FREERTOS_PLUS_FAT_TYPE_FAT12 FAT12 disk.

4.3.54 FSXXXX Middleware Interface
Interfaces

Detailed Description

Interface for FSXXXX Middleware functions.

Summary
The FSXXXX interface provides FSXXXX functionality.

The FSXXXX interface can be implemented by:

FS2012 Sensor Middleware (rm_fs2012)

Data Structures

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,631 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FSXXXX Middleware Interface

struct rm_fsxxxx_callback_args_t

struct rm_fsxxxx_raw_data_t

struct rm_fsxxxx_sensor_data_t

struct rm_fsxxxx_data_t

struct rm_fsxxxx_cfg_t

struct rm_fsxxxx_api_t

struct rm_fsxxxx_instance_t

Typedefs

typedef void rm_fsxxxx_ctrl_t

Enumerations

enum rm_fsxxxx_event_t

Data Structure Documentation

◆ rm_fsxxxx_callback_args_t

struct rm_fsxxxx_callback_args_t

FSXXXX callback parameter definition

◆ rm_fsxxxx_raw_data_t

struct rm_fsxxxx_raw_data_t

FSXXXX raw data

◆ rm_fsxxxx_sensor_data_t

struct rm_fsxxxx_sensor_data_t

FSXXXX sensor data block

Data Fields

int16_t integer_part

int16_t decimal_part To two decimal places.

◆ rm_fsxxxx_data_t

struct rm_fsxxxx_data_t

FSXXXX data block

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,632 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FSXXXX Middleware Interface

◆ rm_fsxxxx_cfg_t

struct rm_fsxxxx_cfg_t

FSXXXX Configuration

Data Fields

rm_comms_instance_t const
*

p_instance

 Pointer to Communications Middleware instance.

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void(* p_callback)(rm_fsxxxx_callback_args_t *p_args)

 Pointer to callback function.

◆ rm_fsxxxx_api_t

struct rm_fsxxxx_api_t

FSXXXX APIs

Data Fields

fsp_err_t(* open)(rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

fsp_err_t(* read)(rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

fsp_err_t(* dataCalculate)(rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fsxxxx_data)

fsp_err_t(* close)(rm_fsxxxx_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,633 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FSXXXX Middleware Interface

Field Documentation

◆ open

fsp_err_t(* rm_fsxxxx_api_t::open) (rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_cfg_t const *const
p_cfg)

Open sensor.

Implemented as

RM_FS2012_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ read

fsp_err_t(* rm_fsxxxx_api_t::read) (rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t *const
p_raw_data)

Read ADC data from FSXXXX.

Implemented as

RM_FS2012_Read()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

◆ dataCalculate

fsp_err_t(* rm_fsxxxx_api_t::dataCalculate) (rm_fsxxxx_ctrl_t *const p_ctrl, rm_fsxxxx_raw_data_t
*const p_raw_data, rm_fsxxxx_data_t *const p_fsxxxx_data)

Calculate flow values from ADC data.

Implemented as

RM_FS2012_DataCalculate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_fsxxxx_data Pointer to FSXXXX data
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,634 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > FSXXXX Middleware Interface

◆ close

fsp_err_t(* rm_fsxxxx_api_t::close) (rm_fsxxxx_ctrl_t *const p_ctrl)

Close FSXXXX.

Implemented as

RM_FS2012_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ rm_fsxxxx_instance_t

struct rm_fsxxxx_instance_t

FSXXXX instance

Data Fields

rm_fsxxxx_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_fsxxxx_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

rm_fsxxxx_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_fsxxxx_ctrl_t

typedef void rm_fsxxxx_ctrl_t

FSXXXX control block. Allocate an instance specific control block to pass into the FSXXXX API calls.

Implemented as

rm_fsxxxx_instance_ctrl_t

Enumeration Type Documentation

◆ rm_fsxxxx_event_t

enum rm_fsxxxx_event_t

Event in the callback function

4.3.55 HS300X Middleware Interface

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,635 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > HS300X Middleware Interface

Interfaces

Detailed Description

Interface for HS300X Middleware functions.

Summary
The HS300X interface provides HS300X functionality.

The HS300X interface can be implemented by:

HS300X Sensor Middleware (rm_hs300x)

Data Structures

struct rm_hs300x_callback_args_t

struct rm_hs300x_raw_data_t

struct rm_hs300x_sensor_data_t

struct rm_hs300x_data_t

struct rm_hs300x_cfg_t

struct rm_hs300x_api_t

struct rm_hs300x_instance_t

Typedefs

typedef void rm_hs300x_ctrl_t

Enumerations

enum rm_hs300x_event_t

enum rm_hs300x_data_type_t

enum rm_hs300x_resolution_t

Data Structure Documentation

◆ rm_hs300x_callback_args_t

struct rm_hs300x_callback_args_t

HS300X callback parameter definition

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,636 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > HS300X Middleware Interface

◆ rm_hs300x_raw_data_t

struct rm_hs300x_raw_data_t

HS300X raw data

Data Fields

uint8_t humidity[2] Upper 2 bits of 0th element are
data status.

uint8_t temperature[2] Lower 2 bits of 1st element are
mask.

◆ rm_hs300x_sensor_data_t

struct rm_hs300x_sensor_data_t

HS300X sensor data block

Data Fields

int16_t integer_part

int16_t decimal_part To two decimal places.

◆ rm_hs300x_data_t

struct rm_hs300x_data_t

HS300X data block

◆ rm_hs300x_cfg_t

struct rm_hs300x_cfg_t

HS300X Configuration

Data Fields

rm_comms_instance_t const
*

p_instance

 Pointer to Communications Middleware instance.

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Pointer to extended configuration by instance of interface.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,637 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > HS300X Middleware Interface

void(* p_callback)(rm_hs300x_callback_args_t *p_args)

 Pointer to callback function.

◆ rm_hs300x_api_t

struct rm_hs300x_api_t

HS300X APIs

Data Fields

fsp_err_t(* open)(rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_cfg_t const *const
p_cfg)

fsp_err_t(* measurementStart)(rm_hs300x_ctrl_t *const p_ctrl)

fsp_err_t(* read)(rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_raw_data_t *const
p_raw_data)

fsp_err_t(* dataCalculate)(rm_hs300x_ctrl_t *const p_ctrl,
rm_hs300x_raw_data_t *const p_raw_data, rm_hs300x_data_t *const
p_hs300x_data)

fsp_err_t(* programmingModeEnter)(rm_hs300x_ctrl_t *const p_ctrl)

fsp_err_t(* resolutionChange)(rm_hs300x_ctrl_t *const p_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t
const resolution)

fsp_err_t(* sensorIdGet)(rm_hs300x_ctrl_t *const p_ctrl, uint32_t *const
p_sensor_id)

fsp_err_t(* programmingModeExit)(rm_hs300x_ctrl_t *const p_ctrl)

fsp_err_t(* close)(rm_hs300x_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,638 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > HS300X Middleware Interface

◆ open

fsp_err_t(* rm_hs300x_api_t::open) (rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_cfg_t const *const
p_cfg)

Open sensor.

Implemented as

RM_HS300X_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ measurementStart

fsp_err_t(* rm_hs300x_api_t::measurementStart) (rm_hs300x_ctrl_t *const p_ctrl)

Start a measurement.

Implemented as

RM_HS300X_MeasurementStart()
Parameters

[in] p_ctrl Pointer to control structure.

◆ read

fsp_err_t(* rm_hs300x_api_t::read) (rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_raw_data_t *const
p_raw_data)

Read ADC data from HS300X.

Implemented as

RM_HS300X_Read()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,639 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > HS300X Middleware Interface

◆ dataCalculate

fsp_err_t(* rm_hs300x_api_t::dataCalculate) (rm_hs300x_ctrl_t *const p_ctrl, rm_hs300x_raw_data_t
*const p_raw_data, rm_hs300x_data_t *const p_hs300x_data)

Calculate humidity and temperature values from ADC data.

Implemented as

RM_HS300X_DataCalculate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_hs300x_data Pointer to HS300X data
structure.

◆ programmingModeEnter

fsp_err_t(* rm_hs300x_api_t::programmingModeEnter) (rm_hs300x_ctrl_t *const p_ctrl)

Enter the programming mode.

Implemented as

RM_HS300X_ProgrammingModeEnter()
Parameters

[in] p_ctrl Pointer to control structure.

◆ resolutionChange

fsp_err_t(* rm_hs300x_api_t::resolutionChange) (rm_hs300x_ctrl_t *const p_ctrl,
rm_hs300x_data_type_t const data_type, rm_hs300x_resolution_t const resolution)

Change the sensor resolution.

Implemented as

RM_HS300X_ResolutionChange()
Parameters

[in] p_ctrl Pointer to control structure.

[in] data_type Data type of HS300X.

[in] resolution Resolution type of HS300X.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,640 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > HS300X Middleware Interface

◆ sensorIdGet

fsp_err_t(* rm_hs300x_api_t::sensorIdGet) (rm_hs300x_ctrl_t *const p_ctrl, uint32_t *const
p_sensor_id)

Get the sensor ID.

Implemented as

RM_HS300X_SensorIdGet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_sensor_id Pointer to sensor ID of
HS300X.

◆ programmingModeExit

fsp_err_t(* rm_hs300x_api_t::programmingModeExit) (rm_hs300x_ctrl_t *const p_ctrl)

Exit the programming mode.

Implemented as

RM_HS300X_ProgrammingModeExit()
Parameters

[in] p_ctrl Pointer to control structure.

◆ close

fsp_err_t(* rm_hs300x_api_t::close) (rm_hs300x_ctrl_t *const p_ctrl)

Close HS300X.

Implemented as

RM_HS300X_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ rm_hs300x_instance_t

struct rm_hs300x_instance_t

HS300X instance

Data Fields

rm_hs300x_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_hs300x_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,641 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > HS300X Middleware Interface

rm_hs300x_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_hs300x_ctrl_t

typedef void rm_hs300x_ctrl_t

HS300X control block. Allocate an instance specific control block to pass into the HS300X API calls.

Implemented as

rm_hs300x_instance_ctrl_t

Enumeration Type Documentation

◆ rm_hs300x_event_t

enum rm_hs300x_event_t

Event in the callback function

◆ rm_hs300x_data_type_t

enum rm_hs300x_data_type_t

Data type of HS300X

◆ rm_hs300x_resolution_t

enum rm_hs300x_resolution_t

Resolution type of HS300X

4.3.56 LittleFS Interface
Interfaces

Detailed Description

Interface for LittleFS access.

Summary

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,642 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > LittleFS Interface

The LittleFS Port configures a fail-safe filesystem designed for microcontrollers on top of a lower level
storage device.

Implemented by: LittleFS Flash Port (rm_littlefs_flash)

Data Structures

struct rm_littlefs_cfg_t

struct rm_littlefs_api_t

struct rm_littlefs_instance_t

Typedefs

typedef void rm_littlefs_ctrl_t

Data Structure Documentation

◆ rm_littlefs_cfg_t

struct rm_littlefs_cfg_t

User configuration structure, used in open function

Data Fields

struct lfs_config const * p_lfs_cfg Pointer LittleFS configuration
structure.

void const * p_extend Pointer to hardware dependent
configuration.

◆ rm_littlefs_api_t

struct rm_littlefs_api_t

LittleFS Port interface API.

Data Fields

fsp_err_t(* open)(rm_littlefs_ctrl_t *const p_ctrl, rm_littlefs_cfg_t const *const
p_cfg)

fsp_err_t(* close)(rm_littlefs_ctrl_t *const p_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,643 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > LittleFS Interface

◆ open

fsp_err_t(* rm_littlefs_api_t::open) (rm_littlefs_ctrl_t *const p_ctrl, rm_littlefs_cfg_t const *const
p_cfg)

Initialize The lower level storage device.

Implemented as

RM_LITTLEFS_FLASH_Open
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ close

fsp_err_t(* rm_littlefs_api_t::close) (rm_littlefs_ctrl_t *const p_ctrl)

Closes the module and lower level storage device.

Implemented as

RM_LITTLEFS_FLASH_Close
Parameters

[in] p_ctrl Control block set in
rm_littlefs_api_t::open call.

◆ rm_littlefs_instance_t

struct rm_littlefs_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_littlefs_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_littlefs_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rm_littlefs_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,644 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > LittleFS Interface

◆ rm_littlefs_ctrl_t

typedef void rm_littlefs_ctrl_t

LittleFS Port API control block. Allocate an instance specific control block to pass into the LittleFS
Port API calls.

Implemented as

rm_littlefs_flash_instance_ctrl_t

4.3.57 Motor angle Interface
Interfaces

Detailed Description

Interface for motor angle and speed calculation functions.

Summary
The Motor angle interface calculates the rotor angle and rotational speed from other data.

The motor angle interface can be implemented by:

Motor Angle and Speed Estimation (rm_motor_estimate)
Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)

Data Structures

struct motor_angle_cfg_t

struct motor_angle_current_t

struct motor_angle_voltage_reference_t

struct motor_angle_encoder_info_t

struct motor_angle_api_t

struct motor_angle_instance_t

Typedefs

typedef void motor_angle_ctrl_t

Enumerations

enum motor_sense_encoder_angle_adjust_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,645 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

Data Structure Documentation

◆ motor_angle_cfg_t

struct motor_angle_cfg_t

Configuration parameters.

◆ motor_angle_current_t

struct motor_angle_current_t

Interface structure

Data Fields

float id d-axis current

float iq q-axis current

◆ motor_angle_voltage_reference_t

struct motor_angle_voltage_reference_t

Motor angle voltage reference

Data Fields

float vd d-axis voltage reference

float vq q-axis voltage reference

◆ motor_angle_encoder_info_t

struct motor_angle_encoder_info_t

Motor angle encoder adjustment info

Data Fields

motor_sense_encoder_angle_ad
just_t

e_adjust_status Encoder Adjustment Status.

uint8_t u1_adjust_count_full Adjustment count became full.

◆ motor_angle_api_t

struct motor_angle_api_t

Functions implemented as application interface will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_angle_ctrl_t *const p_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,646 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

fsp_err_t(* reset)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* currentSet)(motor_angle_ctrl_t *const p_ctrl, motor_angle_current_t
*const p_st_current, motor_angle_voltage_reference_t *const
p_st_voltage)

fsp_err_t(* speedSet)(motor_angle_ctrl_t *const p_ctrl, float const speed_ctrl,
float const damp_speed)

fsp_err_t(* flagPiCtrlSet)(motor_angle_ctrl_t *const p_ctrl, uint32_t const
flag_pi)

fsp_err_t(* internalCalculate)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* angleSpeedGet)(motor_angle_ctrl_t *const p_ctrl, float *const
p_angle, float *const p_speed, float *const p_phase_err)

fsp_err_t(* angleAdjust)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* encoderCyclic)(motor_angle_ctrl_t *const p_ctrl)

fsp_err_t(* estimatedComponentGet)(motor_angle_ctrl_t *const p_ctrl, float
*const p_ed, float *const p_eq)

fsp_err_t(* infoGet)(motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

fsp_err_t(* parameterUpdate)(motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *p_cfg)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,647 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

◆ open

fsp_err_t(* motor_angle_api_t::open) (motor_angle_ctrl_t *const p_ctrl, motor_angle_cfg_t const
*const p_cfg)

Initialize the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_Open()
RM_MOTOR_SENSE_ENCODER_Open()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_angle_api_t::close) (motor_angle_ctrl_t *const p_ctrl)

Close (Finish) the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_Close()
RM_MOTOR_SENSE_ENCODER_Close()

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_angle_api_t::reset) (motor_angle_ctrl_t *const p_ctrl)

Reset the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_Reset()
RM_MOTOR_SENSE_ENCODER_Reset()

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,648 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

◆ currentSet

fsp_err_t(* motor_angle_api_t::currentSet) (motor_angle_ctrl_t *const p_ctrl, motor_angle_current_t
*const p_st_current, motor_angle_voltage_reference_t *const p_st_voltage)

Set (Input) Current & Voltage Reference data into the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_CurrentSet()
RM_MOTOR_SENSE_ENCODER_CurrentSet()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_st_current Pointer to current structure

[in] p_st_voltage Pointer to voltage Reference
structure

◆ speedSet

fsp_err_t(* motor_angle_api_t::speedSet) (motor_angle_ctrl_t *const p_ctrl, float const speed_ctrl,
float const damp_speed)

Set (Input) Speed Information into the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_SpeedSet()
RM_MOTOR_SENSE_ENCODER_SpeedSet()

Parameters
[in] p_ctrl Pointer to control structure.

[in] speed_ctrl Control reference of
rotational speed [rad/s]

[in] damp_speed Damping rotational speed
[rad/s]

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,649 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

◆ flagPiCtrlSet

fsp_err_t(* motor_angle_api_t::flagPiCtrlSet) (motor_angle_ctrl_t *const p_ctrl, uint32_t const
flag_pi)

Set the flag of PI Control runs.

Implemented as

RM_MOTOR_ESTIMATE_FlagPiCtrlSet()
RM_MOTOR_SENSE_ENCODER_FlagPiCtrlSet()

Parameters
[in] p_ctrl Pointer to control structure.

[in] flag_pi The flag of PI control runs

◆ internalCalculate

fsp_err_t(* motor_angle_api_t::internalCalculate) (motor_angle_ctrl_t *const p_ctrl)

Calculate internal parameters of encoder process.

Implemented as

RM_MOTOR_ESTIMATE_InternalCalculate()
RM_MOTOR_SENSE_ENCODER_InternalCalculate()

Parameters
[in] p_ctrl Pointer to control structure.

◆ angleSpeedGet

fsp_err_t(* motor_angle_api_t::angleSpeedGet) (motor_angle_ctrl_t *const p_ctrl, float *const
p_angle, float *const p_speed, float *const p_phase_err)

Get rotor angle and rotational speed from the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_AngleSpeedGet()
RM_MOTOR_SENSE_ENCODER_AngleSpeedGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_angl Memory address to get rotor
angle data

[out] p_speed Memory address to get
rotational speed data

[out] p_phase_err Memory address to get
phase(angle) error data

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,650 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

◆ angleAdjust

fsp_err_t(* motor_angle_api_t::angleAdjust) (motor_angle_ctrl_t *const p_ctrl)

Angle Adjustment Process.

Implemented as

RM_MOTOR_ESTIMATE_AngleAdjust()
RM_MOTOR_SENSE_ENCODER_AngleAdjust()

Parameters
[in] p_ctrl Pointer to control structure.

◆ encoderCyclic

fsp_err_t(* motor_angle_api_t::encoderCyclic) (motor_angle_ctrl_t *const p_ctrl)

Encoder Cyclic Process.

Implemented as

RM_MOTOR_ESTIMATE_EncoderCyclic()
RM_MOTOR_SENSE_ENCODER_EncoderCyclic()

Parameters
[in] p_ctrl Pointer to control structure.

◆ estimatedComponentGet

fsp_err_t(* motor_angle_api_t::estimatedComponentGet) (motor_angle_ctrl_t *const p_ctrl, float
*const p_ed, float *const p_eq)

Get estimated d/q-axis component from the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_EstimatedComponentGet()
RM_MOTOR_SENSE_ENCODER_EstimatedComponentGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_ed Memory address to get
estimated d-axis component

[out] p_eq Memory address to get
estimated q-axis component

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,651 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

◆ infoGet

fsp_err_t(* motor_angle_api_t::infoGet) (motor_angle_ctrl_t *const p_ctrl,
motor_angle_encoder_info_t *const p_info)

Get Encoder Calculate Information.

Implemented as

RM_MOTOR_ESTIMATE_InfoGet()
RM_MOTOR_SENSE_ENCODER_InfoGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_info Memory address to get
encoder calculate
information

◆ parameterUpdate

fsp_err_t(* motor_angle_api_t::parameterUpdate) (motor_angle_ctrl_t *const p_ctrl,
motor_angle_cfg_t const *p_cfg)

Update Parameters for the calculation in the Motor_Angle.

Implemented as

RM_MOTOR_ESTIMATE_ParameterUpdate()
RM_MOTOR_SENSE_ENCODER_ParameterUpdate()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_angle_instance_t

struct motor_angle_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_angle_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_angle_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_angle_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,652 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor angle Interface

◆ motor_angle_ctrl_t

typedef void motor_angle_ctrl_t

Motor Angle Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

motor_angle_ctrl_t

Enumeration Type Documentation

◆ motor_sense_encoder_angle_adjust_t

enum motor_sense_encoder_angle_adjust_t

Enumerator

MOTOR_SENSE_ENCODER_ANGLE_ADJUST_90_D
EGREE

Roter Angle Adjustment to pull in 90degree.

MOTOR_SENSE_ENCODER_ANGLE_ADJUST_0_DE
GREE

Roter Angle Adjustment to pull in 0degree.

MOTOR_SENSE_ENCODER_ANGLE_ADJUST_FINIS
H

Roter Angle Adjustment Finish.

4.3.58 Motor Interface
Interfaces

Detailed Description

Interface for Motor functions.

Summary
The Motor interface provides Motor functionality.

Implemented by:

Motor Sensorless Vector Control (rm_motor_sensorless)
Motor encoder vector control (rm_motor_encoder)

Data Structures

struct motor_cfg_t

struct motor_api_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,653 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor Interface

struct motor_instance_t

Typedefs

typedef void motor_ctrl_t

Enumerations

enum motor_error_t

Data Structure Documentation

◆ motor_cfg_t

struct motor_cfg_t

Configuration parameters.

Data Fields

motor_speed_instance_t const * p_motor_speed_instance Speed Instance.

motor_current_instance_t const
*

p_motor_current_instance Current Instance.

void const * p_context Placeholder for user data.
Passed to the user callback in
motor_callback_args_t.

void const * p_extend Placeholder for user extension.

◆ motor_api_t

struct motor_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(motor_ctrl_t *const p_ctrl, motor_cfg_t const *const p_cfg)

fsp_err_t(* close)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* stop)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_ctrl_t *const p_ctrl)

fsp_err_t(* errorSet)(motor_ctrl_t *const p_ctrl, motor_error_t const error)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,654 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor Interface

fsp_err_t(* speedSet)(motor_ctrl_t *const p_ctrl, float const speed_rpm)

fsp_err_t(* positionSet)(motor_ctrl_t *const p_ctrl, motor_speed_position_data_t
const *const p_position)

fsp_err_t(* statusGet)(motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

fsp_err_t(* angleGet)(motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

fsp_err_t(* speedGet)(motor_ctrl_t *const p_ctrl, float *const p_speed_rpm)

fsp_err_t(* errorCheck)(motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

Field Documentation

◆ open

fsp_err_t(* motor_api_t::open) (motor_ctrl_t *const p_ctrl, motor_cfg_t const *const p_cfg)

Open driver.

Implemented as

RM_MOTOR_SENSORLESS_Open()
RM_MOTOR_ENCODER_Open()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_api_t::close) (motor_ctrl_t *const p_ctrl)

Close driver.

Implemented as

RM_MOTOR_SENSORLESS_Close()
RM_MOTOR_ENCODER_Close()

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,655 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor Interface

◆ run

fsp_err_t(* motor_api_t::run) (motor_ctrl_t *const p_ctrl)

Run the motor. (Start the motor rotation.)

Implemented as

RM_MOTOR_SENSORLESS_Run()
RM_MOTOR_ENCODER_Run()

Parameters
[in] p_ctrl Pointer to control structure.

◆ stop

fsp_err_t(* motor_api_t::stop) (motor_ctrl_t *const p_ctrl)

Stop the motor. (Stop the motor rotation.)

Implemented as

RM_MOTOR_SENSORLESS_Stop()
RM_MOTOR_ENCODER_Stop()

Parameters
[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_api_t::reset) (motor_ctrl_t *const p_ctrl)

Reset the motor control. (Recover from the error status.)

Implemented as

RM_MOTOR_SENSORLESS_Reset()
RM_MOTOR_ENCODER_Reset()

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,656 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor Interface

◆ errorSet

fsp_err_t(* motor_api_t::errorSet) (motor_ctrl_t *const p_ctrl, motor_error_t const error)

Set Error Information.

Implemented as

RM_MOTOR_SENSORLESS_ErrorSet()
RM_MOTOR_ENCODER_ErrorSet()

Parameters
[in] p_ctrl Pointer to control structure.

[in] error Happend error code

◆ speedSet

fsp_err_t(* motor_api_t::speedSet) (motor_ctrl_t *const p_ctrl, float const speed_rpm)

Set rotation speed.

Implemented as

RM_MOTOR_SENSORLESS_SpeedSet()
RM_MOTOR_ENCODER_SpeedSet()

Parameters
[in] p_ctrl Pointer to control structure.

[in] speed_rpm Required rotation speed
[rpm]

◆ positionSet

fsp_err_t(* motor_api_t::positionSet) (motor_ctrl_t *const p_ctrl, motor_speed_position_data_t const
*const p_position)

Set reference position.

Implemented as

RM_MOTOR_SENSORLESS_PositionSet()
RM_MOTOR_ENCODER_PositionSet()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_position Pointer to set required data

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,657 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor Interface

◆ statusGet

fsp_err_t(* motor_api_t::statusGet) (motor_ctrl_t *const p_ctrl, uint8_t *const p_status)

Get the motor control status.

Implemented as

RM_MOTOR_SENSORLESS_StatusGet()
RM_MOTOR_ENCODER_StatusGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_status Pointer to get the motor
control status

◆ angleGet

fsp_err_t(* motor_api_t::angleGet) (motor_ctrl_t *const p_ctrl, float *const p_angle_rad)

Get the rotor angle.

Implemented as

RM_MOTOR_SENSORLESS_AngleGet()
RM_MOTOR_ENCODER_AngleGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_angle_rad Pointer to get the rotor angle
[rad]

◆ speedGet

fsp_err_t(* motor_api_t::speedGet) (motor_ctrl_t *const p_ctrl, float *const p_speed_rpm)

Get the rotation speed.

Implemented as

RM_MOTOR_SENSORLESS_SpeedGet()
RM_MOTOR_ENCODER_SpeedGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_speed_rpm Pointer to get the rotation
speed [rpm]

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,658 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor Interface

◆ errorCheck

fsp_err_t(* motor_api_t::errorCheck) (motor_ctrl_t *const p_ctrl, uint16_t *const p_error)

Check the error occurrence

Implemented as

RM_MOTOR_SENSORLESS_ErrorCheck()
RM_MOTOR_ENCODER_ErrorCheck()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_error Pointer to get occured error

◆ motor_instance_t

struct motor_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_ctrl_t

typedef void motor_ctrl_t

Motor Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

motor_instance_ctrl_t

Enumeration Type Documentation

◆ motor_error_t

enum motor_error_t

Error information

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,659 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

4.3.59 Motor current Interface
Interfaces

Detailed Description

Interface for motor current functions.

Summary
The Motor current interface for getting the PWM modulation duty from electric current and speed

The motor current control interface can be implemented by:

Motor Current (rm_motor_current)

Data Structures

struct motor_current_output_t

struct motor_current_input_current_t

struct motor_current_input_voltage_t

struct motor_current_get_voltage_t

struct motor_current_cfg_t

struct motor_current_api_t

struct motor_current_instance_t

Typedefs

typedef void motor_current_ctrl_t

Enumerations

enum motor_current_event_t

Data Structure Documentation

◆ motor_current_output_t

struct motor_current_output_t

Structure of interface to speed control Output parameters

Data Fields

float f_id D-axis current [A].

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,660 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

float f_iq Q-axis current [A].

float f_vamax

float f_speed_rad Speed value [rad/s].

float f_speed_rpm Speed value [rpm].

float f_rotor_angle Motor rotor angle [rad].

float f_position_rad Motor rotor position [rad].

float f_ed Estimated d-axis component[V]
of flux due to the permanent
magnet.

float f_eq Estimated q-axis component[V]
of flux due to the permanent
magnet.

float f_phase_err_rad Phase error [rad].

uint8_t u1_flag_get_iref Flag to set d/q-axis current
reference.

uint8_t u1_adjust_status Angle adjustment satatus.

uint8_t u1_adjust_count_full Angle adjustment count full.

◆ motor_current_input_current_t

struct motor_current_input_current_t

Three-phase input current

Data Fields

float iu U phase current[A].

float iv V phase current[A].

float iw W phase current[A].

◆ motor_current_input_voltage_t

struct motor_current_input_voltage_t

Input voltage

Data Fields

float vdc Main line voltage[V].

float va_max Maximum magnitude of voltage
vector[V].

◆ motor_current_get_voltage_t

struct motor_current_get_voltage_t

Struct to get motor current

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,661 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

float u_voltage U phase voltage[V].

float v_voltage V phase voltage[V].

float w_voltage W phase voltage[V].

float vd_reference d-axis voltage reference

float vq_reference q-axis voltage reference

◆ motor_current_cfg_t

struct motor_current_cfg_t

Configuration parameters.

◆ motor_current_api_t

struct motor_current_api_t

Functions implemented at the Motor Current Module will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_current_ctrl_t *const p_ctrl, motor_current_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_current_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_current_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_current_ctrl_t *const p_ctrl)

fsp_err_t(* parameterSet)(motor_current_ctrl_t *const p_ctrl,
motor_current_input_t const *const p_st_input)

fsp_err_t(* currentReferenceSet)(motor_current_ctrl_t *const p_ctrl, float const
id_reference, float const iq_reference)

fsp_err_t(* speedPhaseSet)(motor_current_ctrl_t *const p_ctrl, float const
speed_rad, float const phase_rad)

fsp_err_t(* currentSet)(motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current,
motor_current_input_voltage_t const *const p_st_voltage)

fsp_err_t(* parameterGet)(motor_current_ctrl_t *const p_ctrl,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,662 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

motor_current_output_t *const p_st_output)

fsp_err_t(* currentGet)(motor_current_ctrl_t *const p_ctrl, float *const p_id,
float *const p_iq)

fsp_err_t(* phaseVoltageGet)(motor_current_ctrl_t *const p_ctrl,
motor_current_get_voltage_t *const p_voltage)

fsp_err_t(* parameterUpdate)(motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_current_api_t::open) (motor_current_ctrl_t *const p_ctrl, motor_current_cfg_t
const *const p_cfg)

Initialize the motor current module.

Implemented as

RM_MOTOR_CURRENT_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_current_api_t::close) (motor_current_ctrl_t *const p_ctrl)

Close (Finish) the motor current module.

Implemented as

RM_MOTOR_CURRENT_Close()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,663 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

◆ reset

fsp_err_t(* motor_current_api_t::reset) (motor_current_ctrl_t *const p_ctrl)

Reset variables for the motor current module.

Implemented as

RM_MOTOR_CURRENT_Reset()
Parameters

[in] p_ctrl Pointer to control structure.

◆ run

fsp_err_t(* motor_current_api_t::run) (motor_current_ctrl_t *const p_ctrl)

Activate the motor current control.

Implemented as

RM_MOTOR_CURRENT_Run()
Parameters

[in] p_ctrl Pointer to control structure.

◆ parameterSet

fsp_err_t(* motor_current_api_t::parameterSet) (motor_current_ctrl_t *const p_ctrl,
motor_current_input_t const *const p_st_input)

Set (Input) parameters into the motor current module.

Implemented as

RM_MOTOR_CURRENT_ParameterSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_st_input Pointer to input data
structure(speed control
output data)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,664 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

◆ currentReferenceSet

fsp_err_t(* motor_current_api_t::currentReferenceSet) (motor_current_ctrl_t *const p_ctrl, float
const id_reference, float const iq_reference)

Set (Input) Current reference into the motor current module.

Implemented as

RM_MOTOR_CURRENT_CurrentReferenceSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] id_reference D-axis current reference [A]

[in] iq_reference Q-axis current reference [A]

◆ speedPhaseSet

fsp_err_t(* motor_current_api_t::speedPhaseSet) (motor_current_ctrl_t *const p_ctrl, float const
speed_rad, float const phase_rad)

Set (Input) Speed & Phase data into the motor current module.

Implemented as

RM_MOTOR_CURRENT_SpeedPhaseSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] speed_rad Rotational speed [rad/s]

[in] phase_rad Rotor phase [rad]

◆ currentSet

fsp_err_t(* motor_current_api_t::currentSet) (motor_current_ctrl_t *const p_ctrl,
motor_current_input_current_t const *const p_st_current, motor_current_input_voltage_t const
*const p_st_voltage)

Set (Input) Current data into the motor current module.

Implemented as

RM_MOTOR_CURRENT_CurrentSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_st_current Pointer to input current
structure

[in] p_st_voltage Pointer to input voltage
structure

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,665 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

◆ parameterGet

fsp_err_t(* motor_current_api_t::parameterGet) (motor_current_ctrl_t *const p_ctrl,
motor_current_output_t *const p_st_output)

Get (output) parameters from the motor current module

Implemented as

RM_MOTOR_CURRENT_ParameterGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_st_output Pointer to output data
structure(speed control input
data)

◆ currentGet

fsp_err_t(* motor_current_api_t::currentGet) (motor_current_ctrl_t *const p_ctrl, float *const p_id,
float *const p_iq)

Get d/q-axis current

Implemented as

RM_MOTOR_CURRENT_CurrentGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_id Pointer to get d-axis current
[A]

[out] p_iq Pointer to get q-axis current
[A]

◆ phaseVoltageGet

fsp_err_t(* motor_current_api_t::phaseVoltageGet) (motor_current_ctrl_t *const p_ctrl,
motor_current_get_voltage_t *const p_voltage)

Get phase output voltage

Implemented as

RM_MOTOR_CURRENT_PhaseVoltageGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_voltage Pointer to get voltages

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,666 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

◆ parameterUpdate

fsp_err_t(* motor_current_api_t::parameterUpdate) (motor_current_ctrl_t *const p_ctrl,
motor_current_cfg_t const *const p_cfg)

Update parameters for the calculation in the motor current control.

Implemented as

RM_MOTOR_CURRENT_ParameterUpdate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_current_instance_t

struct motor_current_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_current_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_current_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_current_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_current_ctrl_t

typedef void motor_current_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

motor_current_ctrl_t

Enumeration Type Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,667 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor current Interface

◆ motor_current_event_t

enum motor_current_event_t

Events that can trigger a callback function

Enumerator

MOTOR_CURRENT_EVENT_FORWARD Event forward current control.

MOTOR_CURRENT_EVENT_DATA_SET Event set speed control output data.

MOTOR_CURRENT_EVENT_BACKWARD Event backward current control.

4.3.60 Motor driver Interface
Interfaces

Detailed Description

Interface for motor driver functions.

Summary
The Motor driver interface for setting the PWM modulation duty

The motor current control interface can be implemented by:

Motor Driver (rm_motor_driver)

Data Structures

struct motor_driver_callback_args_t

struct motor_driver_current_get_t

struct motor_driver_cfg_t

struct motor_driver_api_t

struct motor_driver_instance_t

Typedefs

typedef void motor_driver_ctrl_t

Enumerations

enum motor_driver_event_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,668 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor driver Interface

Data Structure Documentation

◆ motor_driver_callback_args_t

struct motor_driver_callback_args_t

Callback function parameter data

Data Fields

motor_driver_event_t event Event trigger.

void const * p_context Placeholder for user data.

◆ motor_driver_current_get_t

struct motor_driver_current_get_t

Current Data Get Structure

Data Fields

float iu U phase current [A].

float iw W phase current [A].

float vdc Main Line Voltage [V].

float va_max maximum magnitude of voltage
vector

◆ motor_driver_cfg_t

struct motor_driver_cfg_t

Configuration parameters.

Data Fields

adc_channel_t iu_ad_ch

 A/D Channel for U Phase Current.

adc_channel_t iw_ad_ch

 A/D Channel for W Phase Current.

adc_channel_t vdc_ad_ch

 A/D Channel for Main Line Voltage.

void const * p_context

 Placeholder for user data.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,669 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor driver Interface

◆ motor_driver_api_t

struct motor_driver_api_t

Functions implemented at the HAL layer will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_driver_ctrl_t *const p_ctrl, motor_driver_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_driver_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_driver_ctrl_t *const p_ctrl)

fsp_err_t(* phaseVoltageSet)(motor_driver_ctrl_t *const p_ctrl, float const
u_voltage, float const v_voltage, float const w_voltage)

fsp_err_t(* currentGet)(motor_driver_ctrl_t *const p_ctrl,
motor_driver_current_get_t *const p_current_get)

fsp_err_t(* flagCurrentOffsetGet)(motor_driver_ctrl_t *const p_ctrl, uint8_t
*const p_flag_offset)

fsp_err_t(* currentOffsetRestart)(motor_driver_ctrl_t *const p_ctrl)

fsp_err_t(* parameterUpdate)(motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,670 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor driver Interface

◆ open

fsp_err_t(* motor_driver_api_t::open) (motor_driver_ctrl_t *const p_ctrl, motor_driver_cfg_t const
*const p_cfg)

Initialize the Motor Driver Module.

Implemented as

RM_MOTOR_DRIVER_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_driver_api_t::close) (motor_driver_ctrl_t *const p_ctrl)

Close the Motor Driver Module

Implemented as

RM_MOTOR_DRIVER_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_driver_api_t::reset) (motor_driver_ctrl_t *const p_ctrl)

Reset variables of the Motor Driver Module

Implemented as

RM_MOTOR_DRIVER_Reset()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,671 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor driver Interface

◆ phaseVoltageSet

fsp_err_t(* motor_driver_api_t::phaseVoltageSet) (motor_driver_ctrl_t *const p_ctrl, float const
u_voltage, float const v_voltage, float const w_voltage)

Set (Input) Phase Voltage data into the Motor Driver Module

Implemented as

RM_MOTOR_DRIVER_PhaseVoltageSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] u_voltage U phase voltage [V]

[in] v_voltage V phase voltage [V]

[in] w_voltage W phase voltage [V]

◆ currentGet

fsp_err_t(* motor_driver_api_t::currentGet) (motor_driver_ctrl_t *const p_ctrl,
motor_driver_current_get_t *const p_current_get)

Get Phase current, Vdc and Va_max data from the Motor Driver Module

Implemented as

RM_MOTOR_DRIVER_CurrentGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_current_get Pointer to get data structure.

◆ flagCurrentOffsetGet

fsp_err_t(* motor_driver_api_t::flagCurrentOffsetGet) (motor_driver_ctrl_t *const p_ctrl, uint8_t
*const p_flag_offset)

Get the flag of finish current offset detection from the Motor Driver Module

Implemented as

RM_MOTOR_DRIVER_FlagCurrentOffsetGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_flag_offset Flag of finish current offset
detection

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,672 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor driver Interface

◆ currentOffsetRestart

fsp_err_t(* motor_driver_api_t::currentOffsetRestart) (motor_driver_ctrl_t *const p_ctrl)

Restart current offset detection

Implemented as

RM_MOTOR_DRIVER_CurrentOffsetRestart()
Parameters

[in] p_ctrl Pointer to control structure.

◆ parameterUpdate

fsp_err_t(* motor_driver_api_t::parameterUpdate) (motor_driver_ctrl_t *const p_ctrl,
motor_driver_cfg_t const *const p_cfg)

Update Configuration Parameters for the calculation in the Motor Driver Module

Implemented as

RM_MOTOR_DRIVER_ParameterUpdate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_driver_instance_t

struct motor_driver_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_driver_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_driver_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_driver_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,673 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor driver Interface

◆ motor_driver_ctrl_t

typedef void motor_driver_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

motor_driver_ctrl_t

Enumeration Type Documentation

◆ motor_driver_event_t

enum motor_driver_event_t

Events that can trigger a callback function

Enumerator

MOTOR_DRIVER_EVENT_FORWARD Event before Motor Driver Process (before
Current Control timing)

MOTOR_DRIVER_EVENT_CURRENT Event Current Control timing.

MOTOR_DRIVER_EVENT_BACKWARD Event after Motor Driver Process (after PWM
duty setting)

4.3.61 Motor position Interface
Interfaces

Detailed Description

Interface for motor position functions.

Summary
The Motor position interface for getting the speed references from Encoder Sensor

The motor position interface can be implemented by:

Motor Position (rm_motor_position)

Data Structures

struct motor_position_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,674 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor position Interface

struct motor_position_api_t

struct motor_position_instance_t

Typedefs

typedef void motor_position_ctrl_t

Enumerations

enum motor_position_ctrl_mode_t

Data Structure Documentation

◆ motor_position_cfg_t

struct motor_position_cfg_t

Configuration parameters.

Data Fields

void const * p_context Placeholder for user data.

void const * p_extend

◆ motor_position_api_t

struct motor_position_api_t

Functions implemented at the HAL layer will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_position_ctrl_t *const p_ctrl, motor_position_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_position_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_position_ctrl_t *const p_ctrl)

fsp_err_t(* positionGet)(motor_position_ctrl_t *const p_ctrl, int16_t *const
p_position)

fsp_err_t(* positionSet)(motor_position_ctrl_t *const p_ctrl, float const
position_rad)

fsp_err_t(* positionReferenceSet)(motor_position_ctrl_t *const p_ctrl, int16_t
const position_reference_deg)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,675 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor position Interface

fsp_err_t(* controlModeSet)(motor_position_ctrl_t *const p_ctrl,
motor_position_ctrl_mode_t const mode)

fsp_err_t(* positionControl)(motor_position_ctrl_t *const p_ctrl)

fsp_err_t(* ipdSpeedPControl)(motor_position_ctrl_t *const p_ctrl, float const
ref_speed_rad, float const speed_rad, float *const p_iq_ref)

fsp_err_t(* speedReferencePControlGet)(motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

fsp_err_t(* speedReferenceIpdControlGet)(motor_position_ctrl_t *const p_ctrl,
float const max_speed_rad, float *const p_speed_ref)

fsp_err_t(* speedReferenceFeedforwardGet)(motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

fsp_err_t(* parameterUpdate)(motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_position_api_t::open) (motor_position_ctrl_t *const p_ctrl, motor_position_cfg_t
const *const p_cfg)

Initialize the Motor Position Module.

Implemented as

RM_MOTOR_POSITION_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,676 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor position Interface

◆ close

fsp_err_t(* motor_position_api_t::close) (motor_position_ctrl_t *const p_ctrl)

Close (Finish) the Motor Position Module.

Implemented as

RM_MOTOR_POSITION_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ reset

fsp_err_t(* motor_position_api_t::reset) (motor_position_ctrl_t *const p_ctrl)

Reset(Stop) the Motor Position Module.

Implemented as

RM_MOTOR_POSITION_Reset()
Parameters

[in] p_ctrl Pointer to control structure.

◆ positionGet

fsp_err_t(* motor_position_api_t::positionGet) (motor_position_ctrl_t *const p_ctrl, int16_t *const
p_position)

Get Position data.

Implemented as

RM_MOTOR_POSITION_PositionGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_position Pointer to get position data

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,677 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor position Interface

◆ positionSet

fsp_err_t(* motor_position_api_t::positionSet) (motor_position_ctrl_t *const p_ctrl, float const
position_rad)

Set Position data from Encoder.

Implemented as

RM_MOTOR_POSITION_PositionSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] position_rad Position data [radian]

◆ positionReferenceSet

fsp_err_t(* motor_position_api_t::positionReferenceSet) (motor_position_ctrl_t *const p_ctrl, int16_t
const position_reference_deg)

Set (Input) Position reference into the Motor Position Module.

Implemented as

RM_MOTOR_POSITION_PositionReferenceSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] position_refernce_deg Position reference [degree]

◆ controlModeSet

fsp_err_t(* motor_position_api_t::controlModeSet) (motor_position_ctrl_t *const p_ctrl,
motor_position_ctrl_mode_t const mode)

Set (Input) Position Control Mode.

Implemented as

RM_MOTOR_POSITION_ControlModeSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] mode Position Control Mode

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,678 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor position Interface

◆ positionControl

fsp_err_t(* motor_position_api_t::positionControl) (motor_position_ctrl_t *const p_ctrl)

Calculate internal position reference

Implemented as

RM_MOTOR_POSITION_PositionControl()
Parameters

[in] p_ctrl Pointer to control structure.

◆ ipdSpeedPControl

fsp_err_t(* motor_position_api_t::ipdSpeedPControl) (motor_position_ctrl_t *const p_ctrl, float const
ref_speed_rad, float const speed_rad, float *const p_iq_ref)

Calculate iq reference

Implemented as

RM_MOTOR_POSITION_IpdSpeedPControl()
Parameters

[in] p_ctrl Pointer to control structure.

[in] ref_speed_rad Speed Reference [rad/sec]

[in] speed_rad Current Speed [rad/sec]

[out] p_iq_ref Pointer to get iq reference

◆ speedReferencePControlGet

fsp_err_t(* motor_position_api_t::speedReferencePControlGet) (motor_position_ctrl_t *const p_ctrl,
float *const p_speed_ref)

Get Speed Reference by P Control

Implemented as

RM_MOTOR_POSITION_SpeedReferencePControlGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_speed_ref Pointer to get speed
reference

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,679 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor position Interface

◆ speedReferenceIpdControlGet

fsp_err_t(* motor_position_api_t::speedReferenceIpdControlGet) (motor_position_ctrl_t *const p_ctrl,
float const max_speed_rad, float *const p_speed_ref)

Get Speed Reference by IPD Control

Implemented as

RM_MOTOR_POSITION_SpeedReferenceIpdControlGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_speed_ref Pointer to get speed
reference

◆ speedReferenceFeedforwardGet

fsp_err_t(* motor_position_api_t::speedReferenceFeedforwardGet) (motor_position_ctrl_t *const
p_ctrl, float *const p_speed_ref)

Get Speed Reference by Speed Feedforward

Implemented as

RM_MOTOR_POSITION_SpeedReferenceFeedforwardGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_speed_ref Pointer to get speed
reference

◆ parameterUpdate

fsp_err_t(* motor_position_api_t::parameterUpdate) (motor_position_ctrl_t *const p_ctrl,
motor_position_cfg_t const *const p_cfg)

Update Parameters for the calculation in the Motor Position Module.

Implemented as

RM_MOTOR_POSITION_ParameterUpdate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_position_instance_t

struct motor_position_instance_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,680 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor position Interface

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_position_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_position_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_position_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ motor_position_ctrl_t

typedef void motor_position_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

motor_position_ctrl_t

Enumeration Type Documentation

◆ motor_position_ctrl_mode_t

enum motor_position_ctrl_mode_t

Position Control Mode

4.3.62 Motor speed Interface
Interfaces

Detailed Description

Interface for motor speed functions.

Summary
The Motor speed interface for getting the current references from electric current and rotational
speed

The motor speed interface can be implemented by:

Motor Speed (rm_motor_speed)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,681 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor speed Interface

Data Structures

struct motor_speed_callback_args_t

struct motor_speed_position_data_t

struct motor_speed_cfg_t

struct motor_speed_api_t

struct motor_speed_instance_t

Typedefs

typedef void motor_speed_ctrl_t

Enumerations

enum motor_speed_event_t

enum motor_speed_loop_mode_t

enum motor_speed_step_t

Data Structure Documentation

◆ motor_speed_callback_args_t

struct motor_speed_callback_args_t

Callback function parameter data

Data Fields

void const * p_context Placeholder for user data.

motor_speed_event_t event

◆ motor_speed_position_data_t

struct motor_speed_position_data_t

Motor speed and position structure

Data Fields

motor_speed_step_t e_step_mode Select step mode.

motor_speed_loop_mode_t e_loop_mode Select control mode.

int16_t position_reference_degree Position reference [degree].

◆ motor_speed_cfg_t

struct motor_speed_cfg_t

Configuration parameters.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,682 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor speed Interface

Data Fields

motor_speed_input_t * st_input

 Input data structure for automatic set.

motor_speed_output_t * st_output

 Output data structure for automatic receive.

motor_position_instance_t
const *

p_position_instance

 Position module instance.

void const * p_context

 Placeholder for user data.

◆ motor_speed_api_t

struct motor_speed_api_t

Functions implemented at the HAL layer will follow these APIs.

Data Fields

fsp_err_t(* open)(motor_speed_ctrl_t *const p_ctrl, motor_speed_cfg_t const
*const p_cfg)

fsp_err_t(* close)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* reset)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* run)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* speedReferenceSet)(motor_speed_ctrl_t *const p_ctrl, float const
speed_reference_rpm)

fsp_err_t(* positionReferenceSet)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position_data)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,683 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor speed Interface

fsp_err_t(* parameterSet)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

fsp_err_t(* speedControl)(motor_speed_ctrl_t *const p_ctrl)

fsp_err_t(* parameterGet)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

fsp_err_t(* parameterUpdate)(motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

Field Documentation

◆ open

fsp_err_t(* motor_speed_api_t::open) (motor_speed_ctrl_t *const p_ctrl, motor_speed_cfg_t const
*const p_cfg)

Initialize the motor speed module.

Implemented as

RM_MOTOR_SPEED_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ close

fsp_err_t(* motor_speed_api_t::close) (motor_speed_ctrl_t *const p_ctrl)

Close (Finish) the motor speed module.

Implemented as

RM_MOTOR_SPEED_Close()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,684 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor speed Interface

◆ reset

fsp_err_t(* motor_speed_api_t::reset) (motor_speed_ctrl_t *const p_ctrl)

Reset(Stop) the motor speed module.

Implemented as

RM_MOTOR_SPEED_Reset()
Parameters

[in] p_ctrl Pointer to control structure.

◆ run

fsp_err_t(* motor_speed_api_t::run) (motor_speed_ctrl_t *const p_ctrl)

Activate the motor speed control.

Implemented as

RM_MOTOR_SPEED_Run()
Parameters

[in] p_ctrl Pointer to control structure.

◆ speedReferenceSet

fsp_err_t(* motor_speed_api_t::speedReferenceSet) (motor_speed_ctrl_t *const p_ctrl, float const
speed_reference_rpm)

Set (Input) speed reference into the motor speed module.

Implemented as

RM_MOTOR_SPEED_SpeedReferenceSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] speed_refernce_rpm Speed reference [rpm]

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,685 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor speed Interface

◆ positionReferenceSet

fsp_err_t(* motor_speed_api_t::positionReferenceSet) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_position_data_t const *const p_position_data)

Set (Input) position reference and control mode

Implemented as

RM_MOTOR_SPEED_PositionReferenceSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_position_data Pointer to structure position
data

◆ parameterSet

fsp_err_t(* motor_speed_api_t::parameterSet) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_input_t const *const p_st_input)

Set (Input) speed parameters into the motor speed module.

Implemented as

RM_MOTOR_SPEED_ParameterSet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_st_input Pointer to structure to input
parameters.

◆ speedControl

fsp_err_t(* motor_speed_api_t::speedControl) (motor_speed_ctrl_t *const p_ctrl)

Calculate current reference

Implemented as

RM_MOTOR_SPEED_SpeedControl()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,686 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor speed Interface

◆ parameterGet

fsp_err_t(* motor_speed_api_t::parameterGet) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_output_t *const p_st_output)

Get speed control output parameters

Implemented as

RM_MOTOR_SPEED_ParameterGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_st_output Pointer to get speed control
parameters

◆ parameterUpdate

fsp_err_t(* motor_speed_api_t::parameterUpdate) (motor_speed_ctrl_t *const p_ctrl,
motor_speed_cfg_t const *const p_cfg)

Update Parameters for the calculation in the motor speed module.

Implemented as

RM_MOTOR_SPEED_ParameterUpdate()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure include update
parameters.

◆ motor_speed_instance_t

struct motor_speed_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

motor_speed_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

motor_speed_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

motor_speed_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,687 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Motor speed Interface

◆ motor_speed_ctrl_t

typedef void motor_speed_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

motor_speed_ctrl_t

Enumeration Type Documentation

◆ motor_speed_event_t

enum motor_speed_event_t

Events that can trigger a callback function

Enumerator

MOTOR_SPEED_EVENT_FORWARD Event forward speed control.

MOTOR_SPEED_EVENT_BACKWARD Event backward speed control.

MOTOR_SPEED_EVENT_ENCODER_CYCLIC Event encoder cyclic.

MOTOR_SPEED_EVENT_ENCODER_ADJUST Event encoder adjust.

◆ motor_speed_loop_mode_t

enum motor_speed_loop_mode_t

Enumerator

MOTOR_SPEED_LOOP_MODE_SPEED Speed control mode.

MOTOR_SPEED_LOOP_MODE_POSITION Position control mode.

◆ motor_speed_step_t

enum motor_speed_step_t

Enumerator

MOTOR_SPEED_STEP_DISABLE Position control works without step mode.

MOTOR_SPEED_STEP_ENABLE Position control works with step mode.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,688 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

4.3.63 Touch Middleware Interface
Interfaces

Detailed Description

Interface for Touch Middleware functions.

Summary
The TOUCH interface provides TOUCH functionality.

The TOUCH interface can be implemented by:

Capacitive Touch Middleware (rm_touch)

Data Structures

struct touch_button_cfg_t

struct touch_slider_cfg_t

struct touch_wheel_cfg_t

struct touch_pad_cfg_t

struct touch_cfg_t

struct touch_sensitivity_info_t

struct touch_api_t

struct touch_instance_t

Macros

#define TOUCH_COUNT_MAX

 Value of Maximum count.

#define TOUCH_OFF_VALUE

 Value of Non-touch.

Typedefs

typedef void touch_ctrl_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,689 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

typedef struct
st_ctsu_callback_args

touch_callback_args_t

Data Structure Documentation

◆ touch_button_cfg_t

struct touch_button_cfg_t

Configuration of each button

Data Fields

uint8_t elem_index Element number used by this
button.

uint16_t threshold Touch/non-touch judgment
threshold.

uint16_t hysteresis Threshold hysteresis for
chattering prevention.

◆ touch_slider_cfg_t

struct touch_slider_cfg_t

Configuration of each slider

Data Fields

uint8_t const * p_elem_index Element number array used by
this slider.

uint8_t num_elements Number of elements used by
this slider.

uint16_t threshold Position calculation start
threshold value.

◆ touch_wheel_cfg_t

struct touch_wheel_cfg_t

Configuration of each wheel

Data Fields

uint8_t const * p_elem_index Element number array used by
this wheel.

uint8_t num_elements Number of elements used by
this wheel.

uint16_t threshold Position calculation start
threshold value.

◆ touch_pad_cfg_t

struct touch_pad_cfg_t

Configuration of each pads

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,690 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

Data Fields

uint8_t const * p_elem_index_rx RX of element number arrays
used by this pad.

uint8_t const * p_elem_index_tx TX of element number arrays
used by this pad.

uint8_t num_elements Number of elements used by
this pad.

uint16_t threshold Coordinate calculation
threshold value.

uint16_t rx_pixel rx coordinate resolution

uint16_t tx_pixel tx coordinate resolution

uint8_t max_touch Maximum number of touch
judgments used by the pad.

uint8_t num_drift Number of pad drift.

◆ touch_cfg_t

struct touch_cfg_t

User configuration structure, used in open function

Data Fields

touch_button_cfg_t const * p_buttons Pointer to array of button
configuration.

touch_slider_cfg_t const * p_sliders Pointer to array of slider
configuration.

touch_wheel_cfg_t const * p_wheels Pointer to array of wheel
configuration.

touch_pad_cfg_t const * p_pad Pointer of pad configuration.

uint8_t num_buttons Number of buttons.

uint8_t num_sliders Number of sliders.

uint8_t num_wheels Number of wheels.

uint8_t on_freq The cumulative number of
determinations of ON.

uint8_t off_freq The cumulative number of
determinations of OFF.

uint16_t drift_freq Base value drift frequency. [0 :
no use].

uint16_t cancel_freq Maximum continuous ON. [0 :
no use].

uint8_t number Configuration number for QE
monitor.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,691 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

ctsu_instance_t const * p_ctsu_instance Pointer to CTSU instance.

uart_instance_t const * p_uart_instance Pointer to UART instance.

void const * p_context User defined context passed
into callback function.

void const * p_extend Pointer to extended
configuration by instance of
interface.

◆ touch_sensitivity_info_t

struct touch_sensitivity_info_t

Configuration of each touch sensitivity information

Data Fields

uint16_t * p_touch_sensitivity_ratio Pointer to sensitivity ratio array.

uint16_t old_threshold_ratio Old threshold ratio.

uint16_t new_threshold_ratio New threshold ratio.

uint8_t new_hysteresis_ratio New hysteresis ratio.

◆ touch_api_t

struct touch_api_t

Functions implemented at the HAL layer will follow this API.

Data Fields

fsp_err_t(* open)(touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

fsp_err_t(* scanStart)(touch_ctrl_t *const p_ctrl)

fsp_err_t(* dataGet)(touch_ctrl_t *const p_ctrl, uint64_t *p_button_status,
uint16_t *p_slider_position, uint16_t *p_wheel_position)

fsp_err_t(* scanStop)(ctsu_ctrl_t *const p_ctrl)

fsp_err_t(* padDataGet)(touch_ctrl_t *const p_ctrl, uint16_t
*p_pad_rx_coordinate, uint16_t *p_pad_tx_coordinate, uint8_t
*p_pad_num_touch)

fsp_err_t(* callbackSet)(touch_ctrl_t *const p_api_ctrl,
void(*p_callback)(touch_callback_args_t *), void const *const
p_context, touch_callback_args_t *const p_callback_memory)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,692 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

fsp_err_t(* close)(touch_ctrl_t *const p_ctrl)

fsp_err_t(* sensitivityRatioGet)(touch_ctrl_t *const p_ctrl,
touch_sensitivity_info_t *p_touch_sensitivity_info)

fsp_err_t(* thresholdAdjust)(touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t
*p_touch_sensitivity_info)

fsp_err_t(* driftControl)(touch_ctrl_t *const p_ctrl, uint16_t input_drift_freq)

Field Documentation

◆ open

fsp_err_t(* touch_api_t::open) (touch_ctrl_t *const p_ctrl, touch_cfg_t const *const p_cfg)

Open driver.

Implemented as

RM_TOUCH_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ scanStart

fsp_err_t(* touch_api_t::scanStart) (touch_ctrl_t *const p_ctrl)

Scan start.

Implemented as

RM_TOUCH_ScanStart()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,693 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

◆ dataGet

fsp_err_t(* touch_api_t::dataGet) (touch_ctrl_t *const p_ctrl, uint64_t *p_button_status, uint16_t
*p_slider_position, uint16_t *p_wheel_position)

Data get.

Implemented as

RM_TOUCH_DataGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_button_status Pointer to get data bitmap.

[out] p_slider_position Pointer to get data array.

[out] p_wheel_position Pointer to get data array.

◆ scanStop

fsp_err_t(* touch_api_t::scanStop) (ctsu_ctrl_t *const p_ctrl)

ScanStop.

Implemented as

RM_TOUCH_ScanStop()
Parameters

[in] p_ctrl Pointer to control structure.

◆ padDataGet

fsp_err_t(* touch_api_t::padDataGet) (touch_ctrl_t *const p_ctrl, uint16_t *p_pad_rx_coordinate,
uint16_t *p_pad_tx_coordinate, uint8_t *p_pad_num_touch)

pad data get.

Implemented as

RM_TOUCH_PadDataGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_pad_rx_coordinate Pointer to get coordinate of
receiver side.

[out] p_pad_tx_coordinate Pointer to get coordinate of
transmitter side.

[out] p_pad_num_touch Pointer to get touch count.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,694 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

◆ callbackSet

fsp_err_t(* touch_api_t::callbackSet) (touch_ctrl_t *const p_api_ctrl,
void(*p_callback)(touch_callback_args_t *), void const *const p_context, touch_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

RM_TOUCH_CallbackSet()
Parameters

[in] p_ctrl Pointer to the CTSU control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* touch_api_t::close) (touch_ctrl_t *const p_ctrl)

Close driver.

Implemented as

RM_TOUCH_Close()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,695 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

◆ sensitivityRatioGet

fsp_err_t(* touch_api_t::sensitivityRatioGet) (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t
*p_touch_sensitivity_info)

Sensitivity ratio get.

Implemented as

RM_TOUCH_SensitivityRatioGet()
Parameters

[in] p_ctrl Pointer to control structure.

[in,out] p_touch_sensitivity_info Pointer to touch sensitivity
structure.

◆ thresholdAdjust

fsp_err_t(* touch_api_t::thresholdAdjust) (touch_ctrl_t *const p_ctrl, touch_sensitivity_info_t
*p_touch_sensitivity_info)

Threshold adjust.

Implemented as

RM_TOUCH_ThresholdAdjust()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_touch_sensitivity_info Pointer to touch sensitivity
structure.

◆ driftControl

fsp_err_t(* touch_api_t::driftControl) (touch_ctrl_t *const p_ctrl, uint16_t input_drift_freq)

Drift control.

Implemented as

RM_TOUCH_DriftControl()
Parameters

[in] p_ctrl Pointer to control structure.

[in] input_drift_freq Drift frequency value.

◆ touch_instance_t

struct touch_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,696 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Touch Middleware Interface

touch_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

touch_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

touch_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

◆ touch_ctrl_t

typedef void touch_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

touch_instance_ctrl_t

◆ touch_callback_args_t

typedef struct st_ctsu_callback_args touch_callback_args_t

Callback function parameter data

4.3.64 Virtual EEPROM Interface
Interfaces

Detailed Description

Interface for Virtual EEPROM access.

Summary
The Virtual EEPROM Port configures a fail-safe key value store designed for microcontrollers on top of
a lower level storage device.

Implemented by: Virtual EEPROM (rm_vee_flash)

Data Structures

struct rm_vee_callback_args_t

struct rm_vee_cfg_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,697 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

struct rm_vee_api_t

struct rm_vee_instance_t

Typedefs

typedef void rm_vee_ctrl_t

Enumerations

enum rm_vee_state_t

Data Structure Documentation

◆ rm_vee_callback_args_t

struct rm_vee_callback_args_t

User configuration structure, used in open function

Data Fields

rm_vee_state_t state State of the Virtual EEPROM.

void const * p_context Placeholder for user data. Set in
rm_vee_api_t::open function
in::rm_vee_cfg_t.

◆ rm_vee_cfg_t

struct rm_vee_cfg_t

User configuration structure, used in open function

Data Fields

uint32_t start_addr

 Start address to be used for Virtual EEPROM memory.

uint32_t num_segments

 Number of segments to divide the volume into.

uint32_t total_size

 Total size of the volume.

uint32_t ref_data_size

 Size of the reference data stored at the end of the segment.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,698 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

uint32_t record_max_id

 Maximum record ID that can be used.

uint16_t * rec_offset

 Pointer to buffer used for record offset caching.

void(* p_callback)(rm_vee_callback_args_t *p_args)

 Callback provided when a Virtual EEPROM event occurs.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Pointer to hardware dependent configuration.

◆ rm_vee_api_t

struct rm_vee_api_t

Virtual EEPROM interface API.

Data Fields

fsp_err_t(* open)(rm_vee_ctrl_t *const p_ctrl, rm_vee_cfg_t const *const p_cfg)

fsp_err_t(* recordWrite)(rm_vee_ctrl_t *const p_ctrl, uint32_t const rec_id,
uint8_t const *const p_rec_data, uint32_t num_bytes)

fsp_err_t(* recordPtrGet)(rm_vee_ctrl_t *const p_ctrl, uint32_t rec_id, uint8_t
**const pp_rec_data, uint32_t *const p_num_bytes)

fsp_err_t(* refDataWrite)(rm_vee_ctrl_t *const p_ctrl, uint8_t const *const
p_ref_data)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,699 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

fsp_err_t(* refDataPtrGet)(rm_vee_ctrl_t *const p_ctrl, uint8_t **const
pp_ref_data)

fsp_err_t(* statusGet)(rm_vee_ctrl_t *const p_ctrl, rm_vee_status_t *const
p_status)

fsp_err_t(* refresh)(rm_vee_ctrl_t *const p_ctrl)

fsp_err_t(* format)(rm_vee_ctrl_t *const p_ctrl, uint8_t const *const p_ref_data)

fsp_err_t(* callbackSet)(rm_vee_ctrl_t *const p_api_ctrl,
void(*p_callback)(rm_vee_callback_args_t *), void const *const
p_context, rm_vee_callback_args_t *const p_callback_memory)

fsp_err_t(* close)(rm_vee_ctrl_t *const p_ctrl)

Field Documentation

◆ open

fsp_err_t(* rm_vee_api_t::open) (rm_vee_ctrl_t *const p_ctrl, rm_vee_cfg_t const *const p_cfg)

Initializes the driver’s internal structures and opens the Flash driver.

Implemented as

RM_VEE_FLASH_Open
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,700 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

◆ recordWrite

fsp_err_t(* rm_vee_api_t::recordWrite) (rm_vee_ctrl_t *const p_ctrl, uint32_t const rec_id, uint8_t
const *const p_rec_data, uint32_t num_bytes)

Writes a record to data flash.

Implemented as

RM_VEE_FLASH_RecordWrite
Parameters

[in] p_ctrl Pointer to control block.

[in] rec_id ID of record to write.

[in] p_rec_data Pointer to record data to
write.

[in] num_bytes Length of data to write.

◆ recordPtrGet

fsp_err_t(* rm_vee_api_t::recordPtrGet) (rm_vee_ctrl_t *const p_ctrl, uint32_t rec_id, uint8_t **const
pp_rec_data, uint32_t *const p_num_bytes)

This function gets the pointer to the most recent version of a record specified by ID.

Implemented as

RM_VEE_FLASH_RecordPtrGet
Parameters

[in] p_ctrl Pointer to control block.

[in] rec_id ID of record to locate.

[in] pp_rec_data Pointer to set to the most
recent version of the record.

[in] p_num_bytes Variable to load with record
length.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,701 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

◆ refDataWrite

fsp_err_t(* rm_vee_api_t::refDataWrite) (rm_vee_ctrl_t *const p_ctrl, uint8_t const *const
p_ref_data)

Writes new Reference data to the reference update area.

Implemented as

RM_VEE_FLASH_RefDataWrite
Parameters

[in] p_ctrl Pointer to control block.

[in] p_ref_data Pointer to data to write to
the reference data update
area.

◆ refDataPtrGet

fsp_err_t(* rm_vee_api_t::refDataPtrGet) (rm_vee_ctrl_t *const p_ctrl, uint8_t **const pp_ref_data)

Gets a pointer to the most recent reference data.

Implemented as

RM_VEE_FLASH_RefDataPtrGet
Parameters

[in] p_ctrl Pointer to control block.

[in] pp_ref_data Pointer to set to the most
recent valid reference data.

◆ statusGet

fsp_err_t(* rm_vee_api_t::statusGet) (rm_vee_ctrl_t *const p_ctrl, rm_vee_status_t *const p_status)

Get the current status of the VEE driver.

Implemented as

RM_VEE_FLASH_StatusGet
Parameters

[in] p_ctrl Pointer to control block.

[in] p_status Pointer to store the current
status of the VEE driver.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,702 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

◆ refresh

fsp_err_t(* rm_vee_api_t::refresh) (rm_vee_ctrl_t *const p_ctrl)

Manually start a refresh operation.

Implemented as

RM_VEE_FLASH_Refresh
Parameters

[in] p_ctrl Pointer to control block.

◆ format

fsp_err_t(* rm_vee_api_t::format) (rm_vee_ctrl_t *const p_ctrl, uint8_t const *const p_ref_data)

Format the Virtual EEPROM.

Implemented as

RM_VEE_FLASH_Format
Parameters

[in] p_ctrl Pointer to control block.

[in] p_ref_data Optional pointer to reference
data to write during format.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,703 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

◆ callbackSet

fsp_err_t(* rm_vee_api_t::callbackSet) (rm_vee_ctrl_t *const p_api_ctrl,
void(*p_callback)(rm_vee_callback_args_t *), void const *const p_context, rm_vee_callback_args_t
*const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

RM_VEE_FLASH_CallbackSet()
Parameters

[in] p_ctrl Control block set in
rm_vee_api_t::open call.

[in] p_callback Callback function to register

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

fsp_err_t(* rm_vee_api_t::close) (rm_vee_ctrl_t *const p_ctrl)

Closes the module and lower level storage device.

Implemented as

RM_VEE_FLASH_Close
Parameters

[in] p_ctrl Control block set in
rm_vee_api_t::open call.

◆ rm_vee_instance_t

struct rm_vee_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

rm_vee_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

rm_vee_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

rm_vee_api_t const * p_api Pointer to the API structure for

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,704 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > Virtual EEPROM Interface

this instance.

Typedef Documentation

◆ rm_vee_ctrl_t

typedef void rm_vee_ctrl_t

Virtual EEPROM API control block. Allocate an instance specific control block to pass into the VEE
API calls.

Implemented as

rm_vee_flash_instance_ctrl_t

Enumeration Type Documentation

◆ rm_vee_state_t

enum rm_vee_state_t

Enumerator

RM_VEE_STATE_READY Ready.

RM_VEE_STATE_BUSY Operation in progress.

RM_VEE_STATE_REFRESH Refresh operation in progress.

RM_VEE_STATE_OVERFLOW The amount of data written exceeds the space
available.

RM_VEE_STATE_HARDWARE_FAIL Lower level hardware failure.

4.3.65 ZMOD4XXX Middleware Interface
Interfaces

Detailed Description

Interface for ZMOD4XXX Middleware functions.

Summary
The ZMOD4XXX interface provides ZMOD4XXX functionality.

The ZMOD4XXX interface can be implemented by:

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,705 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

Data Structures

struct rm_zmod4xxx_callback_args_t

struct rm_zmod4xxx_raw_data_t

struct rm_zmod4xxx_iaq_1st_data_t

struct rm_zmod4xxx_iaq_2nd_data_t

struct rm_zmod4xxx_odor_data_t

struct rm_zmod4xxx_sulfur_odor_data_t

struct rm_zmod4xxx_oaq_1st_data_t

struct rm_zmod4xxx_oaq_2nd_data_t

struct rm_zmod4xxx_cfg_t

struct rm_zmod4xxx_api_t

struct rm_zmod4xxx_instance_t

Typedefs

typedef void rm_zmod4xxx_ctrl_t

Enumerations

enum rm_zmod4xxx_event_t

enum rm_zmod4xxx_sulfur_odor_t

Data Structure Documentation

◆ rm_zmod4xxx_callback_args_t

struct rm_zmod4xxx_callback_args_t

ZMOD4XXX sensor API callback parameter definition

◆ rm_zmod4xxx_raw_data_t

struct rm_zmod4xxx_raw_data_t

ZMOD4XXX raw data structure

◆ rm_zmod4xxx_iaq_1st_data_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,706 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

struct rm_zmod4xxx_iaq_1st_data_t

ZMOD4XXX IAQ 1st gen data structure

Data Fields

float rmox MOx resistance.

float rcda CDA resistance.

float iaq IAQ index.

float tvoc TVOC concentration (mg/m^3).

float etoh EtOH concentration (ppm).

float eco2 eCO2 concentration (ppm).

◆ rm_zmod4xxx_iaq_2nd_data_t

struct rm_zmod4xxx_iaq_2nd_data_t

ZMOD4XXX IAQ 2nd gen data structure

Data Fields

float rmox[13] MOx resistance.

float log_rcda log10 of CDA resistance.

float iaq IAQ index.

float tvoc TVOC concentration (mg/m^3).

float etoh EtOH concentration (ppm).

float eco2 eCO2 concentration (ppm).

◆ rm_zmod4xxx_odor_data_t

struct rm_zmod4xxx_odor_data_t

ZMOD4XXX Odor structure

Data Fields

bool control_signal Control signal input for odor lib.

float odor Concentration ratio for odor lib.

◆ rm_zmod4xxx_sulfur_odor_data_t

struct rm_zmod4xxx_sulfur_odor_data_t

ZMOD4XXX Sulfur-Odor structure

Data Fields

float rmox[9] MOx resistance.

float intensity odor intensity rating ranges
from 0.0 to 5.0 for sulfur lib

rm_zmod4xxx_sulfur_odor_t odor sulfur_odor classification for lib

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,707 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

◆ rm_zmod4xxx_oaq_1st_data_t

struct rm_zmod4xxx_oaq_1st_data_t

ZMOD4XXX OAQ 1st gen data structure

Data Fields

float rmox[15] MOx resistance.

float aiq Air Quality.

◆ rm_zmod4xxx_oaq_2nd_data_t

struct rm_zmod4xxx_oaq_2nd_data_t

ZMOD4XXX OAQ 2nd gen data structure

Data Fields

float rmox[8] MOx resistance.

float ozone_concentration The ozone concentration in part-
per-billion.

uint16_t fast_aqi 1-minute average of the Air
Quality Index according to the
EPA standard based on ozone

uint16_t epa_aqi The Air Quality Index according
to the EPA standard based on
ozone.

◆ rm_zmod4xxx_cfg_t

struct rm_zmod4xxx_cfg_t

ZMOD4XXX configuration block

Data Fields

rm_comms_instance_t const
*

p_comms_instance

 Pointer to Communications Middleware instance.

void const * p_timer_instance

 Pointer to Timer driver instance.

void const * p_irq_instance

 Pointer to IRQ instance.

void const * p_zmod4xxx_device

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,708 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

 Pointer to ZMOD4XXX device structure.

void const * p_zmod4xxx_handle

 Pointer to ZMOD4XXX library handler.

void const * p_zmod4xxx_results

 Pointer to ZMOD4XXX library results.

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Pointer to extended configuration by instance of interface.

void(* p_comms_callback)(rm_zmod4xxx_callback_args_t *p_args)

 I2C Communications callback.

void(* p_irq_callback)(rm_zmod4xxx_callback_args_t *p_args)

 IRQ callback.

◆ rm_zmod4xxx_api_t

struct rm_zmod4xxx_api_t

ZMOD4XXX APIs

Data Fields

fsp_err_t(* open)(rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_cfg_t
const *const p_cfg)

fsp_err_t(* measurementStart)(rm_zmod4xxx_ctrl_t *const p_api_ctrl)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,709 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

fsp_err_t(* measurementStop)(rm_zmod4xxx_ctrl_t *const p_api_ctrl)

fsp_err_t(* statusCheck)(rm_zmod4xxx_ctrl_t *const p_api_ctrl)

fsp_err_t(* read)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data)

fsp_err_t(* iaq1stGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_1st_data_t *const p_zmod4xxx_data)

fsp_err_t(* iaq2ndGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_iaq_2nd_data_t *const p_zmod4xxx_data)

fsp_err_t(* odorDataCalculate)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_odor_data_t *const p_zmod4xxx_data)

fsp_err_t(* sulfurOdorDataCalculate)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_sulfur_odor_data_t *const p_zmod4xxx_data)

fsp_err_t(* oaq1stGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_1st_data_t *const p_zmod4xxx_data)

fsp_err_t(* oaq2ndGenDataCalculate)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data,
rm_zmod4xxx_oaq_2nd_data_t *const p_zmod4xxx_data)

fsp_err_t(* temperatureAndHumiditySet)(rm_zmod4xxx_ctrl_t *const p_api_ctrl,
float temperature, float humidity)

fsp_err_t(* close)(rm_zmod4xxx_ctrl_t *const p_api_ctrl)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,710 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

◆ open

fsp_err_t(* rm_zmod4xxx_api_t::open) (rm_zmod4xxx_ctrl_t *const p_api_ctrl, rm_zmod4xxx_cfg_t
const *const p_cfg)

Open sensor.

Implemented as

RM_ZMOD4XXX_Open()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_cfg Pointer to configuration
structure.

◆ measurementStart

fsp_err_t(* rm_zmod4xxx_api_t::measurementStart) (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

Start measurement

Implemented as

RM_ZMOD4XXX_MeasurementStart()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ measurementStop

fsp_err_t(* rm_zmod4xxx_api_t::measurementStop) (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

Stop measurement

Implemented as

RM_ZMOD4XXX_MeasurementStop()
Parameters

[in] p_api_ctrl Pointer to control structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,711 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

◆ statusCheck

fsp_err_t(* rm_zmod4xxx_api_t::statusCheck) (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

Read status of the sensor

Implemented as

RM_ZMOD4XXX_StatusCheck()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ read

fsp_err_t(* rm_zmod4xxx_api_t::read) (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data)

Read ADC data.

Implemented as

RM_ZMOD4XXX_Read()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data
structure.

◆ iaq1stGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::iaq1stGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_1st_data_t *const
p_zmod4xxx_data)

Calculate IAQ 1st Gen. values from ADC data.

Implemented as

RM_ZMOD4XXX_Iaq1stGenDataCalculate()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,712 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

◆ iaq2ndGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::iaq2ndGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_iaq_2nd_data_t *const
p_zmod4xxx_data)

Calculate IAQ 2nd Gen. values from ADC data.

Implemented as

RM_ZMOD4XXX_Iaq2ndGenDataCalculate()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ odorDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::odorDataCalculate) (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_odor_data_t *const p_zmod4xxx_data)

Calculate Odor values from ADC data.

Implemented as

RM_ZMOD4XXX_OdorDataCalculate()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,713 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

◆ sulfurOdorDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::sulfurOdorDataCalculate) (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_sulfur_odor_data_t *const
p_zmod4xxx_data)

Calculate Sulfur Odor values from ADC data.

Implemented as

RM_ZMOD4XXX_SulfurOdorDataCalculate()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ oaq1stGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::oaq1stGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_1st_data_t *const
p_zmod4xxx_data)

Calculate OAQ 1st Gen. values from ADC data.

Implemented as

RM_ZMOD4XXX_Oaq1stGenDataCalculate()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,714 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

◆ oaq2ndGenDataCalculate

fsp_err_t(* rm_zmod4xxx_api_t::oaq2ndGenDataCalculate) (rm_zmod4xxx_ctrl_t *const p_api_ctrl,
rm_zmod4xxx_raw_data_t *const p_raw_data, rm_zmod4xxx_oaq_2nd_data_t *const
p_zmod4xxx_data)

Calculate OAQ 2nd Gen. values from ADC data.

Implemented as

RM_ZMOD4XXX_Oaq2ndGenDataCalculate()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] p_raw_data Pointer to raw data.

[in] p_zmod4xxx_data Pointer to ZMOD4XXXX data
structure.

◆ temperatureAndHumiditySet

fsp_err_t(* rm_zmod4xxx_api_t::temperatureAndHumiditySet) (rm_zmod4xxx_ctrl_t *const
p_api_ctrl, float temperature, float humidity)

Set temperature and humidity.

Implemented as

RM_ZMOD4XXX_TemperatureAndHumiditySet()
Parameters

[in] p_api_ctrl Pointer to control structure.

[in] temperature Temperature (deg C).

[in] humidity Humidity (percent).

◆ close

fsp_err_t(* rm_zmod4xxx_api_t::close) (rm_zmod4xxx_ctrl_t *const p_api_ctrl)

Close the sensor

Implemented as

RM_ZMOD4XXX_Close()
Parameters

[in] p_api_ctrl Pointer to control structure.

◆ rm_zmod4xxx_instance_t

struct rm_zmod4xxx_instance_t

ZMOD4XXX instance

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,715 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > ZMOD4XXX Middleware Interface

Data Fields

rm_zmod4xxx_ctrl_t * p_ctrl Pointer to the control structure
for this instance

rm_zmod4xxx_cfg_t const * p_cfg Pointer to the configuration
structure for this instance

rm_zmod4xxx_api_t const * p_api Pointer to the API structure for
this instance

Typedef Documentation

◆ rm_zmod4xxx_ctrl_t

typedef void rm_zmod4xxx_ctrl_t

ZMOD4xxx Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

rm_zmod4xxx_instance_ctrl_t

Enumeration Type Documentation

◆ rm_zmod4xxx_event_t

enum rm_zmod4xxx_event_t

Event in the callback function

◆ rm_zmod4xxx_sulfur_odor_t

enum rm_zmod4xxx_sulfur_odor_t

Sulfur-Odor status

4.3.66 SCE Interface
Interfaces

Detailed Description

Interface for Secure Crypto Engine (SCE) functions.

Summary

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,716 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

The SCE interface provides SCE functionality.

The SCE interface can be implemented by:

Secure Crypto Engine (r_sce_protected)

Data Structures

struct sce_byte_data_t

struct sce_aes_wrapped_key_t

struct sce_hmac_sha_wrapped_key_t

struct sce_rsa1024_public_wrapped_key_t

struct sce_rsa1024_private_wrapped_key_t

struct sce_rsa2048_public_wrapped_key_t

struct sce_rsa2048_private_wrapped_key_t

struct sce_rsa3072_public_wrapped_key_t

struct sce_rsa4096_public_wrapped_key_t

struct sce_rsa1024_wrapped_pair_key_t

struct sce_rsa2048_wrapped_pair_key_t

struct sce_ecc_public_wrapped_key_t

struct sce_ecc_private_wrapped_key_t

struct sce_ecc_wrapped_pair_key_t

struct sce_ecdh_wrapped_key_t

struct sce_key_update_key_t

struct sce_aes_handle_t

struct sce_gcm_handle_t

struct sce_ccm_handle_t

struct sce_cmac_handle_t

struct sce_sha_md5_handle_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,717 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

struct sce_hmac_sha_handle_t

struct sce_ecdh_handle_t

struct sce_cfg_t

struct sce_api_t

struct sce_instance_t

Typedefs

typedef sce_byte_data_t sce_rsa_byte_data_t

 byte data More...

typedef sce_byte_data_t sce_ecdsa_byte_data_t

 byte data More...

typedef void sce_ctrl_t

Enumerations

enum lifecycle_t

Data Structure Documentation

◆ sce_byte_data_t

struct sce_byte_data_t

Byte data structure

Data Fields

uint8_t * pdata pointer

uint32_t data_length data_length

uint32_t data_type data type

◆ sce_aes_wrapped_key_t

struct sce_aes_wrapped_key_t

AES wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

uint32_t value[HW_SCE_AES256_KEY_IN
DEX_WORD_SIZE]

wrapped key value

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,718 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ sce_hmac_sha_wrapped_key_t

struct sce_hmac_sha_wrapped_key_t

HMAC-SHA wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

uint32_t value[HW_SCE_HMAC_KEY_INDE
X_WORD_SIZE]

wrapped key value

◆ sce_rsa1024_public_wrapped_key_t

struct sce_rsa1024_public_wrapped_key_t

RSA 1024bit public wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

struct
sce_rsa1024_public_wrapped_k
ey_t

value

◆ sce_rsa1024_private_wrapped_key_t

struct sce_rsa1024_private_wrapped_key_t

RSA 1024bit private wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

struct
sce_rsa1024_private_wrapped_
key_t

value

◆ sce_rsa2048_public_wrapped_key_t

struct sce_rsa2048_public_wrapped_key_t

RSA 2048bit public wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type Key type.

struct
sce_rsa2048_public_wrapped_k
ey_t

value

◆ sce_rsa2048_private_wrapped_key_t

struct sce_rsa2048_private_wrapped_key_t

RSA 2048bit private wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,719 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

struct
sce_rsa2048_private_wrapped_
key_t

value

◆ sce_rsa3072_public_wrapped_key_t

struct sce_rsa3072_public_wrapped_key_t

RSA 3072bit public wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type Key type.

struct
sce_rsa3072_public_wrapped_k
ey_t

value

◆ sce_rsa4096_public_wrapped_key_t

struct sce_rsa4096_public_wrapped_key_t

RSA 4096bit public wrapped key data structure. DO NOT MODIFY.

Data Fields

uint32_t type Key type.

struct
sce_rsa4096_public_wrapped_k
ey_t

value

◆ sce_rsa1024_wrapped_pair_key_t

struct sce_rsa1024_wrapped_pair_key_t

RSA 1024bit wrapped key pair structure. DO NOT MODIFY.

Data Fields

sce_rsa1024_private_wrapped_
key_t

private RSA 1024-bit private wrapped
key.

sce_rsa1024_public_wrapped_k
ey_t

public RSA 1024-bit public wrapped
key.

◆ sce_rsa2048_wrapped_pair_key_t

struct sce_rsa2048_wrapped_pair_key_t

RSA 2048bit wrapped key pair structure. DO NOT MODIFY.

Data Fields

sce_rsa2048_private_wrapped_
key_t

private RSA 2048-bit private wrapped
key.

sce_rsa2048_public_wrapped_k
ey_t

public RSA 2048-bit public wrapped
key.

◆ sce_ecc_public_wrapped_key_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,720 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

struct sce_ecc_public_wrapped_key_t

ECC P-192/224/256 public wrapped key data structure

Data Fields

uint32_t type key type

struct
sce_ecc_public_wrapped_key_t

value

◆ sce_ecc_private_wrapped_key_t

struct sce_ecc_private_wrapped_key_t

ECC P-192/224/256 private wrapped key data structure

Data Fields

uint32_t type key type

uint32_t value[HW_SCE_ECC_PRIVATE_K
EY_MANAGEMENT_INFO_WORD_
SIZE]

wrapped key value

◆ sce_ecc_wrapped_pair_key_t

struct sce_ecc_wrapped_pair_key_t

ECC P-192/224/256 wrapped key pair structure

Data Fields

sce_ecc_private_wrapped_key_t private ECC private wrapped key.

sce_ecc_public_wrapped_key_t public ECC public wrapped key.

◆ sce_ecdh_wrapped_key_t

struct sce_ecdh_wrapped_key_t

ECDH wrapped key data structure

Data Fields

uint32_t type key type

uint32_t value[HW_SCE_SHARED_SECRE
T_KEY_INDEX_WORD_SIZE]

wrapped key value

◆ sce_key_update_key_t

struct sce_key_update_key_t

Update key ring index data structure. DO NOT MODIFY.

Data Fields

uint32_t type key type

uint32_t value[HW_SCE_UPDATE_KEY_RI
NG_INDEX_WORD_SIZE]

wrapped key value

◆ sce_aes_handle_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,721 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

struct sce_aes_handle_t

The work area for AES. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint32_t current_input_data_size text size under encryption /
decryption

uint8_t last_1_block_as_fraction[HW_SC
E_AES_BLOCK_BYTE_SIZE]

text array less than the block
long

uint8_t last_2_block_as_fraction[HW_SC
E_AES_BLOCK_BYTE_SIZE *2]

reserved

uint8_t current_initial_vector[HW_SCE_
AES_CBC_IV_BYTE_SIZE]

current initialization vector
used in CBC mode

uint8_t flag_call_init control flag of calling function

◆ sce_gcm_handle_t

struct sce_gcm_handle_t

The work area for GCM. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint8_t gcm_buffer[HW_SCE_AES_BLOC
K_BYTE_SIZE]

text array less than the block
long

uint8_t gcm_aad_buffer[HW_SCE_AES_
GCM_AAD_BLOCK_BYTE_SIZE]

AAD array less than the block
long.

uint32_t all_received_length entire length of text

uint32_t all_received_aad_length entire length of text

uint32_t buffering_length text array length less than the
block long

uint32_t buffering_aad_length AAD array length less than the
block long.

uint8_t flag_call_init control flag of calling function

uint8_t flag_update_input_data control flag of next input data

◆ sce_ccm_handle_t

struct sce_ccm_handle_t

The work area for CCM. DO NOT MODIFY.

Data Fields

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,722 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint8_t formatted_data[HW_SCE_AES_C
CM_B_FORMAT_BYTE_SIZE]

formatted data area

uint8_t counter[HW_SCE_AES_CCM_CO
UNTER_BYTE_SIZE]

counter of CTR mode

uint8_t ccm_buffer[HW_SCE_AES_BLOC
K_BYTE_SIZE]

text array less than the block
long

uint32_t all_received_length entire length of text

uint32_t buffering_length text array length less than the
block long

uint8_t flag_call_init control flag of calling function

◆ sce_cmac_handle_t

struct sce_cmac_handle_t

The work area for CMAC. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_aes_wrapped_key_t wrapped_key wrapped key

uint8_t cmac_buffer[HW_SCE_AES_BLO
CK_BYTE_SIZE]

message array less than the
block long

uint32_t all_received_length entire length of message

uint32_t buffering_length message array length less than
the block long

uint8_t flag_call_init control flag of calling function

◆ sce_sha_md5_handle_t

struct sce_sha_md5_handle_t

The work area for SHA. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

uint8_t sha_buffer[HW_SCE_SHA256_H
ASH_LENGTH_BYTE_SIZE *4]

message array length less than
the block long

uint32_t all_received_length entire length of message

uint32_t buffering_length message array length less than
the block long

uint8_t current_hash[HW_SCE_SHA256_
HASH_LENGTH_BYTE_SIZE]

last hash value

uint8_t flag_call_init control flag of calling function

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,723 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ sce_hmac_sha_handle_t

struct sce_hmac_sha_handle_t

The work area for HMAC-SHA. DO NOT MODIFY.

Data Fields

uint32_t id serial number of this handle

sce_hmac_sha_wrapped_key_t wrapped_key wrapped key

uint8_t hmac_buffer[HW_SCE_SHA256_
HASH_LENGTH_BYTE_SIZE *4]

message array length less than
the block long

uint32_t all_received_length entire length of message

uint32_t buffering_length message array length less than
the block long

uint8_t flag_call_init control flag of calling function

◆ sce_ecdh_handle_t

struct sce_ecdh_handle_t

The work area for ECDH

Data Fields

uint32_t id serial number of this handle

uint32_t flag_use_key_id control frag that the key_id has
already used or not

uint32_t key_id serial number of the wrapped
key

uint32_t key_type key type

uint8_t flag_call_init control flag of calling function

uint8_t flag_call_make_public control flag of calling function

uint8_t flag_call_read_public control flag of calling function

uint8_t flag_call_shared_secret control flag of calling function

◆ sce_cfg_t

struct sce_cfg_t

User configuration structure, used in open function

Data Fields

lifecycle_t lifecycle Data lifecycle.

◆ sce_api_t

struct sce_api_t

Functions implemented at the HAL layer will follow this API.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,724 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

Data Fields

fsp_err_t(* open)(sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

fsp_err_t(* close)(sce_ctrl_t *const p_ctrl)

fsp_err_t(* softwareReset)(void)

fsp_err_t(* randomNumberGenerate)(uint32_t *random)

fsp_err_t(* AES128_WrappedKeyGenerate)(sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t(* AES256_WrappedKeyGenerate)(sce_aes_wrapped_key_t
*wrapped_key)

fsp_err_t(* AES128_EncryptedKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256_EncryptedKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128ECB_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128ECB_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES128ECB_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t(* AES128ECB_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128ECB_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,725 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

fsp_err_t(* AES128ECB_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

fsp_err_t(* AES256ECB_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256ECB_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES256ECB_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t(* AES256ECB_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256ECB_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES256ECB_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

fsp_err_t(* AES128CBC_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES128CBC_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES128CBC_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t(* AES128CBC_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES128CBC_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES128CBC_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,726 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

fsp_err_t(* AES256CBC_EncryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES256CBC_EncryptUpdate)(sce_aes_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES256CBC_EncryptFinal)(sce_aes_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length)

fsp_err_t(* AES256CBC_DecryptInit)(sce_aes_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector)

fsp_err_t(* AES256CBC_DecryptUpdate)(sce_aes_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES256CBC_DecryptFinal)(sce_aes_handle_t *handle, uint8_t *plain,
uint32_t *plain_length)

fsp_err_t(* AES128GCM_EncryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES128GCM_EncryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES128GCM_EncryptFinal)(sce_gcm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t(* AES128GCM_DecryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES128GCM_DecryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES128GCM_DecryptFinal)(sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,727 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

fsp_err_t(* AES256GCM_EncryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES256GCM_EncryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES256GCM_EncryptFinal)(sce_gcm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_data_length, uint8_t *atag)

fsp_err_t(* AES256GCM_DecryptInit)(sce_gcm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *initial_vector,
uint32_t initial_vector_length)

fsp_err_t(* AES256GCM_DecryptUpdate)(sce_gcm_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad,
uint32_t aad_length)

fsp_err_t(* AES256GCM_DecryptFinal)(sce_gcm_handle_t *handle, uint8_t
*plain, uint32_t *plain_data_length, uint8_t *atag, uint32_t
atag_length)

fsp_err_t(* AES128CCM_EncryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t(* AES128CCM_EncryptUpdate)(sce_ccm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES128CCM_EncryptFinal)(sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES128CCM_DecryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t(* AES128CCM_DecryptUpdate)(sce_ccm_handle_t *handle, uint8_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,728 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES128CCM_DecryptFinal)(sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES256CCM_EncryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t(* AES256CCM_EncryptUpdate)(sce_ccm_handle_t *handle, uint8_t
*plain, uint8_t *cipher, uint32_t plain_length)

fsp_err_t(* AES256CCM_EncryptFinal)(sce_ccm_handle_t *handle, uint8_t
*cipher, uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES256CCM_DecryptInit)(sce_ccm_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key, uint8_t *nonce, uint32_t
nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

fsp_err_t(* AES256CCM_DecryptUpdate)(sce_ccm_handle_t *handle, uint8_t
*cipher, uint8_t *plain, uint32_t cipher_length)

fsp_err_t(* AES256CCM_DecryptFinal)(sce_ccm_handle_t *handle, uint8_t
*plain, uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

fsp_err_t(* AES128CMAC_GenerateInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128CMAC_GenerateUpdate)(sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t(* AES128CMAC_GenerateFinal)(sce_cmac_handle_t *handle, uint8_t
*mac)

fsp_err_t(* AES128CMAC_VerifyInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES128CMAC_VerifyUpdate)(sce_cmac_handle_t *handle, uint8_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,729 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

*message, uint32_t message_length)

fsp_err_t(* AES128CMAC_VerifyFinal)(sce_cmac_handle_t *handle, uint8_t
*mac, uint32_t mac_length)

fsp_err_t(* AES256CMAC_GenerateInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256CMAC_GenerateUpdate)(sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t(* AES256CMAC_GenerateFinal)(sce_cmac_handle_t *handle, uint8_t
*mac)

fsp_err_t(* AES256CMAC_VerifyInit)(sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

fsp_err_t(* AES256CMAC_VerifyUpdate)(sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

fsp_err_t(* AES256CMAC_VerifyFinal)(sce_cmac_handle_t *handle, uint8_t
*mac, uint32_t mac_length)

fsp_err_t(* SHA256_Init)(sce_sha_md5_handle_t *handle)

fsp_err_t(* SHA256_Update)(sce_sha_md5_handle_t *handle, uint8_t *message,
uint32_t message_length)

fsp_err_t(* SHA256_Final)(sce_sha_md5_handle_t *handle, uint8_t *digest,
uint32_t *digest_length)

fsp_err_t(* RSA1024_WrappedKeyPairGenerate
)(sce_rsa1024_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* RSA2048_WrappedKeyPairGenerate
)(sce_rsa2048_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* RSA1024_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,730 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_public_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA1024_EncryptedPrivateKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa1024_private_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA2048_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_public_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA2048_EncryptedPrivateKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa2048_private_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA3072_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa3072_public_wrapped_key_t *wrapped_key)

fsp_err_t(* RSA4096_EncryptedPublicKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_rsa4096_public_wrapped_key_t *wrapped_key)

fsp_err_t(* RSASSA_PKCS1024_SignatureGenerate)(sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa1024_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS2048_SignatureGenerate)(sce_rsa_byte_data_t
*message_hash, sce_rsa_byte_data_t *signature,
sce_rsa2048_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS1024_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa1024_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS2048_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa2048_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,731 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

fsp_err_t(* RSASSA_PKCS3072_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa3072_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSASSA_PKCS4096_SignatureVerify)(sce_rsa_byte_data_t
*signature, sce_rsa_byte_data_t *message_hash,
sce_rsa4096_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

fsp_err_t(* RSAES_PKCS1024_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa1024_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS2048_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa2048_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS3072_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa3072_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS4096_Encrypt)(sce_rsa_byte_data_t *plain,
sce_rsa_byte_data_t *cipher, sce_rsa4096_public_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS1024_Decrypt)(sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa1024_private_wrapped_key_t
*wrapped_key)

fsp_err_t(* RSAES_PKCS2048_Decrypt)(sce_rsa_byte_data_t *cipher,
sce_rsa_byte_data_t *plain, sce_rsa2048_private_wrapped_key_t
*wrapped_key)

fsp_err_t(* SHA256HMAC_EncryptedKeyWrap)(uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t(* SHA256HMAC_GenerateInit)(sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t(* SHA256HMAC_GenerateUpdate)(sce_hmac_sha_handle_t *handle,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,732 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

uint8_t *message, uint32_t message_length)

fsp_err_t(* SHA256HMAC_GenerateFinal)(sce_hmac_sha_handle_t *handle,
uint8_t *mac)

fsp_err_t(* SHA256HMAC_VerifyInit)(sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

fsp_err_t(* SHA256HMAC_VerifyUpdate)(sce_hmac_sha_handle_t *handle,
uint8_t *message, uint32_t message_length)

fsp_err_t(* SHA256HMAC_VerifyFinal)(sce_hmac_sha_handle_t *handle, uint8_t
*mac, uint32_t mac_length)

fsp_err_t(* ECC_secp192r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp224r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp256r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp384r1_WrappedKeyPairGenerate
)(sce_ecc_wrapped_pair_key_t *wrapped_pair_key)

fsp_err_t(* ECC_secp192r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp224r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp256r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp384r1_EncryptedPublicKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,733 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp192r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp224r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp256r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECC_secp384r1_EncryptedPrivateKeyWrap)(uint8_t *initial_vector,
uint8_t *encrypted_key, sce_key_update_key_t *key_update_key,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp192r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp224r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp256r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp384r1_SignatureGenerate)(sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp192r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp224r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,734 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

fsp_err_t(* ECDSA_secp256r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDSA_secp384r1_SignatureVerify)(sce_ecdsa_byte_data_t
*signature, sce_ecdsa_byte_data_t *message_hash,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDH_secp256r1_Init)(sce_ecdh_handle_t *handle, uint32_t
key_type, uint32_t use_key_id)

fsp_err_t(* ECDH_secp256r1_PublicKeySign)(sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key, uint8_t
*public_key, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDH_secp256r1_PublicKeyVerify)(sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, uint8_t
*public_key_data, sce_ecdsa_byte_data_t *signature,
sce_ecc_public_wrapped_key_t *wrapped_key)

fsp_err_t(* ECDH_secp256r1_SharedSecretCalculate)(sce_ecdh_handle_t
*handle, sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key,
sce_ecc_private_wrapped_key_t *ecc_private_wrapped_key,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key)

fsp_err_t(* ECDH_secp256r1_KeyDerivation)(sce_ecdh_handle_t *handle,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key, uint32_t
key_type, uint32_t kdf_type, uint8_t *other_info, uint32_t
other_info_length, sce_hmac_sha_wrapped_key_t *salt_wrapped_key,
sce_aes_wrapped_key_t *wrapped_key)

Field Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,735 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ open

fsp_err_t(* sce_api_t::open) (sce_ctrl_t *const p_ctrl, sce_cfg_t const *const p_cfg)

Enables use of SCE functionality.

Implemented as

R_SCE_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ close

fsp_err_t(* sce_api_t::close) (sce_ctrl_t *const p_ctrl)

Stops supply of power to the SCE.

Implemented as

R_SCE_Close()
Parameters

[in] p_ctrl Pointer to control structure.

◆ softwareReset

fsp_err_t(* sce_api_t::softwareReset) (void)

Software reset to SCE.

Implemented as

R_SCE_SoftwareReset()

◆ randomNumberGenerate

fsp_err_t(* sce_api_t::randomNumberGenerate) (uint32_t *random)

Generates 4 words random number.

Implemented as

R_SCE_RandomNumberGenerate()
Parameters

[in,out] random Stores 4words (16 bytes)
random data.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,736 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128_WrappedKeyGenerate

fsp_err_t(* sce_api_t::AES128_WrappedKeyGenerate) (sce_aes_wrapped_key_t *wrapped_key)

This API outputs 128-bit AES wrapped key.

Implemented as

R_SCE_AES128_WrappedKeyGenerate()
Parameters

[in,out] wrapped_key 128-bit AES wrapped key

◆ AES256_WrappedKeyGenerate

fsp_err_t(* sce_api_t::AES256_WrappedKeyGenerate) (sce_aes_wrapped_key_t *wrapped_key)

This API outputs 256-bit AES wrapped key.

Implemented as

R_SCE_AES256_WrappedKeyGenerate()
Parameters

[in,out] wrapped_key 256-bit AES wrapped key

◆ AES128_EncryptedKeyWrap

fsp_err_t(* sce_api_t::AES128_EncryptedKeyWrap) (uint8_t *initial_vector, uint8_t *encrypted_key,
sce_key_update_key_t *key_update_key, sce_aes_wrapped_key_t *wrapped_key)

This API outputs 128-bit AES wrapped key.

Implemented as

R_SCE_AES128_EncryptedKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 128-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,737 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256_EncryptedKeyWrap

fsp_err_t(* sce_api_t::AES256_EncryptedKeyWrap) (uint8_t *initial_vector, uint8_t *encrypted_key,
sce_key_update_key_t *key_update_key, sce_aes_wrapped_key_t *wrapped_key)

This API outputs 256-bit AES wrapped key.

Implemented as

R_SCE_AES256_EncryptedKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 256-bit AES wrapped key

◆ AES128ECB_EncryptInit

fsp_err_t(* sce_api_t::AES128ECB_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES128ECB encryption.

Implemented as

R_SCE_AES128ECB_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,738 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128ECB_EncryptUpdate

fsp_err_t(* sce_api_t::AES128ECB_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain, uint8_t
*cipher, uint32_t plain_length)

Update AES128ECB encryption.

Implemented as

R_SCE_AES128ECB_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

◆ AES128ECB_EncryptFinal

fsp_err_t(* sce_api_t::AES128ECB_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES128ECB encryption.

Implemented as

R_SCE_AES128ECB_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES128ECB_DecryptInit

fsp_err_t(* sce_api_t::AES128ECB_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES128ECB decryption.

Implemented as

R_SCE_AES128ECB_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,739 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128ECB_DecryptUpdate

fsp_err_t(* sce_api_t::AES128ECB_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES128ECB decryption.

Implemented as

R_SCE_AES128ECB_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES128ECB_DecryptFinal

fsp_err_t(* sce_api_t::AES128ECB_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES128ECB decryption.

Implemented as

R_SCE_AES128ECB_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

◆ AES256ECB_EncryptInit

fsp_err_t(* sce_api_t::AES256ECB_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES256ECB encryption.

Implemented as

R_SCE_AES256ECB_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,740 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256ECB_EncryptUpdate

fsp_err_t(* sce_api_t::AES256ECB_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain, uint8_t
*cipher, uint32_t plain_length)

Update AES256ECB encryption.

Implemented as

R_SCE_AES256ECB_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

◆ AES256ECB_EncryptFinal

fsp_err_t(* sce_api_t::AES256ECB_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES256ECB encryption.

Implemented as

R_SCE_AES256ECB_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES256ECB_DecryptInit

fsp_err_t(* sce_api_t::AES256ECB_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key)

Initialize AES256ECB decryption.

Implemented as

R_SCE_AES256ECB_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,741 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256ECB_DecryptUpdate

fsp_err_t(* sce_api_t::AES256ECB_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES256ECB decryption.

Implemented as

R_SCE_AES256ECB_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES256ECB_DecryptFinal

fsp_err_t(* sce_api_t::AES256ECB_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES256ECB decryption.

Implemented as

R_SCE_AES256ECB_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,742 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CBC_EncryptInit

fsp_err_t(* sce_api_t::AES128CBC_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES128CBC encryption.

Implemented as

R_SCE_AES128CBC_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

◆ AES128CBC_EncryptUpdate

fsp_err_t(* sce_api_t::AES128CBC_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES128CBC encryption.

Implemented as

R_SCE_AES128CBC_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,743 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CBC_EncryptFinal

fsp_err_t(* sce_api_t::AES128CBC_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES128CBC encryption.

Implemented as

R_SCE_AES128CBC_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES128CBC_DecryptInit

fsp_err_t(* sce_api_t::AES128CBC_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES128CBC decryption.

Implemented as

R_SCE_AES128CBC_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,744 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CBC_DecryptUpdate

fsp_err_t(* sce_api_t::AES128CBC_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES128CBC decryption.

Implemented as

R_SCE_AES128CBC_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES128CBC_DecryptFinal

fsp_err_t(* sce_api_t::AES128CBC_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES128CBC decryption.

Implemented as

R_SCE_AES128CBC_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,745 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CBC_EncryptInit

fsp_err_t(* sce_api_t::AES256CBC_EncryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES256CBC encryption.

Implemented as

R_SCE_AES256CBC_EncryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

◆ AES256CBC_EncryptUpdate

fsp_err_t(* sce_api_t::AES256CBC_EncryptUpdate) (sce_aes_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES256CBC encryption.

Implemented as

R_SCE_AES256CBC_EncryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in,out] plain_length plaintext data length (must
be a multiple of 16)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,746 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CBC_EncryptFinal

fsp_err_t(* sce_api_t::AES256CBC_EncryptFinal) (sce_aes_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length)

Finalize AES256CBC encryption.

Implemented as

R_SCE_AES256CBC_EncryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] cipher ciphertext data area
(nothing ever written here)

[in,out] cipher_length ciphertext data length (0
always written here)

◆ AES256CBC_DecryptInit

fsp_err_t(* sce_api_t::AES256CBC_DecryptInit) (sce_aes_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector)

Initialize AES256CBC decryption.

Implemented as

R_SCE_AES256CBC_DecryptInit()
Parameters

[in,out] handle AES handler (work area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initial vector area (16byte)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,747 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CBC_DecryptUpdate

fsp_err_t(* sce_api_t::AES256CBC_DecryptUpdate) (sce_aes_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES256CBC decryption.

Implemented as

R_SCE_AES256CBC_DecryptUpdate()
Parameters

[in,out] handle AES handler (work area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in,out] cipher_length ciphertext data length (must
be a multiple of 16)

◆ AES256CBC_DecryptFinal

fsp_err_t(* sce_api_t::AES256CBC_DecryptFinal) (sce_aes_handle_t *handle, uint8_t *plain, uint32_t
*plain_length)

Finalize AES256CBC decryption.

Implemented as

R_SCE_AES256CBC_DecryptFinal()
Parameters

[in,out] handle AES handler (work area)

[in,out] plain plaintext data area (nothing
ever written here)

[in,out] plain_length plaintext data length (0
always written here)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,748 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128GCM_EncryptInit

fsp_err_t(* sce_api_t::AES128GCM_EncryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES128GCM encryption.

Implemented as

R_SCE_AES128GCM_EncryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

◆ AES128GCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES128GCM_EncryptUpdate) (sce_gcm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad, uint32_t aad_length)

Update AES128GCM encryption.

Implemented as

R_SCE_AES128GCM_EncryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,749 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128GCM_EncryptFinal

fsp_err_t(* sce_api_t::AES128GCM_EncryptFinal) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_data_length, uint8_t *atag)

Finalize AES128GCM encryption.

Implemented as

R_SCE_AES128GCM_EncryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

◆ AES128GCM_DecryptInit

fsp_err_t(* sce_api_t::AES128GCM_DecryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES128GCM decryption.

Implemented as

R_SCE_AES128GCM_DecryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,750 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128GCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES128GCM_DecryptUpdate) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad, uint32_t aad_length)

Update AES128GCM decryption.

Implemented as

R_SCE_AES128GCM_DecryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

◆ AES128GCM_DecryptFinal

fsp_err_t(* sce_api_t::AES128GCM_DecryptFinal) (sce_gcm_handle_t *handle, uint8_t *plain,
uint32_t *plain_data_length, uint8_t *atag, uint32_t atag_length)

Finalize AES128GCM decryption.

Implemented as

R_SCE_AES128GCM_DecryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,751 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256GCM_EncryptInit

fsp_err_t(* sce_api_t::AES256GCM_EncryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES256GCM encryption.

Implemented as

R_SCE_AES256GCM_EncryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

◆ AES256GCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES256GCM_EncryptUpdate) (sce_gcm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_data_length, uint8_t *aad, uint32_t aad_length)

Update AES256GCM encryption.

Implemented as

R_SCE_AES256GCM_EncryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_data_length plaintext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,752 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256GCM_EncryptFinal

fsp_err_t(* sce_api_t::AES256GCM_EncryptFinal) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_data_length, uint8_t *atag)

Finalize AES256GCM encryption.

Implemented as

R_SCE_AES256GCM_EncryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area
(cipher_data_length byte)

[in,out] cipher_data_length ciphertext data length (0
always written here)

[in,out] atag authentication tag area

◆ AES256GCM_DecryptInit

fsp_err_t(* sce_api_t::AES256GCM_DecryptInit) (sce_gcm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *initial_vector, uint32_t initial_vector_length)

Initialize AES256GCM decryption.

Implemented as

R_SCE_AES256GCM_DecryptInit()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] initial_vector initialization vector area
(initial_vector_length byte)

[in] initial_vector_length initialization vector length (1
ore more bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,753 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256GCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES256GCM_DecryptUpdate) (sce_gcm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_data_length, uint8_t *aad, uint32_t aad_length)

Update AES256GCM decryption.

Implemented as

R_SCE_AES256GCM_DecryptUpdate()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] cipher ciphertext data area

[in] plain plaintext data area

[in] cipher_data_length ciphertext data length (0 or
more bytes)

[in] aad additional authentication
data (aad_length byte)

[in] aad_length additional authentication
data length (0 or more
bytes)

◆ AES256GCM_DecryptFinal

fsp_err_t(* sce_api_t::AES256GCM_DecryptFinal) (sce_gcm_handle_t *handle, uint8_t *plain,
uint32_t *plain_data_length, uint8_t *atag, uint32_t atag_length)

Finalize AES256GCM decryption.

Implemented as

R_SCE_AES256GCM_DecryptFinal()
Parameters

[in,out] handle AES-GCM handler (work
area)

[in,out] plain plaintext data area
(cipher_data_length byte)

[in,out] plain_data_length plaintext data length (0
always written here)

[in,out] atag authentication tag area
(atag_length byte)

[in] atag_length authentication tag length
(4,8,12,13,14,15,16 bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,754 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CCM_EncryptInit

fsp_err_t(* sce_api_t::AES128CCM_EncryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES128CCM encryption.

Implemented as

R_SCE_AES128CCM_EncryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES128CCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES128CCM_EncryptUpdate) (sce_ccm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES128CCM encryption.

Implemented as

R_SCE_AES128CCM_EncryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,755 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CCM_EncryptFinal

fsp_err_t(* sce_api_t::AES128CCM_EncryptFinal) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

Finalize AES128CCM encryption.

Implemented as

R_SCE_AES128CCM_EncryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES128CCM_DecryptInit

fsp_err_t(* sce_api_t::AES128CCM_DecryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES128CCM decryption.

Implemented as

R_SCE_AES128CCM_DecryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,756 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES128CCM_DecryptUpdate) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES128CCM decryption.

Implemented as

R_SCE_AES128CCM_DecryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

◆ AES128CCM_DecryptFinal

fsp_err_t(* sce_api_t::AES128CCM_DecryptFinal) (sce_ccm_handle_t *handle, uint8_t *plain,
uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

Finalize AES128CCM decryption.

Implemented as

R_SCE_AES128CCM_DecryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,757 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CCM_EncryptInit

fsp_err_t(* sce_api_t::AES256CCM_EncryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES256CCM encryption.

Implemented as

R_SCE_AES256CCM_EncryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES256CCM_EncryptUpdate

fsp_err_t(* sce_api_t::AES256CCM_EncryptUpdate) (sce_ccm_handle_t *handle, uint8_t *plain,
uint8_t *cipher, uint32_t plain_length)

Update AES256CCM encryption.

Implemented as

R_SCE_AES256CCM_EncryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] plain plaintext data area

[in,out] cipher ciphertext data area

[in] plain_length plaintext data length

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,758 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CCM_EncryptFinal

fsp_err_t(* sce_api_t::AES256CCM_EncryptFinal) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint32_t *cipher_length, uint8_t *mac, uint32_t mac_length)

Finalize AES256CCM encryption.

Implemented as

R_SCE_AES256CCM_EncryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] cipher ciphertext data area

[in,out] cipher_length ciphertext data length

[in,out] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

◆ AES256CCM_DecryptInit

fsp_err_t(* sce_api_t::AES256CCM_DecryptInit) (sce_ccm_handle_t *handle, sce_aes_wrapped_key_t
*wrapped_key, uint8_t *nonce, uint32_t nonce_length, uint8_t *adata, uint8_t a_length, uint32_t
payload_length, uint32_t mac_length)

Initialize AES256CCM decryption.

Implemented as

R_SCE_AES256CCM_DecryptInit()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

[in] nonce Nonce

[in] nonce_length Nonce data length (7 to 13
bytes)

[in] adata additional authentication
data

[in] a_length additional authentication
data length (0 to 110 bytes)

[in] payload_length Payload length (any number
of bytes)

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,759 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CCM_DecryptUpdate

fsp_err_t(* sce_api_t::AES256CCM_DecryptUpdate) (sce_ccm_handle_t *handle, uint8_t *cipher,
uint8_t *plain, uint32_t cipher_length)

Update AES256CCM decryption.

Implemented as

R_SCE_AES256CCM_DecryptUpdate()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in] cipher ciphertext data area

[in,out] plain plaintext data area

[in] cipher_length ciphertext data length

◆ AES256CCM_DecryptFinal

fsp_err_t(* sce_api_t::AES256CCM_DecryptFinal) (sce_ccm_handle_t *handle, uint8_t *plain,
uint32_t *plain_length, uint8_t *mac, uint32_t mac_length)

Finalize AES256CCM decryption.

Implemented as

R_SCE_AES256CCM_DecryptFinal()
Parameters

[in,out] handle AES-CCM handler (work
area)

[in,out] plain plaintext data area

[in,out] plain_length plaintext data length

[in] mac MAC area

[in] mac_length MAC length (4, 6, 8, 10, 12,
14, or 16 bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,760 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CMAC_GenerateInit

fsp_err_t(* sce_api_t::AES128CMAC_GenerateInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES128CMAC generation.

Implemented as

R_SCE_AES128CMAC_GenerateInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

◆ AES128CMAC_GenerateUpdate

fsp_err_t(* sce_api_t::AES128CMAC_GenerateUpdate) (sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update AES128CMAC generation.

Implemented as

R_SCE_AES128CMAC_GenerateUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

◆ AES128CMAC_GenerateFinal

fsp_err_t(* sce_api_t::AES128CMAC_GenerateFinal) (sce_cmac_handle_t *handle, uint8_t *mac)

Finalize AES128CMAC generation.

Implemented as

R_SCE_AES128CMAC_GenerateFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (16byte)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,761 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CMAC_VerifyInit

fsp_err_t(* sce_api_t::AES128CMAC_VerifyInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES128CMAC verification.

Implemented as

R_SCE_AES128CMAC_VerifyInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 128-bit AES wrapped key

◆ AES128CMAC_VerifyUpdate

fsp_err_t(* sce_api_t::AES128CMAC_VerifyUpdate) (sce_cmac_handle_t *handle, uint8_t *message,
uint32_t message_length)

Update AES128CMAC verification.

Implemented as

R_SCE_AES128CMAC_VerifyUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,762 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES128CMAC_VerifyFinal

fsp_err_t(* sce_api_t::AES128CMAC_VerifyFinal) (sce_cmac_handle_t *handle, uint8_t *mac,
uint32_t mac_length)

Finalize AES128CMAC verification.

Implemented as

R_SCE_AES128CMAC_VerifyFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

◆ AES256CMAC_GenerateInit

fsp_err_t(* sce_api_t::AES256CMAC_GenerateInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES256CMAC generation.

Implemented as

R_SCE_AES256CMAC_GenerateInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,763 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CMAC_GenerateUpdate

fsp_err_t(* sce_api_t::AES256CMAC_GenerateUpdate) (sce_cmac_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update AES256CMAC generation.

Implemented as

R_SCE_AES256CMAC_GenerateUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

◆ AES256CMAC_GenerateFinal

fsp_err_t(* sce_api_t::AES256CMAC_GenerateFinal) (sce_cmac_handle_t *handle, uint8_t *mac)

Finalize AES256CMAC generation.

Implemented as

R_SCE_AES256CMAC_GenerateFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (16byte)

◆ AES256CMAC_VerifyInit

fsp_err_t(* sce_api_t::AES256CMAC_VerifyInit) (sce_cmac_handle_t *handle,
sce_aes_wrapped_key_t *wrapped_key)

Initialize AES256CMAC verification.

Implemented as

R_SCE_AES256CMAC_VerifyInit()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] wrapped_key 256-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,764 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ AES256CMAC_VerifyUpdate

fsp_err_t(* sce_api_t::AES256CMAC_VerifyUpdate) (sce_cmac_handle_t *handle, uint8_t *message,
uint32_t message_length)

Update AES256CMAC verification.

Implemented as

R_SCE_AES256CMAC_VerifyUpdate()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in] message message data area
(message_length byte)

[in] message_length message data length (0 or
more bytes)

◆ AES256CMAC_VerifyFinal

fsp_err_t(* sce_api_t::AES256CMAC_VerifyFinal) (sce_cmac_handle_t *handle, uint8_t *mac,
uint32_t mac_length)

Finalize AES256CMAC verification.

Implemented as

R_SCE_AES256CMAC_VerifyFinal()
Parameters

[in,out] handle AES-CMAC handler (work
area)

[in,out] mac MAC data area (mac_length
byte)

[in,out] mac_length MAC data length (2 to 16
bytes)

◆ SHA256_Init

fsp_err_t(* sce_api_t::SHA256_Init) (sce_sha_md5_handle_t *handle)

Initialize SHA-256 Calculation.

Implemented as

R_SCE_SHA256_Init()
Parameters

[in,out] handle SHA handler (work area)

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,765 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ SHA256_Update

fsp_err_t(* sce_api_t::SHA256_Update) (sce_sha_md5_handle_t *handle, uint8_t *message, uint32_t
message_length)

Update SHA-256 Calculation.

Implemented as

R_SCE_SHA256_Update()
Parameters

[in,out] handle SHA handler (work area)

[in] message message data area

[in] message_length message data length

◆ SHA256_Final

fsp_err_t(* sce_api_t::SHA256_Final) (sce_sha_md5_handle_t *handle, uint8_t *digest, uint32_t
*digest_length)

Finalize SHA-256 Calculation.

Implemented as

R_SCE_SHA256_Final()
Parameters

[in,out] handle SHA handler (work area)

[in,out] digest hasha data area

[in,out] digest_length hash data length (32bytes)

◆ RSA1024_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::RSA1024_WrappedKeyPairGenerate) (sce_rsa1024_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs 1024-bit RSA wrapped pair key.

Implemented as

R_SCE_RSA1024_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_key 128-bit AES wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,766 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSA2048_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::RSA2048_WrappedKeyPairGenerate) (sce_rsa2048_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs 2048-bit RSA wrapped pair key.

Implemented as

R_SCE_RSA2048_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_key 128-bit AES wrapped key

◆ RSA1024_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA1024_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa1024_public_wrapped_key_t
*wrapped_key)

This API outputs 1024-bit RSA public wrapped key.

Implemented as

R_SCE_RSA1024_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA public wrapped
key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,767 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSA1024_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::RSA1024_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa1024_private_wrapped_key_t
*wrapped_key)

This API outputs 1024-bit RSA private wrapped key.

Implemented as

R_SCE_RSA1024_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 1024-bit RSA private
wrapped key

◆ RSA2048_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA2048_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa2048_public_wrapped_key_t
*wrapped_key)

This API outputs 2048-bit RSA public wrapped key.

Implemented as

R_SCE_RSA2048_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA public wrapped
key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,768 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSA2048_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::RSA2048_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa2048_private_wrapped_key_t
*wrapped_key)

This API outputs 2048-bit RSA private wrapped key.

Implemented as

R_SCE_RSA2048_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 2048-bit RSA private
wrapped key

◆ RSA3072_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA3072_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa3072_public_wrapped_key_t
*wrapped_key)

This API outputs 3072-bit RSA public wrapped key.

Implemented as

R_SCE_RSA3072_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 3072-bit RSA public wrapped
key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,769 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSA4096_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::RSA4096_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_rsa4096_public_wrapped_key_t
*wrapped_key)

This API outputs 4096-bit RSA public wrapped key.

Implemented as

R_SCE_RSA4096_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key 4096-bit RSA public wrapped
key

◆ RSASSA_PKCS1024_SignatureGenerate

fsp_err_t(* sce_api_t::RSASSA_PKCS1024_SignatureGenerate) (sce_rsa_byte_data_t *message_hash,
sce_rsa_byte_data_t *signature, sce_rsa1024_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature generation.

Implemented as

R_SCE_RSASSA_PKCS1024_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,770 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSASSA_PKCS2048_SignatureGenerate

fsp_err_t(* sce_api_t::RSASSA_PKCS2048_SignatureGenerate) (sce_rsa_byte_data_t *message_hash,
sce_rsa_byte_data_t *signature, sce_rsa2048_private_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature generation.

Implemented as

R_SCE_RSASSA_PKCS2048_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Inputs the 2048-bit RSA
private wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

◆ RSASSA_PKCS1024_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS1024_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa1024_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS1024_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,771 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSASSA_PKCS2048_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS2048_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa2048_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS2048_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 2048-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

◆ RSASSA_PKCS3072_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS3072_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa3072_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS3072_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,772 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSASSA_PKCS4096_SignatureVerify

fsp_err_t(* sce_api_t::RSASSA_PKCS4096_SignatureVerify) (sce_rsa_byte_data_t *signature,
sce_rsa_byte_data_t *message_hash, sce_rsa4096_public_wrapped_key_t *wrapped_key, uint8_t
hash_type)

RSASSA-PKCS1-V1_5 signature verification.

Implemented as

R_SCE_RSASSA_PKCS4096_SignatureVerify()
Parameters

[in] signature Signature text information to
verify

[in] message_hash Message text or hash value
to verify

[in] wrapped_key Inputs the 4096-bit RSA
public wrapped key.

[in] hash_type Only
HW_SCE_RSA_HASH_SHA256
is supported

◆ RSAES_PKCS1024_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS1024_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa1024_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS1024_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 1024-bit RSA
public wrapped key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,773 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSAES_PKCS2048_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS2048_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa2048_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS2048_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 2048-bit RSA
public wrapped key.

◆ RSAES_PKCS3072_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS3072_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa3072_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS3072_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 3072-bit RSA
public wrapped key.

◆ RSAES_PKCS4096_Encrypt

fsp_err_t(* sce_api_t::RSAES_PKCS4096_Encrypt) (sce_rsa_byte_data_t *plain, sce_rsa_byte_data_t
*cipher, sce_rsa4096_public_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 encryption.

Implemented as

R_SCE_RSAES_PKCS4096_Encrypt()
Parameters

[in] plain plaintext

[in,out] cipher ciphertext

[in] wrapped_key Inputs the 4096-bit RSA
public wrapped key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,774 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ RSAES_PKCS1024_Decrypt

fsp_err_t(* sce_api_t::RSAES_PKCS1024_Decrypt) (sce_rsa_byte_data_t *cipher, sce_rsa_byte_data_t
*plain, sce_rsa1024_private_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 decryption.

Implemented as

R_SCE_RSAES_PKCS1024_Decrypt()
Parameters

[in] cipher ciphertext

[in,out] plain plaintext

[in] wrapped_key Inputs the 1024-bit RSA
private wrapped key.

◆ RSAES_PKCS2048_Decrypt

fsp_err_t(* sce_api_t::RSAES_PKCS2048_Decrypt) (sce_rsa_byte_data_t *cipher, sce_rsa_byte_data_t
*plain, sce_rsa2048_private_wrapped_key_t *wrapped_key)

RSAES-PKCS1-V1_5 decryption.

Implemented as

R_SCE_RSAES_PKCS2048_Decrypt()
Parameters

[in] cipher ciphertext

[in,out] plain plaintext

[in] wrapped_key Inputs the 2048-bit RSA
private wrapped key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,775 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ SHA256HMAC_EncryptedKeyWrap

fsp_err_t(* sce_api_t::SHA256HMAC_EncryptedKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_hmac_sha_wrapped_key_t
*wrapped_key)

This API outputs HMAC-SHA256 wrapped key.

Implemented as

R_SCE_SHA256HMAC_EncryptedKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key HMAC-SHA256 wrapped key

◆ SHA256HMAC_GenerateInit

fsp_err_t(* sce_api_t::SHA256HMAC_GenerateInit) (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

Initialize HMAC-SHA256 generation.

Implemented as

R_SCE_SHA256HMAC_GenerateInit()
Parameters

[in,out] handle SHA-HMAC handler (work
area)

[in] wrapped_key MAC wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,776 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ SHA256HMAC_GenerateUpdate

fsp_err_t(* sce_api_t::SHA256HMAC_GenerateUpdate) (sce_hmac_sha_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update HMAC-SHA256 generation.

Implemented as

R_SCE_SHA256HMAC_GenerateUpdate()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in] message Message area

[in] message_length Message length

◆ SHA256HMAC_GenerateFinal

fsp_err_t(* sce_api_t::SHA256HMAC_GenerateFinal) (sce_hmac_sha_handle_t *handle, uint8_t *mac)

Finalize HMAC-SHA256 generation.

Implemented as

R_SCE_SHA256HMAC_GenerateFinal()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in,out] mac HMAC area (32 bytes)

◆ SHA256HMAC_VerifyInit

fsp_err_t(* sce_api_t::SHA256HMAC_VerifyInit) (sce_hmac_sha_handle_t *handle,
sce_hmac_sha_wrapped_key_t *wrapped_key)

Initialize HMAC-SHA256 verification.

Implemented as

R_SCE_SHA256HMAC_VerifyInit()
Parameters

[in,out] handle SHA-HMAC handler (work
area)

[in] wrapped_key MAC wrapped key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,777 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ SHA256HMAC_VerifyUpdate

fsp_err_t(* sce_api_t::SHA256HMAC_VerifyUpdate) (sce_hmac_sha_handle_t *handle, uint8_t
*message, uint32_t message_length)

Update HMAC-SHA256 verification.

Implemented as

R_SCE_SHA256HMAC_VerifyUpdate()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in] message Message area

[in] message_length Message length

◆ SHA256HMAC_VerifyFinal

fsp_err_t(* sce_api_t::SHA256HMAC_VerifyFinal) (sce_hmac_sha_handle_t *handle, uint8_t *mac,
uint32_t mac_length)

Finalize HMAC-SHA256 verification.

Implemented as

R_SCE_SHA256HMAC_VerifyFinal()
Parameters

[in,out] handle SHA-HMAC handle (work
area)

[in] mac HMAC area

[in] mac_length HMAC length

◆ ECC_secp192r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp192r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp192r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp192r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp192r1 public key and
private key pair

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,778 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECC_secp224r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp224r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp224r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp224r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp224r1 public key and
private key pair

◆ ECC_secp256r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp256r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp256r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp256r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp256r1 public key and
private key pair

◆ ECC_secp384r1_WrappedKeyPairGenerate

fsp_err_t(* sce_api_t::ECC_secp384r1_WrappedKeyPairGenerate) (sce_ecc_wrapped_pair_key_t
*wrapped_pair_key)

This API outputs secp384r1 wrapped pair key.

Implemented as

R_SCE_ECC_secp384r1_WrappedKeyPairGenerate()
Parameters

[in,out] wrapped_pair_key Wrapped pair key for
secp384r1 public key and
private key pair

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,779 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECC_secp192r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp192r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp192r1 public wrapped key.

Implemented as

R_SCE_ECC_secp192r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 public wrapped
key

◆ ECC_secp224r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp224r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp224r1 public wrapped key.

Implemented as

R_SCE_ECC_secp224r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 public wrapped
key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,780 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECC_secp256r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp256r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp256r1 public wrapped key.

Implemented as

R_SCE_ECC_secp256r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 public wrapped
key

◆ ECC_secp384r1_EncryptedPublicKeyWrap

fsp_err_t(* sce_api_t::ECC_secp384r1_EncryptedPublicKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_public_wrapped_key_t
*wrapped_key)

This API outputs secp384r1 public wrapped key.

Implemented as

R_SCE_ECC_secp384r1_EncryptedPublicKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 public wrapped
key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,781 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECC_secp192r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp192r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp192r1 private wrapped key.

Implemented as

R_SCE_ECC_secp192r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp192r1 private wrapped
key

◆ ECC_secp224r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp224r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp224r1 private wrapped key.

Implemented as

R_SCE_ECC_secp224r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp224r1 private wrapped
key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,782 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECC_secp256r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp256r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp256r1 private wrapped key.

Implemented as

R_SCE_ECC_secp256r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp256r1 private wrapped
key

◆ ECC_secp384r1_EncryptedPrivateKeyWrap

fsp_err_t(* sce_api_t::ECC_secp384r1_EncryptedPrivateKeyWrap) (uint8_t *initial_vector, uint8_t
*encrypted_key, sce_key_update_key_t *key_update_key, sce_ecc_private_wrapped_key_t
*wrapped_key)

This API outputs secp384r1 private wrapped key.

Implemented as

R_SCE_ECC_secp384r1_EncryptedPrivateKeyWrap()
Parameters

[in] initial_vector Initialization vector when
generating encrypted_key

[in] encrypted_key User key encryptedand MAC
appended

[in] key_update_key Key update keyring

[in,out] wrapped_key secp384r1 private wrapped
key

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,783 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECDSA_secp192r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp192r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp192r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp192r1 private key.

◆ ECDSA_secp224r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp224r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp224r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp224r1 private key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,784 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECDSA_secp256r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp256r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp256r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp256r1 private key.

◆ ECDSA_secp384r1_SignatureGenerate

fsp_err_t(* sce_api_t::ECDSA_secp384r1_SignatureGenerate) (sce_ecdsa_byte_data_t
*message_hash, sce_ecdsa_byte_data_t *signature, sce_ecc_private_wrapped_key_t *wrapped_key)

ECDSA signature generation.

Implemented as

R_SCE_ECDSA_secp384r1_SignatureGenerate()
Parameters

[in] message_hash Message or hash value to
which to attach signature

[in,out] signature Signature text storage
destination information

[in] wrapped_key Input wrapped key of
secp384r1 private key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,785 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECDSA_secp192r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp192r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp192r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp192r1 public key.

◆ ECDSA_secp224r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp224r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp224r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp224r1 public key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,786 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECDSA_secp256r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp256r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp256r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp256r1 public key.

◆ ECDSA_secp384r1_SignatureVerify

fsp_err_t(* sce_api_t::ECDSA_secp384r1_SignatureVerify) (sce_ecdsa_byte_data_t *signature,
sce_ecdsa_byte_data_t *message_hash, sce_ecc_public_wrapped_key_t *wrapped_key)

ECDSA signature verification.

Implemented as

R_SCE_ECDSA_secp384r1_SignatureVerify()
Parameters

[in] signature Signature text information to
be verified

[in,out] message_hash Message or hash value to be
verified

[in] wrapped_key Input wrapped key of
secp384r1 public key.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,787 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECDH_secp256r1_Init

fsp_err_t(* sce_api_t::ECDH_secp256r1_Init) (sce_ecdh_handle_t *handle, uint32_t key_type,
uint32_t use_key_id)

secp256r1 ECDH Initialization.

Implemented as

R_SCE_ECDH_secp256r1_Init()
Parameters

[in,out] handle ECDH handler (work area)

[in] key_type Key exchange type

[in] use_key_id use key_id or not

◆ ECDH_secp256r1_PublicKeySign

fsp_err_t(* sce_api_t::ECDH_secp256r1_PublicKeySign) (sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t
*ecc_private_wrapped_key, uint8_t *public_key, sce_ecdsa_byte_data_t *signature,
sce_ecc_private_wrapped_key_t *wrapped_key)

secp256r1 ECDH public key Signature.

Implemented as

R_SCE_ECDH_secp256r1_PublicKeySign()
Parameters

[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key For ECDHE, input a null
pointer. For ECDH, input the
wrapped key of a secp256r1
public key.

[in] ecc_private_wrapped_key secp256r1 private key for
signature generation

[in,out] public_key User secp256r1 public key
(512-bit) for key exchange.

[in,out] signature Signature text storage
destination information

[in,out] wrapped_key For ECDHE, a private
wrapped key generated from
a random number. Not
output for ECDH.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,788 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECDH_secp256r1_PublicKeyVerify

fsp_err_t(* sce_api_t::ECDH_secp256r1_PublicKeyVerify) (sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, uint8_t *public_key_data,
sce_ecdsa_byte_data_t *signature, sce_ecc_public_wrapped_key_t *wrapped_key)

secp256r1 ECDH public key verification.

Implemented as

R_SCE_ECDH_secp256r1_PublicKeyVerify()
Parameters

[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key area for
signature verification

[in] public_key_data secp256r1 public key
(512-bit)

[in] signature ECDSA secp256r1 signature
of ecc_public_wrapped_key

[in,out] wrapped_key wrapped key of
ecc_public_wrapped_key

◆ ECDH_secp256r1_SharedSecretCalculate

fsp_err_t(* sce_api_t::ECDH_secp256r1_SharedSecretCalculate) (sce_ecdh_handle_t *handle,
sce_ecc_public_wrapped_key_t *ecc_public_wrapped_key, sce_ecc_private_wrapped_key_t
*ecc_private_wrapped_key, sce_ecdh_wrapped_key_t *shared_secret_wrapped_key)

secp256r1 ECDH shared secret calculation.

Implemented as

R_SCE_ECDH_secp256r1_SharedSecretCalculate()
Parameters

[in,out] handle ECDH handler (work area)

[in] ecc_public_wrapped_key Public wrapped key

[in] ecc_private_wrapped_key Private wrapped key

[in,out] shared_secret_wrapped_key Wrapped key of shared
secret Z calculated by ECDH
key exchange

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,789 / 2,794

Flexible Software Package

User’s Manual
API Reference > Interfaces > SCE Interface

◆ ECDH_secp256r1_KeyDerivation

fsp_err_t(* sce_api_t::ECDH_secp256r1_KeyDerivation) (sce_ecdh_handle_t *handle,
sce_ecdh_wrapped_key_t *shared_secret_wrapped_key, uint32_t key_type, uint32_t kdf_type,
uint8_t *other_info, uint32_t other_info_length, sce_hmac_sha_wrapped_key_t *salt_wrapped_key,
sce_aes_wrapped_key_t *wrapped_key)

secp256r1 ECDH key derivation.

Implemented as

R_SCE_ECDH_secp256r1_KeyDerivation()
Parameters

[in,out] handle ECDH handler (work area)

[in] shared_secret_wrapped_key Z wrapped key calculated by
R_SCE_ECDH_secp256r1_Sha
redSecretCalculate

[in] key_type Derived key type

[in] kdf_type Algorithm used for key
derivation calculation

[in] other_info Additional data used for key
derivation calculation

[in] other_info_length Data length of other_info

[in] salt_wrapped_key Salt wrapped key

[in,out] wrapped_key Wrapped key corresponding
to key_type.

◆ sce_instance_t

struct sce_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

sce_ctrl_t * p_ctrl Pointer to the control structure
for this instance.

sce_cfg_t const * p_cfg Pointer to the configuration
structure for this instance.

sce_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,790 / 2,794

Flexible Software Package User’s Manual
API Reference > Interfaces > SCE Interface

◆ sce_rsa_byte_data_t

typedef sce_byte_data_t sce_rsa_byte_data_t

byte data

RSA byte data structure

◆ sce_ecdsa_byte_data_t

typedef sce_byte_data_t sce_ecdsa_byte_data_t

byte data

ECDSA byte data structure

◆ sce_ctrl_t

typedef void sce_ctrl_t

SCE Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

sce_instance_ctrl_t

Enumeration Type Documentation

◆ lifecycle_t

enum lifecycle_t

Data lifecycle

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,791 / 2,794

Flexible Software Package

User’s Manual
Copyright

Chapter 5 Copyright

Copyright [2020-2021] Renesas Electronics Corporation and/or its affiliates. All Rights Reserved.

This software and documentation are supplied by Renesas Electronics America Inc. and may only be
used with products of Renesas Electronics Corp. and its affiliates ("Renesas"). No other uses are
authorized. Renesas products are sold pursuant to Renesas terms and conditions of sale. Purchasers
are solely responsible for the selection and use of Renesas products and Renesas assumes no
liability. No license, express or implied, to any intellectual property right is granted by Renesas. This
software is protected under all applicable laws, including copyright laws. Renesas reserves the right
to change or discontinue this software and/or this documentation. THE SOFTWARE AND
DOCUMENTATION IS DELIVERED TO YOU "AS IS," AND RENESAS MAKES NO REPRESENTATIONS OR
WARRANTIES, AND TO THE FULLEST EXTENT PERMISSIBLE UNDER APPLICABLE LAW, DISCLAIMS ALL
WARRANTIES, WHETHER EXPLICITLY OR IMPLICITLY, INCLUDING WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT, WITH RESPECT TO THE SOFTWARE
OR DOCUMENTATION. RENESAS SHALL HAVE NO LIABILITY ARISING OUT OF ANY SECURITY
VULNERABILITY OR BREACH. TO THE MAXIMUM EXTENT PERMITTED BY LAW, IN NO EVENT WILL
RENESAS BE LIABLE TO YOU IN CONNECTION WITH THE SOFTWARE OR DOCUMENTATION (OR ANY
PERSON OR ENTITY CLAIMING RIGHTS DERIVED FROM YOU) FOR ANY LOSS, DAMAGES, OR CLAIMS
WHATSOEVER, INCLUDING, WITHOUT LIMITATION, ANY DIRECT, CONSEQUENTIAL, SPECIAL,
INDIRECT, PUNITIVE, OR INCIDENTAL DAMAGES; ANY LOST PROFITS, OTHER ECONOMIC DAMAGE,
PROPERTY DAMAGE, OR PERSONAL INJURY; AND EVEN IF RENESAS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH LOSS, DAMAGES, CLAIMS OR COSTS.

R11UM0155EU0230 Revision 2.30
Sep.10.2021

Page 2,792 / 2,794

Renesas FSP
Copyright © (2021) Renesas Electronics Corporation. All Rights Reserved.

User’s Manual

Publication Date: Revision 2.30 Sep.10.2021

Renesas FSP v3.3.0

User’s Manual

 Renesas Electronics Corporation

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

	INDEX
	Chapter 1 Introduction
	1.1 Overview
	1.2 Using this Manual
	1.3 Documentation Standard
	1.4 Introduction to FSP
	1.4.1 Purpose
	1.4.2 Quality
	1.4.3 Ease of Use
	1.4.4 Scalability
	1.4.5 Build Time Configurations
	1.4.6 e2 studio IDE

	Chapter 2 Starting Development
	2.1 Starting Development Introduction
	2.2 e2 studio User Guide
	2.2.1 What is e2 studio?
	2.2.2 e2 studio Prerequisites
	2.2.2.1 Obtaining an RA MCU Kit
	2.2.2.2 PC Requirements
	2.2.2.3 Installing e2 studio, platform installer and the FSP package
	2.2.2.4 Choosing a Toolchain
	2.2.2.5 Licensing

	2.2.3 What is a Project?
	2.2.4 Creating a Project
	2.2.4.1 Creating a New Project
	2.2.4.2 Selecting a Board and Toolchain
	2.2.4.3 Selecting Flat or Arm® TrustZone® Project
	2.2.4.4 Selecting a Project Template

	2.2.5 Configuring a Project
	2.2.5.1 Summary Tab
	2.2.5.2 Configuring the BSP
	2.2.5.3 Configuring Clocks
	2.2.5.4 Configuring Pins
	2.2.5.5 Configuring Interrupts from the Stacks Tab
	2.2.5.6 Viewing Event Links

	2.2.6 Adding Threads and Drivers
	2.2.6.1 Adding and Configuring HAL Drivers
	2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers
	2.2.6.3 Configuring Threads

	2.2.7 Reviewing and Adding Components
	2.2.8 Writing the Application
	2.2.8.1 Coding Features
	2.2.8.2 HAL Modules in FSP: A Practical Description
	2.2.8.3 RTOS-Independent Applications
	2.2.8.4 RTOS Applications
	2.2.8.5 Additional Resources for Application Development

	2.2.9 Debugging the Project
	2.2.10 Modifying Toolchain Settings
	2.2.11 Creating RA project with ARM Compiler 6 in e2 studio
	2.2.12 Importing an Existing Project into e2 studio

	2.3 Tutorial: Your First RA MCU Project - Blinky
	2.3.1 Tutorial Blinky
	2.3.2 What Does Blinky Do?
	2.3.3 Prerequisites
	2.3.4 Create a New Project for Blinky
	2.3.4.1 Details about the Blinky Configuration
	2.3.4.2 Configuring the Blinky Clocks
	2.3.4.3 Configuring the Blinky Pins
	2.3.4.4 Configuring the Parameters for Blinky Components
	2.3.4.5 Where is main()?
	2.3.4.6 Blinky Example Code

	2.3.5 Build the Blinky Project
	2.3.6 Debug the Blinky Project
	2.3.6.1 Debug prerequisites
	2.3.6.2 Debug steps
	2.3.6.3 Details about the Debug Process

	2.3.7 Run the Blinky Project

	2.4 Tutorial: Using HAL Drivers - Programming the WDT
	2.4.1 Application WDT
	2.4.2 Creating a WDT Application Using the RA MCU FSP and e2 studio
	2.4.2.1 Using the FSP and e2 studio
	2.4.2.2 The WDT Application
	2.4.2.3 WDT Application flow

	2.4.3 Creating the Project with e2 studio
	2.4.4 Configuring the Project with e2 studio
	2.4.4.1 BSP Tab
	2.4.4.2 Clocks Tab
	2.4.4.3 Interrupts Tab
	2.4.4.4 Event Links Tab
	2.4.4.5 Pins Tab
	2.4.4.6 Stacks Tab
	2.4.4.7 Components Tab

	2.4.5 WDT Generated Project Files
	2.4.5.1 WDT hal_data.h
	2.4.5.2 WDT hal_data.c
	2.4.5.3 WDT main.c
	2.4.5.4 WDT hal_entry.c

	2.4.6 Building and Testing the Project

	2.5 Primer: ARM® TrustZone® Project Development
	2.5.1 Renesas Implementation of ARM® TrustZone® Technology
	2.5.1.1 Calling from Non-Secure to Secure
	2.5.1.2 Calling from Secure to Non-Secure

	2.5.2 Workflow
	2.5.2.1 Secure Project
	2.5.2.2 Non-Secure Project
	2.5.2.3 Flat Project

	2.5.3 RA Project Generator (PG)
	2.5.3.1 Secure Project Set Up
	2.5.3.2 RTOS Support in TZ Project
	2.5.3.3 Peripheral Security Attribution
	2.5.3.4 Non-Secure
	2.5.3.5 Flat Project Type
	2.5.3.6 Secure Connection to Non-Secure Project
	2.5.3.7 Debug Configurations

	2.5.4 Secure Projects
	2.5.4.1 Secure Clock
	2.5.4.2 Setting Drivers as NSC
	2.5.4.3 Guard Functions

	2.5.5 Non-Secure projects
	2.5.5.1 Clock Set Up
	2.5.5.2 Selecting NSC Drivers
	2.5.5.3 Locked Resources
	2.5.5.4 Locked Channels

	2.5.6 IDAU registers
	2.5.6.1 SCI Boot Mode
	2.5.6.2 DLM States

	2.5.7 Debug
	2.5.7.1 Non-Secure Debug

	2.5.8 Debugger support
	2.5.9 Third-Party IDEs
	2.5.10 Renesas Flash Programmer (RFP)
	2.5.11 Glossary
	2.5.11.1 Configurator Icon Glossary

	2.6 RA SC User Guide for MDK and IAR
	2.6.1 What is RA SC?
	2.6.2 Using RA Smart Configurator with Keil MDK
	2.6.2.1 Prerequisites
	2.6.2.2 Create new RA project
	2.6.2.3 Modify existing RA project
	2.6.2.4 Build and Debug RA project
	2.6.2.5 Notes and Restrictions

	2.6.3 Using RA Smart Configurator with IAR EWARM
	2.6.3.1 Prerequisites
	2.6.3.2 Create new RA project
	2.6.3.3 Notes and Restrictions

	Chapter 3 FSP Architecture
	3.1 FSP Architecture Overview
	3.1.1 C99 Use
	3.1.2 Doxygen
	3.1.3 Weak Symbols
	3.1.4 Memory Allocation
	3.1.5 FSP Terms

	3.2 FSP Modules
	3.3 FSP Stacks
	3.4 FSP Interfaces
	3.4.1 FSP Interface Enumerations
	3.4.2 FSP Interface Callback Functions
	3.4.3 FSP Interface Data Structures
	3.4.3.1 FSP Interface Configuration Structure
	3.4.3.2 FSP Interface API Structure
	3.4.3.3 FSP Interface Instance Structure

	3.5 FSP Instances
	3.5.1 FSP Instance Control Structure
	3.5.2 FSP Interface Extensions
	3.5.2.1 FSP Extended Configuration Structure

	3.5.3 FSP Instance API

	3.6 FSP API Standards
	3.6.1 FSP Function Names
	3.6.2 Use of const in API parameters
	3.6.3 FSP Version Information

	3.7 FSP Build Time Configurations
	3.8 FSP File Structure
	3.9 FSP TrustZone Support
	3.9.1 FSP TrustZone Projects
	3.9.2 Non-Secure Callable Guard Functions
	3.9.3 Callbacks in Non-Secure from Non-Secure Callable Modules
	3.9.4 Additional TrustZone Information

	3.10 FSP Architecture in Practice
	3.10.1 FSP Connecting Layers
	3.10.2 Using FSP Modules in an Application
	3.10.2.1 Create a Module Instance in the RA Configuration Editor
	3.10.2.2 Use the Instance API in the Application

	Chapter 4 API Reference
	4.1 BSP
	4.1.1 Common Error Codes
	4.1.2 MCU Board Support Package
	4.1.2.1 RA2A1
	4.1.2.2 RA2E1
	4.1.2.3 RA2L1
	4.1.2.4 RA4E1
	4.1.2.5 RA4M1
	4.1.2.6 RA4M2
	4.1.2.7 RA4M3
	4.1.2.8 RA4W1
	4.1.2.9 RA6E1
	4.1.2.10 RA6M1
	4.1.2.11 RA6M2
	4.1.2.12 RA6M3
	4.1.2.13 RA6M4
	4.1.2.14 RA6M5
	4.1.2.15 RA6T1

	4.1.3 BSP I/O access

	4.2 Modules
	4.2.1 High-Speed Analog Comparator (r_acmphs)
	4.2.2 Low-Power Analog Comparator (r_acmplp)
	4.2.3 Analog to Digital Converter (r_adc)
	4.2.4 Asynchronous General Purpose Timer (r_agt)
	4.2.5 Bluetooth Low Energy Library (r_ble)
	4.2.5.1 GAP
	4.2.5.2 GATT_COMMON
	4.2.5.3 GATT_SERVER
	4.2.5.4 GATT_CLIENT
	4.2.5.5 L2CAP
	4.2.5.6 VS

	4.2.6 Clock Frequency Accuracy Measurement Circuit (r_cac)
	4.2.7 Controller Area Network (r_can)
	4.2.8 Controller Area Network - Flexible Data (r_canfd)
	4.2.9 Consumer Electronics Control (r_cec)
	4.2.10 Clock Generation Circuit (r_cgc)
	4.2.11 Cyclic Redundancy Check (CRC) Calculator (r_crc)
	4.2.12 Capacitive Touch Sensing Unit (r_ctsu)
	4.2.13 Digital to Analog Converter (r_dac)
	4.2.14 Digital to Analog Converter (r_dac8)
	4.2.15 Direct Memory Access Controller (r_dmac)
	4.2.16 Data Operation Circuit (r_doc)
	4.2.17 D/AVE 2D Port Interface (r_drw)
	4.2.18 Data Transfer Controller (r_dtc)
	4.2.19 Event Link Controller (r_elc)
	4.2.20 Ethernet (r_ether)
	4.2.21 Ethernet PHY (r_ether_phy)
	4.2.22 High-Performance Flash Driver (r_flash_hp)
	4.2.23 Low-Power Flash Driver (r_flash_lp)
	4.2.24 Graphics LCD Controller (r_glcdc)
	4.2.25 General PWM Timer (r_gpt)
	4.2.26 General PWM Timer Three-Phase Motor Control Driver (r_gpt_three_phase)
	4.2.27 Interrupt Controller Unit (r_icu)
	4.2.28 I2C Master on IIC (r_iic_master)
	4.2.29 I2C Slave on IIC (r_iic_slave)
	4.2.30 I/O Ports (r_ioport)
	4.2.31 Independent Watchdog Timer (r_iwdt)
	4.2.32 JPEG Codec (r_jpeg)
	4.2.33 Key Interrupt (r_kint)
	4.2.34 Low Power Modes (r_lpm)
	4.2.35 Low Voltage Detection (r_lvd)
	4.2.36 Operational Amplifier (r_opamp)
	4.2.37 Octa Serial Peripheral Interface Flash (r_ospi)
	4.2.38 Parallel Data Capture (r_pdc)
	4.2.39 Port Output Enable for GPT (r_poeg)
	4.2.40 Precision Time Protocol (r_ptp)
	4.2.41 Quad Serial Peripheral Interface Flash (r_qspi)
	4.2.42 Realtime Clock (r_rtc)
	4.2.43 Secure Crypto Engine (r_sce_protected)
	4.2.44 Serial Communications Interface (SCI) I2C (r_sci_i2c)
	4.2.45 Serial Communications Interface (SCI) SPI (r_sci_spi)
	4.2.46 Serial Communications Interface (SCI) UART (r_sci_uart)
	4.2.47 Sigma Delta Analog to Digital Converter (r_sdadc)
	4.2.48 SD/MMC Host Interface (r_sdhi)
	4.2.49 Segment LCD Controller (r_slcdc)
	4.2.50 Serial Peripheral Interface (r_spi)
	4.2.51 Serial Sound Interface (r_ssi)
	4.2.52 USB (r_usb_basic)
	4.2.53 USB Composite Class (r_usb_composite)
	4.2.54 USB Host Communications Device Class Driver (r_usb_hcdc)
	4.2.55 USB Host Human Interface Device Class Driver (r_usb_hhid)
	4.2.56 USB Host Mass Storage Class Driver (r_usb_hmsc)
	4.2.57 USB Host Vendor Class (r_usb_hvnd)
	4.2.58 USB Peripheral Communications Device Class (r_usb_pcdc)
	4.2.59 USB Peripheral Human Interface Device Class (r_usb_phid)
	4.2.60 USB Peripheral Mass Storage Class (r_usb_pmsc)
	4.2.61 USB Peripheral Vendor Class (r_usb_pvnd)
	4.2.62 Watchdog Timer (r_wdt)
	4.2.63 ADPCM Decoder (rm_adpcm_decoder)
	4.2.64 Audio Playback with PWM (rm_audio_playback_pwm)
	4.2.65 AWS PKCS11 PAL (rm_aws_pkcs11_pal)
	4.2.66 AWS PKCS11 PAL LITTLEFS (rm_aws_pkcs11_pal_littlefs)
	4.2.67 Bluetooth Low Energy Abstraction (rm_ble_abs)
	4.2.68 SD/MMC Block Media Implementation (rm_block_media_sdmmc)
	4.2.69 SPI Block Media Implementation (rm_block_media_spi)
	4.2.70 USB HMSC Block Media Implementation (rm_block_media_usb)
	4.2.71 User Block Media Implementation (rm_block_media_user)
	4.2.72 I2C Communicatons Middleware (rm_comms_i2c)
	4.2.73 SEGGER emWin Port (rm_emwin_port)
	4.2.74 Azure RTOS FileX Block Media I/O Driver (rm_filex_block_media)
	4.2.75 Azure RTOS FileX LevelX I/O Driver (rm_filex_levelx_nor)
	4.2.76 FreeRTOS+FAT Port (rm_freertos_plus_fat)
	4.2.77 FreeRTOS Plus TCP (rm_freertos_plus_tcp)
	4.2.78 FreeRTOS Port (rm_freertos_port)
	4.2.79 RTOS Context Management (rm_tz_context)
	4.2.80 FS2012 Sensor Middleware (rm_fs2012)
	4.2.81 Azure RTOS GUIX Port (rm_guix_port)
	4.2.82 HS300X Sensor Middleware (rm_hs300x)
	4.2.83 Azure RTOS LevelX NOR SPI Driver (rm_levelx_nor_spi)
	4.2.84 LittleFS Flash Port (rm_littlefs_flash)
	4.2.85 MCUboot Port (rm_mcuboot_port)
	4.2.86 Motor Current (rm_motor_current)
	4.2.87 Motor Driver (rm_motor_driver)
	4.2.88 Motor encoder vector control (rm_motor_encoder)
	4.2.89 Motor Angle and Speed Estimation (rm_motor_estimate)
	4.2.90 Motor Position (rm_motor_position)
	4.2.91 Motor Angle and Speed Calculation with an Encoder (rm_motor_sense_encoder)
	4.2.92 Motor Sensorless Vector Control (rm_motor_sensorless)
	4.2.93 Motor Speed (rm_motor_speed)
	4.2.94 Azure RTOS NetX Secure Crypto Hardware Acceleration (rm_netx_secure_crypto)
	4.2.95 Azure RTOS NetX Duo Ether Driver (rm_netxduo_ether)
	4.2.96 Azure RTOS NetX Duo WiFi Driver (rm_netxduo_wifi)
	4.2.97 Crypto Middleware (rm_psa_crypto)
	4.2.98 Azure RTOS ThreadX Port (rm_threadx_port)
	4.2.99 Intel TinyCrypt (rm_tinycrypt_port)
	4.2.100 Capacitive Touch Middleware (rm_touch)
	4.2.101 USBX Porting Layer (rm_usbx_port)
	4.2.102 Virtual EEPROM (rm_vee_flash)
	4.2.103 AWS Device Provisioning
	4.2.104 AWS HTTPS
	4.2.105 AWS MQTT
	4.2.106 Wifi Middleware (rm_wifi_onchip_silex)
	4.2.107 AWS Secure Sockets
	4.2.108 ZMOD4XXX Sensor Middleware (rm_zmod4xxx)

	4.3 Interfaces
	4.3.1 ADC Interface
	4.3.2 BLE Interface
	4.3.3 CAC Interface
	4.3.4 CAN Interface
	4.3.5 CEC Interface
	4.3.6 CGC Interface
	4.3.7 Comparator Interface
	4.3.8 CRC Interface
	4.3.9 CTSU Interface
	4.3.10 DAC Interface
	4.3.11 Display Interface
	4.3.12 DOC Interface
	4.3.13 ELC Interface
	4.3.14 Ethernet Interface
	4.3.15 Ethernet PHY Interface
	4.3.16 External IRQ Interface
	4.3.17 Flash Interface
	4.3.18 I2C Master Interface
	4.3.19 I2C Slave Interface
	4.3.20 I2S Interface
	4.3.21 I/O Port Interface
	4.3.22 JPEG Codec Interface
	4.3.23 Key Matrix Interface
	4.3.24 Low Power Modes Interface
	4.3.25 Low Voltage Detection Interface
	4.3.26 OPAMP Interface
	4.3.27 PDC Interface
	4.3.28 POEG Interface
	4.3.29 PTP Interface
	4.3.30 RTC Interface
	4.3.31 SD/MMC Interface
	4.3.32 SLCDC Interface
	4.3.33 SPI Interface
	4.3.34 SPI Flash Interface
	4.3.35 Three-Phase Interface
	4.3.36 Timer Interface
	4.3.37 Transfer Interface
	4.3.38 UART Interface
	4.3.39 USB Interface
	4.3.40 USB HCDC Interface
	4.3.41 USB HHID Interface
	4.3.42 USB HMSC Interface
	4.3.43 USB PCDC Interface
	4.3.44 USB PHID Interface
	4.3.45 USB PMSC Interface
	4.3.46 WDT Interface
	4.3.47 ADPCM Decoder Interface
	4.3.48 AUDIO PLAYBACK Interface
	4.3.49 BLE ABS Interface
	4.3.50 Block Media Interface
	4.3.51 Communicatons Middleware Interface
	4.3.52 FileX Block Media Port Interface
	4.3.53 FreeRTOS+FAT Port Interface
	4.3.54 FSXXXX Middleware Interface
	4.3.55 HS300X Middleware Interface
	4.3.56 LittleFS Interface
	4.3.57 Motor angle Interface
	4.3.58 Motor Interface
	4.3.59 Motor current Interface
	4.3.60 Motor driver Interface
	4.3.61 Motor position Interface
	4.3.62 Motor speed Interface
	4.3.63 Touch Middleware Interface
	4.3.64 Virtual EEPROM Interface
	4.3.65 ZMOD4XXX Middleware Interface
	4.3.66 SCE Interface

	Chapter 5 Copyright

