

Manual

PTP Clock Manager for Linux Management API

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 1
© 2021-2024 Renesas Electronics

This document lists the functions and type definitions of the C application programming interface to access and
configure the PTP Clock Manager (pcm4l) software.

Contents
1. Introduction ... 4

2. Type Definitions .. 4
2.1 T_CallbackFunctionPointer ... 4
2.2 T_cmnErrorCode .. 4
2.3 T_cmnLogDescription ... 4
2.4 T_cmnLogId .. 4
2.5 T_cmnMessageLevelRegister .. 5
2.6 T_gnssClockCategory .. 5
2.7 T_gnssSmState .. 5
2.8 T_ieee1588PortIdentity... 5
2.9 T_mngApiGnssStatus ... 6
2.10 T_mngApiLoStatus ... 6
2.11 T_mngApiLoLockStatus.. 6
2.12 T_mngApiServoMode ... 6
2.13 T_srvLoHoldoverType .. 6
2.14 T_srvLoStateId ... 7
2.15 T_srvOscillatorType .. 7
2.16 T_srvPacketRate .. 7
2.17 T_srvPdvValues ... 7
2.18 T_srvPhysicalClockCategory .. 7
2.19 T_mngApiAptsStatus .. 8
2.20 T_aptsSmState ... 8

3. Management API Functions ... 8
3.1 Holdover ... 8

3.1.1. mngApi_GetHoldoverLossPhysicalOosEnable... 8
3.1.2. mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable 8
3.1.3. mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable 9
3.1.4. mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb 9
3.1.5. mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb 10
3.1.6. mngApi_GetHoldoverTimeout .. 10
3.1.7. mngApi_SetHoldoverTimeout... 10
3.1.8. mngApi_GetHoldoverTimerValue ... 11
3.1.9. mngApi_GetHoldoverType ... 11
3.1.10. mngApi_SetHoldoverType ... 11
3.1.11. mngApi_ForceLoStateHoldover ... 12
3.1.12. mngApi_ClearForceLoStateHoldover ... 12

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 2

3.2 G.8273.2 Physical Layer Assistance .. 12
3.2.1. mngApi_GetPhysicalClockCategory ... 12
3.2.2. mngApi_SetPhysicalClockCategory ... 13
3.2.3. mngApi_GetPhysicalClockCategoryThreshold ... 13
3.2.4. mngApi_SetPhysicalClockCategoryThreshold ... 14
3.2.5. mngApi_GetPhysicalPllWaitToRestoreTimeoutValue .. 14
3.2.6. mngApi_SetPhysicalPllWaitToRestoreTimeoutValue ... 14

3.3 GNSS ... 15
3.3.1. mngApi_GetGnssClockCategory.. 15
3.3.2. mngApi_SetGnssClockCategory .. 15
3.3.3. mngApi_GetGnssClockCategoryThreshold .. 16
3.3.4. mngApi_SetGnssClockCategoryThreshold .. 16

3.4 Message Log .. 17
3.4.1. mngApi_OpenSyslog .. 17
3.4.2. mngApi_CloseSyslog ... 17
3.4.3. mngApi_GetListOfMessageLogs .. 17
3.4.4. mngApi_GetNumberOfMessageLogs ... 18
3.4.5. mngApi_CreateCallbackMessageLog .. 18
3.4.6. mngApi_CreateFileMessageLog .. 19
3.4.7. mngApi_DeleteMessageLog .. 19
3.4.8. mngApi_GetMessageLogLevel .. 19
3.4.9. mngApi_SetMessageLogLevel ... 20
3.4.10. mngApi_GetStdoutMessageLogLevel .. 20
3.4.11. mngApi_SetStdoutMessageLogLevel .. 20
3.4.12. mngApi_GetSyslogMessageLogLevel .. 21
3.4.13. mngApi_SetSyslogMessageLogLevel .. 21

3.5 Miscellaneous ... 22
3.5.1. mngApi_GetCurrentReferenceMaster .. 22
3.5.2. mngApi_GetEpochTimeSeconds ... 22
3.5.3. mngApi_GetLoStatus ... 23
3.5.4. mngApi_GetServoMode ... 23
3.5.5. mngApi_GetSoftwareVersion ... 23
3.5.6. mngApi_GetUnqualifiedTimeout... 24
3.5.7. mngApi_GetUnqualifiedTimerValue ... 24
3.5.8. mngApi_SetEpochTimeSeconds .. 25
3.5.9. mngApi_SetUnqualifiedTimeout ... 25
3.5.10. mngApi_GetGnssStatus ... 26

3.6 Reference Trackers .. 26
3.6.1. mngApi_ReferenceTracker_GetCount ... 26
3.6.2. mngApi_ReferenceTracker_GetList ... 26
3.6.3. mngApi_ReferenceTracker_GetDownlinkPacketRate (deprecated)..................................... 27
3.6.4. mngApi_RT_GetDownlinkPacketRate .. 27
3.6.5. mngApi_ReferenceTracker_GetUplinkPacketRate (deprecated) ... 27
3.6.6. mngApi_RT_GetUplinkPacketRate .. 28
3.6.7. mngApi_ReferenceTracker_GetFloorDelayEstimateSeconds (deprecated) 28
3.6.8. mngApi_RT_GetFloorDelayEstimateSeconds.. 29

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 3

3.6.9. mngApi_ReferenceTracker_SetFloorDelayEstimateSeconds (deprecated) 29
3.6.10. mngApi_RT_SetFloorDelayEstimateSeconds .. 30
3.6.11. mngApi_ReferenceTracker_GetHighPrecisionFrequencyCorrectionTime (deprecated) 30
3.6.12. mngApi_RT_GetHighPrecisionFrequencyCorrectionTime ... 31
3.6.13. mngApi_ReferenceTracker_SetHighPrecisionFrequencyCorrectionTime (deprecated) 31
3.6.14. mngApi_RT_SetHighPrecisionFrequencyCorrectionTime .. 32
3.6.15. mngApi_ReferenceTracker_GetOscillatorType (deprecated) ... 32
3.6.16. mngApi_RT_GetOscillatorType .. 33
3.6.17. mngApi_ReferenceTracker_SetOscillatorType (deprecated) ... 33
3.6.18. mngApi_RT_SetOscillatorType .. 34
3.6.19. mngApi_ReferenceTracker_GetPdvThreshold (deprecated).. 34
3.6.20. mngApi_RT_GetPdvThreshold... 34
3.6.21. mngApi_ReferenceTracker_SetPdvThreshold (deprecated) .. 35
3.6.22. mngApi_RT_SetPdvThreshold ... 35
3.6.23. mngApi_ReferenceTracker_GetPdvThresholdExceededHysteresis (deprecated) 36
3.6.24. mngApi_RT_GetPdvThresholdExceededHysteresis .. 36
3.6.25. mngApi_ReferenceTracker_SetPdvThresholdExceededHysteresis (deprecated) 36
3.6.26. mngApi_RT_SetPdvThresholdExceededHysteresis .. 37
3.6.27. mngApi_ReferenceTracker_GetStationarityMeasure1LowerBound (deprecated) 37
3.6.28. mngApi_RT_GetStationarityMeasure1LowerBound ... 38
3.6.29. mngApi_ReferenceTracker_SetStationarityMeasure1LowerBound (deprecated) 38
3.6.30. mngApi_RT_SetStationarityMeasure1LowerBound ... 39
3.6.31. mngApi_ReferenceTracker_GetStationarityMeasure1UpperBound (deprecated) 39
3.6.32. mngApi_RT_GetStationarityMeasure1UpperBound ... 39
3.6.33. mngApi_ReferenceTracker_SetStationarityMeasure1UpperBound (deprecated) 40
3.6.34. mngApi_RT_SetStationarityMeasure1UpperBound ... 40
3.6.35. mngApi_ReferenceTracker_GetWillCorrectFrequencyAtFirstSnap (deprecated) 41
3.6.36. mngApi_RT_GetWillCorrectFrequencyAtFirstSnap .. 41
3.6.37. mngApi_ReferenceTracker_SetWillCorrectFrequencyAtFirstSnap (deprecated) 42
3.6.38. mngApi_RT_SetWillCorrectFrequencyAtFirstSnap .. 42
3.6.39. mngApi_ReferenceTracker_GetFfoSlopeLimitPpbPerSecond (deprecated) 43
3.6.40. mngApi_RT_GetFfoSlopeLimitPpbPerSecond ... 43
3.6.41. mngApi_ReferenceTracker_SetFfoSlopeLimitPpbPerSecond (deprecated) 44
3.6.42. mngApi_RT_SetFfoSlopeLimitPpbPerSecond ... 44

4. Revision History ... 45

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 4

1. Introduction
The file idtCore/management/include/mngApi/mngApi.h contains the relevant header definitions to be included
by the calling software for the pcm4l management API functions.

2. Type Definitions
The following type definitions are listed in alphabetical order.

2.1 T_CallbackFunctionPointer
idtCommon/include/messageLog/cmnCallbackLog.h

typedef void (*T_CallbackFunctionPointer)(T_cmnMessageData const *);

2.2 T_cmnErrorCode
idtCommon/include/cmnErrorCode.h

typedef enum

{

 E_cmnErrorCode_OK = 0, /* Command was successful */

 E_cmnErrorCode_ResponseTimeout = 1, /* Response message was not received before

 response timeout */

 E_cmnErrorCode_FunctionNotSupported = 2, /* Function not supported */

 E_cmnErrorCode_InvalidMaster = 3, /* Invalid master */

 E_cmnErrorCode_NoTextStringFound = 4, /* No corresponding text string mapped */

 E_cmnErrorCode_NotConfigured = 5, /* Value was not configured */

 E_cmnErrorCode_NotAccepted = 6, /* Action not accepted, function busy */

 E_cmnErrorCode_InvalidValue = 7, /* Value is invalid */

 E_cmnErrorCode_CallbackNotRegistered = 8, /* Callback function is not registered */

 E_cmnErrorCode_TimerFailed = 9, /* Timer failed */

 E_cmnErrorCode_CallbackReturnsFailure = 10, /* Callback function returns failure */

 E_cmnErrorCode_BestMasterNotFound = 11, /* <Best master not found */

 E_cmnErrorCode_FailedToRetrievePortID = 12, /* Failed to retrieve the port ID (clockID) */

 E_cmnErrorCode_InvalidApiCommand = 13, /* Invalid API Command */

 E_cmnErrorCode_GeneralError = 14, /* General Error */

 E_cmnErrorCode_IncorrectParameters = 15, /* Parameters are not correct */

 E_cmnErrorCode_Max

} T_cmnErrorCode;

2.3 T_cmnLogDescription
idtCommon/include/messageLog/cmnMessageLog.h

typedef struct

{

 T_cmnLogId id;

 T_cmnLogType type;

 T_cmnMessageLevelRegister messageLevelMask;

 char description[CMN_LOGDESCRIPTION_LIMIT];

} T_cmnLogDescription;

2.4 T_cmnLogId
idtCommon/include/messageLog/cmnMessageLog.h

typedef T_osInt16 T_cmnLogId;

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 5

2.5 T_cmnMessageLevelRegister
idtCommon/include/cmnTypeDef.h

typedef T_osUint16 T_cmnMessageLevelRegister;

Bit mask is the same as the JSON “selectionMask”:

 "selectionMask": "0000000000011111",

 | ||||||___ 0: Sync error

 | |||||____ 1: Sync warning

 | ||||_____ 2: Sync analysis

 | |||______ 3: Error

 | ||_______ 4: Warning

 | |________ 5: Debug

 |__________ 7: Timestamp

2.6 T_gnssClockCategory
idtCommon/include/cmnTypeDef.h

typedef enum

{

 E_GNSS_CLOCK_CATEGORY_ACTIVE = 1,

 E_GNSS_CLOCK_CATEGORY_VOID = 2

} T_gnssClockCategory;

2.7 T_gnssSmState
idtCore/management/include/mngGnssSupervisor.h

typedef enum

{

 E_gnssState_Unqualified,

 E_gnssState_WaitFirstTodRead,

 E_gnssState_Locked,

 E_gnssState_Holdover,

 E_gnssState_Disabled,

 E_gnssState_Max

} T_gnssSmState;

2.8 T_ieee1588PortIdentity
typedef struct

{

 T_ieee1588ClockIdentity clockIdentity;

 T_osUint16 portNumber;

} T_ieee1588PortIdentity;

typedef struct

{

 T_osUint8 clockId[IDT_CLKID_BYTE_SIZE];

} T_ieee1588ClockIdentity;

where IDT_CLKID_BYTE_SIZE = 8

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 6

2.9 T_mngApiGnssStatus
idtCore/management/include/mngApi/mngApi.h

typedef struct

{

 T_gnssSmState gnssStatus;

} T_mngApiGnssStatus;

2.10 T_mngApiLoStatus
idtCore/management/include/mngApi/mngApi.h

typedef struct

{

 T_mngApiLoLockStatus lockStatus;

 T_osBool qualifiedHoldover;

 T_srvLoStateId loStateId;

 T_osChar loStateName[CMN_NAME_MAX_LENGTH];

} T_mngApiLoStatus;

where CMN_NAME_MAX_LENGTH = 60 by default.

2.11 T_mngApiLoLockStatus
idtCore/management/include/mngApi/mngApi.h

typedef enum

{

 E_mngApiLoNeverLocked,

 E_mngApiLoFrequencyLockedOnce,

 E_mngApiLoTimeLockedOnce,

 E_mngApiLoLockStatus_Max

} T_mngApiLoLockStatus;

2.12 T_mngApiServoMode
idtCommon/management/include/mngApi/mngApi.h

typedef enum

{

 E_mngApiServoMode_Time,

 E_mngApiServoMode_Frequency,

 E_mngApiServoMode_Max

} T_mngApiServoMode;

2.13 T_srvLoHoldoverType
idtCommon/include/cmnTypeDef.h

typedef enum

{

 E_srvLoHoldoverType_Software,

 E_srvLoHoldoverType_Hardware,

 E_srvLoHoldoverType_Max

} T_srvLoHoldoverType;

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 7

2.14 T_srvLoStateId
idtCommon/include/cmnLoStateId.h

typedef enum

{

 E_srvLoInitialState = 0,
 E_srvLoUnqualifiedState = 1,

 E_srvLoLockAcqState = 2,

 E_srvLoFrequencyLockedState = 3,

 E_srvLoTimeLockedState = 4,

 E_srvLoHoldoverInSpecState = 5,

 E_srvLoHoldoverOutOfSpecState = 6,

 E_srvLoFreeRunState = 7,

 E_srvNumberLoStates = 8,

 E_srvLoStateInvalid = 9

} T_T_srvLoStateId;

2.15 T_srvOscillatorType
idtCommon/include/cmnOscillatorTypes.h

typedef enum

{

 E_srvTcxo,

 E_srvMiniOcxo,

 E_srvOcxo,

 E_srvDocxo

} T_srvOscillatorType;

2.16 T_srvPacketRate
typedef T_osDouble T_srvPacketRate;

2.17 T_srvPdvValues
idtCommon/include/cmnTypeDef.h

typedef struct

{

 T_osDouble downlink;

 T_osDouble uplink;

} T_srvPdvValues;

2.18 T_srvPhysicalClockCategory
typedef enum

{

 E_CATEGORY1 = 1,

 E_CATEGORY2 = 2,

 E_CATEGORY3 = 3,

 E_CATEGORY4 = 4,

 E_CATEGORY_DNU = 5, /* Do Not Use */

 E_CATEGORY_INVALID = 6

} T_srvPhysicalClockCategory;

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 8

2.19 T_mngApiAptsStatus
idtCore/management/include/mngApi/mngApi.h

typedef struct

{

 T_aptsSmState aptsStatus;

} T_mngApiAptsStatus;

2.20 T_aptsSmState
idtCore/management/include/mngAptsSupervisor.h

typedef enum

{

 E_aptsState_GnssUnqualified,

 E_aptsState_WaitFirstTodRead,

 E_aptsState_GnssLocked,

 E_aptsState_GnssHoldover,

 E_aptsState_GnssDisabled,

 E_aptsState_Max

} T_aptsSmState;

3. Management API Functions
The following management API functions are grouped into categories and related functionality.

3.1 Holdover
3.1.1. mngApi_GetHoldoverLossPhysicalOosEnable
T_cmnErrorCode mngApi_GetHoldoverLossPhysicalOosEnable(T_osBool *holdoverLossPhysicalOosEnable);

DESCRIPTION

 Get the holdover loss of traceability of physical layer out-of-specification enable.

ARGUMENTS

 INPUTS
None

 OUTPUT
holdoverLossPhysicalOosEnable – E_osTrue if enabled, E_osFalse otherwise.

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.2. mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable
T_cmnErrorCode mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable(T_osBool *enable);

DESCRIPTION

 Get holdover out of specification user defined frequency offset enable.

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 9

ARGUMENTS

 INPUTS
None

 OUTPUT
Enable – E_osTrue - use user defined frequency offset when in out of spec holdover, E_osFalse - use
computed holdover value.

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.3. mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable
T_cmnErrorCode mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable(T_osBool enable);

DESCRIPTION

 Set holdover out of specification user defined frequency offset enable.

ARGUMENTS

 INPUTS
Enable – E_osTrue - use user defined frequency offset when in out of spec holdover, E_osFalse - use
computed holdover value.

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.4. mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb
T_cmnErrorCode mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb(T_osDouble *offsetPpb);

DESCRIPTION

 Get holdover out of spec user defined frequency offset.

ARGUMENTS

 INPUTS
None

 OUTPUT
offsetPpb – frequency offset in parts per billion, 10^9

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 10

3.1.5. mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb
T_cmnErrorCode mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb(T_osDouble offsetPpb);

DESCRIPTION

 Set holdover out of spec user defined frequency offset.

ARGUMENTS

 INPUTS
offsetPpb – frequency offset in parts per billion, 10^9

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.6. mngApi_GetHoldoverTimeout
T_cmnErrorCode mngApi_GetHoldoverTimeout(T_osUint32 *timeout);

DESCRIPTION

 Get the holdover timeout.

ARGUMENTS

 INPUTS
None

 OUTPUT
timeout – holdover timeout in seconds

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.7. mngApi_SetHoldoverTimeout
T_cmnErrorCode mngApi_SetHoldoverTimeout(T_osUint32 const timeout);

DESCRIPTION

 Get the holdover timeout.

ARGUMENTS

 INPUTS
timeout – holdover timeout in seconds

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 11

3.1.8. mngApi_GetHoldoverTimerValue
T_cmnErrorCode mngApi_GetHoldoverTimerValue(T_osUint32 *timeRemainingSeconds);

DESCRIPTION

 Get the holdover timer remaining time.

ARGUMENTS

 INPUTS
None

 OUTPUT
timeRemainingSeconds – holdover timer remaining time in seconds, 0 means timer is not running.

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.9. mngApi_GetHoldoverType
T_cmnErrorCode mngApi_GetHoldoverType(T_srvLoHoldoverType *holdoverType);

DESCRIPTION

 Get the holdover type.

ARGUMENTS

 INPUTS
None

 OUTPUT
holdoverType – holdover type (software/hardware).

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.10. mngApi_SetHoldoverType
T_cmnErrorCode mngApi_SetHoldoverType(T_srvLoHoldoverType const holdoverType);

DESCRIPTION

 Set the holdover type.

ARGUMENTS

 INPUTS
holdoverType – holdover type (software/hardware)

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 12

3.1.11. mngApi_ForceLoStateHoldover
T_cmnErrorCode mngApi_ForceLoStateHoldover(void);

DESCRIPTION

 Force the LO State Machine into Holdover state.

ARGUMENTS

 INPUTS
None

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.1.12. mngApi_ClearForceLoStateHoldover
T_cmnErrorCode mngApi_ClearForceLoStateHoldover(void);

DESCRIPTION

 Clear Force Holdover state.

ARGUMENTS

 INPUTS
None

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.2 G.8273.2 Physical Layer Assistance
3.2.1. mngApi_GetPhysicalClockCategory
T_cmnErrorCode mngApi_GetPhysicalClockCategory(T_srvPhysicalClockCategory *physicalClockCategory);

DESCRIPTION

 Get physical layer clock category.

ARGUMENTS

 INPUTS
None

 OUTPUT
physicalClockCategory – physical layer clock category

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 13

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.2.2. mngApi_SetPhysicalClockCategory
T_cmnErrorCode mngApi_SetPhysicalClockCategory(T_srvPhysicalClockCategory physicalClockCategory);

DESCRIPTION

 Set physical layer clock category.

ARGUMENTS

 INPUTS
physicalClockCategory – physical layer clock category

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.2.3. mngApi_GetPhysicalClockCategoryThreshold
T_cmnErrorCode mngApi_GetPhysicalClockCategoryThreshold(
 T_srvPhysicalClockCategory *physicalClockCategoryThreshold);

DESCRIPTION

 Get physical layer clock category threshold.

ARGUMENTS

 INPUTS
None

 OUTPUT
physicalClockCategory – physical layer clock category threshold

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 14

3.2.4. mngApi_SetPhysicalClockCategoryThreshold
T_cmnErrorCode mngApi_SetPhysicalClockCategoryThreshold (
 T_srvPhysicalClockCategory phyClockCategoryThreshold);

DESCRIPTION

 Set physical layer clock category.

ARGUMENTS

 INPUTS
physicalClockCategory – physical layer clock category

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.2.5. mngApi_GetPhysicalPllWaitToRestoreTimeoutValue
T_cmnErrorCode mngApi_GetPhysicalPllWaitToRestoreTimeoutValue(
 T_osUint16 *physicalPllWaitToRestoreTimeoutValue);

DESCRIPTION

 Get physical PLL wait to restore timeout value.

ARGUMENTS

 INPUTS
None

 OUTPUT
physicalPllWaitToRestoreTimeoutValue – physical PLL wait to restore timeout value

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.2.6. mngApi_SetPhysicalPllWaitToRestoreTimeoutValue
T_cmnErrorCode mngApi_SetPhysicalPllWaitToRestoreTimeoutValue(
 T_osUint16 physicalPllWaitToRestoreTimeoutValue);

DESCRIPTION

 Set physical PLL wait to restore timeout value.

ARGUMENTS

 INPUTS
physicalPllWaitToRestoreTimeoutValue – physical PLL wait to restore timeout value

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 15

3.3 GNSS
3.3.1. mngApi_GetGnssClockCategory
T_cmnErrorCode mngApi_GetGnssClockCategory(T_gnssClockCategory *gnssClockCategory);

DESCRIPTION

 Get GNSS clock category.

ARGUMENTS

 INPUTS
None

 OUTPUT
gnssClockCategory – GNSS clock category

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.3.2. mngApi_SetGnssClockCategory
T_cmnErrorCode mngApi_SetGnssClockCategory(T_gnssClockCategory gnssClockCategory);

DESCRIPTION

 Set GNSS clock category.

ARGUMENTS

 INPUTS
gnssClockCategory – GNSS clock category

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 16

3.3.3. mngApi_GetGnssClockCategoryThreshold
T_cmnErrorCode mngApi_GetGnssClockCategoryThreshold(
 T_gnssClockCategory *gnssClockCategoryThreshold);

DESCRIPTION

 Get GNSS clock category threshold.

ARGUMENTS

 INPUTS
None

 OUTPUT
gnssClockCategory – GNSS clock category threshold

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.3.4. mngApi_SetGnssClockCategoryThreshold
T_cmnErrorCode mngApi_SetGnssClockCategoryThreshold(
 T_gnssClockCategory gnssClockCategoryThreshold);

DESCRIPTION

 Set GNSS clock category threshold.

ARGUMENTS

 INPUTS
gnssClockCategory – GNSS clock category threshold

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 17

3.4 Message Log
3.4.1. mngApi_OpenSyslog
T_cmnErrorCode mngApi_OpenSyslog(T_osChar const *syslogIpAddress,
 T_osUint16 udpPort,
 T_cmnMessageLevelRegister messageLevelMask);

DESCRIPTION

 Open syslog socket with IPv4 address and udpPort.

ARGUMENTS

 INPUTS
syslogIpAddress – pointer to string representation of IPv4 address, ex. "123.0.0.1"
udpPort – UDP port
messageLevelMask – message level bit field mask, see 2.5

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.4.2. mngApi_CloseSyslog
T_cmnErrorCode mngApi_CloseSyslog(void);

DESCRIPTION

 Close syslog socket.

ARGUMENTS

 INPUTS
None

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – Always

3.4.3. mngApi_GetListOfMessageLogs
T_cmnErrorCode mngApi_GetListOfMessageLogs(T_cmnLogDescription *messageLogDescriptors,
 T_osUint8 *numberOfMessageLogs);

DESCRIPTION

 Get array of message logs.
Use mngApi_GetNumberOfMessageLogs to get number of message logs to allocate size of array.

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 18

ARGUMENTS

 INPUTS
messageLogDescriptors – pointer to array of, see 2.3
numberOfMessageLogs – maximum size of the array messageLogDescriptor points to

 OUTPUT
numberOfMessageLogs – the number of message logs returned.

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.4.4. mngApi_GetNumberOfMessageLogs
T_cmnErrorCode mngApi_GetNumberOfMessageLogs(T_osUint8 *numberOfMessageLogs);

DESCRIPTION

 Get number of message logs. Intended to be used to size the T_cmnLogDescription array for
mngApi_GetListOfMessageLogs.

ARGUMENTS

 INPUTS
None

 OUTPUT
numberOfMessageLogs – the number of active message logs

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.4.5. mngApi_CreateCallbackMessageLog
T_cmnErrorCode mngApi_CreateCallbackMessageLog (T_CallbackFunctionPointer userCallback,
 T_cmnMessageLevelRegister const messageLevels,
 T_cmnLogId *messageLogId);

DESCRIPTION

 Create a callback message log. Calls the user registered callback function with the message log string.

ARGUMENTS

 INPUTS
userCallback – callback function of type T_CallbackFunctionPointer
messageLevels – message level bit field mask, see 2.5

 OUTPUT
messageLogId – identifier for created message log

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 19

3.4.6. mngApi_CreateFileMessageLog
T_cmnErrorCode mngApi_CreateFileMessageLog(T_osChar const *fullyQualifiedFilename,
 T_cmnMessageLevelRegister const messageLevels,
 T_osBool const purge,
 T_osUint32 const maxSize,
 T_osUint8 const archives,
 T_cmnLogId *messageLogId);

DESCRIPTION

 Open a message log.

ARGUMENTS

 INPUTS
fullyQualifiedFilename – maximum length, See CMN_MAX_FULL_LOG_FILE_NAME_LIMIT.
 ex. "./createTest1.txt"
messageLevels – message level bit field mask, see 2.5
purge – 0 append to existing file, 1 delete existing files
maxSize – size in bytes, maximum file size before archiving
archive – maximum number of archives

 OUTPUT
messageLogId – identifier for created message log

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.4.7. mngApi_DeleteMessageLog
T_cmnErrorCode mngApi_DeleteMessageLog(T_cmnLogId messageLogId);

DESCRIPTION

 Delete a message log.

ARGUMENTS

 INPUTS
messageLogId – identifier for created message log

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.4.8. mngApi_GetMessageLogLevel
T_cmnErrorCode mngApi_GetMessageLogLevel(T_cmnLogId messageLogId,
 T_cmnMessageLevelRegister *messageLevelMask);

DESCRIPTION

 Get message log level.

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 20

ARGUMENTS

 INPUTS
messageLogId – identifier for message log

 OUTPUT
messageLevelMask – message level bit field mask, see 2.5

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.4.9. mngApi_SetMessageLogLevel
T_cmnErrorCode mngApi_SetMessageLogLevel(T_cmnLogId messageLogId,
 T_cmnMessageLevelRegister messageLevelMask);

DESCRIPTION

 Set message log level.

ARGUMENTS

 INPUTS
messageLogId – identifier for message log.
messageLevelMask – message level bit field mask, see 2.5

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.4.10. mngApi_GetStdoutMessageLogLevel
T_cmnErrorCode mngApi_GetStdoutMessageLogLevel(T_cmnMessageLevelRegister *messageLevelMask);

DESCRIPTION

 Get STDOUT message log level.

ARGUMENTS

 INPUTS
None

 OUTPUT
messageLevelMask – message level bit field mask, see 2.5

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.4.11. mngApi_SetStdoutMessageLogLevel
T_cmnErrorCode mngApi_SetStdoutMessageLogLevel(T_cmnMessageLevelRegister messageLevelMask);

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 21

DESCRIPTION

 Set STDOUT message log level.

ARGUMENTS

 INPUTS
messageLevelMask – message level bit field mask, see 2.5

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.4.12. mngApi_GetSyslogMessageLogLevel
T_cmnErrorCode mngApi_GetSyslogMessageLogLevel(T_cmnMessageLevelRegister *messageLevelMask);

DESCRIPTION

 Get syslog message log level.

ARGUMENTS

 INPUTS
None

 OUTPUT
messageLevelMask – message level bit field mask, see 2.5

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.4.13. mngApi_SetSyslogMessageLogLevel
T_cmnErrorCode mngApi_SetSyslogMessageLogLevel(T_cmnMessageLevelRegister messageLevelMask);

DESCRIPTION

 Set syslog message log level.

ARGUMENTS

 INPUTS
messageLevelMask – message level bit field mask, see 2.5

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 22

3.5 Miscellaneous
3.5.1. mngApi_GetCurrentReferenceMaster
T_cmnErrorCode mngApi_GetCurrentReferenceMaster(T_ieee1588PortIdentity *portIdentity);

DESCRIPTION

 Get the current selected reference master.

ARGUMENTS

 INPUTS
None

 OUTPUT
portIdentity – current LO state reference master

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotConfigured – if no LO state reference master was configured
E_cmnErrorCode_ResponseTimeout – if no response received within response timeout period

3.5.2. mngApi_GetEpochTimeSeconds
T_cmnErrorCode mngApi_GetEpochTimeSeconds(T_osUint64 *seconds)

DESCRIPTION

 Get the current seconds portion of the PTP DPLL Time of Day (ToD) counter.

ARGUMENTS

 INPUTS
None

 OUTPUT
seconds – PTP DPLL ToD counter seconds portion value

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_ResponseTimeout – if no response received within response timeout period

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 23

3.5.3. mngApi_GetLoStatus
T_cmnErrorCode mngApi_GetLoStatus(T_mngApiLoStatus *currentLoStatus);

DESCRIPTION

 Get the LO state machine status.

ARGUMENTS

 INPUTS
None

 OUTPUT
currentLoStatus – pointer to T_mngApiLoStatus structure

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.5.4. mngApi_GetServoMode
T_cmnErrorCode mngApi_GetServoMode(T_mngApiServoMode *servoMode);

DESCRIPTION

 Get servo mode.
Frequency Reference tracker will return E_mngApiServoMode_Frequency, all other reference trackers return
E_mngApiServoMode_Time.

ARGUMENTS

 INPUTS
None

 OUTPUT
servoMode – E_mngApiServoMode_Time or E_mngApiServoMode_Frequency

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.5.5. mngApi_GetSoftwareVersion
T_cmnErrorCode mngApi_GetSoftwareVersion(char const **releaseId,
 char const **commitId);

DESCRIPTION

 Get the software release ID and commit ID strings.
The CMN_RELEASE_ID and CMN_COMMIT_ID are defined in cmnVersionId.h.

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 24

ARGUMENTS

 INPUTS
None

 OUTPUT
releaseId – pointer to a release ID string, xx.yy.zz
commitId – pointer to a Git commit ID

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.5.6. mngApi_GetUnqualifiedTimeout
T_cmnErrorCode mngApi_GetUnqualifiedTimeout(T_osUint32 *timeout);

DESCRIPTION

 Get the holdover unqualified timeout.
Matches the JSON configuration “unqualifiedTimeoutSeconds” holdover value.

ARGUMENTS

 INPUTS
None

 OUTPUT
timeout – unqualified timeout in seconds

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.5.7. mngApi_GetUnqualifiedTimerValue
T_cmnErrorCode mngApi_GetUnqualifiedTimerValue(T_osUint32 *timeRemainingSeconds);

DESCRIPTION

 Get the holdover timer remaining time.

ARGUMENTS

 INPUTS
None

 OUTPUT
timeRemainingSeconds – holdover timer remaining time in seconds, 0 means timer is not running.

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 25

3.5.8. mngApi_SetEpochTimeSeconds
T_cmnErrorCode mngApi_SetEpochTimeSeconds(T_osUint64 const seconds);

DESCRIPTION

 Set seconds portion of the PTP DPLL Time of Day (ToD) counter, the nanoseconds will be unchanged.

 Should only be called when there is no PTP master available
 Frequency lock is maintained while the seconds is updated because the nanoseconds portion is unchanged
 There should be at least 10 seconds between calls to this function

When using AdaptiveTimeAssist and PTP is not present, this function will set the seconds part of the system ToD.
The nanoseconds part will come from the external 1 Hz edge. The time stampers will then be aligned to the system
ToD.
When using AdaptiveTimeAssist and PTP is present, PTP will be the source of the system ToD.
The GNSS measurement channel is controlled by the AdaptiveTimeAssist tracker in pcm4l and should not be
modified outside of pcm4l.

ARGUMENTS

 INPUTS
seconds – Epoch time seconds only, nanoseconds will be unchanged

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.5.9. mngApi_SetUnqualifiedTimeout
T_cmnErrorCode mngApi_SetUnqualifiedTimeout(T_osUint32 const timeout);

DESCRIPTION

 Set the holdover unqualified timeout.
Matches the JSON configuration “unqualifiedTimeoutSeconds” holdover value.

ARGUMENTS

 INPUTS
timeout – unqualified timeout in seconds

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 26

3.5.10. mngApi_GetGnssStatus
T_cmnErrorCode mngApi_GetGnssStatus(T_mngApiGnssStatus *currentGnssStatus);

DESCRIPTION

 Get the GNSS state machine status.

ARGUMENTS

 INPUTS
None

 OUTPUT
currentGnssStatus – pointer to T_mngApiGnssStatus structure.
Transient state E_gnssState_WaitFirstTodRead reports as E_gnssState_Unqualified.

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6 Reference Trackers
3.6.1. mngApi_ReferenceTracker_GetCount
T_cmnErrorCode mngApi_ReferenceTracker_GetCount(T_osUint8 *numberOfReferenceTrackers);

DESCRIPTION

 Get number of reference trackers.

ARGUMENTS

 INPUTS
None

 OUTPUT
numberOfReferenceTrackers – the number of reference trackers

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_ResponseTimeout – if no response received within response timeout period

3.6.2. mngApi_ReferenceTracker_GetList
T_cmnErrorCode mngApi_ReferenceTracker_GetList(T_cmnReferenceTracker *referenceTrackerList,
 T_osUint8 *numberOfReferenceTrackers);

DESCRIPTION

 Get list of reference trackers. Use mngApi_GetNumberOfReferenceTrackers to get number to allocate size of array.

ARGUMENTS

 INPUTS
referenceTrackerList – pointer to array of T_cmnReferenceTracker
numberOfReferenceTrackers – the maximum size of the array that referenceTrackerList is pointing to.

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 27

 OUTPUT
numberOfReferenceTrackers – the number of message logs in the list

RETURN

 E_cmnErrorCode_OK – On success
E_cmnErrorCode_NotAccepted – Otherwise

3.6.3. mngApi_ReferenceTracker_GetDownlinkPacketRate (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetDownlinkPacketRate(
 T_osUint16 stackInstNumber,
 T_srvPacketRate *packetsPerSecond);

DESCRIPTION

 Get the downlink (sync) packet rate.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
packetsPerSecond – packet rate

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.4. mngApi_RT_GetDownlinkPacketRate
T_cmnErrorCode mngApi_RT_GetDownlinkPacketRate(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvPacketRate *packetsPerSecond);

DESCRIPTION

 Get the downlink (sync) packet rate.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
packetsPerSecond – packet rate

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.5. mngApi_ReferenceTracker_GetUplinkPacketRate (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetUplinkPacketRate(
 T_osUint16 stackInstNumber,
 T_srvPacketRate *packetsPerSecond);

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 28

DESCRIPTION

 Get the uplink (delay request) packet rate.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
packetsPerSecond – packet rate

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.6. mngApi_RT_GetUplinkPacketRate
T_cmnErrorCode mngApi_RT_GetUplinkPacketRate(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvPacketRate *packetsPerSecond);

DESCRIPTION

 Get the uplink (delay request) packet rate.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
packetsPerSecond – packet rate

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.7. mngApi_ReferenceTracker_GetFloorDelayEstimateSeconds (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetFloorDelayEstimateSeconds(
 T_osUint16 stackInstNumber,
 T_osDouble *floorDelayEstimate);

DESCRIPTION

 Get the floor delay estimate, units in seconds.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
floorDelayEstimate – floor delay estimate

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 29

3.6.8. mngApi_RT_GetFloorDelayEstimateSeconds
T_cmnErrorCode mngApi_RT_GetFloorDelayEstimateSeconds(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *floorDelayEstimate);

DESCRIPTION

 Get the floor delay estimate, units in seconds.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
floorDelayEstimate – floor delay estimate

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.9. mngApi_ReferenceTracker_SetFloorDelayEstimateSeconds (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetFloorDelayEstimateSeconds(
 T_osUint16 stackInstNumber,
 T_osDouble *floorDelayEstimate);

DESCRIPTION

 Set the floor delay estimate, units in seconds.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
floorDelayEstimate – floor delay estimate

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 30

3.6.10. mngApi_RT_SetFloorDelayEstimateSeconds
T_cmnErrorCode mngApi_RT_SetFloorDelayEstimateSeconds(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *floorDelayEstimate);

DESCRIPTION

 Set the floor delay estimate, units in seconds.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
floorDelayEstimate – floor delay estimate

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.11. mngApi_ReferenceTracker_GetHighPrecisionFrequencyCorrectionTime
(deprecated)

T_cmnErrorCode mngApi_ReferenceTracker_GetHighPrecisionFrequencyCorrectionTime(
 T_osUint16 stackInstNumber,
 T_osDouble *correctionTimeMinutes);

DESCRIPTION

 Get the high precision frequency correction time, units in minutes.
This parameter is the value set by the JSON configuration file parameter
“highPrecisionFrequencyCorrectionTimeMinutes”.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
correctionTimeMinutes – time in minutes servo will gather timestamps

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 31

3.6.12. mngApi_RT_GetHighPrecisionFrequencyCorrectionTime
T_cmnErrorCode mngApi_RT_GetHighPrecisionFrequencyCorrectionTime(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *correctionTimeMinutes);

DESCRIPTION

 Get the high precision frequency correction time, units in minutes.
This parameter is the value set by the JSON configuration file parameter
“highPrecisionFrequencyCorrectionTimeMinutes”.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
correctionTimeMinutes – time in minutes servo will gather timestamps

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.13. mngApi_ReferenceTracker_SetHighPrecisionFrequencyCorrectionTime
(deprecated)

T_cmnErrorCode mngApi_ReferenceTracker_SetHighPrecisionFrequencyCorrectionTime(
 T_osUint16 stackInstNumber,
 T_osDouble *correctionTimeMinutes);

DESCRIPTION

 Set the high precision frequency correction time, units in minutes.
This parameter is the value set by the JSON configuration file parameter
“highPrecisionFrequencyCorrectionTimeMinutes”.
For an adaptive time reference tracker, a high precision frequency and time estimation and correction will be
performed before entering time tracking mode. This parameter determines how long the high precision frequency and
time estimation takes. The longer it takes, the more accurate the correction will be. With a good network condition, in
other words, low PDV, the value of this parameter could be small, for example, 2. For a large PDV condition, the
value should be set to a bigger value, for example, 4 or 8, or even bigger.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
correctionTimeMinutes – time in minutes servo will gather timestamps

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 32

3.6.14. mngApi_RT_SetHighPrecisionFrequencyCorrectionTime
T_cmnErrorCode mngApi_RT_SetHighPrecisionFrequencyCorrectionTime(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *correctionTimeMinutes);

DESCRIPTION

 Set the high precision frequency correction time, units in minutes.
This parameter is the value set by the JSON configuration file parameter
“highPrecisionFrequencyCorrectionTimeMinutes”.
For an adaptive time reference tracker, a high precision frequency and time estimation and correction will be
performed before entering time tracking mode. This parameter determines how long the high precision frequency and
time estimation takes. The longer it takes, the more accurate the correction will be. With a good network condition, in
other words, low PDV, the value of this parameter could be small, for example, 2. For a large PDV condition, the
value should be set to a bigger value, for example, 4 or 8, or even bigger.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
correctionTimeMinutes – time in minutes servo will gather timestamps

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.15. mngApi_ReferenceTracker_GetOscillatorType (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetOscillatorType(
 T_osUint16 stackInstNumber,
 T_srvOscillatorType *oscillatorType);

DESCRIPTION

 Get the oscillator type.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
oscillatorType – oscillator type, see T_srvOscillatorType

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 33

3.6.16. mngApi_RT_GetOscillatorType
T_cmnErrorCode mngApi_RT_GetOscillatorType(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvOscillatorType *oscillatorType);

DESCRIPTION

 Get the oscillator type.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
oscillatorType – oscillator type, see T_srvOscillatorType

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.17. mngApi_ReferenceTracker_SetOscillatorType (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetOscillatorType(
 T_osUint16 stackInstNumber,
 T_srvOscillatorType *oscillatorType);

DESCRIPTION

 Set the oscillator type.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
oscillatorType – oscillator type, see T_srvOscillatorType

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 34

3.6.18. mngApi_RT_SetOscillatorType
T_cmnErrorCode mngApi_RT_SetOscillatorType(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvOscillatorType *oscillatorType);

DESCRIPTION

 Set the oscillator type.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
oscillatorType – oscillator type, see T_srvOscillatorType

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.19. mngApi_ReferenceTracker_GetPdvThreshold (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetPdvThreshold(
 T_osUint16 stackInstNumber,
 T_srvPdvValues *pdvThreshold);

DESCRIPTION

 Get the PDV threshold.
This parameter is used to determine PTSF unusable based on the log variance of the PDV. If the log variance
exceeds the PDV threshold, PTSF unusable is set.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
pdvThreshold – See T_srvPdvValues, log variance range is {-100 - 0}

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.20. mngApi_RT_GetPdvThreshold
T_cmnErrorCode mngApi_RT_GetPdvThreshold(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvPdvValues *pdvThreshold);

DESCRIPTION

 Get the PDV threshold.
This parameter is used to determine PTSF unusable based on the log variance of the PDV. If the log variance
exceeds the PDV threshold, PTSF unusable is set.

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 35

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
pdvThreshold – See T_srvPdvValues, log variance range is {-100 – 0}

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.21. mngApi_ReferenceTracker_SetPdvThreshold (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetPdvThreshold(
 T_osUint16 stackInstNumber,
 T_srvPdvValues *pdvThreshold);

DESCRIPTION

 Set the PDV threshold.
This parameter is used to determine PTSF unusable based on the log variance of the PDV. If the log variance
exceeds the PDV threshold, PTSF unusable is set.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
pdvThreshold – See T_srvPdvValues, log variance range is {-100 – 0}

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.22. mngApi_RT_SetPdvThreshold
T_cmnErrorCode mngApi_RT_SetPdvThreshold(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvPdvValues *pdvThreshold);

DESCRIPTION

 Set the PDV threshold.
This parameter is used to determine PTSF unusable based on the log variance of the PDV. If the log variance
exceeds the PDV threshold, PTSF unusable is set.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
pdvThreshold – See T_srvPdvValues, log variance range is {-100 – 0}

 OUTPUT
None

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 36

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.23. mngApi_ReferenceTracker_GetPdvThresholdExceededHysteresis (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetPdvThresholdExceededHysteresis(
 T_osUint16 stackInstNumber,
 T_srvPdvValues *pdvThreshold);

DESCRIPTION

 Get the PDV threshold hysteresis.
Once the PDV threshold is exceeded and PTSF is declared unusable, the PDV log variance must cross below the
PDV Threshold minus this value.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
pdvThreshold – See T_srvPdvValues, log variance range is {0 – 10}

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.24. mngApi_RT_GetPdvThresholdExceededHysteresis
T_cmnErrorCode mngApi_RT_GetPdvThresholdExceededHysteresis(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvPdvValues *pdvThreshold);

DESCRIPTION

 Get the PDV threshold hysteresis.
Once the PDV threshold is exceeded and PTSF is declared unusable, the PDV log variance must cross below the
PDV Threshold minus this value.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
pdvThreshold – See T_srvPdvValues, log variance range is {0 – 10}

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.25. mngApi_ReferenceTracker_SetPdvThresholdExceededHysteresis (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetPdvThresholdExceededHysteresis(
 T_osUint16 stackInstNumber,
 T_srvPdvValues *pdvThreshold);

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 37

DESCRIPTION

 Set the PDV threshold hysteresis.
Once the PDV threshold is exceeded and PTSF is declared unusable, the PDV log variance must cross below the
PDV Threshold minus this value.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
pdvThreshold – See T_srvPdvValues, log variance range is {0 – 10}

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.26. mngApi_RT_SetPdvThresholdExceededHysteresis
T_cmnErrorCode mngApi_RT_SetPdvThresholdExceededHysteresis(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_srvPdvValues *pdvThreshold);

DESCRIPTION

 Set the PDV threshold hysteresis.
Once the PDV threshold is exceeded and PTSF is declared unusable, the PDV log variance must cross below the
PDV Threshold minus this value.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
pdvThreshold – See T_srvPdvValues, log variance range is {0 – 10}

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.27. mngApi_ReferenceTracker_GetStationarityMeasure1LowerBound (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetStationarityMeasure1LowerBound(
 T_osUint16 stackInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Get the Stationarity Measure 1 Lower bound value

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 38

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
boundary – {0.00, 1.00}, default 0.60

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.28. mngApi_RT_GetStationarityMeasure1LowerBound
T_cmnErrorCode mngApi_RT_GetStationarityMeasure1LowerBound(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Get the Stationarity Measure 1 Lower bound value

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
boundary – {0.00, 1.00}, default 0.60

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.29. mngApi_ReferenceTracker_SetStationarityMeasure1LowerBound (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetStationarityMeasure1LowerBound(
 T_osUint16 stackInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Set the Stationarity Measure 1 Lower bound value
The stationarity measure 1 lower and upper are bounds of the ratio of the PDV's second order statistics on the first
half observation window and the second half observation window. For ideal stationary case, the stationarity measure
1 should be close to 1.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
boundary – {0.00, 1.00}, default 0.60

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 39

3.6.30. mngApi_RT_SetStationarityMeasure1LowerBound
T_cmnErrorCode mngApi_RT_SetStationarityMeasure1LowerBound(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Set the Stationarity Measure 1 Lower bound value
The stationarity measure 1 lower and upper are bounds of the ratio of the PDV's second order statistics on the first
half observation window and the second half observation window. For ideal stationary case, the stationarity measure
1 should be close to 1.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
boundary – {0.00, 1.00}, default 0.60

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.31. mngApi_ReferenceTracker_GetStationarityMeasure1UpperBound (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetStationarityMeasure1UpperBound(
 T_osUint16 stackInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Get the Stationarity Measure 1 Upper bound value

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
boundary – {1.00, 1000.00}, default 1.67

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.32. mngApi_RT_GetStationarityMeasure1UpperBound
T_cmnErrorCode mngApi_RT_GetStationarityMeasure1UpperBound(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Get the Stationarity Measure 1 Upper bound value

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 40

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
boundary – {1.00, 1000.00}, default 1.67

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.33. mngApi_ReferenceTracker_SetStationarityMeasure1UpperBound (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetStationarityMeasure1UpperBound(
 T_osUint16 stackInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Set the Stationarity Measure 1 Upper bound value
The stationarity measure 1 lower and upper are bounds of the ratio of the PDV's second order statistics on the first
half observation window and the second half observation window. For ideal stationary case, the stationarity measure
1 should be close to 1.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
boundary – {1.00, 1000.00}, default 1.67

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.34. mngApi_RT_SetStationarityMeasure1UpperBound
T_cmnErrorCode mngApi_RT_SetStationarityMeasure1UpperBound(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *boundary);

DESCRIPTION

 Set the Stationarity Measure 1 Upper bound value
The stationarity measure 1 lower and upper are bounds of the ratio of the PDV's second order statistics on the first
half observation window and the second half observation window. For ideal stationary case, the stationarity measure
1 should be close to 1.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
boundary – {1.00, 1000.00}, default 1.67

 OUTPUT
None

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 41

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.35. mngApi_ReferenceTracker_GetWillCorrectFrequencyAtFirstSnap (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetWillCorrectFrequencyAtFirstSnap(
 T_osUint16 stackInstNumber,
 T_osBool *willCorrect);

DESCRIPTION

 This parameter configures the frequency correction after REA servo performs the first time snap. If the network
condition is good, in other words, very little PDV, the accuracy of the first coarse time of day estimation and the LO
frequency offset estimation could be good enough and a frequency correction can be performed. On the other hand, if
the PDV is large, the initial coarse frequency estimation could have a very large error, thus the frequency correction is
preferred to not be made after the first snap

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
willCorrect – E_osTrue or E_osFalse

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.36. mngApi_RT_GetWillCorrectFrequencyAtFirstSnap
T_cmnErrorCode mngApi_RT_GetWillCorrectFrequencyAtFirstSnap(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osBool *willCorrect);

DESCRIPTION

 This parameter configures the frequency correction after REA servo performs the first time snap. If the network
condition is good, in other words, very little PDV, the accuracy of the first coarse time of day estimation and the LO
frequency offset estimation could be good enough and a frequency correction can be performed. On the other hand, if
the PDV is large, the initial coarse frequency estimation could have a very large error, thus the frequency correction is
preferred to not be made after the first snap.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
willCorrect – E_osTrue or E_osFalse

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 42

3.6.37. mngApi_ReferenceTracker_SetWillCorrectFrequencyAtFirstSnap (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetWillCorrectFrequencyAtFirstSnap(
 T_osUint16 stackInstNumber,
 T_osBool *willCorrect);

DESCRIPTION

 This parameter configures the frequency correction after REA servo performs the first time snap. If the network
condition is good, in other words, very little PDV, the accuracy of the first coarse time of day estimation and the LO
frequency offset estimation could be good enough and a frequency correction can be performed. On the other hand, if
the PDV is large, the initial coarse frequency estimation could have a very large error, thus the frequency correction is
preferred to not be made after the first snap.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
willCorrect – E_osTrue or E_osFalse

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.38. mngApi_RT_SetWillCorrectFrequencyAtFirstSnap
T_cmnErrorCode mngApi_RT_SetWillCorrectFrequencyAtFirstSnap(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osBool *willCorrect);

DESCRIPTION

 This parameter configures the frequency correction after REA servo performs the first time snap. If the network
condition is good, in other words, very little PDV, the accuracy of the first coarse time of day estimation and the LO
frequency offset estimation could be good enough and a frequency correction can be performed. On the other hand, if
the PDV is large, the initial coarse frequency estimation could have a very large error, thus the frequency correction is
preferred to not be made after the first snap.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
willCorrect – E_osTrue or E_osFalse

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 43

3.6.39. mngApi_ReferenceTracker_GetFfoSlopeLimitPpbPerSecond (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_GetFfoSlopeLimitPpbPerSecond(

 T_osUint16 stackInstNumber,
 T_osDouble *ffoSlopeLimitPpbPerSecond);

DESCRIPTION

 Get the FFO slope limit, measured in parts per billion per second, used during frequency lock and time locked state.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number

 OUTPUT
ffoSlopeLimitPpbPerSecond – {0, 100,000}, default -1

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.40. mngApi_RT_GetFfoSlopeLimitPpbPerSecond
T_cmnErrorCode mngApi_RT_GetFfoSlopeLimitPpbPerSecond(

 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,

 T_osDouble *ffoSlopeLimitPpbPerSecond);

DESCRIPTION

 Get the FFO slope limit, measured in parts per billion per second, used during frequency lock and time locked state.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number

 OUTPUT
ffoSlopeLimitPpbPerSecond – {0, 100,000}, default -1

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 44

3.6.41. mngApi_ReferenceTracker_SetFfoSlopeLimitPpbPerSecond (deprecated)
T_cmnErrorCode mngApi_ReferenceTracker_SetFfoSlopeLimitPpbPerSecond(
 T_osUint16 stackInstNumber,
 T_osDouble *ffoSlopeLimitPpbPerSecond);

DESCRIPTION

 Set the FFO slope limit, measured in parts per billion per second, used during frequency lock and time locked state.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
ffoSlopeLimitPpbPerSecond – {0, 100,000}, default -1

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

3.6.42. mngApi_RT_SetFfoSlopeLimitPpbPerSecond
T_cmnErrorCode mngApi_RT_SetFfoSlopeLimitPpbPerSecond(
 T_osUint16 stackInstNumber,
 T_osUint16 trackerInstNumber,
 T_osDouble *ffoSlopeLimitPpbPerSecond);

DESCRIPTION

 Set the FFO slope limit, measured in parts per billion per second, used during frequency lock and time locked state.

ARGUMENTS

 INPUTS
stackInstNumber – stack instance number
trackerInstNumber – tracker instance number
ffoSlopeLimitPpbPerSecond – {0, 100,000}, default -1

 OUTPUT
None

RETURN

 E_cmnErrorCode_OK – On success, else another T_cmnErrorCode

PTP Clock Manager for Linux Management API Manual

R31US0010EU0102 Rev.1.02
Oct 24, 2024

 Page 45

4. Revision History

Revision Date Description

1.02 Oct 24, 2024 Updated software release number to 4.3.2.417904 from 4.3.2.

1.01 Oct 15, 2024

Supports software release 4.3.2.
 Added APIs:

● mngApi_GetPhysicalPllWaitToRestoreTimeoutValue
● mngApi_SetPhysicalPllWaitToRestoreTimeoutValue
● mngApi_ReferenceTracker_GetFfoSlopeLimitPpbPerSecond
● mngApi_ReferenceTracker_SetFfoSlopeLimitPpbPerSecond
● mngApi_GetEpochTimeSeconds
● mngApi_SetEpochTimeSeconds

 Removed APIs:
● mngApi_GetHoldoverEnable
● mngApi_SetHoldoverEnable

 Updated definition of T_srvOscillatorType enumeration
● New enumeration E_srvDocxo replaced E_srvSyncE

 Update function prototypes of Reference tracker management API functions
● New additional input parameter trackerInstNumber

 Add T_mngApiLoLockStatus and T_srvLoStateId enumeration

1.00 Jun 21, 2021 Initial release. Supports software release 4.1.0.77765.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Introduction
	2. Type Definitions
	2.1 T_CallbackFunctionPointer
	2.2 T_cmnErrorCode
	2.3 T_cmnLogDescription
	2.4 T_cmnLogId
	2.5 T_cmnMessageLevelRegister
	2.6 T_gnssClockCategory
	2.7 T_gnssSmState
	2.8 T_ieee1588PortIdentity
	2.9 T_mngApiGnssStatus
	2.10 T_mngApiLoStatus
	2.11 T_mngApiLoLockStatus
	2.12 T_mngApiServoMode
	2.13 T_srvLoHoldoverType
	2.14 T_srvLoStateId
	2.15 T_srvOscillatorType
	2.16 T_srvPacketRate
	2.17 T_srvPdvValues
	2.18 T_srvPhysicalClockCategory
	2.19 T_mngApiAptsStatus
	2.20 T_aptsSmState

	3. Management API Functions
	3.1 Holdover
	3.1.1. mngApi_GetHoldoverLossPhysicalOosEnable
	3.1.2. mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable
	3.1.3. mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetEnable
	3.1.4. mngApi_GetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb
	3.1.5. mngApi_SetHoldoverOutOfSpecUserDefinedFrequencyOffsetPpb
	3.1.6. mngApi_GetHoldoverTimeout
	3.1.7. mngApi_SetHoldoverTimeout
	3.1.8. mngApi_GetHoldoverTimerValue
	3.1.9. mngApi_GetHoldoverType
	3.1.10. mngApi_SetHoldoverType
	3.1.11. mngApi_ForceLoStateHoldover
	3.1.12. mngApi_ClearForceLoStateHoldover

	3.2 G.8273.2 Physical Layer Assistance
	3.2.1. mngApi_GetPhysicalClockCategory
	3.2.2. mngApi_SetPhysicalClockCategory
	3.2.3. mngApi_GetPhysicalClockCategoryThreshold
	3.2.4. mngApi_SetPhysicalClockCategoryThreshold
	3.2.5. mngApi_GetPhysicalPllWaitToRestoreTimeoutValue
	3.2.6. mngApi_SetPhysicalPllWaitToRestoreTimeoutValue

	3.3 GNSS
	3.3.1. mngApi_GetGnssClockCategory
	3.3.2. mngApi_SetGnssClockCategory
	3.3.3. mngApi_GetGnssClockCategoryThreshold
	3.3.4. mngApi_SetGnssClockCategoryThreshold

	3.4 Message Log
	3.4.1. mngApi_OpenSyslog
	3.4.2. mngApi_CloseSyslog
	3.4.3. mngApi_GetListOfMessageLogs
	3.4.4. mngApi_GetNumberOfMessageLogs
	3.4.5. mngApi_CreateCallbackMessageLog
	3.4.6. mngApi_CreateFileMessageLog
	3.4.7. mngApi_DeleteMessageLog
	3.4.8. mngApi_GetMessageLogLevel
	3.4.9. mngApi_SetMessageLogLevel
	3.4.10. mngApi_GetStdoutMessageLogLevel
	3.4.11. mngApi_SetStdoutMessageLogLevel
	3.4.12. mngApi_GetSyslogMessageLogLevel
	3.4.13. mngApi_SetSyslogMessageLogLevel

	3.5 Miscellaneous
	3.5.1. mngApi_GetCurrentReferenceMaster
	3.5.2. mngApi_GetEpochTimeSeconds
	3.5.3. mngApi_GetLoStatus
	3.5.4. mngApi_GetServoMode
	3.5.5. mngApi_GetSoftwareVersion
	3.5.6. mngApi_GetUnqualifiedTimeout
	3.5.7. mngApi_GetUnqualifiedTimerValue
	3.5.8. mngApi_SetEpochTimeSeconds
	3.5.9. mngApi_SetUnqualifiedTimeout
	3.5.10. mngApi_GetGnssStatus

	3.6 Reference Trackers
	3.6.1. mngApi_ReferenceTracker_GetCount
	3.6.2. mngApi_ReferenceTracker_GetList
	3.6.3. mngApi_ReferenceTracker_GetDownlinkPacketRate (deprecated)
	3.6.4. mngApi_RT_GetDownlinkPacketRate
	3.6.5. mngApi_ReferenceTracker_GetUplinkPacketRate (deprecated)
	3.6.6. mngApi_RT_GetUplinkPacketRate
	3.6.7. mngApi_ReferenceTracker_GetFloorDelayEstimateSeconds (deprecated)
	3.6.8. mngApi_RT_GetFloorDelayEstimateSeconds
	3.6.9. mngApi_ReferenceTracker_SetFloorDelayEstimateSeconds (deprecated)
	3.6.10. mngApi_RT_SetFloorDelayEstimateSeconds
	3.6.11. mngApi_ReferenceTracker_GetHighPrecisionFrequencyCorrectionTime (deprecated)
	3.6.12. mngApi_RT_GetHighPrecisionFrequencyCorrectionTime
	3.6.13. mngApi_ReferenceTracker_SetHighPrecisionFrequencyCorrectionTime (deprecated)
	3.6.14. mngApi_RT_SetHighPrecisionFrequencyCorrectionTime
	3.6.15. mngApi_ReferenceTracker_GetOscillatorType (deprecated)
	3.6.16. mngApi_RT_GetOscillatorType
	3.6.17. mngApi_ReferenceTracker_SetOscillatorType (deprecated)
	3.6.18. mngApi_RT_SetOscillatorType
	3.6.19. mngApi_ReferenceTracker_GetPdvThreshold (deprecated)
	3.6.20. mngApi_RT_GetPdvThreshold
	3.6.21. mngApi_ReferenceTracker_SetPdvThreshold (deprecated)
	3.6.22. mngApi_RT_SetPdvThreshold
	3.6.23. mngApi_ReferenceTracker_GetPdvThresholdExceededHysteresis (deprecated)
	3.6.24. mngApi_RT_GetPdvThresholdExceededHysteresis
	3.6.25. mngApi_ReferenceTracker_SetPdvThresholdExceededHysteresis (deprecated)
	3.6.26. mngApi_RT_SetPdvThresholdExceededHysteresis
	3.6.27. mngApi_ReferenceTracker_GetStationarityMeasure1LowerBound (deprecated)
	3.6.28. mngApi_RT_GetStationarityMeasure1LowerBound
	3.6.29. mngApi_ReferenceTracker_SetStationarityMeasure1LowerBound (deprecated)
	3.6.30. mngApi_RT_SetStationarityMeasure1LowerBound
	3.6.31. mngApi_ReferenceTracker_GetStationarityMeasure1UpperBound (deprecated)
	3.6.32. mngApi_RT_GetStationarityMeasure1UpperBound
	3.6.33. mngApi_ReferenceTracker_SetStationarityMeasure1UpperBound (deprecated)
	3.6.34. mngApi_RT_SetStationarityMeasure1UpperBound
	3.6.35. mngApi_ReferenceTracker_GetWillCorrectFrequencyAtFirstSnap (deprecated)
	3.6.36. mngApi_RT_GetWillCorrectFrequencyAtFirstSnap
	3.6.37. mngApi_ReferenceTracker_SetWillCorrectFrequencyAtFirstSnap (deprecated)
	3.6.38. mngApi_RT_SetWillCorrectFrequencyAtFirstSnap
	3.6.39. mngApi_ReferenceTracker_GetFfoSlopeLimitPpbPerSecond (deprecated)
	3.6.40. mngApi_RT_GetFfoSlopeLimitPpbPerSecond
	3.6.41. mngApi_ReferenceTracker_SetFfoSlopeLimitPpbPerSecond (deprecated)
	3.6.42. mngApi_RT_SetFfoSlopeLimitPpbPerSecond

	4. Revision History

