
 Manual

R16US0011EU0100 Rev.1.00 Page 1
Oct 18, 2022 © 2022 Renesas Electronics

This software manual provides a description of the Application Programming Interface intended for use with the
industrial Battery Font End ICs from the RAA489xxx series. The document contains a complete description of the
elements of the interface, application guidelines, and examples.

Contents
1. Introduction . 1

1.1 Assumptions and Advisory Notes . 2

2. Battery Front End Software Structure . 2

3. Battery Front End Application Programming Interface . 4

3.1 Interface Structure . 4

3.2 BFE Interface Instance Structure . 13

3.3 Using the BFE Interface . 14

3.3.1 Preparation . 14

3.3.2 Configuration . 14

3.3.3 Use of API Functions . 16

3.3.4 Examples . 17

4. Revision History . 18

1. Introduction
The Application Programming Interface (API) described in this manual facilitates the implementation of firmware
for Battery Management Systems (BMSs) that feature industrial-grade Battery Front Ends (BFEs). It provides a
common interface to configure, control, and use BFE features, helping accelerate the development of firmware by
enabling the reuse of code, facilitating system-level integration, and improving code scalability.

The compatible BFE devices are from the RAA489xxx family, which targets a wide range of applications from low
voltage range with a couple of cells up to powerful designs with large stackable battery packs. Due to the diversity
of applications supported by this BFE family, the features of some BFEs can differ significantly from each other.
For example, some feature an integrated FET driver, external cell balancing, built-in diagnostic features, and
configurable thresholds, whereas others only offer basic monitoring functions and fixed thresholds. Nevertheless,
protecting the battery pack integrity is common to all of them, so they can be controlled using a common firmware
API that provides scalable and universal functionalities to the BMS. Unique features offered exclusively by specific
BFEs can be included in the API as additional interface implementations so that no functionality is hidden behind
the universality of the common API.

The interface described in this manual is designed for Renesas 32-bit MCUs with ARM Cortex-M Core from the

RA MCU family. It uses the Flexible Software Package (FSP) of the e2studio integrated development environment,
which generates Hardware Abstraction Layer drivers. However, the API can be ported to other MCU architectures
by adapting the driver modules generated by FSP.

The industrial battery management product portfolio of Renesas contains two basic architectures. The first uses a
Fuel Gauge Integrated Circuit (FGIC), which has a co-packaged Analog Front End and MCU. The second
architecture contains a separate Battery Front End device and external MCU. Figure 1 shows the separate
BFE-MCU architecture for which the API is designed.

Industrial Battery Front End API Software

R16US0011EU0100 Rev.1.00 Page 2
Oct 18, 2022

Industrial Battery Front End API Software Manual

1.1 Assumptions and Advisory Notes
▪ It is assumed that you possess basic understanding of microcontrollers, embedded systems hardware, battery

management systems and Li-based battery cells.

▪ It is assumed that you have prior experience working with Integrated Development Environments (IDEs) such
as e2studio and Flexible Software Package (FSP).

▪ It is assumed that you are familiar with the Renesas RA family ARM Cortex-M microcontrollers.

▪ It is assumed that you are familiar with the Renesas industrial Battery Front Ends from the RAA489xxx series.

2. Battery Front End Software Structure
At the software architecture level, modules provide functionalities using interfaces, which can be thought of as
contracts between the module providing functionality and the module requiring it. The API allows modules to be
swapped in and out by instances that implement the same interface; therefore, defining BFE functionalities as
functions of the API of an abstraction layer, referred to as Battery Abstraction Layer (BAL), allows applications
such as BMS State Machine, Cell Balancing, State-of-Charge or etc. to use potentially any module that
implements it. Figure 2 shows the software structure of the industrial BFE API.

Figure 1. General Block Diagram of Battery Management System

Battery
Pack

Load

CHRGVc
el

l B
us

Current Amp

External
Temperature

Sensors

IC
Temp

OV
Comparators
OV UV OC

CFET DFET

MCU
ADC

FET
Control

Oscillators

Regulators

C
om

m
un

ic
at

io
n

In
te

rfa
ce

s

Control Logic
and RegistersAF

E/
AD

C
 M

U
Xe

s

Rsh

R16US0011EU0100 Rev.1.00 Page 3
Oct 18, 2022

Industrial Battery Front End API Software Manual

The software structure of Battery Front End Application Programming Interface has multiple layers and
sub-components. They are the following:

▪ Hardware layer comprises the Battery Management System (BMS). It contains the following hardware:

• Single Battery Front End IC or multiple, connected in a stack

• MCU that controls the entire BMS system

• External HMI device or remote management unit

• In some hardware configurations other components could be available like external current monitor,
MOSFET driver, etc.

▪ Software layer for driving the MCU (Hardware Abstraction Layer drivers) with the following APIs to interact with
the BFE device and the other hardware:

• Inter-chip communication module between the BFE and the MCU. It is typically SPI, I2C or single wire
interface.

• General Purpose Input/Output (GPIO) to access and configure I/O ports that control, configure and reset the
BFE.

Figure 2. General Software Structure with BFE API

MCU

User Applications

SOC Algo SOH Algo
Cell Balancing Algo

Communication Protocol State Machine

BFE Abstraction Layer

RAA489xxx Instance

API Implementation

Configuration
Structure Definition

Control Structure
Definition

BFE Interface

API

Configuration
Structure

Control Structuredefines

defines

implements

Hardware Abstraction Layer

API

SPI/I2C IRQ GPIOs

LPM

USB/UART

BFE H/W

PC Terminal EmulatorRAA489xxx

Timer CRC

R16US0011EU0100 Rev.1.00 Page 4
Oct 18, 2022

Industrial Battery Front End API Software Manual

• External Interrupt Request (IRQ) interface to detect events like Fault pin assertion and other generated by
the BFE.

• USB/ UART interface to communicate with the HMI device

• Timer module used for critical timings tracking.

• Hardware Cyclic Redundancy Check calculator to verify communication packed content.

• Additional interfaces used in the particular implementation.

▪ Battery Front End Abstraction Layer (BAL). It is a middleware module that is placed between the higher-level
applications and the HAL drivers. It comprises the Battery Front End API and the instance of the particular BFE.
You can find there the implementations of all API functions providing access to the BFE resources, diagnostic
functions, and communication drivers.

▪ Software layer comprising the high-level user applications such as:

• State Machine that is managing the BMS states and modes.

• Fault Management Algorithm for handling the BFE faults and the returned API interface error codes.

• State-of-Charge algorithm

• State-of-Health algorithm

• Cell Balancing algorithm

• High-level communication protocol for displaying information to the user of connecting the BMS to other
external systems.

Table 1 shows the file structure of BFE API implementation. The listed files are mandatory but more could be
available in the particular BFE implementation. Keep in mind that the additional files, related to a system and
applications are not on focus. The current document reviews the content of src/bfe/r_bfe_api.h.

3. Battery Front End Application Programming Interface

3.1 Interface Structure
The BAL API declares the signature of the functions that applications can use. Their actual implementation is
provided by modules, namely instances, which define the body of the functions with code that execute the
required functionality. Table 2 describes the members of the BFE API structure. All members are pointers to
functions, whose parameters are constants or pointers to variables (structures) used for input or output of values.
Some of the variable types are of type void, so each instance of the API must define them, such as structures,
according to the BFE features. These generic types are referred to as instance-defined parameters. For example,
they are used for the returned temperatures, cell voltages or faults but also for specific configuration or control
options for cell balancing, auto-scan. The parameter of data type st_bfe_ctrl_t is a control structure. It is common
to all API functions and works as a unique identifier of the BFE instance. All API functions return error codes
defined by the enumeration e_bfe_err_t (Table 3). These codes are used to indicate successful execution or
appearance of an error.

Table 1. Directory Structure of the Sample Code

Directory Filename Description

src

bfe

r_bfe_api.h Contains the interface type definitions and everything related to it.

r_bfe_cfg.h Contains the interface settings.

r_raa489xxx.c Contains the actual code for the interface implementation.

r_raa489xxx.h
Contains definitions, structures, enumerations and declarations of the API functions
for the interface implementation.

bal_data.c Contains the BFE instance and declarations of the major structures.

bal_data.h Contains the exported global variables of the interface.

R16US0011EU0100 Rev.1.00 Page 5
Oct 18, 2022

Industrial Battery Front End API Software Manual

Table 2. BFE API Structure and its Fields

typedef struct st_bfe_api

Member Parameters Description

* p_initialize
st_bfe_ctrl_t * const p_ctrl

st_bfe_cfg_t const * const p_cfg

Initializes the BFE interface by enabling and
configuring the necessary peripheral modules of the
MCU, identifying the BFE and other device-specific
actions.

* p_deinitialize st_bfe_ctrl_t * const p_ctrl
Deinitializes the BFE interface. It disables the used
peripheral modules of the MCU.

* p_setup
st_bfe_ctrl_t * const p_ctrl

st_bfe_cfg_t const * const p_cfg

Configures the BFE device (stack) by writing into all
configuration registers. It extracts the necessary data
from the control p_ctrl and configuration p_cfg
structures.

* p_reset
st_bfe_ctrl_t * const p_ctrl

e_bfe_reset_type_t type

Resets the BFE. Several predefined reset options
can be set with the type input parameter.

* p_modeSet
st_bfe_ctrl_t * const p_ctrl

e_bfe_mode_t mode

Forces the BFE to enter a mode or state set with the
mode input parameter from a predefined list of
modes.

* p_modeRead
st_bfe_ctrl_t * const p_ctrl

e_bfe_mode_t * const p_mode

Reads the current BFE mode. The result is returned
into a variable pointed by p_mode.

* p_commTest st_bfe_ctrl_t * const p_ctrl
Tests communication between the MCU and single or
multiple BFE devices. If communication cannot be
established, an error is returned accordingly.

* p_selfDiagnostic
st_bfe_ctrl_t * const p_ctrl

e_bfe_diag_option_t option

Runs a self-diagnostic test for the BFE. Several
predefined diagnostic options can be set with the
option input parameter.

* p_memoryCheck
st_bfe_ctrl_t * const p_ctrl

e_bfe_mem_check_option_t option

Runs memory tests inside a BFE for corrupted
registers and data. Several predefined memory test
options can be set with the option input parameter.

* p_vPackGet

st_bfe_ctrl_t * const p_ctrl

float * const p_value

bool trigger

Acquires the battery pack voltage with the BFE. The
result is returned into a variable pointed by p_value.
The returned data is converted into voltage. The
Boolean input parameter trigger indicates whether a
measurement is executed before reading the value.

* p_iPackGet

st_bfe_ctrl_t * const p_ctrl

st_bfe_i_pack_meas_t * const p_values

bool trigger

Acquires the battery pack current with the BFE. The
result is returned into a structure pointed by
p_values. The returned data is converted into
current. The Boolean input parameter trigger
indicates whether a measurement is executed before
reading the values.

* p_vCellsGet

st_bfe_ctrl_t * const p_ctrl

bfe_vcell_meas_t * const p_values

bool trigger

Acquires the voltages of all cells in the battery pack.
The result is returned into a structure pointed by
p_values. The returned data is converted into
voltage. The Boolean input parameter trigger
indicates whether a measurement is executed before
reading the values.

* p_temperaturesGet

st_bfe_ctrl_t * const p_ctrl

bfe_temp_meas_t * const p_values

bool trigger

Acquires the temperatures with the BFE. The result is
returned into a structure pointed by p_values. The
returned data is converted into temperature and
voltage. The Boolean input parameter trigger
indicates whether a measurement is executed before
reading the values.

R16US0011EU0100 Rev.1.00 Page 6
Oct 18, 2022

Industrial Battery Front End API Software Manual

The error code enumeration contains multiple error codes, systemized into groups. When no error is present, the
functions return BFE_SUCCESS. Any other constant indicates an unnormal behavior and can be used for
debugging of the code during development or for advanced fault management.

* p_allGet

st_bfe_ctrl_t * const p_ctrl

bfe_all_meas_t * const p_values

bool trigger

Acquires all measurable parameters with the BFE.
The returned data is converted into the relevant units.
The Boolean input parameter trigger indicates
whether a measurement is executed before reading
the values.

* p_otherGet

st_bfe_ctrl_t * const p_ctrl

bfe_other_meas_t * const p_values

bool trigger

Acquires custom parameters with the BFE. The result
is returned into a structure pointed by p_values. The
returned data is converted into the relevant units. The
Boolean input parameter trigger indicates whether a
measurement is executed before reading the values.

* p_faultsAllRead
st_bfe_ctrl_t * const p_ctrl

bfe_faults_t * const p_faults

Reads all fault registers of the BFE. The fault data is
returned into a structure pointed by p_faults.

* p_faultsCheck st_bfe_ctrl_t * const p_ctrl
Checks the BFE for faults. It monitors the relevant
fault pin or checks a fault status register.

* p_faultsAllClear
st_bfe_ctrl_t * const p_ctrl

bool * const p_success

Attempts to clear all faults in the BFE. The result is
returned into a Boolean variable pointed by
p_success.

* p_cellBalanceControl

st_bfe_ctrl_t * const p_ctrl

bfe_cb_cfg_t * const p_bal_cfg

e_bfe_process_ctrl_t ctrl_option

Configures and controls cell balancing process in the
BFE. The cell balancing configuration parameters are
set in a structure pointed by p_bal_cfg. The process
is controlled by the input parameter ctrl_option.

* p_isCellBalancing st_bfe_ctrl_t * const p_ctrl Checks if cell balancing is in progress in the BFE.

* p_continuousScanControl

st_bfe_ctrl_t * const p_ctrl

bfe_scan_cont_cfg_t * const p_scan_cfg

e_bfe_process_ctrl_t ctrl_option

Controls scan continuous function of the BFE. The
scan continuous configuration parameters are set in
a structure pointed by p_scan_cfg. The process is
controlled by the input parameter ctrl_option.

* p_wdControl
st_bfe_ctrl_t * const p_ctrl

bfe_watchdog_ctrl_t * const p_options

Controls watchdog timer function in the BFE. The
watchdog timer parameters are set in a structure
pointed by p_options.

* p_fetControl

st_bfe_ctrl_t * const p_ctrl

uint8_t group_num

e_bfe_cfet_state_t c_fet_state

e_bfe_dfet_state_t d_fet_state

Controls the power FETs of the BFE. The set of
power FETs is selected with the input parameter
group_num. The charge and discharge FETs state is
controlled with the input parameters c_fet_state and
d_fet_state.

* p_gpioControl
st_bfe_ctrl_t * const p_ctrl

bfe_gpio_ctrl_t * const p_options

Controls the GPIO pins of the BFE. The pin
parameters are set in a structure pointed by
p_options.

* p_registerRead
st_bfe_ctrl_t * const p_ctrl

bfe_register_t * const p_register

Reads a register in the BFE. The register address,
value and other device specific parameters are
contained inside the structure pointed by p_register.

* p_registerWrite
st_bfe_ctrl_t * const p_ctrl

bfe_register_t * const p_register

Writes in a register of the BFE. The register address,
value and other device specific parameters are
contained inside the structure pointed by p_register.

Table 2. BFE API Structure and its Fields (Cont.)

typedef struct st_bfe_api

Member Parameters Description

R16US0011EU0100 Rev.1.00 Page 7
Oct 18, 2022

Industrial Battery Front End API Software Manual

Table 3. BFE Error Codes Enumeration

typedef enum e_bfe_err

Group Constant Value Description

No error BFE_SUCCESS 0 No error was returned.

General

Errors

BFE_ERR_ASSERTION 1 A critical assertion has failed.

BFE_ERR_INVALID_POINTER 2 The pointer points to invalid memory location.

BFE_ERR_INVALID_ARGUMENT 3 There is an invalid input parameter.

BFE_ERR_INVALID_NUMARGUMENTS 4 Invalid number of arguments.

BFE_ERR_INVALID_REGISTER 5 The target register does not exist.

BFE_ERR_READ_ONLY_REGISTER 6 The register cannot be written.

BFE_ERR_INVALID_STATE 7 The selected state is invalid.

BFE_ERR_UNMATCHED_REGISTERS 8 MCU and device registers do not match.

BFE_ERR_UNSUPPORTED_FEATURE 9 Feature or function is not supported by the BFE.

BFE_ERR_DEVICE_BUSY 10 The device is currently busy.

BFE_ERR_DEVICE_NOT_INITIALIZED 11 The device has not been initialized.

BFE_ERR_NOT_ENOUGH_MEMORY 12 The caller has not assigned enough memory.

BFE_ERR_REGISTER_RESET_UNMATCHED 13
The expected reset value does not match the actual
register value.

BFE_ERR_INV_REG_SIZE 14 The register size is invalid.

BFE_ERR_NONSUPPORTED_MODE 15 The selected device mode is unsupported.

BFE_ERR_INVALID_OPERATION 16 The operation is not allowed.

BFE_ERR_INVALID_CELL 17 Invalid cell number.

BFE_ERR_WRITE_VERIFY 18 Write command verification error.

BFE_ERR_SCAN_CNTR 19 The scan command was not received.

Comm.

Specific

Errors

BFE_ERR_COMM_TIMEOUT 21 The communication timeout exceeded.

BFE_ERR_MSG_BUF 22 Message buffer overflow.

BFE_ERR_COMM_FAULT 23 Communication error.

BFE_ERR_RESPONSE 24 The response is invalid.

BFE_ERR_CRC_INCORRECT 25 An incorrect CRC in the data array.

BFE_ERR_COMM_NONSUPPORTED_INTERFACE 26
The selected communication interface is
unsupported.

R16US0011EU0100 Rev.1.00 Page 8
Oct 18, 2022

Industrial Battery Front End API Software Manual

All API functions use the control structure st_bfe_ctrl as a parameter (Table 4). It contains status parameters of
the BMS modified by some functions but also pointers to other structures like configuration, registers container or
device information. The control structure can be extended to include device-specific parameters like timings or
other. The extension is defined in the BFE implementation. The pointer to the configuration structure provides
access of all API functions to the BFE configuration parameters and interface settings.

The detection of a fault results in setting the flag is_fault_detected. It does not return any error code by the
function detecting it. It is a good practice to check the state of is_fault_detected flag after calling a function that
might detect such a condition. Refer to the description of the API function to check if is the function can set this
fault flag.

Device

Specific

Errors

BFE_ERR_SLEEP 30 Device sleep error.

BFE_ERR_WAKEUP 31 Device wake up error.

BFE_ERR_EEPROM 32 The EEPROM data is corrupted.

BFE_ERR_ADC 33 ADC error.

BFE_ERR_MUX 34 Multiplexer error.

BFE_ERR_CELL_BALANCE 35 Cell balancing error.

BFE_ERR_INVALID_DEV_ADDRESS 36 The device address is invalid.

BFE_ERR_INVALID_CONF 37 The BFE configuration is invalid.

BFE_ERR_MEAS_TIMEOUT 38 Measurement timeout is exceeded.

BFE_ERR_FET_CONTROL 39 Power FETs control error.

Daisy-

Chain

Specific

Errors

BFE_ERR_NA_STANDALONE 50 Not available in stand-alone operation.

BFE_ERR_DAISY_CHAIN_COMM 51 Error in daisy chain communication.

BFE_ERR_RESPONSE_TIMEOUT 52
Response is not received within the expected
timeout.

BFE_ERR_ACK 53 Acknowledge was not received.

BFE_ERR_NAK 54 Not Acknowledge is received.

BFE_ERR_IDENTIFICATION 55 The stack identification has failed.

FSP

Specific

Errors

BFE_ERR_FSP 61 There is an error in the FSP layer.

Table 4. Members of the BFE Control Structure

typedef struct st_bfe_ctrl

Member Type Description

is_initialized bool Flag that indicates if the BFE is initialized

is_low_power bool Flag that indicates if the BFE is in low power mode

is_balancing bool Flag that indicates if the BFE is balancing cells

is_scan_continuous bool Flag that indicates if the BFE is continuously scanning

is_fault_detected bool Flag that indicates if the BFE has detected any fault

* p_bfe_info void Pointer to the BFE information structure

Table 3. BFE Error Codes Enumeration (Cont.)

typedef enum e_bfe_err

Group Constant Value Description

R16US0011EU0100 Rev.1.00 Page 9
Oct 18, 2022

Industrial Battery Front End API Software Manual

The device configuration derives from the structure st_bfe_cfg (Table 5). It contains both BFE and API interface
settings, related to BFE functionality which are universal to the whole RAA489xxx family. The configuration
structure is extended to include the device-specific settings, which are defined in the implementing entity. The
structure is used as a parameter of the setup function, but the control structure provides a pointer to it, so that
functions can access it if necessary.

To be compatible with multiple BFEs, the API declares some parameters as void. Table 6 shows the declaration of
those arguments. The instancing implementing the API for each BFE must then define these parameters. You can
find the definition of each type either in the comment above the each typedef in file bfe/r_bfe_api.h, or in the
actual the function definition inside file bfe/r_raa489xxx.c. the type definition of structures containing measured
values contain values representing physical values. The current values are expressed in Amperes, voltages in
Volts, and temperatures in Celsius rather than raw ADC or register values.

* p_bfe_regs void const Pointer to the BFE registers’ container

* p_cfg const st_bfe_cfg_t Pointer to BFE configuration settings

* p_extend void Pointer to BFE specific control parameters

Table 5. Members of the BFE Configuration Structure

typedef struct st_bfe_cfg

Member Type Description

* p_cells_select const uint16_t Pointer to a constant that indicates which cells exists in the battery pack

* p_temps_select const uint16_t Pointer to a constant that indicates which temperature inputs of the BFE

peripheral_type const e_bfe_comm_interface_t
Constant from a predefined list of options that denotes the
communication interface used between the BFE and the MCU

driver_cfg const e_bfe_driver_cfg_t
Constant from a predefined list of options that denotes the configuration
of the power FETs driver

fet_cfg const e_bfe_fet_cfg_t
Constant from a predefined list of options that denotes the configuration
of the power FETs controlling charge and discharge

* p_extend void const Pointer to BFE specific configuration settings

Table 6. Typedefs Redefined in the Instance Implementation

Type Description

bfe_register_t
Device register container type. Must be redefined as a structure type whose members correspond to
all BFE registers. Used for member type in the BFE control structure.

bfe_vcell_meas_t
Cells voltage measurement data structure type. Must be redefined as a structure type whose
members correspond to returned measured cell and pack voltages for the current BFE. Used for
input parameter type in (* p_vCellsGet).

bfe_temp_meas_t
Temperatures measurement data structure type. Must be redefined as a structure type whose
members correspond to returned measured temperatures for the current BFE. Used for input
parameter type in (*p_temperaturesGet).

bfe_all_meas_t
All inputs measurement data structure type. Must be redefined as a structure type whose members
correspond to all returned measured data for the current BFE. Used for input parameter type in (*
p_allGet).

Table 4. Members of the BFE Control Structure (Cont.)

typedef struct st_bfe_ctrl

Member Type Description

R16US0011EU0100 Rev.1.00 Page 10
Oct 18, 2022

Industrial Battery Front End API Software Manual

Figure 3 demonstrates the use of void types and their definitions in API functions. When a function has a
parameter with void type definition, a variable with the redefined type from the particular BFE implementation must
be declared in advance. In the example, the parameter is an array of structures with a size matching the BFE
stack size with RAA489204. Pointing to a wrong variable type or size might result in memory violation and
unexpected behavior. Therefore, it is important to pass a pointer pointing to the correct variable type.

The API function pointed by (*p_reset) has fixed reset options set by the parameter type and listed in the reset
types enumeration. Table 7 shows the content of the enumeration. You can select which parts of the BFE to reset.
Keep in mind that you have to check which reset options are supported in the particular BFE implementation,
otherwise BFE_ERR_INVALID_ARGUMENT error is returned by the function.

bfe_other_meas_t
Other measurements data structure type. Must be redefined as a structure type whose members
correspond to device specific measurement. Used for input parameter type in (* p_otherGet).

bfe_faults_t
BFE faults’ structure type. Must be redefined as a structure type whose members correspond to the
current BFE fault parameters. Used for input parameter type in (* p_faultsAllRead).

bfe_watchdog_ctrl_t
Watchdog timer control structure type. Must be redefined as a structure type whose members are
used for the BFE watchdog timer functionality control. Used for input parameter type in (*
p_wdControl).

bfe_cb_cfg_t
Cell balancing configuration structure type. Must be redefined as a structure type whose members
are used for configuration of the cell balancing functionality for the current BFE. Used for input
parameter type in (* p_isCellBalancing).

bfe_scan_cont_cfg_t
Continuous scan configuration structure type. Must be redefined as a structure type whose members
are used for configuration of the scan continuous functionality of the current BFE. Used for input
parameter type in (* p_continuousScanControl).

bfe_gpio_ctrl_t
GPIO control structure type. Must be redefined as a structure type whose members are used for
control of the GPIOs of the current BFE. Used for input parameter type in (* p_gpioControl).

* extendApi_t
API interface extension structure type. When used, must be redefined as a structure type whose
members are custom functions, additional to the already existing in the interface.

Figure 3. Using Function Parameters with Redefined Type

Table 7. BFE Reset Types Enumeration

typedef enum e_bfe_reset_type

Constant Description

BFE_RESET_TYPE_SOFT Reset only the digital part.

Table 6. Typedefs Redefined in the Instance Implementation (Cont.)

Type Description

Parameter

Redefined Type

R16US0011EU0100 Rev.1.00 Page 11
Oct 18, 2022

Industrial Battery Front End API Software Manual

The BFE modes and states are fixed and they are listed in the BFE States and Modes Enumeration (Table 8). The
enumeration is used as parameters mode and p_mode types of the API functions pointed by (*p_modeSet) and
(*p_modeRead) that set or return the current BFE mode. If the calling code specifies a state or mode that is not
supported by the instance, (*p_modeSet) returns BFE_ERR_INVALID_ARGUMENT.

The API function pointed by (*p_selfDiagnostic) has fixed diagnostic options set by the parameter option and
listed in the BFE Diagnostic Options Enumeration. Table 9 shows the content of the enumeration. The function
returns BFE_ERR_INVALID_ARGUMENT if the diagnostic options are not supported by the instance.

The API function pointed by (*p_memoryCheck) has fixed memory test options set by the parameter option and
listed in the BFE Memory Check Options Enumeration. Table 10 shows the content of the enumeration. You can
select between different memory tests of BFE. Note: Check which memory test options are supported in the
particular BFE implementation, otherwise BFE_ERR_INVALID_ARGUMENT error is returned by the function.

BFE_RESET_TYPE_HARD Reset both the digital and analog parts.

BFE_RESET_TYPE_TOIDLE Reset the BFE to idle state.

Table 8. BFE States and Modes Enumeration

typedef enum e_bfe_mode

Constant Description

BFE_STATE_RESET Initial state when all circuits and oscillators are off.

BFE_MODE_POWER_UP BFE power-up state.

BFE_MODE_IDLE The device is ready waiting for a task to be executed.

BFE_STATE_SCAN Single execution of measurements.

BFE_MODE_AUTOSCAN Periodic execution of measurements.

BFE_MODE_LOW_POWER The BFE low power mode.

BFE_MODE_SHIP Lowest power consumption suitable for long-term storage.

BFE_MODE_POWER_DOWN BFE shut down state.

Table 9. BFE Diagnostic Options Enumeration

typedef enum e_bfe_diag_option

Constant Description

BFE_FULL_TEST Run a complete self-test.

BFE_TEST_ADC Test the ADC.

BFE_TEST_MUX Test the multiplexer.

BFE_TEST_CB Test cell balancing circuit.

BFE_TEST_OW Check for open wires.

BFE_TEST_CUSTOM Device specific test option.

Table 7. BFE Reset Types Enumeration (Cont.)

typedef enum e_bfe_reset_type

Constant Description

R16US0011EU0100 Rev.1.00 Page 12
Oct 18, 2022

Industrial Battery Front End API Software Manual

The API function pointed by (*p_iPackGet) returns the measured current in a structure pointed by the parameter
p_values. Table 11 shows the content of the structure type. The function converts and returns the pack current in
Amperes. Both values are positive numbers when the current flows into the expected direction.

The API functions pointed by (*p_cellBalanceControl) and (*p_continuousScanControl) have fixed process
control options set by the parameter ctrl_option and listed in the BFE Process Control Enumeration. Table 12
shows the content of the enumeration.

The API function pointed by (* p_fetControl) controls the battery pack power FETs using the parameters
c_fet_state and d_fet_state having fixed values, listed in the BFE Discharge and Charge FET State Options
Enumerations (Table 13 and Table 14).

Table 10. BFE Memory Check Options Enumeration

typedef enum e_bfe_mem_check_option

Constant Description

BFE_CHECK_CONF_REGS Verify content of configuration registers.

BFE_CHECK_EEPROM Verify content of EEPROM memory.

BFE_CHECK_DEF_VALS Check registers for default values.

BFE_CHECK_CUSTOM Device specific memory check option.

Table 11. Members of the Battery Pack Current Measurement Structure

typedef struct st_bfe_i_pack_meas

Member Type Description

i_charge float Charge current [A]

i_discharge float Discharge current [A]

Table 12. BFE Process Control Enumeration

typedef enum e_bfe_process_ctrl

Constant Description

BFE_PROCESS_ENABLE Start a specific process.

BFE_PROCESS_INHIBIT Stop a specific process.

Table 13. BFE Discharge FET State Options Enumeration

typedef enum e_bfe_dfet_state

Constant Description

BFE_DFET_ON The discharge FET is conducting.

BFE_DFET_OFF The discharge FET is not conducting.

Table 14. BFE Charge FET State Options Enumeration

typedef enum e_bfe_cfet_state

Constant Description

BFE_CFET_ON The charge FET is conducting.

BFE_CFET_OFF The charge FET is not conducting.

R16US0011EU0100 Rev.1.00 Page 13
Oct 18, 2022

Industrial Battery Front End API Software Manual

The BFE configuration structure st_bfe_cfg has the following members with fixed values: peripheral_type,
driver_cfg, and fet_cfg. The BFE interface supports multiple communication interface options which are listed in
BFE Communication Interface Options Enumeration (Table 15). If the selected communication interface is not
supported in the particular BFE implementation, the initialization function pointed by (* p_initialize) returns
BFE_ERR_COMM_UNSUP_INTERFACE error message.

In the battery pack, there are multiple options about the power FETs position and interconnection, depending on
the battery power lines architecture and the BFE in use. The available ones are listed in Table 16 and Table 17. If
an unsupported option is selected for the particular BFE implementation, the initialization function pointed by
(*p_initialize) returns a BFE_ERR_UNSUPPORTED_MODE error message.

3.2 BFE Interface Instance Structure
The instance structure encapsulates all the structures necessary to use a module implementation:

▪ Pointer to the control structure

▪ Pointer to the configuration structure

▪ Pointer to the API structure

In the Battery Abstraction Layer, the interface instance structure is defined in bfe/r_bfe_api.h and the instance
itself is declared in bal_data.c. By using the name of the declared instance, you can easily access any API
function or member of the control and configuration structures (such as g_bfe0.p_api->p_setup or
g_bfe0.p_ctrl->is_initialized).

/** This structure comprises everything that is needed to use an instance of this
 * interface. */

Table 15. BFE Communication Interface Options Enumeration

typedef enum e_bfe_comm_interface

Constant Description

BFE_COMMUNICATION_INTERFACE_SPI Serial Peripheral Interface is used.

BFE_COMMUNICATION_INTERFACE_SCI Serial Communication Interface is used.

BFE_COMMUNICATION_INTERFACE_I2C Inter-Integrated Circuit communication interface is used.

BFE_COMMUNICATION_SINGLE_WIRE Single wire communication interface is used.

Table 16. BFE Power FETs Driver Configuration Enumeration

typedef enum e_bfe_driver_cfg

Constant Description

BFE_DRIVER_HIGH_SIDE FETs are disconnecting the positive terminal of the battery pack.

BFE_DRIVER_LOW_SIDE FETs are disconnecting the negative terminal of the battery pack.

BFE_DRIVER_NONE The BFE is not driving any power FETs.

Table 17. BFE power FETs Configuration Enumeration

typedef enum e_bfe_fet_cfg

Constant Description

BFE_FET_CONFIG_SERIES Battery pack has one set of terminals for charge and discharge.

BFE_FET_CONFIG_PARALLEL Battery pack has separate terminals for charge and discharge.

BFE_FET_NONE The BFE is not driving any power FETs.

R16US0011EU0100 Rev.1.00 Page 14
Oct 18, 2022

Industrial Battery Front End API Software Manual

typedef struct st_bfe_instance
{
 st_bfe_ctrl_t * p_ctrl; ///< Pointer to the control structure for

 ///< this instance

 st_bfe_cfg_t const * p_cfg; ///< Pointer to the configuration structure
 ///< for this instance

 bfe_api_t const * p_api; ///< Pointer to the API structure for this
 ///< instance

} bfe_instance_t;

3.3 Using the BFE Interface

3.3.1 Preparation
To operate a Battery Front End device, the Middleware Battery Abstraction Layer module is needed. It contains
both the API instance and its implementation for the particular BFE. You must begin with connection of the
Middleware Battery Abstraction Layer module with the low-level Hardware Abstraction Layer of the MCU. In

e2studio when working with the 32-bit ARM MCUs from the Renesas RA Family, this process uses the benefits of
the Flexible Software Package by connecting to the HAL drivers through their API. You must make sure that all
required peripheral modules are available.

3.3.2 Configuration
Then the BFE API itself must be configured in bfe/r_bfe_cfg.h. The file contains pre-processor macros used for
controlling certain features and enabling/disabling parts of the code. The following example demonstrates a part of
such code configuration for the stackable BFE RAA48204.

/** Number of devices in a stack (30 max). Please, refer to RAA489204 Datasheet! */
#define BFE_STACK_SIZE (3U)

/** BFE SPI transfer mode: '0' - Byte / '1' - Block. (Recommended) */
#define BFE_CFG_SPI_MODE (1)

/** Functions check input parameters: '0' - Disable/ '1' - Enable (Recommended). */
#define BFE_CFG_PARAM_CHECKING_EN (1)

/** Register verification after write command: '0' - Disable/ '1' - Enable
(Recommended). */
#define BFE_CFG_REG_WRITE_VERIFY_EN (1)

/** Scan/ Diagnostic command verification: '0' - Disable/ '1' - Enable
(Recommended). */
#define BFE_CFG_SCAN_DIAG_CMND_VERIFY_EN (1)

/** Maximum attempts for stack identification. */
#define BFE_CFG_STACK_IDENT_MAX (3U)

For the available options, refer to the comment sections and keep in mind that some of the definitions accept
Boolean values (such as automatically read back and verify register content after write command or select SPI
communication protocol) and others – certain number (such as stack size or number of attempts).

The next step before calling the API functions is to enter the settings for the BFE in the configuration structures,
declared in bal_data.c. Note: The members of st_bfe_cfg and its extension are constant variables that are

R16US0011EU0100 Rev.1.00 Page 15
Oct 18, 2022

Industrial Battery Front End API Software Manual

initialized during declaration and cannot be further modified in the code. It is considered that those settings are
related to the hardware and for safety reasons do not change them during execution of the code (such as number
and position of the battery cells in the pack or open-wire scan current duration that depends on the input filters
time-constant). On other hand, the control structure is also declared in the same file but only initial values are
assigned to its members as the can be further modified. You can find instructions about what values can be
assigned to all structures’ members in the comment sections of the type definitions of those structures in
src/bfe/r_bfe_api.h and src/bfe/r_bfe_raa489xxx.h. Some of the variable types are enumerations with fixed
constants. This approach facilitates the device configuration and minimizes the risk of errors by providing a list of
options from which you can select. However, keep in mind that assigning a value outside those constants lead to
a fault return or unexpected behavior.

/* Extended configuration structure */
const st_raa489204_ext_cfg_t g_bfe0_ext_cfg =
{
 .stack_size = BFE_STACK_SIZE, // Do not modify!!!
 .d_ch_data_speed = BFE_D_RT_1000_KHZ, // Set daisy chain data speed according to

 // hardware settings!
 .limit_overvolt_v = 4.50F, // Set cell overvoltage limit in Volts!
 .limit_undervolt_v = 2.00F, // Set cell undervoltage limit in Volts!
 .limit_ext_temp_v = 2.49F, // Set external temperature input

 // overvoltage limit in Volts!

 .wire_scan = BFE_WIRE_I_SCAN_1_5MS, // Set open wire scan current on time!
 .mux_scan = BFE_CELL_MUX_SCAN_0_5MS, // Set cell multiplexer test scan timing!
 .flt_tot_samples = BFE_TOT_4_SMPL, // Set number of consecutive fault

 // conditions!

 .avging_volt = BFE_AVG_1_SMPL, // Set number of voltage averaging samples!
 .avging_ext_temp = BFE_AVG_1_SMPL, // Set number of temperatures averaging

 // samples!
};

/* Configuration structure */
const st_bfe_cfg_t g_bfe0_cfg =
{
 .p_cells_select = &g_bfe0_cells_cfg[0], // Do not modify!!!
 .p_temps_select = &g_bfe0_ext_temps_cfg[0], // Do not modify!!!
 .peripheral_type = BFE_COMMUNICATION_INTERFACE_SPI, // Do not modify!!!
 .driver_cfg = BFE_DRIVER_NONE, // Do not modify!!!
 .fet_cfg = BFE_FET_NONE, // Do not modify!!!
 .p_extend = &g_bfe0_ext_cfg, // Do not modify!!!
};

/* Control structure */
st_bfe_ctrl_t g_bfe0_ctrl =
{
 .is_initialized = false, // Do not modify!!!
 .is_low_power = false, // Do not modify!!!
 .is_balancing = false, // Do not modify!!!
 .is_cont_scanning = false, // Do not modify!!!
 .is_fault_detected = false, // Do not modify!!!
 .p_bfe_info = &serial_number, // Do not modify!!!
 .p_bfe_regs = &g_raa489204_registers, // Do not modify!!!

R16US0011EU0100 Rev.1.00 Page 16
Oct 18, 2022

Industrial Battery Front End API Software Manual

 .p_cfg = &g_bfe0_cfg, // Do not modify!!!
 .p_extend = &g_bfe0_ext_ctrl, // Do not modify!!!
};

3.3.3 Use of API Functions
Figure 4 show an example of using the API function for cell balancing pointed by (* p_cellBalanceControl). The
code has the following parts:

▪ API function which is called in the high-level application code. The error return of the function is assigned to the
variable bfe_err. Then its value is checked to verify the successful execution.

▪ Before calling the API function a structure, used for parameter, is declared. It contains the cell balancing
settings for the particular BFE implementation. You can refer to src/bfe/r_bfe_raa489xxx.h to find more
information about its members.

▪ The cell balancing process is controlled with a parameter having predefined constants (Table 12). They are
universal and can be found in the interface file src/bfe/r_bfe_api.h.

▪ Some members of the cell balancing configuration structure have predefined values. They are defined in
enumerations that can be found in src/bfe/r_bfe_raa489xxx.h.

▪ The body of the API function contains control procedures, communication drivers, and other dedicated static
functions. They can be used to create own purpose-specific function.

Figure 4. Using the API interface functions

1

32

4

5

R16US0011EU0100 Rev.1.00 Page 17
Oct 18, 2022

Industrial Battery Front End API Software Manual

3.3.4 Examples
This is a basic example for initializing the interface, running setup and measuring cell voltages with RAA489204
BFE:

e_bfe_err_t bfe_err = BFE_SUCCESS; // Error code

static u_raa489204_voltages_meas_t s_meas_data_v[BFE_STACK_SIZE] = {0};

/* Initialize the Battery Front End. */
bfe_err = g_bfe0.p_api->p_initialize(&g_bfe0_ctrl, &g_bfe0_cfg);

/* Check for error return */
if((bfe_err != BFE_SUCCESS) || (g_bfe0_ctrl.is_fault_detected == true)
{
 return BMS_ERR_BFE;
}

/* Configure the Battery Front End. */
bfe_err = g_bfe0.p_api->p_setup(&g_bfe0_ctrl, &g_bfe0_cfg);

/* Check for error return */
if((bfe_err != BFE_SUCCESS) || (g_bfe0_ctrl.is_fault_detected == true)
{
 return BMS_ERR_BFE;
}

/* Clean the data structure. */
memset(&s_meas_data_v[0], 0, sizeof(s_meas_data_v));

/* Measure all voltages. */
bfe_err = g_bfe0.p_api->p_vCellsGet(&g_bfe0_ctrl, &s_meas_data_v[0], true);

/* Check for error return */
if((bfe_err != BFE_SUCCESS) || (g_bfe0_ctrl.is_fault_detected == true)
{
 return BMS_ERR_BFE;
}

This example demonstrates the change of state with RAA489204 BFE:

e_bfe_err_t bfe_err = BFE_SUCCESS; // Error code

/* Send sleep command to the BFE. */
bfe_err = g_bfe0.p_api->p_modeSet(&g_bfe0_ctrl, BFE_MODE_LOW_POWER);

/* Check for error return */
if((bfe_err != BFE_SUCCESS) || (g_bfe0_ctrl.is_fault_detected == true)
{
 return BMS_ERR_BFE;
}

/* Send a wake-up command to the BFE. */
bfe_err = g_bfe0.p_api->p_modeSet(&g_bfe0_ctrl, BFE_MODE_IDLE);

R16US0011EU0100 Rev.1.00 Page 18
Oct 18, 2022

Industrial Battery Front End API Software Manual

/* Check for error return */
if((bfe_err != BFE_SUCCESS) || (g_bfe0_ctrl.is_fault_detected == true)
{
 return BMS_ERR_BFE;
}

This example demonstrates the fault detection and faults read with RAA489204 BFE:

e_bfe_err_t bfe_err = BFE_SUCCESS; // Error code

static st_raa489204_faults_t s_faults[BFE_STACK_SIZE] = {0};

/* Check for faults. Reset watchdog timeout. */
bfe_err = g_bfe0.p_api->p_faultsCheck(&g_bfe0_ctrl);

/* Check for error return */
if((bfe_err != BFE_SUCCESS) || (g_bfe0_ctrl.is_fault_detected == true))
{
 /* Clean the data structure. */
 memset(&s_faults[0], 0, sizeof(s_faults));

 /* Read the fault. */
 g_bfe0.p_api->p_faultsAllRead(&g_bfe0_ctrl, &s_faults[0]);
}

4. Revision History

Revision Date Description

1.00 Oct 18, 2022 Initial release.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

https://www.renesas.com
https://www.renesas.com/contact/
https://www.renesas.com/contact/

	Contents
	1. Introduction
	1.1 Assumptions and Advisory Notes

	2. Battery Front End Software Structure
	3. Battery Front End Application Programming Interface
	3.1 Interface Structure
	3.2 BFE Interface Instance Structure
	3.3 Using the BFE Interface
	3.3.1 Preparation
	3.3.2 Configuration
	3.3.3 Use of API Functions
	3.3.4 Examples

	4. Revision History

