
www.renesas.com

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

R01US0061ED0140
22.04.2024

U
ser M

anual

16

Data Flash Access Library

Type T02 (Tiny), European Release

16 Bit Single-chip Microcontroller
RL78 Family

Installer:
RENESAS_RL78_EEL-FDL_T02_PACK02_xVxx

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

Data Flash Access Library - Type T02 (Tiny), European Release Regional information

R01US0061ED0140 3
User Manual

Regional information

Some information contained in this document may vary from country to country. Before using any Renesas
Electronics product in your application, please contact the Renesas Electronics office in your country to obtain a
list of authorized representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from
country to country.

Visit

http://www.renesas.com

to get in contact with your regional representatives and distributors.

http://www.renesas.com/

Data Flash Access Library - Type T02 (Tiny), European Release Preface

R01US0061ED0140 4
User Manual

Preface

This manual is intended for users who want to understand the functions of the concerned
libraries.

This manual presents the software manual for the concerned libraries.

Binary: xxxx or xxxB

Decimal: xxxx

Hexadecimal xxxxH or 0x xxxx

Representing powers of 2 (address space, memory capacity):

K (kilo) 210 = 1024

M (mega): 220 = 10242 = 1,048,576

G (giga): 230 = 10243 = 1,073,741,824

X, x = don’t care

Block diagrams do not necessarily show the exact software flow but the functional structure.
Timing diagrams are for functional explanation purposes only, without any relevance to the real
hardware implementation.

Readers

Purpose

Numeric
notation

Numeric
prefix

Register

Diagrams

Data Flash Access Library - Type T02 (Tiny), European Release How to Use This Document

R01US0061ED0140 5
User Manual

How to Use This Document

(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical
characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A
basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The
manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral
functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within
the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to
the text of the manual for details.

(2) Related documents

Document number Description

R01US0070EDxxxx EEPROM Emulation Library Type T02 (Tiny), European
Release

(3) List of Abbreviations and Acronyms

Abbreviation Full form
Block Smallest erasable unit of a flash macro

Code Flash

Embedded Flash where the application code is stored.
For devices without Data Flash EEPROM emulation
might be implemented on that flash in the so called
data area.

Data Flash
Embedded Flash where mainly the data of the
EEPROM emulation are stored. Beside that also code
operation might be possible.

Dual Operation

Dual operation is the capability to fetch code during
reprogramming of the flash memory. Current limitation
is that dual operation is only available between different
flash macros. Within the same flash macro it is not
possible!

EEL EEPROM Emulation Library

EEPROM emulation

In distinction to a real EEPROM the EEPROM
emulation uses some portion of the flash memory to
emulate the EEPROM behavior. To gain a similar
behavior some side parameters have to be taken in
account.

FDL Data Flash Library (Data Flash access layer)

Flash

“Flash EPROM” - Electrically erasable and
programmable nonvolatile memory. The difference to
ROM is, that this type of memory can be re-
programmed several times.

Flash Block A flash block is the smallest erasable unit of the flash
memory.

Data Flash Access Library - Type T02 (Tiny), European Release How to Use This Document

R01US0061ED0140 6
User Manual

Abbreviation Full form

Flash Macro
A flash comprises of the cell array, the sense amplifier
and the charge pump (CP). For address decoding and
access some additional logic is needed.

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM “Random access memory” - volatile memory with
random access

ROM “Read only memory” - nonvolatile memory. The content
of that memory can not be changed.

Serial programming The onboard programming mode is used to program
the device with an external programmer tool.

Single Voltage

For the reprogramming of single voltage flashes the
voltage needed for erasing and programming are
generated onboard of the microcontroller. No external
voltage needed like for dual- voltage flash types.

All trademarks and registered trademarks are the property of their respective owners.

Data Flash Access Library - Type T02 (Tiny), European Release Table of Contents

R01US0061ED0140 7
User Manual

Table of Contents

Chapter 1 Introduction ... 9

1.1 Components of the EEPROM Emulation System .. 10

1.1.1 Physical Flash Layer ... 10

1.1.2 Flash Access Layer ... 10

1.1.3 EEPROM Access Layer ... 10

1.1.4 Application Layer ... 10

Chapter 2 Architecture .. 11

2.1 Data Flash Fragmentation ... 11

2.1.1 EEL Pool ... 11

2.1.2 FDL Pool ... 11

2.2 Address Virtualization ... 11

2.3 Access Right Supervision ... 12

2.4 Request-Response Architecture ... 14

2.5 Background Operation .. 15

2.5.1 Background Operation: Erase .. 15

2.5.2 Background Operation: Internal Verify and Blankcheck 16

2.5.3 Background Operation: Write ... 17

2.6 Abortion of Commands ... 18

2.7 StandBy and WakeUp Functionality ... 20

Chapter 3 User Interface (API) .. 21

3.1 Run-time Configuration ... 21

3.2 Data Types .. 22

3.2.1 Library-specific simple Type Definitions ... 22

3.2.2 Enumeration Type “fdl_command_t” ... 22

3.2.3 Enumeration Type “fdl_status_t” ... 23

3.2.4 Structured Type “fdl_request_t” .. 24

3.2.5 Structured Type “fdl_descriptor_t” .. 25

3.3 Functions .. 27

3.3.1 FDL_Init .. 27

3.3.2 FDL_Open ... 30

3.3.3 FDL_Close .. 32

3.3.4 FDL_Execute .. 34

3.3.5 FDL_Handler .. 37

3.3.6 FDL_Abort .. 39

3.3.7 FDL_StandBy ... 42

Data Flash Access Library - Type T02 (Tiny), European Release Table of Contents

R01US0061ED0140 8
User Manual

3.3.8 FDL_WakeUp .. 45

3.3.9 FDL_GetVersionString .. 47

3.4 Commands ... 50

3.4.1 Blankcheck ... 50

3.4.2 Internal Verify ... 51

3.4.3 Read .. 52

3.4.4 Write .. 53

3.4.5 Erase ... 54

3.5 Basic functional Workflow .. 55

Chapter 4 FDL Usage by User Application .. 56

4.1 First Steps .. 56

4.2 Special Considerations ... 56

4.2.1 Reset Consistency ... 56

4.2.2 EEL+FDL or FDL only .. 56

4.3 File Structure .. 57

4.4 Configuration ... 59

4.4.1 Linker Sections .. 59

4.4.2 Descriptor Configuration (Partitioning of the Data Flash) 59

4.4.3 Prohibited RAM Area ... 60

4.4.4 Register Bank ... 60

4.4.5 Stack and Data Buffer .. 60

4.4.6 Request Structure .. 60

4.5 General Flow .. 61

4.5.1 Initialization .. 61

4.5.2 Read .. 62

4.5.3 Blankcheck/Write/Internal Verify/Erase ... 63

4.6 Example of FDL used in Operating Systems ... 64

4.7 Example: Simple application... 65

Chapter 5 Characteristics .. 66

5.1 Resource Consumption ... 66

5.2 Library Timings .. 66

5.2.1 Maximum Function Execution Times ... 66

5.2.2 Command Execution Times .. 68

Chapter 6 Cautions .. 69

Data Flash Access Library - Type T02 (Tiny), European Release Introduction

R01US0061ED0140 9
User Manual

Chapter 1 Introduction

This user’s manual describes the overall structure, functionality and software interfaces (API) of the Data
Flash Library T02 (Tiny) accessing the physical Data Flash separated and independent from the Code
Flash. This library supports dual operation mode where the content of the Data Flash is accessible (read,
write, erase) during instruction code execution.

The Data Flash Library T02 provides APIs for the C and assembly language of the CA78K0R, IAR V1.xx,
IAR V2.xx, GNU, CC-RL and LLVM tool chains. (APIs for the assembly language are provided by the
CA78K0R and CC-RL tool chains only.)
The Data Flash Library T02 for IAR V2.xx tool chain (except linker sample file) can also be used with the
IAR V3.xx or later version tool chains.

The flash access layer is a layer of the EEPROM emulation system and encapsulates the low-level
access to the physical flash a secure way. In case of Data Flash, this layer is using the FDL. It provides a
functional socket for Renesas EEPROM emulation software.

To boost the flexibility and the real-time characteristics of the library it offers only fast atomic functionality
to read, write and erase the Data Flash memory at smallest possible granularity. Beside the pure access
commands some maintenance functionality to check the quality of the flash content is also provided by
the library.

Figure 1-1: Components of the EEPROM emulation system

Data Flash

Data Flash library
(FDL)

FDL API

EEPROM emulation library
(EEL)

EEL API

user application application layer

EEPROM layer

flash access layer

physical flash layer

ha
rd

w
ar

e
so

ftw
ar

e

Data Flash Access Library - Type T02 (Tiny), European Release Introduction

R01US0061ED0140 10
User Manual

1.1 Components of the EEPROM Emulation System

To achieve a high degree of encapsulation the EEPROM emulation system is divided into several layers
with narrow functional interfaces.

1.1.1 Physical Flash Layer

The FDL is accessing the Data Flash as a physical media for storing data in the EEPROM emulation
system. The Data Flash is a separate memory that can be accessed independent of the Code Flash
memory. This allows background access to data stored in the Data Flash during program execution
located in the code flash.

1.1.2 Flash Access Layer

The flash access layer is represented by the flash access library provided by Renesas. In case of devices
incorporating data-flash the Data Flash Library (FDL) is representing this layer. It offers all atomic
functionality to access the Data Flash. To isolate the data-flash access from the used flash-media this
layer (the FDL) is transforming the physical addresses into a virtual, linear address-room.

1.1.3 EEPROM Access Layer

The EEPROM layer allows read/write access to the Data Flash on an abstract level. It is represented by
a Renesas EEPROM Emulation Library (EEL) or alternatively any other, user specific implementation.

1.1.4 Application Layer

The application layer represents user’s application software that can freely access all visible (specified by
the API definition) commands. The EEPROM layer and the flash access layer can be used
simultaneously. The FDL manages the access rights to it in a proper way.

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 11
User Manual

Chapter 2 Architecture

This chapter describes the overall architecture of the Tiny FDL.

2.1 Data Flash Fragmentation

The physical address range of the Data Flash depends on the utilized hardware (e.g. for RL78/G13:
0xF1000 – 0xF1FFF). However, the logical fragmentation of the Data Flash can be configured within the
given range.

Following figure shows the logical fragmentation of RL78/G13 physical Data Flash.

2.1.1 EEL Pool

The EEL pool is exclusively used by the Renesas EEPROM Emulation Library (EEL). In case the EEL is
not used the whole Data Flash can be reserved as FDL pool.

2.1.2 FDL Pool

The FDL pool is exclusively used by the application. In case of a proprietary EEPROM emulation
implementation (user specific), the complete FDL pool has to be configured as FDL-pool.

2.2 Address Virtualization

To facilitate the access to the FDL pool, the physical addresses were virtualized. The virtualized pool
looks like a simple one-dimensional array.

Figure 2-1: Logical fragmentation of physical Data Flash

 Data Flash

FDL pool

EEL pool

0xF1000

0xF1FFF

Access by
EEL only

Access by
application only

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 12
User Manual

2.3 Access Right Supervision

As mentioned before, the complete Data Flash is divided into two parts which are accessible by pool
owner (FDL does not allow user access to the EEL-pool and vice versa).

Figure 2-2: Relationship between physical and virtual pool addresses

FDL/EEL
PoolData Flash

FDL pool

EEL pool

0xF2FFF

0xF1000

Block 0

Block 1

Block 2

Block 3

Block 7

Block 6

0xF1C00

0xF1400

0xF1800

Block 3

Block 2

0xF2C00

0xF2BFF

0xF2800

0xF1BFF

0xF17FF

0xF13FF

0xF1FFF

virtual
byte
index

Flash block
and address

transformation

Block 1

Block 0

Block 5

Block 4
0x0000

0x0C00

0x0400

0x0800

0x03FF

0x07FF

0x0BFF

0x0FFF

0xF2000

0xF23FF

0xF2400

0xF27FF

Physical
address

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 13
User Manual

Figure 2-3: FDL pool access supervision

FDL pool access

USER

EEL

EEL pool access

0-(
N-1)

EEL pool

FDL pool

N flash bytes

0x0000

N-1

FDL

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 14
User Manual

2.4 Request-Response Architecture

The communication between the requester (user) and the executor (here the FDL) is a structured request
variable. The requester can specify the request and pass it to the FDL. After acceptance, the progress of
the execution can be checked by polling the request status.

From execution-time point of view the commands of the FDL are divided into two groups:

• commands that can be aborted: block oriented commands like erase taking relatively long time for
its execution

• commands that cannot be aborted: byte-oriented commands like write, read ... taking very short
time for its execution

Depending on the real-time requirements, the user can decide if independent, quasi-parallel execution of
block and byte commands is required or not. In such a case, two separate request-variables have to be
defined and managed by the application. Please refer to chapter “Basic functional Workflow” for details.

Following figure shows the access from requester and FDL point of view.

Figure 2-4: Request oriented communication between FDL and its requester

DATA POINTER

INDEX

COMMAND

STATUS

Requester

FDL

BYTE COUNT

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 15
User Manual

2.5 Background Operation

The flash technology provided by Renesas enables the application to write/erase the Data Flash in
parallel to the CPU execution. Such a feature is a powerful especially in operation systems were each
task could start FDL commands which will be executed in the background during task switching.

2.5.1 Background Operation: Erase

The erase command is the longest command. Once started, the erase command is executed in the
background leaving the user the option to execute other application tasks in the meantime. By calling the
FDL_Handler, the current progress of the command can be checked via the status of the used request
structure. As shown in the figure below, the application has the possibility to execute other user code
during the background operation.

Figure 2-5: Background operation (Erase)

FDL_Execute(req.command_enu =
FDL_CMD_ERASE_BLOCK)

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_BUSY

req.status_enu =
FDL_OK

FDL
Data Flash
hardware

(background)
USER

EraseFDL_Handler()

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_BUSY

FDL_Handler()

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 16
User Manual

2.5.2 Background Operation: Internal Verify and Blankcheck

Just like the erase command, also the internal verify and the blankcheck are performed in the background,
once they have been triggered.

Figure 2-6: Background operation (Internal Verify/Blankcheck)

FDL_Execute(req.command_enu =
FDL_CMD_IVERIFY_BYTES or

FDL_CMD_BLANKCHECK_BYTES)

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_OK

FDL
Data Flash
hardware

(background)
USER

BlankCheck(x bytes)
OR

Internal Verify (x bytes)

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 17
User Manual

2.5.3 Background Operation: Write

Compared to the erase/internal verify/blankcheck command the write commands, is running only partially
in the background. Each byte is written in the background whereas the administrative part of selecting the
next byte is done by the FDL_Handler(). Therefore, it is mandatory to call the FDL_Handler not only for
checking the current progress, but also to drive the command forward.

Figure 2-7: Background operation (Write)

FDL_Execute(req.command_enu =
FDL_CMD_WRITE_BYTES)

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_BUSY

FDL_Handler()

req.status_enu =
FDL_OK

FDL
Data Flash
hardware

(background)
USER

Write
Byte (1)

Write
Byte (2)

Write
Byte (3)

Write
Byte (x)

::::
::::

::::
::::

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 18
User Manual

2.6 Abortion of Commands

Some application scenarios require an immediate abort of running data flash operations e.g. in cases of
voltage drop or emergency data write to the data flash. For that reason the FDL provides an abort
mechanism where a running erase command can be aborted immediately. The following figure shows
such a scenario.

As shown in the figure above, the erase command will be immediately aborted in case of calling the
FDL_Abort function and the requester of the erase command will be informed that the requested
command was aborted. In such a case, the command shall be re-started by requester later. In contrast,
the blankcheck/write/internal verify commands cannot be aborted immediately and therefore have to be
finished by repeated calls of the FDL_Abort function. The following figure shows the abort functions in
case of blankcheck/write/internal verify commands.

Figure 2-8: Abort erase command

Erase

FDL_Execute(req.command_enu =
FDL_CMD_ERASE_BLOCK)

req.status_enu =
FDL_BUSY

req.status_enu =
FDL_ERR_ABORTED

FDL_Abort()

FDL_Abort() returns
FDL_OK

FDL
Data Flash
hardware

(background)
USER

::::

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 19
User Manual

Figure 2-9: Abort Blankcheck/Write/Internal Verify command

BlankCheck

or

Write

or

Internal Verify

FDL_Execute(req.command_enu =
FDL_CMD_BLANKCHECK_BYTES**)

req.status_enu =
FDL_BUSY

FDL_Abort()
returns FDL_BUSY

FDL
Data Flash
hardware

(background)
USER

::::
::::

FDL_Abort()

FDL_Abort()
returns FDL_BUSY

FDL_Abort()

FDL_Abort()
returns FDL_OK

** same procedure for FDL_CMD_WRITE_BYTES and FDL_CMD_IVERIFY_BYTES

FDL_Abort()

Data Flash Access Library - Type T02 (Tiny), European Release Architecture

R01US0061ED0140 20
User Manual

2.7 StandBy and WakeUp Functionality

The StandBy and WakeUp feature provides the possibility to temporarily turn off the data flash
functionality including the hardware (e.g. for power consumption) and resume the functionality. The
StandBy mode is active in case the FDL_StandBy function returns FDL_OK. In case the return status is
FDL_BUSY any command is running and FDL_StandBy function has to be re-called. The following figure
shows the sequence of using the StandBy/WakeUp feature.

Note: It is not allowed to call any FDL function other than FDL_WakeUp and FDL_Handler when FDL is
in StandBy mode.

Figure 2-10: StandBy and WakeUp sequence

BlankCheck

or

Write

or

Internal Verify

or

Erase

FDL_Execute(req.command_enu =
FDL_CMD_BLANKCHECK_BYTES**)

req.status_enu =
FDL_BUSY

FDL_StandBy()
returns FDL_BUSY

FDL
Data Flash
hardware

(background)
USER

::::
::::

FDL_StandBy()

FDL_StandBy()
returns FDL_OK

DFLEN* = 1

FDL_WakeUp()

FDL_WakeUp()
returns FDL_OK

* Data Flash enable SFR
** same procedure for FDL_CMD_ERASE_BLOCK, FDL_CMD_WRITE_BYTES and
FDL_CMD_IVERIFY_BYTES

FDL_StandBy()

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 21
User Manual

Chapter 3 User Interface (API)

3.1 Run-time Configuration

The configuration of the FDL can be changed dynamically at runtime. Thereby, more than one descriptor
constant has to be defined by the user in advance. Depending on the application different descriptors can
be used for the FDL_Init(...) function.

/* */
/* some code */
/* */

/* load standard descriptor */
my_status=FDL_Init(&fdl_descriptor_str);

/* */
/* some code */
/* */

EEL_Close();
FDL_Close();

/* load alternative descriptor */
my_status=FDL_Init(&fdl_descr_2_str);

/* */
/* some code */
/* */

Note: Before changing FDL pool configuration by using a different FDL pool-descriptor, the user has to
finish all running FDL and EEL commands and close the FDL via the FDL_Close() function.

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 22
User Manual

3.2 Data Types

This chapter describes all data definitions used by the Tiny FDL. In order to reduce the probability of type
mismatches in the user application, please make strict usage of the provided types and avoid using
standard data types instead.

3.2.1 Library-specific simple Type Definitions

This type defines simple numerical type used by the library

typedef unsigned char fdl_u08;
typedef unsigned int fdl_u16;
typedef unsigned long int fdl_u32;

3.2.2 Enumeration Type “fdl_command_t”

The enumeration type fdl_command_t defines all allowed codes used to specify library commands. This
type is used within the structure fdl_request_t (see Section 3.2.4) in order to specify which command shall
be executed via the function FDL_Execute. A detailed description of each command can be found in
Section 3.4.

typedef enum
{

FDL_CMD_READ_BYTES = (0x00),
FDL_CMD_IVERIFY_BYTES = (0x01),
FDL_CMD_BLANKCHECK_BYTES = (0x02),
FDL_CMD_WRITE_BYTES = (0x03),
FDL_CMD_ERASE_BLOCK = (0x04)

} fdl_command_t;

Note: Due to the fact that the library has been implemented in Assembler, it is mandatory that the
enumeration type fdl_command_t has a size of exactly 1 byte. The GNU and LLVM compilers use 16-bit
enumeration types by default. Therefore, for GNU and LLVM compilers, the declaration of the
enumeration type has to be extended with an attribute in order to be compiled to 1 byte:
“__attribute__ ((__packed__))”.

Table 3-1: Command codes

Command Description
FDL_CMD_READ_BYTES reads data from flash memory
FDL_CMD_IVERIFY_BYTES verifies data if flash provides full data retention
FDL_CMD_BLANKCHECK_BYTES checks if flash content is erased
FDL_CMD_WRITE_BYTES writes data into flash memory
FDL_CMD_ERASE_BLOCK erases one flash block

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 23
User Manual

3.2.3 Enumeration Type “fdl_status_t”

This enumeration type defines all possible status- and error-codes can be generated during data-flash
access via the FDL. The FDL_OK and FDL_BUSY status are returned to the requester during normal
operation. Other codes signalize problems.

On the one hand, fdl_status_t is used as return type of the functions FDL_Init (see Section 3.3.1),
FDL_Abort (see Section 3.3.6), FDL_StandBy (see Section 3.3.7) and FDL_WakeUp (see Section 3.3.8).
On the other hand, fdl_status_t is used within the structure fdl_request_t (see Section 3.2.4) in order to
capture the processing of currently running command. Thereby, the possible error codes are command
specific and described in detail in Section 3.4 along with the commands.

typedef enum
{

FDL_OK = (0x00),
FDL_BUSY = (0xFF),
FDL_ERR_INITIALIZATION = (0x02),
FDL_ERR_REJECTED = (0x03),
FDL_ERR_ABORTED = (0x04),
FDL_ERR_PARAMETER = (0x05),
FDL_ERR_STANDBY = (0x06),
FDL_ERR_ERASE = (0x1A),
FDL_ERR_BLANK_VERIFY = (0x1B),
FDL_ERR_WRITE = (0x1C),
FDL_ERR_CONFIGURATION = (0x01)

} fdl_status_t;

Note: Due to the fact that the library has been implemented in Assembler, it is mandatory that the
enumeration type fdl_status_t has a size of exactly 1 byte. The GNU and LLVM compilers use 16-bit
enumeration types by default. Therefore, for GNU and LLVM compilers, the declaration of the
enumeration type has to be extended with an attribute in order to be compiled to 1 byte:
“__attribute__ ((__packed__))”.

Table 3-2: Enumeration type "fdl_status_t" details

Status value Description
FDL_OK Command finished without problems
FDL_BUSY Command is being processed
FDL_ERR_INITIALIZATION FDL_Init()/FDL_Open() missing
FDL_ERR_REJECTED Request could not be accepted
FDL_ERR_ABORTED Erase command has been aborted
FDL_ERR_PARAMETER Parameter error
FDL_ERR_STANDBY FDL_WakeUp missing
FDL_ERR_ERASE Erase error
FDL_ERR_BLANK_VERIFY Blankcheck or verify error
FDL_ERR_WRITE Write error
FDL_ERR_CONFIGURATION Pool or frequency configuration wrong

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 24
User Manual

3.2.4 Structured Type “fdl_request_t”

This type is used for definition of request variables and used for information exchange between the
application and the FDL. A request variable is passed to the FDL to initiate a command and can be used
by the requester (EEL, application...) to check the status of its execution. Not every element of this
structure is required for each command. However, all members of the request variable must be initialized
once before usage. Please refer to Section 3.4 for a more detailed description and the command-specific
usage of the structure elements.

/* FDL request type (base type for any FDL access) */
typedef struct
{

fdl_u16 index_u16;
_near fdl_u08* data_pu08;
fdl_u16 bytecount_u16;
fdl_command_t command_enu;
fdl_status_t status_enu;

} fdl_request_t;

Note: The GNU compiler does not require the “__near” keyword to declare near pointers. All pointers are
near by default as long as the “__far” keyword is not used.

Table 3-3: Structured type "fdl_request_t" details

Struct member Description

index_u16

Start address of the target area:
• Erase: virtual block number inside FDL-pool
• Read/write/blankcheck/internal verify: virtual

byte number inside FDL-pool

data_pu08 Pointer to the first byte of the data buffer to be
written or read. Only used for read/write commands.

bytecount_u16

Number of bytes to be transferred starting from the
start byte specified in index_u16. The byte count
range is from 1 byte to 1024 bytes. Please note, that
the execution of the read/write/blankcheck/internal
verify command across block boundaries is not
allowed. This struct member is not required for erase
command.

command_enu Command code to be executed
status_enu Request status code (feedback)

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 25
User Manual

3.2.5 Structured Type “fdl_descriptor_t”

This type defines the structure of the FDL descriptor. It contains all characteristics of the FDL. It is used in
the fdl_descriptor.c sample file for definition of the ROM constant fdl_descriptor_str.

Based on configuration data inside the fdl_descriptor.h the initialization data of descriptor constant is
generated automatically in the fdl_descriptor.c.

/* FDL descriptor type */
typedef struct
{

fdl_u16 eel_pool_bytes_u16;
fdl_u16 fdl_pool_bytes_u16;
fdl_u16 fdl_delay_u16;
fdl_u08 eel_pool_blocks_u08;
fdl_u08 fdl_pool_blocks_u08;
fdl_u08 fx_MHz_u08;
fdl_u08 wide_voltage_mode_u08;

} fdl_descriptor_t;

Table 3-4: Structured type "fdl_descriptor_t" details

Struct member Description

eel_pool_bytes_u16

EEL-pool size in bytes.
It shall be computed by the compiler pre-processor based on
the following formula:
DATA_FLASH_BLOCK_SIZE* eel_pool_blocks_u08
DATA_FLASH_BLOCK_SIZE is the physical size of a Flash
block specified in the device HW user manual.

fdl_pool_bytes_u16

FDL-pool size in bytes
It shall be computed by the compiler pre-processor based on
the following formula:
DATA_FLASH_BLOCK_SIZE* fdl_pool_blocks_u08
DATA_FLASH_BLOCK_SIZE is the physical size of a Flash
block specified in the device HW user manual.

fdl_delay_u16

Constant delay depending on configured frequency.
It shall be computed by the compiler pre-processor by the
following formula:
(10 * fx_MHz_u08) / 6

eel_pool_blocks_u08

EEL-pool size in blocks.
It shall be chosen by the user with the condition that
(fdl_pool_blocks_u08 + eel_pool_blocks_u08) may not exceed
the size of the data flash specified in the device HW user
manual.

fdl_pool_blocks_u08

FDL-pool size in blocks.
It shall be chosen by the user with the condition that
(fdl_pool_blocks_u08 + eel_pool_blocks_u08) may not exceed
the size of the data flash specified in the device HW user
manual.

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 26
User Manual

Struct member Description

fx_MHz_u08

CPU frequency

Frequency must be rounded up as follows:
 descr.fx_MHz_u08 =
((FDL_SYSTEM_FREQUENCY+999999)/1000000)
FDL_SYSTEM_FREQUENCY specifies the device frequency
and not the HOCO (internal high-speed on-chip oscillator)
frequency.
In case the frequency is smaller than 4MHz the only supported
physically frequencies by FDL are the following:
1MHz=1000000Hz, 2MHz=2000000Hz and 3MHz=3000000Hz

wide_voltage_mode_u08

Flash memory programming mode (full/wide).
It shall be chosen by the user:

• wide_voltage_mode_u08 shall be set to 1 for wide
voltage mode

• wide_voltage_mode_u08 shall be set to 0 for full speed
mode.

For details of the flash memory programming mode, refer to the
user’s manual of the target RL78 microcontroller.

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 27
User Manual

3.3 Functions

3.3.1 FDL_Init

Outline: Initialization of the Flash Data Library.

Interface: C Interface for CA78K0R Compiler

fdl_status_t __far FDL_Init(const __far fdl_descriptor_t*
 descriptor_pstr)

 C Interface for IAR V1.xx Compiler

__far_func fdl_status_t FDL_Init(const __far fdl_descriptor_t __far*
 descriptor_pstr)

 C Interface for IAR V2.xx Compiler

__far_func fdl_status_t FDL_Init(const fdl_descriptor_t __far *
 descriptor_pstr)

 C Interface for GNU Compiler

fdl_status_t FDL_Init(const fdl_descriptor_t __far* descriptor_pstr)
 __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

fdl_status_t __far FDL_Init(const __far fdl_descriptor_t*
 descriptor_pstr)

 C Interface for LLVM Compiler

fdl_status_t __far FDL_Init(const __far fdl_descriptor_t*
 descriptor_pstr)__attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_Init

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 28
User Manual

Arguments: Parameters

 Argument Access
descriptor_pstr R

Type
Passed via

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

fdl_descriptor_t* (far) BC(highw),
AX(loww) stack A(high),

DE(loww) stack A(high),
DE(loww)

A(high),
DE(loww)

Pointer to the descriptor (describing the FDL configuration). The virtualization of the data-
flash address-room is done based on that descriptor. The user can use different
descriptors to switch between different FDL-pool configurations.

 Destructed registers

 Tool chain Destructed registers
CA78K0R AX, B
IAR V1.xx AX, HL, CS, ES
IAR V2.xx X, BC, DE, HL
GNU None

CC-RL X, BC, DE, HL

LLVM X, BC, DE, HL

Pre-
conditions:

Internal high-speed oscillator is running.

Post-
conditions:

Initialization is done.

 Return value

Type

Passed via

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

fdl_status_t C A A R8
(X bank 1) A A

FDL_ERR_CONFIGURATION when descriptor is not plausible.
FDL_OK when descriptor is plausible and initialization was successful.

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 29
User Manual

Description: Several checks are performed during the initialization:
• plausibility check of the pool configuration
• frequency parameter check against supported device-specific range
• initialization of all internal variables
• initialization of the flash firmware
• configuration of HOCO

After initialization, the FDL remains passive. FDL_Open() has to be executed to open
access to the FDL pool.
Note: It is not allowed to call FDL_Init in case of any running FDL command.

Example:

fdl_status_t my_status;
my_status = FDL_Init(&fdl_descriptor_str);
if(my_status == FDL_OK)
{
/* FDL can be used */
}
else
{
/* error handler */
}

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 30
User Manual

3.3.2 FDL_Open

Outline: Activation of the data-flash.

Interface: C Interface for CA78K0R Compiler

void __far FDL_Open(void)

 C Interface for IAR V1.xx Compiler

__far_func void FDL_Open(void)

 C Interface for IAR V2.xx Compiler

__far_func void FDL_Open(void)

 C Interface for GNU Compiler

void FDL_Open(void) __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

void __far FDL_Open(void)

 C Interface for LLVM Compiler

void __far FDL_Open(void) __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_Open

Arguments: Parameters

 none

 Return value

 none

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 31
User Manual

 Destructed registers

 Tool chain Destructed registers
CA78K0R None
IAR v1.xx None
IAR v2.xx AX
GNU None
CC-RL AX
LLVM AX

Pre-
conditions:

The initialization shall be done before. However, no check is performed here. If the FDL is
not yet initialized, FDL_Open() has no functionality.

Post-
conditions:

Data flash clock is switched on.

Description: This function must be used by the application to activate the data-flash.

Example:

FDL_Open();

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 32
User Manual

3.3.3 FDL_Close

Outline: Deactivation of the data-flash.

Interface: C Interface for CA78K0R Compiler

void __far FDL_Close(void)

 C Interface for IAR V1.xx Compiler

__far_func void FDL_Close(void)

 C Interface for IAR V2.xx Compiler

__far_func void FDL_Close(void)

 C Interface for GNU Compiler

void FDL_Close(void) __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

void __far FDL_Close(void)

 C Interface for LLVM Compiler

void __far FDL_Close(void) __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_Close

Arguments: Parameters

 none

 Return value

 none

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 33
User Manual

 Destructed registers

 Tool chain Destructed registers
CA78K0R None
IAR V1.xx None
IAR V2.xx C
GNU None
CC-RL C
LLVM C

Pre-
conditions:

The library initialization and open via FDL_Init and FDL_Open shall be done before
calling this function. If FDL is not yet activated the FDL_Close() has no functionality.

Post-
conditions:

Data flash clock is switched off. All hardware background activities will be stopped
immediately.

Description: This function must be used by the application to deactivate the data-flash.

Example:

FDL_Close();

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 34
User Manual

3.3.4 FDL_Execute

Outline: Initiates the execution of an FDL command.

Interface: C Interface for CA78K0R Compiler

void __far FDL_Execute(__near fdl_request_t* request_pstr)

 C Interface for IAR V1.xx Compiler

__far_func void FDL_Execute(__near fdl_request_t __near* request_pstr)

 C Interface for IAR V2.xx Compiler

__far_func void FDL_Execute(fdl_request_t __near * request_pstr)

 C Interface for GNU Compiler

void FDL_Execute(fdl_request_t* request_pstr)
 __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

void __far FDL_Execute(__near fdl_request_t* request_pstr)

 C Interface for LLVM Compiler

void __far FDL_Execute(__near fdl_request_t* request_pstr)
 __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_Execute

Arguments: Parameters

Argument Access
request_pstr RW

Type
Passed via

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

fdl_request_t* (near) AX AX AX stack AX AX
This argument defines the command which should be executed by FDL. It is a request
variable which is used for bidirectional information exchange before and during execution
between FDL and the application. For details please refer to the “Request-Response
Architecture” chapter.

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 35
User Manual

 Return value

 none

 Destructed registers

 Tool chain Destructed registers
CA78K0R AX
IAR V1.xx AX, HL, CS, ES
IAR V2.xx AX, BC, DE, HL
GNU None
CC-RL AX, BC, DE, HL
LLVM AX, BC, DE, HL

Pre-
conditions:

The library initialization and open via FDL_Init and FDL_Open shall be done before
calling this function.

Post-
conditions:

None

Description: This is the main function of the FDL which can be used inside of the application to initiate
the execution of any command. Please refer to the chapter “Commands” for detailed
explanation of each command.
Note 1: Although there are commands that do not require all request structure elements
to be specified, the whole structure needs to be initialized before calling EEL_Execute.
Otherwise, a RAM parity error may cause a reset of the device. For details, please refer
to the document “User's Manual: Hardware” of your RL78 product.

Note 2: The request structure used for execution has to be word-aligned, i.e. located at
an even memory address.

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 36
User Manual

Example:

__near fdl_request_t my_fdl_request_str;
__near fdl_u08 buffer[4];

buffer[0] = {0x01, 0x23, 0x45, 0x67};

my_fdl_request.index_u16 = 0x0000;
my_fdl_request.data_pu08 = (__near fdl_u08*)buffer;
my_fdl_request.bytecount_u16 = 0x0004;
my_fdl_request.command_enu = FDL_CMD_WRITE_BYTES;

/* command initiation */
do
{
 FDL_Execute(&my_fdl_request);
 FDL_Handler(); /* proceed background process */
}
while (my_fdl_request.status_enu == FDL_ERR_REJECTED);

/* command execution */
do
{
 FDL_Handler();
}
while (my_fdl_request.status_enu == FDL_BUSY);
if(my_fdl_request.status_enu != FDL_OK)
{

error_handler();
}

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 37
User Manual

3.3.5 FDL_Handler

Outline: Function for command proceeding.

Interface: C Interface for CA78K0R Compiler

void __far FDL_Handler(void)

 C Interface for IAR V1.xx Compiler

__far_func void FDL_Handler(void)

 C Interface for IAR V2.xx Compiler

__far_func void FDL_Handler(void)

 C Interface for GNU Compiler

void FDL_Handler(void) __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

void __far FDL_Handler(void)

 C Interface for LLVM Compiler

void __far FDL_Handler(void) __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_Handler

Arguments: Parameters

 none

 Return value

 none

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 38
User Manual

 Destructed registers

 Tool chain Destructed registers
CA78K0R None
IAR V1.xx None
IAR V2.xx A, C, HL
GNU None
CC-RL A, C, HL
LLVM A, C, HL

Pre-
conditions:

The library initialization and open via FDL_Init and FDL_Open shall be done before
calling this function.

Post-
conditions:

In case of finished command the status is written to the request structure associated to
the currently running command.

Description: This function is used by the application to proceed the execution of a running command
initiated by FDL_Execute function.

Example:

/* infinite scheduler loop */
do
{
 /* proceed potential command execution */
 FDL_Handler();

 /* 20ms time slize (potential FDL requester) */
 MyTask_A(20);

 /* 10ms time slize (potential FDL requester) */
 MyTask_B(10);

 /* 40ms time slize (potential FDL requester) */
 MyTask_C(40);

 /* 10ms time slize (potential FDL requester) */
 MyTask_D(10);
}
while (true);

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 39
User Manual

3.3.6 FDL_Abort

Outline: Function for erase command abortion.

Interface: C Interface for CA78K0R Compiler

fdl_status_t __far FDL_Abort(void)

 C Interface for IAR V1.xx Compiler

__far_func fdl_status_t FDL_Abort(void)

 C Interface for IAR V2.xx Compiler

__far_func fdl_status_t FDL_Abort(void)

 C Interface for GNU Compiler

fdl_status_t FDL_Abort(void) __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

fdl_status_t __far FDL_Abort(void)

 C Interface for LLVM Compiler

fdl_status_t __far FDL_Abort(void)
 __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_Abort

Arguments: Parameters

 none

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 40
User Manual

 Return value

Type
Passed via

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

fdl_status_t C A A
R8

(X bank 1)
A A

FDL_OK when either no command is running or erase has been aborted.
FDL_BUSY when byte oriented command is still running.

 Destructed registers

 Tool chain Destructed registers
CA78K0R None
IAR V1.xx None
IAR V2.xx BC, HL
GNU None
CC-RL BC, HL
LLVM BC, HL

Pre-
conditions:

The library initialization and open via FDL_Init and FDL_Open shall be done before
calling this function.

Post-
conditions:

In case of a running erase the command will be aborted and requester will be informed
via the request status FDL_ERR_ABORTED.

Description: This function enables the application to abort a running erase command (independent of
the affected pool) immediately. The requester will be informed regarding the stopped
erase via the request status FDL_ERR_ABORTED. In such a case the application shall
re-start the erase command otherwise the block cannot be used. Other commands like
blankcheck, write and internal verify cannot be aborted and therefore have to be finished
properly. If the application calls this function during the above described byte commands
the return value FDL_BUSY will be returned. That means a byte command is still running.
Please re-call the FDL_Abort functions as long as the status is FDL_BUSY. Only when
the return value is changed to FDL_OK the command is properly finished.

Example:

__near fdl_request_t my_fdl_request_str;
__near fdl_u08 cmd_finished = 0;

/* request structure initialization */
my_fdl_request.index_u16 = 0x0000;
my_fdl_request.data_pu08 = (__near fdl_u08*) 0x0000;
my_fdl_request.bytecount_u16 = 0x0000;
my_fdl_request.command_enu = (fdl_command_t)0xFF;
my_fdl_request.status_enu = FDL_ERR_PARAMETER;

/* set erase command */
my_fdl_request.index_u16 = 0x0000;
my_fdl_request.command_enu = FDL_CMD_ERASE_BLOCK;

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 41
User Manual

/* ################# TASK 1 #################### */
/* ######## TRY TO ERASE HERE ONE BLOCK ######## */
/* ### */

FDL_Execute(&my_fdl_request);

cmd_finished = 0;
while (cmd_finished == 0)
{
 switch (my_fdl_request.status_enu)
 {
 case FDL_BUSY:
 FDL_Handler();
 break;
 case FDL_ERR_ABORTED:
 /* start erase again in case it was aborted */
 FDL_Execute(&my_fdl_request);
 FDL_Handler();
 break;
 case FDL_ERR_REJECTED:
 /* try again if request not accepted */
 FDL_Execute(&my_fdl_request);
 FDL_Handler();
 break;
 default:
 cmd_finished = 1;
 break;
 }
}

if (my_fdl_request.status_enu != FDL_OK)
{
 error_handler();
}

/* #################### TASK 2 ####################### */
/* ######## WILL BE USED FOR EMERGENCY WRITE ######## */
.....

do
{
 abort_status = FDL_Abort();
}
while(abort_status != FDL_OK);

DRIVER IS NO MORE BUSY HERE.
PERFORM EMERGENCY WRITE HERE

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 42
User Manual

3.3.7 FDL_StandBy

Outline: Function to drive the library into StandBy mode.

Interface: C Interface for CA78K0R Compiler

fdl_status_t __far FDL_StandBy(void)

 C Interface for IAR V1.xx Compiler

__far_func fdl_status_t FDL_StandBy(void)

 C Interface for IAR V2.xx Compiler

__far_func fdl_status_t FDL_StandBy(void)

 C Interface for GNU Compiler

fdl_status_t FDL_StandBy(void) __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

fdl_status_t __far FDL_StandBy(void)

 C Interface for LLVM Compiler

fdl_status_t __far FDL_StandBy(void)
 __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_StandBy

Arguments: Parameters

 none

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 43
User Manual

 Return value

Type
Passed via

CA78K0R IAR
V1.xx

 IAR
V2.xx GNU CC-RL LLVM

fdl_status_t C A A R8
(X bank 1) A A

FDL_OK when FDL entered StandBy mode.
FDL_BUSY any command is still running.

 Destructed registers

 Tool chain Destructed registers
CA78K0R None
IAR V1.xx None
IAR V2.xx C, HL
GNU None
CC-RL C, HL
LLVM C, HL

Pre-
conditions:

The library initialization and open via FDL_Init and FDL_Open shall be done before
calling this function.

Post-
conditions:

Data flash clock is switched off and library is in StandBy mode.

Description: The main purpose of this function is to drive the library and Data Flash into the StandBy
mode. StandBy mode means that

• the Data Flash hardware is switched off (the DFLEN bit of the Data flash control
register is cleared), and

• the library does not accept any command requests

Note: It is not allowed to call any FDL function other than FDL_WakeUp and
FDL_Handler when FDL is in StandBy mode.

Example:

do
{
 standby_status = FDL_StandBy();
}
while (standby_status != FDL_OK);

#######################################
E.G. ENTER STOP/HALT MODE HERE
#######################################

wakeup_status = FDL_WakeUp();

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 44
User Manual

if(wakeup_status != FDL_OK)
{
 flow_error_handler();
}

E.G. CONTINUE WITH LIBRARY/APPLICATION EXECUTION HERE

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 45
User Manual

3.3.8 FDL_WakeUp

Outline: Function to wake up the library from StandBy mode.

Interface: C Interface for CA78K0R Compiler

fdl_status_t __far FDL_WakeUp(void)

 C Interface for IAR V1.xx Compiler

__far_func fdl_status_t FDL_WakeUp(void)

 C Interface for IAR V2.xx Compiler

__far_func fdl_status_t FDL_WakeUp(void)

 C Interface for GNU Compiler

fdl_status_t FDL_WakeUp(void) __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

fdl_status_t __far FDL_WakeUp(void)

 C Interface for LLVM Compiler

fdl_status_t __far FDL_WakeUp(void)
 __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_WakeUp

Arguments: Parameters

 none

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 46
User Manual

 Return value

Type
Passed via

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

fdl_status_t C A A R8
(X bank 1) A A

FDL_OK when FDL is up and running.
FDL_ERR_REJECTED when library isn't in StandBy mode.

 Destructed registers

 Tool chain Destructed registers
CA78K0R None
IAR V1.xx None
IAR V2.xx X
GNU None
CC-RL X
LLVM X

Pre-
conditions:

The library initialization and open via FDL_Init and FDL_Open shall be done before
calling this function.

Post-
conditions:

Data flash clock is switched on and library is up and running.

Description: The main purpose of this function is to wake-up the library and Data Flash hardware from
the StandBy mode. After successful execution of this function,

• the Data Flash hardware is switched on(the DFLEN bit of the Data flash control
register is set), and

• the FDL accepts new command requests.

Example:

wakeup_status = FDL_WakeUp();

if(wakeup_status != FDL_OK)
{
 flow_error_handler();
}

E.G. CONTINUE WITH LIBRARY EXECUTION HERE

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 47
User Manual

3.3.9 FDL_GetVersionString

Outline: Function for reading library version information.

Interface: C Interface for CA78K0R Compiler

__far fdl_u08* __far FDL_GetVersionString(void)

 C Interface for IAR V1.xx Compiler

__far_func fdl_u08 __far* FDL_GetVersionString(void)

 C Interface for IAR V2.xx Compiler

__far_func fdl_u08 __far * FDL_GetVersionString(void)

 C Interface for GNU Compiler

fdl_u08 __far* FDL_GetVersionString(void)
 __attribute__ ((section ("FDL_CODE")))

 C Interface for CC-RL Compiler

__far fdl_u08* __far FDL_GetVersionString(void)

 C Interface for LLVM Compiler

__far fdl_u08* __far FDL_GetVersionString(void)
 __attribute__ ((section ("FDL_CODE")))

 ASM function label

FDL_GetVersionString

Arguments: Parameters

 none

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 48
User Manual

 Return value

Type
Passed via

CA78K0R IAR
V1.xx

IAR
V2.xx GNU CC-RL LLVM

fdl_u08* (far) DE(highw),
BC(loww) A, HL A(high),

DE(loww)

R8-R11
(AX,BC
bank 1)

A(high),
DE(loww)

A(high),
DE(loww)

Pointer to the first character of a zero terminated version string.

 Destructed registers

 Tool chain Destructed registers
CA78K0R None
IAR V1.xx None
IAR V2.xx None
GNU None
CC-RL None
LLVM None

Pre-
conditions:

None

Post-
conditions:

None

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 49
User Manual

Description: For version control at runtime the developer can use this function to find the starting
character of the library version string (ASCII format).

The version string is a zero-terminated string constant that covers library-specific
information and is based on the following structure: NMMMMTTTCCCCCGVVV..V,
where:

• N : library type specifier (here ‘D’ for FDL)
• MMMM : series name of microcontroller (here ‘RL78’)
• TTT : type number (here ‘T02’)
• CCCCC : compiler information

• ‘Rxyy_’ for CA78K0R compiler version x.yy
• ‘Ixyy_’ for IAR V1.xx compiler version x.yy
• ‘Uxxyy’ for GNU compiler version xx.yy
• ‘Lxyyz’ for CC-RL compiler version x.yy.0z

Note: The version string of IAR V2.xx and LLVM indicates that the supported
compiler is CC-RL because the library file for IAR V2.xx and LLVM are
identical to the one for CC-RL.

• G : all memory models (here ‘G’ for general)
• VVV..V : library version

• ‘Vxyy’ for release version x.yy
• ‘Exyyy’ for engineering version x.yyy

Examples:
The version string of the Tiny FDL V1.00 for the CA78K0R compiler version 1.10 is:
"DRL78T02R110_GV100"
The version string of the Tiny FDL V1.00 for the IAR V1.xx compiler version 1.20 is:
"DRL78T02I120_GV100"
The version string of the Tiny FDL V1.01 for the GNU compiler version 13.02 is:
"DRL78T02U1302GV101"
The version string of the Tiny FDL V1.01 for the CC-RL compiler version 1.23.04 is:
"DRL78T02L1234GV101"

Example:

my_version_string_pointer = FDL_GetVersionString();

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 50
User Manual

3.4 Commands

3.4.1 Blankcheck

The blankcheck command can be used to check if all bits within the addressed range are still “erased”
e.g. before initiating a write. The blankcheck command is initiated by FDL_Execute() and must be
continued by FDL_Handler() as long as command is not finished (request status updated).

Note: Due to the fact that the blankcheck command execution across block boundaries is not allowed the
byte count range vary between 1 byte up to 1024 bytes.

Table 3-5: Request variable usage for blankcheck command

index_u16 data_pu08 bytecount_u16 command_enu
byte index

inside the FDL pool unused byte count
(1 byte to 1024 bytes)

FDL_CMD_
BLANKCHECK_BYTES

Table 3-6: Status of FDL_CMD_BLANKCHECK_BYTES

Status Class Status meaning and handling

FDL_ERR_INITIALIZATION heavy
meaning FDL not initialized or not opened
reason wrong handling on user side
remedy initialize and open FDL before using it

FDL_ERR_STANDBY heavy

meaning FDL is in standby and cannot accept new
commands

reason wrong handling on user side

remedy call FDL_WakeUp() before initiating new
commands

FDL_ERR_PARAMETER heavy

meaning request cannot be accepted

reason wrong command code, index outside the used
pool or request data structure on odd address

remedy correct affected request member and try again

FDL_ERR_BLANK_VERIFY light

meaning at least one byte within the specified pool area
is not “blank”

reason any bit in the addressed flash area is not
erased

remedy nothing, free interpretation at requester side

FDL_ERR_REJECTED normal
meaning request cannot be accepted
reason other command is being executed
remedy call FDL_Handler() and try again

FDL_BUSY normal

meaning request is being processed
reason request checked and accepted

remedy nothing, call FDL_Handler() until status
changes

FDL_OK normal
meaning request was finished regular
reason no problems during execution
remedy nothing

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 51
User Manual

3.4.2 Internal Verify

The internal verify command can be used to check if all bits (0’s and 1’s) are electronically correct written.
Inconsistent and weak data caused by an asynchronous RESET can be detected by using the internal
verify command. The user can use the internal verify command freely to check the quality of user data.
The internal verify command is initiated by FDL_Execute() and must be continued by FDL_Handler() as
long as command is not finished (request-status updated).

Note: An execution of internal verify commands across block boundaries is not allowed. As a result the
byte count can range from 1 byte up to 1024 byte.

Table 3-7: Request variable usage for internal verify command

index_u16 data_pu08 bytecount_u16 command_enu
byte index

inside the FDL pool unused byte count
(1 byte to 1024 bytes)

FDL_CMD_IVERIFY_
BYTES

Table 3-8: Status of FDL_CMD_IVERIFY_BYTES

Status Class Status meaning and handling

FDL_ERR_INITIALIZATION heavy
meaning FDL not initialized or not opened
reason wrong handling on user side
remedy initialize and open FDL before using it.

FDL_ERR_STANDBY heavy

meaning FDL is in standby and cannot accept new
commands

reason wrong handling on user side

remedy call FDL_WakeUp() before initiating new
commands

FDL_ERR_PARAMETER heavy

meaning request cannot be accepted

reason wrong command code, index outside the used
pool or request data structure on odd address

remedy correct affected request member and try again

FDL_ERR_BLANK_VERIFY light

meaning at least one byte within the specified pool area
could not be verified

reason any bit in the addressed flash word is not
electrically correct

remedy nothing, free interpretation at requester side

FDL_ERR_REJECTED normal
meaning request cannot be accepted
reason other command is being executed
remedy call FDL_Handler() and try again

FDL_BUSY normal

meaning request is being processed
reason request checked and accepted

remedy nothing, call FDL_Handler() until status
changes

FDL_OK normal
meaning request was finished regularly
reason no problems during execution
remedy nothing

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 52
User Manual

3.4.3 Read

The READ command can be used to read a number of bytes from a specific address range. It is initiated
and finished directly by FDL_Execute(). FDL_Handler() is not needed in that case unless the FDL is busy
with another command.

Note: An execution of read commands across block boundaries is not allowed. As a result the byte count
can range from 1 byte up to 1024 byte.

Table 3-9: Request variable usage for read command

index_u16 data_pu08 bytecount_u16 command_enu
byte index

inside the FDL pool pointer to the read buffer byte count
(1 byte to 1024 bytes) FDL_CMD_READ_BYTES

Table 3-10: Status of FDL_CMD_READ_BYTES

Status Class Status meaning and handling

FDL_ERR_INITIALIZATION heavy
meaning FDL not initialized or not opened
reason wrong handling on user side
remedy initialize and open FDL before using it.

FDL_ERR_STANDBY heavy

meaning FDL is in standby and cannot accept new
commands

reason wrong handling on user side

remedy call FDL_WakeUp() before initiating new
commands

FDL_ERR_PARAMETER heavy

meaning request cannot be accepted

reason wrong command code, index outside the used
pool or request data structure on odd address

remedy correct affected request member and try again

FDL_ERR_REJECTED normal
meaning request cannot be accepted
reason other command is being executed
remedy call FDL_Handler() and try again

FDL_OK normal
meaning request was finished regular
reason no problems during execution
remedy nothing

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 53
User Manual

3.4.4 Write

The write command can be used for writing a number of bytes located in a RAM buffer to the data-flash. It
is initiated by FDL_Execute() and must be continued by FDL_Handler() as long as command is not
finished (request-status updated).
Note 1: An execution of write commands across block boundaries is not allowed. As a result the byte
count can range from 1 byte up to 1024 byte.

Note 2: For a regular write, please follow the suggested sequence of blankcheck, write, internal verify in
order to ensure full data retention.

Table 3-11: Request variable usage for write command

index_u16 data_pu08 bytecount_u16 command_enu
byte index

inside the FDL pool pointer to the write buffer byte count
(1 byte to 1024 bytes)

FDL_CMD_WRITE_
BYTES

Table 3-12: Status of FDL_CMD_WRITE_BYTES

Status Class Status meaning and handling

FDL_ERR_INITIALIZATION heavy
meaning FDL not initialized or not opened
reason wrong handling on user side
remedy initialize and open FDL before using it.

FDL_ERR_STANDBY heavy

meaning FDL is in standby and cannot accept new
commands

reason wrong handling on user side

remedy call FDL_WakeUp() before initiating new
commands

FDL_ERR_PARAMETER heavy

meaning request cannot be accepted

reason wrong command code, index outside the used
pool or request data structure on odd address

remedy correct affected request member and try again

FDL_ERR_WRITE heavy

meaning at least one byte within the specified pool area
is not “blank”

reason any bit in the addressed flash word is not
electrically correct

remedy nothing, free interpretation at requester side

FDL_ERR_REJECTED normal
meaning request cannot be accepted
reason other command is being executed
remedy call FDL_Handler() and try again

FDL_BUSY normal

meaning request is being processed
reason request checked and accepted

remedy nothing, call FDL_Handler() until status
changes

FDL_OK normal
meaning request was finished regularly
reason no problems during execution
remedy nothing

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 54
User Manual

3.4.5 Erase

The erase operation can be used to erase one block of the pool. After starting the erase-command, the
hardware is checking if the addressed block is already blank to avoid unnecessary erase cycles. In case
the block is not blank the erase pulse is initiated, otherwise the erase command will be finished
immediately.
Table 3-13: Request variable usage for erase command

index_u16 data_pu08 bytecount_u16 command_enu
block index

inside the FDL pool unused unused FDL_CMD_ERASE_
BLOCK

Table 3-14: Status of FDL_CMD_ERASE_BLOCK

Status Class Status meaning and handling

FDL_ERR_INITIALIZATION heavy
meaning FDL not initialized or not opened
reason wrong handling on user side
remedy initialize and open FDL before using it

FDL_ERR_STANDBY heavy

meaning FDL is in standby and cannot accept new
commands

reason wrong handling on user side

remedy call FDL_WakeUp() before initiating new
commands

FDL_ERR_PARAMETER heavy

meaning request cannot be accepted

reason wrong command code, index outside the used
pool or request data structure on odd address

remedy correct affected request member and try again

FDL_ERR_ERASE heavy
meaning at least one byte within the specified pool area

is not “blank”
reason internal flash problems
remedy do not use this block anymore

FDL_ERR_REJECTED normal
meaning request cannot be accepted
reason other command is being executed
remedy call FDL_Handler() and try again

FDL_ERR_ABORTED normal

meaning block oriented command has been aborted

reason FDL_Abort() has been called by the user
during block command execution

remedy restart the erase command via FDL_Execute()

FDL_BUSY normal

meaning request is being processed
reason request checked and accepted

remedy nothing, call FDL_Handler() until status
changes

FDL_OK normal
meaning request was finished regularly
reason no problems during execution
remedy nothing

Data Flash Access Library - Type T02 (Tiny), European Release User Interface (API)

R01US0061ED0140 55
User Manual

3.5 Basic functional Workflow

To be able to use the FDL (execute pool-related commands) in a proper way the requester has to follow a
specific startup and shutdown procedure.

Figure 3-1: Basic flowchart

Power OFF

closed

opened

busy

FDL_Open()

FDL_Close()

FDL_Init()

 FDL_Execute(CMD)

request.status
<> busy

 POWER OFF

ON

FDL_Handler()
(also indirectly via FDL_StandBy() and FDL_Abort())

standby

FDL_StandBy()

FDL_WakeUp()

FDL_Abort()
(erase command only)

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 56
User Manual

Chapter 4 FDL Usage by User Application

4.1 First Steps

It is very important to have theoretic background about the Data Flash and the FDL in order to
successfully integrate the library into the user application. Therefore, it is important to read this user
manual completely in advance especially chapter “Cautions”.

4.2 Special Considerations

4.2.1 Reset Consistency

During the execution of FDL commands (write and erase), a reset could occur and the data flash content
could be damaged. It is designers duty to take care of reset and failure scenarios, e.g. by a proper failure
mode and effect analysis. The EEL provided by Renesas Electronics is designed to avoid read of invalid
data caused by such reset scenarios. The following chapter describes the applications where the FDL
and EEL should be used.

4.2.2 EEL+FDL or FDL only

Depending on the security level of the application, the write frequency of variables and the variable count,
it should be considered whether to use the EEL+FDL or the FDL only.

4.2.2.1 FDL only

By using the FDL only the application has to take care about all reset scenarios and writing flow of
different variables with different sizes.

Application scenarios

• programming of initial or calibration data

• user specific EEPROM emulation

4.2.2.2 EEL+FDL

The duo of EEL and FDL allows the user to uses the EEL for high write frequency of different variables
with different sizes in a secure way and additionally the FDL pool for e.g. application data or application
specific EEPROM emulation.

Application scenarios

• programming of initial or calibration data (FDL should be preferred)

• large count of variables with high write frequency (EEL should be preferred)

• reset safe data handling (EEL should be preferred)

Please refer to the R01US0070EDxxxx manual for detailed EEL description.

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 57
User Manual

4.3 File Structure

The Tiny FDL is delivered as precompiled library for CA78K0R, IAR V1.xx, IAR V2.xx, GNU, CC-RL and
LLVM tool chains. The library and its header files are stored in the lib subdirectory inside the installation
folder. The Sample directory contains sample setups which are no integral part of the library itself and
should be modified according to the project needs. The structure of the files in each tool chain is shown in
the table.

Table 4-1: Common files of the Tiny FDL

File Description
<installation folder>
Release.txt contains release-specific information about the installed library
support.txt library support information

Table 4-2: File structure of the Tiny FDL for CA78K0R tool chain

<installation folder>/CA78K0R_xxx/FDL/lib
fdl.h FDL header file, FDL interface definition (Compiler)
fdl.inc FDL header file, FDL interface definition (Assembler)
fdl_types.h FDL header file, FDL types definition
fdl.lib precompiled library file
<installation folder>/ CA78K0R_xxx/FDL/Sample/C
fdl_descriptor.c descriptor calculation part
fdl_descriptor.h pool configuration part
fdl_sample_linker_file.dr linker sample file
<installation folder>/ CA78K0R_xxx/FDL/Sample/asm
fdl_descriptor.asm descriptor calculation part
fdl_descriptor.inc pool configuration part
fdl_sample_linker_file.dr linker sample file

Table 4-3: File structure of the Tiny FDL for IAR V1.xx tool chain

<installation folder>/IAR_1xx/FDL/lib
fdl.h FDL header file, FDL interface definition (Compiler)
fdl_types.h FDL header file, FDL types definition
fdl.r87 precompiled library file
<installation folder>/IAR_1xx/FDL/Sample/C
fdl_descriptor.c descriptor calculation part
fdl_descriptor.h pool configuration part
fdl_sample_linker_file.xcl linker sample file

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 58
User Manual

Table 4-4: File structure of the Tiny FDL for IAR V2.xx tool chain

<installation folder>/IAR_2xx/FDL/lib
fdl.h FDL header file, FDL interface definition (Compiler)
fdl_types.h FDL header file, FDL types definition
fdl.a precompiled library file
<installation folder>/IAR_2xx/FDL/Sample/C
fdl_descriptor.c descriptor calculation part
fdl_descriptor.h pool configuration part
fdl_sample_linker_file.icf linker sample file

Table 4-5: File structure of the Tiny FDL for CC-RL tool chain

<installation folder>/CCRL_xxx/FDL/lib
fdl.h FDL header file, FDL interface definition (Compiler)
fdl.inc FDL header file, FDL interface definition (Assembler)
fdl_types.h FDL header file, FDL types definition
fdl.lib precompiled library file
<installation folder>/ CCRL_xxx/FDL/Sample/C
fdl_descriptor.c descriptor calculation part
fdl_descriptor.h pool configuration part
fdl_sample_linker_file.sub linker sample file
<installation folder>/ CCRL_xxx/FDL/Sample/asm
fdl_descriptor.asm descriptor calculation part
fdl_descriptor.inc pool configuration part
fdl_sample_linker_file.sub linker sample file

Table 4-6: File structure of the Tiny FDL for GNU tool chain

<installation folder>/GNU_xxxx/FDL/lib
fdl.h FDL header file, FDL interface definition (Compiler)
fdl_types.h FDL header file, FDL types definition
fdl.a precompiled library file
<installation folder>/GNU_xxxx/FDL/Sample/C
fdl_descriptor.c descriptor calculation part
fdl_descriptor.h pool configuration part
fdl_sample_linker_file.ld linker sample file

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 59
User Manual

Table 4-7: File structure of the Tiny FDL for LLVM tool chain

<installation folder>/LLVM_xxxxxx/FDL/lib
fdl.h FDL header file, FDL interface definition (Compiler)
fdl_types.h FDL header file, FDL types definition
libfdl.a precompiled library file
<installation folder>/LLVM_xxxxxx/FDL/Sample/C
fdl_descriptor.c descriptor calculation part
fdl_descriptor.h pool configuration part
fdl_sample_linker_file.ld linker sample file

4.4 Configuration

4.4.1 Linker Sections

Following segments are defined by the library and must be configured via the linker description file.

FDL_CODE Segment for library code.
 Can be located anywhere in the code flash.

FDL_CNST Segment for library constants like descriptor.
 Can be located anywhere in the code flash.

FDL_SDAT Segment for library data.
 Must be located inside the SADDR RAM

Note: Please refer to the Chapter 6 and device user’s manual for restrictions of RAM and ROM usage.

4.4.2 Descriptor Configuration (Partitioning of the Data Flash)

Before the FDL can be used, the FDL pool and its partitioning have to be configured first. The descriptor
is defining the physical/virtual addresses and parameter of the pool which will be automatically calculated
by using the FDL_POOL_BLOCKS and EEL_POOL_BLOCKS definition.

Because the physical starting address of the data flash is fixed by the hardware, the user can only
determine the total size of the pool expressed in blocks. Also the physical size of the pool is limited by the
hardware and must not be defined by the user. Also, the physical size of a flash block is a predefined
constant determined by the used hardware.

The first configuration parameter is FDL_POOL_BLOCKS. The minimum value is 0 and means any
access to the FDL-pool is closed. The maximum value is the data flash size expressed in blocks in case
EEL pool is not used.

The second configuration parameter is EEL_POOL_BLOCKS, the size of the EEL-pool used exclusively
for Renesas EEPROM emulation library only. When proprietary EEPROM emulation library is used the
EEL-pool shall be set to 0. The maximum size of the EEL-pool is the data flash size build on the device.

Note:
- The virtual address 0 of the FDL pool corresponds with the successor of the last EEL-pool bytes.

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 60
User Manual

4.4.3 Prohibited RAM Area

The Tiny FDL may use a fraction of the user RAM as working area, referred as prohibited RAM area. The
size and position of this area is strictly device dependent (many devices do not even have this area) and
vary between the different RL78 products. For details, please refer to the document “User's Manual:
Hardware” of your RL78 product.

If a prohibited RAM area is specified for the utilized device, it is not allowed to access this area while the
Tiny FDL is active. Whenever FDL functions are called, the data in the prohibited area may be rewritten.

4.4.4 Register Bank

The CA78K0R, IAR V1.xx, IAR V2.xx, CC-RL and LLVM releases of the FDL use the registers of the
currently selected register bank. No implicit register bank switch is performed by the library.

For the GNU release of the FDL, it is mandatory that register bank 0 is active on function entry. No implicit
register bank switch is performed by the library. Return values are placed in register bank 1. For details
on GNU calling conventions, please refer to the GNU documentation for RL78 devices.

4.4.5 Stack and Data Buffer

The Tiny FDL utilizes the same stack as specified in the user application. It is the developer’s duty to
reserve enough free stack for the operation of both, user application and FDL.

The data buffer used by the Tiny FDL refers to the RAM area in which data is located that is to be written
into the data flash and where data is to be copied to when read is performed. These buffers need to be
allocated and managed by the user.

Note: In order to allocate the stack and data buffer to a user-specified address, please utilize the link
directives of your framework.

Caution: In contrast to the internal FDL data (FDL_SDAT segment), both stack and data buffer may not
be allocated in the short address range from 0xFFE20 to 0xFFEFF—and also not in the prohibited RAM
area, if it exists in the target device.

4.4.6 Request Structure

Depending on the user application architecture more than one request variable could be necessary.

e.g.: in case of accessing the EEL from different tasks.

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 61
User Manual

4.5 General Flow

4.5.1 Initialization

The following figure illustrates the initialization flow.

Figure 4-1: Initialization flow

FDL_OK

status?

Error handler

FDL_ERR_CONFIGURATION

Execute any FDL
commands

................

FDL_Init()

FDL_Open()

FDL_Close()

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 62
User Manual

4.5.2 Read

The following figure illustrates the read command handling.

Figure 4-2: FDL read command execution

Error handler

fill request
CMD(read)

YES

status?

FDL_OK

OTHER

................

................

YES

….............
FDL_WakeUp()

….............

status ==
FDL_ERR_RE

JECTED

status ==
FDL_ERR_ST

ANDBY

NO

NO

FDL_Execute(CMD)

FDL_Handler()

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 63
User Manual

4.5.3 Blankcheck/Write/Internal Verify/Erase

The following figure illustrates the blankcheck/write/internal verify/erase command flow.

Figure 4-3: Background operation (Internal Verify/Blankcheck)

Error handler

fill request
CMD

YES

YES

status ==
FDL_BUSY?

NO

YES

................

YES

….............
FDL_WakeUp()

….............
status ==

FDL_ERR_RE
JECTED

status ==
FDL_ERR_ST

ANDBY

NO

status ==
FDL_BUSY

NO

NO

status ==
FDL_ERR_AB

ORTED?

YES
(erase command only)

status !=
FDL_OK?

NO

YES

NO

FDL_Execute(CMD)FDL_Handler()

FDL_Handler()

................

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 64
User Manual

4.6 Example of FDL used in Operating Systems

The background-operation feature and request-response structure of the FDL allow the user to use the
FDL in an efficient way in operating systems.

Note: Please read the chapter “Cautions” carefully before using the FDL in such operating systems.
The following figure illustrates a sample operating system where the FDL is used for Data Flash access.

This operating system example shows three different task types which are described below.

Requesting tasks
Examples of this type of task are Task 1 and 2. Such tasks just start any FDL command via the
FDL_Execute function and assume that it will be finished in the background via the IDLE task. Please
note that the mandatory error handling is not shown in this example for the sake of readability.

IDLE task
The IDLE task will be used by the application for continuing any running FDL command. That means the
FDL_Handler must be called inside of such a task.

Emergency task
The difference between this task type and the requesting type (Task 1 and Task 2) is that this task
performs any FDL commands completely without waiting in the background. Such task can be used in
case of voltage drop where important data must be saved before the device is off. Please note that
designer could use the abort feature here(for details see Chapter 2.6).

Figure 4-4: FDL used in an operating system

 if(req1.status != FDL_BUSY)
 {
 FDL_Execute(req1);
 }

if(req2.status != FDL_BUSY)
{

 FDL_Execute(req2);
}

do
{

FDL_Execute(req_et)
 FDL_Handler();
}
while(req_et.status == FDL_ERR_REJECTED);
while(req_et.status == FDL_BUSY)
{

FDL_Handler();
}

FDL_Handler();

operating system

Task 3 (emergency task)

Task 2 (each 100ms)

IDLE Task

Task 1 (each 50ms)

Data Flash Access Library - Type T02 (Tiny), European Release FDL Usage by User Application

R01US0061ED0140 65
User Manual

4.7 Example: Simple application

The following sample shows how to use each command in a simple way.

 extern __far const fdl_descriptor_t fdl_descriptor_str;
 fdl_status_t my_fdl_status_enu;
 __near fdl_request_t request;
 fdl_u08 buffer[5];

 /* initialization */
 my_fdl_status_enu = FDL_Init(
 (__far fdl_descriptor_t*)&fdl_descriptor_str);

 if(my_fdl_status_enu != FDL_OK) ErrorHandler();
 FDL_Open();

 /* request structure initialization */
 request.index_u16 = 0x0000;
 request.data_pu08 = (__near fdl_u08*) 0x0000;
 request.bytecount_u16 = 0x0000;
 request.command_enu = (fdl_command_t)0xFF;
 request.status_enu = FDL_ERR_PARAMETER;

 /* erase block 0 */
 request.index_u16 = 0x0000;
 request.command_enu = FDL_CMD_ERASE_BLOCK;
 FDL_Execute(&request);
 while(request.status_enu == FDL_BUSY) FDL_Handler();
 if(request.status_enu != FDL_OK) ErrorHandler();

 /* write pattern 0x123456789A to idx = 0 */

 buffer[0] = 0x12;
 buffer[1] = 0x34;
 buffer[2] = 0x56;
 buffer[3] = 0x78;
 buffer[4] = 0x9A;

 request.index_u16 = 0x0000;
 request.data_pu08 = (__near fdl_u08*)&buffer[0];
 request.bytecount_u16 = 0x0005;
 request.command_enu = FDL_CMD_WRITE_BYTES;
 FDL_Execute(&request);
 while(request.status_enu == FDL_BUSY) FDL_Handler();
 if(request.status_enu != FDL_OK) ErrorHandler();

 /* set initial values */
 buffer[0] = 0xFF;
 buffer[1] = 0xFF;
 buffer[2] = 0xFF;
 buffer[3] = 0xFF;
 buffer[3] = 0xFF;

 request.index_u16 = 0x0000;
 request.data_pu08 = (__near fdl_u08*)&buffer[0];
 request.bytecount_u16 = 0x0005;
 request.command_enu = FDL_CMD_READ_BYTES;
 FDL_Execute(&request);
 if(request.status_enu != FDL_OK) ErrorHandler();

 FDL_Close();

Data Flash Access Library - Type T02 (Tiny), European Release Characteristics

R01US0061ED0140 66
User Manual

Chapter 5 Characteristics

5.1 Resource Consumption

All values are based on the FDL version V1.01 for CA78K0R, IAR V2.xx, GNU, CC-RL and LLVM
Compiler and FDL version V1.02 for IAR V1.xx Compiler.

Table 5-1: Resource consumption

 CA78K0R
Compiler

IAR V1.xx
Compiler

IAR V2.xx
Compiler

GNU
Compiler

CC-RL
Compiler

LLVM
Compiler

Max. code size (code flash) 572 bytes 591 bytes 548 bytes 596 bytes 548 bytes 548 bytes
Constants (code flash) 10 bytes 10 bytes 10 bytes 10 bytes 10 bytes 10 bytes
Internal data
(SADDR RAM)

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

Max. stack (RAM) 56 bytes 56 bytes 48 bytes 60 bytes 48 bytes 48 bytes

5.2 Library Timings

In the following, certain timing characteristics of the Tiny FDL are specified. All timing specifications are
based on the following library versions:

• Tiny FDL: V1.01
Please note that there might be deviations from the specified timings in case you are using other library
versions than the ones mentioned.

5.2.1 Maximum Function Execution Times

The maximum function execution times are listed in the following tables. These timings can be seen as
worst case durations of the specific Tiny FDL function calls and therefore can aid the developer for time
critical considerations, e.g. when setting up the watchdog timer. Please note however, that the typical and
minimum function execution times can be much shorter.

Table 5-2: Maximum function execution times (full speed mode)

Function MAX
FDL_Init 1199/fclk
FDL_Execute
(read command)

167/fclk +
(17/fclk × BYTE_COUNT)

FDL_Execute
(non-read command) 646/fclk

FDL_Handler 284/fclk + 15us
FDL_Open 27/fclk + 14us
FDL_Close
(no command running) 30/fclk

FDL_Close**1
(running command in background) 836/fclk + 444us

FDL_StandBy 305/fclk + 15us
FDL_WakeUp 32/fclk + 14us
FDL_Abort 350/fclk + 28us
FDL_GetVersionString 14/fclk

Note **1: It is not recommended to call the FDL_Close function in case of any running command in
background.

Data Flash Access Library - Type T02 (Tiny), European Release Characteristics

R01US0061ED0140 67
User Manual

Table 5-3: Maximum function execution times (wide voltage mode)

Function MAX
FDL_Init 1199/fclk
FDL_Execute
(read command)

167/fclk +
(17/fclk × BYTE_COUNT)

FDL_Execute
(non-read command) 646/fclk

FDL_Handler 284/fclk + 15us
FDL_Open 27/fclk + 14us
FDL_Close
(no command running) 30/fclk

FDL_Close**1
(running command in background) 791/fclk + 969us

FDL_StandBy 305/fclk + 15us
FDL_WakeUp 32/fclk + 14us
FDL_Abort 350/fclk + 40us
FDL_GetVersionString 14/fclk

Note **1: It is not recommended to call the FDL_Close function in case of any running command in
background.

Data Flash Access Library - Type T02 (Tiny), European Release Characteristics

R01US0061ED0140 68
User Manual

5.2.2 Command Execution Times

The command execution times are listed in the following tables. These timings are divided into the typical
timings which will appear during the normal operation and the max timings for worst case considerations.

Table 5-4: Command execution times (full speed mode)

Command TYP MAX

blankcheck
1000/fclk + 30us

+ (5/fclk + 0.26us) × BYTE_COUNT
1200/fclk + 36us

+ (6/fclk + 0.31us) × BYTE_COUNT

internal verify
715/fclk + 25us

+ (24/fclk + 3.33us) × BYTE_COUNT
858/fclk + 30us

+ (29/fclk + 4.00us) × BYTE_COUNT

read
139/fclk

+ (14/fclk × BYTE_COUNT)
167/fclk

+ (17/fclk × BYTE_COUNT)

write
580/fclk + 12us

+ (212/fclk + 39.17us) × BYTE_COUNT
696/fclk + 14us

+ (714/fclk + 430.00us) × BYTE_COUNT
erase 11344/fclk + 5800us 281674/fclk + 264790us
Remarks. fclk: CPU operating frequency. (For example, when using a 20 MHz clock, fclk is 20.)

Table 5-5: Command execution times (wide voltage mode)

Command TYP MAX

blankcheck
996/fclk + 63us

+ (5/fclk + 0.90us) × BYTE_COUNT
1196/fclk + 75us

+ (6/fclk + 1.05us) × BYTE_COUNT

internal verify
715/fclk + 49us

+ (15/fclk + 24.17us) × BYTE_COUNT
858/fclk + 58us

+ (18/fclk + 29.00us) × BYTE_COUNT

Read
139/fclk

+ (14/fclk × BYTE_COUNT)
167/fclk

+ (17/fclk × BYTE_COUNT)

Write
580/fclk + 12us

+ (209/fclk + 82.50us) × BYTE_COUNT
696/fclk + 14us

+ (670/fclk + 954.00us) × BYTE_COUNT
Erase 10019/fclk + 7195us 249113/fclk + 299307us
Remarks. fclk: CPU operating frequency. (For example, when using a 20 MHz clock, fclk is 20.)

Data Flash Access Library - Type T02 (Tiny), European Release Cautions

R01US0061ED0140 69
User Manual

Chapter 6 Cautions

• Library code and constants must be located completely in the same 64k flash page.
• For CA78K0R compiler, the library takes care in the code to define these sections with UNIT64KP

relocation attribute.
• For CC-RL compiler, the library takes care in the code to define these sections with

TEXTF_UNIT64KP relocation attribute.
• For IAR V1.xx and IAR V2.xx compiler, the user has to ensure that the linker file specifies the

Flash page size equal to 64k when defining FDL_CODE and FDL_CNST sections.
• For GNU and LLVM compilers, the user shall take care that FDL_CODE and FDL_CNST sections

are not mapped across any boundary of 64k Flash page.
• The library initialization by FDL_Init must be performed before the execution of FDL_Open,

FDL_Close, FDL_Handler, FDL_Execute, FDL_Abort, FDL_StandBy and FDL_WakeUp.
• It is not allowed to read the data flash directly (meaning without FDL) during a command execution

of the FDL.
• Each request variable must be located at an even address.
• Before executing any command, all members of the request variable must be initialized. If there are

any unused members in the request variable, please set arbitrary values to these members.
• All functions are not re-entrant. That means it is not allowed to call FDL functions inside the ISRs

while any FDL function is already running.
• Task switches, context changes and synchronization between FDL functions:

• All FDL functions depend on FDL global available information and are able to modify this
information. In order to avoid synchronization problems, it is necessary that at any time only one
FDL function is executed. So, it is not allowed to start an FDL function, then switch to another
task context and execute another FDL function while the last one is not yet finished.

• Example for a not allowed sequence:
• Task 1: Start an FDL operation with FDL_Execute.
• Interrupt the execution and switch to task 2, executing FDL_Handler.
• Return to task 1 and finish the FDL_Execute function.

• After the execution of FDL_Close, all requested/running commands will be aborted and cannot be
resumed. The designer has to take care that all running commands are finished before calling
FDL_Close.

• It is not possible to modify the Data Flash via FDL in parallel to a modification of the Code Flash via
FSL.

• An abortion of the byte commands read, write, internal verify, and blankcheck is not possible.
• Internal high-speed on-chip oscillator (HOCO) must be started before using the FDL.
• It is not allowed to locate any arguments and stack memory to address of 0xFFE20 and above.
• In case the application requires a frequency of less than 4MHz, the following frequencies are

allowed: 1MHz, 2MHz, 3MHz. It is not allowed to use the frequency of e.g. 1.5MHz. The library
configuration parameter FDL_SYSTEM_FREQUENCY in "FDL_descriptor.h" shall be adapted
according to the above definition (e.g. 1000000, 2000000, 3000000).

• In case the Data Transfer Controller(DTC) is used in parallel to the FDL, do not locate RAM area for
DTC to address 0xFFE20 and above

• Please check the device restrictions described in the device user’s manual in case of accessing the
data flash via the FDL

• Execution of byte commands (blankcheck, internal verify, write and read) across block boundaries is
not allowed

• The watchdog timer does not stop during the execution of the FDL.
• Do not use the RAM area used by the FDL (including the prohibited RAM area) before libraries have

been closed. Please see also "Self RAM list of Flash Self-Programming Library for RL78 Family"
(R20UT2944EJxxxx).

Data Flash Access Library - Type T02 (Tiny), European Release Cautions

R01US0061ED0140 70
User Manual

• When using an assembler of the CC-RL compiler from Renesas Electronics, the hexadecimal prefix
representation (0x..) cannot be mixed together with the suffix representation (..H). Specify the
representation method by editing the symbol definition in fdl.inc to match the user environment.

• fdl.inc
 ; __FDL_INC_BASE_NUMBER_SUFFIX .SET 1
When symbol "__FDL_INC_BASE_NUMBER_SUFFIX" is not defined (initial state), the prefix
representation will be selected.

• fdl.inc
 __FDL_INC_BASE_NUMBER_SUFFIX .SET 1
When symbol "__FDL_INC_BASE_NUMBER_SUFFIX" is defined, the suffix representation will
be selected.

• Additional cautions on using the Tiny FDL for IAR V2.xx.
• Library code and constants must be located completely in the same 32KB memory range.
• The version string provided by the flash library includes the information on the supported compiler.

The string indicates that the supported compiler is CC-RL because the library file for IAR V2.xx is
identical to the one for CC-RL.

• If you wish to use a linker configuration file included of the IAR V2.2x compiler (instead of a
sample linker configuration file in the flash library package), specify flash libraries sections with
special names for Renesas objects (R_TEXTF_UNIT64KP, R_SBSS) in the linker configuration
file.
e.g.) ro section FDL_CODE -> ro code R_TEXTF_UNIT64KP section FDL_CODE

rw section FDL_SDAT -> rw data R_SBSS section FDL_SDAT
Note:
Section FDL_CNST does not require special names for Renesas objects since this section is
generated from the sample source file (fdl_descriptor.c).Simply declare this flash library section in
a linker configuration file as if it is normal section.
e.g.) ro section FDL_CNST

• Additional caution on using the Tiny FDL for LLVM.
• The version string provided by the flash library includes the information on the supported compiler.

The string indicates that the supported compiler is CC-RL because the library file for LLVM is
identical to the one for CC-RL.

Data Flash Access Library - Type T02 (Tiny), European Release Revision History

R01US0061ED0140 71
User Manual

Revision History

Chapter Page Description
 Initial revision
 Revision V1.10:

3.2 23 Add a more detailed description of types and their
meaning

3.3 27 Adding description of GNU API
4.3 51 Extend file structure for GNU
4.4.4 52 Add register bank selection chapter
5.1 59 Updated resource consumption information

6 62 Explain how library can be mapped in the same 64K flash
page for each compiler

3.3
4.3
all
3.4.x/3.4
5.1

28
54
all
all
62

Revision V1.20:
Adding description of CC-RL API
Extended file structure for CC-RL
Renesas (REN) Compiler renamed to CA78K0R
Byte count range specification added
Resource consumption added for CC-RL

3.3
4.3
5.1
6

27-45

53
61
64

Revision V1.30:
Adding description of IAR V2.xx compiler API
Extended file structure for IAR V2.xx compiler
Resource consumption added for IAR V2.xx compiler
List of cautions extended

3.3
4.3
5.1
6

27-49
59
66
69

Revision V1.40:
Adding description of LLVM compiler API
Extended file structure for LLVM compiler
Resource consumption added for LLVM compiler
List of cautions extended

R01US0061ED0140

Data Flash Access Library

	Notice
	Regional information
	Preface
	How to Use This Document
	Table of Contents
	Chapter 1 Introduction
	1.1 Components of the EEPROM Emulation System
	1.1.1 Physical Flash Layer
	1.1.2 Flash Access Layer
	1.1.3 EEPROM Access Layer
	1.1.4 Application Layer

	Chapter 2 Architecture
	2.1 Data Flash Fragmentation
	2.1.1 EEL Pool
	2.1.2 FDL Pool

	2.2 Address Virtualization
	2.3 Access Right Supervision
	2.4 Request-Response Architecture
	2.5 Background Operation
	2.5.1 Background Operation: Erase
	2.5.2 Background Operation: Internal Verify and Blankcheck
	2.5.3 Background Operation: Write

	2.6 Abortion of Commands
	2.7 StandBy and WakeUp Functionality

	Chapter 3 User Interface (API)
	3.1 Run-time Configuration
	3.2 Data Types
	3.2.1 Library-specific simple Type Definitions
	3.2.2 Enumeration Type “fdl_command_t”
	3.2.3 Enumeration Type “fdl_status_t”
	3.2.4 Structured Type “fdl_request_t”
	3.2.5 Structured Type “fdl_descriptor_t”

	3.3 Functions
	3.3.1 FDL_Init
	3.3.2 FDL_Open
	3.3.3 FDL_Close
	3.3.4 FDL_Execute
	3.3.5 FDL_Handler
	3.3.6 FDL_Abort
	3.3.7 FDL_StandBy
	3.3.8 FDL_WakeUp
	3.3.9 FDL_GetVersionString

	3.4 Commands
	3.4.1 Blankcheck
	3.4.2 Internal Verify
	3.4.3 Read
	3.4.4 Write
	3.4.5 Erase

	3.5 Basic functional Workflow

	Chapter 4 FDL Usage by User Application
	4.1 First Steps
	4.2 Special Considerations
	4.2.1 Reset Consistency
	4.2.2 EEL+FDL or FDL only
	4.2.2.1 FDL only
	4.2.2.2 EEL+FDL

	4.3 File Structure
	4.4 Configuration
	4.4.1 Linker Sections
	4.4.2 Descriptor Configuration (Partitioning of the Data Flash)
	4.4.3 Prohibited RAM Area
	4.4.4 Register Bank
	4.4.5 Stack and Data Buffer
	4.4.6 Request Structure

	4.5 General Flow
	4.5.1 Initialization
	4.5.2 Read
	4.5.3 Blankcheck/Write/Internal Verify/Erase

	4.6 Example of FDL used in Operating Systems
	4.7 Example: Simple application

	Chapter 5 Characteristics
	5.1 Resource Consumption
	5.2 Library Timings
	5.2.1 Maximum Function Execution Times
	5.2.2 Command Execution Times

	Chapter 6 Cautions
	Revision History

