

RX65W-A Group

User's Manual: Hardware

RENESAS 32-Bit MCU RX Family / RX600 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics www.renesas.com

Rev.1.10 Apr 2023

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
 - "standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; nome electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renease Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. This manual consists of the following sections.

- Overview
- I/O ports
- Multi-function pin controller (MPC)
- Boundary scan
- RF transceiver
- Electrical characteristics
- Points to note

For details on the CPU, system control, and peripheral functions, see RX65N Group, RX651 Group User's manual: Hardware. For details on the RF transceiver, see R9A06G062GNP Sub-GHz Transceiver User's Manual: Hardware.

Particular attention should be paid to the precautionary notes when using the manual. These notes can be found within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the RX65W-A Group. Make sure to refer to the latest versions of these documents. The latest versions of the listed documents are available from the Renesas Electronics website.

Document Type	Description	Document Title	Document No.
User's manual: Hardware	Overview of the product, hardware specifications (I/O ports, multi-function pin controller, boundary scan, RF transceiver, and electrical characteristics), and points to note	RX65W-A Group User's manual: Hardware	This User's manual
	Hardware specifications including CPU, system control, and peripheral functions	RX65N Group, RX651 Group User's manual: Hardware	R01UH0590EJ
	Detailed descriptions of the RF transceiver	R9A06G062GNP Sub-GHz Transceiver User's Manual: Hardware	R02UH0006EJ
User's manual: Software	Detailed descriptions of the CPU and instruction set	RX Family RXv2 Instruction Set Architecture User's Manual: Software	R01US0071EJ
Flash Memory User's Manual: Hardware Interface	Detailed descriptions of the hardware interface of the flash memory	RX65N Group, RX651 Group Flash Memory User's Manual: Hardware Interface	R01UH0602EJ
Application Note	Notes on Printed Circuit Board Patterns	RX Family Hardware Design Guide	R01AN1411EJ
	Information on using peripheral functions and application examples Sample programs	Available from Renesas Ele	ctronics website.
Renesas Technical Update	Preliminary report on the specifications of a product, document, etc.		

2. Notation of Numbers and Symbols

Each register description includes a bit chart, illustrating the arrangement of bits, and a table of bits, describing the meanings of the bit settings. The standard format and notation for bit charts and tables are described below.

- (1) R/W: The bit or field is readable and writable.
 - R/(W): The bit or field is readable and writable. However, writing to this bit or field has some limitations. For details on the limitations, see the description or notes of respective registers.
 - R: The bit or field is readable. Writing to this bit or field has no effect.
- (2) Reserved.

Use the specified value when writing to this bit or field; otherwise, the correct operation is not guaranteed.

(3) Setting prohibited. The correct operation is not guaranteed if such a setting is performed.

3. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communications Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment Bus
I/O	Input / Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connect
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SFR	Special Function Registers
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver / Transmitter
VCO	Voltage Controlled Oscillator

Contents

Fea	atures		10
1.	Overv	iew	11
	1.1	Outline of Specifications	11
	1.2	Comparison of Functions among Products	18
	1.3	List of Products	20
	1.4	Block Diagram	21
	1.5	Pin Functions	22
	1.6	Pin Assignments	28
	1.7	List of Pin and Pin Functions	29
2.	I/O Po	orts	34
	2.1	Overview	34
	2.2	I/O Port Configuration	36
	2.3	Register Descriptions	40
	2.3.1	Port Direction Register (PDR)	40
	2.3.2	Port Output Data Register (PODR)	41
	2.3.3	Port Input Register (PIDR)	42
	2.3.4	Port Mode Register (PMR)	43
	2.3.5	Open-Drain Control Register 0 (ODR0)	44
	2.3.6	Open-Drain Control Register 1 (ODR1)	45
	2.3.7	Pull-Up Resistor Control Register (PCR)	46
	2.3.8	Drive Capacity Control Register (DSCR)	47
	2.3.9	Drive Capacity Control Register 2 (DSCR2)	48
	2.4	Initialization of the Port Direction Register (PDR)	49
	2.5	Handling of Unused Pins	50
3.	Multi-	Function Pin Controller (MPC)	51
	3.1	Overview	51
	3.2	Register Descriptions	59
	3.2.1	Write-Protect Register (PWPR)	59
	3.2.2	P1n Pin Function Control Register (P1nPFS) $(n = 2, 3, 6, 7)$	60
	3.2.3	P2n Pin Function Control Register (P2nPFS) $(n = 6, 7)$	61
	3.2.4	P3n Pin Function Control Register (P3nPFS) $(n = 0, 1, 4)$	62
	3.2.5	P4n Pin Function Control Register (P4nPFS) $(n = 0 \text{ to } 3)$	63
	3.2.6	P8n Pin Function Control Register (P8nPFS) ($n = 0$ to 2)	64
	3.2.7	PAn Pin Function Control Register (PAnPFS) $(n = 1 \text{ to } 4)$	65
	3.2.8	PBn Pin Function Control Register (PBnPFS) (n = 0 to 7)	66
	3.2.9	PCn Pin Function Control Register (PCnPFS) (n = 0, 1, 4 to 7)	67
	3.2.10	PDn Pin Function Control Register (PDnPFS) ($n = 2$ to 7)	68
	3.2.1	PEn Pin Function Control Register (PEnPFS) ($n = 0$ to 2, 4 to 7)	69
	3.2.12	2 Ethernet Control Register (PFENET)	70
	3.3	Usage Notes	71
	3.3.1	Procedure for Specifying Input/Output Pin Function	71

	3.3.2	Notes on MPC Register Setting	71
	3.3.3	Notes on the Use of Analog Functions	72
4.	Boun	dary Scan	73
	4.1	Overview	73
	4.2	Register Descriptions	74
	4.2.1	Instruction Register (JTIR)	75
	4.2.2	ID Code Register (JTIDR)	75
	4.2.3	Bypass Register (JTBPR)	76
	4.2.4	Boundary Scan Register (JTBSR)	76
	4.3	Operations	79
	4.3.1	TAP Controller	79
	4.3.2	List of Commands	80
	4.4	Usage Notes	
5.	RF T	ransceiver	83
	5.1	Features	
	5.2	Applications	
	5.3	Block Diagram	
	5.4	Pin Functions	86
	5.5	Compliant Standard	
	5.6	Usage Notes	
	5.6.1	SPI External Connection	88
	5.6.2	RSTB External Connection	89
	5.6.3	External Connection of the INTOUT0 Interrupt Signal	
	5.6.4	Points to Note on Designing the Circuit Board with the RF Transceiver	
6.	Elect	rical Characteristics	
	6.1	Absolute Maximum Ratings	91
	6.2	Recommended Operating Conditions	
	6.3	DC Characteristics	
	6.4	AC Characteristics	
	6.4.1	Reset Timing	
	6.4.2	Clock Timing	
	6.4.3	Timing of Recovery from Low Power Consumption Modes	
	6.4.4	Control Signal Timing	
	6.4.5	Timing of On-Chip Peripheral Modules	110
	6	.4.5.1 I/O Port	
	6	.4.5.2 TPU	111
	6	.4.5.3 TMR	
	6	.4.5.4 CMTW	
	6	.4.5.5 MTU3	
	6	.4.5.6 POE3	
	6	.4.5.7 A/D Converter Trigger	116

	6.4.5.8	CAC	116		
	6.4.5.9	SCI	117		
	6.4.5.10	.4.5.10 RSPI			
	6.4.5.11	QSPI	128		
	6.4.5.12	RIIC	130		
	6.4.5.13	ETHERC	132		
	6.4.5.14	SDHI	134		
	6.4.5.15	SDSI	135		
	6.4.5.16	RF Transceiver	137		
6.5	USB Cha	racteristics	138		
6.6	A/D Con	version Characteristics	139		
6.7	Tempera	Temperature Sensor Characteristics			
6.8	Power-or	Power-on Reset Circuit and Voltage Detection Circuit Characteristics			
6.9	Oscillatio	on Stop Detection Timing	145		
6.10	Battery E	Backup Function Characteristics	146		
6.11	Flash Me	mory Characteristics	147		
6.12	Boundary	y Scan	150		
6.13	RF Trans	ceiver Characteristics	152		
6.13	3.1 Cha	aracteristics of the Transceiver Reception	152		
6.13	3.2 Cha	aracteristics of the Transceiver Transmission	157		
Appendix ²	1. Package	Dimensions	159		
REVISION	HISTORY	,	160		

RENESAS

RX65W-A Group Renesas MCUs

R01UH0993EJ0110 Rev.1.10 Apr 28, 2023

120-MHz 32-bit RX MCU, on-chip FPU, 240 DMIPS, 2-MB flash memory (supportive of the dual bank function), 640-KB SRAM, RF transceiver compliant to IEEE 802.15.4 and Wi-SUN[®], various communications interfaces including Ethernet MAC, SD host interface, SD slave interface, and quad SPI, 12-bit A/D converter, RTC, Encryption functions

Features

32-bit RXv2 CPU core

- Max. operating frequency: 120 MHz
- Capable of 240 DMIPS in operation at 120 MHz
- Single precision 32-bit IEEE-754 floating point
 Two types of multiply-and-accumulation unit (between memories
- and between registers)
 32-bit multiplier (fastest instruction execution takes one CPU clock
- cycle)Divider (fastest instruction execution takes two CPU clock cycles)
- Fast interrupt
- CISC Harvard architecture with 5-stage pipeline
- Variable-length instructions: Ultra-compact code
- Supports the memory protection unit (MPU)
- JTAG and FINE (one-line) debugging interfaces

Low-power design and architecture

- Operation from a single 2.7- to 3.6-V supply
- Low power consumption: A product that supports all peripheral functions draws only 0.19 mA/MHz (Typ.).
- RTC is capable of operation from a dedicated power supply.
- Four low-power modes

On-chip code flash memory

- 2 Mbytes of ROM
- No wait cycles at up to 50 MHz or when the ROM cache is hit, onewait state at up to 100 MHz, two-wait state at above 100 MHz
- User code is programmable by on-board programming.
- Programming/erasing as background operations (BGOs)
- A dual-bank structure allows exchanging the start-up bank.

On-chip data flash memory

- 32 Kbytes, reprogrammable up to 100,000 times
- Programming/erasing as background operations (BGOs)

On-chip SRAM, no wait states

- 640 Kbytes of SRAM (no wait states)
- 8 Kbytes of standby RAM (backup on deep software standby)

Data transfer

- DMACAa: 8 channels
- DTCb: 1 channel
- DMAC for the Ethernet controller: 1 channel

Reset and supply management

- Power-on reset (POR)
- Low voltage detection (LVD) with voltage settings

Clock functions

- External crystal resonator or internal PLL for operation at 8 to 24 MHz
- Internal 240-kHz LOCO and HOCO selectable from 16, 18, and 20 MHz
- 120-kHz clock for the IWDTa
- 48-MHz crystal resonator for the RF transceiver

Real-time clock

- Adjustment functions (30 seconds, leap year, and error)
- Real-time clock counting and binary counting modes are selectableTime capture function
- (for capturing times in response to event-signal input)

Independent watchdog timer

- 120-kHz (1/2 LOCO frequency) clock operation
- Useful functions for IEC60730 compliance
- Oscillation-stoppage detection, frequency measurement, CRCA, IWDTa, self-diagnostic function for the A/D converter, etc.
- Register write protection function can protect values in important registers against overwriting.

Various communications interfaces

- Single RF transceiver compliant to IEEE 802.15.4 and Wi-SUN[®] Covers 863 to 928 MHz, which includes the frequency bands of the various countries Supports SUN FSK and SUN OFDM
- Ethernet MAC (1 channel)
- Includes a PHY layer for the full-speed USB 2.0 function controller
- SCIg and SCIh with multiple functionalities (9 channels) Choose from among asynchronous mode, clock-synchronous mode, smart-card interface mode, simplified SPI, simplified I²C, and extended serial mode.
- SCIi with 16-byte transmission and reception FIFOs (2 channels)
- I²C bus interface for transfer at up to 1 Mbps (2 channels)
- Four-wire QSPI (1 channel) in addition to RSPIc (2 channels)
- SD host interface (1 channel) with a 1- or 4-bit SD bus for use with SD memory or SDIO
- SD slave interface (1 channel) with a 1- or 4-bit SD bus for use with SD host interface

Up to 24 extended-function timers

- 16-bit TPUa (5 channels), MTU3a (9 channels)
- 8-bit TMRa (4 channels), 16-bit CMT (4 channels), 32-bit CMTW (2 channels)

12-bit A/D converter

- Two 12-bit units (4 channels for unit 0; 11 channels for unit 1)
- Self diagnosis, detection of analog input disconnection
- Temperature sensor for measuring temperature within the chip

Encryption functions

- Trusted Secure IP (TSIP)
- Up to 51 pins for general I/O ports
 - 5-V tolerance, open drain, input pull-up, switchable driving ability

Operating temp. range

• -40°C to +85°C

1. Overview

1.1 Outline of Specifications

 Table 1.1 lists the specifications in outline.

Table 1.1	Outline of Specifications (1/7))
-----------	---------------------------------	---

Classification	Module/Function	Description
CPU	CPU	 Maximum operating frequency: 120 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time: One instruction per state (cycle of the system clock) Address space: 4-Gbyte linear Register set of the CPU General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers Basic instructions: 75 Floating-point instructions: 11 DSP instructions: 23 Addressing modes: 11 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits
	FPU	 Single precision (32-bit) floating point Data types and floating-point exceptions in conformance with the IEEE754 standard
Memory	Code flash memory	 Capacity: 2 Mbytes 50 MHz ≤ No-wait cycle access 100 MHz ≤ 1-wait cycle access 100 MHz > 2-wait cycle access Instructions hitting the ROM cache or operand = 120 MHz: No-wait access On-board programming: Four types Instructions are executable only for the program stored in the TM target area by using the Trusted Memory (TM) function and protection against data reading is realized. A dual-bank structure allows programming during reading or exchanging the start-up areas
	Data flash memory	Capacity: 32 Kbytes Programming/erasing: 100,000 times
	Unique ID	16-byte unique ID for the device
	RAM	Capacity: 640 Kbytes RAM: 256 Kbytes Expansion RAM: 384 Kbytes 120 MHz, no-wait access
	Standby RAM	Capacity: 8 Kbytes Operation synchronized with PCLKB: Up to 60 MHz, two-cycle access
Operating modes		 Operating modes by the mode-setting pins at the time of release from the reset state Single-chip mode Boot mode (for the SCI interface) Boot mode (for the USB interface) Boot mode (for the FINE interface) Endian selectable

Classification	Module/Function	Description
Clock	Clock generation circuit	 Main clock oscillator, sub clock oscillator, low-speed/high-speed on-chip oscillator, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator The peripheral module clocks can be set to frequencies above that of the system clock. Main-clock oscillation stoppage detection Separate frequency-division and multiplication settings for the system clock (ICLK), peripheral module clocks (PCLKA, PCLKB, PCLKC, PCLKD), and flash-IF clock (FCLK) The CPU and other bus masters run in synchronization with the system clock (ICLK): Up to 120 MHz Peripheral modules of MTU3, RSPI, SCIi, ETHERC, and EDMAC run in synchronization with PCLKA, which operates at up to 120 MHz. Other peripheral modules run in synchronization with PCLKB: Up to 60 MHz ADCLK in the S12AD (unit 0) runs in synchronization with PCLKC: Up to 60 MHz ADCLK in the S12AD (unit 1) runs in synchronization with PCLKD: Up to 60 MHz Flash IF run in synchronization with the flash-IF clock (FCLK): Up to 60 MHz Multiplication is possible with using the high-speed on-chip oscillator (HOCO) as a reference clock of the PLL circuit
Reset		 Nine types of reset RES# pin reset: Generated when the RES# pin is driven low. Power-on reset: Generated when the RES# pin is driven high and VCC = AVCC0 = AVCC1 rises. Voltage-monitoring 0 reset: Generated when VCC = AVCC0 = AVCC1 falls. Voltage-monitoring 1 reset: Generated when VCC = AVCC0 = AVCC1 falls. Voltage-monitoring 2 reset: Generated when VCC = AVCC0 = AVCC1 falls. Deep software standby reset: Generated in response to an interrupt to trigger release from deep software standby. Independent watchdog timer reset: Generated when the independent watchdog timer underflows, or a refresh error occurs. Watchdog timer reset: Generated when the watchdog timer underflows, or a refresh error occurs. Software reset: Generated by register setting.
Power-on reset		If the RES# pin is at the high level when power is supplied, an internal reset is generated. After VCC = AVCC0 = AVCC1 has exceeded the voltage detection level and the specified period has elapsed, the reset is cancelled.
Voltage detection circuit (LVDA)		 Monitors the voltage being input to the VCC = AVCC0 = AVCC1 pins and generates an internal reset or interrupt. Voltage detection circuit 0 Capable of generating an internal reset The option-setting memory can be used to select enabling or disabling of the reset. Voltage detection level: Selectable from three different levels (2.94 V, 2.87 V, 2.80 V) Voltage detection circuits 1 and 2 Voltage detection level: Selectable from three different levels (2.99 V, 2.92 V, 2.85 V) Digital filtering (1/2, 1/4, 1/8, and 1/16 LOCO frequency) Capable of generating an internal reset Two types of timing are selectable for release from reset An internal interrupt can be requested. Detection of voltage rising above and falling below thresholds is selectable. Maskable or non-maskable interrupt is selectable Voltage detection monitoring Event linking
Low power consumption	Low power consumption function	 Module stop function Four low power consumption modes Sleep mode, all-module clock stop mode, software standby mode, and deep software standby mode
	Battery backup function	• When the voltage on the VCC pin drops, battery power from the VBATT pin is supplied to keep the real-time clock (RTC) operating.
Interrupt	Interrupt controller (ICUB)	 Peripheral function interrupts: 262 sources External interrupts: 15 (pins IRQ0 to IRQ14) Software interrupts: 2 sources Non-maskable interrupts: 7 sources Sixteen levels specifiable for the order of priority Method of interrupt source selection: The interrupt vectors consist of 256 vectors (128 sources are fixed. The remaining 128 vectors are selected from among the other 123 sources.)

Table 1.1Outline of Specifications (2/7)

Classification	Module/Function	Description
DMA	DMA controller (DMACAa)	 8 channels Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions
	Data transfer controller (DTCb)	 Three transfer modes: Normal transfer, repeat transfer, and block transfer Request sources: External interrupts and interrupt requests from peripheral functions Sequence transfer
I/O ports	Programmable I/O ports	Total number of pins: 73 I/O pins: 50 Input pin: 1 Pull-up resistors: 50 Open-drain outputs: 50 5-V tolerance: 8
Event link controller (ELC)		 Event signals such as interrupt request signals can be interlinked with the operation of functions such as timer counting, eliminating the need for intervention by the CPU to control the functions. 83 internal event signals can be freely combined for interlinked operation with connected functions. Event signals from peripheral modules can be used to change the states of output pins (of ports B and E). Changes in the states of pins (of ports B and E) being used as inputs can be interlinked with the operation of peripheral modules.
Timers	16-bit timer pulse unit (TPUa)	 (16 bits × 5 channels) × 1 unit Maximum of 12 pulse-input/output possible Select from among seven or eight counter-input clock signals for each channel Input capture/output compare function Output of PWM waveforms in up to 15 phases in PWM mode Support for buffered operation, phase-counting mode (two phase encoder input) and cascade-connected operation (32 bits × 2 channels) depending on the channel. Capable of generating conversion start triggers for the A/D converters Digital filtering of signals from the input capture pins Event linking by the ELC
	Multifunction timer pulse unit (MTU3a)	 9 channels (16 bits × 8 channels, 32 bits × 1 channel) Maximum of 24 pulse-input/output and 3 pulse-input possible Select from among 14 counter-input clock signals for each channel (PCLKA/1, PCLKA/ 2, PCLKA/4, PCLKA/8, PCLKA/16, PCLKA/32, PCLKA/64, PCLKA/256, PCLKA/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD, MTIOC1A) 14 of the signals are available for channel 0, 11 are available for channels 1, 3, 4, 6 to 8, 12 are available for channel 2, and 10 are available for channel 5. Input capture function 39 output compare/input capture registers Counter clear operation (synchronous clearing by compare match/input capture) Simultaneous writing to multiple timer counters (TCNT) Simultaneous register input/output by synchronous counter operation Buffered operation Support for cascade-connected operation 43 interrupt sources Automatic transfer of register data Pulse output mode Toggle/PWM/complementary PWW/reset-synchronized PWM Complementary PWM output mode Outputs non-overlapping waveforms for controlling 3-phase inverters Automatic specification of dead times PWM duty cycle: Selectable as any value from 0% to 100% Delay can be applied to requests for A/D conversion. Non-generation of interrupt requests at peak or trough values of counters can be selected. Double buffer configuration Reset synchronous PWM mode Three phases of positive and negative PWM waveforms can be output with desired duty cycles. Phase-counting mode: 16-bit mode (channels 1 and 2); 32-bit mode (channels 1 and 2) Counter functionality for dead-time compensation

Table 1.1Outline of Specifications (3/7)

Classification	Module/Function	Description
Timers	Multifunction timer pulse unit (MTU3a)	 Generation of triggers for A/D converter conversion A/D converter start triggers can be skipped Digital filter function for signals on the input capture and external counter clock pins Event linking by the ELC
	Port output enable 3 (POE3a)	 Control of the high-impedance state of the MTU3 waveform output pins 5 pins for input from signal sources: POE0#, POE4#, POE8#, POE10#, POE11# Initiation on detection of short-circuited outputs (detection of simultaneous PWM output to the active level) Initiation by oscillation-stoppage detection or software Additional programming of output control target pins is enabled
	8-bit timers (TMRb)	 (8 bits × 2 channels) × 2 units Select from among seven internal clock signals (PCLKB/1, PCLKB/2, PCLKB/8, PCLKB/32, PCLKB/64, PCLKB/1024, PCLKB/8192) and one external clock signal Capable of output of pulse trains with desired duty cycles or of PWM signals The 2 channels of each unit can be cascaded to create a 16-bit timer Generation of triggers for A/D converter conversion Capable of generating baud-rate clocks for SCI5, SCI6, and SCI12 Event linking by the ELC
	Compare match timer (CMT)	 (16 bits × 2 channels) × 2 units Select from among four internal clock signals (PCLKB/8, PCLKB/32, PCLKB/128, PCLKB/512) Event linking by the ELC
	Compare match timer W (CMTW)	 (32 bits × 1 channel) × 2 units Compare-match, input-capture input, and output-comparison output are available. Select from among four internal clock signals (PCLKB/8, PCLKB/32, PCLKB/128, PCLKB/512) Interrupt requests can be output in response to compare-match, input-capture, and output-comparison events. Event linking by the ELC
	Realtime clock (RTCd)* ²	 Clock sources: Main clock, sub clock Selection of the 32-bit binary count in time count/second unit possible Clock and calendar functions Interrupt sources: Alarm interrupt, periodic interrupt, and carry interrupt Battery backup operation Time-capture facility for three values Event linking by the ELC
	Watchdog timer (WDTA)	 14 bits × 1 channel Select from among 6 counter-input clock signals (PCLKB/4, PCLKB/64, PCLKB/128, PCLKB/512, PCLKB/2048, PCLKB/8192)
	Independent watchdog timer (IWDTa)	 14 bits × 1 channel Counter-input clock: IWDT-dedicated on-chip oscillator Dedicated clock/1, dedicated clock/16, dedicated clock/32, dedicated clock/64, dedicated clock/128, dedicated clock/256 Window function: The positions where the window starts and ends are specifiable (the window defines the timing with which refreshing is enabled and disabled). Event linking by the ELC
Communication function	RF Transceiver	 Single RF transceiver compliant to IEEE 802.15.4 and Wi-SUN[®] Covers 863 to 928 MHz, which includes the frequency bands of the various countries Data rates for SUN FSK: 10, 20, 50, 100, 150, 200 kbps Data rates for SUN OFDM: Option 1: 100, 200, 400, 800, 1200, 1600, 2400 kbps Option 2: 50, 100, 200, 400, 600, 800, 1200 kbps Option 3: 25, 50, 100, 200, 300, 400, 600 kbps Option 4: 12.5, 25, 50, 100, 150, 200, 300 kbps Transmission power: +15 dBm for SUN FSK, and +11 dBm for SUN OFDM

Table 1.1Outline of Specifications (4/7)

Classification	Module/Function	Description
Communication function	Ethernet controller (ETHERC)	 Input and output of Ethernet/IEEE 802.3 frames Transfer at 10 or 100 Mbps Full- and half-duplex modes RMII (Reduced Media Independent Interface) as defined in IEEE 802.3u Detection of Magic Packets^{TM*1} or output of a "wake-on-LAN" signal (WOL) Compliance with flow control as defined in IEEE 802.3x standards
	DMA controller for Ethernet controller (EDMACa)	 Alleviation of CPU load by the descriptor control method Transmission FIFO: 2 Kbytes; Reception FIFO: 2 Kbytes
	USB 2.0 FS function module (USBb)	 Includes a UDC (USB Device Controller) and transceiver for USB 2.0 FS One port Compliance with the USB 2.0 specification Transfer rate: Full speed (12 Mbps) Both self-powered mode and bus-powered mode are supported Incorporates 2 Kbytes of RAM as a transfer buffer External pull-up and pull-down resistors are not required
	Serial communications interfaces (SCIg, SCIh, SCIi)	 11 channels (SCIg: 8 channels + SCIh: 1 channel + SCIi: 2 channels) SCIg, SCIh, SCIi Serial communications modes: Asynchronous, clock synchronous (not available in SCI2 or SCI3), and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Start-bit detection: Level or edge detection is selectable. Simple I²C Simple SPI (not available in SCI2, SCI3, or SCI12) 9-bit transfer mode Bit rate modulation Double-speed mode SCIg, SCIh Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12 Event linking by the ELC (only on channel 5) SCIh Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format SCIi Data can be transmitted or received in sequence by the 16-byte FIFO buffers of the transmission and reception unit
	I ² C bus interface (RIICa)	 2 channels (only channel 0 can be used in fast-mode plus) Communication formats I²C bus format/SMBus format Supports the multi-master Max. transfer rate: 1 Mbps (channel 0) Event linking by the ELC
	Serial peripheral interface (RSPIc)	 2 channels RSPI transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) signals enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Switching between MSB first and LSB first The number of bits in each transfer can be changed to any number of bits from 8 to 16, or to 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Transit/receive data can be swapped in byte units Buffered structure Double buffers for both transmission and reception RSPCK can be stopped with the receive buffer full for master reception. Event linking by the ELC

Table 1.1Outline of Specifications (5/7)

Classification	Module/Function	Description
Communication function	Quad serial peripheral interface (QSPI)	 1 channel Connectable with serial flash memory equipped with multiple input and output lines (i.e. for single, dual, or quad operation) Programmable bit length and selectable active sense and phase of the clock signal Sequential execution of transfer LSB or MSB first is selectable
SD host interface (SDHI)		 1 channel Transfer speed: Supports high-speed mode (25 MB/s) and default speed mode (12.5 MB/s) One interface for SD memory and I/O cards (supporting 1- and 4-bit SD buses) SD specifications Part 1: Physical Layer Specification Ver. 3.01 compliant (DDR not supported) Part E1: SDIO Specification Ver. 3.00 Error checking: CRC7 for commands and CRC16 for data Interrupt requests: Card access interrupt, SDIO access interrupt, card detection interrupt, SD buffer access interrupt DMA transfer requests: SD_BUF write and SD_BUF read Support for card detection and write protection
SD slave interface (SDSI)		 1 channel Compliant with the SDIO Card Specification Ver.2.00 (CSA is not supported) 1-bit SD/4-bit SD/SPI mode SDIO Proprietary command is supported SD/SPI Mandatory command is supported Interrupt requests: 6
12-bit A/D converter (S12ADFa)		 12 bits × 2 units (unit 0: 4 channels; unit 1: 11 channels) 12-bit resolution (switchable between 8, 10, and 12 bits) Conversion time 0.48 µs per channel (for 12-bit conversion) 0.45 µs per channel (for 10-bit conversion) 0.42 µs per channel (for 8-bit conversion) 0.42 µs per channel (for 8-bit conversion) 0.9erating mode Scan mode (single scan mode, continuous scan mode, or 3 group scan mode) Group priority control (only for 3 group scan mode) Sample-and-hold function Common sample-and-hold circuit included In addition, channel-dedicated sample-and-hold function (3 channels: in unit 0 only) included Sampling variable Sampling time can be set up for each channel. Digital comparison Method: Comparison to detect voltages above or below thresholds and window comparison Measurement: Comparison of two results of conversion or comparison of a value in the comparison register and a result of conversion Self-diagnostic function internally generates three analog input voltages (unit 0: VREFL0, VREFH0 × 1/2, VREFH0; unit 1: AVSS1, AVCC1 × 1/2, AVCC1) Double trigger mode (A/D conversion data duplicated) Detection of analog input disconnection Three ways to start A/D conversion Software trigger, timer (MTU3, TMR, TPU) trigger, external trigger Event linking by the ELC
Temperature sensor		 1 channel Relative precision: ± 1°C The voltage of the temperature is converted into a digital value by the 12-bit A/D converter (unit 1).

Table 1.1Outline of Specifications (6/7)

Classification	Module/Function	Description
Safety	Memory protection unit (MPU)	 Protection area: Eight areas (max.) can be specified in the range from 0000 0000h to FFFF FFFFh. Minimum protection unit: 16 bytes Reading from, writing to, and enabling the execution access can be specified for each area. An access exception occurs when the detected access is not in the permitted area.
	Trusted Memory (TM) Function	 Programs in the TM target area in the code flash memory are protected against reading Instruction fetching by the CPU is the only form of access to these areas when the TM function is enabled.
	Register write protection function	• Protects important registers from being overwritten for in case a program runs out of control.
	CRC calculator (CRCA)	 Generation of CRC codes for 8-/32-bit data 8-bit data Selectable from the following three polynomials X⁸ + X² + X + 1, X¹⁶ + X¹⁵ + X² + 1, X¹⁶ + X¹² + X⁵ + 1 32-bit data Selectable from the following two polynomials X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1, X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1, X³² + X²⁶ + X²⁷ + X²⁶ + X²⁵ + X²³ + X²² + X²⁰ + X¹⁹ + X¹⁸ + X¹⁴ + X¹³ + X¹¹ + X¹⁰ + X⁹ + X⁸ + X⁶ + 1 Generation of CRC codes for use with LSB-first or MSB-first communications is selectable Selectable
	Main clock oscillation stop detection	Main clock oscillation stop detection: Available
	Clock frequency accuracy measurement circuit (CAC)	• Monitors the clock output from the main clock oscillator, sub-clock oscillator, low- and high-speed on-chip oscillators, IWDT-dedicated on-chip oscillator, and PCLKB, and generates interrupts when the setting range is exceeded.
	Data operation circuit (DOC)	The function to compare, add, or subtract 16-bit data
Encryption function	Trusted Secure IP (TSIP)	 Security algorithm Common key encryption: AES (compliant with NIST FIPS PUB 197), 3DES, ARC4 Non-common key encryption: RSA Other features TRNG (true-random number generator) Hash value generation: SHA1, SHA224, SHA256, GHASH Prevention from illicit copying of a key
Operating freque	ency	Up to 120 MHz
Power supply vo	ltage	$\label{eq:VCC} VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = 2.7 to 3.6 V, 2.7 \leq VREFH0 \leq AVCC0, \\ V_{BATT} = 2.0 to 3.6 V$
Operating tempe	erature	-40 to +85°C
Package		145-pin TFBGA (PTBG0145KB-A)
Debugging inter	face	JTAG and FINE interfaces

Table 1.1	Outline of Specifications (7/7)
-----------	---------------------------------

Note 1. Magic PacketTM is a registered trademark of Advanced Micro Devices, Inc.

Note 2. When the realtime clock is not used, initialize the registers in the time clock according to description in section 31.6.7, Initialization Procedure When the Realtime Clock is Not to be Used in the RX65N Group, RX651 Group User's Manual: Hardware.

1.2 Comparison of Functions among Products

 Table 1.2 lists the comparison of functions among products.

For details on the CPU, system control, and peripheral functions, see RX65N Group, RX651 Group User's manual: Hardware. For details on the RF transceiver, see R9A06G062GNP Sub-GHz Transceiver User's Manual: Hardware.

Classifies		Product Part Num	ber					
tion	Function	RX65N (R5F565NEHDFC)	RX651 (R5F5651EDDFC)	RX65W-A (R5F565WEADBF)	RX65W-A (R5F565WEMDBF)			
Code Flash	Code Flash Memory Capacity		2 M	bytes				
Memory	Dual bank function		Ava	ilable				
	BGO function		Ava	ilable				
Data Flash M	emory		32 k	Cbytes				
RAM		640 Kb	oytes (256 Kbytes + 3	84 Kbytes of expansion	on RAM)			
External bus	External bus width	32/16	6/8 bits	Not av	vailable			
	SDRAM area controller	Ava	ilable	Not av	vailable			
External inter	rupts	NMI, IRQ	0 to IRQ15	NMI, IRQ	0 to IRQ14			
DMA	DMA controller		Ch.	0 to 7				
Classifica- tion F Code Flash Memory C Data Flash Memory E Data Flash Interrup S External bus E External interrup M DMA C Timers 1 M F S F Image: Communica- tion function F Communica- tion function F C C Image: Communica- tion function F C C Image: Communica- tion function F C C Image: Communica- tion function F Image: Communica- tion function F Image: Communica- tion function F Image: Communica- tion function F Image: Communica- tion F <td>Data transfer controller</td> <td></td> <td>Ava</td> <td>ilable</td> <td></td>	Data transfer controller		Ava	ilable				
	EXDMA controller	Ch. 0	and 1	Not av	vailable			
Timers	16-bit timer pulse unit	Ch.	0 to 5	Ch. 0,	1, 3 to 5			
	Multi-function timer pulse unit 3		Ch.	0 to 8				
	Port output enable 3		Ava	ilable				
	Programmable pulse generator	Ch. 0	and 1	Not av	vailable			
	8-bit timers		Ch.	0 to 3				
	Compare match timer	Ch. 0 to 3						
	Compare match timer W		Ch. () and 1				
	Realtime clock		Ava	ilable				
	Watchdog timer		Ava	ilable				
	Independent watchdog timer	Available						
Communica-	RF transceiver	Not av	vailable	Ava	ilable			
tion function	Ethernet controller	Ch. 0	Not available	Ch. 0 (only for RMII)	Not available			
	DMA Controller for the Ethernet Controller	Ch. 0	Not available	Ch. 0	Not available			
	USB 2.0 FS host/function module	CI	h. 0	Ch. 0 (only supports the function controller)				
	Serial communications interfaces (SClg)	Ch.	0 to 9	Ch. 1 to 6, 8, and 9 (clock synchronous mode and simple SPI bus mode are not available in ch. 2 and 3)				
	Serial communications interfaces (SClh)	Ch	. 12	Ch. 12 (simple SPI bus mode is not available)				
Classifica-tion Fur Code Flash Memory Cod Data Flash Memory BG Data Flash Memory SDI External bus Ext External bus Ext DMA DM DAT DMA DMA DM Por Pro 8-b Cor Cor Rea Wa Inde Communica- RF tion function Eth DM DM Corr Cor Ser (SC) Ser (SC) Final Cor Cor Cor Cor Ser Cor Ser Cor Ser Cor Ser Ser (SC) Ser (SC) CA Qual	Serial communications interfaces (SCIi)		Ch. 10) and 11				
	I ² C bus interfaces	Ch.	0 to 2	Ch. 0	and 2			
	Serial peripheral interface	Ch.	0 to 2	Ch. 0	and 1			
	CAN module	Ch. 0	and 1	Not av	vailable			
	Quad serial peripheral interface		C	h. 0				

Table 1.2Comparison of Functions among Products (1/2)

Classifies		Product Part Num	per				
tion	Function	RX65N (R5F565NEHDFC)	RX651 (R5F5651EDDFC)	RX65W-A (R5F565WEADBF)	RX65W-A (R5F565WEMDBF)		
Communica-	SD host interface	Ava	ilable	Available	Not available		
tion function	SD slave interface	Ava	ilable	Available	Not available		
	MMC host interface	Product Part Num RX65N (R5F565NEHDFC) Ava Available rammer mode)	ilable	Not av	/ailable		
	Parallel data capture unit	Ava	ilable	Not av	ailable		
Graphics	Graphic-LCD controller	Product Part Number RX65N (RSF565NEHDFC) RX651 (RSF5651EDDFC) RX65W-A (RSF565WEADBF) RX65W-A (RSF565WEADBF) Available Available Available Not av Available Available Available Not av Available Available Not available Not available nit Available Not available Not available Available Not available Not available Not available AN000 to 007 (unit 0: 8 channels) AN100, 102 to 107, 110 to (unit 1: 11 channels) AN100, 102 to 107, 110 to (unit 1: 11 channels) (MPU) Available Available Vaailable unction Available Available Available f(MPU) Available Available Available op detection Available Available Available DOC)	Not av	ailable			
	2D drawing engine		ailable				
12-bit A/D cor	nverter	AN000 to 007 (u	nit 0: 8 channels)	AN000 to 003 (u	nit 0: 4 channels)		
		AN100 to 120 (u	nit 1: 21 channels)	AN100, 102 to (unit 1: 11	107, 110 to 113 channels)		
12-bit D/A cor	nverter	Ch. 0	and 1	Not av	ailable		
Temperature	sensor		Ava	ilable			
Temperature sensor Safety Memory-protection unit (MPU)			Ava	ilable			
	Trusted memory (TM) function		Ava	ailable			
	Register write protection function	RX65N (RSF565NEHDFC)RX651 (RSF5651EDDFC)RX65W-A (RSF565WEHDFC)interfaceAvailableAvailainterfaceAvailableAvailast interfaceAvailableAvailableinterfaceAvailableInterfaceinterfaceAvailable<	ilable				
	CRC calculator		Ava	ilable	RX65W-A (R5F565WEMDBF) able Not available able Not available Not available Not available		
	Main clock oscillation stop detection	Available					
	Clock frequency accuracy measurement circuit (CAC)	Available					
	Data operation circuit (DOC)		Ava	ilable			
Encryption	Trusted Secure IP	Available	Not available	Available	Not available		
Event link cor	ntroller		Ava	ilable			
Off-board pro	gramming (parallel programmer mode)	Ava	ilable	Not av	vailable		

Table 1.2 Comparison of Functions among Products (2/2)

1.3 List of Products

Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no.

Table 1.3List of Products

Group	Part No.	Package	Code Flash Memory Capacity (byte(s))	RAM Capacity (byte(s))	Data Flash Memory Capacity (byte(s))	Operating Frequency (Max.)	Encryption Module	ETHERC	SDHI/SDSI	Operating tempera- ture (°C)
RX65W-A	R5F565WEADBF	PTBG0145KB-A	2 M	640 K	32 K	120 MHz	Available	Available	Available	-40 to +85
	R5F565WEMDBF						Not available	Not available	Not available	

Figure 1.1 How to Read the Product Part Number

1. Overview

1.4 Block Diagram

Figure 1.2 shows a block diagram.

Figure 1.2 Block Diagram

1.5 Pin Functions

 Table 1.4 lists the pin functions.

Table 1.4Pin Functions (1/6)

Classifications	Pin Name	I/O	Description
Digital power supply	VCC	Input	Power supply pin. Connect this pin to the system power supply. Connect the pin to VSS via a 0.1 - μ F multilayer ceramic capacitor. The capacitor should be placed close to the pin.
	VCL	Input	Connect this pin to VSS via a 0.22-µF multilayer ceramic capacitor. The capacitor should be placed close to the pin.
	VSS	Input	Ground pin for the digital circuit and RF transceiver. Connect it to the system power supply (0 V).
	VBATT	Input	Backup power pin
Clock	fications Pin Name I/O Description power supply power supply over supply Power supply (P) (P) VCC Input Power supply (D) (P) (P) (P) (P) (P) over supply (D) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P		
	EXTAL	Input	input through the EXTAL pin.
	XCOUT	Output	Input/output pins for the sub clock oscillator. Connect a crystal
	XCIN	Input	resonator between XCOUT and XCIN.
Clock frequency accuracy measurement	CACREF	Input	Reference clock input pin for the clock frequency accuracy measurement circuit
Operating mode control	MD	Input	Pin for setting the operating mode. The signal level on this pin must not be changed during operation.
	UB	Input	USB boot mode enable pin
	UPSEL	Input	Selects the power supply method in USB boot mode. The low level selects self-powered mode and the high level selects bus-powered mode.
System control	RES#	Input	Reset signal input pin. This LSI enters the reset state when this signal goes low.
	EMLE	Input	Input pin for the on-chip emulator enable signal. When the on- chip emulator is used, this pin should be driven high. When not used, it should be driven low.
	BSCANP	Input	Boundary scan enable pin. Boundary scan is enabled when this pin goes high. When not used, it should be driven low.
On-chip emulator	BSCANP Input Boundary scan enable pin. Boundary scan is enabled when high when how. FINED I/O Fine interface pin TRST# Input On chin omulator or boundary scan pins. When the ENH	Fine interface pin	
	TRST#	Input	On-chip emulator or boundary scan pins. When the EMLE pin
	TMS	Input	is driven high, these pins are dedicated for the on-chip emulator
	TDI	Input	
	ТСК	Input	
	TDO	Output	
Interrupt	NMI	Input	Non-maskable interrupt request pin
	IRQ2 to IRQ7, IRQ11 to IRQ14, IRQ0-DS, IRQ1-DS, IRQ4-DS to IRQ11-DS	Input	Maskable interrupt request pins
Multi-function timer pulse unit 3	MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D	I/O	The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins
	MTIOC2A, MTIOC2B	The low level selects self-powered mode and the high level selects bus-powered mode. Input Reset signal input pin. This LSI enters the reset state when this signal goes low. Input Input perulator is used, this pin should be driven high. When not used, it should be driven low. Input Boundary scan enable pin. Boundary scan is enabled when this pin goes high. When not used, it should be driven low. I/O Fine interface pin Input On-chip emulator or boundary scan pins. When the EMLE pin is driven high, these pins are dedicated for the on-chip emulator. Input On-chip emulator. Input Input Input On-chip emulator or boundary scan pins. When the EMLE pin is driven high, these pins are dedicated for the on-chip emulator. Input Input Input Non-maskable interrupt request pin Input Non-maskable interrupt request pin Input Maskable interrupt request pins I/O The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins I/O The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins I/O The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins I/O The TGRA3 to TGRD3 input capture input/output compare output/PWM output pin	
	MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins
	MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins

Classifications

Multi-function timer pulse

unit 3			time compensation input pins
	MTIOC6A, MTIOC6C I/O The TGRA6 and TGRC6 input capture input/output compare output/PWM output pins MTIOC7A, MTIOC7B I/O The TGRA7 and TGRB7 input capture input/output compare output/PWM output pins MTIOC6B, MTIOC8B, MTIOC8C, MTIOC8D I/O The TGRA7 and TGRB7 input capture input/output compare output/PWM output pins MTIOC8C, MTIOC8D I/O The TGRA8 to TGRD8 input capture input/output compare output/PWM output pins mable 3 POEM, POE4R, POE8R, POE10R, POE4R, POE8R, POE8R, POE10R, POE4R, POE8R, POE8R, POE10R, POE4R, POE8R, POE8R, POE10R, POE4R, POE8R, POE8R, Input Input Input pins for request signals to place the MTU in the high impedance state TIOCA1, TIOCB1 I/O The TGRA3 to TGRD0 input capture input/output compare output/PWM output pins TIOCA3, TIOCB3, I/O The TGRA3 to TGRD0 input capture input/output compare output/PWM output pins TIOCA4, TIOCB4 I/O The TGRA4 and TGRB4 input capture input/output compare output/PWM output pins TIOCA5, TIOCB5 I/O The TGRA4 and TGRB5 input capture input/output compare output/PWM output pins TIOCA5, TIOCB5 I/O The TGRA5 and TGRD5 input capture input/output compare output/PWM output pins TIOCA5, TIOCB5 I/O The TGRA5 and TGRD5 input capture input/output compare output/PWM output pins TIOCA5, TI		
	MTIOC7A, MTIOC7B	I/O	The TGRA7 and TGRB7 input capture input/output compare output/PWM output pins
	MTIOC8A, MTIOC8B, MTIOC8C, MTIOC8D	I/O	The TGRA8 to TGRD8 input capture input/output compare output/PWM output pins
	MTCLKA, MTCLKB, MTCLKC, MTCLKD	Input	Input pins for external clock signals or for phase counting mode clock signals
Port output enable 3	POE0#, POE4#, POE8#, POE10#, POE11#	Input	Input pins for request signals to place the MTU in the high impedance state
16-bit timer pulse unit	TIOCB0, TIOCD0	I/O	The TGRB0 and TGRD0 input capture input/output compare output/PWM output pins
	TIOCA1, TIOCB1	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins
	TIOCA3, TIOCB3, TIOCC3, TIOCD3	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins
	TIOCA4, TIOCB4	I/O	The TGRA4 and TGRB4 input capture input/output compare output/PWM output pins
	TIOCA5, TIOCB5	I/O	The TGRA5 and TGRB5 input capture input/output compare output/PWM output pins
	TCLKB, TCLKC, TCLKD	Input	Input pins for external clock signals or for phase counting mode clock signals
8-bit timer	TMO0 to TMO3	Output	Compare match output pins
	TMCI0 to TMCI3	Input	Input pins for external clocks to be input to the counter
	TMRI0 to TMRI3	Input	Input pins for the counter reset
Compare match timer W	TIC0 to TIC3	Input	Input pins for CMTW
	TOC0 to TOC2	Output	Output pins for CMTW
Serial communications	Asynchronous mode/clock sy	ynchronous n	node
interface (SCIg)	SCK1, SCK4 to SCK6, SCK8, SCK9	I/O	Input/output pins for the clock
	RXD1 to RXD6, RXD8, RXD9	Input	Input pins for received data
	TXD1 to TXD6, TXD8, TXD9	Output	Output pins for transmitted data
	CTS1#, CTS3# to CTS6#, CTS8#, CTS9#	Input	Input pins for controlling the start of transmission and reception
	RTS1#, RTS3# to RTS6#, RTS8#, RTS9#	Output	Output pins for controlling the start of transmission and reception
	Simple I ² C mode		
	SSCL1 to SSCL6, SSCL8, SSCL9	I/O	Input/output pins for the I ² C clock
	SSDA1 to SSDA6, SSDA8, SSDA9	I/O	Input/output pins for the I ² C data
	Simple SPI mode	•	•
	SCK1, SCK4 to SCK6, SCK8, SCK9	I/O	Input/output pins for the clock
	SMISO1, SMISO4 to SMISO6, SMISO8, SMISO9	I/O	Input/output pins for slave transmission of data

I/O

Input

Description

The TGRU5, TGRV5, and TGRW5 input capture input/dead

Table 1.4 Pin Functions (2/6)

Pin Name

MTIC5U, MTIC5V, MTIC5W

SMOSI1, SMOSI4 to

SS9#

SMOSI6, SMOSI8, SMOSI9 SS1#, SS4# to SS6#, SS8#,

Input/output pins for master transmission of data

Chip-select input pins

I/O

Input

Classifications	Pin Name	I/O	Description
Serial communications	Asynchronous mode/clock s	synchronous	mode
interface (SCIh)	SCK12	I/O	Input/output pin for the clock
	RXD12	Input	Input pin for received data
	TXD12	Output	Output pin for transmitted data
	Pin Name I/O Description mmunications (SCIh) • Asynchronous mode/dock synchronous mode • Asynchronous mode/dock synchronous mode (SCIh) SCK12 I/O Input/output pin for received data TXD12 Output Output pin for received data TXD12 Output Input/output pin for the IPC clock SSDA12 I/O Input/output pin for the IPC clock SSDA12 I/O Input/output pin for the IPC clock SSDA12 I/O Input/output pin for received data TXX12 Output Output pin for received or transmitted data SIOX12 I/O Input/output pin for received or transmitted data SIOX12 I/O Input/output pin for received or transmitted data TXD10 and RXD11 I/O Input/output pin for received data TXD10 and RXD11 Input Input pin for controlling the start of transmission and reception RSIG10 and SSCL11 I/O Input/output pin for the IPC clock SSDA10 and SSD11 I/O Input/output pin for the IPC clock		
		Input/output pin for the I ² C clock	
	SSDA12	I/O	Input/output pin for the I ² C data
	 Extended serial mode 		
	RXDX12	Input	Input pin for received data
	TXDX12	2L12 I/O Input/output pin for the I ² C clock 2A12 I/O Input/output pin for the I ² C data xtended serial mode Input Input pin for received data DX12 Output Output pin for received data DX12 Output Output pin for received data DX12 Output Output pin for received data DX12 I/O Input/output pin for received or transmitted data xX12 I/O Input/output pin for received or transmitted data synchronous mode/clock synchronous mode Input/output pin for received data C10 and SCK11 I/O Input/output pin for received data D10 and RXD11 Input Input pin for received data D10 and TXD11 Output Output pin for controlling the start of transmission and reception S10# and CTS11# Input Input/output pin for controlling the start of transmission and reception imple I ² C mode Input/output pin for the I ² C clock Input/output pin for the I ² C data DA10 and SSDA11 I/O Input/output pin for the I ² C data Imple SPI mode K10 and SCK11 I/O Input/output pin for slave transmission of data OSI10 and SMOSI11 </td	
	SIOX12	I/O	Input/output pin for received or transmitted data
Serial communications	Asynchronous mode/clock s	synchronous	mode
interface (SCli)	SCK10 and SCK11	I/O	Input/output pin for the clock
	RXD10 and RXD11	Input	Input pin for received data
Serial communications interface (SCIh) Asynchronous mode/c SCK12 RXD12 TXD12 Simple I²C mode SSCL12 SSDA12 Extended serial mode RXDX12 TXDX12 SIOX12 Serial communications interface (SCIi) Asynchronous mode/c SCK10 and SCK11 RXD10 and RXD11 TXD10 and RXD11 TXD10 and TXD11 CTS10# and CTS11# RTS10# and CTS11# Simple I²C mode SSCL10 and SSCL11 SSDA10 and SSDA11 Simple SPI mode SCK10 and SCK11 SMISO10 and SMISO11 SMISO10 and SMISO11 SMISO10 and SMISO11 SMISO10 and SMISO11 SIMI0 and SS11# I²C bus interface SCL0[FM+], SCL2-DS SDA0[FM+], SDA2-DS Ethernet controller REF50CK0 RMII0_CRS_DV RMII0_TXD0, RMII0_TX RMII0_RXD0, RMII0_R RMII0_RX_ER ETO_LINKSTA	TXD10 and TXD11	Output	Output pin for transmitted data
	• Asynchronous mode/clock synchronous mode SCK12 I/O Input/output pin for the clock RXD12 Input Input pin for received data TXD12 Output Output pin for transmitted data • Simple I/C mode SSCL12 I/O Input/output pin for the I/C clock SSDA12 I/O Input/output pin for the I/C clock SSDA12 I/O Input/output pin for received data TXDX12 Output Output Dulput pin for received data TXDX12 Output Output/output pin for received data SIGX12 I/O Input/output pin for received data SIGX12 I/O Input/output pin for received data TXDX12 Output Output pin for received data TXD13 and CSK11 I/O Input/output pin for received data TXD10 and TXD11 Input Input pin for controlling the start of transmission and recept SSL10 and SSL11 I/O Input/output pin for the I/C clock SSDA10 MSSD11 I/O Input/output pin for slave transmission of data SSIG10 MSISO11		
	RTS10# and RTS11#	Output	Output pin for controlling the start of transmission and reception
	Simple I ² C mode		
	SSCL10 and SSCL11	I/O	Input/output pin for the I ² C clock
	SSDA10 and SSDA11	I/O	Input/output pin for the I ² C data
	Simple SPI mode	·	
	SCK10 and SCK11	I/O	Input/output pin for the clock
	SMISO10 and SMISO11	I/O	Input/output pin for slave transmission of data
	SMOSI10 and SMOSI11	I/O	Input/output pin for master transmission of data
	SS10# and SS11#	Input	Chip-select input pin
I ² C bus interface	SCL0[FM+], SCL2-DS	I/O	Input/output pins for clocks. Bus can be directly driven by the N-channel open drain
	SDA0[FM+], SDA2-DS	I/O	Input/output pins for data. Bus can be directly driven by the N-channel open drain
Ethernet controller	REF50CK0	Input	50-MHz reference clocks. These pins input reference signals for transmission/reception timings in RMII mode.
	RMII0_CRS_DV	Input	Indicate that there are carrier detection signals and valid receive data on RMII0_RXD1 and RMII0_RXD0 in RMII mode.
	RMII0_TXD0, RMII0_TXD1	Output	2-bit transmit data in RMII mode
	RMII0_RXD0, RMII0_RXD1	Input	2-bit receive data in RMII mode
	RMII0_TXD_EN	Output	Output pins for data transmit enable signals in RMII mode
	RMII0_RX_ER	Input	Indicate an error has occurred during reception of data in RMII mode.
	ET0_LINKSTA	Input	Input link status from the PHY-LSI.
	ET0_WOL	Output	Receive Magic packets.
	ET0_MDC	Output	Output reference clock signals for information transfer via ET0_MDIO.
	ET0_MDIO	I/O	Input or output bidirectional signals for exchange of management information between this MCU and the PHY-LSI.

Table 1.4Pin Functions (3/6)

Classifications	Pin Name	I/O	Description
USB 2.0 function module	VCC_USB	Input	Power supply pin
	VSS_USB	Input	Ground pin
	USB0_DP	I/O	Input or output USB transceiver D+ data.
	USB0_DM	I/O	Input or output USB transceiver D- data.
	USB0_VBUS	Input	USB cable connection/disconnection detection input pin
Serial peripheral	Basifications Pin Name I/O Description IB 2.0 function module VCC_USB Input Power supply pin VSS_USB Input Ground pin USB0_DP I/O Input or output USB transceiver D+ data. USB0_VBUS Input or output USB transceiver D- data. USB0_VBUS Input or output USB transceiver D- data. INSCRAMSPCKB I/O Input or output data output from the master MISOAMISOB I/O Input or output data output from the slave SSLA0SSLB0 I/O Input or output data output from the slave SSLA0SSLB0 I/O Input or output pins for slave selection SSLA0SSLB0 I/O Master transmit data/data 0 (QA) QUIput QSPLIX Output QSSL Output QSPL alware output pins (QA) QIO0 I/O Master transmit data/data 0 (QA) QIO1 I/O Master input data/data 1 (QA) QIO2 I/O Master input data/data 1 (QA) QIO3 I/O Data 2, data 3		
interface			
	MISOA/MISOB	I/O	Input or output data output from the slave
	SSLA0/SSLB0	I/O	Input or output pins for slave selection
	SSLA1/SSLB1, SSLA2/SSLB2, SSLB3	Output	Output pins for slave selection
Quad serial peripheral	QSPCLK	Output	QSPI clock output pins
interface	ssifications Pin Name I/O Description B 2.0 function module VCC_USB Input Forward supply pin VSS_USB Input Ground pin USB0_DP I/O Input or output USB transceiver D+ data. USB0_VBUS Input or output USB transceiver D+ data. USB0_VBUS Input or output USB transceiver D+ data. USB0_VBUS Input or output USB transceiver D+ data. INSOAMISOB I/O Input or output USB transceiver D+ data. INSOAMISOB I/O Input or output data output from the master MISOAMISOB I/O Input or output data output from the slave SSL47/SSLB1, SSL3/SSLB2 Output OUtput pins for slave selection SSL47/SSLB2, SSL3 Output QSPI clock output pins Output OdSC Output QSPI clock output pins Output OdSL Output QSPI clock output pins Output GASL Output QSPI clock output pins Output GASL Output QSPI clock output pins Output GASL Output QSSI c		
	QMO, QIO0	I/O	Master transmit data/data 0
	QMI, QIO1	I/O	Master input data/data 1
	QIO2, QIO3	I/O	Data 2, data 3
SD host interface	SDHI_CLK	Output	SD clock output pins
	SDHI_CMD	I/O	SD command output, response input signal pins
	SDHI_D0, SDHI_D1, SDHI_D2, SDHI_D3	I/O	SD data bus pins
	SDHI_CD	Input	SD card detection pin
	SDHI_WP	Input	SD write-protect signal
SD slave interface	SDSI_CLK	Input	SD clock input pins
	SDSI_CMD	I/O	SD command input, response output signal pins
	SDSI_D0, SDSI_D1, SDSI_D2, SDSI_D3	I/O	SD data bus pins
Realtime clock	RTCOUT	Output	Output pin for 1-Hz/64-Hz clock
	RTCIC0, RTCIC1	Input	Time capture event input pins
12-bit A/D converter	AN000 to AN003, AN100, AN102 to AN107, AN110 to AN113	Input	Input pins for the analog signals to be processed by the A/D converter
	ADTRG0#, ADTRG1#	Input	Input pins for the external trigger signals that start the A/D conversion
	ANEX0	Output	Extended analog output pin
	ANEX1	Input	Extended analog input pin
Analog power supply	AVCC0*1	Input	Analog voltage supply pin for the 12-bit A/D converter (unit 0). Connect this pin to a branch from the VCC power supply. Connect the pin to AVSS0 via a 0.1 - μ F multilayer ceramic capacitor. The capacitor should be placed close to the pin.
	AVSS0*1	Input	Analog ground pin for the 12-bit A/D converter (unit 0). Connect this pin to a branch from the VSS ground power supply. Connect the pin to AVCC0 via a 0.1 -µF multilayer ceramic capacitor. The capacitor should be placed close to the pin.
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter (unit 0). Connect this pin to VCC if the 12-bit A/D converter is not to be used.
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter (unit 0). Connect this pin to VSS if the 12-bit A/D converter is not to be used.

Table 1.4Pin Functions (4/6)

Table 1.4Pin Functions (5/6)

Classifications	Pin Name	I/O	Description
Analog power supply	AVCC1*1	Input	Analog voltage supply and reference voltage supply pin for the 12-bit A/D converter (unit 1) and D/A converter. This pin also supplies the analog voltage to the temperature sensor. Connect this pin to a branch from the VCC power supply. Connect the pin to AVSS1 via a 0.1-µF multilayer ceramic capacitor. The capacitor should be placed close to the pin.
	AVSS1*1	Input	Analog voltage supply and reference voltage supply pin for the 12-bit A/D converter (unit 1) and D/A converter. This pin also supplies the analog ground voltage to the temperature sensor. Connect this pin to a branch from the VSS ground power supply. Connect the pin to AVCC1 via a 0.1 -µF multilayer ceramic capacitor. The capacitor should be placed close to the pin.
I/O ports	P12, P13, P16, P17	I/O	4-bit input/output pins
	P26, P27	I/O	2-bit input/output pins
	P30, P31, P34 to P37	I/O	6-bit input/output pins (P35: input pin)
	P40 to P43	I/O	4-bit input/output pins
	P53	I/O	1-bit input/output pins
	P80 to P82	I/O	3-bit input/output pins
	PA1 to PA4	I/O	4-bit input/output pins
	PB0 to PB7	I/O	8-bit input/output pins
	PC0, PC1, PC4 to PC7	I/O	6-bit input/output pins
	PD2 to PD7	I/O	6-bit input/output pins
	PE0 to PE2, PE4 to PE7	I/O	7-bit input/output pins
RF Transceiver	SIN	Input (D)	Serial input
	SOUT	Output (D)	Serial output
	SCLK	Input (D)	Serial clock
	SEN	Input (D)	Serial enable
	VREG_DIG	Output (A)	Internally regulated analog 1.1-V supply output voltage for digital circuits
	GPIO0 to GPIO12	I/O (D)	General-purpose digital I/O pins 0 to 12
	VCC_DA	Input (A)	3.3-V power supply voltage for the digital and analog circuits
	VREG_RF	Output (A)	Internally regulated analog 1.1-V supply output voltage for RF section
	RFIN	Input (A)	RX input
	VSS	Input (A)	Ground pin for the digital circuit and RF transceiver. Connect it to the system power supply (0 V).
	RFOUT	Output (A)	TX output
	VREG_TXPA	Output (A)	Internally regulated analog 1.1-V supply output voltage for the power amplifier (PA)
	VCC_RF	Input (A)	3.3-V RF power supply voltage
	VREG_PLL	Output (A)	Internally regulated analog 1.1-V supply output voltage for PLL
	VREG_VCO	Output (A)	Internally regulated analog 1.1-V supply output voltage for VCO
	REXT	Input (A)	External reference resistor connection port
	VCC_A	Input (A)	3.3-V power supply voltage for the analog circuits
	XIN	Input (A)	Crystal oscillator input
	XOUT	I/O (A)	Crystal oscillator output
	СКОИТ	Output (A)	Clock output (16 MHz)
	REGIN	Input (A)	1.4- to 1.8-V DDC_OUT voltage input

Classifications	Pin Name	I/O	Description
RF Transceiver	VSS_DDC	Input (A)	DC-to-DC converter ground
	DDC_OUT	Output (A)	1.4- to 1.8-V DC-to-DC converter output voltage
	VCC_DDC	Input (A)	3.3-V DC-to-DC converter power supply voltage
	VCC_D	Input (A)	3.3-V power supply voltage for the digital circuits
	RSTB	Input (D)	Reset-bar input (active-low)
	MODE	Input (D)	Mode switch (always low)

Table 1.4Pin Functions (6/6)

(A): Analog, (D): Digital

Note: Note the following regarding pin names. For details, see section 1.6, Pin Assignments.

- When the pin functions have "-DS" appended to their names, they can also be used as triggers for release from deep software standby.

Note 1. When neither the 12-bit A/D converter nor temperature sensor is to be used, connect the AVCC0 and AVCC1 pins to VCC, and the AVSS0 and AVSS1 pins to VSS.

⁻ RIIC pin functions that have [FM+] appended to their names support fast-mode plus.

1.6 Pin Assignments

	А	В	С	D	Е	F	G	Н	J	к	L	М	Ν	Ρ	R	_
15	P53	VSS_ USB	USB0_ DP	USB0_ DM	VCC_ USB	P17	P16	P27	EXTAL	XTAL	хсоит	XCIN	VCL	AVCC1	AVCC0	1
14	P82	PC5	PC6	PE0	PC0	P12	P13	P26	P34	VCC	VSS	RES#	VBATT	AVSS1	AVSS0	1
13	PC4	P80	P81	PC7	PE1	PC1	MODE	P31	P30	P35	MD/ FINED	BSCANP	P40	EMLE	VREFH0	1
12	PE7	PE6	SIN											P41	VREFL0	1
11	SOUT	PE5	SCLK										PD3	PD2	P43	1
10	PE4	SEN	RSTB											PD5	PD7	1
9	VREG_ DIG	GPIO0	GPI01		RX65W-A Group PTBG0145KB-A (145-Pin TFBGA) (Upper Perspective View)								PD6	PB1	PE2	ę
8	GPIO4	VSS	GPIO3										PA1	PB0	PA2	٤
7	GPIO6	GPIO2	VSS		(PA4	PA3	VSS	7	
6	GPIO5	GPIO8	GPIO7										PB4	PB2	VCC	e
5	VCC_DA	VSS	VSS		VSS								PB3	PB5	VCC_D	5
4	VREG_ RF	GPIO10	GPIO9	VSS									PB7	PB6	VCC_ DDC	2
3	GPIO11	GPIO12	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	DDC_ OUT	3
2	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS_ DDC	2
1	RFIN	VSS	RFOUT	VSS	VREG_ TXPA	VCC_ RF	VREG_ PLL	VREG_ VCO	REXT	VCC_A	XIN	XOUT	СКОПТ	VSS	REGIN	1
	A	В	С	D	E	F	G	Н	J	К	L	М	Ν	Р	R	1

1.7 List of Pin and Pin Functions

Pin Number			Timer	Communication	Camera Interface			
145-Pin TFBGA	Power Supply Clock System Control	I/O Port	(MTU, TPU, TMR, RTC, CMTW, POE, CAC)	(ETHERC, SCI, RSPI, RIIC, USB)	(QSPI, SDHI, SDSI)	Interrupt	A/D	RF Transceiver
A1								RFIN
A2	VSS							
A3								GPIO11
A4								VREG_RF
A5	VCC_DA							
A6								GPIO5
A7								GPIO6
A8								GPIO4
A9								VREG_DIG
A10		PE4	MTIOC4D/ MTIOC1A	SSLB0			AN102	
A11								SOUT
A12		PE7	MTIOC6A/TOC1	MISOB	SDHI_WP	IRQ7	AN105	
A13		PC4	MTIOC3D/ MTCLKC/TMCI1/ POE0#	SCK5/CTS8#/ RTS8#/SS8#/ SS10#/CTS10#/ RTS10#/SSLA0				
A14		P82	MTIOC4A	RMII0_TXD1/ SMOSI10/ SSDA10/TXD10				
A15		P53						
B1	VSS							
B2	VSS							
B3								GPIO12
B4								GPIO10
B5	VSS							
B6								GPIO8
B7								GPIO2
B8	VSS							
B9								GPIO0
B10								SEN
B11		PE5	MTIOC4C/ MTIOC2B	REF50CK0/ RSPCKB		IRQ5	AN103	
B12		PE6	MTIOC6C/TIC1	MOSIB	SDHI_CD	IRQ6	AN104	
B13		P80	MTIOC3B	RMII0_TXD_EN/ SCK10/RTS10#	SDHI_WP			
B14		PC5	MTIOC3B/ MTCLKD/TMRI2	SCK8/SCK10/ RSPCKA				
B15	VSS_USB							
C1								RFOUT
C2	VSS							
C3	VSS							
C4								GPIO9
C5	VSS							
C6								GPIO7
C7	VSS							
C8								GPIO3

Table 1.5List of Pin and Pin Functions (145-Pin TFBGA) (1/5)

Pin Number			Timer	Communication	Camera Interface			
145-Pin	Power Supply Clock	VO Dort	(MTU, TPU, TMR, RTC, CMTW, POE,	(ETHERC, SCI,		Internet	A/D	RF
	System Control	1/O Port	CAC)	RSPI, RIIC, USB)	(QSPI, SDHI, SDSI)	interrupt	A/D	
C10								DOTE
C10								SCLK
C12								SIN
C13		P81	MTIOC3D	RMII0_TXD0/	SDHI_CD			
				RXD10				
C14		PC6	MTIOC3C/ MTCLKA/TMCI2/ TIC0	RXD8/SMISO8/ SSCL8/SMISO10/ SSCL10/RXD10/ MOSIA		IRQ13		
C15				USB0_DP				
D1	VSS							
D2	VSS							
D3	VSS							
D4	VSS							
D13	UB	PC7	MTIOC3A/ MTCLKB/TMO2/ TOC0/CACREF	TXD8/SMOSI8/ SSDA8/SMOSI10/ SSDA10/TXD10/ MISOA		IRQ14		
D14		PE0	MTIOC3D	SCK12/SSLB1			ANEX0	
D15				USB0_DM				
E1								VREG_TXPA
E2	VSS							
E3	VSS							
E13		PE1	MTIOC4C/ MTIOC3B	TXD12/SSDA12/ TXDX12/SIOX12/ SSLB2			ANEX1	
E14		PC0	MTIOC3C/TCLKC	CTS5#/RTS5#/ SS5#/SSLA1		IRQ14		
E15	VCC_USB							
F1	VCC_RF							
F2	VSS							
F3	VSS							
F13		PC1	MTIOC3A/TCLKD	SCK5/SSLA2		IRQ12		
F14		P12	MTIC5U/TMCI1	RXD2/SSCL2/ SCL0[FM+]		IRQ2		
F15		P17	MTIOC3A/ MTIOC3B/ MTIOC4B/TIOCB0/ TCLKD/TMO1/ POE8#	SCK1/TXD3/ SSDA3/SDA2-DS		IRQ7	ADTRG1 #	
G1								VREG_PLL
G2	VSS							
G3	VSS							
G13								MODE
G14		P13	MTIOC0B/TIOCA5/ TMO3	TXD2/SSDA2/ SDA0[FM+]		IRQ3	ADTRG1 #	
G15		P16	MTIOC3C/ MTIOC3D/ TIOCB1/TCLKC/ TMO2/RTCOUT	TXD1/SMOSI1/ SSDA1/RXD3/ SSCL3/SCL2-DS/ USB0_VBUS		IRQ6	ADTRG0 #	
H1								VREG_VCO
H2	VSS							

Table 1.5 List of Pin and Pin Functions (145-Pin TFBGA) (2/5)

Pin Number			Timer	Communication	Camera Interface			
	Power Supply		(MTU, TPU, TMR,					
145-Pin TFBGA	Clock System Control	I/O Port	RTC, CMTW, POE, CAC)	(ETHERC, SCI, RSPI, RIIC, USB)	(QSPI, SDHI, SDSI)	Interrupt	A/D	RF Transceiver
H3	VSS							
H13	TMS	P31	MTIOC4D/TMCI2/ RTCIC1	CTS1#/RTS1#/ SS1#		IRQ1-DS		
H14	TDO	P26	MTIOC2A/TMO1	TXD1/SMOSI1/ SSDA1/CTS3#/ RTS3#				
H15	тск	P27	MTIOC2B/TMCI3	SCK1				
J1								REXT
J2	VSS							
J3	VSS							
J13	TDI	P30	MTIOC4B/TMRI3/ RTCIC0/POE8#	RXD1/SMISO1/ SSCL1		IRQ0-DS		
J14	TRST#	P34	MTIOC0A/TMCI3/ POE10#	ET0_LINKSTA/ SCK6		IRQ4		
J15	EXTAL	P36						
K1	VCC_A							
K2	VSS							
K3	VSS							
K13	UPSEL	P35				NMI		
K14	VCC							
K15	XTAL	P37						
L1								XIN
L2	VSS							
L3	VSS							
L13	MD/FINED							
L14	VSS							
L15	XCOUT							
M1								XOUT
M2	VSS							
M3	VSS							
M13	BSCANP							
M14	RES#							
M15	XCIN							
N1								CKOUT
N2	VSS							
N3	VSS							
N4		PB7	MTIOC3B/TIOCB5	RMII0_CRS_DV/ TXD9/SMOSI9/ SSDA9/SMOSI11/ SSDA11/TXD11	SDSI_D1			
N5		PB3	MTIOC0A/ MTIOC4A/ TIOCD3/TCLKD/ TMO0/POE11#	RMII0_RX_ER/ SCK4/SCK6	SDSI_D3			
N6		PB4	TIOCA4	RMII0_TXD_EN/ CTS9#/RTS9#/ SS9#/SS11#/ CTS11#/RTS11#	SDSI_CMD			
N7		PA4	MTIC5U/MTCLKA/ TIOCA1/TMRI0	ET0_MDC/TXD5/ SMOSI5/SSDA5		IRQ5-DS		
N8		PA1	MTIOC0B/ MTCLKC/ MTIOC7B/TIOCB0	ET0_WOL/SCK5		IRQ11		

Table 1.5 List of Pin and Pin Functions (145-Pin TFBGA) (3/5)

Pin Number			Timer	Communication	Camera Interface			
	Power Supply		(MTU, TPU, TMR,					
145-Pin TFBGA	Clock System Control	I/O Port	RTC, CMTW, POE, CAC)	(ETHERC, SCI, RSPI, RIIC, USB)	(QSPI, SDHI, SDSI)	Interrupt	A/D	RF Transceiver
N9		PD6	MTIC5V/ MTIOC8A/POE4#		QMO/QIO0/ SDHI_D0	IRQ6	AN106	
N10		PD4	MTIOC8B/POE11#		QSSL/SDHI_CMD	IRQ4	AN112	
N11		PD3	MTIOC8D/TOC2/ POE8#		QIO3/SDHI_D3	IRQ3	AN111	
N12		P42				IRQ10- DS	AN002	
N13		P40				IRQ8-DS	AN000	
N14	VBATT							
N15	VCL							
P1	VSS							
P2	VSS							
P3	VSS							
P4		PB6	MTIOC3D/TIOCA5	RMII0_TXD1/ RXD9/SMISO9/ SSCL9/SMISO11/ SSCL11/RXD11	SDSI_D0			
P5		PB5	MTIOC2A/ MTIOC1B/TIOCB4/ TMRI1/POE4#	RMII0_TXD0/ SCK9/SCK11	SDSI_CLK			
P6		PB2	TIOCC3/TCLKC	REF50CK0/ CTS4#/RTS4#/ SS4#/CTS6#/ RTS6#/SS6#	SDSI_D2			
P7		PA3	MTIOC0D/ MTCLKD/TIOCD0/ TCLKB	ET0_MDIO/RXD5/ SMISO5/SSCL5		IRQ6-DS		
P8		PB0	MTIC5W/TIOCA3	RMII0_RXD1/ RXD4/SMISO4/ SSCL4/RXD6/ SMISO6/SSCL6		IRQ12		
P9		PB1	MTIOC0C/ MTIOC4C/ TIOCB3/TMCI0	RMII0_RXD0/ TXD4/SMOSI4/ SSDA4/TXD6/ SMOSI6/SSDA6		IRQ4-DS		
P10		PD5	MTIC5W/ MTIOC8C/POE10#		QSPCLK/SDHI_CLK	IRQ5	AN113	
P11		PD2	MTIOC4D/TIC2		QIO2/SDHI_D2	IRQ2	AN110	
P12		P41				IRQ9-DS	AN001	
P13	EMLE							
P14	AVSS1							
P15	AVCC1							
R1								REGIN
R2	VSS_DDC							
R3								DDC_OUT
R4	VCC_DDC							
R5	VCC_D							
R6	VCC							
R7	VSS							
R8		PA2	MTIOC7A	RXD5/SMISO5/ SSCL5				
R9		PE2	MTIOC4A/TIC3	RXD12/SSCL12/ RXDX12/SSLB3		IRQ7-DS	AN100	
R10		PD7	MTIC5U/POE0#		QMI/QIO1/SDHI_D1	IRQ7	AN107	
R11		P43				IRQ11-DS	AN003	

Table 1.5 List of Pin and Pin Functions (145-Pin TFBGA) (4/5)

Pin Number			Timer	Communication	Camera Interface			
145-Pin TFBGA	Power Supply Clock System Control	I/O Port	(MTU, TPU, TMR, RTC, CMTW, POE, CAC)	(ETHERC, SCI, RSPI, RIIC, USB)	(QSPI, SDHI, SDSI)	Interrupt	A/D	RF Transceiver
R12	VREFL0							
R13	VREFH0							
R14	AVSS0							
R15	AVCC0							

 Table 1.5
 List of Pin and Pin Functions (145-Pin TFBGA) (5/5)

2. I/O Ports

2.1 Overview

The pins of an I/O port function as general I/O port pins, I/O pins for peripheral modules, or interrupt input pins. Each pin is also configurable as an I/O pin of a peripheral module or an input pin for an interrupt. All pins function as input pins immediately after a reset, and pin functions are switched by register settings. The setting of each pin is specified by the registers for the corresponding I/O port and peripheral modules.

Each port has the port direction register (PDR) that selects input or output direction, the port output data register (PODR) that holds data for output, the port input register (PIDR) that indicates the pin states, the open-drain control register y (ODRy, y = 0, 1) that selects the output type of each pin, the pull-up resistor control register (PCR) that controls on/off of the input pull-up resistors, the drive capacity control register (DSCR, DSCR2) that selects the drive capacity, and the port mode register (PMR) that specifies the pin function of each port.

For details on PMR, refer to section 3, Multi-Function Pin Controller (MPC). Table 2.1 shows the specifications of I/O ports, Table 2.2 lists the port functions.

	Package			
Port	73 Pins	Number of Pin		
PORT1	P12, P13, P16, P17	4		
PORT2	P26, P27	2		
PORT3	P30, P31, P34 to P37	6		
PORT4	P40 to P43	4		
PORT5	P53	1		
PORT8	P80 to P82	3		
PORTA	PA1 to PA4	4		
PORTB	PB0 to PB7	8		
PORTC	PC0, PC1, PC4 to PC7	6		
PORTD	PD2 to PD7	6		
PORTE	PE0 to PE2, PE4 to PE7	7		
	Total of pins	51		

Table 2.1 Specifications of I/O Ports

Port	Pin	Input Pull-up	Open-Drain Output	Driving Ability Switching	5-V Tolerant
PORT1	P12, P13	~	\checkmark	Normal drive/high drive/high- speed interface high-drive	\checkmark
	P16	✓	✓	Fixed to high driving ability output	\checkmark
	P17	~	~	High drive/high-speed interface high-drive	\checkmark
PORT2	P26	✓	✓	Fixed to high driving ability output	_
	P27	~	~	Normal drive/high drive/high- speed interface high-drive	
PORT3	P30, P31	~	~	High drive/high-speed interface high-drive	\checkmark
	P34, P37	~	✓	Fixed to high driving ability output	_
	P35	—	—	_	_
	P36	✓	✓	Fixed to normal output	_
PORT4	P40 to P43	~	✓	Fixed to normal output	_
PORT5	P53	~	~	High drive/high-speed interface high-drive	_
PORT8	P80 to P82	~	~	Normal drive/high drive/high- speed interface high-drive	_
PORTA	PA1 to PA4	~	~	Normal drive/high drive/high- speed interface high-drive	
PORTB	PB0 to PB7	~	~	Normal drive/high drive/high- speed interface high-drive	_
PORTC	PC0, PC1	~	\checkmark	Normal drive/high drive/high- speed interface high-drive	\checkmark
	PC4 to PC7	~	~	Normal drive/high drive/high- speed interface high-drive	_
PORTD	PD2 to PD7	~	~	Normal drive/high drive/high- speed interface high-drive	—
PORTE	PE0 to PE2, PE4 to PE7	✓	~	Normal drive/high drive/high- speed interface high-drive	

Table 2.2 Port Functions

Specifying input pull-up, open-drain output, switching of driving ability, or 5-V tolerance is available for other signals on pins that also function as general I/O pins.

2.2 I/O Port Configuration

Figure 2.1 I/O Port Configuration (1)

Figure 2.2 I/O Port Configuration (2)

Figure 2.3 I/O Port Configuration (3)

RENESAS

Figure 2.4 I/O Port Configuration (4)

2.3 Register Descriptions

2.3.1 Port Direction Register (PDR)

Address(es): PORT1.PDR 0008 C001h, PORT2.PDR 0008 C002h, PORT3.PDR 0008 C003h, PORT4.PDR 0008 C004h, PORT5.PDR 0008 C005h, PORT8.PDR 0008 C008h, PORTA.PDR 0008 C00Ah, PORTB.PDR 0008 C00Bh, PORTC.PDR 0008 C00Ch, PORTD.PDR 0008 C00Dh, PORTE.PDR 0008 C00Eh

	b7	b6	b5	b4	b3	b2	b1	b0
	B7	B6	B5	B4	В3	B2	B1	B0
Alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0 I/O Select	0: Input (Functions as an input pin.)	R/W
b1	B1	Pm1 I/O Select	1: Output (Functions as an output pin.)	R/W
b2	B2	Pm2 I/O Select		R/W
b3	B3	Pm3 I/O Select		R/W
b4	B4	Pm4 I/O Select		R/W
b5	B5	Pm5 I/O Select		R/W
b6	B6	Pm6 I/O Select		R/W
b7	B7	Pm7 I/O Select		R/W

m = 1 to 5, 8, A to E

PDR is a register which is used to select the input or output direction for individual pins of the corresponding port when the pins are configured as the general I/O pins.

Each bit of PORTm.PDR corresponds to each pin of port m; I/O direction can be specified in 1-bit units.

Note that the bits corresponding to port m that do not exist on a product are reserved. When writing, write 1 (output) to these bits.

Each bit of PDR corresponding to port m that does not exist is reserved. Make settings according to the description in section 2.4, Initialization of the Port Direction Register (PDR).

The B5 bit in PORT3.PDR is reserved, because the P35 pin is input only.

2.3.2 Port Output Data Register (PODR)

Address(es): PORT1.PODR 0008 C021h, PORT2.PODR 0008 C022h, PORT3.PODR 0008 C023h, PORT4.PODR 0008 C024h, PORT5.PODR 0008 C025h, PORT8.PODR 0008 C028h, PORTA.PODR 0008 C02Ah, PORTB.PODR 0008 C02Bh, PORTC.PODR 0008 C02Ch, PORTD.PODR 0008 C02Dh, PORTE.PODR 0008 C02Eh

_	b7	b6	b5	b4	b3	b2	b1	b0
	B7	B6	B5	B4	В3	B2	B1	В0
/alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0 Output Data Store	0: Low output	R/W
b1	B1	Pm1 Output Data Store	1: High output	R/W
b2	B2	Pm2 Output Data Store		R/W
b3	B3	Pm3 Output Data Store		R/W
b4	B4	Pm4 Output Data Store		R/W
b5	B5	Pm5 Output Data Store		R/W
b6	B6	Pm6 Output Data Store		R/W
b7	B7	Pm7 Output Data Store		R/W

m = 1 to 5, 8, A to E

PODR is a register which holds the data to be output from the pins used for general I/O.

Bits corresponding to port m that do not exist on a product are reserved. When writing, write 0 (low output) to these bits. The B5 bit in PORT3.PODR is reserved, because the P35 pin is input only. Data is not output from the corresponding pins even if these bits are set.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is always read as 0. The write value should always be 0.

2.3.3 Port Input Register (PIDR)

Address(es): PORT1.PIDR 0008 C041h, PORT2.PIDR 0008 C042h, PORT3.PIDR 0008 C043h, PORT4.PIDR 0008 C044h, PORT5.PIDR 0008 C045h, PORT8.PIDR 0008 C048h, PORTA.PIDR 0008 C04Ah, PORTB.PIDR 0008 C04Bh, PORTC.PIDR 0008 C04Ch, PORTD.PIDR 0008 C04Dh, PORTE.PIDR 0008 C04Eh

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0	0: Low input	R
b1	B1	Pm1	1: High input	R
b2	B2	Pm2		R
b3	B3	Pm3		R
b4	B4	Pm4		R
b5	B5	Pm5		R
b6	B6	Pm6		R
b7	B7	Pm7		R

m = 1 to 5, 8, A to E

PIDR is a register which reflects individual pin states of the port.

The pin states of port m can be read with the PORTm.PIDR, regardless of the values of PORTm.PDR and PORTm.PMR. The NMI pin state is reflected in the P35 bit. However, the states of pins when the PmnPFS.ASEL bit is set to 1 cannot be read.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is read as undefined, and cannot be modified.

2.3.4 Port Mode Register (PMR)

Address(es): PORT1.PMR 0008 C061h, PORT2.PMR 0008 C062h, PORT3.PMR 0008 C063h, PORT4.PMR 0008 C064h, PORT5.PMR 0008 C065h, PORT8.PMR 0008 C068h, PORTA.PMR 0008 C06Ah, PORTB.PMR 0008 C06Bh, PORTC.PMR 0008 C06Ch, PORTD.PMR 0008 C06Dh, PORTE.PMR 0008 C06Eh

	b7	b6	b5	b4	b3	b2	b1	b0
	B7	B6	B5	B4	В3	B2	B1	В0
/alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0 Pin Mode Control	0: Uses the pin as a general I/O pin.	R/W
b1	B1	Pm1 Pin Mode Control	 1: Uses the pin as an I/O port for peripheral modules. 	R/W
b2	B2	Pm2 Pin Mode Control	_ periprisian measurer	R/W
b3	B3	Pm3 Pin Mode Control	_	R/W
b4	B4	Pm4 Pin Mode Control	_	R/W
b5	B5	Pm5 Pin Mode Control	_	R/W
b6	B6	Pm6 Pin Mode Control	_	R/W
b7	B7	Pm7 Pin Mode Control	_	R/W

m = 1 to 5, 8, A to E

PMR is a register which specifies the function of the pins of the port.

Each bit of PORTm.PMR corresponds to each pin of port m; pin function can be specified in 1-bit units.

Note that the bits corresponding to port m that do not exist on a product are reserved. When writing, write 0 (general I/O port) to these bits.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is always read as 0. The write value should always be 0.

2.3.5 Open-Drain Control Register 0 (ODR0)

Address(es): PORT1.ODR0 0008 C082h, PORT2.ODR0 0008 C084h, PORT3.ODR0 0008 C086h, PORT4.ODR0 0008 C088h, PORT5.ODR0 0008 C084h, PORT5.ODR0 0008 C090h, PORTA.ODR0 0008 C094h, PORTB.ODR0 0008 C096h, PORTC.ODR0 0008 C098h, PORTD.ODR0 0008 C09Ah, PORTE.ODR0 0008 C09Ch

	b7	b6	b5	b4	b3	b2	b1	b0
	_	B6		B4	В3	B2	_	B0
/alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0 Output Type Select	For pins other than the port PE1 pin	R/W
b1	_	Reserved	Odd Even bit bit	R/W
b2	B2	Pm1 Output Type Select	X 0: CMOS output X 1: NMOS open-drain output	R/W
b3	B3* ¹	PE1 Output Type Select	(b1, b3, b5, b7: Reserved)	R/W
b4	B4	Pm2 Output Type Select	Eor port PE1 pin	R/W
b5	_	Reserved		R/W
b6	B6	Pm3 Output Type Select	0 0. CMOS output 0 1: NMOS open-drain output	R/W
b7	_	Reserved	1 0: PMOS open-drain output 1 1: Setting prohibited	R/W

m = 1 to 5, 8, A to E

Note 1. The bit for a pin other than PE1 is reserved.

ODR0 is a register which is used to select an output type for the pins of the port.

In the registers other than PORTE.ODR0, the odd bits (b1, b3, b5, and b7) are reserved.

However, the output type of the port PE1 pin is specified by the combination of b3 and b2.

Bits corresponding to port m that do not exist on a product are reserved. When writing, write 0 (CMOS output) to these bits.

The bit corresponding to a pin that does not exist is also reserved. A reserved bit is always read as 0. The write value should always be 0.

2.3.6 Open-Drain Control Register 1 (ODR1)

Address(es): PORT1.ODR1 0008 C083h, PORT2.ODR1 0008 C085h, PORT3.ODR1 0008 C087h, PORT4.ODR1 0008 C089h, PORT5.ODR1 0008 C08Bh, PORT8.ODR1 0008 C091h, PORTA.ODR1 0008 C095h, PORTB.ODR1 0008 C097h, PORTC.ODR1 0008 C099h, PORTD.ODR1 0008 C09Bh, PORTE.ODR1 0008 C09Dh

_	b7	b6	b5	b4	b3	b2	b1	b0
	_	B6		B4	_	B2	_	B0
/alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm4 Output Type Select	0: CMOS output	R/W
b1	_	Reserved	1: NMOS open-drain output	R/W
b2	B2	Pm5 Output Type Select	_	R/W
b3	_	Reserved	_	R/W
b4	B4	Pm6 Output Type Select	_	R/W
b5	_	Reserved	_	R/W
b6	B6	Pm7 Output Type Select	_	R/W
b7	_	Reserved	_	R/W

m = 1 to 5, 8, A to E

ODR1 is used to select an output type for each pin of the port.

The odd bits (b1, b3, b5, and b7) in the ODR1 register are reserved.

Bits corresponding to port m that do not exist on a product are reserved. When writing, write 0 (CMOS output) to these bits.

The bit corresponding to a pin that does not exist is also reserved. A reserved bit is always read as 0. The write value should always be 0.

١

2.3.7 Pull-Up Resistor Control Register (PCR)

Address(es): PORT1.PCR 0008 C0C1h, PORT2.PCR 0008 C0C2h, PORT3.PCR 0008 C0C3h, PORT4.PCR 0008 C0C4h, PORT5.PCR 0008 C0C5h, PORT8.PCR 0008 C0C8h, PORTA.PCR 0008 C0CAh, PORTB.PCR 0008 C0CBh, PORTC.PCR 0008 C0CCh, PORTD.PCR 0008 C0CDh, PORTE.PCR 0008 C0CEh

	b7	b6	b5	b4	b3	b2	b1	b0
	B7	B6	B5	B4	В3	B2	B1	B0
/alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0 Input Pull-Up Resistor Control	0: Disables an input pull-up	R/W
b1	B1	Pm1 Input Pull-Up Resistor Control	 resistor. 1 Enables an input pull-up 	R/W
b2	B2	Pm2 Input Pull-Up Resistor Control	resistor.	R/W
b3	B3	Pm3 Input Pull-Up Resistor Control	_	R/W
b4	B4	Pm4 Input Pull-Up Resistor Control	_	R/W
b5	B5	Pm5 Input Pull-Up Resistor Control	_	R/W
b6	B6	Pm6 Input Pull-Up Resistor Control	-	R/W
b7	B7	Pm7 Input Pull-Up Resistor Control	-	R/W

m = 1 to 5, 8, A to E

PCR is a register which enables or disables an input pull-up resistor for individual pins of the port.

While a pin is in the input state with the corresponding bit in PORTm.PCR set to 1, the pull-up resistor connected to the pin is enabled.

When a pin is set as a general port output pin or a peripheral module output pin, the pull-up resistor for the pin is disabled regardless of the settings of PCR.

The pull-up resistor is also disabled in the reset state.

The other bits are also reserved because they correspond to pins that do not exist is reserved. A reserved bit is always read as 0. The write value should always be 0.

2.3.8 Drive Capacity Control Register (DSCR)

Address(es): PORT1.DSCR 0008 C0E1h, PORT2.DSCR 0008 C0E2h, PORT5.DSCR 0008 C0E5h, PORT8.DSCR 0008 C0E8h, PORTA.DSCR 0008 C0EAh, PORTB.DSCR 0008 C0EBh, PORTC.DSCR 0008 C0ECh, PORTD.DSCR 0008 C0EDh, PORTE.DSCR 0008 C0EEh

_	b7	b6	b5	b4	b3	b2	b1	b0
	B7	B6	B5	B4	В3	B2	B1	B0
/alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0 Drive Capacity Control	0: Normal drive output	R/W
b1	B1	Pm1 Drive Capacity Control	 1: High-drive output 	R/W
b2	B2	Pm2 Drive Capacity Control	_	R/W
b3	B3	Pm3 Drive Capacity Control	_	R/W
b4	B4	Pm4 Drive Capacity Control	_	R/W
b5	B5	Pm5 Drive Capacity Control	_	R/W
b6	B6	Pm6 Drive Capacity Control	_	R/W
b7	B7	Pm7 Drive Capacity Control	_	R/W

m = 1, 2, 5, 8, A to E

DSCR is a register which is used to switch the drive capacity of the port.

When pins are set for high-speed interface high-drive in the DSCR2 register, the drive capacity cannot be changed. For setting of the drive capacity by the DSCR and DSCR2 registers, refer to Table 2.3, Drive Capacity Setting by DSCR and DSCR2 Registers.

The bit corresponding to a pin whose drive capacity cannot be switched, or to high drive output is readable and writable, but the drive capacity cannot be changed.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is always read as 0. The write value should always be 0.

١

2.3.9 Drive Capacity Control Register 2 (DSCR2)

Address(es): PORT1.DSCR2 0008 C129h, PORT2.DSCR2 0008 C12Ah, PORT3.DSCR2 0008 C12Bh, PORT5.DSCR2 0008 C12Dh, PORT8.DSCR2 0008 C130h, PORTA.DSCR2 0008 C132h, PORTB.DSCR2 0008 C133h, PORTC.DSCR2 0008 C134h, PORTD.DSCR2 0008 C135h, PORTE.DSCR2 0008 C136h

	b7	b6	b5	b4	b3	b2	b1	b0
	B7	B6	B5	B4	В3	B2	B1	В0
/alue after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	B0	Pm0 Drive Capacity Control 2	0: Normal drive/high-drive output*1	R/W
b1	B1	Pm1 Drive Capacity Control 2	 1: High-speed interface high-drive output 	R/W
b2	B2	Pm2 Drive Capacity Control 2		R/W
b3	B3	Pm3 Drive Capacity Control 2	—	R/W
b4	B4	Pm4 Drive Capacity Control 2	—	R/W
b5	B5	Pm5 Drive Capacity Control 2	—	R/W
b6	B6	Pm6 Drive Capacity Control 2	—	R/W
b7	B7	Pm7 Drive Capacity Control 2	—	R/W

m = 1 to 3, 5, 8, A to E

Note 1. Pins that support switching drive capacity by the DSCR register depend on the setting of the DSCR register.

DSCR2 is a register which is used to switch the drive capacity of the port.

Table 2.3 shows the setting of drive capacity by the DSCR and DSCR2 registers.

The bit corresponding to a pin whose drive capacity cannot be switched, or to high drive output for the high-speed interface is readable and writable, but the drive capacity cannot be changed.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is always read as 0. The write value should always be 0.

Set the register only based on an instruction in the application guide.

Table 2.3 Drive Capacity Setting by DSCR and DSCR2 Registers

PORTm.DSCR2.Bx	PORTm.DSCR.Bx	Drive Capacity*1
0	0	Normal drive output
0	1	High-drive output
1	Don't care	High-speed interface high-drive output

Note 1. When drive capacity is fixed, or drive capacity of a pin whose drive capacity cannot be switched cannot be changed.

2.4 Initialization of the Port Direction Register (PDR)

Initialize reserved bits in the PDR register according to Table 2.4.

• The blank columns in Table 2.4 indicate the bits corresponding to the pins listed in Table 2.1, Specifications of I/ O Ports.

The corresponding bits should be set to 1 (output) or 0 (input) depending on the user system. However, the PORT3.PDR.B5 bit of the input-only P35 pin is reserved. This bit should be set to 0 (input).

• The columns other than the blank columns in Table 2.4 indicate reserved bits. A reserved bit should be set to 0 (input) or 1 (output) according to Table 2.4. When setting a value to a reserved bit, access in byte units.

	PDR Register								
Port Symbol	b7	b6	b5	b4	b3	b2	b1	b0	
PORT0	1	1	1	1	1	1	1	1	
PORT1			1	1			1	1	
PORT2			1	1	1	1	1	1	
PORT3			0		1	1			
PORT4	1	1	1	1					
PORT5	1	1	1	1		1	1	1	
PORT6	1	1	1	1	1	1	1	1	
PORT7	1	1	1	1	1	1	1	1	
PORT8	1	1	1	1	1				
PORT9	1	1	1	1	1	1	1	1	
PORTA	1	1	1					1	
PORTB									
PORTC					1	1			
PORTD							1	1	
PORTE					1				
PORTF	1	1	1	1	1	1	1	1	
PORTG	1	1	1	1	1	1	1	1	
PORTJ	1	1	1	1	1	1	1	1	

Table 2.4PDR Register Settings

2.5 Handling of Unused Pins

Details on the handling of unused pins are given in Table 2.5.

Table 2.5 Handling of Unused Pins

Pin Name	Handling
EMLE	Connect this pin to VSS via a resistor (pulling down).
BSCANP	Connect this pin to VSS via a resistor (pulling down).
MD	Use this as a mode pin.
RES#	Connect this pin to VCC via a resistor (pulling up).
VCC_USB	Connect this pin to VCC
VSS_USB	Connect this pin to VSS
USB0_DP	Leave these pins open-circuit.
USB0_DM	
VBATT	Connect this pin to VCC
P35/NMI	Connect this pin to VCC via a resistor (pulling up).
P36/EXTAL	Set the MOSCCR.MOSTP bit to 1 (the main clock oscillator is stopped) when not using the main clock
	When this pin is not used as port P36, handle as port 1 to 5, 8, A to E.
P37/XTAL	Set the MOSCCR.MOSTP bit to 1 (the main clock oscillator is stopped) when not using the main clock When this pin is not used as port P37, handle as port 1 to 5, 8, A to E When an external clock is input to the EXTAL pin, leave this pin open-circuit.
XCIN	Connect this pin to VSS via a resistor (pulling down).
XCOUT	Leave this pin open-circuit.
Port 1 to 5, 8, A to E	 If the direction setting is for input (PORTn.PDR = 0), the corresponding pin is connected to VCC (pulled up) via a resistor or to VSS (pulled down) via a resistor.*¹ If the direction setting is for output (PORTn.PDR = 1), leave these pins open-circuit.*¹, *²
VREFH0	Connect this pin to AVCC0.
VREFL0	Connect this pin to AVSS0.
AVCC0	Connect this pin to VCC when not using the 12-bit A/D converter (unit 0).
AVSS0	Connect this pin to VSS when not using the 12-bit A/D converter (unit 0).
AVCC1	Connect this pin to VCC when not using the 12-bit A/D converter (unit 1).
AVSS1	Connect this pin to VSS when not using the 12-bit A/D converter (unit 1).
GPIO0 to GPIO12	As inputs: Leave these pins open-circuit, or individually connect each pin to VCC_DDC via a resistor.
	As outputs: Leave these pins open-circuit.
CKOUT	Leave this pin open-circuit.

Note 1. Clear the PORTn.PMR bit, the PmnPFS.ISEL bit and the PmnPFS.ASEL bit to 0.

Note 2. In the case of release when the setting is for output, the port is an input over the period from release from the reset state to the pin becoming an output. Since the voltage on the pin is undefined while it is an input, this may lead to an increase in the current drawn.

3. Multi-Function Pin Controller (MPC)

3.1 Overview

The multi-function pin controller (MPC) selects and assigns input/output of peripheral functions and interrupt input signals from multiple ports.

Selecting a single function for multiple pins is prohibited.

Module/Function Channel		Pin Functions	Allocation Port
Interrupt		NMI (input)	P35
Interrupt	IRQ0	IRQ0-DS (input)	P30
	IRQ1	IRQ1-DS (input)	P31
	IRQ2	IRQ2 (input)	P12
			PD2
	IRQ3	IRQ3 (input)	P13
			PD3
	IRQ4	IRQ4-DS (input)	PB1
		IRQ4 (input)	P34
			PD4
	IRQ5	IRQ5-DS (input)	PA4
		IRQ5 (input)	PD5
			PE5
	IRQ6	IRQ6-DS (input)	PA3
		IRQ6 (input)	P16
			PD6
			PE6
	IRQ7	IRQ7-DS (input)	PE2
		IRQ7 (input)	P17
			PD7
			PE7
	IRQ8	IRQ8-DS (input)	P40
	IRQ9	IRQ9-DS (input)	P41
	IRQ10	IRQ10-DS (input)	P42
	IRQ11	IRQ11-DS (input)	P43
		IRQ11 (input)	PA1
	IRQ12	IRQ12 (input)	PB0
			PC1
	IRQ13	IRQ13 (input)	PC6
	IRQ14	IRQ14 (input)	PC0
			PC7

Table 3.1Functions Assigned to Each Multiplexed Pin (1/8)

Module/Function	Channel	Pin Functions	Allocation Port
Multi-function timer unit 3	MTU0	MTIOC0A (input/output)	P34
			PB3
		MTIOC0B (input/output)	P13
			PA1
		MTIOC0C (input/output)	PB1
		MTIOC0D (input/output)	PA3
	MTU1	MTIOC1A (input/output)	PE4
		MTIOC1B (input/output)	PB5
	MTU2	MTIOC2A (input/output)	P26
			PB5
		MTIOC2B (input/output)	P27
			PE5
Multi-function timer unit 3	MTU3	MTIOC3A (input/output)	P17
			PC1
			PC7
		MTIOC3B (input/output)	P17
			P80
			PB7
			PC5
			PE1
		MTIOC3C (input/output)	P16
			PC0
			PC6
		MTIOC3D (input/output)	P16
			P81
			PB6
			PC4
			PE0
	MTU4	MTIOC4A (input/output)	P82
			PB3
			PE2
		MTIOC4B (input/output)	P17
			P30
		MTIOC4C (input/output)	PB1
			PE1
			PE5
		MTIOC4D (input/output)	P31
			PD2
			PE4
	MTU5	MTIC5U (input)	P12
			PA4
			PD7
		MTIC5V (input)	PD6
		MTIC5W (input)	PB0
			PD5

Table 3.1Functions Assigned to Each Multiplexed Pin (2/8)

Module/Function	Channel	Pin Functions	Allocation Port
Multi-function timer unit 3	MTU6	MTIOC6A (input/output)	PE7
		MTIOC6C (input/output)	PE6
	MTU7	MTIOC7A (input/output)	PA2
		MTIOC7B (input/output)	PA1
	MTU8	MTIOC8A (input/output)	PD6
		MTIOC8B (input/output)	PD4
		MTIOC8C (input/output)	PD5
		MTIOC8D (input/output)	PD3
	MTU	MTCLKA (input)	PA4
			PC6
		MTCLKB (input)	PC7
		MTCLKC (input)	PA1
			PC4
		MTCLKD (input)	PA3
			PC5
Port output enable 3	POE0	POE0# (input)	PC4
			PD7
	POE4	POE4# (input)	PB5
			PD6
	POE8	POE8# (input)	P17
			P30
			PD3
	POE10	POE10# (input)	P34
			PD5
	POE11	POE11# (input)	PB3
			PD4
16-bit timer pulse unit	TPU0	TIOCB0 (input/output)	P17
			PA1
		TIOCD0 (input/output)	PA3
	TPU1	TIOCA1 (input/output)	PA4
		TIOCB1 (input/output)	P16
	TPU3	TIOCA3 (input/output)	PB0
		TIOCB3 (input/output)	PB1
		TIOCC3 (input/output)	PB2
		TIOCD3 (input/output)	PB3
	TPU4	TIOCA4 (input/output)	PB4
		TIOCB4 (input/output)	PB5
	TPU5	TIOCA5 (input/output)	P13
			PB6
		TIOCB5 (input/output)	PB7

Table 3.1 Functions Assigned to Each Multiplexed Pin (3/8)

Module/Function	Channel	Pin Functions	Allocation Port
16-bit timer pulse unit	TPU (unit 0)	TCLKB (input)	PA3
		TCLKC (input)	P16
			PB2
			PC0
		TCLKD (input)	P17
			PB3
			PC1
8-bit timer	TMR0	TMO0 (output)	PB3
		TMCI0 (input)	PB1
		TMRI0 (input)	PA4
	TMR1	TMO1 (output)	P17
			P26
		TMCI1 (input)	P12
			PC4
		TMRI1 (input)	PB5
	TMR2	TMO2 (output)	P16
			PC7
		TMCI2 (input)	P31
			PC6
		TMRI2 (input)	PC5
	TMR3	TMO3 (output)	P13
		TMCI3 (input)	P27
			P34
		TMRI3 (input)	P30
Compare match timer W	CMTW0	TOC0 (output)	PC7
		TIC0 (input)	PC6
	CMTW1	TOC1 (output)	PE7
		TIC1 (input)	PE6
	CMTW2	TOC2 (output)	PD3
		TIC2 (input)	PD2
	CMTW3	TIC3 (input)	PE2
Ethernet controller	RMII0	REF50CK0 (input)	PB2
			PE5
		RMII0_TXD_EN (output)	P80
			PB4
		RMII0_TXD0 (output)	P81
			PB5
		RMII0_TXD1 (output)	P82
			PB6
		RMII0_CRS_DV (input)	PB7
		RMII0_RXD0 (input)	PB1
		RMII0_RXD1 (input)	PB0
		RMII0_RX_ER (input)	PB3
	1	4	

Table 3.1Functions Assigned to Each Multiplexed Pin (4/8)

Module/Function	Channel	Pin Functions	Allocation Port
Ethernet controller	MIIO	ET0_MDC (output)	PA4
		ET0_MDIO (input/output)	PA3
		ET0_LINKSTA (input)	P34
		ET0_WOL (output)	PA1
Serial communications interface	SCI1	RXD1 (input)/SMISO1 (input/output)/ SSCL1 (input/output)	P30
		TXD1 (output)/SMOSI1 (input/output)/	P16
		SSDA1 (input/output)	P26
		SCK1 (input/output)	P17
			P27
		CTS1# (input)/RTS1# (output)/ SS1# (input)	P31
	SCI2*2	RXD2 (input)/SSCL2 (input/output)	P12
		TXD2 (output)/SSDA2 (input/output)	P13
	SCI3*2	RXD3 (input)/SSCL3 (input/output)	P16
		TXD3 (output)/SSDA3 (input/output)	P17
		CTS3# (input)/RTS3# (output)	P26
	SCI4	RXD4 (input)/SMISO4 (input/output)/ SSCL4 (input/output)	PB0
		TXD4 (output)/SMOSI4 (input/output)/ SSDA4 (input/output)	PB1
		SCK4 (input/output)	PB3
		CTS4# (input)/RTS4# (output)/ SS4# (input)	PB2
	SCI5	RXD5 (input)/SMISO5 (input/output)/ SSCL5 (input/output)	PA2
			PA3
		TXD5 (output)/SMOSI5 (input/output)/ SSDA5 (input/output)	PA4
		SCK5 (input/output)	PA1
			PC1
			PC4
		CTS5# (input)/RTS5# (output)/ SS5# (input)	PC0
	SCI6	RXD6 (input)/SMISO6 (input/output)/ SSCL6 (input/output)	PB0
		TXD6 (output)/SMOSI6 (input/output)/ SSDA6 (input/output)	PB1
		SCK6 (input/output)	P34
			PB3
		CTS6# (input)/RTS6# (output)/ SS6# (input)	PB2
	SCI8	RXD8 (input)/SMISO8 (input/output)/ SSCL8 (input/output)	PC6
		TXD8 (output)/SMOSI8 (input/output)/ SSDA8 (input/output)	PC7
		SCK8 (input/output)	PC5
		CTS8# (input)/RTS8# (output)/ SS8# (input)	PC4

 Table 3.1
 Functions Assigned to Each Multiplexed Pin (5/8)

Module/Function	Channel	Pin Functions	Allocation Port
Serial communications interface	SCI9	RXD9 (input)/SMISO9 (input/output)/ SSCL9 (input/output)	PB6
		TXD9 (output)/SMOSI9 (input/output)/ SSDA9 (input/output)	PB7
		SCK9 (input/output)	PB5
		CTS9# (input)/RTS9# (output)/ SS9# (input)	PB4
	SCI10	RXD10 (input)/SMISO10 (input/output)/	P81
		SSCL10 (input/output)	PC6
		TXD10 (output)/SMOSI10 (input/output)/	P82
		SSDA10 (input/output)	PC7
		SCK10 (input/output)	P80
			PC5
		RTS10# (output)	P80
		CTS10# (input)/RTS10# (output)/ SS10# (input)	PC4
	SCI11	RXD11 (input)/SMISO11 (input/output)/ SSCL11 (input/output)	PB6
		TXD11 (output)/SMOSI11 (input/output)/ SSDA11 (input/output)	PB7
		SCK11 (input/output)	PB5
		CTS11# (input)/RTS11# (output)/ SS11#(input)	PB4
	SCI12*2	RXD12 (input)/SSCL12 (input/output)/ RXDX12 (input)	PE2
		TXD12 (output)/SSDA12 (input/output)/ TXDX12 (output)/SIOX12 (input/output)	PE1
		SCK12 (input/output)	PE0
I ² C bus interface	RIIC0	SCL0[FM+] (input/output)	P12
		SDA0[FM+] (input/output)	P13
	RIIC2	SCL2-DS (input/output)	P16
		SDA2-DS (input/output)	P17
USB 2.0FS function module	USB0	USB0_VBUS (input)	P16
Serial peripheral interface	RSPI0	RSPCKA (input/output)	PC5
		MOSIA (input/output)	PC6
		MISOA (input/output)	PC7
		SSLA0 (input/output)	PC4
		SSLA1 (output)	PC0
		SSLA2 (output)	PC1
	RSPI1	RSPCKB (input/output)	PE5
		MOSIB (input/output)	PE6
		MISOB (input/output)	PE7
		SSLB0 (input/output)	PE4
		SSLB1 (output)	PE0
		SSLB2 (output)	PE1
		SSLB3 (output)	PE2

Table 3.1Functions Assigned to Each Multiplexed Pin (6/8)

Module/Function	Channel	Pin Functions	Allocation Port
Realtime clock		RTCOUT (output)	P16
		RTCIC0 (input)*1	P30
		RTCIC1 (input)*1	P31
12-bit A/D converter		AN000 (input)*1	P40
		AN001 (input)*1	P41
		AN002 (input)*1	P42
		AN003 (input)*1	P43
		ADTRG0# (input)	P16
		AN100 (input)*1	PE2
		AN102 (input)*1	PE4
		AN103 (input)*1	PE5
		AN104 (input)*1	PE6
		AN105 (input)*1	PE7
		AN106 (input)*1	PD6
		AN107 (input)*1	PD7
		AN110 (input)*1	PD2
		AN111 (input)*1	PD3
		AN112 (input)*1	PD4
		AN113 (input)*1	PD5
		ANEX0 (output)*1	PE0
		ANEX1 (input)*1	PE1
		ADTRG1# (input)	P13
			P17
SD host interface		SDHI_CLK (output)	PD5
		SDHI_CMD (input/output)	PD4
		SDHI_CD (input)	P81
			PE6
		SDHI_WP (input)	P80
			PE7
		SDHI_D0 (input/output)	PD6
		SDHI_D1 (input/output)	PD7
		SDHI_D2 (input/output)	PD2
		SDHI_D3 (input/output)	PD3
SD slave interface		SDSI_CLK (input)	PB5
		SDSI_CMD (input/output)	PB4
		SDSI_D0 (input/output)	PB6
		SDSI_D1 (input/output)	PB7
		SDSI_D2 (input/output)	PB2
		SDSI_D3 (input/output)	PB3
Clock frequency accuracy meas	urement circuit	CACREF (input)	PC7

 Table 3.1
 Functions Assigned to Each Multiplexed Pin (7/8)

Module/Function	Channel	Pin Functions	Allocation Port
Quad serial peripheral interface		QSPCLK (output)	PD5
		QSSL (output)	PD4
		QMO/QIO0 (input/output)	PD6
		QMI/QIO1 (input/output)	PD7
		QIO2 (input/output)	PD2
		QIO3 (input/output)	PD3

Table 3.1Functions Assigned to Each Multiplexed Pin (8/8)

Note 1. To use this pin function, set the corresponding pin as general input (set the PORTm.PDR.Bn and PORTm.PMR.Bn bits to 0). Note 2. Serial communications interface is not available in simple SPI mode.

3.2 Register Descriptions

The registers and bits of unsupported pins, depending on the package, are reserved. The write value to the reserved bits is the value after a reset.

3.2.1 Write-Protect Register (PWPR)

Address(es): 0008 C11Fh

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	PFSWE	PFS Register Write Enable	0: Writing to the PFS register is disabled 1: Writing to the PFS register is enabled	R/W
b7	B0WI	PFSWE Bit Write Disable	0: Writing to the PFSWE bit is enabled 1: Writing to the PFSWE bit is disabled	R/W

PFSWE Bit (PFS Register Write Enable)

Writing to PmnPFS register is enabled only when the PFSWE bit is set to 1. To set the PFSWE bit to 1, write 1 to the PFSWE bit after writing 0 to the B0WI bit.

BOWI Bit (PFSWE Bit Write Disable)

Writing to the PFSWE bit is enabled only when the B0WI bit is set to 0.

3.2.2 P1n Pin Function Control Register (P1nPFS) (n = 2, 3, 6, 7)

Address(es): P12PFS 0008 C14Ah, P13PFS 0008 C14Bh, P16PFS 0008 C14Eh, P17PFS 0008 C14Fh

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.2.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin P12: IRQ2 P13: IRQ3 P16: IRQ6 P17: IRQ7	R/W
b7	—	Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 3.2 Register Settings for Input/Output Pin Function

		Pin			
PSEL[5:0] Settings	P12	P13	P16	P17	
000000b (initial value)		Н	i-Z		
000001b	—	MTIOC0B	MTIOC3C	MTIOC3A	
000010b	—	—	MTIOC3D	MTIOC3B	
000011b	—	TIOCA5	TIOCB1	TIOCB0	
000100b	—	—	TCLKC	TCLKD	
000101b	TMCI1	TMO3	TMO2	TMO1	
000111b	—	—	RTCOUT	POE8#	
001000b	—	—	—	MTIOC4B	
001001b	—	ADTRG1#	ADTRG0#	ADTRG1#	
001010b	RXD2 SSCL2	TXD2 SSDA2	TXD1 SMOSI1 SSDA1	SCK1	
001011b	—	—	RXD3 SSCL3	TXD3 SSDA3	
001111b	SCL0[FM+]	SDA0[FM+]	SCL2-DS	SDA2-DS	
010001b	—	—	USB0_VBUS	—	

3.2.3 P2n Pin Function Control Register (P2nPFS) (n = 6, 7)

Address(es): P26PFS 0008 C156h, P27PFS 0008 C157h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.3.	R/W
b7 to b6	—	Reserved	These bits are read as 0. The write value should be 0.	R/W

Table 3.3 Register Settings for Input/Output Pin Function

	Р	in
PSEL[5:0] Settings	P26	P27
000000b (initial value)	Hi	-Z
000001b	MTIOC2A	MTIOC2B
000101b	TMO1	TMCI3
001010b	TXD1 SMOSI1 SSDA1	SCK1
001011b	CTS3# BTS3#	—

3.2.4 P3n Pin Function Control Register (P3nPFS) (n = 0, 1, 4)

Address(es): P30PFS 0008 C158h, P31PFS 0008 C159h, P34PFS 0008 C15Ch

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.4.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin P30: IRQ0-DS P31: IRQ1-DS P34: IRQ4	R/W
b7		Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 3.4 Register Settings for Input/Output Pin Function

	Pin		
PSEL[5:0] Settings	P30	P31	P34
000000b (initial value)		Hi-Z	
000001b	MTIOC4B	MTIOC4D	MTIOC0A
000101b	TMRI3	TMCI2	TMCI3
000111b	POE8#	—	POE10#
001010b	RXD1 SMISO1 SSCL1	_	SCK6
001011b	_	CTS1# RTS1# SS1#	_
010001b	—	—	ET0_LINKSTA

3.2.5 P4n Pin Function Control Register (P4nPFS) (n = 0 to 3)

Address(es): P40PFS 0008 C160h, P41PFS 0008 C161h, P42PFS 0008 C162h, P43PFS 0008 C163h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0		Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin P40: IRQ8-DS P41: IRQ9-DS P42: IRQ10-DS P43: IRQ11-DS	R/W
b7	ASEL	Analog Function Select	0: Used other than as analog pin. 1: Used as analog pin. P40: AN000 P41: AN001 P42: AN002 P43: AN003	R/W

3.2.6 P8n Pin Function Control Register (P8nPFS) (n = 0 to 2)

Address(es): P80PFS 0008 C180h, P81PFS 0008 C181h, P82PFS 0008 C182h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.5.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Table 3.5 Register Settings for Input/Output Pin Function

	Pin					
PSEL[5:0] Settings	P80	P81	P82			
000000b (initial value)		Hi-Z				
000001b	MTIOC3B	MTIOC3D	MTIOC4A			
001010b	SCK10	RXD10 SMISO10 SSCL10	TXD10 SMOSI10 SSDA10			
001011b	RTS10#	—	—			
010010b	RMII0_TXD_EN	RMII0_TXD0	RMII0_TXD1			
011010b	SDHI_WP	SDHI_CD	_			

3.2.7 PAn Pin Function Control Register (PAnPFS) (n = 1 to 4)

Address(es): PA1PFS 0008 C191h, PA2PFS 0008 C192h, PA3PFS 0008 C193h, PA4PFS 0008 C194h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.6.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PA1: IRQ11 PA3: IRQ6-DS PA4: IRQ5-DS	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 3.6 Register Settings for Input/Output Pin Function

	Pin						
PSEL[5:0] Settings	PA1	PA2	PA3	PA4			
000000b (initial value)		Hi-Z					
000001b	MTIOC0B	—	MTIOC0D	MTIC5U			
000010b	MTCLKC	—	MTCLKD	MTCLKA			
000011b	TIOCB0	—	TIOCD0	TIOCA1			
000100b	—	—	TCLKB	—			
000101b	—	—	—	TMRI0			
001000b	MTIOC7B	MTIOC7A	—	—			
001010Ь	SCK5	RXD5 SMISO5 SSCL5	RXD5 SMISO5 SSCL5	TXD5 SMOSI5 SSDA5			
010001b	ET0_WOL	—	ET0_MDIO	ET0_MDC			

3.2.8 PBn Pin Function Control Register (PBnPFS) (n = 0 to 7)

Address(es): PB0PFS 0008 C198h, PB1PFS 0008 C199h, PB2PFS 0008 C19Ah, PB3PFS 0008 C19Bh, PB4PFS 0008 C19Ch, PB5PFS 0008 C19Dh, PB6PFS 0008 C19Eh, PB7PFS 0008 C19Fh

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.7.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PB0: IRQ12 PB1: IRQ4-DS	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 3.7 Register Settings for Input/Output Pin Function

Pin								
PSEL[5:0] Settings	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
000000b (initial value)				Hi	-Z			
000001b	MTIC5W	MTIOC0C	-	MTIOC0A	—	MTIOC2A	MTIOC3D	MTIOC3B
000010b	—	MTIOC4C	-	MTIOC4A	_	MTIOC1B	—	—
000011b	TIOCA3	TIOCB3	TIOCC3	TIOCD3	TIOCA4	TIOCB4	TIOCA5	TIOCB5
000100b	—	_	TCLKC	TCLKD	_	_	—	—
000101b	—	TMCI0	-	TMO0	_	TMRI1	—	—
000111b	—	—	-	POE11#	_	POE4#	—	—
001010b	RXD4 SMISO4 SSCL4	TXD4 SMOSI4 SSDA4	CTS4# RTS4# SS4#	SCK4	—	SCK9	RXD9 SMISO9 SSCL9	TXD9 SMOSI9 SSDA9
001011b	RXD6 SMISO6 SSCL6	TXD6 SMOSI6 SSDA6	CTS6# RTS6# SS6#	SCK6	CTS9# RTS9# SS9#	—	_	—
010010b	RMII0_RXD1	RMII0_RXD0	REF50CK0	RMII0_RX_ER	RMII0_TXD_E N	RMII0_TXD0	RMII0_TXD1	RMII0_CRS_ DV
100011b	—	—	SDSI_D2	SDSI_D3	SDSI_CMD	SDSI_CLK	SDSI_D0	SDSI_D1
100100Ь	_	_	_	_	CTS11# RTS11# SS11#	SCK11	RXD11 SMISO11 SSCL11	TXD11 SMOSI11 SSDA11

3.2.9 PCn Pin Function Control Register (PCnPFS) (n = 0, 1, 4 to 7)

Address(es): PC0PFS 0008 C1A0h, PC1PFS 0008 C1A1h, PC4PFS 0008 C1A4h, PC5PFS 0008 C1A5h, PC6PFS 0008 C1A6h, PC7PFS 0008 C1A7h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.8.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PC0: IRQ14 PC1: IRQ12 PC6: IRQ13 PC7: IRQ14	R/W
b7	—	Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 3.8 Register Settings for Input/Output Pin Function

	Pin						
PSEL[5:0] Settings	PC0	PC1	PC4	PC5	PC6	PC7	
000000b (initial value)			Н	i-Z			
000001b	MTIOC3C	MTIOC3A	MTIOC3D	MTIOC3B	MTIOC3C	MTIOC3A	
000010b	—	—	MTCLKC	MTCLKD	MTCLKA	MTCLKB	
000011b	TCLKC	TCLKD	—	—	—	—	
000101b	—	—	TMCI1	TMRI2	TMCI2	TMO2	
000111b	—	—	POE0#	—	—	CACREF	
001010b	_	SCK5	SCK5	SCK8	RXD8 SMISO8 SSCL8	TXD8 SMOSI8 SSDA8	
001011b	CTS5# RTS5# SS5#	_	CTS8# RTS8# SS8#	_	_	_	
001101b	SSLA1	SSLA2	SSLA0	RSPCKA	MOSIA	MISOA	
011101b	—	-	—	—	TIC0	TOC0	
100100b	_	_	CTS10# RTS10# SS10#	SCK10	RXD10 SMISO10 SSCL10	TXD10 SMOSI10 SSDA10	

3.2.10 PDn Pin Function Control Register (PDnPFS) (n = 2 to 7)

Address(es): PD2PFS 0008 C1AAh, PD3PFS 0008 C1ABh, PD4PFS 0008 C1ACh, PD5PFS 0008 C1ADh, PD6PFS 0008 C1AEh, PD7PFS 0008 C1AFh

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.9.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PD2: IRQ2 PD3: IRQ3 PD4: IRQ4 PD5: IRQ5 PD6: IRQ6 PD7: IRQ7	R/W
b7	ASEL	Analog Function Select	0: Used other than as analog pin. 1: Used as analog pin. PD2: AN110 PD3: AN111 PD4: AN112 PD5: AN113 PD6: AN106 PD7: AN107	R/W

Table 3.9 Register Settings for Input/Output Pin Function

	Pin						
PSEL[5:0] Settings	PD2	PD3	PD4	PD5	PD6	PD7	
000000b (initial value)			H	i-Z			
000001b	MTIOC4D	—	—	MTIC5W	MTIC5V	MTIC5U	
000111b	—	POE8#	POE11#	POE10#	POE4#	POE0#	
001000b	—	MTIOC8D	MTIOC8B	MTIOC8C	MTIOC8A	—	
011010b	SDHI_D2	SDHI_D3	SDHI_CMD	SDHI_CLK	SDHI_D0	SDHI_D1	
011011b	QIO2	QIO3	QSSL	QSPCLK	QIO0 QMO	QIO1 QMI	
011101b	TIC2	TOC2	_	_	_	_	

3.2.11 PEn Pin Function Control Register (PEnPFS) (n = 0 to 2, 4 to 7)

Address(es): PE0PFS 0008 C1B0h, PE1PFS 0008 C1B1h, PE2PFS 0008 C1B2h, PE4PFS 0008 C1B4h, PE5PFS 0008 C1B5h, PE6PFS 0008 C1B6h, PE7PFS 0008 C1B7h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	PSEL[5:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see Table 3.10.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PE2: IRQ7-DS PE5: IRQ5 PE6: IRQ6 PE7: IRQ7	R/W
b7	ASEL	Analog Function Select	0: Used other than as analog pin. 1: Used as analog pin. PE0: ANEX0 PE1: ANEX1 PE2: AN100 PE4: AN102 PE5: AN103 PE6: AN104 PE7: AN105	R/W

Table 3.10 Register Settings for Input/Output Pin Function

Pin							
PSEL[5:0] Settings	PE0	PE1	PE2	PE4	PE5	PE6	PE7
000000b (initial value)				Hi-Z			
000001b	—	MTIOC4C	MTIOC4A	MTIOC4D	MTIOC4C	—	—
000010b	—	—	—	MTIOC1A	MTIOC2B	—	—
001000b	MTIOC3D	MTIOC3B	—	-	-	MTIOC6C	MTIOC6A
001100Ь	SCK12	TXD12 SSDA12 TXDX12 SIOX12	RXD12 SSCL12 RXDX12	_	_	_	_
001101b	SSLB1	SSLB2	SSLB3	SSLB0	RSPCKB	MOSIB	MISOB
010010b	—	—	—	-	REF50CK0	—	—
011010b	—	—	—	_	_	SDHI_CD	SDHI_WP
011101b	—	—	TIC3	_	_	TIC1	TOC1

3.2.12 Ethernet Control Register (PFENET)

Address(es): 0008 C10Eh

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	PHYMODE0	Ethernet Channel 0 Mode Set	0: RMII mode (ETHERC0)	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

PHYMODE0 Bit (Ethernet Channel 0 Mode Set)

This bit specifies the PHY mode of the ETHERCO.

Select the same mode as the one specified by the pin function select bits (PmnPFS.PSEL[5:0]).

When the signals for the RMII mode have been specified by the PmnPFS.PSEL[5:0] bits, set the PHYMODE bit to 0 (RMII mode).

3.3 Usage Notes

3.3.1 Procedure for Specifying Input/Output Pin Function

Use the following procedure to specify the input/output pin functions.

- (1) Clear the port mode register (PMR) for the target pin to 0 to select the general I/O port.
- (2) Specify the assignments of input/output signals for peripheral modules to the desired pins.
- (3) Enable writing to the Pmn pin function control register (PmnPFS) through the write-protect register (PWPR) setting. (m = 1 to 5, 8, and A to E, n = 0 to 7)
- (4) Specify the input/output function for the pin through the PSEL[5:0] bit settings in the PmnPFS register. Only set the PmnPFS registers that control the pin functions present in the product in use.
- (5) Clear the PFSWE bit in the PWPR register to 0 to disable writing to the PmnPFS register.
- (6) Set the PMR to 1 as necessary to switch to the selected input/output function for the pin.

3.3.2 Notes on MPC Register Setting

- (1) Settings of the Pmn pin function control register (PmnPFS) should be made only while the PMR register for the target pin is set to 0. If the PmnPFS register is set while the PMR register is 1, unexpected edges may be input through the input pin or unexpected pulses are output through the output pin.
- (2) Only the allowed values (functions) should be specified in the Pmn pin function control registers. If a value that is not allowed for the register is specified, correct operation is not guaranteed.
- (3) Do not assign a single function to multiple pins through the MPC settings.
- (4) Ports 4, D, and E also function as analog Input/output pins for the A/D converter. When using these ports as analog Input/output pins, set them to general input pins by clearing the corresponding bits in the port mode register (PMR) and port direction register (PDR) to 0 and set the PmnPFS.ASEL bit to 1, to avoid degradation of accuracy.
- (5) The initial value of the time capture event input pin enable bit (TCEN) of the time capture control register y (RTCCRy, y = 0 to 2) is undefined after a reset. Therefore, set this bit to 0 to avoid unnecessary input.
- (6) Points to note regarding the port mode register (PMR), port direction register (PDR), and the PmnPFS register settings for pins that have multiplexed pin functions are listed in Table 3.11. The pin states are readable if the value of the ASEL bit is 0. Ensure that the PMR.Bj bit is 0 when changes to the PSEL[5:0] bits are made.

			PmnPFS			
ltem	PMR.Bn	PDR.Bn	ASEL	ISEL	PSEL[5:0]	Point to Note
After a reset	0	0	0	0	000000b	Pins function as general input port pins after release from the reset state.
General input ports	0	0	0	0/1	x	Set the PmnPFS.ISEL bit to 1 if these are multiplexed with interrupt inputs.
General output ports	0	1	0	0	x	
Peripheral functions	1	x	0	0/1	Peripheral functions (see Table 3.2 to Table 3.10)	Set the PmnPFS.ISEL bit to 1 if these are multiplexed with interrupt inputs.
Interrupt inputs	0	0	0	1	х	
NMI	х	х	х	x*1	x	Register settings are not required.
Analog inputs and outputs	0	0	1	x*1	x	Set these as general input port pins so that the output buffers are turned off.
Time-capture event-input pins	0	0	x	0/1	x	Set these as general input port pins so that the output buffers are turned off.
JTAG interface	0	x	x	0	x	Set the PMR.Bn bit and the PmnPFS.ISEL bit to 0 and switch the input buffers off.
FINE interface	0	x	x	0	x	Set the PMR.Bn bit and the PmnPFS.ISEL bit to 0 and switch the input buffers off.
EXTAL/XTAL	0	0	х	x*1	x	Set these as general input port pins so that the output buffers are turned off.

Table 3.11Register Settings

x: Setting not required.

0/1: Setting the PmnPFS.ISEL bit to 0 makes the pin incapable of functioning as an IRQ pin.

Setting the PmnPFS.ISEL bit to 1 makes the pin capable of functioning as an IRQ pin (When a IRQ is assigned). Note 1. Even if the PmnPFS.ISEL bit is set to 1, the pin will not function as an IRQn input pin.

Note: • The pin state is readable when the PmnPFS.ASEL bit is 0.

- If the value of the PmnPFS.PSEL[5:0] bits is to be changed, do so while the PMR.Bn bit is 0.
- If an RIIC function is assigned to a port pin, clear the PMR.Bn (to 0); pulling up is automatically turned off for outputs from peripheral modules other than the RIIC.
- If an input pin for time-capture events is not in use, clear the time capture event input pin enable bit (TCEN) in time capture control register y (RTCCRy) (y = 0 to 2) to 0 (disabled). The value of the RTCCRy.TCEN bit after a reset is undefined.

3.3.3 Notes on the Use of Analog Functions

To use an analog function, set the corresponding bits in both the port mode register (PMR) and port direction register (PDR) to 0 so that the pin acts as a general input port. After that, set the pin function select bit in the Pmn pin function control register (PmnPFS.ASEL) to 1.

4. Boundary Scan

This MCU has boundary scan function.

The boundary scan is a serial I/O interface based on the JTAG (Joint Test Action Group, IEEE Std.1149.1 and IEEE Standard Test Access Port and Boundary-Scan Architecture).

4.1 Overview

 Table 4.1 lists the specifications of boundary scan.

Figure 4.1 shows a block diagram of the boundary scan function.

ltem	Description
Boundary scan enabled/disabled	Boundary scan is enabled when the RES# pin and the BSCANP pin are driven high and the EMLE pin is driven low.
Dedicated boundary scan pins	The following pins are dedicated for the JTAG, when boundary scan function is enabled (TDO/TCK/ TDI/TMS/TRST#). P26/P27/P30/P31/P34
Six test modes	BYPASS mode EXTEST mode SAMPLE/PRELOAD mode CLAMP mode HIGHZ mode IDCODE mode

Table 4.1 Specifications of Boundary Scan

Figure 4.1 Block Diagram of JTAG

RENESAS

Table 4.2 shows the I/O pins used in the boundary scan function.

J .	
I/O	Description
Input	Test clock input pin Clock signal for boundary scan. Input the clock the duty cycle of which is 50 percent when boundary scan function is used.
Input	Test mode select pin
Input	Test data input pin
Output	Test data output pin
Input	Test reset input pin
	Input Input Input Output Input

Table 4.2Pin Configuration

4.2 Register Descriptions

Table 4.3 lists the boundary scan registers.

Table 4.3 List of Boundary Scan Registers

Register Name	Symbol	Value after Reset
Instruction register	JTIR	55h
ID code register	JTIDR	0835 9447h
Bypass register	JTBPR	Undefined
Boundary scan register	JTBSR	Undefined

Instructions can be input to the JTIR register via the TDI pin by serial transfer.

The JTBPR register, which is a 1-bit register, is connected between the TDI and TDO pins in BYPASS mode.

The JTBSR register, which is configured according to Table 4.6, is connected between the TDI and TDO pins when test data are being shifted in.

None of the registers is accessible from the CPU.

Table 4.4 shows the availability of serial transfer for the registers.

Table 4.4 Serial Transfer for the Registers

Register Name	Serial Input	Serial Output
Instruction register (JTIR)	Available	Available
ID code register (JTIDR)	Available	Available
Bypass register (JTBPR)	Available	Available
Boundary scan register (JTBSR)	Available	Available

4.2.1 Instruction Register (JTIR)

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	TS[7:0]	Test Bit Set	The command configuration is as shown in Table 4.5.	_

Table 4.5Command Configuration

TS7	TS6	TS5	TS4	TS3	TS2	TS1	TS0	Instruction
0	0	0	0	0	0	0	0	EXTEST
0	1	0	0	0	0	0	0	SAMPLE/PRELOAD
0	1	0	1	0	1	0	1	IDCODE (initial value)
1	1	0	1	0	0	0	0	CLAMP
1	0	0	0	0	0	0	0	HIGHZ
1	1	1	1	1	1	1	1	BYPASS
	Other than above							Reserved

JTAG instructions can be transferred to the JTIR register by serial input from the TDI pin.

The JTIR register is initialized when the TRST# pin is driven low, or when the TAP controller is in the Test-Logic-Reset state.

4.2.2 ID Code Register (JTIDR)

Bit	Symbol	Bit Name	Description	R/W
b31 to b0	DID[31:0]	Reserved	JTIDR is a register with the fixed value that indicates the device IDCODE.	_

Note 1. For the ID code for each product, refer to Table 4.3, List of Boundary Scan Registers.

JTIDR data is output from the TDO pin when the IDCODE instruction has been executed.

4.2.3 Bypass Register (JTBPR)

The JTBPR register is a 1-bit register and is connected between the TDI and TDO pins when the JTIR register is set to BYPASS mode.

The JTBPR register cannot be read from or written to by the CPU.

4.2.4 Boundary Scan Register (JTBSR)

The JTBSR register is a shift register to control the external input and output pins of this MCU and is distributed across the pads.

The EXTEST, SAMPLE/PRELOAD, CLAMP, and HIGHZ instructions are issued to apply the JTBSR register in boundary-scan testing.

 Table 4.6 shows the correspondence between the JTBSR bits and the pins of this MCU.

 The value after reset is undefined.

Pin No. Pin Name Input/Output Bit Name							
From TD		inputOutput	Dit Hallie				
L13 MD Output 381							
		Output enable	380				
			370				
K13	P35	Input	375				
E15	P17		372				
FID			223				
			322				
045	D10		321				
GIS	P10	Output	317				
		Output enable	316				
	D (0	Input	315				
G14	P13	Output	305				
		Output enable	304				
	5.0	Input	303				
F14	P12	Output	302				
		Output enable	301				
		Input	300				
A15	P53	Output	266				
		Output enable	265				
		Input	264				
D13	PC7	Output	251				
		Output enable	250				
		Input	249				
C14	PC6	Output	248				
		Output enable	247				
		Input	246				
B14	PC5	Output	245				
		Output enable	244				
		Input	243				
A14	P82	Output	242				
		Output enable	241				
		Input	240				
C13	P81	Output	239				
		Output enable	238				
		Input	237				
B13	P80	Output	236				
		Output enable	235				
		Input	234				
A13	PC4	Output	233				
		Output enable	232				
		Input	231				
F13	PC1	Output	212				
		Output enable	211				
		Input	210				
	1						

Table 4.6Boundary Scan Register145-Pin TFBGA (1/3)

Pin No. Pin Name		Input/Output Bit Na			
E14	PC0	Output	209		
		Output enable	208		
		Input	207		
N4	PB7	Output	203		
		Output enable	202		
		Input	201		
P4	PB6	Output	200		
		Output enable	199		
		Input	198		
P5	PB5	Output	197		
		Output enable	196		
		Input	195		
N6	PB4	Output	194		
		Output enable	193		
		Input	192		
N5	PB3	Output	191		
		Output enable	190		
		Input	189		
P6	PB2	Output	188		
		Output enable	187		
		Input	186		
P9	PB1	Output	185		
		Output enable	184		
		Input	183		
P8	PB0	Output	176		
		Output enable	175		
		Input	174		
N7	PA4	Output	164		
		Output enable	163		
		Input	162		
P7	PA3	Output	161		
		Output enable	160		
		Input	159		
R8	PA2	Output	155		
		Output enable	154		
		Input	153		
N8	PA1	Output	149		
		Output enable	148		
		Input	147		
A12	PE7	Output	122		
		Output enable	121		
		Input	120		
B12	PE6	Output	119		
		Output enable	118		
		Input	117		

Boundary Scan Register 145-Pin TFBGA (2/3)

Table 4.6

Table 4.6Boundary Scan Register145-Pin TFBGA (3/3)

Pin No.	Pin Name	Input/Output	Bit Name
B11	PE5	Output	113
2	0	Output enable	112
			111
A10	PF4	Output	110
		Output enable	109
			108
R9	PF2	Output	104
110			103
			102
F13	PF1	Output	101
LIO			101
			99
D14	PEO	Output	99
014			90
			97
P10			90
K10	FUI		70
			79
NO	DD6		70
119	FD0		74
			70
D10	DDC	Input	12
P10	PD5		00
			67
NIAO		Input	00
NTU	PD4		65
			64
		Input	63
N11	PD3	Output	59
		Output enable	58
		Input	57
P11	PD2	Output	53
		Output enable	52
		Input	51
R11	P43	Output	14
		Output enable	13
		Input	12
N12	P42	Output	11
		Output enable	10
		Input	9
P12	P41	Output	8
		Output enable	7
		Input	6
N13	P40	Output	5
		Output enable	4
		Input	3

4.3 Operations

The boundary scan functionality is valid when the RES# pin is driven high, the EMLE pin is driven low, and the BSCANP pin is driven high.

4.3.1 TAP Controller

Figure 4.2 shows the state transition diagram of the TAP controller.

Figure 4.2 State Transition Diagram of TAP Controller

4.3.2 List of Commands

(1) BYPASS [Instruction Code: 1111 1111b]

The BYPASS instruction is an instruction that drives the bypass register (JTBPR). This instruction shortens the shift path, facilitating the transfer of serial data to other LSIs on a printed-circuit board at higher speeds. While this instruction is being executed, the test circuit has no effect on the system circuits.

The bypass register (JTBPR) is connected between the TDI and TDO pins. Bypass operation is initiated from shift-DR operation. The TDO is low in the first clock cycle in the shift-DR state; in the subsequent clock cycles, the TDI signal is output on the TDO pin.

(2) EXTEST [Instruction Code: 0000 0000b]

The EXTEST instruction is used to test external circuits when this LSI is installed on the printed circuit board. If this instruction is executed, output pins are used to output test data (specified by the SAMPLE/PRELOAD instruction) from the boundary scan register to the print circuit board, and input pins are used to input test result.

(3) SAMPLE/PRELOAD [Instruction Code: 0100 0000b]

The SAMPLE/PRELOAD instruction is used to input data from the LSI internal circuits to the boundary scan register, output data from scan path, and reload the data to the scan path. While this instruction is executed, input signals are directly input to the LSI and output signals are also directly output to the external circuits. The LSI system circuit is not affected by this instruction.

In SAMPLE operation, the boundary scan register latches the snap shot of data transferred from input pins to internal circuit or data transferred from internal circuit to output pins. The latched data is read from the scan path. The scan register latches the snap data at the rising edge of the TCK in Capture-DR state. The scan register latches snap shot without affecting the LSI normal operation.

In PRELOAD operation, initial value is written from the scan path to the parallel output latch of the boundary scan register prior to the EXTEST instruction execution. If the EXTEST is executed without executing this PRELOAD operation, undefined values are output from the beginning to the end (transfer to the output latch) of the EXTEST sequence. (In EXTEST instruction, output parallel latches are always output to the output pins.)

(4) IDCODE [Instruction Code: 0101 0101b]

When the IDCODE instruction is selected, IDCODE register value is output to the TDO in Shift-DR state of the TAP controller. In this case, IDCODE register value is output from the LSB. During this instruction execution, test circuit does not affect the system circuit. JTIR is initialized by the IDCODE instruction in Test-Logic-Reset state of the TAP controller.

(5) CLAMP [Instruction Code: 1101 0000b]

When the CLAMP instruction is selected, output pins output the boundary scan register value which was specified by the SAMPLE/PRELOAD instruction in advance. While the CLAMP instruction is selected, the status of boundary scan register is maintained regardless of the TAP controller state.

BYPASS is connected between TDI and TDO, the same operation as BYPASS instruction can be achieved.

(6) HIGHZ [Instruction Code: 1000 0000b]

When the HIGHZ instruction is selected, all output pins enter high-impedance state. While the HIGHZ instruction is selected, the status of boundary scan register is maintained regardless of the state of the TAP controller. BYPASS is connected between TDI and TDO pins, leading to the same operation as when the BYPASS instruction has been selected.

4.4 Usage Notes

(1) Pin serial transfer, data are input or output in LSB order (refer to Figure 4.3).

Figure 4.3 Serial Data Input/Output

- (2) Pins of the boundary scan (TCK, TDI, TMS, and TRST#) have to be pulled up by pull-up resistors. However, handle the TRST# pin in the way described in the manual for the given on-chip emulator if an on-chip emulator is in use. If the TRST# pin is pulled down but a boundary scan is to proceed, ensure that the TRST# pin is also controllable.
- (3) The power supply pins (VCC, VCL, VSS, AVCC0, AVCC1, AVSS0, AVSS1, VCC_USB, VSS_USB, VCC_DA, VCC RF, VCC A, VCC DDC, VSS DDC, and VCC D) are not covered by boundary scan.
- (4) The analog reference pins (VREFH0, VREFL0, and VBATT) are not covered by boundary scan.
- (5) The clock pins (EXTAL, XTAL, XCIN, and XCOUT) are not covered by boundary scan.
- (6) The reset pin (RES#) is not covered by boundary scan.
- (7) The USB dedicated pins (USB0_DP and USB0_DM) are not covered by boundary scan.
- (8) The on-chip emulator enable pin (EMLE) is not covered by boundary scan.
- (9) The boundary scan enable pin (BSCANP) is not covered by boundary scan.
- (10) The boundary scan pins (TCK, TMS, TRST#, TDI, and TDO) are not covered by boundary scan.
- (11) The RF transceiver pins, shown in Table 1.4, Pin Functions, are not covered by boundary scan.
- (12) The boundary-scan facility is not available when the chip is in the states below.
 - Reset state
- Software standby or deep software standby
- (13) For a pin that incorporates open-drain functionality and for which the open-drain function is enabled, if the boundary-scan function sets the corresponding bit in the output scan register and output enable register to 1, executing an EXTEST, CLAMP, or SAMPLE/PRELOAD instruction makes the pin output the high level rather than placing it in the high-impedance state.

- (14) Be sure to satisfy the standards for the boundary scan function when multiplex ports are used. Figure 4.4 (1) shows the pin configuration of the port pins on which the RIIC pin functions (P12, P13, P16, and P17) are multiplexed. When the boundary scan function is to be used while pins P12, P13, P16, and P17 are in use as the RIIC pins (SCL0[FM+], SCL2, SDA0[FM+], and SDA2), contention with the open-drain outputs or sneak current might be generated.
- (15) Figure 4.4 (2) shows the pin configuration of the pins P40 to P43, PD2 to PD7, PE0 to PE2, and PE4 to PE7. When the boundary scan function is used with pins P40 to P43, PD2 to PD7, PE0 to PE2, and PE4 to PE7 to be used as AD input pins (AN000 to AN003, ANEX0, ANEX1, AN100, AN102 to AN107, and AN110 to AN113), the conflict with the AD input or sneak current might be generated.

(16) The HIGHZ mode option of the MD pin is not available.

Figure 4.4 Pin Configuration

5. RF Transceiver

Table 5.1 shows the specifications of the RF transceiver. For more details, see the latest user's manual of the RF transceiver (R9A06G062GNP).

5.1 Features

 Table 5.1
 Specifications of RF Transceiver

ltem	Description					
Fully integrated radio transceiver	 This fully integrated radio transceiver covers 863 to 928 MHz, which includes the following bands: European band: 863 to 870, and 870 to 876 MHz North American band: 902 to 928 MHz Brazilian band: 902 to 907.5, and 915 to 928 MHz Japanese band: 920 to 928 MHz 					
Supported types of PHY layer	 SUN FSK Symbol rates: 10, 20, 50, 100, 150, 200 kbps Forward Error Correction (FEC) Modulation methods: 2FSK, GFSK SUN OFDM Option 1: 100, 200, 400, 800, 1200, 1600, 2400 kbps Option 2: 50, 100, 200, 400, 600, 800, 1200 kbps Option 3: 25, 50, 100, 200, 300, 400, 600 kbps Option 4: 12.5, 25, 50, 100, 150, 200, 300 kbps 					
MAC	 32-bit timer Transmission RAM, reception RAM: 2 Kbytes each Interrupt 16- or 32-bit auto CRC Address filtering with automatic acknowledgement reply Antenna diversity Auto CSMA-CA 					
Transceiver control interface	Serial peripheral interface (SPI)					
Radio transceiver features	 Programmable TX output power up to +15 dBm SUN FSK Programmable TX output power up to +11 dBm SUN OFDM Receiver sensitive down to -109 dBm in 50-kbps SUN FSK Receiver sensitive down to -119 dBm in option-4 MCS0 SUN OFDM Received signal strength indicator, energy detection Internal voltage regulators Operating voltage: 2.7 to 3.6 V Low power consumption (incl. for baseband processing) Standby: 0.5 μA RX active: 16.7 mA for SUN FSK (2GFSK) at 100 kbps RX active: 21.5 mA for SUN FSK (2GFSK) at 100 kbps RX active: 21.5 mA for SUN FSK at +15-dBm output power TX active: 68.0 mA for SUN OFDM at +10-dBm output power 					

5.2 Applications

- Smart meter (Electricity, gas, water) supporting products IEEE 802.15.4, Wi-SUN®
- HEMS controller
- Security and building automation
- Industrial monitoring and control
- Wireless sensor networks
- Energy-harvesting applications, and others

5.3 Block Diagram

Figure 5.1 shows a block diagram of the RF transceiver.

Figure 5.1 Block Diagram of RF Transceiver

(1) Receiver path

The reception architecture applies low intermediate frequency conversion. The received RF signal is amplified by the low-noise amplifier (LNA), and down-converted to the IF range by using orthogonally modulated data I and Q. The reception path has high linearity, wide dynamic range with programmable gain, and high-level on-chip channel filtering that guarantees robust operation in the sub-GHz frequency band. The auto gain control (AGC) algorithm is realized by using feedback control from the digital circuit that is optimized for high-speed response. The power detector connected to the outputs of the LNA and baseband amplifiers (BBAs) adjusts the LNA and BBA gains to optimize IM3, frequency channel selectability, and receiver sensitivity.

(2) Transmitter path

The FSK modulation transmitter modulates and synthesizes the RF synthesizer frequency. The RF synthesizer generates the local signal for input to the power amplifier (PA), and the output level is specifiable in 1-dB steps so that the antenna level is within the range from -15 dBm to +15 dBm.

The OFDM modulation transmitter is a zero-IF transmitter in which all circuits required for OFDM modulation transmission are integrated, including a modem and DAC in the digital circuit transmission analog circuit, and a power amplifier. The baseband data for transmission are digitally modulated in the modem block, and up-converted to the sub-GHz frequency band along the transmitter path. The transmitter path handles signal filtering, I/Q up-conversion, high-output power amplification, and RF filtering. The output power level of the result of OFDM modulation is specifiable within the range from –19 dBm to +11 dBm. The maximum output power depends on the modulation and coding scheme (MCS).

(3) Peripheral circuits

- A DC-to-DC converter (DDC) that realizes power conversion efficiency of 87% is incorporated.
- A crystal resonator must be connected between XIN and XOUT for supplying a clock signal to this device. We recommend using the crystal resonator that satisfies the specifications shown in the table below. An external clock can also be used to input a suitable signal level to XIN or XOUT.

ltem	Symbol	Min.	Тур.	Max.	Unit	Conditions
Frequency	F_xtal	—	48	_	MHz	
Equivalent series resistance (ESR)	ESR_xtal	—	—	80	Ω	
Load capacitance (CL)	CL_xtal	5	_	9	pF	

• Thirteen GPIO port pins (GPIO0 to GPIO12) are available for use by setting the respective registers.

5. RF Transceiver

5.4 Pin Functions

Table 5.2 lists the pin functions.

Table 5.2Pin Functions

No.	Pin Name	I/O	Analog/Digital	Description			
1	SIN	Input	D	Serial input			
2	SOUT	Output	D	Serial output			
3	SCLK	Input	D	Serial clock			
4	SEN	Input	D	Serial enable			
5	VREG_DIG	Output	A	Internally regulated analog 1.1-V supply output voltage for digital circuits			
6	GPIO0	I/O	D	General-purpose digital I/O 0			
7	GPIO1	I/O	D	General-purpose digital I/O 1			
8	GPIO2	I/O	D	General-purpose digital I/O 2			
9	GPIO3	I/O	D	General-purpose digital I/O 3			
10	GPIO4	I/O	D	General-purpose digital I/O 4			
11	GPIO5	I/O	D	General-purpose digital I/O 5			
12	GPIO6	I/O	D	General-purpose digital I/O 6			
13	GPIO7	I/O	D	General-purpose digital I/O 7			
14	GPIO8	I/O	D	General-purpose digital I/O 8			
15	VCC_DA	Input	А	3.3-V power supply voltage for the digital and analog circuits			
16	GPIO9	I/O	D	General-purpose digital I/O 9			
17	GPIO10	I/O	D	General-purpose digital I/O 10			
18	VREG_RF	Output	A	Internally regulated analog 1.1-V supply output voltage for RF section			
19	GPIO11	I/O	D	General-purpose digital I/O 11			
20	GPIO12	I/O	D	General-purpose digital I/O 12			
21	RFIN	Input	A	RX input			
22	VSS	Input	A	Ground pin for the digital circuit and RF transceiver. Connect it to the system power supply (0 V).			
23	RFOUT	Output	А	TX output			
24	VREG_TXPA	Output	A	Internally regulated analog 1.1-V supply output voltage for the power amplifier (PA)			
25	VCC_RF	Input	А	3.3-V RF power supply voltage			
26	VREG_PLL	Output	А	Internally regulated analog 1.1-V supply output voltage for PLL			
27	VREG_VCO	Output	А	Internally regulated analog 1.1-V supply output voltage for VCO			
28	REXT	Input	А	External reference resistor connection port			
29	VCC_A	Input	А	3.3-V power supply voltage for the analog circuits			
30	XIN	Input	А	Crystal oscillator input			
31	XOUT	I/O	А	Crystal oscillator output			
32	CKOUT	Output	A	Clock output (16 MHz)			
33	REGIN	Input	А	1.4- to 1.8-V DDC_OUT voltage input			
34	VSS_DDC	Input	А	DC-to-DC converter ground			
35	DDC_OUT	Output	A	1.4- to 1.8-V DC-to-DC converter output voltage			
36	VCC_DDC	Input	A	3.3-V DC-to-DC converter power supply voltage			
37	VCC_D	Input	A	3.3-V power supply voltage for the digital circuits			
38	RSTB	Input	D	Reset-bar input (active-low)			
39	MODE	Input	D	Mode switch (always low)			

5.5 Compliant Standard

This MCU is compliant with the following standard. IEEE Std 802.15.4TM -2020: IEEE Standard for Low-Rate Wireless Networks

Table 5.3 SUN FSK

Data Rate [kbps]	Modulation Method	Modulation Index	Descriptions
10	2-GFSK	1.0	
20	2-GFSK	1.0	
50	2-GFSK	0.5	
50	2-GFSK	1.0	
100	2-GFSK	0.5	
100	2-GFSK	1.0	
150	2-GFSK	0.5	
200	2-GFSK	0.5	
200	2-GFSK	1.0	

Table 5.4 SUN OFDM

Parameter	Option 1 Bandwidth: 1200 kHz	Option 2 Bandwidth: 800 kHz	Option 3 Bandwidth: 400 kHz	Option 4 Bandwidth: 200 kHz	Unit	Descriptions
MCS0	100	50	25	12.5	kbps	BPSK CR = 1/2 with 4xFreq. repetition
MCS1	200	100	50	25		BPSK CR = 1/2 with 2xFreq. repetition
MCS2	400	200	100	50		QPSK CR = 1/2 with 2xFreq. repetition
MCS3	800	400	200	100		QPSK CR = 1/2
MCS4	1200	600	300	150		QPSK CR = 3/4
MCS5	1600	800	400	200		16-QAM CR = 1/2
MCS6	2400	1200	600	300		16-QAM CR = 3/4

5.6 Usage Notes

5.6.1 SPI External Connection

Connect the RSPI1 pins (PE6, PE7, PE5, and PE4) to the SPI pins (SIN, SOUT, SCLK, and SEN). Figure 5.2 shows an example of the external connections of the SPI.

Figure 5.2 Example of the External Connections of the SPI

5.6.2 RSTB External Connection

Connect the RSTB pin to any I/O port pin. Figure 5.3 shows an example of the external connection of the RSTB pin.

5.6.3 External Connection of the INTOUT0 Interrupt Signal

Connect the pin that outputs the INTOUT0 signal to any I/O port pin. Figure 5.4 shows an example of connection of the INTOUT0 interrupt output signal.

Figure 5.4 Example of Connection of the INTOUT0 Interrupt Output Signal

5.6.4 Points to Note on Designing the Circuit Board with the RF Transceiver

See the latest user's manual of the RF transceiver (R9A06G062GNP) and Design Guidelines for Circuit Boards with the Sub-GHz Transceiver.

6. Electrical Characteristics

6.1 Absolute Maximum Ratings

Table 6.1 Absolute Maximum Rating

Conditions: VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V

	Item	Symbol	Value	Unit
Power supply volta	ge	VCC, VCC_USB, VCC_DA, VCC_RF, VCC_A, VCC_DDC, VCC_D	-0.3 to +3.8	V
V _{BATT} power suppl	y voltage	V _{BATT}	-0.3 to +3.8	V
Input voltage (exce	ept for ports for 5 V tolerant*1)	V _{in}	-0.3 to VCC + 0.3 (up to 3.8)	V
Input voltage (ports	s for 5 V tolerant*1)	V _{in}	-0.3 to VCC + 4.0 (up to 5.8)	V
Reference power s	supply voltage	VREFH0	-0.3 to AVCC0 + 0.3 (up to 3.8)	V
Analog power supp	oly voltage	AVCC0, AVCC1*2	–0.3 to +3.8	V
Analog input voltage		V _{AN}	-0.3 to AVCC + 0.3 (up to 3.8)	V
RF Transceiver	Analog input voltage	REGIN	-0.3 to +2.8	V
	Analog output voltage	DDC_OUT	–0.3 to +3.8	V
		VREG_DIG, VREG_RF, VREG_PLL, VREG_VCO	-0.3 to +1.25	V
		VREG_TXPA	–0.3 to +3.8	V
	Voltage on the analog pins	XIN, XOUT, REXT	-0.3 to +1.25	V
	RF input level	RFIN* ³	Up to 16	dBm
Junction temperatu	Ire	Tj	-40 to +105	°C
Storage temperature		T _{stg}	–55 to +125	°C

Caution: Permanent damage to the LSI may result if absolute maximum ratings are exceeded.

Note 1. P12, P13, P16, P17, P30, P31, PC0, and PC1 are 5 V tolerant.

Note 2. Connect the AVCC0, AVCC1, and VCC_USB pins to VCC, and the AVSS0, AVSS1, and VSS_USB pins to VSS. When the A/D converter unit 0 is not to be used, connect the VREFH0 pin to VCC and the VREFL0 pin to VSS, respectively. Do not leave these pins open. Insert capacitors of high frequency characteristics between the AVCC0 and AVSS0 pins, or AVCC1 and AVSS1 pins. Place capacitors of about 0.1 µF as close as possible to every power supply pin and use the shortest and heaviest possible traces.

Note 3. The listed values are AC ratings. Applying a DC voltage on the RFIN or RFOUT pin is prohibited.

Recommended Operating Conditions 6.2

			1	1	1	
	Item	Symbol	Min.	Тур.	Max.	Unit
Power supply volta	ge* ¹	VCC	2.7	3.3	3.6	V
		VSS	_	0	—	
RF Transceiver	Power supply voltage	VCC_DA	_	VCC	_	V
		VCC_RF	_	VCC	_	
		VCC_A	_	VCC	_	
		VCC_DDC	_	VCC	—	
		VCC_D	_	VCC	—	
		VSS_DDC	_	0	—	
V _{BATT} power suppl	y voltage	V _{BATT}	2.0	—	3.6	V
USB power supply	voltage	VCC_USB	_	VCC	—	V
		VSS_USB	—	0	_	
Analog power supp	bly voltage* ^{1, *2}	AVCC0	_	VCC	—	V
		AVSS0	_	0	_	
		AVCC1	_	VCC	—	
		AVSS1	_	0	_	
		VREFH0	2.7	—	AVCC0	
		VREFL0	—	0	—	
Input voltage (exce P40 to P43)* ³	pt for 5 V tolerant ports, except for	V _{in}	-0.3	_	VCC + 0.3	V
Input voltage (P40	to P43)	V _{in}	-0.3	—	AVCC0 + 0.3	V
Input voltage (5 V t P31, PC0, and PC	olerant: P12, P13, P16, P17, P30, 1)* ⁴	V _{in}	-0.3	—	VCC + 3.6 (up to 5.5)	V
RF Transceiver	Crystal resonator/oscillator oscillation frequency	F _{refclk}	-	48	_	MHz
	Operating frequency	F _{rf}	863	—	928	MHz
	RFIN pin (input impedance)	Z _{in}	_	50	—	Ω
	RFOUT pin (output impedance)	Z _{out}	_	50	—	Ω
Operating tempera	ture	T _{opr}	-40	-	85	°C

Table 6.2	Recommended	Operating	Conditions
-----------	-------------	-----------	------------

Note 1. Comply with the following potential condition:

VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D Note 2. For details, see section 53.6.11, Voltage Range of Analog Power Supply Pins in the RX65N Group, RX651 Group User's Manual: Hardware.

Note 3. P12, P13, P16, P17, P30, P31, PC0, and PC1 are 5 V tolerant.

Note 4. For P30 and P31, input as follows when the V_{BATT} power supply is selected.

 V_{in} Min. = -0.3, Max. = V_{BATT} + 0.3 (V_{BATT} = 2.0 to 3.6 V)

6.3 DC Characteristics

Table 6.3DC Characteristics (1)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = T_{opr}

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger	IRQ input pin*1	V _{IH}	0.8 × VCC	_	—	V	
input voltage	MIU input pin*1	V _{IL}	—		0.2 × VCC		
	TPU input pin*1 TMR input pin*1 CMTW input pin*1 SCI input pin*1 CAC input pin*1 ADTRG# input pin*1 QSPI input pin*1 RES#, NMI, TCK	ΔV _T	0.06 × VCC	_	_		
	RIIC input pin	V _{IH}	0.7 × VCC	_	—		
	(except for SMBus)	V _{IL}	—	_	0.3 × VCC		
		ΔV_T	0.05 × VCC	_	—		
	Ports for 5 V tolerant*2	V_{H}	0.8 × VCC		—		
		V _{IL}	—	_	0.2 × VCC		
	Other input pins excluding ports	V _{IH}	0.8 × VCC		—		
	for 5 V tolerant*3	V _{IL}	—		0.2 × VCC		
High level input	MD pin, EMLE	V _{IH}	0.9 × VCC		—	V	
voltage (except for schmitt trigger input pin)	EXTAL, RSPI input pin, SDHI input pin, SDSI input pin		0.8 × VCC		_		
	ETHERC input pin		2.3	_	—		
	RIIC (SMBus)		2.1	_	—		
Low level input	MD pin, EMLE	V _{IL}	—	_	0.1 × VCC	V	
voltage (except for schmitt trigger input pin)	EXTAL, RSPI input pin, ETHERC input pin, SDHI input pin, SDSI input pin		_	_	0.2 × VCC		
	RIIC (SMBus)		_	_	0.8		

Note 1. This does not include the pins, which are multiplexed as ports for 5 V tolerant.

Note 2. P12, P13, P16, P17, P30, P31, PC0, and PC1 are 5 V tolerant.

Note 3. For P30 and P31, input as follows when the $V_{\mbox{\scriptsize BATT}}$ power supply is selected.

 V_{IH} Min. = 0.8 × V_{BATT} , V_{IL} Max. = 0.2 × V_{BATT} (V_{BATT} = 2.0 to 3.6 V)

Table 6.4DC Characteristics (2)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = 25°C

Item	1	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
High level input voltage	RSTB, SIN, SCLK, SEN, GPIO0 to GPIO12	V _{IHRF}	2.4	—	VCC	V	
Low level input voltage	RSTB, MODE, SIN, SCLK, SEN, GPIO0 to GPIO12	V _{ILRF}	0	_	0.1 × VCC	V	
High level output voltage	SOUT, GPIO0 to GPIO12	V _{OHRF}	VCC - 0.1	—	VCC	V	I _{OHRF} = 0mA
Low level output voltage	SOUT, GPIO0 to GPIO12	V _{OLRF}	0	—	0.1	V	I _{OLRF} = 0mA
High level output current	SOUT, GPIO0 to GPIO12	I _{OHRF}	_	—	-4	mA	V _{OHRF} = VCC – 0.4V
Low level output current	SOUT, GPIO0 to GPIO12	I _{OLRF}	—	—	4	mA	V _{OLRF} = 0.4V
High level input leakage current 1	RSTB, SIN, SCLK, SEN, GPIO0 to GPIO12	I _{LIHRF1}	—	—	200	μA	V _{in} = VCC
Low level input leakage current 1	SIN, SCLK, SEN, GPIO0 to GPIO12	I _{LILRF1}	—	—	-200	μA	V _{in} = VSS
High level input leakage current 2 (with no pulling-up)	SIN, SCLK, SEN, GPIO0 to GPIO12	I _{LIHRF2}	_	_	10	μA	V _{in} = VCC
Low level input leakage current 2 (with no pulling-up)	SIN, SCLK, SEN, GPIO0 to GPIO12	I _{LILRF2}	_	—	-10	μA	V _{in} = VSS

Table 6.5 **DC Characteristics (3)**

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 $T_a = T_{opr}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
High level output voltage	All output pins	V _{OH}	VCC - 0.5	-	—	V	I _{OH} = -1 mA
Low level output voltage	All output pins (except for RIIC pins and ETHERC output pin)	V _{OL}	—	_	0.5	V	I _{OL} = 1.0 mA
	RIIC output pin		_	_	0.4		I _{OL} = 3.0 mA
			—		0.6		I _{OL} = 6.0 mA
	RIIC output pin (only P12 and P13 in channel 0)	V _{OL}	—	_	0.4	V	I _{OL} = 15.0 mA (ICFER.FMPE = 1)
			_	0.4			I _{OL} = 20.0 mA (ICFER.FMPE = 1)
	ETHERC output pin	V _{OL}	—		0.4	V	I _{OL} = 1.0 mA
Input leakage current	RES#, MD pin, EMLE*1, BSCANP*1, NMI	I _{in}	_		1.0	μA	V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	Other than ports for 5 V tolerant	I _{TSI}	_		1.0	μA	V _{in} = 0 V V _{in} = VCC
	Ports for 5 V tolerant		_		5.0		V _{in} = 0 V V _{in} = 5.5 V
Input pull-up resistor current	Other than P35	۱ _p	-300	—	-10	μA	VCC = 2.7 to 3.6 V V _{in} = 0 V
Input pull-down resistor current	EMLE, BSCANP	۱ _p	10		300	μA	V _{in} = VCC
Input capacitance	All input pins (except for P12, P13, P16, P17, EMLE, BSCANP, USB0_DP, and USB0_DM)	C _{in}			8	pF	Vbias = 0 V Vamp = 20 mV f = 1 MHz T _a = 25°C
	P12, P13, P16, P17, EMLE, BSCANP, USB0_DP, and USB0_DM		_	_	16		

Note 1. The input leakage current value at the EMLE and BSCANP pins are only when V_{in} = 0 V.

Table 6.6 **DC Characteristics (4)**

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = 2.7 to 3.6 V, $2.7 V \leq VREFH0 \leq AVCC0$,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 $T_a = T_{opr}$

			Item		Symbol	Тур.	Max.	Unit	Test Conditions
Supply	Full operation*2				I _{CC} *3	_	60	mA	ICLK = 120 MHz,
current*1		Normal	Peripheral	module clocks are supplied* ⁴		26	—		PCLKA = 120 MHz,
	۵	operation	Peripheral *4, *5	module clocks are stopped		13	—		PCLKB = 60 MHZ, PCLKC = 60 MHZ, PCLKD = 60 MHZ
	g mod	CoreMark	Peripheral *4, *5	module clocks are stopped		17	—		FCLK = 60 MHz
	eratinç	Sleep mode: Peripheral module clocks are supplied *4			20	38			
	do p	All module clock stop mode (reference value)			9	26			
	High-spee	Increased by BGO operation* ⁸		Reading from the code flash memory while the data flash memory is being programmed		6	_	_	
	-			Reading from the code flash memory while the code flash memory is being programmed		7	_		
	Increased by Trusted Se			ecure IP operation		—	12		
	Low stop	/-speed oper oped ^{*4}	ating mode		1.6	—		All clocks 1 MHz	
	Low stop	Low-speed operating mode 2: Peripheral module clocks are stopped*4				1.6	—		All clocks 32.768 kHz
	Software standby mode				1.6	13			
	ode	Power is supplied to the detecting unit (USB0 on		e standby RAM and USB resume ly)		15.5	70	μA	
	ou Powe Apple and U	Power is no to the stand and USB re	ower is not supplied the standby RAM nd USB resume	Low power consumption function of the power-on reset circuit is disabled* ⁶		11.5	42		
	oftware st	detecting unit (USB0 only)	Low power consumption function of the power-on reset circuit is enabled* ⁷		4.9	32			
	s d	Increase cu	urrent by	When a low C_L crystal is in use		1	—		
	Dee	operating F	RTC	When a standard C_L crystal is in use		2	—		
	Whe whil	en the RTC is le VCC is not	s operating t supplied	When a low C _L crystal is in use		0.9	_		V _{BATT} = 2.0 V, VCC = 0 V
	(On cloc	ly the RTC a	nd sub- perate with			1.6	—		V _{BATT} = 3.3 V, VCC = 0 V
	the battery backup function)		up function)	When a standard C _L crystal is in use		1.7	_		V _{BATT} = 2.0 V, VCC = 0 V
						3.3			V _{BATT} = 3.3 V, VCC = 0 V
	Inru	ish current or	n release	Inrush current*9	I _{RUSH}		130	mA	
	fror mo	n deep softwa de	are standby	Total inrush current ^{*9}	E _{RUSH}	—	1.0	μC	

Note 1. Supply current values are measured when all output pins are unloaded and all input pull-up resistors are disabled.

Note 2. Peripheral module clocks are supplied.

I_{CC} depends on the f (ICLK) as follows (when ICLK/PCLKA : PCLKB/PCLKC/PCLKD = 2 : 1 and EXTAL = 12 MHz). Note 3.

 I_{CC} max = 0.38 × f + 14 (full operation in high-speed operating mode)

 I_{CC} typ = 0.18 × f + 4 (normal operation in high-speed operating mode)

 I_{CC} typ = 0.1 × f + 1.5 (ICLK 1 MHz max) (low-speed operating mode 1) I_{CC} max = 0.2 × f + 14 (sleep mode)

Note 4. Whether the peripheral module clocks are supplied or stopped is controlled only by the bit settings in the module stop control registers A to D.

Note 5. When the peripheral module clock is stopped, the settings of the clock frequency are as follows:

ICLK = 120 MHz and PCLKA = PCLKB = PCLKC = PCLKD = FCLK = 3.75 MHz (divided by 64). Note 6. When the low power consumption function is disabled, the DEEPCUT[1:0] bits are set to 01b.

Note 7. When the low power consumption function is enabled, the DEEPCUT[1:0] bits are set to 11b.

Note 8. These are the increases during programming of the code flash memory after the code flash memory (limitations apply to the combinations of address ranges of the program area and the readable area) or the data flash memory has been programmed or erased.

Note 9. Reference value

Table 6.7DC Characteristics (5)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = T_{opr}

	Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Analog power	During 12-bit A/D	conversion (unit 0)	AI _{CC}	_	0.8	1	mA	IAVCC0_AD
supply current*1	During 12-bit A/E channel dedicate circuits (3 chann	0 conversion (unit 0) with ed sample-and-hold els)		_	1.7	2.5		IAVCC0_AD + SH
	During 12-bit A/D	conversion (unit 1)			0.6	1		IAVCC1_AD
	During 12-bit A/E temperature sen		_	0.7	1.1		IAVCC1_AD + TEMP	
	Waiting for A/D a conversion (all u		_	0.9	1.4		IAVCC0 + IAVCC1	
	A/D and temperature sensor are in standby mode (all units)			_	1.4	6.7	μA	IAVCC0 + IAVCC1
Reference power	During 12-bit A/D	AI _{REFH}	—	38	60	μΑ	IVREFH0	
supply current	Waiting for 12-bi		_	0.07	0.5		IVREFH0	
	12-bit A/D converter in module stop status (unit 0)			_	0.07	0.4		IVREFH0
USB operating current	Full speed	USB0	I _{CCUSBFS}	_	4.2	10	mA	VCC_USB
RAM retension voltage			V _{RAM}	2.7	—	—	V	
VCC rising gradient			SrVCC	8.4	—	20000	μs/V	
VCC falling gradier	nt*2		SfVCC	8.4	-	_	μs/V	

Note 1. The reference power supply current is included in the power supply current value for 12-bit A/D converter (unit 1). Note 2. This applies when V_{BATT} is used.

Table 6.8DC Characteristics (6)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0.

VSS = AVSS0 = AVSS1 = VREFL0 = VSS USB = VSS DDC = 0 V,

Data rate = 100 kbps, 2-FSK, modulation index = 1.0, frequency = 920.6 MHz, $T_a = 25^{\circ}C$

Item	Min.	Тур.	Max.	Unit	Test Conditions
SUN-FSK transmission supply current	_	62.0	-	mA	+15.0 dBm
	_	41.0	_		+10.0 dBm
	_	36.0	-		+8.0 dBm
	_	23.0	_		+0.0 dBm

Table 6.9DC Characteristics (7)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Data rate = 100 kbps (MCS2), band width = 400 kHz (option 3), frequency = 920.6 MHz, T_a = 25°C

Item	Min.	Тур.	Max.	Unit	Test Conditions
SUN-OFDM transmission supply current	_	68.0	_	mA	+10.0 dBm

Table 6.10DC Characteristics (8)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Data rate = 100 kbps, 2-FSK, modulation index = 1.0, frequency = 920.6 MHz, T_a = 25°C

Item	Min.	Тур.	Max.	Unit	Test Conditions
SUN-FSK reception supply current		16.7	-	mA	RF input at reception: –95 dBm
		16.8			No RF input while waiting for reception

Table 6.11DC Characteristics (9)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Data rate = 100 kbps (MCS2), band width = 400 kHz (option 3), frequency = 920.6 MHz, $T_a = 25^{\circ}C$

Item	Min.	Тур.	Max.	Unit	Test Conditions
SUN-OFDM reception supply current	_	21.5	_	mA	RF input at reception: –95 dBm
	_	21.7	_		No RF input while waiting for reception

Table 6.12DC Characteristics (10)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = 25°C

Item	Min.	Тур.	Max.	Unit	Test Conditions
SLEEP	_	0.5	_	μA	
IDLE		5.5	-	mA	

Table 6.13 Permissible Output Currents

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} =

2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 $T_a = T_{opr}$

	Item	Item		Min.	Тур.	Max.	Unit
Permissible output low current	All output pins*1	Normal drive	I _{OL}	_	_	2.0	mA
(average value per pin)	All output pins*2	High drive		_	—	3.8	
	All output pins*3	High-speed interface high-drive	1	_	_	7.5	
Permissible output low current	ble output low current All output pins*1 Normal drive I _{OL}		I _{OL}	_	—	4.0	mA
(max. value per pin)	All output pins*2	High drive		_	—	7.6	
	All output pins*3	High-speed interface high-drive		_	—	15	
Permissible output low current (total)	Total of all output pir	IS	ΣI _{OL}	_	_	80	mA
Permissible output high current	All output pins*1	Normal drive	I _{OH}	_	—	-2.0	mA
(average value per pin)	All output pins*2	High drive		_	—	-3.8	
	All output pins*3	High-speed interface high-drive	1	_	—	-7.5	
Permissible output high current	All output pins*1	Normal drive	I _{ОН}	_	_	-4.0	mA
(max. value per pin)	All output pins*2	High drive	1	_	—	-7.6	
	All output pins* ³	High-speed interface high-drive	Ī	_	—	-15	
Permissible output high current (total)	Total of all output pir	IS	ΣI _{OH}	—	—	-80	mA

Caution: To protect the LSI's reliability, the output current values should not exceed the values in this table.

Note 1. This is the value when normal driving ability is set with a pin for which normal driving ability is selectable.

Note 2. This is the value when high driving ability is set with a pin for which normal driving ability is selectable or the value of the pin to which high driving ability is fixed.

Note 3. This is the value when high-speed interface high-driving ability is set with a pin for which high-speed interface high-driving ability is selectable.

6.4 AC Characteristics

Table 6.14 Operating Frequency (High-Speed Operating Mode)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 $T_a = T_{opr}$

	Item	Symbol	Min.	Тур.	Max.	Unit
Operating	System clock (ICLK)	f	_	—	120	MHz
frequency	Peripheral module clock (PCLKA)		_	—	120	
	Peripheral module clock (PCLKB)		_	—	60	
	Peripheral module clock (PCLKC)		_	—	60	
	Peripheral module clock (PCLKD)		_	—	60	
	Flash-IF clock (FCLK)		*1	—	60	

Note 1. The FCLK must run at a frequency of at least 4 MHz when changing the flash memory contents.

Table 6.15 Operating Frequency (Low-Speed Operating Mode 1)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = T_{opr}

	Item	Symbol	Min.	Тур.	Max.	Unit
Operating	System clock (ICLK)	f	_	—	1	MHz
frequency Peripheral module clock Peripheral module clock	Peripheral module clock (PCLKA)			—	1	
	Peripheral module clock (PCLKB)		_	—	1	
	Peripheral module clock (PCLKC)*1		_	—	1	
	Peripheral module clock (PCLKD)*1		_	—	1	
	Flash-IF clock (FCLK)		—	—	1	

Note 1. When the 12-bit A/D converter is used, the frequency must be set to at least 1 MHz.

Table 6.16 Operating Frequency (Low-Speed Operating Mode 2)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 $T_a = T_{opr}$ Item Min. Symbol Typ. Max. Unit Operating System clock (ICLK) f 32 264 kHz frequency Peripheral module clock (PCLKA) 264 _ Peripheral module clock (PCLKB) 264 ____ ____ Peripheral module clock (PCLKC)*1 264 Peripheral module clock (PCLKD)*1 264 ____ ____ Flash-IF clock (FCLK) 32 264

Note 1. The 12-bit A/D converter cannot be used.

6.4.1 Reset Timing

Table 6.17 Reset Timing

Conditions: VCC = AVCC0 = $\overrightarrow{AVCC1}$ = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = T_{opr}

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RES# pulse	Power-on	t _{RESWP}	1	—	_	ms	Figure 6.1
width	Deep software standby mode	t _{RESWD}	0.6	—	_	ms	Figure 6.2
	Software standby mode, low-speed operating mode 2	t _{RESWS}	0.3	—	_	ms	
	Programming or erasure of the code flash memory, or programming, erasure or blank checking of the data flash memory	t _{RESWF}	200	—	_	μs	
	Other than above	t _{RESW}	200	—	_	μs	1
Waiting time a	fter release from the RES# pin reset	t _{RESWT}	54	—	55	t _{Lcyc}	Figure 6.1
Internal reset t (independent v software reset	ime watchdog timer reset, watchdog timer reset,)	t _{RESW2}	100		108	t _{Lcyc}	

Figure 6.1 Reset Input Timing at Power-On

6.4.2 Clock Timing

Table 6.18 EXTAL Clock Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, T_a = T_{opr}

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
EXTAL external clock input cycle time	t _{EXcyc}	41.66	—		ns	Figure 6.3
EXTAL external clock input frequency	f _{EXMAIN}	—	—	24	MHz	
EXTAL external clock input high pulse width	t _{EXH}	15.83	—		ns	
EXTAL external clock input low pulse width	t _{EXL}	15.83	—		ns	
EXTAL external clock rising time	t _{EXr}	—	—	5	ns	
EXTAL external clock falling time	t _{EXf}	_	_	5	ns	

Figure 6.3 EXTAL External Clock Input Timing

Table 6.19Main Clock Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, T_a = T_{opr}

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Main clock oscillation frequency	f _{MAIN}	8	—	24	MHz	
Main clock oscillator stabilization time (crystal)	t _{MAINOSC}	—	—	*1	ms	Figure 6.4
Main clock oscillation stabilization wait time (crystal)	t _{MAINOSCWT}	_	_	*2	ms	

Note 1. When using a main clock, ask the manufacturer of the oscillator to evaluate its oscillation. Refer to the results of evaluation provided by the manufacturer for the oscillation stabilization time.

Note 2. The number of cycles selected by the value of the MOSCWTCR.MSTS[7:0] bits determines the main clock oscillation stabilization wait time in accord with the formula below.

 $t_{MAINOSCWT} = [(MSTS[7:0] bits \times 32) + 10] / f_{LOCO}$

Figure 6.4 Main Clock Oscillation Start Timing

Table 6.20 LOCO and IWDT-Dedicated Low-Speed Clock Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, T_a = T_{opr}

ltem	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
LOCO clock cycle time	t _{Lcyc}	4.63	4.16	3.78	μs	
LOCO clock oscillation frequency	f _{LOCO}	216	240	264	kHz	
LOCO clock oscillation stabilization wait time	t _{LOCOWT}	—	—	44	μs	Figure 6.5
IWDT-dedicated low-speed clock cycle time	t _{ILcyc}	9.26	8.33	7.57	μs	
IWDT-dedicated low-speed clock oscillation frequency	f _{ILOCO}	108	120	132	kHz	
IWDT-dedicated low-speed clock oscillation stabilization wait time	t _{ILOCOWT}	_	142	190	μs	Figure 6.6

Figure 6.5 LOCO Clock Oscillation Start Timing

Figure 6.6 IWDT-dedicated Low-Speed Clock Oscillation Start Timing

Table 6.21HOCO Clock Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, T_a = T_{opr}

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
HOCO clock oscillation frequency	f _{HOCO}	15.61	16	16.39	MHz	–20°C ≤ T _a ≤ 85°C
		17.56	18	18.44		
		19.52	20	20.48		
		15.52	16	16.48		$-40^{\circ}C \le T_a < -20^{\circ}C$
		17.46	18	18.54		
		19.4	20	20.6		
HOCO clock oscillation stabilization wait time	t _{носоwт}	—	105	149	μs	Figure 6.7
HOCO clock power supply stabilization time	t _{HOCOP}	—	_	150	μs	Figure 6.8

Figure 6.7 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting the HOCOCR.HCSTP Bit)

Figure 6.8 High-Speed On-Chip Oscillator Power Supply Control Timing

Table 6.22PLL Clock Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, T_a = T_{opr}

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
PLL clock oscillation frequency	f _{PLL}	120	—	240	MHz	
PLL clock oscillation stabilization wait time	t _{PLLWT}	_	259	320	μs	Figure 6.9

Figure 6.9 PLL Clock Oscillation Start Timing

Table 6.23Sub-Clock Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 V_{BATT} = 2.0 to 3.6 V, $T_a = T_{opr}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Sub-clock oscillation frequency	f _{SUB}		32.768	_	kHz	
Sub-clock oscillation stabilization time	t _{SUBOSC}		—	*1	S	Figure 6.10
Sub-clock oscillation stabilization wait time	t _{SUBOSCWT}	_	_	*2	s	

Note 1. When using a sub-clock, ask the manufacturer of the oscillator to evaluate its oscillation. Refer to the results of evaluation provided by the manufacturer for the oscillation stabilization time.

Note 2. The number of cycles selected by the value of the SOSCWTCR.SSTS[7:0] bits determines the sub-clock oscillation stabilization wait time in accord with the formula below.

t_{SUBOSCWT} = [(SSTS[7:0] bits × 16384) + 10] / f_{LOCO}

Figure 6.10 Sub-Clock Oscillation Start Timing

6.4.3 Timing of Recovery from Low Power Consumption Modes

Table 6.24 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = T_{opr}

	ltem		Symbol	Min.	Тур.	Max.			Test	
	nem	Symbol	t _{SBYOSCWT} *2			t _{SBYSEQ} *3	Onit	Conditions		
Recovery time from software standby mode *1	Crystal resonator connected to main clock oscillator	Main clock oscillator operating	t _{SBYMC}	_		—	{(MSTS[7:0] bit × 32) + 76} / 0.216	100 + 7 / f _{ICLK} + 2n / f _{MAIN}	μs	Figure 6.11
		Main clock oscillator and PLL circuit operating	t _{SBYPC}			{(MSTS[7:0] bit × 32) + 138} / 0.216	100 + 7 / f _{ICLK} + 2n / f _{PLL}			
	External clock input to main clock oscillator	Main clock oscillator operating	t _{SBYEX}			352	100 + 7 / f _{ICLK} + 2n / f _{EXMAIN}			
		Main clock oscillator and PLL circuit operating	t _{SBYPE}			639	100 + 7 / f _{ICLK} + 2n / f _{PLL}			
	Sub-clock oscill	t _{SBYSC}			{(SSTS[7:0] bit × 16384) + 13} / 0.216 + 10 / f _{FCLK}	100 + 4 / f _{ICLK} + 2n / f _{SUE}				
	High-speed on-chip oscillator operating	High-speed on-chip oscillator operating	t _{sbyнo}			454	100 + 7 / f _{ICLK} + 2n / f _{HOCO}			
		High-speed on-chip oscillator operating and PLL circuit operating	t _{SBYPH}			741	100 + 7 / f _{ICLK} + 2n / f _{PLL}			
	Low-speed on-c operating* ⁴	hip oscillator	t _{SBYLO}			338	100 + 7 / f _{ICLK} + 2n / f _{LOCO}			

Note 1. The time for recovery from software standby mode is determined by the value obtained by adding the oscillation stabilization waiting time ($t_{SBYOSCWT}$) and the time required for operations by the software standby release sequencer (t_{SBYSEQ}).

Note 2. When several oscillators were running before the transition to software standby, the greatest value of the oscillation stabilization waiting time t_{SBYOSCWT} is selected.

Note 3. For n, the greatest value is selected from among the internal clock division settings.

Note 4. This condition applies when f_{ICLK} : $f_{FCLK} = 1:1, 2:1, \text{ or } 4:1.$

Figure 6.11 Software Standby Mode Recovery Timing

Table 6.25 Timing of Recovery from Low Power Consumption Modes (2)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = T_{opr}

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep software standby mode			—	0.9	ms	Figure 6.12
Wait time after recovery from deep software standby mode	t _{DSBYWT}	23	—	24	t _{Lcyc}	

Figure 6.12 Deep Software Standby Mode Recovery Timing

6.4.4 Control Signal Timing

Table 6.26Control Signal Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

PCLKB = 8 to 60 MHz, $T_a = T_{opr}$

Item	Symbol	Min.*1	Тур.	Max.	Unit	Test Conditions*1
NMI pulse width	t _{NMIW}	200	—	_	ns	$2 \times t_{PBcyc} \le 200 \text{ ns}, Figure 6.13$
		2 × t _{PBcyc}	—	_		2 × t _{PBcyc} > 200 ns, Figure 6.13
IRQ pulse width	t _{IRQW}	200	—	_	ns	2 × t _{PBcyc} ≤ 200 ns, Figure 6.14
		2 × t _{PBcyc}	_	_		2 × t _{PBcyc} > 200 ns, Figure 6.14

Note 1. t_{PBcyc}: PCLKB cycle

Figure 6.13 NMI Interrupt Input Timing

Figure 6.14 IRQ Interrupt Input Timing

Timing of On-Chip Peripheral Modules 6.4.5

6.4.5.1 I/O Port

Table 6.27 I/O Port Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq $\overline{AVCC0}$,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.	Max.	Unit*1	Test Conditions
I/O ports	Input data pulse width	t _{PRW}	1.5		t _{PBcyc}	Figure 6.15

Figure 6.15 I/O Port Input Timing

6.4.5.2 TPU

Table 6.28 TPU Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, T_a = T_{opr}, Output load conditions: V_{OH} = 0.5 × VCC, V_{OL} = 0.5 × VCC, C = 30 pF, High-drive output is selected by the driving ability control register.

ltem			Symbol	Min.	Max.	Unit* ¹	Test Conditions
TPU	Input capture input pulse width	Single-edge setting	t _{TICW}	1.5		t _{PBcyc}	Figure 6.16
		Both-edge setting		2.5			
	Timer clock pulse width	Single-edge setting	t _{тскwн,} t _{тскwL}	1.5	_	t _{PBcyc}	Figure 6.17
		Both-edge setting		2.5	_		
		Phase counting mode		2.5	_		

Figure 6.16 TPU Input Capture Input Timing

Figure 6.17 TPU Clock Input Timing

6.4.5.3 TMR

Table 6.29 TMR Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

Item		Symbol	Min.	Max.	Unit*1	Test Conditions	
TMR Timer clock pulse width Single-edge setting		t _{тмсwн,}	1.5		t _{PBcyc}	Figure 6.18	
		Both-edge setting	t _{TMCWL}	2.5			

Figure 6.18 TMR Clock Input Timing

6.4.5.4 CMTW

Table 6.30 **CMTW** Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

Item			Symbol	Min.	Max.	Unit* ¹	Test Conditions
CMTW	Input capture input pulse	Single-edge setting	t _{CMTWTICW}	1.5		t _{PBcyc}	Figure 6.19
	width	Both-edge setting		2.5			

6.4.5.5 MTU3

Table 6.31 MTU3 Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

ltem			Symbol	Min.	Max.	Unit*1	Test Conditions
MTU3	Input capture input pulse	Single-edge setting	t _{MTICW}	1.5	_	t _{PAcyc}	Figure 6.20
	width	Both-edge setting		2.5	_		
	Timer clock pulse width	Single-edge setting	t _{мтскwн,} t _{мтскwL}	1.5	_	t _{PAcyc}	Figure 6.21
		Both-edge setting		2.5	_		
		Phase counting mode		2.5	_		

Note 1. t_{PAcyc}: PCLKA cycle

Figure 6.20 MTU3 Input Capture Input Timing

6.4.5.6 POE3

Table 6.32 POE3 Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.	Max.	Unit* ¹	Test Conditions
POE	POE# input pulse width	t _{POEW}	1.5	_	t _{PBcyc}	Figure 6.22

6.4.5.7 A/D Converter Trigger

Table 6.33 A/D Converter Trigger Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$,

Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF,

High-drive output is selected by the driving ability control register.

_	Item	Symbol	Min.	Max.	Unit*1	Test Conditions
A/D converter	A/D converter trigger input pulse width	t _{TRGW}	1.5	_	t _{PBcyc}	Figure 6.23

Note 1. t_{PBcyc}: PCLKB cycle

Figure 6.23 A/D Converter Trigger Input Timing

6.4.5.8 CAC

Table 6.34 **CAC** Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, T_a = T_{opr}, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

	Item*1, *2		Symbol	Min.* ^{1, *2}	Max.	Unit	Test Conditions
CAC	CACREF input pulse width	t _{PBcyc} ≤ t _{cac}	t _{CACREF}	4.5 t _{cac} + 3 t _{PBcyc}	_	ns	
		t _{PBcyc} > t _{cac}		5 t _{cac} + 6.5 t _{PBcyc}	—		

Note 1. t_{PBcyc}: PCLKB cycle Note 2. t_{cac}: CAC count clock source cycle

6.4.5.9 SCI

Table 6.35 SCIg, SCIh, and SCIi Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

Item		Symbol	Min.	Max.	Unit ^{*1}	Test Conditions		
SClg, SClh	Input clock cycle	Asynchronous	t _{Scyc}	4	—	t _{PBcyc}	Figure 6.24	
		Clock synchronous		6	_			
	Input clock pulse width		t _{scкw}	0.4	0.6	t _{Scyc}		
	Input clock rise time		t _{SCKr}	_	5	ns		
	Input clock fall time		t _{SCKf}	_	5	ns		
	Output clock cycle	Asynchronous*2	t _{Scyc}	8	—	t _{PBcyc}		
		Clock synchronous		4	—			
	Output clock pulse width		t _{scкw}	0.4	0.6	t _{Scyc}		
	Output clock rise time		t _{SCKr}	_	5	ns		
	Output clock fall time		t _{SCKf}	_	5	ns		
	Transmit data delay time	Clock synchronous	t _{TXD}	_	28	ns	Figure 6.25	
	Receive data setup time	Clock synchronous	t _{RXS}	15	—	ns		
	Receive data hold time	Clock synchronous	t _{RXH}	5	_	ns		
SCli	Input clock cycle	Asynchronous	t _{Scyc}	4	-	t _{PAcyc}	Figure 6.24	
		Clock synchronous		12	_			
	Input clock pulse width		t _{SCKW}	0.4	0.6	t _{Scyc}		
	Input clock rise time		t _{SCKr}		5	ns		
	Input clock fall time		t _{SCKf}		5	ns		
	Output clock cycle	Asynchronous*2	t _{Scyc}	8	_	t _{PAcyc}		
		Clock synchronous		8	—			
	Output clock pulse width		t _{scкw}	0.4	0.6	t _{Scyc}		
- - - -	Output clock rise time		t _{SCKr}		5	ns		
	Output clock fall time		t _{SCKf}		5	ns		
	Transmit data delay time	Master	t _{TXD}		15	ns	Figure 6.25	
		Slave	[_	28			
	Receive data setup time	Clock synchronous	t _{RXS}	20	—	ns		
	Receive data hold time	Clock synchronous	t _{RXH}	5	_			

Note 1. t_{PBcyc}: PCLKB cycle; t_{PAcyc}: PCLKA cycle Note 2. When the SEMR.ABCS and SEMR.BGDM bits are set to 1

Figure 6.24 SCK Clock Input Timing

Figure 6.25 SCI Input/Output Timing: Clock Synchronous Mode

Table 6.36Simple IIC Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, T_a = T_{opr}, High drive output is calcated by the driving ability control register

High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.	Max.	Unit	Test Conditions
Simple IIC	SSCL, SSDA input rise time	t _{Sr}	—	1000	ns	Figure 6.26
(Standard-mode)	SSCL, SSDA input fall time	t _{Sf}	—	300	ns	
	SSCL, SSDA input spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data input setup time	t _{SDAS}	250	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SSCL, SSDA capacitive load	C _b *1	—	400	pF	
Simple IIC	SSCL, SSDA input rise time	t _{Sr}	—	300	ns	
(Fast-mode)	SSCL, SSDA input fall time	t _{Sf}	—	300	ns	
	SSCL, SSDA input spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data input setup time	t _{SDAS}	100	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SSCL, SSDA capacitive load	C _b *1	—	400	pF	

Note: t_{Pcyc} refers to the period of PCLKA in SCI10 and SCI11, and of PCLKB in SCI1 to SCI6, SCI8, SCI9, and SCI12. Note 1. C_b is the total capacitance of the bus lines.

Figure 6.26 Simple IIC Bus Interface Input/Output Timing

Table 6.37Simple SPI Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, T_a = T_{opr},

Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF,

High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.	Max.	Unit*1	Test Conditions
Simple	SCK clock cycle output (master)	t _{SPcyc}	4	65536	t _{Pcyc}	Figure 6.27
SPI	SCK clock cycle input (slave)		6	65536		
	SCK clock high pulse width	t _{spcкwн}	0.4	0.6	t _{SPcyc}	-
	SCK clock low pulse width	t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise/fall time	t _{SPCKr} , t _{SPCKf}	—	20	ns	
	Data input setup time	t _{SU}	33.3	—	ns	Figure 6.28 to
	Data input hold time	t _H	33.3	—	ns	Figure 6.31
	SS input setup time	t _{LEAD}	1	—	t _{SPcyc}	
	SS input hold time	t _{LAG}	1	—	t _{SPcyc}	
	Data output delay time	t _{OD}	—	33.3	ns	
	Data output hold time	t _{ОН}	-10	—	ns	
	Data rise/fall time	t _{Dr,} t _{Df}	—	16.6	ns	
	SS input rise/fall time	t _{SSLr} , t _{SSLf}	—	16.6	ns	
	Slave access time	t _{SA}	—	5	t _{Pcyc}	Figure 6.30,
	Slave output release time	t _{REL}	—	5	t _{Pcyc}	Figure 6.31

Note 1. t_{Pcyc} refers to the period of PCLKA in SCI10 and SCI11, and of PCLKB in SCI1, SCI4 to SCI6, SCI8, SCI9, and SCI12.

Figure 6.27 Simple SPI Clock Timing

Figure 6.30 Simple SPI Timing (Slave, CKPH = 1)

Figure 6.31 Simple SPI Timing (Slave, CKPH = 0)

6.4.5.10 RSPI

Table 6.38 RSPI Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

	ltem			Symbol	Min.*1	Max.*1	Unit*1	Test Conditions
SPI	RSPCK clock cycle	Master		t _{SPcyc}	2	4096	t _{PAcyc}	Figure 6.32
		Slave			4	_		
	RSPCK clock high pulse width	Master		t _{SPCKWH}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf}) / 2 – 3	_	ns	
		Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf}) / 2	—		
	RSPCK clock low pulse width	Master		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKr} – t _{SPCKf}) / 2 – 3	_	ns	
		Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf}) / 2			
	RSPCK clock rise/fall time	Output		t _{SPCKr,}	—	5	ns	
		Input		t _{SPCKf}	—	1	μs	
	Data input setup time	Master		t _{SU}	6	_	ns	Figure 6.33 to
		Slave			8.3	_		Figure 6.38
	Data input hold time	Master	PCLKA divi- sion ratio set to 1/2	t _{HF}	0	_	ns	
			PCLKA divi- sion ratio set to a value other than 1/2	t _H	t _{PAcyc}	_		
		Slave	•		8.3	_		
	SSL setup time	Master		t _{LEAD}	1	8	t _{SPcyc}	
		Slave			6	_	t _{PAcyc}	
	SSL hold time	Master		t _{LAG}	1	8	t _{SPcyc}	
		Slave			6	_	t _{PAcyc}	
	Data output delay time	Master		t _{OD}	—	6.3	ns	
		Slave				28		
	Data output hold time	Master		t _{OH}	0	_	ns	
		Slave			0	_		
	Successive transmission delay time	Master		t _{TD}	t_{SPcyc} + 2 × t_{PAcyc}	8 × t _{SPcyc} + 2 × t _{PAcyc}	ns	•
		Slave			6 × t _{PAcyc}	_		
	MOSI and MISO	Output		t _{Dr,} t _{Df}	—	5	ns	
	rise/fall time	Input		1	—	1	μs	1
	SSL	Output		t _{SSLr,}	—	5	ns	1
	rise/fall time	Input	Input		—	1	μs	1
	Slave access time			t _{SA}	—	2 × t _{PAcyc} + 28	ns	Figure 6.37, Figure 6.38
	Slave output release time			t _{REL}	—	2 × t _{PAcyc} + 28	ns	

Figure 6.32 RSPI Clock Timing

Figure 6.33 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKA Division Ratio Set to a Value Other Than 1/2)

Figure 6.34 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKA Division Ratio Set to 1/2)

Figure 6.35 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKA Division Ratio Set to a Value Other Than 1/2)

Figure 6.36 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKA Division Ratio Set to 1/2)

6.4.5.11 QSPI

Table 6.39 QSPI Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

_	Item	Symbol	Min.	Max.	Unit*1	Test Conditions	
QSPI	QSPCLK clock cycle	t _{QScyc}	2	4080	t _{PBcyc}	Figure 6.39	
-	Data input setup time	t _{Su}	6.5	—	ns	Figure 6.40, Figure 6.41	
	Data input hold time	t _{IH}	5	—	ns		
	SS setup time	t _{LEAD}	1.5	8.5	t _{QScyc}		
	SS hold time	t _{LAG}	1	8	t _{QScyc}		
	Data output delay time	t _{OD}	_	10.0	ns		
	Data output hold time	t _{он}	-5	—	ns		
	Successive transmission delay time	t _{TD}	1	8	t _{QScvc}		

Figure 6.40 Transmit/Receive Timing (CPHA = 0)

Figure 6.41 Transmit/Receive Timing (CPHA = 1)

6.4.5.12 RIIC

Table 6.40 RIIC Timing (1/2)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 \overline{M} Hz, T_a = T_{opr}, High-drive output is selected by the driving ability control register.

	ltem	Symbol	Min.* ¹	Max.	Unit	Test Conditions
RIIC	SCL input cycle time	t _{SCL}	$6(12) \times t_{IICcyc} + 1300$	—	ns	Figure 6.42
(Standard-mode, SMBus)	SCL input high pulse width	t _{SCLH}	$3(6) \times t_{IICcyc} + 300$	_	ns	
ICFER.FMPE = 0	SCL input low pulse width	t _{SCLL}	$3(6) \times t_{IICcyc} + 300$	_	ns	
	SCL, SDA input rise time	t _{Sr}	—	1000	ns	
	SCL, SDA input fall time	t _{Sf}	—	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1(4) × t _{IICcyc}	ns	
	SDA input bus free time	t _{BUF}	$3(6) \times t_{IICcyc} + 300$	—	ns	
	Start condition input hold time	t _{STAH}	t _{IICcyc} + 300	—	ns	
	Restart condition input setup time	t _{STAS}	1000	—	ns	
	Stop condition input setup time	t _{STOS}	1000	—	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL, SDA capacitive load	C _b *2	—	400	pF	
RIIC	SCL input cycle time	t _{SCL}	6(12) × t _{IICcyc} + 600	_	ns	
(Fast-mode) ICFER.FMPE = 0	SCL input high pulse width	t _{SCLH}	$3(6) \times t_{IICcyc} + 300$	—	ns	
	SCL input low pulse width	t _{SCLL}	$3(6) \times t_{IICcyc} + 300$	_	ns	
	SCL, SDA input rise time	t _{Sr}	20 × (External pull-up voltage/5.5V)	300	ns	
	SCL, SDA input fall time	t _{Sf}	20 × (External pull-up voltage/5.5V)	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1(4) × t _{IICcyc}	ns	
	SDA input bus free time	t _{BUF}	$3(6) \times t_{IICcyc} + 300$	_	ns	
	Start condition input hold time	t _{STAH}	t _{IICcyc} + 300	_	ns	
	Restart condition input setup time	t _{STAS}	300	_	ns	
	Stop condition input setup time	t _{STOS}	300	_	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	Data input hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *2	—	400	pF	

Table 6.40 RIIC Timing (2/2)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq $\overline{AVCC0}$, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$,

High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.*1	Max.	Unit	Test Conditions
RIIC	SCL input cycle time	t _{SCL}	6(12) × t _{IICcyc} + 240	_	ns	Figure 6.42
(Fast-mode+) ICFER.FMPE = 1	SCL input high pulse width	t _{SCLH}	3(6) × t _{IICcyc} + 120	_	ns	
	SCL input low pulse width	t _{SCLL}	3(6) × t _{IICcyc} + 120	_	ns	
	SCL, SDA input rise time	t _{Sr}	—	120	ns	
	SCL, SDA input fall time	t _{Sf}	—	120	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1(4) × t _{IICcyc}	ns	
	SDA input bus free time	t _{BUF}	3(6) × t _{IICcyc} + 120	_	ns	
	Start condition input hold time	t _{STAH}	t _{IICcyc} + 120	_	ns	
	Restart condition input setup time	t _{STAS}	120	_	ns	
	Stop condition input setup time	t _{STOS}	120	_	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 20	_	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL, SDA capacitive load	C _b *2	—	550	pF	

Note:

 t_{IICcyc} : RIIC internal reference clock (IIC ϕ) cycle The value within parentheses is applicable when the value of the ICMR3.NF[1:0] bits is 11b while the digital filter is enabled by Note 1. the setting ICFER.NFE = 1.

Note 2. C_b is the total capacitance of the bus lines.

6.4.5.13 ETHERC

Table 6.41 ETHERC Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

Item		Symbol	Min.	Max.	Unit	Test Conditions
ETHERC	REF50CK cycle time	T _{ck}	20	—	ns	Figure 6.43 to
(RMII)	REF50CK frequency Typ. 50 MHz		_	50 + 100 ppm	MHz	Figure 6.46
	REF50CK duty	—	35	65	%	
	REF50CK rise/fall time	T _{ckr/ckf}	0.5	3.5	ns	
	RMII0_xxxx*1 output delay time	T _{co}	2.5	15.0	ns	
	RMII0_xxxx*2 setup time	T _{su}	3	—	ns	
	RMII0_xxxx*2 hold time		1	—	ns	
	RMII0_xxxx*1, *2 rise/fall time	T _r /T _f	0.5	5	ns	
	ET0_WOL output delay time	t _{WOLd}	1	23.5	ns	Figure 6.47

Note 1. RMII0_TXD_EN, RMII0_TXD1, RMII0_TXD0

Note 2. RMII0_CRS_DV, RMII0_RXD1, RMII0_RXD0, RMII0_RX_ER

Figure 6.43 Timing with the REF50CK and RMII Signals

Figure 6.44 RMII Transmission Timing

Figure 6.45 RMII Reception Timing (Normal Operation)

Figure 6.46 RMII Reception Timing (Error Occurrence)

Figure 6.47 WOL Output Timing (RMII)

6.4.5.14 SDHI

Table 6.42 **SDHI** Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.	Max.	Unit	Test Conditions
SDHI	DHI SDHI_CLK pin output cycle time		20	_	ns	Figure 6.48
	SDHI_CLK pin output high pulse width	t _{WH(SD)}	$0.4 \times t_{PP(SD)}$	_	ns	
	SDHI_CLK pin output low pulse width	t _{WL(SD)}	$0.4 \times t_{PP(SD)}$	_	ns	
	SDHI_CLK pin output rise time	t _{TLH(SD)}	—	3	ns	
	SDHI_CLK pin output fall time	t _{THL(SD)}	—	3	ns	
	Output data delay time (data transfer mode) for SDHI_CMD and SDHI_D0 to SDHI_D3 pins	t _{ODLY(SD)}	-6.5	4	ns	
	Input data setup time for SDHI_CMD and SDHI_D0 to SDHI_D3 pins	t _{ISU(SD)}	6	_	ns	
	Input data hold time for SDHI_CMD and SDHI_D0 to SDHI_D3 pins	t _{IH(SD)}	2	_	ns	

SD Host Interface Input/Output Signal Timing Figure 6.48

6.4.5.15 SDSI

Table 6.43 SDSI Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, T_a = T_{opr},

PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$, Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

	Item	Symbol	Min.	Max.	Unit	Test Conditions
SDSI	SDSI_CLK pin input cycle time	t _{PP(SDSI)}	20	—	ns	Figure 6.49
	SDSI_CLK pin input high pulse width	t _{WH(SDSI)}	0.4 ×	—	ns	
			t _{PP(SDSI)}			
	SDSI_CLK pin input low pulse width	t _{WL(SDSI)}	0.4 ×	-	ns	
		. ,	t _{PP(SDSI)}			
	SDSI_CLK pin input rise time	t _{TLH(SDSI)}		3	ns	
	SDSI_CLK pin input fall time	t _{THL(SDSI)}		3	ns	
	Input data setup time for SDSI_CMD and SDSI_D0 to SDSI_D3 pins	t _{ISU(SDSI)}	5		ns	
	Input data hold time for SDSI_CMD and SDSI_D0 to SDSI_D3 pins	t _{IH(SDSI)}	2		ns	
	Output data delay time for SDSI_CMD and SDSI_D0 to SDSI_D3 pins (default speed mode)	t _{ODLY(SDSI)}	0	14	ns	Figure 6.50
	Output data delay time for SDSI_CMD and SDSI_D0 to SDSI_D3 pins (high speed mode)		2.5	14	ns	Figure 6.51

Figure 6.49 SD Slave Interface Input Signal Timing

Figure 6.50 SD Slave Interface Output Signal Timing (Default Speed Mode)

Figure 6.51 SD Slave Interface Output Signal Timing (High Speed Mode)

6.4.5.16 RF Transceiver

Table 6.44RF Transceiver Timing

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVCS0 = AVCS1 = VCS1 = VSS1 = VSS2 = AVS32 = AVC32 = AVC32

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = 25°C

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RF	SCLK cycle time	t _{sccyc}	41.67	_	—	ns	Figure 6.52
Transceiver	SCLK high pulse width	t _{sch}	18.5	_	_	ns	
	SCLK low pulse width	t _{scl}	18.5	_	_	ns	
	SIN setup time	t _{sisu}	15	—	—	ns	
	SIN hold time	t _{sihd}	15	—	—	ns	
	SOUT output delay time	t _{sodly}	—	—	14.8	ns	
	SEN setup time	t _{sesu}	33.3	_	_	ns	
	SEN hold time	t _{sehd}	200	_	_	ns	

Figure 6.52 RF Transceiver Input/Output Timing

6.5 USB Characteristics

Table 6.45 On-Chip USB Full-Speed Characteristics (DP and DM Pin Characteristics)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.0 to 3.6 V, 3.0 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, UCLK = 48 MHz, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, $T_a = T_{opr}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input	Input high level voltage	V _{IH}	2.0		—	V	
characteristics	Input low level voltage	V _{IL}	—	_	0.8	V	
	Differential input sensitivity	V _{DI}	0.2	_	—	V	DP – DM
	Differential common mode range	V _{CM}	0.8	_	2.5	V	
Output characteristics	Output high level voltage	V _{OH}	2.8	_	3.6	V	I _{OH} = –200 μA
	Output low level voltage	V _{OL}	0.0	_	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	_	2.0	V	Figure 6.53
	Rise time	t _{FR}	4	_	20	ns	
	Fall time	t _{FF}	4	_	20	ns	
	Rise/fall time ratio	t _{FR} /t _{FF}	90	_	111.11	%	t _{FR} /t _{FF}
	Output resistance	Z _{DRV}	28	_	44	Ω	Rs = 27 Ω included
Pull-up and	DP pull-up resistance	R _{pu}	0.900	_	1.575	kΩ	Idle state
pull-down characteristics	(when the function controller function is selected)		1.425	_	3.090		At transmission and reception
	DP/DM pull-down resistance (when the host controller function is selected)	R _{pd}	14.25	—	24.80	kΩ	

Figure 6.53 DP and DM Output Timing (Full-Speed)

Figure 6.54 Test Circuit (Full-Speed)

6.6 A/D Conversion Characteristics

Table 6.46 12-Bit A/D (Unit 0) Conversion Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

PCLKB = PCLKC = 1 MHz to 60 MHz, $T_a = T_{opr}$,

Source impedance = 1.0 k Ω

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution		8	_	12	Bit	
Analog input capaci	tance	—	_	30	pF	
Channel-dedicated sample-and-hold circuits in use (AN000 to AN002)	Conversion time*1 (Operation at PCLKC = 60 MHz)	1.06 (0.4 + 0.25) *2	_	_	μs	 Sampling of channel- dedicated sample-and- hold circuits in 24 states Sampling in 15 states
	Offset error	—	±1.5	±3.5	LSB	AN000 to AN002 = 0.25 V
	Full-scale error	—	±1.5	±3.5	LSB	AN000 to AN002 = VREFH0 - 0.25 V
	Quantization error	—	±0.5	—	LSB	
	Absolute accuracy	—	±3.0	±5.5	LSB	
	DNL differential nonlinearity error	—	±1.0	±2.0	LSB	
	INL integral nonlinearity error	—	±1.5	±3.0	LSB	
	Holding characteristics of sample-and- hold circuits	—		20	μs	
	Dynamic range	0.25	-	VREFH0 - 0.25	V	
Channel-dedicated sample-and-hold	Conversion time* ¹ (Operation at PCLKC = 60 MHz)	0.48 (0.267)*2	_	—	μs	Sampling in 16 states
circuits not in use (AN000 to AN003)	Offset error	—	±1.0	±2.5	LSB	
(Full-scale error	—	±1.0	±2.5	LSB	
	Quantization error	—	±0.5	—	LSB	
	Absolute accuracy	—	±2.5	±4.5	LSB	
	DNL differential nonlinearity error	—	±0.5	±1.5	LSB	
	INL integral nonlinearity error	—	±1.0	±2.5	LSB	

Note 1. The conversion time includes the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Table 6.47 12-Bit A/D (Unit 1) Conversion Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \le VREFH0 \le AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, PCLKB = PCLKD = 1 MHz to 60 MHz, $T_a = T_{opr}$, Source impedance = 1.0 kG

Source impedance = 1.0 k Ω

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	_	12	Bit	
Conversion time ^{*1} (Operation at PCLKD = 60 MHz)	0.88 (0.633)*2	_	—	μs	Sampling in 38 states (ADSAM.SAM = 1)
Conversion time ^{*1} (Operation at PCLKD = 30 MHz)	1 (0.500)*2	_	—	μs	Sampling in 15 states (ADSAM.SAM = 1)
Analog input capacitance	—		30	pF	
Offset error	—	±2.0	±3.5	LSB	
Full-scale error	—	±2.0	±3.5	LSB	
Quantization error	—	±0.5	—	LSB	
Absolute accuracy	—	±4.0	±6.0	LSB	
DNL differential nonlinearity error (Operation at PCLKD = 60 MHz)	_	±1.5	±4.0	LSB	
DNL differential nonlinearity error (Operation at PCLKD = 30 MHz)	_	±1.5	±2.5	LSB	
INL integral nonlinearity error (Operation at PCLKD = 60 MHz)	—	±2.0	±4.0	LSB	
INL integral nonlinearity error (Operation at PCLKD = 30 MHz)	_	±2.0	±3.5	LSB	

Note 1. The conversion time includes the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Note 2. The value in parentheses indicates the sampling time.

Table 6.48 A/D Internal Reference Voltage Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} =

2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

PCLKB = PCLKD = 60 MHz, $T_a = T_{opr}$

Item	Min.	Тур.	Max.	Unit	Test Conditions
A/D internal reference voltage	1.13	1.18	1.23	V	

Temperature Sensor Characteristics 6.7

Table 6.49 **Temperature Sensor Characteristics**

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 $\leq \overline{A}$ VCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 $T_a = T_{opr}$

Item	Min.	Тур.	Max.	Unit	Test Conditions
Relative accuracy	—	±1	—	°C	
Temperature slope	—	4	—	mV/°C	
Output voltage	—	1.21	—	V	T _a = 25°C
Temperature sensor start time	—		30	μs	
Sampling time*1	4.15	_	—	μs	

Note 1. Set the S12AD1.ADSSTRT register such that the sampling time of the 12-bit A/D converter satisfies this specification.

6.8 Power-on Reset Circuit and Voltage Detection Circuit Characteristics

Table 6.50 Power-on Reset Circuit and Voltage Detection Circuit Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 $T_a = T_{opr}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	Low power consumption function disabled*1	V _{POR}	2.5	2.6	2.7	V	Figure 6.55
		Low power consumption function enabled* ²		1.8	2.25	2.7		
	Voltage detection circuit (LVD0)		V _{det0_1}	2.84	2.94	3.04	1	Figure 6.56
		V _{det0_2}	2.77	2.87	2.97			
	Ī		V _{det0_3}	2.70	2.80	2.90	-	
	Voltage detection circuit (LVD1)		V _{det1_1}	2.89	2.99	3.09		Figure 6.57
Voltage detection circuit (LVD2)		V _{det1_2}	2.82	2.92	3.02			
			V _{det1_3}	2.75	2.85	2.95		
		V _{det2_1}	2.89	2.99	3.09		Figure 6.58	
				2.82	2.92	3.02		
			V _{det2_3}	2.75	2.85	2.95		
Internal reset time	Power-on reset time		t _{POR}	—	4.6		ms	Figure 6.55
	LVD0 reset time		t _{LVD0}	—	0.70			Figure 6.56
	LVD1 reset time		t _{LVD1}	—	0.57	_		Figure 6.57
	LVD2 reset time		t _{LVD2}	—	0.57	-		Figure 6.58
Minimum VCC down time		t _{VOFF}	200	—	_	μs	Figure 6.55, Figure 6.56	
Response delay time		t _{det}	—	—	200	μs	Figure 6.55 to Figure 6.58	
LVD operation stabilization time (after LVD is enabled)		t _{d(E-A)}	—	—	10	μs	Figure 6.57, Figure 6.58	
Hysteresis width (LVD1 and LVD2)		V _{LVH}	_	70	_	mV		

Note: The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det1} , and V_{det2} for the POR/ LVD.

Note 1. The low power consumption function is disabled and DEEPCUT[1:0] = 00b or 01b.

Note 2. The low power consumption function is enabled and DEEPCUT[1:0] = 11b.

Figure 6.56 Voltage Detection Circuit Timing (V_{det0})

Figure 6.57 Voltage Detection Circuit Timing (V_{det1})

Figure 6.58 Voltage Detection Circuit Timing (V_{det2})

6.9 Oscillation Stop Detection Timing

Table 6.51 Oscillation Stop Detection Circuit Characteristics

 $T_a = T_{opr}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	t _{dr}	_	—	1	ms	Figure 6.59

Figure 6.59 Oscillation Stop Detection Timing

6.10 Battery Backup Function Characteristics

Table 6.52 Battery Backup Function Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

 V_{BATT} = 2.0 to 3.6 V, $T_a = T_{opr}$

ltem	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage level for switching to battery backup	V _{DETBATT}	2.50	2.60	2.70	V	Figure 6.60
Lower-limit V_{BATT} voltage for power supply switching due to VCC voltage drop	V _{BATTSW}	2.70	—	—		
VCC-off period for starting power supply switching	t _{VOFFBATT}	200	_	_	μs	

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Figure 6.60 Battery Backup Function Characteristics

6.11 Flash Memory Characteristics

Table 6.53 Code Flash Memory Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Temperature range for programming/erasure: $T_a = T_{opr}$

Item		Symbol	FCL	.K = 4 M	lHz	FCL	K = 15 N	ИНz	20 MH:	z ≤ FCL MHz	K ≤ 60	Unit	Test
			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.		Conditions
Programming time	128 bytes	t _{P128}	—	0.75	13.2	—	0.38	6.6	—	0.34	6	ms	
N _{PEC} ≤ 100 times	8 Kbytes	t _{P8K}	_	49	176	_	25	88	_	22	80	ms	
	32 Kbytes	t _{P32K}		194	704		97	352		88	320	ms	
Programming time N _{PEC} > 100 times	128 bytes	t _{P128}	_	0.91	15.8	-	0.46	8	_	0.41	7.2	ms	
	8 Kbytes	t _{P8K}	_	60	212	_	30	106	_	27	96	ms	
	32 Kbytes	t _{P32K}	_	234	848	_	117	424	_	106	384	ms	
Erasure time	8 Kbytes	t _{E8K}	_	78	216	_	48	132	_	43	120	ms	
N _{PEC} ≤ 100 times	32 Kbytes	t _{E32K}	_	283	864	_	173	528	_	157	480	ms	
Erasure time N _{PEC} > 100 times	8 Kbytes	t _{E8K}	_	94	260	_	58	158	_	52	144	ms	
	32 Kbytes	t _{E32K}		341	1040		208	632		189	576	ms	
Programming/erasu	re cycle*1	N _{PEC}	10000 *2	_	_	10000 *2		_	10000 *2	_	_	Times	
Suspend delay time programming	during	t _{SPD}		_	264			132	_	_	120	μs	
First suspend delay erasing (in suspend priority	time during mode)	t _{SESD1}	—	_	216	—	_	132	—	—	120	μs	
Second suspend de during erasure (in suspend priority	lay time mode)	t _{SESD2}	_	_	1.7	_	_	1.7	_	—	1.7	ms	
Suspend delay time erasure (in erasure priority n	during node)	t _{SEED}	_	_	1.7	_	_	1.7	_	—	1.7	ms	
Forced stop comma	nd	t _{FD}	—		32	—	_	22	—		20	μs	
Data hold time*3, *4		t _{DRP}	20	_		20	_		20		_	Year	T _a ≤ 85°C

Note 1. Definition of program/erase cycle:

The program/erase cycle is the number of erasing for each block. When the number of program/erase cycles is n, each block can be erased n times. For instance, when 128-byte program is performed 64 times for different addresses in 8-Kbyte block and then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more than once before the next erase cycle (overwriting is prohibited).

Note 2. Characteristics are degraded as the number of program/erase increases. This is the minimum value of program/erase cycles to guarantee all characteristics listed in this table.

Note 3. This shows the characteristic when the flash memory writer or self-programming library from Renesas Electronics is in use, and the number of times programming and erasure proceed does not exceed the specified value.

Note 4. These values are based on the results of reliability testing.

Table 6.54 Data Flash Memory Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} =

2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Temperature range for programming/erasure: $T_a = T_{opr}$

Item		Symbol	FCL	FCLK = 4 MHz		FCLK = 15 MHz			20 MHz ≤ FCLK ≤ 60 MHz			Unit	Test
			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.		Conditions
Programming time	4 bytes	t _{DP4}	—	0.36	3.8	—	0.18	1.9	—	0.16	1.7	ms	
Erasure time	64 bytes	t _{DP64}	—	3.1	18	—	1.9	11	_	1.7	10	ms	
	128 bytes	t _{DP128}		4.7	27		2.9	16	—	2.6	15	ms	
	256 bytes	t _{DP256}		8.9	50		5.4	31	—	4.9	28	ms	
Blank check time	4 bytes	t _{DBC4}		_	84			33	—		30	μs	
	64 bytes	t _{DBC64}		_	280			110	—		100	μs	
	2 Kbytes	t _{DBC2K}		_	6160			2420	—		2200	μs	
Programming/erast	ure cycle*1	N _{DPEC}	100000 *2	_	_	100000 *2		_	100000 *2		_	Times	
Suspend delay time programming	e during	t _{DSPD}	_	_	264	_		132	_		120	μs	
First suspend	64 bytes	—	_	_	216	-	_	132	-	_	120	μs	
delay time during erasure	128 bytes	—	_	_	216	-	_	132	-	_	120	μs	
(in suspend prior- ity mode)	256 bytes	—	-		216	_	_	132	-	_	120	μs	
Second suspend	64 bytes	—	—	_	300	—	_	300	—		300	μs	
delay time during erasure	128 bytes	_		_	390			390	—		390	μs	
(in suspend prior- ity mode)	256 bytes	—	—	_	570	—	_	570	—	_	570	μs	
Suspend delay	64 bytes		—	_	300	—		300	—	_	300	μs	
time during eras- ing	128 bytes		—	_	390	—		390	—	_	390	μs	
ing (in suspend prior- ity mode)	256 bytes	—	—	_	570	—	_	570	—	_	570	μs	
Forced stop comma	and	t _{FD}	—		32	—	—	22	—		20	μs	
Data hold time*3, *4		t _{DDRP}	20			20	—	—	20		—	Year	T _a ≤ 85°C

Note 1. Definition of program/erase cycle:

The program/erase cycle is the number of erasing for each block. When the number of program/erase cycles is n, each block can be erased n times. For instance, when 4-byte program is performed 512 times for different addresses in 2-Kbyte block and then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more than once before the next erase cycle (overwriting is prohibited).

Note 2. Characteristics are degraded as the number of program/erase increases. This is the minimum value of program/erase cycles to guarantee all characteristics listed in this table.

Note 3. This shows the characteristic when the flash memory writer or self-programming library from Renesas Electronics is in use, and the number of times programming and erasure proceed does not exceed the specified value.

Note 4. These values are based on the results of reliability testing.

Suspension during progra	mmina
FCU command	V Program V Suspend ¥
FSTATR.FRDY	Ready Not Ready Ready
Programming pulse	Programming
Suspension during erasure	e in suspend priority mode
FCU command	Erase Suspend Resume Suspend
FSTATR.FRDY	Ready Not Ready Ready Not Ready
Erasure pulse	Erasing
Suspension during erasure	e in erasure priority mode
FCU command	Erase Suspend
FSTATR.FRDY	Ready Not Ready Ready
Erasure pulse	Erasing

Figure 6.61 Flash Memory Programming/Erasure Suspension Timing

6.12 **Boundary Scan**

Table 6.55 **Boundary Scan Characteristics**

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

T_a = T_{opr},

Output load conditions: $V_{OH} = 0.5 \times VCC$, $V_{OL} = 0.5 \times VCC$, C = 30 pF, High-drive output is selected by the driving ability control register.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
TCK clock cycle time	t _{TCKcyc}	100	—	—	ns	Figure 6.62
TCK clock high pulse width	t _{тскн}	45	—	—	ns	
TCK clock low pulse width	t _{TCKL}	45	—	—	ns	
TCK clock rise time	t _{TCKr}	—	—	5	ns	
TCK clock fall time	t _{TCKf}	—	—	5	ns	
TRST# pulse width	t _{TRSTW}	20	—	—	t _{TCKcyc}	Figure 6.63
TMS setup time	t _{TMSS}	20	—	_	ns	Figure 6.64
TMS hold time	t _{TMSH}	20	—	_	ns	
TDI setup time	t _{TDIS}	20	—	_	ns	
TDI hold time	t _{TDIH}	20	_	_	ns	
TDO data delay time	t _{TDOD}	—	—	40	ns	

Figure 6.64 Boundary Scan Input/Output Timing

6.13 RF Transceiver Characteristics

6.13.1 Characteristics of the Transceiver Reception

Table 6.56 Reception Sensitivity for SUN FSK

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Packet length = 250 bytes, packet error rate (PER) = 10° , with no forward error correction (FEC), T_a = 25° C

Modulation Parameter	Channel Spacing [kHz]	Data Rate [kbps]	Modulation Index	Modulation Method	Min.	Тур.	Max.	Unit
North America (Frequence	cy: 920.6 MHz)							
Operating mode #1a	50	10	1	2-GFSK	—	-116	—	dBm
Operating mode #1b	100	20	1	2-GFSK	—	-113	—	dBm
Operating mode #1	200	50	1	2-GFSK	—	-109	—	dBm
Operating mode #2	400	150	0.5	2-GFSK	—	-105	—	dBm
Operating mode #3	400	200	0.5	2-GFSK	—	-104	—	dBm
Europe (Frequency: 863.	1 MHz)							
Operating mode #1a	50	10	1	2-GFSK	_	-115	_	dBm
Operating mode #1b	100	20	1	2-GFSK	—	-112	—	dBm
Operating mode #1	100	50	0.5	2-GFSK	—	-109	—	dBm
Operating mode #2	200	100	0.5	2-GFSK	—	-106	—	dBm
Operating mode #3	200	150	0.5	2-GFSK	—	-104	—	dBm
Japan (Frequency: 920.6	6 MHz)							
Operating mode #1a	50	10	1	2-GFSK	_	-116	_	dBm
Operating mode #1b	100	20	1	2-GFSK	—	-113	—	dBm
Operating mode #1	200	50	1	2-GFSK	—	-109	—	dBm
Operating mode #2	400	100	1	2-GFSK	—	-105	_	dBm
Operating mode #3	600	200	1	2-GFSK	_	-102	_	dBm

Table 6.57 Adjacent Channel Rejection Ratio for SUN FSK

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Packet length = 250 bytes, packet error rate (PER) = 10%, with no forward error correction (FEC), $T_a = 25^{\circ}C$,

Desired wave input level: sensitivity specified in the standard \star1 + 3 dB

Modulation Parameter	Channel Spacing [kHz]	Data Rate [kbps]	Modulation Index	Modulation Method	min (–1 ch/+1 ch)	typ (–1 ch/+1 ch)	max (–1 ch/+1 ch)	Unit
North America (Frequen	cy: 920.6 MHz)							
Operating mode #1a	50	10	1	2-GFSK	-	47/47	—	dB
Operating mode #1b	100	20	1	2-GFSK	_	44/44	—	dB
Operating mode #1	200	50	1	2-GFSK	_	44/44	—	dB
Operating mode #2	400	150	0.5	2-GFSK	_	48/48	—	dB
Operating mode #3	400	200	0.5	2-GFSK	_	41/42	—	dB
Europe (Frequency: 863.1 MHz)								
Operating mode #1a	50	10	1	2-GFSK		45/45	—	dBm
Operating mode #1b	100	20	1	2-GFSK		42/42	—	dBm
Operating mode #1	100	50	0.5	2-GFSK		38/38	—	dBm
Operating mode #2	200	100	0.5	2-GFSK		41/40	—	dBm
Operating mode #3	200	150	0.5	2-GFSK		34/34	—	dBm
Japan (Frequency: 920.	6 MHz)							
Operating mode #1a	50	10	1	2-GFSK		47/47	—	dBm
Operating mode #1b	100	20	1	2-GFSK		44/44	—	dBm
Operating mode #1	200	50	1	2-GFSK		44/45	—	dBm
Operating mode #2	400	100	1	2-GFSK	—	49/49	—	dBm
Operating mode #3	600	200	1	2-GFSK	_	48/49	_	dBm

Note: The listed values apply when the RF transceiver functions and pins are only in use.

Note 1. IEEE Std 802.15.4TM -2020: IEEE Standard for Low-Rate Wireless Networks

Table 6.58 Alternate Channel Rejection Ratio for SUN FSK

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Packet length = 250 bytes, packet error rate (PER) = 10%, with no forward error correction (FEC), $T_a = 25^{\circ}C$,

Desired wave input level: sensitivity specified in the standard*1 + 3 dB

Modulation Parameter	Channel Spacing [kHz]	Data Rate [kbps]	Modulation Index	Modulation Method	min (–2 ch/+2 ch)	typ (–2 ch/+2 ch)	max (–2 ch/+2 ch)	Unit
North America (Frequen	cy: 920.6 MHz)							
Operating mode #1a	50	10	1	2-GFSK	—	48/48	—	dB
Operating mode #1b	100	20	1	2-GFSK	—	49/49	—	dB
Operating mode #1	200	50	1	2-GFSK	—	53/53	—	dB
Operating mode #2	400	150	0.5	2-GFSK	—	57/58	—	dB
Operating mode #3	400	200	0.5	2-GFSK	—	55/55	—	dB
Europe (Frequency: 863	8.1 MHz)							
Operating mode #1a	50	10	1	2-GFSK	—	45/45	—	dBm
Operating mode #1b	100	20	1	2-GFSK	—	45/46	—	dBm
Operating mode #1	100	50	0.5	2-GFSK	—	44/44	—	dBm
Operating mode #2	200	100	0.5	2-GFSK	—	51/51	—	dBm
Operating mode #3	200	150	0.5	2-GFSK	—	46/38	—	dBm
Japan (Frequency: 920.	6 MHz)							
Operating mode #1a	50	10	1	2-GFSK	—	48/48	—	dBm
Operating mode #1b	100	20	1	2-GFSK	—	49/49	—	dBm
Operating mode #1	200	50	1	2-GFSK	—	53/53	—	dBm
Operating mode #2	400	100	1	2-GFSK	—	59/60	—	dBm
Operating mode #3	600	200	1	2-GFSK		47/58	—	dBm

Note: The listed values apply when the RF transceiver functions and pins are only in use.

Note 1. IEEE Std 802.15.4TM -2020: IEEE Standard for Low-Rate Wireless Networks

Table 6.59 Characteristics of the SUN-FSK Reception

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Frequency = 920.6 MHz, 2-GFSK, 50 kbps, modulation index = 1.0, T_a = 25°C

Item	Min.	Тур.	Max.	Unit	Test Conditions
Maximum RF input voltage	_	—	10	dBm	Packet length = 250 bytes, Packet error rate (PER) = 10%
RSSI range	-108	—	-5	dBm	
RSSI resolution		1		dB	
RSSI precision	-5	—	5	dB	
Frequency deviation tolerance	-10	—	10	ppm	Sensitivity degradation: 1 dB
Modulation quality tolerance (fdev_error)	-20	_	20	%	Sensitivity degradation: 3 dB

Table 6.60 Reception Sensitivity for SUN OFDM

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Frequency = 920.6 MHz, packet length = 250 bytes, packet error rate (PER) = 10%, T_a = 25°C, typical values

Modulation Parameter	Option 1	Option 2	Option 3	Option 4	Unit
MCS0 (BPSK 1/2 w/ 4xfreq.rep)	-113	-116	-118	-119	dBm
MCS1 (BPSK 1/2 w/ 2xfreq.rep)	-110	-114	-117	-118	dBm
MCS2 (QPSK 1/2 w/ 2xfreq.rep)	-107	-110	-114	-112	dBm
MCS3 (QPSK 1/2)	-104	-107	-111	-111	dBm
MCS4 (QPSK 3/4)	-102	-104	-108	-109	dBm
MCS5 (16QAM 1/2)	-99	-101	-105	-106	dBm
MCS6 (16QAM 3/4)	-95	-98	-101	-103	dBm

Note: The listed values apply when the RF transceiver functions and pins are only in use.

Table 6.61 Adjacent Channel Rejection Ratio for SUN OFDM

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V,

 $2.7 V \leq VREFH0 \leq AVCC0$,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Frequency = 920.6 MHz, packet length = 250 bytes, packet error rate (PER) = 10%, $T_a = 25^{\circ}$ C, typical values, Desired wave input level: sensitivity specified in the standard^{*1} + 3 dB

Parameter	Option 1	Option 2	Option 3	Option 4	Llnit
i didinetei	-1.2/+1.2 MHz	-0.8/+0.8 MHz	-0.4/+0.4 MHz	-0.2/+0.2 MHz	Onit
MCS0 (BPSK 1/2 w/ 4xfreq.rep)	33/31	44/48	49/45	34/31	dB
MCS1 (BPSK 1/2 w/ 2xfreq.rep)	33/31	43/53	46/44	34/31	dB
MCS2 (QPSK 1/2 w/ 2xfreq.rep)	34/31	40/52	47/45	33/31	dB
MCS3 (QPSK 1/2)	33/31	37/49	42/45	33/31	dB
MCS4 (QPSK 3/4)	31/30	33/46	46/45	33/31	dB
MCS5 (16QAM 1/2)	28/28	31/44	44/42	32/31	dB
MCS6 (16QAM 3/4)	23/23	28/41	41/39	31/30	dB

Note: The listed values apply when the RF transceiver functions and pins are only in use.

Note 1. IEEE Std 802.15.4TM -2020: IEEE Standard for Low-Rate Wireless Networks

Table 6.62 Alternate Channel Rejection Ratio for SUN OFDM

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Frequency = 920.6 MHz, packet length = 250 bytes, packet error rate (PER) = 10%, T_a = 25°C, typical values, Desired wave input level: sensitivity specified in the standard^{*1} + 3 dB

Parameter	Option 1	Option 2	Option 3	Option 4	Linit
Falameter	-2.4/+2.4 MHz	-1.6/+1.6 MHz	-0.8/+0.8 MHz	-0.4/+0.4 MHz	Onic
MCS0 (BPSK 1/2 w/ 4xfreq.rep)	50/48	54/58	60/63	49/49	dB
MCS1 (BPSK 1/2 w/ 2xfreq.rep)	47/46	52/62	60/63	50/50	dB
MCS2 (QPSK 1/2 w/ 2xfreq.rep)	54/55	54/58	59/59	48/48	dB
MCS3 (QPSK 1/2)	52/53	52/52	56/56	47/48	dB
MCS4 (QPSK 3/4)	47/51	51/51	53/53	47/48	dB
MCS5 (16QAM 1/2)	46/48	48/50	50/50	47/48	dB
MCS6 (16QAM 3/4)	42/44	45/47	47/47	46/46	dB

Note: The listed values apply when the RF transceiver functions and pins are only in use.

Note 1. IEEE Std 802.15.4TM -2020: IEEE Standard for Low-Rate Wireless Networks

Table 6.63 Co-channel Rejection Ratio for SUN OFDM

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Frequency = 920.6 MHz, packet length = 250 bytes, packet error rate (PER) = 10%, T_a = 25°C, typical values,

Desired wave input level: sensitivity specified in the standard*1 + 3 dB

Parameter	Option 1	Option 2	Option 3	Option 4	Linit
i didineter	±0 kHz	±0 kHz	±0 kHz	±0 kHz	Onic
MCS0 (BPSK 1/2 w/ 4xfreq.rep)	4	3	2	-1	dB
MCS1 (BPSK 1/2 w/ 2xfreq.rep)	2	2	1	-1	dB
MCS2 (QPSK 1/2 w/ 2xfreq.rep)	-2	-2	-3	-9	dB
MCS3 (QPSK 1/2)	-5	-5	-4	-7	dB
MCS4 (QPSK 3/4)	-7	-7	-7	-8	dB
MCS5 (16QAM 1/2)	-10	-12	-10	-11	dB
MCS6 (16QAM 3/4)	–13	–13	–13	-13	dB

Note: The listed values apply when the RF transceiver functions and pins are only in use.

Note 1. IEEE Std 802.15.4TM -2020: IEEE Standard for Low-Rate Wireless Networks

Table 6.64 Characteristics of the SUN-OFDM Reception

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V,

Frequency = 920.6 MHz, option 1, MCS6, $T_a = 25^{\circ}C$

Item	Min.	Тур.	Max.	Unit	Test Conditions
Maximum RF input voltage	_	5	_	dBm	
RSSI range	-97	—	-5	dBm	
RSSI resolution	_	1	_	dB	
RSSI precision	-5	—	5	dB	
Frequency deviation tolerance	-20	—	20	ppm	Sensitivity degradation: 1 dB
Modulation quality tolerance (degradation of sensitivity)	_	2	_	%	Error vector magnitude (EVM): IEEE802.15.4-2020* ¹

Note: The listed values apply when the RF transceiver functions and pins are only in use.

Note 1. IEEE Std 802.15.4TM -2020: IEEE Standard for Low-Rate Wireless Networks

6.13.2 Characteristics of the Transceiver Transmission

Table 6.65 Characteristics of the SUN-FSK Transmission

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, $T_a = 25^{\circ}C$,

Frequency = 920.6 MHz

Item		Min.	Тур.	Max.	Unit	Tes	t Conditions	
Maximum transmission output power		—	15	—	dBm	C.W.		
Minimum transmission output power		—	-15	—	dBm	C.W.		
Adjustable step size for transmission output power		—	1	—	dB	C.W.		
Deviation of the output power depending on the temperature		—	_	2	dB	T _a : -40°C to +80°C		
Harmonics	Second	—	-41.3	—	dBm	Output power level = +15 dBm		
	Third	—	-41.3	—				
	Fourth to seventh	—	-41.3	_				
Frequency deviation error		—	_	30	%	Output power level = +15 dBm		
Maximum zero crossing offset		-12.5	-	12.5	%	Output power level = +15 dBm		
Transmission frequency deviation		-20	_	20	ppm	Output power level = +15 dBm		
Adjacent channel leakage ratio		—	-49		dB	Output power level = +15 dBm	50 kbps, MI = 0.5	
		—	-50				50 kbps, MI = 1.0	
		—	-50	—			100 kbps, MI = 0.5	
		—	-47	—			100 kbps, MI = 1.0	

Table 6.66 Characteristics of the SUN-OFDM Transmission

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_DA = VCC_RF = VCC_A = VCC_DDC = VCC_D = V_{BATT} = 3.3 V, 2.7 V \leq VREFH0 \leq AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = VSS_DDC = 0 V, T_a = 25°C,

Frequency = 920.6 MHz, option 1

Item		Min.	Тур.	Max.	Unit	Test Conditions
Maximum transmission output power		—	11	—	dBm	BPSK, R = 1/2, (MCS0,1), EVM = -10 dB
		_	10	—		QPSK, R = 1/2, (MCS2,3), EVM = -13 dB
		—	10	—		QPSK, R = 3/4, (MCS4), EVM = -13 dB
		—	9	—		16QAM, R = 1/2, (MCS5), EVM = -19 dB
		—	9	—		16QAM, R = 3/4, (MCS6), EVM = -19 dB
Minimum transn	nission output power	—	-19	—	dBm	BPSK, R = 1/2, (MCS0,1), EVM = -10 dB
		—	-19	—		QPSK, R = 1/2, (MCS2,3), EVM = -13 dB
		—	-19	—		QPSK, R = 3/4, (MCS4), EVM = -13 dB
		—	-19	—		16QAM, R = 1/2, (MCS5), EVM = -19 dB
		—	-19	—		16QAM, R = 3/4, (MCS6), EVM = -19 dB
Adjustable step size for transmission output power			1	_	dB	
Deviation of the output power depending on the temperature		—	2	—	dB	T_a : -40°C to +80°C
Harmonics	Second	—	-41.3	—	dBm	The transmission output power is at its
	Third	—	-41.3	—		maximum.
	Fourth to seventh	—	-41.3	—		
Adjacent channel leakage ratio		—	-29	—	dB	BPSK, R = 1/2 (MCS0,1), +11 dBm output
		—	-31	—		QPSK, R = 1/2 (MCS2,3), +10 dBm output
		—	-31	—		QPSK, R = 3/4 (MCS4), +10 dBm output
		—	-33	—		16QAM, R = 1/2 (MCS5), +9 dBm output
		_	-33	—		16QAM, R = 3/4 (MCS6), +9 dBm output

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings has been displayed in "Packages" on Renesas Electronics Corporation website.

Figure A 145-Pin TFBGA (PTBG0145KB-A)

REVISION HISTORY RX65W-A Group User's Manual: Hardware

Classifications

- Items with Technical Update document number: Changes according to the corresponding issued Technical Update

- Items without Technical Update document number: Minor changes that do not require Technical Update to be issued

Rev Date			Classification		
1.00	Page		Summary	Olassification	
1.00	Sep 30, 2022	—	First edition, issued		
1.10	Apr 28, 2023	Appendix 1.			
		159	Figure A 145-Pin TFBGA (PTBG0145KB-A), changed		

RX65W-A Group User's Manual: Hardware

Publication Date:	Rev.1.00 Rev.1.10	Sep 30, 2022 Apr 28, 2023
Published by:	Renesas Ele	ectronics Corporation

RX65W-A Group

