To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

8-BIT SINGLE-CHIP MICROCONTROLLER

* DESCRIPTION

The μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, and 78018 F are the products in the $\mu \mathrm{PD} 78018 \mathrm{~F}$ subseries within the $78 \mathrm{~K} / 0$ series

Compared with the older μ PD78014 subseries, this subseries operates at lower voltage and provides a fuller set of ROM and RAM variations.

A one-time PROM or EPROM product μ PD78P018F capable of operating in the same power supply voltage range as of the mask ROM product and other development tools are also provided.

Functions are described in detail in the following User's Manual, which should be read when carring out design work.
μ PD78018F, 78018FY Subseries User's Manual : U10659E
78K/0 Series Users Manual - Instruction : U12326E

FEATURES

- Large on-chip ROM \& RAM

	Program	Data Memory			Package
Product Name	Memory (ROM)	Internal HighSpeed RAM	Internal Expanded RAM	Buffer RAM	
$\mu \mathrm{PD} 78011 \mathrm{~F}$	8K bytes	512 bytes	-	32 bytes	- 64-pin plastic shrink DIP (750 mil)
$\mu \mathrm{PD} 78012 \mathrm{~F}$	16K bytes				- 64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
$\mu \mathrm{PD} 78013 \mathrm{~F}$	24K bytes	1024 bytes			- 64-pin plastic LQFP (12 $\times 12 \mathrm{~mm}$)
$\mu \mathrm{PD} 78014 \mathrm{~F}$	32K bytes				
$\mu \mathrm{PD} 78015 \mathrm{~F}$	40K bytes		512 bytes		
$\mu \mathrm{PD} 78016 \mathrm{~F}$	48K bytes				
$\mu \mathrm{PD} 78018 \mathrm{~F}$	60K bytes		1024 bytes		

- External memory expansion space : 64K bytes
- Minimum instruction execution time can be varied from high-speed ($0.4 \mu \mathrm{~s}$) to ultra-low-speed ($122 \mu \mathrm{~s}$)
- I/O ports: 53 (N-ch open-drain : 4)
- 8-bit resolution A/D converter : 8 channels
- Serial interface : 2 channels
- Timer : 5 channels
- Supply voltage : VDD $=1.8$ to 5.5 V

APPLICATION FIELDS

Cellular phone, pager, VCR, audio, camera, home appliances, etc

ORDERING INFORMATION

Part Number	Package
$\mu \mathrm{PD} 78011 \mathrm{FCW}-\times \times \times$	64-pin plastic shrink DIP (750 mil)
$\mu \mathrm{PD} 78011 \mathrm{FGC}-\times \times \times-$ AB8	64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
$\mu \mathrm{PD} 78011 \mathrm{FGK}-\times \times \times-8 \mathrm{~A} 8$	64 -pin plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78012FCW-×××	$64-$ pin plastic shrink DIP (750 mil)
$\mu \mathrm{PD} 78012 \mathrm{FGC}-\times \times \times-\mathrm{AB} 8$	64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
$\mu \mathrm{PD} 78012 \mathrm{FGK}-\times \times \times-8 \mathrm{~A} 8$	64 -pin plastic LQFP ($12 \times 12 \mathrm{~mm}$)
$\mu \mathrm{PD} 78013 \mathrm{FCW}-\times \times \times$	$64-$ pin plastic shrink DIP (750 mil)
μ PD78013FGC-×X×-AB8	64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
μ PD78013FGK-×Xx-8A8	64 -pin plastic LQFP ($12 \times 12 \mathrm{~mm}$)
$\mu \mathrm{PD} 78014 \mathrm{FCW}-\times \times \times$	$64-$ pin plastic shrink DIP (750 mil)
$\mu \mathrm{PD} 78014 \mathrm{FGC}-\times \times \times-$ AB8	64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
$\mu \mathrm{PD} 78014 \mathrm{FGK}-\times \times \times-8$ A8	64-pin plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78015FCW-×××	64-pin plastic shrink DIP (750 mil)
$\mu \mathrm{PD} 78015 \mathrm{FGC}-\times \times \times-$ AB8	64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
$\mu \mathrm{PD} 78015 \mathrm{FGK}-\times \times \times-8$ A8	64-pin plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78016FCW-×××	64 -pin plastic shrink DIP (750 mil)
$\mu \mathrm{PD} 78016 \mathrm{FGC}-\times \times \times-\mathrm{AB8}$	64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
$\mu \mathrm{PD} 78016 \mathrm{FGK}-\times \times \times-8 \mathrm{~A} 8$	$64-$ pin plastic LQFP ($12 \times 12 \mathrm{~mm}$)
$\mu \mathrm{PD} 78018 \mathrm{FCW}-\times \times \times$	$64-$ pin plastic shrink DIP (750 mil)
$\mu \mathrm{PD} 78018 \mathrm{FGC}-\times \times \times-\mathrm{AB8}$	64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
$\mu \mathrm{PD} 78018 \mathrm{FGK}-\times \times \times-8 \mathrm{~A} 8$	64 -pin plastic LQFP ($12 \times 12 \mathrm{~mm}$)

Remark $x x x$ indicates a ROM code suffix.

* 78K/0 SERIES DEVELOPMENT

The following shows the products organized according to usage. The names in the parallelograms are subseries names.

Note Under planning

The following lists the main functional differences between subseries products.

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTION (1/2)

\star

Item Product Name		$\mu \mathrm{PD} 78011 \mathrm{~F}$	$\mu \mathrm{PD} 78012 \mathrm{~F}$	$\mu \mathrm{PD} 78013 \mathrm{~F}$	$\mu \mathrm{PD} 78014 \mathrm{~F}$	$\mu \mathrm{PD} 78015 \mathrm{~F}$	$\mu \mathrm{PD} 78016 \mathrm{~F}$	$\mu \mathrm{PD} 78018 \mathrm{~F}$
Internal memory	ROM	8K bytes	16K bytes	24K bytes	32K bytes	40K bytes	48K bytes	60K bytes
	High-speed RAM	512 bytes		1024 bytes				
	Expanded RAM	-				512 bytes		1024 bytes
	Buffer RAM	32 bytes						
Memory space		64K bytes						
General-purpose registers		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)						
Minimum instruction execution time		On-chip minimum instruction execution time cycle modification function						
When main system clock selected		$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s}$ (at 10.0 MHz operation)						
When subsystem clock selected		$122 \mu \mathrm{~s}$ (at 32.768 kHz operation)						
Instruction set		- 16-bit operation - Multiplication/division (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit manipulation (set, reset, test, boolean operation) - BCD correction, etc.						
I/O ports		Total $: 53$						
		- CMOS input : 2 - CMOS I/O - N-channel open-drain I/O (15 V withstand voltage) : 4						
A/D converter		- 8 -bit resolution $\times 8$ channels - Operable over a wide power supply voltage range: AV DD $=1.8$ to 5.5 V						
Serial interface		- 3-wire serial I/O/SBI/2-wire serial I/O mode selectable: 1 channel - 3-wire mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel						
Timer		- 16-bit timer/event counter : 1 channel - 8 -bit timer/event counter : 2 channels - Watch timer : 1 channel - Watchdog timer : 1 channel						
Timer output		3 (14-bit PWM output $\times 1$)						
Clock output		$39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}, 1.25 \mathrm{MHz}$ (at main system clock: 10.0 MHz operation), 32.768 kHz (at subsystem clock: 32.768 kHz operation)						
Buzzer output		$2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}, 9.8 \mathrm{kHz}$ (at main system clock: 10.0 MHz operation)						
Vectored interrupt sources	Maskable	Internal: 8 External : 4						
	Non-maskable	Internal : 1						
	Software	1						

OVERVIEW OF FUNCTION (2/2)

Product Name	$\mu \mathrm{PD} 78011 \mathrm{~F}$	$\mu \mathrm{PD} 78012 \mathrm{~F}$	$\mu \mathrm{PD} 78013 \mathrm{~F}$	$\mu \mathrm{PD} 78014 \mathrm{~F}$	$\mu \mathrm{PD} 78015 \mathrm{~F}$	$\mu \mathrm{PD} 78016 \mathrm{~F}$	$\mu \mathrm{PD} 78018 \mathrm{~F}$
Test input	$\begin{aligned} & \text { Internal : } 1 \\ & \text { External }: 1 \end{aligned}$						
Supply voltage	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V						
Operating ambient temperature	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$						
Package	-64-pin plastic shrink DIP (750 mil) -64-pin plastic QFP $(14 \times 14 \mathrm{~mm})$ -64-pin plastic LQFP $(12 \times 12 \mathrm{~mm})$						

TABLE OF CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 8
2. BLOCK DIAGRAM 11
3. PIN FUNCTIONS 12
3.1 PORT PINS 12
3.2 PINS OTHER THAN PORT PINS 13
3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS 15
4. MEMORY SPACE 17
5. PERIPHEL HARDWARE FUNCTION FEATURES 19
5.1 PORTS 19
5.2 CLOCK GENERATOR 20
5.3 TIMER/EVENT COUNTER 21
5.4 CLOCK OUTPUT CONTROL CIRCUIT 23
5.5 BUZZER OUTPUT CONTROL CIRCUIT 23
5.6 A/D CONVERTER 24
5.7 SERIAL INTERFACES 24
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS 26
6.1 INTERRUPT FUNCTIONS 26
6.2 TEST FUNCTIONS 29
7. EXTERNAL DEVICE EXPANSION FUNCTIONS 30
8. STANDBY FUNCTIONS 30
9. RESET FUNCTIONS 30
10. INSTRUCTION SET 31
11. ELECTRICAL SPECIFICATIONS 34
12. CHARACTERISTIC CURVE (REFERENCE VALUES) 61
13. PACKAGE DRAWINGS 62
14. RECOMMENDED SOLDERING CONDITIONS 65
APPENDIX A. DEVELOPMENT TOOLS 68
APPENDIX B. RELATED DOCUMENTS 70

1. PIN CONFIGURATION (Top View)

- 64-Pin Plastic Shrink DIP (750 mil)
μ PD78011FCW- $-\times \times \times$, 78012FCW- $-\times \times \times$, 78013FCW $-\times \times \times$, μ PD78014FCW- $-\times x \times$, 78015FCW- $-x \times x$, 78016FCW $-\times \times \times$, μ PD78018FCW- $-\times x$

| P20/SI1 | \longrightarrow |
| :--- | :--- | :--- | :--- |

Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.
2. Always connect the $A V_{d d}$ pin to Vdd.
3. Always connect the AVss pin to Vss.

- 64-Pin Plastic QFP ($14 \times 14 \mathrm{~mm}$)
μ PD78011FGC- $x \times x-$ AB8, 78012FGC- $x \times x-$ AB8, 78013FGC $-x \times x-$ AB8, μ PD78014FGC- $\times \times \times-A B 8,78015 F G C-\times \times \times-A B 8,78016 F G C-\times \times \times-A B 8$, μ PD78018FGC- $\times \times \times-$ AB8
- 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78011FGK- $x \times x-8 A 8$, 78012FGK- $x \times x-8 A 8$, 78013FGK- $-x \times-8 A 8$, μ PD78014FGK- $x \times x-8 A 8$, 78015FGK- $x \times x-8 A 8$, 78016FGK- $-x \times x-8 A 8$, μ PD78018FGK-×××-8A8

Cautions 1. Always connect the IC (Internally Connected) pin to Vss directly.
2. Always connect the AVdd pin to Vdd.
3. Always connect the AVss pin to Vss.

A8 to A15	: Address Bus
AD0 to AD7	: Address/Data Bus
ANI0 to ANI7	: Analog Input
ASTB	: Address Strobe
AVDD	: Analog Power Supply
AV REF	: Analog Reference Voltage
AVss	: Analog Ground
BUSY	: Busy
BUZ	: Buzzer Clock
IC	: Internally Connected
INTP0 to INTP3 : Interrupt from Peripherals	
P00 to P04	: Port0
P10 to P17	: Port1
P20 to P27	: Port2
P30 to P37	: Port3
P40 to P47	: Port4
P50 to P57	: Port5
P60 to P67	: Port6

$\overline{P C L}$	$:$ Programmable Clock
$\overline{\text { RD }}$	$:$ Read Strobe
$\overline{\text { RESET }}$: Reset
SB0, SB1	$:$ Serial Bus
$\overline{\text { SCK0, }} \overline{\text { SCK1 }}$: Serial Clock
SI0, SI1	: Serial Input
SO0, SO1	: Serial Output
STB	: Strobe
TI0 to TI2	: Timer Input
TO0 to TO2	: Timer Output
VDD	: Power Supply
Vss	: Ground
$\overline{\text { WAIT }}$	$:$ Wait
$\overline{\text { WR }}$: Write Strobe
X1, X2	: Crystal (Main System Clock)
XT1, XT2	: Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Remarks 1. Internal ROM \& RAM capacity varies depending on the product.
2. () : μ PD78P018F

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin Name	1/O		Function	On Reset	Dual- Function Pin	
P00	Input	Port 0 5-bit I/O port	Input only	Input	INTP0/TIO	
P01	Input/ output		Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used in software.	Input	INTP1	
P02					INTP2	
P03					INTP3	
P04Note 1	Input		Input only	Input	XT1	
P10 to P17	Input/ output	Port 1 8 -bit input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used in software. Note 2		Input	ANIO to ANI7	
P20	Input/ output	Port 2 8 -bit input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used in software.		Input	SI1	
P21				SO1		
P22				$\overline{\text { SCK1 }}$		
P23				STB		
P24				BUSY		
P25				SIO/SB0		
P26				SO0/SB1		
P27				$\overline{\text { SCK0 }}$		
P30	Input/ output	Port 3 8-bit input/output port. Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistor can be used in software.			Input	TO0
P31				TO1		
P32				TO2		
P33				Tl1		
P34				TI2		
P35				PCL		
P36				BUZ		
P37				-		
P40 to P47	Input/ output	Port 4 8 -bit input/output port. Input/output can be specified in 8-bit unit. When used as an input port, on-chip pull-up resistor can be used in software. Test input flag (KRIF) is set to 1 by falling edge detection.			Input	AD0 to AD7

Notes 1. When using the P04/XT1 pins as an input port, set 1 to bit 6 (FRC) of the processor clock control register (PCC). Do not use the on-chip feedback register of the subsystem clock oscillator.
2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, on-chip pull-up resistor is automatically unused.

3.1 PORT PINS (2/2)

Pin Name	I/O	Function		On Reset	Dual- Function Pin
P50 to P57	Input/ output	Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used in software.		Input	A8 to A15
P60	Input/ output	Port 6 8 -bit input/output port. Input/output can be specified bit-wise.	N-ch open-drain input/output port. On-chip pull-up resistor can be specified by mask option. LED can be driven directly.	Input	-
P61					
P62					
P63					
P64			When used as an input port, on-chip pull-up resistor can be used in software.		$\overline{\mathrm{RD}}$
P65					$\overline{\mathrm{WR}}$
P66					WAIT
P67					ASTB

3.2 PINS OTHER THAN PORT PINS (1/2)

Pin Name	I/O	Function	On Reset	Dual- Function Pin
INTP0	Input	External interrupt request input by which the effective edge (rising edge, falling edge, or both rising edge and falling edge) can be specified.	Input	P00/TIO
INTP1				P01
INTP2				P02
INTP3		Falling edge detection external interrupt request input.		P03
SIO	Input	Serial interface serial data input.	Input	P25/SB0
SI1				P20
SO0	Output	Serial interface serial data output.	Input	P26/SB1
SO1				P21
SB0	Input /output	Serial interface serial data input/output.	Input	P25/SIO
SB1				P26/SO0
$\overline{\text { SCK0 }}$	Input /output	Serial interface serial clock input/output.	Input	P27
$\overline{\text { SCK1 }}$				P22
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24

3.2 PINS OTHER THAN PORT PINS (2/2)

Pin Name	I/O	Function	On Reset	DualFunction Pin
TIO	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (shared as 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.	Input	P36
AD0 to AD7	Input /output	Low-order address/data bus at external memory expansion.	Input	P40 to P47
A8 to A15	Output	High-order address bus at external memory expansion.	Input	P50 to P57
$\overline{\mathrm{RD}}$	Output	External memory read operation strobe signal output.	Input	P64
$\overline{\mathrm{WR}}$		External memory write operation strobe signal output.		P65
$\overline{\text { WAIT }}$	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output which latches the address information output at port 4 and port 5 to access external memory.	Input	P67
ANIO to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVReF	Input	A/D converter reference voltage input.	-	-
AVDD	-	A/D converter analog power supply. Connected to Vod.	-	-
AVss	-	A/D converter ground potential. Connected to Vss.	-	-
RESET	Input	System reset input.	-	-
X1	Input	Main system clock oscillation crystal connection.	-	-
X2	-		-	-
XT1	Input	Subsystem clock oscillation crystal connection.	Input	P04
XT2	-		-	-
VDD	-	Positive power supply.	-	-
Vss	-	Ground potential.	-	-
IC	-	Internal connection. Connected to Vss directly.	-	-

3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Input/Output Circuit Type of Each Pin

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TIO	2	Input	Connected to Vss.
P01/INTP1	8-A	Input/output	Individually connected to Vss via resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connected to Vdd or Vss.
P10/ANI0 to P17/ANI7	11	Input/output	Individually connected to Vdd or Vss via resisitor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	10-A		
P26/SO0/SB1			
P27/डSK0			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-E		Individually connected to Vdd via resistor.
P50/A8 to P57/A15	5-A		Individually connected to VDD or Vss via resistor.
P60 to P63	13-B		Individually connected to VdD via resistor.
P64/ $\overline{R D}$	5-A		Individually connected to VDD or Vss via resistor.
P65/WR			
P66/WAIT			
P67/ASTB			
$\overline{\text { RESET }}$	2	Input	-
XT2	16	-	Leave open.
AVref	-		Connected to Vss .
AVdd			Connected to VDD.
AVss			Connected to Vss .
IC			Connected to Vss directly.

Figure 3-1. Pin Input/Output Circuits
Typer

* 4. MEMORY SPACE

The memory maps of the μ PD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, and 78018F are shown in Figure 4-1 and 4-2.

Figure 4-1. Memory Map (μ PD78011F, 78012F, 78013F, 78014F)

Note Intermal ROM and internal high-speed RAM capacities vary depending on the product (refer to the table below).

Product Name	Intenal ROM End Address nnnnH	Internal High-Speed RAM Start Address mmmmH
$\mu \mathrm{PD} 78011 \mathrm{~F}$	1FFFH	FD00H
$\mu \mathrm{PD} 78012 \mathrm{~F}$	$3 F F F H$	FB00H
$\mu \mathrm{PD} 78013 \mathrm{~F}$	5FFFH	
$\mu \mathrm{PD} 78014 \mathrm{~F}$	7 FFFH	

Figure 4-2. Memory Map (μ PD78015F, 78016F, 78018F)

Note Intermal ROM, internal high-speed RAM, and internal expanded RAM capacities vary depending on the product (refer to the table below).

Product Name	Intenal ROM End Address nnnnH	Internal High-Speed RAM Start Address $m m m m H$	Internal Expanded RAM Start Address kkkkH
μ PD78015F	9FFFH	FB00H	F600H
μ PD78016F	BFFFH		F400H
μ PD78018F	EFFFH		

5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 PORTS

The I/O port has the following three types

- CMOS input (P00, P04) : 2
- CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67) : 47
- N-ch open-drain input/output(15V withstand voltage) (P60 to P63) : 4
Total : 53

Table 5-1. Functions of Ports

Port Name	Pin Name	
Port 0	P00, P04	Dedicated Input port
	P01 to P03	Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used in software.
Port 1	P10 to P17	Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used in software. Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used in software.
Port 2 to P27	P30 to P37	Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used in software.
Port 3	P40 to P47	Input/output ports. Input/output can be specified in 8-bit units. When used as an input port, pull-up resistor can be used in software. Test input flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used in software. LED can be driven directly.
Port 6	P60 to P63	N-ch open-drain input/output port. Input/output can be specified bit-wise. On-chip pull-up resistor can be specified by mask option. LED can be driven directly.

5.2 CLOCK GENERATOR

There are two types of clock generator: main system clock and subsystem clock.
The minimum instruction exection time can be changed.

- $0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s}$ (Main system clock: at 10.0 MHz operation)
- 122μ s (Subsystem clock: at 32.768 KHz operation)

Figure 5-1. Clock Generator Block Diagram

5.3 TIMER/EVENT COUNTER

The following five channels are incorporated in the timer/event counter.

- 16-bit timer/event counter : 1 channel
- 8-bit timer/event counter : 2 channels
- Watch timer : 1 channel
- Watchdog timer : 1 channel

Table 5-2. Operation of Timer/Event Counter

		16-bit Timer/Event Counter	8-bit Timer/Event Counter	Watch Timer	Watchdog Timer
Operation mode	Interval timer	1 channel	2 channels	1 channel	1 channel
	Externanal event counter	1 channel	2 channels	-	-
Functions	Timer output	1 output	2 outputs	-	-
	PWM output	1 output	-	-	-
	Pulse width mesurement	1 input	-	-	-
	Sqare wave output	1 output	2 outputs	-	-
	Interrupt request	2	2	1	1
	Test input	-	-	1 input	-

Figure 5-2. 16-bit Timer/Enent Counter Block Diagram

Figure 5-3. 8-bit Timer/Enent Counter Block Diagram

Figure 5-4. Watch Timer Block Diagram

Figure 5-5. Watchdog Timer Block Diagram

5.4 CLOCK OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for clock output.

- $39.1 \mathrm{kHz} / 78.1 \mathrm{kHz} / 156 \mathrm{kHz} / 313 \mathrm{kHz} / 625 \mathrm{kHz} / 1.25 \mathrm{MHz}$ (Main system clock: at 10.0 MHz operation)
- 32.768 kHz (Subsystem clock: at 32.768 kHz operation)

Figure 5-6. Clock Output Control Block Diagram

5.5 BUZZER OUTPUT CONTROL CIRCUIT

The clock with the following frequencies can be output for buzzer output.

- $2.4 \mathrm{kHz} / 4.9 \mathrm{kHz} / 9.8 \mathrm{kHz}$ (Main system clock: at 10.0 MHz operation)

Figure 5-7. Buzzer Output Control Block Diagram

5.6 A/D CONVERTER

The A/D converter has on-chip eight 8-bit resolution channels.
There are the following two method to start A/D conversion.

- Hardware starting
- Software starting

Figure 5-8. A/D Converter Block Diagram

5.7 SERIAL INTERFACES

There are two on-chip clocked serial interfaces as follows.

- Serial Interface channel 0
- Serial Interface channel 1

Table 5-3. Type and Function of Serial Interface

Function	Serial Interface Channel 0	Serial Interface Channel 1
3-wire serial I/O mode	O (MSB/LSB-first switchable)	O (MSB/LSB-first switchable)
3-wire serial I/O mode with automatic data transmit/ receive function	-	O (MSB/LSB-first switchable)
SBI (Serial Bus Interface) mode	O (MSB-first)	-
2-wire serial I/O mode	O (MSB-first)	-

Figure 5-9. Serial Interface Channel 0 Block Diagram

Figure 5-10. Serial Interface Channel 1 Block Diagram

6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 INTERRUPT FUNCTIONS

There are interrupt functions, 14 sources of three different kinds, as shown below.

- Non-maskable : 1
- Maskable : 12
- Software : 1

Table 6-1. Interrupt Source List

Interrupt Type	Default Priority Note 1	Interrupt Source		Internal/ External	Vector Table Address	Basic Configuratin Type Note 2
		Name	Trigger			
Non-maskable	-	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000 CH	
	5	INTCSIO	Serial interface channel 0 transfer end	Internal	000EH	(B)
	6	INTCSI1	Serial interface channel 1 transfer end		0010H	
	7	INTTM3	Reference time interval signal from watch timer		0012H	
	8	INTTM0	16 bit timer/event counter match signal generation		0014H	
	9	INTTM1	8-bit timer/event counter 1 match signal generation		0016H	
	10	INTTM2	8 -bit timer/event counter 2 match signal generation		0018 H	
	11	INTAD	A/D converter conversion end		001 AH	
Software	-	BRK	BRK instruction execution	-	003EH	(E)

Notes 1. The default pririty is the priority applicable when more than one maskable interrupt request is generated. 0 is the highest priority and 11, the lowest.
2. Basic configuration types (A) to (E) correspond to (A) to (E) on the next page.

Figure 6-1. Basic Interrupt Function Configuration (1/2)
(A) Internal Non-Maskable Interrupt

(B) Internal Maskable Interrupt

(C) External Maskable Interrupt (INTPO)

Figure 6-1. Basic Interrupt Function Configuration (2/2)
(D) External Maskable Interrupt (Except INTPO)

(E) Software Interrupt

IF : Interrupt request flag
IE : Interrupt enable flag
ISP : In-service priority flag
MK : Interrupt mask flag
PR : Priority spcification flag

6.2 TEST FUNCTIONS

There are two test functions as shown in Table 6-2.

Table 6-2. Test Source List

Test Source		Internal/External
Name	Trigger	
INTWT	Watch timer overflow	External
INTPT4	Port 4 falling edge detection	

Figure 6-2. Test Function Basic Configuration

[^0]
7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM and SFR.

Ports 4 to 6 are used for connection with external devices.

8. STANDBY FUNCTIONS

There are the following two standby functions to reduce the current dissipation.

- HALT mode : The CPU operating clock is stopped. The average consumption current can be reduced by intermittent operation in combination with the normal operat ing mode.
- STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock is stopped, so that the system operates withultra-low power consumption using only the subsystem clock.

Figure 8-1. Standby Functions

Note The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set the bit 7 (MCC) of the processor clock control register (PCC) to stop the main system clock. The STOP instruction cannot be used.

Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program by the program.

9. RESET FUNCTIONS

There are the following two reset methods.

- External reset input by $\overline{\text { RESET }}$ pin.
- Internal reset by watchdog timer runaway time detection.

10. INSTRUCTION SET

(1) 8-Bit Instruction

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	\#byte	A	r Note	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte] [HL+B] $[\mathrm{HL}+\mathrm{C}]$	\$adder16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV	ADD ADDC SUB SUBC AND OR XOR CMP										INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
sadder	MOV SUBC AND OR XOR CMP	$\begin{gathered} \text { MOV } \\ \text { ADD } \\ \text { ADDC } \\ \text { SUB } \end{gathered}$									DBNZ		INC DEC
!adder16		MOV											
PSW	MOV	MOV											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
[DE]		MOV											
[HL]		mov											$\begin{aligned} & \text { ROR4 } \\ & \text { ROL4 } \end{aligned}$
$\begin{aligned} & \text { [HL+byte] } \\ & \text { [HL+B] } \\ & {[H L+C]} \end{aligned}$		MOV											
X													MULU
C													DIVUW

Note Except $r=A$
(2) 16-Bit Instruction

MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	\#byte	AX	rp Note	saddrp	laddr16	SP	None	
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVWNote						
sfrp	MOVW	MOVW					INCW, DECW PUSH, POP	
sadderp	MOVW	MOVW						
!adder16		MOVW						
SP	MOVW	MOVW						

Note Only when $r p=B C, D E, H L$.
(3) Bit Manipulation Instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PWS.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
saddr.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
PSW.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1				

(4) Call Instruction/Branch Instruction CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL, BR	CALLF	CALLT	BR, BC, BNC, BZ, BNZ
Compound instruction				BT,BF,BTCLR, DBNZ	

(5) Other Instruction

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Rating	Unit
Supply voltage	VdD			-0.3 to +7.0	V
	AVDD			-0.3 to $V_{\text {DD }}+0.3$	V
	AVref			-0.3 to VDD +0.3	V
	AVss			-0.3 to +0.3	V
Input voltage	V_{11}	P00 to P04, P10 to P17, P20 to P27, P30 to P37 P40 toP47, P50 to P57, P64 to P67, X1, X2, XT2		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	V_{12}	P60 to P67	Open-drain	-0.3 to +16	V
Output voltage	Vo			-0.3 to $V_{\text {DD }}+0.3$	V
Analog input voltage	V ${ }_{\text {AN }}$	P10 to P17	Analog input pin	$A V_{S S}-0.3$ to $A V_{\text {ref }}+0.3$	V
Output current high	Іон	1 pin		-10	mA
		P10 to P17, P20 to P27, P30 to P37 total		-15	mA
		P01 to P03, P40 to P47, P50 to P57, P60 to P67 total		-15	mA
Output current low	loL Note	1 pin	Peak value	30	mA
			rms	15	mA
		P40 to P47, P50 to P55 total	Peak value	100	mA
			rms	70	mA
		P01 to P03, P56, P57, P60 to P67 total	Peak value	100	mA
			rms	70	mA
		P01 to P03, P64 to P67 total	Peak value	50	mA
			rms	20	mA
		P10 to P17, P20 to P27, P30 to P37 total	Peak value	50	mA
			rms	20	mA
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Note rms should be calculated as follows: $[\mathrm{rms}]=[$ peak value $] \times \sqrt{\text { duty }}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Capacitance ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{VSS}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V				15	pF
I/O capacitance	Cıo	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V	P01 to P03, P10 to P17, P20 to P27, P30 toP37, P40 toP47, P50 to P57, P64 to P67			15	pF
			P60 to P63			20	pF

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.
Main System Clock Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} \mathrm{DD}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillator frequency (fx) Note 1	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	1		10	MHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1		5	
		Oscillation stabilization time Note 2	After Vod reaches oscillator voltage range MIN.			4	ms
Crystal resonator		Oscillator frequency (fx) Note 1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1		10	MHz
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1		5	
		Oscillation stabilization time Note 2	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			10	ms
						30	
External clock		X1 input frequency (fx) Note 1		1.0		10.0	MHz
		X1 input high/low level width (txh, txL)		45		500	ns

Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wiring the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} D \mathrm{D}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillator frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation stabilization time Note 2	$V_{\text {DD }}=4.5$ to 5.5 V		1.2	2	s
						10	
External clock	$\begin{array}{\|ll\|} \mathrm{XT} 1 & \mathrm{XT} 2 \\ \hline \end{array}$	XT1 input frequency (fxt) Note 1		32		100	kHz
		XT1 input high/low level width (tхтн, tхтL)		5		15	$\mu \mathrm{S}$

Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.

Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

2. The subsystem clock oscillation circuit is a circuit with a low amplification level,more prone to misoperation due to noise than the main system clock.
Particular care is therefore required with the wiring method when the subsystem clock is used.

\star Recommended Oscillation Circuit Constant

Recommended oscillation circuit constant differs depending on the model.
(1) μ PD78011F, 78012F, 78013F, 78014F
(a) Main system clock: ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-45$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit Constant		Oscillation Voltage Range	
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
TDK Corp.	CCR4.19MC3	4.19	Built-in	Built-in	1.8	5.5
	FCR4.19MC5	4.19	Built-in	Built-in	1.8	5.5
	CCR5.00MC3	5.00	Built-in	Built-in	1.8	5.5
	FCR5.00MC5	5.00	Built-in	Built-in	1.8	5.5
	CCR8.38MC	8.00	Built-in	Built-in	2.7	5.5
	FCR8.38MC5	8.00	Built-in	Built-in	2.7	5.5
	CCR10.00MC	10.00	Built-in	Built-in	2.7	5.5
	FCR10.00MC5	10.00	Built-in	Built-in	2.7	5.5
Murata Mfg. Co. Ltd.	CSA4.19MG	4.19	30	30	1.8	5.5
	CST4.19MGW	4.19	Built-in	Built-in	1.8	5.5
	CSA5.00MG	5.00	30	30	1.8	5.5
	CST5.00MGW	5.00	Built-in	Built-in	1.8	5.5
	CSA8.38MTZ	8.38	30	30	2.7	5.5
	CST8.38MTW	8.38	Built-in	Built-in	2.7	5.5
	CSA10.00MTZ	10.00	30	30	2.7	5.5
	CST10.00MTW	10.00	Built-in	Built-in	2.7	5.5

(b) Main system clock: ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit		Oscillation Voltage Range	
			$\mathrm{C} 1(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$	MIN. (V)	MAX. (V)
	PBRC5.00A	5.00	33	33	1.8	5.5
	PBRC5.00B	5.00	Built-in	Built-in	1.8	5.5
	KBR-5.00MSA	5.00	33	33	1.8	5.5
	KBR-5.00MKS	5.00	Built-in	Built-in	1.8	5.5
	KBR-8M	8.00	33	33	2.7	5.5
	KBR-10M	10.00	33	33	2.7	5.5

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.
(2) μ PD78015F, 78016F
(a) Main system clock: ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-45$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit Constant			Oscillation Voltage Range	
			C 1 (pF)	C2 (pF)	R1 (k 2)	MIN. (V)	MAX. (V)
TDK Corp.	CSB1000J	1.00	100	100	5.6	1.8	6.0
	CSA2.00MG040	2.00	100	100	0	1.8	6.0
	CST2.00MG040	2.00	Built-in	Built-in	0	1.8	6.0
	CSA4.00MG040	4.00	100	100	0	1.8	6.0
	CST4.00MGW040	4.00	Built-in	Built-in	0	1.8	6.0
	CSA6.00MG	6.00	30	30	0	1.8	6.0
	CST6.00MGW	6.00	Built-in	Built-in	0	1.8	6.0
	CSA10.0MTZ	10.0	30	30	0	1.8	6.0
	CST10.0MTW	10.0	Built-in	Built-in	0	1.8	6.0
Murata Mfg. Co. Ltd. (EMI noise reduced products)	CSA6.00MG040	6.00	100	100	0	2.7	6.0
	CST6.00MGW040	6.00	Built-in	Built-in	0	2.7	6.0
	CSA10.0MTZ040	10.0	100	100	0	2.7	6.0
	CST10.0MTW040	10.0	Built-in	Built-in	0	2.7	6.0
TDK Corp.	FCR4.0MC5	4.0	Built-in	Built-in	2.2	1.8	6.0
	FCR10.0MC	10.0	Built-in	Built-in	1.0	1.8	6.0

(b) Main system clock: ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Frequency (MHz)	Recommended Oscillation Circuit Constant		Oscillation Voltage Range	
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Kyocera Corp.	PBRC5.00A	5.00	33	33	1.8	5.5
	PBRC5.00B	5.00	Built-in	Built-in	1.8	5.5
	KBR-5.00MSA	5.00	33	33	1.8	5.5
	KBR-5.00MKS	5.00	Built-in	Built-in	1.8	5.5
	KBR-8M	8.00	33	33	2.7	5.5
	KBR-10M	10.00	33	33	2.7	5.5

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.
(3) μ PD78018F
(a) Main system clock: ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Product Name	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Recommended Oscillation Circuit Constant		Oscillation Voltage Range	
			C1 (pF)	$\mathrm{C} 2(\mathrm{pF})$	MIN. (V)	MAX. (V)
TDK Corp.	CCR4.0MC3	4.00	Built-in	Built-in	1.8	5.5
	FCR4.0MC5	4.00	Built-in	Built-in	1.8	5.5
	CCR8.0MC5	8.00	Built-in	Built-in	2.7	5.5
	FCR8.0MC	8.00	Built-in	Built-in	2.7	5.5
	CCR10.0MC5	10.0	Built-in	Built-in	2.7	5.5
	FCR10.0MC	10.0	Built-in	Built-in	2.7	5.5
Murata Mfg. Co. Ltd.	CSA4.0MG	4.00	30	30	1.8	5.5
	CST4.0MGW	4.00	Built-in	Built-in	1.8	5.5
	CSA8.0MTZ	8.00	30	30	2.7	5.5
	CST8.0MTW	8.00	Built-in	Built-in	2.7	5.5

(b) Main system clock: ceramic resonator ($\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Product Name	Frequency(MHz)	Recommended Oscillation Circuit Constant		Oscillation Voltage Range	
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Kyocera Corp.	FBRC4.00A	4.00	33	33	1.8	5.5
	FBRC4.00B	4.00	Built-in	Built-in	1.8	5.5
	KBR-4.00MSB	4.00	33	33	1.8	5.5
	KBR-4.00MKC	4.00	Built-in	Built-in	1.8	5.5
	KBR-8M	8.00	33	33	2.7	5.5
	KBR-10M	10.00	33	33	2.7	5.5

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being used.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input voltage high	V_{1+1}	```P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to 67```	$V_{D D}=2.7$ to 5.5 V	0.7 VDD		VDD	V
				0.8 Vdo		Vod	V
	VIH2	P00 to P03, P20, P22, P24 to P27,	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0.8 VDD		VDD	V
		P33, P34, RESET		0.85 VDD		VDD	V
	Vінз	P60 to P63 (N-ch open-drain)	$\mathrm{V}_{\text {D }}=2.7$ to 5.5 V	0.7 VDD		15	V
				0.8 VDD		15	V
	VIH4	X1, X2	$V_{D D}=2.7$ to 5.5 V	$V_{D D}-0.5$		VDD	V
				$V_{D D}-0.2$		VDD	V
	Vін5	XT1/P04, XT2	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.8 VDD		VDD	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0.9 VDD		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ Note	0.9 VDD		VDD	V
Input voltage low	VIL1	$\begin{aligned} & \text { P10 to P17, P21, P23, P30 to P32, } \\ & \text { P35 to P37, P40 to P47, } \\ & \text { P50 to P57, P64 to } 67 \end{aligned}$	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0		0.3 VDD	V
				0		0.2 Vdo	V
	VIL2	P00 to P03, P20, P22, P24 to P27, P33, P34, $\overline{R E S E T}$	$\mathrm{V}_{\text {DD }}=2.7$ to 5.5 V	0		0.2 Vdo	V
				0		0.15 VDD	V
	Vıı3	P60 to P63	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.3 Vdo	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		0.2 VDD	V
				0		0.1 VDD	V
	VIL4	X1, X2	$V_{D D}=2.7$ to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1/P04, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.2 Vdo	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		0.1 VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$ Note	0		0.1 VDD	V
Output voltage high	Voh1	$\mathrm{V}_{\text {DD }}=4.5$ to $5.5 \mathrm{~V}, \mathrm{IoH}=-1 \mathrm{~mA}$		$V_{\text {dD }}-1.0$			V
		Іон $=-100 \mu \mathrm{~A}$		$V_{D D}-0.5$			V
Output voltage low	Vol1	P50 to P57, P60 to P63	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{IoL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		P01 to P03, P10 to P17, P20 to P27 P30 to P37, P40 to P47, P64 to P67	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	SB0, SB1, $\overline{\text { SCK0 }}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , open-drain pulled-up $(R=1 \mathrm{~K} \Omega)$			0.2 VDD	v
	Vol3	$\mathrm{loL}=400 \mu \mathrm{~A}$				0.5	V

Note When using XT1/P04 as P04, input the inverse of P04 to XT2 using an inverter.

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current high	ILIH1	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, $\overline{\text { RESET }}$			3	$\mu \mathrm{A}$
	ILIH2		X1, X2, XT1/P04, XT2			20	$\mu \mathrm{A}$
	ІІнз	$\mathrm{V} \mathrm{IN}=15 \mathrm{~V}$	P60 to P63			80	$\mu \mathrm{A}$
Input leakege current low	ILLL1	V IN $=0 \mathrm{~V}$	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, $\overline{\text { RESET }}$			-3	$\mu \mathrm{A}$
	ILlı2		X1, X2, XT1/P04, XT2			-20	$\mu \mathrm{A}$
	ILlı3		P60 to P63			-3 Note	$\mu \mathrm{A}$
Output leakage current high	ILOH1	Vout $=\mathrm{V}_{\text {D }}$				3	$\mu \mathrm{A}$
Output leakage current low	ILol	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Mask option pull-up resister	R1	V IN $=0 \mathrm{~V}, \mathrm{P} 60$ to P63		20	40	90	k Ω
Software pull-up resister	R2	V in $=0$ V, P01 to P03, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67		15	40	90	k Ω

Note For P60 to P63, if pull-up resistor is not provided (specifiable by mask option) a low-level input leak current of -200 $\mu \mathrm{A}$ (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current is $-3 \mu \mathrm{~A}$ (MAX.).

Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	10.00 MHz crystal oscillation operation mode	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$ Note 2		9.0	18.0	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$ Note 3		1.3	2.6	mA
	IDD2	10.00 MHz crystal oscillation HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$ Note 2		2.4	4.8	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$ Note 3		1.2	2.4	mA
	IdD3	32.768 kHz crystal oscillation operation mode Note 4	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V} \pm 10 \%$		60	120	$\mu \mathrm{A}$
			$V_{\text {dD }}=3.0 \mathrm{~V} \pm 10$ \%		35	70	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V} \pm 10 \%$		24	48	$\mu \mathrm{A}$
	IDD4	32.768 kHz crystal oscillation HALT mode Note 4	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10$ \%		25	50	$\mu \mathrm{A}$
			V DD $=3.0 \mathrm{~V} \pm 10$ \%		5	15	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V} \pm 10$ \%		2	10	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode when using feedback resistor	V DD $=5.0 \mathrm{~V} \pm 10 \%$		1	30	$\mu \mathrm{A}$
			V dD $=3.0 \mathrm{~V} \pm 10$ \%		0.5	10	$\mu \mathrm{A}$
			$V_{D D}=2.0 \mathrm{~V} \pm 10 \%$		0.3	10	$\mu \mathrm{A}$
	IDD6	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode when not using feedback resistor	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10$ \%		0.1	30	$\mu \mathrm{A}$
			V DD $=3.0 \mathrm{~V} \pm 10$ \%		0.05	10	$\mu \mathrm{A}$
			V DD $=2.0 \mathrm{~V} \pm 10$ \%		0.05	10	$\mu \mathrm{A}$

Notes 1. This current excludes the $A V_{\text {ref }}$ current, port current, and current which flows in the built-in pull-down resistor.
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00 H)
3. When operating at low-speed mode (when the PCC is set to 04 H)
4. When main system clock stopped.

AC Characteristics

(1) Basic Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (Min. instruction execution time)	Tcy	Operating on main system clock	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.4		64	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$	0.8		64	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2.0		64	$\mu \mathrm{s}$
		Operating on subsystem clock		40	122	125	$\mu \mathrm{s}$
TIO input frequency	$\begin{aligned} & \text { tтіно } \\ & \text { tтוLo } \end{aligned}$	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 5.5 \mathrm{~V}$		$2 / \mathrm{fs}_{\text {sam }}+0.1$ Note			$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$		$2 / \mathrm{fs}_{\text {sam }}+0.2^{\text {Note }}$			$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		$2 / \mathrm{fs}_{\text {sam }}+0.5$ Note			$\mu \mathrm{s}$
TI1, TI2 input frequency	ftil	$\mathrm{V} D \mathrm{DD}=4.5$ to 5.5 V		0		4	MHz
				0		275	kHz
TI1, Tl2 input high/low-level width	${ }_{\text {tolin }}$	$V_{\text {dd }}=4.5$ to 5.5 V		100			ns
	tTIL1			1.8			$\mu \mathrm{s}$
Interrupt request input high/low-level width	tinth tintl	INTP0	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2/fsam +0.1 Note			$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$	$2 / \mathrm{fsam}_{\text {sam }}+0.2$ Note			$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	$2 / \mathrm{fs}_{\text {sam }}+0.5^{\text {Note }}$			$\mu \mathrm{s}$
		INTP1 to INTP3, KR0 to KR7	V DD $=2.7$ to 5.5 V	10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$
RESET Iow level width	trsL	$V_{D D}=2.7$ to 5.5 V		10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$

Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of fsam is possible between $\mathrm{fX} / 2^{\mathrm{N}+1}, \mathrm{fX} / 64$ and $\mathrm{fx} / 128$ (when $\mathrm{N}=0$ to 4).

Tcy vs Vdd (At main system clock operation)

(2) Read/Write Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=2.7$ to 5.5 V)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5 tcy		ns
Address setup time	tads		$0.5 \mathrm{tcy}-30$		ns
Address hold time	tadh		50		ns
Data input time from address	tadd			$(2.5+2 n)$ tcy -50	ns
	tadD2			$(3+2 n)$ tcr - 100	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	trid1			$(1+2 n)$ tcr -25	ns
	trid2			$(2.5+2 n)$ tcy -100	ns
Read data hold time	troh		0		ns
$\overline{\mathrm{RD}}$ low-level width	troL1		$(1.5+2 n)$ tcy -20		ns
	troL2		$(2.5+2 n)$ tcr -20		ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	trdwt1			0.5 tcy	ns
	trowt2			1.5tcy	ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\text { WR }} \downarrow$	twrwt			0.5 tcr	ns
$\overline{\text { WAIT }}$ low-level width	twiL		$(0.5+2 n)$ tcy +10	$(2+2 n)$ tcr	ns
Write data setup time	twos		100		ns
Write data hold time	twor	Load resistor $\geq 5 \mathrm{k} \Omega$	20		ns
$\overline{\text { WR }}$ low-level width	twrL1		$(2.5+2 n)$ tcy - 20		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	tastrd		$0.5 \mathrm{tcy}-30$		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	tastwr		$1.5 \mathrm{tcy}-30$		ns
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ in external fetch	trdast		tcy - 10	toy +40	ns
Address hold time from $\overline{\mathrm{RD}} \uparrow$ in external fetch	trdad		tcy	tcy +50	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trowd	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	$0.5 \mathrm{tcy}+5$	$0.5 \mathrm{tcy}+30$	ns
			$0.5 \mathrm{tcr}+15$	$0.5 \mathrm{tcc}+90$	ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd	V DD $=4.5$ to 5.5 V	5	30	ns
			15	90	ns
Address hold time from $\overline{\mathrm{WR}} \uparrow$	twradh	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tcy	tcy +60	ns
			tcr	tcr + 100	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twTRD		0.5 tcy	$2.5 \mathrm{tcy}+80$	ns
$\overline{\mathrm{WR}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twTwr		0.5 tcy	$2.5 \mathrm{tcy}+80$	ns

Remarks 1. $\mathrm{tcy}=\mathrm{Tcy} / 4$
2. n indicates number of waits.
(3) Serial Interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)
(a) Serial Interface Channel 0
(i) 3-wire serial I/O mode ($\overline{\mathrm{SCKO}}$... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tkey1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
$\overline{\text { SCKO }}$ high/low-level width	tkH1 tkL1	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tксу1/2-50			ns
			tксү1/2-100			ns
SIO setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsik1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			ns
			400			ns
SIO hold time (from SCKO \uparrow)	tksı1		400			ns
SOO output delay time from $\overline{\text { SCKO } \downarrow}$	tksot	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of $\overline{\mathrm{SCKO}}$ and SOO output line.
(ii) 3-wire serial I/O mode ($\overline{\mathrm{SCKO}}$... External clock input)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3200			ns
				4800			ns
$\overline{\text { SCKO high/low-level }}$ width	$\begin{aligned} & \text { tKH2 } \\ & \text { tkL2 } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1600			ns
				2400			ns
SIO setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsIK2	V DD $=2.0$ to 5.5 V		100			ns
				150			ns
SIO hold time (from $\overline{\text { SCKO }} \uparrow$)	tкsı2			400			ns
SOO output delay time from $\overline{\text { SCKO }} \downarrow$	tkso2	$C=100 \mathrm{pF}$ Note	$V_{D D}=2.0$ to 5.5 V			300	ns
						500	ns
$\overline{\text { SCK0 }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 2} \\ & \mathrm{t}_{\mathrm{F} 2} \end{aligned}$	When external device expansion function is used				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16-bit timer output function is not used			1000	ns

Note C is the load capacitance of SOO output line.
(iii) SBI mode (SCKO... Internal clock output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксүз	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		3200			ns
				4800			ns
SCKO high/low-level width	tкн3 tкı3	$V D D=4.5 \text { to } 6.0 \mathrm{~V}$		tксүз/2-50			ns
		$V_{D D}=4.5 \text { to } 6.0 \mathrm{~V}$		tксуз/2-150			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsik3	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		100			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		300			ns
				400			ns
SB0, SB1 hold time (from $\overline{\text { SCKO } \uparrow \text {) }}$	tks ${ }^{3}$			tксүз/2			ns
SB0, SB1output delay	tkso3	$\mathrm{R}=1 \mathrm{k} \Omega$,	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	0		250	ns
time from $\overline{\text { SCKO }} \downarrow$		$\mathrm{C}=100 \mathrm{pF}$ Note		0		1000	ns
SB0, SB1 \downarrow from $\overline{\text { SCKO } \uparrow}$	tksb			tксуз			ns
$\overline{\text { SCK0 } ~} \downarrow$ from SB0, SB1 \downarrow	tsbk			tксүз			ns
SB0, SB1 high-level width	tssh			tксуз			ns
SB0, SB1 low-level width	tsbl			tксуз			ns

Note R and C are the load resistors and load capacitance of the SB0, SB1 and SCK0 output line.
(iv) SBI mode (SCKO... External clock input)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy4	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		3200			ns
				4800			ns
SCKO high/low-level width	tkH4 tkı4	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		400			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		1600			ns
				2400			ns
$\begin{aligned} & \text { SB0, SB1 setup time } \\ & \text { (to } \overline{\text { SCK0 } \uparrow \text {) }} \end{aligned}$	tsik4	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		100			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		300			ns
				400			ns
SB0, SB1 hold time (from $\overline{\mathrm{SCKO}} \uparrow$)	tks 14			tkcr4/2			ns
SB0, SB1 output delay time from $\overline{\text { SCKO }} \downarrow$	tkso4	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$\mathrm{V} \mathrm{DD}=4.5$ to 5.5 V	0		300	ns
				0		1000	ns
SB0, SB1 \downarrow from $\overline{\text { SCK0 }} \uparrow$	tksb			tксу4			ns
$\overline{\text { SCKO } ~} \downarrow$ from SB0, SB1 \downarrow	tsbk			tксу4			ns
SB0, SB1 high-level width	tssh			tксу4			ns
SB0, SB1 low-level width	tsbL			tкč4			ns
$\overline{\text { SCKO }}$ rise, fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 4} \\ & \mathrm{t}_{\mathrm{F} 4} \end{aligned}$	When external device expansion function is used				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16-bit timer output function is not used			1000	ns

Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.
(v) 2-wire serial I/O mode (SCKO... Internal clock output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1600			ns
			$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	3200			ns
				4800			ns
$\overline{\text { SCKO }}$ high-level width	tкн5		$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	tkcys/2-160			ns
				tkcys/2-190			ns
SCK0 low-level width	tкL5		$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tkcys/2-50			ns
				tkcys/2-100			ns
$\begin{aligned} & \text { SB0, SB1 setup time } \\ & \text { (to } \overline{\mathrm{SCKO}} \uparrow \text {) } \end{aligned}$	tsiks		$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	300			ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	350			ns
			$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	400			ns
				500			ns
SB0, SB1 hold time (from $\overline{\text { SCKO }} \uparrow$)	tks15			600			ns
SB0, SB1 output delay time from $\overline{\text { SCKO }} \downarrow$	tksos			0		300	ns

Note R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line.
(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy6	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3200			ns
				4800			ns
$\overline{\text { SCKO }}$ high-level width	tкH6	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		650			ns
		$2.0 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}$		1300			ns
				2100			ns
$\overline{\text { SCKO }}$ low-level width	tkL6	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1600			ns
				2400			ns
SB0, SB1 setup time (to $\overline{\text { SCKO }} \uparrow$)	tsik6	V DD $=2.0$ to 5.5 V		100			ns
				150			ns
SB0, SB1 hold time (from $\overline{\mathrm{SCKO}} \uparrow$)	tksI6			tkcye/2			ns
SB0, SB1 output delay time from SCKO \downarrow	tkso6	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		300	ns
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		500	ns
				0		800	ns
$\overline{\text { SCKO }}$ rise, fall time	$\begin{aligned} & \mathrm{t} R 6 \\ & \mathrm{t} 6 \end{aligned}$	When external device expansion function is used				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16-bit timer output function is not used			1000	ns

Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.
(b) Serial Interface Channel 1
(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy 7	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
$\overline{\text { SCK1 }}$ high/low-level width	tкн7 tkl7	$V_{D D}=4.5$ to 5.5 V	tксү7/2-50			ns
			tксү7/2-100			ns
$\begin{aligned} & \text { SI1 setup time } \\ & \text { (to } \overline{\mathrm{SCK} 1} \uparrow \text {) } \end{aligned}$	tsik7	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}$	300			ns
			400			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tkS17		400			ns
SO1 output delay time from $\overline{\text { SCK } 1 \downarrow}$	tkso7	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of $\overline{\text { SCK1 }}$ and SO1 output line.
(ii) 3-wire serial I/O mode $\overline{(S C K 1} \ldots$ External clock input)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксү8	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3200			ns
				4800			ns
SCK1 high/low-level width	$\begin{aligned} & \text { tкH8 } \\ & \text { tkL8 } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1600			ns
				2400			ns
SI1 setup time (to $\overline{\text { SCK1 } \uparrow \text {) }}$	tsık8			100			ns
		$\mathrm{V}_{\mathrm{DD}}=2.0$ to 5.5 V		150			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tksıı			400			ns
SOO output delay time	tksor	$\mathrm{C}=100 \mathrm{pF}$ Note	$V_{\text {dd }}=2.0$ to 5.5 V			300	ns
from $\overline{\text { SCK } 1} \downarrow$						500	ns
$\overline{\text { SCK1 }}$ rise, fall time	$\begin{aligned} & t_{R 8} \\ & t_{\text {F } 8} \end{aligned}$	When external device expansion function is used				160	ns
		When external device expansion function is not used	When 16-bit timer output function is used			700	ns
			When 16 -bit timer output function is not used			1000	ns

Note C is the load capacitance of SO1 output line.
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксү9	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	1600			ns
		$2.0 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$	3200			ns
			4800			ns
$\overline{\text { SCK1 }}$ high/low-level width	tкн9 tкı9	$V_{D D}=4.5$ to 5.5 V	tкč99/2-50			ns
			tkcy9/2-100			ns
SII setup time (to $\overline{\mathrm{SCK} 1} \uparrow$)	tsıı9	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}$	300			ns
			400			ns
SI1 hold time (from $\overline{\text { SCK } 1} \uparrow$)	tksı9		400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tkso9	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
STB \uparrow from SCK1 \uparrow	tsbo		tксу9/2-100		tкč9/2 + 100	ns
Strobe signal high-level width	tssw	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	tксу9 - 30		tkcy9 +30	ns
		$2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$	tксү9 - 60		tксу9 + 60	ns
			tксү9 - 90		tkcy9 +90	ns
Busy signal setup time (to busy signal detection timing)	tevs		100			ns
Busy signal hold time (from busy signal detection timing)	tBY\%	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	200			ns
			300			ns
$\overline{\text { SCK } 1} \downarrow$ from busy inactive	tsps				2tкcy9	ns

Note C is the load capacitance of $\overline{\text { SCK1 }}$ and SO1 output line.
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

Note C is the load capacitance of the SO1 output line.

AC Timing Test Point (Excluding X1, XT1 Input)

Clock Timing

TI Timing

TIO

TI1,TI2

Read/Write Operation

External fetch (No wait):

External fetch (Wait insertion):

External data access (No wait):

External data access (Wait insertion):

Serial Transfer Timing

3-wire serial I/O mode:

SBI mode (Bus release signal transfer):

SBI Mode (command signal transfer):

2-wire serial I/O mode:

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

A/D converter characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{AV} \mathrm{DD}=\mathrm{V} D \mathrm{D}=1.8$ to $\left.5.5 \mathrm{~V}, \mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq \mathrm{AV} \mathrm{VdD}$			0.6	\%
		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }}<2.7 \mathrm{~V}$			1.4	\%
Conversion time	tconv	$2.0 \mathrm{~V} \leq \mathrm{AV}$ DD $\leq 5.5 \mathrm{~V}$	19.1		200	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{AV} \mathrm{DD}<2.0 \mathrm{~V}$	38.2		200	$\mu \mathrm{s}$
Sampling time	tsamp		24/fx			$\mu \mathrm{s}$
Analog input voltage	VIAN		AVss		AVref	V
Reference voltage	AVref		1.8		AVDD	V
AVref resistance	Rairef		4	14		$\mathrm{k} \Omega$

Note Overall error excluding quantization error ($\pm 1 / 2 \mathrm{LSB}$). It is indicated as a ratio to the full-scale value.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Voddr		1.8		5.5	V
Data retention supply current	IDDDR	$V_{D D D R}=1.8 \mathrm{~V}$ Subsystem clock stop and feedback resister disconnected		0.1	10	$\mu \mathrm{A}$
Release signal set time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time	twalt	Release by $\overline{\text { RESET }}$		$2^{18 / f x}$		ms
		Release by interrupt request		Note		ms

Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of $2^{13} / \mathrm{fx}$ and $2^{15} / \mathrm{fx}$ to $2^{18} / \mathrm{fx}$ is possible.

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal : STOP Mode Release by Interrupt Request Signal)

Interrupt Request Input Timing

INTP0 to INTP2

$\overline{\text { RESET Input Timing }}$

12. CHARACTERISTIC CURVE (REFERENCE VALUES)

Idd vs Vdo (Main System Clock: 10.0 MHz)

13. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

1) Each lead centerline is located within $0.17 \mathrm{~mm}(0.007 \mathrm{inch})$ of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	58.68 MAX.	2.311 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.005}^{+0.004}$
F	0.9 MIN.	0.035 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
M	$0.25_{-0}^{+0.05}$	$0.010_{-0.003}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P64C-70-750A.C-1

Remark Dimensions and materials of ES products are the same as those of mass-production products.

64 PIN PLASTIC QFP ($\square 14$)

NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM		MILLIMETERS
A	INCHES	
A	17.6 ± 0.4	0.693 ± 0.016
B	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	1.0	0.039
H	0.35 ± 0.10	$0.014_{-0.005}^{+0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8 ± 0.2	0.071 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.55	0.100
Q	0.1 ± 0.1	0.004 ± 0.004
S	2.85 MAX.	0.112 MAX.

Remark Dimensions and materials of ES products are the same as those of mass-production products.

64 PIN PLASTIC LQFP ($\square 12$)

NOTE
Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.8 ± 0.4	0.583 ± 0.016
B	12.0 ± 0.2	$0.472_{-0.008}^{+0.009}$
C	12.0 ± 0.2	$0.472_{-0.008}^{+0.009}$
D	14.8 ± 0.4	0.583 ± 0.016
F	1.125	0.044
G	1.125	0.044
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.13	0.005
J	$0.65($ T.P. $)$	0.026 (T.P.)
K	1.4 ± 0.2	$0.055^{2} 0.008$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	$0.15_{-0.0}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	1.4	0.055
Q	0.125 ± 0.075	$0.005^{+0.003}$
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	1.7 MAX.	0.067 MAX.
		P64GK-65-8A8-1

Remark Dimensions and materials of ES products are the same as those of mass-production products.

14. RECOMMENDED SOLDERING CONDITIONS

The $\mu \mathrm{PD} 78011 \mathrm{~F} / 78012 \mathrm{~F} / 78013 \mathrm{~F} / 78014 \mathrm{~F} / 78015 \mathrm{~F} / 78016 \mathrm{~F} / 78018 \mathrm{~F}$ should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact our salespersonnel.

Table 14-1. Surface Mounting Type Soldering Conditions (1/2)
(1) μ PD78011FGC- $x \times x-$ AB8: 64-Pin Plastic QFP $(14 \times 14 \mathrm{~mm})$ μ PD78012FGC- $-\times \times-$ AB8: 64-Pin Plastic QFP $(14 \times 14 \mathrm{~mm})$ μ PD78013FGC- $\times \times \times-$ AB8: 64-Pin Plastic QFP ($14 \times 14 \mathrm{~mm}$) μ PD78014FGC- $\times x \times-$ AB8: 64-Pin Plastic QFP ($14 \times 14 \mathrm{~mm}$) μ PD78015FGC- $\times \times \times-$ AB8: 64-Pin Plastic QFP ($14 \times 14 \mathrm{~mm}$) μ PD78016FGC- $\times \times \times-$ AB8: 64-Pin Plastic QFP ($14 \times 14 \mathrm{~mm}$)
μ PD78018FGC- $-x \times-$ AB8: 64-Pin Plastic QFP $(14 \times 14 \mathrm{~mm})$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210^{\circ} \mathrm{C}$ or above), Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Duration: 40 sec. max. (at $200^{\circ} \mathrm{C}$ or above), Number of times: Three times max.	VP15-00-3
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max. Duration: 10 sec. max. Number of times: Once Preheating temperature: $120^{\circ} \mathrm{C}$ max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Duration: 3 sec. max. (per device side)	-

Caution Use more than one soldering method should be avoided (except in the case of partial heating).

Table 14-1. Surface Mounting Type Soldering Conditions (2/2)
(2) μ PD78011FGK- $\times \times \times-8$ A8 : 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78012FGK- $\times \times \times-8 A 8$: 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78013FGK- $\Varangle \times x-8 A 8$: 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78014FGK- $\times x \times-8$ A8 : 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78015FGK- $\times \times x-8$ A8 : 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78016FGK- $\times x \times-8 A 8$: 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)
μ PD78018FGK- $\times \times \times-8$ A8 : 64-Pin Plastic LQFP ($12 \times 12 \mathrm{~mm}$)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Duration: 30 sec. max. (at $210^{\circ} \mathrm{C}$ or above), Number of times: Twice max., Number of days: 7 days ${ }^{\text {Note }}$ (after that, $125^{\circ} \mathrm{C}$ prebaking for 10 hours is necessary.) < Precautions > (1) Start the second reflow after the device temprature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided.	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Duration: 40 sec. max. (at $200^{\circ} \mathrm{C}$ or above), Number of times: Twice max., Number of days: 7 days ${ }^{\text {Note }}$ (after that, $125^{\circ} \mathrm{C}$ prebaking for 10 hours is necessary.) < Precautions > (1) Start the second reflow after the device temprature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided.	VP15-107-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max. Duration: 10 sec . max. Number of times: Once, Preheating temperature: $120{ }^{\circ} \mathrm{C}$ max. (Package surface temperature), Number of days: 7 days Note (after that, $125^{\circ} \mathrm{C}$ prebaking for 10 hours is necessary.)	WS60-107-1
Partial heating	Pin temperature: $300{ }^{\circ} \mathrm{C}$ max., Duration: 3 sec. max. (per device side)	-

Note The number of days the device can be stored at $25^{\circ} \mathrm{C}, 65 \%$ RH MAX. after the dry pack has been opend.

Caution Use more than one soldering method should be avoided (except in the case of partial heating).

Table 14-2. Insertion Type Soldering Conditions

$$
\begin{aligned}
& \mu \text { PD78011FCW }-x \times x: 64-\text { Pin Plastic Shrink DIP }(750 \mathrm{mil}) \\
& \mu \text { PD78012FCW }-x \times x: 64-\text { Pin Plastic Shrink DIP }(750 \mathrm{mil}) \\
& \mu \text { PD78013FCW }-x \times x: 64-\text { Pin Plastic Shrink DIP }(750 \mathrm{mil}) \\
& \mu \text { PD78014FCW }-x \times x: 64-\text { Pin Plastic Shrink DIP }(750 \mathrm{mil}) \\
& \mu \text { PD78015FCW }-x \times x: 64-\text { Pin Plastic Shrink DIP }(750 \mathrm{mil}) \\
& \mu \text { PD78016FCW }-x \times x: 64 \text {-Pin Plastic Shrink DIP }(750 \mathrm{mil}) \\
& \mu \text { PD78018FCW }-x \times x: 64-\text { Pin Plastic Shrink DIP }(750 \mathrm{mil})
\end{aligned}
$$

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Duration: 10 sec. max.
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Duration: 3 sec. max. (per pin)

Caution Wave soldering is only for the lead part in order that jet solder can not contact with the chip directly.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78018F subseries.
Language Processing Software

RA78K/0 Notes 1, 2, 3, 4	$78 \mathrm{~K} / 0$ series common assembler package
CC78K/0 Notes 1, 2, 3, 4	$78 \mathrm{~K} / 0$ series common C compiler package
DF78014 Notes 1, 2, 3, 4	Device file common to μ PD78014 subseries
CC78K/0-L Notes 1, 2, 3, 4	$78 \mathrm{~K} / 0$ series common C compiler library source file

PROM Writting Tools

PG-1500	PROM programmer
PA-78P014CW	Programmer adapter connected to PG-1500
PA-78P018GC	
PA-78P018GK	
PA-78P018KK-S	PG-1500 control program
PG-1500 controller Notes 1,2	

Debugging Tool

\star	IE-78000-R	78K/0 series common in-circuit emulator
	IE-78000-R-A	78K/0 series common in-circuit emulator (for integrated debugger)
	IE-78000-R-BK	78K/0 series common break board
	IE-78014-R-EM-A	$\mu \mathrm{PD} 78018 \mathrm{~F}$ and 78018FY subseries evaluation emulation board ($\mathrm{VDD}=3.0$ to 6.0 V)
\star	IE-78000-R-SV3	Interface adapter and cable when an EWS is used as the host machine (for IE-78000R-A)
\star	IE-70000-98-IF-B	Interface adapter when PC-9800 series (except notebook PC) is used as the host machine (for IE-78000-R-A)
\star	IE-70000-98N-IF	Interface adapter and cable when PC-9800 series notebook PC is used as the host machine (for IE-78000-R-A)
\star	IE-70000-PC-IF-B	Interface adapter when IBM PC/AT ${ }^{\text {TM }}$ is used as the host machine (for IE-78000-R-A)
	$\begin{aligned} & \text { EP-78240CW-R } \\ & \text { EP-78240GC-R } \end{aligned}$	Emulation probe common to μ PD78244 subseries
	EV-78012GK-R	μ PD78018F subseries emulation probe
	EV-9200GC-64	Socket to be mounted on target system board created for the 64-pin plastic QFP (GC-AB8 type)
\star	TGC-064SBW	Conversion adapter to be mounted on a target system board made for 64-pin plastic QFP (GK-8A8 type) TGC-100SDW is a product from Tokyo Eletech Corp. (TEL (03) 5295-1661) When purchasing this product, please consult with our sales offices.
\star	EV-9900	Tools for removing μ PD78P018FKK-S from EV-9200GC-64
	SM78K0 Notes 5, 6, 7	78K/0 series common system simulator
	ID78K0 Notes 4, 5, 6, 7	IE-78000-R-A integrated dubugger
	SD78K/0 Notes 1, 2	IE-78000-R screen debugger
	DF78014 Notes 1, 2, 4, 5, 6, 7	Device file common to μ PD78014 subseries

Real-Time OS

RX78K/0 Notes 1, 2, 3, 4	$78 \mathrm{~K} / 0$ series real-time OS
MX78KO Notes 1, 2, 3, 4	$78 \mathrm{~K} / 0$ series OS

Fuzzy Inference Devleopment Support System

FE9000 Note 1/FE9200 Note 6	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 2	Translator
FI78K0 Notes 1, 2	Fuzzy inference module
FD78K0 Notes 1, 2	Fuzzy inference debugger

Notes 1. PC-9800 series (MS-DOS ${ }^{\text {TM }}$) based
2. IBM PC/AT and compatible (PC DOS $\left.{ }^{T M} / I B M D O S^{T M} / M S-D O S\right)$ based
3. HP9000 series $300^{\text {TM }}\left(H P-U X^{T M}\right)$ based
4. HP9000 series $700^{T M}$ (HP-UX) based, SPARCstation ${ }^{T M}$ (SunOS ${ }^{T M}$) based, EWS4800 series (EWS-UX/V) based
5. PC-9800 series (MS-DOS + Windows ${ }^{\text {TM }}$) based
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
7. $N E W S^{\top M}\left(N E W S-O S^{T M}\right)$ based

Remarks 1. For development tools manufactured by a third party, refer to the $78 \mathrm{~K} / 0$ Series Selection Guide (U11126E).
2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78014.

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No.	
		Japanese	English
μ PD78018F, 78018FY Subseries User's Manual		U10659J	U10659E
78K/0 Series User's Manual - Instruction		U12326J	IEU-1372
78K/0 Series Instruction Table		U10903J	-
78K/0 Series Instruction Set		U10904J	-
μ PD78018F Subseries Special Function Register Table		IEM-5594	-
78K/0 Series Application Note	Fundamental (I)	IEA-715	IEA-1288
	Floating-Point Arithmetic Program	IEA-718	IEA-1289

Development Tools Documents (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly Language	U11789J	U11789E
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
cC78K/0 C Compiler Application Note	Programming Know-how	EEA-618	EEA-1208
CC78K Series Library Source File		U12322J	-
PG-1500 PROM Programmer		U11940J	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
E-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78014-R-EM-A		EEU-962	U10418E
EP-78240		EEU-986	EEU-1513
EP-78012GK-R		EEU-5012	EEU-1538
SM78K0 System Simulator	Reference	U10181J	U10181E

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for designing, etc.

Development Tools Documents (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	-
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
PC-9800 Series (MS-DOS) Based	Reference	U10952J	-
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

Embedded Software Documents (User's Manual)

$\star \quad$ Other Documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C11535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	C11893J	-
Guide to Quality Assurance for Semiconductor Device	U11416J	MEI-1202
Guide for Products Related to Microcomputer: Other Companies	-	

Caution The contents of the above related documents are subject to change without notice. The latest documents should be used for designing, etc.

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VdD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1. Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

FIP and IEBus are trademarks of NEC Corporation.
MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents referred to in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

[^0]: IF : Test input flag
 MK : Test mask flag

