To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1 ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4282 Group
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4282 Group enables fabrication of 8×7 key matrix and has the followin timers;

- an 8-bit timer which can be used to set each carrier wave and has two reload register
- an 8-bit timer which can be used to auto-control and has a reload register.

FEATURES

- Number of basic instructions 68
- Minimum instruction execution time $8.0 \mu \mathrm{~s}$ (at $f(X I N)=4.0 \mathrm{MHz}$, system clock $=f(X I \mathrm{~N}) / 8$)
- Supply voltage esting
1.8 V to 3.6 V
- Subroutine nesting

4 levels

- Timer

Timer 1
8-bit timer
(This has a reload register and carrier wave output auto-control function)
Timer 2
8-bit timer
(This has two reload registers and carrier wave output function)

- Logic operation function (XOR, OR, AND)
- RAM back-up function
- Key-on wakeup function (ports D4-D7, E0-E2, G0-G3) 11
- I/O port (ports D, E, G, CARR) .. 16
- Oscillation circuit

Ceramic resonance

- Watchdog timer
- Power-on reset circuit
- Voltage drop detection circuit

Typical:1.50 V (system reset)

APPLICATION

Various remote control transmitters

Part number	ROM (PROM) size $(\times 9$ bits $)$	RAM size $(\times 4$ bits $)$	Package	ROM type
M34282M1-XXXGP	1024 words	48 words	$20 P 2 E / F-A$	Mask ROM
M34282M2-XXXGP	2048 words	64 words	$20 P 2 E / F-A$	Mask ROM
M34282E2GP	2048 words	64 words	$20 P 2 E / F-A$	One Time PROM

PIN CONFIGURATION (TOP VIEW)

PERFORMANCE OVERVIEW

PIN DESCRIPTION

Pin	Name	Input/Output	
VDD	Power supply	-	Connected to a plus power supply.
Vss	Ground	-	Connected to a 0 V power supply.
XIN	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator between pins XIN and Xout. The feedback resistor is built-in between pins XIN and Xout.
XouT	System clock output	Output	

CONNECTIONS OF UNUSED PINS

Pin	Connection
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Open or connect to Vod pin (Note 1).
$\mathrm{E}_{0}, \mathrm{E}_{1}$	Set the output latch to "1" and open, or connect to Vod pin (Note 2).
E_{2}	Open or connect to Vss pin.
$\mathrm{G}_{0}-\mathrm{G}_{3}$	Set the output latch to"1" and open, or connect to VDD pin (Note 2).

Notes 1: Ports D4-D7: Set the bit 2 (PU02) of the pull-down control register PU1 to "0" by software and turn the pull-down transistor OFF.
2: Set the corresponding bits of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.
(Note in order to set the output latch to "1" to make pins open)

- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to " 1 " by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).
(Note when connecting to Vss and VdD)
- Connect the unused pins to $V_{S S}$ or $V_{D D}$ at the shortest distance and use the thick wire against noise.

PORT FUNCTION

Port	Pin	Input/ Output	Output structure	Control bits	Control instructions	Control registers	Remark
Port D	D0-D3	Output (4)	P-channel open-drain	1 bit	$\begin{array}{\|l\|} \hline \text { SD } \\ \text { RD } \\ \text { CLD } \end{array}$		
	D4-D7	1/0 (4)			$\begin{aligned} & \hline \text { SD } \\ & \text { RD } \\ & \text { CLD } \\ & \text { SZD } \end{aligned}$	PU1	Pull-down function and key-on wakeup function (programmable)
Port E	$\begin{aligned} & \mathrm{E}_{0} \\ & \mathrm{E}_{1} \end{aligned}$	I/O (2)	P-channel open-drain	Output: 2 bits Input: 3 bits	$\begin{aligned} & \hline \text { OEA } \\ & \text { IAE } \end{aligned}$	PU0	Pull-down function and key-on wakeup function (programmable)
	E2	Input (1)			IAE		
Port G	G0-G3	I/O (4)	P-channel open-drain	4 bits	$\begin{array}{\|l\|} \hline \text { OGA } \\ \text { IAG } \end{array}$	PU0	Pull-down function and key-on wakeup function (programmable)
Port CARR	CARR	Output (1)	CMOS	1 bit	$\begin{aligned} & \text { SCAR } \\ & \text { RCAR } \end{aligned}$		

DEFINITION OF CLOCK AND CYCLE

- System clock (STCK)

The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the CCK instruction.

CCK instruction	System clock	Instruction clock
When not using	$\mathrm{f}(\mathrm{XIN}) / 8$	$\mathrm{f}(\mathrm{XIN}) / 32$
When using	$\mathrm{f}(\mathrm{XIN})$	$\mathrm{f}(\mathrm{XIN}) / 4$

- Instruction clock (INSTCK)

The instruction clock is a signal derived by dividing the system clock by 4 , and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

- Machine cycle

The machine cycle is the cycle required to execute the instruction.

PORT BLOCK DIAGRAMS

Notes 1:----14--- This symbol represents a parasitic diode. 2: i represents bits 0 to 3 .
3: j represents bits 0,1 .
4: k represents bits 2, 3 .
5: Applied voltage must be less than VDD.

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.
(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.
Carry flag CY is a 1 -bit flag that is set to " 1 " when there is a carry with the AMC instruction (Figure 1).
It is unchanged with both A n instruction and AM instruction. The value of A_{0} is stored in carry flag CY with the RAR instruction (Figure 2).
Carry flag CY can be set to "1" with the SC instruction and cleared to " 0 " with the RC instruction.
(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4bit data, and for 8 -bit data transfer together with register A. Register E is an 8 -bit register. It can be used for 8 -bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).
(4) Register D

Register D is a 3-bit register.
It is used to store a 7 -bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

Fig. 3 Registers A, B and register E

Fig. 4 TABP p instruction execution example
(5) Most significant ROM code reference enable flag (URS) URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is " 0 ," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is " 1, ," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4). URS flag is " 0 " after system is released from reset and returned from RAM back-up mode. It can be set to " 1 " with the URSC instruction, but cannot be cleared to " 0 ."
(6) Stack registers (SKs) and stack pointer (SP) Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.
The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).
Figure 5 shows the stack registers (SKs) structure.
Figure 6 shows the example of operation at subroutine call.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.
Note : The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2 . Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes " 1 " if the TABP p, RT, or RTS instruction is skipped.

Stack pointer (SP) points " 3 " at reset or returning from RAM back-up mode. It points " 0 " by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after four stack registers are used $((S P)=3),(S P)=0$ and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

Note: Returning to the BM instruction execution address with the RT instruction, and the BM instruction is equivalent to the NOP instruction.

Fig. 6 Example of operation at subroutine call
(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.
Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).
Make sure that the PCH does not exceed after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers X and Y . Register X specifies a file and register Y specifies a RAM digit (Figure 8).
Register Y is also used to specify the port D bit position.
When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure $9)$.

Fig. 7 Program counter (PC) structure

Fig. 8 Data pointer (DP) structure

Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Part number	ROM size (×9 bits)	Pages
M34282M2/E2	2048 words	$16(0$ to 15$)$
M34282M1	1024 words	$8(0$ to 7$)$

Page 2 (addresses 010016 to $017 \mathrm{~F}_{16}$) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1 -word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.
ROM pattern of all addresses can be used as data areas with the TABP p instruction.

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB $j, R B j$, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y . Set a value to the data pointer certainly when executing an instruction to access RAM.
Table 2 shows the RAM size. Figure 11 shows the RAM map.
Table 2 RAM size

Part number	RAM size
M34282M2/E2	64 words $\times 4$ bits $(256$ bits $)$
M34282M1	48 words $\times 4$ bits $(192$ bits $)$

Fig. 10 ROM map of M34282M2/E2

RAM 64 words $\times 4$ bits (256 bits)						
\bigcirc	Register X	0	1	2	3	
	0					$]^{-1}$
	1					
	2					
	3					
	4					
	5					
$>$	6					
$\stackrel{\text { ¢ }}{ \pm}$	7					
-	8					
匹	9					
	10					
	11					-
	12					
	13					
	14					
	15					

Fig. 11 RAM map

TIMERS

The 4282 Group has the programmable timer.

- Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to $n+1$), a timer 1 underflow flag is set to " 1 ," new data is loaded from the reload register, and count continues (auto-reload function).

Fig. 12 Auto-reload function

The 4282 Group timer consists of the following circuit.

- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer

These timers can be controlled with the timer control registers
V1 and V2.
Each timer function is described below.

Table 3 Function related timer

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Timer 1	8-bit programmable binary down counter	- Carrier wave output (CARRY) - Bit 5 of watchdog timer	1 to 256	- Carrier wave output control	V1
Timer 2	8-bit programmable binary down counter	$\begin{array}{\|l} \hline \cdot f(X i n) \\ \cdot f(X i n) / 2 \end{array}$	1 to 256	- Carrier wave output	V2
14-bit timer	14-bit fixed frequency	- Instruction clock	16384	- Watchdog timer - Timer 1 count source	

Notes 1 : Counting is stopped by clearing to " 0. ."
2: When the T1AB instruction is executed after V1 0 is set to " 1 ,"
writing is performed only to reload register R1.
3: The data of reload register R2L set with the T2AB instruction
can be also written to timer 2 with the T2R2L instruction.
4: The initializing signal is output at reset or RAM back-up mode.

Fig. 13 Timers structure

Table 4 Control registers related to timer

| Timer control register V1 | | at reset :0002 | | at RAM back-up :0002 | |
| :---: | :--- | :---: | :--- | :--- | :--- |\quad W

Timer control register V2		at reset : 00002		at RAM back-up : 00002	W
V23	Carrier wave "H" interval expansion bit	0	To expand "H" interval is invalid		
		1	To expand "H" interval is valid (when $\mathrm{V} 22=1$ selected)		
V22	Carrier wave generation function control bit	0	Carrier wave generation function invalid		
		1	Carrier wave generation function valid		
V21	Timer 2 count source selection bit	0	f(XIN)		
		1	$\mathrm{f}(\mathrm{XIN}) / 2$		
V20	Timer 2 control bit	0	Stop (Timer 2 state retained)		
		1	Operating		

Note: "W" represents write enabled.

(1) Control registers related to timer

- Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

- Timer control register V2

Register V2 controls the timer 2 count source and the carrier wave generation function by timer. Set the contents of this register through register A with the TV2A instruction.

(2) Precautions

Note the following for the use of timers

- Count source

Stop timer 1 or timer 2 counting to change its count source.

- Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

- Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

- Timer 1 count operation When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum $\pm 256 \mu \mathrm{~s}$ (at the minimum instruction execution time : $8 \mu \mathrm{~s}$) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.
- Stop of timer 2

Avoid a timing when timer 2 underflows to stop timer 2.

- Writing to reload register R2H

When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.

- Timer 2 carrier wave output function When to expand " H " interval of carrier wave is valid, set " 1 " or more to reload register R2H.

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).
When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.
When timer is operating, data can be set to only reload register R1 with the T1AB instruction.
When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.
Timer 1 starts counting after the following process;
(1) set data in timer 1 ,
(2) select the count source with the bit 1 of register V1, and
(3) set the bit 0 of register V1 to " 1 ."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes " 0 "), the timer 1 underflow flag (T1F) is set to " 1 ," new data is loaded from reload register R1, and count continues (auto-reload function).
When a value set in reload register R1 is n , timer 1 divides the count source signal by $\mathrm{n}+1$ ($\mathrm{n}=0$ to 255).
When the bit 2 of register V1 is set to "1," the carrier wave output enable/disable interval of port CARR is alternately generated each timer 1 underflows (Figure 14).
Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2

Timer 2 is an 8 -bit binary down counter with the timer 2 reload registers (R2H and R2L).
Data can be set simultaneously in timer 2 and the reload register (R2L) with the T2AB instruction.
The contents of reload register (R2L) set with the T2AB instruction can be set again to timer 2 with the T2R2L instruction. Data can be set to reload register (R2H) with the T2HAB instruction.
Timer 2 starts counting after the following process;
(1) set data in timer 2,
(2) select the count source with the bit 1 of register V2, and
(3) select the valid/invalid of the carrier wave generation function by bit 2 of register V1 (when this function is valid, select the valid/invalid of the carrier wave " H " interval expansion by bit 3), and
(4) set the bit 0 of register V1 to "1."

When the carrier wave generation function is invalid (V22="0"), the following operation is performed;
Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes " 0 "), the timer 2 underflow flag (T2F) is set to " 1 ," new data is loaded from reload register R2L, and count continues (auto-reload function).
When a value set in reload register R2L is n , timer 2 divides the count source signal by $n+1$ ($n=0$ to 255).
When the carrier wave generation function is valid (V22="1"), the carrier wave which has the " L " interval set to the reload register R2L and " H " interval set to the reload register R2H can be output (Figure 15).
After the count of the "L" interval of carrier wave is started, timer 2 underflows and the timer 2 underflow flag (T2F) is set
to " 1 ". Then, the " H " interval data of carrier wave is reloaded from the reload register R2H, and count continues.
When timer underflows again after auto-reload, the T2F flag is set to " 1 ". And then, the " L " interval data of carrier wave is reloaded from the reload register R2L, and count continues. After that, each timer underflows, data is reloaded from reload register R2H and R2L alternately.
When a value set in reload register R2H is n, "H" interval of carrier wave is as follows;
(1) When to expand " H " interval is invalid ($\mathrm{V} 23=$ " 0 "),

Count source $\times(n+1), n=0$ to 255
(2) When to expand " H " interval is valid ($\mathrm{V} 23=$ " 1 "),

Count source $\times(\mathrm{n}+1.5), \mathrm{n}=1$ to 255
When a value set in reload register R2L is m, "L" interval of carrier wave is as follows;

Count source $\times(m+1), m=0$ to 255
Data can be read from timer 2 to registers A and B. When reading the data, stop the counter and then execute the TAB2 instruction.
(5) Timer underflow flags (T1F, T2F)

Timer 1 underflow flag or timer 2 underflow flag is set to " 1 " when the timer 1 or timer 2 underflows. The state of flags T1F and T2F can be examined with the skip instruction (SNZT1, SNZT2).
Flags T1F and T2F are cleared to " 0 " when the next instruction is skipped with a skip instruction.

Note: When timer 1 is stopped, the port CARR output auto-control is terminated regardless of bit 2 (V12) of register V1.
Fig. 14 Port CARR output control by timer 1

- In this case, the following is set;
- Timer 2 carrier wave generation function is valid (V22="1"),
- "L" interval (0316) of carrier wave is set to reload register R2L
- " H " interval (0216) of carrier wave is set to reload register R2H

To expand " H " interval of carrier wave is invalid (V23="0")
[Count source: 4.0 MHz , Resolution: 250 ns]

To expand "H" interval of carrier wave is valid (V23="1")

Note: When to expand "H" interval of the carrier wave is valid, set " 0116 " or more to reload register R2H.
Fig. 15 Carrier wave generation example by timer 2

- In this case, the following is set;
- To expand " H " interval of carrier wave is invalid (V23 = " 0 "),
- Timer 2 carrier wave generation function is valid (V22="1"),
- Count source $\mathrm{XIN} / 2$ selected (V21="1"),
- "L" interval (0316) of carrier wave is set to reload register R2L
- "H" interval (0216) of carrier wave is set to reload register R2H

Notes 1: When the carrier wave generation function is vaild (V22="1"), avoid a timing when timer 2 underflows to stop timer 2 . When the timer 2 count stop occurs at the same timing with the timer 2 underflows, hazard may occur in the carrier wave output waveform.
2: When the timer 2 is stopped during " H " output of carrier wave while the carrier wave generation function is valid, it is stopped after the " H " interval set by reload register R2H is output.

Fig. 16 Timer 2 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).
Watchdog timer downcounts the instruction clock (INSTCK) as the count source immediately after system is released from reset. When the timer WDT count value becomes 000016 and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to " 1 " and internal reset signal is generated and system reset is performed.
Execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.
Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM backup mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

Fig. 17 Watchdog timer function

LOGIC OPERATION FUNCTION

The 4282 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Table 5 Logic operation selection register LO

| Logic operation selection register LO | | at reset :002 | | | at RAM back-up :002 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad W

Note: "W" represents write enabled.

Each logic operation can be selected by setting logic operation selection register LO.
Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.
Table 5 shows the logic operation selection register LO.

RESET FUNCTION

The 4282 Group has the power-on reset circuit, though it does not have RESET pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0.

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until $\mathrm{VDD}=0$ to 2.2 V is obtained at power-on 1 ms or less.

Fig. 18 Reset release timing

Fig. 19 Power-on reset circuit example

(1) Internal state at reset

Table 6 shows port state at reset, and Figure 20 shows internal state at reset (they are retained after system is released from reset).
The contents of timers, registers, flags and RAM except shown in Figure 20 are undefined, so set the initial value to them.
(2) Note on power-on reset

Under the following condition, the system reset occurs by the built-in the power-on reset circuit of this product;

- when the supply voltage (VDD) rises from 0 V to 2.2 V , within 1 ms . Also, note that system reset does not occur under the following conditions;
- when the supply voltage (VDD) rises from the voltage higher than 0V, or
- when it takes more than 1 ms for the supply voltage (VDD) to rise from 0 V to 2.2 V .

Table 6 Port state at reset

Name	State at reset
$\mathrm{D}_{0}-\mathrm{D}_{3}$	High impedance state
$\mathrm{D}_{4}-\mathrm{D}_{7}$	High impedance state (Pull-down transistor OFF)
$\mathrm{G}_{0}-\mathrm{G}_{3}$	High impedance state (Pull-down transistor OFF)
$\mathrm{E}_{0}, \mathrm{E}_{1}$	High impedance state (Pull-down transistor OFF)
CARR	"L" output

- Program counter (PC)	0	0	0	0	0	0		0	0			0	0	0
Address 0 in page 0 is set to program counter.														
- Power down flag (P) ...	0	0												
- Timer 1 underflow flag (T1F)	0	0												
- Timer 2 underflow flag (T2F)	0	0												
- Timer control register V1.	0	0	0	0										
- Timer control register V2.	0	0	0	0	0									
- Port CARR output flag (CAR)	0	0												
- Pull-down control register PU0	0	0	0	0	0									
- Pull-down control register PU1	0	0	0	0	0									
- Logic operation selection register LO		0	0											
- Most significant ROM code reference enable flag (URS)	0	0												
- Carry flag (CY)		0												
- Register A .	1	1	1	1	1									
- Register B		1	1	1	1									
- Register X	0	0	0											
- Register Y .	0	0	0	0	0									
- Stack pointer (SP)			1											

Fig. 20 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage at operating and to reset the microcomputer if the supply voltage drops below the specified value (Typ. 1.50 V) or less.

The voltage drop detection circuit is stopped and power dissipation is reduced in the RAM back-up mode with the initialized CPU stopped.

Fig. 21 Voltage drop detection circuit operation waveform

Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
A battery exchange of an application product is explained as an example.
The supply voltage falls below to the recommended operating voltage while CPU keeps active. Then, an unexpected oscillation-stop, which does not happen by POF instruction occurs before the supply voltage falls below to the detection voltage. In this time, even if the supply voltage re-goes up to the recommended operating voltage, since reset does not occur, MCU may not operate correctly.
Please confirm the oscillator you use and the frequency of system clock, and test the operation of your system sufficiently.

Fig. 22 VDD and VDET

RAM BACK-UP MODE

The 4282 Group has the RAM back-up mode.
When the POF instruction is executed, system enters the RAM back-up state.
As oscillation stops retaining RAM, the functions and states of reset circuit at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 23 shows the state transition.

(1) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0 . In this case, the P flag is " 1 ."

(2) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied .

- reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed

In this case, the P flag is " 0 ."
(3) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

Table 7 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	\times
Contents of RAM	O
Port CARR	\times
Ports D0-D7	O
Ports E0, E1	O
Port G	\times
Timer control registers V1, V2	O
Pull-down control registers PU0, PU1	\times
Logic operation selection register LO	\times
Timer 1 function, Timer 2 function	\times
Timer underflow flags (T1F, T2F)	\times
Watchdog timer (WDT)	\times
Watchdog timer flags (WDF1, WDF2)	\times
MostsignificantROMcodereferenceenableflag(URS)	

Notes 1: "O" represents that the function can be retained, and " X " represents that the function is initialized.
Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
2:The stack pointer (SP) points the level of the stack register and is initialized to "112" at RAM back-up.

Stabilizing time @ : Microcomputer starts its operation after $f($ XIN $)$ is counted to16384 times.

Fig. 23 State transition

Fig. 24 Set source and clear source of the P flag
 instruction
(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

Return source	Return condition	Remarks
Ports D4-D7	Return by an external "H" level input.	Only key-on wakeup function of the port whose pull-down transistor is turned ON by register PU1 is valid.
Ports $\mathrm{E}_{0}, \mathrm{E}_{1}, \mathrm{G}$	Return by an external "H" level input.	Only key-on wakeup function of the port whose pull-down transistor is turned ON by register PU0 is valid.
Ports E_{2}	Return by an external "H" level input.	Key-on wakeup function is always valid.

(5) Pull-down control register

Registers PU0 and PU1 are 4-bit registers and control the ON/OFF of pull-down transistor and key-on wakeup function for ports $\mathrm{E}_{0}, \mathrm{E}_{1}, \mathrm{G}$ and ports D4-D7.

Set the contents of register PU0 or PU1 through register A with the TPU0A or TPU1A instruction, respectively.

Table 9 Pull-down control registers

Pull-down control register PU0		at reset: 00002		at RAM back-up : state retained	W
PU03	Ports G2, G3 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU02	Ports Go, G1 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU01	Port E1 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU00	Port Eo pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		

Pull-down control register PU1		at reset : 00002		at RAM back-up : state retained	W
PU13	Port D7 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU12	Port D6 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU1 11	Port D5 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU10	Port D4 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		

Note: "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- System clock generating circuit
- Control circuit to stop the clock oscillation
- Control circuit to return from the RAM back-up state

Fig. 26 Clock control circuit structure
System clock signal $f(\mathrm{Xin})$ is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins XIN and Xout at the shortest distance as shown Figure 27.
A feedback resistor is built-in between Xin pin and Xout pin.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.

* For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

Fig. 27 Ceramic resonator external circuit

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. $0.01 \mu \mathrm{~F}$) between pins

Vdd and Vss at the shortest distance,

- equalize its wiring in width and length, and
- use the thickest wire.

In the One Time PROM version, port E_{2} is also used as VPP pin. Connect this pin to Vss through the resistor about $5 \mathrm{k} \Omega$ which is assigned to E2/Vpp pin as close as possible at the shortest distance.

(2) Notes on unused pins

(Note in order to set the output latch to "0" to make pins open)

- After system is released from reset, a port is in a highimpedance state until the output latch of the port is set to "0" by software.
Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).
(Note when connecting to Vss and Vdd)
- Connect the unused pins to Vss and Vod at the shortest distance and use the thick wire against noise.

(3) Timer

- Count source

Stop timer 1 or timer 2 counting to change its count source.

- Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

- Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

- Timer 1 count operation

When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum $\pm 256 \mu \mathrm{~s}$ (at the minimum instruction execution time : $8 \mu \mathrm{~s}$) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.

- Stop of timer 2

Avoid a timing when timer 2 underflows to stop timer 2.

- Writing to reload register R2H

When writing data to reload register R 2 H while timer 2 is operating, avoid a timing when timer underflows.

- Timer 2 carrier wave output function

When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.
(4) Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

Power-on reset

Under the following condition, the system reset occurs by the built-in the power-on reset circuit of this product;

- when the supply voltage (VDD) rises from 0 V to 2.2 V , within 1 ms . Also, note that system reset does not occur under the following conditions;
- when the supply voltage (VDD) rises from the voltage higher than 0V, or
- when it takes more than 1 ms for the supply voltage (VDD) to rise from 0 V to 2.2 V .

(0) Voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.
A battery exchange of an application product is explained as an example.
The supply voltage falls below to the recommended operating voltage while CPU keeps active. Then, an unexpected oscillation-stop, which does not happen by POF instruction occurs before the supply voltage falls below to the detection voltage. In this time, even if the supply voltage re-goes up to the recommended operating voltage, since reset does not occur, MCU may not operate correctly.
Please confirm the oscillator you use and the frequency of system clock, and test the operation of your system sufficiently.

Fig. 28 VdD and VdET

INSTRUCTIONS

The 4282 Group has the 68 instructions. Each instruction is described as follows;
(1) List of instruction function
(2) Machine instructions (index by alphabet)
(3) Machine instructions (index by function)
(4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	D	Port D (8 bits)
B	Register B (4 bits)	E	Port E (3 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
ER	Register E (8 bits)	CARR	Port CARR (1 bit)
V1	Timer control register V1 (3 bits)	CAR	CAR flag (1 bit)
V2	Timer control register V2 (4 bits)		
PU0	Pull-down control register PU0 (4 bits)	x	Hexadecimal variable
PU1	Pull-down control register PU1 (4 bits)	y	Hexadecimal variable
LO	Logic operation selection register LO (2 bits)	p	Hexadecimal variable
X	Register X (2 bits)	n	Hexadecimal constant which represents the immediate value
Y	Register Y (4 bits)	j	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	$\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Binary notation of hexadecimal variable A
PC	Program counter (11 bits)		(same for others)
РСн	High-order 4 bits of program counter		
PCL	Low-order 7 bits of program counter	\leftarrow	Direction of data movement
SK	Stack register (11 bits $\times 4$)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (2 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register	-	Negate, Flag unchanged after executing
T1	Timer 1		instruction
T1F	Timer 1 underflow flag	M(DP)	RAM address pointed by the data pointer
R2H	Timer 2 reload register		Label indicating address a6 a5 a4 а3 a2 a1 ao
R2L	Timer 2 reload register	p, a	Label indicating address a6 as a4 as a2 a1 ao
T2	Timer 2		in page $p_{3} p_{2} p_{1} p_{0}$
T2F	Timer 2 underflow flag	C	Hex. number C + Hex. number x (also same for
WDT	Watchdog timer	+	others)
WDF1	Watchdog timer flag 1	x	
WDF2	Watchdog timer flag 2		
URS	Most significant ROM code reference enable flag		
P	Power down flag		
STCK	System clock		
INSTCK	Instruction clock		

Note : The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes " 1 " if the TABP p, RT, or RTS instruction is skipped.

LIST OF INSTRUCTION FUNCTION

LIST OF INSTRUCTION FUNCTION (CONTINUED)

Grouping	Mnemonic	Function	Page
	CLD	(D) $\leftarrow 0$	29
	RD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 0 \\ & (\mathrm{Y})=0 \text { to } 7 \end{aligned}$	34
	SD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 1 \\ & (\mathrm{Y})=0 \text { to } 7 \end{aligned}$	35
	SZD	$\begin{aligned} & (\mathrm{D}(\mathrm{Y}))=0 \text { ? } \\ & (\mathrm{Y})=4 \text { to } 7 \end{aligned}$	37
	OEA	$\left(\mathrm{E}_{1}, \mathrm{E}_{0}\right) \leftarrow\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$	32
	IAE	$\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right) \leftarrow\left(\mathrm{E}_{2}-\mathrm{E}_{0}\right)$	30
	OGA	$(\mathrm{G}) \leftarrow(\mathrm{A})$	32
	IAG	$(\mathrm{A}) \leftarrow(\mathrm{G})$	30
	SCAR	$(\mathrm{CAR}) \leftarrow 1$	35
	RCAR	$(\mathrm{CAR}) \leftarrow 0$	33
	NOP	$(\mathrm{PC}) \leftarrow(\mathrm{PC})+1$	32
	POF	RAM back-up	32
	SNZP	$(\mathrm{P})=1$?	36
	CCK	STCK changes to $f(X \mathrm{IIN})$	29
	TLOA	$\left(\mathrm{LO}_{1}, \mathrm{LO}_{0}\right) \leftarrow\left(\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$	41
	URSC	$($ URS) $\leftarrow 1$	42
	TPU0A	$\left(\mathrm{PUO}_{3}-\mathrm{PU} 0_{0}\right) \leftarrow\left(\mathrm{A}_{3}-\mathrm{A}_{0}\right)$	41
	TPU1A	$(\mathrm{PU13}-\mathrm{PU1} 10) \leftarrow\left(\mathrm{A}_{3}-\mathrm{A}_{0}\right)$	41
	WRST	$($ WDF1 $) \leftarrow 0$	43

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

AM (Add accumulator and Memory)

B a (Branch to address a)

BA a (Branch to address a + Accumulator)

Instrunction code	D8 Do												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	0	0	0	0	$1{ }_{2}$	0	0					
	1	1	a6	a5	a4	а3	a2	a1		1			2	2	-	-
													Grouping: Branch operation			
Operation:	$(\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 4, \mathrm{~A} 3-\mathrm{A} 0$												Description: Branch within a page : Branches to address (a6 a5 a4 $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$) determined by replacing the low-order 4 bits of the address a in the identical page with register A .			

BL p, a (Branch Long to address a in page p)

Instrunction code	D8 Do												$\begin{aligned} & \text { Number of } \\ & \text { words } \end{aligned}$	$\begin{aligned} & \text { Number of } \\ & \text { cycles } \end{aligned}$	Flag CY	Skip condition			
	0	0	0	1	1	p3	p2	p1	$\mathrm{p} 0{ }_{2}$	0	3	$\mathrm{p}{ }_{16}$							
													2		-	-			
	1	1	a6	a5	a4	a3	a2	a1	a0 ${ }_{2}$	1		a 16	Grouping: Branch operation						
Operation:	$\begin{aligned} & (\mathrm{PCH}) \leftarrow(\mathrm{P}) \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$												Description: Branch out of a page : Branches to address a in page p. Note: $\quad p$ is 0 to 7 for M34282M1, p is 0 to 15 for $\mathrm{M} 34282 \mathrm{M} 2 / \mathrm{E} 2$.						

BLA p, a (Branch Long to address a in page p)

Instrunction code	D8												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	0	0	$0{ }_{2}$	0	1	$0{ }_{16}$	words	cycles	-	
	1	1	a6	a5	a4	p3	p2	p1	po			p				
													Grouping: Branch operation			
Operation:	$\begin{aligned} & (\mathrm{PCH}) \leftarrow(\mathrm{P}) \\ & (\mathrm{PCL}) \leftarrow(\mathrm{a} 6-\mathrm{a} 4, \mathrm{~A} 3-\mathrm{A} 0) \end{aligned}$												Description: Branch within a page : Branches to address (a6 a5 a4 $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$) determined by replac- ing the low-order 4 bits of the address a in page p with register A. Note: \quadp is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.			

BM a (Branch and Mark to address a in page 2)

Instrunction code	D8 Do									1	a		Number of words		Number of cycles	Flag CY	Skip condition			
	1	0	a6	a5	a4	a3	a2	a1	a											
														1	1	-	-			
Operation:	$\begin{aligned} & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{PCH}) \leftarrow 2 \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$												Grouping: Subroutine call operation							

BML p, a (Branch and Mark Long to address a in page p)

Instrunction code	D8												$\begin{gathered} \text { Number of } \\ \text { words } \\ \hline \end{gathered}$	Number of cycles	Flag CY	Skip condition
	0	0	1	1	1	p3	p2	p1	po ${ }_{2}$	0	7	$\mathrm{p}{ }_{16}$				
											$\begin{array}{l\|l\|} \mathrm{a} & \mathrm{a} \\ 16 \end{array}$			2	-	-
		0	a6	a5	a4	a3	a2	a1	a0 ${ }_{2}$	1			Grouping: Subroutine call operation			
Operation:	$\begin{aligned} & (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\ & (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\ & (\mathrm{PCH}) \leftarrow \mathrm{p} \\ & (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0 \end{aligned}$												Description: Call the subroutine : Calls the subroutine at address a in page p. Note: $\quad \mathrm{p}$ is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.			

BMLA p, a (Branch and Mark Long to address a in page p)

Instrunction code	D8									Do					Number of	Number of	Flag CY	Skip condition
	0		0	1	0	1	0	0	0		0	5	0		words	cycles		
															2	2	-	-
	1		0	a6	a5	a4	p3	p2	p1	p0 ${ }_{2}$	1	a	p	6				
															Grouping: Subroutine call operation			

Grouping: Subroutine call operation
Description: Call the subroutine : Calls the subroutine at address (a6 a5 a4 $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$) determined by replacing the low-order 4 bits of address a in page p with register A.
Note: $\quad \mathrm{p}$ is 0 to 7 for M34282M1,
p is 0 to 15 for M34282M2/E2.

CCK (Change system Clock to f(Xin))

CLD (CLear port D)

Instrunction code	D8								Do		0 1 1 16		Number of words 1	Number of cycles 1	Flag CY	Skip condition
	0	0	0	0	1	0	0	0	$1{ }_{2}$							
Operation:	(D) $\leftarrow 1$												Grouping: Description	Input/Output operationClears (0) to port D (hin		
																-impedance st

CMA (CoMplement of Accumulator)

DEY (DEcrement register Y)

IAE (Input Accumulator from port E)
 A.

IAG (Input Accumulator from port G)

LGOP (LoGic OPeration between accumulator and register E)

Instrunction code	D8 Do												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	1	0	0	0	0	0	$1{ }_{2}$	0	4	$1{ }_{16}$				
Operation:	Logic operation XOR, OR, AND												Grouping: Arithmetic operation			
													Description: Executes the logic operation selected by logic operation selection register LO between the contents of register A and register E , and stores the result in register A.			

LXY x, y (Load register X and Y with x and y)

Instrunction code	D8 Do													Number of		Number of	Flag CY	Skip condition			
	0	1	1	$\times 1$	x0	у3	y2	y1	y0 ${ }_{2}$	0 C +X y						cycles					
														1		1	-	Continuous description			
Operation:	$\begin{aligned} & (X) \leftarrow x, x=0 \text { to } 3 \\ & (Y) \leftarrow y, y=0 \text { to } 15 \end{aligned}$												Grouping: RAM addresses								
													Description: Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.								

RAR (Rotate Accumulator Right)

RB j (Reset Bit)

 by the value j in the immediate field) of M(DP).

RC (Reset Carry flag)

RCAR (Reset CAR flag)

RD (Reset port D specified by register Y)

RTS (ReTurn form subroutine and Skip)

$\overline{\text { SB } \mathbf{j} \text { (Set Bit) }}$

SC (Set Carry flag)

SCAR (Set CAR flag)

SD (Set port D specified by register Y)

Instrunction code	D8								Do				$\begin{gathered} \hline \begin{array}{c} \text { Number of } \\ \text { words } \end{array} \\ \hline \end{gathered}$	Number of cycles	Flag CY	Skip condition
	0	0	0	0	1	0	1	0		0	1	16				
Operation:	$(\mathrm{D}(\mathrm{Y})) \leftarrow 1$												Grouping: Input/Output operation			
	$(\mathrm{Y})=0$ to 7												Description: Sets (1) to a bit of port D specified by reas ter Y .			

SEA n (Skip Equal, Accumulator with immediate data n)

SEAM (Skip Equal, Accumulator with Memory)

SNZP (Skip if Non Zero condition of Power down flag)

SNZT1 (Skip if Non Zero condition of Timer 1 underflow flag)

SNZT2 (Skip if Non Zero condition of Timer 2 inerrupt request flag)

SZB j (Skip if Zero, Bit)

SZC (Skip if Zero, Carry flag)

Instrunction code	D8 Do												Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	1	1	1	0	2	F 16				
													1	1	-	$(\mathrm{CY})=0$

Operation: $\quad(C Y)=0$?

Grouping: Arithmetic operation
Description: Skips the next instruction when the contents of carry flag CY is " 0 ."

SZD (Skip if Zero, port D specified by register Y)

Instrunction code	D8								Do					Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	0	1	0	0	0	2	4					
														2	2	-	$\begin{aligned} & (D(Y))=0 \\ & (Y)=4 \text { to } 7 \end{aligned}$
	0	0	0	1	0	1	0	1	$1{ }_{2}$	0	2	B	16				

Operation: $\quad(\mathrm{D}(\mathrm{Y}))=0$?
$(\mathrm{Y})=4$ to 7

Grouping: Input/Output operation
Description: Skips the next instruction when a bit of port D specified by register Y is " 0 ."

T1AB (Transfer data to timer 1 and register R1 from Accumulator and register B)

T2AB (Transfer data to timer 2 and register R2L from Accumulator and register B)

Instrunction code	D8								Do		0 8 8 16		Number of words 1		Number of cycles 1	Flag CY	Skip condition
	0	1	0	0	0	1	0	0	02								
Operation:	$\begin{aligned} & (\text { R2L7-R2L4) } \leftarrow(\text { B }) \\ & (\text { R2L3-R2L0) } \leftarrow(A) \\ & (\text { T27-T24) } \leftarrow(\text { B }) \\ & (T 23-T 20) \leftarrow(A) \end{aligned}$												Grouping:		Timer operation		
													Description		to timer 2 and timer 2 reload register R2L.		

T2HAB (Transfer data to register R2H Accumulator from register B)

Instrunction code	D8								Do				Number of words	Number of cycles	Flag CY	Skip condition
	0	1	0	0	0	1	0	0	$1{ }_{2}$	0	8	$9{ }_{16}$				
Operation:	$(\mathrm{R} 2 \mathrm{H} 7-\mathrm{R} 2 \mathrm{H} 4) \leftarrow$ (B$)$												Grouping: Timer operation			
	$\left(\mathrm{R} 2 \mathrm{H}_{3}-\mathrm{R} 2 \mathrm{H0} 0\right) \leftarrow(\mathrm{A})$												Description: Transfers the co			of register A ter R2H.

T2R2L (Transfer data to timer 2 from register R2L)

TAB (Transfer data to Accumulator from register B)

TAB1 (Transfer data to Accumulator and register B from timer 1)

TAB2 (Transfer data to Accumulator and register B from timer 2)

TABE (Transfer data to Accumulator and register B from register E)

TABP p (Transfer data to Accumulator and register B from Program memory in page p)

TAM j (Transfer data to Accumulator from Memory)

TAY (Transfer data to Accumulator from register Y)

TBA (Transfer data to register B from Accumulator)

TDA (Transfer data to register D from Accumulator)

TEAB (Transfer data to register E from Accumulator and register B)

Instrunction code	D8 Do												Number of words 1	Number of cycles 1	Flag CY	Skip condition
	0	0	0	0	1	1	0	1	$0{ }_{2}$	0	1					
Operation:	$\begin{aligned} & (E R 7-E R 4) \leftarrow(B) \\ & (E R 3-E R 0) \leftarrow(A) \end{aligned}$												Grouping:	Register to register transfer		
													Description:	Transfers the contents of register A and register B to register E.		

TLOA (Transfer data to register LO from Accumulator)

Description: Transfers the contents of register A to logic operation selection register LO.

TPU0A (Transfer data to register PU0 from Accumulator)

TPU1A (Transfer data to register PU1 from Accumulator)

TV1A (Transfer data to register V1 from Accumulator)

Instrunction code	D8								Do	0	5	B ${ }_{16}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Number of } \\ \text { words } \end{array} \\ \hline \end{array}$	Number of cycles	Flag CY	Skip condition
	0	0	1	0	1	0	1	1	12							
Operation:	$(\mathrm{V} 12-\mathrm{V} 10) \leftarrow(\mathrm{A} 2-\mathrm{A} 0)$												Grouping: Timer operation			
													Description	Transfers the contents of register A to register V1.		

TV2A (Transfer data to register V2 from Accumulator)

TYA (Transfer data to regiser Y from Accumulator)

URSC (Sets Upper ROM Code reference enable flag)

WRST (Watchdog timer ReSeT)

XAM \mathbf{j} (eXchange Accumulator and Memory data)

Operation:	$(A) \leftarrow(M(D P))$
	$(X) \leftarrow(X) \operatorname{EXOR}(\mathrm{j})$
	$\mathrm{j}=0$ to 3

Grouping: RAM to register transfer
Description: After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

XAMD j (eXchange Accumulator and Memory data and Decrement register Y and skip)

Operation: $\quad(\mathrm{A}) \longleftrightarrow(\mathrm{M}(\mathrm{DP}))$
$(\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j})$
$j=0$ to 3
$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$

Grouping: RAM to register transfer

Description: After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped.

XAMI \mathbf{j} (eXchange Accumulator and Memory data and Increment register Y and skip)

MACHINE INSTRUCTIONS (INDEX BY FUNCTION)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Paramete \\
Type of instructions
\end{tabular}} \& \multirow{2}{*}{Mnemonic} \& \& \& \& \& \& Instru \& uction \& n co \& \& \& \& \& \\
\hline \& \& \& D7 \& D6 \& D5 \& D4 \& D3 \& D2 \& D1 \& Do \& Hexadecimal notation \& \({ }_{2}{ }_{2}\) \& \({ }_{2}^{1}\) \& Function \\
\hline \multirow{7}{*}{} \& TAB \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 01 E \& 1 \& 1 \& \((\mathrm{A}) \leftarrow(\mathrm{B})\) \\
\hline \& TBA \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 0 \& 00 E \& 1 \& 1 \& \((\mathrm{B}) \leftarrow(\mathrm{A})\) \\
\hline \& TAY \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& 01 F \& 1 \& 1 \& \((\mathrm{A}) \leftarrow(\mathrm{Y})\) \\
\hline \& TYA \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 00 C \& 1 \& 1 \& \((\mathrm{Y}) \leftarrow(\mathrm{A})\) \\
\hline \& TEAB \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 01 A \& 1 \& 1 \& \(\left(\mathrm{ER}_{7}-\mathrm{ER}_{4}\right) \leftarrow(\mathrm{B})\left(\mathrm{ER}_{3}-\mathrm{ER}_{0}\right) \leftarrow(\mathrm{A})\) \\
\hline \& TABE \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 02 A \& 1 \& 1 \& \((\mathrm{B}) \leftarrow\left(\mathrm{ER}_{7}-\mathrm{ER}_{4}\right)(\mathrm{A}) \leftarrow\left(\mathrm{ER}_{3}-\mathrm{ER}_{0}\right)\) \\
\hline \& TDA \& \& 0 \& 0 \& \& \& 1 \& 0 \& 0 \& 1 \& 029 \& 1 \& 1 \& \(\left(\mathrm{DR}_{2}-\mathrm{DR}_{0}\right) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right)\) \\
\hline \multirow{3}{*}{} \& LXY x, y \& \& 1 \& 1 \& x1 \& x0 \& уз \& y2 \& y1 \& \& \[
0 \text { C y }
\] \& 1 \& \multirow[t]{2}{*}{1

1} \& $$
\begin{aligned}
& (X) \leftarrow x, x=0 \text { to } 3 \\
& (Y) \leftarrow y, y=0 \text { to } 15
\end{aligned}
$$

\hline \& \multirow[t]{2}{*}{INY} \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 013 \& 1 \& \& $(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$

\hline \& \& \& 0 \& 0 \& 0 \& \& 0 \& 1 \& 1 \& \& 017 \& 1 \& 1 \& $(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$

\hline \multirow{4}{*}{} \& TAM j \& 0 \& 0 \& 1 \& 1 \& 0 \& \& 1 \& j1 \& \& $$
\begin{array}{lll}
\hline 0 & 6 & 4 \\
& & +j
\end{array}
$$ \& 1 \& 1 \& \[

$$
\begin{aligned}
& (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\
& (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\
& \mathrm{j}=0 \text { to } 3
\end{aligned}
$$
\]

\hline \& XAM j \& 0 \& 0 \& 1 \& 1 \& \& 0 \& 0 \& j1 \& \& 06 j \& 1 \& 1 \& $$
\left\lvert\, \begin{aligned}
& (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\
& (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\
& \mathrm{j}=0 \text { to } 3
\end{aligned}\right.
$$

\hline \& XAMD j \& 0 \& 0 \& 1 \& 1 \& \& 1 \& 1 \& j1 \& \& $$
\begin{array}{lll}
0 & 6 & C \\
& +j
\end{array}
$$ \& 1 \& 1 \& \[

$$
\begin{aligned}
& (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\
& (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\
& \mathrm{j}=0 \text { to } 3 \\
& (\mathrm{Y}) \leftarrow(\mathrm{Y})-1
\end{aligned}
$$
\]

\hline \& XAMI j \& 0 \& 0 \& 1 \& 1 \& \& 1 \& 0 \& j1 \& \& $$
\begin{array}{lll}
0 & 6 & 8 \\
& & +j
\end{array}
$$ \& 1 \& 1 \& \[

$$
\begin{aligned}
& (\mathrm{A}) \leftarrow(\mathrm{M}(\mathrm{DP})) \\
& (\mathrm{X}) \leftarrow(\mathrm{X}) \operatorname{EXOR}(\mathrm{j}) \\
& \mathrm{j}=0 \text { to } 3 \\
& (\mathrm{Y}) \leftarrow(\mathrm{Y})+1
\end{aligned}
$$
\]

\hline
\end{tabular}

Skip condition		Detailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A .
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of registers A and B to register E .
-	-	Transfers the contents of register E to registers A and B.
-	-	Transfers the contents of register A to register D.
Continuous description	-	Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
$(\mathrm{Y})=0$	-	Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped.
$(Y)=15$	-	Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .
-	-	After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .
$(Y)=15$	-	After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped.
$(\mathrm{Y})=0$	-	After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped.

MACHINE INSTRUCTIONS (CONTINUED)

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition		Detailed description
Continuous description	0/1	Loads the value n in the immediate field to register A . When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped. Transfers bits 7 to 4 to register B and bits 3 to 0 to register A when URS flag is cleared to " 0 ." These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR $A_{3} A_{2} A_{1} A_{0}$) specified by registers A and D in page p. Transfers bit 8 of ROM pattern is transferred to flag CY when URS flag is set to " 1 " (after the URSC instruction is executed). (One of stack is used when the TABP p instruction is executed.)
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of $M(D P)$ and carry flag $C Y$ to register A. Stores the result in register A and carry flag CY.
Overflow $=0$	-	Adds the value n in the immediate field to register A . The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
$(C Y)=0$	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right. Executes the logic operation selected by logic operation selection register LO between the contents of register A and register E , and stores the result in register A .

MACHINE INSTRUCTIONS (CONTINUED)

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition		Detailed description
$\begin{gathered} (\mathrm{Mj}(\mathrm{DP}))=0 \\ \mathrm{j}=0 \text { to } 3 \end{gathered}$	- -	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP). Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M (DP). Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is " 0 ."
$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))$ $\begin{gathered} (A)=n \\ n=0 \text { to } 15 \end{gathered}$		Skips the next instruction when the contents of register A is equal to the contents of $M(D P)$. Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
侕	-	Branch within a page : Branches to address a in the identical page. Branch out of a page : Branches to address a in page p .
-	-	Branch within a page : Branches to address ($\mathrm{a}_{6} \mathrm{a}_{5} \mathrm{a}_{4} \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$) determined by replacing the loworder 4 bits of the address a in the identical page with register A. Branch out of a page : Branches to address ($\mathrm{a}_{6} \mathrm{a}_{5} \mathrm{a}_{4} \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$) determined by replacing the loworder 4 bits of the address a in page p with register A.

MACHINE INSTRUCTIONS (CONTINUED)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Parameter \\
Type of instructions
\end{tabular}} \& \multirow{2}{*}{Mnemonic} \& \multicolumn{10}{|c|}{Instruction code} \& \& \& \\
\hline \& \& \& D \({ }^{\text {d }}\) \& D6 \& D5 \& D4 \& D3 \& D2 \& D1 \& Do \& Hexadecimal notation \& \({ }_{2}{ }_{2}\) \& \& Function \\
\hline \multirow{3}{*}{} \& BM a \& \& \& \& \& a4 \& аз \& a2 \& a1 \& \& 1 a a \& 1 \& 1 \& \[
\begin{aligned}
\& (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\
\& (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\
\& (\mathrm{PCH}) \leftarrow 2 \\
\& (\mathrm{PCL}) \leftarrow \mathrm{a} 6-\mathrm{a} 0
\end{aligned}
\] \\
\hline \& BML p, a \& \& \begin{tabular}{l}
0 \\
0
\end{tabular} \& 1
a6 \& 1
as \& 1

4 \& p3
a3 \& p2
a2 \& p1
a1 \& po

ao \& $$
\begin{aligned}
& 07 \mathrm{p} \\
& 1 \mathrm{a} a
\end{aligned}
$$ \& 2 \& 2 \& \[

$$
\begin{aligned}
& (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\
& (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\
& (\mathrm{PCH}) \leftarrow \mathrm{p} \\
& (\mathrm{PCL}) \leftarrow \mathrm{a} \text {-a0 } \\
& (\text { Note })
\end{aligned}
$$
\]

\hline \& BMLA p, a \& \& \& | 1 |
| :--- |
| a6 | \& 0 a5 \& | 1 |
| :--- |
| a4 | \& 0

p3 \& 0

p2 \& \& po \& $$
\begin{aligned}
& 050 \\
& 1 a p
\end{aligned}
$$ \& 2 \& 2 \& \[

$$
\begin{aligned}
& (\mathrm{SK}(\mathrm{SP})) \leftarrow(\mathrm{PC}) \\
& (\mathrm{SP}) \leftarrow(\mathrm{SP})+1 \\
& (\mathrm{PCH}) \leftarrow \mathrm{p} \\
& (\mathrm{PCL}) \leftarrow\left(\mathrm{a} 6-\mathrm{a} 4, \mathrm{~A}_{3}-\mathrm{A}_{0}\right) \\
& (\text { Note })
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{} \& RT \& 0 \& \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& \& 1 \& 2 \& $$
\begin{aligned}
& (S P) \leftarrow(S P)-1 \\
& (P C) \leftarrow(S K(S P))
\end{aligned}
$$

\hline \& RTS \& \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 045 \& 1 \& 2 \& $$
\begin{aligned}
& (S P) \leftarrow(S P)-1 \\
& (P C) \leftarrow(S K(S P))
\end{aligned}
$$

\hline \multirow{5}{*}{} \& T1AB \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 047 \& 1 \& 1 \& | at timer 1 stop (V10=0) |
| :--- |
| $($ R17-R14 $) \leftarrow(B),(R 13-R 10) \leftarrow(A)$ |
| $(\mathrm{T} 17-\mathrm{T} 14) \leftarrow(\mathrm{B}),(\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A})$ |
| at timer 1 operating ($\mathrm{V} 10=1$) |
| $($ R17-R14 $) \leftarrow(B),(R 13-R 10) \leftarrow(A)$ |

\hline \& TAB1 \& \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 057 \& 1 \& 1 \& $$
\begin{aligned}
& (\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14) \\
& (\mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10)
\end{aligned}
$$

\hline \& TV1A \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 05 B \& 1 \& 1 \& $(\mathrm{V} 12-\mathrm{V} 10) \leftarrow(\mathrm{A} 2-\mathrm{A} 0)$

\hline \& SNZT1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 042 \& 1 \& 1 \& | $(\mathrm{T} 1 \mathrm{~F})=1 ?$ |
| :--- |
| After skipping the next instruction $(\mathrm{T} 1 \mathrm{~F}) \leftarrow 0$ |

\hline \& T2AB \& 0 \& 1 \& 0 \& 0 \& \& 1 \& 0 \& 0 \& \& 088 \& 1 \& 1 \& $$
\begin{aligned}
& (\text { R2L7-R2L4 }) \leftarrow(B) \\
& (\text { R2L3-R2Lo }) \leftarrow(A) \\
& (\text { T27-T24) } \leftarrow(B), \\
& \text { (T23-T20) } \leftarrow(A)
\end{aligned}
$$

\hline
\end{tabular}

Note : p is 0 to 7 for M34282M1, and p is 0 to 15 for M34282M2/E2.

\begin{tabular}{|c|c|c|}
\hline Skip condition \& \& Detailed description \\
\hline \begin{tabular}{c}
- \\
\\
\\
- \\
- \\
\\
- \\
\hline
\end{tabular} \& -
-
-

-
- \& | Call the subroutine in page 2 : Calls the subroutine at address a in page 2 . |
| :--- |
| Call the subroutine : Calls the subroutine at address a in page p. |
| Call the subroutine : Calls the subroutine at address ($\mathrm{a}_{6} \mathrm{a}_{5} \mathrm{a}_{4} \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$) determined by replacing the low-order 4 bits of address a in page p with register A. |

\hline Skip at uncondition \& \& | Returns from subroutine to the routine called the subroutine. |
| :--- |
| Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition. |

\hline $$
(\mathrm{T} 1 \mathrm{~F})=1
$$ \& -

-
-
-
-
-
-
- \& | At timer 1 stop ($\mathrm{V} 10=0$), transfers the contents of register A and register B to timer 1 and reload register R1. |
| :--- |
| At timer 1 operating $(\mathrm{V} 10=1)$, transfers the contents of register A and register B to reload register R 1 . |
| Transfers the contents of timer 1 to registers A and B . |
| Transfers the contents of register A to registers V1. |
| Skips the next instruction when the contents of T1F flag is "1." |
| After skipping, clears (0) to T1F flag. |
| Transfers the contents of register A and register B to timer 2 and reload register R2L. |

\hline
\end{tabular}

MACHINE INSTRUCTIONS (CONTINUED)

INSTRUCTION CODE TABLE

	D8-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	$\begin{aligned} & 10000 \\ & 10111 \end{aligned}$	$\begin{aligned} & 11000 \\ & 11111 \end{aligned}$
$\begin{aligned} & \text { D3- } \\ & \text { D0 } \end{aligned}$	Hex. notation	00	01	02	03	04	05	06	07	08	09	OA	OB	0 C	OD	0E	OF	10-17	18-1F
0000	0	NOP	BLA	$\begin{gathered} \text { SZB } \\ 0 \\ \hline \end{gathered}$	BL	TAB2	BMLA	$\begin{gathered} \text { XAM } \\ 0 \end{gathered}$	BML	OGA	$\begin{array}{\|c} \text { TABP } \\ 0 \end{array}$	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \text { LA } \\ 0 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,0 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,0 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,0 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,0 \end{gathered}$	BM	B
0001	1	BA	CLD	$\begin{gathered} \text { SZB } \\ 1 \end{gathered}$	BL	LGOP	-	$\begin{gathered} \text { XAM } \\ 1 \end{gathered}$	BML	-	$\begin{gathered} \text { TABP } \\ 1 \end{gathered}$	$\begin{gathered} A \\ 1 \end{gathered}$	$\begin{gathered} \text { LA } \\ 1 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,1 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,1 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,1 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,1 \end{gathered}$	BM	B
0010	2	-	-	$\begin{gathered} \text { SZB } \\ 2 \end{gathered}$	BL	SNZT1	SNZT2	$\begin{gathered} \text { XAM } \\ 2 \end{gathered}$	BML	URSC	$\begin{gathered} \text { TABP } \\ 2 \end{gathered}$	$\begin{aligned} & \text { A } \\ & 2 \end{aligned}$	$\begin{gathered} \text { LA } \\ 2 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,2 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { LXY } \\ 1,2 \end{array}$	$\begin{gathered} \text { LXY } \\ 2,2 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,2 \end{gathered}$	BM	B
0011	3	SNZP	INY	$\begin{gathered} \text { SZB } \\ 3 \end{gathered}$	BL	-	T2R2L	$\begin{gathered} \text { XAM } \\ 3 \end{gathered}$	BML	-	$\begin{array}{\|c} \text { TABP } \\ 3 \end{array}$	$\begin{aligned} & A \\ & 3 \end{aligned}$	$\begin{gathered} \text { LA } \\ 3 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,3 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { LXY } \\ \text { 1,3 } \end{array}$	$\begin{gathered} \text { LXY } \\ 2,3 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,3 \end{gathered}$	BM	B
0100	4	-	RD	SZD	BL	RT	-	$\begin{array}{\|c} \text { TAM } \\ 0 \end{array}$	BML	OEA	$\begin{array}{\|c} \text { TABP } \\ 4 \end{array}$	$\begin{aligned} & \text { A } \\ & 4 \end{aligned}$	$\begin{gathered} \text { LA } \\ 4 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,4 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,4 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,4 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,4 \end{gathered}$	BM	B
0101	5	-	SD	SEAn	BL	RTS	-	$\begin{gathered} \text { TAM } \\ 1 \end{gathered}$	BML	-	$\begin{array}{\|c} \text { TABP } \\ 5 \end{array}$	$\begin{aligned} & \text { A } \\ & 5 \end{aligned}$	$\begin{gathered} \text { LA } \\ 5 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,5 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,5 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,5 \end{gathered}$	$\begin{gathered} \mathrm{LXY} \\ 3,5 \end{gathered}$	BM	B
0110	6	RC	-	SEAM	BL	-	IAE	$\begin{gathered} \text { TAM } \\ 2 \\ \hline \end{gathered}$	BML	RCAR	$\begin{gathered} \text { TABP } \\ 6 \\ \hline \end{gathered}$	A 6	LA 6	$\begin{gathered} \text { LXY } \\ 0,6 \\ \hline \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,6 \\ \hline \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,6 \\ \hline \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,6 \\ \hline \end{gathered}$	BM	B
0111	7	SC	DEY	-	BL	T1AB	TAB1	$\begin{gathered} \text { TAM } \\ 3 \end{gathered}$	BML	SCAR	$\begin{gathered} \text { TABP } \\ 7 \end{gathered}$	A	$\begin{gathered} \text { LA } \\ 7 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,7 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,7 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,7 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,7 \end{gathered}$	BM	B
1000	8	-	-	IAG	BL*	-	TLOA	$\begin{array}{\|c} \text { XAMI } \\ 0 \end{array}$	BML*	T2AB	$\begin{gathered} \text { TABP } \\ 8^{*} \end{gathered}$	$\begin{aligned} & \text { A } \\ & 8 \end{aligned}$	$\begin{gathered} \text { LA } \\ 8 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,8 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,8 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,8 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,8 \end{gathered}$	BM	B
1001	9	-	-	TDA	BL*	-	CCK	$\begin{array}{\|c} \text { XAMI } \\ 1 \end{array}$	BML*	T2HAB	$\begin{gathered} \text { TABP } \\ 9^{*} \end{gathered}$	$\begin{aligned} & \text { A } \\ & 9 \end{aligned}$	$\begin{gathered} \text { LA } \\ 9 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,9 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,9 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,9 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,9 \end{gathered}$	BM	B
1010	A	AM	TEAB	TABE	BL*	-	TV2A	$\begin{array}{\|c} \text { XAMI } \\ 2 \end{array}$	BML*	-	$\begin{gathered} \text { TABP } \\ 10^{*} \end{gathered}$	$\begin{array}{r} \text { A } \\ 10 \end{array}$	$\begin{aligned} & \text { LA } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 0,10 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 1,10 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 2,10 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 3,10 \end{aligned}$	BM	B
1011	B	AMC	-	-	BL*	-	TV1A	XAMI	BML*	-	$\begin{gathered} \text { TABP } \\ 11^{*} \end{gathered}$	$\begin{array}{r} \text { A } \\ 11 \end{array}$	$\begin{gathered} \text { LA } \\ 11 \end{gathered}$	$\begin{aligned} & \text { LXY } \\ & 011 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 1,11 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 2,11 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 3,11 \end{aligned}$	BM	B
1100	C	TYA	CMA	-	BL*	$\begin{gathered} \text { RB } \\ 0 \end{gathered}$	$\begin{gathered} \text { SB } \\ 0 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { XAMD } \\ 0 \end{gathered}\right.$	BML*	-	$\begin{gathered} \text { TABP } \\ 12^{*} \end{gathered}$	$\begin{gathered} \text { A } \\ 12 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 0,12 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 1,12 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 2,12 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 3,12 \end{aligned}$	BM	B
1101	D	POF	RAR	-	BL*	$\begin{gathered} \text { RB } \\ 1 \end{gathered}$	$\begin{gathered} \text { SB } \\ 1 \end{gathered}$	XAMD 1	BML*	-	$\begin{gathered} \text { TABP } \\ 13^{\star} \end{gathered}$	$\begin{gathered} \text { A } \\ 13 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 0,13 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 1,13 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 2,13 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 3,13 \end{aligned}$	BM	B
1110	E	TBA	TAB	-	BL*	$\begin{aligned} & \text { RB } \\ & 2 \end{aligned}$	$\begin{gathered} \text { SB } \\ 2 \end{gathered}$	$\begin{array}{\|c} \text { XAMD } \\ 2 \end{array}$	BML*	TPU1A	$\begin{array}{\|c} \text { TABP } \\ 14^{*} \end{array}$	$\begin{gathered} \text { A } \\ 14 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 0,14 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 1,14 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 2,14 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 3,14 \end{aligned}$	BM	B
1111	F	WRST	TAY	SZC	BL*	RB 3	SB 3	XAMD	BML*	TPUOA	$\begin{gathered} \text { TABP } \\ 15^{*} \end{gathered}$	$\begin{array}{r} \text { A } \\ 15 \end{array}$	$\begin{aligned} & \text { LA } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 0,15 \end{aligned}$	$\begin{aligned} & \mathrm{LXY} \\ & 1,15 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 2,15 \end{aligned}$	$\begin{aligned} & \text { LXY } \\ & 3,15 \end{aligned}$	BM	B

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D8-D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	1	1 a a a	
a a a a			
BML	1	0 a a a	
a a a a			
BA	1	1 a a a	
a a a a			
BLA	1	1 a a a	
p p p p			
BMLA	1	0 a a a	
p p p p			
SEA	0	1011	
n n n n			
SZD	0	0010	

* cannot be used in the M34282M1.

REGISTER STRUCTURE

| Timer control register V1 | | at reset :0002 | | at RAM back-up :0002 | |
| :---: | :--- | :---: | :--- | :--- | :---: | W

Timer control register V2		at reset : 00002		at RAM back-up : 00002	W
V23	Carrier wave "H" interval expansion bit	0	To expand "H" interval is invalid		
		1	To expand " H " interval is valid (when V22=1 selected)		
V22	Carrier wave generation function control bit	0	Carrier wave generation function invalid		
		1	Carrier wave generation function valid		
V21	Timer 2 count source selection bit	0	f (XIN)		
		1	$\mathrm{f}(\mathrm{XIN}) / 2$		
V20	Timer 2 control bit	0	Stop (Timer 2 state retained)		
		1	Operating		

Logic operation selection register LO		at reset : 002			at RAM back-up : 002	W
LO1	Logic operation selection bits	LO1	LOo	Logic operation function		
		0	0	Exclusive logic OR operation (XOR)		
		0	1	OR operation (OR)		
LOo		1	0	AND operation (AND)		
		1	1	Not available		

Pull-down control register PU0		at reset : 00002		at RAM back-up : state retained	W
PU03	Ports G2, G3 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU02	Ports Go, G1 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU01	Port E1 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU00	Port Eo pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		

Pull-down control register PU1		at reset : 00002		at RAM back-up : state retained	W
PU13	Port D7 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU12	Port D6 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU1 11	Port D5 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		
PU10	Port D4 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid		
		1	Pull-down transistor ON, key-on wakeup valid		

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
VI	Input voltage		-0.3 to Vdd+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300	mW
Topr	Operating temperature range		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature range		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8 \mathrm{~V}$ to 3.6 V , unless otherwise noted)

Symbol	Parameter		Conditions	Limits			Unit	
			Min.	Typ.	Max.			
Vdd	Supply voltage				1.8		3.6	V
Vram	RAM back-up voltage (at RAM back-up mode)			1.1		3.6	V	
Vss	Supply voltage				0		V	
VIH	"H" level input voltage Ports D4-D7, E, G		$\mathrm{VdD}=3.0 \mathrm{~V}$	0.7 VdD		VDD	V	
VIH	"H" level input voltage XIn		V D $=3.0 \mathrm{~V}$	0.8 VdD		VDD	V	
VIL	"L" level input voltage Ports D4-D7, E, G		$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}$	0		0.2Vdd	V	
VIL	"L" level input voltage XIN		$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}$	0		0.2 VdD	V	
loh(peak)	"H" level peak output current Ports D, E1, G		$\mathrm{VdD}=3.0 \mathrm{~V}$			-4	mA	
lor(peak)	"H" level peak output current Port Eo		$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}$			-24	mA	
loh(peak)	"H" level peak output current CARR		V D $=3.0 \mathrm{~V}$			-20	mA	
loL(peak)	"L" level peak output current CARR		$\mathrm{VdD}=3.0 \mathrm{~V}$			4	mA	
Іон(avg)	"H" level average output current Ports D, E1, G		$\mathrm{V} D=3.0 \mathrm{~V}$			-2	mA	
Іон(avg)	"H" level average output current Port E0		VDD $=3.0 \mathrm{~V}$			-12	mA	
Іон(avg)	"H" level average output current CARR		$\mathrm{VDD}=3.0 \mathrm{~V}$			-10	mA	
loL(avg)	"L" level average output current CARR		$\mathrm{VdD}=3.0 \mathrm{~V}$			2	mA	
f(Xin)	System clock frequency	when STCK $=\mathrm{f}(\mathrm{XII}) / 8$ selected	Ceramic resonance			4	MHz	
		when STCK $=f($ Xin $)$ selected	Ceramic resonance			500	kHz	
Vdet	Voltage drop detection circuit detection voltage			1.10		1.80	V	
			$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1.40	1.50	1.56		
Tdet	Voltage drop detection circuit low voltage determination time		When supply voltage passes the detected voltage at $\pm 50 \mathrm{~V} / \mathrm{s}$.		0.2	1.2	ms	
Tpon	Power-on reset circuit valid power source rising time		VDD $=0$ to 2.2 V			1	ms	

Note: The average output current ratings are the average current value during 100 ms .

ELECTRICAL CHARACTERISTICS

($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=3 \mathrm{~V}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
Vol	"L" level output voltage Port CARR	$\mathrm{loL}=2 \mathrm{~mA}$			0.9	V
Vol	"L" level output voltage Xout	$\mathrm{loL}=0.2 \mathrm{~mA}$			0.9	V
Vor	"H" level output voltage Ports D, E1, G	$\mathrm{IOH}=-2 \mathrm{~mA}$	2.1			V
Vor	"H" level output voltage Port E0	$\mathrm{IOH}=-12 \mathrm{~mA}$	1.5			V
Vor	"H" level output voltage CARR	$\mathrm{IOH}=-10 \mathrm{~mA}$	1.0			V
Vor	"H" level output voltage Xout	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.1			V
ILL	"L" level input current Ports D4-D7, E, G	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$			-1	$\mu \mathrm{A}$
IIH	"H" level input current Ports E0, E1	$V_{I}=V_{D D}$ Pull-down transistor in off-state			1	$\mu \mathrm{A}$
loz	Output current at off-state Ports D, E0, E1, G	$\mathrm{Vo}=\mathrm{Vss}$			-1	$\mu \mathrm{A}$
IDD	Supply current (when operating)	$\mathrm{f}(\mathrm{XIN})=4.0 \mathrm{MHz}$		400	800	$\mu \mathrm{A}$
		$\mathrm{f}(\mathrm{XIN})=500 \mathrm{kHz}$		250	500	$\mu \mathrm{A}$
	Supply current (at RAM back-up)			1	3	$\mu \mathrm{A}$
		$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	0.5	$\mu \mathrm{A}$
RPH	Pull-down resistor value Ports D4-D7, E, G	$\mathrm{V} D \mathrm{~L}=3 \mathrm{~V}, \mathrm{~V}^{\prime}=3 \mathrm{~V}$	75	150	300	$\mathrm{k} \Omega$
Rosc	Feedback resistor value between Xin-Xout		700		3200	$\mathrm{k} \Omega$

BASIC TIMING DIAGRAM

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4282 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.
The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 10 shows the product of built-in PROM version. Figure 29 and 30 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Table 10 Product of built-in PROM version

Part number	PROM size $(\times 9$ bits $)$	RAM size $(\times 4$ bits $)$	Package	ROM type
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM [shipped in blank]

PIN CONFIGURATION (TOP VIEW)

Outline 20P2E/F-A

Fig. 29 Pin configuration of built-in PROM version
(1) PROM mode (serial input/output)

The M34282E2GP has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM and VPP to " H " after connecting wires as shown in Figure 30 and powering on the Vdd pin, and then applying 12.5 V to the Vpp pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).
As for the Development tools, refer to the Developer Tools (http://www.renesas.com/en/tools) of "Renesas Technology Corp." Homepage.

PIN CONFIGURATION (TOP VIEW)

* : connected to the ceramic resonance circuit.

Note: The state of disconnected pins are the same as that at reset.

Fig. 30 Pin configuration of built-in PROM version (continued)

(2) Functional outline

In the PROM mode, data is transferred with the clocksynchronous serial input/output. The input data is read through the SDA pin into the internal circuit synchronously with the rising edge of the serial clock pulse. The output data is output from the SDA pin synchronously with the falling edge of the serial clock pulse. Data is transferred in units of 8 bits.

In the first transfer, the command code is input. Then, address input or data input/output is performed according to the contents of the command code. Table 11 shows the software command used in the PROM mode. The following explains each software command.

Table 11 Software command

Number of transfer Command	First command code input	Second	Third	Fourth
Read	1516	Read address L (input)	Read address H (input)	Read data L (output)
Program	2516	Program address L (input)	Program address H (input)	Program data L (input)
Program verify	3516	Program address L (input)	Program address H (input)	Program data L (input)

Number of transfer	Fifth	Sixth	Seventh
Read	Read data H (output)	-	
Program	Program data H (input)	-	-
Program verify	Program data H (input)	Verify data L (output)	Verify data H (output)

(3) Read

Input the command code 1516 in the first transfer. Proceed and input the low-order 8 bits and the high-order 8 bits of the address and pull the PGM pin to "L." When this is done, the contents of input address is read and stored into the internal data latch.

When the $\overline{\mathrm{PGM}}$ pin is released back to " H " and serial clock is input to the SCLK pin, the low-order 8 bits and high-order 8 bits of read data which have been stored into the data latch, are serially output from the SDA pin.

Fig. 31 Timing at reading

(4) Program

Input command code 2516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data,
and pull the $\overline{\text { PGM }}$ pin to "L." When this is done, the program data is programmed to the specified address.

Fig. 32 Timing at programming

(5) Program verify

Input command code 3516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data, and pull the $\overline{P G M}$ pin to "L." When this is done, the program data is programmed to the specified address. Then, when the PGM pin is pulled to "L" again after it is released back to "H," the address programmed with the program command is read
and verified and stored into the internal data latch. When the $\overline{\text { PGM }}$ pin is released back to " H " and serial clock is input to the SCLK pin, the verify data that has been stored into the data latch is serially output from the SDA pin.

Note: When outputting the verify data, the SDA pin is switched for output at the first falling of the serial clock. The SDA pin is placed in the high-impedance state during the th(C-E) period after the last rising edge of the serial clock (at the 16th bit).

Fig. 33 Timing at program verifying

PROGRAM ALGORITHM FLOW CHART

TIMING REQUIREMENT CONDITION AND SWITCHING CHARACTERISTICS
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{~F}=4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \mathrm{~V}\right)$

Symbol	Parameter	Limits		Unit
		Min.	Max.	
tch	Serial transfer width time	2.0		$\mu \mathrm{s}$
tcR	Read wait time after transfer	2.0		$\mu \mathrm{s}$
twR	Read pulse width	500		ns
trc	Transfer wait time after read	2.0		$\mu \mathrm{s}$
tcP	Program wait time after transfer	2.0		$\mu \mathrm{s}$
twp	Program pulse width	0.19	0.21	ms
towp	Added program pulse width	0.19	5.25	ms
tc(CK)	SCLK input cycle time	1.0		$\mu \mathrm{s}$
tw(CKH)	SCLK "H" pulse width	450		ns
tw(CKL)	SCLK "L" pulse width	450		ns
tr (CK)	SCLK rising time	40		ns
tf(CK)	SCLK falling time	40		ns
td(C-Q)	SDA output delay time	0	180	ns
th(C-Q)	SDA output hold time	0		ns
th(C-E)	SDA output hold time (only for 16th bit)	100		ns
tsu(D-C)	SDA input set-up time	60		ns
$\operatorname{th}(\mathrm{C}-\mathrm{D})$	SDA input hold time	180		ns

TIMING DIAGRAM

Measurement condition
Output timing voltage: $\mathrm{VOL}=0.8 \mathrm{~V}, \mathrm{VOH}=2.0 \mathrm{~V}$
Input timing voltage: $\mathrm{VIL}=0.2 \mathrm{VDD}, \mathrm{VIH}=0.8 \mathrm{VDD}$
(6) Notes on handling
(1) A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
(2) For the One Time PROM version, Renesas corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 34 before using is recommended.

Fig. 34 Flow of writing and test of the product shipped in blank

PACKAGE OUTLINE

20P2E/F-A

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Material
SSOP20-P-225-0.65	-	0.08	Alloy 42/Cu Alloy

D

Detail F

Plastic 20pin 225mil SSOP

Recommended Mount Pad

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	1.45
$\mathrm{~A}_{1}$	0	0.1	0.2
A 2	-	1.15	-
b	0.17	0.22	0.32
c	0.13	0.15	0.2
D	6.4	6.5	6.6
E	4.3	4.4	4.5
e	-	0.65	-
HE	6.2	6.4	6.6
L	0.3	0.5	0.7
L 1	-	1.0	-
Z	-	0.325	-
Z 1	-	-	0.475
x	-	-	0.13
y	-	-	0.1
θ	0°	-	10°
b 2	-	0.35	-
e 1	-	5.8	-
I 2	1.0	-	-

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is herefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
4. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
5. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
6. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and Any diversion or reexport contrary to the expert control laws and regula
ans of Japan and/or the country of destination is prohibited
7. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

