

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

M16C/64 Group
Watchdog Timer

1. Abstract

The watchdog timer is the facility to detect program runaway.
The watchdog timer has a 15-bit counter and provides a facility to enable or disable count source protection
mode.
Table 1 shows specifications of the watchdog timer.

Table 1. Watchdog Timer Specifications
Item When count source protection mode is disabled When count source protection mode is enabled

Count source CPU clock 125 kHz on-chip oscillator clock
Count operation Down-count
Count start condition • If WDTON bit at OFS1 address = 0

After reset, the watchdog timer automatically starts counting.
• If WDTON bit at OFS1 address = 1

The watchdog timer starts counting by a write to the WDTS register.
Count stop condition Stop mode, wait mode or hold state None

Operation on
underflow

• If PM1 register PM12 bit = 0
Watchdog timer interrupt

Watchdog timer reset

• If PM1 register PM12 bit = 1
Watchdog timer reset

The watchdog timer cycle differs depending on the CPU clock, prescaler divide ratio and whether count
source protection mode is enabled. The watchdog timer cycles varying with each setting are listed in Table
2.

Table 2. Watchdog Timer Cycles
CSPR register CSPRO
bit Note 1, Note 2

CM0 register
CM07 bit

WDC register
WDC7 bit Watchdog timer cycle

Rev.1.00 March 2009 Page 1 of 13

–– : Don’t care (can be 1 or 0).
WDT : Watchdog timer
Note 1 : Unless the CSPROINI bit at the OFS1 address is 0 (after-reset count source protection mode enabled), the

CSPRO bit is not set to 1 (count source protection mode enabled) after reset.
Note 2 : To set the CSPRO bit to 1, write 0 and then write 1 in succession in a program. The CSPRO bit cannot be

cleared to 0 (count source protection mode disabled) in a program.

0 (divided by 16) 16 (prescaler divide ratio) × 32768 (WDT count value)
CPU clock

0 (CPU clock is
the main clock,
PLL clock or 125
kHz on-chip
oscillator)

0 (count source
protection mode
disabled)

1 (divided by
128)

128 (prescaler divide ratio) × 32768 (WDT count value)
CPU clock

1 (CPU clock is a
sub-clock) –– 2 (prescaler divide ratio) × 32768 (WDT count value)

CPU clock

1 (count source
protection mode enabled) –– 4096 (WDT count value) –– 125 kHz on-chip oscillator

REJ05B1170-0100/

REJ05B1170-0100/ March 2009 Page 2 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

2. Introduction

The application example described in this document applies to the following MCU:

• Microcomputers: M16C/64 group

This application note can be used with other M16C Family MCUs which have the same special function
registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation
is recommended before using the program described in this application note.

M16C/64 Group
Watchdog Timer

3. Application Example

In the explanation here, we show how to generate a watchdog timer interrupt or a watchdog timer reset using
the CPU clock as the count source for the watchdog timer.

3.1 Description of the Application Example

(1) Write 00h and then write FFh to the WDTR register in succession. The watchdog timer is initialized
to 7FFFh Note 1.

(2) The watchdog timer starts counting by a write to the WDTS register.
(3) Write to the WDTR register again while the count is in progress. The watchdog timer is initialized to

7FFFh Note 1, from which it continues counting.
(4) When in wait mode, stop mode or hold state, the watchdog timer stops counting, retaining the last

count it had before stopping. When placed out of wait mode or stop mode, it restarts counting from the
count value it retained Note 2.

(5) Where a watchdog timer interrupt is used: When the watchdog timer underflows upon reaching the
terminal count, a watchdog timer interrupt is generated. In this case, because the watchdog timer is
not initialized, perform the write to the WDTR register described in (1) within an interrupt handler.
The watchdog timer continues counting.
Where a watchdog timer reset is used: When the watchdog timer underflows upon reaching the
terminal count, the pins and the CPU and SFR are initialized, running the program from the address
indicated by the reset vector.

Note 1: If the CSPR register CSPRO bit = 1 (count source protection mode enabled), the watchdog timer is

initialized to 0FFFh.
Note 2: If the CSPR register CSPRO bit = 1 (count source protection mode enabled), the watchdog timer

does not stop even when it is in wait mode, stop mode or hold state.

Figure 1 shows an operation timing diagram.

Figure 1. Watchdog Timer Operation Example

Internal counter operation

(2) Starts counting
(3) Counter initialized

by write to WDTR

Write signal for
WDTS register

This diagram applies to the following register settings.
PM1 register PM12 bit = 0 (watchdog timer interrupt)
CSPR register CSPRO bit = 0 (count source protection mode disabled)

(4) During stop or
wait mode

7FFFh

0h

(5) Watchdog timer
interrupt
generated

Restarts counting

Write signal for
WDTR register

Write 00H and then write FFH in succession.

(1) Counter initialized
by write to WDTR

Indeterm
inate

REJ05B1170-0100/ March 2009 Page 3 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

4. How to Set Up

The following shows how to set up the registers to accomplish the operation described in 3, “Application
Example.” For details about each register, see the hardware manual of the M16C/64 group.

REJ05B1170-0100/ March 2009 Page 4 of 13 Rev.1.00

(1) Setting the optional feature select address

1 1
Optional feature select address
(OFS1)

WDTON Watchdog timer start select bit
0: Automatically starts the watchdog timer after reset
1: Keeps the watchdog timer idle after reset

Reserved bits
 Set these bits to 1.

ROMCP1 ROM code protect bit
0: Enables ROM code protect
1: Disables ROM code protect

Reserved bits
Set these bits to 1.

CSPROINI After-reset count source protection mode select bit
0: Enables after-reset count source protection mode
1: Disables after-reset count source protection mode

b0b7

11 1

0 0 0 0
Count source protection mode register
(CSPR)

b0b7

00 0

The OFS1 address is located in the flash
memory (address FFFFFh). Write to this
address along with the program.

If the block that includes the OFS1 address
is erased, the OFS1 address becomes FFh.

(2) Setting the count source protection mode register

When setting the
CSPROINI bit to 0, be
sure to set the WDTON bit
to 0 also.

Reserved bits
Set these bits to 0.

CSPRO Count source protection mode select bit
0: Disables count source protection mode
1: Enables count source protection mode

If the CSPROINI bit at the OFS1
address is cleared by writing 0, the
value of this register after reset is
‘10000000b.’

To set the CSPRO bit to 1, write 0
and then write 1 in succession. This
bit cannot be cleared to 0 in a
program.

1
Protect register
(PRCR)

b0b7
(3) Setting processor mode register 1

PRC1 Protect bit 1
PM0, PM1, PM2, TB2SC, INVC0, INVC1 register write enable
 0: Disables write
 1: Enables write

Processor mode register 1
(PM1)

b0b7

0

PM12 Watchdog timer facility select bit
 0: Watchdog timer interrupt
 1: Watchdog timer reset

Reserved bit
 Set this bit to 0.

0
Protect register
(PRCR)

b0b7

PRC1 Protect bit 1
PM0, PM1, PM2, TB2SC, INVC0, INVC1 register write enable
 0: Disables write
 1: Enables write

/ March 2009 Page 5 of 13

M16C/64 Group
Watchdog Timer

(4) Setting the watchdog timer control register

Watchdog timer control register
(WDC)

b0b7

0 If the CSPRO bit = 1 (count source protection
mode enabled), the on-chip oscillator is selected
for the count source, in which case the clock
frequency division by the prescaler is not
performed no matter how WDC7 is set.

If the CSPRO bit = 0 (count source protection
mode disabled) and the selected CPU clock is a
sub-clock, a division by 2 is assumed for the clock
frequency division by the prescaler no matter how
WDC7 is set.

(5) Setting the watchdog timer reset register
b0b7

Watchdog timer reset register
(WDTR)

Write 00h and then write FFh to this register in succession. The watchdog timer is initialized.
Watchdog timer initial value
 • When count source protection mode is disabled: 7FFFh
 • When count source protection mode is enabled: 0FFFh

Be sure that no interrupt or DMA transfer
occurs between a write of 00h and a
write of FFh.
After a watchdog timer interrupt is
generated, use the WDTR register to
initialize the watchdog timer.

(6) Setting the watchdog timer start register
b0b7

Watchdog timer start register
(WDTS)

The watchdog timer starts by a WDTS register write instruction.

Watchdog timer high-order bits
Reserved bit

 Set this bit to 0.
WDC7 Prescaler select bit

 0: Divide by 16
 1: Divide by 128

REJ05B1170-0100 Rev.1.00

M16C/64 Group
Watchdog Timer

5. Sample Programs

5.1 Writing to the OFS1 Address

The OFS1 address is located in the flash memory, so write to this address along with the program.
Figure 2 shows how to write a program fragment to the OFS1 address using the extended directive command
“.OFSREG” of as30 in C language.

REJ05B1170-0100/ March 2009 Page 6 of 13 Rev.1.00

Figure 2. How to Write to the OFS1 Address

#if __WATCH_DOG__ != 0

 _asm(".ofsreg 0FEH"); /* WATCH DOG TIMER START When on Reset */

#else

 _asm(".ofsreg 0FFH"); /* WATCH DOG TIMER STOP When on Reset */

#endif

5.2 To Use a Watchdog Timer Interrupt

In the example here, the PLL clock (24 MHz) is chosen to be the CPU clock. Also, the CSPROINI and
WDTON bits at the OFS1 address are set to 1.
While writing to the WDTR register, increment the display of port P10 every 500 ms. When the output of
port P10 becomes 40h, stop writing to the WDTR register and turn off updating of the port 10 display.
When a watchdog timer interrupt is generated, decrement the display of port P10 every 500 ms while
writing to the WDTR register in a watchdog timer interrupt handler. When the output of port P10 becomes
00h, turn off updating of the port 10 display.

/**/
/*
/* M16C/64 Group Program Collection
/*
/* File name : rjj05b1289_int_src.c
/* CPU : M16C/64 Group
/* Function : Operation of Watchdog Timer
/* Version : 1.00 (2008-05-21) Initial
/*
/* Copyright(C)2008, Renesas Technology Corp. , All rights reserved.
/*
/**/
/* Refer to the corresponding application notes for program specifications. */

#include "sfr64.h"

void main(void);
void mcu_init(void);

/**/
/* DEFINE
/**/
void wdt_int(void);

/**/
/* RAM
/**/

/**/
/* ROM
/**/

REJ05B1170-0100/ March 2009 Page 7 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

/**/
/* Pragma
/**/

/**/
/* Main Program
/**/
void main(void)
{
 unsigned int i;

 mcu_init(); /* MCU initialize */

 p10 = 0;
 pd10 = 0xff;

 ta0mr = 0x40; /* Selection of timer mode
 Pulse output function select bit (0:Pulse is not output)
 Gate function select bit (00:Gate fuction not available)
 Count source (01:f8) */
 ta0 = 4000-1; /* Setting counter value (1msec @24MHz, f8) */

 cpsrf = 0; /* Setting clock prescaler reset flag (0:No effect) */

 ta0ic = 0x00; /* Setting interrupt priority levels in timer A0 */

 ta0s = 1; /* TimerA1 count start */

 prcr = 0x02;

 pm12 = 0; /* Watchdog Timer Function Select Bit(0 : Watchdog timer interrupt)
 */
 prcr = 0x00;

 wdc = 0; /* Setting watchdog timer control register
 Prescaler select bit is set to 0 (0:Divided be 16) */
 wdtr = 0x00; /* Setting watchdog timer reset register
 Watchdog timer initialize */
 wdtr = 0xff; /* Setting watchdog timer value (0x7FFF) */

 i = 0;

 wdts = 1; /* Setting watchdog timer start register */

 while (1) {
 while (!ir_ta0ic) {}
 ta0ic = 0x00;
 i++;
 if (i >= 500) {
 i = 0;
 p10++;
 }
 if (p10 >= 64) {
 p10 = 64;
 } else {
 wdtr = 0x00; /* Setting watchdog timer reset register
 Watchdog timer initialize */
 wdtr = 0xff; /* Setting watchdog timer value (0x7FFF) */
 }
 }
}

/**/
/* MCU Initialize
/**/
void mcu_init()
{
 unsigned int i;
 prcr = 0x03; /* CM0,CM1,CM2,PLC0,PCLKR register protect off */
 /* PM0,PM1,PM2,TB2SC,INVC0,INVC1 register protect off */
 pm0 = 0x00; /* Processor mode: Single-chip mode */
 pm1 = 0x08; /* Watchdog timer function: Watchdog timer interrupt */
 /* Internal reserved area: The entire area usable */
 /* Wait: No wait state */
 cm2 = 0x00; /* System clock select: Main clock */
 cm1 = 0x20; /* Main clock division select: No division mode */
 cm0 = 0x08; /* Main clock division select: CM16 and CM17 enabled */

REJ05B1170-0100/ March 2009 Page 8 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

 pm20 = 0; /* SFR 2waits when PLL on */
 plc0 = 0x14; /* PLL clock Multiply by 4 */
 /* PLL multiplying factor select: Multiply by 8 */
 /* Reference frequency counter: Divide by 2 */
 plc07 = 1; /* PLL operation enable: PLL ON */
 for (i = 0; i < 20000; i++); /* Wait until the PLL clock becomes stable (tsu(PLL)) */
 cm11 = 1; /* System clock select: PLL clock */
 prcr = 0x00; /* Protect on */
}

/***
 * Watchdog timer interrupt routine *
 **/
#pragma interrupt wdt_int()
void wdt_int() {
 unsigned int i = 0;

 wdtr = 0x00; /* Set the WDTS register in the beginning of the */
 wdtr = 0xff; /* watchdog timer interrupt routine */

 while (1) {
 while (!ir_ta0ic) {}
 ta0ic = 0x00;
 i++;

 wdtr = 0x00;
 wdtr = 0xff;

 if(i == 500){
 i = 0;
 if (p10 != 0) {
 p10--;
 }
 }
 }
}

5.3 To Reset by a Watchdog Timer Underflow

In the example here, the PLL clock (24 MHz) is chosen to be the CPU clock. Also, the CSPROINI and
WDTON bits at the OFS1 address are set to 1.
While writing to the WDTR register, increment the display of port P10 every 500 ms. When the output of
port P10 becomes 40h, stop writing to the WDTR register and turn off updating of the port 10 display. The
device is reset when the watchdog timer underflows upon reaching the terminal count.

/**/
/*
/* M16C/64 Group Program Collection
/*
/* File name : rjj05b1289_reset_src.c
/* CPU : M16C/64 Group
/* Function : Operation of Watchdog Timer
/* Version : 1.00 (2008-05-21) Initial
/*
/* Copyright(C)2008, Renesas Technology Corp. , All rights reserved.
/*
/**/
/* Refer to the corresponding application notes for program specifications. */

#include "sfr64.h"

void main(void);
void mcu_init(void);

/**/
/* DEFINE
/**/
void wdt_int(void);

/**/
/* RAM
/**/

REJ05B1170-0100/ March 2009 Page 9 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

/**/
/* ROM
/**/

/**/
/* Pragma
/**/

/**/
/* Main Program
/**/
void main(void)
{
 unsigned int i;

 mcu_init(); /* MCU initialize */

 p10 = 0;
 pd10 = 0xff;

 ta0mr = 0x40; /* Selection of timer mode
 Pulse output function select bit (0:Pulse is not output)
 Gate function select bit (00:Gate function not available)
 Count source (01:f8) */
 ta0 = 4000-1; /* Setting counter value (1msec @24MHz, f8) */

 cpsrf = 0; /* Setting clock prescaler reset flag (0:No effect) */

 ta0ic = 0x00; /* Setting interrupt priority levels in timer A0 */

 ta0s = 1; /* TimerA1 count start */

 prcr = 0x02;

 pm12 = 1; /* Watchdog Timer Function Select Bit(1 : Watchdog timer reset)
 */
 prcr = 0x00;

 wdc = 0; /* Setting watchdog timer control register
 Prescaler select bit is set to 0 (0:Divided be 16) */
 wdtr = 0x00; /* Setting watchdog timer reset register
 Watchdog timer initialize */
 wdtr = 0xff; /* Setting watchdog timer value (0x7FFF) */

 i = 0;

 wdts = 1; /* Setting watchdog timer start register */

 while (1) {
 while (!ir_ta0ic) {}
 ta0ic = 0x00;
 i++;
 if (i >= 500) {
 i = 0;
 p10++;
 }
 if (p10 >= 64) {
 p10 = 64;
 } else {
 wdtr = 0x00; /* Setting watchdog timer reset register
 Watchdog timer initialize */
 wdtr = 0xff; /* Setting watchdog timer value (0x7FFF) */
 }
 }
}

/**/
/* MCU Initialize
/**/
void mcu_init()
{
 unsigned int i;
 prcr = 0x03; /* CM0,CM1,CM2,PLC0,PCLKR register protect off */
 /* PM0,PM1,PM2,TB2SC,INVC0,INVC1 register protect off */
 pm0 = 0x00; /* Processor mode: Single-chip mode */
 pm1 = 0x08; /* Watchdog timer function: Watchdog timer interrupt */
 /* Internal reserved area: The entire area usable */

REJ05B1170-0100/ March 2009 Page 10 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

 /* Wait: No wait state */
 cm2 = 0x00; /* System clock select: Main clock */
 cm1 = 0x20; /* Main clock division select: No division mode */
 cm0 = 0x08; /* Main clock division select: CM16 and CM17 enabled */
 pm20 = 0; /* SFR 2waits when PLL on */
 plc0 = 0x14; /* PLL clock Multiply by 4 */
 /* PLL multiplying factor select: Multiply by 8 */
 /* Reference frequency counter: Divide by 2 */
 plc07 = 1; /* PLL operation enable: PLL ON */
 for (i = 0; i < 20000; i++); /* Wait until the PLL clock becomes stable (tsu(PLL)) */
 cm11 = 1; /* System clock select: PLL clock */
 prcr = 0x00; /* Protect on */
}

/***
 * Watchdog timer interrupt routine *
 **/
#pragma interrupt wdt_int()
void wdt_int() {
 unsigned int i = 0;

 wdtr = 0x00; /* Set the WDTS register in the beginning of the */
 wdtr = 0xff; /* watchdog timer interrupt routine */

 while (1) {
 while (!ir_ta0ic) {}
 ta0ic = 0x00;
 i++;

 wdtr = 0x00;
 wdtr = 0xff;

 if(i == 500){
 i = 0;
 if (p10 != 0) {
 p10--;
 }
 }
 }
}

REJ05B1170-0100/ March 2009 Page 11 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

6. Reference Documents

Hardware manual
M16C/64 Group Hardware Manual
(Get the latest version from the Renesas Technology website.)

Technical updates and technical news
(Get the latest information from the Renesas Technology website.)

REJ05B1170-0100/ March 2009 Page 12 of 13 Rev.1.00

M16C/64 Group
Watchdog Timer

Website and Support

Renesas Technology website
http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
mailto:csc@renesas.com

REVISION HISTORY

Description
Rev. Date

Page Summary
1.00 Mar 23,2009 - First Edition issued

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

M16C/64 Group
Watchdog Timer

Notes regarding these materials

© 2009. Renesas Technology Corp., All rights reserved.

REJ05B1170-0100/ March 2009 Page 13 of 13 Rev.1.00

	1. Abstract
	2. Introduction
	3. Application Example
	3.1 Description of the Application Example

	4. How to Set Up
	5. Sample Programs
	5.1 Writing to the OFS1 Address
	5.2 To Use a Watchdog Timer Interrupt
	5.3 To Reset by a Watchdog Timer Underflow

	6. Reference Documents
	 Website and Support
	REVISION HISTORY
	 Notes regarding these materials

