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8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
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characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
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manufactured by you. 
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 APPLICATION NOTE

 

M16C/64 Group 
Watchdog Timer 

1. Abstract 

The watchdog timer is the facility to detect program runaway. 
The watchdog timer has a 15-bit counter and provides a facility to enable or disable count source protection 
mode. 
Table 1 shows specifications of the watchdog timer. 
 

Table 1. Watchdog Timer Specifications 
Item When count source protection mode is disabled When count source protection mode is enabled 

Count source CPU clock 125 kHz on-chip oscillator clock 
Count operation Down-count 
Count start condition • If WDTON bit at OFS1 address = 0 

After reset, the watchdog timer automatically starts counting. 
• If WDTON bit at OFS1 address = 1 

The watchdog timer starts counting by a write to the WDTS register. 
Count stop condition Stop mode, wait mode or hold state None 

Operation on 
underflow 

• If PM1 register PM12 bit = 0 
Watchdog timer interrupt 

Watchdog timer reset 

• If PM1 register PM12 bit = 1 
Watchdog timer reset 

 
The watchdog timer cycle differs depending on the CPU clock, prescaler divide ratio and whether count 
source protection mode is enabled. The watchdog timer cycles varying with each setting are listed in Table 
2. 

 
Table 2. Watchdog Timer Cycles 
CSPR register CSPRO 
bit Note 1, Note 2

CM0 register 
CM07 bit 

WDC register 
WDC7 bit Watchdog timer cycle 
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–– : Don’t care (can be 1 or 0). 
WDT : Watchdog timer 
Note 1 : Unless the CSPROINI bit at the OFS1 address is 0 (after-reset count source protection mode enabled), the 

CSPRO bit is not set to 1 (count source protection mode enabled) after reset. 
Note 2 : To set the CSPRO bit to 1, write 0 and then write 1 in succession in a program. The CSPRO bit cannot be 

cleared to 0 (count source protection mode disabled) in a program. 

0 (divided by 16) 16 (prescaler divide ratio) × 32768 (WDT count value) 
CPU clock 

0 (CPU clock is 
the main clock, 
PLL clock or 125 
kHz on-chip 
oscillator) 

0 (count source 
protection mode 
disabled) 

1 (divided by 
128) 

128 (prescaler divide ratio) × 32768 (WDT count value) 
CPU clock 

1 (CPU clock is a 
sub-clock) –– 2 (prescaler divide ratio) × 32768 (WDT count value) 

CPU clock 

1 (count source 
protection mode enabled) ––   4096 (WDT count value)   –– 125 kHz on-chip oscillator 
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2. Introduction 

The application example described in this document applies to the following MCU: 
 

• Microcomputers: M16C/64 group 
 

This application note can be used with other M16C Family MCUs which have the same special function 
registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation 
is recommended before using the program described in this application note. 
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3. Application Example 

In the explanation here, we show how to generate a watchdog timer interrupt or a watchdog timer reset using 
the CPU clock as the count source for the watchdog timer. 

3.1 Description of the Application Example 

(1) Write 00h and then write FFh to the WDTR register in succession. The watchdog timer is initialized 
to 7FFFh Note 1. 

(2) The watchdog timer starts counting by a write to the WDTS register. 
(3) Write to the WDTR register again while the count is in progress. The watchdog timer is initialized to 

7FFFh Note 1, from which it continues counting. 
(4) When in wait mode, stop mode or hold state, the watchdog timer stops counting, retaining the last 

count it had before stopping. When placed out of wait mode or stop mode, it restarts counting from the 
count value it retained Note 2. 

(5) Where a watchdog timer interrupt is used: When the watchdog timer underflows upon reaching the 
terminal count, a watchdog timer interrupt is generated. In this case, because the watchdog timer is 
not initialized, perform the write to the WDTR register described in (1) within an interrupt handler. 
The watchdog timer continues counting. 
Where a watchdog timer reset is used: When the watchdog timer underflows upon reaching the 
terminal count, the pins and the CPU and SFR are initialized, running the program from the address 
indicated by the reset vector. 

 
Note 1: If the CSPR register CSPRO bit = 1 (count source protection mode enabled), the watchdog timer is 

initialized to 0FFFh. 
Note 2: If the CSPR register CSPRO bit = 1 (count source protection mode enabled), the watchdog timer 

does not stop even when it is in wait mode, stop mode or hold state. 
 
Figure 1 shows an operation timing diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Watchdog Timer Operation Example 

Internal counter operation

(2) Starts counting
(3) Counter initialized

by write to WDTR

Write signal for
WDTS register

This diagram applies to the following register settings.
PM1 register PM12 bit = 0 (watchdog timer interrupt)
CSPR register CSPRO bit = 0 (count source protection mode disabled)

(4) During stop or
wait mode

7FFFh

0h

(5) Watchdog timer
interrupt
generated

Restarts counting

Write signal for
WDTR register

Write 00H and then write FFH in succession.

(1) Counter initialized
by write to WDTR

Indeterm
inate
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4. How to Set Up 

The following shows how to set up the registers to accomplish the operation described in 3, “Application 
Example.” For details about each register, see the hardware manual of the M16C/64 group. 
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(1) Setting the optional feature select address

1 1
Optional feature select address
(OFS1)

WDTON  Watchdog timer start select bit
0: Automatically starts the watchdog timer after reset
1: Keeps the watchdog timer idle after reset

Reserved bits
  Set these bits to 1.

ROMCP1  ROM code protect bit
0: Enables ROM code protect
1: Disables ROM code protect

Reserved bits
Set these bits to 1.

CSPROINI  After-reset count source protection mode select bit
0: Enables after-reset count source protection mode
1: Disables after-reset count source protection mode

b0b7

11 1

0 0 0 0
Count source protection mode register
(CSPR)

b0b7

00 0

The OFS1 address is located in the flash
memory (address FFFFFh). Write to this
address along with the program.

If the block that includes the OFS1 address
is erased, the OFS1 address becomes FFh.

(2) Setting the count source protection mode register

When setting the
CSPROINI bit to 0, be
sure to set the WDTON bit
to 0 also.

Reserved bits
Set these bits to 0.

CSPRO  Count source protection mode select bit
0: Disables count source protection mode
1: Enables count source protection mode

If the CSPROINI bit at the OFS1
address is cleared by writing 0, the
value of this register after reset is
‘10000000b.’

To set the CSPRO bit to 1, write 0
and then write 1 in succession. This
bit cannot be cleared to 0 in a
program.

1
Protect register
(PRCR)

b0b7
(3) Setting processor mode register 1

PRC1 Protect bit 1
PM0, PM1, PM2, TB2SC, INVC0, INVC1 register write enable
  0: Disables write
  1: Enables write

Processor mode register 1
(PM1)

b0b7

0

PM12 Watchdog timer facility select bit
  0: Watchdog timer interrupt
  1: Watchdog timer reset

Reserved bit
  Set this bit to 0.

0
Protect register
(PRCR)

b0b7

PRC1 Protect bit 1
PM0, PM1, PM2, TB2SC, INVC0, INVC1 register write enable
  0: Disables write
  1: Enables write
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(4) Setting the watchdog timer control register

Watchdog timer control register
(WDC)

b0b7

0 If the CSPRO bit = 1 (count source protection
mode enabled), the on-chip oscillator is selected
for the count source, in which case the clock
frequency division by the prescaler is not
performed no matter how WDC7 is set.

If the CSPRO bit = 0 (count source protection
mode disabled) and the selected CPU clock is a
sub-clock, a division by 2 is assumed for the clock
frequency division by the prescaler no matter how
WDC7 is set.

(5) Setting the watchdog timer reset register
b0b7

Watchdog timer reset register
(WDTR)

Write 00h and then write FFh to this register in succession. The watchdog timer is initialized.
Watchdog timer initial value
  • When count source protection mode is disabled: 7FFFh
  • When count source protection mode is enabled: 0FFFh

Be sure that no interrupt or DMA transfer
occurs between a write of 00h and a
write of FFh.
After a watchdog timer interrupt is
generated, use the WDTR register to
initialize the watchdog timer.

(6) Setting the watchdog timer start register
b0b7

Watchdog timer start register
(WDTS)

The watchdog timer starts by a WDTS register write instruction.

Watchdog timer high-order bits
Reserved bit

  Set this bit to 0.
WDC7  Prescaler select bit

  0: Divide by 16
  1: Divide by 128
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5. Sample Programs 

5.1 Writing to the OFS1 Address 

The OFS1 address is located in the flash memory, so write to this address along with the program. 
Figure 2 shows how to write a program fragment to the OFS1 address using the extended directive command 
“.OFSREG” of as30 in C language. 
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Figure 2. How to Write to the OFS1 Address 

 
#if __WATCH_DOG__ != 0 

    _asm(".ofsreg  0FEH");    /* WATCH DOG TIMER START When on Reset */ 

#else 

    _asm(".ofsreg  0FFH");    /* WATCH DOG TIMER STOP When on Reset */ 

#endif 

 
 
 

5.2 To Use a Watchdog Timer Interrupt 

In the example here, the PLL clock (24 MHz) is chosen to be the CPU clock. Also, the CSPROINI and 
WDTON bits at the OFS1 address are set to 1. 
While writing to the WDTR register, increment the display of port P10 every 500 ms. When the output of 
port P10 becomes 40h, stop writing to the WDTR register and turn off updating of the port 10 display. 
When a watchdog timer interrupt is generated, decrement the display of port P10 every 500 ms while 
writing to the WDTR register in a watchdog timer interrupt handler. When the output of port P10 becomes 
00h, turn off updating of the port 10 display. 
 

/**********************************************************************************/ 
/* 
/*  M16C/64 Group Program Collection 
/* 
/*  File name   :   rjj05b1289_int_src.c 
/*  CPU         :   M16C/64 Group 
/*  Function    :   Operation of Watchdog Timer 
/*  Version     :   1.00 (2008-05-21) Initial 
/* 
/*  Copyright(C)2008, Renesas Technology Corp. , All rights reserved. 
/* 
/**********************************************************************************/ 
/* Refer to the corresponding application notes for program specifications.       */ 
 
#include    "sfr64.h" 
 
void main(void); 
void mcu_init(void); 
 
/**********************************************************************************/ 
/*      DEFINE 
/**********************************************************************************/ 
void    wdt_int(void); 
 
/**********************************************************************************/ 
/*      RAM 
/**********************************************************************************/ 
 
/**********************************************************************************/ 
/*      ROM 
/**********************************************************************************/ 
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/**********************************************************************************/ 
/*      Pragma 
/**********************************************************************************/ 
 
/**********************************************************************************/ 
/*      Main Program 
/**********************************************************************************/ 
void main(void) 
{ 
 unsigned int i; 
 
    mcu_init();                 /* MCU initialize */ 
 
    p10 = 0; 
    pd10 = 0xff; 
 
    ta0mr = 0x40;               /* Selection of timer mode 
                                   Pulse output function select bit (0:Pulse is not output) 
                                   Gate function select bit (00:Gate fuction not available) 
                                   Count source (01:f8) */ 
    ta0 = 4000-1;               /* Setting counter value (1msec @24MHz, f8) */ 
 
    cpsrf = 0;                  /* Setting clock prescaler reset flag (0:No effect) */ 
 
    ta0ic = 0x00;               /* Setting interrupt priority levels in timer A0 */ 
 
    ta0s = 1;                   /* TimerA1 count start */ 
 
    prcr = 0x02; 
 
    pm12 = 0;                   /* Watchdog Timer Function Select Bit(0 : Watchdog timer interrupt) 
                                   */ 
    prcr = 0x00; 
 
    wdc = 0;                    /* Setting watchdog timer control register  
                                   Prescaler select bit is set to 0 (0:Divided be 16) */ 
    wdtr = 0x00;                /* Setting watchdog timer reset register 
                                   Watchdog timer initialize  */ 
    wdtr = 0xff;                /* Setting watchdog timer value (0x7FFF) */ 
 
    i = 0; 
 
    wdts = 1;                   /* Setting watchdog timer start register */ 
 
    while (1) { 
        while (!ir_ta0ic) {} 
        ta0ic = 0x00; 
        i++; 
        if ( i >= 500 ) { 
            i = 0; 
            p10++; 
        } 
        if ( p10 >= 64 ) { 
            p10 = 64; 
        } else { 
            wdtr = 0x00;                /* Setting watchdog timer reset register 
                                           Watchdog timer initialize  */ 
            wdtr = 0xff;                /* Setting watchdog timer value (0x7FFF) */ 
        } 
    } 
} 
 
/**********************************************************************************/ 
/*      MCU Initialize 
/**********************************************************************************/ 
void mcu_init() 
{ 
 unsigned int i; 
    prcr  = 0x03;                /* CM0,CM1,CM2,PLC0,PCLKR register protect off            */ 
                                 /* PM0,PM1,PM2,TB2SC,INVC0,INVC1 register protect off     */ 
    pm0   = 0x00;                /* Processor mode: Single-chip mode                       */ 
    pm1   = 0x08;                /* Watchdog timer function: Watchdog timer interrupt      */ 
                                 /* Internal reserved area: The entire area usable         */ 
                                 /* Wait: No wait state                                    */ 
    cm2   = 0x00;                /* System clock select: Main clock                        */ 
    cm1   = 0x20;                /* Main clock division select: No division mode           */ 
    cm0   = 0x08;                /* Main clock division select: CM16 and CM17 enabled      */ 
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    pm20  = 0;                   /* SFR 2waits when PLL on                                 */ 
    plc0  = 0x14;                /* PLL clock Multiply by 4                                */ 
                                 /* PLL multiplying factor select: Multiply by 8           */ 
                                 /* Reference frequency counter: Divide by 2               */ 
    plc07 = 1;                   /* PLL operation enable: PLL ON                           */ 
    for (i = 0; i < 20000; i++); /* Wait until the PLL clock becomes stable (tsu(PLL))     */ 
    cm11  = 1;                   /* System clock select: PLL clock                         */ 
    prcr  = 0x00;                /* Protect on                                             */ 
} 
 
/***************************************** 
 * Watchdog timer interrupt routine      * 
 ****************************************/ 
#pragma interrupt wdt_int() 
void    wdt_int() { 
    unsigned int i = 0; 
 
    wdtr = 0x00;                /* Set the WDTS register in the beginning of the */ 
    wdtr = 0xff;                /* watchdog timer interrupt routine  */ 
                         
    while (1) { 
        while (!ir_ta0ic) {} 
        ta0ic = 0x00; 
        i++; 
 
        wdtr = 0x00;  
        wdtr = 0xff; 
 
        if(i == 500){ 
            i = 0; 
            if ( p10 != 0 ) { 
                p10--; 
            } 
  } 
    } 
} 
 

5.3 To Reset by a Watchdog Timer Underflow 

In the example here, the PLL clock (24 MHz) is chosen to be the CPU clock. Also, the CSPROINI and 
WDTON bits at the OFS1 address are set to 1. 
While writing to the WDTR register, increment the display of port P10 every 500 ms. When the output of 
port P10 becomes 40h, stop writing to the WDTR register and turn off updating of the port 10 display. The 
device is reset when the watchdog timer underflows upon reaching the terminal count. 
 

/**********************************************************************************/ 
/* 
/*  M16C/64 Group Program Collection 
/* 
/*  File name   :   rjj05b1289_reset_src.c 
/*  CPU         :   M16C/64 Group 
/*  Function    :   Operation of Watchdog Timer 
/*  Version     :   1.00 (2008-05-21) Initial 
/* 
/*  Copyright(C)2008, Renesas Technology Corp. , All rights reserved. 
/* 
/**********************************************************************************/ 
/* Refer to the corresponding application notes for program specifications.       */ 
 
#include    "sfr64.h" 
 
void main(void); 
void mcu_init(void); 
 
/**********************************************************************************/ 
/*      DEFINE 
/**********************************************************************************/ 
void    wdt_int(void); 
 
/**********************************************************************************/ 
/*      RAM 
/**********************************************************************************/ 
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/**********************************************************************************/ 
/*      ROM 
/**********************************************************************************/ 
 
/**********************************************************************************/ 
/*      Pragma 
/**********************************************************************************/ 
 
/**********************************************************************************/ 
/*      Main Program 
/**********************************************************************************/ 
void main(void) 
{ 
 unsigned int i; 
 
    mcu_init();                 /* MCU initialize */ 
 
    p10 = 0; 
    pd10 = 0xff; 
 
    ta0mr = 0x40;               /* Selection of timer mode 
                                   Pulse output function select bit (0:Pulse is not output) 
                                   Gate function select bit (00:Gate function not available) 
                                   Count source (01:f8) */ 
    ta0 = 4000-1;               /* Setting counter value (1msec @24MHz, f8) */ 
 
    cpsrf = 0;                  /* Setting clock prescaler reset flag (0:No effect) */ 
 
    ta0ic = 0x00;               /* Setting interrupt priority levels in timer A0 */ 
 
    ta0s = 1;                   /* TimerA1 count start */ 
 
    prcr = 0x02; 
 
    pm12 = 1;                   /* Watchdog Timer Function Select Bit(1 : Watchdog timer reset) 
                                   */ 
    prcr = 0x00; 
 
    wdc = 0;                    /* Setting watchdog timer control register  
                                   Prescaler select bit is set to 0 (0:Divided be 16) */ 
    wdtr = 0x00;                /* Setting watchdog timer reset register 
                                   Watchdog timer initialize  */ 
    wdtr = 0xff;                /* Setting watchdog timer value (0x7FFF) */ 
 
    i = 0; 
 
    wdts = 1;                   /* Setting watchdog timer start register */ 
 
    while (1) { 
        while (!ir_ta0ic) {} 
        ta0ic = 0x00; 
        i++; 
        if ( i >= 500 ) { 
            i = 0; 
            p10++; 
        } 
        if ( p10 >= 64 ) { 
            p10 = 64; 
        } else { 
            wdtr = 0x00;                /* Setting watchdog timer reset register 
                                           Watchdog timer initialize  */ 
            wdtr = 0xff;                /* Setting watchdog timer value (0x7FFF) */ 
        } 
    } 
} 
 
/**********************************************************************************/ 
/*      MCU Initialize 
/**********************************************************************************/ 
void mcu_init() 
{ 
 unsigned int i; 
    prcr  = 0x03;                /* CM0,CM1,CM2,PLC0,PCLKR register protect off            */ 
                                 /* PM0,PM1,PM2,TB2SC,INVC0,INVC1 register protect off     */ 
    pm0   = 0x00;                /* Processor mode: Single-chip mode                       */ 
    pm1   = 0x08;                /* Watchdog timer function: Watchdog timer interrupt      */ 
                                 /* Internal reserved area: The entire area usable         */ 
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                                 /* Wait: No wait state                                    */ 
    cm2   = 0x00;                /* System clock select: Main clock                        */ 
    cm1   = 0x20;                /* Main clock division select: No division mode           */ 
    cm0   = 0x08;                /* Main clock division select: CM16 and CM17 enabled      */ 
    pm20  = 0;                   /* SFR 2waits when PLL on                                 */ 
    plc0  = 0x14;                /* PLL clock Multiply by 4                                */ 
                                 /* PLL multiplying factor select: Multiply by 8           */ 
                                 /* Reference frequency counter: Divide by 2               */ 
    plc07 = 1;                   /* PLL operation enable: PLL ON                           */ 
    for (i = 0; i < 20000; i++); /* Wait until the PLL clock becomes stable (tsu(PLL))     */ 
    cm11  = 1;                   /* System clock select: PLL clock                         */ 
    prcr  = 0x00;                /* Protect on                                             */ 
} 
 
/***************************************** 
 * Watchdog timer interrupt routine      * 
 ****************************************/ 
#pragma interrupt wdt_int() 
void    wdt_int() { 
    unsigned int i = 0; 
 
    wdtr = 0x00;                /* Set the WDTS register in the beginning of the */ 
    wdtr = 0xff;                /* watchdog timer interrupt routine  */ 
                         
    while (1) { 
        while (!ir_ta0ic) {} 
        ta0ic = 0x00; 
        i++; 
 
        wdtr = 0x00;  
        wdtr = 0xff; 
 
        if(i == 500){ 
            i = 0; 
            if ( p10 != 0 ) { 
                p10--; 
            } 
  } 
    } 
} 
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6. Reference Documents 

Hardware manual 
M16C/64 Group Hardware Manual
(Get the latest version from the Renesas Technology website.) 
 

Technical updates and technical news 
(Get the latest information from the Renesas Technology website.) 
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Website and Support 

Renesas Technology website 
http://www.renesas.com/

 
Inquiries 

http://www.renesas.com/inquiry
mailto:csc@renesas.com
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