Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300H Tiny Series

Using Timer Z Input Capture Function to Count Pulse Cycles

Introduction

Timer Z input capture function is used to measure the period of the pulse input through the input-capture pin (FTIOA0).

Target Device

H8/3687

Contents

1.	Specifications	2
2.	Description of Functions	2
3.	Description of Operation	4
4.	Description of Software	5
5.	Flowcharts	8
6.	Program List	. 10

1. Specifications

- 1. As shown in figure 1.1, the timer input capture function is used to measure the period of the pulse input from the input-capture pin A0 (FTIOA0).
- 2. Timer counter 0 (TCNT0) counts the clock cycles between rising edges of the pulse, and the result is stored in RAM. The period of the pulse is thus measured in terms of this counter value in RAM.
- 3. The maximum period that can be measured is 32.768 ms with the accuracy of $\pm 0.5 \,\mu s$.

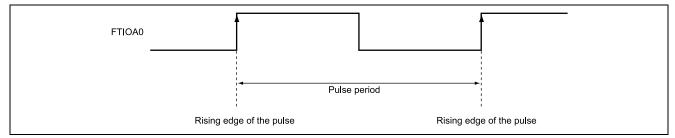


Figure 1.1 Input Pulse Period Measurement

2. Description of Functions

- 1. In this sample task, timer Z input capture function is used to measure the period of a pulse input from the input-capture pin A0 (FTIOA0). Figure 2.1 is a block diagram of timer Z input capture function. The elements of the block diagram are described below.
- The system clock (φ) is a 16-MHz clock that is used as a reference clock for operating the CPU and peripheral functions.
- Prescaler S (PSS) is a 13-bit counter with clock input of ϕ . PSS is incremented every cycle.
- Timer control register 0 (TCR0) selects TCNT0 input clock and method of clearing TCNT0. In this sample task, the TCNT0 input clock is specified as φ/8, the TCNT0 counts the rising edge of the clock, and the TCNT0 is cleared by the compare-match/input-capture with GRA0.
- Timer I/O control register A0 (TIORA0) controls GRA0 and GRB0. In this sample task, GRA0 is used as an inputcapture register and the TCNT0 value is transferred to GRA0 at the rising edge on the FTIOA0 pin.
- Timer status register 0 (TSR0) indicates the timer Z status. In this sample task, the overflow flag (OVF) is set to 1 when the GRA0 overflows and the input-capture/compare-match flag A (IMFA) is set to 1 when a GRA0 input capture occurs.
- Timer interrupt enable register 0 (TIER0) enables or disables various interrupt requests. In this sample task, interrupt requests by the OVF and IMFA flags of TSR0 are enabled and other interrupt requests are disabled.
- Timer counter 0 (TCNT0) is a 16-bit readable/writable upward counter that is incremented by an internal clock or external clock input. In this sample task, TCNT0 is incremented on the rising edge of $\phi/8$.
- General register A0 (GRA0) a 16-bit readable/writable register. In this sample task, GRA0 is used as an inputcapture register to which the TCNT0 value is transferred at the rising edge on the FTIOA0 pin.
- Timer start register (TSTR) starts or stops the TCNT0 and TCNT1 operation. In this sample task, TCNT0 is specified to start counting and TCNT1 is specified to stop counting.
- Timer mode register (TMDR) selects synchronous or independent operation of TCNT0 and TCNT1. In this sample task, TCNT0 operates independently of TCNT1.
- Timer function control register (TFCR) specifies operation modes and selects an output level. In this sample task, channels 0 and 1 are specified for normal operation.
- Input-capture/output-compare A0 pin (FTIOA0) is set to be an input-capture pin. The value of TCNT0 is transferred to GRA0 at the rising edge on this pin.

Period of an input pulse

- = (TCNT0 value stored in prdhl) × (period of TCNT0 input clock)
- = (TCNT0 value stored in prdhl) \times (1/ (ϕ /PSS))
- = (TCNT0 value stored in prdhl) \times (1/ (16 MHz/8))
- = (TCNT0 value stored in prdhl) \times 0.5 μ s

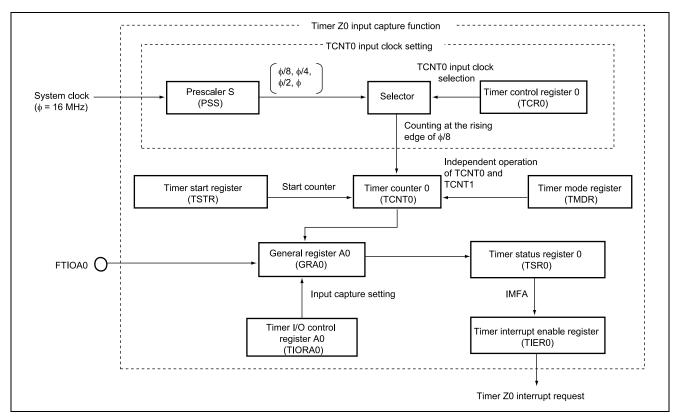


Figure 2.1 Block Diagram of Timer Z0

2. Table 2.1 lists the function allocation for this sample task. The functions listed in this table are allocated so as to implement pulse period measurement.

Table 2.1 Function Allocation

Function	Description	
PSS	13-bit counter with system clock input	
TCR0	Specifies the TCNT0 input clock.	
TIORA0	Specifies GRA0 as an input-capture register.	
TSR0	Flag control by GRA0 input capture and TCNT0 overflow	
TIER0	Enables GRA0 input capture and TCNT0 overflow interrupt requests.	
TCNT0	16-bit counter that is incremented at the rising edge of φ/8.	
GRA0	TCNT0 value is transferred to this register at the rising edge on the FTIOA0 pin.	
TSTR	Controls TCNT0 count start and stop.	
TMDR	Selects independent operation of TCNT0 and TCNT1.	
TFCR	Sets channels 0 and 1 in normal operation mode.	

3. Description of Operation

Operation of this sample task is described in figure 3.1. Hardware and software processing are applied in the way shown in figure 3.1 to measure the pulse period.

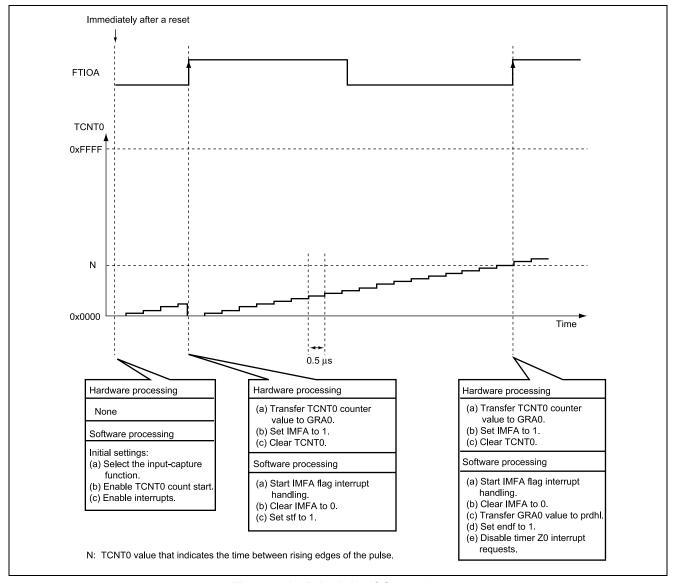


Figure 3.1 Principle of Operation

4. Description of Software

4.1 Modules

Table 4.1 lists the modules used in this sample task.

Table 4.1 Description of Modules

Module Name	Label Name	Function
Main routine	main	Selects timer Z0 input capture function, starts counting by TCNT0, and provides settings for interrupts.
Period measurement	tz0int	Performs timer Z0 interrupt handling.
end		Stores period measurement result to RAM.
		Clears the OVF and IMFA flags.

4.2 Arguments

This sample task uses no arguments.

4.3 Internal Registers

The internal registers used in this sample task are described below.

• T	TCR0 Timer co	ntrol register 0	Address: 0xF700
Bit	Bit Name	Setting	Function
7	CCLR2	CCLR2 = 0	Counter clear 2 to 0
6	CCLR1	CCLR1 = 0	CCLR2 = 0, CCLR1 = 0, CCLR0 = 1:
5	CCLR0	CCLR0 = 1	Clears the TCNT0 on compare-match/input-capture with GRA0.
4	CKEG1	CKEG1 = 0	Clock edge 1 to 0
3	CKEG0	CKEG0 = 0	CKEG1 = 0, CKEG0 = 0: Counts at the rising edge of the clock.
2	TPSC2	TPSC2 = 0	Timer prescaler 2 to 0
1	TPSC1	TPSC1 = 1	TPSC2 = 0, TPSC1 = 0, TPSC0 = 1: Counts by φ/8
0	TPSC0	TPSC0 = 1	

	TIOD 10	m: 1/0	. 1	4 1 1 0 5 5 6 1
•	TIORAO	Timer I/()	control register A0	Address: 0xF701

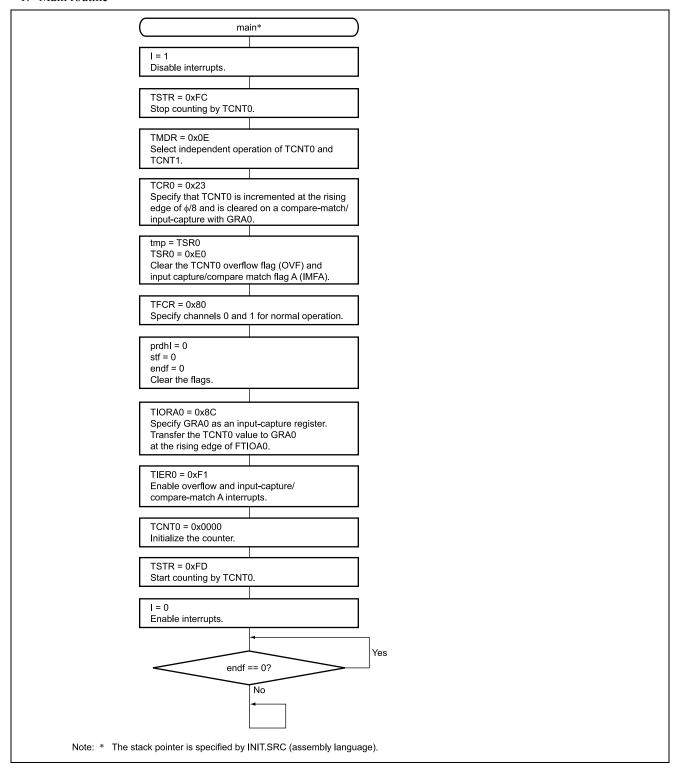
Bit	Bit Name	Setting	Function
2	IOA2	IOA2 = 1	I/O control A2 to A0
1	IOA1	IOA1 = 0	IOA2 = 1, IOA1 = 0, IOA0 = 0:
0	IOA0	IOA0 = 0	Specifies the GRA as an input-capture register and transfers TCNT0 value to the GRA0 at the rising edge on the FTIOA0 pin

H8/300H Tiny Series Using Timer Z Input Capture Function to Count

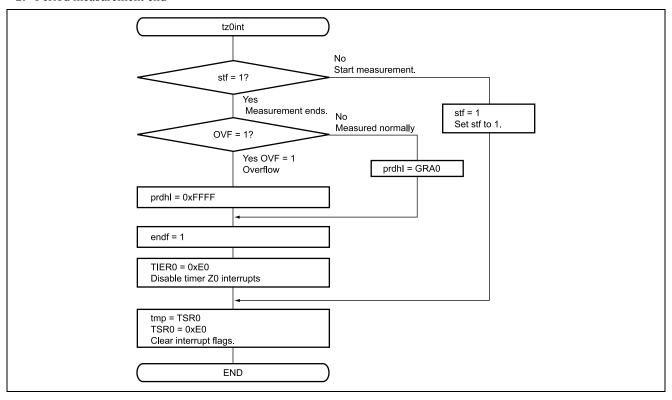
• TS	SR0 Timer st	atus register 0	Address: 0xF703
Bit	Bit Name	Setting	Function
4	OVF	0	Overflow flag
			OVF = 0: Indicates that TCNT0 overflow has not occurred.
			OVF = 1: Indicates that TCNT0 overflow has occurred.
0	IMFA	0	Input-capture/compare-match flag A
			Indicates whether or not the TCNT0 value has been transferred to the GRA0
			by the input capture signal when the GRA is operating as an input-capture
			register.
			IMFA = 0: Indicates that the TCNT0 value has not been transferred to GRA0.
			IMFA = 1: Indicates that the TCNT0 value has been transferred to GRA0.
• TI	ER0 Timer in	nterrupt enable r	register 0 Address: 0xF704
Bit	Bit Name	Setting	Function
7	OVIE	1	Timer overflow interrupt enable
			OVIE = 0: Disables interrupts by the OVF and UDF flags of TSR0.
			OVIE = 1: Enables interrupts by the OVF and UDF flag of TSR0.
0	IMIEA	1	Input-capture/compare-match interrupt enable A
			IMIEA = 0: Disables interrupts by the IMFA flag of TSR0.
			IMIEA = 1: Enables interrupts by the IMFA flag of TSR0.
	pin. tting: —	-capture operation	on, the TCNT0 value is transferred to the GRA0 at the rising edge on the FTIOA0
• TS	STR Timer st	art register	Address: 0xF720
Bit	Bit Name	Setting	Function
0	STR0	0	Channel 0 counter start
			STR0 = 0: Stops counting by TCNT0.
			STR0 = 1: Starts counting by TCNT0.
• TN	MDR Timer m	ode register	Address: 0xF721
Bit	Bit Name	Setting	Function
0	SYNC	0	Timer synchronization
			SYNC = 0: TCNT0 operates independently of TCNT1.
			SYNC = 1: TCNT0 operates synchronously with TCNT1.
. TE	COD Time C		A 11 0. F722
		inction control i	•
Bit 1	Bit Name	Setting	Function Combination mode 1 and 0
1 0	CMD1 CMD0	CMD1 = 0 $CMD0 = 0$	Combination mode 1 and 0 CMD1 = 0, CMDk0 = 0:
J	CIVIDO	CIVIDO - U	Channels 0 and 1 operates in normal operation mode.
			Chamble of the 1 operates in normal operation mode.

4.4 Description of RAM

Table 4.2 describes the RAM used in this sample task.


Table 4.2 Description of RAM

Label Name	Function	Size	Used in
prdhl	Pulse period measurement result	2 bytes	Main routine
			Period measurement
			end
stf	A flag indicating whether the 2nd timer Z0 interrupt has occurred.	1 byte	Main routine
			Period measurement end
endf	A flag indicating whether the period measurement has been	1 byte	Main routine
	completed.		Period measurement end


5. Flowcharts

1. Main routine

2. Period measurement end

6. Program List

```
H8/300HN Series -H8/3687-
   Application Note
/*
  'Pulse Period Measurement by Input Caputure Function'
  Function
   : Timer Z Input Caputure
   External Clock :
                   16MHz
/* Internal Clock : 16MHz
                  32.768kHz
/* Sub Clock :
#include <machine.h>
/* Symbol Definition
unsigned char b7:1;
                            /* bit7 */
                          /* bit6 */
   unsigned char b6:1;
                           /* bit5 */
   unsigned char b5:1;
                           /* bit4 */
   unsigned char b4:1;
    unsigned char b3:1;
                           /* bit3 */
    unsigned char b2:1;
                           /* bit2 */
                           /* bit1 */
   unsigned char b1:1;
    unsigned char b0:1;
                           /* bit0 */
#define
            TCR0
                        *(volatile unsigned char *)0xF700
                                                                     /* Timer control register 0
                        *(volatile unsigned char *)0xF701
#define
            TIORA0
                                                                     /* Timer I/O Control Register A_0
#define
            TSR0
                        *(volatile unsigned char *)0xF703
                                                                     /* Timer status register 0
                        (*(struct BIT *)0xF703)
#define
           TSR0 BIT
                                                                     /* Timer status register 0
                        TSR0_BIT.b4
                                                                     /* Over flow flag
#define
           OVF
          IMFB
                        TSR0_BIT.b1
#define
                                                                     /* Input Capture/Compare Match FlagB
#define
                        TSR0 BIT.b0
                                                                     /* Input Capture/Compare Match FlagA
          IMFA
                        *(volatile unsigned char *)0xF704
#define
          TIER0
                                                                     /* Timer interrupt enable register0
#define
         TIERO BIT
                        (*(struct BIT *)0xF704)
                                                                     /* Timer interrupt enable register0
#define
                        TIERO BIT.b0
                                                                     /* Input Capture/Compare Match
          IMIEA
                                                                     /* Interrupt Enable A
#define
           TCNT0
                        *(volatile unsigned short *)0xF706
                                                                     /* Timer counter 0
#define
            GRA0
                        *(volatile unsigned short *)0xF708
                                                                     /* General register A 0
#define
            GRB0
                        *(volatile unsigned short *)0xF70A
                                                                     /* General register B_0
#define
            TSTR
                        *(volatile unsigned char *)0xF720
                                                                     /* Timer start register
                        *(volatile unsigned char *)0xF721
                                                                     /* Timer mode register
#define
           TMDR
                        *(volatile unsigned char *)0xF722
                                                                     /* Timer PWM mode register
#define
           TPMR
#define
           TFCR
                        *(volatile unsigned char *)0xF723
                                                                     /* Timer function control register
#define
                        *(volatile unsigned char *)0xF724
                                                                     /* Timer output master enable register
                        *(volatile unsigned char *)0xF725
                                                                     /* Timer output control register
#pragma interrupt (tz0int)
```

H8/300H Tiny Series Using Timer Z Input Capture Function to Count

```
/* Function define
extern void INIT ( void );
                                                      /* SP Set
void main ( void );
void tz0int ( void );
                                                      /* Start Flag
volatile unsigned char stf;
volatile unsigned char endf;
                                                      /* End Flag
volatile unsigned short prdhl;
                                                      /* Pulse Period
/* Vector Address
#pragma section V1
                                                      /* VECTOR SECTOIN SET
void (*const VEC_TBL1[])(void) = {
                                                      /* 0x00 - 0x0f
  INIT
                                                      /* 00 Reset
                                                                                   * /
};
#pragma section V2
                                                      /* VECTOR SECTOIN SET
void (*const VEC TBL2[])(void) = {
  tzOint
                                                      /* 34 Timer Z0 Interrupt
#pragma section
                                                      /* P
void main ( void )
   unsigned char tmp;
   set_imask_ccr(1);
                                                      /* Interrupt Disable
   TSTR = 0xFC;
                                                      /* TCNT0 count stop
                                                       /* TCNT0,TCNT1 Single Mode
   TMDR = 0x0E;
   TCR0 = 0x23;
                                                       /* Rising edge, phi/8 Clock count
   tmp = TSR0;
   TSR0 = 0xE0;
                                                      /* Interrupt Flag Clear
   TFCR = 0x80;
                                                       /* Channel 0,1 operate normally
   prdhl = 0;
   stf = 0;
   endf = 0;
   TIORAD = 0x8C:
                                                       /* Input capture to GRA
                                                       /* at the rising edge
   TIER0 = 0xF1;
                                                       /* OVF, IMFA Interrupt Enable
   TCNT0 = 0x0000;
                                                       /* Clear TCNT0
   TSTR = 0xFD;
                                                       /* TCNT0 count start
                                                      /* Interrupt Enable
   set imask ccr(0);
   while (endf == 0);
   while(1);
}
```

H8/300H Tiny Series Using Timer Z Input Capture Function to Count

```
/* Timer ZO Interrupt
void tz0int ( void )
  unsigned char tmp;
   if(stf == 1){
                                                         /* Interrupt by IMFA flag
     if(OVF == 1)
         prdhl = 0xFFFF;
        prdhl = GRA0;
                                                         /* Set Pulse Period
      endf = 1;
                                                         /* Set end flag
      TIER0 = 0xE0;
                                                         /* OVF,IMFA Interrupt Disable
   else{
      stf = 1;
                                                         /* Set start flag
   tmp = TSR0;
   TSR0 = 0xE0;
                                                         /* Interrupt Flag Clear
```

Link address specifications

Section Name	Address
CV1	0x0000
CV2	0x0034
Р	0x0100
В	0xFB80

Revision Record

		Descripti	on	
Rev.	Date	Page	Summary	
1.00	Sep.29.03	_	First edition issued	

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.