

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

APPLICATION NOTE

REU05B0107-0110/Rev.1.10 January 2010 Page 1 of 15

H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

Introduction
Renesas provides a standard set of functions for creating and manipulating graphics and text on a TFT-LCD panel.
These functions are referred to as the Graphics Application Programming Interface or GAPI.

This Application Note is one in a series of application examples which show how to implement interactive graphics on
an LCD panel.

This Application Note can be used with any available Direct Drive LCD Demo PCB from Renesas.

Design manuals, software and schematics are also available from www.america.renesas.com/h8lcd.

This application note must be used in conjunction with the REU05b0112_H8SAP application note and code. Please
download and install REU05b0112_H8SAP application note first and use the below instructions to add this source code
to the project.

Target Device
H8S2378, H8S2456, H8SX1668R

and Direct Drive LCD Demo Board

Contents

1. Transparently moving a bitmap on the screen ..2

2. Code ..5

3. Touchscreen and Panel Coordinates ..10

4. Installation and Source Code Structure...11

http://www.america.renesas.com/h8lcd

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

1. Transparently moving a bitmap on the screen
This sample code uses GAPI calls which will access the bitmap in memory and move it randomly about the screen.

This code also maps the bitmap to a touchable area based on its size, and specifies which function will be called in the
event that the icon is touched.

This code moves the icon by drawing each image from the bitmap on a periodic basis.

Figure 1 shows the bitmap that we will be moving about the screen in the sample code:

Figure 1 BigR.BMP and ScreenBounce

REU05B0110-110/Rev.1.10 January 2010 Page 2 of 15

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

1.1 Creating a transparent BMP compatible with GAPI
There are many tools that can create bitmap images compatible with GAPI. In this example we will use Adobe
Photoshop® (raster editor) and Adobe Illustrator® (vector editor) to create a standard bitmap file image that we can use
within GAPI. Often these tools are used in a corporate environment for high quality logos and images. In this case we
wish to use the stylized “R” from the Renesas logo. The advantage of the .ai format is that it is vector based and can
easily be scaled to any pixel size without loss of information (pixelization). To start we will scale our logo to the
desired pixel size in the vector editor, and then copy this to the raster editor.

Figure 2 Vector Logo

When starting your image in the raster editor, start with an RGB color 8:8:8 image with transparent background. Paste
the copied vector image into the raster editor. Make sure “anti-alias” is off for this process…this will provide solid
edges that will blend against a random background. Next, we will convert the image mode to “indexed color” (image-
>mode->indexed color, merge layers OK. Depending on your particular image, the number of colors will vary, but
ensure that “transparency” is checked in the creation of the color table (GAPI utilizes this transparency). You can now
“save as” a standard bitmap (BMP) file. Given this file only has 4 colors in the color table, it can be saved as either a
4Bpp or 8Bpp indexed BMP format (GAPI supports both 4Bpp and 8Bpp indexed formats). Locating this file in the
demo’s “Resources” directory will automatically cause it to be built into the “resources.bin” file with all other demo
resources (refer to the REU05b0112 for more information on resources).

Figure 3 Raster Logo and color table

REU05B0110-110/Rev.1.10 January 2010 Page 3 of 15

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

1.2 Animation by page flipping
There are many techniques that can be used to transparently move an image on a screen. In this demonstration we use a
page flipping technique as illustrated below. When moving an image against a complex background, the prior location
of the image must be restored before painting the image again in the new location. In this demo, we keep a reference
frame (backFramebuf) that is used to restore corrupted areas. If we were to use a single buffer we would visually see
the draw/restore/draw process and perceive “flicker” as sometimes we would see the restored area that was about to be
drawn again. By using two buffers, we perform the restore/draw process on a non-visible buffer, then flip (make
visible) this buffer only after completing the process. At this time, the previously visible buffer is available for the
restore/draw process. To minimize the time consumed in the restore/draw process only the frame regions that are
known to be affected are written to.

Fl
ip

 B
uf

fe
rs

Fl
ip

 B
uf

fe
rs

REU05B0110-110/Rev.1.10 January 2010 Page 4 of 15

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 5 of 15

2. Code

2.1 Setting Up the Icon
The Icons table describes which objects will be placed on the screen. The pBigR image will be placed at screen
coordinates x = 0.0, y = VERTICAL_POS_PCT (0.396) (relative screen coordinates) when the “BasicConstructor” processes
the “BounceLogo” callback function.

Any number of icons can be placed on the screen; the final entry in the table must be a NULL to terminate the list.

static const ICON_type Icons[]=

{

//**

// BITMAP ADDR FUNCTION CALL Y POSITION

// COLOR SCHEME X POSITION

//**

 { &pBMP_ButtonS, T_SchemeBlue, ButtonBack, SX(0.850), SY(0.750) },

{ &pBMP_BigR, T_SchemeNoColor,BounceLogo, SX(0.000), SY(VERTICAL_POS_PCT) },

{ NULL, NULL, NULL, 0, 0 },};

SCREEN_type ScreenHomeData=

{

 Constructor, Destructor, Icons

};

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 6 of 15

2.2 Screen Constructor/Destructor
Every screen is started by the framework calling the screen Constructor. In this sample code, the constructor first
locates the “BigR” (BMP) file in the pResources structure and assigns this location to the “pBMP_BigR” handle. When
the “BasicConstructor” is called, it will execute each Icon table callback function (these functions are responsible for
placing their own graphic images). The BasicConstructor initializes the displayFrameBuf, but this code also utilizes the
workFrameBuf for page flipping, so this code also initializes the workFrameBuf with a GAPI LCDBMPCopy call.
Because we will be moving our BigR icon about the screen, we didn’t place it into the backFrameBuf (as it would be
copied to the displayFrameBuf during the restore process). So initial placement of the BigR in the displayFrameBuf is
accomplished by a GAPI LCDBMPCopyTransparent call.

The “Destructor” function is called on exit from the screen by the framework. The “BasicDestructor” will release the
screen task that we will be using.

static void Constructor(SCREEN_type const *pS)

{

 if(pBMP_Background == NULL)

 pBMP_Background = FileFind(pResources, "TestImage8bpp");

 if(pBMP_BigR == NULL)

 pBMP_BigR = FileFind(pResources, "BigR");

 //fill background

 (void)LCDBMPCopy(pBMP_Background, backFrameBuf, 0, 0);

 // Run default behavior

 BasicConstructor(pS);

 //initialize work frame buffer

 (void)LCDBMPCopy(backFrameBuf, workFrameBuf, 0, 0);

 //Display icon. BasicConstructor() would take care of this

 //normally, but since we are flipping buffers for animation it must

 //be drawn manually to the front buffer.

 (void) LCDBMPCopyTransparent(pBMP_BigR, displayFrameBuf, x_pos, y_pos);

}

static void Destructor(SCREEN_type const *pS)

{

 // Run default behavior

 BasicDestructor(pS);

}

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 7 of 15

2.3 Callback function
The “BounceLogo” function will be called on every event that the system receives while this sample screen is active. It
is the responsibility of this function to decide if it needs to process the event.

When “BounceLogo” is called by the “BasicConstructor”, it will be passed a message ID of “MSG_DRAW”. When
this message is received we reset the “running” flag of the “BounceTask” (as all screen tasks are stopped on a screen
change).

When “BounceLogo” is called because of touch events, it will check if the “BounceTask” is “running”. If not, and the
touch was within the boundary of the BigR, it will process “MSG_RELEASE” ID’s. If so, we will start the
“BounceTask” screen task responsible for periodically moving the image. If “BounceTask” is already “running”, a
“MSG_RELEASE” event anywhere on the screen will stop it.

void BounceLogo(ICON_type const *pS, EVENT_MSG const *pMsg)

{

 if(MSG_DRAW == pMsg->id)

 {

 /* reset state of icon */

 running = 0;

 }

 if(0 == running)

 {

 //press the logo to start the task

 //we want to check if the logo has been touched, but we do not want IconHandler()

 //to draw the logo for us. That is being handled separately.

 if (((x_pos <= pMsg->param.coord[0]) &&

 (pMsg->param.coord[0] < (x_pos + BMP_Width(*pS->ppBmp)))) &&

 ((y_pos <= pMsg->param.coord[1]) &&

 (pMsg->param.coord[1] < (y_pos + BMP_Height(*pS->ppBmp)))))

 {

 if (MSG_RELEASE == pMsg->id)

 {

 //start screen task

 (void)ScreenTaskStart(BounceTask);

 running = 1;

 }

 }

 }

 else

 {

 //pressing anywhere else will stop the task

 if (MSG_RELEASE == pMsg->id)

 {

 //stop screen task

 (void)ScreenTaskStop(BounceTask);

 running = 0;

 }

 }

}

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 8 of 15

2.4 Moving the Bitmap
The “ BounceTask” function is called on a periodic basis (determined by the xDelay return value…50mS here).
Because code in this thread will be accessing the external bus, we must “window” the usage with “ExMemoryAcquire”
and “ExMemoryRelease” to prevent conflict with the direct driver.

First the code calculates a new x,y coordinate pair for the icon. This code just adds a fixed value (RATE) via “_move”
variables, the sign of these variables is changed whenever the icon “bumps” against a screen edge to keep the “BigR”
within the screen boundaries.

The code than restores the “clean” area from the backFrameBuf to the workFrameBuf by use of the GAPI
LCDBMPCopySub call. This restoration only copies an area as big as the BigR bitmap. Then the BigR is painted at the
new location with the GAPI LCDBMPCopyTransparent call.

Finally the code “flips” the display with the GAPI LCDBMP_WorkDisplay call (making workFrameBuf the
displayFrameBuf and displayFrameBuf the workFrameBuf)

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 9 of 15

static TickType BounceTask()

{

 // Update image at 20Hz

 TickType xDelay = (TickType)(50/TICK_RATE_MS);

 /* Let system know we're accessing External Memory */

 ExMemoryAcquire(RLCD_GetTaskHandle());

 {

 //index of the currently active frame

 static sI16 index = 0;

 //this array hold previous x and y coordinates for each buffer

 static POINT_TYPE prev[2] = { {SX(0.000), SY(VERTICAL_POS_PCT)},

 {SX(0.000), SY(VERTICAL_POS_PCT)} };

 //width and height of the image

 sI16 img_width = BMP_Width(pBMP_BigR);

 sI16 img_height = BMP_Height(pBMP_BigR);

 {

 /* move icon */

 static sI16 x_move=RATE, y_move=RATE;

 x_pos+=x_move;

 if (x_pos < 0)

 x_move = RATE;

 else if(x_pos > BMP_Width(backFrameBuf)-img_width)

 x_move = -RATE;

 y_pos+=y_move;

 if (y_pos < 0)

 y_move = RATE;

 else if(y_pos > BMP_Height(backFrameBuf)-img_height)

 y_move = -RATE;

 }

 //restore the area of this buffer corresponding to the image's previous location

 (void) LCDBMPCopySub(backFrameBuf, workFrameBuf,

 prev[index].x, prev[index].y, prev[index].x, prev[index].y, img_width, img_height,

 pBMP_Background->biColorTable, NO_TRANSPARENCY_COLOR);

 //write the image in its new position

 (void) LCDBMPCopyTransparent(pBMP_BigR, workFrameBuf, x_pos, y_pos);

 //store previous values

 prev[index].x = x_pos;

 prev[index].y = y_pos;

 //flip buffer

 index = LCDBMP_WorkDisplay();

 }

 ExMemoryRelease(RLCD_GetTaskHandle());

 return (xDelay);

}

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

3. Touchscreen and Panel Coordinates
By convention, the sample code uses relative screen coordinates. This is accomplished by use of the “SX” and “SY”
macro expansions. These expansions convert normalized coordinates (0.00 to 1.00) to absolute screen coordinates. If
desired, the SX/SY macros can not be used and absolute screen coordinates used.

For example SX(0.5), SY(0.5) on a QVGA (320x240) panel would expand to (160,120)

(0,0)
(SX(0.00), SY(0.00))

(320,240) QVGA
(480,272) WQVGA

(640,480) VGA
(SX(1.00), SY(1.00))

REU05B0110-110/Rev.1.10 January 2010 Page 10 of 15

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

4. Installation and Source Code Structure
The code is contained within one source file called “ScreenBounce.c,” and the bitmap images used are contained in a
bitmap file “BigR.bmp”. To install the sample code, double click on the installation executable “REUE05B0107.exe” to
bring up the installer. (figure 2) Make sure you click on the browse button in the “Destination Folder” Panel and select
your LCD Direct Drive demo project (REU05b0112_H8SAP installation) directory. Then click the next button to copy
the new files into your project directory.

Figure 2: Installation

REU05B0110-110/Rev.1.10 January 2010 Page 11 of 15

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 12 of 15

Figure 3: Adding “ScreenBounce.c” to the Direct LCD demo project in HEW

Then, open your LCD Direct Drive demo project in HEW. The ScreenBounce.c file will be located in your
CommonSource directory. Add the ScreenBounce.c source file to your project in HEW by dragging the file into the
Screens folder of your project. (Figure 3)

The installer places Bitmap Images that are sized for a WQVGA display panel into your resource directory by default.
If you are using QVGA or VGA you will need to replace the bitmaps in your resource directory with ones of the
appropriate resolution for your display panel. You will find several subdirectories in your resource folder that contain
bitmaps of different resolutions. Simply copy all the files from the subdirectories corresponding to your panel resolution
and paste them over the files in your resource directory.

Refer to the REU05b0112_H8SAP application note on instructions on how to build and update code resources in the
target.

File Name File Description

CommonSource\ScreenBounce.c Demo screen code

Resources\BigR.bmp Bitmap image

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 13 of 15

Website and Support
Renesas Technology Website

http://www.renesas.com/

Renesas Technology America LCD Website
http://america.renesas.com/h8lcd

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com (Global Support)
TechSupport.rta@renesas.com (United States / Canada / Mexico only)

http://www.renesas.com/
http://america.renesas.com/h8lcd
http://www.renesas.com/inquiry
mailto:csc@renesas.com
mailto:TechSupport.rta@renesas.com

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 14 of 15

Revision Record
Description

Rev.

Date Page Summary

1.00 March.20.09 — First edition issued
1.10 January.01.10 — Converted format to add-in code to REU05b0112

 H8S/H8SX Families
Using the Graphics API to Implement Sliding Icons and Transparency

REU05B0110-110/Rev.1.10 January 2010 Page 15 of 15

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2010. Renesas Technology Corp., All rights reserved.

	1. Transparently moving a bitmap on the screen
	1.1 Creating a transparent BMP compatible with GAPI
	1.2 Animation by page flipping

	2. Code
	2.1 Setting Up the Icon
	2.2 Screen Constructor/Destructor
	2.3 Callback function
	2.4 Moving the Bitmap

	3. Touchscreen and Panel Coordinates
	4. Installation and Source Code Structure

