Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SH7280 Group

Using the DTC in the Asynchronous-Mode Transfer of Serial Data by the SCIF

Introduction

This application note describes the transfer of serial data in asynchronous mode by the serial communications interface with FIFO (SCIF) with the aid of the data-transfer controller (DTC). This application note is a summary for quick reference of information required in the design of user software.

Target Device

SH7285

Contents

1.	Preface	. 2
2.	Description of the Sample Application	. 3
3.	Documents for Reference	21

1. Preface

1.1 Specifications

In this sample task, serial transfer is conducted with the data-transfer controller (DTC) used to transfer data between the serial communications interface with FIFO (SCIF) and on-chip RAM.

Figure 1 shows an example of connection for transmission and reception by the SCIF in asynchronous mode.

- SCIF3 and DTC are used.
- The communications format has a fixed 8-bit data length.
- The data-transfer controller (DTC) is activated by the transmit-FIFO-data-empty-interrupt request and the receive-FIFO-data-full-interrupt request to transfer data to the desired transfer destination. In the transmitting and receiving sections of the SCIF, interrupt processing is activated by the transmit-FIFO-data-empty interrupt on the transmitting side and by the receive-FIFO-data-full-interrupt on the receiving side.
- Once 32 bytes of data have been transmitted and received, each operation is halted.

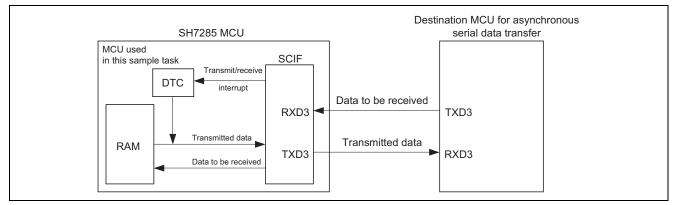


Figure 1 Example of Connection for Using the DTC in Transmission and Reception of Serial Data in Asynchronous Mode

1.2 Modules Used

- Data transfer controller (DTC)
- Serial communications interface with FIFO (SCIF3)

1.3 Applicable Conditions

MCU: SH7285

Operating frequency:	Internal clock	100 MHz		
	Bus clock	50 MHz		
	Peripheral clock	50 MHz		
C compiler:	SuperH RISC engine Family C/C++ Compiler Package Ver.9.1.1			
	(from Renesas Tech	nology Corp.)		

2. Description of the Sample Application

The transmit-FIFO-data-empty interrupt (TXI) and receive- FIFO-data-full interrupt (RXI) from the SCIF are used as DTC-activating interrupt sources in the sample program. Normal transfer mode is employed for asynchronous serial data transfer.

2.1 Operational Overview of Modules Used

2.1.1 Serial Communications Interface with FIFO (SCIF)

In asynchronous mode, each transmitted or received character begins with a start bit and ends with a stop bit. Serial communications is synchronized one character at a time. The transmitting and receiving sections of the SCIF are independent, so full duplex communications is possible. The transmitter and receiver are 16-byte FIFO buffered, so data can be written and read while transmitting and receiving are in progress, enabling continuous transmitting and receiving.

In asynchronous serial communications, the communications line is normally held in the mark (high) state. The SCIF monitors the line and starts serial communications when the line goes to the space (low) state, indicating a start bit. One serial character consists of a start bit (low), data (LSB first), parity bit (high or low), and stop bit (high), in that order. For details on the SCIF, please refer to the section on serial communications interface in the *SH7280 Group Hardware Manual* (REJ09B0393).

Table 1 gives an overview of serial communications in asynchronous mode. Figure 2 is a block diagram of the SCIF.

Item	Description			
Number of interfaces	1 (SCIF3)			
Clock sources	For internal clock: Po, Po/4, Po/16, Po/64 (Po: peripheral clock)			
	For external clock: input clock on the SCK3 pin			
Data format	Transfer data length: Selectable from 7 or 8 bits			
	Order: LSB first and MSB first are selectable			
Baud rate	For internal clock: from 110 bps ($P\phi = 50 \text{ MHz}$)			
	For external clock: up to 781,250 bps			
	$(P\phi = 50 \text{ MHz}, \text{ external input clock of } 12.5000 \text{ MHz})$			
Error detection	Framing, parity and overrun errors			
	Breaks can also be detected.			
Interrupt requests	Transmit-FIFO-data-empty interrupt (TXI)			
	Receive-FIFO-data-full interrupt (RXI)			
	Break interrupt (BRI)			
	Receive-error interrupt (ERI)			
Clock sources	Internal and external clocks are selectable			
	Internal clock			
	When the internal clock has been selected, the SCIF operates using the clock from the baud-rate generator and a clock signal at 16 times the frequency of the bit rate can be output.			
	External clock			
	When the external clock has been selected, input of a clock signal at 16 times the frequency of the bit rate is required, not using the on-chip baud rate generator.			
Loop-back test function	Internal connection of the transmit output pin (TXD) and receive input pin (RXD) enables loop-back testing.			

Table 1 Overview of Serial Data Communications in Asynchronous Mode

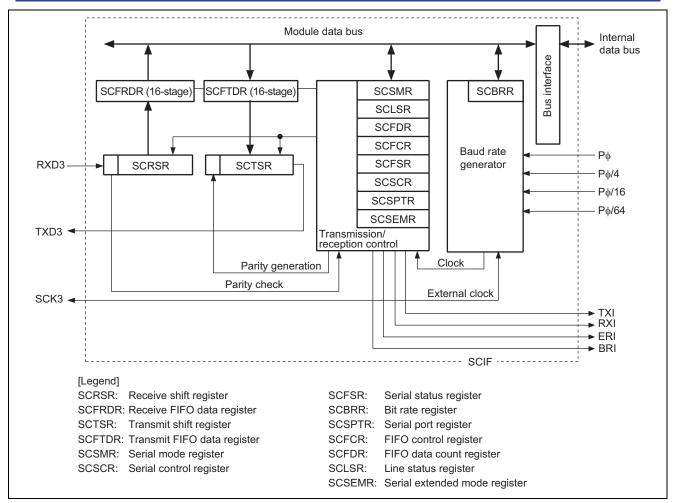


Figure 2 Block Diagram of the SCIF

2.1.2 Data-Transfer Controller (DTC)

There are three transfer modes: normal, repeat, and block transfer modes. Since transfer information is in the data area, it is possible to transfer data over any required number of channels. When activated, the DTC reads transfer information stored in the data area and transfers data according to the transfer information. After the data transfer is complete, it writes updated transfer information back to the data area.

The transfer information is located in the data area. For details on the DTC, see the section on data transfer controller in the *SH7280 Group Hardware Manual* (REJ09B0393).

Table 2 gives an overview of the DTC and figure 3 is a block diagram of the DTC.

Item	Description		
Transfer modes	Normal/repeat/block transfer modes are selectable		
Rounds of transfer	Normal transfer mode: 1 to 65,536		
	Repeat transfer mode: 1 to 256		
	Block transfer mode: 1 to 65,536		
Data size	Size of data for data transfer can be specified as byte, word, or longword		
CPU interrupt request	A CPU interrupt can be requested after completion of one data transfer		
	A CPU interrupt can be requested after completion of the specified data transfer		
Activation sources	External pins, ADC, CMT, USB, MTU2, MTU2S, IIC3, SSU, SCI, SCIF		
Others	Chained transfer (multiple rounds of data transfer performed in response to a single activation source) is available		
	A read-skip mode is specifiable for the DTC's transfer-control information Module stop mode is specifiable		
	Short address mode is specifiable		
	Bus release timing is selectable from three types		
	Priority of the DTC activation can be selected from two types		

Table 2Overview of DTC

Note: Note that at least either the source or destination must be an on-chip peripheral module; transfer cannot be done among an external memory, a memory-mapped external device, and an on-chip memory.

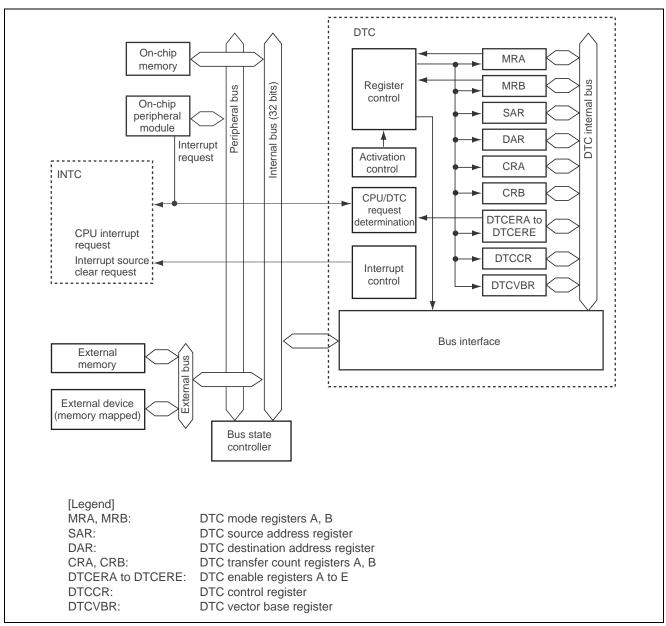


Figure 3 Block Diagram of the DTC

(a) Configuration of transfer information

Figure 4 shows how transfer information for the DTC is configured in the data area. Figure 5 shows the correspondence between the DTC vector table and transfer information.

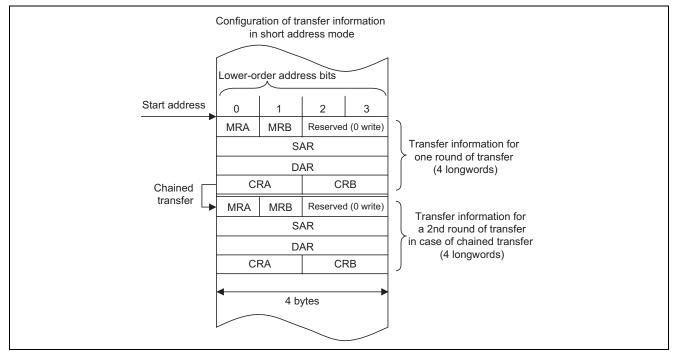


Figure 4 Transfer Information in Data Area

(b) Procedure for setting the address of the vector table for the DTC

- 1. The vector base address is set in the DTC vector base address register (DTCVBR) to allocate the DTC vector table in RAM.
- 2. Destination addresses indicated by DTC vector table address offsets are the addresses where sets of transfercontrol information start.

For details on the vector table address offsets, see the section on the data transfer controller in the SH7280 Group Hardware Manual (REJ09B0393).

The DTC reads the start address of transfer information from the vector table according to the activation source, and then reads the transfer information from the first address.

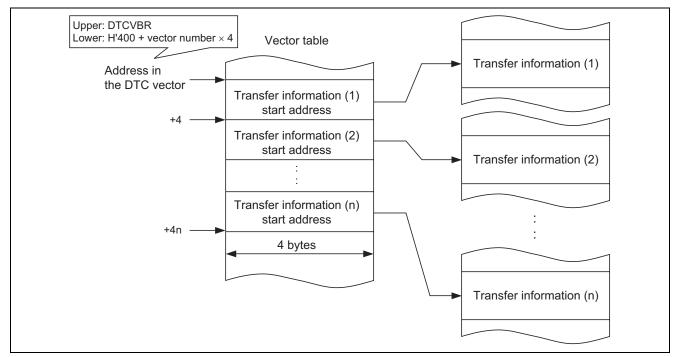


Figure 5 Correspondence between DTC Vector Addresses and Transfer Information

2.1.3 Operation of the Sample Program

Tables 3 and 4 give a list of DTC transfer conditions and an outline of settings for the communications function, respectively. Figures 6 and 7 are images of the allocation of transfer information in memory and the timing of operations, respectively.

Item	Settings of DTC Transfer for SCIF Transmission (TXI3)	Settings of DTC Transfer for SCIF Reception (RXI3)
Transfer mode	Normal mode	Normal mode
Number of unit transfers	32	32
Transfer size	Byte transfer	Byte transfer
Transfer source	Internal RAM	Receive-FIFO-data register (SCFRDR_3)
Transfer destination	Transmit-FIFO-data register (SCFTDR_3)	Internal RAM
Transfer source address	The transfer source address is incremented after transfer.	Fixed transfer source
Transfer destination address	Fixed transfer destination	The transfer destination address is incremented after transfer.
Activation source	SCIF transmit-FIFO-data-empty interrupt	SCIF receive-FIFO-data-full interrupt
Interrupt processing	After completion of the specified data transfer, interrupts for the CPU are enabled.	After completion of the specified data transfer, interrupts for the CPU are enabled.

Table 3 DTC Transfer Conditions

Table 4	Settings for	Communications	Function in	the Sample Program
---------	--------------	----------------	-------------	--------------------

Item	Description
Module	SCIF3
Communications mode	Asynchronous mode
Interrupts	Transmit-FIFO-data-empty interrupt (TXI)
	Receive-FIFO-data-full interrupt (RXI)
	Break interrupt (BRI)
Transfer rate	38,400 bps
Number of data to be transmitted	32 bytes
and received	
Data length	8-bit data
Stop bit	1 stop bit
Parity	None
Bit order	LSB-first
Number of FIFO data triggers	Receive FIFO data trigger: 1
	Transmit FIFO data trigger: 8

SH7280 Group Using the DTC in the Asynchronous-Mode Transfer of Serial Data by the SCIF

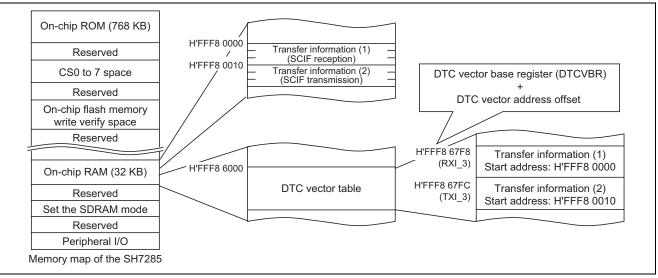


Figure 6 Image of Arrangement of Transfer Information in Memory

SH7280 Group Using the DTC in the Asynchronous-Mode Transfer of Serial Data by the SCIF

[Transmission	Set to 1
Transmit enable (TE bit)	
	Set to 1
Transmit interrupt enable (TIE bit)	
Data stored in the transmit FIFO data register	$ \begin{array}{c c} DA \\ TA \\ T \\$
Number of data in the transmit FIFO register (trigger value = 8)	$\begin{pmatrix} 0 \\ 1 \\ to 8 \\ \end{pmatrix} \begin{pmatrix} 9 \\ 8 \\ 9 \\ \end{pmatrix} \begin{pmatrix} 8 \\ 9 \\ 8 \\ \end{pmatrix} \begin{pmatrix} 9 \\ 8 \\ 9 \\ \end{pmatrix} \begin{pmatrix} 8 \\ 9 \\ 8 \\ \end{pmatrix} \begin{pmatrix} 9 \\ 8 \\ 9 \\ \end{pmatrix} \begin{pmatrix} 8 \\ 9 \\ 8 \\ \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \\ \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
Transmit FIFO data empty (TDFE bit)	TDFE = 1 activates the DTC. Transmitted data are transferred to
DTC_TX activation	the transmit FICO data register from on-chip RAM. The TDFE bit is automatically cleared to 0.
On-chip RAM→Transmit FIFO	1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>
Transmit interrupt for the CPU	The DTC is activated continuously until the number of bytes in the FIFO exceeds the trigger value.
TXD3 pin	
[Reception]	
Receive enable (RE bit)	Set to 1.
Receive interrupt enable (RIE bit)	Set to 1.
RXD3 pin	
Data stored in the receive FIFO data register	DATA1 DATA2 DATA30 DATA31 DATA32
Number of data in the receive FIFO register (trigger value = 1)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Receive FIFO data full (RDF bit)	RDF = 1 activates the DTC. Received data are transferred to on-chip Finally, clear the RDF bit to 0 from within the interrupt handler.
DTC_TX activation Receive FIFO→On-chip RAM	RAM from the receive data register. The RDF bit is automatically cleared to 0.
Receive interrupt for the CPU	Generate an interrupt request for the CPU upon completion of DTC transfer.

Figure 7 Principles of Operation

2.2 Procedure for Setting Modules Used

This section describes the procedure for setting up SCIF3 for asynchronous mode operations using the DTC.

Figure 8 shows the flow of processing by the sample program, figure 9 shows the flow of settings for release from module-standby mode, figure 10 shows flow 1 of DTC initialization (for transmission), figure 11 shows flow 2 of DTC initialization (for receive operation), figure 12 shows the flow for initialization of data transmission and reception in asynchronous mode, and figure 13 shows the flow for setting up the pin function controller. Furthermore, figure 14 shows the flow for handling transmit interrupts in asynchronous mode, figure 15 shows the flow for handling receive interrupts in asynchronous mode, and figure 16 shows the flow for handling receive error interrupts. For details on the settings of individual registers, see the *SH7280 Group Hardware Manual* (REJ09B0393).

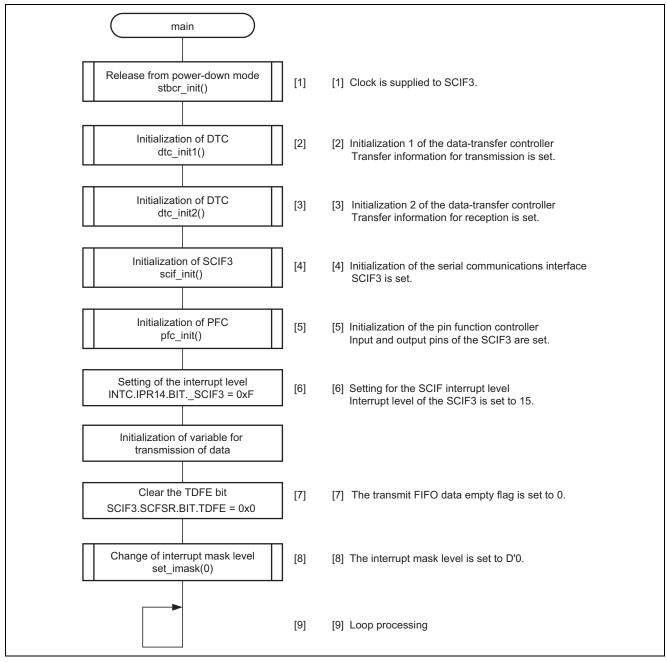


Figure 8 Flow of Processing by the Sample Program

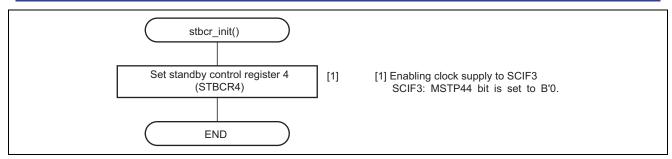


Figure 9 Flow of Setting for Release from Module-Standby Mode

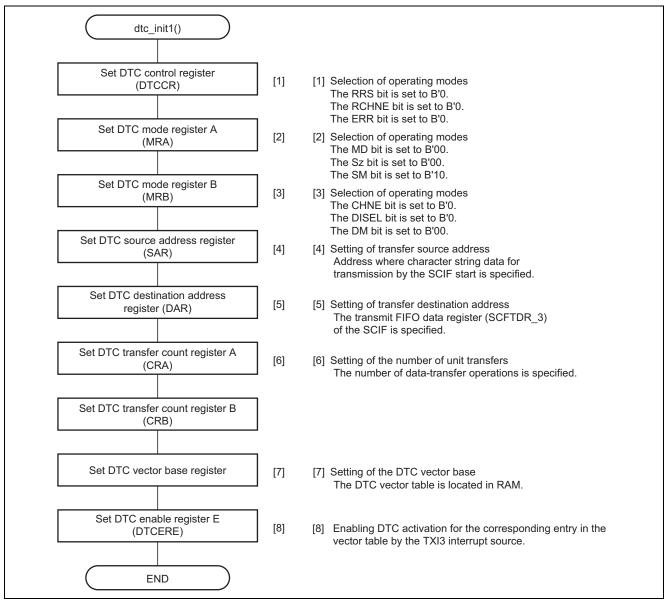


Figure 10 Flow 1 of DTC Initialization (before Transmission)

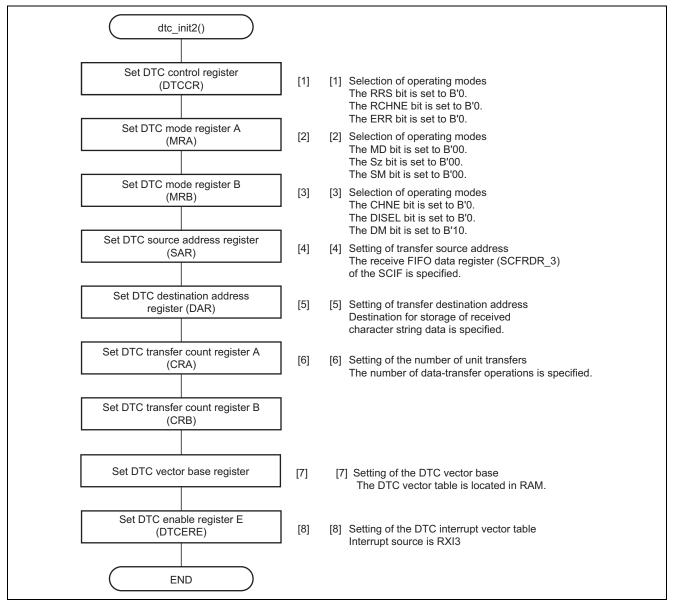


Figure 11 Flow 2 of DTC Initialization (before Receive Operation)

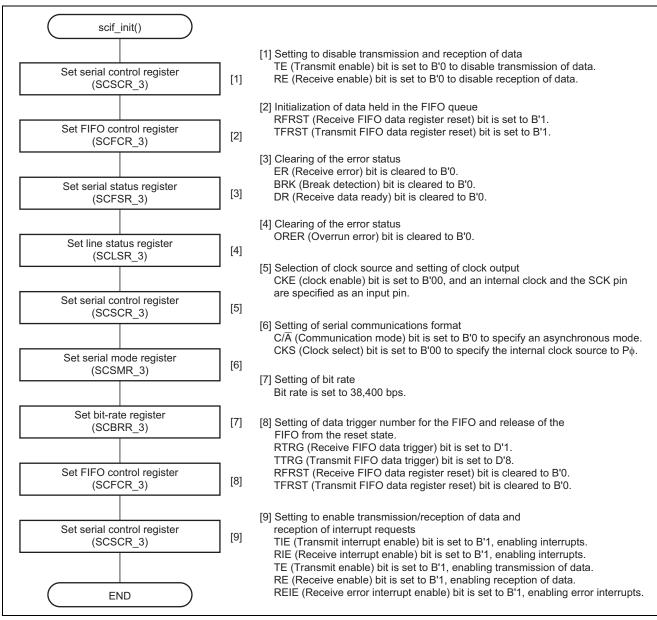
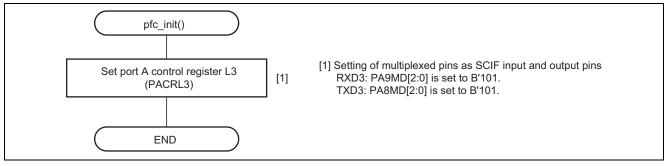



Figure 12 Flow for Initialization of Data Transmission and Reception in Asynchronous Mode

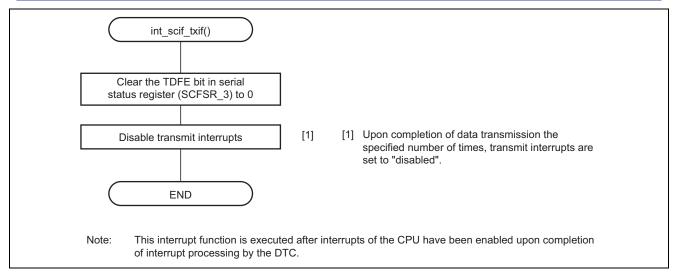


Figure 14 Flow for Handling Transmit Interrupts in Asynchronous Mode

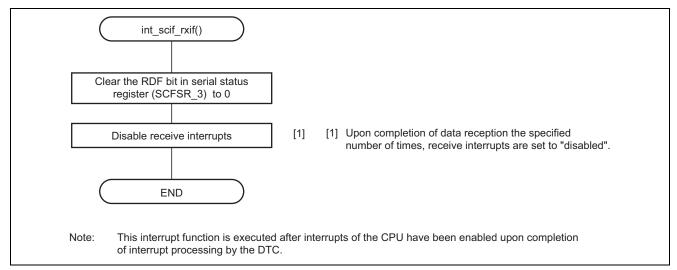


Figure 15 Flow for Handling Receive Interrupts in Asynchronous Mode

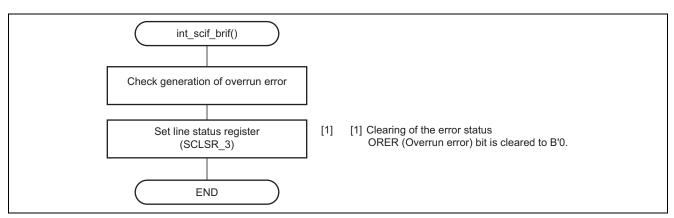


Figure 16 Flow for Handling Receive Error Interrupts in Asynchronous Mode

2.3 **Processing Sequence of the Sample Program**

2.3.1 Clock Pulse Generator (CPG)

Table 5 gives settings for the register of the clock pulse generator in the sample program.

Table 5 Settings for Register in Clock Pulse Generator

Address	Setting	Description
H'FFFE 0010	H'0101	STC [2:0] = B'001: × 1/2 (Bø)
		IFC [2:0] = B'000: × 1 (Iφ)
		PFC [2:0] = Β'001: × 1/2 (Ρφ)
H'FFFE 0410	H'41	MSSCS[1:0] = B'01: PLL output clock
		MSDIVS[1:0] = Β'01: × 1/2 (Μφ)
H'FFFE 0414	H'41	ASSCS[1:0] = B'01: PLL output clock
		$ASDIVS[1:0] = B'01: \times 1/2 (A\phi)$
	H'FFFE 0010 H'FFFE 0410	H'FFFE 0010 H'0101 H'FFFE 0410 H'41

2.3.2 Power-Down Modes

Table 6 gives settings for the standby control register in the sample program.

Table 6 Settings for Standby Control Register

Register Name	Address	Setting	Description
Standby control register 2 (STBCR2)	H'FFFE 0018	H'00	MSTP4 = B'0: DTC operates
Standby control register 4 (STBCR4)	H'FFFE 040C	H'E4	MSTP44 = B'0: SCIF3 operates

2.3.3 Interrupt Controller (INTC)

Table 7 gives settings for the register of the interrupt controller in the sample program.

Table 7 Settings for Register of the Interrupt Controller

Register Name	Address	Setting	Description
Interrupt priority register 14 (IPR14)	H'FFFE 0C10	H'000F	IPR14[3:0] = B'F: SCIF3 is at a level 15

Note: The order of priority for RXI3 and TXI3 is determined by the order of the offset addresses of the corresponding interrupt vectors. For details of the interrupt priority levels, refer to the description of the interrupt exception handling vector table and priority in the interrupt controller section of the *SH7280 Group Hardware Manual* (REJ09B0393).

2.3.4 Pin Function Controller (PFC)

Table 8 gives settings for the registers of the pin function controller in the sample program.

Table 8 Settings for Register of Pin Function Controller

Register Name	Address	Setting	Description
Port A control register L3	H'FFFE 3812	H'0055	PA8MD[2:0] = B'101: TXD3 output
(PACRL3)			PA9MD[2:0] = B'101: RXD3 input

2.3.5 Data Transfer Controller (DTC)

Table 9 gives settings for the registers of the DTC in the sample program.

Table 9 Settings for Data Transfer Controller

Register Name	Address	Setting	Description
DTC control register (DTCCR)	H'FFFE 6010	H'10	RRS = B'0: Read skip is not performed RCHNE = B'0: Disables the chained transfer ERR = B'0: No interrupt request occurs
DTC vector base register (DTCVBR)	H'FFFE 6014	H'FFF8 6000	Setting for the DTC vector base address

• SCIF3 transmission: Setting transfer information (MRA, MRB, SAR, DAR, CRA, and CRB)

Register Name	Address	Setting	Description
DTC mode register A (MRA)	H'FFF8 0000 (On-chip RAM)* ¹	H'08	MD[1:0] = B'00:Normal transfer modeSz[1:0] = B'00:Byte-size transferSM[1:0] = B'10:Increments SAR
DTC mode register B (MRB)	H'FFF8 0001 (On-chip RAM)* ¹	H'00	CHNE = B'0: Disables chained transfer CHNS = B'0: Chained transfer every time DISEL = B'0: Generates CPU interrupt request DTS = B'0: Specifies the destination as repeat or block area DM[1:0] = B'00: DAR is fixed
DTC source address register (SAR)	H'FFF8 0004 (On-chip RAM)* ¹	_	Specifies transfer source address Buffer for transmission (&SndData[0])
DTC destination address register (DAR)	H'FFF8 0008 (On-chip RAM)* ¹	SCFTDR_3	Specifies transfer destination address Transmit FIFO data register (SCFTDR)
DTC transfer count register A (CRA)	H'FFF8 000C (On-chip RAM)* ¹	H'20	Specifies the number of unit transfers as 32
DTC enable register E (DTCERE)	H'FFFE 6008	H'0400	Selects interrupt source to activate the DTC TXI_3

• SCIF3 reception: Setting transfer information (MRA, MRB, SAR, DAR, CRA, and CRB)

Register Name	Address	Setting	Description
DTC mode register A (MRA)	H'FFF8 0010 (On-chip RAM)* ¹	H'00	MD[1:0] = B'00:Normal transfer modeSz[1:0] = B'00:Byte-size transferSM[1:0] = B'00:SAR is fixed
DTC mode register B (MRB)	H'FFF8 0011 (On-chip RAM)* ¹	H'08	CHNE = B'0: Disables chained transfer CHNS = B'0: Chained transfer every time DISEL = B'0: Generates CPU interrupt request DTS = B'0: Specifies the destination as repeat or block area DM [1:0] = B'10: Increments DAR
DTC source address register (SAR)	H'FFF8 0014 (On-chip RAM)* ¹	SCFRDR_3	Specifies transfer source address Receive data register (SCFRDR)
DTC destination address register (DAR)	H'FFF8 0018 (On-chip RAM)* ¹	_	Specifies transfer destination address Buffer for reception (&RcvData[0])
DTC transfer count register A (CRA)	H'FFF8 001C (On-chip RAM)* ¹	H'20	Specifies the number of unit transfers as 32
DTC enable register E (DTCERE)	H'FFFE 6008	H'0800	Selects interrupt source to activate the DTC RXI_3

Note: 1. The allocation of transfer information depends on the memory allocation of the compiler. Accordingly, when the setting is changed, the allocation address may also be changed.

2.3.6 Serial Communications Interface with FIFO

Table 10 gives settings for the registers of the SCIF in the sample program.

Table 10 Settings for SCIF Register

Register Name	Address	Setting	Description
Serial mode register_3	H'FFFE 9800	H'0000	$C/\overline{A} = B'0$: Asynchronous mode
(SCSMR_3)			CHR = B'0: 8-bit data
			PE = B'0: Disables appending and checking of parity bits
			STOP = B'0: 1 stop bit
			CKS[1:0] = B'00: P
Bit rate register_3	H'FFFE 9804	D'124	Asynchronous mode
(SCBRR_3)			Bit rate: 38,400 (bit/s) * ¹
Serial control register_3	H'FFFE 9808	H'0000	Initialization
(SCSCR_3)			TIE = B'0: Disables transmit-FIFO-data-empty- interrupt (TXI) request
			RIE = B'0: Disables receive-FIFO-data-full-interrupt (RXI) and receive-error-interrupt (ERI) requests
			TE = B'0: Disables transmission of data
			RE = B'0: Disables reception of data
	H'00F		At the time of setting
			Asynchronous mode
			CKE[1:0] = B'00: Internal clock, SCK pin is used as an input pin
		H'00F0	Enabling transmission and reception of data
			TIE = B'1: Enables transmit-FIFO-data-empty interrupt (TXI) request
			RIE = B'1: Enables receive-FIFO-data-full interrupt (RXI) request
			TE = B'1: Enables transmission of data
			RE = B'1: Enables reception of data
Serial status register_3	H'FFFE 9810	H'0060	Initial value
(SCSSR_3)			TDFE = B'1: Transmit FIFO data empty flag
			TEND = B'1: Transmit end flag
		H'0000	At the time of setting
Nata 4 Fandataile an h			All flags are cleared to 0.

Note: 1. For details on bit rate settings, see the table of bit rates and SCBRR settings in the section on the serial communications interface with FIFO of the *SH7280 Group Hardware Manual* (REJ09B0393).

3. Documents for Reference

- Software Manual SH-2A, SH2A-FPU Software Manual (REJ09B0051) The most up-to-date version of this document is available on the Renesas Technology Website.
- Hardware Manual SH7280 Group Hardware Manual (REJ09B0393) The most up-to-date version of this document is available on the Renesas Technology Website.

Website and Support

Renesas Technology Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Descript	n	
Rev.	Date	Page	Summary	
1.00	Jan.19.09	_	First edition issued	

All trademarks and registered trademarks are the property of their respective owners.

Notes regarding these materials

- 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations

KENESAS

- (3) healthcare intervention (e.g., excision, administration of medication, etc.)
- (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved.