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 APPLICATION NOTE 

H8/300L SLP Series 
Using the Asynchronous Event Counter for Control 

Introduction 
Using an asynchronous event counter, a series of operation is repeated periodically: a transition from subactive mode to 
high-speed active mode, reversal of the port output in high-speed active mode, and a transition back to subactive mode. 
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H8/300L SLP Series 
Using the Asynchronous Event Counter for Control 

1. Specifications 
1. Using an asynchronous event counter (AEC), a series of operation is repeated once every 524.288 ms: a transition 

from subactive mode to high-speed active mode, reversal of the port output in high-speed active mode, and a 
transition back to subactive mode. 

2. The 2-MHz event input is applied to the asynchronous event input L pin (AEVL). 
3. In this sample task, the AEC is used as a 16-bit asynchronous event counter. 
 

2. Description of Functions 
1. In this sample task, an asynchronous event counter (AEC) is used to induce transitions between subactive and active 

modes and to invert the port output. The features of the AEC are as follows. 
 External events input asynchronously are counted without regard to the basic clock operation. 
 The counter has a 16-bit configuration, and can count up to 65,536 events. 
 The circuit can also be used as two independent 8-bit event counters on different channels. 
 The counter can be reset and its counting-up operation can be halted under software control. 
 Event counter overflow can be detected to automatically generate an interrupt. 
 When not in use, the AEC alone can be placed in a standby state by the module standby mode. 

 
2. Figure 2.1 is a block diagram of the 16-bit asynchronous event counter used in this sample task. 

ECCSR: Event counter control/status register
ECH: Event counter H
ECL: Event counter L
AEVH: Asynchronous event input H
AEVL: Asynchronous event input L
IRREC: Event counter overflow interrupt request flag

Event input 
from AEVH
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ECL overflow
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Figure 2.1   Block Diagram of Asynchronous Event Counter 
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3. Functions of the 16-bit asynchronous event counter are described in table 2.1 below. 
 
Table 2.1 Functions of the 16-bit Asynchronous Event Counter 

Register Function 
Input pin edge selection register  
(AEGSR) 

AEGSR is an 8-bit read/write register which selects the edge sensing of rising edge, 
falling edge, or both edges for AEVH, AEVL and IRQAEC pins. 

Event counter control register  
(ECCR) 

ECCR is an 8-bit read-only up-counter which controls the input clock of the counter 
and IRQAEC/IECPWM 

Event counter control/ 
status register (ECCSR) 

ECCSR is an 8-bit read/write register which is used to control counter overflow 
detection, the counter resetting, and halting of counting-up function. Upon a reset, 
ECCSR is initialized to H'00. 

Event counter H (ECH) ECH is an 8-bit read-only up-counter which operates either as an independent 8-bit 
event counter or, in combination with ECL, as the counter for the upper eight bits of 
a 16-bit event counter. As the input clock signal, either the external asynchronous 
event AEVH pin, or the overflow signal from the lower 8-bit counter ECH can be 
selected by the CH2 bit in ECCSR. ECH can be cleared to H'00 by software. Upon a 
reset, ECH is initialized to H'00. 

Event counter L (ECL) ECL is an 8-bit read-only up-counter which operates either as an independent 8-bit 
event counter or, in combination with ECH, as the counter for the lower eight bits of 
a 16-bit event counter. As the input clock signal, the event clock from the external 
asynchronous event AEVL pin is used. ECL can be cleared to H'00 by software. 
Upon a reset, ECL is initialized to H'00. 

Asynchronous event input H  
(AEVH) 

AEVH is the event input pin for input to event counter H (ECH). 

Asynchronous event input L  
(AEVL) 

AEVL is the event input pin for input to event counter L (ECL). 

Asynchronous event counter  
interrupt request flag (IRREC) 

When an asynchronous event counter interrupt request is generated, IRREC is set 
to 1. It is not automatically cleared even after the interrupt is accepted. To clear 
IRREC, write 0 by software. 

Asynchronous event counter  
interrupt enable (IENEC) 

IENEC enables or disables asynchronous event counter interrupt requests. 
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4. Figure 2.2 shows an example of settings when using the AEC as a 16-bit asynchronous event counter. 

Start

CH2  ← "0"
CUEH  ← "0"
CUEL  ← "0"
CRCH  ← "0"
CRCL  ← "0"

ALEGS1  ← "0"
ALEGS0  ← "0"
ACKL1  ← "0"
ACKL0  ← "0"

OVH  ← "0"
OVL  ← "0"
CUEH  ← "0"
CUEL  ← "0"
CRCH  ← "0"
CRCL  ← "0"

End  

Figure 2.2   Example of Settings for 16-bit Asynchronous Event Counter 

Since CH2 is cleared to 0 upon a reset, ECH and ECL operate as a 16-bit event counter after a reset. The AEC also 
operate as a 16-bit event counter by the settings shown in figure 2.2. The operating clock source is the asynchronous 
event input from the AEVL pin. When the next clock pulse is input after the count values for both ECH and ECL 
reach H'FF, ECH and ECL overflow, the OVH flag in ECCSR is set to 1, the count values of ECH and ECL are 
both reset to H'00, and counting-up is restarted. Upon occurrence of overflow, the IRREC bit in IRR2 is set to 1. At 
this time, if the IENEC bit in IENR2 is 1, an interrupt request is issued to the CPU. 

 
5. Asynchronous event counter operating modes are shown in table 2.2. 
 
Table 2.2 Asynchronous Event Counter Operating Modes 

Operating 
Mode Reset Active Sleep Watch Subactive Subsleep Standby 

Module 
Standby 

AEGSR Reset Functions Functions Held*1 Functions Functions Held*1 Held 
ECCR Reset Functions Functions Held*1 Functions Functions Held*1 Held 
ECCSR Reset Functions Functions Held*1 Functions Functions Held*1 Held 
ECH Reset Functions Functions Functions*1,*2 Functions*2 Functions*2 Functions*1,*2 Halted 
ECL Reset Functions Functions Functions*1,*2 Functions*2 Functions*2 Functions*1,*2 Halted 
Notes: 1. When an asynchronous external event signal is input, the counter is incremented, but the count 

overflow H/L flags are not affected. 
 2   In these modes, ECH and ECL operate when �asynchronous external event� is selected, 

otherwise the AEC is halted and held pending. 
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6. Notes on the 16-bit asynchronous event counter 
A. Before reading the values of ECH and ECL, the CUEH and CUEL bits in ECCSR must be cleared to 0 to 

prevent asynchronous event input to the counter. If the event counter is incremented while being read, the 
correct value cannot be read.  

B. Use a clock with a frequency of up to 16 MHz for input to the AEVH and AEVL pins, and ensure that the high-
and low-level widths of the clock are at least 30 ns. There is no constraint on the duty cycle. 

C. In the case of the AEC used in 16-bit mode, before the clock is input to it, ECCSR setting should be made such 
that the CUEH bit is first set to 1 and then the CRCH bit to 1 or both CUEH and CRCH are set simultaneously. 
Thereafter, do not change the value of CUEH during AEC operation in 16-bit mode. If CUEH is changed while 
in 16-bit mode, ECH will not be incremented correctly. 

D. When ECPWME in AEGSR is 1, event counter PWM is operating and therefore ECPWCRH, ECPWCRL, 
ECPWDRH, ECPWDRL should not be modified. When changing the data in them, event counter PWM must be 
stopped by clearing ECPWME to 0 before writing to these registers. 

E The value of Event Counter PWM Data Register and the value of Event Counter PWM Compare Register must 
be set so that Event Counter PWM Data Register < Event Counter PWM Compare Register. If the settings do 
not satisfy this condition, do not set ECPWME in AEGSR to 1. 

F. As synchronization is established internally when an IRQAEC interrupt is generated, a maximum error of 1 tcyc 
will arise between clock halting and interrupt acceptance. 

G. Table 2.3 shows operating modes and event input frequencies. 
 
Table 2.3 Relation between Operating Modes and AEVH/AEVL Pin Event Input Frequencies 

 
Mode 

 Maximum AEVH/AEVL Pin Input 
Clock Frequency 

Active (high-speed), Sleep (high-speed)  16 MHz 
Medium-speed active, Sleep (medium-speed)  
 
 
fosc = 1 MHz to 4 MHz 

(φ/16) 
(φ/32) 
(φ/64) 
(φ/128) 

2 ⋅ fosc 
fosc 
1/2 ⋅ fosc 
1/4 ⋅ fosc 

Watch, Subactive, Subsleep,  
Standby 
φw = 32.768 kHz or 38.4 kHz 

(φw/2) 
(φw/4) 
(φw/8) 

1000 KHz 
500 KHz 
250 KHz 
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7. Table 2.4 shows the assignment of functions in this sample task. 
 
Table 2.4 Function Assignment 

Function Assignment 
AEGSR Selects the edge sensing of rising, falling, or both edges for AEVL. 
ECCR Controls AEVL counter input clock. 
ECCSR Sets 16-bit asynchronous event counter function, detects counter overflow, 

enables/disables the event clock input to ECH and ECL. 
ECH Functions as the upper 8-bit up-counter of a 16-bit event counter, taking the ECL 

overflow signal as the input clock. 
ECL Functions as the lower 8-bit up-counter of a 16-bit event counter, taking the external 

asynchronous event input on the AEVL pin as the input clock. 
COM Sets P40/SCK32 pin function. 
SCR3 Sets P40/SCK32 pin function. 
TMA3 Used to set transition to subactive mode. 
AEVL Functions as the input pin for 2-MHz external asynchronous event input. 
P40 Inverts P40 output, triggered by 10 times of ECH and ECL overflows. 
PCR40 Sets P40 pin to output pin function. 
SYSCR1 Controls power down modes. 
SYSCR2 Controls power down modes. 
IENDT Enables/disables direct transition interrupt requests 
IENEC Enables/disables asynchronous event counter interrupt requests. 
IRRDT Indicates whether or not a direct transition interrupt has been requested 
IRREC Indicates whether or not an asynchronous event counter interrupt has been requested. 
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3. Principle of Operation 

1. Figure 3.1 illustrates the operation of this sample task. Asynchronous event counter operation is implemented 
through hardware and software processing as shown in the figure.  

H'FFFF

H'0000

H'0F

H'00

524.288 ms

High

Low

Active 
mode

Subactive
mode

Time

Time

32.768 ms
ECH, ECL
16-bit
counter

CNT

P40 pin

Hardware processing

Software processing

    Start counting up by 16-bit 
    event counter consisting of 
    ECH and ECL.

a. Set asynchronous event 
 ounter.
b. Set P40 output pin functions.
c. Enable Interrupts. 
d. After initialization, make a 
 transition to subactive mode.

Hardware processing

Software processing

a. ECH and ECL overflows.
b. Set IRREC to 1.
c. Clear ECH and ECL to H'0000.

a. Starts asynchronous event 
 counter interrupt handling. 
b. Clear IRREC to 0.
c. Increment 8-bit counter.

Hardware processing

Software processing

a. ECH and ECL overflows. 
b. Set IRREC to 1.
c. Clear ECH and ECL to H'0000.

a. Starts asynchronous event
 counter interrupt handling.
b. Clear IRREC to 0.
c. Make a transition to active 
 mode.
d. Invert P40 pin output.
e. Make a transition to subactive  
 mode.

Initialize:

 

Figure 3.1   Operation Principle of Asynchronous Event Counter 
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4. Description of Software 

4.1 Modules 
The modules used in this sample task are shown in table 4.1. 
 
Table 4.1 Description of Modules 

Module Label Function 
Main routine main Initializes RAM area for use, port 40, asynchronous event counter and 

system control register; enables interrupts; executes direct transition to 
subactive mode; after 524.288 ms, controls port output and executes direct 
transitions to high-speed active mode or subactive mode. 

Asynchronous 
event counter 
interrupt handling 
routine 

aecint An asynchronous event counter interrupt handling routine which clears an 
interrupt request flag, increments and initializes an 8-bit counter, and after 
524.288 ms, sets the flag in RAM. 

Direct transition 
interrupt handling 
routine 

dtint A direct transition interrupt handling routine which clears the interrupt 
request flag. 

 

4.2 Arguments 
In this sample task, no arguments are used. 
 

4.3 Internal Registers 
Table 4.2 shows the internal registers used in this sample task. 
 
Table 4.2 Description of Internal Registers 

Register Function Address Setting 
AEGSR ALEGS1 

ALEGS0 
Input Pin Edge Selection Register(AEC Edge Select L) 
If ALEGS1 = 0 and ALEGS0 = 0, falling edge of AEVL pin 
input is detected. 

H'FF92 
Bit 5 
Bit 4 

ALEGS1 = 0 
ALEGS0 = 0 

ECCR  ACKL1 
ACKL0 

Event Counter Control Register (AEC Clock Select L) 
If ACKL1 = 0 and ACKL0 = 0, the clock used by ECL is input 
from AEVL pin.  

H'FF94 
Bit 5 
Bit 4 

ACKL1 = 0 
ACKL0 = 0 

ECCSR OVH Event Counter Control/Status Register (Counter Overflow H)
A status flag indicating overflow of ECH. 
If OVH = 0, indicates no overflow of ECH. 
If OVH = 1, indicates ECH overflow. 

H'FF95 
Bit 7 

0 

 OVL Event Counter Control/Status Register (Counter Overflow L) 
A status flag indicating overflow of ECL. 
If OVL = 0, indicates no overflow of ECL. 
If OVL = 1, indicates ECL overflow. 

H'FF95 
Bit 6 

0 
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Register Function Address Setting 
ECCSR CH2 Event Counter Control/Status Register (Channel Selection) 

Selects whether to use ECH and ECL as a single-channel 
16-bit event counter, or as independent 8-bit event counters 
on two channels. 
If CH2 = 0, ECH and ECL function as a single concatenated 
16-bit event counter. 
If CH2 = 1, ECH and ECL function as independent 8-bit 
event counters on two channels. 

H'FF95 
Bit 4 

0 

 CUEH Event Counter Control/Status Register  
(Count-Up Enable H) 
Enables or disables the event clock input to ECH. 
If CUEH = 0, disables the event clock input to ECH. 
If CUEH = 1, enables the event clock input to ECH. 

H'FF95 
Bit 3 

0 

 CUEL Event Counter Control/Status Register  
(Count-Up Enable L) 
Enables or disables the event clock input to ECL. 
If CUEL = 0, disables the event clock input to ECL. 
If CUEL = 1, enables the event clock input to ECL. 

H'FF95 
Bit 2 

0 

 CRCH Event Counter Control/Status Register  
(Counter Reset Control H) 
Controls ECH reset. 
If CRCH = 0, ECH is reset. 
If CRCH = 1, ECH reset is cancelled and count-up function 
is enabled. 

H'FF95 
Bit 1 

0 

 CRCL Event Counter Control/Status Register  
(Counter Reset Control L) 
Controls ECL reset. 
If CRCL = 0, ECL is reset. 
If CRCL = 1, ECL reset is cancelled and count-up function is 
enabled. 

H'FF95 
Bit 0 

0 

ECH Event Counter H 
An 8-bit read-only up-counter; in combination with ECL, it 
operates as the upper 8 bits of a 16-bit event counter. 

H'FF96 H'00 

ECL Event Counter L 
An 8-bit read-only up-counter; in combination with ECH, it 
operates as the lower 8 bits of a 16-bit event counter. 

H'FF97 H'00 

SMR COM Serial mode Register (Communication Mode) 
If COM = 0, P40/SCK32 pin functions as the P40 pin. 
If COM = 1, P40/SCK32 pin functions as the SCK32 output 
pin. 

H'FFA8 
Bit 7 

0 

SCR3 CKE1 
CKE0 

Serial Control Register 3 (Clock Enable1,0) 
If CKE1 = 0, CKE0 = 0, COM = 0 and PCR40 = 0, 
P40/SCK32 pin functions as the P40 input pin.  

H'FFAA 
Bit 1 
Bit 0 

CKE1 = 0 
CKE0 = 0 

TMA  TMA3 Timer Mode Register A  (Internal Clock Selector 3) 
Selects the clock source input to TCA. 
If TMA3 = 0, PSS is selected as the TCA input clock source, 
and an interval timer function is selected for timer A 
If TMA3 = 1, PSW is selected as the TCA input clock source, 
and a clock time base function is selected for timer A 

H'FFB0 
Bit 3 

1 
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Register Function Address Setting 
PMR3 AEVL Port Mode Register 3(P37/AEVL Pin Function Switch)  

Sets the P37/AEVL pin function. 
If AEVL = 0, the P37/AEVL pin functions as the P37 
input/output pin 
If AEVL = 1, the P37/AEVL pin functions as the AEVL input 
pin 

H'FFCA 
Bit 7 

1 

PDR4 P40 Port Data Register 4 (P40) 
Stores the P40 pin data. 
If P40 = 0, the P40 pin output level is low 
If P40 = 1, the P40 pin output level is high 

H'FFD7 
Bit 0 

0 

PCR4 PCR40 Port Control Register 4 (Port Control Register 40) 
Controls the P40 pin input/output. 
If PCR40 = 0, the P40 pin functions as an input pin 
If PCR40 = 1, the P40 pin functions as an output pin 

H'FFE7 
Bit 0 

1 

SYSCR1 SSBY System Control Register 1 (Software Standby) 
Specifies transition to standby mode or watch mode. 
If SSBY = 0, after a SLEEP instruction is executed in active 
mode, a transition is made to sleep mode, or after a SLEEP 
instruction is executed in subactive mode, a transition is 
made to subsleep mode 
If SSBY = 1, after a SLEEP instruction is executed in active 
mode, a transition is made to standby mode or to watch 
mode, or after a SLEEP instruction is executed in subactive 
mode, a transition is made to watch mode 

H'FFF0 
Bit 7 

1 

 STS2 
STS1 
STS0 

System Control Register 1 (Standby Timer Select 2 to 0) 
Specifies the time for the CPU and peripheral functions to 
wait until the clock stabilizes when, triggered by a specific 
interrupt, the standby mode or watch mode is terminated and 
a transition is made to active mode. 
When STS2 to STS1 = 000, standby time is 8,192 states 
When STS2 to STS1 = 001, standby time is 16,384 states 
When STS2 to STS1 = 010, standby time is 1,024 states 
When STS2 to STS1 = 011, standby time is 2,048 states 
When STS2 to STS1 = 100, standby time is 4,096 states 
When STS2 to STS1 = 101, standby time is 2 states 
When STS2 to STS1 = 110, standby time is 8 states 
When STS2 to STS1 = 111, standby time is 16 states 

H'FFF0 
Bit 6  
Bit 5 
Bit 4 

STS2 = 0 
STS1 = 0 
STS0 = 0 

 LSON System Control Register 1 (Low Speed On Flag) 
When watch mode is terminated, selects either the system 
clock (φ) or the subclock (φsub) as the CPU operating clock.  
If LSON = 0, selects the system clock (φ) as the CPU 
operating clock 
If LSON = 1, selects the subclock (φsub) as the CPU 
operating clock 

H'FFF0 
Bit 3 

1 
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Register Function Address Setting 
SYSCR2 NESEL System Control Register 2  

(Noise Elimination Sampling Frequency Selection) 
Selects the frequency at which the watch clock signal (φw) 
output by the subclock pulse generator is sampled using the 
oscillator clock (φosc) output by the system clock pulse 
generator. 
If NESEL = 0, sampling frequency is φosc /16.  
If NESEL = 1, sampling frequency is φosc /4.  

H'FFF1 
Bit 4 

1 

 DTON System Control Register 2  
(Direct Transfer On Flag) 
Specifies whether or not to make direct transitions among 
high-speed active mode, medium-speed active mode, and 
subactive mode when a SLEEP instruction is executed. 
When DTON = 0, if a SLEEP instruction is executed in active 
mode, a transition is made to standby mode, watch mode or 
sleep mode; if a SLEEP instruction is executed in subactive 
mode, a transition is made to watch mode or subsleep 
mode. 
When DTON = 1, if a SLEEP instruction is executed in high-
speed active mode, a direct transition is made to medium-
speed active mode (when SSBY = 1, MSON = 1, LSON = 0) 
or to subactive mode (when SSBY = 1, TMA3 = 1, LSON = 
1); if a SLEEP instruction is executed in medium-speed 
active mode, a direct transition is made to high-speed active 
mode (when SSBY = 0, MSON = 0, LSON = 0) or to 
subactive mode (when SSBY = 1, TMA3 = 1, LSON = 1); 
and if a SLEEP instruction is executed in subactive mode, a 
direct transition is made to high-speed active mode (when 
SSBY = 1, TMA3 = 1, LSON = 0, MSON = 0) or to medium-
speed active mode (when SSBY = 1, TMA3 = 1, LSON = 0, 
MSON = 1). 

H'FFF1 
Bit 3 

1 

 MSON System Control Register 2 
(Medium Speed On Flag) 
Selects whether to operate in high-speed active mode or in 
medium-speed active mode after the standby mode, watch 
mode, or sleep mode is terminated,. 
If MSON = 0, operates in high-speed active mode. 
If MSON = 1, operates in medium-speed active mode. 

H'FFF1 
Bit 2 

0 

 SA1 
SA0 

System Control Register 2  
(Subactive Mode Clock Select 1, 0) 
Selects the CPU operating clock (φw/8, φw/4, φw/2) in 
subactive mode. 
If SA1 = 0 and SA0 = 0, φw/8 is selected 
If SA1 = 0 and SA0 = 1, φw/4 is selected 
If SA1 = 1 and SA0 = *, φw/2 is selected 
Note: * Don�t care 

H'FFF1 
Bit 1 
Bit 0 

SA1 = 0 
SA0 = 0 
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Register Function Address Setting 
IRR2 IRRDT Interrupt Request Register 2 

(Direct Transition Interrupt Request Flag) 
Indicates whether there is any direct transition interrupt 
requested. 
If IRRDT = 0, indicates that no direct transition interrupt has 
been requested. 
If IRRDT = 1, indicates that a direct transition interrupt has 
been requested. 

H'FFF7 
Bit 7 

0 

 IRREC Interrupt Request Register 2  
(Asynchronous Event Counter Interrupt Request Flag) 
Indicates whether there is any asynchronous event counter 
interrupt requested. 
If IRREC = 0, indicates that no asynchronous event counter 
interrupt has been requested. 
If IRREC = 1, indicates that an asynchronous event counter 
interrupt has been requested. 

H'FFF7 
Bit 0 

0 

IENR2 IENDT Interrupt Enable Register 2  
(Direct Transition Interrupt Enable) 
Enables or disables direct transition interrupt requests. 
If IENDT = 0, disables direct transition interrupt requests. 
If IENDT = 1, enables direct transition interrupt requests. 

H'FFF4 
Bit 7 

1 

 IENEC Interrupt Enable Register 2  
(Asynchronous Event Counter Interrupt Enable) 
Enables or disables asynchronous event counter interrupt 
requests. 
If IENEC = 0, disables asynchronous event counter interrupt 
requests 
If IENEC = 1, enables asynchronous event counter interrupt 
request 

H'FFF4 
Bit 0 

1 

 

4.4 Description of RAM 
Table 4.3 describes the RAM area used in this sample task. 
 
Table 4.3 Description of RAM 

Label  Function Address Used in 
FLAG Flag indicating 524.288 ms have elapsed. H'FB80 main, aecint 
CNT 8-bit counter to count the number of timer F interrupt 

requests. 
H'FB81 main, aecint 
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5. Flowchart 
1. Main routine 

1

Initialize the RAM.

MAIN

"1" → CCR I-bit

H'00 → CNT

H'00 → FLAG

1 → PCR40

H'F8 → PDR4

1 → AEVL

H'8F → SYSCR1

H'F8 → SYSCR2

H'18 → TMA

0 → IRRDT

H'80 → IENR2

0 → CCR I-bit

SLEEP

Initialize P40 pin: set PDR to 0 and PCR to 1 
for P40 pin to set the initial output to low level.

Set SSBY = 1, LSON = 1, DTON = 1 and 
TMA3 = 1 to make a direct transition from 
active mode (high-speed) to subactive mode.

Initialize AEVL pin; set P37/AEVL pin as the 
AEVL input pin. 

Clear direct transition interrupt request flag to 0.

Set IENDT to 1 to enable direct transition 
interrupt request. 

Clear I-bit in CCR to 0 to enables interrupts.

Execute a SLEEP instruction to make a direct 
transition to subactive mode.

Mask I-bit in CCR to disable interrupts.

H'00 → SCR3

0 → COM

H'00 → AEGSR Set falling edge of AEVL to be detected.

H'00 → ECCR Select AEVL pin input for the ECL input clock. 

H'00 → ECCSR Reset 16-bit event counter.

* 

Note:   *   In this sample task, the stack pointer is set in INIT.SRC (assembly language).  
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Clear I-bit in CCR and enable interrupts.

No

Yes
FLAG ! =  H'01?

1

H'00 → FLAG

H'E7 → SYSCR1

H'F8 → SYSCR2

H'18 → TMA

SLEEP

~P40 → P40

H'8F → SYSCR1

H'F8 → SYSCR2

H'18 → TMA

SLEEP

Set SSBY = 1, LSON = 0, MSON = 0, 
DTON = 1, and TMA3 = 1 to make a direct 
transition from subactive mode to active 
(high-speed) mode.

Sety SSBY = 1, LSON = 1, DTON = 1, and 
TMA3 = 1 to make a direct transition from active 
(high-speed) mode to subactive mode.

524.288 ms have elapsed?

Clear FLAG to H'00.

Execute a SLEEP instruction to make a direct 
transition to active (high-speed) mode.

Invert the P40 output. 

Execute a SLEEP instruction to make a direct 
transition to subactive mode.

Set IENEC to 1 to enable asynchronous event 
counter interrupt requests.

Start counting up of 16 event counter.

Clear the asynchronous event counter 
interrupt request flag to 0.

Mask I-bit in CCR to disable interrupts.

0 → CCR I-bit

H'81 → IENR2

H'0F → ECCSR

0 → IRREC

1 → CCR I-bit
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2. Asynchronous event count interrupt handling routine. 

Yes

No
CNT = H'0F?

Clear the asynchronous event counter interrupt 
request flag to 0. 

Clear the counter overflow H bit to 0.

Clear the counter overflow L bit to 0.

Increment the 8-bit counter (CNT) set in RAM. 

aecint

0 → IRREC

0 → OVH

0 → OVL

CNT + 1 → CNT

H'01 → FLAG

H'00 → CNT

end of interrupt handling

Check whether or not the 8-bit counter (CNT) 
has reached H'0F.

Set FLAG to H'01. 

Initialize CNT to H'00.

 
 
3. Direct transition interrupt handling routine. 

0 → IRRDT Clear the direct transition interrupt request flag to 0. 

dtint

end of interrupt handling  
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6. Program Listing 
INIT.SRC (Program listing) 

   .EXPORT   _INIT 

   .IMPORT   _main 

; 

   .SECTION  P,CODE 

_INIT: 

   MOV.W     #H'FF80,R7 

   LDC.B     #B'10000000,CCR 

   JMP       @_main 

; 

   .END 

 

/*************************************************************************************************************/ 

/*                                                                                                           */ 

/*  H8/300L Super Low Power Series                                                                           */ 

/*      -H8/38024 Series-                                                                                    */ 

/*  Application Note                                                                                         */ 

/*                                                                                                           */ 

/*  'Asynchronous Event Counter Control'                                                                     */ 

/*                                                                                                           */ 

/*  Function                                                                                                 */ 

/*  : AEC(Asynvhronous Event Counter)                                                                        */ 

/*                                                                                                           */ 

/*  External Clock : 10MHz                                                                                   */ 

/*  Internal Clock : 5MHz                                                                                    */ 

/*  Sub Clock      : 32.768kHz                                                                               */ 

/*                                                                                                           */ 

/*************************************************************************************************************/ 

 

#include    <machine.h> 

 

/*************************************************************************************************************/ 

/*  Symbol Definition                                                                                        */ 

/*************************************************************************************************************/ 

struct BIT { 

    unsigned char   b7:1;       /* bit7 */ 

    unsigned char   b6:1;       /* bit6 */ 

    unsigned char   b5:1;       /* bit5 */ 

    unsigned char   b4:1;       /* bit4 */ 

    unsigned char   b3:1;       /* bit3 */ 

    unsigned char   b2:1;       /* bit2 */ 

    unsigned char   b1:1;       /* bit1 */ 

    unsigned char   b0:1;       /* bit0 */ 

}; 

 

#define     AEGSR       *(volatile unsigned char *)0xFF92        /* Input Edge Select Register               */ 

#define     ECCR        *(volatile unsigned char *)0xFF94        /* Event Counter Control Register           */ 

#define     ECCSR       *(volatile unsigned char *)0xFF95        /*Event Counter Control Status Register     */ 

#define     ECCSR_BIT   (*(struct BIT *)0xFF95)                  /*Event Counter Control Status Register     */ 

#define     OVH         ECCSR_BIT.b7                             /* Counter Over Flow H                      */ 

#define     OVL         ECCSR_BIT.b6                             /* Counter Over Flow L                      */ 

#define     ECH         *(volatile unsigned char *)0xFF96        /* Event Counter H                          */ 

#define     ECL         *(volatile unsigned char *)0xFF97        /* Event Counter L                          */ 

#define     SMR         *(volatile unsigned char *)0xFFA8        /* Serial Mode Register                     */ 

#define     SMR_BIT     (*(struct BIT *)0xFFA8)                  /* Serial Mode Register                     */ 

#define     COM         SMR_BIT.b7                               /* Communication Mode                       */ 
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#define     CHR         SMR_BIT.b6                               /* Character Length                         */ 

#define     PE          SMR_BIT.b5                               /* Parity Enable                            */ 

#define     PM          SMR_BIT.b4                               /* Parity Mode                              */ 

#define     STOP        SMR_BIT.b3                               /* Stop Bit Length                          */ 

#define     MP          SMR_BIT.b2                               /* Multiprocessor Mode                      */ 

#define     CKS1        SMR_BIT.b1                               /* Clock Select 1                           */ 

#define     CKS0        SMR_BIT.b0                               /* Clock Select 0                           */ 

#define     SCR3        *(volatile unsigned char *)0xFFAA        /* Serial Control Register 3                */ 

#define     SCR3_BIT    (*(struct BIT *)0xFFAA)                  /* Serial Control Register 3                */ 

#define     TIE         SCR3_BIT.b7                              /* Transmit Interrupt Enable                */ 

#define     RIE         SCR3_BIT.b6                              /* Receive Interrupt Enable                 */ 

#define     TE          SCR3_BIT.b5                              /* Transmit Enable                          */ 

#define     RE          SCR3_BIT.b4                              /* Receive Enable                           */ 

#define     MPIE        SCR3_BIT.b3                              /* Multiprocessor Interrupt Enable          */ 

#define     TEIE        SCR3_BIT.b2                              /* Transmit End Interrupt Enable            */ 

#define     CKE1        SCR3_BIT.b1                              /* Clock Enable 1                           */ 

#define     CKE0        SCR3_BIT.b0                              /* Clock Enable 0                           */ 

#define     TMA         *(volatile unsigned char *)0xFFB0        /* Timer Mode Register A                    */ 

#define     PMR3_BIT    (*(struct BIT *)0xFFCA)                  /* Port Mode Register 3                     */ 

#define     AEVL        PMR3_BIT.b7                              /* P37/AEVL Select                          */ 

#define     PDR4        *(volatile unsigned char *)0xFFD7        /* Port Data Register 4                     */ 

#define     PDR4_BIT    (*(struct BIT *)0xFFD7)                  /* Port Data Register 4                     */ 

#define     P40         PDR4_BIT.b0                              /* Port 40                                  */ 

#define     PCR4        *(volatile unsigned char *)0xFFE7        /* Port Control Register4                   */ 

#define     PCR4_BIT    (*(struct BIT *)0xFFE7)                  /* Port Control Register4                   */ 

#define     PCR40       PCR4_BIT.b0                              /* Port Control Register40                  */ 

#define     SYSCR1      *(volatile unsigned char *)0xFFF0        /* System Control Register 1                */ 

#define     SYSCR1_BIT  (*(struct BIT *)0xFFF0)                  /* System Control Register 1                */ 

#define     SSBY        SYSCR1_BIT.b7                            /* Software Standby                         */ 

#define     STS2        SYSCR1_BIT.b6                            /* Standby Timer Select 2                   */ 

#define     STS1        SYSCR1_BIT.b5                            /* Standby Timer Select 1                   */ 

#define     STS0        SYSCR1_BIT.b4                            /* Standby Timer Select 0                   */ 

#define     LSON        SYSCR1_BIT.b3                            /* Low Speed On Flag                        */ 

#define     MA1         SYSCR1_BIT.b1                            /* Active Mode Clock Select 1               */ 

#define     MA0         SYSCR1_BIT.b0                            /* Active Mode Clock Select 0               */ 

#define     SYSCR2      *(volatile unsigned char *)0xFFF1        /* System Control Register 2                */ 

#define     SYSCR2_BIT  (*(struct BIT *)0xFFF1)                  /* System Control Register 2                */ 

#define     NESEL       SYSCR2_BIT.b4                            /* Noise Elimination Sampling               */ 

                                                                 /*                         Frequency Select */ 

#define     DTON        SYSCR2_BIT.b3                            /* Direct Transfer On Flag                  */ 

#define     MSON        SYSCR2_BIT.b2                            /* Middle Speed On Flag                     */ 

#define     SA1         SYSCR2_BIT.b1                            /* Subactive Mode Clock Select 1            */ 

#define     SA0         SYSCR2_BIT.b0                            /* Subactive Mode Clock Select 0            */ 

#define     IENR2       *(volatile unsigned char *)0xFFF4        /* Interrupt Enable Register 2              */ 

#define     IENR2_BIT   (*(struct BIT *)0xFFF4)                  /* Interrupt Enable Register 2              */ 

#define     IENDT       IENR2_BIT.b7                             /* Timer FH Interrupt Enable                */ 

#define     IENEC       IENR2_BIT.b0                             /* Timer FH Interrupt Enable                */ 

#define     IRR2_BIT    (*(struct BIT *)0xFFF7)                  /* Interrupt Request Register 2             */ 

#define     IRRDT       IRR2_BIT.b7                              /* Timer FH Interrupt Request Flag          */ 

#define     IRREC       IRR2_BIT.b0                              /* Timer FH Interrupt Request Flag          */ 

 

#pragma interrupt (aecint) 

#pragma interrupt (dtint) 
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/*************************************************************************************************************/ 

/*  Function define                                                                                          */ 

/*************************************************************************************************************/ 

extern void INIT ( void );                                       /* SP Set                                   */ 

void        main ( void ); 

void        aecint ( void ); 

void        dtint ( void ); 

 

/*************************************************************************************************************/ 

/*  RAM define                                                                                               */ 

/*************************************************************************************************************/ 

unsigned char   FLAG;                                            /* User Flag Area                           */ 

unsigned char   CNT;                                             /* User Flag Area                           */ 

 

/*************************************************************************************************************/ 

/*  Vector Address                                                                                           */ 

/*************************************************************************************************************/ 

#pragma section     V1                                           /* Vector Section Set                       */ 

void (*const VEC_TBL1[])(void) = { 

    INIT                                                         /* 0x0000 Reset Vector                      */ 

}; 

#pragma section     V2                                           /* Vector Section Set                       */ 

void (*const VEC_TBL2[])(void) = { 

    aecint                                                       /* 0x0018 Timer F Interrupt Vector          */ 

}; 

#pragma section     V3                                           /* Vector Section Set                       */ 

void (*const VEC_TBL3[])(void) = { 

    dtint                                                        /* 0x0028 Timer F Interrupt Vector          */ 

}; 

 

#pragma section                                                  /* P                                        */ 

/*************************************************************************************************************/ 

/*  Main Program                                                                                             */ 

/*************************************************************************************************************/ 

void    main ( void ) 

{ 

    set_imask_ccr(1);                                            /* Interrupt Disable                        */ 

 

    CNT = 0;                                                     /* Initialize 8-bit Counter                 */ 

    FLAG = 0;                                                    /* Initialize Event Flag                    */ 

 

    SCR3 = 0; 

    COM = 0; 

    PCR40 = 1;                                                   /* Initialize P40 Terminal Function         */ 

    PDR4 = 0xF8;                                                 /* Initialize P40 PDR                       */ 

 

    AEVL = 1; 

    AEGSR = 0x00; 

    ECCR = 0x00; 

    ECCSR = 0;                                                   /* Reset 16-bit Event Counter               */ 

 

    SYSCR1 = 0x8F;                                               /* Set SYSCR1                               */ 

    SYSCR2 = 0xF8;                                               /* Set SYSCR2                               */ 

    TMA = 0x18;                                                  /* Initialize TCA Overflow Period           */ 

 

    IRRDT = 0; 

    IENR2 = 0x80;                                                /* Timer A Interrupt Enable                 */ 

 

    set_imask_ccr(0);                                            /* Interrupt Enable                         */ 
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    sleep();                                                     /* Transition to Sleep Mode                 */ 

 

    set_imask_ccr(1);                                            /* Interrupt Disable                        */ 

 

    IRREC = 0; 

    IENR2 = 0x81;                                                /* Timer A Interrupt Enable                 */ 

    ECCSR = 0x0F; 

 

    set_imask_ccr(0);                                            /* Interrupt Enable                         */ 

 

    while(1){ 

        while (!FLAG); 

 

        FLAG = 0; 

        SYSCR1 = 0xE7; 

        SYSCR2 = 0xF8; 

        TMA = 0x18;                                              /* TMA3 = "1"                               */ 

 

        sleep();                                                 /* Transition to Sleep Mode                 */ 

        P40 = ~P40; 

 

        SYSCR1 = 0x8F;                                           /* Set SYSCR1                               */ 

        SYSCR2 = 0xF8;                                           /* Set SYSCR2                               */ 

        TMA = 0x18;                                              /* TMA3 = "1"                               */ 

        sleep(); 

    } 

} 

 

/*************************************************************************************************************/ 

/*  AEC Interrupt                                                                                            */ 

/*************************************************************************************************************/ 

void aecint ( void ) 

{ 

    IRREC = 0;                                                   /* Clear IRREC                              */ 

 

    OVH = 0;                                                     /* Clear OVH                                */ 

    OVL = 0;                                                     /* Clear OVL                                */ 

    CNT++;                                                       /* Increment CNT                            */ 

 

    if ( CNT > 0x0F ){ 

        FLAG = 1;                                                /* Set Event Flag                           */ 

        CNT = 0;                                                 /* Initialize 8-bit Counter                 */ 

    } 

} 
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/*************************************************************************************************************/ 

/*  Direct Transfer Interrupt                                                                                */ 

/*************************************************************************************************************/ 

void    dtint ( void ) 

{ 

    IRRDT = 0;                                                   /* Clear IRRDT                              */ 

} 

 

 

Link address specifications 

Section Name Address 
CV1 
CV2 
CV3 
P 
B 

H'0000 
H'0018 
H'0028 
H'0100 
H'FB80 
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