

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

Introduction
Using an asynchronous event counter, a series of operation is repeated periodically: a transition from subactive mode to
high-speed active mode, reversal of the port output in high-speed active mode, and a transition back to subactive mode.

Target Device
H8/38024

Contents

1. Specifications.. 2

2. Description of Functions ... 2

3. Principle of Operation ... 7

4. Description of Software... 8

5. Flowchart... 13

6. Program Listing... 16

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 1 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

1. Specifications
1. Using an asynchronous event counter (AEC), a series of operation is repeated once every 524.288 ms: a transition

from subactive mode to high-speed active mode, reversal of the port output in high-speed active mode, and a
transition back to subactive mode.

2. The 2-MHz event input is applied to the asynchronous event input L pin (AEVL).
3. In this sample task, the AEC is used as a 16-bit asynchronous event counter.

2. Description of Functions
1. In this sample task, an asynchronous event counter (AEC) is used to induce transitions between subactive and active

modes and to invert the port output. The features of the AEC are as follows.
 External events input asynchronously are counted without regard to the basic clock operation.
 The counter has a 16-bit configuration, and can count up to 65,536 events.
 The circuit can also be used as two independent 8-bit event counters on different channels.
 The counter can be reset and its counting-up operation can be halted under software control.
 Event counter overflow can be detected to automatically generate an interrupt.
 When not in use, the AEC alone can be placed in a standby state by the module standby mode.

2. Figure 2.1 is a block diagram of the 16-bit asynchronous event counter used in this sample task.

ECCSR: Event counter control/status register
ECH: Event counter H
ECL: Event counter L
AEVH: Asynchronous event input H
AEVL: Asynchronous event input L
IRREC: Event counter overflow interrupt request flag

Event input
from AEVH

Event input from AEVL
Event input from AEVL

ECL overflow

ECH overflow

16-bit event
counter setting

ECL clock
input enable

ECL overflow

IRREC

AEVH

AEVL

ECH overflow

2 MHz

ECCSR

ECH

ECL

16-bit asynchronous event counter

16-bit event counter

ECH clock
input enable

ECL
overflowS

el
ec

to
r

[Legend]

Figure 2.1 Block Diagram of Asynchronous Event Counter

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 2 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

3. Functions of the 16-bit asynchronous event counter are described in table 2.1 below.

Table 2.1 Functions of the 16-bit Asynchronous Event Counter

Register Function
Input pin edge selection register
(AEGSR)

AEGSR is an 8-bit read/write register which selects the edge sensing of rising edge,
falling edge, or both edges for AEVH, AEVL and IRQAEC pins.

Event counter control register
(ECCR)

ECCR is an 8-bit read-only up-counter which controls the input clock of the counter
and IRQAEC/IECPWM

Event counter control/
status register (ECCSR)

ECCSR is an 8-bit read/write register which is used to control counter overflow
detection, the counter resetting, and halting of counting-up function. Upon a reset,
ECCSR is initialized to H'00.

Event counter H (ECH) ECH is an 8-bit read-only up-counter which operates either as an independent 8-bit
event counter or, in combination with ECL, as the counter for the upper eight bits of
a 16-bit event counter. As the input clock signal, either the external asynchronous
event AEVH pin, or the overflow signal from the lower 8-bit counter ECH can be
selected by the CH2 bit in ECCSR. ECH can be cleared to H'00 by software. Upon a
reset, ECH is initialized to H'00.

Event counter L (ECL) ECL is an 8-bit read-only up-counter which operates either as an independent 8-bit
event counter or, in combination with ECH, as the counter for the lower eight bits of
a 16-bit event counter. As the input clock signal, the event clock from the external
asynchronous event AEVL pin is used. ECL can be cleared to H'00 by software.
Upon a reset, ECL is initialized to H'00.

Asynchronous event input H
(AEVH)

AEVH is the event input pin for input to event counter H (ECH).

Asynchronous event input L
(AEVL)

AEVL is the event input pin for input to event counter L (ECL).

Asynchronous event counter
interrupt request flag (IRREC)

When an asynchronous event counter interrupt request is generated, IRREC is set
to 1. It is not automatically cleared even after the interrupt is accepted. To clear
IRREC, write 0 by software.

Asynchronous event counter
interrupt enable (IENEC)

IENEC enables or disables asynchronous event counter interrupt requests.

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 3 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

4. Figure 2.2 shows an example of settings when using the AEC as a 16-bit asynchronous event counter.

Start

CH2 ← "0"
CUEH ← "0"
CUEL ← "0"
CRCH ← "0"
CRCL ← "0"

ALEGS1 ← "0"
ALEGS0 ← "0"
ACKL1 ← "0"
ACKL0 ← "0"

OVH ← "0"
OVL ← "0"
CUEH ← "0"
CUEL ← "0"
CRCH ← "0"
CRCL ← "0"

End

Figure 2.2 Example of Settings for 16-bit Asynchronous Event Counter

Since CH2 is cleared to 0 upon a reset, ECH and ECL operate as a 16-bit event counter after a reset. The AEC also
operate as a 16-bit event counter by the settings shown in figure 2.2. The operating clock source is the asynchronous
event input from the AEVL pin. When the next clock pulse is input after the count values for both ECH and ECL
reach H'FF, ECH and ECL overflow, the OVH flag in ECCSR is set to 1, the count values of ECH and ECL are
both reset to H'00, and counting-up is restarted. Upon occurrence of overflow, the IRREC bit in IRR2 is set to 1. At
this time, if the IENEC bit in IENR2 is 1, an interrupt request is issued to the CPU.

5. Asynchronous event counter operating modes are shown in table 2.2.

Table 2.2 Asynchronous Event Counter Operating Modes

Operating
Mode Reset Active Sleep Watch Subactive Subsleep Standby

Module
Standby

AEGSR Reset Functions Functions Held*1 Functions Functions Held*1 Held
ECCR Reset Functions Functions Held*1 Functions Functions Held*1 Held
ECCSR Reset Functions Functions Held*1 Functions Functions Held*1 Held
ECH Reset Functions Functions Functions*1,*2 Functions*2 Functions*2 Functions*1,*2 Halted
ECL Reset Functions Functions Functions*1,*2 Functions*2 Functions*2 Functions*1,*2 Halted
Notes: 1. When an asynchronous external event signal is input, the counter is incremented, but the count

overflow H/L flags are not affected.
 2 In these modes, ECH and ECL operate when �asynchronous external event� is selected,

otherwise the AEC is halted and held pending.

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 4 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

6. Notes on the 16-bit asynchronous event counter
A. Before reading the values of ECH and ECL, the CUEH and CUEL bits in ECCSR must be cleared to 0 to

prevent asynchronous event input to the counter. If the event counter is incremented while being read, the
correct value cannot be read.

B. Use a clock with a frequency of up to 16 MHz for input to the AEVH and AEVL pins, and ensure that the high-
and low-level widths of the clock are at least 30 ns. There is no constraint on the duty cycle.

C. In the case of the AEC used in 16-bit mode, before the clock is input to it, ECCSR setting should be made such
that the CUEH bit is first set to 1 and then the CRCH bit to 1 or both CUEH and CRCH are set simultaneously.
Thereafter, do not change the value of CUEH during AEC operation in 16-bit mode. If CUEH is changed while
in 16-bit mode, ECH will not be incremented correctly.

D. When ECPWME in AEGSR is 1, event counter PWM is operating and therefore ECPWCRH, ECPWCRL,
ECPWDRH, ECPWDRL should not be modified. When changing the data in them, event counter PWM must be
stopped by clearing ECPWME to 0 before writing to these registers.

E The value of Event Counter PWM Data Register and the value of Event Counter PWM Compare Register must
be set so that Event Counter PWM Data Register < Event Counter PWM Compare Register. If the settings do
not satisfy this condition, do not set ECPWME in AEGSR to 1.

F. As synchronization is established internally when an IRQAEC interrupt is generated, a maximum error of 1 tcyc
will arise between clock halting and interrupt acceptance.

G. Table 2.3 shows operating modes and event input frequencies.

Table 2.3 Relation between Operating Modes and AEVH/AEVL Pin Event Input Frequencies

Mode

 Maximum AEVH/AEVL Pin Input
Clock Frequency

Active (high-speed), Sleep (high-speed) 16 MHz
Medium-speed active, Sleep (medium-speed)

fosc = 1 MHz to 4 MHz

(φ/16)
(φ/32)
(φ/64)
(φ/128)

2 ⋅ fosc
fosc
1/2 ⋅ fosc
1/4 ⋅ fosc

Watch, Subactive, Subsleep,
Standby
φw = 32.768 kHz or 38.4 kHz

(φw/2)
(φw/4)
(φw/8)

1000 KHz
500 KHz
250 KHz

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 5 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

7. Table 2.4 shows the assignment of functions in this sample task.

Table 2.4 Function Assignment

Function Assignment
AEGSR Selects the edge sensing of rising, falling, or both edges for AEVL.
ECCR Controls AEVL counter input clock.
ECCSR Sets 16-bit asynchronous event counter function, detects counter overflow,

enables/disables the event clock input to ECH and ECL.
ECH Functions as the upper 8-bit up-counter of a 16-bit event counter, taking the ECL

overflow signal as the input clock.
ECL Functions as the lower 8-bit up-counter of a 16-bit event counter, taking the external

asynchronous event input on the AEVL pin as the input clock.
COM Sets P40/SCK32 pin function.
SCR3 Sets P40/SCK32 pin function.
TMA3 Used to set transition to subactive mode.
AEVL Functions as the input pin for 2-MHz external asynchronous event input.
P40 Inverts P40 output, triggered by 10 times of ECH and ECL overflows.
PCR40 Sets P40 pin to output pin function.
SYSCR1 Controls power down modes.
SYSCR2 Controls power down modes.
IENDT Enables/disables direct transition interrupt requests
IENEC Enables/disables asynchronous event counter interrupt requests.
IRRDT Indicates whether or not a direct transition interrupt has been requested
IRREC Indicates whether or not an asynchronous event counter interrupt has been requested.

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 6 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

3. Principle of Operation

1. Figure 3.1 illustrates the operation of this sample task. Asynchronous event counter operation is implemented
through hardware and software processing as shown in the figure.

H'FFFF

H'0000

H'0F

H'00

524.288 ms

High

Low

Active
mode

Subactive
mode

Time

Time

32.768 ms
ECH, ECL
16-bit
counter

CNT

P40 pin

Hardware processing

Software processing

 Start counting up by 16-bit
 event counter consisting of
 ECH and ECL.

a. Set asynchronous event
 ounter.
b. Set P40 output pin functions.
c. Enable Interrupts.
d. After initialization, make a
 transition to subactive mode.

Hardware processing

Software processing

a. ECH and ECL overflows.
b. Set IRREC to 1.
c. Clear ECH and ECL to H'0000.

a. Starts asynchronous event
 counter interrupt handling.
b. Clear IRREC to 0.
c. Increment 8-bit counter.

Hardware processing

Software processing

a. ECH and ECL overflows.
b. Set IRREC to 1.
c. Clear ECH and ECL to H'0000.

a. Starts asynchronous event
 counter interrupt handling.
b. Clear IRREC to 0.
c. Make a transition to active
 mode.
d. Invert P40 pin output.
e. Make a transition to subactive
 mode.

Initialize:

Figure 3.1 Operation Principle of Asynchronous Event Counter

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 7 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

4. Description of Software

4.1 Modules
The modules used in this sample task are shown in table 4.1.

Table 4.1 Description of Modules

Module Label Function
Main routine main Initializes RAM area for use, port 40, asynchronous event counter and

system control register; enables interrupts; executes direct transition to
subactive mode; after 524.288 ms, controls port output and executes direct
transitions to high-speed active mode or subactive mode.

Asynchronous
event counter
interrupt handling
routine

aecint An asynchronous event counter interrupt handling routine which clears an
interrupt request flag, increments and initializes an 8-bit counter, and after
524.288 ms, sets the flag in RAM.

Direct transition
interrupt handling
routine

dtint A direct transition interrupt handling routine which clears the interrupt
request flag.

4.2 Arguments
In this sample task, no arguments are used.

4.3 Internal Registers
Table 4.2 shows the internal registers used in this sample task.

Table 4.2 Description of Internal Registers

Register Function Address Setting
AEGSR ALEGS1

ALEGS0
Input Pin Edge Selection Register(AEC Edge Select L)
If ALEGS1 = 0 and ALEGS0 = 0, falling edge of AEVL pin
input is detected.

H'FF92
Bit 5
Bit 4

ALEGS1 = 0
ALEGS0 = 0

ECCR ACKL1
ACKL0

Event Counter Control Register (AEC Clock Select L)
If ACKL1 = 0 and ACKL0 = 0, the clock used by ECL is input
from AEVL pin.

H'FF94
Bit 5
Bit 4

ACKL1 = 0
ACKL0 = 0

ECCSR OVH Event Counter Control/Status Register (Counter Overflow H)
A status flag indicating overflow of ECH.
If OVH = 0, indicates no overflow of ECH.
If OVH = 1, indicates ECH overflow.

H'FF95
Bit 7

0

 OVL Event Counter Control/Status Register (Counter Overflow L)
A status flag indicating overflow of ECL.
If OVL = 0, indicates no overflow of ECL.
If OVL = 1, indicates ECL overflow.

H'FF95
Bit 6

0

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 8 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

Register Function Address Setting
ECCSR CH2 Event Counter Control/Status Register (Channel Selection)

Selects whether to use ECH and ECL as a single-channel
16-bit event counter, or as independent 8-bit event counters
on two channels.
If CH2 = 0, ECH and ECL function as a single concatenated
16-bit event counter.
If CH2 = 1, ECH and ECL function as independent 8-bit
event counters on two channels.

H'FF95
Bit 4

0

 CUEH Event Counter Control/Status Register
(Count-Up Enable H)
Enables or disables the event clock input to ECH.
If CUEH = 0, disables the event clock input to ECH.
If CUEH = 1, enables the event clock input to ECH.

H'FF95
Bit 3

0

 CUEL Event Counter Control/Status Register
(Count-Up Enable L)
Enables or disables the event clock input to ECL.
If CUEL = 0, disables the event clock input to ECL.
If CUEL = 1, enables the event clock input to ECL.

H'FF95
Bit 2

0

 CRCH Event Counter Control/Status Register
(Counter Reset Control H)
Controls ECH reset.
If CRCH = 0, ECH is reset.
If CRCH = 1, ECH reset is cancelled and count-up function
is enabled.

H'FF95
Bit 1

0

 CRCL Event Counter Control/Status Register
(Counter Reset Control L)
Controls ECL reset.
If CRCL = 0, ECL is reset.
If CRCL = 1, ECL reset is cancelled and count-up function is
enabled.

H'FF95
Bit 0

0

ECH Event Counter H
An 8-bit read-only up-counter; in combination with ECL, it
operates as the upper 8 bits of a 16-bit event counter.

H'FF96 H'00

ECL Event Counter L
An 8-bit read-only up-counter; in combination with ECH, it
operates as the lower 8 bits of a 16-bit event counter.

H'FF97 H'00

SMR COM Serial mode Register (Communication Mode)
If COM = 0, P40/SCK32 pin functions as the P40 pin.
If COM = 1, P40/SCK32 pin functions as the SCK32 output
pin.

H'FFA8
Bit 7

0

SCR3 CKE1
CKE0

Serial Control Register 3 (Clock Enable1,0)
If CKE1 = 0, CKE0 = 0, COM = 0 and PCR40 = 0,
P40/SCK32 pin functions as the P40 input pin.

H'FFAA
Bit 1
Bit 0

CKE1 = 0
CKE0 = 0

TMA TMA3 Timer Mode Register A (Internal Clock Selector 3)
Selects the clock source input to TCA.
If TMA3 = 0, PSS is selected as the TCA input clock source,
and an interval timer function is selected for timer A
If TMA3 = 1, PSW is selected as the TCA input clock source,
and a clock time base function is selected for timer A

H'FFB0
Bit 3

1

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 9 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

Register Function Address Setting
PMR3 AEVL Port Mode Register 3(P37/AEVL Pin Function Switch)

Sets the P37/AEVL pin function.
If AEVL = 0, the P37/AEVL pin functions as the P37
input/output pin
If AEVL = 1, the P37/AEVL pin functions as the AEVL input
pin

H'FFCA
Bit 7

1

PDR4 P40 Port Data Register 4 (P40)
Stores the P40 pin data.
If P40 = 0, the P40 pin output level is low
If P40 = 1, the P40 pin output level is high

H'FFD7
Bit 0

0

PCR4 PCR40 Port Control Register 4 (Port Control Register 40)
Controls the P40 pin input/output.
If PCR40 = 0, the P40 pin functions as an input pin
If PCR40 = 1, the P40 pin functions as an output pin

H'FFE7
Bit 0

1

SYSCR1 SSBY System Control Register 1 (Software Standby)
Specifies transition to standby mode or watch mode.
If SSBY = 0, after a SLEEP instruction is executed in active
mode, a transition is made to sleep mode, or after a SLEEP
instruction is executed in subactive mode, a transition is
made to subsleep mode
If SSBY = 1, after a SLEEP instruction is executed in active
mode, a transition is made to standby mode or to watch
mode, or after a SLEEP instruction is executed in subactive
mode, a transition is made to watch mode

H'FFF0
Bit 7

1

 STS2
STS1
STS0

System Control Register 1 (Standby Timer Select 2 to 0)
Specifies the time for the CPU and peripheral functions to
wait until the clock stabilizes when, triggered by a specific
interrupt, the standby mode or watch mode is terminated and
a transition is made to active mode.
When STS2 to STS1 = 000, standby time is 8,192 states
When STS2 to STS1 = 001, standby time is 16,384 states
When STS2 to STS1 = 010, standby time is 1,024 states
When STS2 to STS1 = 011, standby time is 2,048 states
When STS2 to STS1 = 100, standby time is 4,096 states
When STS2 to STS1 = 101, standby time is 2 states
When STS2 to STS1 = 110, standby time is 8 states
When STS2 to STS1 = 111, standby time is 16 states

H'FFF0
Bit 6
Bit 5
Bit 4

STS2 = 0
STS1 = 0
STS0 = 0

 LSON System Control Register 1 (Low Speed On Flag)
When watch mode is terminated, selects either the system
clock (φ) or the subclock (φsub) as the CPU operating clock.
If LSON = 0, selects the system clock (φ) as the CPU
operating clock
If LSON = 1, selects the subclock (φsub) as the CPU
operating clock

H'FFF0
Bit 3

1

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 10 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

Register Function Address Setting
SYSCR2 NESEL System Control Register 2

(Noise Elimination Sampling Frequency Selection)
Selects the frequency at which the watch clock signal (φw)
output by the subclock pulse generator is sampled using the
oscillator clock (φosc) output by the system clock pulse
generator.
If NESEL = 0, sampling frequency is φosc /16.
If NESEL = 1, sampling frequency is φosc /4.

H'FFF1
Bit 4

1

 DTON System Control Register 2
(Direct Transfer On Flag)
Specifies whether or not to make direct transitions among
high-speed active mode, medium-speed active mode, and
subactive mode when a SLEEP instruction is executed.
When DTON = 0, if a SLEEP instruction is executed in active
mode, a transition is made to standby mode, watch mode or
sleep mode; if a SLEEP instruction is executed in subactive
mode, a transition is made to watch mode or subsleep
mode.
When DTON = 1, if a SLEEP instruction is executed in high-
speed active mode, a direct transition is made to medium-
speed active mode (when SSBY = 1, MSON = 1, LSON = 0)
or to subactive mode (when SSBY = 1, TMA3 = 1, LSON =
1); if a SLEEP instruction is executed in medium-speed
active mode, a direct transition is made to high-speed active
mode (when SSBY = 0, MSON = 0, LSON = 0) or to
subactive mode (when SSBY = 1, TMA3 = 1, LSON = 1);
and if a SLEEP instruction is executed in subactive mode, a
direct transition is made to high-speed active mode (when
SSBY = 1, TMA3 = 1, LSON = 0, MSON = 0) or to medium-
speed active mode (when SSBY = 1, TMA3 = 1, LSON = 0,
MSON = 1).

H'FFF1
Bit 3

1

 MSON System Control Register 2
(Medium Speed On Flag)
Selects whether to operate in high-speed active mode or in
medium-speed active mode after the standby mode, watch
mode, or sleep mode is terminated,.
If MSON = 0, operates in high-speed active mode.
If MSON = 1, operates in medium-speed active mode.

H'FFF1
Bit 2

0

 SA1
SA0

System Control Register 2
(Subactive Mode Clock Select 1, 0)
Selects the CPU operating clock (φw/8, φw/4, φw/2) in
subactive mode.
If SA1 = 0 and SA0 = 0, φw/8 is selected
If SA1 = 0 and SA0 = 1, φw/4 is selected
If SA1 = 1 and SA0 = *, φw/2 is selected
Note: * Don�t care

H'FFF1
Bit 1
Bit 0

SA1 = 0
SA0 = 0

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 11 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

Register Function Address Setting
IRR2 IRRDT Interrupt Request Register 2

(Direct Transition Interrupt Request Flag)
Indicates whether there is any direct transition interrupt
requested.
If IRRDT = 0, indicates that no direct transition interrupt has
been requested.
If IRRDT = 1, indicates that a direct transition interrupt has
been requested.

H'FFF7
Bit 7

0

 IRREC Interrupt Request Register 2
(Asynchronous Event Counter Interrupt Request Flag)
Indicates whether there is any asynchronous event counter
interrupt requested.
If IRREC = 0, indicates that no asynchronous event counter
interrupt has been requested.
If IRREC = 1, indicates that an asynchronous event counter
interrupt has been requested.

H'FFF7
Bit 0

0

IENR2 IENDT Interrupt Enable Register 2
(Direct Transition Interrupt Enable)
Enables or disables direct transition interrupt requests.
If IENDT = 0, disables direct transition interrupt requests.
If IENDT = 1, enables direct transition interrupt requests.

H'FFF4
Bit 7

1

 IENEC Interrupt Enable Register 2
(Asynchronous Event Counter Interrupt Enable)
Enables or disables asynchronous event counter interrupt
requests.
If IENEC = 0, disables asynchronous event counter interrupt
requests
If IENEC = 1, enables asynchronous event counter interrupt
request

H'FFF4
Bit 0

1

4.4 Description of RAM
Table 4.3 describes the RAM area used in this sample task.

Table 4.3 Description of RAM

Label Function Address Used in
FLAG Flag indicating 524.288 ms have elapsed. H'FB80 main, aecint
CNT 8-bit counter to count the number of timer F interrupt

requests.
H'FB81 main, aecint

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 12 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

5. Flowchart
1. Main routine

1

Initialize the RAM.

MAIN

"1" → CCR I-bit

H'00 → CNT

H'00 → FLAG

1 → PCR40

H'F8 → PDR4

1 → AEVL

H'8F → SYSCR1

H'F8 → SYSCR2

H'18 → TMA

0 → IRRDT

H'80 → IENR2

0 → CCR I-bit

SLEEP

Initialize P40 pin: set PDR to 0 and PCR to 1
for P40 pin to set the initial output to low level.

Set SSBY = 1, LSON = 1, DTON = 1 and
TMA3 = 1 to make a direct transition from
active mode (high-speed) to subactive mode.

Initialize AEVL pin; set P37/AEVL pin as the
AEVL input pin.

Clear direct transition interrupt request flag to 0.

Set IENDT to 1 to enable direct transition
interrupt request.

Clear I-bit in CCR to 0 to enables interrupts.

Execute a SLEEP instruction to make a direct
transition to subactive mode.

Mask I-bit in CCR to disable interrupts.

H'00 → SCR3

0 → COM

H'00 → AEGSR Set falling edge of AEVL to be detected.

H'00 → ECCR Select AEVL pin input for the ECL input clock.

H'00 → ECCSR Reset 16-bit event counter.

*

Note: * In this sample task, the stack pointer is set in INIT.SRC (assembly language).

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 13 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

Clear I-bit in CCR and enable interrupts.

No

Yes
FLAG ! = H'01?

1

H'00 → FLAG

H'E7 → SYSCR1

H'F8 → SYSCR2

H'18 → TMA

SLEEP

~P40 → P40

H'8F → SYSCR1

H'F8 → SYSCR2

H'18 → TMA

SLEEP

Set SSBY = 1, LSON = 0, MSON = 0,
DTON = 1, and TMA3 = 1 to make a direct
transition from subactive mode to active
(high-speed) mode.

Sety SSBY = 1, LSON = 1, DTON = 1, and
TMA3 = 1 to make a direct transition from active
(high-speed) mode to subactive mode.

524.288 ms have elapsed?

Clear FLAG to H'00.

Execute a SLEEP instruction to make a direct
transition to active (high-speed) mode.

Invert the P40 output.

Execute a SLEEP instruction to make a direct
transition to subactive mode.

Set IENEC to 1 to enable asynchronous event
counter interrupt requests.

Start counting up of 16 event counter.

Clear the asynchronous event counter
interrupt request flag to 0.

Mask I-bit in CCR to disable interrupts.

0 → CCR I-bit

H'81 → IENR2

H'0F → ECCSR

0 → IRREC

1 → CCR I-bit

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 14 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

2. Asynchronous event count interrupt handling routine.

Yes

No
CNT = H'0F?

Clear the asynchronous event counter interrupt
request flag to 0.

Clear the counter overflow H bit to 0.

Clear the counter overflow L bit to 0.

Increment the 8-bit counter (CNT) set in RAM.

aecint

0 → IRREC

0 → OVH

0 → OVL

CNT + 1 → CNT

H'01 → FLAG

H'00 → CNT

end of interrupt handling

Check whether or not the 8-bit counter (CNT)
has reached H'0F.

Set FLAG to H'01.

Initialize CNT to H'00.

3. Direct transition interrupt handling routine.

0 → IRRDT Clear the direct transition interrupt request flag to 0.

dtint

end of interrupt handling

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 15 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

6. Program Listing
INIT.SRC (Program listing)

 .EXPORT _INIT

 .IMPORT _main

;

 .SECTION P,CODE

_INIT:

 MOV.W #H'FF80,R7

 LDC.B #B'10000000,CCR

 JMP @_main

;

 .END

/***/

/* */

/* H8/300L Super Low Power Series */

/* -H8/38024 Series- */

/* Application Note */

/* */

/* 'Asynchronous Event Counter Control' */

/* */

/* Function */

/* : AEC(Asynvhronous Event Counter) */

/* */

/* External Clock : 10MHz */

/* Internal Clock : 5MHz */

/* Sub Clock : 32.768kHz */

/* */

/***/

#include <machine.h>

/***/

/* Symbol Definition */

/***/

struct BIT {

 unsigned char b7:1; /* bit7 */

 unsigned char b6:1; /* bit6 */

 unsigned char b5:1; /* bit5 */

 unsigned char b4:1; /* bit4 */

 unsigned char b3:1; /* bit3 */

 unsigned char b2:1; /* bit2 */

 unsigned char b1:1; /* bit1 */

 unsigned char b0:1; /* bit0 */

};

#define AEGSR *(volatile unsigned char *)0xFF92 /* Input Edge Select Register */

#define ECCR *(volatile unsigned char *)0xFF94 /* Event Counter Control Register */

#define ECCSR *(volatile unsigned char *)0xFF95 /*Event Counter Control Status Register */

#define ECCSR_BIT (*(struct BIT *)0xFF95) /*Event Counter Control Status Register */

#define OVH ECCSR_BIT.b7 /* Counter Over Flow H */

#define OVL ECCSR_BIT.b6 /* Counter Over Flow L */

#define ECH *(volatile unsigned char *)0xFF96 /* Event Counter H */

#define ECL *(volatile unsigned char *)0xFF97 /* Event Counter L */

#define SMR *(volatile unsigned char *)0xFFA8 /* Serial Mode Register */

#define SMR_BIT (*(struct BIT *)0xFFA8) /* Serial Mode Register */

#define COM SMR_BIT.b7 /* Communication Mode */

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 16 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

#define CHR SMR_BIT.b6 /* Character Length */

#define PE SMR_BIT.b5 /* Parity Enable */

#define PM SMR_BIT.b4 /* Parity Mode */

#define STOP SMR_BIT.b3 /* Stop Bit Length */

#define MP SMR_BIT.b2 /* Multiprocessor Mode */

#define CKS1 SMR_BIT.b1 /* Clock Select 1 */

#define CKS0 SMR_BIT.b0 /* Clock Select 0 */

#define SCR3 *(volatile unsigned char *)0xFFAA /* Serial Control Register 3 */

#define SCR3_BIT (*(struct BIT *)0xFFAA) /* Serial Control Register 3 */

#define TIE SCR3_BIT.b7 /* Transmit Interrupt Enable */

#define RIE SCR3_BIT.b6 /* Receive Interrupt Enable */

#define TE SCR3_BIT.b5 /* Transmit Enable */

#define RE SCR3_BIT.b4 /* Receive Enable */

#define MPIE SCR3_BIT.b3 /* Multiprocessor Interrupt Enable */

#define TEIE SCR3_BIT.b2 /* Transmit End Interrupt Enable */

#define CKE1 SCR3_BIT.b1 /* Clock Enable 1 */

#define CKE0 SCR3_BIT.b0 /* Clock Enable 0 */

#define TMA *(volatile unsigned char *)0xFFB0 /* Timer Mode Register A */

#define PMR3_BIT (*(struct BIT *)0xFFCA) /* Port Mode Register 3 */

#define AEVL PMR3_BIT.b7 /* P37/AEVL Select */

#define PDR4 *(volatile unsigned char *)0xFFD7 /* Port Data Register 4 */

#define PDR4_BIT (*(struct BIT *)0xFFD7) /* Port Data Register 4 */

#define P40 PDR4_BIT.b0 /* Port 40 */

#define PCR4 *(volatile unsigned char *)0xFFE7 /* Port Control Register4 */

#define PCR4_BIT (*(struct BIT *)0xFFE7) /* Port Control Register4 */

#define PCR40 PCR4_BIT.b0 /* Port Control Register40 */

#define SYSCR1 *(volatile unsigned char *)0xFFF0 /* System Control Register 1 */

#define SYSCR1_BIT (*(struct BIT *)0xFFF0) /* System Control Register 1 */

#define SSBY SYSCR1_BIT.b7 /* Software Standby */

#define STS2 SYSCR1_BIT.b6 /* Standby Timer Select 2 */

#define STS1 SYSCR1_BIT.b5 /* Standby Timer Select 1 */

#define STS0 SYSCR1_BIT.b4 /* Standby Timer Select 0 */

#define LSON SYSCR1_BIT.b3 /* Low Speed On Flag */

#define MA1 SYSCR1_BIT.b1 /* Active Mode Clock Select 1 */

#define MA0 SYSCR1_BIT.b0 /* Active Mode Clock Select 0 */

#define SYSCR2 *(volatile unsigned char *)0xFFF1 /* System Control Register 2 */

#define SYSCR2_BIT (*(struct BIT *)0xFFF1) /* System Control Register 2 */

#define NESEL SYSCR2_BIT.b4 /* Noise Elimination Sampling */

 /* Frequency Select */

#define DTON SYSCR2_BIT.b3 /* Direct Transfer On Flag */

#define MSON SYSCR2_BIT.b2 /* Middle Speed On Flag */

#define SA1 SYSCR2_BIT.b1 /* Subactive Mode Clock Select 1 */

#define SA0 SYSCR2_BIT.b0 /* Subactive Mode Clock Select 0 */

#define IENR2 *(volatile unsigned char *)0xFFF4 /* Interrupt Enable Register 2 */

#define IENR2_BIT (*(struct BIT *)0xFFF4) /* Interrupt Enable Register 2 */

#define IENDT IENR2_BIT.b7 /* Timer FH Interrupt Enable */

#define IENEC IENR2_BIT.b0 /* Timer FH Interrupt Enable */

#define IRR2_BIT (*(struct BIT *)0xFFF7) /* Interrupt Request Register 2 */

#define IRRDT IRR2_BIT.b7 /* Timer FH Interrupt Request Flag */

#define IRREC IRR2_BIT.b0 /* Timer FH Interrupt Request Flag */

#pragma interrupt (aecint)

#pragma interrupt (dtint)

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 17 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

/***/

/* Function define */

/***/

extern void INIT (void); /* SP Set */

void main (void);

void aecint (void);

void dtint (void);

/***/

/* RAM define */

/***/

unsigned char FLAG; /* User Flag Area */

unsigned char CNT; /* User Flag Area */

/***/

/* Vector Address */

/***/

#pragma section V1 /* Vector Section Set */

void (*const VEC_TBL1[])(void) = {

 INIT /* 0x0000 Reset Vector */

};

#pragma section V2 /* Vector Section Set */

void (*const VEC_TBL2[])(void) = {

 aecint /* 0x0018 Timer F Interrupt Vector */

};

#pragma section V3 /* Vector Section Set */

void (*const VEC_TBL3[])(void) = {

 dtint /* 0x0028 Timer F Interrupt Vector */

};

#pragma section /* P */

/***/

/* Main Program */

/***/

void main (void)

{

 set_imask_ccr(1); /* Interrupt Disable */

 CNT = 0; /* Initialize 8-bit Counter */

 FLAG = 0; /* Initialize Event Flag */

 SCR3 = 0;

 COM = 0;

 PCR40 = 1; /* Initialize P40 Terminal Function */

 PDR4 = 0xF8; /* Initialize P40 PDR */

 AEVL = 1;

 AEGSR = 0x00;

 ECCR = 0x00;

 ECCSR = 0; /* Reset 16-bit Event Counter */

 SYSCR1 = 0x8F; /* Set SYSCR1 */

 SYSCR2 = 0xF8; /* Set SYSCR2 */

 TMA = 0x18; /* Initialize TCA Overflow Period */

 IRRDT = 0;

 IENR2 = 0x80; /* Timer A Interrupt Enable */

 set_imask_ccr(0); /* Interrupt Enable */

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 18 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

 sleep(); /* Transition to Sleep Mode */

 set_imask_ccr(1); /* Interrupt Disable */

 IRREC = 0;

 IENR2 = 0x81; /* Timer A Interrupt Enable */

 ECCSR = 0x0F;

 set_imask_ccr(0); /* Interrupt Enable */

 while(1){

 while (!FLAG);

 FLAG = 0;

 SYSCR1 = 0xE7;

 SYSCR2 = 0xF8;

 TMA = 0x18; /* TMA3 = "1" */

 sleep(); /* Transition to Sleep Mode */

 P40 = ~P40;

 SYSCR1 = 0x8F; /* Set SYSCR1 */

 SYSCR2 = 0xF8; /* Set SYSCR2 */

 TMA = 0x18; /* TMA3 = "1" */

 sleep();

 }

}

/***/

/* AEC Interrupt */

/***/

void aecint (void)

{

 IRREC = 0; /* Clear IRREC */

 OVH = 0; /* Clear OVH */

 OVL = 0; /* Clear OVL */

 CNT++; /* Increment CNT */

 if (CNT > 0x0F){

 FLAG = 1; /* Set Event Flag */

 CNT = 0; /* Initialize 8-bit Counter */

 }

}

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 19 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

/***/

/* Direct Transfer Interrupt */

/***/

void dtint (void)

{

 IRRDT = 0; /* Clear IRRDT */

}

Link address specifications

Section Name Address
CV1
CV2
CV3
P
B

H'0000
H'0018
H'0028
H'0100
H'FB80

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 20 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

Revision Record
Description

Rev.

Date Page Summary

1.00 Dec.19.03 � First edition issued

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 21 of 22

H8/300L SLP Series
Using the Asynchronous Event Counter for Control

REJ06B0263-0100Z/Rev.1.00 December 2003 Page 22 of 22

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Cover
	1.Specifications
	2.Description of Functions
	3.Principle of Operation
	4.Description of Software
	5.Flowchart
	6.Program Listing

