

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REU05B0126-0100/Rev.1.00 November 2009 Page 1 of 10

H8SX Family
LibUSB Device Demonstration

Introduction
This application note introduces the LibUSB library and shows an example of how to directly communicate with a USB
device over the Bulk pipes. This document refers to the RSK H8SX/1664 USB kit and specifically to the included
LibUSB application example.

Target Device
H8SX1664 (RSKH8SX1664)

Contents

1. Overview ... 2

2. Introduction to USB ... 2

3. Program Description.. 4

4. Using the software in your application .. 8

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 2 of 10

1. Overview
The Renesas USB Stack and MSC sample program is an example of how to create a vendor defined class device that
uses the LibUSB library to communicate with the PC.

2. Introduction to USB
The USB (Universal Serial Bus) is an interface and a protocol that allows a single host computer to communicate with a
variety of peripheral devices. The USB 2.0 spec defines this interface. Although it is dependant on the application most
USB projects will require a host side interface app and the device firmware. Every USB communication is between a
host and a device, where the host controls the bus and initiates communication all the time, except in case of devices
with the remote-wakeup feature (USB On-The-Go allows for devices to negotiate for the role of host and thus bus
control). In comparison with other interfaces, USB offers a host of advantages which include, automatic configuration
(enumeration), minimum IRQ lines used, hot pluggable, low cost, low power consumption, speed and reliability.
Depending on the application, the developers can chose one of four USB transfer types for his project; Control, Bulk,
Interrupt and Isochronous. These classifications are based on frequency of transfer, amount of data to be transferred and
the kind of data being transferred.

In USB terminology, individual devices are referred to as functions, which are linked in series through hubs. The hubs
are special-purpose devices that are not considered functions. There always exists one hub known as the root hub,
which is attached directly to the host controller.

Endpoints:

Functions and hubs have associated pipes (logical channels). Pipes are connections from the host controller to a logical
entity on the device named an endpoint. The end point thus serves as a data buffer; typically it is a block of data
memory or a register in the device; each endpoint can transfer data in one direction only (except endpoint 0), either into
or out of the device/function, thus making pipes unidirectional. Every device has endpoint zero configured for
bidirectional control transfer. The number of available endpoints and supported transfer types vary with each device.
The different kinds of endpoints are Bulk, Control, Interrupt and Isochronous. Since endpoints are unidirectional, they
will be followed by an “in” or “out” specification (e.g. Bulk-In).

Device Information:

To identify itself as a USB device and to conform to the spec for a certain class, a device needs to have in its firmware
certain elements of information that the host can access in order to successfully enumerate and then communicate with
the device. These elements are broadly known as Descriptors and are further classified into:

a. Device descriptor: Information such as the device class, the device sub-class, number of configurations, max
packet size and other info about the device as a whole are present in this descriptor.

b. Configuration Descriptor: Information about the number of interface supported and power consumption is
provided in this descriptor; most devices usually support only a single configuration, but multiple
configurations are allowed.

c. Interface descriptor: Each interface on the device has its own descriptor and subordinate descriptors
(descriptors for endpoints used in the interface.

d. Endpoint Descriptors (at least 2): Endpoint descriptors contain information about the endpoints to be used in
that interface. This includes maximum packet size, polling rate, endpoint type (Interrupt, Bulk, Control or
Isochronous) and endpoint direction (in or out).

e. Report Descriptor: This descriptor is required only in case of HID class devices and contains information on
the format of data being transmitted.

f. String Descriptor: Human readable information i.e. messages to be displayed on device enumeration etc are
stored in this descriptor. It is optional.

Enumeration:

Before the host can begin using a USB device, it has to learn about the device capabilities, resources and other features
in order to assign a device driver. The procedure by which a device identifies itself (including all resources and
capabilities available) to the host is known as enumeration. When a function or hub is attached to the host controller
through any hub on the bus (including the root hub), it is given a unique 7 bit address on the bus by the host controller.
On any USB system all communication is initiated by the host. The host uses a specific set of requests to retrieve
required information from the device. These requests can be classified as standard requests and class-specific requests.
There are eleven standard requests in the USB. An example of this is Get_Descriptor.

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 3 of 10

The Get_Descriptor command is used to retrieve descriptors. The Set_Descriptor request lets the host change
descriptors in the device.The host controller then polls the bus for traffic, usually in a round-robin fashion, so no
function can transfer any data on the bus without explicit request from the host controller.

Frames:

USB establishes a 1 millisecond time base called a frame on a full-/low-speed bus. A frame can contain several
transactions. Each transfer type defines what transactions are allowed within a frame for an endpoint. Isochronous and
interrupt endpoints are given opportunities to access the bus every N frames. This information is set in the “bInterval”
or Polling Interval field in the endpoint descriptor. For Bulk endpoints, this filed is not applicable.

2.1 Transfer types
There are four transfer types defined by the USB specification:

2.1.1 Control transfers
Control transfers are facilitated by the device control endpoint (endpoint zero). The host uses control transfers to
configure the device, request device information and other settings. Control transfers are different from other transfers
in that they have stages; typically three stages. The host sends a request in the Setup stage; the Data stage is used by the
host/device to send data (not all requests have this stage) and the device reports the status information in the Status
stage. Control transfers may also be used to send vendor specific requests.

2.1.2 Interrupt Transfers
Interrupt transfers are typically non-periodic communication requiring bounded latency. An Interrupt request is queued
by the device until the host polls the USB device asking for data. These transfers require an Interrupt-In endpoint on the
device.

2.1.3 Bulk transfers:
Bulk transfers can be used for large bursty data. It is ideal in situations where the transfer rate is not critical. Data
transfer using bulk transfers are very fast if the bus is idle; if the bus is busy, the transfers are delayed. This type of
transfer is supported only by Full-Speed and High-Speed devices and require a Bulk-In endpoint and a Bulk-Out
endpoint for data to and from the PC respectively.

2.1.4 Isochronous transfers:
Isochronous transfers occur continuously and periodically. They typically contain time sensitive information, such as an
audio or video stream. There is no retry or guarantee of delivery, although for the kind of application it is designed for,
loss of a packet or frame does not cause critical issues with application performance e.g. audio or video glitches too
small to be noticed by the user. This transfer mode is supported only by Full and High speed USB devices.

Refer to the Universal Serial Bus Specification [b] on usb.org for more details

2.2 The “Bulk-Only” class
USB does not specify a Bulk Only class. During enumeration, the host attempts to load the appropriate driver based on
the device class, which is specified in the Device descriptor. However, if the descriptor does not specify a defined USB
class (Vendor Defined Class), then no drivers will be loaded. Enumeration will proceed as expected, and the device will
declare its resources including endpoints etc. Thus the host is aware of the device capabilities, but does not load a
Windows USB class driver, since no class was specified; the user has to provide the driver in this case. In the included
Bulk-Only application, the device descriptors have been modified to do just that. A driver is required to access the USB
device, which is provided via the libusb-win32 library.

The “Bulk-Only” class is like a psuedo-UART, in the sense that it allows high speed transfer of data over USB without
having to enumerate as a defined USB class device. The data to be transferred from the device is loaded into the
appropriate driver and the transmit flag is set. When the host polls that endpoint the next time, the data is transmitted.
Data reception occurs similarly on the device. The data transfer occurs over the bulk endpoints and is not limited by
USB in terms of format or function. It is up to the user application to make sense of data format. Thus operation is very
similar to a Mass Storage class device, except for the fact that in Mass Storage devices, the data transferred over the
bulk pipes have to conform to a specific format (SCSI); whereas in the Bulk-Only class, raw data can be transferred,
since the user writes the host application that makes sense of the data.

2.3 Libusb-win32
Libusb-win32 is an open source library that allows users to access USB devices in their application without having to
write OS kernel code. The library has been ported to run on most operating systems including Microsoft Windows. The

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 4 of 10

website also includes many useful applications, including one that allows creation of a custom .inf file for any device.
The function calls are simplistic and allow the user to directly communicate with the Bulk and Interrupt endpoints on
the USB device. The library has been ported to most Operating Systems.

The library has been used in the included Bulk-Only application to access the specific USB device.

Refer to the libusb-win32 homepage for more information.

3. Program Description
Below is a layout of different layers of the USB stack

Figure 1: Sample program layout

The USB stack is split into three layers, namely the Hardware Abstraction Layer, the USB Core Layer and the USB
Class layer.

The Hardware Abstraction layer interfaces directly with the hardware and provides the higher layers with a uniform
hardware independent API. Thus when moving between devices, only the functions in this layer have to be modified
since the higher layers are abstracted to the hardware features and operation. This implementation is maintained across
all the versions of this program developed for different Renesas devices. The Hal currently supports the following
transfer modes

 Control (Setup, Data IN/OUT, Status)

 Bulk (IN and OUT)

 Interrupt (IN)

Isochronous transfer modes are not currently supported.

The USB Core layer implements protocol specific commands and response decoding. This layer uses the HAL layer for
actual data transfer and reception. For example the USB Core layer handles the Get_Descriptor requests from the host
This layer can be further expanded to support additional USB host requests . The HAL layer notifies the USB core
layer of USB events via call back functions.

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 5 of 10

The individual class layer implements functions that are specific to that particular class. In case of the CDC class device,
the application support the class requests required for communication over hyper-terminal namely
(GET_LINE_CODING, SET_LINE_CODING and SET_CONTROL_STATE)

3.1 Configuring the device for different USB events
The following section talks about the operation of the USB clock and how to configure the registers to respond to
different USB events

3.1.1 Interrupt Vectors
This device has a total of 5 USB interrupt vectors.

• Vector 232; USBINTN0

• Vector 233; USBINTN1

• Vector 234; USBINTN2

• Vector 235; USBINTN3

• Vector 238; RESUME

All USB events are channeled through these interrupt vector. In the ISR, the user has to check the flag register to
determine the actual cause of the interrupt. USBINTN0 and USBINTN1 are only required when combining USB and
DMAC transfers. In the included sample program, this feature is not used.

The RESUME signal is used to wake the device out of software stand-by mode. This is useful in applications where the
device has to go into low power and will be waken up remotely when required.

All of the remaining interrupts are channeled though USBINTN2 and USBINTN3.

3.1.2 Initialization
This section lists the initialization sequence for the USB block

(a) Pin Configuration

This Device has a total of 5 USB pins all of which are dedicated for USB operation and hence do not need to be
configured as inputs or outputs.

• VBUS

• DrVSS

• USD-

• USD+

• DrVCC

During initialization, before enabling the pull-up for USBD+, the port is forced low. This is to ensure that if the USB
device is already plugged in before the software runs, then the forced pull down and release will start the enumeration
process.

(b) Module Enable

By default, all peripheral modules including USB are disabled on the H8SX/1664.

To access any USB registers, the module needs to be enabled by setting MSTP._CRC.BIT._USB = 0

(c) Clock Configuration

Once the initialization is done, the device has to be configured to respond to different USB events. The following
sections explain the configuration required to respond to each of the different USB events.

3.1.3 Cable Connection/Disconnection
When properly configured, this LSI generates an interrupt to the CPU when the USB cable is plugged in or
disconnected. To enable this interrupt, the VBUSF bit in IER1 has to be set (USB.IER1.BIT.VBUSF = 1).

Since this interrupt is usually followed by the Bus Reset interrupt, ensure that this is enabled as well by setting the
BRST bit in IER0 (USB.IER1.BIT.VBUSF = 1).

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 6 of 10

Since both of these interrupts are routed via USBINTN2, in the interrupt handler check the flag registers to determine
the interrupt source (USB.IFR1.BIT.VBUSF and USB.IFR0.BIT.BRST). In case of the VBUS interrupt, clear the
flag register, notify the software layer, and if the cable is connected, initialize the data elements used by the software
stack.

When the Bus Reset interrupt occurs after this, make sure to initialize the block by clearing all the FIFOs and stall states.
This is done by

 USB.FCLR.BYTE = 0x73; /* Clear FIFOS */

 USB.EPSTL.BYTE = 0x00; /* Clear all stalls */

3.1.4 Control Transfer
Once the Bus Reset has occurred, the enumeration process begins. The details of the enumeration process and the
control transfer used for this process are described in section 2.1.1.

(a) Setup Stage

When the host sends the SETUP command, if the SETUPTS bit in IER0 has been set, the device will issue an interrupt
request. The source can be determined by interrogating the SETUPTS bit in the flag register IFR0. Since the reception
of the Setup command packet indicates the start of a new command sequence, it is necessary to flush out the FIFOs to
prevent the software from reading data packets from a prior command. Once this is done, read all the 8 byts of the Setup
packet and notify the higher layer for processing. Then set the hardware bit indicating that the 8 bytes have been read.
This is done as shown below:

 /*Clear EP0i and EP0o FIFOs*/
USB.FCLR.BYTE = 0x03; /* EP0oCLR = 1 and EP0iCLR = 1 */
 /*Read 8 bytes of data from EP0 into tempory buffer*/
 for(index = 0; index < USB_SETUP_PACKET_SIZE; index++)
 {
 SetupCmdBuffer[index] = USB.EPDR0s;
 }
 /*Set EP0 Status Read Complete*/
 USB.TRG.BIT.EP0sRDFN = 1;

The H8S/1664 USB block automatically decodes the following Setup commands. These commands do not generate an
interrupt request to the CPU and all three stages including command, data and status stages are automatically processed
by the hardware.

• Clear Feature

• Get Configuration

• Get Interface

• Get Status

• Set Address

• Set Configuration

• Set Feature

• Set Interface

The following commands require firmware support to proceed with the subsequent stages. An interrupt request is
generated when these commands are received.

• Get Descriptor

• Class/Vendor commands

• Set Descriptor

• Sync Frame

If the application does not support a particular command, the slave can respond by setting the Control endpoint to a
“stall” state. This will cause the block to send a “stall” packet to the host indicating that the particular command is not

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 7 of 10

supported. The stall state can also be used by other endpoints to let the host know that it is not yet ready to respond to
further host requests. These two stall states are known as protocol stall and commanded stall respectively.

(b) Control-Data Stage

As mentioned in section 2.1.1, the command stage is followed by an optional data stage and a mandatory status stage.
Depending on the command sent during the Setup stage, there may be a Data-IN or Data-OUT stage. An important
thing to remember is that the subsequent Status stage has a direction opposite to the preceding Data stage. The
interrupt sources are configured based on this.

To handle Data-IN, enable the EP0iTS and EP0oTS interrupts. The data is sent to the host via the EPDR0i register. If
there are more packets still to send, the deice waits for either the EP0iTS interrupt (indicating that the host is asking for
the rest of the data) or the EP0oTS interrupt (indicating that the host is done and now sending the Status). Once all the
packets have been sent, set the EP0iPKTE bit to indicate to the host that all the data has been sent.

The EP0iTR (Request for information by the host) interrupt will not be used in this case since the host requests for
further data packets by means of the EP0iTS interrupt. And since the subsequent Status stage will consist of receiving
information from the host, the EP0iTR is not required.

To handle Data-OUT, enable the EP0iTS, EP0oTS and the EP0iTR interrupts. The data from the host is received on the
EPDR0o register. Once the data has been read, set the EP0oRDFN to indicate to the host that it has been read so that the
next packet can be sent by the host. Once all the data has been read, the host attempts to read the Status from the device.
This will cause the EP0iTR interrupt to trigger.

(c) Control-Status Stage

The direction of the Status stage is opposite to that of the preceding data stage (if there was one) or the Setup stage. If
the host has requested for the status by means of the EP0iTR interrupt, then the device will send one of the following
packets depending on the outcome of the process: ACK, NAK or STALL. The ACK is generated by sending a zero-byte
packet to the host. This is done by setting the EP0iPKTE bit without writing anything to the EPDR0i register.

Conversely, if the host is the source of the Status stage, then the EP0oTS interrupt will trigger on receiving an ACK.

3.1.5 Bulk-In Transfer
On the H8SX/1664, endpoint 2 is the Bulk-IN endpoint. Interrupts requests for this endpoint are enabled by setting the
EP2TR bit.

When the host wants to receive over this endpoint, it sends a request which triggers the EP2TR interrupt. In the
interrupt handler, the application writes out a packet to the EPDR2 register byte by byte and then sets the EP2PKTE bit
so that the data is sent to the host. Once the data is successfully sent, the interrupt will be retriggered. The application
will then write out any more remaining packets and repeat the process until all the data is sent to the host.

If at any point the EP2PKTE bit is set without writing a full packet worth of data (64 bytes for this device) to EPDR2,
then the host will consider this as an indication that the device has finished sending all the available data.

If then total data to be sent is a multiple of 64, then to end the transmission, send an empty packet by setting the
EP2PKTE bit without writing any data to EPDR2.

3.1.6 Bulk-Out Transfer
On the H8SX/1664, endpoint 1 is the Bulk-OUT endpoint. Interrupts requests for this endpoint are enabled by setting
the EP1FULL bit.

When the host sends data over this endpoint, the EP1FULL interrupt is triggered. The total size of the data sent by the
host is in the EPSZ1 register and the actual data in the EPDR1 register. Once the application reads out all the data from
the register, it sets the EP1RDFN bit to indicate to the host that all the data has been read out.

3.1.7 Interrupt-In Transfer
On the H8SX/1664, endpoint 3 is the Bulk-OUT endpoint. Interrupts requests for this endpoint are enabled by setting
the EP3TR the EP3TS bits.

To send data to the host over this endpoint, the application writes a packet (or less) worth of data to the EPDR3 register
one byte at a time and then sets the EP3PKTE bit to send the data. If a full packet was sent, the EP3TS interrupt will be
generated again indicating that the data was sent and the host is requesting the rest of the data. The procedure is
repeated until all the data is sent or until the EP3PKTE bit is set without writing a full packet worth of data to the
EP3DR register.

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 8 of 10

If the host attempts to read the EP3DR register and finds no data in the buffer, the EP3TR interrupt will be triggered.
This case is not handled in the provided sample code and hence this interrupt is disabled.

4. Using the software in your application
The sample program uses the Bulk Endpoints to send and receive “raw” data. This means that the format of the data is
not specified by USB and the user thus has plenty of flexibility in sending and receiving any kind of data including
custom commands.

There are primarily two functions in firmware that are used to send and receive data over the bulk pipes

• USBHAL_Bulk_OUT()
• USBHAL_Bulk_IN()

The stack provides a debugging layer which outputs debug messages over the serial port. This can be enabled or
disabled by defining the project level macros VERRBOSE_HIGH, VERBOSE_MID and VERBOSE_LOW.

Refer to the sample program on how to initialize the hardware and stack before using the API.

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 9 of 10

Reference

a. H8SX/1664 group manual. Document number: REJ09B0294

b. Universal Serial Bus Specification Revision 2.0

c. “USB Complete: Everything You Need to Develop Custom USB Peripherals” by Jan Axelson.

d. libusb-win32 homepage

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Nov.10.09 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

H8SX Family
LibUSB Device Demonstration

REU05B0126-0100/Rev.1.00 November 2009 Page 10 of 10

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2009 Renesas Technology Corp., All rights reserved.

