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R8C/10 Group 
A Software control of I2C-BUS using General-purpose Ports 

1. Abstract 

This application note describes a software control program of I2C-BUS and its application example.  This 
program can be also used for a control of EEPROM. 

 
 
 

2. Introduction 

A single master I2C-BUS can be controlled by software using general-purpose ports. 
The external pull-up resistances should be attached toP12(SDA) and P13(SCL). 
Table 1 shows the functional performance of I2C-BUS interface. 
 

  Table 1  Functional performance of single master I2C-BUS interface 
Item Functional Performance 
Communication mode Master transmission (single master) 
SCL Clock Frequency 100kHz approx. 

 
Note 1  This is a value for a CPU clock operated at 16MHz when no interrupt is used. 

When a CPU clock operates at other than 16MHz, some adjustment is necessary to set this value. 
 
 

This program can also be used when operating other microcomputers within the M16C family, provided they 
have the same SFR (Special Function Registers) as the R8C/10 microcomputers.  However, some functions 
may have been modified.  Refer to the User’s Manual for details.  Use functions covered in this Application 
Note only after careful evaluation. 
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3. I2C-BUS 

3.1 START Condition / STOP Condition 

 (1) START Condition 
   Change SDA from high to low when SCL is high. 
   Later, change SCL to low. 
 (2) STOP Condition 
   Change SDA from low to high when SCL is high. 
   Later, change SCL to low. 
 
Figure 1 shows a configuration of START condition generation timing, and Figure 2 shows a configuration 
of STOP condition generation timing.  A list of START condition / STOP condition generation timing is 
shown in Table 2 below.   
 
 
 
 
 
 
 
 
 
 
 
 

   Table2  a list of START condition / STOP condition generation timing  
Timing START condition STOP condition 
Set up time 2.0µs approx. 1.6µs approx. 
Hold time 3.0µs approx. 3.0µs approx. 

  Note 1  This is a value for a CPU clock operated at 16MHz when interrupt is not used 
When a CPU clock operates at other than 16MHz, some adjustment is necessary to set this value. 

 
 

Figure 1  START condition generation timing 
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Figure 2  STOP condition generation timing  
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3.2 Data Input / Output 

 (1) Data output 
   Data is output to SDA pin.  After data setup time passes, a clock is output from SCL pin. (”L”→”H”→”L”) 
 (2) Data input 
    Input data after driving SCL high, and then drive SCL low. 
 

Figure 3 shows a configuration of data input/output timing , and Table 3 shows a list of data input/output 
timing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Table 3  A list of data input / output timing 
Timing Data output Data input 
Setup time 3.3µs approx. - 
Access time - Over 1µs approx. 
Clock ”H” time 3.0µs approx. 4.7µs approx. 

 Note 1  This is a value for a CPU clock operated at 16MHz when interrupt is not used 
When a CPU clock operates at other than 16MHz, some adjustment is necessary to set this value. 

Figure 3  A configuration of data input /output timing 
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3.3 Byte Format 

1 byte consists of 8-bit-length data and 1-bit-length Acknowledge. 
Acknowledge is a signal to indicate whether data is normally transferred or not.  When Acknowledge 

indicates “L”, data is normally transferred.  When it is “H”, data is not normally transferred. 
When the master device transfers the data to the slave device, the master device releases SDA line (high-

impedance) at the 9th transmit clock pulse and the slave device returns an acknowledge signal.  When the 
master device receives the data from the slave device, the slave device releases SDA line (high-impedance) 
at the 9th transmit clock pulse and the master device returns an acknowledge signal. 

Figure 4 shows a configuration of byte format. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4   Byte Format 
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4. Application Example(a control of EEPROM) 

Write / read the data to 2k-bit EEPROM(HN58X2402SI).  
In 7 bit addressing mode, Device Address Code (A2,A1,A0)can be assigned by the lower 3 bit of Device 

Address Word.  
Figure 5 shows an example of connection between a microcomputer and EEPROM(HN58X2402SI). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Byte Write 

Write “Write Data” to an address (n) assigned to Memory Address(W7 to W0). 
Confirm Acknowledge and generate Stop Condition after 8-bit Write Data is output. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

R8C/10 Group 

P12

P13

SDA

SCL

A2

A1

A0

WP

“L”

HN58X2402SI

Figure 5  An example of connection 

Figure 6  Byte Write 
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4.2 Page Write 

Write multi-bytes (m+1) of “Write Data” to address assigned to Memory Address(W7 to W0).* 
Confirm Acknowledge and generate Stop Condition after the assigned byte of “Write Data” is output. 

 
*Page Write provides a sequential write of up to 8 byte-data. 

Refer to EEPROM(HN58X2402SI) datasheet for details. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 Sequential Read 

Read “Read Data” from an address (n) assigned to Memory Address(W7 to W0). 
Output Acknowledge “0” to read multi-byte (m+1) of Read Data after Read Data is input. 

Output Acknowledge “1” and generate Stop Condition after the assigned byte of Read Data is input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

Figure 7  Page Write 
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Figure 8  Sequential Read Cycle 
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5. Flowchart 

5.1 Initial Operation and Main loop 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

main 

Yes

No

SFR Initialization (I2C-BUS) 
initIicBus 

 i==1 
WriteData[0] = 0xFF; 

IicData_w.iic_DeviceAddress = 0xA0;
IicData_w.iic_WordAddress = 0x10; 

IicData_w.iic_Data = WriteData; 
IicData_w.iic_NumberOfByte = 1; 

I2C-BUS Write 
IicBusWrite 

Yes 

No

 i==0 

Yes

No

 i==2 

Yes

No

 i==3 

Yes

No

 i==4 

for (i=0; i<8; i++) WriteData[i]=i; 
IicData_w.iic_DeviceAddress = 0xA0;
IicData_w.iic_WordAddress = 0x10; 

IicData_w.iic_Data = WriteData; 
IicData_w.iic_NumberOfByte = 8; 

I2C-BUS Write 
IicBusWrite 

IicData_r.iic_DeviceAddress = 0xA0; 
IicData_r.iic_WordAddress = 0x10; 

IicData_r.iic_Data = ReadData; 
IicData_r.iic_NumberOfByte = 1; 

I2C-BUS Read 
IicBusRead 

IicData_r.iic_DeviceAddress = 0xA0; 
IicData_r.iic_WordAddress = 0x10; 

IicData_r.iic_Data = ReadData; 
IicData_r.iic_NumberOfByte = 8; 

I2C-BUS Read 
IicBusRead 

i = 0; 

i = (Process like mode setting) 
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5.2 SFR Initial Setting(I2C-BUS) 

 
 
 
 
 
 
 
 
 

initIicBus 

iic_sda_d = 0;  ; SDA input ("H" state) 

iic_scl_d = 0;  ; SCL input ("H" state) 

return 
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5.3 I2C-BUS Read 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IicBusRead 

IicData->iic_DeviceAddress  
&= 0xFE; 

 ; WRITE Setting Device Address 

return(ret) 

Start Condition 
StartCondition  ; Start Condition 

DeviceAddress Write 
ByteWrite 

Yes

No

 Detect NoAck  

 ; Write Device Address 

MemoryAddress Write 
ByteWrite 

Yes

No

 Detect NoAck  

 ; Write Memory Address 

IicData->iic_DeviceAddress  
|= 0x01; 

 ; READ Setting Device Address 

Start Condition 
StartCondition  ; ReStart Condition 

DeviceAddress Write 
ByteWrite 

Yes

No

 Detect NoAck  

 ; Write Device Address 

Read(Ack Output) 
ByteRead  ; Read data (Ack output) 

Read(NoAck Output) 
ByteRead  ; Read data (NoAck output) 

Repeat 
i=0; i<byte count; i++ 

Stop Condition 
StopCondition  ; Stop Condition 

IicData->iic_Data++; 
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5.4 I2C-BUS Write 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IicBusWrite 

IicData->iic_DeviceAddress  
&= 0xFE; 

 ; WRITE Setting Device Address 

return(ret) 

Start Condition 
StartCondition  ; Start Condition 

DeviceAddress Write 
ByteWrite 

Yes

No

 Detect NoAck 

 ; Write Device Address 

MemoryAddress Write 
ByteWrite 

Yes

No

 Detect NoAck 

 ; Write Memory Address 

Yes

No

 Detect NoAck 

Write Data 
ByteWrite  ; Write data 

Repeat 
i=0; i<byte count; i++ 

Stop Condition 
StopCondition  ; Stop Condition 

IicData->iic_Data++; 
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5.5 I2C-BUS Start Condition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

StartCondition 

iic_scl = 0; 
iic_scl_d = 1; 

 ; SCL="L" 
 ; SCL output 
 
 
 
 
 
 ; SDA="H" 

return 

Wait 
_WaitTime1us 

iic_scl = 1;  ; SCL="H" 

Wait 
_Wait_tSU_STA 

iic_sda = 0; 
iic_sda_d = 1; 

Wait 
_Wait_tHD_STA 

iic_scl = 0;  ; SCL="L" 

 ; SDA="L" 
 ; SDA output 

Wait 
_WaitTime1us 

iic_sda_d = 0; 

Wait 
_WaitTime1us 

Wait 
_WaitTime1us 
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5.6 I2C-BUS Stop Condition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

StopCondition 

iic_scl = 0; 
iic_scl_d = 1; 

 ; SCL="L" 
 ; SCL output 
 
 
 
 
 
 ; SDA="L" 
 ; SDA output 

return 

Wait 
_WaitTime1us 

iic_scl = 1;  ; SCL="H" 

Wait 
_Wait_tSU_STO 

iic_sda_d = 0; 

Wait 
_WaitTime1us 

iic_scl = 0;  ; SCL="L" 

 ; SDA="H" 

iic_sda = 0; 
iic_sda_d = 1; 

Wait 
_WaitTime1us 

Wait 
_WaitTime1us 
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5.7 I2C-BUS Byte Write 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ByteWrite 

return(ret) 

Wait 
_Wait_tSU_DAT/_WaitTime1us 

iic_scl = 1;  ; SCL="H" 

Wait 
_Wait_tHIGH/_WaitTime1us 

iic_scl = 0; 

Wait 
_Wait_tAA/_WaitTime2us 

iic_scl = 1;  ; SCL="H" 

 ; SCL="L" 

Yes

No

 Loop 8 times 

iic_sda = 0; 

No

Yes

 iic_writeData & maskData 

iic_sda_d = 0; 

 ; initialize port-latch 

iic_sda_d = 1; 
nop X 3 

 ; SDA="L"  ; SDA="H" 

maskData >>= 1;  ; change mask data 

iic_sda_d = 0;  ; SDA input 

No

Yes

 iic_sda=”H” 

ret=NOACK;  ; NoAck Detect 

Wait 
_Wait_tHIGH/_WaitTime1us 

iic_scl = 0;  ; SCL="L" 

Wait 
_Wait_tHD_DAT 

maskData=0x80; 
ret=ACK; 

 ; initialize auto variable 

Wait 
_WaitTime1us 
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5.8 I2C-BUS Byte Read 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ByteRead 

return 

iic_scl = 1;  ; SCL="H" 

Wait 
_Wait_tHIGH/_WaitTime1us 

iic_scl = 0; 

Wait 
_Wait_tSU_DAT/_WaitTime1us 

iic_scl = 1;  ; SCL="H" 

 ; SCL="L" 

Yes

No

 Loop 8 times 

iic_sda = 0; 

No

Yes

 iic_sda=”H” 

*iic_readData = readData; 

 ; initialize port-latch 

maskData >>= 1;  ; change mask data 

iic_sda = ACK; 
iic_sda_d = 1;  ; SDA="L" 

 ; SDA output 

Wait 
_Wait_tHIGH/_WaitTime1us 

iic_scl = 0; 
iic_sda_d = 0; 

 ; SCL="L" 
 ; SDA input 

maskData=0x80;  ; initialize auto variable 

Wait 
_Wait_tAA 

readData =  
*iic_readData | maskData; 

nop X 13 

Wait 
_WaitTime1us 

No

Yes

 ACK 
iic_sda = NOACK; 

iic_sda_d = 0; 
 ; SDA="H" 
 ; SDA input 

Wait 
_WaitTime1us 
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6. Program 

/************************************************************** 
 *        * 
 * File Name : main.c    * 
 * Contents : main file    * 
 * Copyright : RENESAS TECHNOLOGY CORPORATION * 
 *    AND RENESAS SOLUTIONS CORPORATION * 
 * Version  : 1.0     * 
 * note  :     * 
 *        * 
**************************************************************/ 
 
#include "sfrr8c10.h" 
#include "Iic_Bus.h" 
 
void main (void) 
{ 
    static unsigned char i=0; 
    static unsigned char WriteData[8]; 
    static unsigned char ReadData[8]; 
    IicPack IicData_w; 
    IicPack IicData_r; 
 
    p1_4 = 1;   /* test port */ 
    pd1_4 = 1;   /* test port */ 
    p1_1 = 1;   /* test port */ 
    pd1_1 = 1;   /* test port */ 
 
    while(1){ 
        while(i==0) { 
            i = mode();    /* Setting Access Mode */ 
        } 
        p1_4 = 1; 
        switch (i) { 
        case 1:      /* Write data 1Byte */ 
            WriteData[0] = 0xAA;   /* Setting write data */ 
            IicData_w.iic_DeviceAddress = 0xA0; 
            IicData_w.iic_MemoryAddress = 0x10; 
            IicData_w.iic_Data = WriteData; 
            IicData_w.iic_NumberOfByte = 1; 
            p1_4 = 0; 
            if (IicBusWrite(&IicData_w) == ACK) { 
                p1_4 = 1; 
            }; 
            break; 
        case 3:      /* Write data 8Bytes */ 
            for (i=0; i<8; i++) WriteData[i]=I*5; /* Setting write data */ 
            IicData_w.iic_DeviceAddress = 0xA0; 
            IicData_w.iic_MemoryAddress = 0x10; 
            IicData_w.iic_Data = WriteData; 
            IicData_w.iic_NumberOfByte = 8; 
            p1_4 = 0; 
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            if (IicBusWrite(&IicData_w) == ACK) { 
                p1_4 = 1; 
            }; 
            break; 
        case 2:      /* Read data 1Byte */ 
            IicData_r.iic_DeviceAddress = 0xA0; 
            IicData_r.iic_MemoryAddress = 0x10; 
            IicData_r.iic_Data = ReadData; 
            IicData_r.iic_NumberOfByte = 1; 
            p1_1 = 0; 
            if(IicBusRead(&IicData_r) == ACK) { /*  */ 
                p1_1 = 1; 
            } 
            break; 
        case 4:      /* Read data 8Bytes */ 
            IicData_r.iic_DeviceAddress = 0xA0; 
            IicData_r.iic_MemoryAddress = 0x10; 
            IicData_r.iic_Data = ReadData; 
            IicData_r.iic_NumberOfByte = 8; 
            p1_1 = 0; 
            if(IicBusRead(&IicData_r) == ACK) { /*  */ 
                p1_1 = 1; 
            } 
            break; 
        default: 
            asm("nop"); 
            break; 
        } 
        p1_4 = 0; 
        p1_1 = 0; 
        i = 0; 
    } 
} 
 
void init(void) 
{ 
    asm("fclr i"); 
    prcr = 0x01; 
    cm0 = 0x08; 
    cm1 = 0x28; 
    ocrd = 0x00; 
    prcr = 0x00; 
} 
 
unsigned char mode(void) 
{ 
    unsigned int loop; 
    static unsigned char mode=0; 
     
    for (loop=1; 0!=loop; loop++) {}   /* about 82ms at 16MHz/1 */ 
    if (++mode > 4) mode=0;    /* change mode */ 
    return(mode); 
} 
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/************************************************************** 
 *        * 
 * File Name : Iic_bus.h    * 
 * Contents : IIC Bus Definition file  * 
 * Copyright : RENESAS TECHNOLOGY CORPORATION * 
 *    AND RENESAS SOLUTIONS CORPORATION * 
 * Version  : 1.0     * 
 * note  :     * 
 *        * 
**************************************************************/ 
 
#define ACK 0 
#define NOACK 1 
 
#define WRITE_MODE 0 
#define READ_MODE 1 
 
typedef unsigned char uchar; 
typedef struct { 
    unsigned char iic_DeviceAddress; 
    unsigned char iic_MemoryAddress; 
    unsigned char *iic_Data; 
    unsigned char iic_NumberOfByte; 
}IicPack; 
 
void initIicBus(void); 
unsigned char IicBusRead(IicPack *); 
unsigned char IicBusWrite(IicPack *); 
void StartCondition(void); 
void StopCondition(void); 
unsigned char ByteWrite(unsigned char); 
void ByteRead (unsigned char *, unsigned char); 
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/************************************************************** 
 *        * 
 * File Name : Iic_bus.c    * 
 * Contents : IIC Bus file    * 
 * Copyright : RENESAS TECHNOLOGY CORPORATION * 
 *    AND RENESAS SOLUTIONS CORPORATION * 
 * Version  : 1.0     * 
 * note  :     * 
 *        * 
 *************************************************************/ 
 
#include "sfrr8c10.h" 
#include "Iic_Bus.h" 
 
#define iic_sda_d pd1_2 
#define iic_sda  p1_2 
#define iic_scl_d pd1_3 
#define iic_scl  p1_3 
 
void _WaitTime0us(void); 
void _WaitTime1us(void); 
void _WaitTime2us(void); 
 
#define _Wait_tHIGH _WaitTime1us() /* Clock pulse width high */ 
#define _Wait_tLOW _WaitTime2us() /* Clock pulse width low */ 
#define _Wait_tHD_STA _WaitTime1us() /* Start hold time */ 
#define _Wait_tSU_STA _WaitTime1us() /* Start setup time */ 
#define _Wait_tHD_DAT _WaitTime0us() /* Data in hold time */ 
#define _Wait_tSU_DAT _WaitTime1us() /* Data in setup time */ 
#define _Wait_tAA _WaitTime1us() /* Access time */ 
#define _Wait_tSU_STO _WaitTime1us() /* Stop setup time */ 
#define _Wait_tBUF _WaitTime2us() /* Bus free time for next mode */ 
 
 
/******************************************************** 
 Name  : initIicBus 
 Parameters : None 
 Returns : None 
 Description : initialize I2C-BUS port 
********************************************************/ 
void initIicBus(void) 
{ 
    iic_sda_d = 0;  /* SDA input ("H" state) */ 
    iic_scl_d = 0;  /* SCL input ("H" state) */ 
} 
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/******************************************************** 
 Name  : IicBusRead 
 Parameters : structure IicPack pointer 
 Returns : Acknowledge 
 Description : Sequential Ramdom Read Cycle (I2C-BUS) 
********************************************************/ 
unsigned char IicBusRead(IicPack *IicData) 
{ 
    unsigned char i,ret; 
 
    /* Ramdom Read Cycle / Sequential Ramdom Read Cycle */ 
    IicData->iic_DeviceAddress &= 0xFE;  /* WRITE Setting DeviceAddress */ 
    StartCondition();     /* Start Condition */ 
    while (1) { 
        if ((ret=ByteWrite(IicData->iic_DeviceAddress)) == NOACK) 

/* WRITE DeviceAddress */ 
            break;     /* NoAck Detect */ 
        if ((ret=ByteWrite(IicData->iic_MemoryAddress)) == NOACK) 

/* WRITE MemoryAddress */ 
            break;     /* NoAck Detect */ 
        IicData->iic_DeviceAddress |= 0x01;  /* READ Setting DeviceAddress */ 
        StartCondition();    /* ReStart Condition */ 
        if ((ret=ByteWrite(IicData->iic_DeviceAddress)) == NOACK) 

/* DeviceAddress WRITE */ 
            break;     /* NoAck Detect */ 
        for (i=1; i<IicData->iic_NumberOfByte; i++) { /* specified bytes as loop */ 
            ByteRead (IicData->iic_Data, ACK);  /* Read data (Ack output) */ 
            IicData->iic_Data++;   /*  */ 
        } 
        ByteRead (IicData->iic_Data, NOACK);  /* Read data (NoAck output) */ 
        break; 
    } 
    StopCondition();     /* Stop Condition */ 
    return(ret); 
} 
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/******************************************************** 
 Name  : IicBusWrite 
 Parameters : structure IicPack pointer 
 Returns : Acknowledge 
 Description : Byte Write or Page Write Cycle (I2C-BUS) 
********************************************************/ 
unsigned char IicBusWrite(IicPack *IicData) 
{ 
    unsigned char i,ret; 
 
    /* Byte Write / Page Write */ 
    IicData->iic_DeviceAddress &= 0xFE;  /* WRITE Setting DeviceAddress */ 
    StartCondition();     /* Start Condition */ 
    while (1) { 
        if ((ret=ByteWrite(IicData->iic_DeviceAddress)) == NOACK) 

/* WRITE DeviceAddress */ 
            break;     /* NoAck Detect */ 
        if ((ret=ByteWrite(IicData->iic_MemoryAddress)) == NOACK) 

/* WRITE MemoryAddress */ 
            break;     /* NoAck Detect */ 
        for (i=0; i<IicData->iic_NumberOfByte; i++) { /* specified bytes as loop */ 
            if ((ret=ByteWrite(*(IicData->iic_Data))) == NOACK) /* Write Data */ 
                break;     /* NoAck Detect */ 
            IicData->iic_Data++;   /*  */ 
        } 
        break; 
    } 
    StopCondition();     /* Stop Condition */ 
    return(ret); 
} 
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/******************************************************** 
 Name  : StartCondition 
 Parameters : None 
 Returns : None 
 Description : Output Start Condition (I2C-BUS) 
 Note  : *1 adjust a wait time 
********************************************************/ 
void StartCondition(void) 
{ 
    iic_scl = 0;    /* SCL="L" */ 
    iic_scl_d = 1;    /* SCL output */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_sda_d = 0;    /* SDA="H" */ 
    _WaitTime1us();    /* wait */ 
    _WaitTime1us();    /* wait *! */ 
    iic_scl = 1;    /* SCL="H" */ 
    _Wait_tSU_STA;    /* wait */ 
    iic_sda = 0;    /* SDA="L" */ 
    iic_sda_d = 1;    /* SDA output */ 
    _Wait_tHD_STA;    /* wait */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_scl = 0;    /* SCL="L" */ 
} 
 
/******************************************************** 
 Name  : StopCondition 
 Parameters : None 
 Returns : None 
 Description : Output Stop Condition (I2C-BUS) 
 Note  : *1 adjust a wait time 
********************************************************/ 
void StopCondition(void) 
{ 
    iic_scl = 0;    /* SCL="L" */ 
    iic_scl_d = 1;    /* SCL output */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_sda = 0;    /* SDA="L" */ 
    iic_sda_d = 1;    /* SDA output */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_scl = 1;    /* SCL="H" */ 
    _Wait_tSU_STO;    /* wait */ 
    iic_sda_d = 0;    /* SDA="H" */ 
    _WaitTime1us();    /* wait */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_scl = 0;    /* SCL="L" */ 
} 
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/******************************************************** 
 Name  : ByteWrite 
 Parameters : Write data 
 Returns : Acknowledge 
 Description : byte data Output (I2C-BUS) 
 Note  : *1 adjust a wait time 
********************************************************/ 
unsigned char ByteWrite(unsigned char iic_writeData) 
{ 
    unsigned char maskData=0x80;  /* MSB first */ 
    unsigned char ret=ACK;   /* Ack/NoAck */ 
 
    while (maskData) {    /* 8times as loop */ 
        iic_sda = 0;    /* initialize port-latch */ 
        if (iic_writeData & maskData) { /* "H" output ? */ 
            iic_sda_d = 0;   /* Yes SDA="H" */ 
        }else{ 
            iic_sda_d = 1;   /* No  SDA="L" */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
        } 
        _Wait_tSU_DAT;    /* wait */ 
        _WaitTime1us();    /* wait *1 */ 
        iic_scl = 1;    /* SCL="H" */ 
        _Wait_tHIGH;    /* wait */ 
        _WaitTime1us();    /* wait *1 */ 
        iic_scl = 0;    /* SCL="L" */ 
        maskData >>= 1;    /* change mask data */ 
        _WaitTime1us();    /* wait *1 */ 
    } 
    iic_sda_d = 0;    /* SDA input */ 
    _Wait_tAA;     /* wait */ 
    _WaitTime2us();    /* wait *1 */ 
    iic_scl = 1;    /* SCL="H" */ 
    if (iic_sda) ret=NOACK;   /* NoAck Detect */ 
    _Wait_tHIGH;    /* wait */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_scl = 0;    /* SCL="L" */ 
    _Wait_tHD_DAT;    /* wait */ 
    return(ret); 
} 
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/******************************************************** 
 Name  : ByteRead 
 Parameters : Read data strage location pointer, Select Ack/NoAck 
 Returns : None 
 Description : byte data input with Ack output (I2C-BUS) 
 Note  : *1 adjust a wait time 
********************************************************/ 
void ByteRead(unsigned char *iic_readData, unsigned char ackData) 
{ 
    unsigned char maskData=0x80;  /* MSB first */ 
    unsigned char readData; 
 
    *iic_readData = 0;    /*  */ 
    while (maskData) {    /* 8times as loop */ 
        readData = *iic_readData | maskData; /*  */ 
        iic_sda_d = 0;    /* initialize port-latch */ 
        _Wait_tAA;    /* wait */ 
        iic_scl = 1;    /* SCL="H" */ 
        if (iic_sda) {    /* SDA="H" ? */ 
            *iic_readData = readData;  /* Yes  */ 
        }else{ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
            asm("nop");    /* wait *1 */ 
        } 
        _Wait_tHIGH;    /* wait */ 
        _WaitTime1us();    /* wait *1 */ 
        iic_scl = 0;    /* SCL="L" */ 
        maskData >>= 1;    /* Change mask data */ 
        _WaitTime1us();    /* wait *1 */ 
    } 
    if (!ackData) {    /* Ack output ? */ 
    /* Ack output */ 
        iic_sda = ACK;    /* Yes SDA="L" */ 
        iic_sda_d = 1;    /* SDA output */ 
    }else{ 
    /* NoAck output */ 
        iic_sda = NOACK;   /* No  SDA="H" */ 
        iic_sda_d = 0;    /* SDA input */ 
    } 
    _Wait_tSU_DAT;    /* wait */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_scl = 1;    /* SCL="H" */ 
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    _Wait_tHIGH;    /* wait */ 
    _WaitTime1us();    /* wait *1 */ 
    iic_scl = 0;    /* SCL="L" */ 
    iic_sda_d = 0;    /* SDA input */ 
    _WaitTime1us();    /* wait *1 */ 
} 
 
 
/******************************************************** 
 Name  : _WaitTime0us 
 Parameters : None 
 Returns : None 
 Description : a 0us wait 
********************************************************/ 
void _WaitTime0us(void) 
{ 
} 
 
 
/******************************************************** 
 Name  : _WaitTime1us 
 Parameters : None 
 Returns : None 
 Description : a 1us wait 
********************************************************/ 
void _WaitTime1us(void) 
{ 
    /* +14cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle = 16cycle */ 
} 
 
 
/******************************************************** 
 Name  : _WaitTime2us 
 Parameters : None 
 Returns : None 
 Description : a 2us wait 
********************************************************/ 
void _WaitTime2us(void) 
{ 
    /* +14cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
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    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle */ 
    asm("nop");  /* +1cycle = 32cycle */ 
} 
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7. Reference 

Hardware Manual  
 R8C/10 Group Hardware Manual 
 (Acquire the most current version from Renesas web-site) 
 
 
 
 
 
 
 
 
 
 
 

8. Web-site and contact for support 

Renesas Web-site 
 http://www.renesas.com/ 
 
Information on Renesas Products  
 Mail to : csc@renesas.com (Customer Support Center) 
 
Contact for technical information on M16C family 
 Mail to:support_apl@renesas.com (M16C family MCU technical support) 
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1. These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corporation product best suited to the customer's application; they do not convey any 
license under any intellectual property rights, or any other rights, belonging to Renesas Technology 
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any 
third-party's rights, originating in the use of any product data, diagrams, charts, programs, 
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corporation without notice due to product improvements 
or other reasons.  It is therefore recommended that customers contact Renesas Technology 
Corporation or an authorized Renesas Technology Corporation product distributor for the latest 
product information before purchasing a product listed herein. 
The information described here may contain technical inaccuracies or typographical errors. 
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss 
rising from these inaccuracies or errors. 
Please also pay attention to information published by Renesas Technology Corporation by various 
means, including the Renesas Technology Corporation Semiconductor home page 
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products.  Renesas 
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting 
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a 
device or system that is used under circumstances in which human life is potentially at stake.  
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation 
product distributor when considering the use of a product contained herein for any specific 
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, 
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce 
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must 
be exported under a license from the Japanese government and cannot be imported into a country 
other than the approved destination. 
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the 
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products 
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble 
with semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs! 

Notes regarding these materials
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