

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 1 of 28

R8C/10 Group
A Software control of I2C-BUS using General-purpose Ports

1. Abstract

This application note describes a software control program of I2C-BUS and its application example. This
program can be also used for a control of EEPROM.

2. Introduction

A single master I2C-BUS can be controlled by software using general-purpose ports.
The external pull-up resistances should be attached toP12(SDA) and P13(SCL).
Table 1 shows the functional performance of I2C-BUS interface.

 Table 1 Functional performance of single master I2C-BUS interface
Item Functional Performance
Communication mode Master transmission (single master)
SCL Clock Frequency 100kHz approx.

Note 1 This is a value for a CPU clock operated at 16MHz when no interrupt is used.

When a CPU clock operates at other than 16MHz, some adjustment is necessary to set this value.

This program can also be used when operating other microcomputers within the M16C family, provided they
have the same SFR (Special Function Registers) as the R8C/10 microcomputers. However, some functions
may have been modified. Refer to the User’s Manual for details. Use functions covered in this Application
Note only after careful evaluation.

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 2 of 28

3. I2C-BUS

3.1 START Condition / STOP Condition

 (1) START Condition
 Change SDA from high to low when SCL is high.
 Later, change SCL to low.
 (2) STOP Condition
 Change SDA from low to high when SCL is high.
 Later, change SCL to low.

Figure 1 shows a configuration of START condition generation timing, and Figure 2 shows a configuration
of STOP condition generation timing. A list of START condition / STOP condition generation timing is
shown in Table 2 below.

 Table2 a list of START condition / STOP condition generation timing
Timing START condition STOP condition
Set up time 2.0µs approx. 1.6µs approx.
Hold time 3.0µs approx. 3.0µs approx.

 Note 1 This is a value for a CPU clock operated at 16MHz when interrupt is not used
When a CPU clock operates at other than 16MHz, some adjustment is necessary to set this value.

Figure 1 START condition generation timing

SCL

SDA

Set up time

Hold time

Figure 2 STOP condition generation timing

SCL

SDA

Set up time

Hold time

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 3 of 28

3.2 Data Input / Output

 (1) Data output
 Data is output to SDA pin. After data setup time passes, a clock is output from SCL pin. (”L”→”H”→”L”)
 (2) Data input
 Input data after driving SCL high, and then drive SCL low.

Figure 3 shows a configuration of data input/output timing , and Table 3 shows a list of data input/output
timing.

 Table 3 A list of data input / output timing
Timing Data output Data input
Setup time 3.3µs approx. -
Access time - Over 1µs approx.
Clock ”H” time 3.0µs approx. 4.7µs approx.

 Note 1 This is a value for a CPU clock operated at 16MHz when interrupt is not used
When a CPU clock operates at other than 16MHz, some adjustment is necessary to set this value.

Figure 3 A configuration of data input /output timing

Setup time

Access time

SCL

SDA

Data output Data input

Output Input

Clock ”H”
time

Clock ”H”
time

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 4 of 28

3.3 Byte Format

1 byte consists of 8-bit-length data and 1-bit-length Acknowledge.
Acknowledge is a signal to indicate whether data is normally transferred or not. When Acknowledge

indicates “L”, data is normally transferred. When it is “H”, data is not normally transferred.
When the master device transfers the data to the slave device, the master device releases SDA line (high-

impedance) at the 9th transmit clock pulse and the slave device returns an acknowledge signal. When the
master device receives the data from the slave device, the slave device releases SDA line (high-impedance)
at the 9th transmit clock pulse and the master device returns an acknowledge signal.

Figure 4 shows a configuration of byte format.

Figure 4 Byte Format

Acknowledge

D7

SCL

SDA

D6 D5 D4 D3 D2 D1 D0 ACK

Data

1 2 3 4 5 6 7 8 9

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 5 of 28

4. Application Example(a control of EEPROM)

Write / read the data to 2k-bit EEPROM(HN58X2402SI).
In 7 bit addressing mode, Device Address Code (A2,A1,A0)can be assigned by the lower 3 bit of Device

Address Word.
Figure 5 shows an example of connection between a microcomputer and EEPROM(HN58X2402SI).

4.1 Byte Write

Write “Write Data” to an address (n) assigned to Memory Address(W7 to W0).
Confirm Acknowledge and generate Stop Condition after 8-bit Write Data is output.

R8C/10 Group

P12

P13

SDA

SCL

A2

A1

A0

WP

“L”

HN58X2402SI

Figure 5 An example of connection

Figure 6 Byte Write

S

S: Start Condition P: Stop Condition from master device to slave device
A: Acknowledge R/W: Read / Write bit from slave device to master device

Device Address
(10100002)

R/W
(02)

7 bit

A

Memory Address(n)
(W7 to W0)

8 bit

A

Write Data(n)
(D7 to D0)

8 bit

A

P

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 6 of 28

4.2 Page Write

Write multi-bytes (m+1) of “Write Data” to address assigned to Memory Address(W7 to W0).*
Confirm Acknowledge and generate Stop Condition after the assigned byte of “Write Data” is output.

*Page Write provides a sequential write of up to 8 byte-data.

Refer to EEPROM(HN58X2402SI) datasheet for details.

4.3 Sequential Read

Read “Read Data” from an address (n) assigned to Memory Address(W7 to W0).
Output Acknowledge “0” to read multi-byte (m+1) of Read Data after Read Data is input.

Output Acknowledge “1” and generate Stop Condition after the assigned byte of Read Data is input.

Figure 7 Page Write

S

Device Address
(10100002)

7 bit

A

Memory Address(n)
(W7 to W0)

8 bit

A

Write Data (n)
(D7 to D0)

8 bit

P

R/W
(02)

S: Start Condition P: Stop Condition From master device to slave device
A: Acknowledge R/W: Read / Write bit From slave device to master device

A

A
 • • •

Write Data (n+m)
(D7 to D0)

8 bit

• • •

Figure 8 Sequential Read Cycle

S

Device Address
(10100002)

7 bit

A

Memory Address(n)
(W7 to W0)

8 bit

A

P

R/W
(02)

S: Start Condition P: Stop Condition From master device to slave device
A: Acknowledge R/W: Read / Write bit From slave device to master device
Sr: Restart Condition

A

A

Read Data (n)
(D7 to D0)

8 bit

Read Data (n+m)
(D7 to D0)

8 bit

• • •

Device Address
(10100002)

7 bit

A

R/W
(12)

Sr

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 7 of 28

5. Flowchart

5.1 Initial Operation and Main loop

main

Yes

No

SFR Initialization (I2C-BUS)
initIicBus

 i==1
WriteData[0] = 0xFF;

IicData_w.iic_DeviceAddress = 0xA0;
IicData_w.iic_WordAddress = 0x10;

IicData_w.iic_Data = WriteData;
IicData_w.iic_NumberOfByte = 1;

I2C-BUS Write
IicBusWrite

Yes

No

 i==0

Yes

No

 i==2

Yes

No

 i==3

Yes

No

 i==4

for (i=0; i<8; i++) WriteData[i]=i;
IicData_w.iic_DeviceAddress = 0xA0;
IicData_w.iic_WordAddress = 0x10;

IicData_w.iic_Data = WriteData;
IicData_w.iic_NumberOfByte = 8;

I2C-BUS Write
IicBusWrite

IicData_r.iic_DeviceAddress = 0xA0;
IicData_r.iic_WordAddress = 0x10;

IicData_r.iic_Data = ReadData;
IicData_r.iic_NumberOfByte = 1;

I2C-BUS Read
IicBusRead

IicData_r.iic_DeviceAddress = 0xA0;
IicData_r.iic_WordAddress = 0x10;

IicData_r.iic_Data = ReadData;
IicData_r.iic_NumberOfByte = 8;

I2C-BUS Read
IicBusRead

i = 0;

i = (Process like mode setting)

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 8 of 28

5.2 SFR Initial Setting(I2C-BUS)

initIicBus

iic_sda_d = 0; ; SDA input ("H" state)

iic_scl_d = 0; ; SCL input ("H" state)

return

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 9 of 28

5.3 I2C-BUS Read

IicBusRead

IicData->iic_DeviceAddress
&= 0xFE;

 ; WRITE Setting Device Address

return(ret)

Start Condition
StartCondition ; Start Condition

DeviceAddress Write
ByteWrite

Yes

No

 Detect NoAck

 ; Write Device Address

MemoryAddress Write
ByteWrite

Yes

No

 Detect NoAck

 ; Write Memory Address

IicData->iic_DeviceAddress
|= 0x01;

 ; READ Setting Device Address

Start Condition
StartCondition ; ReStart Condition

DeviceAddress Write
ByteWrite

Yes

No

 Detect NoAck

 ; Write Device Address

Read(Ack Output)
ByteRead ; Read data (Ack output)

Read(NoAck Output)
ByteRead ; Read data (NoAck output)

Repeat
i=0; i<byte count; i++

Stop Condition
StopCondition ; Stop Condition

IicData->iic_Data++;

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 10 of 28

5.4 I2C-BUS Write

IicBusWrite

IicData->iic_DeviceAddress
&= 0xFE;

 ; WRITE Setting Device Address

return(ret)

Start Condition
StartCondition ; Start Condition

DeviceAddress Write
ByteWrite

Yes

No

 Detect NoAck

 ; Write Device Address

MemoryAddress Write
ByteWrite

Yes

No

 Detect NoAck

 ; Write Memory Address

Yes

No

 Detect NoAck

Write Data
ByteWrite ; Write data

Repeat
i=0; i<byte count; i++

Stop Condition
StopCondition ; Stop Condition

IicData->iic_Data++;

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 11 of 28

5.5 I2C-BUS Start Condition

StartCondition

iic_scl = 0;
iic_scl_d = 1;

 ; SCL="L"
 ; SCL output

 ; SDA="H"

return

Wait
_WaitTime1us

iic_scl = 1; ; SCL="H"

Wait
_Wait_tSU_STA

iic_sda = 0;
iic_sda_d = 1;

Wait
_Wait_tHD_STA

iic_scl = 0; ; SCL="L"

 ; SDA="L"
 ; SDA output

Wait
_WaitTime1us

iic_sda_d = 0;

Wait
_WaitTime1us

Wait
_WaitTime1us

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 12 of 28

5.6 I2C-BUS Stop Condition

StopCondition

iic_scl = 0;
iic_scl_d = 1;

 ; SCL="L"
 ; SCL output

 ; SDA="L"
 ; SDA output

return

Wait
_WaitTime1us

iic_scl = 1; ; SCL="H"

Wait
_Wait_tSU_STO

iic_sda_d = 0;

Wait
_WaitTime1us

iic_scl = 0; ; SCL="L"

 ; SDA="H"

iic_sda = 0;
iic_sda_d = 1;

Wait
_WaitTime1us

Wait
_WaitTime1us

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 13 of 28

5.7 I2C-BUS Byte Write

ByteWrite

return(ret)

Wait
_Wait_tSU_DAT/_WaitTime1us

iic_scl = 1; ; SCL="H"

Wait
_Wait_tHIGH/_WaitTime1us

iic_scl = 0;

Wait
_Wait_tAA/_WaitTime2us

iic_scl = 1; ; SCL="H"

 ; SCL="L"

Yes

No

 Loop 8 times

iic_sda = 0;

No

Yes

 iic_writeData & maskData

iic_sda_d = 0;

 ; initialize port-latch

iic_sda_d = 1;
nop X 3

 ; SDA="L" ; SDA="H"

maskData >>= 1; ; change mask data

iic_sda_d = 0; ; SDA input

No

Yes

 iic_sda=”H”

ret=NOACK; ; NoAck Detect

Wait
_Wait_tHIGH/_WaitTime1us

iic_scl = 0; ; SCL="L"

Wait
_Wait_tHD_DAT

maskData=0x80;
ret=ACK;

 ; initialize auto variable

Wait
_WaitTime1us

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 14 of 28

5.8 I2C-BUS Byte Read

ByteRead

return

iic_scl = 1; ; SCL="H"

Wait
_Wait_tHIGH/_WaitTime1us

iic_scl = 0;

Wait
_Wait_tSU_DAT/_WaitTime1us

iic_scl = 1; ; SCL="H"

 ; SCL="L"

Yes

No

 Loop 8 times

iic_sda = 0;

No

Yes

 iic_sda=”H”

*iic_readData = readData;

 ; initialize port-latch

maskData >>= 1; ; change mask data

iic_sda = ACK;
iic_sda_d = 1; ; SDA="L"

 ; SDA output

Wait
_Wait_tHIGH/_WaitTime1us

iic_scl = 0;
iic_sda_d = 0;

 ; SCL="L"
 ; SDA input

maskData=0x80; ; initialize auto variable

Wait
_Wait_tAA

readData =
*iic_readData | maskData;

nop X 13

Wait
_WaitTime1us

No

Yes

 ACK
iic_sda = NOACK;

iic_sda_d = 0;
 ; SDA="H"
 ; SDA input

Wait
_WaitTime1us

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 15 of 28

6. Program

/**
 * *
 * File Name : main.c *
 * Contents : main file *
 * Copyright : RENESAS TECHNOLOGY CORPORATION *
 * AND RENESAS SOLUTIONS CORPORATION *
 * Version : 1.0 *
 * note : *
 * *
**/

#include "sfrr8c10.h"
#include "Iic_Bus.h"

void main (void)
{
 static unsigned char i=0;
 static unsigned char WriteData[8];
 static unsigned char ReadData[8];
 IicPack IicData_w;
 IicPack IicData_r;

 p1_4 = 1; /* test port */
 pd1_4 = 1; /* test port */
 p1_1 = 1; /* test port */
 pd1_1 = 1; /* test port */

 while(1){
 while(i==0) {
 i = mode(); /* Setting Access Mode */
 }
 p1_4 = 1;
 switch (i) {
 case 1: /* Write data 1Byte */
 WriteData[0] = 0xAA; /* Setting write data */
 IicData_w.iic_DeviceAddress = 0xA0;
 IicData_w.iic_MemoryAddress = 0x10;
 IicData_w.iic_Data = WriteData;
 IicData_w.iic_NumberOfByte = 1;
 p1_4 = 0;
 if (IicBusWrite(&IicData_w) == ACK) {
 p1_4 = 1;
 };
 break;
 case 3: /* Write data 8Bytes */
 for (i=0; i<8; i++) WriteData[i]=I*5; /* Setting write data */
 IicData_w.iic_DeviceAddress = 0xA0;
 IicData_w.iic_MemoryAddress = 0x10;
 IicData_w.iic_Data = WriteData;
 IicData_w.iic_NumberOfByte = 8;
 p1_4 = 0;

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 16 of 28

 if (IicBusWrite(&IicData_w) == ACK) {
 p1_4 = 1;
 };
 break;
 case 2: /* Read data 1Byte */
 IicData_r.iic_DeviceAddress = 0xA0;
 IicData_r.iic_MemoryAddress = 0x10;
 IicData_r.iic_Data = ReadData;
 IicData_r.iic_NumberOfByte = 1;
 p1_1 = 0;
 if(IicBusRead(&IicData_r) == ACK) { /* */
 p1_1 = 1;
 }
 break;
 case 4: /* Read data 8Bytes */
 IicData_r.iic_DeviceAddress = 0xA0;
 IicData_r.iic_MemoryAddress = 0x10;
 IicData_r.iic_Data = ReadData;
 IicData_r.iic_NumberOfByte = 8;
 p1_1 = 0;
 if(IicBusRead(&IicData_r) == ACK) { /* */
 p1_1 = 1;
 }
 break;
 default:
 asm("nop");
 break;
 }
 p1_4 = 0;
 p1_1 = 0;
 i = 0;
 }
}

void init(void)
{
 asm("fclr i");
 prcr = 0x01;
 cm0 = 0x08;
 cm1 = 0x28;
 ocrd = 0x00;
 prcr = 0x00;
}

unsigned char mode(void)
{
 unsigned int loop;
 static unsigned char mode=0;

 for (loop=1; 0!=loop; loop++) {} /* about 82ms at 16MHz/1 */
 if (++mode > 4) mode=0; /* change mode */
 return(mode);
}

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 17 of 28

/**
 * *
 * File Name : Iic_bus.h *
 * Contents : IIC Bus Definition file *
 * Copyright : RENESAS TECHNOLOGY CORPORATION *
 * AND RENESAS SOLUTIONS CORPORATION *
 * Version : 1.0 *
 * note : *
 * *
**/

#define ACK 0
#define NOACK 1

#define WRITE_MODE 0
#define READ_MODE 1

typedef unsigned char uchar;
typedef struct {
 unsigned char iic_DeviceAddress;
 unsigned char iic_MemoryAddress;
 unsigned char *iic_Data;
 unsigned char iic_NumberOfByte;
}IicPack;

void initIicBus(void);
unsigned char IicBusRead(IicPack *);
unsigned char IicBusWrite(IicPack *);
void StartCondition(void);
void StopCondition(void);
unsigned char ByteWrite(unsigned char);
void ByteRead (unsigned char *, unsigned char);

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 18 of 28

/**
 * *
 * File Name : Iic_bus.c *
 * Contents : IIC Bus file *
 * Copyright : RENESAS TECHNOLOGY CORPORATION *
 * AND RENESAS SOLUTIONS CORPORATION *
 * Version : 1.0 *
 * note : *
 * *
 ***/

#include "sfrr8c10.h"
#include "Iic_Bus.h"

#define iic_sda_d pd1_2
#define iic_sda p1_2
#define iic_scl_d pd1_3
#define iic_scl p1_3

void _WaitTime0us(void);
void _WaitTime1us(void);
void _WaitTime2us(void);

#define _Wait_tHIGH _WaitTime1us() /* Clock pulse width high */
#define _Wait_tLOW _WaitTime2us() /* Clock pulse width low */
#define _Wait_tHD_STA _WaitTime1us() /* Start hold time */
#define _Wait_tSU_STA _WaitTime1us() /* Start setup time */
#define _Wait_tHD_DAT _WaitTime0us() /* Data in hold time */
#define _Wait_tSU_DAT _WaitTime1us() /* Data in setup time */
#define _Wait_tAA _WaitTime1us() /* Access time */
#define _Wait_tSU_STO _WaitTime1us() /* Stop setup time */
#define _Wait_tBUF _WaitTime2us() /* Bus free time for next mode */

/**
 Name : initIicBus
 Parameters : None
 Returns : None
 Description : initialize I2C-BUS port
**/
void initIicBus(void)
{
 iic_sda_d = 0; /* SDA input ("H" state) */
 iic_scl_d = 0; /* SCL input ("H" state) */
}

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 19 of 28

/**
 Name : IicBusRead
 Parameters : structure IicPack pointer
 Returns : Acknowledge
 Description : Sequential Ramdom Read Cycle (I2C-BUS)
**/
unsigned char IicBusRead(IicPack *IicData)
{
 unsigned char i,ret;

 /* Ramdom Read Cycle / Sequential Ramdom Read Cycle */
 IicData->iic_DeviceAddress &= 0xFE; /* WRITE Setting DeviceAddress */
 StartCondition(); /* Start Condition */
 while (1) {
 if ((ret=ByteWrite(IicData->iic_DeviceAddress)) == NOACK)

/* WRITE DeviceAddress */
 break; /* NoAck Detect */
 if ((ret=ByteWrite(IicData->iic_MemoryAddress)) == NOACK)

/* WRITE MemoryAddress */
 break; /* NoAck Detect */
 IicData->iic_DeviceAddress |= 0x01; /* READ Setting DeviceAddress */
 StartCondition(); /* ReStart Condition */
 if ((ret=ByteWrite(IicData->iic_DeviceAddress)) == NOACK)

/* DeviceAddress WRITE */
 break; /* NoAck Detect */
 for (i=1; i<IicData->iic_NumberOfByte; i++) { /* specified bytes as loop */
 ByteRead (IicData->iic_Data, ACK); /* Read data (Ack output) */
 IicData->iic_Data++; /* */
 }
 ByteRead (IicData->iic_Data, NOACK); /* Read data (NoAck output) */
 break;
 }
 StopCondition(); /* Stop Condition */
 return(ret);
}

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 20 of 28

/**
 Name : IicBusWrite
 Parameters : structure IicPack pointer
 Returns : Acknowledge
 Description : Byte Write or Page Write Cycle (I2C-BUS)
**/
unsigned char IicBusWrite(IicPack *IicData)
{
 unsigned char i,ret;

 /* Byte Write / Page Write */
 IicData->iic_DeviceAddress &= 0xFE; /* WRITE Setting DeviceAddress */
 StartCondition(); /* Start Condition */
 while (1) {
 if ((ret=ByteWrite(IicData->iic_DeviceAddress)) == NOACK)

/* WRITE DeviceAddress */
 break; /* NoAck Detect */
 if ((ret=ByteWrite(IicData->iic_MemoryAddress)) == NOACK)

/* WRITE MemoryAddress */
 break; /* NoAck Detect */
 for (i=0; i<IicData->iic_NumberOfByte; i++) { /* specified bytes as loop */
 if ((ret=ByteWrite(*(IicData->iic_Data))) == NOACK) /* Write Data */
 break; /* NoAck Detect */
 IicData->iic_Data++; /* */
 }
 break;
 }
 StopCondition(); /* Stop Condition */
 return(ret);
}

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 21 of 28

/**
 Name : StartCondition
 Parameters : None
 Returns : None
 Description : Output Start Condition (I2C-BUS)
 Note : *1 adjust a wait time
**/
void StartCondition(void)
{
 iic_scl = 0; /* SCL="L" */
 iic_scl_d = 1; /* SCL output */
 _WaitTime1us(); /* wait *1 */
 iic_sda_d = 0; /* SDA="H" */
 _WaitTime1us(); /* wait */
 _WaitTime1us(); /* wait *! */
 iic_scl = 1; /* SCL="H" */
 _Wait_tSU_STA; /* wait */
 iic_sda = 0; /* SDA="L" */
 iic_sda_d = 1; /* SDA output */
 _Wait_tHD_STA; /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 0; /* SCL="L" */
}

/**
 Name : StopCondition
 Parameters : None
 Returns : None
 Description : Output Stop Condition (I2C-BUS)
 Note : *1 adjust a wait time
**/
void StopCondition(void)
{
 iic_scl = 0; /* SCL="L" */
 iic_scl_d = 1; /* SCL output */
 _WaitTime1us(); /* wait *1 */
 iic_sda = 0; /* SDA="L" */
 iic_sda_d = 1; /* SDA output */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 1; /* SCL="H" */
 _Wait_tSU_STO; /* wait */
 iic_sda_d = 0; /* SDA="H" */
 _WaitTime1us(); /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 0; /* SCL="L" */
}

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 22 of 28

/**
 Name : ByteWrite
 Parameters : Write data
 Returns : Acknowledge
 Description : byte data Output (I2C-BUS)
 Note : *1 adjust a wait time
**/
unsigned char ByteWrite(unsigned char iic_writeData)
{
 unsigned char maskData=0x80; /* MSB first */
 unsigned char ret=ACK; /* Ack/NoAck */

 while (maskData) { /* 8times as loop */
 iic_sda = 0; /* initialize port-latch */
 if (iic_writeData & maskData) { /* "H" output ? */
 iic_sda_d = 0; /* Yes SDA="H" */
 }else{
 iic_sda_d = 1; /* No SDA="L" */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 }
 _Wait_tSU_DAT; /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 1; /* SCL="H" */
 _Wait_tHIGH; /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 0; /* SCL="L" */
 maskData >>= 1; /* change mask data */
 _WaitTime1us(); /* wait *1 */
 }
 iic_sda_d = 0; /* SDA input */
 _Wait_tAA; /* wait */
 _WaitTime2us(); /* wait *1 */
 iic_scl = 1; /* SCL="H" */
 if (iic_sda) ret=NOACK; /* NoAck Detect */
 _Wait_tHIGH; /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 0; /* SCL="L" */
 _Wait_tHD_DAT; /* wait */
 return(ret);
}

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 23 of 28

/**
 Name : ByteRead
 Parameters : Read data strage location pointer, Select Ack/NoAck
 Returns : None
 Description : byte data input with Ack output (I2C-BUS)
 Note : *1 adjust a wait time
**/
void ByteRead(unsigned char *iic_readData, unsigned char ackData)
{
 unsigned char maskData=0x80; /* MSB first */
 unsigned char readData;

 iic_readData = 0; / */
 while (maskData) { /* 8times as loop */
 readData = *iic_readData | maskData; /* */
 iic_sda_d = 0; /* initialize port-latch */
 _Wait_tAA; /* wait */
 iic_scl = 1; /* SCL="H" */
 if (iic_sda) { /* SDA="H" ? */
 iic_readData = readData; / Yes */
 }else{
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 asm("nop"); /* wait *1 */
 }
 _Wait_tHIGH; /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 0; /* SCL="L" */
 maskData >>= 1; /* Change mask data */
 _WaitTime1us(); /* wait *1 */
 }
 if (!ackData) { /* Ack output ? */
 /* Ack output */
 iic_sda = ACK; /* Yes SDA="L" */
 iic_sda_d = 1; /* SDA output */
 }else{
 /* NoAck output */
 iic_sda = NOACK; /* No SDA="H" */
 iic_sda_d = 0; /* SDA input */
 }
 _Wait_tSU_DAT; /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 1; /* SCL="H" */

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 24 of 28

 _Wait_tHIGH; /* wait */
 _WaitTime1us(); /* wait *1 */
 iic_scl = 0; /* SCL="L" */
 iic_sda_d = 0; /* SDA input */
 _WaitTime1us(); /* wait *1 */
}

/**
 Name : _WaitTime0us
 Parameters : None
 Returns : None
 Description : a 0us wait
**/
void _WaitTime0us(void)
{
}

/**
 Name : _WaitTime1us
 Parameters : None
 Returns : None
 Description : a 1us wait
**/
void _WaitTime1us(void)
{
 /* +14cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle = 16cycle */
}

/**
 Name : _WaitTime2us
 Parameters : None
 Returns : None
 Description : a 2us wait
**/
void _WaitTime2us(void)
{
 /* +14cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 25 of 28

 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle */
 asm("nop"); /* +1cycle = 32cycle */
}

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 26 of 28

7. Reference

Hardware Manual
 R8C/10 Group Hardware Manual
 (Acquire the most current version from Renesas web-site)

8. Web-site and contact for support

Renesas Web-site
 http://www.renesas.com/

Information on Renesas Products
 Mail to : csc@renesas.com (Customer Support Center)

Contact for technical information on M16C family
 Mail to:support_apl@renesas.com (M16C family MCU technical support)

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 27 of 28

REVISION HISTORY
Description Rev. Date

Page Summary
1.00 DEC 10, 2003 - First edition issued

R8C/10 Group
A Software Control of I2C-BUS using General-purpose Ports

REJ05B0365-0100Z/Rev.1.00 December 2003 Page 28 of 28

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	1. Abstract
	2. Introduction
	3. I2C-BUS
	3.1 START Condition / STOP Condition
	3.2 Data Input / Output
	3.3 Byte Format

	4. Application Example(a control of EEPROM)
	4.1 Byte Write
	4.2 Page Write
	4.3 Sequential Read

	5. Flowchart
	5.1 Initial Operation and Main loop
	5.2 SFR Initial Setting(I2C-BUS)
	5.3 I2C-BUS Read
	5.4 I2C-BUS Write
	5.5 I2C-BUS Start Condition
	5.6 I2C-BUS Stop Condition
	5.7 I2C-BUS Byte Write
	5.8 I2C-BUS Byte Read

	6. Program
	7. Reference
	8. Web-site and contact for support
	REVISION HISTORY
	Keep safety first in your circuit designs!
	Notes regarding these materials

