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H8/300L 
SLP Tone Generator (ToneGen) 

Introduction  
Two methods of generating tones using the H8/38024 SLP MCU are:  

1. Pulse width modulation (PWM) implementation 

2. Timer toggle output implementation 

 

 

Target Device  
SLP H8/38024 
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1. Overview 
Tone generator is a methodology whereby tone signals are defined in a musical sequence to produce a song. Two types of 
implementation are described here. Both implementations use the same musical tone data and rhythm between two musical tones 
(rhythm is fixed to reduce the size of musical tone data). 

 

1.1 Musical Tone (Notes) 
If a long hollow tube is hit, a fairly constant sound (pitch) is heard due to a shock-wave oscillating along the tube at a certain speed 
(frequency). A “note” is described a musical frequency i.e., the pitch of a piano key or guitar string. By convention, notes are named 
as:- 

A, A#, B, C, C#, D, D#, E, F, F#, G, G# 

The suffix “#” denotes sharp and “b” denotes flat. Also note that A# = Bb, C# = Db, D# = Eb, F# = Gb and G# = Ab. The names 
chosen are the de facto standard for nearly all music. 

 

“Octaves” of a note are just multiples of the original frequency. Let’s say that a length of hollow tube has a frequency of 264Hz and 
normally call it “C”. If the length is half of the original length, the frequency will be double. This creates another “C” but at one 
octave higher than the first (264 x 2 = 528Hz).  

 

Table 1 Notes, Octave and Frequency 

Hertz Octave = 0 Octave = 1 Octave = 2 Octave = 3 Octave = 4 Octave = 5 
A 55.000 110.000 220.000 440.000 880.000 1760.000 
A# 58.270 116.541 233.082 466.164 932.328 1864.655 
B 61.735 123.471 246.942 493.883 987.6\767 1975.533 
C 65.406 130.813 261.626 523.251 1046.502 2093005 
C# 69.296 138.591 277.183 554.365 1108.731 2217.461 
D 73.416 146.832 293.655 587.330 1174.659 2349.318 
D# 77.782 155.563 311.127 622.254 1244.508 2489.016 
E 82.407 164.814 329.628 659.255 1318.510 2637.020 
F 87.307 174.614 349.228 698.456 1396.913 2793.826 
F# 92.499 184.997 369.994 739.989 1479.978 2959.955 
G 97.999 195.998 391.995 783.991 1567.982 3135.963 
G# 103.826 207.652 415.305 830.609 1661.219 3322.438 
A 110.000 220.000 440.000 880.000 1760.000 3520.000 
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1.2 PWM Implementation  
The built-in 10-bit PWM module can be used to generate PWM pulse stream with desired duty cycle. It can also be used as a D/A 
convert by connecting a low pass filter. There are four clock sources available as input clock. With 10-bit resolution, we can get 4 
pulse trains in each conversion period. Depending upon the register bit settings, we can get four conversion periods as described 
above. This module can be placed independently in standby mode when not in use to conserve the power. 

t1 t2 t1 = t2 

0.00 V 

2.50 V 
Vout = Vcc x Duty Cycle 

0 

5 
Resistor 

Analog
Output

PWM 
Output

Duty Cycle = t1 / (t1 + t2) 

 

Figure 1  Usage of PWM as D/A Converter 

 

The primary purpose of 10-bit PWM is to provide a high resolution D/A using an external low pass filter. The basic task of any D/A 
converter is to take a binary number and convert it to voltage or current with an analog form. Other than a traditional D/A converter, 
which is difficult to implement under CMOS fabrication technology for precision, the alternative solution is to make a counter whose 
output duty cycle can be varied under software control – that is a Pulse Width Modulation. 

Using a simple Low-Pass (or band pass if no DC component is desired), the Analog output of the filter is basically Vcc x Duty Cycle 
(in a ideal case, notice that the output is a function of duty cycle rather than frequency 

 For example: Vout = 5.00V x 50% Duty Cycle = 2.5V 

If the generated DC voltage level is in a sinusoidal manner, a sine wave is generated.  

 

Figure 2 Typical Sine Wave Diagram 
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The sample period is time duration between two PWM values. Normally, timer is used to reload the sine wave value into the PWM 
module. Therefore AEC (asynchronous event counter) timer is used for this purpose. 

For example, the frequency of the crystal used is 9.8304 MHz, 

Time for one AEC interrupt occur, Tinterrupt 

Tinterrupt  = ((1 / (∅/2)) x  256 count  Note :  ∅ = ∅osc/2 
 = (1 / [(∅osc/2)/ 2]) x 256 count 
 = (1 / (9.8304MHz / 4) x 256 count 
 = 104.16µs  

 

The sample period is equal to one AEC interrupt occurrence. The Interrupt Service Routine (ISR) will put the calculated pulse width 
into the PWM width register. 

 Sample frequency = 1 / Tinterrupt   

   = 9600Hz 
 
The calculation of the pulse width requires increment counter value. The increment counter value is calculated as follows. 
Assumptions:  
• 256 sample for the complete sine wave table 
• sample frequency = 9600Hz 
• signal frequency = 440Hz  (e.g. note “A” at the third octave) 
 

 Increment counter value = 256 / number of increments 
 
Number of increments depend on sample frequency and signal frequency and it’s equal to how many time the given signal 
increments through the sine wave table in one complete cycle. 
 

 Number of increments  = sample frequency / signal frequency 
∴   Increment counter value = 256 / (sample frequency / signal frequency) 
    = 256 * signal frequency / sample frequency 
    = 256 * (440Hz) / (9600Hz) 
    = 11.73 

 

All these calculations are done by compiler, therefore user must change the default value in order to use with other parameter.   
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1.3 Timer Toggle Output Implementation  
There are several methods to implement tone generator by software means.  For example, timer F is chosen because it is equipped 
with toggle output and output compare functions. The initial value of the toggle output can be set. Timer F counter value will 
increment on each input clock pulse. The timer F counter value is constantly compared with the value set in output compare register 
F, and the counter can be cleared, an interrupt request, or output toggled, when the two values match. Timer F can also function as 
two independent 8-bit timers. 

 

 

Prescaler S
(PSS) 

Timer Control 
Register F 

(TCRF) 

8-bit timer 
counter 

 (TCFH, TCFL) 

Output 
compare 

register FH/FL 

Timer 
control/status 

register F 

Toggle circuit 

Interrupt request
control 

Comparator 

Ø= 5MHz 

TMOFH 
/TMOFL 

Timer F 
output pin 

IRRTFH / IRRTFL 
Timer F interrupt 
request Flag 

Duty pulse output control 

Overflow FH  / FL     
compare match FH/FL 

Overflow FH/FL      
compare match  
FH/FL

TCNT counter 
Value 

Ø/32 

Select 
Ø/32 

Ø/32, 
Ø/16, 
 
Ø/4

Duty Setting 

Timer F output compare 
f clock setting 

 

Figure 3 Block Diagram of Timer F Output Compare Operation 

Figure 3 describes how a PWM is output through TMOFH/ TMOFL pin using the Timer F output compare function. 
• The 5MHz system clock is input to the Prescaler S that divides the clock by 32, 16 and 4.  
• TCRF is an 8-bit write-only register, which selects an input clock and sets the output level of TMOFL pin.  
• Timer counters FL and FH (TCFL / TCFH) are 8-bit read/write up-counters. In this example, the input clock is Ø/32.  
• Timer control/status register F (TCSRF) disables the clearing TCFL by compare match and enables the counter FL overflow 

interrupts. 
• The data of output compare register FL (OCRFL) is always compared with that of TCFL.  
• When the values of both registers match, the compare match is generated and TMOFL pin is toggled. At the same time, a 

compare match flag L (CMFL) is set to 1 and an interrupt is requested to CPU. 
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TCFL  input 
clock 

H’FF 

OCRFH   
( H’XX) 

H00 

TMOFL 

Overflow  
FL  clear 
TCFL 

Compare match FL Overflow  FL  
clear TCFL 

6.4 µs TCFL 

High width 

period

 High Width    = OCRFL x 6.4µs 
Period  = 256 x 6.4 µs 
Duty Cycle  = {High width/ period} x 100% 
  = {OCRFL/256} x 100% 

 

Figure 4 Timer F Output Compare Operation 

Figure 4 shows how the Timer F compare-match function can be used to generate a pulse with an arbitrary duty cycle i.e., a digital 
tone signal. The Timer counter Register FL (TCFL) determines the tone signal clock cycle, or period, of the output waveform, while 
the value stored in Output compare Register (OCRFL) determines the duty cycle. The calculation of desired duty cycle can be done 
as shown in the above formula. It is only necessary to program Timer F once. There is no need to reload OCRFL unless you want to 
change the duty cycle of the output. 

 

User can generate two digital tones by combining the two Timer F toggle outputs (TMOFL and TMOFH), e.g. one for treble (high 
frequency) and one for bass (low frequency).  Figure 5 below shows the block diagram of Timer toggle output tone generator.  

 

TMOFL 
Timer F L toggle 

output pin 

Mixer 
circuit 

TMOFH 
Timer F L toggle 

output pin 

Amp

Speaker 

 

Figure 5 Block Diagram of Timer Toggle Output Tone Generator 
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2. Hardware Implementation 

2.1 PWM Implementation 
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Figure 6 Schematic Diagram for PWM Tone Generator 

The musical tone is generated by the Pulse Width Modulation (PWM) of SLP MCU. The software will modulate the sinusoidal 
signal into a pulse train of fixed periods but changing width. The changing width of the pulses corresponds to the voltage level of the 
sine wave. With an external Low Pass Filter (LPF) at the PWM output pin, the PWM signal will be demodulated. The LPF acts as an 
integrator, which transforms the pulse train into analog sinusoidal signal. The musical tone is then sent to the audio amplifier for 
sound output.  

Warm-up Function: 

Generally audio signal has an average value at ground level (It will fluctuated between positive and negative regions). However there 
is no negative supply in this implementation, thus a DC offset to 1/2 Vcc level is required. This is known as the “warming up” of the 
audio amplifier. This is required only at the power up stage (to charge up the capacitor), to avoid unnecessary noise output at the 
early stage. 
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2.2 Timer Toggle Output Implementation 
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Figure 7 Schematic Diagram for Timer Toggle Output Tone Generator 

 

The digital tone is generated by the Timer F toggle output of SLP MCU. The software will generate signal with different pulse width 
when the timer F output compare value is reloaded with new value. The two Timer F toggle outputs (Low counter and High counter) 
are combined, resulting in the generation of two digital tones simultaneously. The two digital tones are fed to the audio amplifier via 
the resistor mixer. User will be able to hear the tones from the loud speaker. 
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3. Operation and Observation 
The hardware circuitry provides Flash-programming capability. User can download tone generator demo program via PC serial port. 
The PC application software used to download user program is the freeware - Flash Development Toolkit (FDT) that is available 
from www.eu.renesas.com.  

 

After the program has been successfully downloaded, reset the MCU and execute the program. During the execution, user should be 
able to listen to the musical tones coming out from the speaker. The demo program will play the same song repeatedly. 

 

The PWM tone generation demo program also can be used with other crystal oscillator value by changing the XTAL value in 
#define statement. 

For example,  

If crystal  = 9.8304MHz    #define  XTAL   9830400L  (default) 

If crystal  = 4MHz     #define  XTAL   4000000L 

 

There are two PWM channels in the H8/38024F MCU; user has to define which PWM channel to use before compiling the source 
code e.g.: 

If PWM1 is used    #define  PWM_use 1 (default) 

If PWM2 is used   #define  PWM_use 2 
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4. Code Listing 
The attached code is generated using HEW project generator for H8/38024F SLP MCU. The free SLP/Tiny toolchain is used. 

4.1 PWM Implementation 
Figure 8 shows the flowchart for the PWM implementation. The source codes for “PWM_tone.c” are listed. 

 PWM  
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Play song 
Function 

Play song 
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Initialize AEC 
timer , PWM   

AEC Interrupt 
Enable 

Warm up  
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Get musical notes 
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short delay for interval 

AEC 
Interrupt 

Next 
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Figure 8 Flow Chart for PWM_Tone.c 
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/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :PWM_Tone.c                                            */ 
/*  DATE        :Tue, Sep 09, 2003                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Hitachi Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
  
/************************************************************/ 
/*  File Include                                            */ 
/************************************************************/ 
#include  <machine.h> 
#include  "iodefine.h" 
#include  <math.h> 
/************************************************************/ 
/* define                                                   */ 
/************************************************************/ 
#define  XTAL   9830400L 
#define  sample_freq (XTAL/4L) / 256L //256 clock cycles per interrupt 
 
#define  C1    ((256L * 523L)/100)/(sample_freq/100) 
#define  C1S   ((256L * 554L)/100)/(sample_freq/100) 
#define  D1    ((256L * 587L)/100)/(sample_freq/100) 
#define  D1S   ((256L * 622L)/100)/(sample_freq/100) 
#define  E1    ((256L * 659L)/100)/(sample_freq/100) 
#define  F1    ((256L * 698L)/100)/(sample_freq/100) 
#define  F1S   ((256L * 740L)/100)/(sample_freq/100) 
#define  G1    ((256L * 784L)/100)/(sample_freq/100) 
#define  G1S   ((256L * 830L)/100)/(sample_freq/100) 
#define  A1    ((256L * 880L)/100)/(sample_freq/100) 
#define  A1S   ((256L * 932L)/100)/(sample_freq/100) 
#define  B1    ((256L * 987L)/100)/(sample_freq/100) 
 
#define  C2    ((256L * 1046L)/100)/(sample_freq/100) 
#define  C2S   ((256L * 1109L)/100)/(sample_freq/100) 
#define  D2    ((256L * 1174L)/100)/(sample_freq/100) 
#define  D2S   ((256L * 1244L)/100)/(sample_freq/100) 
#define  E2    ((256L * 1318L)/100)/(sample_freq/100) 
#define  F2    ((256L * 1396L)/100)/(sample_freq/100) 
#define  F2S   ((256L * 1480L)/100)/(sample_freq/100) 
#define  G2    ((256L * 1568L)/100)/(sample_freq/100) 
#define  G2S   ((256L * 1661L)/100)/(sample_freq/100) 
#define  A2    ((256L * 1760L)/100)/(sample_freq/100) 
#define  A2S   ((256L * 1864L)/100)/(sample_freq/100) 
#define  B2    ((256L * 1864L)/100)/(sample_freq/100) 
 
#define  C3    ((256L * 2093L)/100)/(sample_freq/100) 
#define  C3S   ((256L * 2217L)/100)/(sample_freq/100) 
#define  D3    ((256L * 2349L)/100)/(sample_freq/100) 
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#define  PWM_use  2  //select "1" for PWM channel 2  
         //select "0" for PWM channel 1  
/************************************************************/ 
/*  Function define                                         */ 
/************************************************************/ 
  
void init_PWM(unsigned char); 
void storeCount(unsigned short); 
void aecint( void ); 
void init_AEC(void); 
void init_Tone(void);void off_DTMF(void); 
void init_PWM1(unsigned char selClk1); 
void init_PWM2(unsigned char selClk2); 
void warm_up(void); 
void play_song(void); 
 
/************************************************************/ 
/*Constant Look up Table for Sine Wave value 
/************************************************************/ 
const unsigned int song1[]= 
{ 
B2, B2, B2, A2S, G2S, A2S,  
F2S, C2S, C2, F2S, F2, F2S,  
A2S, G2S, B2, B2, A2S, G2S,  
A2S, F2S, A1S, A1S, D2S, D2,  
D2S, F2S, F2, F2, F2, F2S,  
F2,  C2S, F2, D2S, B1, C2S,  
D2S, C2S, D2S, F2, F2S, F2,  
F2S, F2S, G2S, A2S, A2S, G2S, 
G2S, G2S, 0xFF 
}; 
 
 
const unsigned int  Sine_Table[256]= 
{ 
512,518,525,531,537,543,550,556, 
562,568,574,580,586,592,598,604, 
610,616,621,627,633,638,644,649, 
654,659,664,669,674,679,684,688, 
693,697,702,706,710,714,717,721, 
725,728,731,734,737,740,743,746, 
748,750,753,755,756,758,760,761, 
762,763,764,765,766,766,766,767, 
767,767,766,766,766,765,764,763, 
762,760,759,757,755,754,751,749, 
747,744,742,739,736,733,730,726, 
723,719,715,712,708,704,699,695, 
691,686,681,677,672,667,662,657, 
652,646,641,635,630,624,619,613, 
607,601,595,589,583,577,571,565, 
559,553,546,540,534,528,521,515, 
509,503,496,490,484,478,471,465, 
459,453,447,441,435,429,423,417, 
411,405,400,394,389,383,378,372, 
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367,362,357,352,347,343,338,333, 
329,325,320,316,312,309,305,301, 
298,294,291,288,285,282,280,277, 
275,273,270,269,267,265,264,262, 
261,260,259,258,258,257,257,257, 
257,257,258,258,259,260,261,262, 
263,264,266,268,269,271,274,276, 
278,281,284,287,290,293,296,299, 
303,307,310,314,318,322,327,331, 
336,340,345,350,355,360,365,370, 
375,380,386,391,397,403,408,414, 
420,426,432,438,444,450,456,462, 
468,474,481,487,493,499,506,512 
}; 
 
/************************************************************/ 
/*Global variable 
/************************************************************/ 
unsigned char PWDR_L2, PWDR_U2; 
unsigned int i=0,j=0, count=0, inc1=0, inc2=0, final=0; 
unsigned int lowcnt=0, hicnt=0; 
unsigned char Ready = 0, DIGIT = 0; 
unsigned int hold=0; 
 
/************************************************************/ 
/*  Main Program                                            */ 
/************************************************************/ 
void main ( void ) 
{   play_song(); 
    while (1) 
  {  
  //Write user program here 
    } 
} 
 
/************************************************************/ 
/*  Initialize Program                                      */ 
/************************************************************/ 
//Initialize tone generation function  
void init_Tone(void) 
{ 
    set_imask_ccr(1);                // Interrupt Disable 
 init_AEC(); 
 #if (PWM_use==1) 
 init_PWM1(0); //Select conversion period = 512/(PWM input clock) 
 #else  
 init_PWM2(0); //Select conversion period = 512/(PWM input clock) 
 #endif  
} 
 
void init_PWM1(unsigned char selClk1) 
{ 
 if (selClk1 <= 3)   // Check if valid, otherwise PWM2 is off 
 {  
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  P_IO.PMR9.BIT.PWM1 = 1; // Configure P91 as PWM2 output pin 
  P_PWM1.PWCR1.BYTE = selClk1; // Clock select for PWM2,write only 
 } 
} 
 
void init_PWM2(unsigned char selClk2) 
{ 
 if (selClk2 <= 3)    // Check if valid, otherwise PWM2 is off 
 {  
  P_IO.PMR9.BIT.PWM2 = 1; // Configure P91 as PWM2 output pin 
  P_PWM2.PWCR2.BYTE = selClk2; // Clock select for PWM2,write only 
 } 
} 
 
void off_DTMF(void) 
{ 
 P_SYSCR.IENR2.BIT.IENEC = 0;  
        // AEC Interrupt Request, 1-Enable, 0-Disable 
 //compiler directive to select which code to be compile 
 #if (PWM_use==1) 
 P_IO.PMR9.BIT.PWM1 = 0;   // Turn off PWM1 
 #else  
 P_IO.PMR9.BIT.PWM2 = 0;   // Turn off PWM2  
 #endif  
} 
 
/************************************************************/ 
/*  Initialize Program                                      */ 
/************************************************************/ 
void warm_up(void) 
{ 
 set_imask_ccr(0);    // Interrupts, 0-Enable, 1-Disable 
 while(count<0x3000) ; 
 set_imask_ccr(1);    // Interrupts, 0-Enable, 1-Disable 
 Ready = 1; 
} 
 
/************************************************************/ 
/*  play_song Program                                       */ 
/************************************************************/ 
void play_song(void) 
{ 
 i=0; 
 
 init_Tone(); 
  
 warm_up(); 
 while(1) 
 { 

 while (song1[i]!=0xFFFF) 
 { i++; 
  inc1 = song1[i++];    
  set_imask_ccr(0);  // Interrupts, 0-Enable, 1-Disable 
  for (j=0; j<0x35000; j++) ; 
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 } 
  
 storeCount(512); 
 for (j=0; j<10000; j++) ;  // short delay Tone  
 set_imask_ccr(1);   // Interrupts, 0-Enable, 1-Disable 

  i = 0; 
 } 
 
 off_DTMF(); 
  
} 
 
 
/************************************************************/ 
/*  Write each digital code into PWDR registers             */ 
/************************************************************/ 
void storeCount(unsigned short PWDRval_2) 
{ 
 //compiler directive to select which code to be compile 
 #if (PWM_use==1)  
 P_PWM1.PWDRL1.BYTE = (unsigned char)(PWDRval_2 & 0x00FF);       
          // Write lower 8bits of 10bits data 
 P_PWM1.PWDRU1.BYTE = (unsigned char) ((PWDRval_2 & 0x0300) >> 8); 
          // Write upper 8bits of 10bits data 
 #else 
 P_PWM2.PWDRL2.BYTE = (unsigned char)(PWDRval_2 & 0x00FF);       
          // Write lower 8bits of 10bits data 
 P_PWM2.PWDRU2.BYTE = (unsigned char) ((PWDRval_2 & 0x0300) >> 8); 
          // Write upper 8bits of 10bits data 
 #endif 
} 
 
 
/************************************************************/ 
/*  AEC Interrupt Service Routine                           */ 
/************************************************************/ 
void aecint (void) 
{ 
 P_SYSCR.IRR2.BIT.IRREC = 0; // Clear IRREC flag 
 
 if(P_AEC.ECCSR.BIT.OVL == 1) // Check for ECL overflow flag 
 { P_AEC.ECCSR.BIT.OVL = 0; // Clears flag 
    
  if(Ready == 0)  
  { 
   storeCount(count++/128); 
  } 
  else       
  { final = (Sine_Table[lowcnt]);  
   storeCount(final); 
   lowcnt = lowcnt + inc1; 
   if(lowcnt>255) lowcnt = lowcnt-255;   
         // If reached end of 1 period, then reset 
   hicnt = hicnt + inc2; 
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         if(hicnt>255) hicnt = hicnt-255;    
         // If reached end of 1 period, then reset 
  } 
 } 
} 
 
void init_AEC(void) 
{ 
 P_AEC.ECCSR.BYTE = 0x15; 
 P_AEC.ECCR.BYTE = 0x10; 
 P_SYSCR.IRR2.BIT.IRREC = 0;  // Clear IRREC flag 
 P_SYSCR.IENR2.BIT.IENEC = 1;  // AEC Interrupt Request, 1-Enable, 0-
Disable 
} 
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The following code listing is the Interrupt service program  of  “intprg.c”, please insert the below code. 

 

extern void aecint (void);   //insert AEC ISR function 
. 
. 
. 
. 
. 
. 
__interrupt(vect=12) void INT_Counter(void)  
{ 
 aecint();       //insert AEC ISR function 
} 
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4.2 Timer Toggle Output Implementation 
Figure 9 shows the flowchart for the Timer Toggle Output Implementation. The source codes for “timer_tone.c” are given. 
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 Figure 9 Flow Chart for timer_tone.c 
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/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :Timer_tone.c                                          */ 
/*  DATE        :Fri, Sep 12, 2003                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Hitachi Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
                   
 
/************************************************************/ 
/*  File Include                                            */ 
/************************************************************/ 
#include  <machine.h> 
#include  "iodefine.h"  
/************************************************************/  
/* define                                                   */ 
/************************************************************/ 
#define  XTAL   9830400L 
#define  Timer_clk 32L // main clock / 32  
 
#define  C1    (XTAL / (Timer_clk*4L*523L))  
#define  C1S   (XTAL / (Timer_clk*4L*554L)) 
#define  D1    (XTAL / (Timer_clk*4L*587L)) 
#define  D1S   (XTAL / (Timer_clk*4L*622L)) 
#define  E1    (XTAL / (Timer_clk*4L*659L)) 
#define  F1    (XTAL / (Timer_clk*4L*698L)) 
#define  F1S   (XTAL / (Timer_clk*4L*740L)) 
#define  G1    (XTAL / (Timer_clk*4L*784L)) 
#define  G1S   (XTAL / (Timer_clk*4L*830L)) 
#define  A1    (XTAL / (Timer_clk*4L*880L)) 
#define  A1S   (XTAL / (Timer_clk*4L*932L)) 
#define  B1    (XTAL / (Timer_clk*4L*987L)) 
 
#define  C2    (XTAL / (Timer_clk*4L*1046L)) 
#define  C2S   (XTAL / (Timer_clk*4L*1109L)) 
#define  D2    (XTAL / (Timer_clk*4L*1174L)) 
#define  D2S   (XTAL / (Timer_clk*4L*1244L)) 
#define  E2    (XTAL / (Timer_clk*4L*1318L)) 
#define  F2    (XTAL / (Timer_clk*4L*1396L)) 
#define  F2S   (XTAL / (Timer_clk*4L*1480L)) 
#define  G2    (XTAL / (Timer_clk*4L*1568L)) 
#define  G2S   (XTAL / (Timer_clk*4L*1661L)) 
#define  A2    (XTAL / (Timer_clk*4L*1760L)) 
#define  A2S   (XTAL / (Timer_clk*4L*1864L)) 
#define  B2    (XTAL / (Timer_clk*4L*1975L)) 
 
#define  C3    (XTAL / Timer_clk*4L)/(2093L) 
#define  C3S   (XTAL / Timer_clk*4L)/(2217L) 
#define  D3    (XTAL / Timer_clk*4L)/(2349L) 
 



H8/300L  
SLP Tone Generator (ToneGen) 

AN0309010/Rev.1.01 September 2003 Page 21 of 25 

PRELIMINARY

/************************************************************/ 
/*  Function define                                         */ 
/************************************************************/ 
  
void init_Tone(void); 
void play_song(void); 
 
/************************************************************/ 
/*Constant Look up Table for Sine Wave value 
/************************************************************/ 
const unsigned char song1[]= 
{ 
B2,  B2,  B2, A2S, G2S, A2S,  
F2S, C2S, C2, F2S, F2, F2S,  
A2S, G2S, B2, B2, A2S, G2S,  
A2S, F2S, A1S, A1S, D2S, D2,  
D2S, F2S, F2, F2, F2, F2S,  
F2,  C2S, F2, D2S, B1, C2S,  
D2S, C2S, D2S, F2, F2S, F2,  
F2S, F2S, G2S, A2S, A2S, G2S, 
G2S, G2S, 0xFF 
}; 
 
/************************************************************/ 
/*Global variable 
/************************************************************/ 
unsigned int i=0,j=0, count=0; 
 
/************************************************************/ 
/*  Main Program                                            */ 
/************************************************************/ 
void main (void) 
{  play_song(); 
    while (1) 
 {  
  //Write user program here 
    } 
} 
 
/************************************************************/ 
/*  Initialize Program                                      */ 
/************************************************************/ 
//Initialize tone generation function  
void init_Tone(void) 
{ 
    set_imask_ccr(1);                // Interrupt Disable 
 
 //Init Timer F start  
 
 // 8 bit timer F counter, Sub clock / 4 selected toggle output enable 
 P_IO.PMR3.BYTE = 0x06; 
 P_TMRF.TCRF.BYTE = 0xCE; 
 P_TMRF.TCSRF.BYTE = 0x11; 
 //TCF cleared when TCF and OCRF match 
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 if (P_TMRF.TCSRF.BIT.CMFH == 1) P_TMRF.TCSRF.BIT.CMFH = 0;  
 if (P_TMRF.TCSRF.BIT.CMFL == 1) P_TMRF.TCSRF.BIT.CMFL = 0;  
 
    set_imask_ccr(0);                // Interrupt Enable 
 
 //Init Timer F end  
}  
 
 
/************************************************************/ 
/*  play_song Program                                       */ 
/************************************************************/ 
void play_song(void) 
{ 
 unsigned int i=0, j=0; 
 
 init_Tone(); 
 while(1) 
 { 
  while (song1[i]!=0xFF) 
  {  
   P_TMRF.OCRF.BYTE.H = song1[i];    
   P_TMRF.OCRF.BYTE.L = song1[i];    
   i++; 
   for (j=0; j<35000; j++) ; 
  } 
  for (j=0; j<35000; j++) ; 
  i=0; 
 } 
 P_TMRF.TCRF.BYTE = 0x00; 
} 
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5. References 
1. AN: 03/03/003 - “PWM Sine Wave Generation” 

2. AN: 03/03/004 – “Use PWM as A DAC” 
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Revision Record 
Description  

Rev. 
 
Date Page Summary 
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1. These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corporation product best suited to the customer's application; they do not convey any 
license under any intellectual property rights, or any other rights, belonging to Renesas Technology 
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any 
third-party's rights, originating in the use of any product data, diagrams, charts, programs, 
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corporation without notice due to product improvements 
or other reasons.  It is therefore recommended that customers contact Renesas Technology 
Corporation or an authorized Renesas Technology Corporation product distributor for the latest 
product information before purchasing a product listed herein. 
The information described here may contain technical inaccuracies or typographical errors. 
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss 
rising from these inaccuracies or errors. 
Please also pay attention to information published by Renesas Technology Corporation by various 
means, including the Renesas Technology Corporation Semiconductor home page 
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products.  Renesas 
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting 
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a 
device or system that is used under circumstances in which human life is potentially at stake.  
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation 
product distributor when considering the use of a product contained herein for any specific 
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, 
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce 
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must 
be exported under a license from the Japanese government and cannot be imported into a country 
other than the approved destination. 
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the 
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products 
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble 
with semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs! 

Notes regarding these materials

 


