

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

AN0309010/Rev.1.01 September 2003 Page 1 of 25

PRELIMINARY

H8/300L
SLP Tone Generator (ToneGen)

Introduction
Two methods of generating tones using the H8/38024 SLP MCU are:

1. Pulse width modulation (PWM) implementation

2. Timer toggle output implementation

Target Device
SLP H8/38024

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 2 of 25

PRELIMINARY

Contents

1. Overview ... 3
1.1 Musical Tone (Notes).. 3
1.2 PWM Implementation.. 4
1.3 Timer Toggle Output Implementation ... 6

2. Hardware Implementation... 8
2.1 PWM Implementation.. 8
2.2 Timer Toggle Output Implementation ... 9

3. Operation and Observation... 10

4. Code Listing .. 11
4.1 PWM Implementation.. 11
4.2 Timer Toggle Output Implementation ... 19

5. References.. 23

Revision Record.. 24

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 3 of 25

PRELIMINARY

1. Overview
Tone generator is a methodology whereby tone signals are defined in a musical sequence to produce a song. Two types of
implementation are described here. Both implementations use the same musical tone data and rhythm between two musical tones
(rhythm is fixed to reduce the size of musical tone data).

1.1 Musical Tone (Notes)
If a long hollow tube is hit, a fairly constant sound (pitch) is heard due to a shock-wave oscillating along the tube at a certain speed
(frequency). A “note” is described a musical frequency i.e., the pitch of a piano key or guitar string. By convention, notes are named
as:-

A, A#, B, C, C#, D, D#, E, F, F#, G, G#

The suffix “#” denotes sharp and “b” denotes flat. Also note that A# = Bb, C# = Db, D# = Eb, F# = Gb and G# = Ab. The names
chosen are the de facto standard for nearly all music.

“Octaves” of a note are just multiples of the original frequency. Let’s say that a length of hollow tube has a frequency of 264Hz and
normally call it “C”. If the length is half of the original length, the frequency will be double. This creates another “C” but at one
octave higher than the first (264 x 2 = 528Hz).

Table 1 Notes, Octave and Frequency

Hertz Octave = 0 Octave = 1 Octave = 2 Octave = 3 Octave = 4 Octave = 5
A 55.000 110.000 220.000 440.000 880.000 1760.000
A# 58.270 116.541 233.082 466.164 932.328 1864.655
B 61.735 123.471 246.942 493.883 987.6\767 1975.533
C 65.406 130.813 261.626 523.251 1046.502 2093005
C# 69.296 138.591 277.183 554.365 1108.731 2217.461
D 73.416 146.832 293.655 587.330 1174.659 2349.318
D# 77.782 155.563 311.127 622.254 1244.508 2489.016
E 82.407 164.814 329.628 659.255 1318.510 2637.020
F 87.307 174.614 349.228 698.456 1396.913 2793.826
F# 92.499 184.997 369.994 739.989 1479.978 2959.955
G 97.999 195.998 391.995 783.991 1567.982 3135.963
G# 103.826 207.652 415.305 830.609 1661.219 3322.438
A 110.000 220.000 440.000 880.000 1760.000 3520.000

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 4 of 25

PRELIMINARY

1.2 PWM Implementation
The built-in 10-bit PWM module can be used to generate PWM pulse stream with desired duty cycle. It can also be used as a D/A
convert by connecting a low pass filter. There are four clock sources available as input clock. With 10-bit resolution, we can get 4
pulse trains in each conversion period. Depending upon the register bit settings, we can get four conversion periods as described
above. This module can be placed independently in standby mode when not in use to conserve the power.

t1 t2 t1 = t2

0.00 V

2.50 V
Vout = Vcc x Duty Cycle

0

5
Resistor

Analog
Output

PWM
Output

Duty Cycle = t1 / (t1 + t2)

Figure 1 Usage of PWM as D/A Converter

The primary purpose of 10-bit PWM is to provide a high resolution D/A using an external low pass filter. The basic task of any D/A
converter is to take a binary number and convert it to voltage or current with an analog form. Other than a traditional D/A converter,
which is difficult to implement under CMOS fabrication technology for precision, the alternative solution is to make a counter whose
output duty cycle can be varied under software control – that is a Pulse Width Modulation.

Using a simple Low-Pass (or band pass if no DC component is desired), the Analog output of the filter is basically Vcc x Duty Cycle
(in a ideal case, notice that the output is a function of duty cycle rather than frequency

 For example: Vout = 5.00V x 50% Duty Cycle = 2.5V

If the generated DC voltage level is in a sinusoidal manner, a sine wave is generated.

Figure 2 Typical Sine Wave Diagram

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 5 of 25

PRELIMINARY

The sample period is time duration between two PWM values. Normally, timer is used to reload the sine wave value into the PWM
module. Therefore AEC (asynchronous event counter) timer is used for this purpose.

For example, the frequency of the crystal used is 9.8304 MHz,

Time for one AEC interrupt occur, Tinterrupt

Tinterrupt = ((1 / (∅/2)) x 256 count Note : ∅ = ∅osc/2
 = (1 / [(∅osc/2)/ 2]) x 256 count
 = (1 / (9.8304MHz / 4) x 256 count
 = 104.16µs

The sample period is equal to one AEC interrupt occurrence. The Interrupt Service Routine (ISR) will put the calculated pulse width
into the PWM width register.

 Sample frequency = 1 / Tinterrupt

 = 9600Hz

The calculation of the pulse width requires increment counter value. The increment counter value is calculated as follows.
Assumptions:
• 256 sample for the complete sine wave table
• sample frequency = 9600Hz
• signal frequency = 440Hz (e.g. note “A” at the third octave)

 Increment counter value = 256 / number of increments

Number of increments depend on sample frequency and signal frequency and it’s equal to how many time the given signal
increments through the sine wave table in one complete cycle.

 Number of increments = sample frequency / signal frequency
∴ Increment counter value = 256 / (sample frequency / signal frequency)
 = 256 * signal frequency / sample frequency
 = 256 * (440Hz) / (9600Hz)
 = 11.73

All these calculations are done by compiler, therefore user must change the default value in order to use with other parameter.

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 6 of 25

PRELIMINARY

1.3 Timer Toggle Output Implementation
There are several methods to implement tone generator by software means. For example, timer F is chosen because it is equipped
with toggle output and output compare functions. The initial value of the toggle output can be set. Timer F counter value will
increment on each input clock pulse. The timer F counter value is constantly compared with the value set in output compare register
F, and the counter can be cleared, an interrupt request, or output toggled, when the two values match. Timer F can also function as
two independent 8-bit timers.

Prescaler S
(PSS)

Timer Control
Register F

(TCRF)

8-bit timer
counter

 (TCFH, TCFL)

Output
compare

register FH/FL

Timer
control/status

register F

Toggle circuit

Interrupt request
control

Comparator

Ø= 5MHz

TMOFH
/TMOFL

Timer F
output pin

IRRTFH / IRRTFL
Timer F interrupt
request Flag

Duty pulse output control

Overflow FH / FL
compare match FH/FL

Overflow FH/FL
compare match
FH/FL

TCNT counter
Value

Ø/32

Select
Ø/32

Ø/32,
Ø/16,

Ø/4

Duty Setting

Timer F output compare
f clock setting

Figure 3 Block Diagram of Timer F Output Compare Operation

Figure 3 describes how a PWM is output through TMOFH/ TMOFL pin using the Timer F output compare function.
• The 5MHz system clock is input to the Prescaler S that divides the clock by 32, 16 and 4.
• TCRF is an 8-bit write-only register, which selects an input clock and sets the output level of TMOFL pin.
• Timer counters FL and FH (TCFL / TCFH) are 8-bit read/write up-counters. In this example, the input clock is Ø/32.
• Timer control/status register F (TCSRF) disables the clearing TCFL by compare match and enables the counter FL overflow

interrupts.
• The data of output compare register FL (OCRFL) is always compared with that of TCFL.
• When the values of both registers match, the compare match is generated and TMOFL pin is toggled. At the same time, a

compare match flag L (CMFL) is set to 1 and an interrupt is requested to CPU.

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 7 of 25

PRELIMINARY

TCFL input
clock

H’FF

OCRFH
(H’XX)

H00

TMOFL

Overflow
FL clear
TCFL

Compare match FL Overflow FL
clear TCFL

6.4 µs TCFL

High width

period

 High Width = OCRFL x 6.4µs
Period = 256 x 6.4 µs
Duty Cycle = {High width/ period} x 100%
 = {OCRFL/256} x 100%

Figure 4 Timer F Output Compare Operation

Figure 4 shows how the Timer F compare-match function can be used to generate a pulse with an arbitrary duty cycle i.e., a digital
tone signal. The Timer counter Register FL (TCFL) determines the tone signal clock cycle, or period, of the output waveform, while
the value stored in Output compare Register (OCRFL) determines the duty cycle. The calculation of desired duty cycle can be done
as shown in the above formula. It is only necessary to program Timer F once. There is no need to reload OCRFL unless you want to
change the duty cycle of the output.

User can generate two digital tones by combining the two Timer F toggle outputs (TMOFL and TMOFH), e.g. one for treble (high
frequency) and one for bass (low frequency). Figure 5 below shows the block diagram of Timer toggle output tone generator.

TMOFL
Timer F L toggle

output pin

Mixer
circuit

TMOFH
Timer F L toggle

output pin

Amp

Speaker

Figure 5 Block Diagram of Timer Toggle Output Tone Generator

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 8 of 25

PRELIMINARY

2. Hardware Implementation

2.1 PWM Implementation

VCC

P62

C10
0.1u

P61

+
3.

0V
V

1

P41

R1

10K

P
9
3

C2

0.1u
P

5
6

PB7

RES_N
Q4
BC327

R3
1k

P
5
1

R7

22K

R4
27K

P41

P74

Q1

2N3906

LS1

SPEAKER

P
5
4

Q3
BC549B

P
90

P
9
2

P75
P76

X
1

R14

1.8K

V
2

R2
12K

P63

P
8
7

P37

P
1
4

P
8
5

C15

12p

P71

R16
1M

D2

1N4148

A
V

S
S

PB5

P
A

3

PB2

CON2

Power Connector
1
2

C11
0.1u

Low Pass Filter
DAC

S1

Reset Switch

P
5
7

P
8
6

X1

P83

P32

VCC

P73

T
E

S
T

P30

P
5
3

P
1
3

O
S

C
1

A
V

C
C

C3

47u

Y1

32.768KHz

P82

R13

470

O
S

C
2

R6

10

PB6

V
3

P81

P
1
7

IR
Q

A
E

C

OSC1

VCC

PB3

P67

C5

4.7u

R8
10K

Serial Cable
Connector

P31

P
1
6

P
8
4

P
9
4

R11

1K VAR

P
9
1

CON1

HEADER 6

1
2
3
4
5
6

P
5
5

PB0

C9
0.1u

C4

10u

P43
P

5
2

P65

P35

DAC_out

X2

V
S

S

Y2

9.8304MHz

PB1

P80

R10
1K

P42

P42

R17
10K

P33

C7

330u

SW1
On_Of f switch

1

2
34

5

6

P
A0

P66
DAC_out

R5

510

P
A

1

P36

R15

10K

P
A

2
D1

1N4148

P60

C8
0.1u

P77

P3
4

PB4

OSC2

P95

P
95

P40

C14

12p

C1

0.1u

U1 H8/38024

1

41

2

42

3

43

4

44

5

45

6

46

7

47

8

48

9

49

10
50

11
51

12

52

13

53

14

54

15

55

16

56

17

57

18

58

19

59

20

60

21
22
23
24
25
26
27
28
29

31
30

32
33
34
35
36
37
38
39
4061

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

AV
C

C

P
84

P1
3

P
85

P1
4

P
86

P1
6

P
87

P1
7

PA
3

X1

PA
2

X2

PA
1

AV
S

S

PA
0

O
S

C
2

V
3

O
S

C
1

V
2

TE
S

T
V

1

R
E

S_
N

V
C

C

P5
0

VS
S

P5
1

P
90

P5
2

P
91

P5
3

P
92

P5
4

P
93

P5
5

P
94

P5
6

P
95

P5
7

IR
Q

A
EC

P60
P61
P62
P63
P64
P65
P66
P67
P70

P72
P71

P73
P74
P75
P76
P77
P80
P81
P82
P83P30

P31
P32
P33
P34
P35
P36
P37
P40
P41
P42
P43
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

P70

R12

10

C13 15p

VCC

VCC

P72

Audio Amplifier Block

H8/38024 F-ZTAT
FP-80A
P/N :
HD64f38024F

Q2
BC337

C16
0.22uF

X
2

C12 15p

P64
R9
100K

R
E

S
_N

P
5
0

Figure 6 Schematic Diagram for PWM Tone Generator

The musical tone is generated by the Pulse Width Modulation (PWM) of SLP MCU. The software will modulate the sinusoidal
signal into a pulse train of fixed periods but changing width. The changing width of the pulses corresponds to the voltage level of the
sine wave. With an external Low Pass Filter (LPF) at the PWM output pin, the PWM signal will be demodulated. The LPF acts as an
integrator, which transforms the pulse train into analog sinusoidal signal. The musical tone is then sent to the audio amplifier for
sound output.

Warm-up Function:

Generally audio signal has an average value at ground level (It will fluctuated between positive and negative regions). However there
is no negative supply in this implementation, thus a DC offset to 1/2 Vcc level is required. This is known as the “warming up” of the
audio amplifier. This is required only at the power up stage (to charge up the capacitor), to avoid unnecessary noise output at the
early stage.

 With Warm-up Function
3.3V

(1024)

1.65V
(512)

0V
(0) Time

Voltage
(PWM value)

Warm-up Musical Tone

DC-Offset
Level

 Without Warm-up Function
3.3V

(1024)

0V
(0) Time

Voltage
(PWM value)

Noise

Tone signal
Actual signal

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 9 of 25

PRELIMINARY

2.2 Timer Toggle Output Implementation

PB6

Timer_mixer
V1

P
56

P3
4

P42

C14

12p

CON2

Power Connector
1
2

Q2
BC337

P95

P
57

C15

12p

P36

C9
0.1u

C5

4.7u

R6

10

Y2

9.8304MHz

Q3
BC549B

P
92

R16
1M

Audio Amplifier Block

C13 15p

R4
27K

P63

P76

C8
0.1u

R8
10K

P31

R1

10K

Timer toggle
output mixer
circuit

P
13

U1 H8/38024

1

41

2

42

3

43

4

44

5

45

6

46

7

47

8

48

9

49

10
50

11
51

12

52

13

53

14

54

15

55

16

56

17

57

18

58

19

59

20

60

21
22
23
24
25
26
27
28
29

31
30

32
33
34
35
36
37
38
39
4061

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

A
VC

C

P
84

P
13

P
85

P
14

P
86

P
16

P
87

P
17

P
A

3

X
1

P
A

2

X
2

P
A

1

A
VS

S

P
A

0

O
S

C
2

V
3

O
S

C
1

V
2

T
ES

T
V

1

R
E

S
_N

V
C

C

P
50

V
S

S

P
51

P
90

P
52

P
91

P
53

P
92

P
54

P
93

P
55

P
94

P
56

P
95

P
57

IR
Q

AE
C

P60
P61
P62
P63
P64
P65
P66
P67
P70

P72
P71

P73
P74
P75
P76
P77
P80
P81
P82
P83P30

P31
P32
P33
P34
P35
P36
P37
P40
P41
P42
P43
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

VCC

V2

P30

R19 12k

VCC

PB1

C12 15p

R18 12k

P
85

P83

X2

P32

PB3

X1

TE
ST

P41

P74

R15

10K

P
87

P
17

IR
Q

AE
C

P40

PA
2

P71
AV

SS

Q4
BC327

C7

330u

P
84

CON1

HEADER 6

1
2
3
4
5
6 P64

RES_N

PB7

P
14

P37

PA
3

P43

P80

P72

P9
3

R7

22K

P
94

R12

10

Serial Cable
Connector

P
53

P70

PB4

P
16

P
51

R10
1K

PA
0

O
S

C
2

C4

10u

VCC

SW1
On_Of f switch

1

2
34

5

6 P33

R14

1.8K

P42

D2

1N4148
P

55
P

86

OSC1

D1

1N4148

P
91

P60

R9
100K

P9
5

AV
C

C

R11

1K VAR

C3

47u

P77

Timer_mixer

V
S

S

R13

470

P67

P81

X
2

P41

R2
12K

R
E

S
_N

P75

S1

Reset Switch

C2

0.1u

C11
0.1u

VCC

P35

X1

C1

0.1u

H8/38024 F-ZTAT
FP-80A
P/N :
HD64f38024F

P73

VCC

Timer_mixer

P65

R3
1k

V3

PB0

R17
10K

Y1

32.768KHz

PB5

PB2

O
S

C
1

P
90

P31

P61

+3
.0

V

P62

P
50

OSC2

P82

PA
1

P
54

C10
0.1u

P66

P
52

P32

Q1

2N3906

LS1

SPEAKER

Figure 7 Schematic Diagram for Timer Toggle Output Tone Generator

The digital tone is generated by the Timer F toggle output of SLP MCU. The software will generate signal with different pulse width
when the timer F output compare value is reloaded with new value. The two Timer F toggle outputs (Low counter and High counter)
are combined, resulting in the generation of two digital tones simultaneously. The two digital tones are fed to the audio amplifier via
the resistor mixer. User will be able to hear the tones from the loud speaker.

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 10 of 25

PRELIMINARY

3. Operation and Observation
The hardware circuitry provides Flash-programming capability. User can download tone generator demo program via PC serial port.
The PC application software used to download user program is the freeware - Flash Development Toolkit (FDT) that is available
from www.eu.renesas.com.

After the program has been successfully downloaded, reset the MCU and execute the program. During the execution, user should be
able to listen to the musical tones coming out from the speaker. The demo program will play the same song repeatedly.

The PWM tone generation demo program also can be used with other crystal oscillator value by changing the XTAL value in
#define statement.

For example,

If crystal = 9.8304MHz #define XTAL 9830400L (default)

If crystal = 4MHz #define XTAL 4000000L

There are two PWM channels in the H8/38024F MCU; user has to define which PWM channel to use before compiling the source
code e.g.:

If PWM1 is used #define PWM_use 1 (default)

If PWM2 is used #define PWM_use 2

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 11 of 25

PRELIMINARY

4. Code Listing
The attached code is generated using HEW project generator for H8/38024F SLP MCU. The free SLP/Tiny toolchain is used.

4.1 PWM Implementation
Figure 8 shows the flowchart for the PWM implementation. The source codes for “PWM_tone.c” are listed.

 PWM
Tone

Play song
Function

Play song
Function

Initialize AEC
timer , PWM

AEC Interrupt
Enable

Warm up
Function

Get musical notes
set PWM increment

counter value

Notes Delay

Shutdown PWM and
short delay for interval

AEC
Interrupt

Next
note

AEC ISR
start

Warm up ? Increment
PWM value

slowly

Yes

No

Get sine wave value for
Musical Note

Update new musical
note value with

increment counter value

AEC ISR
endComplete

playing?
No

Yes

Figure 8 Flow Chart for PWM_Tone.c

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 12 of 25

PRELIMINARY

/***/
/* */
/* FILE :PWM_Tone.c */
/* DATE :Tue, Sep 09, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/

/**/
/* File Include */
/**/
#include <machine.h>
#include "iodefine.h"
#include <math.h>
/**/
/* define */
/**/
#define XTAL 9830400L
#define sample_freq (XTAL/4L) / 256L //256 clock cycles per interrupt

#define C1 ((256L * 523L)/100)/(sample_freq/100)
#define C1S ((256L * 554L)/100)/(sample_freq/100)
#define D1 ((256L * 587L)/100)/(sample_freq/100)
#define D1S ((256L * 622L)/100)/(sample_freq/100)
#define E1 ((256L * 659L)/100)/(sample_freq/100)
#define F1 ((256L * 698L)/100)/(sample_freq/100)
#define F1S ((256L * 740L)/100)/(sample_freq/100)
#define G1 ((256L * 784L)/100)/(sample_freq/100)
#define G1S ((256L * 830L)/100)/(sample_freq/100)
#define A1 ((256L * 880L)/100)/(sample_freq/100)
#define A1S ((256L * 932L)/100)/(sample_freq/100)
#define B1 ((256L * 987L)/100)/(sample_freq/100)

#define C2 ((256L * 1046L)/100)/(sample_freq/100)
#define C2S ((256L * 1109L)/100)/(sample_freq/100)
#define D2 ((256L * 1174L)/100)/(sample_freq/100)
#define D2S ((256L * 1244L)/100)/(sample_freq/100)
#define E2 ((256L * 1318L)/100)/(sample_freq/100)
#define F2 ((256L * 1396L)/100)/(sample_freq/100)
#define F2S ((256L * 1480L)/100)/(sample_freq/100)
#define G2 ((256L * 1568L)/100)/(sample_freq/100)
#define G2S ((256L * 1661L)/100)/(sample_freq/100)
#define A2 ((256L * 1760L)/100)/(sample_freq/100)
#define A2S ((256L * 1864L)/100)/(sample_freq/100)
#define B2 ((256L * 1864L)/100)/(sample_freq/100)

#define C3 ((256L * 2093L)/100)/(sample_freq/100)
#define C3S ((256L * 2217L)/100)/(sample_freq/100)
#define D3 ((256L * 2349L)/100)/(sample_freq/100)

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 13 of 25

PRELIMINARY

#define PWM_use 2 //select "1" for PWM channel 2
 //select "0" for PWM channel 1
/**/
/* Function define */
/**/

void init_PWM(unsigned char);
void storeCount(unsigned short);
void aecint(void);
void init_AEC(void);
void init_Tone(void);void off_DTMF(void);
void init_PWM1(unsigned char selClk1);
void init_PWM2(unsigned char selClk2);
void warm_up(void);
void play_song(void);

/**/
/*Constant Look up Table for Sine Wave value
/**/
const unsigned int song1[]=
{
B2, B2, B2, A2S, G2S, A2S,
F2S, C2S, C2, F2S, F2, F2S,
A2S, G2S, B2, B2, A2S, G2S,
A2S, F2S, A1S, A1S, D2S, D2,
D2S, F2S, F2, F2, F2, F2S,
F2, C2S, F2, D2S, B1, C2S,
D2S, C2S, D2S, F2, F2S, F2,
F2S, F2S, G2S, A2S, A2S, G2S,
G2S, G2S, 0xFF
};

const unsigned int Sine_Table[256]=
{
512,518,525,531,537,543,550,556,
562,568,574,580,586,592,598,604,
610,616,621,627,633,638,644,649,
654,659,664,669,674,679,684,688,
693,697,702,706,710,714,717,721,
725,728,731,734,737,740,743,746,
748,750,753,755,756,758,760,761,
762,763,764,765,766,766,766,767,
767,767,766,766,766,765,764,763,
762,760,759,757,755,754,751,749,
747,744,742,739,736,733,730,726,
723,719,715,712,708,704,699,695,
691,686,681,677,672,667,662,657,
652,646,641,635,630,624,619,613,
607,601,595,589,583,577,571,565,
559,553,546,540,534,528,521,515,
509,503,496,490,484,478,471,465,
459,453,447,441,435,429,423,417,
411,405,400,394,389,383,378,372,

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 14 of 25

PRELIMINARY

367,362,357,352,347,343,338,333,
329,325,320,316,312,309,305,301,
298,294,291,288,285,282,280,277,
275,273,270,269,267,265,264,262,
261,260,259,258,258,257,257,257,
257,257,258,258,259,260,261,262,
263,264,266,268,269,271,274,276,
278,281,284,287,290,293,296,299,
303,307,310,314,318,322,327,331,
336,340,345,350,355,360,365,370,
375,380,386,391,397,403,408,414,
420,426,432,438,444,450,456,462,
468,474,481,487,493,499,506,512
};

/**/
/*Global variable
/**/
unsigned char PWDR_L2, PWDR_U2;
unsigned int i=0,j=0, count=0, inc1=0, inc2=0, final=0;
unsigned int lowcnt=0, hicnt=0;
unsigned char Ready = 0, DIGIT = 0;
unsigned int hold=0;

/**/
/* Main Program */
/**/
void main (void)
{ play_song();
 while (1)
 {
 //Write user program here
 }
}

/**/
/* Initialize Program */
/**/
//Initialize tone generation function
void init_Tone(void)
{
 set_imask_ccr(1); // Interrupt Disable
 init_AEC();
 #if (PWM_use==1)
 init_PWM1(0); //Select conversion period = 512/(PWM input clock)
 #else
 init_PWM2(0); //Select conversion period = 512/(PWM input clock)
 #endif
}

void init_PWM1(unsigned char selClk1)
{
 if (selClk1 <= 3) // Check if valid, otherwise PWM2 is off
 {

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 15 of 25

PRELIMINARY

 P_IO.PMR9.BIT.PWM1 = 1; // Configure P91 as PWM2 output pin
 P_PWM1.PWCR1.BYTE = selClk1; // Clock select for PWM2,write only
 }
}

void init_PWM2(unsigned char selClk2)
{
 if (selClk2 <= 3) // Check if valid, otherwise PWM2 is off
 {
 P_IO.PMR9.BIT.PWM2 = 1; // Configure P91 as PWM2 output pin
 P_PWM2.PWCR2.BYTE = selClk2; // Clock select for PWM2,write only
 }
}

void off_DTMF(void)
{
 P_SYSCR.IENR2.BIT.IENEC = 0;
 // AEC Interrupt Request, 1-Enable, 0-Disable
 //compiler directive to select which code to be compile
 #if (PWM_use==1)
 P_IO.PMR9.BIT.PWM1 = 0; // Turn off PWM1
 #else
 P_IO.PMR9.BIT.PWM2 = 0; // Turn off PWM2
 #endif
}

/**/
/* Initialize Program */
/**/
void warm_up(void)
{
 set_imask_ccr(0); // Interrupts, 0-Enable, 1-Disable
 while(count<0x3000) ;
 set_imask_ccr(1); // Interrupts, 0-Enable, 1-Disable
 Ready = 1;
}

/**/
/* play_song Program */
/**/
void play_song(void)
{
 i=0;

 init_Tone();

 warm_up();
 while(1)
 {

 while (song1[i]!=0xFFFF)
 { i++;
 inc1 = song1[i++];
 set_imask_ccr(0); // Interrupts, 0-Enable, 1-Disable
 for (j=0; j<0x35000; j++) ;

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 16 of 25

PRELIMINARY

 }

 storeCount(512);
 for (j=0; j<10000; j++) ; // short delay Tone
 set_imask_ccr(1); // Interrupts, 0-Enable, 1-Disable

 i = 0;
 }

 off_DTMF();

}

/**/
/* Write each digital code into PWDR registers */
/**/
void storeCount(unsigned short PWDRval_2)
{
 //compiler directive to select which code to be compile
 #if (PWM_use==1)
 P_PWM1.PWDRL1.BYTE = (unsigned char)(PWDRval_2 & 0x00FF);
 // Write lower 8bits of 10bits data
 P_PWM1.PWDRU1.BYTE = (unsigned char) ((PWDRval_2 & 0x0300) >> 8);
 // Write upper 8bits of 10bits data
 #else
 P_PWM2.PWDRL2.BYTE = (unsigned char)(PWDRval_2 & 0x00FF);
 // Write lower 8bits of 10bits data
 P_PWM2.PWDRU2.BYTE = (unsigned char) ((PWDRval_2 & 0x0300) >> 8);
 // Write upper 8bits of 10bits data
 #endif
}

/**/
/* AEC Interrupt Service Routine */
/**/
void aecint (void)
{
 P_SYSCR.IRR2.BIT.IRREC = 0; // Clear IRREC flag

 if(P_AEC.ECCSR.BIT.OVL == 1) // Check for ECL overflow flag
 { P_AEC.ECCSR.BIT.OVL = 0; // Clears flag

 if(Ready == 0)
 {
 storeCount(count++/128);
 }
 else
 { final = (Sine_Table[lowcnt]);
 storeCount(final);
 lowcnt = lowcnt + inc1;
 if(lowcnt>255) lowcnt = lowcnt-255;
 // If reached end of 1 period, then reset
 hicnt = hicnt + inc2;

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 17 of 25

PRELIMINARY

 if(hicnt>255) hicnt = hicnt-255;
 // If reached end of 1 period, then reset
 }
 }
}

void init_AEC(void)
{
 P_AEC.ECCSR.BYTE = 0x15;
 P_AEC.ECCR.BYTE = 0x10;
 P_SYSCR.IRR2.BIT.IRREC = 0; // Clear IRREC flag
 P_SYSCR.IENR2.BIT.IENEC = 1; // AEC Interrupt Request, 1-Enable, 0-
Disable
}

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 18 of 25

PRELIMINARY

The following code listing is the Interrupt service program of “intprg.c”, please insert the below code.

extern void aecint (void); //insert AEC ISR function
.
.
.
.
.
.
__interrupt(vect=12) void INT_Counter(void)
{
 aecint(); //insert AEC ISR function
}

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 19 of 25

PRELIMINARY

4.2 Timer Toggle Output Implementation
Figure 9 shows the flowchart for the Timer Toggle Output Implementation. The source codes for “timer_tone.c” are given.

Timer
Tone

Play song
Function

Play Song
Function

Initialize
Timer F

Get musical notes &
set Timer F output

compare register value

Notes Delay

Next
note

Complete
playing?

No

Yes

 Figure 9 Flow Chart for timer_tone.c

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 20 of 25

PRELIMINARY

/***/
/* */
/* FILE :Timer_tone.c */
/* DATE :Fri, Sep 12, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/

/**/
/* File Include */
/**/
#include <machine.h>
#include "iodefine.h"
/**/
/* define */
/**/
#define XTAL 9830400L
#define Timer_clk 32L // main clock / 32

#define C1 (XTAL / (Timer_clk*4L*523L))
#define C1S (XTAL / (Timer_clk*4L*554L))
#define D1 (XTAL / (Timer_clk*4L*587L))
#define D1S (XTAL / (Timer_clk*4L*622L))
#define E1 (XTAL / (Timer_clk*4L*659L))
#define F1 (XTAL / (Timer_clk*4L*698L))
#define F1S (XTAL / (Timer_clk*4L*740L))
#define G1 (XTAL / (Timer_clk*4L*784L))
#define G1S (XTAL / (Timer_clk*4L*830L))
#define A1 (XTAL / (Timer_clk*4L*880L))
#define A1S (XTAL / (Timer_clk*4L*932L))
#define B1 (XTAL / (Timer_clk*4L*987L))

#define C2 (XTAL / (Timer_clk*4L*1046L))
#define C2S (XTAL / (Timer_clk*4L*1109L))
#define D2 (XTAL / (Timer_clk*4L*1174L))
#define D2S (XTAL / (Timer_clk*4L*1244L))
#define E2 (XTAL / (Timer_clk*4L*1318L))
#define F2 (XTAL / (Timer_clk*4L*1396L))
#define F2S (XTAL / (Timer_clk*4L*1480L))
#define G2 (XTAL / (Timer_clk*4L*1568L))
#define G2S (XTAL / (Timer_clk*4L*1661L))
#define A2 (XTAL / (Timer_clk*4L*1760L))
#define A2S (XTAL / (Timer_clk*4L*1864L))
#define B2 (XTAL / (Timer_clk*4L*1975L))

#define C3 (XTAL / Timer_clk*4L)/(2093L)
#define C3S (XTAL / Timer_clk*4L)/(2217L)
#define D3 (XTAL / Timer_clk*4L)/(2349L)

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 21 of 25

PRELIMINARY

/**/
/* Function define */
/**/

void init_Tone(void);
void play_song(void);

/**/
/*Constant Look up Table for Sine Wave value
/**/
const unsigned char song1[]=
{
B2, B2, B2, A2S, G2S, A2S,
F2S, C2S, C2, F2S, F2, F2S,
A2S, G2S, B2, B2, A2S, G2S,
A2S, F2S, A1S, A1S, D2S, D2,
D2S, F2S, F2, F2, F2, F2S,
F2, C2S, F2, D2S, B1, C2S,
D2S, C2S, D2S, F2, F2S, F2,
F2S, F2S, G2S, A2S, A2S, G2S,
G2S, G2S, 0xFF
};

/**/
/*Global variable
/**/
unsigned int i=0,j=0, count=0;

/**/
/* Main Program */
/**/
void main (void)
{ play_song();
 while (1)
 {
 //Write user program here
 }
}

/**/
/* Initialize Program */
/**/
//Initialize tone generation function
void init_Tone(void)
{
 set_imask_ccr(1); // Interrupt Disable

 //Init Timer F start

 // 8 bit timer F counter, Sub clock / 4 selected toggle output enable
 P_IO.PMR3.BYTE = 0x06;
 P_TMRF.TCRF.BYTE = 0xCE;
 P_TMRF.TCSRF.BYTE = 0x11;
 //TCF cleared when TCF and OCRF match

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 22 of 25

PRELIMINARY

 if (P_TMRF.TCSRF.BIT.CMFH == 1) P_TMRF.TCSRF.BIT.CMFH = 0;
 if (P_TMRF.TCSRF.BIT.CMFL == 1) P_TMRF.TCSRF.BIT.CMFL = 0;

 set_imask_ccr(0); // Interrupt Enable

 //Init Timer F end
}

/**/
/* play_song Program */
/**/
void play_song(void)
{
 unsigned int i=0, j=0;

 init_Tone();
 while(1)
 {
 while (song1[i]!=0xFF)
 {
 P_TMRF.OCRF.BYTE.H = song1[i];
 P_TMRF.OCRF.BYTE.L = song1[i];
 i++;
 for (j=0; j<35000; j++) ;
 }
 for (j=0; j<35000; j++) ;
 i=0;
 }
 P_TMRF.TCRF.BYTE = 0x00;
}

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 23 of 25

PRELIMINARY

5. References
1. AN: 03/03/003 - “PWM Sine Wave Generation”

2. AN: 03/03/004 – “Use PWM as A DAC”

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 24 of 25

PRELIMINARY

Revision Record
Description

Rev.

Date Page Summary

1.00 Sep.23.03 — First edition issued

H8/300L
SLP Tone Generator (ToneGen)

AN0309010/Rev.1.01 September 2003 Page 25 of 25

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

