
 APPLICATION NOTE

SH7286 Group R01AN0063EJ0100
Rev. 1.00

USB Function Module: USB Mass Storage Class Oct. 22, 2010

Summary
This application note describes how to use the SH7286 USB function module and shows an example to create the
firmware which is compliant to the USB mass storage class specification.

This document and the sample program described are examples of the USB function module, and are therefore not
guaranteed by Renesas.

Target Device
SH7286 MCU

Contents

R01AN0063EJ0100 Rev. 1.00 Page 1 of 32
Oct. 22, 2010

1. .. 2 Introduction

2. ... 3 Applications

3. .. 5 USB Mass Storage Class (Bulk-Only Transport) Overview

4. .. 10 Development Environment

5. ... 15 Sample Program Overview

6. .. 31 References

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 2 of 32
Oct. 22, 2010

1. Introduction

1.1 Specifications
This document describes how to use the SH7286 USB function module, and how to create the firmware which is
compliant to the USB Mass Storage Class specification.

1.2 Modules Used
• Interrupt Controller (INTC)
• Pin Function Controller (PFC)
• USB Function Module (USB)

1.3 Applicable Conditions
MCU SH7286
Operating Frequency Internal clock: 100 MHz
 Bus clock: 50 MHz
 Peripheral clock: 50 MHz
Integrated Development
Environment

Renesas Electronics
High-performance Embedded Workshop Ver.4.04.01

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ compiler package Ver.9.01 Release 01

Compiler Options Default setting in the High-performance Embedded Workshop
(-cpu=sh2a -object="$(CONFIGDIR)¥$(FILELEAF).obj"
-debug -gbr=auto -chgincpath -errorpath -global_volatile=0
-opt_range=all -infinite_loop=0 -del_vacant_loop=0
-struct_alloc=1 -nologo)

1.4 Related Application Notes
For more information, refer to the following application notes:

• SH7285 Group Example of Initialization
• SH7285/SH7286 Group USB function module USB to Serial Conversion Application Note

1.5 About Active-low Pins (Signals)
The symbol "#" suffixed to the pin (or signal) names indicates that the pins (or signals) are active-low.

SH7286 Group USB Function Module: USB Mass Storage Class

2. Applications
This sample program uses the USB function module (USB) to execute the control IN, control OUT, bulk IN, and bulk
OUT transfers. This sample program also processes USB mass storage class commands.

The SH7286 USB function module includes the following features:

• USB protocol processed automatically
• USB standard request to endpoint 0 processed automatically (some requests need to be processed by the firmware)
• Data rate: Full-speed
• Interrupt request: Generates various interrupt signals required for USB communication
• Clocks:

⎯ External clock (48 MHz)
⎯ Internal clock (enabled only when EXTAL 12 MHz is selected)

• Power-down Mode
When a USB cable is not connected, less power is consumed by stopping the UDC internal clock

• Endpoint configuration listed in Table 1

Table 1 Endpoint Configuration

Endpoint Number Name Transfer Mode Maximum
Packet Size

FIFO Buffer
Capacity

DMA/DTC
transfer

EP0s Setup 8 bytes 8 bytes – Endpoint 0
EP0i Control IN 8 bytes 8 bytes –
EP0o Control OUT 8 bytes 8 bytes –

Endpoint 1 EP1 Bulk OUT 64 bytes 64 × 2 (128) bytes Available
Endpoint 2 EP2 Bulk IN 64 bytes 64 × 2 (128) bytes Available
Endpoint 3 EP3 Interrupt 8 bytes 8 bytes –

Figure 1 shows the system configuration.

R01AN0063EJ0100 Rev. 1.00 Page 3 of 32
Oct. 22, 2010

Host computer with USB
Windows® 2000,

Windows® XP,

Windows® Vista,

Mac OS9

SH7286 CPU board

USB cable

Figure 1 System Configuration

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 4 of 32
Oct. 22, 2010

This system includes Renesas Electronics SH7286 CPU board with the SH7286 MCU, and the Windows® 2000,
Windows® XP, Windows® Vista, or Mac OS9-based host computer.

The host computer and the SH7286 CPU board are connected with USB, an SDRAM on the SH7286 CPU board is used
as the RAM disk to allow the host computer to write data to the SDRAM on the SH7286 CPU board, and to read data
from the SDRAM.

The USB mass storage class (Bulk-only Transport) device driver can be used, which comes standard with the above-
mentioned operating system.

This system includes the following features:

1. The sample program can be used to evaluate the SH7286 USB module
2. The sample program supports USB control transfer and bulk transfer
3. E10A-USB emulator can be used to debug the system
4. Create additional programs to support USB interrupt transfer

Note: Programs for USB interrupt transfer must be created by user. Note that the SH7286 does not support
isochronous transfer.

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 5 of 32
Oct. 22, 2010

3. USB Mass Storage Class (Bulk-Only Transport) Overview
This chapter describes the USB Mass Storage Class (Bulk-Only Transport). Use this guide as the reference when you
develop the USB storage systems. For more information on the USB specifications, refer to (3) and (4) in 6 References.

3.1 USB Mass Storage Class
The USB Mass Storage Class is a USB protocol to read from or write data to a "mass storage" device which is
connected to a host computer.

To notify the host computer that the module is a mass storage class-compliant function, set H'08 in the bInterfaceClass
field of the Interface Descriptor. As a USB function module must notify the serial number to the host by the string
descriptor in USB Mass Storage Class, this sample program returns 000000000001 by Unicode.

To transfer data between the host computer and a function module, use one of the four transfer types (Control transfer,
bulk transfer, interrupt transfer, and isochronous transfer). The protocol code defines how to use these transfer types.

USB Mass Storage Class has two data transfer protocols:

• USB Mass Storage Class Bulk-Only Transport
• USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport

USB Mass Storage Class Bulk-Only Transport uses only Bulk transfer.

USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport uses control transfer, bulk transfer, and interrupt
transfer. CBI Transport divided into two data protocols, one that uses interrupt transfer, and one that does not use
interrupt transfer.

The sample program uses USB Mass Storage Class Bulk-Only Transport as its data transport protocol.

When the host computer uses a device to load or save data, the host computer transmits instructions (commands) to the
USB function. The USB function can load or save data by executing the commands which are transmitted from the host
computer. Commands from the host computer to the function are defined as Subclass codes.

3.2 Subclass Codes
Subclass codes indicate the command formats which are transmitted from the host computer to the function. There are 7
commands formats, and Subclass codes are defined as shown in Table 2.

Table 2 Subclass Codes

Subclass Codes Command Block Specifications
H'01 Reduced Block Commands (RBC), T10/1240-D
H'02 Attachment Packet Interface (ATAPI) for CD-ROMS, SFF-8020i, Multi-Media

Command Set 2 (MMC-2)
H'03 Attachment Packet Interface (ATAPI) for Tape, QIC-157
H'04 USB Mass Storage Class UFI Command Specification
H'05 Attachment Packet Interface (ATAPI) for Floppies, SFF-8070i
H'06 SCSI Primary Commands-2 (SPC-2), Revision 3 or later

To notify the command format supported by the mass storage device to the host computer, describe the Subclass code in
the bInterfaceSubClass field of the Interface Descriptor.

This sample program uses H'06 SCSI Primary Commands.

SH7286 Group USB Function Module: USB Mass Storage Class

3.3 Bulk-Only Transport
Bulk-Only Transport supports bulk transfer only; transfers data between the host computer and the function.

Bulk transfer has two different transfer types depending on the direction of the data transfer. Bulk IN transfer is to
transfer data from the host controller to the function, and bulk OUT transfer is to transfer data from the function to the
host controller.

Bulk-Only Transport specifies a combination of bulk OUT transfer and bulk IN transfer in advance to transfer data
between the host and the function. Bulk-Only Transport always uses the combination of bulk transfers as shown in
Figure 2. These bulk transfers have different roles, and are controlled as “stages (transports)”.

Start

Bulk OUT transfer

Bulk OUT transfer

Bulk IN transfer

Bulk IN transfer

End

Command Transport (CBW)

Data Transport

Status Transport (CSW)

Figure 2 Relationship between the Transfer Type and Transport

To notify the host computer to use the Bulk-Only Transport protocol, describe H'50 in the bInterfaceProtocol field of
the Interface descriptor.

3.3.1 Command Transport
In command transport, the host sends a command, which is defined as the Command Block Wrapper (CBW) to the
function via the Bulk-Out transfer. The Bulk-Only Transport always starts with the CBW. The host sends the CBW
with a 31-byte packet via the Bulk-Out transfer. The format of the CBW is listed in Table 3.

Table 3 Command Transport Format

 7 6 5 4 3 2 1 0
H'00 to H'03 dCBWSignature
H'04 to H'07 dCBWTag
H'08 to H'0B dCBWDataTransferLength

H'0C bmCBWFlags
H'0D Reserved (0) bCBWLUN
H'0E Reserved (0) bCBWCBLength

H'0F to H'1E CBWCB

R01AN0063EJ0100 Rev. 1.00 Page 6 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 7 of 32
Oct. 22, 2010

• dCBWSignature:

Signature that helps identify this data packet as a CBW. The signature field shall contain the value H'43425355
(little endian).

• dCBWTag:
A Command Block Tag sent by the host. The dCSWTag is specified by the host, and it associates a CSW with the
corresponding CBW.

• dCBWDataTransferLength:
The number of bytes of data that the host expects to transfer on the data transport. If this field is zero, the data
transport does not exist.

• bmCBWFlags:
When bit 7 of this field is 0, data is transferred (data transport) via the bulk-OUT transfer, from the host to the
function. When bit 7 is 1, data is transferred via the bulk-IN transfer, from the function to the host. Bits 6 to 0 are
fixed to 0.

• bCBWLUN:
The device Logical Unit Number (LUN) to which the command block is being sent.

• bCBWCBLength:
The valid length of the CBWCB in bytes.

• CBWCB:
The command block to be executed by the function. The CBWCB stores the command that the host computer
expects to execute (SCSI commands in this sample program).

3.3.2 Status Transport
In status transport, the function sends the status of the execution of the command block to the host computer via bulk-IN
transfer. The status packet is defined as the Command Status Wrapper (CSW). Bulk-Only Transport always ends with
the CSW. The function sends the CSW with a 13-byte packet via the Bulk-IN transfer. The format of the CSW is listed
in Table 4.

Table 4 Status Transport Format

 7 6 5 4 3 2 1 0
H'0 to H'3 dCSWSignature
H'4 to H'7 dCSWTag
H'8 to H'B dCSWDataResidue

H'C bCSWStatus

• dCSWSignature:
Signature that helps identify this data packet as a CSW. The signature field contains the value H'53425355 (little
endian).

• dCSWTag:
A Command Block Tag. The function sets this field to the value received in the dCBWTag of the associated CBW.

• dCSWDataResidue:
The function shall report in the dCSWDataResidue the difference between the amount of data expected as stated in
the dCBWDataTransferLength, and the actual amount of data processed by the function.

• bCSWStatus:
bCSWStatus indicates the success or failure of the command. The function sets this byte to H'00 if the command
completed successfully. A non-zero value shall indicate a failure during command execution; H'01 indicates
"Command failed", and H'02 indicates "Phase error".

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 8 of 32
Oct. 22, 2010

3.3.3 Data Transport
Data transport defines the data transfer between the host and the function. When executing Read/Write command in
data transport, the host sends the exact number of bytes of data in sectors to the function, and vice versa.

Data transport consists of multiple bus transactions.

Data transfer in Data transport is either Bulk-Out transfer or Bulk-IN transfer, which is specified by the bmCBWFlags
of the CBW data.

(1) Data transport (Bulk-OUT transfer)
When bit 7 in bmCBWFlags field of the CBW data is 0, and dCBWDataTransferLength field of the CBW data is
not 0, Data transport is specified as Bulk-OUT transfer.
The function receives the amount of data expected as stated in dCBWDataTransferLength field to the host computer,
and receives the data which is required to execute the SCSI commands specified in CBWCB field of the CBW data.

(2) Data transport (Bulk-IN transfer)
When bit 7 in bmCBWFlags field of the CBW data is 1, and dCBWDataTransferLength field of the CBW data is
not 0, Data transport is specified as Bulk-IN transfer.
The function sends the amount of data expected as stated in dCBWDataTransferLength field to the host computer,
and sends the execution result of the SCSI commands specified in CBWCB field of the CBW data.

3.4 Class-specific Requests
Class-specific requests are defined as a group of devices by USB class specification. These requests are made using
control transfer.

To use the USB Mass Storage Class Bulk-Only Transport as the data transfer protocol, the following commands listed
in Table 5 must be supported.

Table 5 Class-specific Requests

bRequest Field Request Name Description
255 (H'FF) Bulk-Only Mass Storage Reset Resets the interface
254 (H'FE) Get Max LUN Determines the number of logical units

When the function receives the Bulk-Only Mass Storage Reset request, it resets all the interfaces used by the USB Mass
Storage Class Bulk-Only Transport.

When the function receives the Get Max LUN request, it returns the maximum number of logical units available. As the
number of logical units in this sample program is 1, the function returns "0" to the host.

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 9 of 32
Oct. 22, 2010

3.5 Subclass Codes (SCSI Transparent Command Set)
The function must support subclass commands in CBW which are sent from the host computer, and handle commands.

This sample program supports 11 SCSI commands listed in Table 6. When the function receives commands which are
not supported, it reports to the host computer "Command failed" using CSW.

Table 6 Supported Commands

Operation Code Command Name Description
H'00 TEST UNIT READY Checks if a logical unit is ready
H'03 REQUEST SENSE After an error occurred in the previous command

block, it provides the information about the error to
the host

H'12 INQUIRY Reports the information about the drive to the host
H'1A MODE SENSE (6) Reports the state of the drive to the host
H'1B START/STOP UNIT Controls to attach or remove the media device
H'1E PREVENT ALLOW MEDIUM

REMOVAL
Prevents or allows the removal of media

H'23 READ FORMAT CAPACITIES Reports the format information of the media
H'25 READ CAPACITY Reports the information about sectors in the media

to the host
H'28 READ (10) Reads the specified number of sectors of data from

the read sector specified
H'2A WRITE (10) Writes the specified number of sectors of data to

the write sector specified
H'2F VERIFY (10) Checks if the data on the media can be accessed

SH7286 Group USB Function Module: USB Mass Storage Class

4. Development Environment
Following devices (tools) are used to develop this system:

• SH7286 CPU board (Part number: M3A-HS87), Renesas Electronics
• E10A-USB Emulator, Renesas Electronics
• E10A-USB computer (Windows® 2000, Windows® XP)
• USB host computer (Windows® 2000, Windows® XP, Windows® Vista, Mac OS9)
• USB cable
• High-performance Embedded Workshop 4, Renesas Electronics

4.1 Hardware Requirements
Figure 3 shows the connection diagram.

R01AN0063EJ0100 Rev. 1.00 Page 10 of 32
Oct. 22, 2010

USB cable

Figure 3 Device Connection Diagram

(1) SH7286 CPU board

This system uses the E10A-USB emulator. To use the E10A-USB emulator on the SH7286 CPU board, set the DIP
switches (SW4) as listed in Table 7. Make sure to turn the power OFF before changing the SW4 setting.

Table 7 DIP Switches Setting (SW4)

Setting (Mode 6) Description
SW4-1 (FWE): OFF Write-/erase-protect the internal flash memory
SW4-2 (MD1): OFF MD1 pin state
SW4-3 (MD0): ON MD0 pin state

USB host computer
Windows® 2000, Windows®
XP, Windows® Vista, Mac OS9

SH7286 CPU board

E10A cable

E10A-USB computer

Windows®2000, Windows® XP

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 11 of 32
Oct. 22, 2010

(2) USB host computer

Use Windows 2000-, Windows XP-, Windows Vista-, or Mac OS9-based computer with the USB port as the USB
host computer. As this system uses the USB Mass Storage Class (Bulk-Only Transport) device driver which comes
standard with the operating system, user does not have to install a driver newly.

(3) E10A-USB computer
Use Windows 2000-, Windows-XP-, Windows Vista-, or Mac OS9-based computer with the USB port as the E10A-
USB computer. Use a USB cable to connect the E10A-USB emulator and the USB connector of the E10A-USB
computer, and use an E10A cable to connect the E10A-USB emulator and the CPU board. After the connection is
established, activate the High-performance Embedded Workshop 4 to emulate with the function.

SH7286 Group USB Function Module: USB Mass Storage Class

4.2 Software Requirements
Use the High-performance Embedded Workshop 4 to compile, link, and debug the sample program. Double-click
"sh7286_usb_msc.hws" to activate the High-performance Embedded Workshop 4.

4.2.1 Sample Program
All sample programs are stored in "sh7286_usb_msc" folder. Copy this folder to the computer where the High-
performance Embedded Workshop 4 is installed to use the sample program.

Figure 4 shows files stored in "sh7286_usb_msc" folder.

 sh7286_usb_msc folder

 sh7286_usb_msc.hws

 sh7286_usb_msc folder

 Intermediate files, object files

 inc folder

 Collection of include files to share

 src folder

 main.c

 common folder

 Sample programs related to
 set up the CPU

 usb folder

 Sample programs related to
 USB mass storage class

Figure 4 Collection of Files in the Folder

4.2.2 Compile and Link Source Codes
Use the High-performance Embedded Workshop 4 to compile the source codes.

R01AN0063EJ0100 Rev. 1.00 Page 12 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 13 of 32
Oct. 22, 2010

4.3 How to Load and Execute the Program
This section describes how to load and execute the program.

4.3.1 Loading the Program
Follow the steps to load the sample program to the SH7286 CPU board:

(1) Connect the E10A-USB emulator to the E10A-USB computer where the High-performance Embedded Workshop 4.
(2) Use the user interface cable (E10A cable) to connect the E10A-USB emulator and the SH7286 CPU board.
(3) Turn ON the power of the SH7286 CPU board.
(4) Execute "sh7286_usb_msc.hws" in "sh7286_usb_msc" folder.
(5) Select [Connect] on the [Debug] menu. The [Select Emulator mode] dialog box will appear. Select "SH7286" as the

device, and "E10A-USB Emulator" as the emulator mode.
(6) Press the reset button on the SH7286 CPU board, and click "OK".
(7) The [System Clock] dialog box will appear. Enter the clock frequency of the crystal units (10 MHz).
(8) The [ID Code] dialog box will appear. Enter "E10A".
(9) Select [Debug] menu -> [Download Modules] to load the program on the SH7286 CPU board.

4.3.2 Executing the Program
Select [Reset Go] on the [Debug] menu to execute the program.

4.4 How to Use the RAM Disk
This section gives an example to use the RAM disk on Windows XP-based computer.

When executing the program, insert a USB series-B connector to the SH7286 CPU board, series-A connector (on the
other side) to the USB host computer.

After an enumeration using control transfer and bulk transfer, a USB mass storage device appears under the Universal
Serial Bus controllers node, and RENESAS EX RAN Disk USB Device appears under the Disk drives node. Then, the
host computer recognizes the SH7286 CPU board as a storage device to mount the Local Disk drive in My Computer.

Next, format the Local Disk drive on the computer.

Open My Computer and right-click the Local Disk drive, and then click "Format". "Format Local Disk" dialog box
appears to set. Make sure that the file system is set as "FAT", and click "OK".

When the warning message appears, proceed with formatting by pressing "OK".

When formatting is completed, "Format completed" message will appear. Click "OK" to return to the "Format Local
Disk" dialog box. Click "OK" to exit.

The SH7286 CPU board now can be used as the RAM disk which is connected on the USB.

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 14 of 32
Oct. 22, 2010

4.5 Changing the RAM Disk Setting
This section describes how to change the RAM disk setting used in this sample program.

4.5.1 Removable Disk/Fixed Disk
This sample program uses the RAM disk as a removable disk. Comment out "#define REMOVABLE_DISK" in
SetSystemSwitch.h file, and enable "#undef REMOVABLE_DISK" which is commented out to use the RAM disk as a
fixed disk.

4.5.2 How to Modify the amount of RAM Disk
This sample program uses 16-MB SDRAM as a RAM disk. Alter the "SysMemMap.h" file to modify the amount of
RAM disk. First, specify the total number of bytes of RAM disk (1) by "DISK_ALL_BYTE". Then, specify the
beginning and the end of the RAM disk area by "RAM_DISK_S", and "RAM_DISK_E (2)", respectively.

Notes: 1. Specify the value bigger than 1.5 MB. As the FAT information consumes the RAM disk area, the actual
amount of the RAM disk area will be reduced. This sample program configures FAT 12 information by up
to 16-MB data, and FAT16 information by up to 2-GB data. Other FAT information must be created by user.

 2. The RAM disk area specified between "RAM_DISK_S" and "RAM_DISK_E" must be bigger than the size
specified by "DISK_ALL_BYTE".

SH7286 Group USB Function Module: USB Mass Storage Class

5. Sample Program Overview
This chapter describes the features and the configuration of the sample program. This sample program operates on the
SH7286 CPU board, and the SH7286 CPU board operates as a RAM disk. USB transfer is started by an interrupt from
the USB function module.

5.1 State Transition Diagram
Figure 5 shows the state transition diagram of this sample program. This sample program transitions to three states as
shown in Figure 5.

Immediately after the power supply has been turned on,

the system is in reset state. After the initial settings have been

completed, it returns to the stationary state.

Initial settings completed

USB communication

completed

Interrupt generated

(USBFI0)

Control transfer

Bulk transport

USB communication state

Reset state

Stationary state

Figure 5 State Transition Diagram

• Reset state

The SH7286 enters reset state when it is reset at power-on, or manually reset. The sample program mainly
configures the SH7286 in reset state.

• Stationary state
When configuring the SH7286 is completed, the sample program stays in stationary state as the main loop.

• USB communication state
The SH7286 transitions to USB communication state when the USB module generates an interrupt in stationary
state. In this state, the SH7286 transfers data according to the type of interrupts. USB interrupt flag registers 0 and 1
(USBIFR 0, 1) specify interrupts used in this sample program. When an interrupt occurs, the corresponding bits to
USBIFR0 and USBIFR1 are set to 1.

R01AN0063EJ0100 Rev. 1.00 Page 15 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

5.2 USB Communication State
The USB communication state is divided into two states according to the type of data transfer (See Figure 6). When an
interrupt occurs, the SH7286 transitions to the USB communication state, and then jumps to each state according to the
type of interrupts.

Data out Data in

Status transport (CSW)

Command

transport (CBW)

Ready

Bulk transport

USB communication state

Data stage

OUT direction

Data stage

IN direction

Ready

Control transfer

Status stage

Setup stage

Figure 6 USB Communication State

5.2.1 Control Transfer
Control transfer is used to retrieve the device information and set the device state, which is executed immediately after
the function is connected to the host.

Control transfer consists of two or three stages, Setup stage, Data stage, and Status stage.

5.2.2 Bulk Transfer
Bulk transfer is used to transfer large amount of data untimely but without any error. Transfer speed is not guaranteed,
however, the delivery of the data is guaranteed. USB Mass Storage Class (Bulk-Only Transport) uses bulk transfer to
send the data from the function to the host computer.

USB Mass Storage Class (Bulk-Only Transport) data transfer (read/write) is composed of two or three stages,
Command transport (CBW), Data transport, and Status transport (CSW).

R01AN0063EJ0100 Rev. 1.00 Page 16 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 17 of 32
Oct. 22, 2010

5.3 File Configuration
This sample program is composed of 15 source code files and 14 header files. Table 8 lists the file configuration.
Functions are assembled in a file by transfer type or feature.

Table 8 File Configuration

File Name Description
main.c Configures the USB function
usb folder

UsbMain.c Detects the interrupt source, sends or receives packets
DoRequest.c Handles the setup command issued by the host PC
DoRequestBOT_StorageClass.c Handles the USB Mass Storage Class (Bulk-Only Transport) class-

specific commands
DoControl.c Executes control transfer
DoBulk.c Executes bulk transfer
DoBOTMSClass.c Executes the USB Mass Storage Class (Bulk-Only Transport)

transport
DoSCSICommand.c Parses and processes SCSI commands
CatBOTTypedef.h Bulk-Only Transport structure definition
CatProType.h Prototype declaration
CatSCSITypedef.h SCSI structure definition, macro definition to create FAT information
CatTypedef.h Basic structure definition used by USB firmware
SetBOTInfo.h Configures variables to support Bulk-Only Transport
SetMacro.h Macro definition
SetSCSIInfo.h Configures variables to support SCSI commands
SetSystemSwitch.h Sets the system operation
SetUsbInfo.h Configures variables used by USB firmware

SysMemMap.h Defines the memory map address
common folder

bscsdram.c Sets the SDRAM interface
cpg.c Sets the CPG
dbsct.c Defines initialized sections (B, R)
hwsetup.c Initializes the hardware
intprg.c Interrupt program
resetprg.c CPU initialization program
stacksct.h Defines the stack area
vect.h Declares the interrupt program

vecttbl.c Defines the interrupt handling vector table
inc folder

iodefine.h SH7286 register definition
typedefine.h Common type definition

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 18 of 32
Oct. 22, 2010

5.4 Functionality of Functions
Table 9 to Table 16 list functions stored in each file and those functionalities.

• main.c
Upon power-on reset, resetprg.c CPU initialization program is executed to call main function in main.c. It initializes
the SH7286, and clears the RAM area to use in Bulk transfer.

Table 9 main.c

File Name Function Name Description
main.c main Initializes the module and memory, pulls up the USB bus, and

transitions to main loop

• UsbMain.c

Usb.Main.c detects the interrupt sources mainly by the USB interrupt flag register, and calls functions according to
the interrupt type. It also transmits/receives packets between the host controller and function module.

Table 10 Usb.Main.c

File Name Function Name Description
BranchOfInt Detects the interrupt sources of the bus reset and endpoint 0,

and calls the function according to the interrupt
GetPacket Writes data to RAM transferred from the host controller
GetPacket4 Writes data transferred from the host controller to RAM in

longwords (Ring buffer supported, not used in the USB Mass
Storage Class)

GetPacket4S Writes data transferred from the host controller to RAM in
longwords (Ring buffer not supported, high-speed)

PutPacket Writes data to USB module transferred to the host controller
PutPacket4 Writes data to the USB module in longwords to transfer to the

host controller (Ring buffer supported, not used in the USB
Mass Storage Class)

PutPacket4S Writes data to the USB module in longwords to transfer to the
host controller (Ring buffer not supported, high-speed)

SetControlOutContents Overwrites the existing data with the data transferred from the
host

SetUsbModule Configures the USB module
ActBusReset Clears FIFOs when receiving the bus reset
ActBusVcc Handles USB cable attachment interrupt (This function is not

used in this sample application)
ConvRealn Reads the specified bytes of data from the specified address

UsbMain.c

ConvReflexn Reads the specified bytes of data from the specified address in
reverse

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 19 of 32
Oct. 22, 2010

• DoRequest.c

During Control transfer, it decodes commands from the host controller and handles the commands according to the
type. This sample program sets H'045B (Vendor: Renesas) to the vendor ID. When developing the USB module, the
user must get the vendor ID at the USB Implementers Forum. As the vendor command is not used in this sample,
DecVendorCommands does not perform any action. Develop the program to use the vendor command.

Table 11 DoRequest.c

File Name Function Name Description
DecStandardCommands Decodes commands issued by the host controller, and handles

the standard commands
DoRequest.c

DecVenderCommands Handles the vendor command

• DoRequestBOT_StorageClass.c

Handles the Bulk-Only Mass Storage Reset and Get Max LUN, the USB Mass Storage Class (Bulk-Only Transport
commands.
Bulk-Only Mass Storage Reset command resets all the interfaces used by the USB Mass Storage Class Bulk-Only
Transport.
Get Max LUN command returns the maximum number of logical units supported by peripherals. As the number of
logical units in this sample program is 1, it returns 0 to the host.

Table 12 DoRequestBOT_StorageClass.c

File Name Function Name Description
DoRequestBOT_
StorageClass.c

DecBOTClassCommands Handles the USB Mass Storage Class (Bulk-Only
Transport)

• DoControl.c

When the SETUP TS interrupt in Control transfer occurs, the ActControl retrieves the command, the
DecStandardCommands decodes the command to detect its direction to transfer. When EP0oTS, EP0iTR, and
EP0iTS interrupts in Control transfer occur, the Act ControlInOut calls either the ActControlIn or ActControlOut
depending on its direction, and executes Data Stage and Status Stage.

Table 13 DoControl.c

File Name Function Name Description
ActControl Controls the Setup Stage in Control transfer
ActControlIn Controls the Data Stage and Status Stage in Control IN

transfer (Data Stage direction: IN)
ActControlOut Controls the Data Stage and Status Stage in Control OUT

transfer (Data Stage direction: OUT)

DoControl.c

ActControlInOut Divides the Data Stage and Status Stage in control transfer
into "ActControlIn" and "ActControlOut"

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 20 of 32
Oct. 22, 2010

• DoBulk.c

DoBulk.c handles Bulk transfer. The USB Mass Storage Class (Bulk-Only Transport) does not use the
AcrBulkInReady.

Table 14 DoBulk.c

File Name Funtion Name Description
ActBulkOut Executes Bulk OUT transfer
ActBulkIn Executes Bulk IN transfer

DoBulk.c

ActBulkInReady Prepares for bulk IN transfer

• DoBOTMSClass.c

DoBOTMSClass.c controls two or three stages in the USB Mass Storage Class (Bulk-Only Transport), and behaves
according to the specification.

Table 15 DoBOTMSClass.c

File Name Function Name Description
ActBulkOnly Detects the current state and divides into stages
ActBulkOnlyCommand Controls CBW in the Bulk-Only Transport
ActBulkOnlyIn Controls Data transport and Status transport in Bulk-Only

Transport (Data Stage direction: IN)

DoBOTMSClass.c

ActBulkOnlyOut Controls Data transport and Status transport in Bulk-Only
Transport (Data Stage direction: OUT)

• DoSCSICommand.c
DoSCSICommand.c parses SCSI commands sent from the host computer, and prepares for the next Data transport or
Status port.

Table 16 DoSCSICommand.c

File Name Function Name Description
DecBotCmd Handles the SCSI command sent from the host in Bulk-

Only Transport
DoSCSICommand.c

SetBotCmdErr Handles SCSI command error

SH7286 Group USB Function Module: USB Mass Storage Class

5.5 RAM Disk
This sample program assumes the SDRAM on the SH7286 CPU board as a disk, and reports to the host computer that
the SH7286 CPU board (function) is a disk.

The disk (function) includes the Master boot block and Partition boot block as shown in Figure 7. When turning ON the
system, write the Master boot block and Partition boot block in the RAM disk area on the SDRAM using the
initialization routine.

Master boot block

Partition boot block

Sector 0

Sector 20

Figure 7 Disk Structure

Use the SCSI commands to access from the host computer to the function (store data, read data). User must understand
the structure shown in Figure 7 to use SCSI commands.

R01AN0063EJ0100 Rev. 1.00 Page 21 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 22 of 32
Oct. 22, 2010

5.6 Supported SCSI Commands
Table 17 to Table 19 describe SCSI commands supported by this sample program.

Table 17 SCSI Commands (1/3)

Command
Name

Transport
Name

Description

CBW Decodes the command, acknowledges it is the INQUIRY command, and
prepares for sending the INQUIRY information (96-byte) stored in ROM

Data Sends the INQUIRY information to the host computer using Bulk IN transfer

INQUIRY

CSW Sends the command completion result to the host computer. When the number
of bytes of transmit data is equal to or less than 96 bytes, it sends "Command
passed".

CBW Decodes the command, acknowledges it is the READ CAPACITY command,
and prepares for sending the READ CAPACITY information (8-byte) which
consists of the number of bytes per sector in a disk and total number of sectors
in a disk. When the media cannot be accessed (LSB of unit_state[0] is 1), the
function handles the transfer as with no data, and handles it according to "5.7
Error Handling Case (4)". Also, it sets the sense key of the REQUEST SENSE
to "NOT READY".

Data Sends the READ CAPACITY information to the host computer using host
computer using Bulk IN transfer. When the media cannot be accessed, it
returns the same number of bytes of data (H'00) requested from the host.

READ
CAPACITY

CSW Sends the command completion result to the host computer. When the media
cannot be accessed, it returns "Command failed (CSW status: H'01)

CBW Decodes the command, acknowledges it is READ (10) command, and
prepares for sending the specified number of bytes of data from the read
sector in a disk which is executed on SDRAM. When the media cannot be
accessed (LSB of unit_state[0] is 1), the function handles the transfer as with
no data, and handles it according to "5.7 Error Handling Case (4)". Also, it sets
the sense key of the REQUEST SENSE to "NOT READY".

Data Sends the data stored in the read sector to the host computer. When the
media cannot be accessed, it returns the same number of bytes of data (H'00)
requested from the host.

READ (10)

CSW Sends the READ (10) command execution result to the host computer. When
the media cannot be accessed, it returns "Command failed (CSW status:
H'01)"

CBW Decodes the command, acknowledges it is the WRITE (10) command, and
prepares for receiving the specified number of bytes of data from the write
sector stored in the write sector in a disk which is executed on SDRAM. When
the media cannot be accessed (LSB of unit_state[0] is 1), the function handles
the transfer as with no data, and handles it according to "5.7 Error Handling
Case (9)". Also, it sets the sense key of the REQUEST SENSE to "NOT
READY".

Data Receives the data stored in the write sector from the write sector in Bulk OUT
transfer data. When the media cannot be accessed, it executes "dummy read"
to read the data sent from the host.

WRITE (10)

CSW Sends "Command passed" to the host computer. When the media cannot be
accessed, it returns "Command failed (CSW status: H'01)".

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 23 of 32
Oct. 22, 2010

Table 18 SCSI Commands (2/3)

Command
Name

Transport
Name

Description

CBW Decodes the command, acknowledges it is the REQUEST SENSE command,
and prepares for sending the value (the last SCSI command execution result)

Data Sends the value to the host computer using Bulk IN transfer

REQUEST
SENSE

CSW Sends the command completion result to the host computer. When the
number of bytes of transmit data is equal to or less than 18 bytes, it sends
"Command passed".

CBW Decodes the command, acknowledges it is the PREVENT ALLOW MEDIUM
REMOVAL command, and prepares for sending "Command passed". When
the media cannot be accessed (LSB of unit_state[0] is 1), it sets the
command as "Failed", and the sense key of the REQUEST SENSE to "NOT
READY".

Data This command does not include the Data transport.

PREVENT
ALLOW
MEDIUM
REMOVAL

CSW Sends "Command passed" to the host computer. When the media cannot be
accessed, it returns "Command failed (CSW status: H'01)".

CBW Decodes the command, acknowledges it is the TEST UNIT READY
command, and prepares for sending "Command passed". When the media
cannot be accessed (LSB of unit_state[0] is 1), it sets the command as
"Failed", and the sense key of the REQUEST SENSE to "NOT READY".

Data This command does not include the Data transport.

TEST UNIT
READY

CSW Sends "Command passed" to the host computer. When the media cannot be
accessed, it returns "Command failed (CSW status: H'01)".

CBW Decodes the command, acknowledges it is the VERIFY (10) command, and
prepares for sending "Command passed" to the host computer. When the
media cannot be accessed (LSB of the unit_state[0] is 1), it sets the
command as "Failed", and the sense key of the REQUEST SENSE to "NOT
READY".

Data This command does not include the Data transport.

VERIFY (10)

CSW Sends "Command passed" to the host computer. When the media cannot be
accessed, it returns "Command failed (CSW status: H'01).

CBW Decodes the command, acknowledges it is the STOP/START UNIT
command. When the command specifies to eject media or stop, it sets the
LSB of the unit_state[0] to 1. Otherwise, it sets the LSB of the unit_state[0] to
0. When user wants to wake the media up from access-disabled state, set the
LSB of unit_state[0] to 0.

Data This command does not include the Data transport.

START/STOP
UNIT

CSW Sends "Command passed" to the host computer
CBW Decodes the command, acknowledges it is the MODE SENSE (6) command,

and prepares for sending the requested MODE SENSE information
Data Sends the MODE SENSE information to the host computer using Bulk IN

transfer

MODE
SENSE (6)

CSW Sends the command execution result to the host computer

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 24 of 32
Oct. 22, 2010

Table 19 SCSI Commands (3/3)

Command
Name

Transport
Name

Description

CBW Decodes the command, acknowledges it is the READ FORMAT CAPACITY
command, and recognizes the disk which is executed on SDRAM is
formatted. Then, it prepares for sending the READ FORMAT CAPACITY
information (20-byte) which consists of the number of bytes per sector and
total number of sectors in a disk. When the media cannot be accessed (LSB
of unit_state[0] is 1), the function handles the transfer as with no data, and
handles it according to "5.7 Error Handling Case (4)". Also, it sets the sense
key of the REQUEST SENSE to "NOT READY".

Data Sends the READ FORMAT CAPACITY information to the host computer.
When the media cannot be accessed, it returns the same number of bytes of
data (H'00) requested from the host.

READ
FORMAT
CAPACITY

CSW Sends the command execution result to the host computer. When the media
cannot be accessed, it returns "Command failed (CSW status: H'01)".

CBW Decodes the command. When the command is not supported, it sets the
sense key of the REQUEST SENSE to "INVALID FIELD IN CDB", and
prepares for the Data transport.

Data When the host computer requests to send data using Bulk IN transfer, it
sends the same number of bytes of data (H'00) requested from the host.
When the host computer sends data using Bulk OUT transfer, it calculates
the number of bytes received. When the Data transport is not included, the
command does nothing.

Other
commands
(Not
supported)

CSW Returns "Command failed (CSW status: H'01)" to the host computer

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 25 of 32
Oct. 22, 2010

5.7 Error Handling
This section describes errors occur between the host computer and the function, and error handling by the function
when transferring data in the USB Mass Storage Class (Bulk-Only Transport).

The USB Mass Storage Bulk-Only Transport defines the following error cases:

⎯ CBW Not Valid
⎯ Device intent does not meet the host’s expectations (10 cases)

Other cases are not defined in the USB Mass Storage Bulk-Only Transport specification.

There are thirteen possible cases of data transfer between the host and function listed in Table 20 and Table 21. Cases
(1), (6), and (12) are normal transfers.

Table 20 Host/Function Data Transfer Matrix

Host

Host expects no data
transfer

Host expects to
receive data from the
function

Host expects to send
data to the function

Function intends to transfer
no data

(1) Hn = Dn (4) Hi > Dn (9) Ho > Dn

(5) Hi > Di
(6) Hi = Di

Function intends to send data
to the host

(2) Hn < Di

(7) Hi < Di

(10) Ho < > Di

(11) Ho > Do
(12) Ho = Do

 F
un

ct
io

n

Function intends to receive
data from the host

(3) Hn < Do (8) Hi < > Do

(13) Ho < Do

Table 21 Host/Function Data Transfer Cases

CASE Relationship between Host and Function
(1) Host expects no data transfer, and function intends to transfer no data
(2) Host expects no data transfer, and function intends to send data to the host
(3) Host expects no data transfer, and function intends to receive data from the host
(4) Host expects to receive data from the function, and function intends to transfer no data
(5) The amount of data received from the function that the host expected is less than the amount of data that the

function sends to the host
(6) The amount of data received from the function that the host expected and the amount of data that the function

sends to the host are the same
(7) The amount of data received from the function that the host expected is more than the amount of data that the

function sends to the host
(8) Host expects to receive data from the function, and function intends to receive data from the host
(9) Host expects to send data to the host, and function intends to transfer no data
(10) Host expects to send data to the host, and function intends to send data to the host
(11) The amount of data that the host expected to send to the function is less than the amount of data the function

receives from the host
(12) The amount of data that the host expected to send to the function and the amount of data that the function

receives from the host are the same
(13) The amount of data that the host expected to send to the function is more than the amount of data that the

function receives from the host

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 26 of 32
Oct. 22, 2010

Table 22 lists examples of possible errors.

Table 22 Error Cases

CASE Status
(2) When the host issues the READ command, the amount of data sent on the USB Data transport

is 0, and the amount of data specified by the SCSI command is other than 0
(3) When the host issues the WRITE command, the amount of data sent on the USB Data transport

is 0, and the amount of data specified by the SCSI command is other than 0
(4) When the host issues the READ command, the amount of data sent on the USB Data transport

is 0, and the amount of data specified by the SCSI command is other than 0
(5) When the host issues the READ command, the amount of data specified by the SCSI command

is less than the data sent on the USB Data transport
(7) When the host issues the READ command, the amount of data specified by the SCSI command

is more than the data sent on the USB Data transport
(8) When the host issues the WRITE command, it also requests to receive data on the USB Data

transport
(9) When the host issues the WRITE command, the amount of data sent on the USB Data transport

is other than 0, and the amount of data specified by the SCSI command is 0
(10) When the host issues the READ command, it also sends data on the USB Data transport
(11) When the host issues the WRITE command, the amount of data specified by the SCSI command

is less than the data sent on the USB Data transport
(13) When the host issues the WRITE command, the amount of data specified by the SCSI command

is more than the data sent on the USB Data transport

Table 23 lists how the function behaves toward the error cases.

Table 23 Function Behavior

CASE Function behavior When an Error occurs
(2), (3) • Sets H'02 to the CSW status
(4), (5) • Adds data to make up the data length specified by the dCBWDataTransferLength, and sends

the data to the host
• Sets the amount of data added on the Data transport to the dCBWDataResidue in CSW
• Sets H'00 to the CSW status

(7), (8) • Sends data up to the data length specified by the dCBWDataTransferLength to the host
• Sets H'02 to the CSW status

(9), (11) • Receives the length of data indicated by the dCBWDataTransferLength
• Sets the difference between the amount of data received on the Data transport and

processed by the function to the dCBWDataResidue in CSW.
• Sets H'01 to the CSW status

(10), (13) • Receives the length of data indicated by the dCBWDataTransferLength
• Sets H'02 to the CSW status

SH7286 Group USB Function Module: USB Mass Storage Class

Figure 8 to Figure 10 show flow charts of error on data transfer.

Start

Number of data host expects = 0
and

Number of data function intends = 0

CBW data is
valid?

Receive CBW

Detect the direction of Data
transport by the CBW

Set H'02 to the
bCSWStatus

Stall EP2

Bulk IN transfer
 on Data transport

Bulk OUT transfer
 on Data transport

Receive CSW

End

Command transport

Data transport

Status transport

Figure 8 Flow Chart for Error Handling on Data Transfer (1/3)

R01AN0063EJ0100 Rev. 1.00 Page 27 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

Behavior in Bulk IN transfer
on the Data transport

Send data to reach the number of
data host expects

Set H'00 to the bCSWStatus

Go to behavior on
the Status transport

Send data on Data transport

Number of data host expects
 =

Number of data function intends

Number of data host expects
>

Number of data function intends

Add 0 to reach the number of data
host expects

Set the number of data added to
the dCSWDataResidue

Set the number of data not
transmitted to the

dCSWDataResidue

Set H'00 to the bCSWStatus Set H'02 to the bCSWStatus

Yes

No

Yes

No

Case: (6)

Case: (4) (5) Case: (7) (8)

Figure 9 Flow Chart for Error Handling on Data Transfer (2/3)

R01AN0063EJ0100 Rev. 1.00 Page 28 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

Behavior in Bulk OUT transfer
on the Data transport

Receive data to reach the number
of data host expects

Set H'00 to the bCSWStatus

Go to behavior on
the Status transport

Receive data on Data transport

Command executed by the
function matches the transfer
direction on Data transport?

Receive data
on the Data transport

Set the number of data not
transmitted to the

dCSWDataResidue

Set H'01 to the bCSWStatus Set H'02 to the bCSWStatus

Yes

No

Yes

No

Case: (6)

Case: (9) (11) Case: (13)

Number of data host expects
=

Number of data function intends

Number of data host expects
>

Number of data function intends

Set the number of data exceeded
to the dCSWDataResidue

Dummy read the number of data
host expects

Case: (1) (12)

Set H'02 to the bCSWStatus

Case: (10)

Yes

No

Figure 10 Flow Chart for Error Handling on Data Transfer (3/3)

R01AN0063EJ0100 Rev. 1.00 Page 29 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

When transferring data in the USB Mass Storage Class (Bulk-Only Transport), a series of data transfer starts on the
CBW transport, and returns a series of the transfer result (status) to the host computer on the CSW transport. To return
the status on the CSW transport, create values in two fields; bCSWStatus to indicate the success or failure of the
command, and dCSWDataResidue to indicate the number of bytes of data transfer error.

This sample program uses the following fields;

⎯ dCBWDataTransferLength field of the CBW packet
⎯ dCSWDataTRansferResidue field of the CSW packet

dCBWDataTransferLength field is a variable to store the number of bytes of data specified by the host computer to
process on the Data transport.

dCSWDataTransferResidue field is a variable to store the number of bytes of data processed by the function on the Data
transport.

When the CBW transport is completed, dCBWDataTransferLength and dCSWDataTransferResidue fields store the
number of bytes of data processed on the Data transport.

Data transfer on the Data transport is executed as shown in Figure 8 to Figure 10 flow charts.

When there is no error during the data transfer between the host and function, the sample program subtracts the number
of bytes to transfer from fields dCBWDataTransferLength and dCSWDataTransferResidue every time the data transfer
is executed on the Data transport. Otherwise, the sample program sets the "difference" between the number of bytes of
data the host expects to process on the Data transport and the number of bytes of data processed by the function on the
Data transport to the dCSWDataTransferResidue field of the CSW packet, and transitions to the Status transport.

CBW IN/OUT IN/OUT IN/OUT CSW

Number of data host expects

Number of data device intends

Number of data host expects

Number of data device intends Deficiency

Number of data host expects

…

dCBWDataTransferLength

dCSWDataResidue

dCSWDataResidue

dCBWDataTransferLength

dCSWDataResidue

dCBWDataTransferLength

Command transport Data transport Status transport

Return 0 as the number of data
device intends is equal to the
number of data host expects.

Return the difference between
the number of data device and
the number of data host expects.

Return the number of data
beyond the number of data host
expects

Number of data device intends Excess

Figure 11 Stages on Bulk-Only Transport

R01AN0063EJ0100 Rev. 1.00 Page 30 of 32
Oct. 22, 2010

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 31 of 32
Oct. 22, 2010

6. References
• Software Manual

(1) SH-2A, SH2A-FPU Software Manual Rev. 3.00
(The latest version of software manual can be downloaded from the Renesas Electronics website.)

• Hardware Manual
(2) SH7280 Group Hardware Manual Rev. 2.00
(The latest version of hardware manual can be downloaded from the Renesas Electronics website.)

• USB specifications
(3) Universal Serial Bus Specification, Revision 2.0
(4) Universal Serial Bus Mass Storage Class Specification Overview
(5) Universal Serial Bus Mass Storage Class (Bulk-Only Transport)
⎯ USB Implementers Forum website:

http://www.usb.org/developers

http://www.usb.org/developers

SH7286 Group USB Function Module: USB Mass Storage Class

R01AN0063EJ0100 Rev. 1.00 Page 32 of 32
Oct. 22, 2010

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Oct.22.10 — First edition issued

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions
	1.4 Related Application Notes
	1.5 About Active-low Pins (Signals)

	2. Applications
	3. USB Mass Storage Class (Bulk-Only Transport) Overview
	3.1 USB Mass Storage Class
	3.2 Subclass Codes
	3.3 Bulk-Only Transport
	3.3.1 Command Transport
	3.3.2 Status Transport
	3.3.3 Data Transport

	3.4 Class-specific Requests
	3.5 Subclass Codes (SCSI Transparent Command Set)

	4. Development Environment
	4.1 Hardware Requirements
	4.2 Software Requirements
	4.2.1 Sample Program
	4.2.2 Compile and Link Source Codes

	4.3 How to Load and Execute the Program
	4.3.1 Loading the Program
	4.3.2 Executing the Program

	4.4 How to Use the RAM Disk
	4.5 Changing the RAM Disk Setting
	4.5.1 Removable Disk/Fixed Disk
	4.5.2 How to Modify the amount of RAM Disk

	5. Sample Program Overview
	5.1 State Transition Diagram
	5.2 USB Communication State
	5.2.1 Control Transfer
	5.2.2 Bulk Transfer

	5.3 File Configuration
	5.4 Functionality of Functions
	5.5 RAM Disk
	5.6 Supported SCSI Commands
	5.7 Error Handling

	6. References

