
 APPLICATION NOTE

R01AN0051EJ0200 Rev. 2.00 Page 1 of 35
Sep. 17, 2010

SH7216 Group
Configuration to Transmit Ethernet Frames

Summary
This application note describes the configuration example of the SH7216 microcomputers (MCUs) to transmit Ethernet
frames.

Target Device
SH7216 MCU

Contents

1. Introduction.. 2

2. Applications ... 3

3. Sample Program Listing.. 18

4. References .. 34

R01AN0051EJ0200
Rev. 2.00

Sep. 17, 2010

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 2 of 35
Sep. 17, 2010

1. Introduction

1.1 Specifications
• This application transmits 10 Ethernet frames. After transmitting one Ethernet frame is completed, it starts

transmitting the next frame.

1.2 Modules Used
• Pin Function Controller (PFC)
• Ethernet Controller (EtherC)
• Ethernet Controller Direct Memory Access Controller (E-DMAC)

1.3 Applicable Conditions
MCU SH7216

Internal clock: 200 MHz
Bus clock: 50 MHz Operating Frequencies
Peripheral clock: 50 MHz

Integrated Development
Environment

Renesas Electronics Corporation
High-performance Embedded Workshop Ver.4.05.01

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ Compiler Package Ver.9.03 Release 00

Compiler Options
Default setting in the High-performance Embedded Workshop
-cpu=sh2afpu -fpu=single -debug -gbr=auto -global_volatile=0
-opt_range=all -infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1

1.4 Related Application Notes
For more information, refer to the following application notes:

• SH7216 Group Example of Initialization
• SH7216 Group Configuring the Ethernet PHY-LSI Auto-Negotiation
• SH7216 Group Configuration to Receive Ethernet Frames

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 3 of 35
Sep. 17, 2010

2. Applications
This application uses the Ethernet Controller, and the Ethernet Controller Direct Memory Access Controller (E-DMAC).

2.1 Overview
The SH7216 always uses the EtherC and the E-DMAC in the Ethernet communication. The EtherC controls both
transmission and reception, and the E-DMAC handles the DMA transfer between the transmit or receive FIFOs and the
area to store data specified by user (buffer).

2.1.1 EtherC Overview
The SH7216 includes an Ethernet controller (EtherC) which is compliant with the IEEE 802.3 MAC (Media Access
Control) protocol. Connect the EtherC with the IEEE 802.3-compliant physical layer LSI (PHY-LSI) to transmit and
receive Ethernet/IEEE 802.3 frames. The EtherC includes one MAC layer interface. As it is connected with the E-
DMAC internally, the EtherC can access memory in high-speed.

Figure 1 shows the EtherC configuration.

E-DMAC interface

Receiver Transmitter

Command status
interface

MII

E-DMAC

EtherC

MAC

PHY

Figure 1 EtherC Configuration

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 4 of 35
Sep. 17, 2010

2.1.2 EtherC Transmitter Overview
When the EtherC receives the transmit request from the E-DMAC transmitter, the EtherC transmitter assembles the
transmit data into Ethernet frames, and outputs the frames to the MII (Media Independent Interface). Then the Ethernet
PHY-LSI transmits data on the communication line. Figure 2 shows the EtherC transmitter state transition diagram of
the EtherC transmitter. The transmission sequence is as follows;

1. When the TE (Transmit Enable) bit in the EtherC mode register (ECMR) is set, the EtherC transitions to the
transmit idle state.

2. (A) In half-duplex mode (HDPX):
When the EtherC receives the transmit request from the E-DMAC transmitter, it detects carrier. When no carrier
is present, it transmits the preamble to the MII after delaying any transmission for an interframe gap.

 (B) In full-duplex mode (FDPX):
The EtherC does not require detecting carrier, and transmits the preamble immediately after receiving the
transmission request from the E-DMAC transmitter. When transmitting frames continuously, the EtherC
transmits the preamble after delaying the transmission for an interframe gap following the last transmitted frame.

3. The EtherC transmits the SFD (Start Frame Delimiter), data, CRC (Cyclic Redundancy Check) in sequence. After
the transmission is completed, the frame transmission complete interrupt (TC) occurs. When the data collision
occurs or no carrier is present during transmission, interrupts occur by these sources.

4. The EtherC transitions to the idling state. Then, it continues to transmit data when there are data to transmit.

Reset

TE set

FDPX:
HDPX:
SFD:

Full Duplex
Half Duplex
Start Frame Delimiter

FDPX

Notes:1.

 2.

Retransmission processing includes both jam transmission resultant from collision
detection and the adjustment of transmission intervals by the back-off algorithm.
Retransmission is performed only during transmission of 512-bit (or less) data including
the preamble and SFD. If a collision is detected while data exceeding 512 bits is being transmitted, only jam is
transmitted and the retransmission processing by the back-off algorithm is not performed.

TE reset

Failure of 15
retransmission
attempts
or collision
after 512-bit time

Collision

Collision

Normal transmission

Carrier detection

Carrier detection

SFD
transmission

Data transmission

CRC transmission

Retransmission
processing*1

Carrier
detection

Start of transmission
(preamble transmission)Idle

Carrier
non-detection

Carrier
non-detection

Carrier
detection

HDPX

HDPX
Retransmission
initiation

Transmission
halted

[Legend]

Error detection

Error

Error

Error

Error
notification

Collision*2

 Collision*2

FDPX

Figure 2 EtherC Transmitter State Transition Diagram

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 5 of 35
Sep. 17, 2010

2.1.3 E-DMAC Overview
The SH7216 includes the Direct Memory Access Controller (E-DMAC) which is directly connected with the EtherC.
The E-DMAC uses its internal DMAC to handle the DMA transfer between the transmit or receive FIFOs in the E-
DMAC and the area to store data specified by user (transmit or receive buffer). CPU cannot read or write the FIFO data
directly. The information that the E-DMAC refers during the DMA transfer is the transmit or receive descriptor, and
user must allocate these descriptors on memory. The E-DMAC retrieves the descriptor information before transmitting
or receiving Ethernet frames. Then, it reads the transmit data from the transmit buffer or writes the receive data to the
receive buffer, according to the descriptor information. Allocating multiple descriptors to make up the descriptor strings
(list) allows for transmitting or receiving multiple Ethernet frames sequentially.

This E-DMAC feature reduces the load on the CPU to transmit or receive data efficiently. Figure 3 shows the
configuration of the E-DMAC, descriptors, and buffer.

The features of the E-DMAC are as follows;

• Includes two channels (transmit and receive) of the DMAC
• Manages descriptors to reduce the load on the CPU
• Reflects the transmit/receive frame status to the descriptor
• Uses the system bus efficiently by the DMA block transfer (in units of 16-byte)
Supports one frame per one descriptor, and one frame per multiple frames (multi buffer) - refer to section 2.1.5.

SH7216

Transmit
descriptor

Receive
descriptor

Transmit buffer

Receive buffer

External memory

External
bus

interface

Internal bus

Internal
bus

interface

E-DMAC

Descriptor
information

Descriptor
information

Transmit
DMAC

Receive
DMAC

Transmit FIFO

Receive FIFO
EtherC

Figure 3 E-DMAC, Descriptors, and Buffer Configuration

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 6 of 35
Sep. 17, 2010

2.1.4 Descriptor Overview
The E-DMAC requires the descriptor information (data), which includes the address storing transmit or receive data to
use the DMA transfer. There are two types of descriptors; the transmit descriptor and receive descriptor. When the TR
bit in the E-DMAC transmit request register (EDTRR) is set to 1, the E-DMAC automatically starts reading the transmit
descriptor. When the RR bit in the E-DMAC receive request register (EDRRR) is set to 1, the E-DMAC automatically
starts reading the receive descriptor. Before starting transmission or reception, user must include information regarding
the DMA transfer of the transmit or receive data in the transmit or receive descriptor. After transmitting or receiving
Ethernet frames are completed, the E-DMAC sets the enable/disable bit in the descriptor (TACT bit when transmitting,
RACT bit when receiving), and reflects the transmission or reception result in the status bit (TFS25 to TFS0 when
transmitting, RFS26 to RFS0 when receiving).

Align the descriptor on the read- and write-enabled memory, and set the starting descriptor (The first descriptor read by
the E-DMAC) address in the Transmit descriptor list start address register (TDLAR) or the Receive descriptor list start
address register (RDLAR). When using multiple descriptors as the descriptor string (descriptor list), align the
descriptors on the contiguous addresses, according to the length of descriptor set in bits DL0 and DL1 in the E-DMAC
mode register (EDMR).

2.1.5 Transmit Descriptor Overview
Figure 4 shows the relationship between the transmit descriptor and the transmit buffer.

The transmit descriptor consists of TD0, TD1, TD2, and padding in units of 32-bit from the top of the data. TD0
indicates if the transmit descriptor is valid or invalid, the descriptor configuration information and status information.
TD1 indicates the data length of the buffer to transmit in the descriptor. TD2 indicates the starting address in the
transmit buffer. The length of padding is determined by the descriptor length specified in bits DL0 and DL1 in the
EDMR register.

According to the transmit descriptor setting, both storing all transmit data in one frame in the transmit buffer by one
descriptor (one frame per one descriptor), and storing all transmit data in one frame in the transmit buffer by multiple
descriptors (one frame per multiple descriptors) are allowed. As example of using one frame per multiple descriptors,
specify blocks of data which are always used in transmission as multiple descriptors. Specifically, allocate the
destination and source addresses in the Ethernet frames to multiple descriptors, and store the rest of data in each buffer.

TBL

TBA

Padding (4 or 20 or 52 bytes) (1)

31 26

31 0

Transmit descriptor Transmit buffer

TFS25 to TFS0TD0

TD1

TD2

Valid transmit data

30 29 28 27 0

31 16

Starting address

Transmit buffer length

T
A
C
T

T
F
P
1

T
D
L
E

T
F
P
0

T
F
E

Note 1: This is a redundant area to add missing bytes from the descriptor length (16, 32, or 64 bytes).

T
W
B
I

25

Figure 4 Relationship between the Transmit Descriptor and the Transmit Buffer

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 7 of 35
Sep. 17, 2010

2.1.6 Setting the Transmit Descriptor
Figure 5 shows an example of using three transmit descriptors and three transmit buffers, allocating one frame per one
descriptor. This example transmits one frame by a transmission request. The figure below simplifies the transmit
descriptors as only TD0. Numbers shown in the figure indicates sequence to execute.

Set the transmit descriptor as following steps;

1. To allow one frame per one descriptor, set B'11 in bits TFP1, and TFP0 in all descriptors.
2. Set 0 in bits TACT, TFE, TWBI, TFS25 to TFS0 in all descriptors as the initial value.
3 . Set 0 in the TDLE bit in descriptors 1 and 2. Then, set 1 in the TDLE bit in descriptor 3 and complete the descriptor

processing to read descriptor 1. These settings create the descriptor ring structure.
4. Set the data length of the transmit buffer corresponding to the said descriptor in the TBL bit, and specify the TBA

bit as the starting address in the transmit buffer. (This step is not described in Figure 5.)
5. As this example transmits one frame by a transmission request, set 1 in the TACT bit in descriptor 1. Then, set 1 in

the TACT bit in descriptor 2. Details on the setting procedure are described in the next chapter.

0 1 10 0 0 • • 0
Descriptor 1

(omitted)

TFS25 to TFS0

T
A
C
T

T
F
P
1

T
D
L
E

T
F
P
0

T
F
E

0 1 10 0
Descriptor 2

Descriptor 3
1 1 10 0

Transmit descriptor

Transmit buffer

(1)

(2)

(3)

(4)

(5)

(6)

(omitted)

(omitted)

0

0

0

T
W
B
I

0 • • 0

0 • • 0

Figure 5 Relationship between 3 Transmit Descriptors and 3 Transmit Buffers

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 8 of 35
Sep. 17, 2010

2.1.7 Operation Procedure (When Transmitting)
The E-DMAC transmitter is activated when writing 1 to the transmit request (TR) bit in the E-DMAC transmit request
register (EDTRR) upon the TE bit in the EtherC mode register (ECMR) is 1. After the EtherC and E-DMAC are reset
by software, the E-DMAC reads the descriptor specified by the Transmit descriptor list start address register (TDLAR).
When the TACT bit in the read descriptor is 1 (valid), the E-DMAC sequentially reads the frame data from the transmit
buffer starting address specified in TD2 (transmit descriptor) and transfers the data to the EtherC. Then, the EtherC
assembles the transmit frames, and transmits the frames to the MII. After the DMA transfer for the buffer length
specified in the descriptor is completed, the E-DMAC handles the following processing according to the value in TFP
bit in the transmit descriptor.

• TFP = B'00 or B'10 (Frame is continuing)
After the DMA transfer is completed, the E-DMAC writes back the descriptor (write 0 to the TACT bit). Then, it
reads the TACT bit in the next descriptor.

• TFP = B'01 or B'11 (End of frame)
After transmitting the frame is completed, the E-DMAC writes back the descriptor (write 0 to the TACT bit and the
status in the descriptor). Then, it reads the TACT bit in the next descriptor.

When the TACT bit in the read descriptor is 1, the E-DMAC continues to transmit frames and reads the next descriptor.
When it reads the descriptor with the TACT bit is 0 (invalid), the E-DMAC sets the TR bit in the EDTRR to 0, and
completes transmission. If writing 1 to the TR bit after the bit is set to 0, the E-DMAC transmitter is activated again. In
such case, the E-DMAC reads the descriptor following the last transmitted descriptor.

Figure 6 shows the flow chart of transmitting frames (one frame per one descriptor, using multiple descriptors).

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 9 of 35
Sep. 17, 2010

Transmit data
... Repeats the same operation

Initializes the
EtherC/E-DMAC

Set the EtherC/E-DMAC
registers

Reads the transmit descriptor

Set the transmit descriptor
and transmit buffer

Activates the transmitter

SH7216 + memory E-DMAC Transmit FIFO EtherC Ethernet

Transmission is completedWrites back
the transmit descriptor

Reads the next transmit descriptor

Transfers the transmit data

Transmits the frame

Supplementary:

 Initializes the EtherC/E-DMAC: Resets the modules by software, setting the SWR bit in the EDMR to 1
 Set the EtherC/E-DMAC registers: Writes 1 to the TE bit in the ECMR, and to the TR bit in the EDTRR at the end
 Activates the transmitter: The transmitter is activated by writing 1 to the TE bit in the ECMR, and to the TR bit in the EDTRR
 Reads the transmit descriptor: The E-DMAC automatically reads the transmit descriptor
 Transfers the transmit data: The E-DMAC writes the transmit data to the transmit FIFO by the DMA transfer
 Writes back the transmit descriptor: The E-DMAC writes 0 to the TACT bit, and the transmit status in the transmit descriptor

Figure 6 Flow Chart of Transmitting Frames (One Frame per One Descriptor)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 10 of 35
Sep. 17, 2010

2.1.8 Setting Procedure (When Transmitting)
This section describes the basic settings for transmitting Ethernet frames. Figure 7 and Figure 8 show flow charts of
transmitting Ethernet frames.

• Reset the EtherC/E-DMAC by software:
 Write 1 to the SWR bit in the E-DMAC mode register (EDMR).
 Disable accessing registers in all Ethernet-related modules on the reset channel during
 issuing the software reset (internal bus clock is 64 cycles).

Start

• Set the transmit/receive descriptors (8 for each) on memory and the end of the
descriptor ring.
• Initialize the descriptor list
 - TD0: (TACT): Set this bit to 0 (as invalid).
 (TDLE): Set the TDLE bit in the last descriptor to 1 (set the TDLE bit in other
 descriptors to 0)
 (TFP): Specify the transmit frame position when transmitting data.
 - TD1 (TBL): Specify the transmit buffer length when transmitting data.
 - TD2: Specify the starting address in the transmit buffer corresponding to each
 descriptor. Set the buffer address at 32-byte boundary.
 - Padding area: The E-DMAC does not use this area. This area can be set by user.
• Set the transmit/receive buffer address on memory to the descriptor.

Set the EtherC interrupt enable register
(ECSIPR)

Set the transmit/receive descriptor

Reset the EtherC/E-DMAC by software

• Enable interrupts corresponding to bits in the EtherC status register (ECSR)

Set the E-DMAC mode register (EDMR)
• Specify big endian format. Specify the transmit/receive descriptor length to 16
bytes

1

Set the Receive frame length register (RFLR) • Set the maximum frame length

Set the MAC address high, low registers
(MAHR, MALR)

• Set the MAC address

• Clear bits in the EESR to 1

Set the EtherC mode register (ECMR) • Specify the duplex mode in half-duplex mode, and set promiscuous mode as
 the normal operation

Clear the EtherC status register (ECSR) • Clear bits in the ECSR to 1

Set the IPG register (IPGR) • Set gaps between packets
 Specify H'14 for 96-bit time

Clear the EtherC/E-DMAC status register
(EESR)

Clear the EtherC/E-DMAC status interrupt
enable register (EESIPR)

• Enable interrupts corresponding to bits in the EtherC/E-DMAC status register (EESR)

• Set the starting address in the receive descriptor list:
 According to the specified descriptor length, set the lower bytes as follows;
 – 16-byte boundary: RDLA [3:0] = B'0000
 – 32-byte boundary: RDLA [4:0] = B'00000
 – 64-byte boundary: RDLA [5:0] = B'000000
Allocate the memory area at the same boundary.

Clear the Receive descriptor list start address
register (RDLAR)

Figure 7 Transmitting Ethernet Frames (1/2)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 11 of 35
Sep. 17, 2010

End

Clear the Transmit descriptor list start address
register (TDLAR)

Set the EtherC mode register (ECMR)

Retrieve the duplex mode

• Set the starting address in the transmit descriptor list:
 According to the specified descriptor length, set the lower bytes as follows:
 – 16-byte boundary: TDLA [3:0] = B'0000
 – 32-byte boundary: TDLA [4:0] = B'00000
 – 64-byte boundary: TDLA [5:0] = B'000000
Allocate the memory area at the same boundary.

• Retrieve the operation mode (full-duplex mode or half-duplex mode) from the auto-
negotiation results with the PHY-LSI.
For more information on the auto-negotiation setting, refer to the application note
"SH7216 Group, Configuring the Ethernet PHY-LSI Auto-Negotiation".

Activate the receiver

1

• Enable the reception and transmission on the EtherC

Set the Transmit/receive status copy enable
register (TRSCER)

Set the FIFO depth register (FDR)

• Clear bits in the TRSCER to 0 to copy the values in the EtherC/E-DMAC status
register to the corresponding descriptor

• Specify the transmit and receive FIFO size

Set the Receiving method control register
(RMCR)

• Set how to control the RR bit in the ETRRR register

• Set the RR bit in the EDRRR register to 1 to activate the receiver

Auto-negotiation
completed?

Yes

No

Set the transmit FIFO threshold register
(TFTR)

• Clear bits in the TFTR to 0 to set the transmit FIFO in store and forward mode

TACT = 0?
No

Yes

Set the transmit frame in the transmit buffer • Set the transmit data in the buffer which is connected to the current descriptor

Set the transmit descriptor • Set the current descriptor as transmit-enable state
 - Set the transmit frame position to the TFP bit
 (Specify 3 for one frame per one descriptor)
 - Set the transmit data length to the TBL bit
 - Set 1 to the TACT bit (Set this bit at the end)

Update the descriptor control pointer • Update the current descriptor to the next descriptor

Activate the transmitter • Set the TR bit in the EDTRR register to 1 to activate the transmitter

• Check if the current descriptor is not operating.
 Then, use the descriptor control pointer for transmission to check that the TACT
 bit in the current descriptor is 0 and the transmission is completed or interrupted.

• When the auto-negotiation is enabled, wait until the auto-negotiation is completed.
 For details on the auto-negotiation setting, refer to the application note
 "SH7216 Group, Configuring the Ethernet PHY-LSI Auto-Negotiation".

Figure 8 Transmitting Ethernet Frames (2/2)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 12 of 35
Sep. 17, 2010

2.2 Sample Program Operation
The sample program uses the EtherC and the E-DMAC to transmit 10 Ethernet frames to the host at the other end. It has
transmit descriptors and 256-byte transmit buffers (one frame per multiple descriptors, total: 8). Also, it uses the
transmit descriptor in the ring structure.

The sample program requires the portion of the Ethernet frame other than the preamble, SFD, and CRC data. Change
the destination and source MAC addresses in the header to the address for the host to use. Note that the EtherC does not
check if the source MAC address is correct.

Figure 9 shows the operation environment of the sample program. Figure 10 shows the Ethernet frame format.

HostSH7216 Evaluation board

Ethernet cross cable

MAC address: 00-01-02-03-04-05 00-0E-35-18-34-FA (Example)
IP address: 192.168.0.3 192.168.0.5

Direction to transmit frames

Figure 9 Sample Program Operation Environment

Preamble SFD
Destination

MAC
address

Source MAC
address

Type/
length Data CRC

Unit: byte 7 1 6 6 2 46 to 1500 4

Data to transfer to the receive buffer: 60 to 1514 bytes

Figure 10 Ethernet Frame Format

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 13 of 35
Sep. 17, 2010

2.3 Descriptor Definition in the Sample Program
The E-DMAC does not use the padding area in the descriptor, and that area can be used by user. The sample program
sets the starting address in the next descriptor in the padding area to create the ring structure by software. Figure 11
shows the definition of the transmit descriptor structure in the sample program and example to use the transmit
descriptor string.

Starting address in descriptor 2

Starting address in descriptor 3

Starting address in descriptor 4

Starting address in descriptor 1

Starting address in descriptor 5

Starting address in descriptor 6

Starting address in descriptor 7

Starting address in descriptor 8

Descriptor 1

Descriptor 4

Descriptor 3

Descriptor 2

Descriptor 5

Descriptor 8

Descriptor 7

Descriptor 6

Transmit descriptor string
(Ring structure)

Transmit descriptor structure definition

typedef struct Descriptor
{

uint32_t status;
uint16_t bufsize;
uint16_t size;
int8_t *buf_p;
struct Descriptor *next;

} ethfifo;

Figure 11 Transmit Descriptor Structure Definition and Example to Use the Transmit Descriptor String

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 14 of 35
Sep. 17, 2010

2.4 Sample Program Flow Chart
Figure 12 to Figure 15 shows flow charts of the sample program. Flow charts to configure the EtherC/E-DMAC
registers and descriptors include settings for receptions, however, the receive processing is not included.

For details on the function to retrieve the auto-negotiation result (phy_set_autonegotiate function), refer to the
application note "SH7216 Group, Configuring the Ethernet PHY-LSI Auto-Negotiation".

Start

Main function

No

Yes

No

Yes

No

Yes

Ethernet is open: R_Ether_Open

Transmit Ethernet frames:
R_Ether_Write

Ethernet is closed:
R_Ether_Close

End

Configuration Clear the module standby on the Ethernet Controller,
and sets the Pin Function Controller.

Successful?

Transmitted
10 frames?

Wait for 1 second As some applications on the host may not be able to
transmit or receive data immediately after it is linked,
this processing includes "wait" for 1 second.

Yes

Transmission
completed?

No
As the Ethernet frame transmit function does not
include "wait" until the transmission is completed, this
function waits here until the transmission is completed.

Successful?

Figure 12 Sample Program Flow Chart (1/4)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 15 of 35
Sep. 17, 2010

Start

phy_init: Initialize the PHY-LSI

Initialize the buffer and descriptor

Initialize the EtherC/E-DMAC register

phy_set_autonegotiate:
Start to PHY auto-negotiation

Specify the EtherC as full-duplex mode

R_ETHER_OK R_ETHER_ERROR

Start

R_ETHER_OK

R_Ether_Open
Ethernet Open Function

R_Ether_Close
Ethernet Close Function

For more information about the phy_init function and
the phy_set_autonegotiate function, refer to the
application note "SH7216 Group, Configuring the
Ethernet PHY-LSI Auto-Negotiation".

No

Yes

No

Yes

No

Yes

Activate the E-DMAC receiver

For more information about initializing the buffer and
descriptor, and initializing the EtherC/E-DMAC register,
refer to 2.1.8 Setting Procedure (When Receiving).

Enable the transmission/reception
on the EtherC

Disable the transmission/reception
on the EtherC

Successful?

Successful?

Full-duplex?

Figure 13 Sample Program Flow Chart (2/4)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 16 of 35
Sep. 17, 2010

Start

_eth_fifoWrite:
Write the transmit descriptor

R_Ether_Write
Ethernet Frame Transmit Function

No

Yes

No

Yes

No

Yes

Request to start transmission on the E-DMAC

R_ETHER_OK

Failed to write?

All data written?

All data written?

Update the current descriptor

Count the size of untransmitted data

Set the transmit descriptor
(Frame is completed)

E-DMAC is set to
disable transmission?

No

Yes

Figure 14 Sample Program Flow Chart (3/4)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 17 of 35
Sep. 17, 2010

_eth_fifoWrite
Transmit Descriptor Write Function

Start

Write the transmit data size

End

Yes

No

Return an error (transmitting data
in progress) as the return value

Write the transmit data

The current
descriptor is

transmitting data?

Return the transmit data size as
the return value

Figure 15 Sample Program Flow Chart (4/4)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 18 of 35
Sep. 17, 2010

3. Sample Program Listing

3.1 Sample Program Listing "main.c" (1/4)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

/***

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corp. and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2010 Renesas Electronics Corporation. All Rights Reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7216 Sample Program

* File Name : main.c

* Abstract : Configuration to Transmit Ethernet Frames

* Version : 2.00.00

* Device : SH7216

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release00).

* OS : None

* H/W Platform: R0K572167 (CPU board)

* Description : Configures the MCU for the Ethernet transmission and transmits

* : Ethernet frames.

**

* History : Nov.18,2009 Ver.1.00.00

* : Jul.23,2010 Ver.2.00.00 Comply with the Renesas API

*""FILE COMMENT END""**/

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 19 of 35
Sep. 17, 2010

3.2 Sample Program Listing "main.c" (2/4)

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

#include "iodefine.h"

#include "stdint.h"

#include "r_ether.h"

#include "phy.h"

/* ==== Prototype Declaration ==== */

void main(void);

/* ==== Variable Declaration ==== */

static uint8_t s_frame[] = {

 0xff,0xff,0xff,0xff,0xff,0xff, /* Destination MAC address */

 0x00,0x01,0x02,0x03,0x04,0x05, /* Source MAC address (00:01:02:03:04:05) */

 0x08,0x06, /* Type (ARP) */

 0x00,0x01, /* +-- H/W type = Ethernet */

 0x08,0x00, /* +-- Protocol type = IP */

 0x06,0x04, /* +-- HW/protocol address length */

 0x00,0x01, /* +-- OPCODE = request */

 0x00,0x01,0x02,0x03,0x04,0x05, /* +-- Source MAC address (00:01:02:03:04:05) */

 0xc0,0xa8,0x00,0x03, /* +-- Source IP address (192.168.0.3) */

 0x00,0x00,0x00,0x00,0x00,0x00, /* +-- Contact MAC address */

 0xc0,0xa8,0x00,0x05, /* +-- Contact IP address (192.168.0.5) */

};

extern volatile ethfifo txDesc[ENTRY]; /* Transmit descriptor */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 20 of 35
Sep. 17, 2010

3.3 Sample Program Listing "main.c" (3/4)

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

/*""FUNC COMMENT""**

 * ID :

 * Outline : Sample program main

 *--

 * Include : "iodefine.h", "stdint.h", "r_ether.h", and "phy.h"

 *--

 * Declaration : void main(void);

 *--

 * Description : Uses the internal Ethernet Controller (EtherC) and the Ethernet

 * : Controller Dynamic Memory Access Controller (E-DMAC) to transmit

 * : Ethernet frames. Ethernet PHY-LSI RTL8201CP (Realtek) is used

 * : in this application. Uses 8 transmit descriptors to transmit

 * : frames continuously.

 *--

 * Argument : void

 *--

 * Return Value : void

 *--

 * Note : None

 *""FUNC COMMENT END""**/

void main(void)

{

 int32_t i, ret;

 uint32_t ch = 0;

 uint32_t tact_flag;

 volatile int32_t w;

 /* ==== Clears the module standby on the EtherC/E-DMAC ==== */

 STB.CR4.BIT._ETHER = 0;

 /* ==== Sets the PFC (For the EtherC) ==== */

 PFC.PACRL4.BIT.PA12MD = 7; /* TX_CLK (input) */

 PFC.PACRL3.WORD = 0x7777; /* TX_EN,MII_TXD0,MII_TXD1,MII_TXD2 (output) */

 PFC.PACRL2.BIT.PA7MD = 7; /* MII_TXD3 (output) */

 PFC.PACRL2.BIT.PA6MD = 7; /* TX_ER (output) */

 PFC.PDCRH4.WORD = 0x7777; /* RX_DV,RX_ER,MII_RXD3,MII_RXD2 (input) */

 PFC.PDCRH3.WORD = 0x7777; /* MII_RXD1,MII_RXD0,RX_CLK,CRS (input) */

 PFC.PDCRH2.WORD = 0x7777; /* COL (input),WOL,EXOUT,MDC (input) */

 PFC.PDCRH1.BIT.PD19MD = 7; /* LINKSTA (input) */

 PFC.PDCRH1.BIT.PD18MD = 7; /* MDIO (input/output) */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 21 of 35
Sep. 17, 2010

3.4 Sample Program Listing "main.c" (4/4)

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

 /* ==== Ethernet configuration ==== */

 ret = R_Ether_Open(ch, &s_frame[6]);

 if(R_ETHER_OK == ret){

 /* ==== Waits until the application on the host is set up (1sec)@200 MHz ==== */

 for(w=0; w < 0x00700000; w++){

 }

 /* ==== Starts transmitting 10 frames ==== */

 for(i=0; i < 10; i++){

 /* ---- Transmit frames ---- */

 ret = R_Ether_Write(ch, s_frame, sizeof(s_frame));

 if(ret != R_ETHER_OK){

 break;

 }

 }

 /* ==== Waits until the transmission is completed ==== */

 for(i=0; i < ENTRY; i++){

 do{

 tact_flag = txDesc[i].status;

 tact_flag &= ACT;

 }while(ACT == tact_flag);

 }

 }

 /* ==== Stops transmitting/receiving Ethernet frames ==== */

 R_Ether_Close(ch);

 while(1){

 /* sleep */

 }

}

/* End of file */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 22 of 35
Sep. 17, 2010

3.5 Sample Program Listing "r_ether.c" (1/9)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

/***

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corp. and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2009(2010). Renesas Electronics Corporation. All Rights Reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7216 Sample Program

* File Name : r_ether.c

* Version : 2.00.00

* Device : SH7216

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release00).

* OS : None

* H/W Platform: R0K572167 (CPU board)

* Description : Ethernet module device driver

**

* History : Jun.10.2009 Ver.1.00.00

* : Jul.23,2010 Ver.2.00.00 Comply with the Renesas API

*""FILE COMMENT END""**/

#include <machine.h>

#include <string.h>

#include "iodefine.h"

#include "stdint.h"

#include "r_ether.h"

#include "phy.h"

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 23 of 35
Sep. 17, 2010

3.6 Sample Program Listing "r_ether.c" (2/9)

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

/* ==== Prototype Declaration ==== */

void _eth_fifoInit(ethfifo p[], uint32_t status);

int32_t _eth_fifoWrite(ethfifo *p, int8_t buf[], int32_t size);

int32_t _eth_fifoRead(ethfifo *p, int8_t buf[]);

#pragma section _RX_DESC

volatile ethfifo rxDesc[ENTRY]; /* Receive descriptor */

#pragma section _TX_DESC

volatile ethfifo txDesc[ENTRY]; /* Transmit descriptor */

#pragma section

#pragma section _RX_BUFF

int8_t rxbuf[ENTRY][BUFSIZE]; /* Receive data buffer */

#pragma section _TX_BUFF

int8_t txbuf[ENTRY][BUFSIZE]; /* Transmit data buffer */

#pragma section

/* ==== Initializes the Ethernet device driver control structure ==== */

struct ei_device le0 =

{

 "eth0", /* device name */

 0, /* open */

 0, /* Tx_act */

 0, /* Rx_act */

 0, /* txing */

 0, /* irq lock */

 0, /* dmaing */

 0, /* current receive descriptor */

 0, /* current transmit descriptor */

 0, /* save irq */

 {

 0, /* rx packets */

 0, /* tx packets */

 0, /* rx errors */

 0, /* tx errors */

 0, /* rx dropped */

 0, /* tx dropped */

 0, /* multicast */

 0, /* collisions */

 0, /* rx length errors */

 0, /* rx over errors */

 0, /* rx CRC errors */

 0, /* rx frame errors */

 0, /* rx fifo errors */

 0, /* rx missed errors */

 0, /* tx aborted errors */

 0, /* tx carrier errors */

 0, /* tx fifo errors */

 0, /* tx heartbeat errors */

 0 /* tx window errors */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 24 of 35
Sep. 17, 2010

3.7 Sample Program Listing "r_ether.c" (3/9)

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

 },

 0, /* MAC 0 */

 0, /* MAC 1 */

 0, /* MAC 2 */

 0, /* MAC 3 */

 0, /* MAC 4 */

 0 /* MAC 5 */

};

/*""FUNC COMMENT""**

 * ID :

 * Outline : Ethernet open

 *--

 * Include : "iodefine.h" , "phy.h", "r_ether.h" and "stdint.h"

 *--

 * Declaration : int32_t R_Ether_Open(uint32_t ch, uint8_t mac_addr[]);

 *--

 * Description : Initializes the EtherC, E-DMAC, PHY, and buffer memory.

 * : Initializes the MCU for the Ethernet and enables the MCU to

 * : transmit and receive Ethernet frames.

 * : When failed to initialize, it returns an error.

 *--

 * Argument : uint32_t ch; I : Ethernet channel number

 * : uint8_t mac_addr[]; I : MAC address of such Ethernet channel

 *--

 * Return Value : R_ETHER_OK; Succeeded to initialize

 * : R_ETHER_ERROR; Failed to initialize

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t R_Ether_Open(uint32_t ch, uint8_t mac_addr[])

{

 int32_t i;

 uint32_t mac;

 uint16_t phydata;

 ch = ch; /* Avoids the warning */

 /* ==== Configures the Ethernet device driver ==== */

 le0.open = 1;

 /* ==== Sets the descriptor ==== */

 _eth_fifoInit(rxDesc, (uint32_t)ACT);

 _eth_fifoInit(txDesc, (uint32_t)0);

 le0.rxcurrent = &rxDesc[0];

 le0.txcurrent = &txDesc[0];

 /* ==== Sets the MAC address ==== */

 le0.mac_addr[0] = mac_addr[0];

 le0.mac_addr[1] = mac_addr[1];

 le0.mac_addr[2] = mac_addr[2];

 le0.mac_addr[3] = mac_addr[3];

 le0.mac_addr[4] = mac_addr[4];

 le0.mac_addr[5] = mac_addr[5];

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 25 of 35
Sep. 17, 2010

3.8 Sample Program Listing "r_ether.c" (4/9)

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

 /* ==== Initializes the E-DMAC/EtherC ==== */

 EDMAC.EDMR.BIT.SWR = 1; /* Enables the software reset */

 for(i = 0 ; i < 0x00000100 ; i++); /* Waits until the E-DMAC/EtherC are initialized */

 /* (B clock: 64 cycles) */

 EDMAC.EDMR.LONG = 0x00000000; /* Sets the E-DMAC mode register */

 /* (Big endian mode) */

 /* (Transmit/receive descriptor length: 16 bytes) */

 /* ==== Initializes the EtherC ==== */

 EtherC.ECMR.LONG = 0x00000000; /* Sets the EtherC mode register */

 /* (Sets the duplex mode as half-duplex) */

 /* (Sets promiscuous mode as normal operation) */

 EtherC.ECSR.LONG = 0x00000037; /* Clears all of the EtherC status */

 /* (BFR, PSRTO, LCHNG, MPD, ICD) */

 EtherC.ECSIPR.LONG = 0x00000020; /* Disables the EtherC interrupt */

 /* bit31~6 : Reserve : 0 ----- Reserved bits */

 /* bit5 : BFSIPR : 1 ----- Disables the continuous broadcast frame */

 /* reception interrupt */

 /* bit4 : PSRTOIP : 0 ----- Disables the PAUSE frame retransmit retry over */

 /* bit3 : Reserve : 0 ----- Reserved bit */

 /* bit2 : LCHNGIP : 0 ----- Disables the link signal change interrupt */

 /* bit1 : MPDIP : 0 ----- Disables the Magic Packet detection interrupt */

 /* bit0 : ICDIP : 0 ----- Disables the illegal carrier detection interrupt */

 EtherC.RFLR.LONG = 1518; /* Sets the maximum receive frame length */

 EtherC.IPGR.LONG = 0x00000014; /* Sets the gap between packets (96-bit time) */

 /* ==== Sets the MAC address ==== */

 mac = ((uint32_t)mac_addr[0] << 24) |

 ((uint32_t)mac_addr[1] << 16) |

 ((uint32_t)mac_addr[2] << 8) |

 (uint32_t)mac_addr[3];

 EtherC.MAHR = mac;

 mac = ((uint32_t)mac_addr[4] << 8) |

 (uint32_t)mac_addr[5];

 EtherC.MALR.LONG = mac;

 /* ==== Initializes the E-DMAC ==== */

 EDMAC.EESR.LONG = 0x47FF0F9F; /* Initializes the EtherC/E-DMAC status register */

 EDMAC.EESIPR.LONG = 0x00000000; /* Initializes the EtherC/E-DMAC status */

 /* interrupt enable register */

 EDMAC.RDLAR = le0.rxcurrent; /* Sets the receive descriptor start address */

 EDMAC.TDLAR = le0.txcurrent; /* Sets the transmit descriptor start address */

 EDMAC.TRSCER.LONG = 0x00000000; /* Brings the EtherC/E-DMAC status register */

 /* value to the descriptor */

 EDMAC.TFTR.LONG = 0x00000000; /* Sets store and forward mode */

 EDMAC.FDR.LONG = 0x00000000; /* Sets the transmit/receive FIFO capacity */

 /* (256 bytes) */

 EDMAC.RMCR.LONG = 0x00000001; /* Sets to receive data continuously other */

 /* than the receive descriptor is empty */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 26 of 35
Sep. 17, 2010

3.9 Sample Program Listing "r_ether.c" (5/9)

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

 /* ==== Initializes the PHY ==== */

 phydata = phy_init();

 if(phydata == R_PHY_ERROR){

 return R_ETHER_ERROR;

 }

 /* ==== Starts the PHY auto-negotiation ==== */

 phydata = phy_set_autonegotiate();

 /* ---- Determines whether to auto-negotiate or not ---- */

 if(phydata == R_PHY_ERROR){ /* Failed to auto-negotiate */

 return R_ETHER_ERROR;

 }

 /* ---- Detects the performance of the link partner ---- */

 if(phydata & 0x0100){ /* Detects PHY-LSI register 0 */

 /* bit8 : DuplexMode : 1 ---- Supports */

 /* full-duplex mode */

 EtherC.ECMR.BIT.DM = 1; /* Full-duplex communication */

 }

 /* ==== Enables the EtherC transmission/reception ==== */

 EtherC.ECMR.BIT.RE = 1;

 EtherC.ECMR.BIT.TE = 1;

 /* ==== Enables the E-DMAC reception ==== */

 EDMAC.EDRRR.LONG = 0x00000001;

 return R_ETHER_OK;

}

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 27 of 35
Sep. 17, 2010

3.10 Sample Program Listing "r_ether.c" (6/9)

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

/*""FUNC COMMENT""**

 * ID :

 * Outline : Ethernet close

 *--

 * Include : "iodefine.h" , "r_ether.h" and "stdint.h"

 *--

 * Declaration : int32_t R_Ether_Close(uint32_t ch);

 *--

 * Description : Stops the EtherC/E-DMAC.

 *--

 * Argument : uint32_t ch; I : Ethernet channel number

 *--

 * Return Value : R_ETHER_OK; Disables the EtherC transmission/reception

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t R_Ether_Close(uint32_t ch)

{

 ch = ch; /* Avoids the warning */

 le0.open = 0;

 EtherC.ECMR.LONG = 0x00000000; /* Disables the EtherC transmission/reception */

 le0.irqlock = 1;

 return R_ETHER_OK;

}

/*""FUNC COMMENT""**

 * ID :

 * Outline : Transmit frames

 *--

 * Include : "iodefine.h" , "r_ether.h" and "stdint.h"

 *--

 * Declaration : int32_t R_Ether_Write(uint32_t ch, void *buf, uint32_t len);

 *--

 * Description : Copies the specified frame in the buffer registered in the

 * : transmit descriptor and transmits the frame.

 *--

 * Argument : uint32_t ch; I : Ethernet channel number

 * : void *buf; I : Transmit buffer pointer

 * : uint32_t len; I : Frame length

 *--

 * Return Value : R_ETHER_OK ; Succeeded to transmit frames

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t R_Ether_Write(uint32_t ch, void *buf, uint32_t len)

{

 int32_t xmit; /* Data size written in the transmit descriptor */

 int32_t flag = FP1; /* Transmit frame position flag */

 /* (default: starting frame) */

 int8_t *data = (int8_t *)buf; /* Pointer to indicate the transmit data */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 28 of 35
Sep. 17, 2010

3.11 Sample Program Listing "r_ether.c" (7/9)

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

 ch = ch; /* Avoids the warning */

 /* ==== Transmits 1 frame ==== */

 for(xmit = 0 ; len > 0 ; len -= xmit){ /* Counts the size of untransmitted data */

 /* ---- Writes data in the transmit descriptor ---- */

 while((xmit = _eth_fifoWrite(le0.txcurrent, data, (int32_t)len)) < 0);

 /* ---- When writing all data ---- */

 if(xmit == len){

 flag |= FP0; /* Sets the transmit frame position flag */

 /* (frame is completed) */

 }

 le0.txcurrent->status &= ~(FP1 | FP0); /* Clear bits TFP1, and TFP0 to 0 */

 le0.txcurrent->status |= (flag | ACT); /* Brings the flag value to bits TFP1, TFP0 */

 /* Enables the TACT bit */

 flag = 0;

 le0.txcurrent = le0.txcurrent->next;

 data += xmit;

 }

 le0.stat.tx_packets++;

 /* ==== When E-DMAC transmission is disabled ==== */

 if(EDMAC.EDTRR.LONG == 0x00000000){

 EDMAC.EDTRR.LONG = 0x00000001; /* Requests to start the E-DMAC transmission */

 }

 return R_ETHER_OK;

}

(omitted)

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 29 of 35
Sep. 17, 2010

3.12 Sample Program Listing "r_ether.c" (8/9)

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

/*""FUNC COMMENT""**

 * ID :

 * Outline : Initialize the FIFO

 *--

 * Include :

 *--

 * Declaration : void _eth_fifoInit(ethfifo p[], uint32_t status);

 *--

 * Description : Initializes the E-DMAC descriptor.

 *--

 * Argument : ethfifo p[]; O : Pointer to the descriptor

 * : uint32_t status; I : Descriptor default status

 *--

 * Return Value : void

 *--

 * Note : None

 *""FUNC COMMENT END""**/

void _eth_fifoInit(ethfifo p[], uint32_t status)

{

 ethfifo *current = 0;

 int32_t i, j;

 for(i = 0 ; i < ENTRY ; i++){

 current = &p[i];

 /* ==== Detects the descriptor status ==== */

 if(status == 0){

 current->buf_p = &txbuf[i][0]; /* Determines to transmit when the ACT bit is 0 */

 }

 else{

 current->buf_p = &rxbuf[i][0]; /* Determines to receive when the ACT bit is 1 */

 }

 /* ==== Clears the buffer ==== */

 for(j = 0 ; j < BUFSIZE ; j++){

 current->buf_p[j] = 0;

 }

 current->bufsize = BUFSIZE;

 current->size = 0;

 current->status = status;

 current->next = &p[i+1];

 }

 /* ==== Waits until the last FIFO entry is completed ==== */

 current->status |= DL; /* Sets the current descriptor as the end of the descriptor ring */

 current->next = &p[0];

}

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 30 of 35
Sep. 17, 2010

3.13 Sample Program Listing "r_ether.c" (9/9)

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

570

/*""FUNC COMMENT""**

 * ID :

 * Outline : Write to the transmit descriptor

 *--

 * Include :

 *--

 * Declaration : int32_t _eth_fifoWrite(ethfifo *p, int8_t buf[], int32_t size);

 *--

 * Description : Writes the data specified by the argument to the transmit

 * : descriptor.

 *--

 * Argument : ethfifo *p; O ; Pointer to the transmit descriptor

 * : int8_t buf[]; O ; Pointer to the transmit data

 * : int32_t size; I : Transmit data size (bytes)

 *--

 * Return Value : -1; The current descriptor is transferring data

 * : 0 or bigger; Data size written in the transmit descriptor

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t _eth_fifoWrite(ethfifo *p, int8_t buf[], int32_t size)

{

 int32_t i;

 ethfifo *current = p;

 /* ==== The current descriptor is transmitting data ==== */

 if((current->status & ACT) != 0){

 return(-1);

 }

 for(i = 0 ; i < size; i++){

 if(i >= BUFSIZE){

 break;

 }

 else{

 /* ==== Writes the data in the transmit descriptor ==== */

 current->buf_p[i] = buf[i];

 }

 }

 current->bufsize = (uint16_t)i;

 return i;

}

(omitted)

/* End of File */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 31 of 35
Sep. 17, 2010

3.14 Sample Program Listing "r_ether.h" (1/3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

/***

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corp. and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2009(2010). Renesas Electronics Corporation. All Rights Reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7216 Sample Program

* File Name : r_ether.h

* Version : 2.00.00

* Device : SH7216

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release00).

* OS : None

* H/W Platform: R0K572167 (CPU board)

* Description : Ethernet module device driver

**

* History : Jun.10.2009 Ver.1.00.00

* : Jul.23,2010 Ver.2.00.00 Comply with the Renesas API

*""FILE COMMENT END""**/

#ifndef ETH_H

#define ETH_H

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 32 of 35
Sep. 17, 2010

3.15 Sample Program Listing "r_ether.h" (2/3)

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

/* ==== Type definition ==== */

typedef struct Descriptor

{

 uint32_t status;

 uint16_t bufsize;

 uint16_t size;

 int8_t *buf_p;

 struct Descriptor *next;

} ethfifo;

/* ==== Macro definition ==== */

#define BUFSIZE 256

#define ENTRY 8

#define ACT 0x80000000

#define DL 0x40000000

#define FP1 0x20000000

#define FP0 0x10000000

#define FE 0x08000000

#define RFOVER 0x00000200

#define RMAF 0x00000080

#define RRF 0x00000010

#define RTLF 0x00000008

#define RTSF 0x00000004

#define PRE 0x00000002

#define CERF 0x00000001

#define ITF 0x00000010

#define CND 0x00000008

#define DLC 0x00000004

#define CD 0x00000002

#define TRO 0x00000001

/* ==== Renesas Ethernet API return defines ==== */

#define R_ETHER_OK 0

#define R_ETHER_ERROR -1

#define R_ETHER_HARD_ERROR -3

#define R_ETHER_RECOVERABLE -4

#define R_ETHER_NO_DATA -5

/* ==== Prototype Declaration ==== */

/* ==== Renesas Ethernet API prototypes ==== */

int32_t R_Ether_Open(uint32_t ch, uint8_t mac_addr[]);

int32_t R_Ether_Close(uint32_t ch);

int32_t R_Ether_Write(uint32_t ch, void *buf, uint32_t len);

int32_t R_Ether_Read(uint32_t ch, void *buf);

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 33 of 35
Sep. 17, 2010

3.16 Sample Program Listing "r_ether.h" (3/3)

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

/* ==== Ethernet collected data ==== */

struct enet_stats

{

 uint32_t rx_packets;

 uint32_t tx_packets;

 uint32_t rx_errors;

 uint32_t tx_errors;

 uint32_t rx_dropped;

 uint32_t tx_dropped;

 uint32_t multicast;

 uint32_t collisions;

 /* ---- Receive error ---- */

 uint32_t rx_length_errors;

 uint32_t rx_over_errors;

 uint32_t rx_crc_errors;

 uint32_t rx_frame_errors;

 uint32_t rx_fifo_errors;

 uint32_t rx_missed_errors;

 /* ---- Transmit error ---- */

 uint32_t tx_aborted_errors;

 uint32_t tx_carrier_errors;

 uint32_t tx_fifo_errors;

 uint32_t tx_heartbeat_errors;

 uint32_t tx_window_errors;

};

struct ei_device

{

 const int8_t *name; /* Device name */

 uint8_t open;

 uint8_t Tx_act;

 uint8_t Rx_act;

 uint8_t txing;

 uint8_t irqlock;

 uint8_t dmaing;

 ethfifo *rxcurrent; /* Receive current descriptor */

 ethfifo *txcurrent; /* Transmit current descriptor */

 uint8_t save_irq;

 struct enet_stats stat; /* Ethernet collected data */

 uint8_t mac_addr[6]; /* MAC address storage area */

};

#endif /* ETH_H */

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 34 of 35
Sep. 17, 2010

4. References
• Software Manual

SH-2A, SH-2A FPU Software Manual Rev. 3.00
The latest version of the software manual can be downloaded from the Renesas Electronics website.

• Hardware Manual

SH7214 Group, SH7216 Group Hardware User’s Manual Rev. 2.00
The latest version of the hardware user’s manual can be downloaded from the Renesas Electronics website.

SH7216 Configuration to Transmit Ethernet Frames

R01AN0051EJ0200 Rev. 2.00 Page 35 of 35
Sep. 17, 2010

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Mar.26.10 — First edition issued
2.00 Sep.17.10 All pages Updated to comply with the Renesas API

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions
	1.4 Related Application Notes

	2. Applications
	2.1 Overview
	2.1.1 EtherC Overview
	2.1.2 EtherC Transmitter Overview
	2.1.3 E-DMAC Overview
	2.1.4 Descriptor Overview
	2.1.5 Transmit Descriptor Overview
	2.1.6 Setting the Transmit Descriptor
	2.1.7 Operation Procedure (When Transmitting)
	2.1.8 Setting Procedure (When Transmitting)

	2.2 Sample Program Operation
	2.3 Descriptor Definition in the Sample Program
	2.4 Sample Program Flow Chart

	3. Sample Program Listing
	3.1 Sample Program Listing "main.c" (1/4)
	3.2 Sample Program Listing "main.c" (2/4)
	3.3 Sample Program Listing "main.c" (3/4)
	3.4 Sample Program Listing "main.c" (4/4)
	3.5 Sample Program Listing "r_ether.c" (1/9)
	3.6 Sample Program Listing "r_ether.c" (2/9)
	3.7 Sample Program Listing "r_ether.c" (3/9)
	3.8 Sample Program Listing "r_ether.c" (4/9)
	3.9 Sample Program Listing "r_ether.c" (5/9)
	3.10 Sample Program Listing "r_ether.c" (6/9)
	3.11 Sample Program Listing "r_ether.c" (7/9)
	3.12 Sample Program Listing "r_ether.c" (8/9)
	3.13 Sample Program Listing "r_ether.c" (9/9)
	3.14 Sample Program Listing "r_ether.h" (1/3)
	3.15 Sample Program Listing "r_ether.h" (2/3)
	3.16 Sample Program Listing "r_ether.h" (3/3)

	4. References

