

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 1 of 39

SuperH RISC engine C/C++ Compiler Package
Application notes: [Introduction guide] Sample file Guide

for SH-3, SH-4, and SH-4A

This document explains precautions for generating files and performing initial
coding in High-performance Embedded Workshop (herein as HEW), for SuperH
RISC engine C/C++ compiler V.9.

Table of contents

1. Generating a Sample Program ... 2
1.1 Project Generator Settings.. 2
1.2 List of Generated Files .. 10

2. Reset Processing .. 12
2.1 Reset Handlers (vhandler.src, vecttbl.src, env.src, env.inc) ... 12
2.2 Reset Function (resetprg.c)... 15
2.3 Stack Size Settings (stacksct.h).. 17

3. Non-reset Exceptions.. 18
3.1 Processing Handlers for Non-reset Exceptions (vhandler.src, vecttbl.src, env.src) 18
3.2 General Exception Processing Handler (_INTHandlerPRG) .. 19
3.3 Setting Vector Base Registers (VBR) (set_vbr function) .. 23
3.4 Exception Processing Routine (intprg.src).. 24

4. Memory Initialization.. 25
4.1 Memory Initialization Function _INTSCT (dbsct.c).. 25
4.2 If Initialized Data Areas Other Than the D Section Exist .. 26
4.3 If Unitialized Data Areas Other Than the B Section Exist ... 26
4.4 ROM Support Functionality ... 27

5. Low-level Interface Routine Settings... 28
5.1 Memory Management (sbrk.c, sbrk.h) .. 28
5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h) ... 29

6. Precautions Regarding C++ Usage (_CALL_INIT Function and CALL_END Function) 30

7. Using C to Code Exception Processing Programs ... 32
7.1 Without Multiple Interrupts .. 32
7.2 With Multiple Interrupts ... 34

8. Frequently Asked Questions ... 37
8.1 End Processing ... 37
8.2 C++ Functions and Reciprocal C Function Calls .. 37
Website and Support <website and support,ws> .. 38

APPLICATION NOTE

1. Generating a Sample Program

1.1 Project Generator Settings
This document explains the sample program generated when the following operations are performed in the project
generator (started in HEW by choosing New workspace from the File menu). Note that SH7750 selected for CPU
types is selected for illustration purpose only.

(1) Create a new workspace
For the project type, choose Application.

REJ06J0012-0100/Rev.1.00 June 2007 Page 2 of 39

Figure 1-1

APPLICATION NOTE

(2) Select the CPU
For CPU Series, select SH-4

For CPU Type, select SH7750.

Figure 1-2

Notes:
• The CPU Series setting is reflected in the CPU page of the SuperH RISC engine Standard Toolchain dialog box

(herein as Toolchain dialog box).
• The CPU Type setting is reflected in the contents of intprg.src, vecttbl.src, iodefine.h, and

vect.inc, and the memory placement setting for the optimization linkage editor. If the CPU to be selected
does not exist, use DeviceUpdater to add the CPU type. DeviceUpdater can be downloaded from the Renesas
web site.

REJ06J0012-0100/Rev.1.00 June 2007 Page 3 of 39

APPLICATION NOTE

(3) Optional settings
Proceed with the default settings.

Figure 1-3

Note:
• The settings in this dialog box specify the options set for all projects. The setting items are reflected in the CPU

page of the Toolchain dialog box. The items that can be selected differ depending on the selection from (2)
Select the CPU.

REJ06J0012-0100/Rev.1.00 June 2007 Page 4 of 39

APPLICATION NOTE

(4) Set the generation file
Select Use I/O library.

Specify 20 for Number of I/O Streams.

Figure 1-4

Notes:
• When Use I/O library is selected, the low-level I/O-related interface routines (open, close, write, read,

and lseek) and sample programs (lowlvl.src, lowsrc.c, and lowsrc.h) for the standard library
initialization programs (_INIT_IOLIB and _CLOSEALL) are generated.

• The value set for Number of I/O Streams is reflected in lowsrc.h.
• When Use Heap Memory is selected, sample programs (sbrk.h and sbrk.c) for the low-level

memory-management interface routine (sbrk) are generated.
• The value set for Heap Size is reflected in sbrk.h.
• The Generate main() Function setting is used to generate the main function (C source file or C++ source file)

and abort function template.
• When I/O Register Definition File is selected, iodefine.h is generated.
• The Generate Hardware Setup Function setting is used to generate hwsetup.c, hwsetup.cpp, and

hwsetup.src.
In the hardware setup function, perform the necessary hardware initialization processing for the target system,
including bus state controller (BSC) initialization and serial initialization. Note that if the C/C++ languages are
used for programming, neither the languages nor the compile option can control when a stack is used. As such,
when a stack area is reserved in SDRAM or other memory that requires initialization, the memory may end up
being accessed before initialization. In this case, use assembly language to perform memory initialization before
program execution in C.

REJ06J0012-0100/Rev.1.00 June 2007 Page 5 of 39

APPLICATION NOTE

(5) Set the standard library
Proceed with the default settings.

Figure 1-5

Notes:
• This dialog box is used to select the library to be configured by the standard library configuration tool.
• The settings in this dialog box are reflected in the Standard Library page of the Toolchain dialog box.

REJ06J0012-0100/Rev.1.00 June 2007 Page 6 of 39

APPLICATION NOTE

(6) Set the stack area
Proceed with the default settings.

Figure 1-6

Notes:
• The Stack Pointer Address setting is reflected in the S section settings in the optimization linkage editor.
• The Stack Size setting is reflected in stacksct.h.

Note that when Vector Definition Files is selected in (7) Set the vector, stacksct.h is not generated.

REJ06J0012-0100/Rev.1.00 June 2007 Page 7 of 39

APPLICATION NOTE

(7) Set the vector
Proceed with the default settings.

Figure 1-7

Note:
• When Vector Definition Files is selected, env.src, intprg.src, resetprg.c, stacksct.h,

vecttbl.src, vect.inc, and vhandler.src are generated.

REJ06J0012-0100/Rev.1.00 June 2007 Page 8 of 39

APPLICATION NOTE

(8) Set the debugger target
Proceed with the default settings.

Figure 1-8

(9) Change the name of the generation file
Select Finish.

Figure 1-9

REJ06J0012-0100/Rev.1.00 June 2007 Page 9 of 39

APPLICATION NOTE

1.2 List of Generated Files
The following table lists the sample files auto-generated by the project generator.

Table 1-1 List of auto-generated sample files (1)

intprg.src Interrupt function
• Defines the interrupt function (dummy).
• Generated according to the specification in (7) Vector Definition Files.

For details, see 3.4 Exception Processing Routine (intprg.src).

lowlvl.src Low-level I/O interface routine
Defines _charput and _charget, which are called from the low-level interface routine (write and read). •

• This program only runs in the simulator.
• Generated according to the specification in (4) Use I/O library.

For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

vecttbl.src Vector table
• Defines the exception processing vector table.
• Generated according to the specification in (7) Vector Definition Files.

For details, see 2.1 Reset Handlers (vhandler.src, vecttbl.src, env.src, env.inc).

vhandler.src Exception processing handlers
• Defines the exception processing handlers.
• Generated according to the specification in (7) Vector Definition Files.

For details, see 2.1 Reset Handlers (vhandler.src, vecttbl.src, env.src, env.inc).

dbsct.c Memory initialization target specification
• Defines RAM initialization and targets for transfer processing from ROM to RAM areas.

For details, see 4.1 Memory Initialization Function _INTSCT (dbsct.c).

lowsrc.c I/O low-level interface routine
Defines the low-level interface routines (write, read, open, close, and lseek). •

• This program is for simulators that only support standard I/O functions.
• Generated according to the specification in (4) Use I/O library.

For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

resetprg.c Reset function
Defines the reset function (PowerON_Reset). •

• Generated according to the specification in (7) Vector Definition Files.

For details, see 2.2 Reset Function (resetprg.c).

sbrk.c Memory management-related low-level interface routine
Defines the low-level interface routine for memory management (sbrk). •

• Generated according to the specification in (4) Use Heap Memory.

For details, see 5.1 Memory Management (sbrk.c, sbrk.h).

test.c

(test.cpp)
Main routine

Defines the main function, as well as the abort function when C++ is used. •
• The file name specified in (1) Project Name is used.

env.inc Address definition for exception processing registers
• Defines the addresses in which the exception event register (EXPEVT) and interrupt event register (INTEVT) are

placed.

For details, see 2.1 Reset Handlers (vhandler.src, vecttbl.src, env.src, env.inc).

REJ06J0012-0100/Rev.1.00 June 2007 Page 10 of 39

APPLICATION NOTE

Table 1-2 List of auto-generated sample files (2)
lowsrc.h I/O low-level function header

• Defines the IOSTREAM macro, which specifies the file handler count (number of files that can be used at the same
time.

• Generated according to the specification in (4) Use I/O library.
• The value set in (4) Number of I/O Streams reflected.

For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

sbrk.h Low-level header for memory management
• Defines the HEAPSIZE macro, which specifies the total size of the heap area.
• Generated according to the specification in (4) Use Heap Memory.
• The value set in (4) Heap Size is reflected.

For details, see 5.1 Memory Management (sbrk.c, sbrk.h).

stacksct.h Stack section size header
• Defines the size of the stack section.
• Generated according to the specification in (7) Vector Definition Files.
• The value set in (6) Stack Size is reflected.

For details, see 2.3 Stack Size Settings (stacksct.h).

typedefine.h Type alias declaration header
• Declares type aliases.

vect.inc Header for vector tables
• Declares the prototype for the reset function and interrupt function.
• Generated according to the specification in (7) Vector Definition Files.

REJ06J0012-0100/Rev.1.00 June 2007 Page 11 of 39

APPLICATION NOTE

2. Reset Processing
The following explains operation sample programs generated by HEW after power-on reset.

2.1 Reset Handlers (vhandler.src, vecttbl.src, env.src, env.inc)
The CPU performs the following operations when an exception occurs due to one of the five reset causes shown in
Table 2-1.

1. It sets the program counter (PC) to H'A0000000.
2. It sets the exception code in the exception event register (EXPEVT).
3. It sets the mode bit (MD), register bank bit (RB), and exception / interrupt block bit (BL) of the status register (SR) to

1, sets the FPU disable bit (FD) to 0, and the interrupt mask bits (I3 to I0) to B'1111.
4. It sets the vector base register (VBR) to H'A0000000.

Table 2-1 Exception list (reset cause)
Exception Exception code Vector base Offset from _RESET_Vectors Exception processing routine

Power-on reset H’000 H'A0000000 H’000 _PowerON_Reset

Manual reset H’020 H'A0000000 H’004 _Manual_Reset

H-UDI H’000 H'A0000000 H’000 _PowerON_Reset

Instruction TLB H’140 H'A0000000 H’028 _TBL_Reset

Data TLB H’140 H'A0000000 H’028 _TBL_Reset

The cause of an exception is determined based on the value of EXPEVT. The sample program references the exception
code set for EXPEVT in _ResetHandler defined in vhandler.src, and jumps to the processing function for
each exception cause.

This processing to determine exceptions is called a reset handler, and the processing function for each exception cause
is called an exception processing routine.

Details about _ResetHandler

(1) The value of EXPEVT is loaded. (a), (b)
(2) The value of EXPEVT is used to calculate the offset from _RESET_Vectors (EXPEVT / 8). (c), (d)
(3) The value from (2) is added to the address for _RESET_Vectors. (e), (f)
(4) The address of the exception processing routine is obtained from the address in (3). (g)
(5) Jump is performed to the exception processing routine obtained in (4). (h)

 .include "env.inc"
 .include "vect.inc"

 .import _RESET_Vectors
 .import _INT_Vectors
 .import _INT_MASK
;;
; reset ;
;;;
 .section RSTHandler,code
_ResetHandler:
 mov.l #EXPEVT,r0 (a)
 mov.l @r0,r0 (b)
 shlr2 r0 (c)
 shlr r0 (d)
 mov.l #_RESET_Vectors,r1 (e)
 add r1,r0 (f)
 mov.l @r0,r0 (g)
 jmp @r0 (h)
 nop

List 2-1

REJ06J0012-0100/Rev.1.00 June 2007 Page 12 of 39

APPLICATION NOTE

Note 1:
The address for the exception event register (EXPEVT) is set for the EXPEVT symbol in env.inc (List 2-2).

REJ06J0012-0100/Rev.1.00 June 2007 Page 13 of 39

List 2-2

Note 2:
_RESET_Vectors is defined in vecttbl.src (List 2-3).

For example, when power-on reset occurs, the exception code H’000 is set for EXPEVT. Then, since the exception
code H’000 is used to calculate the offset value 0, jump is performed to the _PowerON_Reset function, at the
beginning of _RESET_Vectors.

 .include "vect.inc"

 .section VECTTBL,data
 .export _RESET_Vectors

_RESET_Vectors:
;<<VECTOR DATA START (POWER ON RESET)>>
 ;H'000 Power On Reset (Hitachi-UDI RESET)
 .data.l _PowerON_Reset
;<<VECTOR DATA END (POWER ON RESET)>>
;<<VECTOR DATA START (MANUAL RESET)>>
 ;H'020 Manual Reset
 .data.l _Manual_Reset
;<<VECTOR DATA END (MANUAL RESET)>>
; Reserved
 .datab.l 8,H'00000000
;<<VECTOR DATA START (TBL RESET)>>
 ;H'140 TBL Reset (DATA TBL Reset)
 .data.l _TBL_Reset
;<<VECTOR DATA END (TBL RESET)>>

EXPEVT: .equ H'FF000024

List 2-3

APPLICATION NOTE

Note 3
Since the position for PC after the reset cause exception occurs is 0xA0000000, the reset handler needs to be
placed in the 0xA0000000 position. Since in the sample program the reset handler (_ResetHandler) is placed
in the RSTHandler section, the RSTHandler section is placed in the 0xA0000000 position, in the linker
section (Figure 2-1).

RSTHandler is placed in the 0xA0000000
position.

Figure 2-1

REJ06J0012-0100/Rev.1.00 June 2007 Page 14 of 39

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 15 of 39

2.2 Reset Function (resetprg.c)
The following shows the processing contents for the PowerON_Reset reset function, when power-on reset is
performed.

C source Description
#include <machine.h> When an embedded function such as set_cr, set_vbr, or sleep is

used, include is performed for machine.h.
#include <_h_c_lib.h> When the _INITSCT function is used, include is performed for

_h_c_lib.h.
//#include <stddef.h> When errno is used, include is performed for stddef.h.
//#include <stdlib.h> When the rand function is used, include is performed for stdlib.h.
#include "typedefine.h" Type alias declaration is performed in typedefine.h.
#include "stacksct.h" #pragma stacksize is specified.

#define SR_Init 0x000000F0 The value set for the status register (SR) is defined as a macro.

The 4th to 7th bits of the SR are the interrupt mask bits (I3 to I0), and H'F
(B'1111) is set as interrupt mask level 15 (no interrupt).

#define INT_OFFSET 0x100UL The size of the reset vector table is defined as a macro. This is used as an
offset value during processing to set the vector base register (VBR).

extern void INTHandlerPRG(void); A INTHandlerPRG prototype declaration is performed.

#ifdef __cplusplus When C++ is used, an extern "C" declaration is performed.
extern "C" {
#endif
Void PowerON_Reset(void); A PowerON_Reset prototype declaration is performed.
Void Manual_Reset(void); A Manual_Reset prototype declaration is performed.
Void main(void); A main prototype declaration is performed.
#ifdef __cplusplus
}
#endif

#ifdef __cplusplus
extern "C" {
#endif
extern void INIT IOLIB(void); A prototype declaration is performed for I/O-related standard library

initialization processing.
extern void CLOSEALL(void); A prototype declaration is performed for the I/O-related standard library

end function.
#ifdef __cplusplus
}
#endif

//extern void srand(_UINT); When the rand function is used, an srand prototype declaration is

performed.
//extern _SBYTE *_s1ptr; When the strtok function is used, a declaration for the _s1ptr

variable is enabled.

//#ifdef __cplusplus
//extern "C" {
//#endif
//extern void HardwareSetup(void); When HardwareSetup is called, a prototype declaration is performed.
//#ifdef __cplusplus
//}
//#endif

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 16 of 39

C source Description
//#ifdef __cplusplus
//extern "C" {
//#endif
//extern void _CALL_INIT(void); A prototype declaration for constructor call processing. This is enabled

when global classes are used.
//extern void _CALL_END(void); A prototype declaration for destructor call processing. This is enabled

when global classes are used.
//#ifdef __cplusplus
//}
//#endif

#pragma section ResetPRG The reset function is placed in the PResetPRG section.

#pragma entry PowerON_Reset

Specifies the entry function for the PowerON_Reset function. When
this is specified in the function, save/restore code for the register can be
suppressed.
Note that since a #pragma stacksize specification exists, code that
sets the stack address at R15 at the beginning of the PowerON_Reset
function is generated.

void PowerON_Reset(void)
{
 set_vbr((void *)((_UINT *)&
INTHandlerPRG - INT_OFFSET));

Setting processing is performed for the vector base register (VBR).
For details, see 3.3. Setting Vector Base Registers (VBR) (set_vbr
function).

 INITSCT();

A function to process memory is called.
For details, see 4. Memory Initialization.

// CALL_INIT();

Constructor call processing is performed for global class objects.
For details, see 6. Precautions Regarding C++ Usage (_CALL_INIT
Function and CALL_END Function).

 _INIT_IOLIB();

The I/O-related standard library is initialized.
For details, see 5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h).

// errno=0; This is for errno initialization processing. This is enabled when errno
is used.

// srand((_UINT)1); When the rand function is used, srand needs to be called to initialize
the random number table.

// _s1ptr=NULL;

When the strtok function is used, the _s1ptr variable needs to be
initialized.

// HardwareSetup(); A dummy function for hardware setting processing is called.
 set_cr(SR_Init); Setting processing is performed for the status register (SR).
 main(); The main function is called.
 _CLOSEALL();

End processing is performed for the I/O-related standard library.

// _CALL_END();

Destructor call processing is performed. This needs to be called when
global classes are used.

 sleep();

}
The sleep instruction is executed and the status changes to sleep so
that PowerON_Reset cannot be avoided.

//#pragma entry Manual_Reset
void Manual_Reset(void) This is the manual reset function (dummy).
{
}

APPLICATION NOTE

2.3 Stack Size Settings (stacksct.h)
The address of the stack pointer needs to be set in R15 for the user program. In the sample program, #pragma entry
and #pragma stacksize extension functions are used to perform setting processing at the beginning of the
PowerON_Reset function (List 2-4).

C source code Assembly code
void PowerON_Reset(void)

 _PowerON_Reset:

 MOV.L L12+2,R15 ; STARTOF S+SIZEOF S

{

 set_vbr((void *)((_UINT *)&
INTHandlerPRG - INT_OFFSET));

 MOV.L L12+6,R6 ; _INTHandlerPRG

 MOV #1,R1 ; H'00000001

....

List 2-4

The compiler reserves a 0x400-byte stack area (S section), due to the #pragma stacksize specification in
stacksct.h (List 2-5).

Since the stack is used from higher addresses to lower address, the start address of the S section needs to be set to
(stack-pointer-address - stack-size). In the sample project, since the stack pointer address is set to 0x73FFFFF0
(Figure 1-6), the S section start address is set to 0x73FFFBF0 (0x73FFFFF0 – 0x400) for the section placement in the
optimization linkage editor (Figure 2-2).

List 2-5

#pragma stacksize 0x400

The stack address
is set in R15.

stack-pointer-address – stack-size
(0x73FFFFF0 – 0x400 = 0x73FFFBF0)

Figure 2-2

REJ06J0012-0100/Rev.1.00 June 2007 Page 17 of 39

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 18 of 39

3. Non-reset Exceptions
Non-reset exceptions include general exceptions and exceptions due to interrupts. The hardware performs the following
when a non-reset exception occurs:

1. It saves the status register (SR) and program counter (PC) to the save status register (SSR) and save program

counter (SPC), respectively.
2. It sets the BL bit, MD bit, and RB bit for the SR to 1, and sets PC to (VBR + offset-value-for-each-exception-cause).

This means that the bank is switched, the processing mode switches to privileged mode, and interrupts are masked.
• BL bit

When the BL bit is 0, exceptions and interrupts are accepted. When the BL bit is set to 1, all interrupts are
masked. When an exception other than a user break occurs, the status of the internal CPU register and other
module registers is reverted to that after manual reset.

• MD bit
When the MD bit is 0, the user mode takes effect. When the MD bit is 1, privileged mode takes effect.

• RB bit
When the RB bit is 0, R0_BANK0 to R7_BANK0 are accessed as general registers R0 to R7.
When the RB bit is 1, R0_BANK1 to R7_BANK1 are accessed as general registers R0 to R7.

3.1 Processing Handlers for Non-reset Exceptions (vhandler.src, vecttbl.src, env.src)
When a non-reset exception occurs, PC is set to (VBR + offset-value-for-each-exception-cause). When a general
exception occurs, the exception event register (EXPEVT) is set to the exception cause. When an interrupt occurs, the
interrupt event register (INTEVT) is set to the interrupt cause.

Table 3-1 lists some of the offset values and exception codes (EXPEVT/INTEVT) for exception causes.

Table 3-1 Exceptions list (partial)
Exception cause Offset Exception code Exception processing

routine
Index

Data TLB miss exception (read) H’400 H’040 INT_TLBMiss_Load 0

Data TLB miss exception (write) H’400 H’060 INT_TLBMiss_Store 1

Initial page write exception H’100 H’080 INT_TLBInitial_Pa
ge

2

Data TLB protection violation exception
(read)

H’400 H’0A0 INT_TLBProtect_Lo
ad

3

…

Unconditional trap H’100 H’160 INT_TRAPA 9

…

Non-maskable interrupt H’600 H’1C0 INT_NMI 12

User break after instruction execution H’100 H’1E0 INT_User_Break 13

External interrupt 0 H’600 H’200 INT_Extern_0000 14

External interrupt 1 H’600 H’220 INT_Extern_0001 15

In the sample project, the following exception processing handlers defined in vhandler.src are called:
• When a general exception occurs: _INTHandlerPRG
• When a TLB miss exception occurs: _TLBmissHandler
• When an interrupt occurs: _IRQHandler

The exception processing handler calls the processing function for each exception cause (exception processing routine),
control returns to the exception processing handler again once processing is complete for the exception processing
routine, and then control is returned to normal processing from the exception processing handler (Figure 3-1).

APPLICATION NOTE

Normal
processing

Non-reset exception Exception processing
handler

Normal
processing

Exception processing
handler

Exception processing
routine

Figure 3-1

3.2 General Exception Processing Handler (_INTHandlerPRG)
The following uses the general exception processing handler _INTHandlerPRG (List 3-1) as an example to explain
exception processing handlers.

The same processing is also performed for the TLB miss exception processing handler (_TLBmissHandler) and
interrupt handler (_IRQHandler).

Note that INTEVT is referenced when the address of the exception processing routine is calculated in the interrupt
handler.

Note:
When the exception processing handler is called, RB=1 (bank 1) and BL=1 (interrupt mask) are set for SR.

(1) Saving the register (a)

The PUSH_EXP_BASE_REG macro defined in vhandler.src (List 3-2) is called, and the general register
and SSR, SPC, PR, and FPSCR are saved.

(2) Obtaining the exception processing routine address (b)
The value of EXPEVT is obtained to get the offset from _INT_Vectors ((EXPEVT – 0x40) / 8), and the
address of the exception processing routine is calculated.

(3) Obtaining the interrupt mask (c)
The value of EXPEVT is used to calculate the offset value (EXPEVT – 0x40) / 16) from INT_MASK (defined in
vecttbl.src), and the interrupt mask value corresponding to the interrupt cause is obtained.

(4) Setting the save status register (SSR) (d)
The RB and BL bits are cleared to 0 for the current status register (SR) value, and the value set for the interrupt
mask obtained in (3) is set for SSR.

(5) Setting the save program counter (SPC) and status register (SR) (e)
The address of the exception processing routine obtained in (2) is set for SPC, and the address of the
__int_term function is set for PR.

(6) Executing RTE instructions (f)
An RTE instruction is executed. The RTE instruction restores SPC to PC and SSR to SR, and branches to the SPC address.

REJ06J0012-0100/Rev.1.00 June 2007 Page 19 of 39

APPLICATION NOTE

Since the address of the exception processing routine is stored in SPC by the processing from (5), it is moved to
the exception processing routine.
The status value obtained from the processing in (4) is stored in SSR. As such, when the transition to exception
processing routine is performed, it is switched to bank 0, and interrupts greater than the mask value can be
accepted. If an interrupt is accepted during execution of an exception processing routine, multiple interrupts
occur. Unless the BL bit is cleared to 0 in the processing in (4), multiple interrupts are prohibited.

(7) Returning from the exception processing routine (g)
In the sample program, the exception processing routine is coded as a normal function (do not specify
#pragma interrupt). As such, an RTS instruction is used to perform return from the exception processing
routine. Since the address of __int_term is stored in PR through the processing in (5), it is moved to
__int_term. In __int_term, the POP_EXP_BASE_REG macro defined in vhandler.src in List 3-2 is
called, and the general register and SSR, SPC, PR, and FPSCR are restored. Finally, an RTE instruction is used
to performed return from the exception processing handler.

Figure 3-2 shows the flow of exception processing statuses in the sample program.

REJ06J0012-0100/Rev.1.00 June 2007 Page 20 of 39

Exception processing
handler

Exception
processing routine

Exception processing
handler

Normal
processing

Normal
processing

: RB=1 and BL=1

: RB=0 and BL=0

Non-reset exception

Figure 3-2

APPLICATION NOTE

The assembler source for the general exception processing handler (INTHandlerPRG) defined in vhandler.src is
as follows.

REJ06J0012-0100/Rev.1.00 June 2007 Page 21 of 39

IMASKclr: .equ H'FFFFFF0F
RBBLclr: .equ H'CFFFFFFF
MDRBBLset: .equ H'70000000

 .import _RESET_Vectors
 .import _INT_Vectors
 .import _INT_MASK

;;
; exceptional interrupt ;
;;;
 .section INTHandler,code
 .export _INTHandlerPRG

;
 .pool

;
 .pool

_INTHandlerPRG:
_ExpHandler:
 PUSH_EXP_BASE_REG (a)
;
 mov.l #EXPEVT,r0 (b)
 mov.l @r0,r1
 mov.l #_INT_Vectors,r0
 add #-(h'40),r1
 shlr2 r1
 shlr r1
 mov.l @(r0,r1),r3
;
 mov.l #_INT_MASK,r0 (c)
 shlr2 r1
 mov.b @(r0,r1),r1
 extu.b r1,r1
;
 stc sr,r0 (d)
 mov.l #(RBBLclr&IMASKclr),r2
 and r2,r0
 or r1,r0
 ldc r0,ssr
;
 ldc.l r3,spc (e)
 mov.l #__int_term,r0
 lds r0,pr
;
 rte (f)
 nop

;
;;;
; Interrupt terminate ;
;;;
 .align 4
__int_term: (g)
 mov.l #MDRBBLset,r0
 ldc.l r0,sr
 POP_EXP_BASE_REG
 rte
 nop

;

List 3-1

APPLICATION NOTE

Note 1
The PUSH_EXP_BASE_REG and POP_EXP_BASE_REG macros, which perform register save and restore when
called by the exception processing reset handler, are defined in vhandler.src (List 3-2).
Perform save/restore of floating-point number registers as necessary. Note that when the exception processing
routine is coded in C and the macsave=0 compiler option is specified, both the MACH register and MACL register
need to be saved/restored.
In the macro shown in List 3-2, R0_BANK to R7_BANK are saved to the stack (stc.l rn_bank, @-r15), and
restored from the stack (ldc.l @r15+, rn_bank), and save/restore is not performed for the general register (R0
to R7). This is because when an interrupt is accepted, the RB bit of the SR register is automatically set to 1, so that
the general register before the exception occurs is the bank register.

REJ06J0012-0100/Rev.1.00 June 2007 Page 22 of 39

List 3-2

Note 2

In SH7760, some exceptions and interrupt use the same exception code (Table **). As such, the sample program
cannot perform processing to differentiate these exceptions and interrupts. Modify the sample program so that the
exception processing handler for general exceptions (_INTHandlerPRG) and that for interrupts (_IRQHandler)
refer to different function tables.

Table 3-2 SH7760 exception codes (exception/interrupt)
Exception cause Exception code Exception processing routine

General FPU compression exception H'800 _INT_Illegal_FPU

Slot FPU compression exception H'820 _INT_Illegal_slot_FPU

IRQ4 H'800 _INT_Illegal_FPU

IRQ5 H'820 _INT_Illegal_slot_FPU

;;;
;* macro definition *;
;;;
 .macro PUSH_EXP_BASE_REG
 stc.l ssr,@-r15 ; save ssr
 stc.l spc,@-r15 ; save spc
 sts.l pr,@-r15 ; save context registers
 sts.l fpscr,@-r15 ; save fpscr registers
 stc.l r7_bank,@-r15
 stc.l r6_bank,@-r15
 stc.l r5_bank,@-r15
 stc.l r4_bank,@-r15
 stc.l r3_bank,@-r15
 stc.l r2_bank,@-r15
 stc.l r1_bank,@-r15
 stc.l r0_bank,@-r15
 .endm
;
 .macro POP_EXP_BASE_REG
 ldc.l @r15+,r0_bank ; recover registers
 ldc.l @r15+,r1_bank
 ldc.l @r15+,r2_bank
 ldc.l @r15+,r3_bank
 ldc.l @r15+,r4_bank
 ldc.l @r15+,r5_bank
 ldc.l @r15+,r6_bank
 ldc.l @r15+,r7_bank
 lds.l @r15+,fpscr
 lds.l @r15+,pr
 ldc.l @r15+,spc
 ldc.l @r15+,ssr
 .endm

APPLICATION NOTE

3.3 Setting Vector Base Registers (VBR) (set_vbr function)
By setting an arbitrary address in a VBR, the non-reset exception processing handler can be placed in any address. A
VBR can be set by using the embedded set_vbr function. In the sample program, the value set for the VBR is
calculated from the placement address for INTHandlerPRG (List 3-3). Since INTHandlerPRG is placed at the
beginning of the INTHandler section, INTHandler can be placed at an arbitrary address to place the non-reset
exception processing handler at any address.

 ・・・
 set_vbr((void *)((_UINT *)&INTHandlerPRG - INT_OFFSET));

#define INT_OFFSET 0x100UL
resetprg.c

List 3-3

When a non-reset exception occurs, jump is performed to (VBR + offset-value-for-each-exception-cause). As such,
each exception processing handler must be placed in the location shown in Table 3-3. In the sample program, the offset
value based on _INTHandlerPRG is used to place _TLBmissHandler and _IRQHandler (List 3-4).

Table 3-3 Offset values from NTHandlerPRG
Exception type Exception processing

handler
Offset value from

the VBR
Offset value from
_INTHandlerPRG

General exception _INTHandlerPRG H’100 H’000

TLB miss exception _TLBmissHandler H’400 H’300

Interrupt _IRQHandler H’600 H’500

 .section INTHandler,code
 .export _INTHandlerPRG
_INTHandlerPRG:

・
・
・

 .org H'300
_TLBmissHandler:

・
・
・

 .org H'500
_IRQHandler:

・
・
・

List 3-4

REJ06J0012-0100/Rev.1.00 June 2007 Page 23 of 39

APPLICATION NOTE

3.4 Exception Processing Routine (intprg.src)
For non-reset exceptions, the dummy functions for exception processing routines (such as the _INT_TLBMiss_Load
function and _INT_TLBMiss_Store function) are defined in intprg.src (List 3-5).

 ;H'040 TLB miss/invalid (load)

_INT_TLBMiss_Load
;H'060 TLB miss/invalid (store)
_INT_TLBMiss_Store
;H'080 Initial page write
_INT_TLBInitial_Page

・
・
・

;H'820 Illegal slot FPU
_INT_Illegal_slot_FPU
 sleep
 nop
 .end

List 3-5

When using C to code an exception processing routine, comment out the dummy function, and create a C function with
the same name as the dummy function, but with the initial underscore removed. Note that #pragma interrupt does
not need to be specified here.

Example:

void INT_TLBMiss_Load(void)
{

}

List 3-6

REJ06J0012-0100/Rev.1.00 June 2007 Page 24 of 39

APPLICATION NOTE

4. Memory Initialization
In the sample program, call memory initialization is performed for the _INITSCT function in the standard library.

The _INITSCT function performs the following initialization processing.

• Initialization for initialized data areas
• Initialization for uninitialized data areas

4.1 Memory Initialization Function _INTSCT (dbsct.c)
When using the _INITSCT function, include <_h_c_lib.h> to link the standard library.

The _INITSCT function obtains the initialization target of the initialized data area from the C$DSEC section, and the
initialization target of the uninitialized data area from the C$BSEC section. In the sample program, the initialization
processing target for the initialized data area is defined in the dbsct.c (Figure 4-1) structure array DTBL, and the
initialization processing target for the uninitialized data area is defined in the structure array BTBL.

Figure 4-1

Initialization of initialized data areas
Initialized data is data (variables) with an initial value. The initial value needs to be held in a ROM area, but since
the data can be rewritten while the program is executing, it needs to be placed in a RAM area. During initialization
processing for the initialized data area of __INITSCT function, processing is performed to copy the initial value
data in the ROM area to a RAM area. Also, to place the initial value in the ROM area and use the RAM area
address to access data, the ROM support option needs to be specified in the linker. (For details, see 4.4 ROM.)
In the sample project, data is specified to be copied from the D section to the R section in the DTBL structure array
for dbsct.c, and the ROM support option is specified in the linker. (Figure 4-2)

Initialization of uninitialized data areas

In C/C++, static variables without initial values and external variables without initial values need to be 0.The
specified sections are cleared to 0 during initialization processing for uninitialized data areas in the __INITSCT
function.
In the sample program, the B section is specified to be cleared to 0 in the BTBL structure array for dbsct.c.

REJ06J0012-0100/Rev.1.00 June 2007 Page 25 of 39

APPLICATION NOTE

4.2 If Initialized Data Areas Other Than the D Section Exist
If initialized data areas exist outside of the D section, add them to the DTBL structure array.

For example, to copy the D1 section to the R1 section, add it as shown in List 4-1. Make sure that you also specify the
ROM support option.

#pragma section $DSEC
static const struct {
 _UBYTE *rom_s
 _UBYTE *rom_e
 _UBYTE *ram_s
} DTBL[] = {
 { __sectop("D"), __secend("D"), __sectop("R") },
 { __sectop("D1"),__secend("D1"),__sectop("R1")}
};

List 4-1

4.3 If Unitialized Data Areas Other Than the B Section Exist
If uninitialized data areas exist outside of the B section, add them to the BTBL structure array.

For example, to clear the B1 section to 0, add it as shown in List 4-2.

#pragma section $DSEC
static const struct {
 _UBYTE *b_s; /* First address for uninitialized data section */
 _UBYTE *b_e; /* Last address for uninitialized data section */
} BTBL[] = {
 { __sectop("B"), __secend("B") },
 { __sectop("B1"),__secend("B1")}
};

List 4-2

REJ06J0012-0100/Rev.1.00 June 2007 Page 26 of 39

APPLICATION NOTE

4.4 ROM Support Functionality
The following processing is performed when the ROM support functionality for the linkage editor is used.

• An area of the same size as the ROM initialized data area is reserved in RAM.
• Addresses are resolved automatically by having references for symbols declared in initialized data areas refer to

RAM area addresses.

Perform the following to display the dialog box and perform settings.

Toolchain dialog box
-> Select the Link/Library tab, and then in Category, select Output.
-> In Show entries for, select ROM to RAM mapped sections.

Figure 4-2

In the sample project, the D section is specified in ROM, and the R section is specified in RAM. This specification
means that an R section the same size as the D section is reserved in RAM during linkage, and that addresses are
resolved by having references for symbols declared in initialized data areas refer to R section RAM area addresses.

REJ06J0012-0100/Rev.1.00 June 2007 Page 27 of 39

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 28 of 39

5. Low-level Interface Routine Settings
When development is performed in C/C++, functions such as those in the standard I/O library (including fopen,
printf, and scanf) and the memory management library (including malloc, free, new, and delete) may be
used. Unfortunately, not all of these functions are provided by the compiler. For example, standard output may refer to
output to an LCD, hard disk, printer, or CD-R/RW drive, and standard input may refer to input from a DIP switch,
keyboard, mouse, mobile phone button, or touch panel. In addition, the operations for each of these devices may differ.
As such, the compiler cannot provide all processing for the standard I/O and memory management library. This is why
there is a group of functions from the standard I/O and memory management library, which are called low-level
interface routines. A low-level interface routine needs to be implemented by the user. Low-level interface routines
include open, close, read, write, lseek, sbrk, errno_addr, wait_sem, and signal_sem.

For details about the specifications for each routine, see (6) Low-level interface routines in 9.2.2 Execution environment
settings in the Compiler Users Manual.

5.1 Memory Management (sbrk.c, sbrk.h)
Table 5-1 is a sample list of low-level interface routines for memory management, as generated by HEW.

Table 5-1 Sample list of low-level interfaces (for memory management)
Source file name Low-level

interface
Function

sbrk.c sbrk() A function for reserving heap memory.
Memory of the size specified by the argument is reserved. If this is called multiple times,
memory is reserved sequentially from lower addresses.
Memory is obtained until the size defined by HEAPSIZE.

sbrk.h HEAPSIZE Defines the HEAPSIZE macro for specifying the overall size of the heap area.

Note:

Memory management library functions call the sbrk function to reserve memory. The reserved memory is
managed within the library function, and areas freed by the free or delete function are reused as heap memory.
The size requested for memory reservation by the sbrk function is that specified by _sbrk_size (default: 1024).
If reserved memory becomes insufficient, the sbrk function is called again. When heap memory is reserved and
released repeatedly, even though the total free area size remains sufficient, since the free area is divided among
several small areas, situations may occur in which large area requests may not be able to be reserved. As such, we
recommend setting _sbrk_size = HEAPSIZE, so that the heap memory area for one sbrk function call is
obtained in batch. When this method is used, heap memory fragmentation is reduced, and heap area management
processing is more efficient.
Example:

SBYTE *sbrk(size_t size);
const size_t _sbrk_size = HEAPSIZE; /* Specifies the minimum unit of */
/* Clears comments and sets the HEAPSIZE to the initial value. */

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 29 of 39

5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h)
Table 5-2 is a sample list of low-level interface routines for I/O, as generated by HEW.

Table 5-2 Sample list of low-level interfaces (for I/O)

Source file Low-level
interface

Functionality

lowsrc.c _INIT_IOLIB() A function that performs file handler initialization, and opens files for standard input (stdin),
standard output (stdout), and standard error output (stderr).
When standard input, standard output, and standard error output are not used, delete the
corresponding open processing.
Do not perform file handler operations anywhere other than in the _INIT_IOLIB function.
Use the setbuf or setvbuf function to set the _bufptr, _bufcnt, _bufbase, and
_buflen file handler member variables after file open is performed.

lowsrc.c _CLOSEALL() A function that closes all unclosed files.
lowsrc.c open() Performs whether a file open request is for standard input, standard output, or standard error

output, and checks the file mode.
In the sample program, no actual processing to open files is performed.

lowsrc.c close() Checks the file number range and clears the file mode.
If a range error occurs for a file number, -1 is returned as the error.

lowsrc.c read() A function that calls the charget function, which actually obtains characters, once for each
character that exists, once the file mode is checked. If an error occurs, -1 is returned.

lowsrc.c write() A function that calls the charput function, which actually outputs characters, once for each
character that exists, once the file mode is checked. If an error occurs, -1 is returned.

lowsrc.c lseek() A dummy function. No processing is performed in the lseek function generated by HEW.
lowsrc.h IOSTREAM A macro definition that specifies the file handler count (the number of files that can be used

concurrently).
Use the IOSTREAM macro to change the file handler count.
Note that in the lowsrc.c generated by HEW, the three file handlers for standard input
(stdin), standard output (stdout), and standard error output (stderr) are opened in the
_INIT_IOLIB function. As such, when such open processing is enabled, the number of file
handlers available to the user is (IOSTREAM - 3).

lowlvl.src charget() A character input function called from the read() function.
This receives character input from the I/O simulation window of the simulator debugger.
Note that the algorithm for this function only runs on the simulator debugger, and not on the
actual target.

lowlvl.src charput() A character output function called from the write() function.
This outputs characters to the I/O simulation window of the simulator debugger.
Note that the algorithm for this function only runs on the simulator debugger, and not on the
actual target.

APPLICATION NOTE

6. Precautions Regarding C++ Usage (_CALL_INIT Function and CALL_END Function)
When C++ is used, and either globally declared variables are dynamically initialized or globally declared class objects
(global class objects) exist, the _CALL_INIT function needs to be called ahead of time. In the following source
program, (a) and (b) are global class objects.

REJ06J0012-0100/Rev.1.00 June 2007 Page 30 of 39

List 6-1

If this class has a constructor, the constructor needs to be called before the class member is accessed. For example, in
the following C++ program, (c) is processed before (e) is executed, and the (a) member variable for (d) needs to be
initialized to 1. In other words, the (c) constructor needs to be called.

class A
{
...
};

A g_A; ...(a)
A * g_pA;
static A s_A; ...(b)

void main()
{
 A a;
 A * p_a;
 static A s_a;
 g_pA = new A; delete g_pA;
 l_pA = new A; delete l_pA;
}

class A
{
private:
 int a;
public:
 A(void) { a = 1; } ...(c)
 int Get(void) { return a; }
};

A g_a; ...(d)

void main()
{
 int a = g_a.Get(); ...(e)
}

List 6-2

APPLICATION NOTE

The _CALL_INIT function is provided as a standard library to use this constructor call. Likewise, the _CALL_END
function is also provided to call the global class object destructor. Since the _CALL_INIT function and _CALL_END
function are declared in <_h_c_lib.h>, include is performed for <_h_c_lib.h> in the source file used (f). Call
the _CALL_INIT function before application start (g), and call the _CALL_END function once the application has been
terminated (h).

#include <_h_c_lib.h> ...(f)

void PowerON_Reset_PC(void)
{
 _INITSCT();
 _CALL_INIT(); ...(g)

 main();

 _CALL_END(); ...(h)
 sleep();
}

List 6-3

Note that information to call the constructor and destructor is generated in the C$INIT section, which is automatically
generated by the compiler. Use the memory placement setting for the optimization linkage editor to place the C$INIT
section in the ROM area.

REJ06J0012-0100/Rev.1.00 June 2007 Page 31 of 39

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 32 of 39

7. Using C to Code Exception Processing Programs
In the HEW sample program, the exception processing handler is coded using assembly language. The #pragma
extension function can be used to code, in C, exception processing handlers and exception processing routines that use
register banks.

7.1 Without Multiple Interrupts
The following shows how to code exception processing handlers and exception processing routines in C, when multiple
interrupts are not allowed.

#pragma extension function used

Exception processing handler
• #pragma interrupt function-name(bank)

– This is terminated by an RTE instruction.
– Rules for saving/restoring registers

Do not save/restore SPC or SSR (because the sr_jsr embedded function is not used).
Do not save/restore R0 to R7.
Perform save/restore only for used registers other than those above.

Exception processing routine

• #pragma interrupt function-name(rts)
– This is terminated by an RTS instruction.
– Rules for saving/restoring registers

Do not save/restore SPC or SSR.
Do not save/restore R0 to R7.
Perform save/restore only for used registers other than those above.

Exception processing flow

The above extension function can be used to create exception processing handlers and exception processing routines
for the following exception processing flow:
(1) Hardware operation until an exception processing handler is called

Once an exception occurs, PC and SR at the time the exception occurred are saved to SPC and SSR, respectively,
RB for SR is set to 1 (BANK1 is used as the general register), BL for SR is set to 1 (interrupt requests are
masked), and transition is performed to the address for the corresponding exception cause.

(2) Exception processing handler

Registers other than R0 to R7 that are used within the exception processing handler are saved, and the exception
processing routine is called by a JSR instruction. #pragma interrupt function-name(bank) is specified in
the exception processing handler.

(3) Exception processing routine
Actual processing for each exception cause is specified. #pragma interrupt function-name(rts) is
specified in the exception processing routine. An RTS instruction returns control from the exception processing
routine to the exception processing handler.

(4) Exception processing handler
The registers saved in (2) are restored, and an RTE instruction returns control from exception processing to
normal processing.
When the RTE instruction is executed, the hardware restores SPC and SSR, as saved in (1), to SP and SR.

APPLICATION NOTE

Exception processing status flow

Figure 7-1 shows the flow of operation when an interrupt occurs.

(1)

(2)

BANK0 BANK1 BANK1

(3)

JSR

RTS

(4)

Exception
processing

handler
Exception
processing

routine

: RB=1、BL=1

: RB=0、BL=0

Exception
processing

handler

RTE
Normal function

Interrupt
accepted

No interrupt No interrupt

Normal function

Interrupt

Figure 7-1

Example C source code

The following shows sample source code and its expanded assembly code.

REJ06J0012-0100/Rev.1.00 June 2007 Page 33 of 39

Expanded assembly code
_interrupt_handler:
 STS.L PR,@-R15
 BSR
_interrupt_routine
 NOP
 LDS.L @R15+,PR
 RTE
 NOP
_interrupt_routine:
 RTS
 NOP

Sample source
#include<machine.h>

extern void interrupt_handler(void);
extern void interrupt_routine(void);

#pragma interrupt interrupt_handler(bank)
#pragma interrupt interrupt_routine(rts)

/* Handling function */
void interrupt_handler()
{
 /* Normal function call */
 interrupt_routine();
}

void interrupt_routine()
{
 /* Perform processing for each interrupt cause */
}

List 7-1

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 34 of 39

7.2 With Multiple Interrupts
The following shows how to code exception processing handlers and exception processing routines in C, when multiple
interrupts are allowed.

Extension function used

Exception processing handler
• #pragma interrupt function-name(bank)

– This is terminated by an RTE instruction.
– Rules for saving/restoring registers:

Do not save/restore SPC or SSR (because the sr_jsr embedded function is not used).
Do not save/restore R0 to R7.
Perform save/restore only for used registers other than those above.

• void sr_jsr(void(*)(void)func, int imask) embedded function

– This function is called by the exception processing routine.
– func: the address of the exception processing routine.
– imask: value set for the interrupt mask bit.

When imask is from 1 to 15, imask is set for the mask bit.
When imask is 0, the mask bit is not changed.

Exception processing routine
• #pragma interrupt function-name(sr_rts)

– This is terminated by an RTS instruction.
– During exit processing, RB=1 and BL=1 are set for SR.
– Rules for saving/restoring registers:

Do not save/restore SPC or SSR.
Perform save/restore only for used registers other than those above.

Exception processing flow

The above extension function can be used to create exception processing handlers and exception processing routines
for the following exception processing flow:
(1) Hardware operation until an exception processing handler is called

Once an exception occurs, PC and SR at the time the exception occurred are saved to SPC and SSR, respectively,
RB for SR is set to 1 (BANK1 is used as the general register), BL for SR is set to 1 (interrupt requests are
masked) and transition is performed to the address for the corresponding exception cause.

(2) Exception processing handler

Registers other than R0 to R7 that are used within the exception processing handler are saved, and the sr_jsr
embedded function is used to call the exception processing routine. When the sr_jsr function is used, RB=0
(interrupt request masking is cancelled) and BL=0 (BANK0 is used as the general register) are set in the called
exception processing routine, and code is generated to set the interrupt mask level to imask. #pragma
interrupt function-name(bank) is specified in the exception processing handler.

(3) Exception processing routine
Actual processing for each exception cause is specified. #pragma interrupt function-name(sr_rts) is
specified in the exception processing routine. When control returns from the exception processing routine to the
exception processing handler, RB=1 and BL=1 are set for SR.
When this exception processing routine is being executed, interrupts with levels higher than that set in (2) for
imask may be accepted.

APPLICATION NOTE

(4) Exception processing handler
The registers saved in (2) are restored, and an RTE instruction returns control from exception processing to
normal processing.
When the RTE instruction is executed, the hardware restores SPC and SSR, as saved in (1), to PC and SR.

Exception processing status flow (with multiple interrupts)

Figure 7-2 shows operation when an interrupt of level 8 occurs after one of level 5.

REJ06J0012-0100/Rev.1.00 June 2007 Page 35 of 39

(1)
(2)

BANK0 BANK1 BANK0

(3)

JSR

RTS

(4)

Exception
processing

handler
Exception
processing

routine

: RB=1、BL=1

: RB=0、BL=0

Exception
processing

handler
RTE

Normal function

Normal function

Interrupt

Interrupt
(3)

JSR

Exception
processing

handler
Exception
processing

routine

RTS

(4)
Exception
processing

handler

RTE

(1)
(2)

Exception
processing

routine

BANK1 BANK0

Interrupt
mask level 0

No interrupt Interrupt
ask level 5

No interrupt Interrupt
mask level 8m

Figure 7-2

APPLICATION NOTE

Example C source code

The following shows sample source code and its expanded assembly code.

Sample source
#include<machine.h>

extern void interrupt_handler(void);
extern void interrupt_routine(void);

#pragma interrupt interrupt_handler(bank)
#pragma interrupt interrupt_routine(sr_rts)

/* Handling function */
void interrupt_handler()
{
 /* sr_jsr and interrupt mask bit specified
 in processing function */
 sr_jsr(interrupt_routine, 5);
}

void interrupt_routine()
{
 /* Perform processing for each interrupt
 cause */
}

Expanded assembly code
_interrupt_handler:
 MOV.L R14,@-R15
 STS.L PR,@-R15
 STC SSR,@-R15
 STC SPC,@-R15
 STC SR,R4
 MOV.L L12,R1 ; H'CFFFFF0F
 MOV #80,R5 ; H'00000050
 MOV.L L12+4,R14
 ; _interrupt_routine
 AND R1,R4
 OR R5,R4
 LDC R4,SR
 JSR @R14
 NOP
 LDC @R15+,SPC
 LDC @R15+,SSR
 LDS.L @R15+,PR
 MOV.L @R15+,R14
 RTE
 NOP
_interrupt_routine:
 MOV.L R0,@-R15
 MOV.L R1,@-R15
 STC SR,R0
 MOV.L L12+8,R1 ; H'30000000
 OR R1,R0
 MOV.L @R15+,R1
 LDC R0,SR
 RTS
 LDC.L @R15+,R0_BANK

List 7-2

REJ06J0012-0100/Rev.1.00 June 2007 Page 36 of 39

APPLICATION NOTE

8. Frequently Asked Questions

8.1 End Processing
Q:

When can the abort() function in the main routine (project-name.c) be used?

A:

The abort function needs to be used when exception processing is performed in C++. If the function is not
defined, an error will occur during linkage.
Since the abort function is called when an exception occurs, use the sleep() and other commands to perform
end processing, to prevent system abuse.

8.2 C++ Functions and Reciprocal C Function Calls
Q:

I know that extern "C" { and } are used to enclose function declarations, but why do they need to be enclosed?

A:

When a C function is called from a C++ function, the extern "C" declaration needs to be specified for prototype
declarations of C functions within C++ source. When a C++ function is called from a C function, the extern "C"
declaration needs to be specified for prototype declarations of C++ functions within C++ source.
Since C++ allows functions to be defined multiple times, there may be multiple functions with the same function
name. This means that the compiler manages symbol names internally such as by appending the name of an
argument to the function name. Since C functions cannot be defined more than once, this kind of symbol name
management is not performed.
When the extern "C" declaration is performed in a C++ function, the way in which symbol names are managed
is the same as for C functions. This enables reciprocal calls between C functions and C++ functions.
Note that C++ functions declared using extern "C" cannot be defined multiple times.

• An extern "C" declaration can be used to reference a function in a C object program.

 (C++ program)

extern "C" void CFUNC();
void main(void)
{
 X XCLASS;
 XCLASS.SetValue(10);

 CFUNC();
}

(C program)

extern void CFUNC();
void CFUNC()
{
 while(1)
 {
 a++;
 }
}

• An extern "C" declaration can be used to reference a function in a C++ object program.

 (C program)

void CFUNC()
{
 CPPFUNC();
}

(C++ program)

extern "C" void CPPFUNC();
void CPPFUNC(void)
{
 while(1)
 {
 a++;
 }
}

REJ06J0012-0100/Rev.1.00 June 2007 Page 37 of 39

APPLICATION NOTE

REJ06J0012-0100/Rev.1.00 June 2007 Page 38 of 39

Website and Support <website and support,ws>
Renesas Technology Website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 Jun.01.07 — First edition issued

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2007. Renesas Technology Corp., All rights reserved.

REJ06J0012-0100/Rev.1.00 June 2007 Page 39 of 39

	1. Generating a Sample Program
	1.1 Project Generator Settings
	1.2 List of Generated Files

	2. Reset Processing
	2.1 Reset Handlers (vhandler.src, vecttbl.src, env.src, env.inc)
	2.2 Reset Function (resetprg.c)
	2.3 Stack Size Settings (stacksct.h)

	3. Non-reset Exceptions
	3.1 Processing Handlers for Non-reset Exceptions (vhandler.src, vecttbl.src, env.src)
	3.2 General Exception Processing Handler (_INTHandlerPRG)
	3.3 Setting Vector Base Registers (VBR) (set_vbr function)
	3.4 Exception Processing Routine (intprg.src)

	4. Memory Initialization
	4.1 Memory Initialization Function _INTSCT (dbsct.c)
	4.2 If Initialized Data Areas Other Than the D Section Exist
	4.3 If Unitialized Data Areas Other Than the B Section Exist
	4.4 ROM Support Functionality

	5. Low-level Interface Routine Settings
	5.1 Memory Management (sbrk.c, sbrk.h)
	5.2 I/O (lowlvl.src, lowsrc.c, lowsrc.h)

	6. Precautions Regarding C++ Usage (_CALL_INIT Function and CALL_END Function)
	7. Using C to Code Exception Processing Programs
	7.1 Without Multiple Interrupts
	7.2 With Multiple Interrupts

	8. Frequently Asked Questions
	8.1 End Processing
	8.2 C++ Functions and Reciprocal C Function Calls

	 Website and Support <website and support,ws>

