RZ/V2L

Simple ISP Sample Application Note Revision.1.30

Introduction
This document will explain about the Simple ISP Sample Application for RZ/V2L.

Target Device
RZ/V2L

Note
This document uses the difference Linux command execution environment. Each environment will be differentiated by the following notation.

1. Linux PC environment
 $ <Linux PC Command>

2. RZ/V2L Evaluation Board environment
 # <RZ/V2L Evaluation Board Command>
Contents

1. Overview .. 3
 1.1 Operating Environment .. 3
 1.2 Sample application .. 4
 1.2.1 Simple ISP (Monitoring) .. 4
 1.3 Reference Documents ... 5
 1.4 About Simple ISP .. 6
 1.4.1 Memory Map .. 6

2. Compile ... 7
 2.1 Software for Compiling .. 7
 2.2 SDK ... 7
 2.3 Setup the Working Directory ... 7
 2.4 Extract the Source Code ... 7
 2.5 Simple ISP (Monitoring) .. 9
 2.5.1 Set SDK Environment Variable ... 9
 2.5.2 Cross-Compile ... 9

3. Setup the Execution Environment for Simple ISP Sample Application 10
 3.1 Deploy the execution environment .. 10

4. Execute Sample Application .. 11
 4.1 Execute the application ... 11

5. Application Contents .. 12
 5.1 Simple ISP (Monitoring) .. 13
 5.1.1 Application Flow Chart .. 13
 5.1.2 Application Operating Sequence ... 14

Appendix ... 15
 1 How to change camera driver .. 15
 2 Explanation file of parameters .. 16
 3 What is Wayland? ... 17

Revision History ... 18
1. Overview

The RZ/V2L Sample Application provided in this package, captures the Google Coral Camera image via V4L2 and displays on the Video monitor the images in YUYV format using Wayland. This document assumes that users have read the RZ/V2L ISP Support Package Release Note (R11AN0561EJ0130) and already executed the instructions for Boot environment and Compile environment.

This document describes monitoring sample applications. Next section describes Simple ISP (Monitoring) sample application.

1.1 Operating Environment

The connection method to the RZ/V2L evaluation board is shown below.

Figure 1-1 Connection of RZ/V2L Evaluation board
1.2 Sample application

1.2.1 Simple ISP (Monitoring)
Simple ISP (Monitoring) sample application displays the results of Simple ISP processing of the data input from the camera on the HDMI monitor. Simple ISP can correct the color and brightness of HD images input from a MIPI camera (RAW10 format) in real time. The correction parameters can be changed by sending a file from a PC.

Figure 1-2 shows the general processing flow of Simple ISP.

![Image of Simple ISP (Monitoring) Overview](image-url)
1.3 Reference Documents

1. RZ/V Verified Linux Package Version 3.0.4 Release Note (R01US0565EJ0104)
2. SMARC EVK of RZ/V2L Linux Start-up Guide (R01US0617EJ0100)
3. RZ/V2L DRP-AI Support Package Release Note (R11AN0549EJ0740)
4. RZ/V2L ISP Support Package Release Note (R11AN0561EJ0130)
1.4 About Simple ISP

1.4.1 Memory Map

The RZ/V2L Sample Application provided in this package, captures the Google Coral Camera image via V4L2 and displays on the Video monitor the images in YUYV format using Wayland.

Figure 1-3 shows DDR memory map when this package is applied to the Linux Package.

![Figure 1-3 Memory map](image-url)
2. Compile

2.1 Software for Compiling

Table 1 shows the necessary software for compiling.

<table>
<thead>
<tr>
<th>No</th>
<th>Items</th>
<th>Filename</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDK</td>
<td>-</td>
<td>Generated from using RZ/V2L Linux Package and RZ/V2L ISP Support Package.</td>
</tr>
<tr>
<td>2</td>
<td>Simple ISP Sample Application</td>
<td>rzv2l_isp-sample-application_ver1.30.tar.gz</td>
<td>Simple ISP Sample Application source code, executables and related files</td>
</tr>
</tbody>
</table>

2.2 SDK

SDK (Software Development Kit) is a development environment that will allow users to cross-compile the C/C++ source code for RZ/V2L Linux (ARM64).

Prepare the build from chapter 2 of RZ/V2L ISP Support Package Release Note (R11AN0561EJ0130) before installing the SDK.

To install the SDK, please refer to the RZ/V2L DRP-AI Support Package Release Note (R11AN0549EJ0740).

2.3 Setup the Working Directory

Create the working directory for compiling the Simple ISP Sample Application.

1. Set the path of working directory as an environment variable.

 Note: Change the path of working directory accordingly.

   ```
   $ export APP_WORK=~/<WORK>
   ```

2. Execute the following command to create the working directory.

   ```
   $ mkdir $APP_WORK
   ```

2.4 Extract the Source Code

Use the following command to extract the DRP-AI Sample Application Package.

Notes: `<PATH_to_SRC>` is a path to `rzv2l_isp-sample-application_ver1.30.tar.gz`

```
$ cd <PATH_to_SRC>
$ tar xzvf rzv2l_isp-sample-application_ver1.30.tar.gz -C $APP_WORK
```
After extracting the package, the working directory have the following structure.

```
$APP_WORK
  app_isp_monitoring
    exe
      sample_app_cam
      isp_param_default.txt
      isp_param_sample.txt
    src
      camera.cpp
      camera.h
      define.h
      image.cpp
      image.h
      Makefile
      sample_app_cam.cpp
      wayland.cpp
      wayland.h
```

Figure 2-1 Working Directory Structure
2.5 Simple ISP (Monitoring)

2.5.1 Set SDK Environment Variable
To cross-compile the application, the environment variables need to be changed for SDK.

Execute following command to set the SDK environment variable.

Note: 1. The environment variable will be reset if the Linux terminal is closed.
2. Following command assumes the SDK is installed under the path "/opt/poky/3.1.21".

```
$ source /opt/poky/3.1.21/environment-setup-aarch64-poky-linux
```

2.5.2 Cross-Compile
After the environment variable is set, execute following commands to compile the source code.

```
$ cd $APP_WORK/app_isp_monitoring/src
$ make
```

Command "make" will execute the commands stated in Makefile.
For the details of compilation command, see the each Makefile.

After the make, the binary file will be generated in the application source code directory.

```
$APP_WORK
  app_isp_monitoring
    exe
      sample_app_cam
      isp_param_default.txt
      isp_param_sample.txt
  src
    camera.cpp
    camera.h
    define.h
    image.cpp
    image.h
    Makefile
    sample_app_cam.cpp
    wayland.cpp
    wayland.h
    sample_app.cam Generated binary file
```

Figure 2-2 Directory Structure of app_isp_monitoring
3. Setup the Execution Environment for Simple ISP Sample Application

This chapter will explain how to deploy the execution environment for Simple ISP Sample Application.

3.1 Deploy the execution environment

Please copy the previously compiled application or the pre-compiled sample application to the root filesystem of RZ/V2L Linux.

Directory structure of root filesystem will be as follows. (Applications are copied to /home/root/exe).

Note: when using SD card, please use the “sync” command after copying the file.

```
usr
bin
lib
...
home
root
  exe
  sample_app_cam  Copied file
```
4. Execute Sample Application

4.1 Execute the application

This section assumes the RZ/V2L Evaluation Kit is successfully booted and will explain how to execute RZ/V2L Sample Application.

1. Move to the directory where the application is stored.

Note: `<PATH_to_FILE>` is a path to the directory that the application is stored.

For the example in 3.1 Deploy the execution environment, this would be "/home/root/exe".

```bash
# cd <PATH_to_FILE>
```

2. Run the following command to execute the application.

```bash
# ./sample_app_cam
```

Note:

If the application is copied to the execution environment from the Ubuntu PC, the file permission may not allow the application to be run.

In this case, please run the following command on RZ/V2L Evaluation Board to allow the file execution.

```bash
# chmod +x sample_app_cam
```

3. Simple ISP (Monitoring) Sample Application can be changed ISP parameter. Please refer to Appendix 2. Explanation file of parameters.

4. Press this key of 'Q' to stop the execution.
5. **Application Contents**

This chapter described application contents.
5.1 Simple ISP (Monitoring)

5.1.1 Application Flow Chart

Figure 5-1 Simple ISP (Monitoring) Flow Chart
5.1.2 Application Operating Sequence

Figure 5-2 shows the operating sequence of startup processing shown in Figure 5-1.

![Diagram of Application Operating Sequence]

Figure 5-2 Simple ISP (Monitoring) Operating Sequence
Appendix

1 How to change camera driver

This section describes how to change the camera driver that captured RAW10 format to capture RAW8 format.

1) Compile in reference to the chapter 2.

2) Create the configuration file <meta-rz-features\recipes-isp\recipes-linux\linux\linux-renesas\change-camera-config.cfg>

```c
#<Using RAW8>
CONFIG_VIDEO_OV5645=n
CONFIG_VIDEO_OV5645_RAW8=y
CONFIG_VIDEO_OV5645_RAW10=n
```

3) Change file (meta-rz-features\recipes-isp\recipes-linux\linux\linux-renesas_*.*.bbappend) referring to the following part of recipe.

Before

```c
: SRC_URI_append += " \
file://0001-add-ov5645-raw8-raw10-drivers.patch \nfile://0002-add-simple-isp-library.patch \nfile://0003-add-v4l2-drivers.patch \n"
```

After

```c
: SRC_URI_append += " \
file://0001-add-ov5645-raw8-raw10-drivers.patch \nfile://0002-add-simple-isp-library.patch \nfile://0003-add-v4l2-drivers.patch \nfile://change-camera-config.cfg \n"
```

Note: Add the red letters.

4) Execute the following command.

```bash
$ cd USER_WORK
$ source poky/oe-init-build-env
$ bitbake linux-renesas
```

5) After the Build, the files will be generated under $USER_WORK/build/tmp/deploy/images/smarc-rzv2l. (refer to section 2.5 of RZ/V2L ISP Support Package Release Note (R11AN0561EJ0130))
2 Explanation file of parameters

This sample program can change ISP setting by sending parameter file which is converted ISP parameter (refer. section 2.3.2 of the RZ/V2L ISP user's manual) from decimal number to hexadecimal text from terminal software. Do not set values out of the range. A sample parameter file is included app_isp_monitoring/exe folder. The sample parameter reverses luminance. The parameter file is recognized as a comment from " to the end of the line and is not recognized as data. Also, characters excluding 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, z, a, b, c, d, e, f, and z are ignored. When you create a parameter file, please input 4 bytes of checksum data after inputting 429 bytes of ISP parameters. Then, enter the character ‘Z’ or ‘z’ at the end and press the enter key to start a new line.

![Sample Parameter files](image)

Figure A-1 Position of sample parameter files in app_isp_monitoring directory
3 What is Wayland?
Wayland is both a display server protocol and a library that implements the protocol for Linux. For more information, please visit the following URL

https://wayland.freedesktop.org/docs/html/

The following table shows Wayland APIs that are checked the operation in the RZ/V2L Linux Package.

Table A- 1 System calls using Wayland

<table>
<thead>
<tr>
<th>Categories</th>
<th>System call</th>
</tr>
</thead>
<tbody>
<tr>
<td>wl_display</td>
<td>wl_display_connect</td>
</tr>
<tr>
<td></td>
<td>wl_display_get_registry</td>
</tr>
<tr>
<td></td>
<td>wl_display_roundtrip</td>
</tr>
<tr>
<td></td>
<td>wl_display_dispatch</td>
</tr>
<tr>
<td></td>
<td>wl_display_disconnect</td>
</tr>
<tr>
<td>wl_registry</td>
<td>wl_registry_bind</td>
</tr>
<tr>
<td></td>
<td>wl_registry_add_listener</td>
</tr>
<tr>
<td></td>
<td>wl_registry_destroy</td>
</tr>
<tr>
<td>wl_compositor</td>
<td>wl_compositor_create_surface</td>
</tr>
<tr>
<td></td>
<td>wl_compositor_destroy</td>
</tr>
<tr>
<td>wl_shm</td>
<td>wl_shm_add_listener</td>
</tr>
<tr>
<td></td>
<td>wl_shm_create_pool</td>
</tr>
<tr>
<td></td>
<td>wl_shm_pool_create_buffer</td>
</tr>
<tr>
<td></td>
<td>wl_shm_pool_destroy</td>
</tr>
<tr>
<td></td>
<td>wl_shm_destroy</td>
</tr>
<tr>
<td>wl_buffer</td>
<td>wl_buffer_destroy</td>
</tr>
<tr>
<td>wl_shell</td>
<td>wl_shell_surface_pong</td>
</tr>
<tr>
<td></td>
<td>wl_shell_get_shell_surface</td>
</tr>
<tr>
<td></td>
<td>wl_shell_surface_set_toplevel</td>
</tr>
<tr>
<td></td>
<td>wl_shell_surface_set_user_data</td>
</tr>
<tr>
<td></td>
<td>wl_shell_surface_destroy</td>
</tr>
<tr>
<td></td>
<td>wl_shell_destroy</td>
</tr>
<tr>
<td>wl_surface</td>
<td>wl_surface_set_user_data</td>
</tr>
<tr>
<td></td>
<td>wl_surface_attach</td>
</tr>
<tr>
<td></td>
<td>wl_surface_damage</td>
</tr>
<tr>
<td></td>
<td>wl_surface_commit</td>
</tr>
<tr>
<td></td>
<td>wl_surface_destroy</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>24, Dec, 2021</td>
<td>-</td>
<td>Issued.</td>
</tr>
<tr>
<td>1.10</td>
<td>28, April 2022</td>
<td>ALL</td>
<td>Deleted explanation of Tinyyolov2 sample application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Modified number of reference documents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Modified memory map</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>Modified explanation of "how to change camera driver"</td>
</tr>
<tr>
<td>1.20</td>
<td>29, July 2022</td>
<td>5</td>
<td>Modified number of reference documents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Modified memory map</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>Modified directory path</td>
</tr>
<tr>
<td>1.21</td>
<td>31, Jan 2023</td>
<td>5, 7</td>
<td>Modified number of reference documents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>Modified directory path</td>
</tr>
<tr>
<td>1.30</td>
<td>31, July 2023</td>
<td>3, 5</td>
<td>Modified title and number of reference documents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7, 15</td>
<td>Modified directory path</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
 Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of the circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; underwater repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“VULNERABILITY ISSUES”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redunancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Copyright Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.