
 APPLICATION NOTE

R01AN6729EJ0110 Rev.1.10 Page 1 of 48
Jun.15.23

RZ/T2M Group
Example of separating loader program and application program projects

Introduction
This application note explains a sample application separating the application into a loader program and an
application program.

The major features of the sample program are listed below.

• The program supports two operating modes of the device: xSPI0 boot mode (x1 boot serial flash)
version and 16-bit bus boot mode (NOR flash) version.

• The sample application consists of two separated projects, the loader program and the application
program.

• The loader program is a program for copying the application program from external flash to internal
RAM or external RAM. This is done according to the loader table information (source address,
destination address, size) defined in the loader program.

• The application program is ,copied and started by the loader program. It performs initial settings and
let the LEDs blink.

Target Devices
RZ/T2M Group

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation
and testing of the modified program.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 2 of 48
Jun.15.23

Contents

1. Specifications .. 4
1.1 Operating Environment ... 4
1.2 File Structure ... 5
1.3 Switch and Jumper Settings .. 6

2. Hardware ... 7
2.1 Peripheral Functions.. 7
2.2 Pins .. 8

3. Software .. 9
3.1 Operation Overview ... 9
3.1.1 Loader Program... 10
3.1.2 Application Program .. 11
3.2 Loader Table ... 12
3.3 Memory Map .. 13
3.3.1 Program Placement in Flash Memory ... 13
3.3.2 Section Assignment in Sample Program ... 14
3.3.3 CPU MPU Settings .. 15
3.3.4 Exception Processing Vector Table .. 15
3.4 Function Specifications ... 16
3.4.1 system_init ... 16
3.4.2 stack_init .. 16
3.4.3 mpu_cache_init ... 16
3.4.4 hal_entry .. 16
3.4.5 bsp_sdram_init .. 17
3.4.6 bsp_copy_4byte .. 17
3.5 Flowchart ... 18
3.5.1 Loader Program... 18
3.5.1.1 system_init .. 18
3.5.1.2 stack_init.. 19
3.5.1.3 mpu_cache_init ... 20
3.5.1.4 hal_entry .. 21
3.5.2 Application Program .. 22
3.5.2.1 system_init .. 22
3.5.2.2 stack_init.. 23
3.5.2.3 mpu_cache_init ... 24
3.5.2.4 hal_entry .. 25

4. Related Documents ... 27

5. Appendix Supplementary Notes on Development Environments ... 28
5.1 Debug procedure for this sample program. ... 28
5.1.1 EWARM from IAR systems ... 28
5.1.2 e2studio from Renesas ... 30
5.2 Example of changing RAM placement in application program ... 31

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 3 of 48
Jun.15.23

5.2.1 EWARM from IAR systems ... 31
5.2.2 e2 studio from Renesas .. 33
5.3 How to Debug CPU1 Program .. 37
5.3.1 EWARM from IAR systems ... 38
5.3.2 e2studio from Renesas ... 43

Revision History .. 48

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 4 of 48
Jun.15.23

1. Specifications

1.1 Operating Environment

The sample program covered in this application note is for the environment below.

Table 1.1 Operating Environment

Item Description
Microcomputer RZ/T2M Group (R9A07G075M28GBG)
Operating Frequency CPU core0: 800MHz (ArmⓇ CortexⓇ-R52)

CPU core1: 800MHz (ArmⓇ CortexⓇ-R52)*1
Operating Voltage 3.3V / 1.8V / 1.1V
Integrated Development Environment • Embedded Workbench® for Arm Version 9.30.1

from IAR systems
• e2studio 2023-01 (23.1.0) (R20230106-1556)

from Renesas
Operating mode • xSPI0 boot mode (x1 serial flash)

• 16-bit bus boot mode (NOR flash)
Board Renesas Starter Kit+ for RZ/T2M
Flexible Software Package (FSP) Version 1.2.0 (RZ/T2 FSP)

Note 1. When using CPU core1, refer to "5.3 How to Debug CPU1 Program".

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 5 of 48
Jun.15.23

1.2 File Structure
The details of the file structure and contents of this package are show below.

 RZT2M_loader_application

 ├─r01an6729jj0100-rzt2m.pdf

 ├─r01an6729ej0100-rzt2m.pdf

 ├─iccarm: for EWARM

 │ ├─16bitbusboot: sample program for NOR flash

 │ │ └─Loader_application_projects

 │ │ ├─application: project for application program

 │ │ ├─loader: project for loader program

 │ │ ├─cpu1: project for CPU1 program

 │ │ └─RZT2M_bsp_16bitbusboot_app_loader.eww: EWARM workspace

 │ └─xspi0bootx1: sample program for SPI flash

 │ └─Loader_application_projects

 │ ├─application: project for application program

 │ ├─loader: project for loader program

 │ ├─cpu1: project for CPU1 program

 │ └─RZT2M_bsp_xspi0bootx1_app_loader.eww: EWARM workspace

 └─gcc : for e2 studio

 ├─16bitbusboot: sample program for NOR flash

 │ └─Loader_application_projects.zip

 │ ├─RZT2M_bsp_16bitbusboot_app: project for application program

 │ ├─RZT2M_bsp_16bitbusboot_loader: project for loader program

 │ └─RZT2M_cpu1: project for CPU1 program

 └─xspi0bootx1: sample program for SPI flash

 └─Loader_application_projects.zip

 ├─RZT2M_bsp_xspi0bootx1_app: project for application program

 ├─RZT2M_bsp_xspi0bootx1_loader: project for loader program

 └─RZT2M_cpu1: project for CPU1 program

The files of the package are separated to EWARM and e2 studio environment at first level, and to NOR
flash and SPI flash at second level.

Each of the six resulting sample application consists of two projects – one project for the loader program ,
one project for the application program and one project for the CPU1 program.

For the usage procedures of sample program in each development environments, see Appendix
Supplementary Notes on Development Environments.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 6 of 48
Jun.15.23

1.3 Switch and Jumper Settings
The switch and jumper settings required to run the sample program are shown below. For details on each
setting, see the Renesas Starter Kit+ for RZ/T2M User’s Manual.

Table 1.2 Switch settings

Project SW4-1 SW4-2 SW4-3 SW4-4 SW4-5 SW6-1
16-bit bus boot mode ON OFF ON ON OFF ON
xSPI0 boot mode ON ON ON ON OFF -

Table 1.3 Jumper settings

Project CN8 CN17
16-bit bus boot mode - Short 1-2
xSPI0 boot mode Short 2-3 -

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 7 of 48
Jun.15.23

2. Hardware

2.1 Peripheral Functions
Table 2.1 lists the peripheral functions to be used and their applications.

Table 2.1 Peripheral functions and applications

Peripheral function Application
Clock generation circuit (CGC) Used as a CPU clock and each peripheral module

clock
Interrupt controller (ICU) Used for software interrupts (INTCPU0)
Bus state controller (BSC) Used to attach NOR flash memory to CS0 space

and SDRAM to CS3 space
Expanded serial peripheral interface (xSPI) Used to attach Serial flash memory to external

address space xSPI0
General purpose I/O ports Used to control pins to light LEDs on and off

See the RZ/T2M Group User’s Manual: Hardware for basic descriptions.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 8 of 48
Jun.15.23

2.2 Pins
Table 2.2 lists pins to be used and their functions.

Table 2.2 Pins and Functions

Pin Name Input/Output Function
A1 to A25 Output Address signal output to NOR flash memory and SDRAM
D0 to D15 Input/Output Data signal input and output to NOR flash memory and SDRAM
CS0# Output Device selection signal output to NOR flash memory attached to CS0 space
CS3# Output Device selection signal output to SDRAM attached to CS3 space
RAS# Output RAS# control signal output to SDRAM
CAS# Output CAS# control signal output to SDRAM
RD/WR# Output Read control signal or write control signal output to SDRAM
CKE Output Clock enabling control signal output to SDRAM
RD# Output Strobe signal output indicating reading
WE0#/DQMLL Output Write strobe signal output to D15 to D8
WE1#/DQMLU Output Write strobe signal output to D7 to D0
XSPI0_CKP Output Clock output
XSPI0_CS0 Output Device selection signal output to QSPI flash memory attached to CS0 space
XSPI0_RESET0 Output Master reset status output
XSPI0_IO0 ~
XSPI0_IO3

Input/Output Data input / output

MD0 Input Operating mode selection:
• MD0 = “L”, MD1 = “L”, MD2 = “L” (xSPI0 boot mode)
• MD0 = “L”, MD1 = “H”, MD2 = “L” (16-bit bus boot mode)

MD1 Input
MD2 Input
P19_6 Output Lighting LED0 on and off
P19_4 Output Lighting LED1 on and off
P20_0 Output Lighting LED2 on and off
P23_4 Output Lighting LED3 on and off

Note: The mark "#" indicates negative logic (or active low).

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 9 of 48
Jun.15.23

3. Software
This section explains the case of EWARM (from IAR systems) unless otherwise stated.

In this document, the program included in the loader project is called loader program, and the program
included in the application project is called application program. Loader program and application program
each have startup processing section and main processing section.

3.1 Operation Overview
After the reset is released, the loader program for each operating mode (16-bit bus boot/xSPI0 boot) stored
on the external flash memory (NOR flash/Serial flash) is copied to the internal RAM (BTCM).

After boot processing, the loader program is executed. The loader program copies the application program
from external flash memory (NOR flash/Serial flash) to RAM (System SRAM). As final step of the loader
program the entry point of the copied application program is called. After executing the loader program, the
execution of the application program starts.

Figure 3.1 Operation overview

Loader program

Application program

Storage area

Loader program

Application program

Execution area

1

2

1. After reset release, copy the loader program from external flash memory
to BTCM in boot proccessing.

2. Copy the application program from external flash memory to System SRAM
in loader program processing.

BTCM

System SRAM

External flash memory

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 10 of 48
Jun.15.23

3.1.1 Loader Program
The loader program performs initial settings such as changing the exception level and setting the clock as
startup processing. Then the main processing is executed. In the main processing, the application
program stored in external flash (NOR flash/Serial flash) memory is copied to RAM (System SRAM)
according to parameters of loader table. The loader table is a table that the loader program references
when copying the application program. For details on the loader table, see 3.2 Loader Table.
In addition, LED0 turns on to signal the start of copy processing, and LED3 turns on to signal the end of
copy processing. After copy process is complete, the application program is executed.
Figure 3.2 shows operation overview of loader program.

Figure 3.2 Operation overview of loader program

Return from EL2 to EL1

Start loader program

Initialize stack, FPU, clock, variable, etc

Turn on LED3

Copy the application program
according to loader table.

Branch to application program

Turn on LED0

Set EL1 exception vector table offset

Initialize SDRAM settings

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 11 of 48
Jun.15.23

3.1.2 Application Program
The application program performs initial settings such as clock settings, port initialization, and interrupt
settings as startup processing. LED0 and LED3, which turned on during loader program processing, turn
off in port initialization. Then the main processing is executed.
The main processing executed on System SRAM let the LEDs blink.
The LED blinking process is executed by software interrupt (INTCPU0), and LED0 and LED1 blink.
Figure 3.3 shows operation overview of application program.

Figure 3.3 Operation overview of application program

Start application program

CPU MPU, cache, port, Master MPU,
interrupt settings, etc

Initialize stack, FPU, clock, variable, etc

Set EL1 exception vector table offset

Software interrupt (INTCPU0) setting

Generate software interrupt (INTCPU0)

Software delay

Start software interrupt processing

Finish software interrupt processing

Enable port access

Turn on/off LED0 and LED1

Disable port access

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 12 of 48
Jun.15.23

3.2 Loader Table
Loader table is a table that the loader program references when copying the application program. The loader
table defines the parameters required for program copy, and the loader program performs copy processing
according to the table parameters. Multiple loader table entries can be prepared as required, and parameters
can be stored in each table entry.

The loader table has four parameters: copy source address, copy destination address, copy size, and table
enable/disable flag. Table 3.1 shows the details of the loader table parameters.

In this sample program, four loader tables are prepared in loader_table.c of the loader program. The copy
source address depends on the boot operating mode. Tables 3.2 and 3.3 show the loader table parameters
in this sample program.

Table 3.1 Loader table parameters

Argument Parameter Description
1 Src Source address of the program to be copied.
2 Dst Destination address of the program to be copied.
3 Size Size of the program to be copied.
4 Enable flag Flag that determines whether the table is enabled/disabled.

If this flag is disabled, copy processing will not be performed even if other
parameters are set.
0: Disable
1: Enable

Table 3.2 Loader table parameters in this sample program (xSPI0 boot mode)

Table Src Dst Size Enable flag
0 0x6010_0000 0x1008_0000 0x0000_2000 0x1
1*1*2 0xFFFF_FFFF

or
0x6020_0000

0xFFFF_FFFF
or
0x1000_0000

0xFFFF_FFFF
or
0x0000_121C

0x0
or
0x1

2*1 0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF 0x0
3*1 0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF 0x0

Note 1. Table 1,2, and 3 are invalid in this sample program.
 2. When CPU1 program is enabled, Table1 hold the parameters for CPU1 program. For details,

see”5.3 How to Debug CPU1 Program”.

Table 3.3 Loader table parameters in this sample program (16-bit bus boot mode)

Table Src Dst Size Enable flag
0 0x7010_0000 0x1008_0000 0x0000_2000 0x1
1 0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF 0x0
2 0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF 0x0
3* 0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF 0x0

Note 1. Table 1,2, and 3 are invalid in this sample program.
 2. When CPU1 program is enabled, Table1 hold the parameters for CPU1 program. For details,

see”5.3 How to Debug CPU1 Program”.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 13 of 48
Jun.15.23

3.3 Memory Map
3.3.1 Program Placement in Flash Memory

Tables 3.4 and 3.5 show the program placed in the flash memory of this sample program. Flash memory
address depends on the operating mode. At the start of debugging, the program is downloaded to flash
memory. Each program is expanded to the load destination address by boot processing and loader
program processing and executed on RAM.

Table 3.4 Program placement in flash memory and load destination address (xSPI0 boot mode)

Flash memory address Contents Load destination address
0x6000_0000 Parameters for the loader -
0x6000_004C Loader program 0x0010_2000 (BTCM)
0x6008_0000 Loader table -
0x6010_0000 Application program 0x1008_0000 (System SRAM)
0x6020_0000*1 CPU1 program 0x1000_0000 (System SRAM)

 Note 1. CPU1 program is disabled by default. To enable it, see “5.3 How to Debug CPU1 Program”.

Table 3.5 Program placement in flash memory and load destination address (16-bit bus boot mode)

Flash memory address Contents Load destination address
0x7000_0000 Parameters for the loader -
0x7000_004C Loader program 0x0010_2000 (BTCM)
0x7008_0000 Loader table -
0x7010_0000 Application program 0x1008_0000 (System SRAM)
0x7020_0000 CPU1 program 0x1000_0000 (System SRAM)

 Note 1. CPU1 program is disabled by default. To enable it, see “5.3 How to Debug CPU1 Program”.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 14 of 48
Jun.15.23

3.3.2 Section Assignment in Sample Program
Table 3.6 shows the memory sections used by the loader program, and Table 3.7 shows the sections
used by the application program. These sections are defined in the linker script.

Table 3.6 Sections used by loader program

Area Name Description Storing/Execution
Area*1

LOADER_PARAM_BLOCK Parameters for the loader Flash
PRG_RBLOCK Code area (for storing) Flash
DATA_RBLOCK Variable area (for storing) Flash
PRG_WBLOCK Code area (for execution) BTCM
DATA_WBLOCK Variable with initial value area (for execution) BTCM
DATA_ZBLOCK Variable without initial value area (for execution) BTCM
APPLICATION_PRG_RBLOCK Application program area (for storing) Flash
APPLICATION_PRG_WBLOCK Application program area (for executing) System SRAM
CPU1_PRG_RBLOCK*2 CPU1 program area (for storing) Flash
CPU1_PRG_WBLOCK*2 CPU1 program area (for execution) System SRAM

Note 1. In xSPI0 bus boot, serial flash memory is storing area. In 16-bit bus boot mode, NOR flash
memory is storing area.

 2. CPU1 program is disabled by default. To enable it, see “5.3 How to Debug CPU1 Program”.

Table 3.7 Sections used by application program

Area name Description Storing/Execution
Area*1

PRG_RBLOCK Code area (for storing) Flash
DATA_RBLOCK Variable area (for storing) Flash
PRG_WBLOCK Code area (for execution) System SRAM
DATA_WBLOCK Variable with initial value area (for execution) System SRAM
DATA_ZBLOCK Variable without initial value area (for execution) System SRAM

Note 1. In xSPI0 bus boot, serial flash memory is storing area. In 16-bit bus boot mode, NOR flash
memory is storing area.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 15 of 48
Jun.15.23

3.3.3 CPU MPU Settings
Table 3.8 shows the CPU MPU settings for areas accessed by CPU in this sample program. These
setting are applied during startup processing of the application program.

Table 3.8 CPU MPU Settings

Contents Address Memory type
System SRAM 0x1000_0000

to
0x1017_FFFF

Area 2
Normal, cache enabled, non-shared

System SRAM (mirror area) 0x3000_0000
to

0x3017_FFFF

Area 4
Normal, cache disabled, shared

Extended address space (mirror
area)
xSPI0, xSPI1
CS0, CS2, CS3, CS5

0x4000_0000
to

0x5FFF_FFFF

Area 5
Normal, cache disabled, shared

Extended address space
xSPI0, xSPI1
CS0, CS2, CS3, CS5

0x6000_0000
to

0x7FFF_FFFF

Area 6
Normal, cache enabled, non-shared

Non-safety peripheral modules 0x8000_0000
to

0x80FF_FFFF

Area 7
Device (nGnRE) , instruction fetch disabled

Safety peripheral modules 0x8100_0000
to

0x81FF_FFFF

Area 8
Device (nGnRE) , instruction fetch disabled

3.3.4 Exception Processing Vector Table
Exception level 1 of RZ/T2M has 7 types of exception processing (reset, undefined instruction, SVC,
prefetch abort, Data abort, IRQ and FIQ exceptions) that are allocated to the 32-byte area starting from
specified offset address. Specify a branch instruction to each exception processing in the exception
processing vector table.
Table 3.9 lists the contents of exceptional processing vector table for this sample program. Modify the
setting to suit your needs.

Table 3.9 Exception Processing Vector Table

Exception Handler Address*1 Remark*2
RESET Offset Branches to startup program
Undefined instruction Offset + 0x0000 00004 Branches Defaul_Handler
SVC Offset + 0x0000 00008 Branches Defaul_Handler
Prefetch abort Offset + 0x0000 0000C Branches Defaul_Handler
Data abort Offset + 0x0000 00010 Branches Defaul_Handler
Reserved Offset + 0x0000 00014 Branches Defaul_Handler
IRQ Offset + 0x0000 00018 Branches IRQ_Handler (Used for interrupt)
FIQ Offset + 0x0000 0001C Branches Defaul_Handler

Note 1. The offset is defined as following.
 Loader program : 0x0010_2000
 Application program : 0x1008_0000
 CPU1 program : 0x1000_0000
 2. Software break instruction is executed in Default_Handler.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 16 of 48
Jun.15.23

3.4 Function Specifications
This section describes the function specifications.

3.4.1 system_init
system_init

Overview System initialization 1.
Declaration void system_init (void)
Description Executes system initialization such as setting the exception handling vector table

offset and changing Exception Level to 1 from 2. After that, branches to stack_init.
Arguments None

Return value None
Remarks After boot processing, this function runs as startup process.

3.4.2 stack_init
stack_init

Overview System initialization 2.
Declaration void stack_init (void)
Description Executes system initialization such as initializing the stacks, FPU, clock, variables

for startup process. After that, branches to mpu_cache_init.
Arguments None

Return value None
Remarks None

3.4.3 mpu_cache_init
mpu_cache_init

Overview System initialization 3.
Declaration void mpu_cache_init (void)
Description Executes system initialization such as initializing CPU MPU, cache, and ports. After

that, branches to the main process.
Arguments None

Return value None
Remarks None

3.4.4 hal_entry
hal_entry

Overview Main process.
Declaration void hal_entry (void)
Description • Loader program: Copies the application program to internal RAM. Turns on

LED0 before copy processing and turns on LED3 after copy processig is
complete.

• Application program: Calls System SRAM program and SDRAM program.Then
Blinks LED0 and LED1 with software interrupt (INTCPU0).

Arguments None
Return value None

Remarks None

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 17 of 48
Jun.15.23

3.4.5 bsp_sdram_init
bsp_sdram_init

Overview SDRAM initialization
Declaration void bsp_sdram_init (void)
Description Initializes registers related to SDRAM.
Arguments None

Return value None
Remarks None

3.4.6 bsp_copy_4byte
bsp_copy_4byte

Overview Copy function.
Declaration void bsp_copy_4byte (uint32_t *src, uint32_t *dst, uint32_t bytesize)
Description Copies data in 4-byte units for the size specified by the argument.
Arguments • uint32_t *src: Copy source address.

• uint32_t *dst: Copy destination address.
• uint32_t bytesize: Copy data size.

Return value None
Remarks None

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 18 of 48
Jun.15.23

3.5 Flowchart
3.5.1 Loader Program
3.5.1.1 system_init

Figure 3.4 shows flowchart of system_init in the loader program.

Figure 3.4 system_init processing (loader program)

system_init

LLPP permission setting

EL1 exception vector table offset
setting

stack_init

Return from EL2 to EL1

EL2 initialization Initialize in EL2.

Set the offset of the exception vector table used
in the loader program.

Enable LLPP access.

Save CPSR and move to EL1 with ERET instruction.

Branch to stack_init.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 19 of 48
Jun.15.23

3.5.1.2 stack_init
Figure 3.5 shows flowchart of stack_init in the loader program.

Figure 3.5 stack_init processing (loader program)

stack_init

Clock setting

mpu_cache_init

Initialize variables used in the
program

Stack setting
Set the stack pointer for each proessor mode
(System, FIQ, IRQ, Supervisor, Abort, Undefined).

Set FPU operation permission.

Set the clock.

Initialize variables with initial values and
clear variables without initial value used in the program.

Update system core clock variable to the current CPU frequency value.

FPU setting

Update system core clock
variable

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 20 of 48
Jun.15.23

3.5.1.3 mpu_cache_init
Figure 3.6 shows flowchart of mpu_cache_init in the loader program.

Figure 3.6 mpu_cache_init processing (loader Program)

mpu_cache_init

hal_entry

Initialize static constructor
Initialize static constructor.
This process is required for C++ projects.

Branch to hal_entry.

Port setting Set I/O port registers.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 21 of 48
Jun.15.23

3.5.1.4 hal_entry
Figure 3.7 shows flowchart of hal_entry in the loader program.

Figure 3.7 hal_entry processing (loader program)

hal_entry

app_prg

Turn on LED3

Disable port protection Enable writing to registers related to I/O port.

Turns on LED0 to signal the start of copy processing.

Copy the applicationprogram to System SRAM
from external flash memory
accoding to the parameters of loader table.

Turns on LED3 to signal the end of copy processing.

Branch to application program.

Turn on LED0

Copy application program from
external flash memory to RAM

Enable port protection Disable writing to registers related to I/O port.

Initialize registers related to SDRAMSDRAM setting

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 22 of 48
Jun.15.23

3.5.2 Application Program
3.5.2.1 system_init

Figure 3.8 shows flowchart of system_init in the application program.

Figure 3.8 system_init processing (application program)

system_init

EL1 exception vector table offset
setting

stack_init

Set the offset of the exceptionvector table used
in the application program.

Branch to stack_init.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 23 of 48
Jun.15.23

3.5.2.2 stack_init
Figure 3.9 shows flowchart of stack_init in the application program.

Figure 3.9 stack_init processing (application program)

stack_init

Clock setting

mpu_cache_init

Initialize variables used in the
program

Stack setting
Set the stack pointer for each proessor mode
(System, FIQ, IRQ, Supervisor, Abort, Undefined).

Set FPU operation permission.

Set the clock.

Initialize variables with initial values and
clear variables without initial value used in the program.

Update system core clock variable to the current CPU frequency value.

FPU setting

Update system core clock
variable

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 24 of 48
Jun.15.23

3.5.2.3 mpu_cache_init
Figure 3.10 shows flowchart of mpu_cachce_init in the application program.

Figure 3.10 mpu_cache_init processing (application program)

mpu_cache_init

Port setting

main

CPU MPU, cache setting Configure CPU MPU and cache.

Set I/O port registers.

Configure semaphore function.

Configure TFU.

Initialize static constructor

Semaphore setting

Master MPU setting

Interrupt setting

Global system counter setting

TFU setting

Branch to main, then branch to hal_entry.

Initialize static constructor.
This process is required for C++ projects.

Set Master MPU registers.

Enable global system counter.

Initialize interrupt controller.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 25 of 48
Jun.15.23

3.5.2.4 hal_entry
Figure 3.11 shows flowchart of hal_entry in the application program.

Figure 3.11 hal_entry processing (application program)

hal_entry

Software delay

Software interrupt setting Configure software interrupt (INTCPU0).

Generate software interrupt (INTCPU0).
After generating software interrupt,
intcpu0_handler processing is executed.

Delay by software.

Generate software interrupt

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 26 of 48
Jun.15.23

Figure 3.12 shows flowchart of interrupt processing in the application program.

Figure 3.12 interrupt processing (application program)

intcpu0_handler

return

Disable port protection Enable writing to registers related to I/O port.

Blink LED.
If LED is on, turn off LED.
If LED is off, turn on LED.

Return to application main processing.

Turn on/off LED0 and LED1

Enable port protection Disable writing to registers related to I/O port.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 27 of 48
Jun.15.23

4. Related Documents
• User’s Manual: Hardware

RZ/T2M Group User's Manual: Hardware
Download the latest version from the Renesas Electronics website.

Renesas Starter Kit+ for RZ/T2M
Download the latest version from the Renesas Electronics website.

• Technical Update/Technical News
Download the latest version from the Renesas Electronics website.

• User's Manual: Development Environment
The latest version for the IAR integrated development environment (IAR Embedded Workbench® for
Arm) is available from the IAR Systems website.
The latest version for the Renesas Electronics integrated development environment (e2studio) is
available from the Renesas Electronics website.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 28 of 48
Jun.15.23

5. Appendix Supplementary Notes on Development Environments
This section shows the steps up to the start of debugging of the sample program in each of the available
development environments.

5.1 Debug procedure for this sample program.
5.1.1 EWARM from IAR systems
1. Launch EWARM and open "RZT2M_bsp_xpi0bootx1_app_loader.eww" with following procedure.

"[File] -> [Open Workspace] -> select Loader_application_projects\RZT2M_bsp_xpi0bootx1_app_loader.eww"

2. Select "RZ/T2M_bsp_xspi0boot1_app" project in Workspace box as Figure 6.1.
And run build with "[Project] -> [Rebuild All]"

3. Then, select "RZ/T2M_bsp_xspi0boot1_loader" project in Workspace box.
And run build with "[Project] -> [Rebuild All]"

4. Make sure that your PC and RZ/T2M evaluation board are connected with debugger.
Then, start debugging with "[Project] -> [Download and debug]"

5. After emulator connecting, both loader program and application program are downloaded to external
serial flash memory by Flash Downloader. After downloading is complete, the debugging is started
(Program starts running).

Figure 6.1 Project selection

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 29 of 48
Jun.15.23

NOTE: Select loader project when you start debugging as Figure 6.2.
Application program is already specified as extra image in loader project option.
"Right click loader project -> [Options...] -> [Debugger] -> [Images] -> [Download extra image]"

Figure 6.2 EWARM option setting.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 30 of 48
Jun.15.23

5.1.2 e2studio from Renesas
1. Launch e2studio with your workspace. Then, click as following.

 "[File] -> [Import...] -> [General] -> [Existing Projects into Workspace] -> [Next >]"

2. Select “[Select archive file]” and Browse
"Loader_application_projects\RZT2M_bsp_xpi0bootx1_app_loader.zip".

 Then, click "[Finish]"

3. Run build with "[Project] -> [Build All]"

4. Make sure that your PC and RZ/T2M evaluation board are connected with debugger. Then, select
“RZ/T2M_bsp_xspi0bootx1_loader” in connection setting and start debugging with "[Debug]"

5. After emulator connecting, both loader program and application program are downloaded to external

serial flash memory by Flash Downloader. After downloading is complete, the debugging is started
(Program starts running).

 NOTE: Select the loader project when you start debugging. With the following debug configuration,

the loader program and application program are written to the external serial flash memory
at the same time when the loader project is connected for debug.

Figure 6.3 Debug configurations in e2 studio

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 31 of 48
Jun.15.23

5.2 Example of changing RAM placement in application program
The sample program copies the application program from the source address to the destination address
specified in the loader table. The user can change the placement of the application program by rewriting
the source and destination addresses as necessary.

5.2.1 EWARM from IAR systems
Below is an example (xspi0boot project) of changing the placement for application program from System
SRAM to ATCM.

fsp_xspi0_boot_loader.icf (Linker script for loader program)

Default
~~~ 
/* Internal memory */ 
define region ATCM_region      =   mem:[from 0x00000000 size  128K]; 
define region BTCM_region      =   mem:[from 0x00100000 size  128K]; 
define region BTCM_LDR_region  =   mem:[from 0x00102000 size  56K]; 
define region APPLICATION_RAM_region  =  mem:[from 0x10080000 size 64K]; 
 
/* Flash memory */ 
define region LOADER_TABLE_region  =  mem:[from 0x60080000 size 64K]; 
define region APPLICATION_ROM_region  =  mem:[from 0x60100000 size 64K]; 
~~~ 

↓

After changing
~~~ 
/* Internal memory */ 
define region ATCM_region      =   mem:[from 0x00000000 size  128K]; 
define region BTCM_region      =   mem:[from 0x00100000 size  128K]; 
define region BTCM_LDR_region  =   mem:[from 0x00102000 size  56K]; 
define region APPLICATION_RAM_region  =  mem:[from 0x00000000 size 64K]; /* Change copy destination 

address to ATCM */ 
 
/* Flash memory */ 
define region LOADER_TABLE_region  =  mem:[from 0x60080000 size 64K]; 
define region APPLICATION_ROM_region  =  mem:[from 0x60100000 size 64K]; 
~~~ 


fsp_xspi0_boot_app.icf (Linker script for application program)
Default
~~~ 
place at start of SYSTEM_RAM_PRG_region { block PRG_WBLOCK }; 
place in SYSTEM_RAM_PRG_region           { block DATA_WBLOCK }; 
place in SYSTEM_RAM_PRG_region           { block DATA_ZBLOCK }; 
place in SYSTEM_RAM_PRG_region           { rw data, 
                                              rw section .sys_stack, 
                                              rw section .svc_stack, 
                                              rw section .irq_stack, 
                                              rw section .fiq_stack, 
                                              rw section .und_stack, 
                                              rw section .abt_stack }; 
place in SYSTEM_RAM_PRG_region           { rw section HEAP };~~~ 
~~~ 

↓

After changing
~~~ 
place at start of ATCM_region  { block PRG_WBLOCK };     /* Change code area to ATCM */ 
place in ATCM_region            { block DATA_WBLOCK };    /* Change data area to ATCM */ 
place in ATCM_region            { block DATA_ZBLOCK };    /* Change bss area to ATCM */ 
place in ATCM_region            { rw data,                 /* Change stack area to ATCM */ 
                                    rw section .sys_stack, 
                                    rw section .svc_stack, 
                                    rw section .irq_stack, 
                                    rw section .fiq_stack, 



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 32 of 48 
Jun.15.23  

                                    rw section .und_stack, 
                                    rw section .abt_stack }; 
place in ATCM_region            { rw section HEAP };       /* Change HEAP area to ATCM */ 
~~~ 


For example, if you place the application program code in ATCM, the data with and without initial
values and the stack in BTCM, and heap area in System SRAM, write as follows.

fsp_xspi0_boot_app.icf (Linker script for application program)


~~~ 
place at start of ATCM_region  { block PRG_WBLOCK };     /* Change code area to ATCM */ 
place in BTCM_region            { block DATA_WBLOCK };    /* Change data area to BTCM */ 
place in BTCM_region            { block DATA_ZBLOCK };    /* Change bss area to BTCM */ 
place in BTCM_region            { rw data,                 /* Change stack area to BTCM */ 
                                    rw section .sys_stack, 
                                    rw section .svc_stack, 
                                    rw section .irq_stack, 
                                    rw section .fiq_stack, 
                                    rw section .und_stack, 
                                    rw section .abt_stack }; 
place in SYSTEM_RAM_region            { rw section HEAP }; /* Change HEAP area to SYSTEM SRAM */ 
~~~ 


RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 33 of 48
Jun.15.23

5.2.2 e2 studio from Renesas
Below is an example (xspi0boot project) of changing the placement for application program from System
SRAM to ATCM.

fsp_xspi0_boot_loader.ld (Linker script for loader program)

Default
~~~ 
.IMAGE_APP_RAM 0x10080000 : AT (0x10080000) 
{ 
 IMAGE_APP_RAM_start = .; 
 KEEP(*(APP_IMAGE_RAM)) 
} 
.IMAGE_APP_FLASH_section 0x60100000 : AT (0x60100000) 
{ 
 IMAGE_APP_FLASH_section_start = .; 
 KEEP(./src/Flash_section.o(.IMAGE_APP_FLASH_section)) 
 IMAGE_APP_FLASH_section_end = .; 
} 
~~~ 

↓

After changing
~~~ 
.IMAGE_APP_RAM 0x00000000 : AT (0x00000000) /* Change copy destination address to ATCM */ 
{ 
 IMAGE_APP_RAM_start = .; 
 KEEP(*(APP_IMAGE_RAM)) 
} 
.IMAGE_APP_FLASH_section 0x60100000 : AT (0x60100000) 
{ 
 IMAGE_APP_FLASH_section_start = .; 
 KEEP(./src/Flash_section.o(.IMAGE_APP_FLASH_section)) 
 IMAGE_APP_FLASH_section_end = .; 
} 
~~~ 


fsp_xspi0_boot_app.ld (Linker script for application program)
Default
~~~ 
.text 0x10080000 : AT (_mtext) 
{ 

~~~ 
} > SYSTEM_RAM
.rvectors :
{

~~~ 
} > SYSTEM_RAM 
.ARM.extab : 
{ 
    ~~~ 
} > SYSTEM_RAM
.ARM.exidx :
{
    ~~~ 
} > SYSTEM_RAM 
.got : 
{ 
    ~~~ 
} > SYSTEM_RAM
.data : AT (_mdata)
{
    ~~~ 
} > SYSTEM_RAM 
.bss : 
{ 
    ~~~ 
} > SYSTEM_RAM
.heap (NOLOAD) :

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 34 of 48
Jun.15.23

{
    ~~~ 
} > SYSTEM_RAM 
.thread_stack (NOLOAD): 
{ 
    ~~~ 
} > SYSTEM_RAM
.sys_stack (NOLOAD) :
{
    ~~~ 
} > SYSTEM_RAM 
.svc_stack (NOLOAD) : 
{ 
    ~~~ 
} > SYSTEM_RAM
.irq_stack (NOLOAD) :
{
    ~~~ 
} > SYSTEM_RAM 
.fiq_stack (NOLOAD) : 
{ 
    ~~~ 
} > SYSTEM_RAM
.und_stack (NOLOAD) :
{
    ~~~ 
} > SYSTEM_RAM 
.abt_stack (NOLOAD) : 
{ 
    ~~~ 
} > SYSTEM_RAM

~~~ 
 
↓ 
 
After Changing 
~~~ 
.text 0x00000000 : AT (_mtext) /* Change code area to ATCM */
{

~~~ 
} > ATCM 
.rvectors : 
{ 

~~~ 
} > ATCM
.ARM.extab :
{
    ~~~ 
} > ATCM 
.ARM.exidx : 
{ 
    ~~~ 
} > ATCM
.got :
{
    ~~~ 
} > ATCM 
.data : AT (_mdata) /* Change data area to ATCM */ 
{ 
    ~~~ 
} > ATCM
.bss : /* Change bss area to ATCM */
{
    ~~~ 
} > ATCM 
.heap (NOLOAD) : /* Change heap area to ATCM */ 
{ 
    ~~~ 
} > ATCM
.thread_stack (NOLOAD):
{
    ~~~ 
} > ATCM 
.sys_stack (NOLOAD) : /* Change stack area to ATCM */ 
{ 



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 35 of 48 
Jun.15.23  

    ~~~ 
} > ATCM
.svc_stack (NOLOAD) :
{
    ~~~ 
} > ATCM 
.irq_stack (NOLOAD) : 
{ 
    ~~~ 
} > ATCM
.fiq_stack (NOLOAD) :
{
    ~~~ 
} > ATCM 
.und_stack (NOLOAD) : 
{ 
    ~~~ 
} > ATCM
.abt_stack (NOLOAD) :
{
    ~~~ 
} > ATCM 
~~~ 


For example, if you place the application program code in ATCM, the data with and without initial
values and the stack in BTCM, and heap area in System SRAM, write as follows.

fsp_xspi0_boot_app.icf (Linker script for application program)


~~~ 
.text 0x00000000 : AT (_mtext) /* Change code area to ATCM */ 
{ 

~~~ 
} > ATCM
.rvectors :
{

~~~ 
} > ATCM 
.ARM.extab : 
{ 
    ~~~ 
} > ATCM
.ARM.exidx :
{
    ~~~ 
} > ATCM 
.got : 
{ 
    ~~~ 
} > ATCM
.data : AT (_mdata) /* Change data area to BTCM */
{
    ~~~ 
} > BTCM 
.bss : /* Change bss area to BTCM */ 
{ 
    ~~~ 
} > BTCM
.heap (NOLOAD) : /* Change heap area to SYSTEM SRAM */
{
    ~~~ 
} > SYSTEM_RAM 
.thread_stack (NOLOAD): 
{ 
    ~~~ 
} > BTCM
.sys_stack (NOLOAD) : /* Change stack area to BTCM */
{
    ~~~ 
} > BTCM 



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 36 of 48 
Jun.15.23  

.svc_stack (NOLOAD) : 
{ 
    ~~~ 
} > BTCM
.irq_stack (NOLOAD) :
{
    ~~~ 
} > BTCM 
.fiq_stack (NOLOAD) : 
{ 
    ~~~ 
} > BTCM
.und_stack (NOLOAD) :
{
    ~~~ 
} > BTCM 
.abt_stack (NOLOAD) : 
{ 
    ~~~ 
} > BTCM
~~~ 
 

 

 

  



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 37 of 48 
Jun.15.23  

5.3 How to Debug CPU1 Program 
The sample program is CPU0 single core operation with default configuration. The definition 

"USE_CPU1" is added to the project options, and changing its value enables the program required to run 
CPU1. 

 
When CPU1 configuration is enabled, the Table 1 parameters in the loader table are replaced with the 

information for copying the CPU1 program. The loader program refers to the parameters and copies the 
CPU1 program in addition to the application program. 

In addition, CPU1 reset release process is added to the application program. After the reset release 
process is executed, CPU1 program runs from the beginning of System SRAM (0x1000_0000). 

 
Detailed procedures for debugging CPU1 programs in each development environment are shown on 

the following pages. 
 

  



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 38 of 48 
Jun.15.23  

5.3.1 EWARM from IAR systems 
 

1. Build CPU1 program 
 
Open the file “Loader_application_projects\cpu1\RZT2M_cpu1.eww” and build the CPU1 program. 
The following project option settings will output build artifacts in raw binary. 
After building the CPU1 program, close the RZ/T2M_cpu1.eww workspace. 
 

 
 
 

2. Link CPU1 program to CPU0 loader program 
 
Add the following project option settings to link the CPU1 binary to the CPU0 loader program. 
 
Project for the loader program : [Options] -> [Linker] -> [Input] 

Keep symbols : CPU1_SECTION 
File  : $PROJ_DIR$\..\cpu1\Debug\Exe\RZT2M_cpu1.bin 
Symbol  : CPU1_SECTION 
Section  : CPU1_SECTION 
Align  : 4 

 

 



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 39 of 48 
Jun.15.23  

 
 

3. Enable USE_CPU1 definition 
 
Activate the definition to run the CPU1 program. Change the value of "USE_CPU1" defined in the project 
options of the loader program and the application program from 0 to 1. 
 

- Project for the loader program 
[Options] -> [C/C++ Compiler] -> [Preprocessor]: USE_CPU1=1 
[Options] -> [Linker] -> [Config]: USE_CPU1=1 
 

- Project for the Application program 
[Options] -> [C/C++ Compiler] -> [Preprocessor]: USE_CPU1=1 

 



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 40 of 48 
Jun.15.23  

 
 

 
 

 
 



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 41 of 48 
Jun.15.23  

 
 

  



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 42 of 48 
Jun.15.23  

4. Settings for debugging CPU1 project 
 
To debug the CPU1 program, use EWARM's multicore debugging function. The following additional 
project option settings enable debugging of CPU1 projects. 
 

Project for the loader program: [Options] -> [Debugger] -> [Multicore] 
Asymmetric multicore : Enable “Simple”. 
Partner workspace : $PROJ_DIR$\..\cpu1\RZT2M_cpu1.eww 
Partner project  : RZT2M_cpu1 
Partner configuration : Debug 

 

 
 
 

5. Rebuild and run the project 
 
After rebuilding the loader program project, select "Download and Debug" to start debugging the loader 
program. 
 
During the debugging connection, workspace for the CPU1 project automatically opens as well. 
Thereafter, CPU0 and CPU1 projects can be debugged. 
When the CPU1 program is executed, LED2 and LED3 blink. 

 
 
 
 
 

  



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 43 of 48 
Jun.15.23  

5.3.2 e2studio from Renesas 
 

1. Build CPU1 program 
 
Build the “RZT2M_cpu1” program. The following project option settings will output build artifacts in raw 
binary. 
 

 
 
 

  



RZ/T2M Group Example of separating loader program and application program projects 

R01AN6729EJ0110  Rev.1.10  Page 44 of 48 
Jun.15.23  

2. Link CPU1 program to CPU0 loader program 
 
Add a section definition to the linker script file to link the CPU1 binary to the CPU0 loader program. 
 
fsp_xspi0_boot_loader.ld (Linker script for the loader program) 
SECTIONS 
{ 

.IMAGE_APP_RAM 0x10080000 : AT (0x10080000) 
{ 

IMAGE_APP_RAM_start = .; 
KEEP(*(APP_IMAGE_RAM)) 

} 
.IMAGE_APP_FLASH_section 0x60100000 : AT (0x60100000) 
{ 

IMAGE_APP_FLASH_section_start = .; 
KEEP(./src/Flash_section.o(.IMAGE_APP_FLASH_section)) 
IMAGE_APP_FLASH_section_end = .; 

} 
.IMAGE_CPU1_RAM 0x10000000 : AT (0x10000000) /* CPU1 program, RAM section for execution. */ 
{ 

IMAGE_CPU1_RAM_start = .; 
KEEP(*(CPU1_IMAGE_RAM)) 

} 
.IMAGE_CPU1_FLASH_section 0x60200000 : AT (0x60200000) /* CPU1 program, ROM section. */ 
{ 

IMAGE_CPU1_FLASH_section_start = .; 
KEEP(./src/Flash_section.o(.IMAGE_CPU1_FLASH_section)) 
IMAGE_CPU1_FLASH_section_end = .; 

} 
    .loader_param 0x60000000 : AT (0x60000000) 
    { 
        KEEP(*(.loader_param)) 
    } > xSPI0_CS0_SPACE 
    .flash_contents 0x6000004C : AT (0x6000004C) 
    { 
        _mtext = .; 
        . = . + (_text_end - _text_start); 
        _mdata = .; 
        . = . + (_data_end - _data_start); 
        flash_contents_end = .; 
    } > xSPI0_CS0_SPACE 
~~~~~~~~ 
}

IMAGE_APP_FLASH_section_size = SIZEOF(.IMAGE_APP_FLASH_section);
IMAGE_CPU1_FLASH_section_size = SIZEOF(.IMAGE_CPU1_FLASH_section);

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 45 of 48
Jun.15.23

3. Enable USE_CPU1 definition

Enable the definition to run the CPU1 program. Change the value of "USE_CPU1" defined in the project
options of the loader program and application program from 0 to 1.

[Properties] -> [C/C++ Build] -> [Settings] -> [Tool Settings]
[Cross ARM GNU Assembler] -> [Preprocessor]: USE_CPU1=1
[Cross ARM C Compiler] -> [Preprocessor]: USE_CPU1=1

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 46 of 48
Jun.15.23

4. Rebuild and run the project

After rebuilding the loader program project, start debugging the loader program. The CPU1 program is
also written to flash memory at the same time during the debug connection.

When debugging the CPU1 program, start the debugging connection of the CPU1 project after making
the debugging connection of the loader program.

When the following message is displayed, select "No".

If the debugging connection of the CPU1 project succeeds, CPU0 and CPU1 are connected to the
debugger. Thereafter, CPU0 and CPU1 projects can be debugged.

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 47 of 48
Jun.15.23

By selecting Thread in the "Debug" view on the left side of the screen, the debug target core can be
switched between CPU0 and CPU1.

When the thread for debugging CPU0 project is selected and the program is executed, the loader
program and the application program runs and LED0 and LED1 blink.
When the thread for debugging CPU1 project is selected and the program is executed, LED2 and LED3
blink.

Thread for debugging CPU1

Thread for debugging CPU0

RZ/T2M Group Example of separating loader program and application program projects

R01AN6729EJ0110 Rev.1.10 Page 48 of 48
Jun.15.23

Revision History

Rev. Date
Description

Page Summary
1.00 Nov.29, 2022 - First edition issued.
1.10 Jun. 15, 2023 - Modify behavior of loader program and application program.
 - Support CPU1 operation.
 4 Chang RZ/T2 FSP support version v1.0.0 -> v1.2.0
 31 Add “Example of changing RAM placement in application

program”

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 Operating Environment
	1.2 File Structure
	1.3 Switch and Jumper Settings

	2. Hardware
	2.1 Peripheral Functions
	2.2 Pins

	3. Software
	3.1 Operation Overview
	3.1.1 Loader Program
	3.1.2 Application Program

	3.2 Loader Table
	3.3 Memory Map
	3.3.1 Program Placement in Flash Memory
	3.3.2 Section Assignment in Sample Program
	3.3.3 CPU MPU Settings
	3.3.4 Exception Processing Vector Table

	3.4 Function Specifications
	3.4.1 system_init
	3.4.2 stack_init
	3.4.3 mpu_cache_init
	3.4.4 hal_entry
	3.4.5 bsp_sdram_init
	3.4.6 bsp_copy_4byte

	3.5 Flowchart
	3.5.1 Loader Program
	3.5.1.1 system_init
	3.5.1.2 stack_init
	3.5.1.3 mpu_cache_init
	3.5.1.4 hal_entry

	3.5.2 Application Program
	3.5.2.1 system_init
	3.5.2.2 stack_init
	3.5.2.3 mpu_cache_init
	3.5.2.4 hal_entry

	4. Related Documents
	5. Appendix Supplementary Notes on Development Environments
	5.1 Debug procedure for this sample program.
	5.1.1 EWARM from IAR systems
	5.1.2 e2studio from Renesas

	5.2 Example of changing RAM placement in application program
	5.2.1 EWARM from IAR systems
	5.2.2 e2 studio from Renesas

	5.3 How to Debug CPU1 Program
	5.3.1 EWARM from IAR systems
	5.3.2 e2studio from Renesas

