
 APPLICATION NOTE

R01AN3292EJ0110 Rev.1.10 Page 1 of 32
Sep 30, 2016

RZ/A1H Group
USB Host Mass Storage Class Driver (HMSC)

Introduction
This application note describes USB Host Mass Storage Class Driver (HMSC). This driver operates in
combination with the USB Basic Host Driver (USB-BASIC-F/W). It is referred to below as the HMSC.

Target Device
RZ/A1H Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate

Related Documents
1. Universal Serial Bus Revision 2.0 specification
2. USB Mass Storage Class Specification Overview Revision 1.1
3. USB Mass Storage Class Bulk-Only Transport Revision 1.0

 http://www.usb.org/developers/docs/
4. RZ/A1H Group,RZ/A1M Group User's Manual: Hardware (Document No.R01UH0403EJ)
5. RZ/A1H Group USB Host and Peripheral Interface Driver (Document No.R01AN3291EJ)
6. RZ/A1H Group Downloading Program to NOR Flash Memory Using ARM® Development Studio 5

(DS-5™) Semihosting Function (for GENMAI) (Document No.R01AN1957EJ)
7. RZ/A1H Group I/O definition header file (Document No.R01AN1860EJ)
8. RZ/A1H Group Example of Initialization (for GENMAI) (Document No.R01AN1864EJ)

Renesas Electronics Website
http://www.renesas.com/

USB Device Page
http://www.renesas.com/prod/usb/

R01AN3292EJ0110
Rev.1.10

Sep 30, 2016

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 2 of 32
Sep 30, 2016

Contents

1. Overview .. 3

2. Software Configuration ... 6

3. System Resources .. 7

4. Target Peripheral List（TPL） ... 7

5. Accessing USB Storage Devices ... 8

6. File System Interface (FSI) ... 9

7. Host Mass Storage Device Driver (HMSDD) .. 10

8. USB Mass Storage Class Driver (HMSCD) .. 19

9. Sample Application ... 29

10. Setup .. 31

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 3 of 32
Sep 30, 2016

1. Overview
The HMSC, when used in combination with the USB-BASIC-F/W, operates as a USB host mass storage
class driver (HMSC).
The HMSC comprises a USB mass storage class bulk-only transport (BOT) protocol. When combined with
a file system and storage device driver, it enables communication with a BOT-compatible USB storage
device.
Note that this software uses the FatFs.

This module supports the following functions.
・ Checking of connected USB storage devices (to determine whether or not operation is supported).
・ Storage command communication using the BOT protocol.
・ Support for SFF-8070i (ATAPI) USB mass storage subclass.
・ Maximum 4 USB storage devices can be connected.

1.1 Please be sure to read
It is recommended to use the APIs described in the document (Document No: R01AN3291EJ) when
creating an application program using this driver.
That document is located in the "reference_documents" folder within the package.
[Note]

a. The document (Document No: R01AN3291EJ) also provides how to create an application program
using the APIs described above.

b. If the APIs described in the document (Document No: R01AN3291EJ) are used, there is no need to
use the API described in “6.2. FSI API”, “7.4, HMSDD API Function” and “8.6. HMSC API” of this
document of this document.

1.2 Operation Confirmation Conditions
The operation of the USB Driver module has been confirmed under the conditions listed in Table 1.1.

Table 1.1 Operation Confirmation Conditions
Item Description

MCU RZ/A1H
Operating frequency (Note) CPU clock (Iφ): 400 MHz
 Image-processing clock (Gφ): 266.37 MHz
 Internal bus clock (Bφ): 133.33 MHz
 Peripheral clock 1 (P1φ): 66.67 MHz
 Peripheral clock 0 (P0φ): 33.33 MHz
Operating voltage Power supply voltage (I/O): 3.3 V
 Power supply voltage (internal): 1.8 V
Integrated development environment ARM Integrated Development Environment
 • ARM Development Studio (DS-5TM) Version 5.16
 IAR Integrated Development Environment
 • IAR Embedded Workbench for ARM Version 7.40
Compiler ARM C/C++ Compiler/Linker/Assembler Ver.5.03 [Build 102]
 KPIT GNUARM-RZ v14.01
 IAR C/C++ Compiler for ARM 7.40
Operating mode Boot mode 0
 (CS0-space 16-bit booting)
Communication setting of terminal
software

Communication speed: 115200 bps

 Data length: 8 bits
 Parity: None
 Stop bit length: 1 bit
 Flow control: None
Board GENMAI board
 R7S72100 CPU board (RTK772100BC00000BR)
Device Serial interface (D-sub 9-pin connector)
(Functions used on the board) USB1 connector, USB2 connector

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 4 of 32
Sep 30, 2016

1.3 Limitations
 This module is subject to the following restrictions

1. Structures are composed of members of different types (Depending on the compiler, the address
alignment of the structure members may be shifted).

2. Additional limitations apply to HMSDD. See section 7 for details.

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 5 of 32
Sep 30, 2016

Terms and Abbreviations
APL : Application program
BOT : Mass storage class Bulk Only Transport
cstd : Prefix of function and file for Peripheral & Host Common Basic (USB low level) F/W
FSL : FAT File System Library
HCD : Host Control Driver of USB-BASIC-F/W
HDCD : Host Device Class Driver (device driver and USB class driver)
HSTD : Function & File for Host Basic (USB low level) F/W
HUBCD : Hub Class Smple Driver
MGR : Peripheral device state manager of HCD
non-OS : USB basic firmware for non-OS based system
PP : Pre-processed definition
RSK : Renesas Starter Kits
Scheduler : Used to schedule functions, like a simplified OS.
Scheduler Macro : Used to call a scheduler function (non-OS)
Task : Processing unit
USB-BASIC-F/W : USB Basic Host Driver for RZ/A1H Group (non-OS)
USB : Universal Serial Bus

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 6 of 32
Sep 30, 2016

2. Software Configuration
HDCD (Host Device Class Driver) is the all-inclusive term for HMSDD (Host Mass Storage Device Driver)
and HMSCD (USB Host Mass Storage Class Driver).
Figure 2-1 shows the HMSC software block diagram, with HDCD as the centerpiece. Table 2.1 describes
each module.

User Application (APL)

File System Library (FSL)

File System Interface (FSI)

Mass Storage Device driver (HMSDD)

Device Driver Interface (DDI)

Host Mass Storage Class Driver

HCD Interface (HCI)

Media Driver USB Host Control Driver (HCD)

Media USB Host Controller (H/W)

M
ass S

torage
C

lass D
river

(H
M

S
C

D
)

D
evice C

lass
D

river (H
D

C
D

)

MGR / HUB
(USB Manager)

(HUB Driver)

Figure 2-1 Software Block Diagram

Table 2.1 Module
Module Description

APL Calls FSL functions to implement storage functionality.
Created by the customer to match the system specifications.

FSL FAT file system with specifications defined by the user.
FSI FSL-HMSDD interface functions.

They should be modified to match FSL.
HMSDD To be created (modified) by the customer to match the storage media.
DDI HMSDD-HMSCD interface functions.

They should be modified to match the storage media interface of HMSDD.
HMSCD The USB host mass storage class driver. It appends BOT protocol information to storage

commands and sends requests to HCD. It also manages the BOT sequence.
The storage commands should be added (modified) by the customer to match the system
specifications. SFF-8070i (ATAPI) is supported in the example code.

HCI HMSCD-HCD interface functions.
MGR/HUB Enumerates the connected devices and starts HMSCD. Also performs device state

management.
HCD USB host hardware control driver.
Media Driver Driver for non-USB storage devices.

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 7 of 32
Sep 30, 2016

3. System Resources
The resources used by HMSC are listed below.

Table 3-1 Task Information

Function Name Task ID Priority Description
usb_hmsc_Task USB_HMSC_TSK USB_PRI_3 Mass storage task
usb_hmsc_StrgDriveTask USB_HSTRG_TSK USB_PRI_3 HMSDD task

Table 3-2 Mailbox Information

Mailbox Name Using Task ID Task Queue Description
USB_HMSC_MBX USB_HMSC_TSK FIFO order For HMSCD
USB_HSTRG_MBX USB_HSTRG_TSK FIFO order For HMSDD

Table 3-3 Memory Pool Mailbox Information

Memory Pool Name Task Queue Memory Block (note) Description
USB_HMSC_MPL FIFO order 40byte For HMSC
USB_HSTRG_MPL FIFO order 40byte For HDCD

Note: The maximum number of memory blocks for the entire system is defined in USB_BLKMAX. The
default value is 20.

4. Target Peripheral List（TPL）
When using a USB host driver (USB-BASIC-F/W) and device class driver in combination, it is necessary to
create a target peripheral list (TPL) for each device driver.
For details on the TPL, refer to “How to Set a Targeted Peripheral List” in the Application Note of the USB
Host and Peripheral Interface Driver (Document No: R01AN3291EJ).

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 8 of 32
Sep 30, 2016

5. Accessing USB Storage Devices
FSI (File System Interface) converts sector numbers to logical block addresses and sector counts to
transfer data sizes. From the drive number, HMSDD determines if a USB storage device is being accessed.
HMSCD converts drive numbers to unit numbers and accesses USB storage devices via HCD according to
the BOT protocol.
Figure5-1 shows the USB storage device access sequence.

APL FSL FSI HMSDD HMSCD HCD

read_sector()
R_USB_HmscStr

gReadSector() R_USB_HmscRead10()

Read sector

usb_hstd_set_pipe_r
egistration()
transmission

usb_hmsc_DataAct()
CBW

usb_hstd_set_pipe_r
egistration()

recipition
usb_hmsc_DataAct()

Data
usb_hstd_set_pipe_r

egistration()
transmission

usb_hmsc_DataAct()
CSW

returnreturnsector
data

write_sector()
R_USB_HmscStr

gWriteSector() R_USB_HmscWrite10()

Write sector

usb_hstd_set_pipe_r
egistration()
transmission

usb_hmsc_DataAct()
CBW

usb_hstd_set_pipe_r
egistration()

usb_hmsc_DataAct()
Data

usb_hstd_set_pipe_r
egistration()
transmission

usb_hmsc_DataAct()
CSW

returnreturnreturn return

transmission

‘read’ process
disk_read()

‘write’ process disk_write()

Figure5-1 USB Storage Device Access Sequence

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 9 of 32
Sep 30, 2016

6. File System Interface (FSI)

6.1 Functions and Features
Create the FSL to match the specifications of the interface.

6.2 FSI API
Table 6.1 lists the functions of the sample FSI.

[Note]

If you want to use the API, which is described in USB Host and Peripheral Interface Driver (Document No:
R01AN3291JJ), in the application program, you do not need to use the following API.

Table 6.1 FSI Functions

Function Name Description
disk_read Read data
disk_write Write data
R_usb_hmsc_WaitLoop Wait for completion of DATA READ / DATA WRITE

(For non-OS)
dev_open Mount a drive (TFAT is not in use)
dev_close Unmount a drive (TFAT is not in use)

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 10 of 32
Sep 30, 2016

7. Host Mass Storage Device Driver (HMSDD)

HMSDD, the “device driver”, is called by FAT when using HMSCD. HMSDD selects a storage device
depending on a given drive number.

7.1 Limitation

• Maximum 4 USB storage devices can be connected.
• USB storage devices with a sector size of 512 bytes can be connected.
• A device that does not respond to the READ_CAPACITY command operates as a device with a

sector size of 512 bytes.
• Some devices may be unable to be connected (because they are not recognized as storage

devices).

7.2 Logical Unit Number (LUN)
If a device does not respond to a GetMaxUnit request and the unit count is undetermined, the device
operates with a unit count setting of 0. HMSCD creates USB packets according to the BOT specification.
The CBWCB field (storage command) of the data packet is created according to the SCSI specification.
The LUN field settings in the bCBWLUN field of the CBW packet and in the storage command are listed
in.Table 7.1.

Table 7.1 LUN Field Settings

 bCBWLUN Field LUN Field in Command
usb_ghmsc_MaxLUN = 0 0 0
usb_ghmsc_MaxLUN = other than 0 Unit number 0

7.3 Changing Logical Block Addresses
Under the BOT specification, information is read and written according to logical block addresses. The data
size is specified as the number of bytes of information that are read or written.
The logical block address is calculated from the sector number and offset sector number. The transfer size
is calculated from the sector count and sector size.

Logical block address = logical sector number + offset sector number
Transfer size = sector count * sector size

7.4 HMSDD API Function
Table 7.2 lists the function of HMSDD.

[Note]

If you want to use the API, which is described in USB Host and Peripheral Interface Driver (Document
No: R01AN3291JJ), in the application program, you do not need to use the following API.

Table 7.2 HMSDD functions
Function Name Description

R_USB_HmscStrgDriveTask() Gets the storage device information
R_USB_HmscStrgDriveSearch() Searchs the accessible drive
R_USB_HmscStrgReadSector() Reads data.
R_USB_HmscStrgWriteSector() Writes data.
R_USB_HmscStrgUserCommand() Issues storage command.
R_USB_HmscAllocDrvno() Allocates the drive number.
R_USB_HmscFreeDrvno() Frees the drive number
R_USB_HmscRefDrvno() Refers the drive number

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 11 of 32
Sep 30, 2016

7.4.1 R_USB_HmscStrgDriveTask

Storage drive task

Format
void R_USB_HmscStrgDriveTask(void)

Argument
－ －

Return Value
－ －

Description
This API does the processing to get the storage device information by sending SFF-8070i (ATAPI) command to
the storage device..

Notes
1. Please call this function from the application program

Example
void usb_hapl_mainloop(void)
{

while(1)
{

R_usb_cstd_Scheduler();

if(USB_FLGSET == R_usb_cstd_CheckSchedule())
{

R_usb_hstd_HcdTask((USB_VP_INT)0);
R_usb_hstd_MgrTask((USB_VP_INT)0);
R_usb_hhub_Task((USB_VP_INT)0);
R_usb_hmsc_Task((USB_VP_INT)0)
R_usb_hmsc_StrgDriveTask();

}
 :

}
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 12 of 32
Sep 30, 2016

7.4.2 R_USB_HmscStrgDriveSearch

Searchs the accessible drive

Format
USB_ER_t R_USB_HmscStrgDriveSearch(USB_UTR_t *ptr, uint16_t addr, USB_CB_t complete)

Argument
*ptr Pointer to USB_UTR_t structure

addr USB address

complete Callback function

Return Value
USB_DONE Normal end
USB_ERROR Error end

Description
This API checks the follows by sending the class request (GetMaxLun) and SFF-8070i (ATAPI) command to
USB device which is specified in the argument (addr).

1. The number of unit of the storage device

2. Accesible the drive

The callback function which is specified in the argument (complete) is called whencompleting the drive searching.

Notes
2. Please call this function from the class driver or the FAT library I/F function.

3. Please set the following members of USB_UTR_t structure.

 USB_REGADR_t ipp : USB register base address
uint16_t ip : USB IP Number

Example
/* Callback function */
void usb_hmsc_StrgCommandResult(USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{
 :
}

void usb_hmsc_SampleAplTask(void)
{
 :
 R_USB_HmscStrgDriveSearch(mess, addr,(USB_CB_t)&usb_hmsc_StrgCommandResult);
 :
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 13 of 32
Sep 30, 2016

7.4.3 R_USB_HmscStrgReadSector

Read Sector Information

Format
USB_ER_t R_USB_HmscStrgReadSector(USB_UTR_t *ptr, uint16_t side, uint8_t *buff, uint32_t

secno, uint16_t seccnt, uint32_t trans_byte))
Argument

ptr Pointer to USB_UTR_t structure
side Drive number
buff Pointer to read data storage area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value
USB_DONE Normal end
USB_ERROR Error end

Description
Reads the sector information of the drive specified by the argument.
An error response occurs in the following cases.

1. When the sector information could not be read successfully from the storage device.

Notes
1. Please call this function from FAT library I/F function.

2. Please set the following members of USB_UTR_t structure.

USB_REGADR_t ipp : USB register base address
uint16_t ip : USB IP Numbe

Example
int read_sector(USB_UTR_t *ptr, int side, unsigned char *buff, unsigned long secno,
 long seccnt)
{
 :
 error = R_USB_HmscStrgReadSector(ptr, (uint16_t)side, buff, secno, (uint16_t)seccnt,

trans_byte);

 if(error == USB_ERROR)
 {
 :
 return (-1);
 }
 return (0);
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 14 of 32
Sep 30, 2016

7.4.4 R_USB_HmscStrgWriteSector

Write Sector Information

Format
USB_ER_t R_USB_HmscStrgWriteSector(USB_UTR_t *ptr, uint16_t side, uint8_t *buff, uint32_t

secno, uint16_t seccnt, uint32_t trans_byte))
Argument

ptr Pointer to USB_UTR_t structure

side Drive number
buff Pointer to write data storage area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value
USB_DONE Normal end
USB_ERROR Error end

Description
Writes the sector information of the drive specified by the argument.
An error response occurs in the following cases.
1. When the sector information could not be read successfully from the storage device.

Notes
1. Please call this function from FAT library I/F function.

2. Please set the following members of USB_UTR_t structure.

USB_REGADR_t ipp : USB register base address
uint16_t ip : USB IP Numbe

Example
int write_sector(USB_UTR_t *ptr, int side, unsigned char *buff, unsigned long secno,
 long seccnt)
{
 :
 error = R_usb_hmsc_StrgWriteSector(ptr, (uint16_t)side, buff, secno,

(uint16_t)seccnt, trans_byte);

 if(error == USB_ERROR)
 {
 :
 return (-1);
 }
 return (0);
｝

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 15 of 32
Sep 30, 2016

7.4.5 R_USB_HmscStrgUserCommand

Issue Storage Command

Format
uint16_t R_USB_HmscStrgUserCommand(USB_UTR_t *ptr, uint16_t side, uint16_t command ,
 uint8_t *buff, USB_CB_t complete)

Argument
*ptr Pointer to USB_UTR_t structure
side Drive number
command Command to be issued
*buff Data pointer
complete Callback function

Return Value
USBC_DONE Normal end
USBC_ERROR Error end

Description
This function issues the storage command specified by the given argument, to the HMSC driver. The callback
function which is specified in the argument (complete) is called when completing the issued storage command.
Here are the storage commands supported:

Storage commands Description
USB_ATAPI_TEST_UNIT_READY Check status of peripheral device
USB_ATAPI_REQUEST_SENCE Get status of peripheral device
USB_ATAPI_INQUIRY Get parameter information of logical unit
USB_ATAPI_MODE_SELECT6 Specify parameters
USB_ATAPI_PREVENT_ALLOW Enable/disable media removal
USB_ATAPI_READ_FORMAT_CAPACITY Get formattable capacity
USB_ATAPI_READ_CAPACITY Get capacity information of logical unit
USB_ATAPI_MODE_SENSE10 Get parameters of logical unit

Notes

Please call this function from the application program and the class driver.

Please set the following members of USB_UTR_t structure.
 USB_REGADR_t ipp : USB register base address
 uint16_t ip : USB IP Number

Example
/* Callback function */
void strgcommand_complete(USB_UTR_t *mess, uint16_t data1, uint16_t data2)
{

 :
}
void usb_smp_task(void)
{
 ：
 /* Issuing TEST_UNIT_READY */
 R_USB_HmscStrgUserCommand(ptr, side, USB_ATAPI_TEST_UNIT_READY, buf,
(USB_CB_t)complete);
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 16 of 32
Sep 30, 2016

7.4.6 R_USB_HmscAllocDrvno

Allocates the driver number

Format
uint16_t R_USB_HmscAllocDrvno(uin16_t ipno, uint16_t devadr)

Argument
ipno USB module number
devadr Device address of MSC device

Return Value
－ Drive number

Description
This function allocate the drive number to the connected MSC device. c

Notes
1. The user can specifies the drive number which is allocated by this API in the argument of FAT API.

2. Specifies USB module number which MSC device is connected to in the argument “ipno”.

USB Module USB Module Number
USB0 USB_IP0
USB1 USB_IP1

Example
void usb_smp_task(void)
{
 ：

/* Allocates the drive number */
drvno = R_USB_HmscAllocDrvno(USB_IP1, devadr);

 ：
 }

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 17 of 32
Sep 30, 2016

7.4.7 R_USB_HmscFreeDrvno

Frees the driver number

Format
void R_USB_HmscFreeDrvno(uint16_t drvno)

Argument
drvno Drive number

Return Value
－ －

Description
This function frees the drive number which is specified by the argument.

Notes
Specifies USB module number which MSC device is connected to in the argument “ipno”.

USB Module USB Module Number
USB0 USB_IP0
USB1 USB_IP1

Example
void usb_smp_task(void)
{
 ：

/* Frees the drive number */
R_USB_HmscFreeDrvno(drvno);

 ：
 }

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 18 of 32
Sep 30, 2016

7.4.8 R_USB_HmscRefDrvno

Refers the driver number

Format
void R_USB_HmscRefDrvno(uint16_t ipno, uint16_t devadr)

Argument
ipno USB module number
devadr Device address

Return Value
－ Drive number

Description
This function refers the drive numer based on USB module number and the device address which are specified by
the argument.

Notes
－

Example
void usb_smp_task(void)
{
 ：

/* Frees the drive number */
R_USB_HmscRefDrvno(drvno);

 ：
 }

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 19 of 32
Sep 30, 2016

8. USB Mass Storage Class Driver (HMSCD)

8.1 Functions and Features
HMSCD executes storage command communication, if the USB storage devices are ready to operate. The
BOT protocol is used, which encapsulates the storage commands as they pass through USB.
MSCD comprises three layers: HMSDD interface (DDI functions), HCD interface (HCI functions), and
HMSCD itself.
HMSCD supports storage commands necessary for accessing USB storage devices and sample storage
commands.
HMSCD has the following features.
 Support for USB mass storage class BOT.
 Support for SFF-8070i (ATAPI) and SCSI USB mass storage subclasses.
 Sharing of a single pipe for IN/OUT directions or multiple devices.

8.2 Issuing Requests to HMSCD
The interface functions described below (Table 8.4and Table 8.5) are used when accessing USB storage
devices.
HMSCD sends notification of results in response to requests from a higher layer in the return value of the
registered callback function...

8.3 HMSCD Structures
Table 8.1 and Table 8.2 show the contents of the HMSCD structures.

Table 8.1 USB_MSC_CBW_t Structure
 Member Name Description Remarks

uint32_t dCBWSignature CBW Signature 0x55534243: USBC
uint32_t dCBWTag CBW Tag Tag corresponding to CSW
uint8_t dCBWDTL_Lo CBW Data Transfer Length Data length of transmit/receive data
uint8_t dCBWDTL_ML
uint8_t dCBWDTL_MH
uint8_t dCBWDTL_Hi
uint8_t bmCBWFlags CBW Direction Data transmit/receive direction
uint8_t bCBWLUN Logical Unit Number Unit number
uint8_t bCBWCBLength CBWCB Length Command length
uint8_t CBWCB[16] CBWCB Command block

Table 8.2 USB_MSC_CSW_t Structure
 Member Name Description Remarks

uint32_t dCSWSignature CSW Signature 0x55534253: USBS
uint32_t dCSWTag CSW Tag Tag corresponding to CBW
uint8_t dCSWDataResidue_Lo CSW DataResidue Data length used
uint8_t dCSWDataResidue_ML
uint8_t dCSWDataResidue_MH
uint8_t dCSWDataResidue_Hi
uint8_t bCSWStatus CSW Status Command status
uint8_t dummy Dummy Even number adjustment

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 20 of 32
Sep 30, 2016

8.4 USB Host Control Driver Interface (HCI) Functions
HCI is the interface function between HMSCD and HCD.
HCI uses the HMSCD area to send and receive messages.
Note that two devices cannot be enumerated (or accessed) simultaneously.

8.5 Device Driver Interface (DDI) Functions
DDI is the interface function between HMSDD and HMSCD.
DDI functions comprise the HMSCD start function, end function, check connected device function, and
sample storage command functions.

8.6 HMSC API
Application programming interface description for HMSCD

[Note]

If you want to use the API, which is described in USB Host and Peripheral Interface Driver (Document
No: R01AN3291JJ), in the application program, you do not need to use the following API.

Table 8.3 HMSCD Functions

 Function Name Description
1 R_USB_HmscGetDevSts() Returns HMSCD operation state.
2 R_USB_HmscDriverStart() HMSC driver start processing.

Table 8.4 HCI Functions
 Function Name Description
1 R_USB_HmscGetMaxUnit() Get_MaxUnit request execution.
2 R_USB_HmscMassStorageReset() MassStorageReset request execution.

Table 8.5 DDI Functions
 Function Name Description

1 R_USB_HmscClassCheck() Checks the descriptor table of the connected device to
determine whether or not HMSCD can operate.

2 R_USB_HmscRead10() Issues the READ10 command.
3 R_USB_HmscWrite10() Issues the WRITE10 command.

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 21 of 32
Sep 30, 2016

8.6.1 R_USB_HmscGetDevSts

Returns HMSCD operation state

Format
uint16_t R_USB_HmscGetDevSts(uint16_t drvno)

Argument
drvno Drive number

Return Value
usb_ghmsc_AttSts USB_HMSC_DEV_ATT (Attach)
 USB_HMSC_DEV_DET (Detach)

Description
Returns the HMSCD operation state.

Note
1. Please call this function from the user application program or the class driver.
2. Specifies the driver number which is allocated by R_usb_hmsc_alloc_drvno function in the argument

“drvno”.

Example
void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 /* Checking the device state */
 if(R_USB_HmscGetDevSts(drvno) == USB_HMSC_DEV_DET)
 {
 /* Detach processing */

 }
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 22 of 32
Sep 30, 2016

8.6.2 R_USB_HmscTask

Host Mass Storage Class task

Format
void R_USB_HmscTask(void)

Argument
－ －

Return Value
－ －

Description
This function is a task for HMSCD.
This function controls BOT.

Note
1. Please call this function from a loop that executes the scheduler processing for non-OS operations.
2. Please refer to the chapter "Operation Flow in Static State" in the Basic F/W application note for

more information about this loop.

Example
void usb_smp_mainloop(void)
{
 while(1)
 {
 /* Scheduler processing */
 R_usb_cstd_Scheduler();
 /* Checking flag */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 ：
 R_USB_HmscTask();
 ：
 }
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 23 of 32
Sep 30, 2016

8.6.3 R_USB_HmscDriverStart

HMSC driver start

Format
void R_USB_HmscDriverStart(USB_UTR_t *ptr)

Argument
*ptr Pointer to USB Transfer structure

Return Value
－ －

Description
This function sets the priority of HMSC driver task.
The sent and received of message are enable by the priority is set.

Note
1. Call this function from the user application program during initialization.
2. Please set the following member of USB_UTR_t structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP Number

Example
void usb_hstd_task_start(void)
{
 USB_UTR_t *ptr;
 ：
 ptr->ip = USB_HOST_USBIP_NUM; /* USB IP No */
 ptr->ipp = R_usb_cstd_GetUsbIpAdr(ptr->ip); /* USB IP base address */
 ：
 R_USB_HmscDriverStart(ptr); /* Host Class Driver Task Start Setting */
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 24 of 32
Sep 30, 2016

8.6.4 R_USB_HmscGetMaxUnit

Issue GetMaxLUN request.

Format
USB_ER_t R_USB_HmscGetMaxUnit(USB_UTR_t *ptr, uint16_t addr, USB_CB_t complete)

Argument
*ptr Pointer to USB_UTR_t structure
addr Device address
complete Callback function

Return Value
USB_E_OK GET_MAX_LUN issued
USB_E_ERROR GET_MAX_LUN not issued
USB_E_QOVR GET_MAX_LUN not issued

Description
This function issues the GET_MAX_LUN request and gets the maximum storage unit count. The
callback function which is specified in the argument (complete) is called when completing this request.

Note
1. Please call this function from the user application program or the class driver.
2. Please set the following members of USB_UTR_t structure.

 USB_REGADR_t ipp : USB register base address
 uint16_t ip : USB IP Number

Example
void usb_smp_task(USB_UTR_t *ptr)
{
 USB_ER_t err;
 ：
 /* Getting Max unit number */
 err = R_USB_HmscGetMaxUnit(mess, addr, (USB_CB_t)usb_hmsc_StrgCheckResult);
 if(err == USB_E_QOVR)
 {
 /* Error processing */
 }
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 25 of 32
Sep 30, 2016

8.6.5 R_USB_HmscMassStorageReset

Issue Mass Storage Reset request.

Format
USB_ER_t R_USB_HmscMassStorageReset(USB_UTR_t *ptr, uint16_t drvnum,

USB_CB_t complete)

Argument
*ptr Pointer to USB_UTR_t structure
drvnum Drive number
complete Callback function

Return Value
USB_E_OK MASS_STORAGE_RESET issued
USB_E_ERROR MASS_STORAGE_RESET not issued
USB_E_QOVR MASS_STORAGE_RESET not issued

Description
This function issues the MASS_STORAGE_RESET request and cancels the protocol error.
The callback function which is specified in the argument (complete) is called when completing this
request.

Note
1. Please call this function from the user application program or the class driver.
2. Please set the following members of USB_UTR_t structure.

 USB_REGADR_t ipp : USB register base address
 uint16_t ip : USB IP Number

Example
void usb_smp_task(USB_UTR_t *ptr)
{
 USB_ER_t err;
 ：
 /* Cansel the protocol error */
 err = R_USB_HmscMassStorageReset(ptr, drvnum, (USB_CB_t)usb_hmsc_CheckResult);
 if(err == USB_E_QOVR)
 {
 /* Error processing */
 }
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 26 of 32
Sep 30, 2016

8.6.6 R_USB_HmscClassCheck

Compare connected device with interface descriptor

Format
void R_USB_HmscClassCheck(USB_UTR_t *ptr, uint16_t **table)

Argument
*ptr Pointer to USB_UTR_t structure
**table Not used

Return Value
－ －

Description
Checks the device count and drive count, and analyzes the interface descriptor table. Confirms that the
items listed below match HMSCD, and reads the serial number if the operation is possible. Updates the
pipe information table with information from the bulk endpoint descriptor table (endpoint address, max.
packet size, etc.).
Interface descriptor information check

bInterfaceSubClass = USB_ATAPI / USB_SCSI
 bInterfaceProtocol = USB_BOTP
 bNumEndpoint > USB_TOTALEP
String descriptor information check
Serial number of 12 or more characters (warning indication in case of error)
Endpoint Descriptor information check

bmAtributes = 0x02 (bulk endpoint required)
bEndpointAdress (endpoints required for both IN and OUT)

One of the following check results is returned as Table [3].
USB_DONE: HMSCD operation possible
USB_ERROR: HMSCD operation not possible

Note
1. In application program, register this API as the callback function by setting this API in the member

classcheck.
2. The result of USB receiving processing is set to the argument "*ptr" of this function.
3. The maximum connectable storage device count is defined by USB_MAXSTRAGE. (Refer to

r_usb_hmsc_define.h)
4. The maximum operable drive count is defined by USB_MAXDRIVE.(Refer to r_usb_hmsc_define.h)

Example
void usb_hapl_registration(USB_UTR_t *ptr)
{
 ：
 /* Driver check */
 driver.classcheck = &R_USB_HmscClassCheck;
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 27 of 32
Sep 30, 2016

8.6.7 R_USB_HmscRead10

Issue a READ10 command

Format
uint16_t R_USB_HmscRead10(USB_UTR_t *ptr, uint16_t side, uint8_t *buff, uint32_t secno,
 uint16_t seccnt, uint32_t trans_byte)

Argument
*ptr Pointer to USB_UTR_t structure
side Drive number
*buff Read data area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value
－ Error code

Description
Creates and executes the READ10 command.
When a command error occurs, the REQUEST_SENSE command is executed to get error information.

Note
1. Please call this function from the user application program or the class.driver.
2. Please set the following members of USB_UTR_t structure.

USB_REGADR_t ipp : USB register base address
uint16_t ip : USB IP Number

Example
void usb_smp_task(USB_UTR_t *ptr)
{
 uint32_t result;
 ：
 /* Issuing READ10 */
 result = R_USB_HmscRead10(ptr, side, buff, secno, seccnt, trans_byte);
 if(result != USB_HMSC_OK)
 {
 /* Error Processing */
 }
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 28 of 32
Sep 30, 2016

8.6.8 R_USB_HmscWrite10

Issue a WRITE10 command

Format
uint16_t R_USB_HmscWead10(USB_UTR_t *ptr, uint16_t side, uint8_t *buff, uint32_t secno,
 uint16_t seccnt, uint32_t trans_byte)

Argument
*ptr Pointer to USB_UTR_t structure
side Drive number
*buff Write data area
secno Sector number
seccnt Sector count
trans_byte Transfer data length

Return Value
－ Error code

Description
Creates and executes the WRITE10 command.
When a command error occurs, the REQUEST_SENSE command is executed to get error information.

Note
1. Please call this function from the user program or the class driver.
2. Please set the following members of USB_UTR_t structure.

 USB_REGADR_t ipp : USB register base address
 uint16_t ip : USB IP Number

Example
void usb_smp_task(USB_UTR_t *ptr)
{
 uint32_t result;
 ：
 /* Issuing WRITE10 */
 result = R_USB_HmscWrite10(ptr, side, buff, secno, seccnt, trans_byte);
 if(result != USB_HMSC_OK)
 {
 /* Error processing */
 }
 ：
}

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 29 of 32
Sep 30, 2016

9. Sample Application

9.1 Application Specifications
The main functions of the HMSC sample application (hereafter APL) are as follows.

1. The APL performs the enumeration and drive recognition processing on an MSC device.
2. After completion of 1 above, the APL writes the file ’hmscdemo.txt’ to the MSC device once.
3. After writing the above file, the APL repeatedly reads the file ’hmscdemo.txt’.
4. By using a USB Hub, the APL can perform the above processing 1 through 3 on up to four MSC

devices.

[Note]

1. If the MSC device where the file ’hmscdemo.txt’ is stored is connected, that file is overwritten.
2. The APL displays the log on the terminal software upon device connection, completion of the drive

recognition processing, and device detachment.
3. For setting the terminal software, see “Table 1.1 Operation Confirmation Conditions”.

9.2 Application Processing
The APL comprises two parts: initial setting and main loop. The following gives the processing summary
for each part.

9.2.1 Initial Setting

In the initial setting part, the initial setting of the USB controller and the initialization of the application
program are performed.

9.2.2 Main Loop

This main loop controls the program using the return values from the R_USB_GetEvent function and state
variables. The return values of the R_USB_GetEvent function are used for the USB event management
such as attach and detach. File write/read is performed on the MSC device based on the state checked
with the state variable.

HMSC APL
(usb_main)

Initialize

USB_STS_CONFIGURED? Mount processing

USB_STS_NONE?

Y

Y

N

N

USB_STS_DETACH ?

N

Y

File read/write
 processing

Detach processing

USB event acquisition
(R_USB_GetEvent)

Figure 9-1 Main Loop

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 30 of 32
Sep 30, 2016

1) Mount processing (USB_STS_CONFIGURED)
When the R_USB_GetEvent function is called after the MSC device is attached to the GENMAI board and
the enumeration and drive recognition processing is completed, USB_STS_CONFIGURED is set for the
return value. After the application program checks that USB_STS_CONFIGURED has been set for the
return value and performs the Mount processing, then it assigns STATE_FILE_WRITE to the state
management variable to perform the file write/read processing.

2) File write/read processing (USB_STS_NONE)

When the R_USB_GetEvent function is called with no USB-related event, USB_STS_NONE is set for the
return value. The application program checks that USB_STS_NONE has been set for the return value and
then performs the following. This application program performs the file write/read on up to four MSC
devices using the USB Hub. Management of each MSC device is executed with its device address using
the state management variable.
a. When the state management variable is STATE_FILE_WRITE

Performs the file write processing on an MSC device using the FAT API. After completion of the file
write, assigns STATE_FILE_READ to the state management variable.

b. When the state management variable is STATE_FILE_READ
Performs the file read processing on an MSC device using the FAT API. After completion of the file
read, the file read processing is continued until the MSC is detached.

File write / File read
processing

End

Variable : address = 1

Refer to the variable
g_state[address]

STATE_DATA_WRITE ?

STATE_DATA_READ ?

File read processing
(msc_file_read)

Variable : address++

File write processing
(msc_file_write)

Variable : g_state[address]
= STATE_FILE_READ

Variable : address <
MSC_MAXDEVADDR

Y

N

Y

N

Y

N

Figure 9-2 File read/write processing

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 31 of 32
Sep 30, 2016

3) Detach processing (USB_STS_DETACH)
If the R_USB_GetEvent is called after the MSC device has been detached from the GENMAI board, then
USB_STS_DETACH will be the return value. After the application program checks that
USB_STS_DETACH has been set for the return value, then it assigns STATE_DETACH to the state
management variable.

10. Setup

10.1 Hardware
Figure 10-1 shows an example operating environment for the HMSC. Refer to the associated instruction
manuals for details on setting up the evaluation board and using the emulator, etc.

Figure 10-1 Example Operating Environment

RZ/A1H Group USB Host Mass Storage Class Driver (HMSC)

R01AN3292EJ0110 Rev.1.10 Page 32 of 32
Sep 30, 2016

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date
Description

Page Summary
1.00 Sep.01.2016 — First edition issued
1.10 Sep.30.2016 — Since the USB-BASIC-F / W has been revised, the version up

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Overview
	1.1 Please be sure to read
	1.2 Operation Confirmation Conditions
	1.3 Limitations

	2. Software Configuration
	3. System Resources
	4. Target Peripheral List（TPL）
	5. Accessing USB Storage Devices
	6. File System Interface (FSI)
	6.1 Functions and Features
	6.2 FSI API

	7. Host Mass Storage Device Driver (HMSDD)
	7.1 Limitation
	7.2 Logical Unit Number (LUN)
	7.3 Changing Logical Block Addresses
	7.4 HMSDD API Function
	7.4.1 R_USB_HmscStrgDriveTask
	7.4.2 R_USB_HmscStrgDriveSearch
	7.4.3 R_USB_HmscStrgReadSector
	7.4.4 R_USB_HmscStrgWriteSector
	7.4.5 R_USB_HmscStrgUserCommand
	7.4.6 R_USB_HmscAllocDrvno
	7.4.7 R_USB_HmscFreeDrvno
	7.4.8 R_USB_HmscRefDrvno

	8. USB Mass Storage Class Driver (HMSCD)
	8.1 Functions and Features
	8.2 Issuing Requests to HMSCD
	8.3 HMSCD Structures
	8.4 USB Host Control Driver Interface (HCI) Functions
	8.5 Device Driver Interface (DDI) Functions
	8.6 HMSC API
	8.6.1 R_USB_HmscGetDevSts
	8.6.2 R_USB_HmscTask
	8.6.3 R_USB_HmscDriverStart
	8.6.4 R_USB_HmscGetMaxUnit
	8.6.5 R_USB_HmscMassStorageReset
	8.6.6 R_USB_HmscClassCheck
	8.6.7 R_USB_HmscRead10
	8.6.8 R_USB_HmscWrite10

	9. Sample Application
	9.1 Application Specifications
	9.2 Application Processing
	9.2.1 Initial Setting
	9.2.2 Main Loop

	10. Setup
	10.1 Hardware

